Science.gov

Sample records for modern power plants

  1. COMMERCIAL UTILITY PERSPECTIVES ON NUCLEAR POWER PLANT CONTROL ROOM MODERNIZATION

    SciTech Connect

    Jeffrey C. Joe; Ronald L. Boring; Julius J. Persensky

    2012-07-01

    Commercial nuclear power plants (NPPs) in the United States need to modernize their main control rooms (MCR). Many NPPs have done partial upgrades with some success and with some challenges. The Department of Energy’s (DOE) Light Water Reactor Sustainability (LWRS) Program, and in particular the Advanced Instrumentation and Controls (I&C) and Information Systems Technologies Research and Development (R&D) Pathway within LWRS, is designed to assist commercial nuclear power industry with their MCR modernization efforts. As part of this framework, a survey was issued to utility representatives of the LWRS Program Advanced Instrumentation, Information, and Control Systems/Technologies (II&C) Utility Working Group to obtain their views on a range of issues related to MCR modernization, including: drivers, barriers, and technology options, and the effects these aspects will have on concepts of operations, modernization strategies, and staffing. This paper summarizes the key survey results and discusses their implications.

  2. Effective ways to modernize outdated coal heat power plants

    NASA Astrophysics Data System (ADS)

    Suchkov, S. I.; Kotler, V. R.; Batorshin, V. A.

    2016-12-01

    An analysis of the state of equipment of 72 outdated coal HPP (heat power plants) of a total capacity 14.3 GW with steam parameters before the turbines p before ≤ 9 MPa, t before = 420-540°C was performed. The equipment is characterized by a considerably low efficiency factor, even if it were converted to burning the natural gas, and by increased release of harmful substances. However, on the most part of the considered HPP, the steam turbines, unlike the boilers, have thus far retained the operation applicability and satisfactory reliability of performance. The analysis has shown that it makes sense to effectively modernize the outdated coal HPP by transformation of their equipment into combined-cycle plant (CCP) with coal gasification, which has high economic and ecological indicators due to thermodynamic advantage of the combined cycle and simpler purification of the generator gas in the process under pressure. As the most rational way of this transformation, the one was recognized wherein—instead of the existing boiler (boilers) or parallel to it—a gasification and gas turbine system is installed with a boiler-utilizer (BU), from which steam is fed to the HPP main steam pipe. In doing this, the basic part of the power station equipment persists. In the world, this kind of reconstruction of steam power equipment is applied widely and successfully, but it is by use of natural gas for the most part. It is reasonable to use the technology developed at Heat Engineering Research Institute (HERI) of hearth-steam gasification of coal and high-temperature purification of the generator gas. The basic scheme and measures on implementation of this method for modernization of outdated coal HPP is creation of CCP with blast-furnace of coal on the basis of accessible and preserved HPP equipment. CCP power is 120 MW, input-output ratio (roughly) 44%, emissions of hazardous substances are 5 mg/MJ dust, 20-60 mg/MJ SO2, and 50-100 mg/MJ NO x . A considerable decrease of

  3. Modern air protection technologies at thermal power plants (review)

    NASA Astrophysics Data System (ADS)

    Roslyakov, P. V.

    2016-07-01

    Realization of the ecologically safe technologies for fuel combustion in the steam boiler furnaces and the effective ways for treatment of flue gases at modern thermal power plants have been analyzed. The administrative and legal measures to stimulate introduction of the technologies for air protection at TPPs have been considered. It has been shown that both the primary intrafurnace measures for nitrogen oxide suppression and the secondary flue gas treatment methods are needed to meet the modern ecological standards. Examples of the environmentally safe methods for flame combustion of gas-oil and solid fuels in the boiler furnaces have been provided. The effective methods and units to treat flue gases from nitrogen and sulfur oxides and flue ash have been considered. It has been demonstrated that realization of the measures for air protection should be accompanied by introduction of the systems for continuous instrumentation control of the composition of combustion products in the gas path of boiler units and for monitoring of atmospheric emissions.

  4. Modernization and life time extension on steam power plants in Eastern Europe and Russia

    NASA Astrophysics Data System (ADS)

    Kupetz, M.; Jenikejew, E.; Hiss, F.

    2014-06-01

    The Eastern European electricity markets with focus on Russia and Ukraine are suffering severe aging of the existing LMZ, UTZ and Turboatom steam turbine fleets after more than 25 years of operation. Energy efficient modernizations along with life time extension beyond the designed life time of existing old power plants is an economical option to address the increasing power demand. Steam Turbine modernizations are using latest state of the art materials and technology-enhanced turbine components such as blades, sealing, guide blade carriers, inner casings and rotors as well as components for auxiliary systems e.g. lube and lifting oil thus providing increased efficiency and optimized maintainability. This paper outlines unique design features and pre-engineered modules of the Siemens steam turbine modernization applications for thermal power stations, emphasizing the solutions for Turboatom 300 MW and LMZ 200 MW turbine-generators. The paper concludes with references and operational experience.

  5. Control room modernization at Finnish nuclear power plants - Two projects compared

    SciTech Connect

    Laarni, J.; Norros, L.

    2006-07-01

    The modernization of automation systems and human-machine interfaces is a current issue at both of the two nuclear power plants (i.e., Fortum's Loviisa plant and TVO's Olkiluoto plant) in Finland. Since the plants have been launched in the 1970's or 1980's, technology is in part old-fashioned and needs to be renewed. At Olkiluoto upgrades of the turbine operator systems have already been conducted; at Loviisa the first phase of the modernization project has just started. Basically, there is a question of the complete digitalization of the information streams at the two plants, and transition from a conventional hard-wired or hybrid control room to a screen-based one. The new human-machine interfaces will comprise new technology, such as PC workstations, soft control, touch screens and large-screen overall displays. The modernization of human-system interfaces is carried out in a stepwise manner at both plants. At both plants the main driver has not been the need to renew the user interfaces of the control room, but the need to upgrade the automation systems. In part because of this, there is a lack of a systematic top-down approach in which different aspects of human factors (HF) engineering are considered in relationship to higher level goals. Our aim here is to give an overview description of the control room modernization projects at the two plants and provide a preliminary evaluation of their progress to date. The projects are also compared, for example, in terms of duration, scope and phasing, and who is responsible for the realization of the project. In addition, we also compare experiences from the Finnish projects to experiences from similar projects abroad. The main part of the data used in this study is based on designers' and project members' interviews. (authors)

  6. Baseline Evaluations to Support Control Room Modernization at Nuclear Power Plants

    SciTech Connect

    Boring, Ronald L.; Joe, Jeffrey C.

    2015-02-01

    For any major control room modernization activity at a commercial nuclear power plant (NPP) in the U.S., a utility should carefully follow the four phases prescribed by the U.S. Nuclear Regulatory Commission in NUREG-0711, Human Factors Engineering Program Review Model. These four phases include Planning and Analysis, Design, Verification and Validation, and Implementation and Operation. While NUREG-0711 is a useful guideline, it is written primarily from the perspective of regulatory review, and it therefore does not provide a nuanced account of many of the steps the utility might undertake as part of control room modernization. The guideline is largely summative—intended to catalog final products—rather than formative—intended to guide the overall modernization process. In this paper, we highlight two crucial formative sub-elements of the Planning and Analysis phase specific to control room modernization that are not covered in NUREG-0711. These two sub-elements are the usability and ergonomics baseline evaluations. A baseline evaluation entails evaluating the system as-built and currently in use. The usability baseline evaluation provides key insights into operator performance using the control system currently in place. The ergonomics baseline evaluation identifies possible deficiencies in the physical configuration of the control system. Both baseline evaluations feed into the design of the replacement system and subsequent summative benchmarking activities that help ensure that control room modernization represents a successful evolution of the control system.

  7. GUIDANCE FOR NUCLEAR POWER PLANT CONTROL ROOM AND HUMAN-SYSTEM INTERFACE MODERNIZATION

    SciTech Connect

    Naser, J.; Morris, G.

    2004-10-06

    Several nuclear power plants in the United States are starting instrumentation and control (I&C) modernization programs using digital equipment to address obsolescence issues and the need to improve plant performance while maintaining high levels of safety. As an integral part of the I&C modernization program at a nuclear power plant, the control room and other human-system interfaces (HSIs) are also being modernized. To support safe and effective operation, it is critical to plan, design, implement, train for, operate, and maintain the control room and HSI changes to take advantage of human cognitive processing abilities. A project, jointly funded by the Electric Power Research Institute (EPRI) and the United States Department of Energy (DOE) under the Nuclear Energy Plant Optimization (NEPO) Program, is developing guidance for specifying and designing control rooms, remote shut-down panels, HSIs etc. The guidance is intended for application by utilities and suppliers of control room and HSI modernization. The guidance will facilitate specification, design, implementation, operations, maintenance, training, and licensing activities. This guidance will be used to reduce the likelihood of human errors and licensing risk, to gain maximum benefit of implemented technology, and to increase performance. The guidance is of five types. The first is planning guidance to help a utility develop its plant-specific control room operating concepts, its plant-specific endpoint vision for the control room, its migration path to achieve that endpoint vision, and its regulatory, licensing, and human factors program plans. The second is process guidance for general HSI design and integration, human factors engineering analyses, verification and validation, in-service monitoring processes, etc. The third is detailed human factors engineering guidance for control room and HSI technical areas. The fourth is guidance for licensing. The fifth is guidance for special topics related to

  8. Land Use Requirements of Modern Wind Power Plants in the United States

    SciTech Connect

    Denholm, P.; Hand, M.; Jackson, M.; Ong, S.

    2009-08-01

    This report provides data and analysis of the land use associated with modern, large wind power plants (defined as greater than 20 megawatts (MW) and constructed after 2000). The analysis discusses standard land-use metrics as established in the life-cycle assessment literature, and then discusses their applicability to wind power plants. The report identifies two major 'classes' of wind plant land use: 1) direct impact (i.e., disturbed land due to physical infrastructure development), and 2) total area (i.e., land associated with the complete wind plant project). The analysis also provides data for each of these classes, derived from project applications, environmental impact statements, and other sources. It attempts to identify relationships among land use, wind plant configuration, and geography. The analysts evaluated 172 existing or proposed projects, which represents more than 26 GW of capacity. In addition to providing land-use data and summary statistics, they identify several limitations to the existing wind project area data sets, and suggest additional analysis that could aid in evaluating actual land use and impacts associated with deployment of wind energy.

  9. The virtual digital nuclear power plant: A modern tool for supporting the lifecycle of VVER-based nuclear power units

    NASA Astrophysics Data System (ADS)

    Arkadov, G. V.; Zhukavin, A. P.; Kroshilin, A. E.; Parshikov, I. A.; Solov'ev, S. L.; Shishov, A. V.

    2014-10-01

    The article describes the "Virtual Digital VVER-Based Nuclear Power Plant" computerized system comprising a totality of verified initial data (sets of input data for a model intended for describing the behavior of nuclear power plant (NPP) systems in design and emergency modes of their operation) and a unified system of new-generation computation codes intended for carrying out coordinated computation of the variety of physical processes in the reactor core and NPP equipment. Experiments with the demonstration version of the "Virtual Digital VVER-Based NPP" computerized system has shown that it is in principle possible to set up a unified system of computation codes in a common software environment for carrying out interconnected calculations of various physical phenomena at NPPs constructed according to the standard AES-2006 project. With the full-scale version of the "Virtual Digital VVER-Based NPP" computerized system put in operation, the concerned engineering, design, construction, and operating organizations will have access to all necessary information relating to the NPP power unit project throughout its entire lifecycle. The domestically developed commercial-grade software product set to operate as an independently operating application to the project will bring about additional competitive advantages in the modern market of nuclear power technologies.

  10. Development of Energy Efficient Technologies for Burning Coal in Modern Thermal Power Plants and Efficiency Assessment Tools

    NASA Astrophysics Data System (ADS)

    Dubrovskiy, Vitali; Zubova, Marina; Sedelnikov, Nikolai; Dihnova, Anna

    2016-02-01

    Universal ecological energy-efficient burner was described. The burner allows to burn different types of coal and lignite without the use of fuel oil for kindling the boiler. Efficiency assessment tools of the introduction of the burner for combustion of coal in modern thermal power plants were given.

  11. Developing and applying modern methods of leakage monitoring and state estimation of fuel at the Novovoronezh nuclear power plant

    NASA Astrophysics Data System (ADS)

    Povarov, V. P.; Tereshchenko, A. B.; Kravchenko, Yu. N.; Pozychanyuk, I. V.; Gorobtsov, L. I.; Golubev, E. I.; Bykov, V. I.; Likhanskii, V. V.; Evdokimov, I. A.; Zborovskii, V. G.; Sorokin, A. A.; Kanyukova, V. D.; Aliev, T. N.

    2014-02-01

    The results of developing and implementing the modernized fuel leakage monitoring methods at the shut-down and running reactor of the Novovoronezh nuclear power plant (NPP) are presented. An automated computerized expert system integrated with an in-core monitoring system (ICMS) and installed at the Novovoronezh NPP unit no. 5 is described. If leaky fuel elements appear in the core, the system allows one to perform on-line assessment of the parameters of leaky fuel assemblies (FAs). The computer expert system units designed for optimizing the operating regimes and enhancing the fuel usage efficiency at the Novovoronezh NPP unit no. 5 are now being developed.

  12. Final Focus Shielding Designs for Modern Heavy-Ion Fusion Power Plant Designs

    SciTech Connect

    Latkowski, J F; Meier, W R

    2000-07-05

    Recent work in heavy-ion fusion accelerators and final focusing systems shows a trend towards less current per beam, and thus, a greater number of beams. Final focusing magnets are susceptible to nuclear heating, radiation damage, and neutron activation. The trend towards more beams, however, means that there can be less shielding for each magnet, Excessive levels of nuclear heating may lead to magnet quench or an intolerable recirculating power for magnet cooling. High levels of radiation damage may result in short magnet lifetimes and low reliability. Finally, neutron activation of the magnet components may lead to difficulties in maintenance, recycling, and waste disposal. The present work expands upon previous, three-dimensional magnet shielding calculations for a modified version of the HYLIFE-I1 IFE power plant design. We present key magnet results as a function of the number of beams.

  13. Final focus shielding designs for modern heavy-ion fusion power plant designs

    NASA Astrophysics Data System (ADS)

    Latkowski, J. F.; Meier, W. R.

    2001-05-01

    Recent work in heavy-ion fusion accelerators and final focusing systems shows a trend towards less current per beam, and thus, a greater number of beams. Final focusing magnets are susceptible to nuclear heating, radiation damage, and neutron activation. The trend towards more beams, however, means that there can be less shielding for each magnet. Excessive levels of nuclear heating may lead to magnet quench or to an intolerable recirculating power for magnet cooling. High levels of radiation damage may result in short magnet lifetimes and low reliability. Finally, neutron activation of the magnet components may lead to difficulties in maintenance, recycling, and waste disposal. The present work expands upon previous, three-dimensional magnet shielding calculations for a modified version of the HYLIFE-II IFE power plant design. We present key magnet results as a function of the number of beams.

  14. Problems in creation of modern air inlet filters of power gas turbine plants in Russia and methods of their solving

    NASA Astrophysics Data System (ADS)

    Mikhaylov, V. E.; Khomenok, L. A.; Sherapov, V. V.

    2016-08-01

    The main problems in creation and operation of modern air inlet paths of gas turbine plants installed as part of combined-cycle plants in Russia are presented. It is noted that design features of air inlet filters shall be formed at the stage of the technical assignment not only considering the requirements of gas turbine plant manufacturer but also climatic conditions, local atmospheric air dustiness, and a number of other factors. The recommendations on completing of filtration system for air inlet filter of power gas turbine plants depending on the facility location are given, specific defects in design and experience in operation of imported air inlet paths are analyzed, and influence of cycle air preparation quality for gas turbine plant on value of operating expenses and cost of repair works is noted. Air treatment equipment of various manufacturers, influence of aerodynamic characteristics on operation of air inlet filters, features of filtration system operation, anti-icing system, weather canopies, and other elements of air inlet paths are considered. It is shown that nonuniformity of air flow velocity fields in clean air chamber has a negative effect on capacity and aerodynamic resistance of air inlet filter. Besides, the necessity in installation of a sufficient number of differential pressure transmitters allowing controlling state of each treatment stage not being limited to one measurement of total differential pressure in the filtration system is noted in the article. According to the results of the analysis trends and methods for modernization of available equipment for air inlet path, the importance of creation and implementation of new technologies for manufacturing of filtering elements on sites of Russia within the limits of import substitution are given, and measures on reliability improvement and energy efficiency for air inlet filter are considered.

  15. Public private partnerships for the operation and modernization of university power plants

    SciTech Connect

    Sebesta, J.J.

    1995-09-01

    The availability of funds for maintaining and modernizing University Central Utility systems is becoming more and more difficult to obtain from either the State Legislature or the University internal funds. Many Institutions are faced with the situation of having utility facilities which have exceed normal expected useful life of the major equipment components. In addition, current and future regulatory requirements for operating such facilities are placing increased burdens on the University budget as well as the staff of the University who are not involved in the daily intricacies of operating and regulating such facilities. Universities have a unique capability to pursue partnerships with private companies for the purpose of operating and modernizing these central utility facilities. Further, if pursued properly, competitive forces in the market place offer specific economic advantages to the University in the form of guarantees for items ranging from the cost to construct and expand the facilities to guarantees for fuel efficiency, future operating costs and cogeneration performance.

