Sample records for modern machine learning

  1. Machine Learning. Part 1. A Historical and Methodological Analysis.

    DTIC Science & Technology

    1983-05-31

    Machine learning has always been an integral part of artificial intelligence, and its methodology has evolved in concert with the major concerns of the field. In response to the difficulties of encoding ever-increasing volumes of knowledge in modern Al systems, many researchers have recently turned their attention to machine learning as a means to overcome the knowledge acquisition bottleneck. Part 1 of this paper presents a taxonomic analysis of machine learning organized primarily by learning strategies and secondarily by

  2. Next-Generation Machine Learning for Biological Networks.

    PubMed

    Camacho, Diogo M; Collins, Katherine M; Powers, Rani K; Costello, James C; Collins, James J

    2018-06-14

    Machine learning, a collection of data-analytical techniques aimed at building predictive models from multi-dimensional datasets, is becoming integral to modern biological research. By enabling one to generate models that learn from large datasets and make predictions on likely outcomes, machine learning can be used to study complex cellular systems such as biological networks. Here, we provide a primer on machine learning for life scientists, including an introduction to deep learning. We discuss opportunities and challenges at the intersection of machine learning and network biology, which could impact disease biology, drug discovery, microbiome research, and synthetic biology. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. Machine learning phases of matter

    NASA Astrophysics Data System (ADS)

    Carrasquilla, Juan; Melko, Roger G.

    2017-02-01

    Condensed-matter physics is the study of the collective behaviour of infinitely complex assemblies of electrons, nuclei, magnetic moments, atoms or qubits. This complexity is reflected in the size of the state space, which grows exponentially with the number of particles, reminiscent of the `curse of dimensionality' commonly encountered in machine learning. Despite this curse, the machine learning community has developed techniques with remarkable abilities to recognize, classify, and characterize complex sets of data. Here, we show that modern machine learning architectures, such as fully connected and convolutional neural networks, can identify phases and phase transitions in a variety of condensed-matter Hamiltonians. Readily programmable through modern software libraries, neural networks can be trained to detect multiple types of order parameter, as well as highly non-trivial states with no conventional order, directly from raw state configurations sampled with Monte Carlo.

  4. Machine learning for science: state of the art and future prospects.

    PubMed

    Mjolsness, E; DeCoste, D

    2001-09-14

    Recent advances in machine learning methods, along with successful applications across a wide variety of fields such as planetary science and bioinformatics, promise powerful new tools for practicing scientists. This viewpoint highlights some useful characteristics of modern machine learning methods and their relevance to scientific applications. We conclude with some speculations on near-term progress and promising directions.

  5. Active learning machine learns to create new quantum experiments.

    PubMed

    Melnikov, Alexey A; Poulsen Nautrup, Hendrik; Krenn, Mario; Dunjko, Vedran; Tiersch, Markus; Zeilinger, Anton; Briegel, Hans J

    2018-02-06

    How useful can machine learning be in a quantum laboratory? Here we raise the question of the potential of intelligent machines in the context of scientific research. A major motivation for the present work is the unknown reachability of various entanglement classes in quantum experiments. We investigate this question by using the projective simulation model, a physics-oriented approach to artificial intelligence. In our approach, the projective simulation system is challenged to design complex photonic quantum experiments that produce high-dimensional entangled multiphoton states, which are of high interest in modern quantum experiments. The artificial intelligence system learns to create a variety of entangled states and improves the efficiency of their realization. In the process, the system autonomously (re)discovers experimental techniques which are only now becoming standard in modern quantum optical experiments-a trait which was not explicitly demanded from the system but emerged through the process of learning. Such features highlight the possibility that machines could have a significantly more creative role in future research.

  6. Contemporary machine learning: techniques for practitioners in the physical sciences

    NASA Astrophysics Data System (ADS)

    Spears, Brian

    2017-10-01

    Machine learning is the science of using computers to find relationships in data without explicitly knowing or programming those relationships in advance. Often without realizing it, we employ machine learning every day as we use our phones or drive our cars. Over the last few years, machine learning has found increasingly broad application in the physical sciences. This most often involves building a model relationship between a dependent, measurable output and an associated set of controllable, but complicated, independent inputs. The methods are applicable both to experimental observations and to databases of simulated output from large, detailed numerical simulations. In this tutorial, we will present an overview of current tools and techniques in machine learning - a jumping-off point for researchers interested in using machine learning to advance their work. We will discuss supervised learning techniques for modeling complicated functions, beginning with familiar regression schemes, then advancing to more sophisticated decision trees, modern neural networks, and deep learning methods. Next, we will cover unsupervised learning and techniques for reducing the dimensionality of input spaces and for clustering data. We'll show example applications from both magnetic and inertial confinement fusion. Along the way, we will describe methods for practitioners to help ensure that their models generalize from their training data to as-yet-unseen test data. We will finally point out some limitations to modern machine learning and speculate on some ways that practitioners from the physical sciences may be particularly suited to help. This work was performed by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  7. From machine learning to deep learning: progress in machine intelligence for rational drug discovery.

    PubMed

    Zhang, Lu; Tan, Jianjun; Han, Dan; Zhu, Hao

    2017-11-01

    Machine intelligence, which is normally presented as artificial intelligence, refers to the intelligence exhibited by computers. In the history of rational drug discovery, various machine intelligence approaches have been applied to guide traditional experiments, which are expensive and time-consuming. Over the past several decades, machine-learning tools, such as quantitative structure-activity relationship (QSAR) modeling, were developed that can identify potential biological active molecules from millions of candidate compounds quickly and cheaply. However, when drug discovery moved into the era of 'big' data, machine learning approaches evolved into deep learning approaches, which are a more powerful and efficient way to deal with the massive amounts of data generated from modern drug discovery approaches. Here, we summarize the history of machine learning and provide insight into recently developed deep learning approaches and their applications in rational drug discovery. We suggest that this evolution of machine intelligence now provides a guide for early-stage drug design and discovery in the current big data era. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Deep Learning Neural Networks and Bayesian Neural Networks in Data Analysis

    NASA Astrophysics Data System (ADS)

    Chernoded, Andrey; Dudko, Lev; Myagkov, Igor; Volkov, Petr

    2017-10-01

    Most of the modern analyses in high energy physics use signal-versus-background classification techniques of machine learning methods and neural networks in particular. Deep learning neural network is the most promising modern technique to separate signal and background and now days can be widely and successfully implemented as a part of physical analysis. In this article we compare Deep learning and Bayesian neural networks application as a classifiers in an instance of top quark analysis.

  9. Machine learning of molecular electronic properties in chemical compound space

    NASA Astrophysics Data System (ADS)

    Montavon, Grégoire; Rupp, Matthias; Gobre, Vivekanand; Vazquez-Mayagoitia, Alvaro; Hansen, Katja; Tkatchenko, Alexandre; Müller, Klaus-Robert; Anatole von Lilienfeld, O.

    2013-09-01

    The combination of modern scientific computing with electronic structure theory can lead to an unprecedented amount of data amenable to intelligent data analysis for the identification of meaningful, novel and predictive structure-property relationships. Such relationships enable high-throughput screening for relevant properties in an exponentially growing pool of virtual compounds that are synthetically accessible. Here, we present a machine learning model, trained on a database of ab initio calculation results for thousands of organic molecules, that simultaneously predicts multiple electronic ground- and excited-state properties. The properties include atomization energy, polarizability, frontier orbital eigenvalues, ionization potential, electron affinity and excitation energies. The machine learning model is based on a deep multi-task artificial neural network, exploiting the underlying correlations between various molecular properties. The input is identical to ab initio methods, i.e. nuclear charges and Cartesian coordinates of all atoms. For small organic molecules, the accuracy of such a ‘quantum machine’ is similar, and sometimes superior, to modern quantum-chemical methods—at negligible computational cost.

  10. On the Safety of Machine Learning: Cyber-Physical Systems, Decision Sciences, and Data Products.

    PubMed

    Varshney, Kush R; Alemzadeh, Homa

    2017-09-01

    Machine learning algorithms increasingly influence our decisions and interact with us in all parts of our daily lives. Therefore, just as we consider the safety of power plants, highways, and a variety of other engineered socio-technical systems, we must also take into account the safety of systems involving machine learning. Heretofore, the definition of safety has not been formalized in a machine learning context. In this article, we do so by defining machine learning safety in terms of risk, epistemic uncertainty, and the harm incurred by unwanted outcomes. We then use this definition to examine safety in all sorts of applications in cyber-physical systems, decision sciences, and data products. We find that the foundational principle of modern statistical machine learning, empirical risk minimization, is not always a sufficient objective. We discuss how four different categories of strategies for achieving safety in engineering, including inherently safe design, safety reserves, safe fail, and procedural safeguards can be mapped to a machine learning context. We then discuss example techniques that can be adopted in each category, such as considering interpretability and causality of predictive models, objective functions beyond expected prediction accuracy, human involvement for labeling difficult or rare examples, and user experience design of software and open data.

  11. Real Time Network Monitoring and Reporting System

    ERIC Educational Resources Information Center

    Massengale, Ricky L., Sr.

    2009-01-01

    With the ability of modern system developers to develop intelligent programs that allows machines to learn, modify and evolve themselves, current trends of reactionary methods to detect and eradicate malicious software code from infected machines is proving to be too costly. Addressing malicious software after an attack is the current methodology…

  12. Machine Learning Approaches in Cardiovascular Imaging.

    PubMed

    Henglin, Mir; Stein, Gillian; Hushcha, Pavel V; Snoek, Jasper; Wiltschko, Alexander B; Cheng, Susan

    2017-10-01

    Cardiovascular imaging technologies continue to increase in their capacity to capture and store large quantities of data. Modern computational methods, developed in the field of machine learning, offer new approaches to leveraging the growing volume of imaging data available for analyses. Machine learning methods can now address data-related problems ranging from simple analytic queries of existing measurement data to the more complex challenges involved in analyzing raw images. To date, machine learning has been used in 2 broad and highly interconnected areas: automation of tasks that might otherwise be performed by a human and generation of clinically important new knowledge. Most cardiovascular imaging studies have focused on task-oriented problems, but more studies involving algorithms aimed at generating new clinical insights are emerging. Continued expansion in the size and dimensionality of cardiovascular imaging databases is driving strong interest in applying powerful deep learning methods, in particular, to analyze these data. Overall, the most effective approaches will require an investment in the resources needed to appropriately prepare such large data sets for analyses. Notwithstanding current technical and logistical challenges, machine learning and especially deep learning methods have much to offer and will substantially impact the future practice and science of cardiovascular imaging. © 2017 American Heart Association, Inc.

  13. Neural Decoder for Topological Codes

    NASA Astrophysics Data System (ADS)

    Torlai, Giacomo; Melko, Roger G.

    2017-07-01

    We present an algorithm for error correction in topological codes that exploits modern machine learning techniques. Our decoder is constructed from a stochastic neural network called a Boltzmann machine, of the type extensively used in deep learning. We provide a general prescription for the training of the network and a decoding strategy that is applicable to a wide variety of stabilizer codes with very little specialization. We demonstrate the neural decoder numerically on the well-known two-dimensional toric code with phase-flip errors.

  14. Current Developments in Machine Learning Techniques in Biological Data Mining.

    PubMed

    Dumancas, Gerard G; Adrianto, Indra; Bello, Ghalib; Dozmorov, Mikhail

    2017-01-01

    This supplement is intended to focus on the use of machine learning techniques to generate meaningful information on biological data. This supplement under Bioinformatics and Biology Insights aims to provide scientists and researchers working in this rapid and evolving field with online, open-access articles authored by leading international experts in this field. Advances in the field of biology have generated massive opportunities to allow the implementation of modern computational and statistical techniques. Machine learning methods in particular, a subfield of computer science, have evolved as an indispensable tool applied to a wide spectrum of bioinformatics applications. Thus, it is broadly used to investigate the underlying mechanisms leading to a specific disease, as well as the biomarker discovery process. With a growth in this specific area of science comes the need to access up-to-date, high-quality scholarly articles that will leverage the knowledge of scientists and researchers in the various applications of machine learning techniques in mining biological data.

  15. Impact of Chaos Functions on Modern Swarm Optimizers.

    PubMed

    Emary, E; Zawbaa, Hossam M

    2016-01-01

    Exploration and exploitation are two essential components for any optimization algorithm. Much exploration leads to oscillation and premature convergence while too much exploitation slows down the optimization algorithm and the optimizer may be stuck in local minima. Therefore, balancing the rates of exploration and exploitation at the optimization lifetime is a challenge. This study evaluates the impact of using chaos-based control of exploration/exploitation rates against using the systematic native control. Three modern algorithms were used in the study namely grey wolf optimizer (GWO), antlion optimizer (ALO) and moth-flame optimizer (MFO) in the domain of machine learning for feature selection. Results on a set of standard machine learning data using a set of assessment indicators prove advance in optimization algorithm performance when using variational repeated periods of declined exploration rates over using systematically decreased exploration rates.

  16. Unorganized machines for seasonal streamflow series forecasting.

    PubMed

    Siqueira, Hugo; Boccato, Levy; Attux, Romis; Lyra, Christiano

    2014-05-01

    Modern unorganized machines--extreme learning machines and echo state networks--provide an elegant balance between processing capability and mathematical simplicity, circumventing the difficulties associated with the conventional training approaches of feedforward/recurrent neural networks (FNNs/RNNs). This work performs a detailed investigation of the applicability of unorganized architectures to the problem of seasonal streamflow series forecasting, considering scenarios associated with four Brazilian hydroelectric plants and four distinct prediction horizons. Experimental results indicate the pertinence of these models to the focused task.

  17. Teach students Semiconductor Lasers according to their natural ability

    NASA Astrophysics Data System (ADS)

    Liu, Ken; Guo, Chu Cai; Zhang, Jian Fa

    2017-08-01

    Physics explain the world in strict rules. And with these rules, modern machines and electronic devices with exact operation manner have been developed. However, human beings exceed these machines with self-awareness. To treat these self-awareness students as machines to learn strict rules, or to teach these students according to their aptitude? We choose the latter, because the first kind of teaching would let students lose their individual thoughts and natural ability. In this paper we describe the individualized teaching of "semiconductor lasers".

  18. AHaH computing-from metastable switches to attractors to machine learning.

    PubMed

    Nugent, Michael Alexander; Molter, Timothy Wesley

    2014-01-01

    Modern computing architecture based on the separation of memory and processing leads to a well known problem called the von Neumann bottleneck, a restrictive limit on the data bandwidth between CPU and RAM. This paper introduces a new approach to computing we call AHaH computing where memory and processing are combined. The idea is based on the attractor dynamics of volatile dissipative electronics inspired by biological systems, presenting an attractive alternative architecture that is able to adapt, self-repair, and learn from interactions with the environment. We envision that both von Neumann and AHaH computing architectures will operate together on the same machine, but that the AHaH computing processor may reduce the power consumption and processing time for certain adaptive learning tasks by orders of magnitude. The paper begins by drawing a connection between the properties of volatility, thermodynamics, and Anti-Hebbian and Hebbian (AHaH) plasticity. We show how AHaH synaptic plasticity leads to attractor states that extract the independent components of applied data streams and how they form a computationally complete set of logic functions. After introducing a general memristive device model based on collections of metastable switches, we show how adaptive synaptic weights can be formed from differential pairs of incremental memristors. We also disclose how arrays of synaptic weights can be used to build a neural node circuit operating AHaH plasticity. By configuring the attractor states of the AHaH node in different ways, high level machine learning functions are demonstrated. This includes unsupervised clustering, supervised and unsupervised classification, complex signal prediction, unsupervised robotic actuation and combinatorial optimization of procedures-all key capabilities of biological nervous systems and modern machine learning algorithms with real world application.

  19. AHaH Computing–From Metastable Switches to Attractors to Machine Learning

    PubMed Central

    Nugent, Michael Alexander; Molter, Timothy Wesley

    2014-01-01

    Modern computing architecture based on the separation of memory and processing leads to a well known problem called the von Neumann bottleneck, a restrictive limit on the data bandwidth between CPU and RAM. This paper introduces a new approach to computing we call AHaH computing where memory and processing are combined. The idea is based on the attractor dynamics of volatile dissipative electronics inspired by biological systems, presenting an attractive alternative architecture that is able to adapt, self-repair, and learn from interactions with the environment. We envision that both von Neumann and AHaH computing architectures will operate together on the same machine, but that the AHaH computing processor may reduce the power consumption and processing time for certain adaptive learning tasks by orders of magnitude. The paper begins by drawing a connection between the properties of volatility, thermodynamics, and Anti-Hebbian and Hebbian (AHaH) plasticity. We show how AHaH synaptic plasticity leads to attractor states that extract the independent components of applied data streams and how they form a computationally complete set of logic functions. After introducing a general memristive device model based on collections of metastable switches, we show how adaptive synaptic weights can be formed from differential pairs of incremental memristors. We also disclose how arrays of synaptic weights can be used to build a neural node circuit operating AHaH plasticity. By configuring the attractor states of the AHaH node in different ways, high level machine learning functions are demonstrated. This includes unsupervised clustering, supervised and unsupervised classification, complex signal prediction, unsupervised robotic actuation and combinatorial optimization of procedures–all key capabilities of biological nervous systems and modern machine learning algorithms with real world application. PMID:24520315

  20. Scaling Support Vector Machines On Modern HPC Platforms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    You, Yang; Fu, Haohuan; Song, Shuaiwen

    2015-02-01

    We designed and implemented MIC-SVM, a highly efficient parallel SVM for x86 based multicore and many-core architectures, such as the Intel Ivy Bridge CPUs and Intel Xeon Phi co-processor (MIC). We propose various novel analysis methods and optimization techniques to fully utilize the multilevel parallelism provided by these architectures and serve as general optimization methods for other machine learning tools.

  1. Role of Big Data and Machine Learning in Diagnostic Decision Support in Radiology.

    PubMed

    Syeda-Mahmood, Tanveer

    2018-03-01

    The field of diagnostic decision support in radiology is undergoing rapid transformation with the availability of large amounts of patient data and the development of new artificial intelligence methods of machine learning such as deep learning. They hold the promise of providing imaging specialists with tools for improving the accuracy and efficiency of diagnosis and treatment. In this article, we will describe the growth of this field for radiology and outline general trends highlighting progress in the field of diagnostic decision support from the early days of rule-based expert systems to cognitive assistants of the modern era. Copyright © 2018 American College of Radiology. Published by Elsevier Inc. All rights reserved.

  2. Impact of the macroeconomic factors on university budgeting the US and Russia

    NASA Astrophysics Data System (ADS)

    Bogomolova, Arina; Balk, Igor; Ivachenko, Natalya; Temkin, Anatoly

    2017-10-01

    This paper discuses impact of macroeconomics factor on the university budgeting. Modern developments in the area of data science and machine learning made it possible to utilise automated techniques to address several problems of humankind ranging from genetic engineering and particle physics to sociology and economics. This paper is the first step to create a robust toolkit which will help universities sustain macroeconomic challenges utilising modern predictive analytics techniques.

  3. Big Data and Machine Learning in Plastic Surgery: A New Frontier in Surgical Innovation.

    PubMed

    Kanevsky, Jonathan; Corban, Jason; Gaster, Richard; Kanevsky, Ari; Lin, Samuel; Gilardino, Mirko

    2016-05-01

    Medical decision-making is increasingly based on quantifiable data. From the moment patients come into contact with the health care system, their entire medical history is recorded electronically. Whether a patient is in the operating room or on the hospital ward, technological advancement has facilitated the expedient and reliable measurement of clinically relevant health metrics, all in an effort to guide care and ensure the best possible clinical outcomes. However, as the volume and complexity of biomedical data grow, it becomes challenging to effectively process "big data" using conventional techniques. Physicians and scientists must be prepared to look beyond classic methods of data processing to extract clinically relevant information. The purpose of this article is to introduce the modern plastic surgeon to machine learning and computational interpretation of large data sets. What is machine learning? Machine learning, a subfield of artificial intelligence, can address clinically relevant problems in several domains of plastic surgery, including burn surgery; microsurgery; and craniofacial, peripheral nerve, and aesthetic surgery. This article provides a brief introduction to current research and suggests future projects that will allow plastic surgeons to explore this new frontier of surgical science.

  4. Classifying smoking urges via machine learning

    PubMed Central

    Dumortier, Antoine; Beckjord, Ellen; Shiffman, Saul; Sejdić, Ervin

    2016-01-01

    Background and objective Smoking is the largest preventable cause of death and diseases in the developed world, and advances in modern electronics and machine learning can help us deliver real-time intervention to smokers in novel ways. In this paper, we examine different machine learning approaches to use situational features associated with having or not having urges to smoke during a quit attempt in order to accurately classify high-urge states. Methods To test our machine learning approaches, specifically, Bayes, discriminant analysis and decision tree learning methods, we used a dataset collected from over 300 participants who had initiated a quit attempt. The three classification approaches are evaluated observing sensitivity, specificity, accuracy and precision. Results The outcome of the analysis showed that algorithms based on feature selection make it possible to obtain high classification rates with only a few features selected from the entire dataset. The classification tree method outperformed the naive Bayes and discriminant analysis methods, with an accuracy of the classifications up to 86%. These numbers suggest that machine learning may be a suitable approach to deal with smoking cessation matters, and to predict smoking urges, outlining a potential use for mobile health applications. Conclusions In conclusion, machine learning classifiers can help identify smoking situations, and the search for the best features and classifier parameters significantly improves the algorithms’ performance. In addition, this study also supports the usefulness of new technologies in improving the effect of smoking cessation interventions, the management of time and patients by therapists, and thus the optimization of available health care resources. Future studies should focus on providing more adaptive and personalized support to people who really need it, in a minimum amount of time by developing novel expert systems capable of delivering real-time interventions. PMID:28110725

  5. Classifying smoking urges via machine learning.

    PubMed

    Dumortier, Antoine; Beckjord, Ellen; Shiffman, Saul; Sejdić, Ervin

    2016-12-01

    Smoking is the largest preventable cause of death and diseases in the developed world, and advances in modern electronics and machine learning can help us deliver real-time intervention to smokers in novel ways. In this paper, we examine different machine learning approaches to use situational features associated with having or not having urges to smoke during a quit attempt in order to accurately classify high-urge states. To test our machine learning approaches, specifically, Bayes, discriminant analysis and decision tree learning methods, we used a dataset collected from over 300 participants who had initiated a quit attempt. The three classification approaches are evaluated observing sensitivity, specificity, accuracy and precision. The outcome of the analysis showed that algorithms based on feature selection make it possible to obtain high classification rates with only a few features selected from the entire dataset. The classification tree method outperformed the naive Bayes and discriminant analysis methods, with an accuracy of the classifications up to 86%. These numbers suggest that machine learning may be a suitable approach to deal with smoking cessation matters, and to predict smoking urges, outlining a potential use for mobile health applications. In conclusion, machine learning classifiers can help identify smoking situations, and the search for the best features and classifier parameters significantly improves the algorithms' performance. In addition, this study also supports the usefulness of new technologies in improving the effect of smoking cessation interventions, the management of time and patients by therapists, and thus the optimization of available health care resources. Future studies should focus on providing more adaptive and personalized support to people who really need it, in a minimum amount of time by developing novel expert systems capable of delivering real-time interventions. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  6. Reinforcement learning in computer vision

    NASA Astrophysics Data System (ADS)

    Bernstein, A. V.; Burnaev, E. V.

    2018-04-01

    Nowadays, machine learning has become one of the basic technologies used in solving various computer vision tasks such as feature detection, image segmentation, object recognition and tracking. In many applications, various complex systems such as robots are equipped with visual sensors from which they learn state of surrounding environment by solving corresponding computer vision tasks. Solutions of these tasks are used for making decisions about possible future actions. It is not surprising that when solving computer vision tasks we should take into account special aspects of their subsequent application in model-based predictive control. Reinforcement learning is one of modern machine learning technologies in which learning is carried out through interaction with the environment. In recent years, Reinforcement learning has been used both for solving such applied tasks as processing and analysis of visual information, and for solving specific computer vision problems such as filtering, extracting image features, localizing objects in scenes, and many others. The paper describes shortly the Reinforcement learning technology and its use for solving computer vision problems.

  7. Intelligent machines in the twenty-first century: foundations of inference and inquiry.

    PubMed

    Knuth, Kevin H

    2003-12-15

    The last century saw the application of Boolean algebra to the construction of computing machines, which work by applying logical transformations to information contained in their memory. The development of information theory and the generalization of Boolean algebra to Bayesian inference have enabled these computing machines, in the last quarter of the twentieth century, to be endowed with the ability to learn by making inferences from data. This revolution is just beginning as new computational techniques continue to make difficult problems more accessible. Recent advances in our understanding of the foundations of probability theory have revealed implications for areas other than logic. Of relevance to intelligent machines, we recently identified the algebra of questions as the free distributive algebra, which will now allow us to work with questions in a way analogous to that which Boolean algebra enables us to work with logical statements. In this paper, we examine the foundations of inference and inquiry. We begin with a history of inferential reasoning, highlighting key concepts that have led to the automation of inference in modern machine-learning systems. We then discuss the foundations of inference in more detail using a modern viewpoint that relies on the mathematics of partially ordered sets and the scaffolding of lattice theory. This new viewpoint allows us to develop the logic of inquiry and introduce a measure describing the relevance of a proposed question to an unresolved issue. Last, we will demonstrate the automation of inference, and discuss how this new logic of inquiry will enable intelligent machines to ask questions. Automation of both inference and inquiry promises to allow robots to perform science in the far reaches of our solar system and in other star systems by enabling them not only to make inferences from data, but also to decide which question to ask, which experiment to perform, or which measurement to take given what they have learned and what they are designed to understand.

  8. Intelligent machines in the twenty-first century: foundations of inference and inquiry

    NASA Technical Reports Server (NTRS)

    Knuth, Kevin H.

    2003-01-01

    The last century saw the application of Boolean algebra to the construction of computing machines, which work by applying logical transformations to information contained in their memory. The development of information theory and the generalization of Boolean algebra to Bayesian inference have enabled these computing machines, in the last quarter of the twentieth century, to be endowed with the ability to learn by making inferences from data. This revolution is just beginning as new computational techniques continue to make difficult problems more accessible. Recent advances in our understanding of the foundations of probability theory have revealed implications for areas other than logic. Of relevance to intelligent machines, we recently identified the algebra of questions as the free distributive algebra, which will now allow us to work with questions in a way analogous to that which Boolean algebra enables us to work with logical statements. In this paper, we examine the foundations of inference and inquiry. We begin with a history of inferential reasoning, highlighting key concepts that have led to the automation of inference in modern machine-learning systems. We then discuss the foundations of inference in more detail using a modern viewpoint that relies on the mathematics of partially ordered sets and the scaffolding of lattice theory. This new viewpoint allows us to develop the logic of inquiry and introduce a measure describing the relevance of a proposed question to an unresolved issue. Last, we will demonstrate the automation of inference, and discuss how this new logic of inquiry will enable intelligent machines to ask questions. Automation of both inference and inquiry promises to allow robots to perform science in the far reaches of our solar system and in other star systems by enabling them not only to make inferences from data, but also to decide which question to ask, which experiment to perform, or which measurement to take given what they have learned and what they are designed to understand.

  9. A review on machine learning principles for multi-view biological data integration.

    PubMed

    Li, Yifeng; Wu, Fang-Xiang; Ngom, Alioune

    2018-03-01

    Driven by high-throughput sequencing techniques, modern genomic and clinical studies are in a strong need of integrative machine learning models for better use of vast volumes of heterogeneous information in the deep understanding of biological systems and the development of predictive models. How data from multiple sources (called multi-view data) are incorporated in a learning system is a key step for successful analysis. In this article, we provide a comprehensive review on omics and clinical data integration techniques, from a machine learning perspective, for various analyses such as prediction, clustering, dimension reduction and association. We shall show that Bayesian models are able to use prior information and model measurements with various distributions; tree-based methods can either build a tree with all features or collectively make a final decision based on trees learned from each view; kernel methods fuse the similarity matrices learned from individual views together for a final similarity matrix or learning model; network-based fusion methods are capable of inferring direct and indirect associations in a heterogeneous network; matrix factorization models have potential to learn interactions among features from different views; and a range of deep neural networks can be integrated in multi-modal learning for capturing the complex mechanism of biological systems.

  10. Plug Into "The Modernizing Machine"! Danish University Reform and Its Transformable Academic Subjectivities

    ERIC Educational Resources Information Center

    Krejsler, John Benedicto

    2013-01-01

    "The modernizing machine" codes individual bodies, things, and symbols with images from New Public Management, neo-liberal, and Knowledge Economy discourses. Drawing on Deleuze and Guattari's concept of machines, this article explores how "the modernizing machine" produces neo-liberal modernization of the public sector. Taking…

  11. Learning about (Not by) Osmosis.

    ERIC Educational Resources Information Center

    Borovoy, Alexander

    1991-01-01

    Describes the process of osmosis from its discovery by Nollet in 1848 to modern applications. Uses experimental descriptions, illustrations, and photographs to explain osmosis. Discusses the technology of producing perfect filters and their applications in reverse osmosis to purify salt water and to filter blood in kidney machines. (PR)

  12. Autonomous Energy Grids | Grid Modernization | NREL

    Science.gov Websites

    control themselves using advanced machine learning and simulation to create resilient, reliable, and affordable optimized energy systems. Current frameworks to monitor, control, and optimize large-scale energy of optimization theory, control theory, big data analytics, and complex system theory and modeling to

  13. Exploring the potential of machine learning to break deadlock in convection parameterization

    NASA Astrophysics Data System (ADS)

    Pritchard, M. S.; Gentine, P.

    2017-12-01

    We explore the potential of modern machine learning tools (via TensorFlow) to replace parameterization of deep convection in climate models. Our strategy begins by generating a large ( 1 Tb) training dataset from time-step level (30-min) output harvested from a one-year integration of a zonally symmetric, uniform-SST aquaplanet integration of the SuperParameterized Community Atmosphere Model (SPCAM). We harvest the inputs and outputs connecting each of SPCAM's 8,192 embedded cloud-resolving model (CRM) arrays to its host climate model's arterial thermodynamic state variables to afford 143M independent training instances. We demonstrate that this dataset is sufficiently large to induce preliminary convergence for neural network prediction of desired outputs of SP, i.e. CRM-mean convective heating and moistening profiles. Sensitivity of the machine learning convergence to the nuances of the TensorFlow implementation are discussed, as well as results from pilot tests from the neural network operating inline within the SPCAM as a replacement to the (super)parameterization of convection.

  14. Machine learning algorithms for the creation of clinical healthcare enterprise systems

    NASA Astrophysics Data System (ADS)

    Mandal, Indrajit

    2017-10-01

    Clinical recommender systems are increasingly becoming popular for improving modern healthcare systems. Enterprise systems are persuasively used for creating effective nurse care plans to provide nurse training, clinical recommendations and clinical quality control. A novel design of a reliable clinical recommender system based on multiple classifier system (MCS) is implemented. A hybrid machine learning (ML) ensemble based on random subspace method and random forest is presented. The performance accuracy and robustness of proposed enterprise architecture are quantitatively estimated to be above 99% and 97%, respectively (above 95% confidence interval). The study then extends to experimental analysis of the clinical recommender system with respect to the noisy data environment. The ranking of items in nurse care plan is demonstrated using machine learning algorithms (MLAs) to overcome the drawback of the traditional association rule method. The promising experimental results are compared against the sate-of-the-art approaches to highlight the advancement in recommendation technology. The proposed recommender system is experimentally validated using five benchmark clinical data to reinforce the research findings.

  15. Image analysis and machine learning for detecting malaria.

    PubMed

    Poostchi, Mahdieh; Silamut, Kamolrat; Maude, Richard J; Jaeger, Stefan; Thoma, George

    2018-04-01

    Malaria remains a major burden on global health, with roughly 200 million cases worldwide and more than 400,000 deaths per year. Besides biomedical research and political efforts, modern information technology is playing a key role in many attempts at fighting the disease. One of the barriers toward a successful mortality reduction has been inadequate malaria diagnosis in particular. To improve diagnosis, image analysis software and machine learning methods have been used to quantify parasitemia in microscopic blood slides. This article gives an overview of these techniques and discusses the current developments in image analysis and machine learning for microscopic malaria diagnosis. We organize the different approaches published in the literature according to the techniques used for imaging, image preprocessing, parasite detection and cell segmentation, feature computation, and automatic cell classification. Readers will find the different techniques listed in tables, with the relevant articles cited next to them, for both thin and thick blood smear images. We also discussed the latest developments in sections devoted to deep learning and smartphone technology for future malaria diagnosis. Published by Elsevier Inc.

  16. Discovering charge density functionals and structure-property relationships with PROPhet: A general framework for coupling machine learning and first-principles methods

    DOE PAGES

    Kolb, Brian; Lentz, Levi C.; Kolpak, Alexie M.

    2017-04-26

    Modern ab initio methods have rapidly increased our understanding of solid state materials properties, chemical reactions, and the quantum interactions between atoms. However, poor scaling often renders direct ab initio calculations intractable for large or complex systems. There are two obvious avenues through which to remedy this problem: (i) develop new, less expensive methods to calculate system properties, or (ii) make existing methods faster. This paper describes an open source framework designed to pursue both of these avenues. PROPhet (short for PROPerty Prophet) utilizes machine learning techniques to find complex, non-linear mappings between sets of material or system properties. Themore » result is a single code capable of learning analytical potentials, non-linear density functionals, and other structure-property or property-property relationships. These capabilities enable highly accurate mesoscopic simulations, facilitate computation of expensive properties, and enable the development of predictive models for systematic materials design and optimization. Here, this work explores the coupling of machine learning to ab initio methods through means both familiar (e.g., the creation of various potentials and energy functionals) and less familiar (e.g., the creation of density functionals for arbitrary properties), serving both to demonstrate PROPhet’s ability to create exciting post-processing analysis tools and to open the door to improving ab initio methods themselves with these powerful machine learning techniques.« less

  17. Discovering charge density functionals and structure-property relationships with PROPhet: A general framework for coupling machine learning and first-principles methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kolb, Brian; Lentz, Levi C.; Kolpak, Alexie M.

    Modern ab initio methods have rapidly increased our understanding of solid state materials properties, chemical reactions, and the quantum interactions between atoms. However, poor scaling often renders direct ab initio calculations intractable for large or complex systems. There are two obvious avenues through which to remedy this problem: (i) develop new, less expensive methods to calculate system properties, or (ii) make existing methods faster. This paper describes an open source framework designed to pursue both of these avenues. PROPhet (short for PROPerty Prophet) utilizes machine learning techniques to find complex, non-linear mappings between sets of material or system properties. Themore » result is a single code capable of learning analytical potentials, non-linear density functionals, and other structure-property or property-property relationships. These capabilities enable highly accurate mesoscopic simulations, facilitate computation of expensive properties, and enable the development of predictive models for systematic materials design and optimization. Here, this work explores the coupling of machine learning to ab initio methods through means both familiar (e.g., the creation of various potentials and energy functionals) and less familiar (e.g., the creation of density functionals for arbitrary properties), serving both to demonstrate PROPhet’s ability to create exciting post-processing analysis tools and to open the door to improving ab initio methods themselves with these powerful machine learning techniques.« less

  18. Integration of multimodal RNA-seq data for prediction of kidney cancer survival

    PubMed Central

    Schwartzi, Matt; Parkl, Martin; Phanl, John H.; Wang., May D.

    2016-01-01

    Kidney cancer is of prominent concern in modern medicine. Predicting patient survival is critical to patient awareness and developing a proper treatment regimens. Previous prediction models built upon molecular feature analysis are limited to just gene expression data. In this study we investigate the difference in predicting five year survival between unimodal and multimodal analysis of RNA-seq data from gene, exon, junction, and isoform modalities. Our preliminary findings report higher predictive accuracy-as measured by area under the ROC curve (AUC)-for multimodal learning when compared to unimodal learning with both support vector machine (SVM) and k-nearest neighbor (KNN) methods. The results of this study justify further research on the use of multimodal RNA-seq data to predict survival for other cancer types using a larger sample size and additional machine learning methods. PMID:27532026

  19. New Trends in E-Science: Machine Learning and Knowledge Discovery in Databases

    NASA Astrophysics Data System (ADS)

    Brescia, Massimo

    2012-11-01

    Data mining, or Knowledge Discovery in Databases (KDD), while being the main methodology to extract the scientific information contained in Massive Data Sets (MDS), needs to tackle crucial problems since it has to orchestrate complex challenges posed by transparent access to different computing environments, scalability of algorithms, reusability of resources. To achieve a leap forward for the progress of e-science in the data avalanche era, the community needs to implement an infrastructure capable of performing data access, processing and mining in a distributed but integrated context. The increasing complexity of modern technologies carried out a huge production of data, whose related warehouse management and the need to optimize analysis and mining procedures lead to a change in concept on modern science. Classical data exploration, based on local user own data storage and limited computing infrastructures, is no more efficient in the case of MDS, worldwide spread over inhomogeneous data centres and requiring teraflop processing power. In this context modern experimental and observational science requires a good understanding of computer science, network infrastructures, Data Mining, etc. i.e. of all those techniques which fall into the domain of the so called e-science (recently assessed also by the Fourth Paradigm of Science). Such understanding is almost completely absent in the older generations of scientists and this reflects in the inadequacy of most academic and research programs. A paradigm shift is needed: statistical pattern recognition, object oriented programming, distributed computing, parallel programming need to become an essential part of scientific background. A possible practical solution is to provide the research community with easy-to understand, easy-to-use tools, based on the Web 2.0 technologies and Machine Learning methodology. Tools where almost all the complexity is hidden to the final user, but which are still flexible and able to produce efficient and reliable scientific results. All these considerations will be described in the detail in the chapter. Moreover, examples of modern applications offering to a wide variety of e-science communities a large spectrum of computational facilities to exploit the wealth of available massive data sets and powerful machine learning and statistical algorithms will be also introduced.

  20. Random Forest as a Predictive Analytics Alternative to Regression in Institutional Research

    ERIC Educational Resources Information Center

    He, Lingjun; Levine, Richard A.; Fan, Juanjuan; Beemer, Joshua; Stronach, Jeanne

    2018-01-01

    In institutional research, modern data mining approaches are seldom considered to address predictive analytics problems. The goal of this paper is to highlight the advantages of tree-based machine learning algorithms over classic (logistic) regression methods for data-informed decision making in higher education problems, and stress the success of…

  1. ProDiGe: Prioritization Of Disease Genes with multitask machine learning from positive and unlabeled examples

    PubMed Central

    2011-01-01

    Background Elucidating the genetic basis of human diseases is a central goal of genetics and molecular biology. While traditional linkage analysis and modern high-throughput techniques often provide long lists of tens or hundreds of disease gene candidates, the identification of disease genes among the candidates remains time-consuming and expensive. Efficient computational methods are therefore needed to prioritize genes within the list of candidates, by exploiting the wealth of information available about the genes in various databases. Results We propose ProDiGe, a novel algorithm for Prioritization of Disease Genes. ProDiGe implements a novel machine learning strategy based on learning from positive and unlabeled examples, which allows to integrate various sources of information about the genes, to share information about known disease genes across diseases, and to perform genome-wide searches for new disease genes. Experiments on real data show that ProDiGe outperforms state-of-the-art methods for the prioritization of genes in human diseases. Conclusions ProDiGe implements a new machine learning paradigm for gene prioritization, which could help the identification of new disease genes. It is freely available at http://cbio.ensmp.fr/prodige. PMID:21977986

  2. Machine-learning-based real-bogus system for the HSC-SSP moving object detection pipeline

    NASA Astrophysics Data System (ADS)

    Lin, Hsing-Wen; Chen, Ying-Tung; Wang, Jen-Hung; Wang, Shiang-Yu; Yoshida, Fumi; Ip, Wing-Huen; Miyazaki, Satoshi; Terai, Tsuyoshi

    2018-01-01

    Machine-learning techniques are widely applied in many modern optical sky surveys, e.g., Pan-STARRS1, PTF/iPTF, and the Subaru/Hyper Suprime-Cam survey, to reduce human intervention in data verification. In this study, we have established a machine-learning-based real-bogus system to reject false detections in the Subaru/Hyper-Suprime-Cam Strategic Survey Program (HSC-SSP) source catalog. Therefore, the HSC-SSP moving object detection pipeline can operate more effectively due to the reduction of false positives. To train the real-bogus system, we use stationary sources as the real training set and "flagged" data as the bogus set. The training set contains 47 features, most of which are photometric measurements and shape moments generated from the HSC image reduction pipeline (hscPipe). Our system can reach a true positive rate (tpr) ˜96% with a false positive rate (fpr) ˜1% or tpr ˜99% at fpr ˜5%. Therefore, we conclude that stationary sources are decent real training samples, and using photometry measurements and shape moments can reject false positives effectively.

  3. A Naive Bayes machine learning approach to risk prediction using censored, time-to-event data.

    PubMed

    Wolfson, Julian; Bandyopadhyay, Sunayan; Elidrisi, Mohamed; Vazquez-Benitez, Gabriela; Vock, David M; Musgrove, Donald; Adomavicius, Gediminas; Johnson, Paul E; O'Connor, Patrick J

    2015-09-20

    Predicting an individual's risk of experiencing a future clinical outcome is a statistical task with important consequences for both practicing clinicians and public health experts. Modern observational databases such as electronic health records provide an alternative to the longitudinal cohort studies traditionally used to construct risk models, bringing with them both opportunities and challenges. Large sample sizes and detailed covariate histories enable the use of sophisticated machine learning techniques to uncover complex associations and interactions, but observational databases are often 'messy', with high levels of missing data and incomplete patient follow-up. In this paper, we propose an adaptation of the well-known Naive Bayes machine learning approach to time-to-event outcomes subject to censoring. We compare the predictive performance of our method with the Cox proportional hazards model which is commonly used for risk prediction in healthcare populations, and illustrate its application to prediction of cardiovascular risk using an electronic health record dataset from a large Midwest integrated healthcare system. Copyright © 2015 John Wiley & Sons, Ltd.

  4. Can Accelerators Accelerate Learning?

    NASA Astrophysics Data System (ADS)

    Santos, A. C. F.; Fonseca, P.; Coelho, L. F. S.

    2009-03-01

    The 'Young Talented' education program developed by the Brazilian State Funding Agency (FAPERJ) [1] makes it possible for high-schools students from public high schools to perform activities in scientific laboratories. In the Atomic and Molecular Physics Laboratory at Federal University of Rio de Janeiro (UFRJ), the students are confronted with modern research tools like the 1.7 MV ion accelerator. Being a user-friendly machine, the accelerator is easily manageable by the students, who can perform simple hands-on activities, stimulating interest in physics, and getting the students close to modern laboratory techniques.

  5. Life in the Pinball Machine: Looking Back with Bob Mager

    ERIC Educational Resources Information Center

    Taylor, Ray

    2005-01-01

    At 81 years old, Robert F. (Bob) Mager is the granddaddy of modern performance analysis and instructional design techniques. Although he has retired from the profession, he is still actively learning. He is currently working on his fourth novel, and is also an award-winning ventriloquist and is taking flamenco lessons. Perhaps best known in the…

  6. Recurrent neural networks with specialized word embeddings for health-domain named-entity recognition.

    PubMed

    Jauregi Unanue, Iñigo; Zare Borzeshi, Ehsan; Piccardi, Massimo

    2017-12-01

    Previous state-of-the-art systems on Drug Name Recognition (DNR) and Clinical Concept Extraction (CCE) have focused on a combination of text "feature engineering" and conventional machine learning algorithms such as conditional random fields and support vector machines. However, developing good features is inherently heavily time-consuming. Conversely, more modern machine learning approaches such as recurrent neural networks (RNNs) have proved capable of automatically learning effective features from either random assignments or automated word "embeddings". (i) To create a highly accurate DNR and CCE system that avoids conventional, time-consuming feature engineering. (ii) To create richer, more specialized word embeddings by using health domain datasets such as MIMIC-III. (iii) To evaluate our systems over three contemporary datasets. Two deep learning methods, namely the Bidirectional LSTM and the Bidirectional LSTM-CRF, are evaluated. A CRF model is set as the baseline to compare the deep learning systems to a traditional machine learning approach. The same features are used for all the models. We have obtained the best results with the Bidirectional LSTM-CRF model, which has outperformed all previously proposed systems. The specialized embeddings have helped to cover unusual words in DrugBank and MedLine, but not in the i2b2/VA dataset. We present a state-of-the-art system for DNR and CCE. Automated word embeddings has allowed us to avoid costly feature engineering and achieve higher accuracy. Nevertheless, the embeddings need to be retrained over datasets that are adequate for the domain, in order to adequately cover the domain-specific vocabulary. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Machine learning models for lipophilicity and their domain of applicability.

    PubMed

    Schroeter, Timon; Schwaighofer, Anton; Mika, Sebastian; Laak, Antonius Ter; Suelzle, Detlev; Ganzer, Ursula; Heinrich, Nikolaus; Müller, Klaus-Robert

    2007-01-01

    Unfavorable lipophilicity and water solubility cause many drug failures; therefore these properties have to be taken into account early on in lead discovery. Commercial tools for predicting lipophilicity usually have been trained on small and neutral molecules, and are thus often unable to accurately predict in-house data. Using a modern Bayesian machine learning algorithm--a Gaussian process model--this study constructs a log D7 model based on 14,556 drug discovery compounds of Bayer Schering Pharma. Performance is compared with support vector machines, decision trees, ridge regression, and four commercial tools. In a blind test on 7013 new measurements from the last months (including compounds from new projects) 81% were predicted correctly within 1 log unit, compared to only 44% achieved by commercial software. Additional evaluations using public data are presented. We consider error bars for each method (model based error bars, ensemble based, and distance based approaches), and investigate how well they quantify the domain of applicability of each model.

  8. Possible applications of soaring technology to drag reduction in powered general aviation aircraft

    NASA Technical Reports Server (NTRS)

    Mcmasters, J. H.; Palmer, G. M.

    1975-01-01

    A brief examination of the performance figures achieved by modern soaring machines and a little reflection on the often huge disparity in L/D values between sailplanes and GA aircraft indicates that careful attention to lessons learned in sailplane design and manufacture hold realistic promise for substantial gains in the aerodynamic efficiency of several GA types.

  9. Integrated Multi-Scale Data Analytics and Machine Learning for the Distribution Grid and Building-to-Grid Interface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stewart, Emma M.; Hendrix, Val; Chertkov, Michael

    This white paper introduces the application of advanced data analytics to the modernized grid. In particular, we consider the field of machine learning and where it is both useful, and not useful, for the particular field of the distribution grid and buildings interface. While analytics, in general, is a growing field of interest, and often seen as the golden goose in the burgeoning distribution grid industry, its application is often limited by communications infrastructure, or lack of a focused technical application. Overall, the linkage of analytics to purposeful application in the grid space has been limited. In this paper wemore » consider the field of machine learning as a subset of analytical techniques, and discuss its ability and limitations to enable the future distribution grid and the building-to-grid interface. To that end, we also consider the potential for mixing distributed and centralized analytics and the pros and cons of these approaches. Machine learning is a subfield of computer science that studies and constructs algorithms that can learn from data and make predictions and improve forecasts. Incorporation of machine learning in grid monitoring and analysis tools may have the potential to solve data and operational challenges that result from increasing penetration of distributed and behind-the-meter energy resources. There is an exponentially expanding volume of measured data being generated on the distribution grid, which, with appropriate application of analytics, may be transformed into intelligible, actionable information that can be provided to the right actors – such as grid and building operators, at the appropriate time to enhance grid or building resilience, efficiency, and operations against various metrics or goals – such as total carbon reduction or other economic benefit to customers. While some basic analysis into these data streams can provide a wealth of information, computational and human boundaries on performing the analysis are becoming significant, with more data and multi-objective concerns. Efficient applications of analysis and the machine learning field are being considered in the loop.« less

  10. Deep convolutional neural networks for classifying GPR B-scans

    NASA Astrophysics Data System (ADS)

    Besaw, Lance E.; Stimac, Philip J.

    2015-05-01

    Symmetric and asymmetric buried explosive hazards (BEHs) present real, persistent, deadly threats on the modern battlefield. Current approaches to mitigate these threats rely on highly trained operatives to reliably detect BEHs with reasonable false alarm rates using handheld Ground Penetrating Radar (GPR) and metal detectors. As computers become smaller, faster and more efficient, there exists greater potential for automated threat detection based on state-of-the-art machine learning approaches, reducing the burden on the field operatives. Recent advancements in machine learning, specifically deep learning artificial neural networks, have led to significantly improved performance in pattern recognition tasks, such as object classification in digital images. Deep convolutional neural networks (CNNs) are used in this work to extract meaningful signatures from 2-dimensional (2-D) GPR B-scans and classify threats. The CNNs skip the traditional "feature engineering" step often associated with machine learning, and instead learn the feature representations directly from the 2-D data. A multi-antennae, handheld GPR with centimeter-accurate positioning data was used to collect shallow subsurface data over prepared lanes containing a wide range of BEHs. Several heuristics were used to prevent over-training, including cross validation, network weight regularization, and "dropout." Our results show that CNNs can extract meaningful features and accurately classify complex signatures contained in GPR B-scans, complementing existing GPR feature extraction and classification techniques.

  11. Investigating Mesoscale Convective Systems and their Predictability Using Machine Learning

    NASA Astrophysics Data System (ADS)

    Daher, H.; Duffy, D.; Bowen, M. K.

    2016-12-01

    A mesoscale convective system (MCS) is a thunderstorm region that lasts several hours long and forms near weather fronts and can often develop into tornadoes. Here we seek to answer the question of whether these tornadoes are "predictable" by looking for a defining characteristic(s) separating MCSs that evolve into tornadoes versus those that do not. Using NASA's Modern Era Retrospective-analysis for Research and Applications 2 reanalysis data (M2R12K), we apply several state of the art machine learning techniques to investigate this question. The spatial region examined in this experiment is Tornado Alley in the United States over the peak tornado months. A database containing select variables from M2R12K is created using PostgreSQL. This database is then analyzed using machine learning methods such as Symbolic Aggregate approXimation (SAX) and DBSCAN (an unsupervised density-based data clustering algorithm). The incentive behind using these methods is to mathematically define a MCS so that association rule mining techniques can be used to uncover some sort of signal or teleconnection that will help us forecast which MCSs will result in tornadoes and therefore give society more time to prepare and in turn reduce casualties and destruction.

  12. Machine Learning and Data Mining for Comprehensive Test Ban Treaty Monitoring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Russell, S; Vaidya, S

    2009-07-30

    The Comprehensive Test Ban Treaty (CTBT) is gaining renewed attention in light of growing worldwide interest in mitigating risks of nuclear weapons proliferation and testing. Since the International Monitoring System (IMS) installed the first suite of sensors in the late 1990's, the IMS network has steadily progressed, providing valuable support for event diagnostics. This progress was highlighted at the recent International Scientific Studies (ISS) Conference in Vienna in June 2009, where scientists and domain experts met with policy makers to assess the current status of the CTBT Verification System. A strategic theme within the ISS Conference centered on exploring opportunitiesmore » for further enhancing the detection and localization accuracy of low magnitude events by drawing upon modern tools and techniques for machine learning and large-scale data analysis. Several promising approaches for data exploitation were presented at the Conference. These are summarized in a companion report. In this paper, we introduce essential concepts in machine learning and assess techniques which could provide both incremental and comprehensive value for event discrimination by increasing the accuracy of the final data product, refining On-Site-Inspection (OSI) conclusions, and potentially reducing the cost of future network operations.« less

  13. Big data analytics for early detection of breast cancer based on machine learning

    NASA Astrophysics Data System (ADS)

    Ivanova, Desislava

    2017-12-01

    This paper presents the concept and the modern advances in personalized medicine that rely on technology and review the existing tools for early detection of breast cancer. The breast cancer types and distribution worldwide is discussed. It is spent time to explain the importance of identifying the normality and to specify the main classes in breast cancer, benign or malignant. The main purpose of the paper is to propose a conceptual model for early detection of breast cancer based on machine learning for processing and analysis of medical big dataand further knowledge discovery for personalized treatment. The proposed conceptual model is realized by using Naive Bayes classifier. The software is written in python programming language and for the experiments the Wisconsin breast cancer database is used. Finally, the experimental results are presented and discussed.

  14. Player Modeling for Intelligent Difficulty Adjustment

    NASA Astrophysics Data System (ADS)

    Missura, Olana; Gärtner, Thomas

    In this paper we aim at automatically adjusting the difficulty of computer games by clustering players into different types and supervised prediction of the type from short traces of gameplay. An important ingredient of video games is to challenge players by providing them with tasks of appropriate and increasing difficulty. How this difficulty should be chosen and increase over time strongly depends on the ability, experience, perception and learning curve of each individual player. It is a subjective parameter that is very difficult to set. Wrong choices can easily lead to players stopping to play the game as they get bored (if underburdened) or frustrated (if overburdened). An ideal game should be able to adjust its difficulty dynamically governed by the player’s performance. Modern video games utilise a game-testing process to investigate among other factors the perceived difficulty for a multitude of players. In this paper, we investigate how machine learning techniques can be used for automatic difficulty adjustment. Our experiments confirm the potential of machine learning in this application.

  15. Metaheuristic Algorithms for Convolution Neural Network

    PubMed Central

    Fanany, Mohamad Ivan; Arymurthy, Aniati Murni

    2016-01-01

    A typical modern optimization technique is usually either heuristic or metaheuristic. This technique has managed to solve some optimization problems in the research area of science, engineering, and industry. However, implementation strategy of metaheuristic for accuracy improvement on convolution neural networks (CNN), a famous deep learning method, is still rarely investigated. Deep learning relates to a type of machine learning technique, where its aim is to move closer to the goal of artificial intelligence of creating a machine that could successfully perform any intellectual tasks that can be carried out by a human. In this paper, we propose the implementation strategy of three popular metaheuristic approaches, that is, simulated annealing, differential evolution, and harmony search, to optimize CNN. The performances of these metaheuristic methods in optimizing CNN on classifying MNIST and CIFAR dataset were evaluated and compared. Furthermore, the proposed methods are also compared with the original CNN. Although the proposed methods show an increase in the computation time, their accuracy has also been improved (up to 7.14 percent). PMID:27375738

  16. Metaheuristic Algorithms for Convolution Neural Network.

    PubMed

    Rere, L M Rasdi; Fanany, Mohamad Ivan; Arymurthy, Aniati Murni

    2016-01-01

    A typical modern optimization technique is usually either heuristic or metaheuristic. This technique has managed to solve some optimization problems in the research area of science, engineering, and industry. However, implementation strategy of metaheuristic for accuracy improvement on convolution neural networks (CNN), a famous deep learning method, is still rarely investigated. Deep learning relates to a type of machine learning technique, where its aim is to move closer to the goal of artificial intelligence of creating a machine that could successfully perform any intellectual tasks that can be carried out by a human. In this paper, we propose the implementation strategy of three popular metaheuristic approaches, that is, simulated annealing, differential evolution, and harmony search, to optimize CNN. The performances of these metaheuristic methods in optimizing CNN on classifying MNIST and CIFAR dataset were evaluated and compared. Furthermore, the proposed methods are also compared with the original CNN. Although the proposed methods show an increase in the computation time, their accuracy has also been improved (up to 7.14 percent).

  17. Cooperative photometric redshift estimation

    NASA Astrophysics Data System (ADS)

    Cavuoti, S.; Tortora, C.; Brescia, M.; Longo, G.; Radovich, M.; Napolitano, N. R.; Amaro, V.; Vellucci, C.

    2017-06-01

    In the modern galaxy surveys photometric redshifts play a central role in a broad range of studies, from gravitational lensing and dark matter distribution to galaxy evolution. Using a dataset of ~ 25,000 galaxies from the second data release of the Kilo Degree Survey (KiDS) we obtain photometric redshifts with five different methods: (i) Random forest, (ii) Multi Layer Perceptron with Quasi Newton Algorithm, (iii) Multi Layer Perceptron with an optimization network based on the Levenberg-Marquardt learning rule, (iv) the Bayesian Photometric Redshift model (or BPZ) and (v) a classical SED template fitting procedure (Le Phare). We show how SED fitting techniques could provide useful information on the galaxy spectral type which can be used to improve the capability of machine learning methods constraining systematic errors and reduce the occurrence of catastrophic outliers. We use such classification to train specialized regression estimators, by demonstrating that such hybrid approach, involving SED fitting and machine learning in a single collaborative framework, is capable to improve the overall prediction accuracy of photometric redshifts.

  18. Jet-images — deep learning edition

    DOE PAGES

    de Oliveira, Luke; Kagan, Michael; Mackey, Lester; ...

    2016-07-13

    Building on the notion of a particle physics detector as a camera and the collimated streams of high energy particles, or jets, it measures as an image, we investigate the potential of machine learning techniques based on deep learning architectures to identify highly boosted W bosons. Modern deep learning algorithms trained on jet images can out-perform standard physically-motivated feature driven approaches to jet tagging. We develop techniques for visualizing how these features are learned by the network and what additional information is used to improve performance. Finally, this interplay between physically-motivated feature driven tools and supervised learning algorithms is generalmore » and can be used to significantly increase the sensitivity to discover new particles and new forces, and gain a deeper understanding of the physics within jets.« less

  19. Jet-images — deep learning edition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    de Oliveira, Luke; Kagan, Michael; Mackey, Lester

    Building on the notion of a particle physics detector as a camera and the collimated streams of high energy particles, or jets, it measures as an image, we investigate the potential of machine learning techniques based on deep learning architectures to identify highly boosted W bosons. Modern deep learning algorithms trained on jet images can out-perform standard physically-motivated feature driven approaches to jet tagging. We develop techniques for visualizing how these features are learned by the network and what additional information is used to improve performance. Finally, this interplay between physically-motivated feature driven tools and supervised learning algorithms is generalmore » and can be used to significantly increase the sensitivity to discover new particles and new forces, and gain a deeper understanding of the physics within jets.« less

  20. Intelligent Machines in the 21st Century: Automating the Processes of Inference and Inquiry

    NASA Technical Reports Server (NTRS)

    Knuth, Kevin H.

    2003-01-01

    The last century saw the application of Boolean algebra toward the construction of computing machines, which work by applying logical transformations to information contained in their memory. The development of information theory and the generalization of Boolean algebra to Bayesian inference have enabled these computing machines. in the last quarter of the twentieth century, to be endowed with the ability to learn by making inferences from data. This revolution is just beginning as new computational techniques continue to make difficult problems more accessible. However, modern intelligent machines work by inferring knowledge using only their pre-programmed prior knowledge and the data provided. They lack the ability to ask questions, or request data that would aid their inferences. Recent advances in understanding the foundations of probability theory have revealed implications for areas other than logic. Of relevance to intelligent machines, we identified the algebra of questions as the free distributive algebra, which now allows us to work with questions in a way analogous to that which Boolean algebra enables us to work with logical statements. In this paper we describe this logic of inference and inquiry using the mathematics of partially ordered sets and the scaffolding of lattice theory, discuss the far-reaching implications of the methodology, and demonstrate its application with current examples in machine learning. Automation of both inference and inquiry promises to allow robots to perform science in the far reaches of our solar system and in other star systems by enabling them to not only make inferences from data, but also decide which question to ask, experiment to perform, or measurement to take given what they have learned and what they are designed to understand.

  1. Learn the Lagrangian: A Vector-Valued RKHS Approach to Identifying Lagrangian Systems.

    PubMed

    Cheng, Ching-An; Huang, Han-Pang

    2016-12-01

    We study the modeling of Lagrangian systems with multiple degrees of freedom. Based on system dynamics, canonical parametric models require ad hoc derivations and sometimes simplification for a computable solution; on the other hand, due to the lack of prior knowledge in the system's structure, modern nonparametric models in machine learning face the curse of dimensionality, especially in learning large systems. In this paper, we bridge this gap by unifying the theories of Lagrangian systems and vector-valued reproducing kernel Hilbert space. We reformulate Lagrangian systems with kernels that embed the governing Euler-Lagrange equation-the Lagrangian kernels-and show that these kernels span a subspace capturing the Lagrangian's projection as inverse dynamics. By such property, our model uses only inputs and outputs as in machine learning and inherits the structured form as in system dynamics, thereby removing the need for the mundane derivations for new systems as well as the generalization problem in learning from scratches. In effect, it learns the system's Lagrangian, a simpler task than directly learning the dynamics. To demonstrate, we applied the proposed kernel to identify the robot inverse dynamics in simulations and experiments. Our results present a competitive novel approach to identifying Lagrangian systems, despite using only inputs and outputs.

  2. Machine learning and social network analysis applied to Alzheimer's disease biomarkers.

    PubMed

    Di Deco, Javier; González, Ana M; Díaz, Julia; Mato, Virginia; García-Frank, Daniel; Álvarez-Linera, Juan; Frank, Ana; Hernández-Tamames, Juan A

    2013-01-01

    Due to the fact that the number of deaths due Alzheimer is increasing, the scientists have a strong interest in early stage diagnostic of this disease. Alzheimer's patients show different kind of brain alterations, such as morphological, biochemical, functional, etc. Currently, using magnetic resonance imaging techniques is possible to obtain a huge amount of biomarkers; being difficult to appraise which of them can explain more properly how the pathology evolves instead of the normal ageing. Machine Learning methods facilitate an efficient analysis of complex data and can be used to discover which biomarkers are more informative. Moreover, automatic models can learn from historical data to suggest the diagnostic of new patients. Social Network Analysis (SNA) views social relationships in terms of network theory consisting of nodes and connections. The resulting graph-based structures are often very complex; there can be many kinds of connections between the nodes. SNA has emerged as a key technique in modern sociology. It has also gained a significant following in medicine, anthropology, biology, information science, etc., and has become a popular topic of speculation and study. This paper presents a review of machine learning and SNA techniques and then, a new approach to analyze the magnetic resonance imaging biomarkers with these techniques, obtaining relevant relationships that can explain the different phenotypes in dementia, in particular, different stages of Alzheimer's disease.