  16. Comprehensive assessment of the effective scope of modernization of thermal power plants to substantiate the rational structure of the generating capacities for the future until 2035

    NASA Astrophysics Data System (ADS)

    Veselov, F. V.; Erokhina, I. V.; Makarova, A. S.; Khorshev, A. A.

    2017-03-01

    The article deals with issues of technical and economic substantiation of priorities and scopes of modernizing the existing thermal power plants (TPPs) in Russia to work out long-term forecasts of the development of the industry. The current situation in the TPP modernization trends is analyzed. The updated initial figures of the capital and operation costs are presented and the obtained estimates of the comparative efficiency of various investment decisions on modernization and equipment replacement at gas-and-oil-burning and coal-fired TPPs with regard to the main zones of the national Unified Power System (UPS) of Russia are cited. The results of optimization of the generating capacity structure underlie a study of alternative TPP modernization strategies that differ in the scope of switching to new technologies, capital intensity, and energy efficiency (decrease in the average heat rate). To provide an integral economic assessment of the above strategies, the authors modified the traditional approach based on determination of the overall discounted costs of power supply (least-cost planning) supplemented with a comparison by the weighted average wholesale price of the electricity. A method for prediction of the wholesale price is proposed reasoning from the direct and dual solutions of the optimization problem. The method can be adapted to various combinations of the mechanisms of payment for the electricity and the capacity on the basis of marginal and average costs. Energy and economic analysis showed that the opposite effects of reduction in the capital investment and fuel saving change in a nonlinear way as the scope of the switch to more advanced power generation technologies at the TPPs increases. As a consequence, a strategy for modernization of the existing power plants rational with respect to total costs of the power supply and wholesale electricity prices has been formulated. The strategy combines decisions on upgrade and replacement of the equipment

  17. Active tectonics and Holocene versus modern catchment erosion rates at 300 MW Baspa II hydroelectric power plant (NW Himalaya, India)

    NASA Astrophysics Data System (ADS)

    Draganits, Erich; Grasemann, Bernhard; Gier, Susanne; Hofmann, Christa-Charlotte; Janda, Christoph; Bookhagen, Bodo; Preh, Alexander

    2015-04-01

    The Baspa River is one of the most important tributaries to the Sutlej River in the NW Himalaya (India). Its catchment is 1116 km2 in size, ranges from c. 6400 m asl to 1770 m asl and contains India's largest private hydroelectric facility, the 300 MW Baspa II. Geologically, the hydroelectric installation is located in the Higher Himalayan Crystalline, just above the active Karcham Normal Fault, which is reactivating the Early Miocene Main Central Thrust, one of the principal Himalayan faults. The area is seismically active and mass-movements are common. Around 8200 yrs BP the Baspa was dammed by a rock-avalanche dam, leading to the formation of the originally c. 260 m deep palaeo-lake Sangla palaeo-lake. Detailed sedimentological investigations and radiocarbon dating indicate that the palaeo-lake was completely filled with sediments until c. 5100 yrs BP. This makes the Sangla palaeo-lake to a very rare example of a mass-movement dam with very long duration and its lacustrine sediments represent a valuable archive for geological processes and environmental proxies within the Baspa catchment during the c. 3100 years of its existence - which are the aim of our study. At least 5 levels of soft-sediment deformation have been recorded in the exposed part of the lacustrine sediments of Sangla palaeo-lake, including brecciated laminae, overturned laminae, folds, faults and deformation bands, separated by undeformed deposits. They are interpreted as seismites, indicating at least 5 earthquakes within 2500 years strong enough to cause liquefaction. The 300 MW Baspa II hydro-electric power plant has been built exactly on top of this palaeo-lake. This special location represents a very rare possibility to evaluate the short-term, river load and hydrological parameters measured during the planning and operational stages of Baspa II with the long-term parameters gained from the palaeo-lake sediments from the catchment. This data show that the Mid-Holocene erosion rates of the

  18. International Atomic Energy Agency specialists meeting on experience in ageing, maintenance, and modernization of instrumentation and control systems for improving nuclear power plant availability

    SciTech Connect

    Not Available

    1993-10-01

    This report presents the proceedings of the Specialist`s Meeting on Experience in Aging, Maintenance and Modernization of Instrumentation and Control Systems for Improving Nuclear Power Plant Availability that was held at the Ramada Inn in Rockville, Maryland on May 5--7, 1993. The Meeting was presented in cooperation with the Electric Power Research Institute, Oak Ridge National Laboratory and the International Atomic Energy Agency. There were approximately 65 participants from 13 countries at the Meeting. Individual reports have been cataloged separately.

  19. Power Plant Systems Analysis

    NASA Technical Reports Server (NTRS)

    Williams, J. R.; Yang, Y. Y.

    1973-01-01

    Three basic thermodynamic cycles of advanced nuclear MHD power plant systems are studied. The effect of reactor exit temperature and space radiator temperature on the overall thermal efficiency of a regenerative turbine compressor power plant system is shown. The effect of MHD pressure ratio on plant efficiency is also described, along with the dependence of MHD power output, compressor power requirement, turbine power output, mass flow rate of H2, and overall plant efficiency on the reactor exit temperature for a specific configuration.

  20. Power Plant Cycling Costs

    SciTech Connect

    Kumar, N.; Besuner, P.; Lefton, S.; Agan, D.; Hilleman, D.

    2012-07-01

    This report provides a detailed review of the most up to date data available on power plant cycling costs. The primary objective of this report is to increase awareness of power plant cycling cost, the use of these costs in renewable integration studies and to stimulate debate between policymakers, system dispatchers, plant personnel and power utilities.

  1. New baseload power plants

    SciTech Connect

    Not Available

    1994-04-01

    This is a listing of 221 baseload power plant units currently in the planning stage. The list shows the plant owner, capacity, fuel, engineering firm, constructor, major equipment suppliers (steam generator, turbogenerator, and flue gas desulfurization system), partner, and date the plant is to be online. This data is a result of a survey by the journal of power plant owners.

  2. Holocene versus modern catchment erosion rates at 300 MW Baspa II hydroelectric power plant (India, NW Himalaya)

    NASA Astrophysics Data System (ADS)

    Draganits, Erich; Gier, Susanne; Hofmann, Christa-Ch.; Janda, Christoph; Bookhagen, Bodo; Grasemann, Bernhard

    2014-08-01

    300 MW Baspa II is India's largest private hydroelectric facility, located at the Baspa River which is an important left-hand tributary to the Sutlej River in the NW Himalaya (India). In this valley the Sangla palaeo-lake has been dammed around 8200 yr BP behind a rock-avalanche dam and Baspa II is located exactly on top of this palaeo-lake. This special location represents a very rare possibility to evaluate the short-term, river load and hydrological parameters measured during the planning and operational stages of Baspa II with the long-term parameters gained from the palaeo-lake sediments from the catchment. Sedimentological and geomorphological investigations of the lacustrine sediments have been used to reconstruct environmental changes during >2500 years of its existence. The Mid-Holocene erosion rates of the Baspa catchment estimated from the volume and duration of deposition of the exposed lake sediments are at 0.7-1.0 mm yr-1, almost identical with the modern erosion rates calculated from river gauge data from Baspa II. Several charcoal layers and charcoal pieces from the uppermost palaeo-lake levels around 5000 cal yr BP might be related to woodland clearance and they possibly represent one of the oldest evidences for human presence in the Baspa Valley during Neolithic time.

  3. Wind Power Plant SCADA and Controls

    SciTech Connect

    Badrzadeh, Babak; Castillo, Nestor; Bradt, M.; Janakiraman, R.; Kennedy, R.; Klein, S.; Smith, Travis M; Vargas, L.

    2011-01-01

    Modern Wind Power Plants (WPPs) contain a variety of intelligent electronic devices (IEDs), Supervisory Control and Data Acquisition (SCADA) and communication systems. This paper discusses the issues related to a typical WPP's SCADA and Control. Presentation topics are: (1) Wind Turbine Controls; (2) Wind Plant SCADA, OEM SCADA Solutions, Third-Party SCADA Solutions; (3) Wind Plant Control; and (4) Security and Reliability Compliance.

  4. NUCLEAR POWER PLANT

    DOEpatents

    Carter, J.C.; Armstrong, R.H.; Janicke, M.J.

    1963-05-14

    A nuclear power plant for use in an airless environment or other environment in which cooling is difficult is described. The power plant includes a boiling mercury reactor, a mercury--vapor turbine in direct cycle therewith, and a radiator for condensing mercury vapor. (AEC)

  5. Nuclear Power Plants. Revised.

    ERIC Educational Resources Information Center

    Lyerly, Ray L.; Mitchell, Walter, III

    This publication is one of a series of information booklets for the general public published by the United States Atomic Energy Commission. Among the topics discussed are: Why Use Nuclear Power?; From Atoms to Electricity; Reactor Types; Typical Plant Design Features; The Cost of Nuclear Power; Plants in the United States; Developments in Foreign…

  6. Power Quality Aspects in a Wind Power Plant

    SciTech Connect

    Muljadi, E.; Butterfield, C. P.; Chacon, J.; Romanowitz, H.

    2006-01-01

    Like conventional power plants, wind power plants must provide the power quality required to ensure the stability and reliability of the power system it is connected to and to satisfy the customers connected to the same grid. When wind energy development began, wind power plants were very small, ranging in size from under one megawatt to tens megawatts with less than 100 turbines in each plant. Thus, the impact of wind power plant on the grid was very small, and any disturbance within or created by the plant was considered to be in the noise level. In the past 30 years, the size of wind turbines and the size of wind power plants have increased significantly. Notably, in Tehachapi, California, the amount of wind power generation has surpassed the infrastructure for which it was designed. At the same time, the lack of rules, standards, and regulations during early wind development has proven to be an increasing threat to the stability and power quality of the grid connected to a wind power plant. Fortunately, many new wind power plants are equipped with state of the art technology, which enables them to provide good service while producing clean power for the grid. The advances in power electronics have allowed many power system applications to become more flexible and to accomplish smoother regulation. Applications such as reactive power compensation, static transfer switches, energy storage, and variable-speed generations are commonly found in modern wind power plants. Although many operational aspects affect wind power plant operation, this paper, focuses on power quality. Because a wind power plant is connected to the grid, it is very important to understand the sources of disturbances that affect the power quality. In general, the voltage and frequency must be kept as stable as possible. The voltage and current distortions created by harmonics will also be discussed in this paper as will self-excitation, which may occur in a wind power plant due to loss of line.

  7. New baseload power plants

    SciTech Connect

    Not Available

    1993-04-01

    This is a tabulation of the results of this magazines survey of current plans for new baseload power plants. The table lists the unit name, capacity, fuel, engineering firm, constructor, suppliers for steam generator, turbine generator and flue gas desulfurization equipment, date due on-line, and any non-utility participants. The table includes fossil-fuel plants, nuclear plants, geothermal, biomass and hydroelectric plants.

  8. Nuclear power plant maintainability.

    PubMed

    Seminara, J L; Parsons, S O

    1982-09-01

    In the mid-1970s a general awareness of human factors engineering deficiencies associated with power plant control rooms took shape and the Electric Power Research Institute (EPRI) awarded the Lockheed Corporation a contract to review the human factors aspects of five representative operational control rooms and their associated simulators. This investigation revealed a host of major and minor deficiencies that assumed unforeseen dimensions in the post- Three Mile Island accident period. In the course of examining operational problems (Seminara et al, 1976) and subsequently the methods for overcoming such problems (Seminara et al, 1979, 1980) indications surfaced that power plants were far from ideal in meeting the needs of maintenance personnel. Accordingly, EPRI sponsored an investigation of the human factors aspects of power plant maintainability (Seminara, 1981). This paper provides an overview of the maintainability problems and issues encountered in the course of reviewing five nuclear power plants.

  9. Advanced stellarator power plants

    SciTech Connect

    Miller, R.L.

    1994-07-01

    The stellarator is a class of helical/toroidal magnetic fusion devices. Recent international progress in stellarator power plant conceptual design is reviewed and comparisons in the areas of physics, engineering, and economics are made with recent tokamak design studies.

  10. Power plants to go

    SciTech Connect

    Valenti, M.

    1996-05-01

    Simple-cycle portable power stations have been used to increase the electrical capacity in developing countries and in emergency situations. This article describes the first power barge using combined-cycle technology which has began operation in the Dominican Republic. The construction of a new mobile power plant in Puerto Plata, the Dominican Republic, marks the first time a power barge has been coupled with the efficiency of combined-cycle generation. The 185-megawatt plant, which became fully operational in January, provides 25% of the power required by the Dominican state-owned utility, the Corporacion Dominicana de Electricidad (CDE). The new plant is designed to end the power shortages and blackouts that have traditionally plagued the Caribbean nation. The Puerto Plata plant consists of two barges that were built in the US, transported to the Dominican Republic, installed, and backfilled into place. One barge, delivered in May 1994, contains a 76-megawatt gas turbine. The second barge, installed in April 1995, contains a 45-megawatt heat-recovery steam generator to recover heat energy from the turbine exhaust, two auxiliary boilers to produce additional steam, and a 118-megawatt steam-turbine generator.

  11. Amedee geothermal power plant

    SciTech Connect

    Hodgson, S.F.

    1988-12-01

    In September 1988, the power plant began generating electricity in Northern California, near Honey Lake. The plant generates 2 megawatts, net, of electricity in the winter, and from 20 to 30% less in the summer, depending on the temperature. Geothermal fluids from two wells are used to operate the plant, and surface discharge is used to dispose of the spent fluids. This is possible because the geothermal fluids have a very low salinity and a composition the same as area hot spring waters. The binary power plant has a Standard Offer No. 4 contract for 5 megawatts with pacific Gas and Electric Company. Sometime in the near future, they will expand the project to add another 3 megawatts of electrical generation.

  12. Power Plant Construction

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Stone & Webster Engineering Corporation utilized TAP-A, a COSMIC program originally developed as part of a NASA investigation into the potential of nuclear power for space launch vehicles. It is useful in nuclear power plant design to qualify safety-related equipment at the temperatures it would experience should an accident occur. The program is easy to use, produces accurate results, and is inexpensive to run.

  13. Geothermal Power Generation Plant

    SciTech Connect

    Boyd, Tonya

    2013-12-01

    Oregon Institute of Technology (OIT) drilled a deep geothermal well on campus (to 5,300 feet deep) which produced 196°F resource as part of the 2008 OIT Congressionally Directed Project. OIT will construct a geothermal power plant (estimated at 1.75 MWe gross output). The plant would provide 50 to 75 percent of the electricity demand on campus. Technical support for construction and operations will be provided by OIT’s Geo-Heat Center. The power plant will be housed adjacent to the existing heat exchange building on the south east corner of campus near the existing geothermal production wells used for heating campus. Cooling water will be supplied from the nearby cold water wells to a cooling tower or air cooling may be used, depending upon the type of plant selected. Using the flow obtained from the deep well, not only can energy be generated from the power plant, but the “waste” water will also be used to supplement space heating on campus. A pipeline will be construction from the well to the heat exchanger building, and then a discharge line will be construction around the east and north side of campus for anticipated use of the “waste” water by facilities in an adjacent sustainable energy park. An injection well will need to be drilled to handle the flow, as the campus existing injection wells are limited in capacity.

  14. Nuclear Power Plant Technician

    ERIC Educational Resources Information Center

    Randall, George A.

    1975-01-01

    The author recognizes a body of basic knowledge in nuclear power plant technoogy that can be taught in school programs, and lists the various courses, aiming to fill the anticipated need for nuclear-trained manpower--persons holding an associate degree in engineering technology. (Author/BP)

  15. Beloyarsk Nuclear Power Plant

    SciTech Connect

    1997-08-01

    The Beloyarsk Nuclear Power Plant (BNPP) is located in Zarechny, approximately 60 km east of Ekaterinberg along the Trans-Siberian Highway. Zarechny, a small city of approximately 30,000 residents, was built to support BNPP operations. It is a closed city to unescorted visitors. Residents must show identification for entry. BNPP is one of the first and oldest commercial nuclear power plants in Russia and began operations in 1964. As for most nuclear power plants in the Russian Federation, BNPP is operated by Rosenergoatom, which is subordinated to the Ministry of Atomic Energy of the Russian Federation (Minatom). BNPP is the site of three nuclear reactors, Units 1, 2, and 3. Units 1 and 2, which have been shut-down and defueled, were graphite moderated reactors. The units were shut-down in 1981 and 1989. Unit 3, a BN-600 reactor, is a 600 MW(electric) sodium-cooled fast breeder reactor. Unit 3 went on-line in April 1980 and produces electric power which is fed into a distribution grid and thermal power which provides heat to Zarechny. The paper also discusses the SF NIKIET, the Sverdiovsk Branch of NIKIET, Moscow, which is the research and development branch of the parent NIKEIT and is primarily a design institute responsible for reactor design. Central to its operations is a 15 megawatt IVV research reactor. The paper discusses general security and fissile material control and accountability at these two facilities.

  16. NEUTRONIC REACTOR POWER PLANT

    DOEpatents

    Metcalf, H.E.