  3. Chaotic behaviour of Zeeman machines at introductory course of mechanics

    NASA Astrophysics Data System (ADS)

    Nagy, Péter; Tasnádi, Péter

    2016-05-01

    Investigation of chaotic motions and cooperative systems offers a magnificent opportunity to involve modern physics into the basic course of mechanics taught to engineering students. In the present paper it will be demonstrated that Zeeman Machine can be a versatile and motivating tool for students to get introductory knowledge about chaotic motion via interactive simulations. It works in a relatively simple way and its properties can be understood very easily. Since the machine can be built easily and the simulation of its movement is also simple the experimental investigation and the theoretical description can be connected intuitively. Although Zeeman Machine is known mainly for its quasi-static and catastrophic behaviour, its dynamic properties are also of interest with its typical chaotic features. By means of a periodically driven Zeeman Machine a wide range of chaotic properties of the simple systems can be demonstrated such as bifurcation diagrams, chaotic attractors, transient chaos and so on. The main goal of this paper is the presentation of an interactive learning material for teaching the basic features of the chaotic systems through the investigation of the Zeeman Machine.

  4. Artificial intelligence in healthcare: past, present and future.

    PubMed

    Jiang, Fei; Jiang, Yong; Zhi, Hui; Dong, Yi; Li, Hao; Ma, Sufeng; Wang, Yilong; Dong, Qiang; Shen, Haipeng; Wang, Yongjun

    2017-12-01

    Artificial intelligence (AI) aims to mimic human cognitive functions. It is bringing a paradigm shift to healthcare, powered by increasing availability of healthcare data and rapid progress of analytics techniques. We survey the current status of AI applications in healthcare and discuss its future. AI can be applied to various types of healthcare data (structured and unstructured). Popular AI techniques include machine learning methods for structured data, such as the classical support vector machine and neural network, and the modern deep learning, as well as natural language processing for unstructured data. Major disease areas that use AI tools include cancer, neurology and cardiology. We then review in more details the AI applications in stroke, in the three major areas of early detection and diagnosis, treatment, as well as outcome prediction and prognosis evaluation. We conclude with discussion about pioneer AI systems, such as IBM Watson, and hurdles for real-life deployment of AI.

  5. Using machine learning to accelerate sampling-based inversion

    NASA Astrophysics Data System (ADS)

    Valentine, A. P.; Sambridge, M.

    2017-12-01

    In most cases, a complete solution to a geophysical inverse problem (including robust understanding of the uncertainties associated with the result) requires a sampling-based approach. However, the computational burden is high, and proves intractable for many problems of interest. There is therefore considerable value in developing techniques that can accelerate sampling procedures.The main computational cost lies in evaluation of the forward operator (e.g. calculation of synthetic seismograms) for each candidate model. Modern machine learning techniques-such as Gaussian Processes-offer a route for constructing a computationally-cheap approximation to this calculation, which can replace the accurate solution during sampling. Importantly, the accuracy of the approximation can be refined as inversion proceeds, to ensure high-quality results.In this presentation, we describe and demonstrate this approach-which can be seen as an extension of popular current methods, such as the Neighbourhood Algorithm, and bridges the gap between prior- and posterior-sampling frameworks.

  6. Computational Analysis of Behavior.

    PubMed

    Egnor, S E Roian; Branson, Kristin

    2016-07-08

    In this review, we discuss the emerging field of computational behavioral analysis-the use of modern methods from computer science and engineering to quantitatively measure animal behavior. We discuss aspects of experiment design important to both obtaining biologically relevant behavioral data and enabling the use of machine vision and learning techniques for automation. These two goals are often in conflict. Restraining or restricting the environment of the animal can simplify automatic behavior quantification, but it can also degrade the quality or alter important aspects of behavior. To enable biologists to design experiments to obtain better behavioral measurements, and computer scientists to pinpoint fruitful directions for algorithm improvement, we review known effects of artificial manipulation of the animal on behavior. We also review machine vision and learning techniques for tracking, feature extraction, automated behavior classification, and automated behavior discovery, the assumptions they make, and the types of data they work best with.

  7. Biochemical Profile of Heritage and Modern Apple Cultivars and Application of Machine Learning Methods To Predict Usage, Age, and Harvest Season.

    PubMed

    Anastasiadi, Maria; Mohareb, Fady; Redfern, Sally P; Berry, Mark; Simmonds, Monique S J; Terry, Leon A

    2017-07-05

    The present study represents the first major attempt to characterize the biochemical profile in different tissues of a large selection of apple cultivars sourced from the United Kingdom's National Fruit Collection comprising dessert, ornamental, cider, and culinary apples. Furthermore, advanced machine learning methods were applied with the objective to identify whether the phenolic and sugar composition of an apple cultivar could be used as a biomarker fingerprint to differentiate between heritage and mainstream commercial cultivars as well as govern the separation among primary usage groups and harvest season. A prediction accuracy of >90% was achieved with the random forest method for all three models. The results highlighted the extraordinary phytochemical potency and unique profile of some heritage, cider, and ornamental apple cultivars, especially in comparison to more mainstream apple cultivars. Therefore, these findings could guide future cultivar selection on the basis of health-promoting phytochemical content.

  8. Artificial intelligence in healthcare: past, present and future

    PubMed Central

    Jiang, Fei; Jiang, Yong; Zhi, Hui; Dong, Yi; Li, Hao; Ma, Sufeng; Wang, Yilong; Dong, Qiang; Shen, Haipeng; Wang, Yongjun

    2017-01-01

    Artificial intelligence (AI) aims to mimic human cognitive functions. It is bringing a paradigm shift to healthcare, powered by increasing availability of healthcare data and rapid progress of analytics techniques. We survey the current status of AI applications in healthcare and discuss its future. AI can be applied to various types of healthcare data (structured and unstructured). Popular AI techniques include machine learning methods for structured data, such as the classical support vector machine and neural network, and the modern deep learning, as well as natural language processing for unstructured data. Major disease areas that use AI tools include cancer, neurology and cardiology. We then review in more details the AI applications in stroke, in the three major areas of early detection and diagnosis, treatment, as well as outcome prediction and prognosis evaluation. We conclude with discussion about pioneer AI systems, such as IBM Watson, and hurdles for real-life deployment of AI. PMID:29507784

  9. Automated structural classification of lipids by machine learning.

    PubMed

    Taylor, Ryan; Miller, Ryan H; Miller, Ryan D; Porter, Michael; Dalgleish, James; Prince, John T

    2015-03-01

    Modern lipidomics is largely dependent upon structural ontologies because of the great diversity exhibited in the lipidome, but no automated lipid classification exists to facilitate this partitioning. The size of the putative lipidome far exceeds the number currently classified, despite a decade of work. Automated classification would benefit ongoing classification efforts by decreasing the time needed and increasing the accuracy of classification while providing classifications for mass spectral identification algorithms. We introduce a tool that automates classification into the LIPID MAPS ontology of known lipids with >95% accuracy and novel lipids with 63% accuracy. The classification is based upon simple chemical characteristics and modern machine learning algorithms. The decision trees produced are intelligible and can be used to clarify implicit assumptions about the current LIPID MAPS classification scheme. These characteristics and decision trees are made available to facilitate alternative implementations. We also discovered many hundreds of lipids that are currently misclassified in the LIPID MAPS database, strongly underscoring the need for automated classification. Source code and chemical characteristic lists as SMARTS search strings are available under an open-source license at https://www.github.com/princelab/lipid_classifier. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  10. Review of Statistical Learning Methods in Integrated Omics Studies (An Integrated Information Science).

    PubMed

    Zeng, Irene Sui Lan; Lumley, Thomas

    2018-01-01

    Integrated omics is becoming a new channel for investigating the complex molecular system in modern biological science and sets a foundation for systematic learning for precision medicine. The statistical/machine learning methods that have emerged in the past decade for integrated omics are not only innovative but also multidisciplinary with integrated knowledge in biology, medicine, statistics, machine learning, and artificial intelligence. Here, we review the nontrivial classes of learning methods from the statistical aspects and streamline these learning methods within the statistical learning framework. The intriguing findings from the review are that the methods used are generalizable to other disciplines with complex systematic structure, and the integrated omics is part of an integrated information science which has collated and integrated different types of information for inferences and decision making. We review the statistical learning methods of exploratory and supervised learning from 42 publications. We also discuss the strengths and limitations of the extended principal component analysis, cluster analysis, network analysis, and regression methods. Statistical techniques such as penalization for sparsity induction when there are fewer observations than the number of features and using Bayesian approach when there are prior knowledge to be integrated are also included in the commentary. For the completeness of the review, a table of currently available software and packages from 23 publications for omics are summarized in the appendix.

  11. Equation-free and variable free modeling for complex/multiscale systems. Coarse-grained computation in science and engineering using fine-grained models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kevrekidis, Ioannis G.

    The work explored the linking of modern developing machine learning techniques (manifold learning and in particular diffusion maps) with traditional PDE modeling/discretization/scientific computation techniques via the equation-free methodology developed by the PI. The result (in addition to several PhD degrees, two of them by CSGF Fellows) was a sequence of strong developments - in part on the algorithmic side, linking data mining with scientific computing, and in part on applications, ranging from PDE discretizations to molecular dynamics and complex network dynamics.

  12. Kernel methods for large-scale genomic data analysis

    PubMed Central

    Xing, Eric P.; Schaid, Daniel J.

    2015-01-01

    Machine learning, particularly kernel methods, has been demonstrated as a promising new tool to tackle the challenges imposed by today’s explosive data growth in genomics. They provide a practical and principled approach to learning how a large number of genetic variants are associated with complex phenotypes, to help reveal the complexity in the relationship between the genetic markers and the outcome of interest. In this review, we highlight the potential key role it will have in modern genomic data processing, especially with regard to integration with classical methods for gene prioritizing, prediction and data fusion. PMID:25053743

  13. Open source tools for large-scale neuroscience.

    PubMed

    Freeman, Jeremy

    2015-06-01

    New technologies for monitoring and manipulating the nervous system promise exciting biology but pose challenges for analysis and computation. Solutions can be found in the form of modern approaches to distributed computing, machine learning, and interactive visualization. But embracing these new technologies will require a cultural shift: away from independent efforts and proprietary methods and toward an open source and collaborative neuroscience. Copyright © 2015 The Author. Published by Elsevier Ltd.. All rights reserved.

  14. Analysis of Big Data in Gait Biomechanics: Current Trends and Future Directions.

    PubMed

    Phinyomark, Angkoon; Petri, Giovanni; Ibáñez-Marcelo, Esther; Osis, Sean T; Ferber, Reed

    2018-01-01

    The increasing amount of data in biomechanics research has greatly increased the importance of developing advanced multivariate analysis and machine learning techniques, which are better able to handle "big data". Consequently, advances in data science methods will expand the knowledge for testing new hypotheses about biomechanical risk factors associated with walking and running gait-related musculoskeletal injury. This paper begins with a brief introduction to an automated three-dimensional (3D) biomechanical gait data collection system: 3D GAIT, followed by how the studies in the field of gait biomechanics fit the quantities in the 5 V's definition of big data: volume, velocity, variety, veracity, and value. Next, we provide a review of recent research and development in multivariate and machine learning methods-based gait analysis that can be applied to big data analytics. These modern biomechanical gait analysis methods include several main modules such as initial input features, dimensionality reduction (feature selection and extraction), and learning algorithms (classification and clustering). Finally, a promising big data exploration tool called "topological data analysis" and directions for future research are outlined and discussed.

  15. Teaching an Old Log New Tricks with Machine Learning.

    PubMed

    Schnell, Krista; Puri, Colin; Mahler, Paul; Dukatz, Carl

    2014-03-01

    To most people, the log file would not be considered an exciting area in technology today. However, these relatively benign, slowly growing data sources can drive large business transformations when combined with modern-day analytics. Accenture Technology Labs has built a new framework that helps to expand existing vendor solutions to create new methods of gaining insights from these benevolent information springs. This framework provides a systematic and effective machine-learning mechanism to understand, analyze, and visualize heterogeneous log files. These techniques enable an automated approach to analyzing log content in real time, learning relevant behaviors, and creating actionable insights applicable in traditionally reactive situations. Using this approach, companies can now tap into a wealth of knowledge residing in log file data that is currently being collected but underutilized because of its overwhelming variety and volume. By using log files as an important data input into the larger enterprise data supply chain, businesses have the opportunity to enhance their current operational log management solution and generate entirely new business insights-no longer limited to the realm of reactive IT management, but extending from proactive product improvement to defense from attacks. As we will discuss, this solution has immediate relevance in the telecommunications and security industries. However, the most forward-looking companies can take it even further. How? By thinking beyond the log file and applying the same machine-learning framework to other log file use cases (including logistics, social media, and consumer behavior) and any other transactional data source.

  16. Pedestrian recognition using automotive radar sensors

    NASA Astrophysics Data System (ADS)

    Bartsch, A.; Fitzek, F.; Rasshofer, R. H.

    2012-09-01

    The application of modern series production automotive radar sensors to pedestrian recognition is an important topic in research on future driver assistance systems. The aim of this paper is to understand the potential and limits of such sensors in pedestrian recognition. This knowledge could be used to develop next generation radar sensors with improved pedestrian recognition capabilities. A new raw radar data signal processing algorithm is proposed that allows deep insights into the object classification process. The impact of raw radar data properties can be directly observed in every layer of the classification system by avoiding machine learning and tracking. This gives information on the limiting factors of raw radar data in terms of classification decision making. To accomplish the very challenging distinction between pedestrians and static objects, five significant and stable object features from the spatial distribution and Doppler information are found. Experimental results with data from a 77 GHz automotive radar sensor show that over 95% of pedestrians can be classified correctly under optimal conditions, which is compareable to modern machine learning systems. The impact of the pedestrian's direction of movement, occlusion, antenna beam elevation angle, linear vehicle movement, and other factors are investigated and discussed. The results show that under real life conditions, radar only based pedestrian recognition is limited due to insufficient Doppler frequency and spatial resolution as well as antenna side lobe effects.

  17. Fullrmc, a rigid body Reverse Monte Carlo modeling package enabled with machine learning and artificial intelligence.

    PubMed

    Aoun, Bachir

    2016-05-05

    A new Reverse Monte Carlo (RMC) package "fullrmc" for atomic or rigid body and molecular, amorphous, or crystalline materials is presented. fullrmc main purpose is to provide a fully modular, fast and flexible software, thoroughly documented, complex molecules enabled, written in a modern programming language (python, cython, C and C++ when performance is needed) and complying to modern programming practices. fullrmc approach in solving an atomic or molecular structure is different from existing RMC algorithms and software. In a nutshell, traditional RMC methods and software randomly adjust atom positions until the whole system has the greatest consistency with a set of experimental data. In contrast, fullrmc applies smart moves endorsed with reinforcement machine learning to groups of atoms. While fullrmc allows running traditional RMC modeling, the uniqueness of this approach resides in its ability to customize grouping atoms in any convenient way with no additional programming efforts and to apply smart and more physically meaningful moves to the defined groups of atoms. In addition, fullrmc provides a unique way with almost no additional computational cost to recur a group's selection, allowing the system to go out of local minimas by refining a group's position or exploring through and beyond not allowed positions and energy barriers the unrestricted three dimensional space around a group. © 2016 Wiley Periodicals, Inc.

  18. Fullrmc, a rigid body reverse monte carlo modeling package enabled with machine learning and artificial intelligence

    DOE PAGES

    Aoun, Bachir

    2016-01-22

    Here, a new Reverse Monte Carlo (RMC) package ‘fullrmc’ for atomic or rigid body and molecular, amorphous or crystalline materials is presented. fullrmc main purpose is to provide a fully modular, fast and flexible software, thoroughly documented, complex molecules enabled, written in a modern programming language (python, cython ,C and C++ when performance is needed) and complying to modern programming practices. fullrmc approach in solving an atomic or molecular structure is different from existing RMC algorithms and software. In a nutshell, traditional RMC methods and software randomly adjust atom positions until the whole system has the greatest consistency with amore » set of experimental data. In contrast, fullrmc applies smart moves endorsed with reinforcement machine learning to groups of atoms. While fullrmc allows running traditional RMC modelling, the uniqueness of this approach resides in its ability to customize grouping atoms in any convenient way with no additional programming efforts and to apply smart and more physically meaningful moves to the defined groups of atoms. Also fullrmc provides a unique way with almost no additional computational cost to recur a group’s selection, allowing the system to go out of local minimas by refining a group’s position or exploring through and beyond not allowed positions and energy barriers the unrestricted three dimensional space around a group.« less

  19. Fullrmc, a rigid body reverse monte carlo modeling package enabled with machine learning and artificial intelligence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aoun, Bachir

    Here, a new Reverse Monte Carlo (RMC) package ‘fullrmc’ for atomic or rigid body and molecular, amorphous or crystalline materials is presented. fullrmc main purpose is to provide a fully modular, fast and flexible software, thoroughly documented, complex molecules enabled, written in a modern programming language (python, cython ,C and C++ when performance is needed) and complying to modern programming practices. fullrmc approach in solving an atomic or molecular structure is different from existing RMC algorithms and software. In a nutshell, traditional RMC methods and software randomly adjust atom positions until the whole system has the greatest consistency with amore » set of experimental data. In contrast, fullrmc applies smart moves endorsed with reinforcement machine learning to groups of atoms. While fullrmc allows running traditional RMC modelling, the uniqueness of this approach resides in its ability to customize grouping atoms in any convenient way with no additional programming efforts and to apply smart and more physically meaningful moves to the defined groups of atoms. Also fullrmc provides a unique way with almost no additional computational cost to recur a group’s selection, allowing the system to go out of local minimas by refining a group’s position or exploring through and beyond not allowed positions and energy barriers the unrestricted three dimensional space around a group.« less

  20. Photometric redshift estimation based on data mining with PhotoRApToR

    NASA Astrophysics Data System (ADS)

    Cavuoti, S.; Brescia, M.; De Stefano, V.; Longo, G.

    2015-03-01

    Photometric redshifts (photo-z) are crucial to the scientific exploitation of modern panchromatic digital surveys. In this paper we present PhotoRApToR (Photometric Research Application To Redshift): a Java/C ++ based desktop application capable to solve non-linear regression and multi-variate classification problems, in particular specialized for photo-z estimation. It embeds a machine learning algorithm, namely a multi-layer neural network trained by the Quasi Newton learning rule, and special tools dedicated to pre- and post-processing data. PhotoRApToR has been successfully tested on several scientific cases. The application is available for free download from the DAME Program web site.

  1. In-lab versus at-home activity recognition in ambulatory subjects with incomplete spinal cord injury.

    PubMed

    Albert, Mark V; Azeze, Yohannes; Courtois, Michael; Jayaraman, Arun

    2017-02-06

    Although commercially available activity trackers can aid in tracking therapy and recovery of patients, most devices perform poorly for patients with irregular movement patterns. Standard machine learning techniques can be applied on recorded accelerometer signals in order to classify the activities of ambulatory subjects with incomplete spinal cord injury in a way that is specific to this population and the location of the recording-at home or in the clinic. Subjects were instructed to perform a standardized set of movements while wearing a waist-worn accelerometer in the clinic and at-home. Activities included lying, sitting, standing, walking, wheeling, and stair climbing. Multiple classifiers and validation methods were used to quantify the ability of the machine learning techniques to distinguish the activities recorded in-lab or at-home. In the lab, classifiers trained and tested using within-subject cross-validation provided an accuracy of 91.6%. When the classifier was trained on data collected in the lab but tested on at home data, the accuracy fell to 54.6% indicating distinct movement patterns between locations. However, the accuracy of the at-home classifications, when training the classifier with at-home data, improved to 85.9%. Individuals with unique movement patterns can benefit from using tailored activity recognition algorithms easily implemented using modern machine learning methods on collected movement data.

  2. On-the-fly machine-learning for high-throughput experiments: search for rare-earth-free permanent magnets

    PubMed Central

    Kusne, Aaron Gilad; Gao, Tieren; Mehta, Apurva; Ke, Liqin; Nguyen, Manh Cuong; Ho, Kai-Ming; Antropov, Vladimir; Wang, Cai-Zhuang; Kramer, Matthew J.; Long, Christian; Takeuchi, Ichiro

    2014-01-01

    Advanced materials characterization techniques with ever-growing data acquisition speed and storage capabilities represent a challenge in modern materials science, and new procedures to quickly assess and analyze the data are needed. Machine learning approaches are effective in reducing the complexity of data and rapidly homing in on the underlying trend in multi-dimensional data. Here, we show that by employing an algorithm called the mean shift theory to a large amount of diffraction data in high-throughput experimentation, one can streamline the process of delineating the structural evolution across compositional variations mapped on combinatorial libraries with minimal computational cost. Data collected at a synchrotron beamline are analyzed on the fly, and by integrating experimental data with the inorganic crystal structure database (ICSD), we can substantially enhance the accuracy in classifying the structural phases across ternary phase spaces. We have used this approach to identify a novel magnetic phase with enhanced magnetic anisotropy which is a candidate for rare-earth free permanent magnet. PMID:25220062

  3. Predicting Catalytic Activity of Nanoparticles by a DFT-Aided Machine-Learning Algorithm.

    PubMed

    Jinnouchi, Ryosuke; Asahi, Ryoji

    2017-09-07

    Catalytic activities are often dominated by a few specific surface sites, and designing active sites is the key to realize high-performance heterogeneous catalysts. The great triumphs of modern surface science lead to reproduce catalytic reaction rates by modeling the arrangement of surface atoms with well-defined single-crystal surfaces. However, this method has limitations in the case for highly inhomogeneous atomic configurations such as on alloy nanoparticles with atomic-scale defects, where the arrangement cannot be decomposed into single crystals. Here, we propose a universal machine-learning scheme using a local similarity kernel, which allows interrogation of catalytic activities based on local atomic configurations. We then apply it to direct NO decomposition on RhAu alloy nanoparticles. The proposed method can efficiently predict energetics of catalytic reactions on nanoparticles using DFT data on single crystals, and its combination with kinetic analysis can provide detailed information on structures of active sites and size- and composition-dependent catalytic activities.

  4. Courses in Modern Physics for Non-science Majors, Future Science Teachers, and Biology Students

    NASA Astrophysics Data System (ADS)

    Zollman, Dean

    2001-03-01

    For the past 15 years Kansas State University has offered a course in modern physics for students who are not majoring in physics. This course carries a prerequisite of one physics course so that the students have a basic introduction in classical topics. The majors of students range from liberal arts to engineering. Future secondary science teachers whose first area of teaching is not physics can use the course as part of their study of science. The course has evolved from a lecture format to one which is highly interactive and uses a combination of hands-on activities, tutorials and visualizations, particularly the Visual Quantum Mechanics materials. Another course encourages biology students to continue their physics learning beyond the introductory course. Modern Miracle Medical Machines introduces the basic physics which underlie diagnosis techniques such as MRI and PET and laser surgical techniques. Additional information is available at http://www.phys.ksu.edu/perg/

  5. A sparse structure learning algorithm for Gaussian Bayesian Network identification from high-dimensional data.

    PubMed

    Huang, Shuai; Li, Jing; Ye, Jieping; Fleisher, Adam; Chen, Kewei; Wu, Teresa; Reiman, Eric

    2013-06-01

    Structure learning of Bayesian Networks (BNs) is an important topic in machine learning. Driven by modern applications in genetics and brain sciences, accurate and efficient learning of large-scale BN structures from high-dimensional data becomes a challenging problem. To tackle this challenge, we propose a Sparse Bayesian Network (SBN) structure learning algorithm that employs a novel formulation involving one L1-norm penalty term to impose sparsity and another penalty term to ensure that the learned BN is a Directed Acyclic Graph--a required property of BNs. Through both theoretical analysis and extensive experiments on 11 moderate and large benchmark networks with various sample sizes, we show that SBN leads to improved learning accuracy, scalability, and efficiency as compared with 10 existing popular BN learning algorithms. We apply SBN to a real-world application of brain connectivity modeling for Alzheimer's disease (AD) and reveal findings that could lead to advancements in AD research.

  6. A Sparse Structure Learning Algorithm for Gaussian Bayesian Network Identification from High-Dimensional Data

    PubMed Central

    Huang, Shuai; Li, Jing; Ye, Jieping; Fleisher, Adam; Chen, Kewei; Wu, Teresa; Reiman, Eric

    2014-01-01

    Structure learning of Bayesian Networks (BNs) is an important topic in machine learning. Driven by modern applications in genetics and brain sciences, accurate and efficient learning of large-scale BN structures from high-dimensional data becomes a challenging problem. To tackle this challenge, we propose a Sparse Bayesian Network (SBN) structure learning algorithm that employs a novel formulation involving one L1-norm penalty term to impose sparsity and another penalty term to ensure that the learned BN is a Directed Acyclic Graph (DAG)—a required property of BNs. Through both theoretical analysis and extensive experiments on 11 moderate and large benchmark networks with various sample sizes, we show that SBN leads to improved learning accuracy, scalability, and efficiency as compared with 10 existing popular BN learning algorithms. We apply SBN to a real-world application of brain connectivity modeling for Alzheimer’s disease (AD) and reveal findings that could lead to advancements in AD research. PMID:22665720

  7. Big Data in radiation therapy: challenges and opportunities.

    PubMed

    Lustberg, Tim; van Soest, Johan; Jochems, Arthur; Deist, Timo; van Wijk, Yvonka; Walsh, Sean; Lambin, Philippe; Dekker, Andre

    2017-01-01

    Data collected and generated by radiation oncology can be classified by the Volume, Variety, Velocity and Veracity (4Vs) of Big Data because they are spread across different care providers and not easily shared owing to patient privacy protection. The magnitude of the 4Vs is substantial in oncology, especially owing to imaging modalities and unclear data definitions. To create useful models ideally all data of all care providers are understood and learned from; however, this presents challenges in the guise of poor data quality, patient privacy concerns, geographical spread, interoperability and large volume. In radiation oncology, there are many efforts to collect data for research and innovation purposes. Clinical trials are the gold standard when proving any hypothesis that directly affects the patient. Collecting data in registries with strict predefined rules is also a common approach to find answers. A third approach is to develop data stores that can be used by modern machine learning techniques to provide new insights or answer hypotheses. We believe all three approaches have their strengths and weaknesses, but they should all strive to create Findable, Accessible, Interoperable, Reusable (FAIR) data. To learn from these data, we need distributed learning techniques, sending machine learning algorithms to FAIR data stores around the world, learning from trial data, registries and routine clinical data rather than trying to centralize all data. To improve and personalize medicine, rapid learning platforms must be able to process FAIR "Big Data" to evaluate current clinical practice and to guide further innovation.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCarthy, J.M.

    The theory and methodology of design of general-purpose machines that may be controlled by a computer to perform all the tasks of a set of special-purpose machines is the focus of modern machine design research. These seventeen contributions chronicle recent activity in the analysis and design of robot manipulators that are the prototype of these general-purpose machines. They focus particularly on kinematics, the geometry of rigid-body motion, which is an integral part of machine design theory. The challenges to kinematics researchers presented by general-purpose machines such as the manipulator are leading to new perspectives in the design and control ofmore » simpler machines with two, three, and more degrees of freedom. Researchers are rethinking the uses of gear trains, planar mechanisms, adjustable mechanisms, and computer controlled actuators in the design of modern machines.« less

  9. Incorporating deep learning with convolutional neural networks and position specific scoring matrices for identifying electron transport proteins.

    PubMed

    Le, Nguyen-Quoc-Khanh; Ho, Quang-Thai; Ou, Yu-Yen

    2017-09-05

    In several years, deep learning is a modern machine learning technique using in a variety of fields with state-of-the-art performance. Therefore, utilization of deep learning to enhance performance is also an important solution for current bioinformatics field. In this study, we try to use deep learning via convolutional neural networks and position specific scoring matrices to identify electron transport proteins, which is an important molecular function in transmembrane proteins. Our deep learning method can approach a precise model for identifying of electron transport proteins with achieved sensitivity of 80.3%, specificity of 94.4%, and accuracy of 92.3%, with MCC of 0.71 for independent dataset. The proposed technique can serve as a powerful tool for identifying electron transport proteins and can help biologists understand the function of the electron transport proteins. Moreover, this study provides a basis for further research that can enrich a field of applying deep learning in bioinformatics. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  10. Toward Intelligent Machine Learning Algorithms

    DTIC Science & Technology

    1988-05-01

    Machine learning is recognized as a tool for improving the performance of many kinds of systems, yet most machine learning systems themselves are not...directed systems, and with the addition of a knowledge store for organizing and maintaining knowledge to assist learning, a learning machine learning (L...ML) algorithm is possible. The necessary components of L-ML systems are presented along with several case descriptions of existing machine learning systems

  11. Web Mining: Machine Learning for Web Applications.

    ERIC Educational Resources Information Center

    Chen, Hsinchun; Chau, Michael

    2004-01-01

    Presents an overview of machine learning research and reviews methods used for evaluating machine learning systems. Ways that machine-learning algorithms were used in traditional information retrieval systems in the "pre-Web" era are described, and the field of Web mining and how machine learning has been used in different Web mining…

  12. Dynamical Mass Measurements of Contaminated Galaxy Clusters Using Machine Learning

    NASA Astrophysics Data System (ADS)

    Ntampaka, M.; Trac, H.; Sutherland, D. J.; Fromenteau, S.; Póczos, B.; Schneider, J.

    2016-11-01

    We study dynamical mass measurements of galaxy clusters contaminated by interlopers and show that a modern machine learning algorithm can predict masses by better than a factor of two compared to a standard scaling relation approach. We create two mock catalogs from Multidark’s publicly available N-body MDPL1 simulation, one with perfect galaxy cluster membership information and the other where a simple cylindrical cut around the cluster center allows interlopers to contaminate the clusters. In the standard approach, we use a power-law scaling relation to infer cluster mass from galaxy line-of-sight (LOS) velocity dispersion. Assuming perfect membership knowledge, this unrealistic case produces a wide fractional mass error distribution, with a width of {{Δ }}ε ≈ 0.87. Interlopers introduce additional scatter, significantly widening the error distribution further ({{Δ }}ε ≈ 2.13). We employ the support distribution machine (SDM) class of algorithms to learn from distributions of data to predict single values. Applied to distributions of galaxy observables such as LOS velocity and projected distance from the cluster center, SDM yields better than a factor-of-two improvement ({{Δ }}ε ≈ 0.67) for the contaminated case. Remarkably, SDM applied to contaminated clusters is better able to recover masses than even the scaling relation approach applied to uncontaminated clusters. We show that the SDM method more accurately reproduces the cluster mass function, making it a valuable tool for employing cluster observations to evaluate cosmological models.

  13. Open source machine-learning algorithms for the prediction of optimal cancer drug therapies.

    PubMed

    Huang, Cai; Mezencev, Roman; McDonald, John F; Vannberg, Fredrik

    2017-01-01

    Precision medicine is a rapidly growing area of modern medical science and open source machine-learning codes promise to be a critical component for the successful development of standardized and automated analysis of patient data. One important goal of precision cancer medicine is the accurate prediction of optimal drug therapies from the genomic profiles of individual patient tumors. We introduce here an open source software platform that employs a highly versatile support vector machine (SVM) algorithm combined with a standard recursive feature elimination (RFE) approach to predict personalized drug responses from gene expression profiles. Drug specific models were built using gene expression and drug response data from the National Cancer Institute panel of 60 human cancer cell lines (NCI-60). The models are highly accurate in predicting the drug responsiveness of a variety of cancer cell lines including those comprising the recent NCI-DREAM Challenge. We demonstrate that predictive accuracy is optimized when the learning dataset utilizes all probe-set expression values from a diversity of cancer cell types without pre-filtering for genes generally considered to be "drivers" of cancer onset/progression. Application of our models to publically available ovarian cancer (OC) patient gene expression datasets generated predictions consistent with observed responses previously reported in the literature. By making our algorithm "open source", we hope to facilitate its testing in a variety of cancer types and contexts leading to community-driven improvements and refinements in subsequent applications.

  14. Deep learning for computational biology.

    PubMed

    Angermueller, Christof; Pärnamaa, Tanel; Parts, Leopold; Stegle, Oliver

    2016-07-29

    Technological advances in genomics and imaging have led to an explosion of molecular and cellular profiling data from large numbers of samples. This rapid increase in biological data dimension and acquisition rate is challenging conventional analysis strategies. Modern machine learning methods, such as deep learning, promise to leverage very large data sets for finding hidden structure within them, and for making accurate predictions. In this review, we discuss applications of this new breed of analysis approaches in regulatory genomics and cellular imaging. We provide background of what deep learning is, and the settings in which it can be successfully applied to derive biological insights. In addition to presenting specific applications and providing tips for practical use, we also highlight possible pitfalls and limitations to guide computational biologists when and how to make the most use of this new technology. © 2016 The Authors. Published under the terms of the CC BY 4.0 license.

  15. New Techniques for Deep Learning with Geospatial Data using TensorFlow, Earth Engine, and Google Cloud Platform

    NASA Astrophysics Data System (ADS)

    Hancher, M.

    2017-12-01

    Recent years have seen promising results from many research teams applying deep learning techniques to geospatial data processing. In that same timeframe, TensorFlow has emerged as the most popular framework for deep learning in general, and Google has assembled petabytes of Earth observation data from a wide variety of sources and made them available in analysis-ready form in the cloud through Google Earth Engine. Nevertheless, developing and applying deep learning to geospatial data at scale has been somewhat cumbersome to date. We present a new set of tools and techniques that simplify this process. Our approach combines the strengths of several underlying tools: TensorFlow for its expressive deep learning framework; Earth Engine for data management, preprocessing, postprocessing, and visualization; and other tools in Google Cloud Platform to train TensorFlow models at scale, perform additional custom parallel data processing, and drive the entire process from a single familiar Python development environment. These tools can be used to easily apply standard deep neural networks, convolutional neural networks, and other custom model architectures to a variety of geospatial data structures. We discuss our experiences applying these and related tools to a range of machine learning problems, including classic problems like cloud detection, building detection, land cover classification, as well as more novel problems like illegal fishing detection. Our improved tools will make it easier for geospatial data scientists to apply modern deep learning techniques to their own problems, and will also make it easier for machine learning researchers to advance the state of the art of those techniques.

  16. Using Machine Learning to Advance Personality Assessment and Theory.

    PubMed

    Bleidorn, Wiebke; Hopwood, Christopher James

    2018-05-01

    Machine learning has led to important advances in society. One of the most exciting applications of machine learning in psychological science has been the development of assessment tools that can powerfully predict human behavior and personality traits. Thus far, machine learning approaches to personality assessment have focused on the associations between social media and other digital records with established personality measures. The goal of this article is to expand the potential of machine learning approaches to personality assessment by embedding it in a more comprehensive construct validation framework. We review recent applications of machine learning to personality assessment, place machine learning research in the broader context of fundamental principles of construct validation, and provide recommendations for how to use machine learning to advance our understanding of personality.

  17. Natural language processing: an introduction.

    PubMed

    Nadkarni, Prakash M; Ohno-Machado, Lucila; Chapman, Wendy W

    2011-01-01

    To provide an overview and tutorial of natural language processing (NLP) and modern NLP-system design. This tutorial targets the medical informatics generalist who has limited acquaintance with the principles behind NLP and/or limited knowledge of the current state of the art. We describe the historical evolution of NLP, and summarize common NLP sub-problems in this extensive field. We then provide a synopsis of selected highlights of medical NLP efforts. After providing a brief description of common machine-learning approaches that are being used for diverse NLP sub-problems, we discuss how modern NLP architectures are designed, with a summary of the Apache Foundation's Unstructured Information Management Architecture. We finally consider possible future directions for NLP, and reflect on the possible impact of IBM Watson on the medical field.

  18. Natural language processing: an introduction

    PubMed Central

    Ohno-Machado, Lucila; Chapman, Wendy W

    2011-01-01

    Objectives To provide an overview and tutorial of natural language processing (NLP) and modern NLP-system design. Target audience This tutorial targets the medical informatics generalist who has limited acquaintance with the principles behind NLP and/or limited knowledge of the current state of the art. Scope We describe the historical evolution of NLP, and summarize common NLP sub-problems in this extensive field. We then provide a synopsis of selected highlights of medical NLP efforts. After providing a brief description of common machine-learning approaches that are being used for diverse NLP sub-problems, we discuss how modern NLP architectures are designed, with a summary of the Apache Foundation's Unstructured Information Management Architecture. We finally consider possible future directions for NLP, and reflect on the possible impact of IBM Watson on the medical field. PMID:21846786

  19. Intrusion detection using rough set classification.

    PubMed

    Zhang, Lian-hua; Zhang, Guan-hua; Zhang, Jie; Bai, Ying-cai

    2004-09-01

    Recently machine learning-based intrusion detection approaches have been subjected to extensive researches because they can detect both misuse and anomaly. In this paper, rough set classification (RSC), a modern learning algorithm, is used to rank the features extracted for detecting intrusions and generate intrusion detection models. Feature ranking is a very critical step when building the model. RSC performs feature ranking before generating rules, and converts the feature ranking to minimal hitting set problem addressed by using genetic algorithm (GA). This is done in classical approaches using Support Vector Machine (SVM) by executing many iterations, each of which removes one useless feature. Compared with those methods, our method can avoid many iterations. In addition, a hybrid genetic algorithm is proposed to increase the convergence speed and decrease the training time of RSC. The models generated by RSC take the form of "IF-THEN" rules, which have the advantage of explication. Tests and comparison of RSC with SVM on DARPA benchmark data showed that for Probe and DoS attacks both RSC and SVM yielded highly accurate results (greater than 99% accuracy on testing set).

  20. Data Science Priorities for a University Hospital-Based Institute of Infectious Diseases: A Viewpoint.

    PubMed

    Valleron, Alain-Jacques

    2017-08-15

    Automation of laboratory tests, bioinformatic analysis of biological sequences, and professional data management are used routinely in a modern university hospital-based infectious diseases institute. This dates back to at least the 1980s. However, the scientific methods of this 21st century are changing with the increased power and speed of computers, with the "big data" revolution having already happened in genomics and environment, and eventually arriving in medical informatics. The research will be increasingly "data driven," and the powerful machine learning methods whose efficiency is demonstrated in daily life will also revolutionize medical research. A university-based institute of infectious diseases must therefore not only gather excellent computer scientists and statisticians (as in the past, and as in any medical discipline), but also fully integrate the biologists and clinicians with these computer scientists, statisticians, and mathematical modelers having a broad culture in machine learning, knowledge representation, and knowledge discovery. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.

  1. Evaluation of an Integrated Multi-Task Machine Learning System with Humans in the Loop

    DTIC Science & Technology

    2007-01-01

    machine learning components natural language processing, and optimization...was examined with a test explicitly developed to measure the impact of integrated machine learning when used by a human user in a real world setting...study revealed that integrated machine learning does produce a positive impact on overall performance. This paper also discusses how specific machine learning components contributed to human-system

  2. Big data learning and suggestions in modern apps

    NASA Astrophysics Data System (ADS)

    Sharma, G.; Nadesh, R. K.; ArivuSelvan, K.

    2017-11-01

    Among many other tasks involved for emergent location-based applications such as those involved in prescribing touring places and those focused on publicizing based on destination, destination prediction is vital. Dealing with destination prediction involves determining the probability of a location (destination) depending on historical trajectories. In this paper, a destination prediction based on probabilistic model (Machine Learning Model) feed-forward neural networks will be presented, which will work by making the observation of driver’s habits. Some individuals drive to same locations such as work involving same route every day of the working week. Here, streaming of real-time driving data will be sent through Kafka queue in apache storm for real-time processing and finally storing the data in MongoDB.

  3. Development and implementation of (Q)SAR modeling within the CHARMMing web-user interface.

    PubMed

    Weidlich, Iwona E; Pevzner, Yuri; Miller, Benjamin T; Filippov, Igor V; Woodcock, H Lee; Brooks, Bernard R

    2015-01-05

    Recent availability of large publicly accessible databases of chemical compounds and their biological activities (PubChem, ChEMBL) has inspired us to develop a web-based tool for structure activity relationship and quantitative structure activity relationship modeling to add to the services provided by CHARMMing (www.charmming.org). This new module implements some of the most recent advances in modern machine learning algorithms-Random Forest, Support Vector Machine, Stochastic Gradient Descent, Gradient Tree Boosting, so forth. A user can import training data from Pubchem Bioassay data collections directly from our interface or upload his or her own SD files which contain structures and activity information to create new models (either categorical or numerical). A user can then track the model generation process and run models on new data to predict activity. © 2014 Wiley Periodicals, Inc.

  4. Quantum machine learning.

    PubMed

    Biamonte, Jacob; Wittek, Peter; Pancotti, Nicola; Rebentrost, Patrick; Wiebe, Nathan; Lloyd, Seth

    2017-09-13

    Fuelled by increasing computer power and algorithmic advances, machine learning techniques have become powerful tools for finding patterns in data. Quantum systems produce atypical patterns that classical systems are thought not to produce efficiently, so it is reasonable to postulate that quantum computers may outperform classical computers on machine learning tasks. The field of quantum machine learning explores how to devise and implement quantum software that could enable machine learning that is faster than that of classical computers. Recent work has produced quantum algorithms that could act as the building blocks of machine learning programs, but the hardware and software challenges are still considerable.

  5. Quantum machine learning

    NASA Astrophysics Data System (ADS)

    Biamonte, Jacob; Wittek, Peter; Pancotti, Nicola; Rebentrost, Patrick; Wiebe, Nathan; Lloyd, Seth

    2017-09-01

    Fuelled by increasing computer power and algorithmic advances, machine learning techniques have become powerful tools for finding patterns in data. Quantum systems produce atypical patterns that classical systems are thought not to produce efficiently, so it is reasonable to postulate that quantum computers may outperform classical computers on machine learning tasks. The field of quantum machine learning explores how to devise and implement quantum software that could enable machine learning that is faster than that of classical computers. Recent work has produced quantum algorithms that could act as the building blocks of machine learning programs, but the hardware and software challenges are still considerable.

  6. Multi-objective optimization model of CNC machining to minimize processing time and environmental impact

    NASA Astrophysics Data System (ADS)

    Hamada, Aulia; Rosyidi, Cucuk Nur; Jauhari, Wakhid Ahmad

    2017-11-01

    Minimizing processing time in a production system can increase the efficiency of a manufacturing company. Processing time are influenced by application of modern technology and machining parameter. Application of modern technology can be apply by use of CNC machining, one of the machining process can be done with a CNC machining is turning. However, the machining parameters not only affect the processing time but also affect the environmental impact. Hence, optimization model is needed to optimize the machining parameters to minimize the processing time and environmental impact. This research developed a multi-objective optimization to minimize the processing time and environmental impact in CNC turning process which will result in optimal decision variables of cutting speed and feed rate. Environmental impact is converted from environmental burden through the use of eco-indicator 99. The model were solved by using OptQuest optimization software from Oracle Crystal Ball.

  7. Dropout Prediction in E-Learning Courses through the Combination of Machine Learning Techniques

    ERIC Educational Resources Information Center

    Lykourentzou, Ioanna; Giannoukos, Ioannis; Nikolopoulos, Vassilis; Mpardis, George; Loumos, Vassili

    2009-01-01

    In this paper, a dropout prediction method for e-learning courses, based on three popular machine learning techniques and detailed student data, is proposed. The machine learning techniques used are feed-forward neural networks, support vector machines and probabilistic ensemble simplified fuzzy ARTMAP. Since a single technique may fail to…

  8. AZOrange - High performance open source machine learning for QSAR modeling in a graphical programming environment

    PubMed Central

    2011-01-01

    Background Machine learning has a vast range of applications. In particular, advanced machine learning methods are routinely and increasingly used in quantitative structure activity relationship (QSAR) modeling. QSAR data sets often encompass tens of thousands of compounds and the size of proprietary, as well as public data sets, is rapidly growing. Hence, there is a demand for computationally efficient machine learning algorithms, easily available to researchers without extensive machine learning knowledge. In granting the scientific principles of transparency and reproducibility, Open Source solutions are increasingly acknowledged by regulatory authorities. Thus, an Open Source state-of-the-art high performance machine learning platform, interfacing multiple, customized machine learning algorithms for both graphical programming and scripting, to be used for large scale development of QSAR models of regulatory quality, is of great value to the QSAR community. Results This paper describes the implementation of the Open Source machine learning package AZOrange. AZOrange is specially developed to support batch generation of QSAR models in providing the full work flow of QSAR modeling, from descriptor calculation to automated model building, validation and selection. The automated work flow relies upon the customization of the machine learning algorithms and a generalized, automated model hyper-parameter selection process. Several high performance machine learning algorithms are interfaced for efficient data set specific selection of the statistical method, promoting model accuracy. Using the high performance machine learning algorithms of AZOrange does not require programming knowledge as flexible applications can be created, not only at a scripting level, but also in a graphical programming environment. Conclusions AZOrange is a step towards meeting the needs for an Open Source high performance machine learning platform, supporting the efficient development of highly accurate QSAR models fulfilling regulatory requirements. PMID:21798025

  9. AZOrange - High performance open source machine learning for QSAR modeling in a graphical programming environment.

    PubMed

    Stålring, Jonna C; Carlsson, Lars A; Almeida, Pedro; Boyer, Scott

    2011-07-28

    Machine learning has a vast range of applications. In particular, advanced machine learning methods are routinely and increasingly used in quantitative structure activity relationship (QSAR) modeling. QSAR data sets often encompass tens of thousands of compounds and the size of proprietary, as well as public data sets, is rapidly growing. Hence, there is a demand for computationally efficient machine learning algorithms, easily available to researchers without extensive machine learning knowledge. In granting the scientific principles of transparency and reproducibility, Open Source solutions are increasingly acknowledged by regulatory authorities. Thus, an Open Source state-of-the-art high performance machine learning platform, interfacing multiple, customized machine learning algorithms for both graphical programming and scripting, to be used for large scale development of QSAR models of regulatory quality, is of great value to the QSAR community. This paper describes the implementation of the Open Source machine learning package AZOrange. AZOrange is specially developed to support batch generation of QSAR models in providing the full work flow of QSAR modeling, from descriptor calculation to automated model building, validation and selection. The automated work flow relies upon the customization of the machine learning algorithms and a generalized, automated model hyper-parameter selection process. Several high performance machine learning algorithms are interfaced for efficient data set specific selection of the statistical method, promoting model accuracy. Using the high performance machine learning algorithms of AZOrange does not require programming knowledge as flexible applications can be created, not only at a scripting level, but also in a graphical programming environment. AZOrange is a step towards meeting the needs for an Open Source high performance machine learning platform, supporting the efficient development of highly accurate QSAR models fulfilling regulatory requirements.

  10. The Efficacy of Machine Learning Programs for Navy Manpower Analysis

    DTIC Science & Technology

    1993-03-01

    This thesis investigated the efficacy of two machine learning programs for Navy manpower analysis. Two machine learning programs, AIM and IXL, were...to generate models from the two commercial machine learning programs. Using a held out sub-set of the data the capabilities of the three models were...partial effects. The author recommended further investigation of AIM’s capabilities, and testing in an operational environment.... Machine learning , AIM, IXL.

  11. Self-enhancement learning: target-creating learning and its application to self-organizing maps.

    PubMed

    Kamimura, Ryotaro

    2011-05-01

    In this article, we propose a new learning method called "self-enhancement learning." In this method, targets for learning are not given from the outside, but they can be spontaneously created within a neural network. To realize the method, we consider a neural network with two different states, namely, an enhanced and a relaxed state. The enhanced state is one in which the network responds very selectively to input patterns, while in the relaxed state, the network responds almost equally to input patterns. The gap between the two states can be reduced by minimizing the Kullback-Leibler divergence between the two states with free energy. To demonstrate the effectiveness of this method, we applied self-enhancement learning to the self-organizing maps, or SOM, in which lateral interactions were added to an enhanced state. We applied the method to the well-known Iris, wine, housing and cancer machine learning database problems. In addition, we applied the method to real-life data, a student survey. Experimental results showed that the U-matrices obtained were similar to those produced by the conventional SOM. Class boundaries were made clearer in the housing and cancer data. For all the data, except for the cancer data, better performance could be obtained in terms of quantitative and topological errors. In addition, we could see that the trustworthiness and continuity, referring to the quality of neighborhood preservation, could be improved by the self-enhancement learning. Finally, we used modern dimensionality reduction methods and compared their results with those obtained by the self-enhancement learning. The results obtained by the self-enhancement were not superior to but comparable with those obtained by the modern dimensionality reduction methods.

  12. The Security of Machine Learning

    DTIC Science & Technology

    2008-04-24

    Machine learning has become a fundamental tool for computer security, since it can rapidly evolve to changing and complex situations. That...adaptability is also a vulnerability: attackers can exploit machine learning systems. We present a taxonomy identifying and analyzing attacks against machine ...We use our framework to survey and analyze the literature of attacks against machine learning systems. We also illustrate our taxonomy by showing

  13. Learning to Monitor Machine Health with Convolutional Bi-Directional LSTM Networks

    PubMed Central

    Zhao, Rui; Yan, Ruqiang; Wang, Jinjiang; Mao, Kezhi

    2017-01-01

    In modern manufacturing systems and industries, more and more research efforts have been made in developing effective machine health monitoring systems. Among various machine health monitoring approaches, data-driven methods are gaining in popularity due to the development of advanced sensing and data analytic techniques. However, considering the noise, varying length and irregular sampling behind sensory data, this kind of sequential data cannot be fed into classification and regression models directly. Therefore, previous work focuses on feature extraction/fusion methods requiring expensive human labor and high quality expert knowledge. With the development of deep learning methods in the last few years, which redefine representation learning from raw data, a deep neural network structure named Convolutional Bi-directional Long Short-Term Memory networks (CBLSTM) has been designed here to address raw sensory data. CBLSTM firstly uses CNN to extract local features that are robust and informative from the sequential input. Then, bi-directional LSTM is introduced to encode temporal information. Long Short-Term Memory networks (LSTMs) are able to capture long-term dependencies and model sequential data, and the bi-directional structure enables the capture of past and future contexts. Stacked, fully-connected layers and the linear regression layer are built on top of bi-directional LSTMs to predict the target value. Here, a real-life tool wear test is introduced, and our proposed CBLSTM is able to predict the actual tool wear based on raw sensory data. The experimental results have shown that our model is able to outperform several state-of-the-art baseline methods. PMID:28146106

  14. Learning to Monitor Machine Health with Convolutional Bi-Directional LSTM Networks.

    PubMed

    Zhao, Rui; Yan, Ruqiang; Wang, Jinjiang; Mao, Kezhi

    2017-01-30

    In modern manufacturing systems and industries, more and more research efforts have been made in developing effective machine health monitoring systems. Among various machine health monitoring approaches, data-driven methods are gaining in popularity due to the development of advanced sensing and data analytic techniques. However, considering the noise, varying length and irregular sampling behind sensory data, this kind of sequential data cannot be fed into classification and regression models directly. Therefore, previous work focuses on feature extraction/fusion methods requiring expensive human labor and high quality expert knowledge. With the development of deep learning methods in the last few years, which redefine representation learning from raw data, a deep neural network structure named Convolutional Bi-directional Long Short-Term Memory networks (CBLSTM) has been designed here to address raw sensory data. CBLSTM firstly uses CNN to extract local features that are robust and informative from the sequential input. Then, bi-directional LSTM is introduced to encode temporal information. Long Short-Term Memory networks(LSTMs) are able to capture long-term dependencies and model sequential data, and the bi-directional structure enables the capture of past and future contexts. Stacked, fully-connected layers and the linear regression layer are built on top of bi-directional LSTMs to predict the target value. Here, a real-life tool wear test is introduced, and our proposed CBLSTM is able to predict the actual tool wear based on raw sensory data. The experimental results have shown that our model is able to outperform several state-of-the-art baseline methods.

  15. Entanglement-Based Machine Learning on a Quantum Computer

    NASA Astrophysics Data System (ADS)

    Cai, X.-D.; Wu, D.; Su, Z.-E.; Chen, M.-C.; Wang, X.-L.; Li, Li; Liu, N.-L.; Lu, C.-Y.; Pan, J.-W.

    2015-03-01

    Machine learning, a branch of artificial intelligence, learns from previous experience to optimize performance, which is ubiquitous in various fields such as computer sciences, financial analysis, robotics, and bioinformatics. A challenge is that machine learning with the rapidly growing "big data" could become intractable for classical computers. Recently, quantum machine learning algorithms [Lloyd, Mohseni, and Rebentrost, arXiv.1307.0411] were proposed which could offer an exponential speedup over classical algorithms. Here, we report the first experimental entanglement-based classification of two-, four-, and eight-dimensional vectors to different clusters using a small-scale photonic quantum computer, which are then used to implement supervised and unsupervised machine learning. The results demonstrate the working principle of using quantum computers to manipulate and classify high-dimensional vectors, the core mathematical routine in machine learning. The method can, in principle, be scaled to larger numbers of qubits, and may provide a new route to accelerate machine learning.

  16. Dynamical Mass Measurements of Contaminated Galaxy Clusters Using Support Distribution Machines

    NASA Astrophysics Data System (ADS)

    Ntampaka, Michelle; Trac, Hy; Sutherland, Dougal; Fromenteau, Sebastien; Poczos, Barnabas; Schneider, Jeff

    2018-01-01

    We study dynamical mass measurements of galaxy clusters contaminated by interlopers and show that a modern machine learning (ML) algorithm can predict masses by better than a factor of two compared to a standard scaling relation approach. We create two mock catalogs from Multidark’s publicly available N-body MDPL1 simulation, one with perfect galaxy cluster membership infor- mation and the other where a simple cylindrical cut around the cluster center allows interlopers to contaminate the clusters. In the standard approach, we use a power-law scaling relation to infer cluster mass from galaxy line-of-sight (LOS) velocity dispersion. Assuming perfect membership knowledge, this unrealistic case produces a wide fractional mass error distribution, with a width E=0.87. Interlopers introduce additional scatter, significantly widening the error distribution further (E=2.13). We employ the support distribution machine (SDM) class of algorithms to learn from distributions of data to predict single values. Applied to distributions of galaxy observables such as LOS velocity and projected distance from the cluster center, SDM yields better than a factor-of-two improvement (E=0.67) for the contaminated case. Remarkably, SDM applied to contaminated clusters is better able to recover masses than even the scaling relation approach applied to uncon- taminated clusters. We show that the SDM method more accurately reproduces the cluster mass function, making it a valuable tool for employing cluster observations to evaluate cosmological models.

  17. Single Subject Prediction of Brain Disorders in Neuroimaging: Promises and Pitfalls

    PubMed Central

    Arbabshirani, Mohammad R.; Plis, Sergey; Sui, Jing; Calhoun, Vince D.

    2016-01-01

    Neuroimaging-based single subject prediction of brain disorders has gained increasing attention in recent years. Using a variety of neuroimaging modalities such as structural, functional and diffusion MRI, along with machine learning techniques, hundreds of studies have been carried out for accurate classification of patients with heterogeneous mental and neurodegenerative disorders such as schizophrenia and Alzheimer's disease. More than 500 studies have been published during the past quarter century on single subject prediction focused on a multiple brain disorders. In the first part of this study, we provide a survey of more than 200 reports in this field with a focus on schizophrenia, mild cognitive impairment (MCI), Alzheimer's disease (AD), depressive disorders, autism spectrum disease (ASD) and attention-deficit hyperactivity disorder (ADHD). Detailed information about those studies such as sample size, type and number of extracted features and reported accuracy are summarized and discussed. To our knowledge, this is by far the most comprehensive review of neuroimaging-based single subject prediction of brain disorders. In the second part, we present our opinion on major pitfalls of those studies from a machine learning point of view. Common biases are discussed and suggestions are provided. Moreover, emerging trends such as decentralized data sharing, multimodal brain imaging, differential diagnosis, disease subtype classification and deep learning are also discussed. Based on this survey, there are extensive evidences showing the great potential of neuroimaging data for single subject prediction of various disorders. However, the main bottleneck of this exciting field is still the limited sample size, which could be potentially addressed by modern data sharing models such as the ones discussed in this paper. Emerging big data technologies and advanced data-intensive machine learning methodologies such as deep learning have coincided with an increasing need for accurate, robust and generalizable single subject prediction of brain disorders during an exciting time. In this report, we survey the past and offer some opinions regarding the road ahead. PMID:27012503

  18. Single subject prediction of brain disorders in neuroimaging: Promises and pitfalls.

    PubMed

    Arbabshirani, Mohammad R; Plis, Sergey; Sui, Jing; Calhoun, Vince D

    2017-01-15

    Neuroimaging-based single subject prediction of brain disorders has gained increasing attention in recent years. Using a variety of neuroimaging modalities such as structural, functional and diffusion MRI, along with machine learning techniques, hundreds of studies have been carried out for accurate classification of patients with heterogeneous mental and neurodegenerative disorders such as schizophrenia and Alzheimer's disease. More than 500 studies have been published during the past quarter century on single subject prediction focused on a multiple brain disorders. In the first part of this study, we provide a survey of more than 200 reports in this field with a focus on schizophrenia, mild cognitive impairment (MCI), Alzheimer's disease (AD), depressive disorders, autism spectrum disease (ASD) and attention-deficit hyperactivity disorder (ADHD). Detailed information about those studies such as sample size, type and number of extracted features and reported accuracy are summarized and discussed. To our knowledge, this is by far the most comprehensive review of neuroimaging-based single subject prediction of brain disorders. In the second part, we present our opinion on major pitfalls of those studies from a machine learning point of view. Common biases are discussed and suggestions are provided. Moreover, emerging trends such as decentralized data sharing, multimodal brain imaging, differential diagnosis, disease subtype classification and deep learning are also discussed. Based on this survey, there is extensive evidence showing the great potential of neuroimaging data for single subject prediction of various disorders. However, the main bottleneck of this exciting field is still the limited sample size, which could be potentially addressed by modern data sharing models such as the ones discussed in this paper. Emerging big data technologies and advanced data-intensive machine learning methodologies such as deep learning have coincided with an increasing need for accurate, robust and generalizable single subject prediction of brain disorders during an exciting time. In this report, we survey the past and offer some opinions regarding the road ahead. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. A Machine Learning and Optimization Toolkit for the Swarm

    DTIC Science & Technology

    2014-11-17

    Machine   Learning  and  Op0miza0on   Toolkit  for  the  Swarm   Ilge  Akkaya,  Shuhei  Emoto...3. DATES COVERED 00-00-2014 to 00-00-2014 4. TITLE AND SUBTITLE A Machine Learning and Optimization Toolkit for the Swarm 5a. CONTRACT NUMBER... machine   learning   methodologies  by  providing  the  right  interfaces  between   machine   learning  tools  and

  20. Machine Learning Methods for Analysis of Metabolic Data and Metabolic Pathway Modeling

    PubMed Central

    Cuperlovic-Culf, Miroslava

    2018-01-01

    Machine learning uses experimental data to optimize clustering or classification of samples or features, or to develop, augment or verify models that can be used to predict behavior or properties of systems. It is expected that machine learning will help provide actionable knowledge from a variety of big data including metabolomics data, as well as results of metabolism models. A variety of machine learning methods has been applied in bioinformatics and metabolism analyses including self-organizing maps, support vector machines, the kernel machine, Bayesian networks or fuzzy logic. To a lesser extent, machine learning has also been utilized to take advantage of the increasing availability of genomics and metabolomics data for the optimization of metabolic network models and their analysis. In this context, machine learning has aided the development of metabolic networks, the calculation of parameters for stoichiometric and kinetic models, as well as the analysis of major features in the model for the optimal application of bioreactors. Examples of this very interesting, albeit highly complex, application of machine learning for metabolism modeling will be the primary focus of this review presenting several different types of applications for model optimization, parameter determination or system analysis using models, as well as the utilization of several different types of machine learning technologies. PMID:29324649

  1. Machine Learning Methods for Analysis of Metabolic Data and Metabolic Pathway Modeling.

    PubMed

    Cuperlovic-Culf, Miroslava

    2018-01-11

    Machine learning uses experimental data to optimize clustering or classification of samples or features, or to develop, augment or verify models that can be used to predict behavior or properties of systems. It is expected that machine learning will help provide actionable knowledge from a variety of big data including metabolomics data, as well as results of metabolism models. A variety of machine learning methods has been applied in bioinformatics and metabolism analyses including self-organizing maps, support vector machines, the kernel machine, Bayesian networks or fuzzy logic. To a lesser extent, machine learning has also been utilized to take advantage of the increasing availability of genomics and metabolomics data for the optimization of metabolic network models and their analysis. In this context, machine learning has aided the development of metabolic networks, the calculation of parameters for stoichiometric and kinetic models, as well as the analysis of major features in the model for the optimal application of bioreactors. Examples of this very interesting, albeit highly complex, application of machine learning for metabolism modeling will be the primary focus of this review presenting several different types of applications for model optimization, parameter determination or system analysis using models, as well as the utilization of several different types of machine learning technologies.

  2. A machine learning model with human cognitive biases capable of learning from small and biased datasets.

    PubMed

    Taniguchi, Hidetaka; Sato, Hiroshi; Shirakawa, Tomohiro

    2018-05-09

    Human learners can generalize a new concept from a small number of samples. In contrast, conventional machine learning methods require large amounts of data to address the same types of problems. Humans have cognitive biases that promote fast learning. Here, we developed a method to reduce the gap between human beings and machines in this type of inference by utilizing cognitive biases. We implemented a human cognitive model into machine learning algorithms and compared their performance with the currently most popular methods, naïve Bayes, support vector machine, neural networks, logistic regression and random forests. We focused on the task of spam classification, which has been studied for a long time in the field of machine learning and often requires a large amount of data to obtain high accuracy. Our models achieved superior performance with small and biased samples in comparison with other representative machine learning methods.

  3. Machine learning: novel bioinformatics approaches for combating antimicrobial resistance.

    PubMed

    Macesic, Nenad; Polubriaginof, Fernanda; Tatonetti, Nicholas P

    2017-12-01

    Antimicrobial resistance (AMR) is a threat to global health and new approaches to combating AMR are needed. Use of machine learning in addressing AMR is in its infancy but has made promising steps. We reviewed the current literature on the use of machine learning for studying bacterial AMR. The advent of large-scale data sets provided by next-generation sequencing and electronic health records make applying machine learning to the study and treatment of AMR possible. To date, it has been used for antimicrobial susceptibility genotype/phenotype prediction, development of AMR clinical decision rules, novel antimicrobial agent discovery and antimicrobial therapy optimization. Application of machine learning to studying AMR is feasible but remains limited. Implementation of machine learning in clinical settings faces barriers to uptake with concerns regarding model interpretability and data quality.Future applications of machine learning to AMR are likely to be laboratory-based, such as antimicrobial susceptibility phenotype prediction.

  4. Comparison between extreme learning machine and wavelet neural networks in data classification

    NASA Astrophysics Data System (ADS)

    Yahia, Siwar; Said, Salwa; Jemai, Olfa; Zaied, Mourad; Ben Amar, Chokri

    2017-03-01

    Extreme learning Machine is a well known learning algorithm in the field of machine learning. It's about a feed forward neural network with a single-hidden layer. It is an extremely fast learning algorithm with good generalization performance. In this paper, we aim to compare the Extreme learning Machine with wavelet neural networks, which is a very used algorithm. We have used six benchmark data sets to evaluate each technique. These datasets Including Wisconsin Breast Cancer, Glass Identification, Ionosphere, Pima Indians Diabetes, Wine Recognition and Iris Plant. Experimental results have shown that both extreme learning machine and wavelet neural networks have reached good results.

  5. MLBCD: a machine learning tool for big clinical data.

    PubMed

    Luo, Gang

    2015-01-01

    Predictive modeling is fundamental for extracting value from large clinical data sets, or "big clinical data," advancing clinical research, and improving healthcare. Machine learning is a powerful approach to predictive modeling. Two factors make machine learning challenging for healthcare researchers. First, before training a machine learning model, the values of one or more model parameters called hyper-parameters must typically be specified. Due to their inexperience with machine learning, it is hard for healthcare researchers to choose an appropriate algorithm and hyper-parameter values. Second, many clinical data are stored in a special format. These data must be iteratively transformed into the relational table format before conducting predictive modeling. This transformation is time-consuming and requires computing expertise. This paper presents our vision for and design of MLBCD (Machine Learning for Big Clinical Data), a new software system aiming to address these challenges and facilitate building machine learning predictive models using big clinical data. The paper describes MLBCD's design in detail. By making machine learning accessible to healthcare researchers, MLBCD will open the use of big clinical data and increase the ability to foster biomedical discovery and improve care.

  6. Machine Learning and Radiology

    PubMed Central

    Wang, Shijun; Summers, Ronald M.

    2012-01-01

    In this paper, we give a short introduction to machine learning and survey its applications in radiology. We focused on six categories of applications in radiology: medical image segmentation, registration, computer aided detection and diagnosis, brain function or activity analysis and neurological disease diagnosis from fMR images, content-based image retrieval systems for CT or MRI images, and text analysis of radiology reports using natural language processing (NLP) and natural language understanding (NLU). This survey shows that machine learning plays a key role in many radiology applications. Machine learning identifies complex patterns automatically and helps radiologists make intelligent decisions on radiology data such as conventional radiographs, CT, MRI, and PET images and radiology reports. In many applications, the performance of machine learning-based automatic detection and diagnosis systems has shown to be comparable to that of a well-trained and experienced radiologist. Technology development in machine learning and radiology will benefit from each other in the long run. Key contributions and common characteristics of machine learning techniques in radiology are discussed. We also discuss the problem of translating machine learning applications to the radiology clinical setting, including advantages and potential barriers. PMID:22465077

  7. Evaluating the Security of Machine Learning Algorithms

    DTIC Science & Technology

    2008-05-20

    Two far-reaching trends in computing have grown in significance in recent years. First, statistical machine learning has entered the mainstream as a...computing applications. The growing intersection of these trends compels us to investigate how well machine learning performs under adversarial conditions... machine learning has a structure that we can use to build secure learning systems. This thesis makes three high-level contributions. First, we develop a

  8. Using human brain activity to guide machine learning.

    PubMed

    Fong, Ruth C; Scheirer, Walter J; Cox, David D

    2018-03-29

    Machine learning is a field of computer science that builds algorithms that learn. In many cases, machine learning algorithms are used to recreate a human ability like adding a caption to a photo, driving a car, or playing a game. While the human brain has long served as a source of inspiration for machine learning, little effort has been made to directly use data collected from working brains as a guide for machine learning algorithms. Here we demonstrate a new paradigm of "neurally-weighted" machine learning, which takes fMRI measurements of human brain activity from subjects viewing images, and infuses these data into the training process of an object recognition learning algorithm to make it more consistent with the human brain. After training, these neurally-weighted classifiers are able to classify images without requiring any additional neural data. We show that our neural-weighting approach can lead to large performance gains when used with traditional machine vision features, as well as to significant improvements with already high-performing convolutional neural network features. The effectiveness of this approach points to a path forward for a new class of hybrid machine learning algorithms which take both inspiration and direct constraints from neuronal data.

  9. An Ensemble Deep Convolutional Neural Network Model with Improved D-S Evidence Fusion for Bearing Fault Diagnosis.

    PubMed

    Li, Shaobo; Liu, Guokai; Tang, Xianghong; Lu, Jianguang; Hu, Jianjun

    2017-07-28

    Intelligent machine health monitoring and fault diagnosis are becoming increasingly important for modern manufacturing industries. Current fault diagnosis approaches mostly depend on expert-designed features for building prediction models. In this paper, we proposed IDSCNN, a novel bearing fault diagnosis algorithm based on ensemble deep convolutional neural networks and an improved Dempster-Shafer theory based evidence fusion. The convolutional neural networks take the root mean square (RMS) maps from the FFT (Fast Fourier Transformation) features of the vibration signals from two sensors as inputs. The improved D-S evidence theory is implemented via distance matrix from evidences and modified Gini Index. Extensive evaluations of the IDSCNN on the Case Western Reserve Dataset showed that our IDSCNN algorithm can achieve better fault diagnosis performance than existing machine learning methods by fusing complementary or conflicting evidences from different models and sensors and adapting to different load conditions.

  10. An Ensemble Deep Convolutional Neural Network Model with Improved D-S Evidence Fusion for Bearing Fault Diagnosis

    PubMed Central

    Li, Shaobo; Liu, Guokai; Tang, Xianghong; Lu, Jianguang

    2017-01-01

    Intelligent machine health monitoring and fault diagnosis are becoming increasingly important for modern manufacturing industries. Current fault diagnosis approaches mostly depend on expert-designed features for building prediction models. In this paper, we proposed IDSCNN, a novel bearing fault diagnosis algorithm based on ensemble deep convolutional neural networks and an improved Dempster–Shafer theory based evidence fusion. The convolutional neural networks take the root mean square (RMS) maps from the FFT (Fast Fourier Transformation) features of the vibration signals from two sensors as inputs. The improved D-S evidence theory is implemented via distance matrix from evidences and modified Gini Index. Extensive evaluations of the IDSCNN on the Case Western Reserve Dataset showed that our IDSCNN algorithm can achieve better fault diagnosis performance than existing machine learning methods by fusing complementary or conflicting evidences from different models and sensors and adapting to different load conditions. PMID:28788099

  11. Quantum-Enhanced Machine Learning

    NASA Astrophysics Data System (ADS)

    Dunjko, Vedran; Taylor, Jacob M.; Briegel, Hans J.

    2016-09-01

    The emerging field of quantum machine learning has the potential to substantially aid in the problems and scope of artificial intelligence. This is only enhanced by recent successes in the field of classical machine learning. In this work we propose an approach for the systematic treatment of machine learning, from the perspective of quantum information. Our approach is general and covers all three main branches of machine learning: supervised, unsupervised, and reinforcement learning. While quantum improvements in supervised and unsupervised learning have been reported, reinforcement learning has received much less attention. Within our approach, we tackle the problem of quantum enhancements in reinforcement learning as well, and propose a systematic scheme for providing improvements. As an example, we show that quadratic improvements in learning efficiency, and exponential improvements in performance over limited time periods, can be obtained for a broad class of learning problems.

  12. Editorial: Mathematical Methods and Modeling in Machine Fault Diagnosis

    DOE PAGES

    Yan, Ruqiang; Chen, Xuefeng; Li, Weihua; ...

    2014-12-18

    Modern mathematics has commonly been utilized as an effective tool to model mechanical equipment so that their dynamic characteristics can be studied analytically. This will help identify potential failures of mechanical equipment by observing change in the equipment’s dynamic parameters. On the other hand, dynamic signals are also important and provide reliable information about the equipment’s working status. Modern mathematics has also provided us with a systematic way to design and implement various signal processing methods, which are used to analyze these dynamic signals, and to enhance intrinsic signal components that are directly related to machine failures. This special issuemore » is aimed at stimulating not only new insights on mathematical methods for modeling but also recently developed signal processing methods, such as sparse decomposition with potential applications in machine fault diagnosis. Finally, the papers included in this special issue provide a glimpse into some of the research and applications in the field of machine fault diagnosis through applications of the modern mathematical methods.« less

  13. Myths and legends in learning classification rules

    NASA Technical Reports Server (NTRS)

    Buntine, Wray

    1990-01-01

    A discussion is presented of machine learning theory on empirically learning classification rules. Six myths are proposed in the machine learning community that address issues of bias, learning as search, computational learning theory, Occam's razor, universal learning algorithms, and interactive learning. Some of the problems raised are also addressed from a Bayesian perspective. Questions are suggested that machine learning researchers should be addressing both theoretically and experimentally.

  14. Bioinformatics in proteomics: application, terminology, and pitfalls.

    PubMed

    Wiemer, Jan C; Prokudin, Alexander

    2004-01-01

    Bioinformatics applies data mining, i.e., modern computer-based statistics, to biomedical data. It leverages on machine learning approaches, such as artificial neural networks, decision trees and clustering algorithms, and is ideally suited for handling huge data amounts. In this article, we review the analysis of mass spectrometry data in proteomics, starting with common pre-processing steps and using single decision trees and decision tree ensembles for classification. Special emphasis is put on the pitfall of overfitting, i.e., of generating too complex single decision trees. Finally, we discuss the pros and cons of the two different decision tree usages.

  15. Intermediate Palomar Transient Factory: Realtime Image Subtraction Pipeline

    DOE PAGES

    Cao, Yi; Nugent, Peter E.; Kasliwal, Mansi M.

    2016-09-28

    A fast-turnaround pipeline for realtime data reduction plays an essential role in discovering and permitting followup observations to young supernovae and fast-evolving transients in modern time-domain surveys. In this paper, we present the realtime image subtraction pipeline in the intermediate Palomar Transient Factory. By using highperformance computing, efficient databases, and machine-learning algorithms, this pipeline manages to reliably deliver transient candidates within 10 minutes of images being taken. Our experience in using high-performance computing resources to process big data in astronomy serves as a trailblazer to dealing with data from large-scale time-domain facilities in the near future.

  16. Intermediate Palomar Transient Factory: Realtime Image Subtraction Pipeline

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cao, Yi; Nugent, Peter E.; Kasliwal, Mansi M.

    A fast-turnaround pipeline for realtime data reduction plays an essential role in discovering and permitting followup observations to young supernovae and fast-evolving transients in modern time-domain surveys. In this paper, we present the realtime image subtraction pipeline in the intermediate Palomar Transient Factory. By using highperformance computing, efficient databases, and machine-learning algorithms, this pipeline manages to reliably deliver transient candidates within 10 minutes of images being taken. Our experience in using high-performance computing resources to process big data in astronomy serves as a trailblazer to dealing with data from large-scale time-domain facilities in the near future.

  17. Machine Learning Based Malware Detection

    DTIC Science & Technology

    2015-05-18

    A TRIDENT SCHOLAR PROJECT REPORT NO. 440 Machine Learning Based Malware Detection by Midshipman 1/C Zane A. Markel, USN...COVERED (From - To) 4. TITLE AND SUBTITLE Machine Learning Based Malware Detection 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM...suitably be projected into realistic performance. This work explores several aspects of machine learning based malware detection . First, we

  18. Interpreting Medical Information Using Machine Learning and Individual Conditional Expectation.

    PubMed

    Nohara, Yasunobu; Wakata, Yoshifumi; Nakashima, Naoki

    2015-01-01

    Recently, machine-learning techniques have spread many fields. However, machine-learning is still not popular in medical research field due to difficulty of interpreting. In this paper, we introduce a method of interpreting medical information using machine learning technique. The method gave new explanation of partial dependence plot and individual conditional expectation plot from medical research field.

  19. Machine Learning Applications to Resting-State Functional MR Imaging Analysis.

    PubMed

    Billings, John M; Eder, Maxwell; Flood, William C; Dhami, Devendra Singh; Natarajan, Sriraam; Whitlow, Christopher T

    2017-11-01

    Machine learning is one of the most exciting and rapidly expanding fields within computer science. Academic and commercial research entities are investing in machine learning methods, especially in personalized medicine via patient-level classification. There is great promise that machine learning methods combined with resting state functional MR imaging will aid in diagnosis of disease and guide potential treatment for conditions thought to be impossible to identify based on imaging alone, such as psychiatric disorders. We discuss machine learning methods and explore recent advances. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Source localization in an ocean waveguide using supervised machine learning.

    PubMed

    Niu, Haiqiang; Reeves, Emma; Gerstoft, Peter

    2017-09-01

    Source localization in ocean acoustics is posed as a machine learning problem in which data-driven methods learn source ranges directly from observed acoustic data. The pressure received by a vertical linear array is preprocessed by constructing a normalized sample covariance matrix and used as the input for three machine learning methods: feed-forward neural networks (FNN), support vector machines (SVM), and random forests (RF). The range estimation problem is solved both as a classification problem and as a regression problem by these three machine learning algorithms. The results of range estimation for the Noise09 experiment are compared for FNN, SVM, RF, and conventional matched-field processing and demonstrate the potential of machine learning for underwater source localization.

  1. Machine Learning for Medical Imaging

    PubMed Central

    Korfiatis, Panagiotis; Akkus, Zeynettin; Kline, Timothy L.

    2017-01-01

    Machine learning is a technique for recognizing patterns that can be applied to medical images. Although it is a powerful tool that can help in rendering medical diagnoses, it can be misapplied. Machine learning typically begins with the machine learning algorithm system computing the image features that are believed to be of importance in making the prediction or diagnosis of interest. The machine learning algorithm system then identifies the best combination of these image features for classifying the image or computing some metric for the given image region. There are several methods that can be used, each with different strengths and weaknesses. There are open-source versions of most of these machine learning methods that make them easy to try and apply to images. Several metrics for measuring the performance of an algorithm exist; however, one must be aware of the possible associated pitfalls that can result in misleading metrics. More recently, deep learning has started to be used; this method has the benefit that it does not require image feature identification and calculation as a first step; rather, features are identified as part of the learning process. Machine learning has been used in medical imaging and will have a greater influence in the future. Those working in medical imaging must be aware of how machine learning works. ©RSNA, 2017 PMID:28212054

  2. Machine Learning for Medical Imaging.

    PubMed

    Erickson, Bradley J; Korfiatis, Panagiotis; Akkus, Zeynettin; Kline, Timothy L

    2017-01-01

    Machine learning is a technique for recognizing patterns that can be applied to medical images. Although it is a powerful tool that can help in rendering medical diagnoses, it can be misapplied. Machine learning typically begins with the machine learning algorithm system computing the image features that are believed to be of importance in making the prediction or diagnosis of interest. The machine learning algorithm system then identifies the best combination of these image features for classifying the image or computing some metric for the given image region. There are several methods that can be used, each with different strengths and weaknesses. There are open-source versions of most of these machine learning methods that make them easy to try and apply to images. Several metrics for measuring the performance of an algorithm exist; however, one must be aware of the possible associated pitfalls that can result in misleading metrics. More recently, deep learning has started to be used; this method has the benefit that it does not require image feature identification and calculation as a first step; rather, features are identified as part of the learning process. Machine learning has been used in medical imaging and will have a greater influence in the future. Those working in medical imaging must be aware of how machine learning works. © RSNA, 2017.

  3. Machine learning in heart failure: ready for prime time.

    PubMed

    Awan, Saqib Ejaz; Sohel, Ferdous; Sanfilippo, Frank Mario; Bennamoun, Mohammed; Dwivedi, Girish

    2018-03-01

    The aim of this review is to present an up-to-date overview of the application of machine learning methods in heart failure including diagnosis, classification, readmissions and medication adherence. Recent studies have shown that the application of machine learning techniques may have the potential to improve heart failure outcomes and management, including cost savings by improving existing diagnostic and treatment support systems. Recently developed deep learning methods are expected to yield even better performance than traditional machine learning techniques in performing complex tasks by learning the intricate patterns hidden in big medical data. The review summarizes the recent developments in the application of machine and deep learning methods in heart failure management.

  4. Human Machine Learning Symbiosis

    ERIC Educational Resources Information Center

    Walsh, Kenneth R.; Hoque, Md Tamjidul; Williams, Kim H.

    2017-01-01

    Human Machine Learning Symbiosis is a cooperative system where both the human learner and the machine learner learn from each other to create an effective and efficient learning environment adapted to the needs of the human learner. Such a system can be used in online learning modules so that the modules adapt to each learner's learning state both…

  5. Machine learning in cardiovascular medicine: are we there yet?

    PubMed

    Shameer, Khader; Johnson, Kipp W; Glicksberg, Benjamin S; Dudley, Joel T; Sengupta, Partho P

    2018-01-19

    Artificial intelligence (AI) broadly refers to analytical algorithms that iteratively learn from data, allowing computers to find hidden insights without being explicitly programmed where to look. These include a family of operations encompassing several terms like machine learning, cognitive learning, deep learning and reinforcement learning-based methods that can be used to integrate and interpret complex biomedical and healthcare data in scenarios where traditional statistical methods may not be able to perform. In this review article, we discuss the basics of machine learning algorithms and what potential data sources exist; evaluate the need for machine learning; and examine the potential limitations and challenges of implementing machine in the context of cardiovascular medicine. The most promising avenues for AI in medicine are the development of automated risk prediction algorithms which can be used to guide clinical care; use of unsupervised learning techniques to more precisely phenotype complex disease; and the implementation of reinforcement learning algorithms to intelligently augment healthcare providers. The utility of a machine learning-based predictive model will depend on factors including data heterogeneity, data depth, data breadth, nature of modelling task, choice of machine learning and feature selection algorithms, and orthogonal evidence. A critical understanding of the strength and limitations of various methods and tasks amenable to machine learning is vital. By leveraging the growing corpus of big data in medicine, we detail pathways by which machine learning may facilitate optimal development of patient-specific models for improving diagnoses, intervention and outcome in cardiovascular medicine. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  6. Understanding and Writing G & M Code for CNC Machines

    ERIC Educational Resources Information Center

    Loveland, Thomas

    2012-01-01

    In modern CAD and CAM manufacturing companies, engineers design parts for machines and consumable goods. Many of these parts are cut on CNC machines. Whether using a CNC lathe, milling machine, or router, the ideas and designs of engineers must be translated into a machine-readable form called G & M Code that can be used to cut parts to precise…

  7. Myths and legends in learning classification rules

    NASA Technical Reports Server (NTRS)

    Buntine, Wray

    1990-01-01

    This paper is a discussion of machine learning theory on empirically learning classification rules. The paper proposes six myths in the machine learning community that address issues of bias, learning as search, computational learning theory, Occam's razor, 'universal' learning algorithms, and interactive learnings. Some of the problems raised are also addressed from a Bayesian perspective. The paper concludes by suggesting questions that machine learning researchers should be addressing both theoretically and experimentally.

  8. Machine learning and radiology.

    PubMed

    Wang, Shijun; Summers, Ronald M

    2012-07-01

    In this paper, we give a short introduction to machine learning and survey its applications in radiology. We focused on six categories of applications in radiology: medical image segmentation, registration, computer aided detection and diagnosis, brain function or activity analysis and neurological disease diagnosis from fMR images, content-based image retrieval systems for CT or MRI images, and text analysis of radiology reports using natural language processing (NLP) and natural language understanding (NLU). This survey shows that machine learning plays a key role in many radiology applications. Machine learning identifies complex patterns automatically and helps radiologists make intelligent decisions on radiology data such as conventional radiographs, CT, MRI, and PET images and radiology reports. In many applications, the performance of machine learning-based automatic detection and diagnosis systems has shown to be comparable to that of a well-trained and experienced radiologist. Technology development in machine learning and radiology will benefit from each other in the long run. Key contributions and common characteristics of machine learning techniques in radiology are discussed. We also discuss the problem of translating machine learning applications to the radiology clinical setting, including advantages and potential barriers. Copyright © 2012. Published by Elsevier B.V.

  9. Remote sensing-based measurement of Living Environment Deprivation: Improving classical approaches with machine learning

    PubMed Central

    2017-01-01

    This paper provides evidence on the usefulness of very high spatial resolution (VHR) imagery in gathering socioeconomic information in urban settlements. We use land cover, spectral, structure and texture features extracted from a Google Earth image of Liverpool (UK) to evaluate their potential to predict Living Environment Deprivation at a small statistical area level. We also contribute to the methodological literature on the estimation of socioeconomic indices with remote-sensing data by introducing elements from modern machine learning. In addition to classical approaches such as Ordinary Least Squares (OLS) regression and a spatial lag model, we explore the potential of the Gradient Boost Regressor and Random Forests to improve predictive performance and accuracy. In addition to novel predicting methods, we also introduce tools for model interpretation and evaluation such as feature importance and partial dependence plots, or cross-validation. Our results show that Random Forest proved to be the best model with an R2 of around 0.54, followed by Gradient Boost Regressor with 0.5. Both the spatial lag model and the OLS fall behind with significantly lower performances of 0.43 and 0.3, respectively. PMID:28464010

  10. Remote sensing-based measurement of Living Environment Deprivation: Improving classical approaches with machine learning.

    PubMed

    Arribas-Bel, Daniel; Patino, Jorge E; Duque, Juan C

    2017-01-01

    This paper provides evidence on the usefulness of very high spatial resolution (VHR) imagery in gathering socioeconomic information in urban settlements. We use land cover, spectral, structure and texture features extracted from a Google Earth image of Liverpool (UK) to evaluate their potential to predict Living Environment Deprivation at a small statistical area level. We also contribute to the methodological literature on the estimation of socioeconomic indices with remote-sensing data by introducing elements from modern machine learning. In addition to classical approaches such as Ordinary Least Squares (OLS) regression and a spatial lag model, we explore the potential of the Gradient Boost Regressor and Random Forests to improve predictive performance and accuracy. In addition to novel predicting methods, we also introduce tools for model interpretation and evaluation such as feature importance and partial dependence plots, or cross-validation. Our results show that Random Forest proved to be the best model with an R2 of around 0.54, followed by Gradient Boost Regressor with 0.5. Both the spatial lag model and the OLS fall behind with significantly lower performances of 0.43 and 0.3, respectively.

  11. Quantum Inference on Bayesian Networks

    NASA Astrophysics Data System (ADS)

    Yoder, Theodore; Low, Guang Hao; Chuang, Isaac

    2014-03-01

    Because quantum physics is naturally probabilistic, it seems reasonable to expect physical systems to describe probabilities and their evolution in a natural fashion. Here, we use quantum computation to speedup sampling from a graphical probability model, the Bayesian network. A specialization of this sampling problem is approximate Bayesian inference, where the distribution on query variables is sampled given the values e of evidence variables. Inference is a key part of modern machine learning and artificial intelligence tasks, but is known to be NP-hard. Classically, a single unbiased sample is obtained from a Bayesian network on n variables with at most m parents per node in time (nmP(e) - 1 / 2) , depending critically on P(e) , the probability the evidence might occur in the first place. However, by implementing a quantum version of rejection sampling, we obtain a square-root speedup, taking (n2m P(e) -1/2) time per sample. The speedup is the result of amplitude amplification, which is proving to be broadly applicable in sampling and machine learning tasks. In particular, we provide an explicit and efficient circuit construction that implements the algorithm without the need for oracle access.

  12. THE FIRST BOOK OF TEACHING MACHINES.

    ERIC Educational Resources Information Center

    EPSTEIN, SAM; EPSTEIN, BERYL

    THE FIRST TEACHING MACHINE WAS INVENTED IN THE 1920'S BY SIDNEY L. PRESSEY AND THE FIRST MODERN TEACHING MACHINE WAS DEVELOPED AND POPULARIZED IN THE EARLY 1930'S BY B.F. SKINNER. TODAY BUSINESSMEN AND INDUSTRIALISTS AS WELL AS EDUCATORS HAVE FOUND TEACHING MACHINES USEFUL. ACTUALLY, TEACHING IS ACCOMPLISHED THROUGH THE PROGRAM, A CAREFULLY…

  13. Applications of Machine Learning and Rule Induction,

    DTIC Science & Technology

    1995-02-15

    An important area of application for machine learning is in automating the acquisition of knowledge bases required for expert systems. In this paper...we review the major paradigms for machine learning , including neural networks, instance-based methods, genetic learning, rule induction, and analytic

  14. Peak Detection Method Evaluation for Ion Mobility Spectrometry by Using Machine Learning Approaches

    PubMed Central

    Hauschild, Anne-Christin; Kopczynski, Dominik; D’Addario, Marianna; Baumbach, Jörg Ingo; Rahmann, Sven; Baumbach, Jan

    2013-01-01

    Ion mobility spectrometry with pre-separation by multi-capillary columns (MCC/IMS) has become an established inexpensive, non-invasive bioanalytics technology for detecting volatile organic compounds (VOCs) with various metabolomics applications in medical research. To pave the way for this technology towards daily usage in medical practice, different steps still have to be taken. With respect to modern biomarker research, one of the most important tasks is the automatic classification of patient-specific data sets into different groups, healthy or not, for instance. Although sophisticated machine learning methods exist, an inevitable preprocessing step is reliable and robust peak detection without manual intervention. In this work we evaluate four state-of-the-art approaches for automated IMS-based peak detection: local maxima search, watershed transformation with IPHEx, region-merging with VisualNow, and peak model estimation (PME). We manually generated a gold standard with the aid of a domain expert (manual) and compare the performance of the four peak calling methods with respect to two distinct criteria. We first utilize established machine learning methods and systematically study their classification performance based on the four peak detectors’ results. Second, we investigate the classification variance and robustness regarding perturbation and overfitting. Our main finding is that the power of the classification accuracy is almost equally good for all methods, the manually created gold standard as well as the four automatic peak finding methods. In addition, we note that all tools, manual and automatic, are similarly robust against perturbations. However, the classification performance is more robust against overfitting when using the PME as peak calling preprocessor. In summary, we conclude that all methods, though small differences exist, are largely reliable and enable a wide spectrum of real-world biomedical applications. PMID:24957992

  15. Peak detection method evaluation for ion mobility spectrometry by using machine learning approaches.

    PubMed

    Hauschild, Anne-Christin; Kopczynski, Dominik; D'Addario, Marianna; Baumbach, Jörg Ingo; Rahmann, Sven; Baumbach, Jan

    2013-04-16

    Ion mobility spectrometry with pre-separation by multi-capillary columns (MCC/IMS) has become an established inexpensive, non-invasive bioanalytics technology for detecting volatile organic compounds (VOCs) with various metabolomics applications in medical research. To pave the way for this technology towards daily usage in medical practice, different steps still have to be taken. With respect to modern biomarker research, one of the most important tasks is the automatic classification of patient-specific data sets into different groups, healthy or not, for instance. Although sophisticated machine learning methods exist, an inevitable preprocessing step is reliable and robust peak detection without manual intervention. In this work we evaluate four state-of-the-art approaches for automated IMS-based peak detection: local maxima search, watershed transformation with IPHEx, region-merging with VisualNow, and peak model estimation (PME).We manually generated Metabolites 2013, 3 278 a gold standard with the aid of a domain expert (manual) and compare the performance of the four peak calling methods with respect to two distinct criteria. We first utilize established machine learning methods and systematically study their classification performance based on the four peak detectors' results. Second, we investigate the classification variance and robustness regarding perturbation and overfitting. Our main finding is that the power of the classification accuracy is almost equally good for all methods, the manually created gold standard as well as the four automatic peak finding methods. In addition, we note that all tools, manual and automatic, are similarly robust against perturbations. However, the classification performance is more robust against overfitting when using the PME as peak calling preprocessor. In summary, we conclude that all methods, though small differences exist, are largely reliable and enable a wide spectrum of real-world biomedical applications.

  16. Building Knowledge Graphs for NASA's Earth Science Enterprise

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Lee, T. J.; Ramachandran, R.; Shi, R.; Bao, Q.; Gatlin, P. N.; Weigel, A. M.; Maskey, M.; Miller, J. J.

    2016-12-01

    Inspired by Google Knowledge Graph, we have been building a prototype Knowledge Graph for Earth scientists, connecting information and data in NASA's Earth science enterprise. Our primary goal is to advance the state-of-the-art NASA knowledge extraction capability by going beyond traditional catalog search and linking different distributed information (such as data, publications, services, tools and people). This will enable a more efficient pathway to knowledge discovery. While Google Knowledge Graph provides impressive semantic-search and aggregation capabilities, it is limited to search topics for general public. We use the similar knowledge graph approach to semantically link information gathered from a wide variety of sources within the NASA Earth Science enterprise. Our prototype serves as a proof of concept on the viability of building an operational "knowledge base" system for NASA Earth science. Information is pulled from structured sources (such as NASA CMR catalog, GCMD, and Climate and Forecast Conventions) and unstructured sources (such as research papers). Leveraging modern techniques of machine learning, information retrieval, and deep learning, we provide an integrated data mining and information discovery environment to help Earth scientists to use the best data, tools, methodologies, and models available to answer a hypothesis. Our knowledge graph would be able to answer questions like: Which articles discuss topics investigating similar hypotheses? How have these methods been tested for accuracy? Which approaches have been highly cited within the scientific community? What variables were used for this method and what datasets were used to represent them? What processing was necessary to use this data? These questions then lead researchers and citizen scientists to investigate the sources where data can be found, available user guides, information on how the data was acquired, and available tools and models to use with this data. As a proof of concept, we focus on a well-defined domain - Hurricane Science linking research articles and their findings, data, people and tools/services. Modern information retrieval, natural language processing machine learning and deep learning techniques are applied to build the knowledge network.

  17. Unsupervised heart-rate estimation in wearables with Liquid states and a probabilistic readout.

    PubMed

    Das, Anup; Pradhapan, Paruthi; Groenendaal, Willemijn; Adiraju, Prathyusha; Rajan, Raj Thilak; Catthoor, Francky; Schaafsma, Siebren; Krichmar, Jeffrey L; Dutt, Nikil; Van Hoof, Chris

    2018-03-01

    Heart-rate estimation is a fundamental feature of modern wearable devices. In this paper we propose a machine learning technique to estimate heart-rate from electrocardiogram (ECG) data collected using wearable devices. The novelty of our approach lies in (1) encoding spatio-temporal properties of ECG signals directly into spike train and using this to excite recurrently connected spiking neurons in a Liquid State Machine computation model; (2) a novel learning algorithm; and (3) an intelligently designed unsupervised readout based on Fuzzy c-Means clustering of spike responses from a subset of neurons (Liquid states), selected using particle swarm optimization. Our approach differs from existing works by learning directly from ECG signals (allowing personalization), without requiring costly data annotations. Additionally, our approach can be easily implemented on state-of-the-art spiking-based neuromorphic systems, offering high accuracy, yet significantly low energy footprint, leading to an extended battery-life of wearable devices. We validated our approach with CARLsim, a GPU accelerated spiking neural network simulator modeling Izhikevich spiking neurons with Spike Timing Dependent Plasticity (STDP) and homeostatic scaling. A range of subjects is considered from in-house clinical trials and public ECG databases. Results show high accuracy and low energy footprint in heart-rate estimation across subjects with and without cardiac irregularities, signifying the strong potential of this approach to be integrated in future wearable devices. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Identifying well-formed biomedical phrases in MEDLINE® text.

    PubMed

    Kim, Won; Yeganova, Lana; Comeau, Donald C; Wilbur, W John

    2012-12-01

    In the modern world people frequently interact with retrieval systems to satisfy their information needs. Humanly understandable well-formed phrases represent a crucial interface between humans and the web, and the ability to index and search with such phrases is beneficial for human-web interactions. In this paper we consider the problem of identifying humanly understandable, well formed, and high quality biomedical phrases in MEDLINE documents. The main approaches used previously for detecting such phrases are syntactic, statistical, and a hybrid approach combining these two. In this paper we propose a supervised learning approach for identifying high quality phrases. First we obtain a set of known well-formed useful phrases from an existing source and label these phrases as positive. We then extract from MEDLINE a large set of multiword strings that do not contain stop words or punctuation. We believe this unlabeled set contains many well-formed phrases. Our goal is to identify these additional high quality phrases. We examine various feature combinations and several machine learning strategies designed to solve this problem. A proper choice of machine learning methods and features identifies in the large collection strings that are likely to be high quality phrases. We evaluate our approach by making human judgments on multiword strings extracted from MEDLINE using our methods. We find that over 85% of such extracted phrase candidates are humanly judged to be of high quality. Published by Elsevier Inc.

  19. Experimental Realization of a Quantum Support Vector Machine

    NASA Astrophysics Data System (ADS)

    Li, Zhaokai; Liu, Xiaomei; Xu, Nanyang; Du, Jiangfeng

    2015-04-01

    The fundamental principle of artificial intelligence is the ability of machines to learn from previous experience and do future work accordingly. In the age of big data, classical learning machines often require huge computational resources in many practical cases. Quantum machine learning algorithms, on the other hand, could be exponentially faster than their classical counterparts by utilizing quantum parallelism. Here, we demonstrate a quantum machine learning algorithm to implement handwriting recognition on a four-qubit NMR test bench. The quantum machine learns standard character fonts and then recognizes handwritten characters from a set with two candidates. Because of the wide spread importance of artificial intelligence and its tremendous consumption of computational resources, quantum speedup would be extremely attractive against the challenges of big data.

  20. Workshop on Fielded Applications of Machine Learning

    DTIC Science & Technology

    1994-05-11

    This report summaries the talks presented at the Workshop on Fielded Applications of Machine Learning , and draws some initial conclusions about the state of machine learning and its potential for solving real-world problems.

  1. Revisit of Machine Learning Supported Biological and Biomedical Studies.

    PubMed

    Yu, Xiang-Tian; Wang, Lu; Zeng, Tao

    2018-01-01

    Generally, machine learning includes many in silico methods to transform the principles underlying natural phenomenon to human understanding information, which aim to save human labor, to assist human judge, and to create human knowledge. It should have wide application potential in biological and biomedical studies, especially in the era of big biological data. To look through the application of machine learning along with biological development, this review provides wide cases to introduce the selection of machine learning methods in different practice scenarios involved in the whole biological and biomedical study cycle and further discusses the machine learning strategies for analyzing omics data in some cutting-edge biological studies. Finally, the notes on new challenges for machine learning due to small-sample high-dimension are summarized from the key points of sample unbalance, white box, and causality.

  2. Toward Harnessing User Feedback For Machine Learning

    DTIC Science & Technology

    2006-10-02

    machine learning systems. If this resource-the users themselves-could somehow work hand-in-hand with machine learning systems, the accuracy of learning systems could be improved and the users? understanding and trust of the system could improve as well. We conducted a think-aloud study to see how willing users were to provide feedback and to understand what kinds of feedback users could give. Users were shown explanations of machine learning predictions and asked to provide feedback to improve the predictions. We found that users

  3. Intelligible machine learning with malibu.

    PubMed

    Langlois, Robert E; Lu, Hui

    2008-01-01

    malibu is an open-source machine learning work-bench developed in C/C++ for high-performance real-world applications, namely bioinformatics and medical informatics. It leverages third-party machine learning implementations for more robust bug-free software. This workbench handles several well-studied supervised machine learning problems including classification, regression, importance-weighted classification and multiple-instance learning. The malibu interface was designed to create reproducible experiments ideally run in a remote and/or command line environment. The software can be found at: http://proteomics.bioengr. uic.edu/malibu/index.html.

  4. Language Acquisition and Machine Learning.

    DTIC Science & Technology

    1986-02-01

    machine learning and examine its implications for computational models of language acquisition. As a framework for understanding this research, the authors propose four component tasks involved in learning from experience-aggregation, clustering, characterization, and storage. They then consider four common problems studied by machine learning researchers-learning from examples, heuristics learning, conceptual clustering, and learning macro-operators-describing each in terms of our framework. After this, they turn to the problem of grammar

  5. Behavioral Profiling of Scada Network Traffic Using Machine Learning Algorithms

    DTIC Science & Technology

    2014-03-27

    BEHAVIORAL PROFILING OF SCADA NETWORK TRAFFIC USING MACHINE LEARNING ALGORITHMS THESIS Jessica R. Werling, Captain, USAF AFIT-ENG-14-M-81 DEPARTMENT...subject to copyright protection in the United States. AFIT-ENG-14-M-81 BEHAVIORAL PROFILING OF SCADA NETWORK TRAFFIC USING MACHINE LEARNING ...AFIT-ENG-14-M-81 BEHAVIORAL PROFILING OF SCADA NETWORK TRAFFIC USING MACHINE LEARNING ALGORITHMS Jessica R. Werling, B.S.C.S. Captain, USAF Approved

  6. Statistical Machine Learning for Structured and High Dimensional Data

    DTIC Science & Technology

    2014-09-17

    AFRL-OSR-VA-TR-2014-0234 STATISTICAL MACHINE LEARNING FOR STRUCTURED AND HIGH DIMENSIONAL DATA Larry Wasserman CARNEGIE MELLON UNIVERSITY Final...Re . 8-98) v Prescribed by ANSI Std. Z39.18 14-06-2014 Final Dec 2009 - Aug 2014 Statistical Machine Learning for Structured and High Dimensional...area of resource-constrained statistical estimation. machine learning , high-dimensional statistics U U U UU John Lafferty 773-702-3813 > Research under

  7. Machine learning in genetics and genomics

    PubMed Central

    Libbrecht, Maxwell W.; Noble, William Stafford

    2016-01-01

    The field of machine learning promises to enable computers to assist humans in making sense of large, complex data sets. In this review, we outline some of the main applications of machine learning to genetic and genomic data. In the process, we identify some recurrent challenges associated with this type of analysis and provide general guidelines to assist in the practical application of machine learning to real genetic and genomic data. PMID:25948244

  8. Broiler chickens can benefit from machine learning: support vector machine analysis of observational epidemiological data

    PubMed Central

    Hepworth, Philip J.; Nefedov, Alexey V.; Muchnik, Ilya B.; Morgan, Kenton L.

    2012-01-01

    Machine-learning algorithms pervade our daily lives. In epidemiology, supervised machine learning has the potential for classification, diagnosis and risk factor identification. Here, we report the use of support vector machine learning to identify the features associated with hock burn on commercial broiler farms, using routinely collected farm management data. These data lend themselves to analysis using machine-learning techniques. Hock burn, dermatitis of the skin over the hock, is an important indicator of broiler health and welfare. Remarkably, this classifier can predict the occurrence of high hock burn prevalence with accuracy of 0.78 on unseen data, as measured by the area under the receiver operating characteristic curve. We also compare the results with those obtained by standard multi-variable logistic regression and suggest that this technique provides new insights into the data. This novel application of a machine-learning algorithm, embedded in poultry management systems could offer significant improvements in broiler health and welfare worldwide. PMID:22319115

  9. Broiler chickens can benefit from machine learning: support vector machine analysis of observational epidemiological data.

    PubMed

    Hepworth, Philip J; Nefedov, Alexey V; Muchnik, Ilya B; Morgan, Kenton L

    2012-08-07

    Machine-learning algorithms pervade our daily lives. In epidemiology, supervised machine learning has the potential for classification, diagnosis and risk factor identification. Here, we report the use of support vector machine learning to identify the features associated with hock burn on commercial broiler farms, using routinely collected farm management data. These data lend themselves to analysis using machine-learning techniques. Hock burn, dermatitis of the skin over the hock, is an important indicator of broiler health and welfare. Remarkably, this classifier can predict the occurrence of high hock burn prevalence with accuracy of 0.78 on unseen data, as measured by the area under the receiver operating characteristic curve. We also compare the results with those obtained by standard multi-variable logistic regression and suggest that this technique provides new insights into the data. This novel application of a machine-learning algorithm, embedded in poultry management systems could offer significant improvements in broiler health and welfare worldwide.

  10. Addressing uncertainty in atomistic machine learning.

    PubMed

    Peterson, Andrew A; Christensen, Rune; Khorshidi, Alireza

    2017-05-10

    Machine-learning regression has been demonstrated to precisely emulate the potential energy and forces that are output from more expensive electronic-structure calculations. However, to predict new regions of the potential energy surface, an assessment must be made of the credibility of the predictions. In this perspective, we address the types of errors that might arise in atomistic machine learning, the unique aspects of atomistic simulations that make machine-learning challenging, and highlight how uncertainty analysis can be used to assess the validity of machine-learning predictions. We suggest this will allow researchers to more fully use machine learning for the routine acceleration of large, high-accuracy, or extended-time simulations. In our demonstrations, we use a bootstrap ensemble of neural network-based calculators, and show that the width of the ensemble can provide an estimate of the uncertainty when the width is comparable to that in the training data. Intriguingly, we also show that the uncertainty can be localized to specific atoms in the simulation, which may offer hints for the generation of training data to strategically improve the machine-learned representation.

  11. On the Conditioning of Machine-Learning-Assisted Turbulence Modeling

    NASA Astrophysics Data System (ADS)

    Wu, Jinlong; Sun, Rui; Wang, Qiqi; Xiao, Heng

    2017-11-01

    Recently, several researchers have demonstrated that machine learning techniques can be used to improve the RANS modeled Reynolds stress by training on available database of high fidelity simulations. However, obtaining improved mean velocity field remains an unsolved challenge, restricting the predictive capability of current machine-learning-assisted turbulence modeling approaches. In this work we define a condition number to evaluate the model conditioning of data-driven turbulence modeling approaches, and propose a stability-oriented machine learning framework to model Reynolds stress. Two canonical flows, the flow in a square duct and the flow over periodic hills, are investigated to demonstrate the predictive capability of the proposed framework. The satisfactory prediction performance of mean velocity field for both flows demonstrates the predictive capability of the proposed framework for machine-learning-assisted turbulence modeling. With showing the capability of improving the prediction of mean flow field, the proposed stability-oriented machine learning framework bridges the gap between the existing machine-learning-assisted turbulence modeling approaches and the demand of predictive capability of turbulence models in real applications.

  12. Progressive sampling-based Bayesian optimization for efficient and automatic machine learning model selection.

    PubMed

    Zeng, Xueqiang; Luo, Gang

    2017-12-01

    Machine learning is broadly used for clinical data analysis. Before training a model, a machine learning algorithm must be selected. Also, the values of one or more model parameters termed hyper-parameters must be set. Selecting algorithms and hyper-parameter values requires advanced machine learning knowledge and many labor-intensive manual iterations. To lower the bar to machine learning, miscellaneous automatic selection methods for algorithms and/or hyper-parameter values have been proposed. Existing automatic selection methods are inefficient on large data sets. This poses a challenge for using machine learning in the clinical big data era. To address the challenge, this paper presents progressive sampling-based Bayesian optimization, an efficient and automatic selection method for both algorithms and hyper-parameter values. We report an implementation of the method. We show that compared to a state of the art automatic selection method, our method can significantly reduce search time, classification error rate, and standard deviation of error rate due to randomization. This is major progress towards enabling fast turnaround in identifying high-quality solutions required by many machine learning-based clinical data analysis tasks.

  13. Bypassing the Kohn-Sham equations with machine learning.

    PubMed

    Brockherde, Felix; Vogt, Leslie; Li, Li; Tuckerman, Mark E; Burke, Kieron; Müller, Klaus-Robert

    2017-10-11

    Last year, at least 30,000 scientific papers used the Kohn-Sham scheme of density functional theory to solve electronic structure problems in a wide variety of scientific fields. Machine learning holds the promise of learning the energy functional via examples, bypassing the need to solve the Kohn-Sham equations. This should yield substantial savings in computer time, allowing larger systems and/or longer time-scales to be tackled, but attempts to machine-learn this functional have been limited by the need to find its derivative. The present work overcomes this difficulty by directly learning the density-potential and energy-density maps for test systems and various molecules. We perform the first molecular dynamics simulation with a machine-learned density functional on malonaldehyde and are able to capture the intramolecular proton transfer process. Learning density models now allows the construction of accurate density functionals for realistic molecular systems.Machine learning allows electronic structure calculations to access larger system sizes and, in dynamical simulations, longer time scales. Here, the authors perform such a simulation using a machine-learned density functional that avoids direct solution of the Kohn-Sham equations.

  14. An Evolutionary Machine Learning Framework for Big Data Sequence Mining

    ERIC Educational Resources Information Center

    Kamath, Uday Krishna

    2014-01-01

    Sequence classification is an important problem in many real-world applications. Unlike other machine learning data, there are no "explicit" features or signals in sequence data that can help traditional machine learning algorithms learn and predict from the data. Sequence data exhibits inter-relationships in the elements that are…

  15. Neuromorphic Optical Signal Processing and Image Understanding for Automated Target Recognition

    DTIC Science & Technology

    1989-12-01

    34 Stochastic Learning Machine " Neuromorphic Target Identification * Cognitive Networks 3. Conclusions ..... ................ .. 12 4. Publications...16 5. References ...... ................... . 17 6. Appendices ....... .................. 18 I. Optoelectronic Neural Networks and...Learning Machines. II. Stochastic Optical Learning Machine. III. Learning Network for Extrapolation AccesFon For and Radar Target Identification

  16. An iterative learning control method with application for CNC machine tools

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, D.I.; Kim, S.

    1996-01-01

    A proportional, integral, and derivative (PID) type iterative learning controller is proposed for precise tracking control of industrial robots and computer numerical controller (CNC) machine tools performing repetitive tasks. The convergence of the output error by the proposed learning controller is guaranteed under a certain condition even when the system parameters are not known exactly and unknown external disturbances exist. As the proposed learning controller is repeatedly applied to the industrial robot or the CNC machine tool with the path-dependent repetitive task, the distance difference between the desired path and the actual tracked or machined path, which is one ofmore » the most significant factors in the evaluation of control performance, is progressively reduced. The experimental results demonstrate that the proposed learning controller can improve machining accuracy when the CNC machine tool performs repetitive machining tasks.« less

  17. Learning dominance relations in combinatorial search problems

    NASA Technical Reports Server (NTRS)

    Yu, Chee-Fen; Wah, Benjamin W.

    1988-01-01

    Dominance relations commonly are used to prune unnecessary nodes in search graphs, but they are problem-dependent and cannot be derived by a general procedure. The authors identify machine learning of dominance relations and the applicable learning mechanisms. A study of learning dominance relations using learning by experimentation is described. This system has been able to learn dominance relations for the 0/1-knapsack problem, an inventory problem, the reliability-by-replication problem, the two-machine flow shop problem, a number of single-machine scheduling problems, and a two-machine scheduling problem. It is considered that the same methodology can be extended to learn dominance relations in general.

  18. Thutmose - Investigation of Machine Learning-Based Intrusion Detection Systems

    DTIC Science & Technology

    2016-06-01

    research is being done to incorporate the field of machine learning into intrusion detection. Machine learning is a branch of artificial intelligence (AI...adversarial drift." Proceedings of the 2013 ACM workshop on Artificial intelligence and security. ACM. (2013) Kantarcioglu, M., Xi, B., and Clifton, C. "A...34 Proceedings of the 4th ACM workshop on Security and artificial intelligence . ACM. (2011) Dua, S., and Du, X. Data Mining and Machine Learning in

  19. Large-Scale Linear Optimization through Machine Learning: From Theory to Practical System Design and Implementation

    DTIC Science & Technology

    2016-08-10

    AFRL-AFOSR-JP-TR-2016-0073 Large-scale Linear Optimization through Machine Learning: From Theory to Practical System Design and Implementation ...2016 4.  TITLE AND SUBTITLE Large-scale Linear Optimization through Machine Learning: From Theory to Practical System Design and Implementation 5a...performances on various machine learning tasks and it naturally lends itself to fast parallel implementations . Despite this, very little work has been

  20. ML-o-Scope: A Diagnostic Visualization System for Deep Machine Learning Pipelines

    DTIC Science & Technology

    2014-05-16

    ML-o-scope: a diagnostic visualization system for deep machine learning pipelines Daniel Bruckner Electrical Engineering and Computer Sciences... machine learning pipelines 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f...the system as a support for tuning large scale object-classification pipelines. 1 Introduction A new generation of pipelined machine learning models

  1. WebWatcher: Machine Learning and Hypertext

    DTIC Science & Technology

    1995-05-29

    WebWatcher: Machine Learning and Hypertext Thorsten Joachims, Tom Mitchell, Dayne Freitag, and Robert Armstrong School of Computer Science Carnegie...HTML-page about machine learning in which we in- serted a hyperlink to WebWatcher (line 6). The user follows this hyperlink and gets to a page which...AND SUBTITLE WebWatcher: Machine Learning and Hypertext 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT

  2. A Parameter Communication Optimization Strategy for Distributed Machine Learning in Sensors.

    PubMed

    Zhang, Jilin; Tu, Hangdi; Ren, Yongjian; Wan, Jian; Zhou, Li; Li, Mingwei; Wang, Jue; Yu, Lifeng; Zhao, Chang; Zhang, Lei

    2017-09-21

    In order to utilize the distributed characteristic of sensors, distributed machine learning has become the mainstream approach, but the different computing capability of sensors and network delays greatly influence the accuracy and the convergence rate of the machine learning model. Our paper describes a reasonable parameter communication optimization strategy to balance the training overhead and the communication overhead. We extend the fault tolerance of iterative-convergent machine learning algorithms and propose the Dynamic Finite Fault Tolerance (DFFT). Based on the DFFT, we implement a parameter communication optimization strategy for distributed machine learning, named Dynamic Synchronous Parallel Strategy (DSP), which uses the performance monitoring model to dynamically adjust the parameter synchronization strategy between worker nodes and the Parameter Server (PS). This strategy makes full use of the computing power of each sensor, ensures the accuracy of the machine learning model, and avoids the situation that the model training is disturbed by any tasks unrelated to the sensors.

  3. Machine learning for medical images analysis.

    PubMed

    Criminisi, A

    2016-10-01

    This article discusses the application of machine learning for the analysis of medical images. Specifically: (i) We show how a special type of learning models can be thought of as automatically optimized, hierarchically-structured, rule-based algorithms, and (ii) We discuss how the issue of collecting large labelled datasets applies to both conventional algorithms as well as machine learning techniques. The size of the training database is a function of model complexity rather than a characteristic of machine learning methods. Crown Copyright © 2016. Published by Elsevier B.V. All rights reserved.

  4. Machine Learning.

    ERIC Educational Resources Information Center

    Kirrane, Diane E.

    1990-01-01

    As scientists seek to develop machines that can "learn," that is, solve problems by imitating the human brain, a gold mine of information on the processes of human learning is being discovered, expert systems are being improved, and human-machine interactions are being enhanced. (SK)

  5. Machine learning applications in genetics and genomics.

    PubMed

    Libbrecht, Maxwell W; Noble, William Stafford

    2015-06-01

    The field of machine learning, which aims to develop computer algorithms that improve with experience, holds promise to enable computers to assist humans in the analysis of large, complex data sets. Here, we provide an overview of machine learning applications for the analysis of genome sequencing data sets, including the annotation of sequence elements and epigenetic, proteomic or metabolomic data. We present considerations and recurrent challenges in the application of supervised, semi-supervised and unsupervised machine learning methods, as well as of generative and discriminative modelling approaches. We provide general guidelines to assist in the selection of these machine learning methods and their practical application for the analysis of genetic and genomic data sets.

  6. Quantum Machine Learning over Infinite Dimensions

    DOE PAGES

    Lau, Hoi-Kwan; Pooser, Raphael; Siopsis, George; ...

    2017-02-21

    Machine learning is a fascinating and exciting eld within computer science. Recently, this ex- citement has been transferred to the quantum information realm. Currently, all proposals for the quantum version of machine learning utilize the nite-dimensional substrate of discrete variables. Here we generalize quantum machine learning to the more complex, but still remarkably practi- cal, in nite-dimensional systems. We present the critical subroutines of quantum machine learning algorithms for an all-photonic continuous-variable quantum computer that achieve an exponential speedup compared to their equivalent classical counterparts. Finally, we also map out an experi- mental implementation which can be used as amore » blueprint for future photonic demonstrations.« less

  7. Quantum Machine Learning over Infinite Dimensions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lau, Hoi-Kwan; Pooser, Raphael; Siopsis, George

    Machine learning is a fascinating and exciting eld within computer science. Recently, this ex- citement has been transferred to the quantum information realm. Currently, all proposals for the quantum version of machine learning utilize the nite-dimensional substrate of discrete variables. Here we generalize quantum machine learning to the more complex, but still remarkably practi- cal, in nite-dimensional systems. We present the critical subroutines of quantum machine learning algorithms for an all-photonic continuous-variable quantum computer that achieve an exponential speedup compared to their equivalent classical counterparts. Finally, we also map out an experi- mental implementation which can be used as amore » blueprint for future photonic demonstrations.« less

  8. Machine learning and medicine: book review and commentary.

    PubMed

    Koprowski, Robert; Foster, Kenneth R

    2018-02-01

    This article is a review of the book "Master machine learning algorithms, discover how they work and implement them from scratch" (ISBN: not available, 37 USD, 163 pages) edited by Jason Brownlee published by the Author, edition, v1.10 http://MachineLearningMastery.com . An accompanying commentary discusses some of the issues that are involved with use of machine learning and data mining techniques to develop predictive models for diagnosis or prognosis of disease, and to call attention to additional requirements for developing diagnostic and prognostic algorithms that are generally useful in medicine. Appendix provides examples that illustrate potential problems with machine learning that are not addressed in the reviewed book.

  9. Derivative Free Optimization of Complex Systems with the Use of Statistical Machine Learning Models

    DTIC Science & Technology

    2015-09-12

    AFRL-AFOSR-VA-TR-2015-0278 DERIVATIVE FREE OPTIMIZATION OF COMPLEX SYSTEMS WITH THE USE OF STATISTICAL MACHINE LEARNING MODELS Katya Scheinberg...COMPLEX SYSTEMS WITH THE USE OF STATISTICAL MACHINE LEARNING MODELS 5a.  CONTRACT NUMBER 5b.  GRANT NUMBER FA9550-11-1-0239 5c.  PROGRAM ELEMENT...developed, which has been the focus of our research. 15. SUBJECT TERMS optimization, Derivative-Free Optimization, Statistical Machine Learning 16. SECURITY

  10. Guidelines for Developing and Reporting Machine Learning Predictive Models in Biomedical Research: A Multidisciplinary View

    PubMed Central

    2016-01-01

    Background As more and more researchers are turning to big data for new opportunities of biomedical discoveries, machine learning models, as the backbone of big data analysis, are mentioned more often in biomedical journals. However, owing to the inherent complexity of machine learning methods, they are prone to misuse. Because of the flexibility in specifying machine learning models, the results are often insufficiently reported in research articles, hindering reliable assessment of model validity and consistent interpretation of model outputs. Objective To attain a set of guidelines on the use of machine learning predictive models within clinical settings to make sure the models are correctly applied and sufficiently reported so that true discoveries can be distinguished from random coincidence. Methods A multidisciplinary panel of machine learning experts, clinicians, and traditional statisticians were interviewed, using an iterative process in accordance with the Delphi method. Results The process produced a set of guidelines that consists of (1) a list of reporting items to be included in a research article and (2) a set of practical sequential steps for developing predictive models. Conclusions A set of guidelines was generated to enable correct application of machine learning models and consistent reporting of model specifications and results in biomedical research. We believe that such guidelines will accelerate the adoption of big data analysis, particularly with machine learning methods, in the biomedical research community. PMID:27986644

  11. Aspect level sentiment analysis using machine learning

    NASA Astrophysics Data System (ADS)

    Shubham, D.; Mithil, P.; Shobharani, Meesala; Sumathy, S.

    2017-11-01

    In modern world the development of web and smartphones increases the usage of online shopping. The overall feedback about product is generated with the help of sentiment analysis using text processing.Opinion mining or sentiment analysis is used to collect and categorized the reviews of product. The proposed system uses aspect leveldetection in which features are extracted from the datasets. The system performs pre-processing operation such as tokenization, part of speech and limitization on the data tofinds meaningful information which is used to detect the polarity level and assigns rating to product. The proposed model focuses on aspects to produces accurate result by avoiding the spam reviews.

  12. Approaches to Machine Learning.

    DTIC Science & Technology

    1984-02-16

    The field of machine learning strives to develop methods and techniques to automatic the acquisition of new information, new skills, and new ways of organizing existing information. In this article, we review the major approaches to machine learning in symbolic domains, covering the tasks of learning concepts from examples, learning search methods, conceptual clustering, and language acquisition. We illustrate each of the basic approaches with paradigmatic examples. (Author)

  13. Cerebral localization in the nineteenth century--the birth of a science and its modern consequences.

    PubMed

    Steinberg, David A

    2009-07-01

    Although many individuals contributed to the development of the science of cerebral localization, its conceptual framework is the work of a single man--John Hughlings Jackson (1835-1911), a Victorian physician practicing in London. Hughlings Jackson's formulation of a neurological science consisted of an axiomatic basis, an experimental methodology, and a clinical neurophysiology. His axiom--that the brain is an exclusively sensorimotor machine--separated neurology from psychiatry and established a rigorous and sophisticated structure for the brain and mind. Hughlings Jackson's experimental method utilized the focal lesion as a probe of brain function and created an evolutionary structure of somatotopic representation to explain clinical neurophysiology. His scientific theory of cerebral localization can be described as a weighted ordinal representation. Hughlings Jackson's theory of weighted ordinal representation forms the scientific basis for modern neurology. Though this science is utilized daily by every neurologist and forms the basis of neuroscience, the consequences of Hughlings Jackson's ideas are still not generally appreciated. For example, they imply the intrinsic inconsistency of some modern fields of neuroscience and neurology. Thus, "cognitive imaging" and the "neurology of art"--two topics of modern interest--are fundamentally oxymoronic according to the science of cerebral localization. Neuroscientists, therefore, still have much to learn from John Hughlings Jackson.

  14. Machine Learning in the Big Data Era: Are We There Yet?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sukumar, Sreenivas Rangan

    In this paper, we discuss the machine learning challenges of the Big Data era. We observe that recent innovations in being able to collect, access, organize, integrate, and query massive amounts of data from a wide variety of data sources have brought statistical machine learning under more scrutiny and evaluation for gleaning insights from the data than ever before. In that context, we pose and debate the question - Are machine learning algorithms scaling with the ability to store and compute? If yes, how? If not, why not? We survey recent developments in the state-of-the-art to discuss emerging and outstandingmore » challenges in the design and implementation of machine learning algorithms at scale. We leverage experience from real-world Big Data knowledge discovery projects across domains of national security and healthcare to suggest our efforts be focused along the following axes: (i) the data science challenge - designing scalable and flexible computational architectures for machine learning (beyond just data-retrieval); (ii) the science of data challenge the ability to understand characteristics of data before applying machine learning algorithms and tools; and (iii) the scalable predictive functions challenge the ability to construct, learn and infer with increasing sample size, dimensionality, and categories of labels. We conclude with a discussion of opportunities and directions for future research.« less

  15. Machine Learning

    DTIC Science & Technology

    1990-04-01

    DTIC i.LE COPY RADC-TR-90-25 Final Technical Report April 1990 MACHINE LEARNING The MITRE Corporation Melissa P. Chase Cs) CTIC ’- CT E 71 IN 2 11990...S. FUNDING NUMBERS MACHINE LEARNING C - F19628-89-C-0001 PE - 62702F PR - MOlE S. AUTHO(S) TA - 79 Melissa P. Chase WUT - 80 S. PERFORMING...341.280.5500 pm I " Aw Sig rill Ia 2110-01 SECTION 1 INTRODUCTION 1.1 BACKGROUND Research in machine learning has taken two directions in the problem of

  16. Workshop on Fielded Applications of Machine Learning Held in Amherst, Massachusetts on 30 June-1 July 1993. Abstracts.

    DTIC Science & Technology

    1993-01-01

    engineering has led to many AI systems that are now regularly used in industry and elsewhere. The ultimate test of machine learning , the subfield of Al that...applications of machine learning suggest the time was ripe for a meeting on this topic. For this reason, Pat Langley (Siemens Corporate Research) and Yves...Kodratoff (Universite de Paris, Sud) organized an invited workshop on applications of machine learning . The goal of the gathering was to familiarize

  17. Electronic gaming machines: are they the 'crack-cocaine' of gambling?

    PubMed

    Dowling, Nicki; Smith, David; Thomas, Trang

    2005-01-01

    There is a general view that electronic gaming is the most 'addictive' form of gambling, in that it contributes more to causing problem gambling than any other gambling activity. As such, electronic gaming machines have been referred to as the 'crack-cocaine' of gambling. While this analogy has popular appeal, it is only recently that the scientific community has begun to investigate its validity. In line with the belief that electronic gambling has a higher 'addictive' potential than other forms of gambling, research has also begun to focus on identifying the characteristics of gaming machines that may be associated with problem gambling behaviour. This paper will review the different types of modern electronic gaming machines, and will use the introduction of gaming machines to Australia to examine the association between electronic gaming and problem gambling, with particular reference to the characteristics of modern electronic gaming machines. Despite overwhelming acceptance that gaming machines are associated with the highest level of problem gambling, the empirical literature provides inconclusive evidence to support the analogy linking electronic gaming to 'crack-cocaine'. Rigorous and systematic evaluation is required to establish definitively the absolute 'addictive' potential of gaming machines and the degree to which machine characteristics influence the development and maintenance of problem gambling behaviour.