    1962-12-25

    This patent relates to a nuclear reactor power plant incorporating an air-cooled, beryllium oxide-moderated, pebble bed reactor. According to the invention means are provided for circulating a flow of air through tubes in the reactor to a turbine and for directing a sidestream of the circu1ating air through the pebble bed to remove fission products therefrom as well as assist in cooling the reactor. (AEC)

  17. Power plant emissions reduction

    DOEpatents

    Anand, Ashok Kumar; Nagarjuna Reddy, Thirumala Reddy

    2015-10-20

    A system for improved emissions performance of a power plant generally includes an exhaust gas recirculation system having an exhaust gas compressor disposed downstream from the combustor, a condensation collection system at least partially disposed upstream from the exhaust gas compressor, and a mixing chamber in fluid communication with the exhaust gas compressor and the condensation collection system, where the mixing chamber is in fluid communication with the combustor.

  18. Models for the modern power grid

    NASA Astrophysics Data System (ADS)

    Nardelli, Pedro H. J.; Rubido, Nicolas; Wang, Chengwei; Baptista, Murilo S.; Pomalaza-Raez, Carlos; Cardieri, Paulo; Latva-aho, Matti

    2014-10-01

    This article reviews different kinds of models for the electric power grid that can be used to understand the modern power system, the smart grid. From the physical network to abstract energy markets, we identify in the literature different aspects that co-determine the spatio-temporal multilayer dynamics of power system. We start our review by showing how the generation, transmission and distribution characteristics of the traditional power grids are already subject to complex behaviour appearing as a result of the the interplay between dynamics of the nodes and topology, namely synchronisation and cascade effects. When dealing with smart grids, the system complexity increases even more: on top of the physical network of power lines and controllable sources of electricity, the modernisation brings information networks, renewable intermittent generation, market liberalisation, prosumers, among other aspects. In this case, we forecast a dynamical co-evolution of the smart grid and other kind of networked systems that cannot be understood isolated. This review compiles recent results that model electric power grids as complex systems, going beyond pure technological aspects. From this perspective, we then indicate possible ways to incorporate the diverse co-evolving systems into the smart grid model using, for example, network theory and multi-agent simulation.

  19. ATOMIC POWER PLANT

    DOEpatents

    Daniels, F.

    1957-11-01

    This patent relates to neutronic reactor power plants and discloses a design of a reactor utilizing a mixture of discrete units of a fissionable material, such as uranium carbide, a neutron moderator material, such as graphite, to carry out the chain reaction. A liquid metal, such as bismuth, is used as the coolant and is placed in the reactor chamber with the fissionable and moderator material so that it is boiled by the heat of the reaction, the boiling liquid and vapors passing up through the interstices between the discrete units. The vapor and flue gases coming off the top of the chamber are passed through heat exchangers, to produce steam, for example, and thence through condensers, the condensed coolant being returned to the chamber by gravity and the non- condensible gases being carried off through a stack at the top of the structure.

  20. Power Plant Replacement Study

    SciTech Connect

    Reed, Gary

    2010-09-30

    This report represents the final report for the Eastern Illinois University power plant replacement study. It contains all related documentation from consideration of possible solutions to the final recommended option. Included are the economic justifications associated with the chosen solution along with application for environmental permitting for the selected project for construction. This final report will summarize the results of execution of an EPC (energy performance contract) investment grade audit (IGA) which lead to an energy services agreement (ESA). The project includes scope of work to design and install energy conservation measures which are guaranteed by the contractor to be self‐funding over its twenty year contract duration. The cost recovery is derived from systems performance improvements leading to energy savings. The prime focus of this EPC effort is to provide a replacement solution for Eastern Illinois University’s aging and failing circa 1925 central steam production plant. Twenty‐three ECMs were considered viable whose net impact will provide sufficient savings to successfully support the overall project objectives.

  1. Power Plant Replacement Study

    SciTech Connect

    Reed, Gary

    2010-09-30

    This report represents the final report for the Eastern Illinois University power plant replacement study. It contains all related documentation from consideration of possible solutions to the final recommended option. Included are the economic justifications associated with the chosen solution along with application for environmental permitting for the selected project for construction. This final report will summarize the results of execution of an EPC (energy performance contract) investment grade audit (IGA) which lead to an energy services agreement (ESA). The project includes scope of work to design and install energy conservation measures which are guaranteed by the contractor to be self-funding over its twenty year contract duration. The cost recovery is derived from systems performance improvements leading to energy savings. The prime focus of this EPC effort is to provide a replacement solution for Eastern Illinois University’s aging and failing circa 1925 central steam production plant. Twenty-three ECMs were considered viable whose net impact will provide sufficient savings to successfully support the overall project objectives.

  2. Power Plant Replacement Study

    SciTech Connect

    Reed, Gary

    2010-09-30

    This report represents the final report for the Eastern Illinois University power plant replacement study. It contains all related documentation from consideration of possible solutions to the final recommended option. Included are the economic justifications associated with the chosen solution along with application for environmental permitting for the selected project for construction. This final report will summarize the results of execution of an EPC (energy performance contract) investment grade audit (IGA) which lead to an energy services agreement (ESA). The project includes scope of work to design and install energy conservation measures which are guaranteed by the contractor to be self-funding over its twenty year contract duration. The cost recovery is derived from systems performance improvements leading to energy savings. The prime focus of this EPC effort is to provide a replacement solution for Eastern Illinois University's aging and failing circa 1925 central steam production plant. Twenty-three ECMs were considered viable whose net impact will provide sufficient savings to successfully support the overall project objectives.

  3. Wave action power plant

    SciTech Connect

    Lucia, L.V.

    1982-03-16

    A wave action power plant powered by the action of water waves has a drive shaft rotated by a plurality of drive units, each having a lever pivotally mounted on and extending from said shaft and carrying a weight, in the form of a float, which floats on the waves and rocks the lever up and down on the shaft. A ratchet mechanism causes said shaft to be rotated in one direction by the weight of said float after it has been raised by wave and the wave has passed, leaving said float free to move downwardly by gravity and apply its full weight to pull down on the lever and rotate the drive shaft. There being a large number of said drive units so that there are always some of the weights pulling down on their respective levers while other weights are being lifted by waves and thereby causing continuous rotation of the drive shaft in one direction. The said levers are so mounted that they may be easily raised to bring the weights into a position wherein they are readily accessible for cleaning the bottoms thereof to remove any accumulation of barnacles, mollusks and the like. There is also provided means for preventing the weights from colliding with each other as they independently move up and down on the waves.

  4. Paleogene plants fractionated carbon isotopes similar to modern plants

    NASA Astrophysics Data System (ADS)

    Diefendorf, Aaron F.; Freeman, Katherine H.; Wing, Scott L.; Currano, Ellen D.; Mueller, Kevin E.

    2015-11-01

    The carbon isotope composition (δ13 C) of terrestrial plant biomarkers, such as leaf waxes and terpenoids, provides insights into past carbon cycling. The δ13 C values of modern plant biomarkers are known to be sensitive to climate and vegetation type, both of which influence fractionation during lipid biosynthesis by altering plant carbon supply and its biochemical allocation. It is not known if fractionation observed in living plants can be used to interpret fossil lipids because plant biochemical characteristics may have evolved during the Cenozoic in response to changes in global climate and atmospheric CO2. The goal of this study was to determine if fractionation during photosynthesis (Δleaf) in the Paleogene was consistent with expectations based on living plants. To study plant fractionation during the Paleogene, we collected samples from eight stratigraphic beds in the Bighorn Basin (Wyoming, USA) that ranged in age from 63 to 53 Ma. For each sample, we measured the δ13 C of angiosperm biomarkers (triterpenoids and n-alkanes) and, abundance permitting, conifer biomarkers (diterpenoids). Leaf δ13 C values estimated from different angiosperms biomarkers were consistently 2‰ lower than leaf δ13 C values for conifers calculated from diterpenoids. This difference is consistent with observations of living conifers and angiosperms and the consistency among different biomarkers suggests ancient εlipid values were similar to those in living plants. From these biomarker-based δ13Cleaf values and independent records of atmospheric δ13 C values, we calculated Δleaf. These calculated Δleaf values were then compared to Δleaf values modeled by applying the effects that precipitation and major taxonomic group in living plants have on Δleaf values. Calculated and modeled Δleaf values were offset by less than a permil. This similarity suggests that carbon fractionation in Paleogene plants changed with water availability and major taxonomic group to about the

  5. The year 2000 power plant

    SciTech Connect

    Roman, H.T.

    1989-01-01

    Every utility seeks extended service life from its existing power plants before building new ones. It is not easy to justify a new power plant. The licensing and cost of new plants have become uncertain. In response to these conditions, electric utilities are undertaking plant life-extension studies and, in some cases, reconditioning/upgrading old power plants to significantly increase useful service life. Other technologies like robotics and artificial intelligence/expert systems are also being developed to reduce operating and maintenance (O and M) expenses, to remove workers from potentially hazardous environments, and to reduce plant downtime. Together, these steps represent an interim solution, perhaps providing some relief for the next few decades. However, there are serious physical and economic limits to retrofitting new technology into existing power plants. Some old plants will simply be beyond their useful life and require retirement. In nuclear plants, for instance, retrofit may raise important and time-consuming licensing/safety issues. Based on their robotics and artificial intelligence experience, the authors of this article speculate bout the design of the year 2000 power plant - a power plant they feel will naturally incorporate liberal amounts of robotic and artificial intelligence technologies.

  6. Steam Power Plants in Aircraft

    NASA Technical Reports Server (NTRS)

    Wilson, E E

    1926-01-01

    The employment of steam power plants in aircraft has been frequently proposed. Arguments pro and con have appeared in many journals. It is the purpose of this paper to make a brief analysis of the proposal from the broad general viewpoint of aircraft power plants. Any such analysis may be general or detailed.

  7. Simulating solar power plant variability :

    SciTech Connect

    Lave, Matthew Samuel; Ellis, Abraham; Stein, Joshua.

    2013-06-01

    It is important to be able to accurately simulate the variability of solar PV power plants for grid integration studies. We aim to inform integration studies of the ease of implementation and application-specific accuracy of current PV power plant output simulation methods. This report reviews methods for producing simulated high-resolution (sub-hour or even sub-minute) PV power plant output profiles for variability studies and describes their implementation. Two steps are involved in the simulations: estimation of average irradiance over the footprint of a PV plant and conversion of average irradiance to plant power output. Six models are described for simulating plant-average irradiance based on inputs of ground-measured irradiance, satellite-derived irradiance, or proxy plant measurements. The steps for converting plant-average irradiance to plant power output are detailed to understand the contributions to plant variability. A forthcoming report will quantify the accuracy of each method using application-specific validation metrics.

  8. Next Generation Geothermal Power Plants

    SciTech Connect

    Brugman, John; Hattar, Mai; Nichols, Kenneth; Esaki, Yuri

    1995-09-01

    A number of current and prospective power plant concepts were investigated to evaluate their potential to serve as the basis of the next generation geothermal power plant (NGGPP). The NGGPP has been envisaged as a power plant that would be more cost competitive (than current geothermal power plants) with fossil fuel power plants, would efficiently use resources and mitigate the risk of reservoir under-performance, and minimize or eliminate emission of pollutants and consumption of surface and ground water. Power plant concepts were analyzed using resource characteristics at ten different geothermal sites located in the western United States. Concepts were developed into viable power plant processes, capital costs were estimated and levelized busbar costs determined. Thus, the study results should be considered as useful indicators of the commercial viability of the various power plants concepts that were investigated. Broadly, the different power plant concepts that were analyzed in this study fall into the following categories: commercial binary and flash plants, advanced binary plants, advanced flash plants, flash/binary hybrid plants, and fossil/geothed hybrid plants. Commercial binary plants were evaluated using commercial isobutane as a working fluid; both air-cooling and water-cooling were considered. Advanced binary concepts included cycles using synchronous turbine-generators, cycles with metastable expansion, and cycles utilizing mixtures as working fluids. Dual flash steam plants were used as the model for the commercial flash cycle. The following advanced flash concepts were examined: dual flash with rotary separator turbine, dual flash with steam reheater, dual flash with hot water turbine, and subatmospheric flash. Both dual flash and binary cycles were combined with other cycles to develop a number of hybrid cycles: dual flash binary bottoming cycle, dual flash backpressure turbine binary cycle, dual flash gas turbine cycle, and binary gas turbine

  9. Owners of Nuclear Power Plants

    SciTech Connect

    Reid, R.L.

    2000-01-12

    Commercial nuclear power plants in this country can be owned by a number of separate entities, each with varying ownership proportions. Each of these owners may, in turn, have a parent/subsidiary relationship to other companies. In addition, the operator of the plant may be a different entity as well. This report provides a compilation on the owners/operators for all commercial power reactors in the United States. While the utility industry is currently experiencing changes in organizational structure which may affect nuclear plant ownership, the data in this report is current as of November 1999. The report is divided into sections representing different aspects of nuclear plant ownership.

  10. Owners of nuclear power plants

    SciTech Connect

    Hudson, C.R.; White, V.S.

    1996-11-01

    Commercial nuclear power plants in this country can be owned by a number of separate entities, each with varying ownership proportions. Each of these owners may, in turn, have a parent/subsidiary relationship to other companies. In addition, the operator of the plant may be a different entity as well. This report provides a compilation on the owners/operators for all commercial power reactors in the United States. While the utility industry is currently experiencing changes in organizational structure which may affect nuclear plant ownership, the data in this report is current as of July 1996. The report is divided into sections representing different aspects of nuclear plant ownership.

  11. Power plant profiles

    SciTech Connect

    Jakansi, J.

    1997-03-01

    The facilities described here represent the rich variety of technologies being applied at new and existing powerplants in the US. While new capacity additions are at an all-time low in this country, the plants and projects that are completed generally represent new highs in regulatory compliance, technical savvy, and management ingenuity. They range from a 4-MW landfill-gas-fired turbine to a 2,500-MW nuclear plant. Several gas-turbine projects are included, confirming the current dominance of this technology. The projects are: Fort St. Vrain, Pinon Pine, Cleburne cogeneration plant, Gilbert station, Hanes Mill Rd, El Dorado, Wolf Creek, South Texas Project, Stanton Energy Center Unit 2, Milliken station and Northampton plant.

  12. Nuclear Power Plant Simulation Game.

    ERIC Educational Resources Information Center

    Weiss, Fran

    1979-01-01

    Presents a nuclear power plant simulation game which is designed to involve a class of 30 junior or senior high school students. Scientific, ecological, and social issues covered in the game are also presented. (HM)

  13. Power Plant Water Intake Assessment.

    ERIC Educational Resources Information Center

    Zeitoun, Ibrahim H.; And Others

    1980-01-01

    In order to adequately assess the impact of power plant cooling water intake on an aquatic ecosystem, total ecosystem effects must be considered, rather than merely numbers of impinged or entrained organisms. (Author/RE)

  14. Operate a Nuclear Power Plant.

    ERIC Educational Resources Information Center

    Frimpter, Bonnie J.; And Others

    1983-01-01

    Describes classroom use of a computer program originally published in Creative Computing magazine. "The Nuclear Power Plant" (runs on Apple II with 48K memory) simulates the operating of a nuclear generating station, requiring students to make decisions as they assume the task of managing the plant. (JN)

  15. Power Quality Aspects in a Wind Power Plant: Preprint

    SciTech Connect

    Muljadi, E.; Butterfield, C. P.; Chacon, J.; Romanowitz, H.

    2006-01-01

    Although many operational aspects affect wind power plant operation, this paper focuses on power quality. Because a wind power plant is connected to the grid, it is very important to understand the sources of disturbances that affect the power quality.

  16. ALARA at nuclear power plants

    SciTech Connect

    Baum, J.W.

    1990-01-01

    Implementation of the As Low As Reasonably Achievable (ALARA) principle at nuclear power plants presents a continuing challenge for health physicists at utility corporate and plant levels, for plant designers, and for regulatory agencies. The relatively large collective doses at some plants are being addressed though a variety of dose reduction techniques. It is planned that this report will include material on historical aspects, management, valuation of dose reduction, quantitative and qualitative aspects of optimization, design, operational considerations, and training. The status of this work is summarized in this report. 30 refs., 1 fig., 6 tabs.

  17. TRADITIONAL MEDICINAL PLANTS: ANCIENT AND MODERN APPROACH

    PubMed Central

    Sharma, S. C.; Ahmad, S. Aziz

    1992-01-01

    History of medicine and plants dates back to remote past when herbal treatment was the only answer to all kind of ailments. Nowadays, greater emphasis is again being laid to phytotherapy all over the world. Besides, cultivation-cum-setting up herbal gardens are also mooted on hills and plain areas as management of all kinds of diseases is possible through plant drugs sans toxicity. PMID:22556588

  18. Replacing baseload power plants with wind plants

    SciTech Connect

    Cavallo, A.J.

    1995-12-31

    Baseload nuclear power plants supply about 21 percent of the electricity consumed in the United States today, and as these plants are retired over the next 10 to 25 years, they will not be replicated. This will open a vast market for new generating facilities which should, if possible, be non-fossil fueled. Wind energy baseload systems are able to equal or exceed the technical performance of these nuclear plants at a delivered cost of energy of less than $0.05/kWh in wind class 4 regions. However, unless a new externality (the cost of maintaining the security of fossil fuel supply) is factored in to the extremely low market price of fossil fuels, wind and other renewable energy resources will not be able to compete with these fuels on the basis of simple economics over the next 20 to 30 years.

  19. Researching power plant water recovery

    SciTech Connect

    2008-04-01

    A range of projects supported by NETl under the Innovations for Existing Plant Program are investigating modifications to power plant cooling systems for reducing water loss, and recovering water from the flue gas and the cooling tower. This paper discusses two technologies showing particular promise condense water that is typically lost to evaporation, SPX technologies' Air2Air{sup trademark} condenses water from a cooling tower, while Lehigh University's process condenses water and acid in flue gas. 3 figs.