  18. Systematic Poisoning Attacks on and Defenses for Machine Learning in Healthcare.

    PubMed

    Mozaffari-Kermani, Mehran; Sur-Kolay, Susmita; Raghunathan, Anand; Jha, Niraj K

    2015-11-01

    Machine learning is being used in a wide range of application domains to discover patterns in large datasets. Increasingly, the results of machine learning drive critical decisions in applications related to healthcare and biomedicine. Such health-related applications are often sensitive, and thus, any security breach would be catastrophic. Naturally, the integrity of the results computed by machine learning is of great importance. Recent research has shown that some machine-learning algorithms can be compromised by augmenting their training datasets with malicious data, leading to a new class of attacks called poisoning attacks. Hindrance of a diagnosis may have life-threatening consequences and could cause distrust. On the other hand, not only may a false diagnosis prompt users to distrust the machine-learning algorithm and even abandon the entire system but also such a false positive classification may cause patient distress. In this paper, we present a systematic, algorithm-independent approach for mounting poisoning attacks across a wide range of machine-learning algorithms and healthcare datasets. The proposed attack procedure generates input data, which, when added to the training set, can either cause the results of machine learning to have targeted errors (e.g., increase the likelihood of classification into a specific class), or simply introduce arbitrary errors (incorrect classification). These attacks may be applied to both fixed and evolving datasets. They can be applied even when only statistics of the training dataset are available or, in some cases, even without access to the training dataset, although at a lower efficacy. We establish the effectiveness of the proposed attacks using a suite of six machine-learning algorithms and five healthcare datasets. Finally, we present countermeasures against the proposed generic attacks that are based on tracking and detecting deviations in various accuracy metrics, and benchmark their effectiveness.

  19. Machine learning in autistic spectrum disorder behavioral research: A review and ways forward.

    PubMed

    Thabtah, Fadi

    2018-02-13

    Autistic Spectrum Disorder (ASD) is a mental disorder that retards acquisition of linguistic, communication, cognitive, and social skills and abilities. Despite being diagnosed with ASD, some individuals exhibit outstanding scholastic, non-academic, and artistic capabilities, in such cases posing a challenging task for scientists to provide answers. In the last few years, ASD has been investigated by social and computational intelligence scientists utilizing advanced technologies such as machine learning to improve diagnostic timing, precision, and quality. Machine learning is a multidisciplinary research topic that employs intelligent techniques to discover useful concealed patterns, which are utilized in prediction to improve decision making. Machine learning techniques such as support vector machines, decision trees, logistic regressions, and others, have been applied to datasets related to autism in order to construct predictive models. These models claim to enhance the ability of clinicians to provide robust diagnoses and prognoses of ASD. However, studies concerning the use of machine learning in ASD diagnosis and treatment suffer from conceptual, implementation, and data issues such as the way diagnostic codes are used, the type of feature selection employed, the evaluation measures chosen, and class imbalances in data among others. A more serious claim in recent studies is the development of a new method for ASD diagnoses based on machine learning. This article critically analyses these recent investigative studies on autism, not only articulating the aforementioned issues in these studies but also recommending paths forward that enhance machine learning use in ASD with respect to conceptualization, implementation, and data. Future studies concerning machine learning in autism research are greatly benefitted by such proposals.

  20. Detecting Abnormal Word Utterances in Children With Autism Spectrum Disorders: Machine-Learning-Based Voice Analysis Versus Speech Therapists.

    PubMed

    Nakai, Yasushi; Takiguchi, Tetsuya; Matsui, Gakuyo; Yamaoka, Noriko; Takada, Satoshi

    2017-10-01

    Abnormal prosody is often evident in the voice intonations of individuals with autism spectrum disorders. We compared a machine-learning-based voice analysis with human hearing judgments made by 10 speech therapists for classifying children with autism spectrum disorders ( n = 30) and typical development ( n = 51). Using stimuli limited to single-word utterances, machine-learning-based voice analysis was superior to speech therapist judgments. There was a significantly higher true-positive than false-negative rate for machine-learning-based voice analysis but not for speech therapists. Results are discussed in terms of some artificiality of clinician judgments based on single-word utterances, and the objectivity machine-learning-based voice analysis adds to judging abnormal prosody.

  1. Logic Learning Machine and standard supervised methods for Hodgkin's lymphoma prognosis using gene expression data and clinical variables.

    PubMed

    Parodi, Stefano; Manneschi, Chiara; Verda, Damiano; Ferrari, Enrico; Muselli, Marco

    2018-03-01

    This study evaluates the performance of a set of machine learning techniques in predicting the prognosis of Hodgkin's lymphoma using clinical factors and gene expression data. Analysed samples from 130 Hodgkin's lymphoma patients included a small set of clinical variables and more than 54,000 gene features. Machine learning classifiers included three black-box algorithms ( k-nearest neighbour, Artificial Neural Network, and Support Vector Machine) and two methods based on intelligible rules (Decision Tree and the innovative Logic Learning Machine method). Support Vector Machine clearly outperformed any of the other methods. Among the two rule-based algorithms, Logic Learning Machine performed better and identified a set of simple intelligible rules based on a combination of clinical variables and gene expressions. Decision Tree identified a non-coding gene ( XIST) involved in the early phases of X chromosome inactivation that was overexpressed in females and in non-relapsed patients. XIST expression might be responsible for the better prognosis of female Hodgkin's lymphoma patients.

  2. Deep-Learning-Enabled On-Demand Design of Chiral Metamaterials.

    PubMed

    Ma, Wei; Cheng, Feng; Liu, Yongmin

    2018-06-11

    Deep-learning framework has significantly impelled the development of modern machine learning technology by continuously pushing the limit of traditional recognition and processing of images, speech, and videos. In the meantime, it starts to penetrate other disciplines, such as biology, genetics, materials science, and physics. Here, we report a deep-learning-based model, comprising two bidirectional neural networks assembled by a partial stacking strategy, to automatically design and optimize three-dimensional chiral metamaterials with strong chiroptical responses at predesignated wavelengths. The model can help to discover the intricate, nonintuitive relationship between a metamaterial structure and its optical responses from a number of training examples, which circumvents the time-consuming, case-by-case numerical simulations in conventional metamaterial designs. This approach not only realizes the forward prediction of optical performance much more accurately and efficiently but also enables one to inversely retrieve designs from given requirements. Our results demonstrate that such a data-driven model can be applied as a very powerful tool in studying complicated light-matter interactions and accelerating the on-demand design of nanophotonic devices, systems, and architectures for real world applications.

  3. Probabilistic machine learning and artificial intelligence.

    PubMed

    Ghahramani, Zoubin

    2015-05-28

    How can a machine learn from experience? Probabilistic modelling provides a framework for understanding what learning is, and has therefore emerged as one of the principal theoretical and practical approaches for designing machines that learn from data acquired through experience. The probabilistic framework, which describes how to represent and manipulate uncertainty about models and predictions, has a central role in scientific data analysis, machine learning, robotics, cognitive science and artificial intelligence. This Review provides an introduction to this framework, and discusses some of the state-of-the-art advances in the field, namely, probabilistic programming, Bayesian optimization, data compression and automatic model discovery.

  4. Probabilistic machine learning and artificial intelligence

    NASA Astrophysics Data System (ADS)

    Ghahramani, Zoubin

    2015-05-01

    How can a machine learn from experience? Probabilistic modelling provides a framework for understanding what learning is, and has therefore emerged as one of the principal theoretical and practical approaches for designing machines that learn from data acquired through experience. The probabilistic framework, which describes how to represent and manipulate uncertainty about models and predictions, has a central role in scientific data analysis, machine learning, robotics, cognitive science and artificial intelligence. This Review provides an introduction to this framework, and discusses some of the state-of-the-art advances in the field, namely, probabilistic programming, Bayesian optimization, data compression and automatic model discovery.

  5. Machine Learning Techniques in Clinical Vision Sciences.

    PubMed

    Caixinha, Miguel; Nunes, Sandrina

    2017-01-01

    This review presents and discusses the contribution of machine learning techniques for diagnosis and disease monitoring in the context of clinical vision science. Many ocular diseases leading to blindness can be halted or delayed when detected and treated at its earliest stages. With the recent developments in diagnostic devices, imaging and genomics, new sources of data for early disease detection and patients' management are now available. Machine learning techniques emerged in the biomedical sciences as clinical decision-support techniques to improve sensitivity and specificity of disease detection and monitoring, increasing objectively the clinical decision-making process. This manuscript presents a review in multimodal ocular disease diagnosis and monitoring based on machine learning approaches. In the first section, the technical issues related to the different machine learning approaches will be present. Machine learning techniques are used to automatically recognize complex patterns in a given dataset. These techniques allows creating homogeneous groups (unsupervised learning), or creating a classifier predicting group membership of new cases (supervised learning), when a group label is available for each case. To ensure a good performance of the machine learning techniques in a given dataset, all possible sources of bias should be removed or minimized. For that, the representativeness of the input dataset for the true population should be confirmed, the noise should be removed, the missing data should be treated and the data dimensionally (i.e., the number of parameters/features and the number of cases in the dataset) should be adjusted. The application of machine learning techniques in ocular disease diagnosis and monitoring will be presented and discussed in the second section of this manuscript. To show the clinical benefits of machine learning in clinical vision sciences, several examples will be presented in glaucoma, age-related macular degeneration, and diabetic retinopathy, these ocular pathologies being the major causes of irreversible visual impairment.

  6. Multi-Stage Convex Relaxation Methods for Machine Learning

    DTIC Science & Technology

    2013-03-01

    Many problems in machine learning can be naturally formulated as non-convex optimization problems. However, such direct nonconvex formulations have...original nonconvex formulation. We will develop theoretical properties of this method and algorithmic consequences. Related convex and nonconvex machine learning methods will also be investigated.

  7. Machine Learning for the Knowledge Plane

    DTIC Science & Technology

    2006-06-01

    this idea is to combine techniques from machine learning with new architectural concepts in networking to make the internet self-aware and self...work on the machine learning portion of the Knowledge Plane. This consisted of three components: (a) we wrote a document formulating the various

  8. Machine learning and data science in soft materials engineering

    NASA Astrophysics Data System (ADS)

    Ferguson, Andrew L.

    2018-01-01

    In many branches of materials science it is now routine to generate data sets of such large size and dimensionality that conventional methods of analysis fail. Paradigms and tools from data science and machine learning can provide scalable approaches to identify and extract trends and patterns within voluminous data sets, perform guided traversals of high-dimensional phase spaces, and furnish data-driven strategies for inverse materials design. This topical review provides an accessible introduction to machine learning tools in the context of soft and biological materials by ‘de-jargonizing’ data science terminology, presenting a taxonomy of machine learning techniques, and surveying the mathematical underpinnings and software implementations of popular tools, including principal component analysis, independent component analysis, diffusion maps, support vector machines, and relative entropy. We present illustrative examples of machine learning applications in soft matter, including inverse design of self-assembling materials, nonlinear learning of protein folding landscapes, high-throughput antimicrobial peptide design, and data-driven materials design engines. We close with an outlook on the challenges and opportunities for the field.

  9. Machine learning and data science in soft materials engineering.

    PubMed

    Ferguson, Andrew L

    2018-01-31

    In many branches of materials science it is now routine to generate data sets of such large size and dimensionality that conventional methods of analysis fail. Paradigms and tools from data science and machine learning can provide scalable approaches to identify and extract trends and patterns within voluminous data sets, perform guided traversals of high-dimensional phase spaces, and furnish data-driven strategies for inverse materials design. This topical review provides an accessible introduction to machine learning tools in the context of soft and biological materials by 'de-jargonizing' data science terminology, presenting a taxonomy of machine learning techniques, and surveying the mathematical underpinnings and software implementations of popular tools, including principal component analysis, independent component analysis, diffusion maps, support vector machines, and relative entropy. We present illustrative examples of machine learning applications in soft matter, including inverse design of self-assembling materials, nonlinear learning of protein folding landscapes, high-throughput antimicrobial peptide design, and data-driven materials design engines. We close with an outlook on the challenges and opportunities for the field.

  10. A Parameter Communication Optimization Strategy for Distributed Machine Learning in Sensors

    PubMed Central

    Zhang, Jilin; Tu, Hangdi; Ren, Yongjian; Wan, Jian; Zhou, Li; Li, Mingwei; Wang, Jue; Yu, Lifeng; Zhao, Chang; Zhang, Lei

    2017-01-01

    In order to utilize the distributed characteristic of sensors, distributed machine learning has become the mainstream approach, but the different computing capability of sensors and network delays greatly influence the accuracy and the convergence rate of the machine learning model. Our paper describes a reasonable parameter communication optimization strategy to balance the training overhead and the communication overhead. We extend the fault tolerance of iterative-convergent machine learning algorithms and propose the Dynamic Finite Fault Tolerance (DFFT). Based on the DFFT, we implement a parameter communication optimization strategy for distributed machine learning, named Dynamic Synchronous Parallel Strategy (DSP), which uses the performance monitoring model to dynamically adjust the parameter synchronization strategy between worker nodes and the Parameter Server (PS). This strategy makes full use of the computing power of each sensor, ensures the accuracy of the machine learning model, and avoids the situation that the model training is disturbed by any tasks unrelated to the sensors. PMID:28934163

  11. Machine Learning Approaches for Clinical Psychology and Psychiatry.

    PubMed

    Dwyer, Dominic B; Falkai, Peter; Koutsouleris, Nikolaos

    2018-05-07

    Machine learning approaches for clinical psychology and psychiatry explicitly focus on learning statistical functions from multidimensional data sets to make generalizable predictions about individuals. The goal of this review is to provide an accessible understanding of why this approach is important for future practice given its potential to augment decisions associated with the diagnosis, prognosis, and treatment of people suffering from mental illness using clinical and biological data. To this end, the limitations of current statistical paradigms in mental health research are critiqued, and an introduction is provided to critical machine learning methods used in clinical studies. A selective literature review is then presented aiming to reinforce the usefulness of machine learning methods and provide evidence of their potential. In the context of promising initial results, the current limitations of machine learning approaches are addressed, and considerations for future clinical translation are outlined.

  12. Learning About Climate and Atmospheric Models Through Machine Learning

    NASA Astrophysics Data System (ADS)

    Lucas, D. D.

    2017-12-01

    From the analysis of ensemble variability to improving simulation performance, machine learning algorithms can play a powerful role in understanding the behavior of atmospheric and climate models. To learn about model behavior, we create training and testing data sets through ensemble techniques that sample different model configurations and values of input parameters, and then use supervised machine learning to map the relationships between the inputs and outputs. Following this procedure, we have used support vector machines, random forests, gradient boosting and other methods to investigate a variety of atmospheric and climate model phenomena. We have used machine learning to predict simulation crashes, estimate the probability density function of climate sensitivity, optimize simulations of the Madden Julian oscillation, assess the impacts of weather and emissions uncertainty on atmospheric dispersion, and quantify the effects of model resolution changes on precipitation. This presentation highlights recent examples of our applications of machine learning to improve the understanding of climate and atmospheric models. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  13. Automation of energy demand forecasting

    NASA Astrophysics Data System (ADS)

    Siddique, Sanzad

    Automation of energy demand forecasting saves time and effort by searching automatically for an appropriate model in a candidate model space without manual intervention. This thesis introduces a search-based approach that improves the performance of the model searching process for econometrics models. Further improvements in the accuracy of the energy demand forecasting are achieved by integrating nonlinear transformations within the models. This thesis introduces machine learning techniques that are capable of modeling such nonlinearity. Algorithms for learning domain knowledge from time series data using the machine learning methods are also presented. The novel search based approach and the machine learning models are tested with synthetic data as well as with natural gas and electricity demand signals. Experimental results show that the model searching technique is capable of finding an appropriate forecasting model. Further experimental results demonstrate an improved forecasting accuracy achieved by using the novel machine learning techniques introduced in this thesis. This thesis presents an analysis of how the machine learning techniques learn domain knowledge. The learned domain knowledge is used to improve the forecast accuracy.

  14. Applications of machine learning in cancer prediction and prognosis.

    PubMed

    Cruz, Joseph A; Wishart, David S

    2007-02-11

    Machine learning is a branch of artificial intelligence that employs a variety of statistical, probabilistic and optimization techniques that allows computers to "learn" from past examples and to detect hard-to-discern patterns from large, noisy or complex data sets. This capability is particularly well-suited to medical applications, especially those that depend on complex proteomic and genomic measurements. As a result, machine learning is frequently used in cancer diagnosis and detection. More recently machine learning has been applied to cancer prognosis and prediction. This latter approach is particularly interesting as it is part of a growing trend towards personalized, predictive medicine. In assembling this review we conducted a broad survey of the different types of machine learning methods being used, the types of data being integrated and the performance of these methods in cancer prediction and prognosis. A number of trends are noted, including a growing dependence on protein biomarkers and microarray data, a strong bias towards applications in prostate and breast cancer, and a heavy reliance on "older" technologies such artificial neural networks (ANNs) instead of more recently developed or more easily interpretable machine learning methods. A number of published studies also appear to lack an appropriate level of validation or testing. Among the better designed and validated studies it is clear that machine learning methods can be used to substantially (15-25%) improve the accuracy of predicting cancer susceptibility, recurrence and mortality. At a more fundamental level, it is also evident that machine learning is also helping to improve our basic understanding of cancer development and progression.

  15. A review of supervised machine learning applied to ageing research.

    PubMed

    Fabris, Fabio; Magalhães, João Pedro de; Freitas, Alex A

    2017-04-01

    Broadly speaking, supervised machine learning is the computational task of learning correlations between variables in annotated data (the training set), and using this information to create a predictive model capable of inferring annotations for new data, whose annotations are not known. Ageing is a complex process that affects nearly all animal species. This process can be studied at several levels of abstraction, in different organisms and with different objectives in mind. Not surprisingly, the diversity of the supervised machine learning algorithms applied to answer biological questions reflects the complexities of the underlying ageing processes being studied. Many works using supervised machine learning to study the ageing process have been recently published, so it is timely to review these works, to discuss their main findings and weaknesses. In summary, the main findings of the reviewed papers are: the link between specific types of DNA repair and ageing; ageing-related proteins tend to be highly connected and seem to play a central role in molecular pathways; ageing/longevity is linked with autophagy and apoptosis, nutrient receptor genes, and copper and iron ion transport. Additionally, several biomarkers of ageing were found by machine learning. Despite some interesting machine learning results, we also identified a weakness of current works on this topic: only one of the reviewed papers has corroborated the computational results of machine learning algorithms through wet-lab experiments. In conclusion, supervised machine learning has contributed to advance our knowledge and has provided novel insights on ageing, yet future work should have a greater emphasis in validating the predictions.

  16. Machine learning, social learning and the governance of self-driving cars.

    PubMed

    Stilgoe, Jack

    2018-02-01

    Self-driving cars, a quintessentially 'smart' technology, are not born smart. The algorithms that control their movements are learning as the technology emerges. Self-driving cars represent a high-stakes test of the powers of machine learning, as well as a test case for social learning in technology governance. Society is learning about the technology while the technology learns about society. Understanding and governing the politics of this technology means asking 'Who is learning, what are they learning and how are they learning?' Focusing on the successes and failures of social learning around the much-publicized crash of a Tesla Model S in 2016, I argue that trajectories and rhetorics of machine learning in transport pose a substantial governance challenge. 'Self-driving' or 'autonomous' cars are misnamed. As with other technologies, they are shaped by assumptions about social needs, solvable problems, and economic opportunities. Governing these technologies in the public interest means improving social learning by constructively engaging with the contingencies of machine learning.

  17. Robust Fault Diagnosis in Electric Drives Using Machine Learning

    DTIC Science & Technology

    2004-09-08

    detection of fault conditions of the inverter. A machine learning framework is developed to systematically select torque-speed domain operation points...were used to generate various fault condition data for machine learning . The technique is viable for accurate, reliable and fast fault detection in electric drives.

  18. Agents Technology Research

    DTIC Science & Technology

    2010-02-01

    multi-agent reputation management. State abstraction is a technique used to allow machine learning technologies to cope with problems that have large...state abstrac- tion process to enable reinforcement learning in domains with large state spaces. State abstraction is vital to machine learning ...across a collective of independent platforms. These individual elements, often referred to as agents in the machine learning community, should exhibit both

  19. Machine learning approaches in medical image analysis: From detection to diagnosis.

    PubMed

    de Bruijne, Marleen

    2016-10-01

    Machine learning approaches are increasingly successful in image-based diagnosis, disease prognosis, and risk assessment. This paper highlights new research directions and discusses three main challenges related to machine learning in medical imaging: coping with variation in imaging protocols, learning from weak labels, and interpretation and evaluation of results. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Testing meta tagger

    DTIC Science & Technology

    2017-12-21

    rank , and computer vision. Machine learning is closely related to (and often overlaps with) computational statistics, which also focuses on...Machine learning is a field of computer science that gives computers the ability to learn without being explicitly programmed.[1] Arthur Samuel...an American pioneer in the field of computer gaming and artificial intelligence, coined the term "Machine Learning " in 1959 while at IBM[2]. Evolved

  1. Artificial Intelligence in Medical Practice: The Question to the Answer?

    PubMed

    Miller, D Douglas; Brown, Eric W

    2018-02-01

    Computer science advances and ultra-fast computing speeds find artificial intelligence (AI) broadly benefitting modern society-forecasting weather, recognizing faces, detecting fraud, and deciphering genomics. AI's future role in medical practice remains an unanswered question. Machines (computers) learn to detect patterns not decipherable using biostatistics by processing massive datasets (big data) through layered mathematical models (algorithms). Correcting algorithm mistakes (training) adds to AI predictive model confidence. AI is being successfully applied for image analysis in radiology, pathology, and dermatology, with diagnostic speed exceeding, and accuracy paralleling, medical experts. While diagnostic confidence never reaches 100%, combining machines plus physicians reliably enhances system performance. Cognitive programs are impacting medical practice by applying natural language processing to read the rapidly expanding scientific literature and collate years of diverse electronic medical records. In this and other ways, AI may optimize the care trajectory of chronic disease patients, suggest precision therapies for complex illnesses, reduce medical errors, and improve subject enrollment into clinical trials. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. Cognitive learning: a machine learning approach for automatic process characterization from design

    NASA Astrophysics Data System (ADS)

    Foucher, J.; Baderot, J.; Martinez, S.; Dervilllé, A.; Bernard, G.

    2018-03-01

    Cutting edge innovation requires accurate and fast process-control to obtain fast learning rate and industry adoption. Current tools available for such task are mainly manual and user dependent. We present in this paper cognitive learning, which is a new machine learning based technique to facilitate and to speed up complex characterization by using the design as input, providing fast training and detection time. We will focus on the machine learning framework that allows object detection, defect traceability and automatic measurement tools.

  3. Assessing and comparison of different machine learning methods in parent-offspring trios for genotype imputation.

    PubMed

    Mikhchi, Abbas; Honarvar, Mahmood; Kashan, Nasser Emam Jomeh; Aminafshar, Mehdi

    2016-06-21

    Genotype imputation is an important tool for prediction of unknown genotypes for both unrelated individuals and parent-offspring trios. Several imputation methods are available and can either employ universal machine learning methods, or deploy algorithms dedicated to infer missing genotypes. In this research the performance of eight machine learning methods: Support Vector Machine, K-Nearest Neighbors, Extreme Learning Machine, Radial Basis Function, Random Forest, AdaBoost, LogitBoost, and TotalBoost compared in terms of the imputation accuracy, computation time and the factors affecting imputation accuracy. The methods employed using real and simulated datasets to impute the un-typed SNPs in parent-offspring trios. The tested methods show that imputation of parent-offspring trios can be accurate. The Random Forest and Support Vector Machine were more accurate than the other machine learning methods. The TotalBoost performed slightly worse than the other methods.The running times were different between methods. The ELM was always most fast algorithm. In case of increasing the sample size, the RBF requires long imputation time.The tested methods in this research can be an alternative for imputation of un-typed SNPs in low missing rate of data. However, it is recommended that other machine learning methods to be used for imputation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Combining Machine Learning and Natural Language Processing to Assess Literary Text Comprehension

    ERIC Educational Resources Information Center

    Balyan, Renu; McCarthy, Kathryn S.; McNamara, Danielle S.

    2017-01-01

    This study examined how machine learning and natural language processing (NLP) techniques can be leveraged to assess the interpretive behavior that is required for successful literary text comprehension. We compared the accuracy of seven different machine learning classification algorithms in predicting human ratings of student essays about…

  5. Implementing Machine Learning in Radiology Practice and Research.

    PubMed

    Kohli, Marc; Prevedello, Luciano M; Filice, Ross W; Geis, J Raymond

    2017-04-01

    The purposes of this article are to describe concepts that radiologists should understand to evaluate machine learning projects, including common algorithms, supervised as opposed to unsupervised techniques, statistical pitfalls, and data considerations for training and evaluation, and to briefly describe ethical dilemmas and legal risk. Machine learning includes a broad class of computer programs that improve with experience. The complexity of creating, training, and monitoring machine learning indicates that the success of the algorithms will require radiologist involvement for years to come, leading to engagement rather than replacement.

  6. Prediction of outcome in internet-delivered cognitive behaviour therapy for paediatric obsessive-compulsive disorder: A machine learning approach.

    PubMed

    Lenhard, Fabian; Sauer, Sebastian; Andersson, Erik; Månsson, Kristoffer Nt; Mataix-Cols, David; Rück, Christian; Serlachius, Eva

    2018-03-01

    There are no consistent predictors of treatment outcome in paediatric obsessive-compulsive disorder (OCD). One reason for this might be the use of suboptimal statistical methodology. Machine learning is an approach to efficiently analyse complex data. Machine learning has been widely used within other fields, but has rarely been tested in the prediction of paediatric mental health treatment outcomes. To test four different machine learning methods in the prediction of treatment response in a sample of paediatric OCD patients who had received Internet-delivered cognitive behaviour therapy (ICBT). Participants were 61 adolescents (12-17 years) who enrolled in a randomized controlled trial and received ICBT. All clinical baseline variables were used to predict strictly defined treatment response status three months after ICBT. Four machine learning algorithms were implemented. For comparison, we also employed a traditional logistic regression approach. Multivariate logistic regression could not detect any significant predictors. In contrast, all four machine learning algorithms performed well in the prediction of treatment response, with 75 to 83% accuracy. The results suggest that machine learning algorithms can successfully be applied to predict paediatric OCD treatment outcome. Validation studies and studies in other disorders are warranted. Copyright © 2017 John Wiley & Sons, Ltd.

  7. A review of classification algorithms for EEG-based brain–computer interfaces: a 10 year update

    NASA Astrophysics Data System (ADS)

    Lotte, F.; Bougrain, L.; Cichocki, A.; Clerc, M.; Congedo, M.; Rakotomamonjy, A.; Yger, F.

    2018-06-01

    Objective. Most current electroencephalography (EEG)-based brain–computer interfaces (BCIs) are based on machine learning algorithms. There is a large diversity of classifier types that are used in this field, as described in our 2007 review paper. Now, approximately ten years after this review publication, many new algorithms have been developed and tested to classify EEG signals in BCIs. The time is therefore ripe for an updated review of EEG classification algorithms for BCIs. Approach. We surveyed the BCI and machine learning literature from 2007 to 2017 to identify the new classification approaches that have been investigated to design BCIs. We synthesize these studies in order to present such algorithms, to report how they were used for BCIs, what were the outcomes, and to identify their pros and cons. Main results. We found that the recently designed classification algorithms for EEG-based BCIs can be divided into four main categories: adaptive classifiers, matrix and tensor classifiers, transfer learning and deep learning, plus a few other miscellaneous classifiers. Among these, adaptive classifiers were demonstrated to be generally superior to static ones, even with unsupervised adaptation. Transfer learning can also prove useful although the benefits of transfer learning remain unpredictable. Riemannian geometry-based methods have reached state-of-the-art performances on multiple BCI problems and deserve to be explored more thoroughly, along with tensor-based methods. Shrinkage linear discriminant analysis and random forests also appear particularly useful for small training samples settings. On the other hand, deep learning methods have not yet shown convincing improvement over state-of-the-art BCI methods. Significance. This paper provides a comprehensive overview of the modern classification algorithms used in EEG-based BCIs, presents the principles of these methods and guidelines on when and how to use them. It also identifies a number of challenges to further advance EEG classification in BCI.

  8. A Learning System for Discriminating Variants of Malicious Network Traffic

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beaver, Justin M; Symons, Christopher T; Gillen, Rob

    Modern computer network defense systems rely primarily on signature-based intrusion detection tools, which generate alerts when patterns that are pre-determined to be malicious are encountered in network data streams. Signatures are created reactively, and only after in-depth manual analysis of a network intrusion. There is little ability for signature-based detectors to identify intrusions that are new or even variants of an existing attack, and little ability to adapt the detectors to the patterns unique to a network environment. Due to these limitations, the need exists for network intrusion detection techniques that can more comprehensively address both known unknown networkbased attacksmore » and can be optimized for the target environment. This work describes a system that leverages machine learning to provide a network intrusion detection capability that analyzes behaviors in channels of communication between individual computers. Using examples of malicious and non-malicious traffic in the target environment, the system can be trained to discriminate between traffic types. The machine learning provides insight that would be difficult for a human to explicitly code as a signature because it evaluates many interdependent metrics simultaneously. With this approach, zero day detection is possible by focusing on similarity to known traffic types rather than mining for specific bit patterns or conditions. This also reduces the burden on organizations to account for all possible attack variant combinations through signatures. The approach is presented along with results from a third-party evaluation of its performance.« less

  9. Recent developments in machine learning applications in landslide susceptibility mapping

    NASA Astrophysics Data System (ADS)

    Lun, Na Kai; Liew, Mohd Shahir; Matori, Abdul Nasir; Zawawi, Noor Amila Wan Abdullah

    2017-11-01

    While the prediction of spatial distribution of potential landslide occurrences is a primary interest in landslide hazard mitigation, it remains a challenging task. To overcome the scarceness of complete, sufficiently detailed geomorphological attributes and environmental conditions, various machine-learning techniques are increasingly applied to effectively map landslide susceptibility for large regions. Nevertheless, limited review papers are devoted to this field, particularly on the various domain specific applications of machine learning techniques. Available literature often report relatively good predictive performance, however, papers discussing the limitations of each approaches are quite uncommon. The foremost aim of this paper is to narrow these gaps in literature and to review up-to-date machine learning and ensemble learning techniques applied in landslide susceptibility mapping. It provides new readers an introductory understanding on the subject matter and researchers a contemporary review of machine learning advancements alongside the future direction of these techniques in the landslide mitigation field.

  10. Machine vision systems using machine learning for industrial product inspection

    NASA Astrophysics Data System (ADS)

    Lu, Yi; Chen, Tie Q.; Chen, Jie; Zhang, Jian; Tisler, Anthony

    2002-02-01

    Machine vision inspection requires efficient processing time and accurate results. In this paper, we present a machine vision inspection architecture, SMV (Smart Machine Vision). SMV decomposes a machine vision inspection problem into two stages, Learning Inspection Features (LIF), and On-Line Inspection (OLI). The LIF is designed to learn visual inspection features from design data and/or from inspection products. During the OLI stage, the inspection system uses the knowledge learnt by the LIF component to inspect the visual features of products. In this paper we will present two machine vision inspection systems developed under the SMV architecture for two different types of products, Printed Circuit Board (PCB) and Vacuum Florescent Displaying (VFD) boards. In the VFD board inspection system, the LIF component learns inspection features from a VFD board and its displaying patterns. In the PCB board inspection system, the LIF learns the inspection features from the CAD file of a PCB board. In both systems, the LIF component also incorporates interactive learning to make the inspection system more powerful and efficient. The VFD system has been deployed successfully in three different manufacturing companies and the PCB inspection system is the process of being deployed in a manufacturing plant.

  11. The application of machine learning techniques in the clinical drug therapy.

    PubMed

    Meng, Huan-Yu; Jin, Wan-Lin; Yan, Cheng-Kai; Yang, Huan

    2018-05-25

    The development of a novel drug is an extremely complicated process that includes the target identification, design and manufacture, and proper therapy of the novel drug, as well as drug dose selection, drug efficacy evaluation, and adverse drug reaction control. Due to the limited resources, high costs, long duration, and low hit-to-lead ratio in the development of pharmacogenetics and computer technology, machine learning techniques have assisted novel drug development and have gradually received more attention by researchers. According to current research, machine learning techniques are widely applied in the process of the discovery of new drugs and novel drug targets, the decision surrounding proper therapy and drug dose, and the prediction of drug efficacy and adverse drug reactions. In this article, we discussed the history, workflow, and advantages and disadvantages of machine learning techniques in the processes mentioned above. Although the advantages of machine learning techniques are fairly obvious, the application of machine learning techniques is currently limited. With further research, the application of machine techniques in drug development could be much more widespread and could potentially be one of the major methods used in drug development. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  12. A Novel Extreme Learning Machine Classification Model for e-Nose Application Based on the Multiple Kernel Approach.

    PubMed

    Jian, Yulin; Huang, Daoyu; Yan, Jia; Lu, Kun; Huang, Ying; Wen, Tailai; Zeng, Tanyue; Zhong, Shijie; Xie, Qilong

    2017-06-19

    A novel classification model, named the quantum-behaved particle swarm optimization (QPSO)-based weighted multiple kernel extreme learning machine (QWMK-ELM), is proposed in this paper. Experimental validation is carried out with two different electronic nose (e-nose) datasets. Being different from the existing multiple kernel extreme learning machine (MK-ELM) algorithms, the combination coefficients of base kernels are regarded as external parameters of single-hidden layer feedforward neural networks (SLFNs). The combination coefficients of base kernels, the model parameters of each base kernel, and the regularization parameter are optimized by QPSO simultaneously before implementing the kernel extreme learning machine (KELM) with the composite kernel function. Four types of common single kernel functions (Gaussian kernel, polynomial kernel, sigmoid kernel, and wavelet kernel) are utilized to constitute different composite kernel functions. Moreover, the method is also compared with other existing classification methods: extreme learning machine (ELM), kernel extreme learning machine (KELM), k-nearest neighbors (KNN), support vector machine (SVM), multi-layer perceptron (MLP), radical basis function neural network (RBFNN), and probabilistic neural network (PNN). The results have demonstrated that the proposed QWMK-ELM outperforms the aforementioned methods, not only in precision, but also in efficiency for gas classification.

  13. Learning phase transitions by confusion

    NASA Astrophysics Data System (ADS)

    van Nieuwenburg, Evert P. L.; Liu, Ye-Hua; Huber, Sebastian D.

    2017-02-01

    Classifying phases of matter is key to our understanding of many problems in physics. For quantum-mechanical systems in particular, the task can be daunting due to the exponentially large Hilbert space. With modern computing power and access to ever-larger data sets, classification problems are now routinely solved using machine-learning techniques. Here, we propose a neural-network approach to finding phase transitions, based on the performance of a neural network after it is trained with data that are deliberately labelled incorrectly. We demonstrate the success of this method on the topological phase transition in the Kitaev chain, the thermal phase transition in the classical Ising model, and the many-body-localization transition in a disordered quantum spin chain. Our method does not depend on order parameters, knowledge of the topological content of the phases, or any other specifics of the transition at hand. It therefore paves the way to the development of a generic tool for identifying unexplored phase transitions.

  14. Multiple man-machine interfaces

    NASA Technical Reports Server (NTRS)

    Stanton, L.; Cook, C. W.

    1981-01-01

    The multiple man machine interfaces inherent in military pilot training, their social implications, and the issue of possible negative feedback were explored. Modern technology has produced machines which can see, hear, and touch with greater accuracy and precision than human beings. Consequently, the military pilot is more a systems manager, often doing battle against a target he never sees. It is concluded that unquantifiable human activity requires motivation that is not intrinsic in a machine.

  15. Machine Learning, deep learning and optimization in computer vision

    NASA Astrophysics Data System (ADS)

    Canu, Stéphane

    2017-03-01

    As quoted in the Large Scale Computer Vision Systems NIPS workshop, computer vision is a mature field with a long tradition of research, but recent advances in machine learning, deep learning, representation learning and optimization have provided models with new capabilities to better understand visual content. The presentation will go through these new developments in machine learning covering basic motivations, ideas, models and optimization in deep learning for computer vision, identifying challenges and opportunities. It will focus on issues related with large scale learning that is: high dimensional features, large variety of visual classes, and large number of examples.

  16. Machine Learning in Radiology: Applications Beyond Image Interpretation.

    PubMed

    Lakhani, Paras; Prater, Adam B; Hutson, R Kent; Andriole, Kathy P; Dreyer, Keith J; Morey, Jose; Prevedello, Luciano M; Clark, Toshi J; Geis, J Raymond; Itri, Jason N; Hawkins, C Matthew

    2018-02-01

    Much attention has been given to machine learning and its perceived impact in radiology, particularly in light of recent success with image classification in international competitions. However, machine learning is likely to impact radiology outside of image interpretation long before a fully functional "machine radiologist" is implemented in practice. Here, we describe an overview of machine learning, its application to radiology and other domains, and many cases of use that do not involve image interpretation. We hope that better understanding of these potential applications will help radiology practices prepare for the future and realize performance improvement and efficiency gains. Copyright © 2017 American College of Radiology. Published by Elsevier Inc. All rights reserved.

  17. Prostate Cancer Probability Prediction By Machine Learning Technique.

    PubMed

    Jović, Srđan; Miljković, Milica; Ivanović, Miljan; Šaranović, Milena; Arsić, Milena

    2017-11-26

    The main goal of the study was to explore possibility of prostate cancer prediction by machine learning techniques. In order to improve the survival probability of the prostate cancer patients it is essential to make suitable prediction models of the prostate cancer. If one make relevant prediction of the prostate cancer it is easy to create suitable treatment based on the prediction results. Machine learning techniques are the most common techniques for the creation of the predictive models. Therefore in this study several machine techniques were applied and compared. The obtained results were analyzed and discussed. It was concluded that the machine learning techniques could be used for the relevant prediction of prostate cancer.

  18. Pre-use anesthesia machine check; certified anesthesia technician based quality improvement audit.

    PubMed

    Al Suhaibani, Mazen; Al Malki, Assaf; Al Dosary, Saad; Al Barmawi, Hanan; Pogoku, Mahdhav

    2014-01-01

    Quality assurance of providing a work ready machine in multiple theatre operating rooms in a tertiary modern medical center in Riyadh. The aim of the following study is to keep high quality environment for workers and patients in surgical operating rooms. Technicians based audit by using key performance indicators to assure inspection, passing test of machine worthiness for use daily and in between cases and in case of unexpected failure to provide quick replacement by ready to use another anesthetic machine. The anesthetic machines in all operating rooms are daily and continuously inspected and passed as ready by technicians and verified by anesthesiologist consultant or assistant consultant. The daily records of each machines were collected then inspected for data analysis by quality improvement committee department for descriptive analysis and report the degree of staff compliance to daily inspection as "met" items. Replaced machine during use and overall compliance. Distractive statistic using Microsoft Excel 2003 tables and graphs of sums and percentages of item studied in this audit. Audit obtained highest compliance percentage and low rate of replacement of machine which indicate unexpected machine state of use and quick machine switch. The authors are able to conclude that following regular inspection and running self-check recommended by the manufacturers can contribute to abort any possibility of hazard of anesthesia machine failure during operation. Furthermore in case of unexpected reason to replace the anesthesia machine in quick maneuver contributes to high assured operative utilization of man machine inter-phase in modern surgical operating rooms.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, Ruqiang; Chen, Xuefeng; Li, Weihua

    Modern mathematics has commonly been utilized as an effective tool to model mechanical equipment so that their dynamic characteristics can be studied analytically. This will help identify potential failures of mechanical equipment by observing change in the equipment’s dynamic parameters. On the other hand, dynamic signals are also important and provide reliable information about the equipment’s working status. Modern mathematics has also provided us with a systematic way to design and implement various signal processing methods, which are used to analyze these dynamic signals, and to enhance intrinsic signal components that are directly related to machine failures. This special issuemore » is aimed at stimulating not only new insights on mathematical methods for modeling but also recently developed signal processing methods, such as sparse decomposition with potential applications in machine fault diagnosis. Finally, the papers included in this special issue provide a glimpse into some of the research and applications in the field of machine fault diagnosis through applications of the modern mathematical methods.« less

  20. The Next Era: Deep Learning in Pharmaceutical Research.

    PubMed

    Ekins, Sean

    2016-11-01

    Over the past decade we have witnessed the increasing sophistication of machine learning algorithms applied in daily use from internet searches, voice recognition, social network software to machine vision software in cameras, phones, robots and self-driving cars. Pharmaceutical research has also seen its fair share of machine learning developments. For example, applying such methods to mine the growing datasets that are created in drug discovery not only enables us to learn from the past but to predict a molecule's properties and behavior in future. The latest machine learning algorithm garnering significant attention is deep learning, which is an artificial neural network with multiple hidden layers. Publications over the last 3 years suggest that this algorithm may have advantages over previous machine learning methods and offer a slight but discernable edge in predictive performance. The time has come for a balanced review of this technique but also to apply machine learning methods such as deep learning across a wider array of endpoints relevant to pharmaceutical research for which the datasets are growing such as physicochemical property prediction, formulation prediction, absorption, distribution, metabolism, excretion and toxicity (ADME/Tox), target prediction and skin permeation, etc. We also show that there are many potential applications of deep learning beyond cheminformatics. It will be important to perform prospective testing (which has been carried out rarely to date) in order to convince skeptics that there will be benefits from investing in this technique.

  1. Applications of Machine Learning in Cancer Prediction and Prognosis

    PubMed Central

    Cruz, Joseph A.; Wishart, David S.

    2006-01-01

    Machine learning is a branch of artificial intelligence that employs a variety of statistical, probabilistic and optimization techniques that allows computers to “learn” from past examples and to detect hard-to-discern patterns from large, noisy or complex data sets. This capability is particularly well-suited to medical applications, especially those that depend on complex proteomic and genomic measurements. As a result, machine learning is frequently used in cancer diagnosis and detection. More recently machine learning has been applied to cancer prognosis and prediction. This latter approach is particularly interesting as it is part of a growing trend towards personalized, predictive medicine. In assembling this review we conducted a broad survey of the different types of machine learning methods being used, the types of data being integrated and the performance of these methods in cancer prediction and prognosis. A number of trends are noted, including a growing dependence on protein biomarkers and microarray data, a strong bias towards applications in prostate and breast cancer, and a heavy reliance on “older” technologies such artificial neural networks (ANNs) instead of more recently developed or more easily interpretable machine learning methods. A number of published studies also appear to lack an appropriate level of validation or testing. Among the better designed and validated studies it is clear that machine learning methods can be used to substantially (15–25%) improve the accuracy of predicting cancer susceptibility, recurrence and mortality. At a more fundamental level, it is also evident that machine learning is also helping to improve our basic understanding of cancer development and progression. PMID:19458758

  2. Guidelines for Developing and Reporting Machine Learning Predictive Models in Biomedical Research: A Multidisciplinary View.

    PubMed

    Luo, Wei; Phung, Dinh; Tran, Truyen; Gupta, Sunil; Rana, Santu; Karmakar, Chandan; Shilton, Alistair; Yearwood, John; Dimitrova, Nevenka; Ho, Tu Bao; Venkatesh, Svetha; Berk, Michael

    2016-12-16

    As more and more researchers are turning to big data for new opportunities of biomedical discoveries, machine learning models, as the backbone of big data analysis, are mentioned more often in biomedical journals. However, owing to the inherent complexity of machine learning methods, they are prone to misuse. Because of the flexibility in specifying machine learning models, the results are often insufficiently reported in research articles, hindering reliable assessment of model validity and consistent interpretation of model outputs. To attain a set of guidelines on the use of machine learning predictive models within clinical settings to make sure the models are correctly applied and sufficiently reported so that true discoveries can be distinguished from random coincidence. A multidisciplinary panel of machine learning experts, clinicians, and traditional statisticians were interviewed, using an iterative process in accordance with the Delphi method. The process produced a set of guidelines that consists of (1) a list of reporting items to be included in a research article and (2) a set of practical sequential steps for developing predictive models. A set of guidelines was generated to enable correct application of machine learning models and consistent reporting of model specifications and results in biomedical research. We believe that such guidelines will accelerate the adoption of big data analysis, particularly with machine learning methods, in the biomedical research community. ©Wei Luo, Dinh Phung, Truyen Tran, Sunil Gupta, Santu Rana, Chandan Karmakar, Alistair Shilton, John Yearwood, Nevenka Dimitrova, Tu Bao Ho, Svetha Venkatesh, Michael Berk. Originally published in the Journal of Medical Internet Research (http://www.jmir.org), 16.12.2016.

  3. Development of E-Learning Materials for Machining Safety Education

    NASA Astrophysics Data System (ADS)

    Nakazawa, Tsuyoshi; Mita, Sumiyoshi; Matsubara, Masaaki; Takashima, Takeo; Tanaka, Koichi; Izawa, Satoru; Kawamura, Takashi

    We developed two e-learning materials for Manufacturing Practice safety education: movie learning materials and hazard-detection learning materials. Using these video and sound media, students can learn how to operate machines safely with movie learning materials, which raise the effectiveness of preparation and review for manufacturing practice. Using these materials, students can realize safety operation well. Students can apply knowledge learned in lectures to the detection of hazards and use study methods for hazard detection during machine operation using the hazard-detection learning materials. Particularly, the hazard-detection learning materials raise students‧ safety consciousness and increase students‧ comprehension of knowledge from lectures and comprehension of operations during Manufacturing Practice.

  4. Coupling physically based and data-driven models for assessing freshwater inflow into the Small Aral Sea

    NASA Astrophysics Data System (ADS)

    Ayzel, Georgy; Izhitskiy, Alexander

    2018-06-01

    The Aral Sea desiccation and related changes in hydroclimatic conditions on a regional level is a hot topic for past decades. The key problem of scientific research projects devoted to an investigation of modern Aral Sea basin hydrological regime is its discontinuous nature - the only limited amount of papers takes into account the complex runoff formation system entirely. Addressing this challenge we have developed a continuous prediction system for assessing freshwater inflow into the Small Aral Sea based on coupling stack of hydrological and data-driven models. Results show a good prediction skill and approve the possibility to develop a valuable water assessment tool which utilizes the power of classical physically based and modern machine learning models both for territories with complex water management system and strong water-related data scarcity. The source code and data of the proposed system is available on a Github page (https://github.com/SMASHIproject/IWRM2018).

  5. An introduction to quantum machine learning

    NASA Astrophysics Data System (ADS)

    Schuld, Maria; Sinayskiy, Ilya; Petruccione, Francesco

    2015-04-01

    Machine learning algorithms learn a desired input-output relation from examples in order to interpret new inputs. This is important for tasks such as image and speech recognition or strategy optimisation, with growing applications in the IT industry. In the last couple of years, researchers investigated if quantum computing can help to improve classical machine learning algorithms. Ideas range from running computationally costly algorithms or their subroutines efficiently on a quantum computer to the translation of stochastic methods into the language of quantum theory. This contribution gives a systematic overview of the emerging field of quantum machine learning. It presents the approaches as well as technical details in an accessible way, and discusses the potential of a future theory of quantum learning.

  6. Increasing energy efficiency level of building production based on applying modern mechanization facilities

    NASA Astrophysics Data System (ADS)

    Prokhorov, Sergey

    2017-10-01

    Building industry in a present day going through the hard times. Machine and mechanism exploitation cost, on a field of construction and installation works, takes a substantial part in total building construction expenses. There is a necessity to elaborate high efficient method, which allows not only to increase production, but also to reduce direct costs during machine fleet exploitation, and to increase its energy efficiency. In order to achieve the goal we plan to use modern methods of work production, hi-tech and energy saving machine tools and technologies, and use of optimal mechanization sets. As the optimization criteria there are exploitation prime cost and set efficiency. During actual task-solving process we made a conclusion, which shows that mechanization works, energy audit with production juxtaposition, prime prices and costs for energy resources allow to make complex machine fleet supply, improve ecological level and increase construction and installation work quality.

  7. Large-Scale Machine Learning for Classification and Search

    ERIC Educational Resources Information Center

    Liu, Wei

    2012-01-01

    With the rapid development of the Internet, nowadays tremendous amounts of data including images and videos, up to millions or billions, can be collected for training machine learning models. Inspired by this trend, this thesis is dedicated to developing large-scale machine learning techniques for the purpose of making classification and nearest…

  8. Newton Methods for Large Scale Problems in Machine Learning

    ERIC Educational Resources Information Center

    Hansen, Samantha Leigh

    2014-01-01

    The focus of this thesis is on practical ways of designing optimization algorithms for minimizing large-scale nonlinear functions with applications in machine learning. Chapter 1 introduces the overarching ideas in the thesis. Chapters 2 and 3 are geared towards supervised machine learning applications that involve minimizing a sum of loss…

  9. Applying Machine Learning to Facilitate Autism Diagnostics: Pitfalls and Promises

    ERIC Educational Resources Information Center

    Bone, Daniel; Goodwin, Matthew S.; Black, Matthew P.; Lee, Chi-Chun; Audhkhasi, Kartik; Narayanan, Shrikanth

    2015-01-01

    Machine learning has immense potential to enhance diagnostic and intervention research in the behavioral sciences, and may be especially useful in investigations involving the highly prevalent and heterogeneous syndrome of autism spectrum disorder. However, use of machine learning in the absence of clinical domain expertise can be tenuous and lead…

  10. An active role for machine learning in drug development

    PubMed Central

    Murphy, Robert F.

    2014-01-01

    Due to the complexity of biological systems, cutting-edge machine-learning methods will be critical for future drug development. In particular, machine-vision methods to extract detailed information from imaging assays and active-learning methods to guide experimentation will be required to overcome the dimensionality problem in drug development. PMID:21587249

  11. Prediction and Validation of Disease Genes Using HeteSim Scores.

    PubMed

    Zeng, Xiangxiang; Liao, Yuanlu; Liu, Yuansheng; Zou, Quan

    2017-01-01

    Deciphering the gene disease association is an important goal in biomedical research. In this paper, we use a novel relevance measure, called HeteSim, to prioritize candidate disease genes. Two methods based on heterogeneous networks constructed using protein-protein interaction, gene-phenotype associations, and phenotype-phenotype similarity, are presented. In HeteSim_MultiPath (HSMP), HeteSim scores of different paths are combined with a constant that dampens the contributions of longer paths. In HeteSim_SVM (HSSVM), HeteSim scores are combined with a machine learning method. The 3-fold experiments show that our non-machine learning method HSMP performs better than the existing non-machine learning methods, our machine learning method HSSVM obtains similar accuracy with the best existing machine learning method CATAPULT. From the analysis of the top 10 predicted genes for different diseases, we found that HSSVM avoid the disadvantage of the existing machine learning based methods, which always predict similar genes for different diseases. The data sets and Matlab code for the two methods are freely available for download at http://lab.malab.cn/data/HeteSim/index.jsp.

  12. A Study of Multifunctional Document Centers that Are Accessible to People Who Are Visually Impaired

    ERIC Educational Resources Information Center

    Huffman, Lee A.; Uslan, Mark M.; Burton, Darren M.; Eghtesadi, Caesar

    2009-01-01

    The capabilities of modern photocopy machines have advanced beyond the simple duplication of documents. In addition to the standard functions of copying, collating, and stapling, such machines can be a part of telecommunication networks and provide printing, scanning, faxing, and e-mailing functions. No longer just copy machines, these devices are…

  13. Comparative analysis of machine learning methods in ligand-based virtual screening of large compound libraries.

    PubMed

    Ma, Xiao H; Jia, Jia; Zhu, Feng; Xue, Ying; Li, Ze R; Chen, Yu Z

    2009-05-01

    Machine learning methods have been explored as ligand-based virtual screening tools for facilitating drug lead discovery. These methods predict compounds of specific pharmacodynamic, pharmacokinetic or toxicological properties based on their structure-derived structural and physicochemical properties. Increasing attention has been directed at these methods because of their capability in predicting compounds of diverse structures and complex structure-activity relationships without requiring the knowledge of target 3D structure. This article reviews current progresses in using machine learning methods for virtual screening of pharmacodynamically active compounds from large compound libraries, and analyzes and compares the reported performances of machine learning tools with those of structure-based and other ligand-based (such as pharmacophore and clustering) virtual screening methods. The feasibility to improve the performance of machine learning methods in screening large libraries is discussed.

  14. In vitro molecular machine learning algorithm via symmetric internal loops of DNA.

    PubMed

    Lee, Ji-Hoon; Lee, Seung Hwan; Baek, Christina; Chun, Hyosun; Ryu, Je-Hwan; Kim, Jin-Woo; Deaton, Russell; Zhang, Byoung-Tak

    2017-08-01

    Programmable biomolecules, such as DNA strands, deoxyribozymes, and restriction enzymes, have been used to solve computational problems, construct large-scale logic circuits, and program simple molecular games. Although studies have shown the potential of molecular computing, the capability of computational learning with DNA molecules, i.e., molecular machine learning, has yet to be experimentally verified. Here, we present a novel molecular learning in vitro model in which symmetric internal loops of double-stranded DNA are exploited to measure the differences between training instances, thus enabling the molecules to learn from small errors. The model was evaluated on a data set of twenty dialogue sentences obtained from the television shows Friends and Prison Break. The wet DNA-computing experiments confirmed that the molecular learning machine was able to generalize the dialogue patterns of each show and successfully identify the show from which the sentences originated. The molecular machine learning model described here opens the way for solving machine learning problems in computer science and biology using in vitro molecular computing with the data encoded in DNA molecules. Copyright © 2017. Published by Elsevier B.V.

  15. Comparison of machine learning and semi-quantification algorithms for (I123)FP-CIT classification: the beginning of the end for semi-quantification?

    PubMed

    Taylor, Jonathan Christopher; Fenner, John Wesley

    2017-11-29

    Semi-quantification methods are well established in the clinic for assisted reporting of (I123) Ioflupane images. Arguably, these are limited diagnostic tools. Recent research has demonstrated the potential for improved classification performance offered by machine learning algorithms. A direct comparison between methods is required to establish whether a move towards widespread clinical adoption of machine learning algorithms is justified. This study compared three machine learning algorithms with that of a range of semi-quantification methods, using the Parkinson's Progression Markers Initiative (PPMI) research database and a locally derived clinical database for validation. Machine learning algorithms were based on support vector machine classifiers with three different sets of features: Voxel intensities Principal components of image voxel intensities Striatal binding radios from the putamen and caudate. Semi-quantification methods were based on striatal binding ratios (SBRs) from both putamina, with and without consideration of the caudates. Normal limits for the SBRs were defined through four different methods: Minimum of age-matched controls Mean minus 1/1.5/2 standard deviations from age-matched controls Linear regression of normal patient data against age (minus 1/1.5/2 standard errors) Selection of the optimum operating point on the receiver operator characteristic curve from normal and abnormal training data Each machine learning and semi-quantification technique was evaluated with stratified, nested 10-fold cross-validation, repeated 10 times. The mean accuracy of the semi-quantitative methods for classification of local data into Parkinsonian and non-Parkinsonian groups varied from 0.78 to 0.87, contrasting with 0.89 to 0.95 for classifying PPMI data into healthy controls and Parkinson's disease groups. The machine learning algorithms gave mean accuracies between 0.88 to 0.92 and 0.95 to 0.97 for local and PPMI data respectively. Classification performance was lower for the local database than the research database for both semi-quantitative and machine learning algorithms. However, for both databases, the machine learning methods generated equal or higher mean accuracies (with lower variance) than any of the semi-quantification approaches. The gain in performance from using machine learning algorithms as compared to semi-quantification was relatively small and may be insufficient, when considered in isolation, to offer significant advantages in the clinical context.

  16. Regularised extreme learning machine with misclassification cost and rejection cost for gene expression data classification.

    PubMed

    Lu, Huijuan; Wei, Shasha; Zhou, Zili; Miao, Yanzi; Lu, Yi

    2015-01-01

    The main purpose of traditional classification algorithms on bioinformatics application is to acquire better classification accuracy. However, these algorithms cannot meet the requirement that minimises the average misclassification cost. In this paper, a new algorithm of cost-sensitive regularised extreme learning machine (CS-RELM) was proposed by using probability estimation and misclassification cost to reconstruct the classification results. By improving the classification accuracy of a group of small sample which higher misclassification cost, the new CS-RELM can minimise the classification cost. The 'rejection cost' was integrated into CS-RELM algorithm to further reduce the average misclassification cost. By using Colon Tumour dataset and SRBCT (Small Round Blue Cells Tumour) dataset, CS-RELM was compared with other cost-sensitive algorithms such as extreme learning machine (ELM), cost-sensitive extreme learning machine, regularised extreme learning machine, cost-sensitive support vector machine (SVM). The results of experiments show that CS-RELM with embedded rejection cost could reduce the average cost of misclassification and made more credible classification decision than others.

  17. The community FabLab platform: applications and implications in biomedical engineering.

    PubMed

    Stephenson, Makeda K; Dow, Douglas E

    2014-01-01

    Skill development in science, technology, engineering and math (STEM) education present one of the most formidable challenges of modern society. The Community FabLab platform presents a viable solution. Each FabLab contains a suite of modern computer numerical control (CNC) equipment, electronics and computing hardware and design, programming, computer aided design (CAD) and computer aided machining (CAM) software. FabLabs are community and educational resources and open to the public. Development of STEM based workforce skills such as digital fabrication and advanced manufacturing can be enhanced using this platform. Particularly notable is the potential of the FabLab platform in STEM education. The active learning environment engages and supports a diversity of learners, while the iterative learning that is supported by the FabLab rapid prototyping platform facilitates depth of understanding, creativity, innovation and mastery. The product and project based learning that occurs in FabLabs develops in the student a personal sense of accomplishment, self-awareness, command of the material and technology. This helps build the interest and confidence necessary to excel in STEM and throughout life. Finally the introduction and use of relevant technologies at every stage of the education process ensures technical familiarity and a broad knowledge base needed for work in STEM based fields. Biomedical engineering education strives to cultivate broad technical adeptness, creativity, interdisciplinary thought, and an ability to form deep conceptual understanding of complex systems. The FabLab platform is well designed to enhance biomedical engineering education.

  18. ClearTK 2.0: Design Patterns for Machine Learning in UIMA

    PubMed Central

    Bethard, Steven; Ogren, Philip; Becker, Lee

    2014-01-01

    ClearTK adds machine learning functionality to the UIMA framework, providing wrappers to popular machine learning libraries, a rich feature extraction library that works across different classifiers, and utilities for applying and evaluating machine learning models. Since its inception in 2008, ClearTK has evolved in response to feedback from developers and the community. This evolution has followed a number of important design principles including: conceptually simple annotator interfaces, readable pipeline descriptions, minimal collection readers, type system agnostic code, modules organized for ease of import, and assisting user comprehension of the complex UIMA framework. PMID:29104966

  19. ClearTK 2.0: Design Patterns for Machine Learning in UIMA.

    PubMed

    Bethard, Steven; Ogren, Philip; Becker, Lee

    2014-05-01

    ClearTK adds machine learning functionality to the UIMA framework, providing wrappers to popular machine learning libraries, a rich feature extraction library that works across different classifiers, and utilities for applying and evaluating machine learning models. Since its inception in 2008, ClearTK has evolved in response to feedback from developers and the community. This evolution has followed a number of important design principles including: conceptually simple annotator interfaces, readable pipeline descriptions, minimal collection readers, type system agnostic code, modules organized for ease of import, and assisting user comprehension of the complex UIMA framework.

  20. Studying depression using imaging and machine learning methods.

    PubMed

    Patel, Meenal J; Khalaf, Alexander; Aizenstein, Howard J

    2016-01-01

    Depression is a complex clinical entity that can pose challenges for clinicians regarding both accurate diagnosis and effective timely treatment. These challenges have prompted the development of multiple machine learning methods to help improve the management of this disease. These methods utilize anatomical and physiological data acquired from neuroimaging to create models that can identify depressed patients vs. non-depressed patients and predict treatment outcomes. This article (1) presents a background on depression, imaging, and machine learning methodologies; (2) reviews methodologies of past studies that have used imaging and machine learning to study depression; and (3) suggests directions for future depression-related studies.

  1. Machine-Learning Approach for Design of Nanomagnetic-Based Antennas

    NASA Astrophysics Data System (ADS)

    Gianfagna, Carmine; Yu, Huan; Swaminathan, Madhavan; Pulugurtha, Raj; Tummala, Rao; Antonini, Giulio

    2017-08-01

    We propose a machine-learning approach for design of planar inverted-F antennas with a magneto-dielectric nanocomposite substrate. It is shown that machine-learning techniques can be efficiently used to characterize nanomagnetic-based antennas by accurately mapping the particle radius and volume fraction of the nanomagnetic material to antenna parameters such as gain, bandwidth, radiation efficiency, and resonant frequency. A modified mixing rule model is also presented. In addition, the inverse problem is addressed through machine learning as well, where given the antenna parameters, the corresponding design space of possible material parameters is identified.

  2. Machine Learning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chikkagoudar, Satish; Chatterjee, Samrat; Thomas, Dennis G.

    The absence of a robust and unified theory of cyber dynamics presents challenges and opportunities for using machine learning based data-driven approaches to further the understanding of the behavior of such complex systems. Analysts can also use machine learning approaches to gain operational insights. In order to be operationally beneficial, cybersecurity machine learning based models need to have the ability to: (1) represent a real-world system, (2) infer system properties, and (3) learn and adapt based on expert knowledge and observations. Probabilistic models and Probabilistic graphical models provide these necessary properties and are further explored in this chapter. Bayesian Networksmore » and Hidden Markov Models are introduced as an example of a widely used data driven classification/modeling strategy.« less

  3. Model-based machine learning.

    PubMed

    Bishop, Christopher M

    2013-02-13

    Several decades of research in the field of machine learning have resulted in a multitude of different algorithms for solving a broad range of problems. To tackle a new application, a researcher typically tries to map their problem onto one of these existing methods, often influenced by their familiarity with specific algorithms and by the availability of corresponding software implementations. In this study, we describe an alternative methodology for applying machine learning, in which a bespoke solution is formulated for each new application. The solution is expressed through a compact modelling language, and the corresponding custom machine learning code is then generated automatically. This model-based approach offers several major advantages, including the opportunity to create highly tailored models for specific scenarios, as well as rapid prototyping and comparison of a range of alternative models. Furthermore, newcomers to the field of machine learning do not have to learn about the huge range of traditional methods, but instead can focus their attention on understanding a single modelling environment. In this study, we show how probabilistic graphical models, coupled with efficient inference algorithms, provide a very flexible foundation for model-based machine learning, and we outline a large-scale commercial application of this framework involving tens of millions of users. We also describe the concept of probabilistic programming as a powerful software environment for model-based machine learning, and we discuss a specific probabilistic programming language called Infer.NET, which has been widely used in practical applications.

  4. Acceleration of saddle-point searches with machine learning.

    PubMed

    Peterson, Andrew A

    2016-08-21

    In atomistic simulations, the location of the saddle point on the potential-energy surface (PES) gives important information on transitions between local minima, for example, via transition-state theory. However, the search for saddle points often involves hundreds or thousands of ab initio force calls, which are typically all done at full accuracy. This results in the vast majority of the computational effort being spent calculating the electronic structure of states not important to the researcher, and very little time performing the calculation of the saddle point state itself. In this work, we describe how machine learning (ML) can reduce the number of intermediate ab initio calculations needed to locate saddle points. Since machine-learning models can learn from, and thus mimic, atomistic simulations, the saddle-point search can be conducted rapidly in the machine-learning representation. The saddle-point prediction can then be verified by an ab initio calculation; if it is incorrect, this strategically has identified regions of the PES where the machine-learning representation has insufficient training data. When these training data are used to improve the machine-learning model, the estimates greatly improve. This approach can be systematized, and in two simple example problems we demonstrate a dramatic reduction in the number of ab initio force calls. We expect that this approach and future refinements will greatly accelerate searches for saddle points, as well as other searches on the potential energy surface, as machine-learning methods see greater adoption by the atomistics community.

  5. Model-based machine learning

    PubMed Central

    Bishop, Christopher M.

    2013-01-01

    Several decades of research in the field of machine learning have resulted in a multitude of different algorithms for solving a broad range of problems. To tackle a new application, a researcher typically tries to map their problem onto one of these existing methods, often influenced by their familiarity with specific algorithms and by the availability of corresponding software implementations. In this study, we describe an alternative methodology for applying machine learning, in which a bespoke solution is formulated for each new application. The solution is expressed through a compact modelling language, and the corresponding custom machine learning code is then generated automatically. This model-based approach offers several major advantages, including the opportunity to create highly tailored models for specific scenarios, as well as rapid prototyping and comparison of a range of alternative models. Furthermore, newcomers to the field of machine learning do not have to learn about the huge range of traditional methods, but instead can focus their attention on understanding a single modelling environment. In this study, we show how probabilistic graphical models, coupled with efficient inference algorithms, provide a very flexible foundation for model-based machine learning, and we outline a large-scale commercial application of this framework involving tens of millions of users. We also describe the concept of probabilistic programming as a powerful software environment for model-based machine learning, and we discuss a specific probabilistic programming language called Infer.NET, which has been widely used in practical applications. PMID:23277612

  6. Acceleration of saddle-point searches with machine learning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peterson, Andrew A., E-mail: andrew-peterson@brown.edu

    In atomistic simulations, the location of the saddle point on the potential-energy surface (PES) gives important information on transitions between local minima, for example, via transition-state theory. However, the search for saddle points often involves hundreds or thousands of ab initio force calls, which are typically all done at full accuracy. This results in the vast majority of the computational effort being spent calculating the electronic structure of states not important to the researcher, and very little time performing the calculation of the saddle point state itself. In this work, we describe how machine learning (ML) can reduce the numbermore » of intermediate ab initio calculations needed to locate saddle points. Since machine-learning models can learn from, and thus mimic, atomistic simulations, the saddle-point search can be conducted rapidly in the machine-learning representation. The saddle-point prediction can then be verified by an ab initio calculation; if it is incorrect, this strategically has identified regions of the PES where the machine-learning representation has insufficient training data. When these training data are used to improve the machine-learning model, the estimates greatly improve. This approach can be systematized, and in two simple example problems we demonstrate a dramatic reduction in the number of ab initio force calls. We expect that this approach and future refinements will greatly accelerate searches for saddle points, as well as other searches on the potential energy surface, as machine-learning methods see greater adoption by the atomistics community.« less

  7. A comparison of machine learning and Bayesian modelling for molecular serotyping.

    PubMed

    Newton, Richard; Wernisch, Lorenz

    2017-08-11

    Streptococcus pneumoniae is a human pathogen that is a major cause of infant mortality. Identifying the pneumococcal serotype is an important step in monitoring the impact of vaccines used to protect against disease. Genomic microarrays provide an effective method for molecular serotyping. Previously we developed an empirical Bayesian model for the classification of serotypes from a molecular serotyping array. With only few samples available, a model driven approach was the only option. In the meanwhile, several thousand samples have been made available to us, providing an opportunity to investigate serotype classification by machine learning methods, which could complement the Bayesian model. We compare the performance of the original Bayesian model with two machine learning algorithms: Gradient Boosting Machines and Random Forests. We present our results as an example of a generic strategy whereby a preliminary probabilistic model is complemented or replaced by a machine learning classifier once enough data are available. Despite the availability of thousands of serotyping arrays, a problem encountered when applying machine learning methods is the lack of training data containing mixtures of serotypes; due to the large number of possible combinations. Most of the available training data comprises samples with only a single serotype. To overcome the lack of training data we implemented an iterative analysis, creating artificial training data of serotype mixtures by combining raw data from single serotype arrays. With the enhanced training set the machine learning algorithms out perform the original Bayesian model. However, for serotypes currently lacking sufficient training data the best performing implementation was a combination of the results of the Bayesian Model and the Gradient Boosting Machine. As well as being an effective method for classifying biological data, machine learning can also be used as an efficient method for revealing subtle biological insights, which we illustrate with an example.

  8. A Sustainable Model for Integrating Current Topics in Machine Learning Research into the Undergraduate Curriculum

    ERIC Educational Resources Information Center

    Georgiopoulos, M.; DeMara, R. F.; Gonzalez, A. J.; Wu, A. S.; Mollaghasemi, M.; Gelenbe, E.; Kysilka, M.; Secretan, J.; Sharma, C. A.; Alnsour, A. J.

    2009-01-01

    This paper presents an integrated research and teaching model that has resulted from an NSF-funded effort to introduce results of current Machine Learning research into the engineering and computer science curriculum at the University of Central Florida (UCF). While in-depth exposure to current topics in Machine Learning has traditionally occurred…

  9. Learning as a Machine: Crossovers between Humans and Machines

    ERIC Educational Resources Information Center

    Hildebrandt, Mireille

    2017-01-01

    This article is a revised version of the keynote presented at LAK '16 in Edinburgh. The article investigates some of the assumptions of learning analytics, notably those related to behaviourism. Building on the work of Ivan Pavlov, Herbert Simon, and James Gibson as ways of "learning as a machine," the article then develops two levels of…

  10. Computer Programmed Milling Machine Operations. High-Technology Training Module.

    ERIC Educational Resources Information Center

    Leonard, Dennis

    This learning module for a high school metals and manufacturing course is designed to introduce the concept of computer-assisted machining (CAM). Through it, students learn how to set up and put data into the controller to machine a part. They also become familiar with computer-aided manufacturing and learn the advantages of computer numerical…

  11. 2014 Bio-Acoustics Data Challenge for the International Community on Machine Learning and Bioacoustics

    DTIC Science & Technology

    2014-09-30

    This ONR grant promotes the development and application of advanced machine learning techniques for detection and classification of marine mammal...sounds. The objective is to engage a broad community of data scientists in the development and application of advanced machine learning techniques for detection and classification of marine mammal sounds.

  12. Prediction and early detection of delirium in the intensive care unit by using heart rate variability and machine learning.

    PubMed

    Oh, Jooyoung; Cho, Dongrae; Park, Jaesub; Na, Se Hee; Kim, Jongin; Heo, Jaeseok; Shin, Cheung Soo; Kim, Jae-Jin; Park, Jin Young; Lee, Boreom

    2018-03-27

    Delirium is an important syndrome found in patients in the intensive care unit (ICU), however, it is usually under-recognized during treatment. This study was performed to investigate whether delirious patients can be successfully distinguished from non-delirious patients by using heart rate variability (HRV) and machine learning. Electrocardiography data of 140 patients was acquired during daily ICU care, and HRV data were analyzed. Delirium, including its type, severity, and etiologies, was evaluated daily by trained psychiatrists. HRV data and various machine learning algorithms including linear support vector machine (SVM), SVM with radial basis function (RBF) kernels, linear extreme learning machine (ELM), ELM with RBF kernels, linear discriminant analysis, and quadratic discriminant analysis were utilized to distinguish delirium patients from non-delirium patients. HRV data of 4797 ECGs were included, and 39 patients had delirium at least once during their ICU stay. The maximum classification accuracy was acquired using SVM with RBF kernels. Our prediction method based on HRV with machine learning was comparable to previous delirium prediction models using massive amounts of clinical information. Our results show that autonomic alterations could be a significant feature of patients with delirium in the ICU, suggesting the potential for the automatic prediction and early detection of delirium based on HRV with machine learning.

  13. Prediction of antiepileptic drug treatment outcomes using machine learning.

    PubMed

    Colic, Sinisa; Wither, Robert G; Lang, Min; Zhang, Liang; Eubanks, James H; Bardakjian, Berj L

    2017-02-01

    Antiepileptic drug (AED) treatments produce inconsistent outcomes, often necessitating patients to go through several drug trials until a successful treatment can be found. This study proposes the use of machine learning techniques to predict epilepsy treatment outcomes of commonly used AEDs. Machine learning algorithms were trained and evaluated using features obtained from intracranial electroencephalogram (iEEG) recordings of the epileptiform discharges observed in Mecp2-deficient mouse model of the Rett Syndrome. Previous work have linked the presence of cross-frequency coupling (I CFC ) of the delta (2-5 Hz) rhythm with the fast ripple (400-600 Hz) rhythm in epileptiform discharges. Using the I CFC to label post-treatment outcomes we compared support vector machines (SVMs) and random forest (RF) machine learning classifiers for providing likelihood scores of successful treatment outcomes. (a) There was heterogeneity in AED treatment outcomes, (b) machine learning techniques could be used to rank the efficacy of AEDs by estimating likelihood scores for successful treatment outcome, (c) I CFC features yielded the most effective a priori identification of appropriate AED treatment, and (d) both classifiers performed comparably. Machine learning approaches yielded predictions of successful drug treatment outcomes which in turn could reduce the burdens of drug trials and lead to substantial improvements in patient quality of life.

  14. Prediction of antiepileptic drug treatment outcomes using machine learning

    NASA Astrophysics Data System (ADS)

    Colic, Sinisa; Wither, Robert G.; Lang, Min; Zhang, Liang; Eubanks, James H.; Bardakjian, Berj L.

    2017-02-01

    Objective. Antiepileptic drug (AED) treatments produce inconsistent outcomes, often necessitating patients to go through several drug trials until a successful treatment can be found. This study proposes the use of machine learning techniques to predict epilepsy treatment outcomes of commonly used AEDs. Approach. Machine learning algorithms were trained and evaluated using features obtained from intracranial electroencephalogram (iEEG) recordings of the epileptiform discharges observed in Mecp2-deficient mouse model of the Rett Syndrome. Previous work have linked the presence of cross-frequency coupling (I CFC) of the delta (2-5 Hz) rhythm with the fast ripple (400-600 Hz) rhythm in epileptiform discharges. Using the I CFC to label post-treatment outcomes we compared support vector machines (SVMs) and random forest (RF) machine learning classifiers for providing likelihood scores of successful treatment outcomes. Main results. (a) There was heterogeneity in AED treatment outcomes, (b) machine learning techniques could be used to rank the efficacy of AEDs by estimating likelihood scores for successful treatment outcome, (c) I CFC features yielded the most effective a priori identification of appropriate AED treatment, and (d) both classifiers performed comparably. Significance. Machine learning approaches yielded predictions of successful drug treatment outcomes which in turn could reduce the burdens of drug trials and lead to substantial improvements in patient quality of life.

  15. A Novel Extreme Learning Machine Classification Model for e-Nose Application Based on the Multiple Kernel Approach

    PubMed Central

    Jian, Yulin; Huang, Daoyu; Yan, Jia; Lu, Kun; Huang, Ying; Wen, Tailai; Zeng, Tanyue; Zhong, Shijie; Xie, Qilong

    2017-01-01

    A novel classification model, named the quantum-behaved particle swarm optimization (QPSO)-based weighted multiple kernel extreme learning machine (QWMK-ELM), is proposed in this paper. Experimental validation is carried out with two different electronic nose (e-nose) datasets. Being different from the existing multiple kernel extreme learning machine (MK-ELM) algorithms, the combination coefficients of base kernels are regarded as external parameters of single-hidden layer feedforward neural networks (SLFNs). The combination coefficients of base kernels, the model parameters of each base kernel, and the regularization parameter are optimized by QPSO simultaneously before implementing the kernel extreme learning machine (KELM) with the composite kernel function. Four types of common single kernel functions (Gaussian kernel, polynomial kernel, sigmoid kernel, and wavelet kernel) are utilized to constitute different composite kernel functions. Moreover, the method is also compared with other existing classification methods: extreme learning machine (ELM), kernel extreme learning machine (KELM), k-nearest neighbors (KNN), support vector machine (SVM), multi-layer perceptron (MLP), radical basis function neural network (RBFNN), and probabilistic neural network (PNN). The results have demonstrated that the proposed QWMK-ELM outperforms the aforementioned methods, not only in precision, but also in efficiency for gas classification. PMID:28629202

  16. Mortality risk prediction in burn injury: Comparison of logistic regression with machine learning approaches.

    PubMed

    Stylianou, Neophytos; Akbarov, Artur; Kontopantelis, Evangelos; Buchan, Iain; Dunn, Ken W

    2015-08-01

    Predicting mortality from burn injury has traditionally employed logistic regression models. Alternative machine learning methods have been introduced in some areas of clinical prediction as the necessary software and computational facilities have become accessible. Here we compare logistic regression and machine learning predictions of mortality from burn. An established logistic mortality model was compared to machine learning methods (artificial neural network, support vector machine, random forests and naïve Bayes) using a population-based (England & Wales) case-cohort registry. Predictive evaluation used: area under the receiver operating characteristic curve; sensitivity; specificity; positive predictive value and Youden's index. All methods had comparable discriminatory abilities, similar sensitivities, specificities and positive predictive values. Although some machine learning methods performed marginally better than logistic regression the differences were seldom statistically significant and clinically insubstantial. Random forests were marginally better for high positive predictive value and reasonable sensitivity. Neural networks yielded slightly better prediction overall. Logistic regression gives an optimal mix of performance and interpretability. The established logistic regression model of burn mortality performs well against more complex alternatives. Clinical prediction with a small set of strong, stable, independent predictors is unlikely to gain much from machine learning outside specialist research contexts. Copyright © 2015 Elsevier Ltd and ISBI. All rights reserved.

  17. Using machine learning for sequence-level automated MRI protocol selection in neuroradiology.

    PubMed

    Brown, Andrew D; Marotta, Thomas R

    2018-05-01

    Incorrect imaging protocol selection can lead to important clinical findings being missed, contributing to both wasted health care resources and patient harm. We present a machine learning method for analyzing the unstructured text of clinical indications and patient demographics from magnetic resonance imaging (MRI) orders to automatically protocol MRI procedures at the sequence level. We compared 3 machine learning models - support vector machine, gradient boosting machine, and random forest - to a baseline model that predicted the most common protocol for all observations in our test set. The gradient boosting machine model significantly outperformed the baseline and demonstrated the best performance of the 3 models in terms of accuracy (95%), precision (86%), recall (80%), and Hamming loss (0.0487). This demonstrates the feasibility of automating sequence selection by applying machine learning to MRI orders. Automated sequence selection has important safety, quality, and financial implications and may facilitate improvements in the quality and safety of medical imaging service delivery.

  18. Machine learning molecular dynamics for the simulation of infrared spectra.

    PubMed

    Gastegger, Michael; Behler, Jörg; Marquetand, Philipp

    2017-10-01

    Machine learning has emerged as an invaluable tool in many research areas. In the present work, we harness this power to predict highly accurate molecular infrared spectra with unprecedented computational efficiency. To account for vibrational anharmonic and dynamical effects - typically neglected by conventional quantum chemistry approaches - we base our machine learning strategy on ab initio molecular dynamics simulations. While these simulations are usually extremely time consuming even for small molecules, we overcome these limitations by leveraging the power of a variety of machine learning techniques, not only accelerating simulations by several orders of magnitude, but also greatly extending the size of systems that can be treated. To this end, we develop a molecular dipole moment model based on environment dependent neural network charges and combine it with the neural network potential approach of Behler and Parrinello. Contrary to the prevalent big data philosophy, we are able to obtain very accurate machine learning models for the prediction of infrared spectra based on only a few hundreds of electronic structure reference points. This is made possible through the use of molecular forces during neural network potential training and the introduction of a fully automated sampling scheme. We demonstrate the power of our machine learning approach by applying it to model the infrared spectra of a methanol molecule, n -alkanes containing up to 200 atoms and the protonated alanine tripeptide, which at the same time represents the first application of machine learning techniques to simulate the dynamics of a peptide. In all of these case studies we find an excellent agreement between the infrared spectra predicted via machine learning models and the respective theoretical and experimental spectra.

  19. The Next Era: Deep Learning in Pharmaceutical Research

    PubMed Central

    Ekins, Sean

    2016-01-01

    Over the past decade we have witnessed the increasing sophistication of machine learning algorithms applied in daily use from internet searches, voice recognition, social network software to machine vision software in cameras, phones, robots and self-driving cars. Pharmaceutical research has also seen its fair share of machine learning developments. For example, applying such methods to mine the growing datasets that are created in drug discovery not only enables us to learn from the past but to predict a molecule’s properties and behavior in future. The latest machine learning algorithm garnering significant attention is deep learning, which is an artificial neural network with multiple hidden layers. Publications over the last 3 years suggest that this algorithm may have advantages over previous machine learning methods and offer a slight but discernable edge in predictive performance. The time has come for a balanced review of this technique but also to apply machine learning methods such as deep learning across a wider array of endpoints relevant to pharmaceutical research for which the datasets are growing such as physicochemical property prediction, formulation prediction, absorption, distribution, metabolism, excretion and toxicity (ADME/Tox), target prediction and skin permeation, etc. We also show that there are many potential applications of deep learning beyond cheminformatics. It will be important to perform prospective testing (which has been carried out rarely to date) in order to convince skeptics that there will be benefits from investing in this technique. PMID:27599991

  20. Component Pin Recognition Using Algorithms Based on Machine Learning

    NASA Astrophysics Data System (ADS)

    Xiao, Yang; Hu, Hong; Liu, Ze; Xu, Jiangchang

    2018-04-01

    The purpose of machine vision for a plug-in machine is to improve the machine’s stability and accuracy, and recognition of the component pin is an important part of the vision. This paper focuses on component pin recognition using three different techniques. The first technique involves traditional image processing using the core algorithm for binary large object (BLOB) analysis. The second technique uses the histogram of oriented gradients (HOG), to experimentally compare the effect of the support vector machine (SVM) and the adaptive boosting machine (AdaBoost) learning meta-algorithm classifiers. The third technique is the use of an in-depth learning method known as convolution neural network (CNN), which involves identifying the pin by comparing a sample to its training. The main purpose of the research presented in this paper is to increase the knowledge of learning methods used in the plug-in machine industry in order to achieve better results.

  1. Experimental Machine Learning of Quantum States

    NASA Astrophysics Data System (ADS)

    Gao, Jun; Qiao, Lu-Feng; Jiao, Zhi-Qiang; Ma, Yue-Chi; Hu, Cheng-Qiu; Ren, Ruo-Jing; Yang, Ai-Lin; Tang, Hao; Yung, Man-Hong; Jin, Xian-Min

    2018-06-01

    Quantum information technologies provide promising applications in communication and computation, while machine learning has become a powerful technique for extracting meaningful structures in "big data." A crossover between quantum information and machine learning represents a new interdisciplinary area stimulating progress in both fields. Traditionally, a quantum state is characterized by quantum-state tomography, which is a resource-consuming process when scaled up. Here we experimentally demonstrate a machine-learning approach to construct a quantum-state classifier for identifying the separability of quantum states. We show that it is possible to experimentally train an artificial neural network to efficiently learn and classify quantum states, without the need of obtaining the full information of the states. We also show how adding a hidden layer of neurons to the neural network can significantly boost the performance of the state classifier. These results shed new light on how classification of quantum states can be achieved with limited resources, and represent a step towards machine-learning-based applications in quantum information processing.

  2. Machine learning modelling for predicting soil liquefaction susceptibility

    NASA Astrophysics Data System (ADS)

    Samui, P.; Sitharam, T. G.

    2011-01-01

    This study describes two machine learning techniques applied to predict liquefaction susceptibility of soil based on the standard penetration test (SPT) data from the 1999 Chi-Chi, Taiwan earthquake. The first machine learning technique which uses Artificial Neural Network (ANN) based on multi-layer perceptions (MLP) that are trained with Levenberg-Marquardt backpropagation algorithm. The second machine learning technique uses the Support Vector machine (SVM) that is firmly based on the theory of statistical learning theory, uses classification technique. ANN and SVM have been developed to predict liquefaction susceptibility using corrected SPT [(N1)60] and cyclic stress ratio (CSR). Further, an attempt has been made to simplify the models, requiring only the two parameters [(N1)60 and peck ground acceleration (amax/g)], for the prediction of liquefaction susceptibility. The developed ANN and SVM models have also been applied to different case histories available globally. The paper also highlights the capability of the SVM over the ANN models.

  3. Correct machine learning on protein sequences: a peer-reviewing perspective.

    PubMed

    Walsh, Ian; Pollastri, Gianluca; Tosatto, Silvio C E

    2016-09-01

    Machine learning methods are becoming increasingly popular to predict protein features from sequences. Machine learning in bioinformatics can be powerful but carries also the risk of introducing unexpected biases, which may lead to an overestimation of the performance. This article espouses a set of guidelines to allow both peer reviewers and authors to avoid common machine learning pitfalls. Understanding biology is necessary to produce useful data sets, which have to be large and diverse. Separating the training and test process is imperative to avoid over-selling method performance, which is also dependent on several hidden parameters. A novel predictor has always to be compared with several existing methods, including simple baseline strategies. Using the presented guidelines will help nonspecialists to appreciate the critical issues in machine learning. © The Author 2015. Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  4. A Critical Review for Developing Accurate and Dynamic Predictive Models Using Machine Learning Methods in Medicine and Health Care.

    PubMed

    Alanazi, Hamdan O; Abdullah, Abdul Hanan; Qureshi, Kashif Naseer

    2017-04-01

    Recently, Artificial Intelligence (AI) has been used widely in medicine and health care sector. In machine learning, the classification or prediction is a major field of AI. Today, the study of existing predictive models based on machine learning methods is extremely active. Doctors need accurate predictions for the outcomes of their patients' diseases. In addition, for accurate predictions, timing is another significant factor that influences treatment decisions. In this paper, existing predictive models in medicine and health care have critically reviewed. Furthermore, the most famous machine learning methods have explained, and the confusion between a statistical approach and machine learning has clarified. A review of related literature reveals that the predictions of existing predictive models differ even when the same dataset is used. Therefore, existing predictive models are essential, and current methods must be improved.

  5. Generalising better: Applying deep learning to integrate deleteriousness prediction scores for whole-exome SNV studies.

    PubMed

    Korvigo, Ilia; Afanasyev, Andrey; Romashchenko, Nikolay; Skoblov, Mikhail

    2018-01-01

    Many automatic classifiers were introduced to aid inference of phenotypical effects of uncategorised nsSNVs (nonsynonymous Single Nucleotide Variations) in theoretical and medical applications. Lately, several meta-estimators have been proposed that combine different predictors, such as PolyPhen and SIFT, to integrate more information in a single score. Although many advances have been made in feature design and machine learning algorithms used, the shortage of high-quality reference data along with the bias towards intensively studied in vitro models call for improved generalisation ability in order to further increase classification accuracy and handle records with insufficient data. Since a meta-estimator basically combines different scoring systems with highly complicated nonlinear relationships, we investigated how deep learning (supervised and unsupervised), which is particularly efficient at discovering hierarchies of features, can improve classification performance. While it is believed that one should only use deep learning for high-dimensional input spaces and other models (logistic regression, support vector machines, Bayesian classifiers, etc) for simpler inputs, we still believe that the ability of neural networks to discover intricate structure in highly heterogenous datasets can aid a meta-estimator. We compare the performance with various popular predictors, many of which are recommended by the American College of Medical Genetics and Genomics (ACMG), as well as available deep learning-based predictors. Thanks to hardware acceleration we were able to use a computationally expensive genetic algorithm to stochastically optimise hyper-parameters over many generations. Overfitting was hindered by noise injection and dropout, limiting coadaptation of hidden units. Although we stress that this work was not conceived as a tool comparison, but rather an exploration of the possibilities of deep learning application in ensemble scores, our results show that even relatively simple modern neural networks can significantly improve both prediction accuracy and coverage. We provide open-access to our finest model via the web-site: http://score.generesearch.ru/services/badmut/.

  6. Novel Breast Imaging and Machine Learning: Predicting Breast Lesion Malignancy at Cone-Beam CT Using Machine Learning Techniques.

    PubMed

    Uhlig, Johannes; Uhlig, Annemarie; Kunze, Meike; Beissbarth, Tim; Fischer, Uwe; Lotz, Joachim; Wienbeck, Susanne

    2018-05-24

    The purpose of this study is to evaluate the diagnostic performance of machine learning techniques for malignancy prediction at breast cone-beam CT (CBCT) and to compare them to human readers. Five machine learning techniques, including random forests, back propagation neural networks (BPN), extreme learning machines, support vector machines, and K-nearest neighbors, were used to train diagnostic models on a clinical breast CBCT dataset with internal validation by repeated 10-fold cross-validation. Two independent blinded human readers with profound experience in breast imaging and breast CBCT analyzed the same CBCT dataset. Diagnostic performance was compared using AUC, sensitivity, and specificity. The clinical dataset comprised 35 patients (American College of Radiology density type C and D breasts) with 81 suspicious breast lesions examined with contrast-enhanced breast CBCT. Forty-five lesions were histopathologically proven to be malignant. Among the machine learning techniques, BPNs provided the best diagnostic performance, with AUC of 0.91, sensitivity of 0.85, and specificity of 0.82. The diagnostic performance of the human readers was AUC of 0.84, sensitivity of 0.89, and specificity of 0.72 for reader 1 and AUC of 0.72, sensitivity of 0.71, and specificity of 0.67 for reader 2. AUC was significantly higher for BPN when compared with both reader 1 (p = 0.01) and reader 2 (p < 0.001). Machine learning techniques provide a high and robust diagnostic performance in the prediction of malignancy in breast lesions identified at CBCT. BPNs showed the best diagnostic performance, surpassing human readers in terms of AUC and specificity.

  7. Machine learning of molecular properties: Locality and active learning

    NASA Astrophysics Data System (ADS)

    Gubaev, Konstantin; Podryabinkin, Evgeny V.; Shapeev, Alexander V.

    2018-06-01

    In recent years, the machine learning techniques have shown great potent1ial in various problems from a multitude of disciplines, including materials design and drug discovery. The high computational speed on the one hand and the accuracy comparable to that of density functional theory on another hand make machine learning algorithms efficient for high-throughput screening through chemical and configurational space. However, the machine learning algorithms available in the literature require large training datasets to reach the chemical accuracy and also show large errors for the so-called outliers—the out-of-sample molecules, not well-represented in the training set. In the present paper, we propose a new machine learning algorithm for predicting molecular properties that addresses these two issues: it is based on a local model of interatomic interactions providing high accuracy when trained on relatively small training sets and an active learning algorithm of optimally choosing the training set that significantly reduces the errors for the outliers. We compare our model to the other state-of-the-art algorithms from the literature on the widely used benchmark tests.

  8. Machine-Learning Algorithms to Automate Morphological and Functional Assessments in 2D Echocardiography.

    PubMed

    Narula, Sukrit; Shameer, Khader; Salem Omar, Alaa Mabrouk; Dudley, Joel T; Sengupta, Partho P

    2016-11-29

    Machine-learning models may aid cardiac phenotypic recognition by using features of cardiac tissue deformation. This study investigated the diagnostic value of a machine-learning framework that incorporates speckle-tracking echocardiographic data for automated discrimination of hypertrophic cardiomyopathy (HCM) from physiological hypertrophy seen in athletes (ATH). Expert-annotated speckle-tracking echocardiographic datasets obtained from 77 ATH and 62 HCM patients were used for developing an automated system. An ensemble machine-learning model with 3 different machine-learning algorithms (support vector machines, random forests, and artificial neural networks) was developed and a majority voting method was used for conclusive predictions with further K-fold cross-validation. Feature selection using an information gain (IG) algorithm revealed that volume was the best predictor for differentiating between HCM ands. ATH (IG = 0.24) followed by mid-left ventricular segmental (IG = 0.134) and average longitudinal strain (IG = 0.131). The ensemble machine-learning model showed increased sensitivity and specificity compared with early-to-late diastolic transmitral velocity ratio (p < 0.01), average early diastolic tissue velocity (e') (p < 0.01), and strain (p = 0.04). Because ATH were younger, adjusted analysis was undertaken in younger HCM patients and compared with ATH with left ventricular wall thickness >13 mm. In this subgroup analysis, the automated model continued to show equal sensitivity, but increased specificity relative to early-to-late diastolic transmitral velocity ratio, e', and strain. Our results suggested that machine-learning algorithms can assist in the discrimination of physiological versus pathological patterns of hypertrophic remodeling. This effort represents a step toward the development of a real-time, machine-learning-based system for automated interpretation of echocardiographic images, which may help novice readers with limited experience. Copyright © 2016 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  9. Machine learning: Trends, perspectives, and prospects.

    PubMed

    Jordan, M I; Mitchell, T M

    2015-07-17

    Machine learning addresses the question of how to build computers that improve automatically through experience. It is one of today's most rapidly growing technical fields, lying at the intersection of computer science and statistics, and at the core of artificial intelligence and data science. Recent progress in machine learning has been driven both by the development of new learning algorithms and theory and by the ongoing explosion in the availability of online data and low-cost computation. The adoption of data-intensive machine-learning methods can be found throughout science, technology and commerce, leading to more evidence-based decision-making across many walks of life, including health care, manufacturing, education, financial modeling, policing, and marketing. Copyright © 2015, American Association for the Advancement of Science.

  10. Learning Activity Packets for Milling Machines. Unit II--Horizontal Milling Machines.

    ERIC Educational Resources Information Center

    Oklahoma State Board of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.

    This learning activity packet (LAP) outlines the study activities and performance tasks covered in a related curriculum guide on milling machines. The course of study in this LAP is intended to help students learn to set up and operate a horizontal mill. Tasks addressed in the LAP include mounting style "A" or "B" arbors and adjusting arbor…

  11. Advancing Research in Second Language Writing through Computational Tools and Machine Learning Techniques: A Research Agenda

    ERIC Educational Resources Information Center

    Crossley, Scott A.

    2013-01-01

    This paper provides an agenda for replication studies focusing on second language (L2) writing and the use of natural language processing (NLP) tools and machine learning algorithms. Specifically, it introduces a range of the available NLP tools and machine learning algorithms and demonstrates how these could be used to replicate seminal studies…

  12. Machine Learning in the Presence of an Adversary: Attacking and Defending the SpamBayes Spam Filter

    DTIC Science & Technology

    2008-05-20

    Machine learning techniques are often used for decision making in security critical applications such as intrusion detection and spam filtering...filter. The defenses shown in this thesis are able to work against the attacks developed against SpamBayes and are sufficiently generic to be easily extended into other statistical machine learning algorithms.

  13. Predicting the outcomes of organic reactions via machine learning: are current descriptors sufficient?

    PubMed

    Skoraczyński, G; Dittwald, P; Miasojedow, B; Szymkuć, S; Gajewska, E P; Grzybowski, B A; Gambin, A

    2017-06-15

    As machine learning/artificial intelligence algorithms are defeating chess masters and, most recently, GO champions, there is interest - and hope - that they will prove equally useful in assisting chemists in predicting outcomes of organic reactions. This paper demonstrates, however, that the applicability of machine learning to the problems of chemical reactivity over diverse types of chemistries remains limited - in particular, with the currently available chemical descriptors, fundamental mathematical theorems impose upper bounds on the accuracy with which raction yields and times can be predicted. Improving the performance of machine-learning methods calls for the development of fundamentally new chemical descriptors.

  14. Ten quick tips for machine learning in computational biology.

    PubMed

    Chicco, Davide

    2017-01-01

    Machine learning has become a pivotal tool for many projects in computational biology, bioinformatics, and health informatics. Nevertheless, beginners and biomedical researchers often do not have enough experience to run a data mining project effectively, and therefore can follow incorrect practices, that may lead to common mistakes or over-optimistic results. With this review, we present ten quick tips to take advantage of machine learning in any computational biology context, by avoiding some common errors that we observed hundreds of times in multiple bioinformatics projects. We believe our ten suggestions can strongly help any machine learning practitioner to carry on a successful project in computational biology and related sciences.

  15. Multivariate analysis of fMRI time series: classification and regression of brain responses using machine learning.

    PubMed

    Formisano, Elia; De Martino, Federico; Valente, Giancarlo

    2008-09-01

    Machine learning and pattern recognition techniques are being increasingly employed in functional magnetic resonance imaging (fMRI) data analysis. By taking into account the full spatial pattern of brain activity measured simultaneously at many locations, these methods allow detecting subtle, non-strictly localized effects that may remain invisible to the conventional analysis with univariate statistical methods. In typical fMRI applications, pattern recognition algorithms "learn" a functional relationship between brain response patterns and a perceptual, cognitive or behavioral state of a subject expressed in terms of a label, which may assume discrete (classification) or continuous (regression) values. This learned functional relationship is then used to predict the unseen labels from a new data set ("brain reading"). In this article, we describe the mathematical foundations of machine learning applications in fMRI. We focus on two methods, support vector machines and relevance vector machines, which are respectively suited for the classification and regression of fMRI patterns. Furthermore, by means of several examples and applications, we illustrate and discuss the methodological challenges of using machine learning algorithms in the context of fMRI data analysis.

  16. Game-powered machine learning

    PubMed Central

    Barrington, Luke; Turnbull, Douglas; Lanckriet, Gert

    2012-01-01

    Searching for relevant content in a massive amount of multimedia information is facilitated by accurately annotating each image, video, or song with a large number of relevant semantic keywords, or tags. We introduce game-powered machine learning, an integrated approach to annotating multimedia content that combines the effectiveness of human computation, through online games, with the scalability of machine learning. We investigate this framework for labeling music. First, a socially-oriented music annotation game called Herd It collects reliable music annotations based on the “wisdom of the crowds.” Second, these annotated examples are used to train a supervised machine learning system. Third, the machine learning system actively directs the annotation games to collect new data that will most benefit future model iterations. Once trained, the system can automatically annotate a corpus of music much larger than what could be labeled using human computation alone. Automatically annotated songs can be retrieved based on their semantic relevance to text-based queries (e.g., “funky jazz with saxophone,” “spooky electronica,” etc.). Based on the results presented in this paper, we find that actively coupling annotation games with machine learning provides a reliable and scalable approach to making searchable massive amounts of multimedia data. PMID:22460786

  17. Inverse Problems in Geodynamics Using Machine Learning Algorithms

    NASA Astrophysics Data System (ADS)

    Shahnas, M. H.; Yuen, D. A.; Pysklywec, R. N.

    2018-01-01

    During the past few decades numerical studies have been widely employed to explore the style of circulation and mixing in the mantle of Earth and other planets. However, in geodynamical studies there are many properties from mineral physics, geochemistry, and petrology in these numerical models. Machine learning, as a computational statistic-related technique and a subfield of artificial intelligence, has rapidly emerged recently in many fields of sciences and engineering. We focus here on the application of supervised machine learning (SML) algorithms in predictions of mantle flow processes. Specifically, we emphasize on estimating mantle properties by employing machine learning techniques in solving an inverse problem. Using snapshots of numerical convection models as training samples, we enable machine learning models to determine the magnitude of the spin transition-induced density anomalies that can cause flow stagnation at midmantle depths. Employing support vector machine algorithms, we show that SML techniques can successfully predict the magnitude of mantle density anomalies and can also be used in characterizing mantle flow patterns. The technique can be extended to more complex geodynamic problems in mantle dynamics by employing deep learning algorithms for putting constraints on properties such as viscosity, elastic parameters, and the nature of thermal and chemical anomalies.

  18. Game-powered machine learning.

    PubMed

    Barrington, Luke; Turnbull, Douglas; Lanckriet, Gert

    2012-04-24

    Searching for relevant content in a massive amount of multimedia information is facilitated by accurately annotating each image, video, or song with a large number of relevant semantic keywords, or tags. We introduce game-powered machine learning, an integrated approach to annotating multimedia content that combines the effectiveness of human computation, through online games, with the scalability of machine learning. We investigate this framework for labeling music. First, a socially-oriented music annotation game called Herd It collects reliable music annotations based on the "wisdom of the crowds." Second, these annotated examples are used to train a supervised machine learning system. Third, the machine learning system actively directs the annotation games to collect new data that will most benefit future model iterations. Once trained, the system can automatically annotate a corpus of music much larger than what could be labeled using human computation alone. Automatically annotated songs can be retrieved based on their semantic relevance to text-based queries (e.g., "funky jazz with saxophone," "spooky electronica," etc.). Based on the results presented in this paper, we find that actively coupling annotation games with machine learning provides a reliable and scalable approach to making searchable massive amounts of multimedia data.

  19. Advances in Machine Learning and Data Mining for Astronomy

    NASA Astrophysics Data System (ADS)

    Way, Michael J.; Scargle, Jeffrey D.; Ali, Kamal M.; Srivastava, Ashok N.

    2012-03-01

    Advances in Machine Learning and Data Mining for Astronomy documents numerous successful collaborations among computer scientists, statisticians, and astronomers who illustrate the application of state-of-the-art machine learning and data mining techniques in astronomy. Due to the massive amount and complexity of data in most scientific disciplines, the material discussed in this text transcends traditional boundaries between various areas in the sciences and computer science. The book's introductory part provides context to issues in the astronomical sciences that are also important to health, social, and physical sciences, particularly probabilistic and statistical aspects of classification and cluster analysis. The next part describes a number of astrophysics case studies that leverage a range of machine learning and data mining technologies. In the last part, developers of algorithms and practitioners of machine learning and data mining show how these tools and techniques are used in astronomical applications. With contributions from leading astronomers and computer scientists, this book is a practical guide to many of the most important developments in machine learning, data mining, and statistics. It explores how these advances can solve current and future problems in astronomy and looks at how they could lead to the creation of entirely new algorithms within the data mining community.

  20. Machine learning to predict the occurrence of bisphosphonate-related osteonecrosis of the jaw associated with dental extraction: A preliminary report.

    PubMed

    Kim, Dong Wook; Kim, Hwiyoung; Nam, Woong; Kim, Hyung Jun; Cha, In-Ho

    2018-04-23

    The aim of this study was to build and validate five types of machine learning models that can predict the occurrence of BRONJ associated with dental extraction in patients taking bisphosphonates for the management of osteoporosis. A retrospective review of the medical records was conducted to obtain cases and controls for the study. Total 125 patients consisting of 41 cases and 84 controls were selected for the study. Five machine learning prediction algorithms including multivariable logistic regression model, decision tree, support vector machine, artificial neural network, and random forest were implemented. The outputs of these models were compared with each other and also with conventional methods, such as serum CTX level. Area under the receiver operating characteristic (ROC) curve (AUC) was used to compare the results. The performance of machine learning models was significantly superior to conventional statistical methods and single predictors. The random forest model yielded the best performance (AUC = 0.973), followed by artificial neural network (AUC = 0.915), support vector machine (AUC = 0.882), logistic regression (AUC = 0.844), decision tree (AUC = 0.821), drug holiday alone (AUC = 0.810), and CTX level alone (AUC = 0.630). Machine learning methods showed superior performance in predicting BRONJ associated with dental extraction compared to conventional statistical methods using drug holiday and serum CTX level. Machine learning can thus be applied in a wide range of clinical studies. Copyright © 2017. Published by Elsevier Inc.

  1. Automatic Picking of Foraminifera: Design of the Foraminifera Image Recognition and Sorting Tool (FIRST) Prototype and Results of the Image Classification Scheme

    NASA Astrophysics Data System (ADS)

    de Garidel-Thoron, T.; Marchant, R.; Soto, E.; Gally, Y.; Beaufort, L.; Bolton, C. T.; Bouslama, M.; Licari, L.; Mazur, J. C.; Brutti, J. M.; Norsa, F.

    2017-12-01

    Foraminifera tests are the main proxy carriers for paleoceanographic reconstructions. Both geochemical and taxonomical studies require large numbers of tests to achieve statistical relevance. To date, the extraction of foraminifera from the sediment coarse fraction is still done by hand and thus time-consuming. Moreover, the recognition of morphotypes, ecologically relevant, requires some taxonomical skills not easily taught. The automatic recognition and extraction of foraminifera would largely help paleoceanographers to overcome these issues. Recent advances in automatic image classification using machine learning opens the way to automatic extraction of foraminifera. Here we detail progress on the design of an automatic picking machine as part of the FIRST project. The machine handles 30 pre-sieved samples (100-1000µm), separating them into individual particles (including foraminifera) and imaging each in pseudo-3D. The particles are classified and specimens of interest are sorted either for Individual Foraminifera Analyses (44 per slide) and/or for classical multiple analyses (8 morphological classes per slide, up to 1000 individuals per hole). The classification is based on machine learning using Convolutional Neural Networks (CNNs), similar to the approach used in the coccolithophorid imaging system SYRACO. To prove its feasibility, we built two training image datasets of modern planktonic foraminifera containing approximately 2000 and 5000 images each, corresponding to 15 & 25 morphological classes. Using a CNN with a residual topology (ResNet) we achieve over 95% correct classification for each dataset. We tested the network on 160,000 images from 45 depths of a sediment core from the Pacific ocean, for which we have human counts. The current algorithm is able to reproduce the downcore variability in both Globigerinoides ruber and the fragmentation index (r2 = 0.58 and 0.88 respectively). The FIRST prototype yields some promising results for high-resolution paleoceanographic studies and evolutionary studies.

  2. Designing an Assistive Learning Aid for Writing Acquisition: A Challenge for Children with Dyslexia.

    PubMed

    Latif, Seemab; Tariq, Rabbia; Tariq, Shehla; Latif, Rabia

    2015-01-01

    In Pakistan, the biggest challenge is to provide high quality education to the individuals with learning disabilities. Besides the well known affordance issue, there is a lack of awareness regarding the term dyslexia and remedial teaching training that causes the identification as well as remediation of the dyslexic individuals at early stages in Pakistan. The research was focused to exploit the benefits of using the modern mobile technology features in providing a learning platform for young dyslexic writers. Based on potential usability requirements of young dyslexic writers stated by remedial teachers of dyslexics, an android based application is designed and implemented using the usability engineering process model to encourage the learning process and help dyslexic children improve their fundamental handwriting skill. In addition, a handwriting learning algorithm based on concepts of machine learning is designed and implemented to decide the learning content, evaluate the learning performance, display the performance results and record the learning growth to show the strengths and weaknesses of a dyslexic child. The research was also aimed to assess the usability of the learner-centered application by the targeted population by conducting a user acceptance test to evaluate their learning experience and benefits of the developed application to dyslexic users. The results of the evaluation provided by the participants revealed that application has potential benefits to foster the learning process and help children with dyslexia by improving their foundational writing skills.

  3. Prediction of drug synergy in cancer using ensemble-based machine learning techniques

    NASA Astrophysics Data System (ADS)

    Singh, Harpreet; Rana, Prashant Singh; Singh, Urvinder

    2018-04-01

    Drug synergy prediction plays a significant role in the medical field for inhibiting specific cancer agents. It can be developed as a pre-processing tool for therapeutic successes. Examination of different drug-drug interaction can be done by drug synergy score. It needs efficient regression-based machine learning approaches to minimize the prediction errors. Numerous machine learning techniques such as neural networks, support vector machines, random forests, LASSO, Elastic Nets, etc., have been used in the past to realize requirement as mentioned above. However, these techniques individually do not provide significant accuracy in drug synergy score. Therefore, the primary objective of this paper is to design a neuro-fuzzy-based ensembling approach. To achieve this, nine well-known machine learning techniques have been implemented by considering the drug synergy data. Based on the accuracy of each model, four techniques with high accuracy are selected to develop ensemble-based machine learning model. These models are Random forest, Fuzzy Rules Using Genetic Cooperative-Competitive Learning method (GFS.GCCL), Adaptive-Network-Based Fuzzy Inference System (ANFIS) and Dynamic Evolving Neural-Fuzzy Inference System method (DENFIS). Ensembling is achieved by evaluating the biased weighted aggregation (i.e. adding more weights to the model with a higher prediction score) of predicted data by selected models. The proposed and existing machine learning techniques have been evaluated on drug synergy score data. The comparative analysis reveals that the proposed method outperforms others in terms of accuracy, root mean square error and coefficient of correlation.

  4. A Comparison of a Machine Learning Model with EuroSCORE II in Predicting Mortality after Elective Cardiac Surgery: A Decision Curve Analysis.

    PubMed

    Allyn, Jérôme; Allou, Nicolas; Augustin, Pascal; Philip, Ivan; Martinet, Olivier; Belghiti, Myriem; Provenchere, Sophie; Montravers, Philippe; Ferdynus, Cyril

    2017-01-01

    The benefits of cardiac surgery are sometimes difficult to predict and the decision to operate on a given individual is complex. Machine Learning and Decision Curve Analysis (DCA) are recent methods developed to create and evaluate prediction models. We conducted a retrospective cohort study using a prospective collected database from December 2005 to December 2012, from a cardiac surgical center at University Hospital. The different models of prediction of mortality in-hospital after elective cardiac surgery, including EuroSCORE II, a logistic regression model and a machine learning model, were compared by ROC and DCA. Of the 6,520 patients having elective cardiac surgery with cardiopulmonary bypass, 6.3% died. Mean age was 63.4 years old (standard deviation 14.4), and mean EuroSCORE II was 3.7 (4.8) %. The area under ROC curve (IC95%) for the machine learning model (0.795 (0.755-0.834)) was significantly higher than EuroSCORE II or the logistic regression model (respectively, 0.737 (0.691-0.783) and 0.742 (0.698-0.785), p < 0.0001). Decision Curve Analysis showed that the machine learning model, in this monocentric study, has a greater benefit whatever the probability threshold. According to ROC and DCA, machine learning model is more accurate in predicting mortality after elective cardiac surgery than EuroSCORE II. These results confirm the use of machine learning methods in the field of medical prediction.

  5. Method of Optimizing the Construction of Machining, Assembly and Control Devices

    NASA Astrophysics Data System (ADS)

    Iordache, D. M.; Costea, A.; Niţu, E. L.; Rizea, A. D.; Babă, A.

    2017-10-01

    Industry dynamics, driven by economic and social requirements, must generate more interest in technological optimization, capable of ensuring a steady development of advanced technical means to equip machining processes. For these reasons, the development of tools, devices, work equipment and control, as well as the modernization of machine tools, is the certain solution to modernize production systems that require considerable time and effort. This type of approach is also related to our theoretical, experimental and industrial applications of recent years, presented in this paper, which have as main objectives the elaboration and use of mathematical models, new calculation methods, optimization algorithms, new processing and control methods, as well as some structures for the construction and configuration of technological equipment with a high level of performance and substantially reduced costs..

  6. Machine Learning

    NASA Astrophysics Data System (ADS)

    Hoffmann, Achim; Mahidadia, Ashesh

    The purpose of this chapter is to present fundamental ideas and techniques of machine learning suitable for the field of this book, i.e., for automated scientific discovery. The chapter focuses on those symbolic machine learning methods, which produce results that are suitable to be interpreted and understood by humans. This is particularly important in the context of automated scientific discovery as the scientific theories to be produced by machines are usually meant to be interpreted by humans. This chapter contains some of the most influential ideas and concepts in machine learning research to give the reader a basic insight into the field. After the introduction in Sect. 1, general ideas of how learning problems can be framed are given in Sect. 2. The section provides useful perspectives to better understand what learning algorithms actually do. Section 3 presents the Version space model which is an early learning algorithm as well as a conceptual framework, that provides important insight into the general mechanisms behind most learning algorithms. In section 4, a family of learning algorithms, the AQ family for learning classification rules is presented. The AQ family belongs to the early approaches in machine learning. The next, Sect. 5 presents the basic principles of decision tree learners. Decision tree learners belong to the most influential class of inductive learning algorithms today. Finally, a more recent group of learning systems are presented in Sect. 6, which learn relational concepts within the framework of logic programming. This is a particularly interesting group of learning systems since the framework allows also to incorporate background knowledge which may assist in generalisation. Section 7 discusses Association Rules - a technique that comes from the related field of Data mining. Section 8 presents the basic idea of the Naive Bayesian Classifier. While this is a very popular learning technique, the learning result is not well suited for human comprehension as it is essentially a large collection of probability values. In Sect. 9, we present a generic method for improving accuracy of a given learner by generatingmultiple classifiers using variations of the training data. While this works well in most cases, the resulting classifiers have significantly increased complexity and, hence, tend to destroy the human readability of the learning result that a single learner may produce. Section 10 contains a summary, mentions briefly other techniques not discussed in this chapter and presents outlook on the potential of machine learning in the future.

  7. Multi-centre diagnostic classification of individual structural neuroimaging scans from patients with major depressive disorder.

    PubMed

    Mwangi, Benson; Ebmeier, Klaus P; Matthews, Keith; Steele, J Douglas

    2012-05-01

    Quantitative abnormalities of brain structure in patients with major depressive disorder have been reported at a group level for decades. However, these structural differences appear subtle in comparison with conventional radiologically defined abnormalities, with considerable inter-subject variability. Consequently, it has not been possible to readily identify scans from patients with major depressive disorder at an individual level. Recently, machine learning techniques such as relevance vector machines and support vector machines have been applied to predictive classification of individual scans with variable success. Here we describe a novel hybrid method, which combines machine learning with feature selection and characterization, with the latter aimed at maximizing the accuracy of machine learning prediction. The method was tested using a multi-centre dataset of T(1)-weighted 'structural' scans. A total of 62 patients with major depressive disorder and matched controls were recruited from referred secondary care clinical populations in Aberdeen and Edinburgh, UK. The generalization ability and predictive accuracy of the classifiers was tested using data left out of the training process. High prediction accuracy was achieved (~90%). While feature selection was important for maximizing high predictive accuracy with machine learning, feature characterization contributed only a modest improvement to relevance vector machine-based prediction (~5%). Notably, while the only information provided for training the classifiers was T(1)-weighted scans plus a categorical label (major depressive disorder versus controls), both relevance vector machine and support vector machine 'weighting factors' (used for making predictions) correlated strongly with subjective ratings of illness severity. These results indicate that machine learning techniques have the potential to inform clinical practice and research, as they can make accurate predictions about brain scan data from individual subjects. Furthermore, machine learning weighting factors may reflect an objective biomarker of major depressive disorder illness severity, based on abnormalities of brain structure.

  8. Classification without labels: learning from mixed samples in high energy physics

    NASA Astrophysics Data System (ADS)

    Metodiev, Eric M.; Nachman, Benjamin; Thaler, Jesse

    2017-10-01

    Modern machine learning techniques can be used to construct powerful models for difficult collider physics problems. In many applications, however, these models are trained on imperfect simulations due to a lack of truth-level information in the data, which risks the model learning artifacts of the simulation. In this paper, we introduce the paradigm of classification without labels (CWoLa) in which a classifier is trained to distinguish statistical mixtures of classes, which are common in collider physics. Crucially, neither individual labels nor class proportions are required, yet we prove that the optimal classifier in the CWoLa paradigm is also the optimal classifier in the traditional fully-supervised case where all label information is available. After demonstrating the power of this method in an analytical toy example, we consider a realistic benchmark for collider physics: distinguishing quark- versus gluon-initiated jets using mixed quark/gluon training samples. More generally, CWoLa can be applied to any classification problem where labels or class proportions are unknown or simulations are unreliable, but statistical mixtures of the classes are available.

  9. Classification without labels: learning from mixed samples in high energy physics

    DOE PAGES

    Metodiev, Eric M.; Nachman, Benjamin; Thaler, Jesse

    2017-10-25

    Modern machine learning techniques can be used to construct powerful models for difficult collider physics problems. In many applications, however, these models are trained on imperfect simulations due to a lack of truth-level information in the data, which risks the model learning artifacts of the simulation. In this paper, we introduce the paradigm of classification without labels (CWoLa) in which a classifier is trained to distinguish statistical mixtures of classes, which are common in collider physics. Crucially, neither individual labels nor class proportions are required, yet we prove that the optimal classifier in the CWoLa paradigm is also the optimalmore » classifier in the traditional fully-supervised case where all label information is available. After demonstrating the power of this method in an analytical toy example, we consider a realistic benchmark for collider physics: distinguishing quark- versus gluon-initiated jets using mixed quark/gluon training samples. More generally, CWoLa can be applied to any classification problem where labels or class proportions are unknown or simulations are unreliable, but statistical mixtures of the classes are available.« less

  10. Classification without labels: learning from mixed samples in high energy physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Metodiev, Eric M.; Nachman, Benjamin; Thaler, Jesse

    Modern machine learning techniques can be used to construct powerful models for difficult collider physics problems. In many applications, however, these models are trained on imperfect simulations due to a lack of truth-level information in the data, which risks the model learning artifacts of the simulation. In this paper, we introduce the paradigm of classification without labels (CWoLa) in which a classifier is trained to distinguish statistical mixtures of classes, which are common in collider physics. Crucially, neither individual labels nor class proportions are required, yet we prove that the optimal classifier in the CWoLa paradigm is also the optimalmore » classifier in the traditional fully-supervised case where all label information is available. After demonstrating the power of this method in an analytical toy example, we consider a realistic benchmark for collider physics: distinguishing quark- versus gluon-initiated jets using mixed quark/gluon training samples. More generally, CWoLa can be applied to any classification problem where labels or class proportions are unknown or simulations are unreliable, but statistical mixtures of the classes are available.« less

  11. A similarity based learning framework for interim analysis of outcome prediction of acupuncture for neck pain.

    PubMed

    Zhang, Gang; Liang, Zhaohui; Yin, Jian; Fu, Wenbin; Li, Guo-Zheng

    2013-01-01

    Chronic neck pain is a common morbid disorder in modern society. Acupuncture has been administered for treating chronic pain as an alternative therapy for a long time, with its effectiveness supported by the latest clinical evidence. However, the potential effective difference in different syndrome types is questioned due to the limits of sample size and statistical methods. We applied machine learning methods in an attempt to solve this problem. Through a multi-objective sorting of subjective measurements, outstanding samples are selected to form the base of our kernel-oriented model. With calculation of similarities between the concerned sample and base samples, we are able to make full use of information contained in the known samples, which is especially effective in the case of a small sample set. To tackle the parameters selection problem in similarity learning, we propose an ensemble version of slightly different parameter setting to obtain stronger learning. The experimental result on a real data set shows that compared to some previous well-known methods, the proposed algorithm is capable of discovering the underlying difference among different syndrome types and is feasible for predicting the effective tendency in clinical trials of large samples.

  12. Evolving autonomous learning in cognitive networks.

    PubMed

    Sheneman, Leigh; Hintze, Arend

    2017-12-01

    There are two common approaches for optimizing the performance of a machine: genetic algorithms and machine learning. A genetic algorithm is applied over many generations whereas machine learning works by applying feedback until the system meets a performance threshold. These methods have been previously combined, particularly in artificial neural networks using an external objective feedback mechanism. We adapt this approach to Markov Brains, which are evolvable networks of probabilistic and deterministic logic gates. Prior to this work MB could only adapt from one generation to the other, so we introduce feedback gates which augment their ability to learn during their lifetime. We show that Markov Brains can incorporate these feedback gates in such a way that they do not rely on an external objective feedback signal, but instead can generate internal feedback that is then used to learn. This results in a more biologically accurate model of the evolution of learning, which will enable us to study the interplay between evolution and learning and could be another step towards autonomously learning machines.

  13. Using Machine Learning for Behavior-Based Access Control: Scalable Anomaly Detection on TCP Connections and HTTP Requests

    DTIC Science & Technology

    2013-11-01

    machine learning techniques used in BBAC to make predictions about the intent of actors establishing TCP connections and issuing HTTP requests. We discuss pragmatic challenges and solutions we encountered in implementing and evaluating BBAC, discussing (a) the general concepts underlying BBAC, (b) challenges we have encountered in identifying suitable datasets, (c) mitigation strategies to cope...and describe current plans for transitioning BBAC capabilities into the Department of Defense together with lessons learned for the machine learning

  14. Generative Modeling for Machine Learning on the D-Wave

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thulasidasan, Sunil

    These are slides on Generative Modeling for Machine Learning on the D-Wave. The following topics are detailed: generative models; Boltzmann machines: a generative model; restricted Boltzmann machines; learning parameters: RBM training; practical ways to train RBM; D-Wave as a Boltzmann sampler; mapping RBM onto the D-Wave; Chimera restricted RBM; mapping binary RBM to Ising model; experiments; data; D-Wave effective temperature, parameters noise, etc.; experiments: contrastive divergence (CD) 1 step; after 50 steps of CD; after 100 steps of CD; D-Wave (experiments 1, 2, 3); D-Wave observations.

  15. Implementing Machine Learning in the PCWG Tool

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clifton, Andrew; Ding, Yu; Stuart, Peter

    The Power Curve Working Group (www.pcwg.org) is an ad-hoc industry-led group to investigate the performance of wind turbines in real-world conditions. As part of ongoing experience-sharing exercises, machine learning has been proposed as a possible way to predict turbine performance. This presentation provides some background information about machine learning and how it might be implemented in the PCWG exercises.

  16. Adaptive Learning Systems: Beyond Teaching Machines

    ERIC Educational Resources Information Center

    Kara, Nuri; Sevim, Nese

    2013-01-01

    Since 1950s, teaching machines have changed a lot. Today, we have different ideas about how people learn, what instructor should do to help students during their learning process. We have adaptive learning technologies that can create much more student oriented learning environments. The purpose of this article is to present these changes and its…

  17. Quick-Turn Finite Element Analysis for Plug-and-Play Satellite Structures

    DTIC Science & Technology

    2007-03-01

    produced from 0.375 inch round stock and turned on a machine lathe to achieve the shoulder feature and drilled to make it hollow. Figure 3.1...component, a linear taper was machined from the connection shoulder to the solar panel connecting fork. The part was then turned using the machine lathe ...utilizing a modern five-axis Computer Numerical Code ( CNC ) machine mill, the process time could be reduced by as much as seventy-five percent and the

  18. Quantum neural network based machine translator for Hindi to English.

    PubMed

    Narayan, Ravi; Singh, V P; Chakraverty, S

    2014-01-01

    This paper presents the machine learning based machine translation system for Hindi to English, which learns the semantically correct corpus. The quantum neural based pattern recognizer is used to recognize and learn the pattern of corpus, using the information of part of speech of individual word in the corpus, like a human. The system performs the machine translation using its knowledge gained during the learning by inputting the pair of sentences of Devnagri-Hindi and English. To analyze the effectiveness of the proposed approach, 2600 sentences have been evaluated during simulation and evaluation. The accuracy achieved on BLEU score is 0.7502, on NIST score is 6.5773, on ROUGE-L score is 0.9233, and on METEOR score is 0.5456, which is significantly higher in comparison with Google Translation and Bing Translation for Hindi to English Machine Translation.

  19. Towards machine learned quality control: A benchmark for sharpness quantification in digital pathology.

    PubMed

    Campanella, Gabriele; Rajanna, Arjun R; Corsale, Lorraine; Schüffler, Peter J; Yagi, Yukako; Fuchs, Thomas J

    2018-04-01

    Pathology is on the verge of a profound change from an analog and qualitative to a digital and quantitative discipline. This change is mostly driven by the high-throughput scanning of microscope slides in modern pathology departments, reaching tens of thousands of digital slides per month. The resulting vast digital archives form the basis of clinical use in digital pathology and allow large scale machine learning in computational pathology. One of the most crucial bottlenecks of high-throughput scanning is quality control (QC). Currently, digital slides are screened manually to detected out-of-focus regions, to compensate for the limitations of scanner software. We present a solution to this problem by introducing a benchmark dataset for blur detection, an in-depth comparison of state-of-the art sharpness descriptors and their prediction performance within a random forest framework. Furthermore, we show that convolution neural networks, like residual networks, can be used to train blur detectors from scratch. We thoroughly evaluate the accuracy of feature based and deep learning based approaches for sharpness classification (99.74% accuracy) and regression (MSE 0.004) and additionally compare them to domain experts in a comprehensive human perception study. Our pipeline outputs spacial heatmaps enabling to quantify and localize blurred areas on a slide. Finally, we tested the proposed framework in the clinical setting and demonstrate superior performance over the state-of-the-art QC pipeline comprising commercial software and human expert inspection by reducing the error rate from 17% to 4.7%. Copyright © 2017. Published by Elsevier Ltd.