  20. State power plant productivity programs

    SciTech Connect

    Not Available

    1981-02-01

    The findings of a working group formed to review the status of efforts by utilities and utility regulators to increase the availability and reliability of generating units are presented. Representatives from nine state regulatory agencies, NRRI, and DOE, participated on the Working Group. The Federal government has been working cooperatively with utilities, utility organizations, and with regulators to encourage and facilitate improvements in power plant productivity. Cooperative projects undertaken with regulatory and energy commissions in California, Illinois, New York, Ohio, Texas, North Carolina and Mighigan are described. Following initiation of these cooperative projects, DOE funded a survey to determine which states were explicitly addressing power plant productivity through the regulatory process. The Working Group was formed following completion of this survey. The Working Group emphasized the need for those power plant productivity improvements which are cost effective. The cost effectiveness of proposed availability improvement projects should be determined within the context of opportunities for operating and capital improvements available to an entire utility. The Working Group also identified the need for: allowing for plant designs that have a higher construction cost, but are also more reliable; allowing for recovery and reducing recovery lags for productivity-related capital expenditures; identifying and reducing disincentives in the regulatory process; ascertaining that utilities have sufficient money available to undertake timely maintenance; and support of EPRI and NERC to develop a relevant and accurate national data base. The DOE views these as extremely important aspects of any regulatory program to improve power plant productivity.

  1. Modern Pulsed Power: Charlie Martin and Beyond

    DTIC Science & Technology

    2004-07-01

    surface flashover physics, and explosive-driven pulsed power. Dr. Neuber has served in various capacities on the organizing commit- tees of numerous...cathode discharge is formed, leading to a self-heating (resulting from the field and plasma) of a thin cathode surface layer. This cathode layer reaches...bipolar transistor (IGBT), and metal–oxide– semiconductor field-effect transistor (MOSFET). (See a recent Special Issue of the PROCEEDINGS OF THE IEEE

  2. Maritime Trade Warfare Against a Modern Power

    DTIC Science & Technology

    2013-05-20

    Trade, Malacca, Chokepoint, Oil 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER OF PAGES 19a. NAME OF RESPONSIBLE...political/military objective.” 5 In order to be successful, Glab, Jason N. 3 a blockade would need to show an effect on China’s strategic COG...adds another layer of complexity on blockades. With the Glab, Jason N. 7 broad powers of the Security Council, peacetime blockades become a

  3. Nuclear power plant life extension

    SciTech Connect

    Carlson, D.D.; Bustard, L.D.; Harrison, D.L.

    1986-01-01

    Nuclear plant life extension represents an opportunity to achieve additional productive years of operation from existing nuclear power facilities. This is particularly important since operating licenses for over 50 GW of nuclear capacity will expire by the year 2010. By the year 2015, 85% of the total planned nuclear electric capacity will face retirement due to license expirations. Achieving additional productive years of operation from the nation's existing light water reactors is the goal of ongoing utility, vendor, US Department of Energy, and Electric Power Research Institute programs. Identifying potential technical issues associated with extending plant life and scoping realistic solutions represent first steps toward the development of a coordinated national plant life extension strategy. This is a substantial effort that must consider the breadth of issues associated with nuclear power plant design, operation, and licensing, and the numerous potential plant life extension strategies that may be appropriate to different utilities. Such an effort must enlist the expertise of the full spectrum of organizations in the nuclear industry including utilities, vendors, consultants, national laboratories, and professional organizations. A primary focus of these efforts is to identify operational changes and improvements in record-keeping, which, if implemented now, could enhance and preserve the life extension option.

  4. Power Plant Model Validation Tool

    SciTech Connect

    2016-02-12

    The PPMV is used to validate generator model using disturbance recordings. The PPMV tool contains a collection of power plant models and model validation studies, as well as disturbance recordings from a number of historic grid events. The user can import data from a new disturbance into the database, which converts PMU and SCADA data into GE PSLF format, and then run the tool to validate (or invalidate) the model for a specific power plant against its actual performance. The PNNL PPMV tool enables the automation of the process of power plant model validation using disturbance recordings. The tool uses PMU and SCADA measurements as input information. The tool automatically adjusts all required EPCL scripts and interacts with GE PSLF in the batch mode. The main tool features includes: - The tool interacts with GE PSLF - The tool uses GE PSLF Play-In Function for generator model validation. - Database of projects (model validation studies) - Database of the historic events. - Database of the power plant - The tool has advanced visualization capabilities - The tool automatically generates reports

  5. Proceedings of a Topical Meeting On Small Scale Geothermal Power Plants and Geothermal Power Plant Projects

    SciTech Connect

    1986-02-12

    These proceedings describe the workshop of the Topical Meeting on Small Scale Geothermal Power Plants and Geothermal Power Plant Projects. The projects covered include binary power plants, rotary separator, screw expander power plants, modular wellhead power plants, inflow turbines, and the EPRI hybrid power system. Active projects versus geothermal power projects were described. In addition, a simple approach to estimating effects of fluid deliverability on geothermal power cost is described starting on page 119. (DJE-2005)

  6. Today's central receiver power plant

    NASA Astrophysics Data System (ADS)

    Alpert, D. J.; Kolb, G. J.; Chavez, J. M.

    1991-04-01

    For 15 years, the United States Department of Energy has worked with industry, both utilities and manufacturers, to develop the technology of solar central receiver power plants. In this type of plant, sunlight is concentrated by a field of sun-tracking mirrors, called heliostats, onto a centrally located receiver. The solar energy is collected in the form of a heated fluid, which is used to generate steam to power a conventional turbine generator. For a number of reasons, molten nitrate salt is now the preferred heat transfer fluid. Commercial plants will be sized between 100 and 200 MW. The impetus for developing central receivers comes from their unique advantages: (1) they produce clean, reliable, low-cost electricity; (2) they have practical energy storage that provides a high degree of dispatchability (annually up to 60 percent) - without fossil fuels; and (3) they are environmentally benign. Development efforts around the world have brought the technology to the brink of commercialization: The technical feasibility has been proven, and cost, performance, and reliability can be confidently predicted. Plans are currently being developed for the final steps toward commercial central receiver power plants.

  7. Locating nuclear power plants underground.

    PubMed

    Scott, F M

    1975-01-01

    This paper reviews some of the questions that have been asked by experts and others as to why nuclear power plants are not located or placed underground. While the safeguards and present designs make such installations unnecessary, there are some definite advantages that warrant the additional cost involved. First of all, such an arrangement does satisfy the psychological concern of a number of people and, in so doing, might gain the acceptance of the public so that such plants could be constructed in urban areas of load centers. The results of these studies are presented and some of the requirements necessary for underground installations described, including rock conditions, depth of facilities, and economics.

  8. World electric power plants database

    SciTech Connect

    2006-06-15

    This global database provides records for 104,000 generating units in over 220 countries. These units include installed and projected facilities, central stations and distributed plants operated by utilities, independent power companies and commercial and self-generators. Each record includes information on: geographic location and operating company; technology, fuel and boiler; generator manufacturers; steam conditions; unit capacity and age; turbine/engine; architect/engineer and constructor; and pollution control equipment. The database is issued quarterly.

  9. Bildung as a Powerful Tool in Modern University Teaching

    ERIC Educational Resources Information Center

    Olesen, Mogens Noergaard

    2009-01-01

    In this paper we will demonstrate how powerful "Bildung" is as a tool in modern university teaching. The concept of "Bildung" was originally introduced by the German philosopher Immanuel Kant (Kant 1787, 1798, 1804) and the Prussian lawyer and politician Wilhelm von Humboldt (Humboldt 1792, Bohlin 2008). From 1810…

  10. Establishing a value chain for human factors in nuclear power plantcontrol room modernization

    SciTech Connect

    Joe, Jeffrey Clark; Thomas, Kenneth David; Boring, Ronald Laurids

    2015-07-01

    Commercial nuclear power plants in the United States (U.S.) have operated reliably and efficiently for decades. With the life extensions of plants now being planned for operation beyond their original operating licenses, there are opportunities to achieve even greater efficiencies, while maintaining high operational reliabilities, with strategic, risk- and economically-informed, upgrades to plant systems and infrastructure. The U.S. Department of Energy’s Light Water Reactor Sustainability (LWRS) program supports the commercial nuclear industry’s modernization efforts through research and development (R&D) activities across many areas to help establish the technical and economic bases for modernization activities. The Advanced Instrumentation, Information, and Control Systems Technologies pathway is one R&D focus area for the LWRS program, and has researchers at Idaho National Laboratory working with select utility partners to use human factors and instrumentation and controls R&D to help modernize the plant’s main control room. However, some in the nuclear industry have not been as enthusiastic about using human factors R&D to inform life extension decision making. Part of the reason for this may stem from uncertainty decision-makers have regarding how human factors fits into the value chain for nuclear power plant control room modernization. This paper reviews past work that has attempted to demonstrate the value of human factors, and then describes the value chain concept, how it applies to control room modernization, and then makes a case for how and why human factors is an essential link in the modernization value chain.

  11. Ancient-modern concordance in Ayurvedic plants: some examples.

    PubMed Central

    Dev, S

    1999-01-01

    Ayurveda is the ancient (before 2500 b.c.) Indian system of health care and longevity. It involves a holistic view of man, his health, and illness. Ayurvedic treatment of a disease consists of salubrious use of drugs, diets, and certain practices. Medicinal preparations are invariably complex mixtures, based mostly on plant products. Around 1,250 plants are currently used in various Ayurvedic preparations. Many Indian medicinal plants have come under scientific scrutiny since the middle of the nineteenth century, although in a sporadic fashion. The first significant contribution from Ayurvedic materia medica came with the isolation of the hypertensive alkaloid from the sarpagandha plant (Rouwolfia serpentina), valued in Ayurveda for the treatment of hypertension, insomnia, and insanity. This was the first important ancient-modern concordance in Ayurvedic plants. With the gradual coming of age of chemistry and biology, disciplines central to the study of biologic activities of natural products, many Ayurvedic plants have been reinvestigated. Our work on Commiphora wightti gum-resin, valued in Ayurveda for correcting lipid disorders, has been described in some detail; based on these investigations, a modern antihyperlipoproteinemic drug is on the market in India and some other countries. There has also been concordance for a few other Ayurvedic crude drugs such as Asparagus racemosus, Cedrus deodara, and Psoralea corylifolia. Images Figure 1 Figure 2 PMID:10504143

  12. Ancient-modern concordance in Ayurvedic plants: some examples.

    PubMed

    Dev, S

    1999-10-01

    Ayurveda is the ancient (before 2500 b.c.) Indian system of health care and longevity. It involves a holistic view of man, his health, and illness. Ayurvedic treatment of a disease consists of salubrious use of drugs, diets, and certain practices. Medicinal preparations are invariably complex mixtures, based mostly on plant products. Around 1,250 plants are currently used in various Ayurvedic preparations. Many Indian medicinal plants have come under scientific scrutiny since the middle of the nineteenth century, although in a sporadic fashion. The first significant contribution from Ayurvedic materia medica came with the isolation of the hypertensive alkaloid from the sarpagandha plant (Rouwolfia serpentina), valued in Ayurveda for the treatment of hypertension, insomnia, and insanity. This was the first important ancient-modern concordance in Ayurvedic plants. With the gradual coming of age of chemistry and biology, disciplines central to the study of biologic activities of natural products, many Ayurvedic plants have been reinvestigated. Our work on Commiphora wightti gum-resin, valued in Ayurveda for correcting lipid disorders, has been described in some detail; based on these investigations, a modern antihyperlipoproteinemic drug is on the market in India and some other countries. There has also been concordance for a few other Ayurvedic crude drugs such as Asparagus racemosus, Cedrus deodara, and Psoralea corylifolia.

  13. Modelling of nuclear power plant decommissioning financing.

    PubMed

    Bemš, J; Knápek, J; Králík, T; Hejhal, M; Kubančák, J; Vašíček, J

    2015-06-01

    Costs related to the decommissioning of nuclear power plants create a significant financial burden for nuclear power plant operators. This article discusses the various methodologies employed by selected European countries for financing of the liabilities related to the nuclear power plant decommissioning. The article also presents methodology of allocation of future decommissioning costs to the running costs of nuclear power plant in the form of fee imposed on each megawatt hour generated. The application of the methodology is presented in the form of a case study on a new nuclear power plant with installed capacity 1000 MW.

  14. Sabotage at Nuclear Power Plants

    SciTech Connect

    Purvis, James W.

    1999-07-21

    Recently there has been a noted worldwide increase in violent actions including attempted sabotage at nuclear power plants. Several organizations, such as the International Atomic Energy Agency and the US Nuclear Regulatory Commission, have guidelines, recommendations, and formal threat- and risk-assessment processes for the protection of nuclear assets. Other examples are the former Defense Special Weapons Agency, which used a risk-assessment model to evaluate force-protection security requirements for terrorist incidents at DOD military bases. The US DOE uses a graded approach to protect its assets based on risk and vulnerability assessments. The Federal Aviation Administration and Federal Bureau of Investigation conduct joint threat and vulnerability assessments on high-risk US airports. Several private companies under contract to government agencies use formal risk-assessment models and methods to identify security requirements. The purpose of this paper is to survey these methods and present an overview of all potential types of sabotage at nuclear power plants. The paper discusses emerging threats and current methods of choice for sabotage--especially vehicle bombs and chemical attacks. Potential consequences of sabotage acts, including economic and political; not just those that may result in unacceptable radiological exposure to the public, are also discussed. Applicability of risk-assessment methods and mitigation techniques are also presented.

  15. Power plant of high safety for underground nuclear power station

    SciTech Connect

    Dolgov, V.N.

    1993-12-31

    An ecologically pure, reliable, and economic nuclear power station is based on the use of nuclear power plants with the liquid-metal coolant. This plant with the inherent safety is protected from external influences due to the underground accommodations in geologically stable formations such as granites, cambrian clays, and salt deposits. The design features of this underground plant are described.

  16. Compressed Air System Optimization Project Improves Production at a Metal Forging Plant (Modern Forge, TN, Plant)

    SciTech Connect

    2000-12-01

    In 1995, Modern Forge of Tennessee implemented a compressed air system improvement project at its Piney Flats, Tennessee, forging plant. Due to the project’s implementation, the plant was able to operate with fewer compressors and improve its product quality, thus allowing it to increase productivity. The project also resulted in considerable energy and maintenance savings.

  17. Dirty kilowatts: America's most polluting power plants

    SciTech Connect

    2007-07-15

    In 2006, the US EPA tracked more than 1,400 fossil-fired power plants of varying sizes through its Acid Rain Program. This report ranks each of the 378 largest plants (generating at least 2 million megawatt-hours in 2006) for which both the most recent EPA emissions data and Energy Information Administration (EIA) electric generation data are available. The report ranks each plant based on emission rates, or pounds of pollutant for each megawatt-hour (or million megawatt-hours, in the case of mercury) the plant produced. It ranks the top fifty power plants polluters for sulfur dioxide, nitrogen oxides, carbon dioxide, and mercury. A complete listing of all 378 plants is included as Appendix A. Appendix B contains overheads of an NETL presentation: Tracking new coal-fired power plants - coal's resurgence in electric power generation, 24 January 2007. The 12 states with the heaviest concentrations of the dirtiest power plants, in terms of total tons of carbon dioxide emitted, are: Texas (five, including two of the top 10 dirtiest plants); Pennsylvania (four); Indiana (four, including two of the top 10 dirtiest plants); Alabama (three); Georgia (three, including two of the top three dirtiest plants); North Carolina (three); Ohio (three); West Virginia (three); Wyoming (two); Florida (two); Kentucky (two); and New Mexico (two). Carbon dioxide emissions from power plants are now at roughly 2.5 billion tons per year. Power plants are responsible for about 30%-40% of all man-made CO{sub 2} emissions in the USA. Power plants, especially those that burn coal, are by far the largest single contributor of SO{sub 2} pollution in the United States. Power plant mercury emissions remain steady as compared to previous years. A searchable database ranking 378 U.S. power plants on carbon dioxide, sulfur dioxide, nitrogen oxide and mercury pollution is available online at http://www.dirtykilowatts.org. 22 refs., 8 tabs., 2 apps.

  18. Aircraft Power-Plant Instruments

    NASA Technical Reports Server (NTRS)

    Sontag, Harcourt; Brombacher, W G

    1934-01-01

    This report supersedes NACA-TR-129 which is now obsolete. Aircraft power-plant instruments include tachometers, engine thermometers, pressure gages, fuel-quantity gages, fuel flow meters and indicators, and manifold pressure gages. The report includes a description of the commonly used types and some others, the underlying principle utilized in the design, and some design data. The inherent errors of the instrument, the methods of making laboratory tests, descriptions of the test apparatus, and data in considerable detail in the performance of commonly used instruments are presented. Standard instruments and, in cases where it appears to be of interest, those used as secondary standards are described. A bibliography of important articles is included.

  19. 14. Power copy of drawing, August 21, 1915. POWER PLANT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. Power copy of drawing, August 21, 1915. POWER PLANT EXTENSION, GENERAL PLANS. Drawing No. 4415, Facilities Engineering, Army Materials Technology Laboratory, Watertown, Massachusetts. - Watertown Arsenal, Building No. 60, Arsenal Street, Watertown, Middlesex County, MA

  20. 15. Power copy of drawing, August 21, 1915. POWER PLANT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. Power copy of drawing, August 21, 1915. POWER PLANT EXTENSION, GENERAL PLANS. Drawing No. PA-A-36692, Facilities Engineering, Army Materials Technology Laboratory, Watertown, Massachusetts. - Watertown Arsenal, Building No. 60, Arsenal Street, Watertown, Middlesex County, MA

  1. Methodology for Scaling Fusion Power Plant Availability

    SciTech Connect

    Lester M. Waganer

    2011-01-04

    Normally in the U.S. fusion power plant conceptual design studies, the development of the plant availability and the plant capital and operating costs makes the implicit assumption that the plant is a 10th of a kind fusion power plant. This is in keeping with the DOE guidelines published in the 1970s, the PNL report1, "Fusion Reactor Design Studies - Standard Accounts for Cost Estimates. This assumption specifically defines the level of the industry and technology maturity and eliminates the need to define the necessary research and development efforts and costs to construct a one of a kind or the first of a kind power plant. It also assumes all the "teething" problems have been solved and the plant can operate in the manner intended. The plant availability analysis assumes all maintenance actions have been refined and optimized by the operation of the prior nine or so plants. The actions are defined to be as quick and efficient as possible. This study will present a methodology to enable estimation of the availability of the one of a kind (one OAK) plant or first of a kind (1st OAK) plant. To clarify, one of the OAK facilities might be the pilot plant or the demo plant that is prototypical of the next generation power plant, but it is not a full-scale fusion power plant with all fully validated "mature" subsystems. The first OAK facility is truly the first commercial plant of a common design that represents the next generation plant design. However, its subsystems, maintenance equipment and procedures will continue to be refined to achieve the goals for the 10th OAK power plant.

  2. Strategy for nutrient control in modern effluent treatment plants.

    PubMed

    Sivard, A; Ericsson, T; Larsson, B

    2007-01-01

    The fate of nutrients in the modern effluent treatment plant depends on several factors, for example type of treatment plant, availability of nutrients in the specific effluent, dosing of nutrients and sludge age/production. New technologies with the aim to increase the efficiency and stability of the conventional activated sludge process have strongly affected the possibilities to control discharge of nutrients in pulp and paper effluents. A paradox is that a reduction of organic material may often lead to an increase of nutrient discharges. It is of the utmost importance that the operators have good knowledge of the factors affecting nutrient uptake and release in order to minimise nutrient discharge and obtain optimal plant performance. Dosing of nitrogen and phosphorus is one key factor in the sensitive balance in most pulp and paper effluent treatment plants. Correct dosing is crucial as high or low doses might lead not only to increased discharge of nutrients but also to severe operational problems with poor sludge quality, which in turn affects the plant performance for longer periods.

  3. Nuclear power plant cable materials :

    SciTech Connect

    Celina, Mathias Christopher; Gillen, Kenneth T; Lindgren, Eric Richard

    2013-05-01

    A selective literature review was conducted to assess whether currently available accelerated aging and original qualification data could be used to establish operational margins for the continued use of cable insulation and jacketing materials in nuclear power plant environments. The materials are subject to chemical and physical degradation under extended radiationthermal- oxidative conditions. Of particular interest were the circumstances under which existing aging data could be used to predict whether aged materials should pass loss of coolant accident (LOCA) performance requirements. Original LOCA qualification testing usually involved accelerated aging simulations of the 40-year expected ambient aging conditions followed by a LOCA simulation. The accelerated aging simulations were conducted under rapid accelerated aging conditions that did not account for many of the known limitations in accelerated polymer aging and therefore did not correctly simulate actual aging conditions. These highly accelerated aging conditions resulted in insulation materials with mostly inert aging processes as well as jacket materials where oxidative damage dropped quickly away from the air-exposed outside jacket surface. Therefore, for most LOCA performance predictions, testing appears to have relied upon heterogeneous aging behavior with oxidation often limited to the exterior of the cable cross-section a situation which is not comparable with the nearly homogenous oxidative aging that will occur over decades under low dose rate and low temperature plant conditions. The historical aging conditions are therefore insufficient to determine with reasonable confidence the remaining operational margins for these materials. This does not necessarily imply that the existing 40-year-old materials would fail if LOCA conditions occurred, but rather that unambiguous statements about the current aging state and anticipated LOCA performance cannot be provided based on

  4. TS Power Plant, Eureka County, Nevada

    SciTech Connect

    Peltier, R.

    2008-10-15

    Not all coal-fired power plants are constructed by investor-owned utilities or independent power producers selling to wholesale markets. When Newmont Mining Corp. recognised that local power supplies were inadequate and too expensive to meet long-term electricity needs for its major gold- and copper-mining operations in northern Nevada, it built its own generation. What is more, Newmont's privately owned 200-MW net coal-fired plant features power plant technologies that will surely become industry standards. Newmont's investment in power and technology is also golden: the capital cost will be paid back in about eight years. 4 figs.

  5. DIRECT FUEL CELL/TURBINE POWER PLANT

    SciTech Connect

    Hossein Ghezel-Ayagh

    2003-05-27

    The subMW hybrid DFC/T power plant facility was upgraded with a Capstone C60 microturbine and a state-of-the-art full size fuel cell stack. The integration of the larger microturbine extended the capability of the hybrid power plant to operate at high power ratings with a single gas turbine without the need for supplementary air. The objectives of this phase of subMW hybrid power plant tests are to support the development of process and control and to provide the insight for the design of the packaged subMW hybrid demonstration units. The development of the ultra high efficiency multi-MW power plants was focused on the design of 40 MW power plants with efficiencies approaching 75% (LHV of natural gas). The design efforts included thermodynamic cycle analysis of key gas turbine parameters such as compression ratio.

  6. Nuclear Power Plant Module, NPP-1: Nuclear Power Cost Analysis.

    ERIC Educational Resources Information Center

    Whitelaw, Robert L.

    The purpose of the Nuclear Power Plant Modules, NPP-1, is to determine the total cost of electricity from a nuclear power plant in terms of all the components contributing to cost. The plan of analysis is in five parts: (1) general formulation of the cost equation; (2) capital cost and fixed charges thereon; (3) operational cost for labor,…

  7. 78 FR 26747 - Oglethorpe Power Corporation: Proposed Biomass Power Plant

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-08

    ... Rural Utilities Service Oglethorpe Power Corporation: Proposed Biomass Power Plant AGENCY: Rural... construction of a 100 megawatt (MW) biomass plant and related facilities (Proposal) in Warren County, Georgia... to provide a reliable, long-term supply of renewable and sustainable energy at a reasonable cost...

  8. 76 FR 20624 - Oglethorpe Power Corporation: Proposed Biomass Power Plant

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-13

    ... Rural Utilities Service Oglethorpe Power Corporation: Proposed Biomass Power Plant AGENCY: Rural... Corporation (Oglethorpe) for the construction of a 100 megawatt (MW) biomass plant and related facilities... of renewable and sustainable energy at a reasonable cost to meet part of the electric energy needs...

  9. 76 FR 77963 - Oglethorpe Power Corporation; Proposed Biomass Power Plant

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-15

    ...; ] DEPARTMENT OF AGRICULTURE Rural Utilities Service Oglethorpe Power Corporation; Proposed Biomass Power Plant... (Oglethorpe) for the construction of a 100 megawatt (MW) biomass plant and related facilities (Proposal) in... renewable and sustainable energy at a reasonable cost to meet part of the electric energy needs...

  10. Modern geothermal power: GeoPP with geothermal steam turbines

    NASA Astrophysics Data System (ADS)

    Tomarov, G. V.; Shipkov, A. A.

    2017-03-01

    The first part of the review presents information on the scale and specific features of geothermal energy development in various countries. The classification of geothermal power plant (GeoPP) process flow diagrams by a phase state of the primary heat source (a geothermal fluid), thermodynamic cycle, and applicable turbines is proposed. Features of geothermal plants using methods of flashing and steam separation in the process loop and a flowsheet and thermodynamic process of a geothermal fluid heat-to-power conversion in a GeoPP of the most widespread type using a double-flash separation are considered. It is shown that, for combined cycle power units, the specific power-to-consumption geothermal fluid ratio is 20-25% higher than that for traditional single-loop GeoPP. Information about basic chemical components and their concentration range for geothermal fluids of various formations around the world is presented. Three historic stages of improving geothermal energy technologies are determined, such as development of high-temperature geothermal resources (dry, superheated steam) and application of a two-phase wet-steam geothermal fluid in GeoPP power units with one or two expansion pressures and development of binary cycle GeoPPs. A current trend of more active use of binary power plants in GeoPP technological processes is noted. Design features of GeoPP's steam turbines and steam separating devices, determined by the use of low-potential geothermal saturated steam as a working medium, which is characterized by corrosion aggressiveness and a tendency to form deposits, are considered. Most promising Russian geothermal energy projects are determined. A list of today's most advanced geothermal turbine performance technologies is presented. By an example of a 25 MW steam turbine design, made by JSC Kaluga Turbine Works, advantages of the internal moisture separation with a special turbine-separator stage are shown.

  11. Lessons learned from existing biomass power plants

    SciTech Connect

    Wiltsee, G.

    2000-02-24

    This report includes summary information on 20 biomass power plants, which represent some of the leaders in the industry. In each category an effort is made to identify plants that illustrate particular points. The project experiences described capture some important lessons learned that lead in the direction of an improved biomass power industry.

  12. Occupational exposures and practices in nuclear power plants

    SciTech Connect

    Baum, J.W.

    1989-01-01

    As the first generation of commercial nuclear power comes to a close, it is timely to consider the status of occupational exposure in the power generation industry, that is, the collective occupational radiation doses received by workers in nuclear power plants. The picture is surprising. One might have thought that as newer, larger, and more modern plants came on line, there would be a significant decrease in exposure per unit of electricity generated. There is some indication that this is now happening. One might also have thought that the United States, being a leader in the development of nuclear power, and in the knowledge, experience and technology of nuclear radiation protection, would have the greatest success in controlling exposure. This expectation has not been fulfilled. 32 refs., 4 figs., 5 tabs.

  13. Harmonics in a Wind Power Plant: Preprint

    SciTech Connect

    Preciado, V.; Madrigal, M.; Muljadi, E.; Gevorgian, V.

    2015-04-02

    Wind power generation has been growing at a very fast pace for the past decade, and its influence and impact on the electric power grid is significant. As in a conventional power plant, a wind power plant (WPP) must ensure that the quality of the power being delivered to the grid is excellent. At the same time, the wind turbine should be able to operate immune to small disturbances coming from the grid. Harmonics are one of the more common power quality issues presented by large WPPs because of the high switching frequency of the power converters and the possible nonlinear behavior from electric machines (generator, transformer, reactors) within a power plant. This paper presents a summary of the most important issues related to harmonics in WPPs and discusses practical experiences with actual Type 1 and Type 3 wind turbines in two WPPs.

  14. Demonstration of 5MW PAFC power plant

    SciTech Connect

    Usami, Yutaka; Takae, Toshio

    1996-12-31

    Phosphoric Acid Fuel Cell Technology Research Association, established in May 1991 by Japanese 10 electric power and 4 gas companies, started a new project in 1991 FY, with the object of PAFC realization and aiming the development of 5MW- class PAFC. power plant for urban energy center and 1 MW- class power plant for onsite use. This project is carried out as 6 years plan jointly with New Energy and Industrial Technology Development Organization. The targets of the project are to evaluate and resolve the development task, such as a high reliability, compactness and cost reduction throughout the engineering, manufacturing and field testing of PAFC power plants. PAC tests and power generating test operations of 5MW plant were completed in 1994. Conducting the 2 years continuous operations and studies since 1995, the plant operational performance, system control characteristics, waste heat recovery and environmental advantage will be demonstrated.

  15. DIRECT FUEL/CELL/TURBINE POWER PLANT

    SciTech Connect

    Hossein Ghezel-Ayagh

    2004-05-01

    This report includes the progress in development of Direct FuelCell/Turbine{reg_sign} (DFC/T{reg_sign}) power plants for generation of clean power at very high efficiencies. The DFC/T power system is based on an indirectly heated gas turbine to supplement fuel cell generated power. The DFC/T power generation concept extends the high efficiency of the fuel cell by utilizing the fuel cell's byproduct heat in a Brayton cycle. Features of the DFC/T system include: electrical efficiencies of up to 75% on natural gas, 60% on coal gas, minimal emissions, simplicity in design, direct reforming internal to the fuel cell, reduced carbon dioxide release to the environment, and potential cost competitiveness with existing combined cycle power plants. FCE successfully completed testing of the pre-alpha DFC/T hybrid power plant. This power plant was constructed by integration of a 250kW fuel cell stack and a microturbine. The tests of the cascaded fuel cell concept for achieving high fuel utilizations were completed. The tests demonstrated that the concept results in higher power plant efficiency. Also, the preliminary design of a 40 MW power plant including the key equipment layout and the site plan was completed.

  16. Earliest land plants created modern levels of atmospheric oxygen

    PubMed Central

    Lenton, Timothy M.; Dahl, Tais W.; Daines, Stuart J.; Mills, Benjamin J. W.; Ozaki, Kazumi; Saltzman, Matthew R.; Porada, Philipp

    2016-01-01

    The progressive oxygenation of the Earth’s atmosphere was pivotal to the evolution of life, but the puzzle of when and how atmospheric oxygen (O2) first approached modern levels (∼21%) remains unresolved. Redox proxy data indicate the deep oceans were oxygenated during 435–392 Ma, and the appearance of fossil charcoal indicates O2 >15–17% by 420–400 Ma. However, existing models have failed to predict oxygenation at this time. Here we show that the earliest plants, which colonized the land surface from ∼470 Ma onward, were responsible for this mid-Paleozoic oxygenation event, through greatly increasing global organic carbon burial—the net long-term source of O2. We use a trait-based ecophysiological model to predict that cryptogamic vegetation cover could have achieved ∼30% of today’s global terrestrial net primary productivity by ∼445 Ma. Data from modern bryophytes suggests this plentiful early plant material had a much higher molar C:P ratio (∼2,000) than marine biomass (∼100), such that a given weathering flux of phosphorus could support more organic carbon burial. Furthermore, recent experiments suggest that early plants selectively increased the flux of phosphorus (relative to alkalinity) weathered from rocks. Combining these effects in a model of long-term biogeochemical cycling, we reproduce a sustained +2‰ increase in the carbonate carbon isotope (δ13C) record by ∼445 Ma, and predict a corresponding rise in O2 to present levels by 420–400 Ma, consistent with geochemical data. This oxygen rise represents a permanent shift in regulatory regime to one where fire-mediated negative feedbacks stabilize high O2 levels. PMID:27528678

  17. Earliest land plants created modern levels of atmospheric oxygen

    NASA Astrophysics Data System (ADS)

    Lenton, Timothy M.; Dahl, Tais W.; Daines, Stuart J.; Mills, Benjamin J. W.; Ozaki, Kazumi; Saltzman, Matthew R.; Porada, Philipp

    2016-08-01

    The progressive oxygenation of the Earth’s atmosphere was pivotal to the evolution of life, but the puzzle of when and how atmospheric oxygen (O2) first approached modern levels (˜21%) remains unresolved. Redox proxy data indicate the deep oceans were oxygenated during 435-392 Ma, and the appearance of fossil charcoal indicates O2 >15-17% by 420-400 Ma. However, existing models have failed to predict oxygenation at this time. Here we show that the earliest plants, which colonized the land surface from ˜470 Ma onward, were responsible for this mid-Paleozoic oxygenation event, through greatly increasing global organic carbon burial—the net long-term source of O2. We use a trait-based ecophysiological model to predict that cryptogamic vegetation cover could have achieved ˜30% of today’s global terrestrial net primary productivity by ˜445 Ma. Data from modern bryophytes suggests this plentiful early plant material had a much higher molar C:P ratio (˜2,000) than marine biomass (˜100), such that a given weathering flux of phosphorus could support more organic carbon burial. Furthermore, recent experiments suggest that early plants selectively increased the flux of phosphorus (relative to alkalinity) weathered from rocks. Combining these effects in a model of long-term biogeochemical cycling, we reproduce a sustained +2‰ increase in the carbonate carbon isotope (δ13C) record by ˜445 Ma, and predict a corresponding rise in O2 to present levels by 420-400 Ma, consistent with geochemical data. This oxygen rise represents a permanent shift in regulatory regime to one where fire-mediated negative feedbacks stabilize high O2 levels.

  18. Nuclear Power Plant Concrete Structures

    SciTech Connect

    Basu, Prabir; Labbe, Pierre; Naus, Dan

    2013-01-01

    A nuclear power plant (NPP) involves complex engineering structures that are significant items of the structures, systems and components (SSC) important to the safe and reliable operation of the NPP. Concrete is the commonly used civil engineering construction material in the nuclear industry because of a number of advantageous properties. The NPP concrete structures underwent a great degree of evolution, since the commissioning of first NPP in early 1960. The increasing concern with time related to safety of the public and environment, and degradation of concrete structures due to ageing related phenomena are the driving forces for such evolution. The concrete technology underwent rapid development with the advent of chemical admixtures of plasticizer/super plasticizer category as well as viscosity modifiers and mineral admixtures like fly ash and silica fume. Application of high performance concrete (HPC) developed with chemical and mineral admixtures has been witnessed in the construction of NPP structures. Along with the beneficial effect, the use of admixtures in concrete has posed a number of challenges as well in design and construction. This along with the prospect of continuing operation beyond design life, especially after 60 years, the impact of extreme natural events ( as in the case of Fukushima NPP accident) and human induced events (e.g. commercial aircraft crash like the event of September 11th 2001) has led to further development in the area of NPP concrete structures. The present paper aims at providing an account of evolution of NPP concrete structures in last two decades by summarizing the development in the areas of concrete technology, design methodology and construction techniques, maintenance and ageing management of concrete structures.