  20. Using methods from the data mining and machine learning literature for disease classification and prediction: A case study examining classification of heart failure sub-types

    PubMed Central

    Austin, Peter C.; Tu, Jack V.; Ho, Jennifer E.; Levy, Daniel; Lee, Douglas S.

    2014-01-01

    Objective Physicians classify patients into those with or without a specific disease. Furthermore, there is often interest in classifying patients according to disease etiology or subtype. Classification trees are frequently used to classify patients according to the presence or absence of a disease. However, classification trees can suffer from limited accuracy. In the data-mining and machine learning literature, alternate classification schemes have been developed. These include bootstrap aggregation (bagging), boosting, random forests, and support vector machines. Study design and Setting We compared the performance of these classification methods with those of conventional classification trees to classify patients with heart failure according to the following sub-types: heart failure with preserved ejection fraction (HFPEF) vs. heart failure with reduced ejection fraction (HFREF). We also compared the ability of these methods to predict the probability of the presence of HFPEF with that of conventional logistic regression. Results We found that modern, flexible tree-based methods from the data mining literature offer substantial improvement in prediction and classification of heart failure sub-type compared to conventional classification and regression trees. However, conventional logistic regression had superior performance for predicting the probability of the presence of HFPEF compared to the methods proposed in the data mining literature. Conclusion The use of tree-based methods offers superior performance over conventional classification and regression trees for predicting and classifying heart failure subtypes in a population-based sample of patients from Ontario. However, these methods do not offer substantial improvements over logistic regression for predicting the presence of HFPEF. PMID:23384592

  1. When felids and hominins ruled at Olduvai Gorge: A machine learning analysis of the skeletal profiles of the non-anthropogenic Bed I sites

    NASA Astrophysics Data System (ADS)

    Arriaza, Mari Carmen; Domínguez-Rodrigo, Manuel

    2016-05-01

    In the past twenty years, skeletal part profiles, which are prone to equifinality, have not occupied a prominent role in the interpretation of early Pleistocene sites on Africa. Alternatively, taphonomic studies on bone surface modifications and bone breakage patterns, have provided heuristic interpretations of some of the best preserved archaeological record of this period; namely, the Olduvai Bed I sites. The most recent and comprehensive taphonomic study of these sites (Domínguez-Rodrigo et al., 2007a) showed that FLK Zinj was an anthropogenic assemblage in which hominins acquired carcasses via primary access. That study also showed that the other sites were palimpsests with minimal or no intervention by hominins. The FLK N, FLK NN and DK sequence seemed to be dominated by single-agent (mostly, felid) or multiple-agent (mostly, felid-hyenid) processes. The present study re-analyzes the Bed I sites focusing on skeletal part profiles. Machine learning methods, which incorporate complex algorithms, are powerful predictive and classification methods and have the potential to better extract information from skeletal part representation than past approaches. Here, multiple algorithms (via decision trees, neural networks, random forests and support vector machines) are combined to produce a solid interpretation of bone accumulation agency at the Olduvai Bed I sites. This new approach virtually coincides with previous taphonomic interpretations on a site by site basis and shows that felids were dominant accumulating agents over hyenas during Bed I times. The recent discovery of possibly a modern lion-accumulated assemblage at Olduvai Gorge (Arriaza et al., submitted) provides a very timely analog for this interpretation.

  2. Energy landscapes for machine learning

    NASA Astrophysics Data System (ADS)

    Ballard, Andrew J.; Das, Ritankar; Martiniani, Stefano; Mehta, Dhagash; Sagun, Levent; Stevenson, Jacob D.; Wales, David J.

    Machine learning techniques are being increasingly used as flexible non-linear fitting and prediction tools in the physical sciences. Fitting functions that exhibit multiple solutions as local minima can be analysed in terms of the corresponding machine learning landscape. Methods to explore and visualise molecular potential energy landscapes can be applied to these machine learning landscapes to gain new insight into the solution space involved in training and the nature of the corresponding predictions. In particular, we can define quantities analogous to molecular structure, thermodynamics, and kinetics, and relate these emergent properties to the structure of the underlying landscape. This Perspective aims to describe these analogies with examples from recent applications, and suggest avenues for new interdisciplinary research.

  3. Defining Higher-Order Turbulent Moment Closures with an Artificial Neural Network and Random Forest

    NASA Astrophysics Data System (ADS)

    McGibbon, J.; Bretherton, C. S.

    2017-12-01

    Unresolved turbulent advection and clouds must be parameterized in atmospheric models. Modern higher-order closure schemes depend on analytic moment closure assumptions that diagnose higher-order moments in terms of lower-order ones. These are then tested against Large-Eddy Simulation (LES) higher-order moment relations. However, these relations may not be neatly analytic in nature. Rather than rely on an analytic higher-order moment closure, can we use machine learning on LES data itself to define a higher-order moment closure?We assess the ability of a deep artificial neural network (NN) and random forest (RF) to perform this task using a set of observationally-based LES runs from the MAGIC field campaign. By training on a subset of 12 simulations and testing on remaining simulations, we avoid over-fitting the training data.Performance of the NN and RF will be assessed and compared to the Analytic Double Gaussian 1 (ADG1) closure assumed by Cloudy Layers Unified By Binormals (CLUBB), a higher-order turbulence closure currently used in the Community Atmosphere Model (CAM). We will show that the RF outperforms the NN and the ADG1 closure for the MAGIC cases within this diagnostic framework. Progress and challenges in using a diagnostic machine learning closure within a prognostic cloud and turbulence parameterization will also be discussed.

  4. A systematic approach to prioritize drug targets using machine learning, a molecular descriptor-based classification model, and high-throughput screening of plant derived molecules: a case study in oral cancer.

    PubMed

    Randhawa, Vinay; Kumar Singh, Anil; Acharya, Vishal

    2015-12-01

    Systems-biology inspired identification of drug targets and machine learning-based screening of small molecules which modulate their activity have the potential to revolutionize modern drug discovery by complementing conventional methods. To utilize the effectiveness of such pipelines, we first analyzed the dysregulated gene pairs between control and tumor samples and then implemented an ensemble-based feature selection approach to prioritize targets in oral squamous cell carcinoma (OSCC) for therapeutic exploration. Based on the structural information of known inhibitors of CXCR4-one of the best targets identified in this study-a feature selection was implemented for the identification of optimal structural features (molecular descriptor) based on which a classification model was generated. Furthermore, the CXCR4-centered descriptor-based classification model was finally utilized to screen a repository of plant derived small-molecules to obtain potential inhibitors. The application of our methodology may assist effective selection of the best targets which may have previously been overlooked, that in turn will lead to the development of new oral cancer medications. The small molecules identified in this study can be ideal candidates for trials as potential novel anti-oral cancer agents. Importantly, distinct steps of this whole study may provide reference for the analysis of other complex human diseases.

  5. Motor-response learning at a process control panel by an autonomous robot

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spelt, P.F.; de Saussure, G.; Lyness, E.

    1988-01-01

    The Center for Engineering Systems Advanced Research (CESAR) was founded at Oak Ridge National Laboratory (ORNL) by the Department of Energy's Office of Energy Research/Division of Engineering and Geoscience (DOE-OER/DEG) to conduct basic research in the area of intelligent machines. Therefore, researchers at the CESAR Laboratory are engaged in a variety of research activities in the field of machine learning. In this paper, we describe our approach to a class of machine learning which involves motor response acquisition using feedback from trial-and-error learning. Our formulation is being experimentally validated using an autonomous robot, learning tasks of control panel monitoring andmore » manipulation for effect process control. The CLIPS Expert System and the associated knowledge base used by the robot in the learning process, which reside in a hypercube computer aboard the robot, are described in detail. Benchmark testing of the learning process on a robot/control panel simulation system consisting of two intercommunicating computers is presented, along with results of sample problems used to train and test the expert system. These data illustrate machine learning and the resulting performance improvement in the robot for problems similar to, but not identical with, those on which the robot was trained. Conclusions are drawn concerning the learning problems, and implications for future work on machine learning for autonomous robots are discussed. 16 refs., 4 figs., 1 tab.« less

  6. The New Possibilities from "Big Data" to Overlooked Associations Between Diabetes, Biochemical Parameters, Glucose Control, and Osteoporosis.

    PubMed

    Kruse, Christian

    2018-06-01

    To review current practices and technologies within the scope of "Big Data" that can further our understanding of diabetes mellitus and osteoporosis from large volumes of data. "Big Data" techniques involving supervised machine learning, unsupervised machine learning, and deep learning image analysis are presented with examples of current literature. Supervised machine learning can allow us to better predict diabetes-induced osteoporosis and understand relative predictor importance of diabetes-affected bone tissue. Unsupervised machine learning can allow us to understand patterns in data between diabetic pathophysiology and altered bone metabolism. Image analysis using deep learning can allow us to be less dependent on surrogate predictors and use large volumes of images to classify diabetes-induced osteoporosis and predict future outcomes directly from images. "Big Data" techniques herald new possibilities to understand diabetes-induced osteoporosis and ascertain our current ability to classify, understand, and predict this condition.

  7. Vowel Imagery Decoding toward Silent Speech BCI Using Extreme Learning Machine with Electroencephalogram

    PubMed Central

    Kim, Jongin; Park, Hyeong-jun

    2016-01-01

    The purpose of this study is to classify EEG data on imagined speech in a single trial. We recorded EEG data while five subjects imagined different vowels, /a/, /e/, /i/, /o/, and /u/. We divided each single trial dataset into thirty segments and extracted features (mean, variance, standard deviation, and skewness) from all segments. To reduce the dimension of the feature vector, we applied a feature selection algorithm based on the sparse regression model. These features were classified using a support vector machine with a radial basis function kernel, an extreme learning machine, and two variants of an extreme learning machine with different kernels. Because each single trial consisted of thirty segments, our algorithm decided the label of the single trial by selecting the most frequent output among the outputs of the thirty segments. As a result, we observed that the extreme learning machine and its variants achieved better classification rates than the support vector machine with a radial basis function kernel and linear discrimination analysis. Thus, our results suggested that EEG responses to imagined speech could be successfully classified in a single trial using an extreme learning machine with a radial basis function and linear kernel. This study with classification of imagined speech might contribute to the development of silent speech BCI systems. PMID:28097128

  8. Validating Machine Learning Algorithms for Twitter Data Against Established Measures of Suicidality.

    PubMed

    Braithwaite, Scott R; Giraud-Carrier, Christophe; West, Josh; Barnes, Michael D; Hanson, Carl Lee

    2016-05-16

    One of the leading causes of death in the United States (US) is suicide and new methods of assessment are needed to track its risk in real time. Our objective is to validate the use of machine learning algorithms for Twitter data against empirically validated measures of suicidality in the US population. Using a machine learning algorithm, the Twitter feeds of 135 Mechanical Turk (MTurk) participants were compared with validated, self-report measures of suicide risk. Our findings show that people who are at high suicidal risk can be easily differentiated from those who are not by machine learning algorithms, which accurately identify the clinically significant suicidal rate in 92% of cases (sensitivity: 53%, specificity: 97%, positive predictive value: 75%, negative predictive value: 93%). Machine learning algorithms are efficient in differentiating people who are at a suicidal risk from those who are not. Evidence for suicidality can be measured in nonclinical populations using social media data.

  9. Validating Machine Learning Algorithms for Twitter Data Against Established Measures of Suicidality

    PubMed Central

    2016-01-01

    Background One of the leading causes of death in the United States (US) is suicide and new methods of assessment are needed to track its risk in real time. Objective Our objective is to validate the use of machine learning algorithms for Twitter data against empirically validated measures of suicidality in the US population. Methods Using a machine learning algorithm, the Twitter feeds of 135 Mechanical Turk (MTurk) participants were compared with validated, self-report measures of suicide risk. Results Our findings show that people who are at high suicidal risk can be easily differentiated from those who are not by machine learning algorithms, which accurately identify the clinically significant suicidal rate in 92% of cases (sensitivity: 53%, specificity: 97%, positive predictive value: 75%, negative predictive value: 93%). Conclusions Machine learning algorithms are efficient in differentiating people who are at a suicidal risk from those who are not. Evidence for suicidality can be measured in nonclinical populations using social media data. PMID:27185366

  10. Radar detection with the Neyman-Pearson criterion using supervised-learning-machines trained with the cross-entropy error

    NASA Astrophysics Data System (ADS)

    Jarabo-Amores, María-Pilar; la Mata-Moya, David de; Gil-Pita, Roberto; Rosa-Zurera, Manuel

    2013-12-01

    The application of supervised learning machines trained to minimize the Cross-Entropy error to radar detection is explored in this article. The detector is implemented with a learning machine that implements a discriminant function, which output is compared to a threshold selected to fix a desired probability of false alarm. The study is based on the calculation of the function the learning machine approximates to during training, and the application of a sufficient condition for a discriminant function to be used to approximate the optimum Neyman-Pearson (NP) detector. In this article, the function a supervised learning machine approximates to after being trained to minimize the Cross-Entropy error is obtained. This discriminant function can be used to implement the NP detector, which maximizes the probability of detection, maintaining the probability of false alarm below or equal to a predefined value. Some experiments about signal detection using neural networks are also presented to test the validity of the study.

  11. AstroML: Python-powered Machine Learning for Astronomy

    NASA Astrophysics Data System (ADS)

    Vander Plas, Jake; Connolly, A. J.; Ivezic, Z.

    2014-01-01

    As astronomical data sets grow in size and complexity, automated machine learning and data mining methods are becoming an increasingly fundamental component of research in the field. The astroML project (http://astroML.org) provides a common repository for practical examples of the data mining and machine learning tools used and developed by astronomical researchers, written in Python. The astroML module contains a host of general-purpose data analysis and machine learning routines, loaders for openly-available astronomical datasets, and fast implementations of specific computational methods often used in astronomy and astrophysics. The associated website features hundreds of examples of these routines being used for analysis of real astronomical datasets, while the associated textbook provides a curriculum resource for graduate-level courses focusing on practical statistics, machine learning, and data mining approaches within Astronomical research. This poster will highlight several of the more powerful and unique examples of analysis performed with astroML, all of which can be reproduced in their entirety on any computer with the proper packages installed.

  12. The impact of machine learning techniques in the study of bipolar disorder: A systematic review.

    PubMed

    Librenza-Garcia, Diego; Kotzian, Bruno Jaskulski; Yang, Jessica; Mwangi, Benson; Cao, Bo; Pereira Lima, Luiza Nunes; Bermudez, Mariane Bagatin; Boeira, Manuela Vianna; Kapczinski, Flávio; Passos, Ives Cavalcante

    2017-09-01

    Machine learning techniques provide new methods to predict diagnosis and clinical outcomes at an individual level. We aim to review the existing literature on the use of machine learning techniques in the assessment of subjects with bipolar disorder. We systematically searched PubMed, Embase and Web of Science for articles published in any language up to January 2017. We found 757 abstracts and included 51 studies in our review. Most of the included studies used multiple levels of biological data to distinguish the diagnosis of bipolar disorder from other psychiatric disorders or healthy controls. We also found studies that assessed the prediction of clinical outcomes and studies using unsupervised machine learning to build more consistent clinical phenotypes of bipolar disorder. We concluded that given the clinical heterogeneity of samples of patients with BD, machine learning techniques may provide clinicians and researchers with important insights in fields such as diagnosis, personalized treatment and prognosis orientation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Machine learning for neuroimaging with scikit-learn.

    PubMed

    Abraham, Alexandre; Pedregosa, Fabian; Eickenberg, Michael; Gervais, Philippe; Mueller, Andreas; Kossaifi, Jean; Gramfort, Alexandre; Thirion, Bertrand; Varoquaux, Gaël

    2014-01-01

    Statistical machine learning methods are increasingly used for neuroimaging data analysis. Their main virtue is their ability to model high-dimensional datasets, e.g., multivariate analysis of activation images or resting-state time series. Supervised learning is typically used in decoding or encoding settings to relate brain images to behavioral or clinical observations, while unsupervised learning can uncover hidden structures in sets of images (e.g., resting state functional MRI) or find sub-populations in large cohorts. By considering different functional neuroimaging applications, we illustrate how scikit-learn, a Python machine learning library, can be used to perform some key analysis steps. Scikit-learn contains a very large set of statistical learning algorithms, both supervised and unsupervised, and its application to neuroimaging data provides a versatile tool to study the brain.

  14. Machine learning for neuroimaging with scikit-learn

    PubMed Central

    Abraham, Alexandre; Pedregosa, Fabian; Eickenberg, Michael; Gervais, Philippe; Mueller, Andreas; Kossaifi, Jean; Gramfort, Alexandre; Thirion, Bertrand; Varoquaux, Gaël

    2014-01-01

    Statistical machine learning methods are increasingly used for neuroimaging data analysis. Their main virtue is their ability to model high-dimensional datasets, e.g., multivariate analysis of activation images or resting-state time series. Supervised learning is typically used in decoding or encoding settings to relate brain images to behavioral or clinical observations, while unsupervised learning can uncover hidden structures in sets of images (e.g., resting state functional MRI) or find sub-populations in large cohorts. By considering different functional neuroimaging applications, we illustrate how scikit-learn, a Python machine learning library, can be used to perform some key analysis steps. Scikit-learn contains a very large set of statistical learning algorithms, both supervised and unsupervised, and its application to neuroimaging data provides a versatile tool to study the brain. PMID:24600388

  15. Machine learning methods for the classification of gliomas: Initial results using features extracted from MR spectroscopy.

    PubMed

    Ranjith, G; Parvathy, R; Vikas, V; Chandrasekharan, Kesavadas; Nair, Suresh

    2015-04-01

    With the advent of new imaging modalities, radiologists are faced with handling increasing volumes of data for diagnosis and treatment planning. The use of automated and intelligent systems is becoming essential in such a scenario. Machine learning, a branch of artificial intelligence, is increasingly being used in medical image analysis applications such as image segmentation, registration and computer-aided diagnosis and detection. Histopathological analysis is currently the gold standard for classification of brain tumors. The use of machine learning algorithms along with extraction of relevant features from magnetic resonance imaging (MRI) holds promise of replacing conventional invasive methods of tumor classification. The aim of the study is to classify gliomas into benign and malignant types using MRI data. Retrospective data from 28 patients who were diagnosed with glioma were used for the analysis. WHO Grade II (low-grade astrocytoma) was classified as benign while Grade III (anaplastic astrocytoma) and Grade IV (glioblastoma multiforme) were classified as malignant. Features were extracted from MR spectroscopy. The classification was done using four machine learning algorithms: multilayer perceptrons, support vector machine, random forest and locally weighted learning. Three of the four machine learning algorithms gave an area under ROC curve in excess of 0.80. Random forest gave the best performance in terms of AUC (0.911) while sensitivity was best for locally weighted learning (86.1%). The performance of different machine learning algorithms in the classification of gliomas is promising. An even better performance may be expected by integrating features extracted from other MR sequences. © The Author(s) 2015 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  16. Use of Advanced Machine-Learning Techniques for Non-Invasive Monitoring of Hemorrhage

    DTIC Science & Technology

    2010-04-01

    that state-of-the-art machine learning techniques when integrated with novel non-invasive monitoring technologies could detect subtle, physiological...decompensation. Continuous, non-invasively measured hemodynamic signals (e.g., ECG, blood pressures, stroke volume) were used for the development of machine ... learning algorithms. Accuracy estimates were obtained by building models using 27 subjects and testing on the 28th. This process was repeated 28 times

  17. A Hybrid Method for Opinion Finding Task (KUNLP at TREC 2008 Blog Track)

    DTIC Science & Technology

    2008-11-01

    retrieve relevant documents. For the Opinion Retrieval subtask, we propose a hybrid model of lexicon-based approach and machine learning approach for...estimating and ranking the opinionated documents. For the Polarized Opinion Retrieval subtask, we employ machine learning for predicting the polarity...and linear combination technique for ranking polar documents. The hybrid model which utilize both lexicon-based approach and machine learning approach

  18. Time of Flight Estimation in the Presence of Outliers: A Biosonar-Inspired Machine Learning Approach

    DTIC Science & Technology

    2013-08-29

    REPORT Time of Flight Estimation in the Presence of Outliers: A biosonar -inspired machine learning approach 14. ABSTRACT 16. SECURITY CLASSIFICATION OF...installations, biosonar , remote sensing, sonar resolution, sonar accuracy, sonar energy consumption Nathan Intrator, Leon N Cooper Brown University...Presence of Outliers: A biosonar -inspired machine learning approach Report Title ABSTRACT When the Signal-to-Noise Ratio (SNR) falls below a certain

  19. Development and validation of a machine learning algorithm and hybrid system to predict the need for life-saving interventions in trauma patients.

    PubMed

    Liu, Nehemiah T; Holcomb, John B; Wade, Charles E; Batchinsky, Andriy I; Cancio, Leopoldo C; Darrah, Mark I; Salinas, José

    2014-02-01

    Accurate and effective diagnosis of actual injury severity can be problematic in trauma patients. Inherent physiologic compensatory mechanisms may prevent accurate diagnosis and mask true severity in many circumstances. The objective of this project was the development and validation of a multiparameter machine learning algorithm and system capable of predicting the need for life-saving interventions (LSIs) in trauma patients. Statistics based on means, slopes, and maxima of various vital sign measurements corresponding to 79 trauma patient records generated over 110,000 feature sets, which were used to develop, train, and implement the system. Comparisons among several machine learning models proved that a multilayer perceptron would best implement the algorithm in a hybrid system consisting of a machine learning component and basic detection rules. Additionally, 295,994 feature sets from 82 h of trauma patient data showed that the system can obtain 89.8 % accuracy within 5 min of recorded LSIs. Use of machine learning technologies combined with basic detection rules provides a potential approach for accurately assessing the need for LSIs in trauma patients. The performance of this system demonstrates that machine learning technology can be implemented in a real-time fashion and potentially used in a critical care environment.

  20. Hybrid forecasting of chaotic processes: Using machine learning in conjunction with a knowledge-based model

    NASA Astrophysics Data System (ADS)

    Pathak, Jaideep; Wikner, Alexander; Fussell, Rebeckah; Chandra, Sarthak; Hunt, Brian R.; Girvan, Michelle; Ott, Edward

    2018-04-01

    A model-based approach to forecasting chaotic dynamical systems utilizes knowledge of the mechanistic processes governing the dynamics to build an approximate mathematical model of the system. In contrast, machine learning techniques have demonstrated promising results for forecasting chaotic systems purely from past time series measurements of system state variables (training data), without prior knowledge of the system dynamics. The motivation for this paper is the potential of machine learning for filling in the gaps in our underlying mechanistic knowledge that cause widely-used knowledge-based models to be inaccurate. Thus, we here propose a general method that leverages the advantages of these two approaches by combining a knowledge-based model and a machine learning technique to build a hybrid forecasting scheme. Potential applications for such an approach are numerous (e.g., improving weather forecasting). We demonstrate and test the utility of this approach using a particular illustrative version of a machine learning known as reservoir computing, and we apply the resulting hybrid forecaster to a low-dimensional chaotic system, as well as to a high-dimensional spatiotemporal chaotic system. These tests yield extremely promising results in that our hybrid technique is able to accurately predict for a much longer period of time than either its machine-learning component or its model-based component alone.

  1. Machine learning enhanced optical distance sensor

    NASA Astrophysics Data System (ADS)

    Amin, M. Junaid; Riza, N. A.

    2018-01-01

    Presented for the first time is a machine learning enhanced optical distance sensor. The distance sensor is based on our previously demonstrated distance measurement technique that uses an Electronically Controlled Variable Focus Lens (ECVFL) with a laser source to illuminate a target plane with a controlled optical beam spot. This spot with varying spot sizes is viewed by an off-axis camera and the spot size data is processed to compute the distance. In particular, proposed and demonstrated in this paper is the use of a regularized polynomial regression based supervised machine learning algorithm to enhance the accuracy of the operational sensor. The algorithm uses the acquired features and corresponding labels that are the actual target distance values to train a machine learning model. The optimized training model is trained over a 1000 mm (or 1 m) experimental target distance range. Using the machine learning algorithm produces a training set and testing set distance measurement errors of <0.8 mm and <2.2 mm, respectively. The test measurement error is at least a factor of 4 improvement over our prior sensor demonstration without the use of machine learning. Applications for the proposed sensor include industrial scenario distance sensing where target material specific training models can be generated to realize low <1% measurement error distance measurements.

  2. Moving beyond regression techniques in cardiovascular risk prediction: applying machine learning to address analytic challenges

    PubMed Central

    Goldstein, Benjamin A.; Navar, Ann Marie; Carter, Rickey E.

    2017-01-01

    Abstract Risk prediction plays an important role in clinical cardiology research. Traditionally, most risk models have been based on regression models. While useful and robust, these statistical methods are limited to using a small number of predictors which operate in the same way on everyone, and uniformly throughout their range. The purpose of this review is to illustrate the use of machine-learning methods for development of risk prediction models. Typically presented as black box approaches, most machine-learning methods are aimed at solving particular challenges that arise in data analysis that are not well addressed by typical regression approaches. To illustrate these challenges, as well as how different methods can address them, we consider trying to predicting mortality after diagnosis of acute myocardial infarction. We use data derived from our institution's electronic health record and abstract data on 13 regularly measured laboratory markers. We walk through different challenges that arise in modelling these data and then introduce different machine-learning approaches. Finally, we discuss general issues in the application of machine-learning methods including tuning parameters, loss functions, variable importance, and missing data. Overall, this review serves as an introduction for those working on risk modelling to approach the diffuse field of machine learning. PMID:27436868

  3. Osteoporosis risk prediction using machine learning and conventional methods.

    PubMed

    Kim, Sung Kean; Yoo, Tae Keun; Oh, Ein; Kim, Deok Won

    2013-01-01

    A number of clinical decision tools for osteoporosis risk assessment have been developed to select postmenopausal women for the measurement of bone mineral density. We developed and validated machine learning models with the aim of more accurately identifying the risk of osteoporosis in postmenopausal women, and compared with the ability of a conventional clinical decision tool, osteoporosis self-assessment tool (OST). We collected medical records from Korean postmenopausal women based on the Korea National Health and Nutrition Surveys (KNHANES V-1). The training data set was used to construct models based on popular machine learning algorithms such as support vector machines (SVM), random forests (RF), artificial neural networks (ANN), and logistic regression (LR) based on various predictors associated with low bone density. The learning models were compared with OST. SVM had significantly better area under the curve (AUC) of the receiver operating characteristic (ROC) than ANN, LR, and OST. Validation on the test set showed that SVM predicted osteoporosis risk with an AUC of 0.827, accuracy of 76.7%, sensitivity of 77.8%, and specificity of 76.0%. We were the first to perform comparisons of the performance of osteoporosis prediction between the machine learning and conventional methods using population-based epidemiological data. The machine learning methods may be effective tools for identifying postmenopausal women at high risk for osteoporosis.

  4. Application of Machine Learning to Proteomics Data: Classification and Biomarker Identification in Postgenomics Biology

    PubMed Central

    Swan, Anna Louise; Mobasheri, Ali; Allaway, David; Liddell, Susan

    2013-01-01

    Abstract Mass spectrometry is an analytical technique for the characterization of biological samples and is increasingly used in omics studies because of its targeted, nontargeted, and high throughput abilities. However, due to the large datasets generated, it requires informatics approaches such as machine learning techniques to analyze and interpret relevant data. Machine learning can be applied to MS-derived proteomics data in two ways. First, directly to mass spectral peaks and second, to proteins identified by sequence database searching, although relative protein quantification is required for the latter. Machine learning has been applied to mass spectrometry data from different biological disciplines, particularly for various cancers. The aims of such investigations have been to identify biomarkers and to aid in diagnosis, prognosis, and treatment of specific diseases. This review describes how machine learning has been applied to proteomics tandem mass spectrometry data. This includes how it can be used to identify proteins suitable for use as biomarkers of disease and for classification of samples into disease or treatment groups, which may be applicable for diagnostics. It also includes the challenges faced by such investigations, such as prediction of proteins present, protein quantification, planning for the use of machine learning, and small sample sizes. PMID:24116388

  5. PMLB: a large benchmark suite for machine learning evaluation and comparison.

    PubMed

    Olson, Randal S; La Cava, William; Orzechowski, Patryk; Urbanowicz, Ryan J; Moore, Jason H

    2017-01-01

    The selection, development, or comparison of machine learning methods in data mining can be a difficult task based on the target problem and goals of a particular study. Numerous publicly available real-world and simulated benchmark datasets have emerged from different sources, but their organization and adoption as standards have been inconsistent. As such, selecting and curating specific benchmarks remains an unnecessary burden on machine learning practitioners and data scientists. The present study introduces an accessible, curated, and developing public benchmark resource to facilitate identification of the strengths and weaknesses of different machine learning methodologies. We compare meta-features among the current set of benchmark datasets in this resource to characterize the diversity of available data. Finally, we apply a number of established machine learning methods to the entire benchmark suite and analyze how datasets and algorithms cluster in terms of performance. From this study, we find that existing benchmarks lack the diversity to properly benchmark machine learning algorithms, and there are several gaps in benchmarking problems that still need to be considered. This work represents another important step towards understanding the limitations of popular benchmarking suites and developing a resource that connects existing benchmarking standards to more diverse and efficient standards in the future.

  6. Distributed learning and multi-objectivity in traffic light control

    NASA Astrophysics Data System (ADS)

    Brys, Tim; Pham, Tong T.; Taylor, Matthew E.

    2014-01-01

    Traffic jams and suboptimal traffic flows are ubiquitous in modern societies, and they create enormous economic losses each year. Delays at traffic lights alone account for roughly 10% of all delays in US traffic. As most traffic light scheduling systems currently in use are static, set up by human experts rather than being adaptive, the interest in machine learning approaches to this problem has increased in recent years. Reinforcement learning (RL) approaches are often used in these studies, as they require little pre-existing knowledge about traffic flows. Distributed constraint optimisation approaches (DCOP) have also been shown to be successful, but are limited to cases where the traffic flows are known. The distributed coordination of exploration and exploitation (DCEE) framework was recently proposed to introduce learning in the DCOP framework. In this paper, we present a study of DCEE and RL techniques in a complex simulator, illustrating the particular advantages of each, comparing them against standard isolated traffic actuated signals. We analyse how learning and coordination behave under different traffic conditions, and discuss the multi-objective nature of the problem. Finally we evaluate several alternative reward signals in the best performing approach, some of these taking advantage of the correlation between the problem-inherent objectives to improve performance.

  7. A Comparison of a Machine Learning Model with EuroSCORE II in Predicting Mortality after Elective Cardiac Surgery: A Decision Curve Analysis

    PubMed Central

    Allyn, Jérôme; Allou, Nicolas; Augustin, Pascal; Philip, Ivan; Martinet, Olivier; Belghiti, Myriem; Provenchere, Sophie; Montravers, Philippe; Ferdynus, Cyril

    2017-01-01

    Background The benefits of cardiac surgery are sometimes difficult to predict and the decision to operate on a given individual is complex. Machine Learning and Decision Curve Analysis (DCA) are recent methods developed to create and evaluate prediction models. Methods and finding We conducted a retrospective cohort study using a prospective collected database from December 2005 to December 2012, from a cardiac surgical center at University Hospital. The different models of prediction of mortality in-hospital after elective cardiac surgery, including EuroSCORE II, a logistic regression model and a machine learning model, were compared by ROC and DCA. Of the 6,520 patients having elective cardiac surgery with cardiopulmonary bypass, 6.3% died. Mean age was 63.4 years old (standard deviation 14.4), and mean EuroSCORE II was 3.7 (4.8) %. The area under ROC curve (IC95%) for the machine learning model (0.795 (0.755–0.834)) was significantly higher than EuroSCORE II or the logistic regression model (respectively, 0.737 (0.691–0.783) and 0.742 (0.698–0.785), p < 0.0001). Decision Curve Analysis showed that the machine learning model, in this monocentric study, has a greater benefit whatever the probability threshold. Conclusions According to ROC and DCA, machine learning model is more accurate in predicting mortality after elective cardiac surgery than EuroSCORE II. These results confirm the use of machine learning methods in the field of medical prediction. PMID:28060903

  8. Creating Situational Awareness in Spacecraft Operations with the Machine Learning Approach

    NASA Astrophysics Data System (ADS)

    Li, Z.

    2016-09-01

    This paper presents a machine learning approach for the situational awareness capability in spacecraft operations. There are two types of time dependent data patterns for spacecraft datasets: the absolute time pattern (ATP) and the relative time pattern (RTP). The machine learning captures the data patterns of the satellite datasets through the data training during the normal operations, which is represented by its time dependent trend. The data monitoring compares the values of the incoming data with the predictions of machine learning algorithm, which can detect any meaningful changes to a dataset above the noise level. If the difference between the value of incoming telemetry and the machine learning prediction are larger than the threshold defined by the standard deviation of datasets, it could indicate the potential anomaly that may need special attention. The application of the machine-learning approach to the Advanced Himawari Imager (AHI) on Japanese Himawari spacecraft series is presented, which has the same configuration as the Advanced Baseline Imager (ABI) on Geostationary Environment Operational Satellite (GOES) R series. The time dependent trends generated by the data-training algorithm are in excellent agreement with the datasets. The standard deviation in the time dependent trend provides a metric for measuring the data quality, which is particularly useful in evaluating the detector quality for both AHI and ABI with multiple detectors in each channel. The machine-learning approach creates the situational awareness capability, and enables engineers to handle the huge data volume that would have been impossible with the existing approach, and it leads to significant advances to more dynamic, proactive, and autonomous spacecraft operations.

  9. Study of Environmental Data Complexity using Extreme Learning Machine

    NASA Astrophysics Data System (ADS)

    Leuenberger, Michael; Kanevski, Mikhail

    2017-04-01

    The main goals of environmental data science using machine learning algorithm deal, in a broad sense, around the calibration, the prediction and the visualization of hidden relationship between input and output variables. In order to optimize the models and to understand the phenomenon under study, the characterization of the complexity (at different levels) should be taken into account. Therefore, the identification of the linear or non-linear behavior between input and output variables adds valuable information for the knowledge of the phenomenon complexity. The present research highlights and investigates the different issues that can occur when identifying the complexity (linear/non-linear) of environmental data using machine learning algorithm. In particular, the main attention is paid to the description of a self-consistent methodology for the use of Extreme Learning Machines (ELM, Huang et al., 2006), which recently gained a great popularity. By applying two ELM models (with linear and non-linear activation functions) and by comparing their efficiency, quantification of the linearity can be evaluated. The considered approach is accompanied by simulated and real high dimensional and multivariate data case studies. In conclusion, the current challenges and future development in complexity quantification using environmental data mining are discussed. References - Huang, G.-B., Zhu, Q.-Y., Siew, C.-K., 2006. Extreme learning machine: theory and applications. Neurocomputing 70 (1-3), 489-501. - Kanevski, M., Pozdnoukhov, A., Timonin, V., 2009. Machine Learning for Spatial Environmental Data. EPFL Press; Lausanne, Switzerland, p.392. - Leuenberger, M., Kanevski, M., 2015. Extreme Learning Machines for spatial environmental data. Computers and Geosciences 85, 64-73.

  10. Deep Learning Accurately Predicts Estrogen Receptor Status in Breast Cancer Metabolomics Data.

    PubMed

    Alakwaa, Fadhl M; Chaudhary, Kumardeep; Garmire, Lana X

    2018-01-05

    Metabolomics holds the promise as a new technology to diagnose highly heterogeneous diseases. Conventionally, metabolomics data analysis for diagnosis is done using various statistical and machine learning based classification methods. However, it remains unknown if deep neural network, a class of increasingly popular machine learning methods, is suitable to classify metabolomics data. Here we use a cohort of 271 breast cancer tissues, 204 positive estrogen receptor (ER+), and 67 negative estrogen receptor (ER-) to test the accuracies of feed-forward networks, a deep learning (DL) framework, as well as six widely used machine learning models, namely random forest (RF), support vector machines (SVM), recursive partitioning and regression trees (RPART), linear discriminant analysis (LDA), prediction analysis for microarrays (PAM), and generalized boosted models (GBM). DL framework has the highest area under the curve (AUC) of 0.93 in classifying ER+/ER- patients, compared to the other six machine learning algorithms. Furthermore, the biological interpretation of the first hidden layer reveals eight commonly enriched significant metabolomics pathways (adjusted P-value <0.05) that cannot be discovered by other machine learning methods. Among them, protein digestion and absorption and ATP-binding cassette (ABC) transporters pathways are also confirmed in integrated analysis between metabolomics and gene expression data in these samples. In summary, deep learning method shows advantages for metabolomics based breast cancer ER status classification, with both the highest prediction accuracy (AUC = 0.93) and better revelation of disease biology. We encourage the adoption of feed-forward networks based deep learning method in the metabolomics research community for classification.

  11. Machine Learning Algorithms Outperform Conventional Regression Models in Predicting Development of Hepatocellular Carcinoma

    PubMed Central

    Singal, Amit G.; Mukherjee, Ashin; Elmunzer, B. Joseph; Higgins, Peter DR; Lok, Anna S.; Zhu, Ji; Marrero, Jorge A; Waljee, Akbar K

    2015-01-01

    Background Predictive models for hepatocellular carcinoma (HCC) have been limited by modest accuracy and lack of validation. Machine learning algorithms offer a novel methodology, which may improve HCC risk prognostication among patients with cirrhosis. Our study's aim was to develop and compare predictive models for HCC development among cirrhotic patients, using conventional regression analysis and machine learning algorithms. Methods We enrolled 442 patients with Child A or B cirrhosis at the University of Michigan between January 2004 and September 2006 (UM cohort) and prospectively followed them until HCC development, liver transplantation, death, or study termination. Regression analysis and machine learning algorithms were used to construct predictive models for HCC development, which were tested on an independent validation cohort from the Hepatitis C Antiviral Long-term Treatment against Cirrhosis (HALT-C) Trial. Both models were also compared to the previously published HALT-C model. Discrimination was assessed using receiver operating characteristic curve analysis and diagnostic accuracy was assessed with net reclassification improvement and integrated discrimination improvement statistics. Results After a median follow-up of 3.5 years, 41 patients developed HCC. The UM regression model had a c-statistic of 0.61 (95%CI 0.56-0.67), whereas the machine learning algorithm had a c-statistic of 0.64 (95%CI 0.60–0.69) in the validation cohort. The machine learning algorithm had significantly better diagnostic accuracy as assessed by net reclassification improvement (p<0.001) and integrated discrimination improvement (p=0.04). The HALT-C model had a c-statistic of 0.60 (95%CI 0.50-0.70) in the validation cohort and was outperformed by the machine learning algorithm (p=0.047). Conclusion Machine learning algorithms improve the accuracy of risk stratifying patients with cirrhosis and can be used to accurately identify patients at high-risk for developing HCC. PMID:24169273

  12. A collaborative framework for Distributed Privacy-Preserving Support Vector Machine learning.

    PubMed

    Que, Jialan; Jiang, Xiaoqian; Ohno-Machado, Lucila

    2012-01-01

    A Support Vector Machine (SVM) is a popular tool for decision support. The traditional way to build an SVM model is to estimate parameters based on a centralized repository of data. However, in the field of biomedicine, patient data are sometimes stored in local repositories or institutions where they were collected, and may not be easily shared due to privacy concerns. This creates a substantial barrier for researchers to effectively learn from the distributed data using machine learning tools like SVMs. To overcome this difficulty and promote efficient information exchange without sharing sensitive raw data, we developed a Distributed Privacy Preserving Support Vector Machine (DPP-SVM). The DPP-SVM enables privacy-preserving collaborative learning, in which a trusted server integrates "privacy-insensitive" intermediary results. The globally learned model is guaranteed to be exactly the same as learned from combined data. We also provide a free web-service (http://privacy.ucsd.edu:8080/ppsvm/) for multiple participants to collaborate and complete the SVM-learning task in an efficient and privacy-preserving manner.

  13. Prediction of Driver’s Intention of Lane Change by Augmenting Sensor Information Using Machine Learning Techniques

    PubMed Central

    Kim, Il-Hwan; Bong, Jae-Hwan; Park, Jooyoung; Park, Shinsuk

    2017-01-01

    Driver assistance systems have become a major safety feature of modern passenger vehicles. The advanced driver assistance system (ADAS) is one of the active safety systems to improve the vehicle control performance and, thus, the safety of the driver and the passengers. To use the ADAS for lane change control, rapid and correct detection of the driver’s intention is essential. This study proposes a novel preprocessing algorithm for the ADAS to improve the accuracy in classifying the driver’s intention for lane change by augmenting basic measurements from conventional on-board sensors. The information on the vehicle states and the road surface condition is augmented by using an artificial neural network (ANN) models, and the augmented information is fed to a support vector machine (SVM) to detect the driver’s intention with high accuracy. The feasibility of the developed algorithm was tested through driving simulator experiments. The results show that the classification accuracy for the driver’s intention can be improved by providing an SVM model with sufficient driving information augmented by using ANN models of vehicle dynamics. PMID:28604582

  14. Automating Construction of Machine Learning Models With Clinical Big Data: Proposal Rationale and Methods

    PubMed Central

    Stone, Bryan L; Johnson, Michael D; Tarczy-Hornoch, Peter; Wilcox, Adam B; Mooney, Sean D; Sheng, Xiaoming; Haug, Peter J; Nkoy, Flory L

    2017-01-01

    Background To improve health outcomes and cut health care costs, we often need to conduct prediction/classification using large clinical datasets (aka, clinical big data), for example, to identify high-risk patients for preventive interventions. Machine learning has been proposed as a key technology for doing this. Machine learning has won most data science competitions and could support many clinical activities, yet only 15% of hospitals use it for even limited purposes. Despite familiarity with data, health care researchers often lack machine learning expertise to directly use clinical big data, creating a hurdle in realizing value from their data. Health care researchers can work with data scientists with deep machine learning knowledge, but it takes time and effort for both parties to communicate effectively. Facing a shortage in the United States of data scientists and hiring competition from companies with deep pockets, health care systems have difficulty recruiting data scientists. Building and generalizing a machine learning model often requires hundreds to thousands of manual iterations by data scientists to select the following: (1) hyper-parameter values and complex algorithms that greatly affect model accuracy and (2) operators and periods for temporally aggregating clinical attributes (eg, whether a patient’s weight kept rising in the past year). This process becomes infeasible with limited budgets. Objective This study’s goal is to enable health care researchers to directly use clinical big data, make machine learning feasible with limited budgets and data scientist resources, and realize value from data. Methods This study will allow us to achieve the following: (1) finish developing the new software, Automated Machine Learning (Auto-ML), to automate model selection for machine learning with clinical big data and validate Auto-ML on seven benchmark modeling problems of clinical importance; (2) apply Auto-ML and novel methodology to two new modeling problems crucial for care management allocation and pilot one model with care managers; and (3) perform simulations to estimate the impact of adopting Auto-ML on US patient outcomes. Results We are currently writing Auto-ML’s design document. We intend to finish our study by around the year 2022. Conclusions Auto-ML will generalize to various clinical prediction/classification problems. With minimal help from data scientists, health care researchers can use Auto-ML to quickly build high-quality models. This will boost wider use of machine learning in health care and improve patient outcomes. PMID:28851678

  15. Army Equipment Modernization Plan

    DTIC Science & Technology

    2013-01-01

    750 weapons. This weapon is approximately 60 percent lighter than the current weapon – the M2 Heavy Machine Gun . • $21.3M (WTCV) procures 12,000...key soldier Portfolio accomplishments (fY11/12): • Reduced Soldier load in Afghanistan by replac- ing 501 M240B Medium Machine Guns with Lightweight...lightening the Soldier load. » 5,000 additional .50 cal Machine guns supporting increased requirements for Theater and Sustainment, Protection and

  16. Decision making and problem solving with computer assistance

    NASA Technical Reports Server (NTRS)

    Kraiss, F.

    1980-01-01

    In modern guidance and control systems, the human as manager, supervisor, decision maker, problem solver and trouble shooter, often has to cope with a marginal mental workload. To improve this situation, computers should be used to reduce the operator from mental stress. This should not solely be done by increased automation, but by a reasonable sharing of tasks in a human-computer team, where the computer supports the human intelligence. Recent developments in this area are summarized. It is shown that interactive support of operator by intelligent computer is feasible during information evaluation, decision making and problem solving. The applied artificial intelligence algorithms comprehend pattern recognition and classification, adaptation and machine learning as well as dynamic and heuristic programming. Elementary examples are presented to explain basic principles.

  17. Transform Modern Language Learning through Mobile Devices

    ERIC Educational Resources Information Center

    Tuttle, Harry Grover

    2013-01-01

    College professors can transform their modern language classes through mobile devices. Their students' learning becomes more active, more personalized, more contextual, and more culturally authentic as illustrated through the author's modern language mobile learning classroom examples. In addition, their students engage in many diverse types of…

  18. Clocks to Computers: A Machine-Based “Big Picture” of the History of Modern Science.

    PubMed

    van Lunteren, Frans

    2016-12-01

    Over the last few decades there have been several calls for a “big picture” of the history of science. There is a general need for a concise overview of the rise of modern science, with a clear structure allowing for a rough division into periods. This essay proposes such a scheme, one that is both elementary and comprehensive. It focuses on four machines, which can be seen to have mediated between science and society during successive periods of time: the clock, the balance, the steam engine, and the computer. Following an extended developmental phase, each of these machines came to play a highly visible role in Western societies, both socially and economically. Each of these machines, moreover, was used as a powerful resource for the understanding of both inorganic and organic nature. More specifically, their metaphorical use helped to construe and refine some key concepts that would play a prominent role in such understanding. In each case the key concept would at some point be considered to represent the ultimate building block of reality. Finally, in a refined form, each of these machines would eventually make its entry in scientific research, thereby strengthening the ties between these machines and nature.

  19. Quantum Neural Network Based Machine Translator for Hindi to English

    PubMed Central

    Singh, V. P.; Chakraverty, S.

    2014-01-01

    This paper presents the machine learning based machine translation system for Hindi to English, which learns the semantically correct corpus. The quantum neural based pattern recognizer is used to recognize and learn the pattern of corpus, using the information of part of speech of individual word in the corpus, like a human. The system performs the machine translation using its knowledge gained during the learning by inputting the pair of sentences of Devnagri-Hindi and English. To analyze the effectiveness of the proposed approach, 2600 sentences have been evaluated during simulation and evaluation. The accuracy achieved on BLEU score is 0.7502, on NIST score is 6.5773, on ROUGE-L score is 0.9233, and on METEOR score is 0.5456, which is significantly higher in comparison with Google Translation and Bing Translation for Hindi to English Machine Translation. PMID:24977198

  20. Comparison of four machine learning methods for object-oriented change detection in high-resolution satellite imagery

    NASA Astrophysics Data System (ADS)

    Bai, Ting; Sun, Kaimin; Deng, Shiquan; Chen, Yan

    2018-03-01

    High resolution image change detection is one of the key technologies of remote sensing application, which is of great significance for resource survey, environmental monitoring, fine agriculture, military mapping and battlefield environment detection. In this paper, for high-resolution satellite imagery, Random Forest (RF), Support Vector Machine (SVM), Deep belief network (DBN), and Adaboost models were established to verify the possibility of different machine learning applications in change detection. In order to compare detection accuracy of four machine learning Method, we applied these four machine learning methods for two high-resolution images. The results shows that SVM has higher overall accuracy at small samples compared to RF, Adaboost, and DBN for binary and from-to change detection. With the increase in the number of samples, RF has higher overall accuracy compared to Adaboost, SVM and DBN.

  1. Predicting the dissolution kinetics of silicate glasses using machine learning

    NASA Astrophysics Data System (ADS)

    Anoop Krishnan, N. M.; Mangalathu, Sujith; Smedskjaer, Morten M.; Tandia, Adama; Burton, Henry; Bauchy, Mathieu

    2018-05-01

    Predicting the dissolution rates of silicate glasses in aqueous conditions is a complex task as the underlying mechanism(s) remain poorly understood and the dissolution kinetics can depend on a large number of intrinsic and extrinsic factors. Here, we assess the potential of data-driven models based on machine learning to predict the dissolution rates of various aluminosilicate glasses exposed to a wide range of solution pH values, from acidic to caustic conditions. Four classes of machine learning methods are investigated, namely, linear regression, support vector machine regression, random forest, and artificial neural network. We observe that, although linear methods all fail to describe the dissolution kinetics, the artificial neural network approach offers excellent predictions, thanks to its inherent ability to handle non-linear data. Overall, we suggest that a more extensive use of machine learning approaches could significantly accelerate the design of novel glasses with tailored properties.

  2. Identifying product order with restricted Boltzmann machines

    NASA Astrophysics Data System (ADS)

    Rao, Wen-Jia; Li, Zhenyu; Zhu, Qiong; Luo, Mingxing; Wan, Xin

    2018-03-01

    Unsupervised machine learning via a restricted Boltzmann machine is a useful tool in distinguishing an ordered phase from a disordered phase. Here we study its application on the two-dimensional Ashkin-Teller model, which features a partially ordered product phase. We train the neural network with spin configuration data generated by Monte Carlo simulations and show that distinct features of the product phase can be learned from nonergodic samples resulting from symmetry breaking. Careful analysis of the weight matrices inspires us to define a nontrivial machine-learning motivated quantity of the product form, which resembles the conventional product order parameter.

  3. Fifty years of computer analysis in chest imaging: rule-based, machine learning, deep learning.

    PubMed

    van Ginneken, Bram

    2017-03-01

    Half a century ago, the term "computer-aided diagnosis" (CAD) was introduced in the scientific literature. Pulmonary imaging, with chest radiography and computed tomography, has always been one of the focus areas in this field. In this study, I describe how machine learning became the dominant technology for tackling CAD in the lungs, generally producing better results than do classical rule-based approaches, and how the field is now rapidly changing: in the last few years, we have seen how even better results can be obtained with deep learning. The key differences among rule-based processing, machine learning, and deep learning are summarized and illustrated for various applications of CAD in the chest.

  4. Man Machine Systems in Education.

    ERIC Educational Resources Information Center

    Sall, Malkit S.

    This review of the research literature on the interaction between humans and computers discusses how man machine systems can be utilized effectively in the learning-teaching process, especially in secondary education. Beginning with a definition of man machine systems and comments on the poor quality of much of the computer-based learning material…

  5. Learning Machine, Vietnamese Based Human-Computer Interface.

    ERIC Educational Resources Information Center

    Northwest Regional Educational Lab., Portland, OR.

    The sixth session of IT@EDU98 consisted of seven papers on the topic of the learning machine--Vietnamese based human-computer interface, and was chaired by Phan Viet Hoang (Informatics College, Singapore). "Knowledge Based Approach for English Vietnamese Machine Translation" (Hoang Kiem, Dinh Dien) presents the knowledge base approach,…

  6. Accurate Identification of Cancerlectins through Hybrid Machine Learning Technology.

    PubMed

    Zhang, Jieru; Ju, Ying; Lu, Huijuan; Xuan, Ping; Zou, Quan

    2016-01-01

    Cancerlectins are cancer-related proteins that function as lectins. They have been identified through computational identification techniques, but these techniques have sometimes failed to identify proteins because of sequence diversity among the cancerlectins. Advanced machine learning identification methods, such as support vector machine and basic sequence features (n-gram), have also been used to identify cancerlectins. In this study, various protein fingerprint features and advanced classifiers, including ensemble learning techniques, were utilized to identify this group of proteins. We improved the prediction accuracy of the original feature extraction methods and classification algorithms by more than 10% on average. Our work provides a basis for the computational identification of cancerlectins and reveals the power of hybrid machine learning techniques in computational proteomics.

  7. Machine Learning: A Crucial Tool for Sensor Design

    PubMed Central

    Zhao, Weixiang; Bhushan, Abhinav; Santamaria, Anthony D.; Simon, Melinda G.; Davis, Cristina E.

    2009-01-01

    Sensors have been widely used for disease diagnosis, environmental quality monitoring, food quality control, industrial process analysis and control, and other related fields. As a key tool for sensor data analysis, machine learning is becoming a core part of novel sensor design. Dividing a complete machine learning process into three steps: data pre-treatment, feature extraction and dimension reduction, and system modeling, this paper provides a review of the methods that are widely used for each step. For each method, the principles and the key issues that affect modeling results are discussed. After reviewing the potential problems in machine learning processes, this paper gives a summary of current algorithms in this field and provides some feasible directions for future studies. PMID:20191110

  8. Machine learning for Big Data analytics in plants.

    PubMed

    Ma, Chuang; Zhang, Hao Helen; Wang, Xiangfeng

    2014-12-01

    Rapid advances in high-throughput genomic technology have enabled biology to enter the era of 'Big Data' (large datasets). The plant science community not only needs to build its own Big-Data-compatible parallel computing and data management infrastructures, but also to seek novel analytical paradigms to extract information from the overwhelming amounts of data. Machine learning offers promising computational and analytical solutions for the integrative analysis of large, heterogeneous and unstructured datasets on the Big-Data scale, and is gradually gaining popularity in biology. This review introduces the basic concepts and procedures of machine-learning applications and envisages how machine learning could interface with Big Data technology to facilitate basic research and biotechnology in the plant sciences. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Feasibility of Active Machine Learning for Multiclass Compound Classification.

    PubMed

    Lang, Tobias; Flachsenberg, Florian; von Luxburg, Ulrike; Rarey, Matthias

    2016-01-25

    A common task in the hit-to-lead process is classifying sets of compounds into multiple, usually structural classes, which build the groundwork for subsequent SAR studies. Machine learning techniques can be used to automate this process by learning classification models from training compounds of each class. Gathering class information for compounds can be cost-intensive as the required data needs to be provided by human experts or experiments. This paper studies whether active machine learning can be used to reduce the required number of training compounds. Active learning is a machine learning method which processes class label data in an iterative fashion. It has gained much attention in a broad range of application areas. In this paper, an active learning method for multiclass compound classification is proposed. This method selects informative training compounds so as to optimally support the learning progress. The combination with human feedback leads to a semiautomated interactive multiclass classification procedure. This method was investigated empirically on 15 compound classification tasks containing 86-2870 compounds in 3-38 classes. The empirical results show that active learning can solve these classification tasks using 10-80% of the data which would be necessary for standard learning techniques.

  10. Comparing machine learning and logistic regression methods for predicting hypertension using a combination of gene expression and next-generation sequencing data.

    PubMed

    Held, Elizabeth; Cape, Joshua; Tintle, Nathan

    2016-01-01

    Machine learning methods continue to show promise in the analysis of data from genetic association studies because of the high number of variables relative to the number of observations. However, few best practices exist for the application of these methods. We extend a recently proposed supervised machine learning approach for predicting disease risk by genotypes to be able to incorporate gene expression data and rare variants. We then apply 2 different versions of the approach (radial and linear support vector machines) to simulated data from Genetic Analysis Workshop 19 and compare performance to logistic regression. Method performance was not radically different across the 3 methods, although the linear support vector machine tended to show small gains in predictive ability relative to a radial support vector machine and logistic regression. Importantly, as the number of genes in the models was increased, even when those genes contained causal rare variants, model predictive ability showed a statistically significant decrease in performance for both the radial support vector machine and logistic regression. The linear support vector machine showed more robust performance to the inclusion of additional genes. Further work is needed to evaluate machine learning approaches on larger samples and to evaluate the relative improvement in model prediction from the incorporation of gene expression data.

  11. Paradigms for machine learning

    NASA Technical Reports Server (NTRS)

    Schlimmer, Jeffrey C.; Langley, Pat

    1991-01-01

    Five paradigms are described for machine learning: connectionist (neural network) methods, genetic algorithms and classifier systems, empirical methods for inducing rules and decision trees, analytic learning methods, and case-based approaches. Some dimensions are considered along with these paradigms vary in their approach to learning, and the basic methods are reviewed that are used within each framework, together with open research issues. It is argued that the similarities among the paradigms are more important than their differences, and that future work should attempt to bridge the existing boundaries. Finally, some recent developments in the field of machine learning are discussed, and their impact on both research and applications is examined.

  12. Introduction to the theory of machines and languages

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weidhaas, P. P.

    1976-04-01

    This text is intended to be an elementary ''guided tour'' through some basic concepts of modern computer science. Various models of computing machines and formal languages are studied in detail. Discussions center around questions such as, ''What is the scope of problems that can or cannot be solved by computers.''

  13. Predicting hydrofacies and hydraulic conductivity from direct-push data using a data-driven relevance vector machine approach: Motivations, algorithms, and application

    NASA Astrophysics Data System (ADS)

    Paradis, Daniel; Lefebvre, René; Gloaguen, Erwan; Rivera, Alfonso

    2015-01-01

    The spatial heterogeneity of hydraulic conductivity (K) exerts a major control on groundwater flow and solute transport. The heterogeneous spatial distribution of K can be imaged using indirect geophysical data as long as reliable relations exist to link geophysical data to K. This paper presents a nonparametric learning machine approach to predict aquifer K from cone penetrometer tests (CPT) coupled with a soil moisture and resistivity probe (SMR) using relevance vector machines (RVMs). The learning machine approach is demonstrated with an application to a heterogeneous unconsolidated littoral aquifer in a 12 km2 subwatershed, where relations between K and multiparameters CPT/SMR soundings appear complex. Our approach involved fuzzy clustering to define hydrofacies (HF) on the basis of CPT/SMR and K data prior to the training of RVMs for HFs recognition and K prediction on the basis of CPT/SMR data alone. The learning machine was built from a colocated training data set representative of the study area that includes K data from slug tests and CPT/SMR data up-scaled at a common vertical resolution of 15 cm with K data. After training, the predictive capabilities of the learning machine were assessed through cross validation with data withheld from the training data set and with K data from flowmeter tests not used during the training process. Results show that HF and K predictions from the learning machine are consistent with hydraulic tests. The combined use of CPT/SMR data and RVM-based learning machine proved to be powerful and efficient for the characterization of high-resolution K heterogeneity for unconsolidated aquifers.

  14. Machine-learning in grading of gliomas based on multi-parametric magnetic resonance imaging at 3T.

    PubMed

    Citak-Er, Fusun; Firat, Zeynep; Kovanlikaya, Ilhami; Ture, Ugur; Ozturk-Isik, Esin

    2018-06-15

    The objective of this study was to assess the contribution of multi-parametric (mp) magnetic resonance imaging (MRI) quantitative features in the machine learning-based grading of gliomas with a multi-region-of-interests approach. Forty-three patients who were newly diagnosed as having a glioma were included in this study. The patients were scanned prior to any therapy using a standard brain tumor magnetic resonance (MR) imaging protocol that included T1 and T2-weighted, diffusion-weighted, diffusion tensor, MR perfusion and MR spectroscopic imaging. Three different regions-of-interest were drawn for each subject to encompass tumor, immediate tumor periphery, and distant peritumoral edema/normal. The normalized mp-MRI features were used to build machine-learning models for differentiating low-grade gliomas (WHO grades I and II) from high grades (WHO grades III and IV). In order to assess the contribution of regional mp-MRI quantitative features to the classification models, a support vector machine-based recursive feature elimination method was applied prior to classification. A machine-learning model based on support vector machine algorithm with linear kernel achieved an accuracy of 93.0%, a specificity of 86.7%, and a sensitivity of 96.4% for the grading of gliomas using ten-fold cross validation based on the proposed subset of the mp-MRI features. In this study, machine-learning based on multiregional and multi-parametric MRI data has proven to be an important tool in grading glial tumors accurately even in this limited patient population. Future studies are needed to investigate the use of machine learning algorithms for brain tumor classification in a larger patient cohort. Copyright © 2018. Published by Elsevier Ltd.

  15. Use of personalized Dynamic Treatment Regimes (DTRs) and Sequential Multiple Assignment Randomized Trials (SMARTs) in mental health studies

    PubMed Central

    Liu, Ying; ZENG, Donglin; WANG, Yuanjia

    2014-01-01

    Summary Dynamic treatment regimens (DTRs) are sequential decision rules tailored at each point where a clinical decision is made based on each patient’s time-varying characteristics and intermediate outcomes observed at earlier points in time. The complexity, patient heterogeneity, and chronicity of mental disorders call for learning optimal DTRs to dynamically adapt treatment to an individual’s response over time. The Sequential Multiple Assignment Randomized Trial (SMARTs) design allows for estimating causal effects of DTRs. Modern statistical tools have been developed to optimize DTRs based on personalized variables and intermediate outcomes using rich data collected from SMARTs; these statistical methods can also be used to recommend tailoring variables for designing future SMART studies. This paper introduces DTRs and SMARTs using two examples in mental health studies, discusses two machine learning methods for estimating optimal DTR from SMARTs data, and demonstrates the performance of the statistical methods using simulated data. PMID:25642116

  16. A Simple Deep Learning Method for Neuronal Spike Sorting

    NASA Astrophysics Data System (ADS)

    Yang, Kai; Wu, Haifeng; Zeng, Yu

    2017-10-01

    Spike sorting is one of key technique to understand brain activity. With the development of modern electrophysiology technology, some recent multi-electrode technologies have been able to record the activity of thousands of neuronal spikes simultaneously. The spike sorting in this case will increase the computational complexity of conventional sorting algorithms. In this paper, we will focus spike sorting on how to reduce the complexity, and introduce a deep learning algorithm, principal component analysis network (PCANet) to spike sorting. The introduced method starts from a conventional model and establish a Toeplitz matrix. Through the column vectors in the matrix, we trains a PCANet, where some eigenvalue vectors of spikes could be extracted. Finally, support vector machine (SVM) is used to sort spikes. In experiments, we choose two groups of simulated data from public databases availably and compare this introduced method with conventional methods. The results indicate that the introduced method indeed has lower complexity with the same sorting errors as the conventional methods.