  19. Reliability of emergency ac power systems at nuclear power plants

    SciTech Connect

    Battle, R E; Campbell, D J

    1983-07-01

    Reliability of emergency onsite ac power systems at nuclear power plants has been questioned within the Nuclear Regulatory Commission (NRC) because of the number of diesel generator failures reported by nuclear plant licensees and the reactor core damage that could result from diesel failure during an emergency. This report contains the results of a reliability analysis of the onsite ac power system, and it uses the results of a separate analysis of offsite power systems to calculate the expected frequency of station blackout. Included is a design and operating experience review. Eighteen plants representative of typical onsite ac power systems and ten generic designs were selected to be modeled by fault trees. Operating experience data were collected from the NRC files and from nuclear plant licensee responses to a questionnaire sent out for this project.

  20. Direct FuelCell/Turbine Power Plant

    SciTech Connect

    Hossein Ghezel-Ayagh

    2004-11-19

    This report includes the progress in development of Direct Fuel Cell/Turbine. (DFC/T.) power plants for generation of clean power at very high efficiencies. The DFC/T power system is based on an indirectly heated gas turbine to supplement fuel cell generated power. The DFC/T power generation concept extends the high efficiency of the fuel cell by utilizing the fuel cell's byproduct heat in a Brayton cycle. Features of the DFC/T system include: electrical efficiencies of up to 75% on natural gas, 60% on coal gas, minimal emissions, simplicity in design, direct reforming internal to the fuel cell, reduced carbon dioxide release to the environment, and potential cost competitiveness with existing combined cycle power plants. FCE successfully completed testing of the pre-alpha sub-MW DFC/T power plant. This power plant was constructed by integration of a 250kW fuel cell stack and a microturbine. Following these proof-of-concept tests, a stand-alone test of the microturbine verified the turbine power output expectations at an elevated (representative of the packaged unit condition) turbine inlet temperature. Preliminary design of the packaged sub-MW alpha DFC/T unit has been completed and procurement activity has been initiated. The preliminary design of a 40 MW power plant including the key equipment layout and the site plan was completed. A preliminary cost estimate for the 40 MW DFC/T plant has also been prepared. The tests of the cascaded fuel cell concept for achieving high fuel utilizations were completed. The tests demonstrated that the concept results in higher power plant efficiency. Alternate stack flow geometries for increased power output/fuel utilization capabilities are also being evaluated.

  1. DIRECT FUEL CELL/TURBINE POWER PLANT

    SciTech Connect

    Hossein Ghezel-Ayagh

    2004-11-01

    This report includes the progress in development of Direct FuelCell/Turbine{reg_sign} (DFC/T{reg_sign}) power plants for generation of clean power at very high efficiencies. The DFC/T power system is based on an indirectly heated gas turbine to supplement fuel cell generated power. The DFC/T power generation concept extends the high efficiency of the fuel cell by utilizing the fuel cell's byproduct heat in a Brayton cycle. Features of the DFC/T system include: electrical efficiencies of up to 75% on natural gas, 60% on coal gas, minimal emissions, simplicity in design, direct reforming internal to the fuel cell, reduced carbon dioxide release to the environment, and potential cost competitiveness with existing combined cycle power plants. The operation of sub-MW hybrid Direct FuelCell/Turbine power plant test facility with a Capstone C60 microturbine was initiated in March 2003. The inclusion of the C60 microturbine extended the range of operation of the hybrid power plant to higher current densities (higher power) than achieved in previous tests using a 30kW microturbine. The design of multi-MW DFC/T hybrid systems, approaching 75% efficiency on natural gas, was initiated. A new concept was developed based on clusters of One-MW fuel cell modules as the building blocks. System analyses were performed, including systems for near-term deployment and power plants with long-term ultra high efficiency objectives. Preliminary assessment of the fuel cell cluster concept, including power plant layout for a 14MW power plant, was performed.

  2. M-C Power commercialization program for MCFC power plants

    NASA Astrophysics Data System (ADS)

    Cámara, E. H.; Schora, F. C.

    1992-01-01

    M-C Power Corporation was established by the Institute of Gas Technology (IGT) to develop, manufacture, market, sell and service commercial MCFC power plants using IGT's IMHEX® fuel cell stack concept. M-C Power has created an integrated commercialization program to develop a market-responsive, natural gas-fueled MCFC power plant. M-C Power's market entry offering will range from 500 kW to 3 MW and will be designed for on-site and distributed power applications. Future products will include a wider range of sizes for distributed power and power plants for dispersed (30-50 MW) and base load ( > 100 MW) power generation, the latter fueled by coal-derived gases. M-C Power Corporation has established the world's most advanced MCFC components and stack manufacturing facilities at its plant in Burr Ridge, IL, capable of producing 3 MW/year of stacks based on one shift per day, five days per week operation. This capacity can be increased to 12 MW/year by adding one tape casting machine and operating three shifts per day for 330 days/year. An industry group has been formed to guide, support, and stimulate the IMHEX® Commercialization Program. This group is called the Alliance to Commercialize Carbonate Technology (ACCT). ACCT members include electric, gas and combination utilities as well as pipeline companies and potential industrial users. In addition, the program enjoys wide support from government, industry and research institutions.

  3. EPA Facility Registry Service (FRS): Power Plants

    EPA Pesticide Factsheets

    This GIS dataset contains data on power plants, based on the Energy Information Administration's EIA-860 dataset and supplemented with data from EPA's Facility Registry Service (FRS) compiled from various EPA programs.

  4. GHGRP Power Plants Sector Industrial Profiles

    EPA Pesticide Factsheets

    EPA's Greenhouse Gas Reporting Program periodically produces detailed profiles of the various industries that report under the program. These profiles, available for download below, contain detailed analyses for the Power Plants industry.

  5. 35. SOUTH PLANT NORTHCENTER RAILROAD SPUR, SHOWING POWER PLANT (BUILDINGS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    35. SOUTH PLANT NORTH-CENTER RAILROAD SPUR, SHOWING POWER PLANT (BUILDINGS 325 AND 321) AT LEFT, FUEL TOWER AT CENTER AND CHLORINE EVAPORATOR (BUILDING 251) AT RIGHT. VIEW TO WEST - Rocky Mountain Arsenal, Bounded by Ninety-sixth Avenue & Fifty-sixth Avenue, Buckley Road, Quebec Street & Colorado Highway 2, Commerce City, Adams County, CO

  6. 34. SOUTH PLANT NORTHCENTER RAILROAD SPUR, WITH ELECTRICAL POWER PLANT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    34. SOUTH PLANT NORTH-CENTER RAILROAD SPUR, WITH ELECTRICAL POWER PLANT (BUILDING 325) AT LEFT AND CELL BUILDING (BUILDING 242) AT RIGHT. VIEW TO WEST - Rocky Mountain Arsenal, Bounded by Ninety-sixth Avenue & Fifty-sixth Avenue, Buckley Road, Quebec Street & Colorado Highway 2, Commerce City, Adams County, CO

  7. Efficiencies of Power Plants Using Hydrothermal Oxidation

    NASA Astrophysics Data System (ADS)

    Hirosaka, Kazuma; Yuvamitra, Korakot; Ishikawa, Akira; Hasegawa, Tatsuya

    Wet biomass is hard to handle as a fuel for power plants because it contains high moisture and its drying process needs more energy input than it produces. Hydrothermal oxidation could be one of the promising technologies to overcome this problem because this process does not need drying process at all. We focus on recovery of thermal energy produced by hydrothermal oxidation of wet biomass. Two kinds of power plant are investigated, a direct type and an indirect type. In the direct type power plant, reactant is oxidized in a reactor and directly flowed into a turbine. In the indirect type power plant, reactant is oxidized in a reactor and the reaction heat is conveyed to the main water, which is flowed into a turbine. The amount of electric power and the energy conversion efficiency are calculated by using ethanol, glucose and peat solutions as reactants. In both type of power plant, one steam turbine is employed for generating electricity with the maximum turbine inlet temperature of 650 °C. As ethanol concentration increased, the amount of electric power and the energy conversion efficiency become higher. The maximum efficiency for the direct type power plant using ethanol solution is about 26.4 % for 17.6 wt% at the reactor pressure of 10 MPa. The efficiency of the indirect type power plant is much lower than that of the direct type, but by pressurizing main water up to 4 MPa, the efficiency becomes higher up to 20.9 %. For glucose solution, the maximum efficiency for the direct type is about 25.5 % for 34.5 wt% at the reactor pressure of 5 MPa. The maximum efficiency of the indirect type at the main water pressure of 4 MPa is about 21.1 % for 40.7 wt%. For peat solution, only the indirect type is investigated. The maximum efficiency at the main water pressure of 4 MPa is about 20.8 % for 36.8 wt%.

  8. Dose reduction at nuclear power plants

    SciTech Connect

    Baum, J.W.; Dionne, B.J.

    1983-01-01

    The collective dose equivalent at nuclear power plants increased from 1250 rem in 1969 to nearly 54,000 rem in 1980. This rise is attributable primarily to an increase in nuclear generated power from 1289 MW-y to 29,155 MW-y; and secondly, to increased average plant age. However, considerable variation in exposure occurs from plant to plant depending on plant type, refueling, maintenance, etc. In order to understand the factors influencing these differences, an investigation was initiated to study dose-reduction techniques and effectiveness of as low as reasonably achievable (ALARA) planning at light water plants. Objectives are to: identify high-dose maintenance tasks and related dose-reduction techniques; investigate utilization of high-reliability, low-maintenance equipment; recommend improved radioactive waste handling equipment and procedures; examine incentives for dose reduction; and compile an ALARA handbook.

  9. OUT Success Stories: Solar Trough Power Plants

    DOE R&D Accomplishments Database

    Jones, J.

    2000-08-01

    The Solar Electric Generating System (SEGS) plants use parabolic-trough solar collectors to capture the sun's energy and convert it to heat. The SEGS plants range in capacity from 13.8 to 80 MW, and they were constructed to meet Southern California Edison Company's periods of peak power demand.

  10. OUT Success Stories: Solar Trough Power Plants

    SciTech Connect

    Jones, J.

    2000-08-05

    The Solar Electric Generating System (SEGS) plants use parabolic-trough solar collectors to capture the sun's energy and convert it to heat. The SEGS plants range in capacity from 13.8 to 80 MW, and they were constructed to meet Southern California Edison Company's periods of peak power demand.

  11. Parabolic Trough Organic Rankine Cycle Power Plant

    SciTech Connect

    Canada, S.; Cohen, G.; Cable, R.; Brosseau, D.; Price, H.

    2005-01-01

    Arizona Public Service (APS) is required to generate a portion of its electricity from solar resources in order to satisfy its obligation under the Arizona Environmental Portfolio Standard (EPS). In recent years, APS has installed and operates over 4.5 MWe of fixed, tracking, and concentrating photovoltaic systems to help meet the solar portion of this obligation and to develop an understanding of which solar technologies provide the best cost and performance to meet utility needs. During FY04, APS began construction of a 1-MWe parabolic trough concentrating solar power plant. This plant represents the first parabolic trough plant to begin construction since 1991. The plant will also be the first commercial deployment of the Solargenix parabolic trough collector technology developed under contract to the National Renewable Energy Laboratory (NREL). The plant will use an organic Rankine cycle (ORC) power plant, provided by Ormat. The ORC power plant is much simpler than a conventional steam Rankine cycle power plant and allows unattended operation of the facility.

  12. INDEPENDENT POWER PLANT USING WOOD WASTE

    EPA Science Inventory

    A 1 MWe power plant using waste wood is to be installed at a U.S. Marine Corps base, which will supply all the wood for the plant from a landfill site. The core energy conversion technology is a down-draft gasifier supplying approximately 150 Btu/scf gas to both spark ignition an...

  13. Operational results of an agricultural biogas plant equipped with modern instrumentation and automation.

    PubMed

    Wiese, J; Kujawski, O

    2008-01-01

    Agricultural biogas plants based on energy crops gain more and more importance because of numerous energetic, environmental and agricultural benefits. In contrast to older biogas plants, the newest generation of biogas plants is equipped with modern ICA equipment and reliable machines/engines. In this paper, the authors present technical details and operational results of a modern full-scale agricultural biogas plant using energy crops.

  14. Questions and Answers About Nuclear Power Plants.

    ERIC Educational Resources Information Center

    Environmental Protection Agency, Washington, DC.

    This pamphlet is designed to answer many of the questions that have arisen about nuclear power plants and the environment. It is organized into a question and answer format, with the questions taken from those most often asked by the public. Topics include regulation of nuclear power sources, potential dangers to people's health, whether nuclear…

  15. Course in power plant systems interactions

    SciTech Connect

    Robinson, G.E.; Baratta, A.J.

    1987-01-01

    Like most nuclear engineering programs, the Pennsylvania State Univ. (Penn State) program includes in-depth studies of reactor theory and thermal hydraulics, heat transfer, and fluid flow. The compartmentalization of these topics results in a distinct lack of understanding of the way that typical systems in a nuclear power plant interact to produce the transients that occur in a plant. To correct the deficiency, attempts have been made to develop a comprehensive systems course, which not only educates the students about power plant systems but also teaches them the way they interact. This paper describes the various approaches used and the problems encountered with each approach.

  16. Modern fluidized bed combustion in Ostrava-Karvina cogeneration plants

    SciTech Connect

    Mazac, V.; Novacek, A.; Volny, J.

    1995-12-01

    The contemporary situation of our environment claims the sensitive approach to solving effective conversion of energy. Limited supplies of noble fuels and their prices evoke the need to use new combustion technologies of accessible fuels in given region without negative ecological influences. Energoproject participates in the preparation of the two projects in Ostrava-Karvin{acute a} black coal field in Czech Republic. The most effective usage of fuel energy is the combined of electricity and heat. If this physical principle is supported by a pressurized fluidized bed combustion (PFBC) one obtains a high electricity/heat ratio integrated steam-gas cycle on the basis of solid fuel. Cogeneration plant Toebovice is the dominant source (600 MW{sub th}) of Ostrava district heating system (1100 MW{sub th}). The high utilization of the installed output and utilization of the clean, compact and efficient of the PFBC technology is the principal but not the single reason for the selection of the Toebovice power plant as the first cogeneration plant for installation of the PFBC in Czech Republic. The boiler will burn black coal from the neighboring coal basin.

  17. Sowing seed, planting trees, producing power

    SciTech Connect

    Moon, S.

    1997-07-01

    With three crops-to-power projects, the US DOE and US DOA have their biomass power for rural development initiative in high gear. Farmers can produce abundant supplies of fast-growing energy crops on marginal or underutilized acreage to feed power plants. This article summarizes the three projects in Minnesota, Iowa, and New York, and discusses the importance of the necessity for cooperation.

  18. DIRECT FUEL CELL/TURBINE POWER PLANT

    SciTech Connect

    Hossein Ghezel-Ayagh

    2003-05-22

    Project activities were focused on the design and construction the sub-scale hybrid Direct Fuel Cell/turbine (DFC/T{reg_sign}) power plant and modification of a Capstone Simple Cycle Model 330 microturbine. The power plant design work included preparation of system flow sheet and performing computer simulations based on conservation of mass and energy. The results of the simulation analyses were utilized to prepare data sheets and specifications for balance-of-plant equipment. Process flow diagram (PFD) and piping and instrumentation diagrams (P&ID) were also completed. The steady state simulation results were used to develop design information for modifying the control functions, and for sizing the heat exchangers required for recuperating the waste heat from the power plant. Line and valve sizes for the interconnecting pipes between the microturbine and the heat recuperators were also identified.

  19. Perspectives on Magnetized Target Fusion Power Plants

    NASA Astrophysics Data System (ADS)

    Miller, R. L.

    2007-06-01

    One approach to Magnetized Target Fusion (MTF) builds upon the ongoing experimental effort (FRX-L) to generate a Field Reversed Configuration (FRC) target plasma suitable for translation and cylindrical-liner (i.e., converging flux conserver) implosion. Numerical modeling is underway to elucidate key performance drivers for possible future power-plant extrapolations. The fusion gain, Q (ratio of DT fusion yield to the sum of initial liner kinetic energy plus plasma formation energy), sets the power-plant duty cycle for a nominal design electric power [ e.g. 1,000 MWe(net)]. A pulsed MTF power plant of this type derives from the historic Fast Liner Reactor (FLR) concept and shares attributes with the recent Inertial Fusion Energy (IFE) Z-pinch and laser-driven pellet HYLIFE-II conceptual designs.

  20. Monitoring Biological Activity at Geothermal Power Plants

    SciTech Connect

    Peter Pryfogle

    2005-09-01

    The economic impact of microbial growth in geothermal power plants has been estimated to be as high as $500,000 annually for a 100 MWe plant. Many methods are available to monitor biological activity at these facilities; however, very few plants have any on-line monitoring program in place. Metal coupon, selective culturing (MPN), total organic carbon (TOC), adenosine triphosphate (ATP), respirometry, phospholipid fatty acid (PLFA), and denaturing gradient gel electrophoresis (DGGE) characterizations have been conducted using water samples collected from geothermal plants located in California and Utah. In addition, the on-line performance of a commercial electrochemical monitor, the BIoGEORGE?, has been evaluated during extended deployments at geothermal facilities. This report provides a review of these techniques, presents data on their application from laboratory and field studies, and discusses their value in characterizing and monitoring biological activities at geothermal power plants.

  1. Plant community succession in modern Yellow River Delta, China*

    PubMed Central

    Zhang, Gao-sheng; Wang, Ren-qing; Song, Bai-min

    2007-01-01

    Data were collected in different successional stages using a simultaneous sampling method and analyzed through quantitative classification method. Three large groups and 12 classes were made to represent the community patterns of three succession stages and 12 succession communities. The succession series of plant community in the study area was as follows: saline bare land→community Suaeda salsa→community Tamarix chinensis→grassland. Succession degree and succession process of 12 succession communities were calculated. Most of these communities were in the lower succession stage, however, community Phragmites communis+Glycine soja and community Imperata cylindrica+G. soja were close to the succession stage of grassland climax. Five species diversity indices were used to study the changes in species richness, species evenness and diversity during succession of community. Heterogeneity index and richness index increased gradually during the community succession process, but species evenness tended to decrease with succession development. The relation between succession and environment was studied by ordination technique, and the results showed that the soil salt content was an important factor to halarch succession of the modern Yellow River Delta. It affected community structure, species composition and succession process. PMID:17657854

  2. Rapporteur report: MHD electric power plants

    NASA Technical Reports Server (NTRS)

    Seikel, G. R.

    1980-01-01

    Five US papers from the Proceedings of the Seventh International Conference on MHD Electrical Power Generation at the Massachusetts Institute of Technology are summarized. Results of the initial parametric phase of the US effort on the study of potential early commercial MHD plants are reported and aspects of the smaller commercial prototype plant termed the Engineering Test Facility are discussed. The alternative of using a disk geometry generator rather than a linear generator in baseload MHD plants is examined. Closed-cycle as well as open-cycle MHD plants are considered.

  3. Direct FuelCell/Turbine Power Plant

    SciTech Connect

    Hossein Ghezel-Ayagh

    2008-09-30

    This report summarizes the progress made in development of Direct FuelCell/Turbine (DFC/T{reg_sign}) power plants for generation of clean power at very high efficiencies. The DFC/T system employs an indirectly heated Turbine Generator to supplement fuel cell generated power. The concept extends the high efficiency of the fuel cell by utilizing the fuel cell's byproduct heat in a Brayton cycle. Features of the DFC/T system include: electrical efficiencies of up to 75% on natural gas, minimal emissions, reduced carbon dioxide release to the environment, simplicity in design, direct reforming internal to the fuel cell, and potential cost competitiveness with existing combined cycle power plants. Proof-of-concept tests using a sub-MW-class DFC/T power plant at FuelCell Energy's (FCE) Danbury facility were conducted to validate the feasibility of the concept and to measure its potential for electric power production. A 400 kW-class power plant test facility was designed and retrofitted to conduct the tests. The initial series of tests involved integration of a full-size (250 kW) Direct FuelCell stack with a 30 kW Capstone microturbine. The operational aspects of the hybrid system in relation to the integration of the microturbine with the fuel cell, process flow and thermal balances, and control strategies for power cycling of the system, were investigated. A subsequent series of tests included operation of the sub-MW Direct FuelCell/Turbine power plant with a Capstone C60 microturbine. The C60 microturbine extended the range of operation of the hybrid power plant to higher current densities (higher power) than achieved in initial tests using the 30kW microturbine. The proof-of-concept test results confirmed the stability and controllability of operating a fullsize (250 kW) fuel cell stack in combination with a microturbine. Thermal management of the system was confirmed and power plant operation, using the microturbine as the only source of fresh air supply to the

  4. Nuclear power plant security assessment technical manual.

    SciTech Connect

    O'Connor, Sharon L.; Whitehead, Donnie Wayne; Potter, Claude S., III

    2007-09-01

    This report (Nuclear Power Plant Security Assessment Technical Manual) is a revision to NUREG/CR-1345 (Nuclear Power Plant Design Concepts for Sabotage Protection) that was published in January 1981. It provides conceptual and specific technical guidance for U.S. Nuclear Regulatory Commission nuclear power plant design certification and combined operating license applicants as they: (1) develop the layout of a facility (i.e., how buildings are arranged on the site property and how they are arranged internally) to enhance protection against sabotage and facilitate the use of physical security features; (2) design the physical protection system to be used at the facility; and (3) analyze the effectiveness of the PPS against the design basis threat. It should be used as a technical manual in conjunction with the 'Nuclear Power Plant Security Assessment Format and Content Guide'. The opportunity to optimize physical protection in the design of a nuclear power plant is obtained when an applicant utilizes both documents when performing a security assessment. This document provides a set of best practices that incorporates knowledge gained from more than 30 years of physical protection system design and evaluation activities at Sandia National Laboratories and insights derived from U.S. Nuclear Regulatory Commission technical staff into a manual that describes a development and analysis process of physical protection systems suitable for future nuclear power plants. In addition, selected security system technologies that may be used in a physical protection system are discussed. The scope of this document is limited to the identification of a set of best practices associated with the design and evaluation of physical security at future nuclear power plants in general. As such, it does not provide specific recommendations for the design and evaluation of physical security for any specific reactor design. These best practices should be applicable to the design and

  5. Nuclear Security for Floating Nuclear Power Plants

    SciTech Connect

    Skiba, James M.; Scherer, Carolynn P.

    2015-10-13

    Recently there has been a lot of interest in small modular reactors. A specific type of these small modular reactors (SMR,) are marine based power plants called floating nuclear power plants (FNPP). These FNPPs are typically built by countries with extensive knowledge of nuclear energy, such as Russia, France, China and the US. These FNPPs are built in one country and then sent to countries in need of power and/or seawater desalination. Fifteen countries have expressed interest in acquiring such power stations. Some designs for such power stations are briefly summarized. Several different avenues for cooperation in FNPP technology are proposed, including IAEA nuclear security (i.e. safeguards), multilateral or bilateral agreements, and working with Russian design that incorporates nuclear safeguards for IAEA inspections in non-nuclear weapons states

  6. Progress in developing tidal electric power plants reported

    NASA Astrophysics Data System (ADS)

    Blokhnin, A.

    1984-12-01

    The natural energy potential of tides on the shores of the U.S.S.R. is equal to about a third of the world's total. The Achilles heel of tidal power plants is their pulsating operation. One solution to this problem was to build a hydroelectric power plant for use in tandem with the tidal power plant. During lulls in the tidal plant, the hydraulic power plant switches on at full power. Possible sites for dual plants were discussed.

  7. Efficiency improvement of thermal coal power plants

    SciTech Connect

    Hourfar, D.

    1996-12-31

    The discussion concerning an increase of the natural greenhouse effect by anthropogenic changes in the composition of the atmosphere has increased over the past years. The greenhouse effect has become an issue of worldwide debate. Carbon dioxide is the most serious emission of the greenhouse gases. Fossil-fired power plants have in the recent past been responsible for almost 30 % of the total CO{sub 2} emissions in Germany. Against this background the paper will describe the present development of CO{sub 2} emissions from power stations and present actual and future opportunities for CO{sub 2} reduction. The significance attached to hard coal as one of today`s prime sources of energy with the largest reserves worldwide, and, consequently, its importance for use in power generation, is certain to increase in the years to come. The further development of conventional power plant technology, therefore, is vital, and must be carried out on the basis of proven operational experience. The main incentive behind the development work completed so far has been, and continues to be, the achievement of cost reductions and environmental benefits in the generation of electricity by increasing plant efficiency, and this means that, in both the short and the long term, power plants with improved conventional technology will be used for environmentally acceptable coal-fired power generation.

  8. Correlation and reassessment of the OTEC plant power cycle

    NASA Astrophysics Data System (ADS)

    Heydt, G. T.; Leidenfrost, W.; McDonald, A. T.; Ogborn, L. L.

    1984-07-01

    The purpose of this effort is to investigate alternative system concepts and component configurations to improve performance of the OTEC power system. Reliability, Availability, and Maintainability (RAM) characteristics were examined along with various methods of converting energy into utility-grade energy. A research program consisting of five tasks was developed: development of engineering guidelines for OTEC systems; thermal and mechanical evaluation of components; evaluation of electrical system requirements; evaluation of operating strategies for OTEC plants; and application of modern technology to OTEC design choices. These studies are discussed in detail along with recommendations and conclusions.

  9. Scanning thermal plumes. [from power plant condensers

    NASA Technical Reports Server (NTRS)

    Scarpace, F. L.; Madding, R. P.; Green, T., III

    1974-01-01

    In order to study the behavior and effects of thermal plumes associated with the condenser cooling of power plants, thermal line scans are periodically made from aircraft over all power plants along the Wisconsin shore of Lake Michigan. Simultaneous ground truth is also gathered with a radiometer. Some sequential imagery has been obtained for periods up to two hours to study short term variations in the surface temperature of the plume. The article concentrates on the techniques used to analyze thermal scanner data for a single power plant which was studied intensively. The calibration methods, temperature dependence of the thermal scanner, and calculation of the modulation transfer function for the scanner are treated. It is concluded that obtaining quantitative surface-temperature data from thermal scanning is a nontrivial task. Accuracies up to plus or minus 0.1 C are attainable.

  10. DIRECT FUEL CELL/TURBINE POWER PLANT

    SciTech Connect

    Hossein Ghezel-Ayagh

    2003-05-23

    In this reporting period, a milestone was achieved by commencement of testing and operation of the sub-scale hybrid direct fuel cell/turbine (DFC/T{reg_sign}) power plant. The operation was initiated subsequent to the completion of the construction of the balance-of-plant (BOP) and implementation of process and control tests of the BOP for the subscale DFC/T hybrid system. The construction efforts consisted of finishing the power plant insulation and completion of the plant instrumentation including the wiring and tubing required for process measurement and control. The preparation work also included the development of procedures for facility shake down, conditioning and load testing of the fuel cell, integration of the microturbine, and fuel cell/gas turbine load tests. At conclusion of the construction, the process and control (PAC) tests of BOP, including the microturbine, were initiated.

  11. Carbonate fuel cell power plant systems

    NASA Astrophysics Data System (ADS)

    Reinstrom, R. M.

    1981-12-01

    Carbonate fuel cells are an attractive means of developing highly efficient power plants capable of achieving low atmospheric emissions. Because carbonate fuel cells can be used with coal derived fuel gases and their operating temperatures allow the use of turbomachinery bottoming cycles, they are well suited for large installations like central utility stations. Presently, system development activity is directed toward evaluating the readiness of gasifier and fuel processor technology, defining candidate cycle configurations, and calculating projected plant efficiencies.

  12. Report on Hawaii geothermal power plant project

    SciTech Connect

    Not Available

    1983-06-01

    The Hawaii Geothermal Generator Project is the first power plant in the State of Hawaii to be powered by geothermal energy. This plant, which is located in the Puna District on the Island of Hawaii, produces three (3) megawatts of electricity utilizing the steam phase from the geothermal well. This project represents the climax of the geophysical research efforts going on for two decades in the Hawaiian Islands which resulted in the discovery of a significant reservoir of geothermal energy which could be put to practical use. In 1978 the Department of Energy, in conjunction with the State of Hawaii, entered into negotiations to design and build a power plant. The purpose and objective of this plant was to demonstrate the feasibility of constructing and operating a geothermal power plant located in a remote volcanically active area. A contract was signed in mid 1978 between the Research Corporation of the University of Hawaii (RCUH) and the Department of Energy (DOE). To date, the DOE has provided 8.3 million dollars with the State of Hawaii and others contributing 2.1 million dollars. The cost of the project exceeded its original estimates by approximately 25%. These increases in cost were principally contributed to the higher cost for construction than was originally estimated. Second, the cost of procuring the various pieces of equipment exceed their estimates by 10 to 20 percent, and third, the engineering dollar per man hour rose 20 to 25 percent.

  13. Virtual environments for nuclear power plant design

    SciTech Connect

    Brown-VanHoozer, S.A.; Singleterry, R.C. Jr.; King, R.W.

    1996-03-01

    In the design and operation of nuclear power plants, the visualization process inherent in virtual environments (VE) allows for abstract design concepts to be made concrete and simulated without using a physical mock-up. This helps reduce the time and effort required to design and understand the system, thus providing the design team with a less complicated arrangement. Also, the outcome of human interactions with the components and system can be minimized through various testing of scenarios in real-time without the threat of injury to the user or damage to the equipment. If implemented, this will lead to a minimal total design and construction effort for nuclear power plants (NPP).

  14. Planting for power in central New York

    SciTech Connect

    Moon, S.

    1997-12-31

    The Salix consortium has joined forces with the US DOE and USDA to grow dedicated plantations of willows strategically located within a 50 mile radius (or easy hauling distance) of coal-burning power plants. At harvest time, the energy farmers could have as much as 7.5 tonnes of oven dry wood per acre per year. This article describes this project, covering the following areas: biomass power for rural development; energy farming; the Salix plan; New York State`s utilities; commercializing a new crop; the SUNY ESF team; biomass test field station; planting and harvesting; what lies ahead. 2 figs.

  15. Slim Holes for Small Power Plants

    SciTech Connect

    Finger, John T.

    1999-08-06

    Geothermal research study at Sandia National Laboratories has conducted a program in slimhole drilling research since 1992. Although our original interest focused on slim holes as an exploration method, it has also become apparent that they have substantial potential for driving small-scale, off-grid power plants. This paper summarizes Sandia's slim-hole research program, describes technology used in a ''typical'' slimhole drilling project, presents an evaluation of using slim holes for small power plants, and lists some of the research topics that deserve further investigation.

  16. 500-WATT FUEL-CELL POWER PLANT.

    DTIC Science & Technology

    hydrogen and air, fuel - cell power plant. Two independent units are to be developed - a hydrogen-generator assembly and a fuel - cell assembly. The...hydrogen-generator assembly will convert the hydrocarbon fuel to hydrogen by steam reforming, and the fuel - cell assembly will electrochemically oxidize the...The report presents the technical approach to be used to establish the feasibility of a compact 500-watt, liquid-hydrocarbon and air, fuel - cell power

  17. Strategies in tower solar power plant optimization

    NASA Astrophysics Data System (ADS)

    Ramos, A.; Ramos, F.

    2012-09-01

    A method for optimizing a central receiver solar thermal electric power plant is studied. We parametrize the plant design as a function of eleven design variables and reduce the problem of finding optimal designs to the numerical problem of finding the minimum of a function of several variables. This minimization problem is attacked with different algorithms both local and global in nature. We find that all algorithms find the same minimum of the objective function. The performance of each of the algorithms and the resulting designs are studied for two typical cases. We describe a method to evaluate the impact of design variables in the plant performance. This method will tell us what variables are key to the optimal plant design and which ones are less important. This information can be used to further improve the plant design and to accelerate the optimization procedure.

  18. Closed cycle osmotic power plants for electric power production

    NASA Astrophysics Data System (ADS)

    Reali, M.

    1980-04-01

    The paper deals with closed-cycle osmotic power plants (CCOPPs), which are not meant for the exploitation of natural salinity gradients but, rather, for the exploitation of those abundant heat sources having temperatures slightly higher than ambient temperature, e.g., geothermal fields, ocean temperature gradients, waste heat from power plants, and solar energy. The paper gives a general description of the CCOPP, along with some indications of its potential for energy generation. The concept of the CCOPP lies in producing electric power by means of the osmotic flows of suitable solvents and subsequently in separating them again from their solutes by means of thermal energy obtained from any available heat source. The discussion covers osmotic phenomena and the CCOPP, as well as important features of the CCOPP.

  19. 75 FR 66802 - Calvert Cliffs Nuclear Power Plant, LLC; Calvert Cliffs Nuclear Power Plant, Unit Nos. 1 and 2...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-29

    ... COMMISSION Calvert Cliffs Nuclear Power Plant, LLC; Calvert Cliffs Nuclear Power Plant, Unit Nos. 1 and 2... Regulatory Commission (the Commission) has granted the request of Calvert Cliffs Nuclear Power Plant, LLC... Operating License Nos. DPR-53 and DPR-69 for the Calvert Cliffs Nuclear Power Plant, Unit......

  20. [Hygienic problems in the location of modern wind electric power stations in their design].

    PubMed

    Kireeva, I S; Makhniuk, V M; Akimenko, V Ia; Dumanskiĭ, Iu D; Semashko, P V

    2013-01-01

    Hygienic aspects of the placement of wind power plants (WPP) in connection with the intensive development of wind power and the lack of systematic information on their effects of the environment and living conditions of the population are becoming more actual. In the article there are considered results of the sanitary-epidemiological expertise of the construction project of three modern large wind farm (the South - Ukrainian, Tiligulskaya and Pokrovskaya) with a total capacity offrom 180 to 500 MW of wind farms with 2.3 MW power generators of wind turbines. It is shown that in the process of wind farm construction a contamination of the environment (air soil, ground water) may take place due to the working of construction equipment and vehicle, excavation, welding and other operations, in the exploitation of wind farm there can be created elevated levels of acoustic and electromagnetic pollution in the neighborhood and emergencies with the destruction of WPP in adverse weather conditions. Based on the calculations presented in the projects, and the analysis of data on the impact offoreign windfarm on the environment it was found that the limiting factor of the influence is the wind farm noise pollution in the audio frequency range that extends beyond the territory of wind fields, electromagnetic radiation is recorded within the hygienic standards and below only in the immediate vicinity of its sources (electrical equipment and power lines). For considered modern wind farms there was grounded sanitary protective zone with dimensions of 700 mfrom the outermost wind turbines by the noise and it was recommended compliance distance of200 mfrom the wind turbine to limit any activity and people staying in times of possible emergency situations in adverse weather conditions.