  17. Comparison of Deep Learning With Multiple Machine Learning Methods and Metrics Using Diverse Drug Discovery Data Sets.

    PubMed

    Korotcov, Alexandru; Tkachenko, Valery; Russo, Daniel P; Ekins, Sean

    2017-12-04

    Machine learning methods have been applied to many data sets in pharmaceutical research for several decades. The relative ease and availability of fingerprint type molecular descriptors paired with Bayesian methods resulted in the widespread use of this approach for a diverse array of end points relevant to drug discovery. Deep learning is the latest machine learning algorithm attracting attention for many of pharmaceutical applications from docking to virtual screening. Deep learning is based on an artificial neural network with multiple hidden layers and has found considerable traction for many artificial intelligence applications. We have previously suggested the need for a comparison of different machine learning methods with deep learning across an array of varying data sets that is applicable to pharmaceutical research. End points relevant to pharmaceutical research include absorption, distribution, metabolism, excretion, and toxicity (ADME/Tox) properties, as well as activity against pathogens and drug discovery data sets. In this study, we have used data sets for solubility, probe-likeness, hERG, KCNQ1, bubonic plague, Chagas, tuberculosis, and malaria to compare different machine learning methods using FCFP6 fingerprints. These data sets represent whole cell screens, individual proteins, physicochemical properties as well as a data set with a complex end point. Our aim was to assess whether deep learning offered any improvement in testing when assessed using an array of metrics including AUC, F1 score, Cohen's kappa, Matthews correlation coefficient and others. Based on ranked normalized scores for the metrics or data sets Deep Neural Networks (DNN) ranked higher than SVM, which in turn was ranked higher than all the other machine learning methods. Visualizing these properties for training and test sets using radar type plots indicates when models are inferior or perhaps over trained. These results also suggest the need for assessing deep learning further using multiple metrics with much larger scale comparisons, prospective testing as well as assessment of different fingerprints and DNN architectures beyond those used.

  18. Probability machines: consistent probability estimation using nonparametric learning machines.

    PubMed

    Malley, J D; Kruppa, J; Dasgupta, A; Malley, K G; Ziegler, A

    2012-01-01

    Most machine learning approaches only provide a classification for binary responses. However, probabilities are required for risk estimation using individual patient characteristics. It has been shown recently that every statistical learning machine known to be consistent for a nonparametric regression problem is a probability machine that is provably consistent for this estimation problem. The aim of this paper is to show how random forests and nearest neighbors can be used for consistent estimation of individual probabilities. Two random forest algorithms and two nearest neighbor algorithms are described in detail for estimation of individual probabilities. We discuss the consistency of random forests, nearest neighbors and other learning machines in detail. We conduct a simulation study to illustrate the validity of the methods. We exemplify the algorithms by analyzing two well-known data sets on the diagnosis of appendicitis and the diagnosis of diabetes in Pima Indians. Simulations demonstrate the validity of the method. With the real data application, we show the accuracy and practicality of this approach. We provide sample code from R packages in which the probability estimation is already available. This means that all calculations can be performed using existing software. Random forest algorithms as well as nearest neighbor approaches are valid machine learning methods for estimating individual probabilities for binary responses. Freely available implementations are available in R and may be used for applications.

  19. A cost-effective, accurate machine for testing the torsional strength of sheep long bones.

    PubMed

    Jämsä, T; Jalovaara, P

    1996-07-01

    A cost-effective torsional testing machine for sheep long bones was constructed. The machine was fabricated on a disused standard turning lathe. The angular speed used was 6.5 degrees/s. A precision amplifier using modern low-noise, low-drift operational amplifiers was developed. The maximum torsional load was 250 Nm, the sensitivity 0.5 Nm and the total machine inaccuracy less than 1.0%. The standard error of torsional testing was 3.0% when seven pairs of intact sheep tibiae were tested.

  20. Study on Electro-polymerization Nano-micro Wiring System Imitating Axonal Growth of Artificial Neurons towards Machine Learning

    NASA Astrophysics Data System (ADS)

    Dang, Nguyen Tuan; Akai-Kasada, Megumi; Asai, Tetsuya; Saito, Akira; Kuwahara, Yuji; Hokkaido University Collaboration

    2015-03-01

    Machine learning using the artificial neuron network research is supposed to be the best way to understand how the human brain trains itself to process information. In this study, we have successfully developed the programs using supervised machine learning algorithm. However, these supervised learning processes for the neuron network required the very strong computing configuration. Derivation from the necessity of increasing in computing ability and in reduction of power consumption, accelerator circuits become critical. To develop such accelerator circuits using supervised machine learning algorithm, conducting polymer micro/nanowires growing process was realized and applied as a synaptic weigh controller. In this work, high conductivity Polypyrrole (PPy) and Poly (3, 4 - ethylenedioxythiophene) PEDOT wires were potentiostatically grown crosslinking the designated electrodes, which were prefabricated by lithography, when appropriate square wave AC voltage and appropriate frequency were applied. Micro/nanowire growing process emulated the neurotransmitter release process of synapses inside a biological neuron and wire's resistance variation during the growing process was preferred to as the variation of synaptic weigh in machine learning algorithm. In a cooperation with Graduate School of Information Science and Technology, Hokkaido University.

  1. MoleculeNet: a benchmark for molecular machine learning† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c7sc02664a

    PubMed Central

    Wu, Zhenqin; Ramsundar, Bharath; Feinberg, Evan N.; Gomes, Joseph; Geniesse, Caleb; Pappu, Aneesh S.; Leswing, Karl

    2017-01-01

    Molecular machine learning has been maturing rapidly over the last few years. Improved methods and the presence of larger datasets have enabled machine learning algorithms to make increasingly accurate predictions about molecular properties. However, algorithmic progress has been limited due to the lack of a standard benchmark to compare the efficacy of proposed methods; most new algorithms are benchmarked on different datasets making it challenging to gauge the quality of proposed methods. This work introduces MoleculeNet, a large scale benchmark for molecular machine learning. MoleculeNet curates multiple public datasets, establishes metrics for evaluation, and offers high quality open-source implementations of multiple previously proposed molecular featurization and learning algorithms (released as part of the DeepChem open source library). MoleculeNet benchmarks demonstrate that learnable representations are powerful tools for molecular machine learning and broadly offer the best performance. However, this result comes with caveats. Learnable representations still struggle to deal with complex tasks under data scarcity and highly imbalanced classification. For quantum mechanical and biophysical datasets, the use of physics-aware featurizations can be more important than choice of particular learning algorithm. PMID:29629118

  2. Perspectives on Machine Learning for Classification of Schizotypy Using fMRI Data.

    PubMed

    Madsen, Kristoffer H; Krohne, Laerke G; Cai, Xin-Lu; Wang, Yi; Chan, Raymond C K

    2018-03-15

    Functional magnetic resonance imaging is capable of estimating functional activation and connectivity in the human brain, and lately there has been increased interest in the use of these functional modalities combined with machine learning for identification of psychiatric traits. While these methods bear great potential for early diagnosis and better understanding of disease processes, there are wide ranges of processing choices and pitfalls that may severely hamper interpretation and generalization performance unless carefully considered. In this perspective article, we aim to motivate the use of machine learning schizotypy research. To this end, we describe common data processing steps while commenting on best practices and procedures. First, we introduce the important role of schizotypy to motivate the importance of reliable classification, and summarize existing machine learning literature on schizotypy. Then, we describe procedures for extraction of features based on fMRI data, including statistical parametric mapping, parcellation, complex network analysis, and decomposition methods, as well as classification with a special focus on support vector classification and deep learning. We provide more detailed descriptions and software as supplementary material. Finally, we present current challenges in machine learning for classification of schizotypy and comment on future trends and perspectives.

  3. Harnessing information from injury narratives in the 'big data' era: understanding and applying machine learning for injury surveillance.

    PubMed

    Vallmuur, Kirsten; Marucci-Wellman, Helen R; Taylor, Jennifer A; Lehto, Mark; Corns, Helen L; Smith, Gordon S

    2016-04-01

    Vast amounts of injury narratives are collected daily and are available electronically in real time and have great potential for use in injury surveillance and evaluation. Machine learning algorithms have been developed to assist in identifying cases and classifying mechanisms leading to injury in a much timelier manner than is possible when relying on manual coding of narratives. The aim of this paper is to describe the background, growth, value, challenges and future directions of machine learning as applied to injury surveillance. This paper reviews key aspects of machine learning using injury narratives, providing a case study to demonstrate an application to an established human-machine learning approach. The range of applications and utility of narrative text has increased greatly with advancements in computing techniques over time. Practical and feasible methods exist for semiautomatic classification of injury narratives which are accurate, efficient and meaningful. The human-machine learning approach described in the case study achieved high sensitivity and PPV and reduced the need for human coding to less than a third of cases in one large occupational injury database. The last 20 years have seen a dramatic change in the potential for technological advancements in injury surveillance. Machine learning of 'big injury narrative data' opens up many possibilities for expanded sources of data which can provide more comprehensive, ongoing and timely surveillance to inform future injury prevention policy and practice. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  4. Machine learning approaches to the social determinants of health in the health and retirement study.

    PubMed

    Seligman, Benjamin; Tuljapurkar, Shripad; Rehkopf, David

    2018-04-01

    Social and economic factors are important predictors of health and of recognized importance for health systems. However, machine learning, used elsewhere in the biomedical literature, has not been extensively applied to study relationships between society and health. We investigate how machine learning may add to our understanding of social determinants of health using data from the Health and Retirement Study. A linear regression of age and gender, and a parsimonious theory-based regression additionally incorporating income, wealth, and education, were used to predict systolic blood pressure, body mass index, waist circumference, and telomere length. Prediction, fit, and interpretability were compared across four machine learning methods: linear regression, penalized regressions, random forests, and neural networks. All models had poor out-of-sample prediction. Most machine learning models performed similarly to the simpler models. However, neural networks greatly outperformed the three other methods. Neural networks also had good fit to the data ( R 2 between 0.4-0.6, versus <0.3 for all others). Across machine learning models, nine variables were frequently selected or highly weighted as predictors: dental visits, current smoking, self-rated health, serial-seven subtractions, probability of receiving an inheritance, probability of leaving an inheritance of at least $10,000, number of children ever born, African-American race, and gender. Some of the machine learning methods do not improve prediction or fit beyond simpler models, however, neural networks performed well. The predictors identified across models suggest underlying social factors that are important predictors of biological indicators of chronic disease, and that the non-linear and interactive relationships between variables fundamental to the neural network approach may be important to consider.

  5. Detection of longitudinal visual field progression in glaucoma using machine learning.

    PubMed

    Yousefi, Siamak; Kiwaki, Taichi; Zheng, Yuhui; Suigara, Hiroki; Asaoka, Ryo; Murata, Hiroshi; Lemij, Hans; Yamanishi, Kenji

    2018-06-16

    Global indices of standard automated perimerty are insensitive to localized losses, while point-wise indices are sensitive but highly variable. Region-wise indices sit in between. This study introduces a machine-learning-based index for glaucoma progression detection that outperforms global, region-wise, and point-wise indices. Development and comparison of a prognostic index. Visual fields from 2085 eyes of 1214 subjects were used to identify glaucoma progression patterns using machine learning. Visual fields from 133 eyes of 71 glaucoma patients were collected 10 times over 10 weeks to provide a no-change, test-retest dataset. The parameters of all methods were identified using visual field sequences in the test-retest dataset to meet fixed 95% specificity. An independent dataset of 270 eyes of 136 glaucoma patients and survival analysis were utilized to compare methods. The time to detect progression in 25% of the eyes in the longitudinal dataset using global mean deviation (MD) was 5.2 years (95% confidence interval, 4.1 - 6.5 years); 4.5 years (4.0 - 5.5) using region-wise, 3.9 years (3.5 - 4.6) using point-wise, and 3.5 years (3.1 - 4.0) using machine learning analysis. The time until 25% of eyes showed subsequently confirmed progression after two additional visits were included were 6.6 years (5.6 - 7.4 years), 5.7 years (4.8 - 6.7), 5.6 years (4.7 - 6.5), and 5.1 years (4.5 - 6.0) for global, region-wise, point-wise, and machine learning analyses, respectively. Machine learning analysis detects progressing eyes earlier than other methods consistently, with or without confirmation visits. In particular, machine learning detects more slowly progressing eyes than other methods. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. Abnormal brain structure as a potential biomarker for venous erectile dysfunction: evidence from multimodal MRI and machine learning.

    PubMed

    Li, Lingli; Fan, Wenliang; Li, Jun; Li, Quanlin; Wang, Jin; Fan, Yang; Ye, Tianhe; Guo, Jialun; Li, Sen; Zhang, Youpeng; Cheng, Yongbiao; Tang, Yong; Zeng, Hanqing; Yang, Lian; Zhu, Zhaohui

    2018-03-29

    To investigate the cerebral structural changes related to venous erectile dysfunction (VED) and the relationship of these changes to clinical symptoms and disorder duration and distinguish patients with VED from healthy controls using a machine learning classification. 45 VED patients and 50 healthy controls were included. Voxel-based morphometry (VBM), tract-based spatial statistics (TBSS) and correlation analyses of VED patients and clinical variables were performed. The machine learning classification method was adopted to confirm its effectiveness in distinguishing VED patients from healthy controls. Compared to healthy control subjects, VED patients showed significantly decreased cortical volumes in the left postcentral gyrus and precentral gyrus, while only the right middle temporal gyrus showed a significant increase in cortical volume. Increased axial diffusivity (AD), radial diffusivity (RD) and mean diffusivity (MD) values were observed in widespread brain regions. Certain regions of these alterations related to VED patients showed significant correlations with clinical symptoms and disorder durations. Machine learning analyses discriminated patients from controls with overall accuracy 96.7%, sensitivity 93.3% and specificity 99.0%. Cortical volume and white matter (WM) microstructural changes were observed in VED patients, and showed significant correlations with clinical symptoms and dysfunction durations. Various DTI-derived indices of some brain regions could be regarded as reliable discriminating features between VED patients and healthy control subjects, as shown by machine learning analyses. • Multimodal magnetic resonance imaging helps clinicians to assess patients with VED. • VED patients show cerebral structural alterations related to their clinical symptoms. • Machine learning analyses discriminated VED patients from controls with an excellent performance. • Machine learning classification provided a preliminary demonstration of DTI's clinical use.

  7. Machine learning in laboratory medicine: waiting for the flood?

    PubMed

    Cabitza, Federico; Banfi, Giuseppe

    2018-03-28

    This review focuses on machine learning and on how methods and models combining data analytics and artificial intelligence have been applied to laboratory medicine so far. Although still in its infancy, the potential for applying machine learning to laboratory data for both diagnostic and prognostic purposes deserves more attention by the readership of this journal, as well as by physician-scientists who will want to take advantage of this new computer-based support in pathology and laboratory medicine.

  8. Speckle-learning-based object recognition through scattering media.

    PubMed

    Ando, Takamasa; Horisaki, Ryoichi; Tanida, Jun

    2015-12-28

    We experimentally demonstrated object recognition through scattering media based on direct machine learning of a number of speckle intensity images. In the experiments, speckle intensity images of amplitude or phase objects on a spatial light modulator between scattering plates were captured by a camera. We used the support vector machine for binary classification of the captured speckle intensity images of face and non-face data. The experimental results showed that speckles are sufficient for machine learning.

  9. Applying machine learning to identify autistic adults using imitation: An exploratory study.

    PubMed

    Li, Baihua; Sharma, Arjun; Meng, James; Purushwalkam, Senthil; Gowen, Emma

    2017-01-01

    Autism spectrum condition (ASC) is primarily diagnosed by behavioural symptoms including social, sensory and motor aspects. Although stereotyped, repetitive motor movements are considered during diagnosis, quantitative measures that identify kinematic characteristics in the movement patterns of autistic individuals are poorly studied, preventing advances in understanding the aetiology of motor impairment, or whether a wider range of motor characteristics could be used for diagnosis. The aim of this study was to investigate whether data-driven machine learning based methods could be used to address some fundamental problems with regard to identifying discriminative test conditions and kinematic parameters to classify between ASC and neurotypical controls. Data was based on a previous task where 16 ASC participants and 14 age, IQ matched controls observed then imitated a series of hand movements. 40 kinematic parameters extracted from eight imitation conditions were analysed using machine learning based methods. Two optimal imitation conditions and nine most significant kinematic parameters were identified and compared with some standard attribute evaluators. To our knowledge, this is the first attempt to apply machine learning to kinematic movement parameters measured during imitation of hand movements to investigate the identification of ASC. Although based on a small sample, the work demonstrates the feasibility of applying machine learning methods to analyse high-dimensional data and suggest the potential of machine learning for identifying kinematic biomarkers that could contribute to the diagnostic classification of autism.

  10. Moving beyond regression techniques in cardiovascular risk prediction: applying machine learning to address analytic challenges.

    PubMed

    Goldstein, Benjamin A; Navar, Ann Marie; Carter, Rickey E

    2017-06-14

    Risk prediction plays an important role in clinical cardiology research. Traditionally, most risk models have been based on regression models. While useful and robust, these statistical methods are limited to using a small number of predictors which operate in the same way on everyone, and uniformly throughout their range. The purpose of this review is to illustrate the use of machine-learning methods for development of risk prediction models. Typically presented as black box approaches, most machine-learning methods are aimed at solving particular challenges that arise in data analysis that are not well addressed by typical regression approaches. To illustrate these challenges, as well as how different methods can address them, we consider trying to predicting mortality after diagnosis of acute myocardial infarction. We use data derived from our institution's electronic health record and abstract data on 13 regularly measured laboratory markers. We walk through different challenges that arise in modelling these data and then introduce different machine-learning approaches. Finally, we discuss general issues in the application of machine-learning methods including tuning parameters, loss functions, variable importance, and missing data. Overall, this review serves as an introduction for those working on risk modelling to approach the diffuse field of machine learning. © The Author 2016. Published by Oxford University Press on behalf of the European Society of Cardiology.

  11. Prediction of mortality after radical cystectomy for bladder cancer by machine learning techniques.

    PubMed

    Wang, Guanjin; Lam, Kin-Man; Deng, Zhaohong; Choi, Kup-Sze

    2015-08-01

    Bladder cancer is a common cancer in genitourinary malignancy. For muscle invasive bladder cancer, surgical removal of the bladder, i.e. radical cystectomy, is in general the definitive treatment which, unfortunately, carries significant morbidities and mortalities. Accurate prediction of the mortality of radical cystectomy is therefore needed. Statistical methods have conventionally been used for this purpose, despite the complex interactions of high-dimensional medical data. Machine learning has emerged as a promising technique for handling high-dimensional data, with increasing application in clinical decision support, e.g. cancer prediction and prognosis. Its ability to reveal the hidden nonlinear interactions and interpretable rules between dependent and independent variables is favorable for constructing models of effective generalization performance. In this paper, seven machine learning methods are utilized to predict the 5-year mortality of radical cystectomy, including back-propagation neural network (BPN), radial basis function (RBFN), extreme learning machine (ELM), regularized ELM (RELM), support vector machine (SVM), naive Bayes (NB) classifier and k-nearest neighbour (KNN), on a clinicopathological dataset of 117 patients of the urology unit of a hospital in Hong Kong. The experimental results indicate that RELM achieved the highest average prediction accuracy of 0.8 at a fast learning speed. The research findings demonstrate the potential of applying machine learning techniques to support clinical decision making. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Adaptive hidden Markov model-based online learning framework for bearing faulty detection and performance degradation monitoring

    NASA Astrophysics Data System (ADS)

    Yu, Jianbo

    2017-01-01

    This study proposes an adaptive-learning-based method for machine faulty detection and health degradation monitoring. The kernel of the proposed method is an "evolving" model that uses an unsupervised online learning scheme, in which an adaptive hidden Markov model (AHMM) is used for online learning the dynamic health changes of machines in their full life. A statistical index is developed for recognizing the new health states in the machines. Those new health states are then described online by adding of new hidden states in AHMM. Furthermore, the health degradations in machines are quantified online by an AHMM-based health index (HI) that measures the similarity between two density distributions that describe the historic and current health states, respectively. When necessary, the proposed method characterizes the distinct operating modes of the machine and can learn online both abrupt as well as gradual health changes. Our method overcomes some drawbacks of the HIs (e.g., relatively low comprehensibility and applicability) based on fixed monitoring models constructed in the offline phase. Results from its application in a bearing life test reveal that the proposed method is effective in online detection and adaptive assessment of machine health degradation. This study provides a useful guide for developing a condition-based maintenance (CBM) system that uses an online learning method without considerable human intervention.

  13. Deep Restricted Kernel Machines Using Conjugate Feature Duality.

    PubMed

    Suykens, Johan A K

    2017-08-01

    The aim of this letter is to propose a theory of deep restricted kernel machines offering new foundations for deep learning with kernel machines. From the viewpoint of deep learning, it is partially related to restricted Boltzmann machines, which are characterized by visible and hidden units in a bipartite graph without hidden-to-hidden connections and deep learning extensions as deep belief networks and deep Boltzmann machines. From the viewpoint of kernel machines, it includes least squares support vector machines for classification and regression, kernel principal component analysis (PCA), matrix singular value decomposition, and Parzen-type models. A key element is to first characterize these kernel machines in terms of so-called conjugate feature duality, yielding a representation with visible and hidden units. It is shown how this is related to the energy form in restricted Boltzmann machines, with continuous variables in a nonprobabilistic setting. In this new framework of so-called restricted kernel machine (RKM) representations, the dual variables correspond to hidden features. Deep RKM are obtained by coupling the RKMs. The method is illustrated for deep RKM, consisting of three levels with a least squares support vector machine regression level and two kernel PCA levels. In its primal form also deep feedforward neural networks can be trained within this framework.

  14. Learn about Physical Science: Simple Machines. [CD-ROM].

    ERIC Educational Resources Information Center

    2000

    This CD-ROM, designed for students in grades K-2, explores the world of simple machines. It allows students to delve into the mechanical world and learn the ways in which simple machines make work easier. Animated demonstrations are provided of the lever, pulley, wheel, screw, wedge, and inclined plane. Activities include practical matching and…

  15. Machine learning applications in proteomics research: how the past can boost the future.

    PubMed

    Kelchtermans, Pieter; Bittremieux, Wout; De Grave, Kurt; Degroeve, Sven; Ramon, Jan; Laukens, Kris; Valkenborg, Dirk; Barsnes, Harald; Martens, Lennart

    2014-03-01

    Machine learning is a subdiscipline within artificial intelligence that focuses on algorithms that allow computers to learn solving a (complex) problem from existing data. This ability can be used to generate a solution to a particularly intractable problem, given that enough data are available to train and subsequently evaluate an algorithm on. Since MS-based proteomics has no shortage of complex problems, and since publicly available data are becoming available in ever growing amounts, machine learning is fast becoming a very popular tool in the field. We here therefore present an overview of the different applications of machine learning in proteomics that together cover nearly the entire wet- and dry-lab workflow, and that address key bottlenecks in experiment planning and design, as well as in data processing and analysis. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Learning molecular energies using localized graph kernels.

    PubMed

    Ferré, Grégoire; Haut, Terry; Barros, Kipton

    2017-03-21

    Recent machine learning methods make it possible to model potential energy of atomic configurations with chemical-level accuracy (as calculated from ab initio calculations) and at speeds suitable for molecular dynamics simulation. Best performance is achieved when the known physical constraints are encoded in the machine learning models. For example, the atomic energy is invariant under global translations and rotations; it is also invariant to permutations of same-species atoms. Although simple to state, these symmetries are complicated to encode into machine learning algorithms. In this paper, we present a machine learning approach based on graph theory that naturally incorporates translation, rotation, and permutation symmetries. Specifically, we use a random walk graph kernel to measure the similarity of two adjacency matrices, each of which represents a local atomic environment. This Graph Approximated Energy (GRAPE) approach is flexible and admits many possible extensions. We benchmark a simple version of GRAPE by predicting atomization energies on a standard dataset of organic molecules.

  17. Learning molecular energies using localized graph kernels

    NASA Astrophysics Data System (ADS)

    Ferré, Grégoire; Haut, Terry; Barros, Kipton

    2017-03-01

    Recent machine learning methods make it possible to model potential energy of atomic configurations with chemical-level accuracy (as calculated from ab initio calculations) and at speeds suitable for molecular dynamics simulation. Best performance is achieved when the known physical constraints are encoded in the machine learning models. For example, the atomic energy is invariant under global translations and rotations; it is also invariant to permutations of same-species atoms. Although simple to state, these symmetries are complicated to encode into machine learning algorithms. In this paper, we present a machine learning approach based on graph theory that naturally incorporates translation, rotation, and permutation symmetries. Specifically, we use a random walk graph kernel to measure the similarity of two adjacency matrices, each of which represents a local atomic environment. This Graph Approximated Energy (GRAPE) approach is flexible and admits many possible extensions. We benchmark a simple version of GRAPE by predicting atomization energies on a standard dataset of organic molecules.

  18. Modeling Geomagnetic Variations using a Machine Learning Framework

    NASA Astrophysics Data System (ADS)

    Cheung, C. M. M.; Handmer, C.; Kosar, B.; Gerules, G.; Poduval, B.; Mackintosh, G.; Munoz-Jaramillo, A.; Bobra, M.; Hernandez, T.; McGranaghan, R. M.

    2017-12-01

    We present a framework for data-driven modeling of Heliophysics time series data. The Solar Terrestrial Interaction Neural net Generator (STING) is an open source python module built on top of state-of-the-art statistical learning frameworks (traditional machine learning methods as well as deep learning). To showcase the capability of STING, we deploy it for the problem of predicting the temporal variation of geomagnetic fields. The data used includes solar wind measurements from the OMNI database and geomagnetic field data taken by magnetometers at US Geological Survey observatories. We examine the predictive capability of different machine learning techniques (recurrent neural networks, support vector machines) for a range of forecasting times (minutes to 12 hours). STING is designed to be extensible to other types of data. We show how STING can be used on large sets of data from different sensors/observatories and adapted to tackle other problems in Heliophysics.

  19. Health Informatics via Machine Learning for the Clinical Management of Patients.

    PubMed

    Clifton, D A; Niehaus, K E; Charlton, P; Colopy, G W

    2015-08-13

    To review how health informatics systems based on machine learning methods have impacted the clinical management of patients, by affecting clinical practice. We reviewed literature from 2010-2015 from databases such as Pubmed, IEEE xplore, and INSPEC, in which methods based on machine learning are likely to be reported. We bring together a broad body of literature, aiming to identify those leading examples of health informatics that have advanced the methodology of machine learning. While individual methods may have further examples that might be added, we have chosen some of the most representative, informative exemplars in each case. Our survey highlights that, while much research is taking place in this high-profile field, examples of those that affect the clinical management of patients are seldom found. We show that substantial progress is being made in terms of methodology, often by data scientists working in close collaboration with clinical groups. Health informatics systems based on machine learning are in their infancy and the translation of such systems into clinical management has yet to be performed at scale.

  20. Simulation-driven machine learning: Bearing fault classification

    NASA Astrophysics Data System (ADS)

    Sobie, Cameron; Freitas, Carina; Nicolai, Mike

    2018-01-01

    Increasing the accuracy of mechanical fault detection has the potential to improve system safety and economic performance by minimizing scheduled maintenance and the probability of unexpected system failure. Advances in computational performance have enabled the application of machine learning algorithms across numerous applications including condition monitoring and failure detection. Past applications of machine learning to physical failure have relied explicitly on historical data, which limits the feasibility of this approach to in-service components with extended service histories. Furthermore, recorded failure data is often only valid for the specific circumstances and components for which it was collected. This work directly addresses these challenges for roller bearings with race faults by generating training data using information gained from high resolution simulations of roller bearing dynamics, which is used to train machine learning algorithms that are then validated against four experimental datasets. Several different machine learning methodologies are compared starting from well-established statistical feature-based methods to convolutional neural networks, and a novel application of dynamic time warping (DTW) to bearing fault classification is proposed as a robust, parameter free method for race fault detection.

  1. How much information is in a jet?

    NASA Astrophysics Data System (ADS)

    Datta, Kaustuv; Larkoski, Andrew

    2017-06-01

    Machine learning techniques are increasingly being applied toward data analyses at the Large Hadron Collider, especially with applications for discrimination of jets with different originating particles. Previous studies of the power of machine learning to jet physics have typically employed image recognition, natural language processing, or other algorithms that have been extensively developed in computer science. While these studies have demonstrated impressive discrimination power, often exceeding that of widely-used observables, they have been formulated in a non-constructive manner and it is not clear what additional information the machines are learning. In this paper, we study machine learning for jet physics constructively, expressing all of the information in a jet onto sets of observables that completely and minimally span N-body phase space. For concreteness, we study the application of machine learning for discrimination of boosted, hadronic decays of Z bosons from jets initiated by QCD processes. Our results demonstrate that the information in a jet that is useful for discrimination power of QCD jets from Z bosons is saturated by only considering observables that are sensitive to 4-body (8 dimensional) phase space.

  2. Testing and Validating Machine Learning Classifiers by Metamorphic Testing☆

    PubMed Central

    Xie, Xiaoyuan; Ho, Joshua W. K.; Murphy, Christian; Kaiser, Gail; Xu, Baowen; Chen, Tsong Yueh

    2011-01-01

    Machine Learning algorithms have provided core functionality to many application domains - such as bioinformatics, computational linguistics, etc. However, it is difficult to detect faults in such applications because often there is no “test oracle” to verify the correctness of the computed outputs. To help address the software quality, in this paper we present a technique for testing the implementations of machine learning classification algorithms which support such applications. Our approach is based on the technique “metamorphic testing”, which has been shown to be effective to alleviate the oracle problem. Also presented include a case study on a real-world machine learning application framework, and a discussion of how programmers implementing machine learning algorithms can avoid the common pitfalls discovered in our study. We also conduct mutation analysis and cross-validation, which reveal that our method has high effectiveness in killing mutants, and that observing expected cross-validation result alone is not sufficiently effective to detect faults in a supervised classification program. The effectiveness of metamorphic testing is further confirmed by the detection of real faults in a popular open-source classification program. PMID:21532969

  3. Feature Discovery by Competitive Learning.

    DTIC Science & Technology

    1984-06-01

    Probably the first such attempt occurred in 1951 when Dean Edmonds and Marvin Minsky built their learning machine. The flavor of this machine and...Bernstein, J. (1961). Profiles: Al, Marvin Minsky . The New Yorker. 57, 50-126. Bienenstock, E. L., Cooper, L. N., & Munro, P. W. (1982). Theory for the...This machine actually worked and was so fascinating to watch that Minsky remembers: We sort of quit science for awhile to watch the machine. We were

  4. Diagnostic Machine Learning Models for Acute Abdominal Pain: Towards an e-Learning Tool for Medical Students.

    PubMed

    Khumrin, Piyapong; Ryan, Anna; Judd, Terry; Verspoor, Karin

    2017-01-01

    Computer-aided learning systems (e-learning systems) can help medical students gain more experience with diagnostic reasoning and decision making. Within this context, providing feedback that matches students' needs (i.e. personalised feedback) is both critical and challenging. In this paper, we describe the development of a machine learning model to support medical students' diagnostic decisions. Machine learning models were trained on 208 clinical cases presenting with abdominal pain, to predict five diagnoses. We assessed which of these models are likely to be most effective for use in an e-learning tool that allows students to interact with a virtual patient. The broader goal is to utilise these models to generate personalised feedback based on the specific patient information requested by students and their active diagnostic hypotheses.

  5. A Novel Local Learning based Approach With Application to Breast Cancer Diagnosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Songhua; Tourassi, Georgia

    2012-01-01

    The purpose of this study is to develop and evaluate a novel local learning-based approach for computer-assisted diagnosis of breast cancer. Our new local learning based algorithm using the linear logistic regression method as its base learner is described. Overall, our algorithm will perform its stochastic searching process until the total allowed computing time is used up by our random walk process in identifying the most suitable population subdivision scheme and their corresponding individual base learners. The proposed local learning-based approach was applied for the prediction of breast cancer given 11 mammographic and clinical findings reported by physicians using themore » BI-RADS lexicon. Our database consisted of 850 patients with biopsy confirmed diagnosis (290 malignant and 560 benign). We also compared the performance of our method with a collection of publicly available state-of-the-art machine learning methods. Predictive performance for all classifiers was evaluated using 10-fold cross validation and Receiver Operating Characteristics (ROC) analysis. Figure 1 reports the performance of 54 machine learning methods implemented in the machine learning toolkit Weka (version 3.0). We introduced a novel local learning-based classifier and compared it with an extensive list of other classifiers for the problem of breast cancer diagnosis. Our experiments show that the algorithm superior prediction performance outperforming a wide range of other well established machine learning techniques. Our conclusion complements the existing understanding in the machine learning field that local learning may capture complicated, non-linear relationships exhibited by real-world datasets.« less

  6. Automatic Earthquake Detection by Active Learning

    NASA Astrophysics Data System (ADS)

    Bergen, K.; Beroza, G. C.

    2017-12-01

    In recent years, advances in machine learning have transformed fields such as image recognition, natural language processing and recommender systems. Many of these performance gains have relied on the availability of large, labeled data sets to train high-accuracy models; labeled data sets are those for which each sample includes a target class label, such as waveforms tagged as either earthquakes or noise. Earthquake seismologists are increasingly leveraging machine learning and data mining techniques to detect and analyze weak earthquake signals in large seismic data sets. One of the challenges in applying machine learning to seismic data sets is the limited labeled data problem; learning algorithms need to be given examples of earthquake waveforms, but the number of known events, taken from earthquake catalogs, may be insufficient to build an accurate detector. Furthermore, earthquake catalogs are known to be incomplete, resulting in training data that may be biased towards larger events and contain inaccurate labels. This challenge is compounded by the class imbalance problem; the events of interest, earthquakes, are infrequent relative to noise in continuous data sets, and many learning algorithms perform poorly on rare classes. In this work, we investigate the use of active learning for automatic earthquake detection. Active learning is a type of semi-supervised machine learning that uses a human-in-the-loop approach to strategically supplement a small initial training set. The learning algorithm incorporates domain expertise through interaction between a human expert and the algorithm, with the algorithm actively posing queries to the user to improve detection performance. We demonstrate the potential of active machine learning to improve earthquake detection performance with limited available training data.

  7. Industrial Technology Modernization Program. Project 28. Automation of Receiving, Receiving Inspection and Stores

    DTIC Science & Technology

    1987-06-15

    001 GENERAL DYNAMICS 00 FORT WORTH DIVISION INDUSTRIAL TECHNOLOGY MODERNIZATION PROGRAM Phase 2 Final Project Repc t JUNG 0 ?7 PROJECT 28 AUTOMATION...DYNAMICS FORT WORTH DIVISION INDUSTRIAL TECHNOLOGY MODERNIZATION PROGRAM Phase 2 Final Project Report PROJECT 28 AUTOMATION OF RECEIVING, RECEIVING...13 6 PROJECT ASSUMPTIONS 20 7 PRELIMINARY/FINAL DESIGN AND FINDINGS 21 8 SYSTEM/EQUIPMENT/MACHINING SPECIFICATIONS 37 9 VENDOR/ INDUSTRY ANALYSIS

  8. Ship localization in Santa Barbara Channel using machine learning classifiers.

    PubMed

    Niu, Haiqiang; Ozanich, Emma; Gerstoft, Peter

    2017-11-01

    Machine learning classifiers are shown to outperform conventional matched field processing for a deep water (600 m depth) ocean acoustic-based ship range estimation problem in the Santa Barbara Channel Experiment when limited environmental information is known. Recordings of three different ships of opportunity on a vertical array were used as training and test data for the feed-forward neural network and support vector machine classifiers, demonstrating the feasibility of machine learning methods to locate unseen sources. The classifiers perform well up to 10 km range whereas the conventional matched field processing fails at about 4 km range without accurate environmental information.

  9. ICTNET at Web Track 2012 Ad-hoc Task

    DTIC Science & Technology

    2012-11-01

    Model and use it as baseline this year. 3.2 Learning to rank Learning to rank (LTR) introduces machine learning to retrieval ranking problem. It...Yoram Singer. An efficient boosting algorithm  for  combining preferences [J]. The Journal of  Machine   Learning  Research. 2003. 

  10. The Value Simulation-Based Learning Added to Machining Technology in Singapore

    ERIC Educational Resources Information Center

    Fang, Linda; Tan, Hock Soon; Thwin, Mya Mya; Tan, Kim Cheng; Koh, Caroline

    2011-01-01

    This study seeks to understand the value simulation-based learning (SBL) added to the learning of Machining Technology in a 15-week core subject course offered to university students. The research questions were: (1) How did SBL enhance classroom learning? (2) How did SBL help participants in their test? (3) How did SBL prepare participants for…

  11. Applications of Machine Learning for Radiation Therapy.

    PubMed

    Arimura, Hidetaka; Nakamoto, Takahiro

    2016-01-01

    Radiation therapy has been highly advanced as image guided radiation therapy (IGRT) by making advantage of image engineering technologies. Recently, novel frameworks based on image engineering technologies as well as machine learning technologies have been studied for sophisticating the radiation therapy. In this review paper, the author introduces several researches of applications of machine learning for radiation therapy. For examples, a method to determine the threshold values for standardized uptake value (SUV) for estimation of gross tumor volume (GTV) in positron emission tomography (PET) images, an approach to estimate the multileaf collimator (MLC) position errors between treatment plans and radiation delivery time, and prediction frameworks for esophageal stenosis and radiation pneumonitis risk after radiation therapy are described. Finally, the author introduces seven issues that one should consider when applying machine learning models to radiation therapy.

  12. Clinical chemistry in higher dimensions: Machine-learning and enhanced prediction from routine clinical chemistry data.

    PubMed

    Richardson, Alice; Signor, Ben M; Lidbury, Brett A; Badrick, Tony

    2016-11-01

    Big Data is having an impact on many areas of research, not the least of which is biomedical science. In this review paper, big data and machine learning are defined in terms accessible to the clinical chemistry community. Seven myths associated with machine learning and big data are then presented, with the aim of managing expectation of machine learning amongst clinical chemists. The myths are illustrated with four examples investigating the relationship between biomarkers in liver function tests, enhanced laboratory prediction of hepatitis virus infection, the relationship between bilirubin and white cell count, and the relationship between red cell distribution width and laboratory prediction of anaemia. Copyright © 2016 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  13. Assessment and Validation of Machine Learning Methods for Predicting Molecular Atomization Energies.

    PubMed

    Hansen, Katja; Montavon, Grégoire; Biegler, Franziska; Fazli, Siamac; Rupp, Matthias; Scheffler, Matthias; von Lilienfeld, O Anatole; Tkatchenko, Alexandre; Müller, Klaus-Robert

    2013-08-13

    The accurate and reliable prediction of properties of molecules typically requires computationally intensive quantum-chemical calculations. Recently, machine learning techniques applied to ab initio calculations have been proposed as an efficient approach for describing the energies of molecules in their given ground-state structure throughout chemical compound space (Rupp et al. Phys. Rev. Lett. 2012, 108, 058301). In this paper we outline a number of established machine learning techniques and investigate the influence of the molecular representation on the methods performance. The best methods achieve prediction errors of 3 kcal/mol for the atomization energies of a wide variety of molecules. Rationales for this performance improvement are given together with pitfalls and challenges when applying machine learning approaches to the prediction of quantum-mechanical observables.

  14. Spiking neuron network Helmholtz machine.

    PubMed

    Sountsov, Pavel; Miller, Paul

    2015-01-01

    An increasing amount of behavioral and neurophysiological data suggests that the brain performs optimal (or near-optimal) probabilistic inference and learning during perception and other tasks. Although many machine learning algorithms exist that perform inference and learning in an optimal way, the complete description of how one of those algorithms (or a novel algorithm) can be implemented in the brain is currently incomplete. There have been many proposed solutions that address how neurons can perform optimal inference but the question of how synaptic plasticity can implement optimal learning is rarely addressed. This paper aims to unify the two fields of probabilistic inference and synaptic plasticity by using a neuronal network of realistic model spiking neurons to implement a well-studied computational model called the Helmholtz Machine. The Helmholtz Machine is amenable to neural implementation as the algorithm it uses to learn its parameters, called the wake-sleep algorithm, uses a local delta learning rule. Our spiking-neuron network implements both the delta rule and a small example of a Helmholtz machine. This neuronal network can learn an internal model of continuous-valued training data sets without supervision. The network can also perform inference on the learned internal models. We show how various biophysical features of the neural implementation constrain the parameters of the wake-sleep algorithm, such as the duration of the wake and sleep phases of learning and the minimal sample duration. We examine the deviations from optimal performance and tie them to the properties of the synaptic plasticity rule.

  15. Spiking neuron network Helmholtz machine

    PubMed Central

    Sountsov, Pavel; Miller, Paul

    2015-01-01

    An increasing amount of behavioral and neurophysiological data suggests that the brain performs optimal (or near-optimal) probabilistic inference and learning during perception and other tasks. Although many machine learning algorithms exist that perform inference and learning in an optimal way, the complete description of how one of those algorithms (or a novel algorithm) can be implemented in the brain is currently incomplete. There have been many proposed solutions that address how neurons can perform optimal inference but the question of how synaptic plasticity can implement optimal learning is rarely addressed. This paper aims to unify the two fields of probabilistic inference and synaptic plasticity by using a neuronal network of realistic model spiking neurons to implement a well-studied computational model called the Helmholtz Machine. The Helmholtz Machine is amenable to neural implementation as the algorithm it uses to learn its parameters, called the wake-sleep algorithm, uses a local delta learning rule. Our spiking-neuron network implements both the delta rule and a small example of a Helmholtz machine. This neuronal network can learn an internal model of continuous-valued training data sets without supervision. The network can also perform inference on the learned internal models. We show how various biophysical features of the neural implementation constrain the parameters of the wake-sleep algorithm, such as the duration of the wake and sleep phases of learning and the minimal sample duration. We examine the deviations from optimal performance and tie them to the properties of the synaptic plasticity rule. PMID:25954191

  16. Automating Construction of Machine Learning Models With Clinical Big Data: Proposal Rationale and Methods.

    PubMed

    Luo, Gang; Stone, Bryan L; Johnson, Michael D; Tarczy-Hornoch, Peter; Wilcox, Adam B; Mooney, Sean D; Sheng, Xiaoming; Haug, Peter J; Nkoy, Flory L

    2017-08-29

    To improve health outcomes and cut health care costs, we often need to conduct prediction/classification using large clinical datasets (aka, clinical big data), for example, to identify high-risk patients for preventive interventions. Machine learning has been proposed as a key technology for doing this. Machine learning has won most data science competitions and could support many clinical activities, yet only 15% of hospitals use it for even limited purposes. Despite familiarity with data, health care researchers often lack machine learning expertise to directly use clinical big data, creating a hurdle in realizing value from their data. Health care researchers can work with data scientists with deep machine learning knowledge, but it takes time and effort for both parties to communicate effectively. Facing a shortage in the United States of data scientists and hiring competition from companies with deep pockets, health care systems have difficulty recruiting data scientists. Building and generalizing a machine learning model often requires hundreds to thousands of manual iterations by data scientists to select the following: (1) hyper-parameter values and complex algorithms that greatly affect model accuracy and (2) operators and periods for temporally aggregating clinical attributes (eg, whether a patient's weight kept rising in the past year). This process becomes infeasible with limited budgets. This study's goal is to enable health care researchers to directly use clinical big data, make machine learning feasible with limited budgets and data scientist resources, and realize value from data. This study will allow us to achieve the following: (1) finish developing the new software, Automated Machine Learning (Auto-ML), to automate model selection for machine learning with clinical big data and validate Auto-ML on seven benchmark modeling problems of clinical importance; (2) apply Auto-ML and novel methodology to two new modeling problems crucial for care management allocation and pilot one model with care managers; and (3) perform simulations to estimate the impact of adopting Auto-ML on US patient outcomes. We are currently writing Auto-ML's design document. We intend to finish our study by around the year 2022. Auto-ML will generalize to various clinical prediction/classification problems. With minimal help from data scientists, health care researchers can use Auto-ML to quickly build high-quality models. This will boost wider use of machine learning in health care and improve patient outcomes. ©Gang Luo, Bryan L Stone, Michael D Johnson, Peter Tarczy-Hornoch, Adam B Wilcox, Sean D Mooney, Xiaoming Sheng, Peter J Haug, Flory L Nkoy. Originally published in JMIR Research Protocols (http://www.researchprotocols.org), 29.08.2017.

  17. A Collaborative Framework for Distributed Privacy-Preserving Support Vector Machine Learning

    PubMed Central

    Que, Jialan; Jiang, Xiaoqian; Ohno-Machado, Lucila

    2012-01-01

    A Support Vector Machine (SVM) is a popular tool for decision support. The traditional way to build an SVM model is to estimate parameters based on a centralized repository of data. However, in the field of biomedicine, patient data are sometimes stored in local repositories or institutions where they were collected, and may not be easily shared due to privacy concerns. This creates a substantial barrier for researchers to effectively learn from the distributed data using machine learning tools like SVMs. To overcome this difficulty and promote efficient information exchange without sharing sensitive raw data, we developed a Distributed Privacy Preserving Support Vector Machine (DPP-SVM). The DPP-SVM enables privacy-preserving collaborative learning, in which a trusted server integrates “privacy-insensitive” intermediary results. The globally learned model is guaranteed to be exactly the same as learned from combined data. We also provide a free web-service (http://privacy.ucsd.edu:8080/ppsvm/) for multiple participants to collaborate and complete the SVM-learning task in an efficient and privacy-preserving manner. PMID:23304414

  18. Using machine learning algorithms to guide rehabilitation planning for home care clients.

    PubMed

    Zhu, Mu; Zhang, Zhanyang; Hirdes, John P; Stolee, Paul

    2007-12-20

    Targeting older clients for rehabilitation is a clinical challenge and a research priority. We investigate the potential of machine learning algorithms - Support Vector Machine (SVM) and K-Nearest Neighbors (KNN) - to guide rehabilitation planning for home care clients. This study is a secondary analysis of data on 24,724 longer-term clients from eight home care programs in Ontario. Data were collected with the RAI-HC assessment system, in which the Activities of Daily Living Clinical Assessment Protocol (ADLCAP) is used to identify clients with rehabilitation potential. For study purposes, a client is defined as having rehabilitation potential if there was: i) improvement in ADL functioning, or ii) discharge home. SVM and KNN results are compared with those obtained using the ADLCAP. For comparison, the machine learning algorithms use the same functional and health status indicators as the ADLCAP. The KNN and SVM algorithms achieved similar substantially improved performance over the ADLCAP, although false positive and false negative rates were still fairly high (FP > .18, FN > .34 versus FP > .29, FN. > .58 for ADLCAP). Results are used to suggest potential revisions to the ADLCAP. Machine learning algorithms achieved superior predictions than the current protocol. Machine learning results are less readily interpretable, but can also be used to guide development of improved clinical protocols.

  19. Virtual screening by a new Clustering-based Weighted Similarity Extreme Learning Machine approach

    PubMed Central

    Kudisthalert, Wasu

    2018-01-01

    Machine learning techniques are becoming popular in virtual screening tasks. One of the powerful machine learning algorithms is Extreme Learning Machine (ELM) which has been applied to many applications and has recently been applied to virtual screening. We propose the Weighted Similarity ELM (WS-ELM) which is based on a single layer feed-forward neural network in a conjunction of 16 different similarity coefficients as activation function in the hidden layer. It is known that the performance of conventional ELM is not robust due to random weight selection in the hidden layer. Thus, we propose a Clustering-based WS-ELM (CWS-ELM) that deterministically assigns weights by utilising clustering algorithms i.e. k-means clustering and support vector clustering. The experiments were conducted on one of the most challenging datasets–Maximum Unbiased Validation Dataset–which contains 17 activity classes carefully selected from PubChem. The proposed algorithms were then compared with other machine learning techniques such as support vector machine, random forest, and similarity searching. The results show that CWS-ELM in conjunction with support vector clustering yields the best performance when utilised together with Sokal/Sneath(1) coefficient. Furthermore, ECFP_6 fingerprint presents the best results in our framework compared to the other types of fingerprints, namely ECFP_4, FCFP_4, and FCFP_6. PMID:29652912

  20. Exploring the Function Space of Deep-Learning Machines

    NASA Astrophysics Data System (ADS)

    Li, Bo; Saad, David

    2018-06-01

    The function space of deep-learning machines is investigated by studying growth in the entropy of functions of a given error with respect to a reference function, realized by a deep-learning machine. Using physics-inspired methods we study both sparsely and densely connected architectures to discover a layerwise convergence of candidate functions, marked by a corresponding reduction in entropy when approaching the reference function, gain insight into the importance of having a large number of layers, and observe phase transitions as the error increases.

  1. Designing Contestability: Interaction Design, Machine Learning, and Mental Health

    PubMed Central

    Hirsch, Tad; Merced, Kritzia; Narayanan, Shrikanth; Imel, Zac E.; Atkins, David C.

    2017-01-01

    We describe the design of an automated assessment and training tool for psychotherapists to illustrate challenges with creating interactive machine learning (ML) systems, particularly in contexts where human life, livelihood, and wellbeing are at stake. We explore how existing theories of interaction design and machine learning apply to the psychotherapy context, and identify “contestability” as a new principle for designing systems that evaluate human behavior. Finally, we offer several strategies for making ML systems more accountable to human actors. PMID:28890949

  2. Comparison of Automated and Manual Recording of Brief Episodes of Intracranial Hypertension and Cerebral Hypoperfusion and Their Association with Outcome After Severe Traumatic Brain Injury

    DTIC Science & Technology

    2017-03-01

    neuro ICP care beyond trauma care. 15. SUBJECT TERMS Advanced machine learning techniques, intracranial pressure, vital signs, monitoring...death and disability in combat casualties [1,2]. Approximately 2 million head injuries occur annually in the United States, resulting in more than...editor. Machine learning and data mining in pattern recognition. Proceedings of the 8th International Workshop on Machine Learning and Data Mining in

  3. Machine learning with quantum relative entropy

    NASA Astrophysics Data System (ADS)

    Tsuda, Koji

    2009-12-01

    Density matrices are a central tool in quantum physics, but it is also used in machine learning. A positive definite matrix called kernel matrix is used to represent the similarities between examples. Positive definiteness assures that the examples are embedded in an Euclidean space. When a positive definite matrix is learned from data, one has to design an update rule that maintains the positive definiteness. Our update rule, called matrix exponentiated gradient update, is motivated by the quantum relative entropy. Notably, the relative entropy is an instance of Bregman divergences, which are asymmetric distance measures specifying theoretical properties of machine learning algorithms. Using the calculus commonly used in quantum physics, we prove an upperbound of the generalization error of online learning.

  4. Experiences from CSCW in Virtual Classrooms.

    ERIC Educational Resources Information Center

    Multisilta, Jari

    The rapid development of modern information and communications technologies has opened new possibilities for establishing and delivering distance learning. In addition, the new learning paradigm based on cognitive learning theories can emphasize the quality of the learning process. The open learning environment that utilizes modern communications…

  5. Recent advances in environmental data mining

    NASA Astrophysics Data System (ADS)

    Leuenberger, Michael; Kanevski, Mikhail

    2016-04-01

    Due to the large amount and complexity of data available nowadays in geo- and environmental sciences, we face the need to develop and incorporate more robust and efficient methods for their analysis, modelling and visualization. An important part of these developments deals with an elaboration and application of a contemporary and coherent methodology following the process from data collection to the justification and communication of the results. Recent fundamental progress in machine learning (ML) can considerably contribute to the development of the emerging field - environmental data science. The present research highlights and investigates the different issues that can occur when dealing with environmental data mining using cutting-edge machine learning algorithms. In particular, the main attention is paid to the description of the self-consistent methodology and two efficient algorithms - Random Forest (RF, Breiman, 2001) and Extreme Learning Machines (ELM, Huang et al., 2006), which recently gained a great popularity. Despite the fact that they are based on two different concepts, i.e. decision trees vs artificial neural networks, they both propose promising results for complex, high dimensional and non-linear data modelling. In addition, the study discusses several important issues of data driven modelling, including feature selection and uncertainties. The approach considered is accompanied by simulated and real data case studies from renewable resources assessment and natural hazards tasks. In conclusion, the current challenges and future developments in statistical environmental data learning are discussed. References - Breiman, L., 2001. Random Forests. Machine Learning 45 (1), 5-32. - Huang, G.-B., Zhu, Q.-Y., Siew, C.-K., 2006. Extreme learning machine: theory and applications. Neurocomputing 70 (1-3), 489-501. - Kanevski, M., Pozdnoukhov, A., Timonin, V., 2009. Machine Learning for Spatial Environmental Data. EPFL Press; Lausanne, Switzerland, p.392. - Leuenberger, M., Kanevski, M., 2015. Extreme Learning Machines for spatial environmental data. Computers and Geosciences 85, 64-73.

  6. News | Argonne National Laboratory

    Science.gov Websites

    Highlights In the News Photos Videos News News Transforming transportation with machine learning Full Story  » From individual vehicle components to entire metropolitan areas, Argonne uses machine learning to

  7. An Investigation of Data Privacy and Utility Using Machine Learning as a Gauge

    ERIC Educational Resources Information Center

    Mivule, Kato

    2014-01-01

    The purpose of this investigation is to study and pursue a user-defined approach in preserving data privacy while maintaining an acceptable level of data utility using machine learning classification techniques as a gauge in the generation of synthetic data sets. This dissertation will deal with data privacy, data utility, machine learning…

  8. Learning Activity Packets for Grinding Machines. Unit I--Grinding Machines.

    ERIC Educational Resources Information Center

    Oklahoma State Board of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.

    This learning activity packet (LAP) is one of three that accompany the curriculum guide on grinding machines. It outlines the study activities and performance tasks for the first unit of this curriculum guide. Its purpose is to aid the student in attaining a working knowledge of this area of training and in achieving a skilled or moderately…

  9. Metal Cutting Theory and Friction Stir Welding Tool Design

    NASA Technical Reports Server (NTRS)

    Payton, Lewis N.

    2003-01-01

    Friction Stir Welding (FSW) is a relatively new industrial process that was invented at The Weld Institute (TWI, United Kingdom) and patented in 1992 under research funded by in part by the National Aeronautics and Space Administration (NASA). Often quoted advantages of the process include good strength and ductility along with minimization of residual stress and distortion. Less well advertised are the beneficial effects of this solid state welding process in the field of occupational and environmental safety. It produces superior weld products in difficult to weld materials without producing any toxic fumes or solid waste that must be controlled as hazardous waste. In fact, it reduces noise pollution in the workspace as well. In the early days of FSW, most welding was performed on modified machine tools, in particular on milling machines with modified milling cutters. In spite of the obvious milling heritage of the process, the techniques and lessons learned from almost 250 years of successful metalworking with milling machines have not been applied in the field of modern Friction Stir Welding. The goal of the current research was to study currently successful FSW tools and parameterize the process in such a way that the design of new tools for new materials could be accelerated. Along the way, several successful new tooling designs were developed for current issues at the Marshall Space Flight Center with accompanying patent disclosures

  10. Classification of older adults with/without a fall history using machine learning methods.

    PubMed

    Lin Zhang; Ou Ma; Fabre, Jennifer M; Wood, Robert H; Garcia, Stephanie U; Ivey, Kayla M; McCann, Evan D

    2015-01-01

    Falling is a serious problem in an aged society such that assessment of the risk of falls for individuals is imperative for the research and practice of falls prevention. This paper introduces an application of several machine learning methods for training a classifier which is capable of classifying individual older adults into a high risk group and a low risk group (distinguished by whether or not the members of the group have a recent history of falls). Using a 3D motion capture system, significant gait features related to falls risk are extracted. By training these features, classification hypotheses are obtained based on machine learning techniques (K Nearest-neighbour, Naive Bayes, Logistic Regression, Neural Network, and Support Vector Machine). Training and test accuracies with sensitivity and specificity of each of these techniques are assessed. The feature adjustment and tuning of the machine learning algorithms are discussed. The outcome of the study will benefit the prediction and prevention of falls.

  11. Application of Machine Learning Approaches for Protein-protein Interactions Prediction.

    PubMed

    Zhang, Mengying; Su, Qiang; Lu, Yi; Zhao, Manman; Niu, Bing

    2017-01-01

    Proteomics endeavors to study the structures, functions and interactions of proteins. Information of the protein-protein interactions (PPIs) helps to improve our knowledge of the functions and the 3D structures of proteins. Thus determining the PPIs is essential for the study of the proteomics. In this review, in order to study the application of machine learning in predicting PPI, some machine learning approaches such as support vector machine (SVM), artificial neural networks (ANNs) and random forest (RF) were selected, and the examples of its applications in PPIs were listed. SVM and RF are two commonly used methods. Nowadays, more researchers predict PPIs by combining more than two methods. This review presents the application of machine learning approaches in predicting PPI. Many examples of success in identification and prediction in the area of PPI prediction have been discussed, and the PPIs research is still in progress. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  12. Learning Machine Learning: A Case Study

    ERIC Educational Resources Information Center

    Lavesson, N.

    2010-01-01

    This correspondence reports on a case study conducted in the Master's-level Machine Learning (ML) course at Blekinge Institute of Technology, Sweden. The students participated in a self-assessment test and a diagnostic test of prerequisite subjects, and their results on these tests are correlated with their achievement of the course's learning…

  13. Machine Shop. Student Learning Guide.

    ERIC Educational Resources Information Center

    Palm Beach County Board of Public Instruction, West Palm Beach, FL.

    This student learning guide contains eight modules for completing a course in machine shop. It is designed especially for use in Palm Beach County, Florida. Each module covers one task, and consists of a purpose, performance objective, enabling objectives, learning activities and resources, information sheets, student self-check with answer key,…

  14. A Flexible Approach to Quantifying Various Dimensions of Environmental Complexity

    DTIC Science & Technology

    2004-08-01

    dissertation, Cambridge University, Cambridge, England, 1989. [15] C. J. C. H. Watkins and P. Dayan, “Q-learning,” Machine Learning , vol. 8, pp. 279–292, 1992...16] I. Szita, B. Takács, and A. Lörincz, “²-MDPs: Learning in varying environments,” Journal of Machine Learning Research, vol. 3, pp. 145–174, 2002

  15. Ship’s Stores Automation Modernization (SSAM) - Phase I Report.

    DTIC Science & Technology

    1982-05-01

    Fleet Accounting and Disbursing Center FI0o.1 Function 10 sub-function 1 GFS General Fund Survey GMO Game Machine Operator ICR Inventory Control...PERFORMERS: SSO, BSO, Food Service Officer (FSO), RSO, highest ranking Supply Officer (SO), Commanding Officer (CO) DESCRIPTION: Issues to Enlisted Dining...also counted from vending machines by the VMO and from the game machines by the GMO and turned over to the CA. The procedure is the same. The collection

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Ang; Song, Shuaiwen; Brugel, Eric

    To continuously comply with Moore’s Law, modern parallel machines become increasingly complex. Effectively tuning application performance for these machines therefore becomes a daunting task. Moreover, identifying performance bottlenecks at application and architecture level, as well as evaluating various optimization strategies, are becoming extremely difficult when the entanglement of numerous correlated factors is being presented. To tackle these challenges, we present a visual analytical model named “X”. It is intuitive and sufficiently flexible to track all the typical features of a parallel machine.

  17. Relationships Between the External and Internal Training Load in Professional Soccer: What Can We Learn From Machine Learning?

    PubMed

    Jaspers, Arne; De Beéck, Tim Op; Brink, Michel S; Frencken, Wouter G P; Staes, Filip; Davis, Jesse J; Helsen, Werner F

    2018-05-01

    Machine learning may contribute to understanding the relationship between the external load and internal load in professional soccer. Therefore, the relationship between external load indicators (ELIs) and the rating of perceived exertion (RPE) was examined using machine learning techniques on a group and individual level. Training data were collected from 38 professional soccer players over 2 seasons. The external load was measured using global positioning system technology and accelerometry. The internal load was obtained using the RPE. Predictive models were constructed using 2 machine learning techniques, artificial neural networks and least absolute shrinkage and selection operator (LASSO) models, and 1 naive baseline method. The predictions were based on a large set of ELIs. Using each technique, 1 group model involving all players and 1 individual model for each player were constructed. These models' performance on predicting the reported RPE values for future training sessions was compared with the naive baseline's performance. Both the artificial neural network and LASSO models outperformed the baseline. In addition, the LASSO model made more accurate predictions for the RPE than did the artificial neural network model. Furthermore, decelerations were identified as important ELIs. Regardless of the applied machine learning technique, the group models resulted in equivalent or better predictions for the reported RPE values than the individual models. Machine learning techniques may have added value in predicting RPE for future sessions to optimize training design and evaluation. These techniques may also be used in conjunction with expert knowledge to select key ELIs for load monitoring.

  18. Ryan King | NREL

    Science.gov Websites

    research focuses on optimization and machine learning applied to complex energy systems and turbulent flows techniques to improve wind plant design and controls and developed a new data-driven machine learning closure

  19. Improving Performance During Image-Guided Procedures

    PubMed Central

    Duncan, James R.; Tabriz, David

    2015-01-01

    Objective Image-guided procedures have become a mainstay of modern health care. This article reviews how human operators process imaging data and use it to plan procedures and make intraprocedural decisions. Methods A series of models from human factors research, communication theory, and organizational learning were applied to the human-machine interface that occupies the center stage during image-guided procedures. Results Together, these models suggest several opportunities for improving performance as follows: 1. Performance will depend not only on the operator’s skill but also on the knowledge embedded in the imaging technology, available tools, and existing protocols. 2. Voluntary movements consist of planning and execution phases. Performance subscores should be developed that assess quality and efficiency during each phase. For procedures involving ionizing radiation (fluoroscopy and computed tomography), radiation metrics can be used to assess performance. 3. At a basic level, these procedures consist of advancing a tool to a specific location within a patient and using the tool. Paradigms from mapping and navigation should be applied to image-guided procedures. 4. Recording the content of the imaging system allows one to reconstruct the stimulus/response cycles that occur during image-guided procedures. Conclusions When compared with traditional “open” procedures, the technology used during image-guided procedures places an imaging system and long thin tools between the operator and the patient. Taking a step back and reexamining how information flows through an imaging system and how actions are conveyed through human-machine interfaces suggest that much can be learned from studying system failures. In the same way that flight data recorders revolutionized accident investigations in aviation, much could be learned from recording video data during image-guided procedures. PMID:24921628

  20. Modern Languages and Interculturality in the Primary Sector in England, Greece, Italy and Spain.

    ERIC Educational Resources Information Center

    Cerezal, Fernando

    1997-01-01

    Addresses concerns and issues regarding modern language teaching and learning at primary schools in Greece, Italy, Spain, and England. It focuses on the optimal age for learning and acquiring languages and to the educational reforms which have been undertaken in each country relating to early modern language teaching and learning and…

  1. Deep Learning for Population Genetic Inference.

    PubMed

    Sheehan, Sara; Song, Yun S

    2016-03-01

    Given genomic variation data from multiple individuals, computing the likelihood of complex population genetic models is often infeasible. To circumvent this problem, we introduce a novel likelihood-free inference framework by applying deep learning, a powerful modern technique in machine learning. Deep learning makes use of multilayer neural networks to learn a feature-based function from the input (e.g., hundreds of correlated summary statistics of data) to the output (e.g., population genetic parameters of interest). We demonstrate that deep learning can be effectively employed for population genetic inference and learning informative features of data. As a concrete application, we focus on the challenging problem of jointly inferring natural selection and demography (in the form of a population size change history). Our method is able to separate the global nature of demography from the local nature of selection, without sequential steps for these two factors. Studying demography and selection jointly is motivated by Drosophila, where pervasive selection confounds demographic analysis. We apply our method to 197 African Drosophila melanogaster genomes from Zambia to infer both their overall demography, and regions of their genome under selection. We find many regions of the genome that have experienced hard sweeps, and fewer under selection on standing variation (soft sweep) or balancing selection. Interestingly, we find that soft sweeps and balancing selection occur more frequently closer to the centromere of each chromosome. In addition, our demographic inference suggests that previously estimated bottlenecks for African Drosophila melanogaster are too extreme.

  2. Deep Learning for Population Genetic Inference

    PubMed Central

    Sheehan, Sara; Song, Yun S.

    2016-01-01

    Given genomic variation data from multiple individuals, computing the likelihood of complex population genetic models is often infeasible. To circumvent this problem, we introduce a novel likelihood-free inference framework by applying deep learning, a powerful modern technique in machine learning. Deep learning makes use of multilayer neural networks to learn a feature-based function from the input (e.g., hundreds of correlated summary statistics of data) to the output (e.g., population genetic parameters of interest). We demonstrate that deep learning can be effectively employed for population genetic inference and learning informative features of data. As a concrete application, we focus on the challenging problem of jointly inferring natural selection and demography (in the form of a population size change history). Our method is able to separate the global nature of demography from the local nature of selection, without sequential steps for these two factors. Studying demography and selection jointly is motivated by Drosophila, where pervasive selection confounds demographic analysis. We apply our method to 197 African Drosophila melanogaster genomes from Zambia to infer both their overall demography, and regions of their genome under selection. We find many regions of the genome that have experienced hard sweeps, and fewer under selection on standing variation (soft sweep) or balancing selection. Interestingly, we find that soft sweeps and balancing selection occur more frequently closer to the centromere of each chromosome. In addition, our demographic inference suggests that previously estimated bottlenecks for African Drosophila melanogaster are too extreme. PMID:27018908

  3. The Necessity of Machine Learning and Epistemology in the Development of Categorization Theories: A Case Study in Prototype-Exemplar Debate

    NASA Astrophysics Data System (ADS)

    Gagliardi, Francesco

    In the present paper we discuss some aspects of the development of categorization theories concerning cognitive psychology and machine learning. We consider the thirty-year debate between prototype-theory and exemplar-theory in the studies of cognitive psychology regarding the categorization processes. We propose this debate is ill-posed, because it neglects some theoretical and empirical results of machine learning about the bias-variance theorem and the existence of some instance-based classifiers which can embed models subsuming both prototype and exemplar theories. Moreover this debate lies on a epistemological error of pursuing a, so called, experimentum crucis. Then we present how an interdisciplinary approach, based on synthetic method for cognitive modelling, can be useful to progress both the fields of cognitive psychology and machine learning.

  4. Machine learning in the string landscape

    NASA Astrophysics Data System (ADS)

    Carifio, Jonathan; Halverson, James; Krioukov, Dmitri; Nelson, Brent D.

    2017-09-01

    We utilize machine learning to study the string landscape. Deep data dives and conjecture generation are proposed as useful frameworks for utilizing machine learning in the landscape, and examples of each are presented. A decision tree accurately predicts the number of weak Fano toric threefolds arising from reflexive polytopes, each of which determines a smooth F-theory compactification, and linear regression generates a previously proven conjecture for the gauge group rank in an ensemble of 4/3× 2.96× {10}^{755} F-theory compactifications. Logistic regression generates a new conjecture for when E 6 arises in the large ensemble of F-theory compactifications, which is then rigorously proven. This result may be relevant for the appearance of visible sectors in the ensemble. Through conjecture generation, machine learning is useful not only for numerics, but also for rigorous results.

  5. A strategy to apply machine learning to small datasets in materials science

    NASA Astrophysics Data System (ADS)

    Zhang, Ying; Ling, Chen

    2018-12-01

    There is growing interest in applying machine learning techniques in the research of materials science. However, although it is recognized that materials datasets are typically smaller and sometimes more diverse compared to other fields, the influence of availability of materials data on training machine learning models has not yet been studied, which prevents the possibility to establish accurate predictive rules using small materials datasets. Here we analyzed the fundamental interplay between the availability of materials data and the predictive capability of machine learning models. Instead of affecting the model precision directly, the effect of data size is mediated by the degree of freedom (DoF) of model, resulting in the phenomenon of association between precision and DoF. The appearance of precision-DoF association signals the issue of underfitting and is characterized by large bias of prediction, which consequently restricts the accurate prediction in unknown domains. We proposed to incorporate the crude estimation of property in the feature space to establish ML models using small sized materials data, which increases the accuracy of prediction without the cost of higher DoF. In three case studies of predicting the band gap of binary semiconductors, lattice thermal conductivity, and elastic properties of zeolites, the integration of crude estimation effectively boosted the predictive capability of machine learning models to state-of-art levels, demonstrating the generality of the proposed strategy to construct accurate machine learning models using small materials dataset.

  6. Resident Space Object Characterization and Behavior Understanding via Machine Learning and Ontology-based Bayesian Networks

    NASA Astrophysics Data System (ADS)

    Furfaro, R.; Linares, R.; Gaylor, D.; Jah, M.; Walls, R.

    2016-09-01

    In this paper, we present an end-to-end approach that employs machine learning techniques and Ontology-based Bayesian Networks (BN) to characterize the behavior of resident space objects. State-of-the-Art machine learning architectures (e.g. Extreme Learning Machines, Convolutional Deep Networks) are trained on physical models to learn the Resident Space Object (RSO) features in the vectorized energy and momentum states and parameters. The mapping from measurements to vectorized energy and momentum states and parameters enables behavior characterization via clustering in the features space and subsequent RSO classification. Additionally, Space Object Behavioral Ontologies (SOBO) are employed to define and capture the domain knowledge-base (KB) and BNs are constructed from the SOBO in a semi-automatic fashion to execute probabilistic reasoning over conclusions drawn from trained classifiers and/or directly from processed data. Such an approach enables integrating machine learning classifiers and probabilistic reasoning to support higher-level decision making for space domain awareness applications. The innovation here is to use these methods (which have enjoyed great success in other domains) in synergy so that it enables a "from data to discovery" paradigm by facilitating the linkage and fusion of large and disparate sources of information via a Big Data Science and Analytics framework.

  7. Machine Learning Technologies and Their Applications for Science and Engineering Domains Workshop -- Summary Report

    NASA Technical Reports Server (NTRS)

    Ambur, Manjula; Schwartz, Katherine G.; Mavris, Dimitri N.

    2016-01-01

    The fields of machine learning and big data analytics have made significant advances in recent years, which has created an environment where cross-fertilization of methods and collaborations can achieve previously unattainable outcomes. The Comprehensive Digital Transformation (CDT) Machine Learning and Big Data Analytics team planned a workshop at NASA Langley in August 2016 to unite leading experts the field of machine learning and NASA scientists and engineers. The primary goal for this workshop was to assess the state-of-the-art in this field, introduce these leading experts to the aerospace and science subject matter experts, and develop opportunities for collaboration. The workshop was held over a three day-period with lectures from 15 leading experts followed by significant interactive discussions. This report provides an overview of the 15 invited lectures and a summary of the key discussion topics that arose during both formal and informal discussion sections. Four key workshop themes were identified after the closure of the workshop and are also highlighted in the report. Furthermore, several workshop attendees provided their feedback on how they are already utilizing machine learning algorithms to advance their research, new methods they learned about during the workshop, and collaboration opportunities they identified during the workshop.

  8. Classification of large-sized hyperspectral imagery using fast machine learning algorithms

    NASA Astrophysics Data System (ADS)

    Xia, Junshi; Yokoya, Naoto; Iwasaki, Akira

    2017-07-01

    We present a framework of fast machine learning algorithms in the context of large-sized hyperspectral images classification from the theoretical to a practical viewpoint. In particular, we assess the performance of random forest (RF), rotation forest (RoF), and extreme learning machine (ELM) and the ensembles of RF and ELM. These classifiers are applied to two large-sized hyperspectral images and compared to the support vector machines. To give the quantitative analysis, we pay attention to comparing these methods when working with high input dimensions and a limited/sufficient training set. Moreover, other important issues such as the computational cost and robustness against the noise are also discussed.

  9. Energy-free machine learning force field for aluminum.

    PubMed

    Kruglov, Ivan; Sergeev, Oleg; Yanilkin, Alexey; Oganov, Artem R

    2017-08-17

    We used the machine learning technique of Li et al. (PRL 114, 2015) for molecular dynamics simulations. Atomic configurations were described by feature matrix based on internal vectors, and linear regression was used as a learning technique. We implemented this approach in the LAMMPS code. The method was applied to crystalline and liquid aluminum and uranium at different temperatures and densities, and showed the highest accuracy among different published potentials. Phonon density of states, entropy and melting temperature of aluminum were calculated using this machine learning potential. The results are in excellent agreement with experimental data and results of full ab initio calculations.

  10. Fast Inference of Deep Neural Networks in FPGAs for Particle Physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duarte, Javier; Han, Song; Harris, Philip

    Recent results at the Large Hadron Collider (LHC) have pointed to enhanced physics capabilities through the improvement of the real-time event processing techniques. Machine learning methods are ubiquitous and have proven to be very powerful in LHC physics, and particle physics as a whole. However, exploration of the use of such techniques in low-latency, low-power FPGA hardware has only just begun. FPGA-based trigger and data acquisition (DAQ) systems have extremely low, sub-microsecond latency requirements that are unique to particle physics. We present a case study for neural network inference in FPGAs focusing on a classifier for jet substructure which wouldmore » enable, among many other physics scenarios, searches for new dark sector particles and novel measurements of the Higgs boson. While we focus on a specific example, the lessons are far-reaching. We develop a package based on High-Level Synthesis (HLS) called hls4ml to build machine learning models in FPGAs. The use of HLS increases accessibility across a broad user community and allows for a drastic decrease in firmware development time. We map out FPGA resource usage and latency versus neural network hyperparameters to identify the problems in particle physics that would benefit from performing neural network inference with FPGAs. For our example jet substructure model, we fit well within the available resources of modern FPGAs with a latency on the scale of 100 ns.« less

  11. Image processing and machine learning for fully automated probabilistic evaluation of medical images.

    PubMed

    Sajn, Luka; Kukar, Matjaž

    2011-12-01

    The paper presents results of our long-term study on using image processing and data mining methods in a medical imaging. Since evaluation of modern medical images is becoming increasingly complex, advanced analytical and decision support tools are involved in integration of partial diagnostic results. Such partial results, frequently obtained from tests with substantial imperfections, are integrated into ultimate diagnostic conclusion about the probability of disease for a given patient. We study various topics such as improving the predictive power of clinical tests by utilizing pre-test and post-test probabilities, texture representation, multi-resolution feature extraction, feature construction and data mining algorithms that significantly outperform medical practice. Our long-term study reveals three significant milestones. The first improvement was achieved by significantly increasing post-test diagnostic probabilities with respect to expert physicians. The second, even more significant improvement utilizes multi-resolution image parametrization. Machine learning methods in conjunction with the feature subset selection on these parameters significantly improve diagnostic performance. However, further feature construction with the principle component analysis on these features elevates results to an even higher accuracy level that represents the third milestone. With the proposed approach clinical results are significantly improved throughout the study. The most significant result of our study is improvement in the diagnostic power of the whole diagnostic process. Our compound approach aids, but does not replace, the physician's judgment and may assist in decisions on cost effectiveness of tests. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  12. Can machine-learning improve cardiovascular risk prediction using routine clinical data?

    PubMed Central

    Kai, Joe; Garibaldi, Jonathan M.; Qureshi, Nadeem

    2017-01-01

    Background Current approaches to predict cardiovascular risk fail to identify many people who would benefit from preventive treatment, while others receive unnecessary intervention. Machine-learning offers opportunity to improve accuracy by exploiting complex interactions between risk factors. We assessed whether machine-learning can improve cardiovascular risk prediction. Methods Prospective cohort study using routine clinical data of 378,256 patients from UK family practices, free from cardiovascular disease at outset. Four machine-learning algorithms (random forest, logistic regression, gradient boosting machines, neural networks) were compared to an established algorithm (American College of Cardiology guidelines) to predict first cardiovascular event over 10-years. Predictive accuracy was assessed by area under the ‘receiver operating curve’ (AUC); and sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV) to predict 7.5% cardiovascular risk (threshold for initiating statins). Findings 24,970 incident cardiovascular events (6.6%) occurred. Compared to the established risk prediction algorithm (AUC 0.728, 95% CI 0.723–0.735), machine-learning algorithms improved prediction: random forest +1.7% (AUC 0.745, 95% CI 0.739–0.750), logistic regression +3.2% (AUC 0.760, 95% CI 0.755–0.766), gradient boosting +3.3% (AUC 0.761, 95% CI 0.755–0.766), neural networks +3.6% (AUC 0.764, 95% CI 0.759–0.769). The highest achieving (neural networks) algorithm predicted 4,998/7,404 cases (sensitivity 67.5%, PPV 18.4%) and 53,458/75,585 non-cases (specificity 70.7%, NPV 95.7%), correctly predicting 355 (+7.6%) more patients who developed cardiovascular disease compared to the established algorithm. Conclusions Machine-learning significantly improves accuracy of cardiovascular risk prediction, increasing the number of patients identified who could benefit from preventive treatment, while avoiding unnecessary treatment of others. PMID:28376093

  13. Can machine-learning improve cardiovascular risk prediction using routine clinical data?

    PubMed

    Weng, Stephen F; Reps, Jenna; Kai, Joe; Garibaldi, Jonathan M; Qureshi, Nadeem

    2017-01-01

    Current approaches to predict cardiovascular risk fail to identify many people who would benefit from preventive treatment, while others receive unnecessary intervention. Machine-learning offers opportunity to improve accuracy by exploiting complex interactions between risk factors. We assessed whether machine-learning can improve cardiovascular risk prediction. Prospective cohort study using routine clinical data of 378,256 patients from UK family practices, free from cardiovascular disease at outset. Four machine-learning algorithms (random forest, logistic regression, gradient boosting machines, neural networks) were compared to an established algorithm (American College of Cardiology guidelines) to predict first cardiovascular event over 10-years. Predictive accuracy was assessed by area under the 'receiver operating curve' (AUC); and sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV) to predict 7.5% cardiovascular risk (threshold for initiating statins). 24,970 incident cardiovascular events (6.6%) occurred. Compared to the established risk prediction algorithm (AUC 0.728, 95% CI 0.723-0.735), machine-learning algorithms improved prediction: random forest +1.7% (AUC 0.745, 95% CI 0.739-0.750), logistic regression +3.2% (AUC 0.760, 95% CI 0.755-0.766), gradient boosting +3.3% (AUC 0.761, 95% CI 0.755-0.766), neural networks +3.6% (AUC 0.764, 95% CI 0.759-0.769). The highest achieving (neural networks) algorithm predicted 4,998/7,404 cases (sensitivity 67.5%, PPV 18.4%) and 53,458/75,585 non-cases (specificity 70.7%, NPV 95.7%), correctly predicting 355 (+7.6%) more patients who developed cardiovascular disease compared to the established algorithm. Machine-learning significantly improves accuracy of cardiovascular risk prediction, increasing the number of patients identified who could benefit from preventive treatment, while avoiding unnecessary treatment of others.

  14. Extracting laboratory test information from biomedical text

    PubMed Central

    Kang, Yanna Shen; Kayaalp, Mehmet

    2013-01-01

    Background: No previous study reported the efficacy of current natural language processing (NLP) methods for extracting laboratory test information from narrative documents. This study investigates the pathology informatics question of how accurately such information can be extracted from text with the current tools and techniques, especially machine learning and symbolic NLP methods. The study data came from a text corpus maintained by the U.S. Food and Drug Administration, containing a rich set of information on laboratory tests and test devices. Methods: The authors developed a symbolic information extraction (SIE) system to extract device and test specific information about four types of laboratory test entities: Specimens, analytes, units of measures and detection limits. They compared the performance of SIE and three prominent machine learning based NLP systems, LingPipe, GATE and BANNER, each implementing a distinct supervised machine learning method, hidden Markov models, support vector machines and conditional random fields, respectively. Results: Machine learning systems recognized laboratory test entities with moderately high recall, but low precision rates. Their recall rates were relatively higher when the number of distinct entity values (e.g., the spectrum of specimens) was very limited or when lexical morphology of the entity was distinctive (as in units of measures), yet SIE outperformed them with statistically significant margins on extracting specimen, analyte and detection limit information in both precision and F-measure. Its high recall performance was statistically significant on analyte information extraction. Conclusions: Despite its shortcomings against machine learning methods, a well-tailored symbolic system may better discern relevancy among a pile of information of the same type and may outperform a machine learning system by tapping into lexically non-local contextual information such as the document structure. PMID:24083058

  15. Machine-Learning Algorithms to Code Public Health Spending Accounts

    PubMed Central

    Leider, Jonathon P.; Resnick, Beth A.; Alfonso, Y. Natalia; Bishai, David

    2017-01-01

    Objectives: Government public health expenditure data sets require time- and labor-intensive manipulation to summarize results that public health policy makers can use. Our objective was to compare the performances of machine-learning algorithms with manual classification of public health expenditures to determine if machines could provide a faster, cheaper alternative to manual classification. Methods: We used machine-learning algorithms to replicate the process of manually classifying state public health expenditures, using the standardized public health spending categories from the Foundational Public Health Services model and a large data set from the US Census Bureau. We obtained a data set of 1.9 million individual expenditure items from 2000 to 2013. We collapsed these data into 147 280 summary expenditure records, and we followed a standardized method of manually classifying each expenditure record as public health, maybe public health, or not public health. We then trained 9 machine-learning algorithms to replicate the manual process. We calculated recall, precision, and coverage rates to measure the performance of individual and ensembled algorithms. Results: Compared with manual classification, the machine-learning random forests algorithm produced 84% recall and 91% precision. With algorithm ensembling, we achieved our target criterion of 90% recall by using a consensus ensemble of ≥6 algorithms while still retaining 93% coverage, leaving only 7% of the summary expenditure records unclassified. Conclusions: Machine learning can be a time- and cost-saving tool for estimating public health spending in the United States. It can be used with standardized public health spending categories based on the Foundational Public Health Services model to help parse public health expenditure information from other types of health-related spending, provide data that are more comparable across public health organizations, and evaluate the impact of evidence-based public health resource allocation. PMID:28363034

  16. Machine-Learning Algorithms to Code Public Health Spending Accounts.

    PubMed

    Brady, Eoghan S; Leider, Jonathon P; Resnick, Beth A; Alfonso, Y Natalia; Bishai, David

    Government public health expenditure data sets require time- and labor-intensive manipulation to summarize results that public health policy makers can use. Our objective was to compare the performances of machine-learning algorithms with manual classification of public health expenditures to determine if machines could provide a faster, cheaper alternative to manual classification. We used machine-learning algorithms to replicate the process of manually classifying state public health expenditures, using the standardized public health spending categories from the Foundational Public Health Services model and a large data set from the US Census Bureau. We obtained a data set of 1.9 million individual expenditure items from 2000 to 2013. We collapsed these data into 147 280 summary expenditure records, and we followed a standardized method of manually classifying each expenditure record as public health, maybe public health, or not public health. We then trained 9 machine-learning algorithms to replicate the manual process. We calculated recall, precision, and coverage rates to measure the performance of individual and ensembled algorithms. Compared with manual classification, the machine-learning random forests algorithm produced 84% recall and 91% precision. With algorithm ensembling, we achieved our target criterion of 90% recall by using a consensus ensemble of ≥6 algorithms while still retaining 93% coverage, leaving only 7% of the summary expenditure records unclassified. Machine learning can be a time- and cost-saving tool for estimating public health spending in the United States. It can be used with standardized public health spending categories based on the Foundational Public Health Services model to help parse public health expenditure information from other types of health-related spending, provide data that are more comparable across public health organizations, and evaluate the impact of evidence-based public health resource allocation.

  17. Editorial Research Reports on Modern Man.

    ERIC Educational Resources Information Center

    Dickinson, William B., Jr., Ed.

    Nine reports published in this volume study the uneasy coexistence of modern man and the complex society he has wrought. Man's apparent disorganized behavior is attributed to his inability to adapt readily to the charged pace of technological change. To combat the advancement of machine over man, he must, therefore, insist that moral and…

  18. Reducing the oxygen concentration of gases delivered from anaesthetic machines unadapted for medical air

    PubMed Central

    Clutton, R. E.; Schoeffmann, G.; Chesnil, M.; Gregson, R.; Reed, F.; Lawson, H.; Eddleston, M.

    2014-01-01

    High fractional concentrations of inspired oxygen (FiO2) delivered over prolonged periods produce characteristic histological changes in the lungs and airway of exposed animals. Modern medical anaesthetic machines are adapted to deliver medical air (FiO2=0.21) for the purpose of reducing FiO2; anaesthetic machines designed for the veterinary market have not been so adapted. Two inexpensive modifications that allow medical air to be added to the gas flow from veterinary anaesthetic machines are described. The advantages and disadvantages of each modification are discussed. PMID:21862470

  19. Chapter 16 - Predictive Analytics for Comprehensive Energy Systems State Estimation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yingchen; Yang, Rui; Hodge, Brian S

    Energy sustainability is a subject of concern to many nations in the modern world. It is critical for electric power systems to diversify energy supply to include systems with different physical characteristics, such as wind energy, solar energy, electrochemical energy storage, thermal storage, bio-energy systems, geothermal, and ocean energy. Each system has its own range of control variables and targets. To be able to operate such a complex energy system, big-data analytics become critical to achieve the goal of predicting energy supplies and consumption patterns, assessing system operation conditions, and estimating system states - all providing situational awareness to powermore » system operators. This chapter presents data analytics and machine learning-based approaches to enable predictive situational awareness of the power systems.« less

  20. Taming the Wild: A Unified Analysis of Hogwild!-Style Algorithms.

    PubMed

    De Sa, Christopher; Zhang, Ce; Olukotun, Kunle; Ré, Christopher

    2015-12-01

    Stochastic gradient descent (SGD) is a ubiquitous algorithm for a variety of machine learning problems. Researchers and industry have developed several techniques to optimize SGD's runtime performance, including asynchronous execution and reduced precision. Our main result is a martingale-based analysis that enables us to capture the rich noise models that may arise from such techniques. Specifically, we use our new analysis in three ways: (1) we derive convergence rates for the convex case (Hogwild!) with relaxed assumptions on the sparsity of the problem; (2) we analyze asynchronous SGD algorithms for non-convex matrix problems including matrix completion; and (3) we design and analyze an asynchronous SGD algorithm, called Buckwild!, that uses lower-precision arithmetic. We show experimentally that our algorithms run efficiently for a variety of problems on modern hardware.

  1. Reconceptualizing the classification of PNAS articles

    PubMed Central

    Airoldi, Edoardo M.; Erosheva, Elena A.; Fienberg, Stephen E.; Joutard, Cyrille; Love, Tanzy; Shringarpure, Suyash

    2010-01-01

    PNAS article classification is rooted in long-standing disciplinary divisions that do not necessarily reflect the structure of modern scientific research. We reevaluate that structure using latent pattern models from statistical machine learning, also known as mixed-membership models, that identify semantic structure in co-occurrence of words in the abstracts and references. Our findings suggest that the latent dimensionality of patterns underlying PNAS research articles in the Biological Sciences is only slightly larger than the number of categories currently in use, but it differs substantially in the content of the categories. Further, the number of articles that are listed under multiple categories is only a small fraction of what it should be. These findings together with the sensitivity analyses suggest ways to reconceptualize the organization of papers published in PNAS. PMID:21078953

  2. Automatic high-throughput screening of colloidal crystals using machine learning

    NASA Astrophysics Data System (ADS)

    Spellings, Matthew; Glotzer, Sharon C.

    Recent improvements in hardware and software have united to pose an interesting problem for computational scientists studying self-assembly of particles into crystal structures: while studies covering large swathes of parameter space can be dispatched at once using modern supercomputers and parallel architectures, identifying the different regions of a phase diagram is often a serial task completed by hand. While analytic methods exist to distinguish some simple structures, they can be difficult to apply, and automatic identification of more complex structures is still lacking. In this talk we describe one method to create numerical ``fingerprints'' of local order and use them to analyze a study of complex ordered structures. We can use these methods as first steps toward automatic exploration of parameter space and, more broadly, the strategic design of new materials.

  3. Cyberspace modernization. An interest protocol planning advisory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keliiaa, Curtis M.; McLane, Victor N.

    A common challenge across the communications and information technology (IT) sectors is Internet + modernization + complexity + risk + cost. Cyberspace modernization and cyber security risks, issues, and concerns impact service providers, their customers, and the industry at large. Public and private sectors are struggling to solve the problem. New service opportunities lie in mobile voice, video, and data, and machine-to-machine (M2M) information and communication technologies that are migrating not only to predominant Internet Protocol (IP) communications, but also concurrently integrating IP, version 4 (IPv4) and IP, version 6 (IPv6). With reference to the Second Internet and the Internetmore » of Things, next generation information services portend business survivability in the changing global market. The planning, architecture, and design information herein is intended to increase infrastructure preparedness, security, interoperability, resilience, and trust in the midst of such unprecedented change and opportunity. This document is a product of Sandia National Laboratories Tribal Cyber and IPv6 project work. It is a Cyberspace Modernization objective advisory in support of bridging the digital divide through strategic partnership and an informed path forward.« less

  4. Enhanced Learning through Design Problems--Teaching a Components-Based Course through Design

    ERIC Educational Resources Information Center

    Jensen, Bogi Bech; Hogberg, Stig; Jensen, Frida av Flotum; Mijatovic, Nenad

    2012-01-01

    This paper describes a teaching method used in an electrical machines course, where the students learn about electrical machines by designing them. The aim of the course is not to teach design, albeit this is a side product, but rather to teach the fundamentals and the function of electrical machines through design. The teaching method is…

  5. Phishtest: Measuring the Impact of Email Headers on the Predictive Accuracy of Machine Learning Techniques

    ERIC Educational Resources Information Center

    Tout, Hicham

    2013-01-01

    The majority of documented phishing attacks have been carried by email, yet few studies have measured the impact of email headers on the predictive accuracy of machine learning techniques in detecting email phishing attacks. Research has shown that the inclusion of a limited subset of email headers as features in training machine learning…

  6. Machine Learning in Medicine

    PubMed Central

    Deo, Rahul C.

    2015-01-01

    Spurred by advances in processing power, memory, storage, and an unprecedented wealth of data, computers are being asked to tackle increasingly complex learning tasks, often with astonishing success. Computers have now mastered a popular variant of poker, learned the laws of physics from experimental data, and become experts in video games – tasks which would have been deemed impossible not too long ago. In parallel, the number of companies centered on applying complex data analysis to varying industries has exploded, and it is thus unsurprising that some analytic companies are turning attention to problems in healthcare. The purpose of this review is to explore what problems in medicine might benefit from such learning approaches and use examples from the literature to introduce basic concepts in machine learning. It is important to note that seemingly large enough medical data sets and adequate learning algorithms have been available for many decades – and yet, although there are thousands of papers applying machine learning algorithms to medical data, very few have contributed meaningfully to clinical care. This lack of impact stands in stark contrast to the enormous relevance of machine learning to many other industries. Thus part of my effort will be to identify what obstacles there may be to changing the practice of medicine through statistical learning approaches, and discuss how these might be overcome. PMID:26572668

  7. Supervised machine learning algorithms to diagnose stress for vehicle drivers based on physiological sensor signals.

    PubMed

    Barua, Shaibal; Begum, Shahina; Ahmed, Mobyen Uddin

    2015-01-01

    Machine learning algorithms play an important role in computer science research. Recent advancement in sensor data collection in clinical sciences lead to a complex, heterogeneous data processing, and analysis for patient diagnosis and prognosis. Diagnosis and treatment of patients based on manual analysis of these sensor data are difficult and time consuming. Therefore, development of Knowledge-based systems to support clinicians in decision-making is important. However, it is necessary to perform experimental work to compare performances of different machine learning methods to help to select appropriate method for a specific characteristic of data sets. This paper compares classification performance of three popular machine learning methods i.e., case-based reasoning, neutral networks and support vector machine to diagnose stress of vehicle drivers using finger temperature and heart rate variability. The experimental results show that case-based reasoning outperforms other two methods in terms of classification accuracy. Case-based reasoning has achieved 80% and 86% accuracy to classify stress using finger temperature and heart rate variability. On contrary, both neural network and support vector machine have achieved less than 80% accuracy by using both physiological signals.

  8. Automatic de-identification of French clinical records: comparison of rule-based and machine-learning approaches.

    PubMed

    Grouin, Cyril; Zweigenbaum, Pierre

    2013-01-01

    In this paper, we present a comparison of two approaches to automatically de-identify medical records written in French: a rule-based system and a machine-learning based system using a conditional random fields (CRF) formalism. Both systems have been designed to process nine identifiers in a corpus of medical records in cardiology. We performed two evaluations: first, on 62 documents in cardiology, and on 10 documents in foetopathology - produced by optical character recognition (OCR) - to evaluate the robustness of our systems. We achieved a 0.843 (rule-based) and 0.883 (machine-learning) exact match overall F-measure in cardiology. While the rule-based system allowed us to achieve good results on nominative (first and last names) and numerical data (dates, phone numbers, and zip codes), the machine-learning approach performed best on more complex categories (postal addresses, hospital names, medical devices, and towns). On the foetopathology corpus, although our systems have not been designed for this corpus and despite OCR character recognition errors, we obtained promising results: a 0.681 (rule-based) and 0.638 (machine-learning) exact-match overall F-measure. This demonstrates that existing tools can be applied to process new documents of lower quality.

  9. Structural and Sequence Similarity Makes a Significant Impact on Machine-Learning-Based Scoring Functions for Protein-Ligand Interactions.

    PubMed

    Li, Yang; Yang, Jianyi

    2017-04-24

    The prediction of protein-ligand binding affinity has recently been improved remarkably by machine-learning-based scoring functions. For example, using a set of simple descriptors representing the atomic distance counts, the RF-Score improves the Pearson correlation coefficient to about 0.8 on the core set of the PDBbind 2007 database, which is significantly higher than the performance of any conventional scoring function on the same benchmark. A few studies have been made to discuss the performance of machine-learning-based methods, but the reason for this improvement remains unclear. In this study, by systemically controlling the structural and sequence similarity between the training and test proteins of the PDBbind benchmark, we demonstrate that protein structural and sequence similarity makes a significant impact on machine-learning-based methods. After removal of training proteins that are highly similar to the test proteins identified by structure alignment and sequence alignment, machine-learning-based methods trained on the new training sets do not outperform the conventional scoring functions any more. On the contrary, the performance of conventional functions like X-Score is relatively stable no matter what training data are used to fit the weights of its energy terms.

  10. Relative optical navigation around small bodies via Extreme Learning Machine

    NASA Astrophysics Data System (ADS)

    Law, Andrew M.

    To perform close proximity operations under a low-gravity environment, relative and absolute positions are vital information to the maneuver. Hence navigation is inseparably integrated in space travel. Extreme Learning Machine (ELM) is presented as an optical navigation method around small celestial bodies. Optical Navigation uses visual observation instruments such as a camera to acquire useful data and determine spacecraft position. The required input data for operation is merely a single image strip and a nadir image. ELM is a machine learning Single Layer feed-Forward Network (SLFN), a type of neural network (NN). The algorithm is developed on the predicate that input weights and biases can be randomly assigned and does not require back-propagation. The learned model is the output layer weights which are used to calculate a prediction. Together, Extreme Learning Machine Optical Navigation (ELM OpNav) utilizes optical images and ELM algorithm to train the machine to navigate around a target body. In this thesis the asteroid, Vesta, is the designated celestial body. The trained ELMs estimate the position of the spacecraft during operation with a single data set. The results show the approach is promising and potentially suitable for on-board navigation.

  11. Machine Learning for Social Services: A Study of Prenatal Case Management in Illinois.

    PubMed

    Pan, Ian; Nolan, Laura B; Brown, Rashida R; Khan, Romana; van der Boor, Paul; Harris, Daniel G; Ghani, Rayid

    2017-06-01

    To evaluate the positive predictive value of machine learning algorithms for early assessment of adverse birth risk among pregnant women as a means of improving the allocation of social services. We used administrative data for 6457 women collected by the Illinois Department of Human Services from July 2014 to May 2015 to develop a machine learning model for adverse birth prediction and improve upon the existing paper-based risk assessment. We compared different models and determined the strongest predictors of adverse birth outcomes using positive predictive value as the metric for selection. Machine learning algorithms performed similarly, outperforming the current paper-based risk assessment by up to 36%; a refined paper-based assessment outperformed the current assessment by up to 22%. We estimate that these improvements will allow 100 to 170 additional high-risk pregnant women screened for program eligibility each year to receive services that would have otherwise been unobtainable. Our analysis exhibits the potential for machine learning to move government agencies toward a more data-informed approach to evaluating risk and providing social services. Overall, such efforts will improve the efficiency of allocating resource-intensive interventions.

  12. Biomarkers for Musculoskeletal Pain Conditions: Use of Brain Imaging and Machine Learning.

    PubMed

    Boissoneault, Jeff; Sevel, Landrew; Letzen, Janelle; Robinson, Michael; Staud, Roland

    2017-01-01

    Chronic musculoskeletal pain condition often shows poor correlations between tissue abnormalities and clinical pain. Therefore, classification of pain conditions like chronic low back pain, osteoarthritis, and fibromyalgia depends mostly on self report and less on objective findings like X-ray or magnetic resonance imaging (MRI) changes. However, recent advances in structural and functional brain imaging have identified brain abnormalities in chronic pain conditions that can be used for illness classification. Because the analysis of complex and multivariate brain imaging data is challenging, machine learning techniques have been increasingly utilized for this purpose. The goal of machine learning is to train specific classifiers to best identify variables of interest on brain MRIs (i.e., biomarkers). This report describes classification techniques capable of separating MRI-based brain biomarkers of chronic pain patients from healthy controls with high accuracy (70-92%) using machine learning, as well as critical scientific, practical, and ethical considerations related to their potential clinical application. Although self-report remains the gold standard for pain assessment, machine learning may aid in the classification of chronic pain disorders like chronic back pain and fibromyalgia as well as provide mechanistic information regarding their neural correlates.

  13. Informatics and machine learning to define the phenotype.

    PubMed

    Basile, Anna Okula; Ritchie, Marylyn DeRiggi

    2018-03-01

    For the past decade, the focus of complex disease research has been the genotype. From technological advancements to the development of analysis methods, great progress has been made. However, advances in our definition of the phenotype have remained stagnant. Phenotype characterization has recently emerged as an exciting area of informatics and machine learning. The copious amounts of diverse biomedical data that have been collected may be leveraged with data-driven approaches to elucidate trait-related features and patterns. Areas covered: In this review, the authors discuss the phenotype in traditional genetic associations and the challenges this has imposed.Approaches for phenotype refinement that can aid in more accurate characterization of traits are also discussed. Further, the authors highlight promising machine learning approaches for establishing a phenotype and the challenges of electronic health record (EHR)-derived data. Expert commentary: The authors hypothesize that through unsupervised machine learning, data-driven approaches can be used to define phenotypes rather than relying on expert clinician knowledge. Through the use of machine learning and an unbiased set of features extracted from clinical repositories, researchers will have the potential to further understand complex traits and identify patient subgroups. This knowledge may lead to more preventative and precise clinical care.

  14. Adiabatic Quantum Anomaly Detection and Machine Learning

    NASA Astrophysics Data System (ADS)

    Pudenz, Kristen; Lidar, Daniel

    2012-02-01

    We present methods of anomaly detection and machine learning using adiabatic quantum computing. The machine learning algorithm is a boosting approach which seeks to optimally combine somewhat accurate classification functions to create a unified classifier which is much more accurate than its components. This algorithm then becomes the first part of the larger anomaly detection algorithm. In the anomaly detection routine, we first use adiabatic quantum computing to train two classifiers which detect two sets, the overlap of which forms the anomaly class. We call this the learning phase. Then, in the testing phase, the two learned classification functions are combined to form the final Hamiltonian for an adiabatic quantum computation, the low energy states of which represent the anomalies in a binary vector space.

  15. RG-inspired machine learning for lattice field theory

    NASA Astrophysics Data System (ADS)

    Foreman, Sam; Giedt, Joel; Meurice, Yannick; Unmuth-Yockey, Judah

    2018-03-01

    Machine learning has been a fast growing field of research in several areas dealing with large datasets. We report recent attempts to use renormalization group (RG) ideas in the context of machine learning. We examine coarse graining procedures for perceptron models designed to identify the digits of the MNIST data. We discuss the correspondence between principal components analysis (PCA) and RG flows across the transition for worm configurations of the 2D Ising model. Preliminary results regarding the logarithmic divergence of the leading PCA eigenvalue were presented at the conference. More generally, we discuss the relationship between PCA and observables in Monte Carlo simulations and the possibility of reducing the number of learning parameters in supervised learning based on RG inspired hierarchical ansatzes.

  16. Investigating the Impact of a LEGO(TM)-Based, Engineering-Oriented Curriculum Compared to an Inquiry-Based Curriculum on Fifth Graders' Content Learning of Simple Machines

    ERIC Educational Resources Information Center

    Marulcu, Ismail

    2010-01-01

    This mixed method study examined the impact of a LEGO-based, engineering-oriented curriculum compared to an inquiry-based curriculum on fifth graders' content learning of simple machines. This study takes a social constructivist theoretical stance that science learning involves learning scientific concepts and their relations to each other. From…

  17. Using information from historical high-throughput screens to predict active compounds.

    PubMed

    Riniker, Sereina; Wang, Yuan; Jenkins, Jeremy L; Landrum, Gregory A

    2014-07-28

    Modern high-throughput screening (HTS) is a well-established approach for hit finding in drug discovery that is routinely employed in the pharmaceutical industry to screen more than a million compounds within a few weeks. However, as the industry shifts to more disease-relevant but more complex phenotypic screens, the focus has moved to piloting smaller but smarter chemically/biologically diverse subsets followed by an expansion around hit compounds. One standard method for doing this is to train a machine-learning (ML) model with the chemical fingerprints of the tested subset of molecules and then select the next compounds based on the predictions of this model. An alternative approach would be to take advantage of the wealth of bioactivity information contained in older (full-deck) screens using so-called HTS fingerprints, where each element of the fingerprint corresponds to the outcome of a particular assay, as input to machine-learning algorithms. We constructed HTS fingerprints using two collections of data: 93 in-house assays and 95 publicly available assays from PubChem. For each source, an additional set of 51 and 46 assays, respectively, was collected for testing. Three different ML methods, random forest (RF), logistic regression (LR), and naïve Bayes (NB), were investigated for both the HTS fingerprint and a chemical fingerprint, Morgan2. RF was found to be best suited for learning from HTS fingerprints yielding area under the receiver operating characteristic curve (AUC) values >0.8 for 78% of the internal assays and enrichment factors at 5% (EF(5%)) >10 for 55% of the assays. The RF(HTS-fp) generally outperformed the LR trained with Morgan2, which was the best ML method for the chemical fingerprint, for the majority of assays. In addition, HTS fingerprints were found to retrieve more diverse chemotypes. Combining the two models through heterogeneous classifier fusion led to a similar or better performance than the best individual model for all assays. Further validation using a pair of in-house assays and data from a confirmatory screen--including a prospective set of around 2000 compounds selected based on our approach--confirmed the good performance. Thus, the combination of machine-learning with HTS fingerprints and chemical fingerprints utilizes information from both domains and presents a very promising approach for hit expansion, leading to more hits. The source code used with the public data is provided.

  18. Machine learning challenges in Mars rover traverse science

    NASA Technical Reports Server (NTRS)

    Castano, R.; Judd, M.; Anderson, R. C.; Estlin, T.

    2003-01-01

    The successful implementation of machine learning in autonomous rover traverse science requires addressing challenges that range from the analytical technical realm, to the fuzzy, philosophical domain of entrenched belief systems within scientists and mission managers.

  19. A distributed algorithm for machine learning

    NASA Astrophysics Data System (ADS)

    Chen, Shihong

    2018-04-01

    This paper considers a distributed learning problem in which a group of machines in a connected network, each learning its own local dataset, aim to reach a consensus at an optimal model, by exchanging information only with their neighbors but without transmitting data. A distributed algorithm is proposed to solve this problem under appropriate assumptions.

  20. Learning molecular energies using localized graph kernels

    DOE PAGES

    Ferré, Grégoire; Haut, Terry Scot; Barros, Kipton Marcos

    2017-03-21

    We report that recent machine learning methods make it possible to model potential energy of atomic configurations with chemical-level accuracy (as calculated from ab initio calculations) and at speeds suitable for molecular dynamics simulation. Best performance is achieved when the known physical constraints are encoded in the machine learning models. For example, the atomic energy is invariant under global translations and rotations; it is also invariant to permutations of same-species atoms. Although simple to state, these symmetries are complicated to encode into machine learning algorithms. In this paper, we present a machine learning approach based on graph theory that naturallymore » incorporates translation, rotation, and permutation symmetries. Specifically, we use a random walk graph kernel to measure the similarity of two adjacency matrices, each of which represents a local atomic environment. This Graph Approximated Energy (GRAPE) approach is flexible and admits many possible extensions. Finally, we benchmark a simple version of GRAPE by predicting atomization energies on a standard dataset of organic molecules.« less

  1. Learning molecular energies using localized graph kernels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferré, Grégoire; Haut, Terry Scot; Barros, Kipton Marcos

    We report that recent machine learning methods make it possible to model potential energy of atomic configurations with chemical-level accuracy (as calculated from ab initio calculations) and at speeds suitable for molecular dynamics simulation. Best performance is achieved when the known physical constraints are encoded in the machine learning models. For example, the atomic energy is invariant under global translations and rotations; it is also invariant to permutations of same-species atoms. Although simple to state, these symmetries are complicated to encode into machine learning algorithms. In this paper, we present a machine learning approach based on graph theory that naturallymore » incorporates translation, rotation, and permutation symmetries. Specifically, we use a random walk graph kernel to measure the similarity of two adjacency matrices, each of which represents a local atomic environment. This Graph Approximated Energy (GRAPE) approach is flexible and admits many possible extensions. Finally, we benchmark a simple version of GRAPE by predicting atomization energies on a standard dataset of organic molecules.« less

  2. Advanced Cell Classifier: User-Friendly Machine-Learning-Based Software for Discovering Phenotypes in High-Content Imaging Data.

    PubMed

    Piccinini, Filippo; Balassa, Tamas; Szkalisity, Abel; Molnar, Csaba; Paavolainen, Lassi; Kujala, Kaisa; Buzas, Krisztina; Sarazova, Marie; Pietiainen, Vilja; Kutay, Ulrike; Smith, Kevin; Horvath, Peter

    2017-06-28

    High-content, imaging-based screens now routinely generate data on a scale that precludes manual verification and interrogation. Software applying machine learning has become an essential tool to automate analysis, but these methods require annotated examples to learn from. Efficiently exploring large datasets to find relevant examples remains a challenging bottleneck. Here, we present Advanced Cell Classifier (ACC), a graphical software package for phenotypic analysis that addresses these difficulties. ACC applies machine-learning and image-analysis methods to high-content data generated by large-scale, cell-based experiments. It features methods to mine microscopic image data, discover new phenotypes, and improve recognition performance. We demonstrate that these features substantially expedite the training process, successfully uncover rare phenotypes, and improve the accuracy of the analysis. ACC is extensively documented, designed to be user-friendly for researchers without machine-learning expertise, and distributed as a free open-source tool at www.cellclassifier.org. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Designing Anticancer Peptides by Constructive Machine Learning.

    PubMed

    Grisoni, Francesca; Neuhaus, Claudia S; Gabernet, Gisela; Müller, Alex T; Hiss, Jan A; Schneider, Gisbert

    2018-04-21

    Constructive (generative) machine learning enables the automated generation of novel chemical structures without the need for explicit molecular design rules. This study presents the experimental application of such a deep machine learning model to design membranolytic anticancer peptides (ACPs) de novo. A recurrent neural network with long short-term memory cells was trained on α-helical cationic amphipathic peptide sequences and then fine-tuned with 26 known ACPs by transfer learning. This optimized model was used to generate unique and novel amino acid sequences. Twelve of the peptides were synthesized and tested for their activity on MCF7 human breast adenocarcinoma cells and selectivity against human erythrocytes. Ten of these peptides were active against cancer cells. Six of the active peptides killed MCF7 cancer cells without affecting human erythrocytes with at least threefold selectivity. These results advocate constructive machine learning for the automated design of peptides with desired biological activities. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. A review of machine learning in obesity.

    PubMed

    DeGregory, K W; Kuiper, P; DeSilvio, T; Pleuss, J D; Miller, R; Roginski, J W; Fisher, C B; Harness, D; Viswanath, S; Heymsfield, S B; Dungan, I; Thomas, D M

    2018-05-01

    Rich sources of obesity-related data arising from sensors, smartphone apps, electronic medical health records and insurance data can bring new insights for understanding, preventing and treating obesity. For such large datasets, machine learning provides sophisticated and elegant tools to describe, classify and predict obesity-related risks and outcomes. Here, we review machine learning methods that predict and/or classify such as linear and logistic regression, artificial neural networks, deep learning and decision tree analysis. We also review methods that describe and characterize data such as cluster analysis, principal component analysis, network science and topological data analysis. We introduce each method with a high-level overview followed by examples of successful applications. The algorithms were then applied to National Health and Nutrition Examination Survey to demonstrate methodology, utility and outcomes. The strengths and limitations of each method were also evaluated. This summary of machine learning algorithms provides a unique overview of the state of data analysis applied specifically to obesity. © 2018 World Obesity Federation.

  5. Interface Metaphors for Interactive Machine Learning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jasper, Robert J.; Blaha, Leslie M.

    To promote more interactive and dynamic machine learn- ing, we revisit the notion of user-interface metaphors. User-interface metaphors provide intuitive constructs for supporting user needs through interface design elements. A user-interface metaphor provides a visual or action pattern that leverages a user’s knowledge of another domain. Metaphors suggest both the visual representations that should be used in a display as well as the interactions that should be afforded to the user. We argue that user-interface metaphors can also offer a method of extracting interaction-based user feedback for use in machine learning. Metaphors offer indirect, context-based information that can be usedmore » in addition to explicit user inputs, such as user-provided labels. Implicit information from user interactions with metaphors can augment explicit user input for active learning paradigms. Or it might be leveraged in systems where explicit user inputs are more challenging to obtain. Each interaction with the metaphor provides an opportunity to gather data and learn. We argue this approach is especially important in streaming applications, where we desire machine learning systems that can adapt to dynamic, changing data.« less

  6. Quantum-assisted Helmholtz machines: A quantum–classical deep learning framework for industrial datasets in near-term devices

    NASA Astrophysics Data System (ADS)

    Benedetti, Marcello; Realpe-Gómez, John; Perdomo-Ortiz, Alejandro

    2018-07-01

    Machine learning has been presented as one of the key applications for near-term quantum technologies, given its high commercial value and wide range of applicability. In this work, we introduce the quantum-assisted Helmholtz machine:a hybrid quantum–classical framework with the potential of tackling high-dimensional real-world machine learning datasets on continuous variables. Instead of using quantum computers only to assist deep learning, as previous approaches have suggested, we use deep learning to extract a low-dimensional binary representation of data, suitable for processing on relatively small quantum computers. Then, the quantum hardware and deep learning architecture work together to train an unsupervised generative model. We demonstrate this concept using 1644 quantum bits of a D-Wave 2000Q quantum device to model a sub-sampled version of the MNIST handwritten digit dataset with 16 × 16 continuous valued pixels. Although we illustrate this concept on a quantum annealer, adaptations to other quantum platforms, such as ion-trap technologies or superconducting gate-model architectures, could be explored within this flexible framework.

  7. Predicting Solar Activity Using Machine-Learning Methods

    NASA Astrophysics Data System (ADS)

    Bobra, M.

    2017-12-01

    Of all the activity observed on the Sun, two of the most energetic events are flares and coronal mass ejections. However, we do not, as of yet, fully understand the physical mechanism that triggers solar eruptions. A machine-learning algorithm, which is favorable in cases where the amount of data is large, is one way to [1] empirically determine the signatures of this mechanism in solar image data and [2] use them to predict solar activity. In this talk, we discuss the application of various machine learning algorithms - specifically, a Support Vector Machine, a sparse linear regression (Lasso), and Convolutional Neural Network - to image data from the photosphere, chromosphere, transition region, and corona taken by instruments aboard the Solar Dynamics Observatory in order to predict solar activity on a variety of time scales. Such an approach may be useful since, at the present time, there are no physical models of flares available for real-time prediction. We discuss our results (Bobra and Couvidat, 2015; Bobra and Ilonidis, 2016; Jonas et al., 2017) as well as other attempts to predict flares using machine-learning (e.g. Ahmed et al., 2013; Nishizuka et al. 2017) and compare these results with the more traditional techniques used by the NOAA Space Weather Prediction Center (Crown, 2012). We also discuss some of the challenges in using machine-learning algorithms for space science applications.

  8. Machine Learning Based Classification of Microsatellite Variation: An Effective Approach for Phylogeographic Characterization of Olive Populations.

    PubMed

    Torkzaban, Bahareh; Kayvanjoo, Amir Hossein; Ardalan, Arman; Mousavi, Soraya; Mariotti, Roberto; Baldoni, Luciana; Ebrahimie, Esmaeil; Ebrahimi, Mansour; Hosseini-Mazinani, Mehdi

    2015-01-01

    Finding efficient analytical techniques is overwhelmingly turning into a bottleneck for the effectiveness of large biological data. Machine learning offers a novel and powerful tool to advance classification and modeling solutions in molecular biology. However, these methods have been less frequently used with empirical population genetics data. In this study, we developed a new combined approach of data analysis using microsatellite marker data from our previous studies of olive populations using machine learning algorithms. Herein, 267 olive accessions of various origins including 21 reference cultivars, 132 local ecotypes, and 37 wild olive specimens from the Iranian plateau, together with 77 of the most represented Mediterranean varieties were investigated using a finely selected panel of 11 microsatellite markers. We organized data in two '4-targeted' and '16-targeted' experiments. A strategy of assaying different machine based analyses (i.e. data cleaning, feature selection, and machine learning classification) was devised to identify the most informative loci and the most diagnostic alleles to represent the population and the geography of each olive accession. These analyses revealed microsatellite markers with the highest differentiating capacity and proved efficiency for our method of clustering olive accessions to reflect upon their regions of origin. A distinguished highlight of this study was the discovery of the best combination of markers for better differentiating of populations via machine learning models, which can be exploited to distinguish among other biological populations.

  9. Label-free sensor for automatic identification of erythrocytes using digital in-line holographic microscopy and machine learning.

    PubMed

    Go, Taesik; Byeon, Hyeokjun; Lee, Sang Joon

    2018-04-30

    Cell types of erythrocytes should be identified because they are closely related to their functionality and viability. Conventional methods for classifying erythrocytes are time consuming and labor intensive. Therefore, an automatic and accurate erythrocyte classification system is indispensable in healthcare and biomedical fields. In this study, we proposed a new label-free sensor for automatic identification of erythrocyte cell types using a digital in-line holographic microscopy (DIHM) combined with machine learning algorithms. A total of 12 features, including information on intensity distributions, morphological descriptors, and optical focusing characteristics, is quantitatively obtained from numerically reconstructed holographic images. All individual features for discocytes, echinocytes, and spherocytes are statistically different. To improve the performance of cell type identification, we adopted several machine learning algorithms, such as decision tree model, support vector machine, linear discriminant classification, and k-nearest neighbor classification. With the aid of these machine learning algorithms, the extracted features are effectively utilized to distinguish erythrocytes. Among the four tested algorithms, the decision tree model exhibits the best identification performance for the training sets (n = 440, 98.18%) and test sets (n = 190, 97.37%). This proposed methodology, which smartly combined DIHM and machine learning, would be helpful for sensing abnormal erythrocytes and computer-aided diagnosis of hematological diseases in clinic. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Application of machine learning methods in bioinformatics

    NASA Astrophysics Data System (ADS)

    Yang, Haoyu; An, Zheng; Zhou, Haotian; Hou, Yawen

    2018-05-01

    Faced with the development of bioinformatics, high-throughput genomic technology have enabled biology to enter the era of big data. [1] Bioinformatics is an interdisciplinary, including the acquisition, management, analysis, interpretation and application of biological information, etc. It derives from the Human Genome Project. The field of machine learning, which aims to develop computer algorithms that improve with experience, holds promise to enable computers to assist humans in the analysis of large, complex data sets.[2]. This paper analyzes and compares various algorithms of machine learning and their applications in bioinformatics.

  11. Oceanic eddy detection and lifetime forecast using machine learning methods

    NASA Astrophysics Data System (ADS)

    Ashkezari, Mohammad D.; Hill, Christopher N.; Follett, Christopher N.; Forget, Gaël.; Follows, Michael J.

    2016-12-01

    We report a novel altimetry-based machine learning approach for eddy identification and characterization. The machine learning models use daily maps of geostrophic velocity anomalies and are trained according to the phase angle between the zonal and meridional components at each grid point. The trained models are then used to identify the corresponding eddy phase patterns and to predict the lifetime of a detected eddy structure. The performance of the proposed method is examined at two dynamically different regions to demonstrate its robust behavior and region independency.

  12. A machine learning approach for predicting the relationship between energy resources and economic development

    NASA Astrophysics Data System (ADS)

    Cogoljević, Dušan; Alizamir, Meysam; Piljan, Ivan; Piljan, Tatjana; Prljić, Katarina; Zimonjić, Stefan

    2018-04-01

    The linkage between energy resources and economic development is a topic of great interest. Research in this area is also motivated by contemporary concerns about global climate change, carbon emissions fluctuating crude oil prices, and the security of energy supply. The purpose of this research is to develop and apply the machine learning approach to predict gross domestic product (GDP) based on the mix of energy resources. Our results indicate that GDP predictive accuracy can be improved slightly by applying a machine learning approach.

  13. Application of machine learning techniques to lepton energy reconstruction in water Cherenkov detectors

    NASA Astrophysics Data System (ADS)

    Drakopoulou, E.; Cowan, G. A.; Needham, M. D.; Playfer, S.; Taani, M.

    2018-04-01

    The application of machine learning techniques to the reconstruction of lepton energies in water Cherenkov detectors is discussed and illustrated for TITUS, a proposed intermediate detector for the Hyper-Kamiokande experiment. It is found that applying these techniques leads to an improvement of more than 50% in the energy resolution for all lepton energies compared to an approach based upon lookup tables. Machine learning techniques can be easily applied to different detector configurations and the results are comparable to likelihood-function based techniques that are currently used.

  14. Machine learning and computer vision approaches for phenotypic profiling.

    PubMed

    Grys, Ben T; Lo, Dara S; Sahin, Nil; Kraus, Oren Z; Morris, Quaid; Boone, Charles; Andrews, Brenda J

    2017-01-02

    With recent advances in high-throughput, automated microscopy, there has been an increased demand for effective computational strategies to analyze large-scale, image-based data. To this end, computer vision approaches have been applied to cell segmentation and feature extraction, whereas machine-learning approaches have been developed to aid in phenotypic classification and clustering of data acquired from biological images. Here, we provide an overview of the commonly used computer vision and machine-learning methods for generating and categorizing phenotypic profiles, highlighting the general biological utility of each approach. © 2017 Grys et al.

  15. 3D Visualization of Machine Learning Algorithms with Astronomical Data

    NASA Astrophysics Data System (ADS)

    Kent, Brian R.

    2016-01-01

    We present innovative machine learning (ML) methods using unsupervised clustering with minimum spanning trees (MSTs) to study 3D astronomical catalogs. Utilizing Python code to build trees based on galaxy catalogs, we can render the results with the visualization suite Blender to produce interactive 360 degree panoramic videos. The catalogs and their ML results can be explored in a 3D space using mobile devices, tablets or desktop browsers. We compare the statistics of the MST results to a number of machine learning methods relating to optimization and efficiency.

  16. Machine Learning Prediction of the Energy Gap of Graphene Nanoflakes Using Topological Autocorrelation Vectors.

    PubMed

    Fernandez, Michael; Abreu, Jose I; Shi, Hongqing; Barnard, Amanda S

    2016-11-14

    The possibility of band gap engineering in graphene opens countless new opportunities for application in nanoelectronics. In this work, the energy gaps of 622 computationally optimized graphene nanoflakes were mapped to topological autocorrelation vectors using machine learning techniques. Machine learning modeling revealed that the most relevant correlations appear at topological distances in the range of 1 to 42 with prediction accuracy higher than 80%. The data-driven model can statistically discriminate between graphene nanoflakes with different energy gaps on the basis of their molecular topology.

  17. What subject matter questions motivate the use of machine learning approaches compared to statistical models for probability prediction?

    PubMed

    Binder, Harald

    2014-07-01

    This is a discussion of the following papers: "Probability estimation with machine learning methods for dichotomous and multicategory outcome: Theory" by Jochen Kruppa, Yufeng Liu, Gérard Biau, Michael Kohler, Inke R. König, James D. Malley, and Andreas Ziegler; and "Probability estimation with machine learning methods for dichotomous and multicategory outcome: Applications" by Jochen Kruppa, Yufeng Liu, Hans-Christian Diener, Theresa Holste, Christian Weimar, Inke R. König, and Andreas Ziegler. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Machine learning and computer vision approaches for phenotypic profiling

    PubMed Central

    Morris, Quaid

    2017-01-01

    With recent advances in high-throughput, automated microscopy, there has been an increased demand for effective computational strategies to analyze large-scale, image-based data. To this end, computer vision approaches have been applied to cell segmentation and feature extraction, whereas machine-learning approaches have been developed to aid in phenotypic classification and clustering of data acquired from biological images. Here, we provide an overview of the commonly used computer vision and machine-learning methods for generating and categorizing phenotypic profiles, highlighting the general biological utility of each approach. PMID:27940887

  19. Code-Switching Functions in Modern Hebrew Teaching and Learning

    ERIC Educational Resources Information Center

    Gilead, Yona

    2016-01-01

    The teaching and learning of Modern Hebrew outside of Israel is essential to Jewish education and identity. One of the most contested issues in Modern Hebrew pedagogy is the use of code-switching between Modern Hebrew and learners' first language. Moreover, this is one of the longest running disputes in the broader field of second language…

  20. Boosting compound-protein interaction prediction by deep learning.

    PubMed

    Tian, Kai; Shao, Mingyu; Wang, Yang; Guan, Jihong; Zhou, Shuigeng

    2016-11-01

    The identification of interactions between compounds and proteins plays an important role in network pharmacology and drug discovery. However, experimentally identifying compound-protein interactions (CPIs) is generally expensive and time-consuming, computational approaches are thus introduced. Among these, machine-learning based methods have achieved a considerable success. However, due to the nonlinear and imbalanced nature of biological data, many machine learning approaches have their own limitations. Recently, deep learning techniques show advantages over many state-of-the-art machine learning methods in some applications. In this study, we aim at improving the performance of CPI prediction based on deep learning, and propose a method called DL-CPI (the abbreviation of Deep Learning for Compound-Protein Interactions prediction), which employs deep neural network (DNN) to effectively learn the representations of compound-protein pairs. Extensive experiments show that DL-CPI can learn useful features of compound-protein pairs by a layerwise abstraction, and thus achieves better prediction performance than existing methods on both balanced and imbalanced datasets. Copyright © 2016 Elsevier Inc. All rights reserved.

Top