  1. Establishing Competence: Qualification of Power Plant Personnel.

    ERIC Educational Resources Information Center

    Chapman, Colin R.

    1992-01-01

    Discusses the International Atomic Energy Agency's definition of competence for nuclear power plant operations personnel, how competence can be identified with intellectual, physical, and psychological attributes, how levels of competence are determined, how education, training, and experience establish competence, objectives and costs of training…

  2. Combined cycle power plant incorporating coal gasification

    DOEpatents

    Liljedahl, Gregory N.; Moffat, Bruce K.

    1981-01-01

    A combined cycle power plant incorporating a coal gasifier as the energy source. The gases leaving the coal gasifier pass through a liquid couplant heat exchanger before being used to drive a gas turbine. The exhaust gases of the gas turbine are used to generate both high pressure and low pressure steam for driving a steam turbine, before being exhausted to the atmosphere.

  3. Utilities expand baseload power plant plans

    SciTech Connect

    Smock, R.

    1993-04-01

    This article examines the plans being made by electric utilities to expand the number of baseload plants to accommodate increasing power demands. The results of a survey of utility's construction plans is presented. The topics include current construction, construction planning in the Southeast, current baseload technology, nuclear potential, and incorporation of environmental externalities impact in planning.

  4. Geothermal Cogeneration: Iceland's Nesjavellir Power Plant

    ERIC Educational Resources Information Center

    Rosen, Edward M.

    2008-01-01

    Energy use in Iceland (population 283,000) is higher per capita than in any other country in the world. Some 53.2% of the energy is geothermal, which supplies electricity as well as heated water to swimming pools, fish farms, snow melting, greenhouses, and space heating. The Nesjavellir Power Plant is a major geothermal facility, supplying both…

  5. Report on Hawaii Geothermal Power Plant Project

    SciTech Connect

    Not Available

    1983-06-01

    The report describes the design, construction, and operation of the Hawaii Geothermal Generator Project. This power plant, located in the Puna District on the island of Hawaii, produces three megawatts of electricity from the steam phase of a geothermal well. (ACR)

  6. Wind Power Plant Voltage Stability Evaluation: Preprint

    SciTech Connect

    Muljadi, E.; Zhang, Y. C.

    2014-09-01

    Voltage stability refers to the ability of a power system to maintain steady voltages at all buses in the system after being subjected to a disturbance from a given initial operating condition. Voltage stability depends on a power system's ability to maintain and/or restore equilibrium between load demand and supply. Instability that may result occurs in the form of a progressive fall or rise of voltages of some buses. Possible outcomes of voltage instability are the loss of load in an area or tripped transmission lines and other elements by their protective systems, which may lead to cascading outages. The loss of synchronism of some generators may result from these outages or from operating conditions that violate a synchronous generator's field current limit, or in the case of variable speed wind turbine generator, the current limits of power switches. This paper investigates the impact of wind power plants on power system voltage stability by using synchrophasor measurements.

  7. Mammoth geothermal power plant: operation update

    SciTech Connect

    Campbell, R.G.; Holt, B.; Asper, W.

    1987-06-01

    The Mammoth Geothermal Power Plant, the world's first modular, air-cooled binary plant, was designed to produce a year-round average of 7 megawatts of electrical power, net. Firm power was first produced in February 1985. Reservoir performance has been excellent. There is no evidence of a decline in productivity, and injection well pressures have been lower than anticipated. Downhole pumps have been in operation over one year, without servicing. Early problems due to resonant frequencies in the turbine have been solved. Heat exchanger fouling has been as expected. The isobutane pumps and the air coolers have performed in accordance with expectations. Plans are underway to expand the geothermal development at Mammoth, employing the Magmamax process and the same environmentally benign design concepts. Design specification and operation are discussed.

  8. MCFC and microturbine power plant simulation

    NASA Astrophysics Data System (ADS)

    Orecchini, F.; Bocci, E.; Di Carlo, A.

    The consistent problem of the CO 2 emissions and the necessity to find new energy sources, are motivating the scientific research to use high efficiency electric energy production's technologies that could exploit renewable energy sources too. The molten carbonate fuel cell (MCFC) due to its high efficiencies and low emissions seems a valid alternative to the traditional plant. Moreover, the high operating temperature and pressure give the possibility to use a turbine at the bottom of the cells to produce further energy, increasing therefore the plant's efficiencies. The basic idea using this two kind of technologies (MCFC and microturbine), is to recover, via the microturbine, the necessary power for the compressor, that otherwise would remove a consistent part of the MCFC power generated. The purpose of this work is to develop the necessary models to analyze different plant configurations. In particular, it was studied a plant composed of a MCFC 500 kW Ansaldo at the top of a microturbine 100 kW Turbec. To study this plant it was necessary to develop: (i) MCFC mathematical model, that starting from the geometrical and thermofluidodynamic parameter of the cell, analyze the electrochemical reaction and shift reaction that take part in it; (ii) plate reformer model, a particular compact reformer that exploit the heat obtained by a catalytic combustion of the anode and part of cathode exhausts to reform methane and steam; and (iii) microturbine-compressor model that describe the efficiency and pressure ratio of the two machines as a function of the mass flow and rotational regime. The models developed was developed in Fortran language and interfaced in Chemcad © to analyze the power plant thermodynamic behavior. The results show a possible plant configuration with high electrical and global efficiency (over 50 and 74%).

  9. DIRECT FUELCELL/TURBINE POWER PLANT

    SciTech Connect

    Hossein Shezel-Ayagh

    2005-05-01

    This report summarizes the progress made in development of Direct FuelCell/Turbine{reg_sign} (DFC/T{reg_sign}) power plants for generation of clean power at very high efficiencies. The DFC/T power system is based on an indirectly heated gas turbine to supplement fuel cell generated power. The DFC/T power generation concept extends the high efficiency of the fuel cell by utilizing the fuel cell's byproduct heat in a Brayton cycle. Features of the DFC/T system include: electrical efficiencies of up to 75% on natural gas, 60% on coal gas, minimal emissions, simplicity in design, direct reforming internal to the fuel cell, reduced carbon dioxide release to the environment, and potential cost competitiveness with existing combined cycle power plants. Detailed design of the packaged sub-MW alpha DFC/T unit has been completed for mechanical and piping layouts and for structural drawings. Procurement activities continued with delivery of major equipment items. Fabrication of the packaged sub-MW alpha DFC/T unit has been initiated. Details of the process control philosophy were defined and control software programming was initiated.

  10. Turbine generator evaluation for the Eesti-Energia Estonia and Baltic power plants. Export trade information

    SciTech Connect

    1995-12-01

    The report evaluates the feasibility of 200 MW turbines and generators modernization in two Estonian power plants in order to improve performance and/or availability. This is Volume 1 and it includes the following: (1) scope; (2) evaluation approach; (3) summary of major recommendations; (4) performance tests descriptions; (5) current technology -- component description; (6) recommended studies; (7) recommendations; (8) district heating; (9) description of turbine K-200-130; (10) turbine evaluation results; (11) generator; (12) estimation of modernization costs.

  11. BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS

    SciTech Connect

    R. Viswanathan; K. Coleman; R.W. Swindeman; J. Sarver; J. Blough; W. Mohn; M. Borden; S. Goodstine; I. Perrin

    2003-10-20

    The principal objective of this project is to develop materials technology for use in ultrasupercritical (USC) plant boilers capable of operating with 760 C (1400 F), 35 MPa (5000 psi) steam. This project has established a government/industry consortium to undertake a five-year effort to evaluate and develop of advanced materials that allow the use of advanced steam cycles in coal-based power plants. These advanced cycles, with steam temperatures up to 760 C, will increase the efficiency of coal-fired boilers from an average of 35% efficiency (current domestic fleet) to 47% (HHV). This efficiency increase will enable coal-fired power plants to generate electricity at competitive rates (irrespective of fuel costs) while reducing CO{sub 2} and other fuel-related emissions by as much as 29%. Success in achieving these objectives will support a number of broader goals. First, from a national prospective, the program will identify advanced materials that will make it possible to maintain a cost-competitive, environmentally acceptable coal-based electric generation option. High sulfur coals will specifically benefit in this respect by having these advanced materials evaluated in high-sulfur coal firing conditions and from the significant reductions in waste generation inherent in the increased operational efficiency. Second, from a national prospective, the results of this program will enable domestic boiler manufacturers to successfully compete in world markets for building high-efficiency coal-fired power plants.

  12. BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS

    SciTech Connect

    R. Viswanathan; K. Coleman; R.W. Swindeman; J. Sarver; J. Blough; W. Mohn; M. Borden; S. Goodstine; I. Perrin

    2003-08-04

    The principal objective of this project is to develop materials technology for use in ultrasupercritical (USC) plant boilers capable of operating with 760 C (1400 F), 35 MPa (5000 psi) steam. This project has established a government/industry consortium to undertake a five-year effort to evaluate and develop of advanced materials that allow the use of advanced steam cycles in coal-based power plants. These advanced cycles, with steam temperatures up to 760 C, will increase the efficiency of coal-fired boilers from an average of 35% efficiency (current domestic fleet) to 47% (HHV). This efficiency increase will enable coal-fired power plants to generate electricity at competitive rates (irrespective of fuel costs) while reducing CO{sub 2} and other fuel-related emissions by as much as 29%. Success in achieving these objectives will support a number of broader goals. First, from a national prospective, the program will identify advanced materials that will make it possible to maintain a cost-competitive, environmentally acceptable coal-based electric generation option. High sulfur coals will specifically benefit in this respect by having these advanced materials evaluated in high-sulfur coal firing conditions and from the significant reductions in waste generation inherent in the increased operational efficiency. Second, from a national prospective, the results of this program will enable domestic boiler manufacturers to successfully compete in world markets for building high-efficiency coal-fired power plants.

  13. MIDDLE GORGE POWER PLANT, OWENS RIVER STREAM FLOWING OVER TAIL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    MIDDLE GORGE POWER PLANT, OWENS RIVER STREAM FLOWING OVER TAIL RACE OF POWER PLANT AND PENSTOCK HEADGATE TO LOWER GORGE CONTROL PLANT. A MINIMAL FLOW OF RIVER WATER IS REQUIRED TO MAINTAIN FISH LIFE - Los Angeles Aqueduct, Middle Gorge Power Plant, Los Angeles, Los Angeles County, CA

  14. Power plant development at Mammoth Project

    SciTech Connect

    Holt, B.; Campbell, R.G.

    1984-04-01

    The Mammoth Geothermal Project is located within the Long Valley Known Geothermal Resources Area (KGRA) on the eastern slope of the Sierra Nevada mountain range of California some 300 miles north of Los Angeles. The plant is owned by Mammoth-Pacific (M-P), a joint venture of Pacific Energy Resources Incorporated and Mammoth Binary Power Company. The plan is to build two identical 3500 kW (net) air-cooled binary cycle geothermal power plants scheduled for completion in mid 1984. Nearly all the residential and commercial space heating in the Mammoth Lakes area is electrical. Electrical usage peaks in the wintertime, unlike the rest of the Edison system. While some power is provided by hydro plants in the area, most of the Edison supply arrives via a transmission line connecting to Edison facilities in the Mojave desert some 200 miles to the south. Peak power consumption in the area is about 40 MWe. The need to augment energy needs in the area by producing electricity from geothermal resources and using geothermal heat to replace electricity for space heating has long been recognized. The feasibility of this project is discussed.

  15. Safety in nuclear power plants in India

    PubMed Central

    Deolalikar, R.

    2008-01-01

    Safety in nuclear power plants (NPPs) in India is a very important topic and it is necessary to dissipate correct information to all the readers and the public at large. In this article, I have briefly described how the safety in our NPPs is maintained. Safety is accorded overriding priority in all the activities. NPPs in India are not only safe but are also well regulated, have proper radiological protection of workers and the public, regular surveillance, dosimetry, approved standard operating and maintenance procedures, a well-defined waste management methodology, proper well documented and periodically rehearsed emergency preparedness and disaster management plans. The NPPs have occupational health policies covering periodic medical examinations, dosimetry and bioassay and are backed-up by fully equipped Personnel Decontamination Centers manned by doctors qualified in Occupational and Industrial Health. All the operating plants are ISO 14001 and IS 18001 certified plants. The Nuclear Power Corporation of India Limited today has 17 operating plants and five plants under construction, and our scientists and engineers are fully geared to take up many more in order to meet the national requirements. PMID:20040970

  16. Safety in nuclear power plants in India.

    PubMed

    Deolalikar, R

    2008-12-01

    Safety in nuclear power plants (NPPs) in India is a very important topic and it is necessary to dissipate correct information to all the readers and the public at large. In this article, I have briefly described how the safety in our NPPs is maintained. Safety is accorded overriding priority in all the activities. NPPs in India are not only safe but are also well regulated, have proper radiological protection of workers and the public, regular surveillance, dosimetry, approved standard operating and maintenance procedures, a well-defined waste management methodology, proper well documented and periodically rehearsed emergency preparedness and disaster management plans. The NPPs have occupational health policies covering periodic medical examinations, dosimetry and bioassay and are backed-up by fully equipped Personnel Decontamination Centers manned by doctors qualified in Occupational and Industrial Health. All the operating plants are ISO 14001 and IS 18001 certified plants. The Nuclear Power Corporation of India Limited today has 17 operating plants and five plants under construction, and our scientists and engineers are fully geared to take up many more in order to meet the national requirements.

  17. Cascade inertial-confinement-fusion power plant

    SciTech Connect

    Pitts, J.H.; Maya, I.

    1985-11-13

    The Cascade reactor is double-cone shaped with a maximum radius of 5 m. It rotates at 50 rpm. The average temperature of a three-material flowing granular blanket leaving the reactor is 1440 K. Heat from the blanket is transferred to helium gas in a shell- and ceramic-tube-type heat exchanger that has a separate region for each blanket material. Diffusion of tritium from the blanket granules through the heat exchanger is only 25 Ci/d, so no intermediate loop is needed for isolation. We selected a simple once-through, regenerative, 5-MPa helium gas-turbine (Brayton) cycle for power conversion because of its simplicity and high efficiency. Fusion power is 1500 MW; this is multiplied to 1670 MW/sub t/ in the blanket. Power conversion efficiency is 55%. Net electric power is 815 MW/sub e/, produced with a net plant efficiency of 49%.

  18. GDA steamboat power plant: a case history

    SciTech Connect

    Booth, G.M. III

    1987-08-01

    Located 10 mi south of Reno, Nevada, Steamboat Springs has long been recognized as a prime geothermal resource for electric power generation potential by the US Geological Survey and numerous energy companies. Extensive leasing and exploration by Phillips and Gulf led to the discovery of a high-temperature (over 400/sup 0/F) reservoir in 1979. Geothermal Development Associates obtained a geothermal resources lease on a 30-acre parcel and a 10-year power sales agreement for 5 MW from the local utility, Sierra Pacific Power Company, in late 1983. Drilling commenced in March 1985, modular power plant construction began in October, and initial plant startup with power to the grid was accomplished in December 1985. Owing to cooling-water access and treatment costs, air-cooled condensers replaced the planned cooling towers, and full-time scale continuous production at rated capacity did not begin until late 1986. Three production wells and two injection wells, completed in highly fractured Cretaceous granodiorite and Tertiary andesite at depths of less than 1000 ft, produce 340/sup 0/F water having a salinity of 2300 ppm. Production well line-shaft pumps deliver in excess of 3000 gpm water to seven 1.2 MW-Rankine cycle binary power plant modules. The heat extracted from the geothermal water vaporizes the low boiling point N-pentane working fluid that expands to drive the turbines. The geothermal water is injected back into the reservoir. Both the pentane and the geothermal water are in separate closed-loop systems, which provides for an environmentally clean operation in this sensitive, highly visible site on the periphery of a metropolitan area.

  19. Capacity Value of Concentrating Solar Power Plants

    SciTech Connect

    Madaeni, S. H.; Sioshansi, R.; Denholm, P.

    2011-06-01

    This study estimates the capacity value of a concentrating solar power (CSP) plant at a variety of locations within the western United States. This is done by optimizing the operation of the CSP plant and by using the effective load carrying capability (ELCC) metric, which is a standard reliability-based capacity value estimation technique. Although the ELCC metric is the most accurate estimation technique, we show that a simpler capacity-factor-based approximation method can closely estimate the ELCC value. Without storage, the capacity value of CSP plants varies widely depending on the year and solar multiple. The average capacity value of plants evaluated ranged from 45%?90% with a solar multiple range of 1.0-1.5. When introducing thermal energy storage (TES), the capacity value of the CSP plant is more difficult to estimate since one must account for energy in storage. We apply a capacity-factor-based technique under two different market settings: an energy-only market and an energy and capacity market. Our results show that adding TES to a CSP plant can increase its capacity value significantly at all of the locations. Adding a single hour of TES significantly increases the capacity value above the no-TES case, and with four hours of storage or more, the average capacity value at all locations exceeds 90%.

  20. The design of solar tower power plants

    NASA Astrophysics Data System (ADS)

    Gretz, J.

    The conversion of solar energy into electricity in solar thermal tower power plants is examined. Mirrors attached to mobile, sun-following heliostats concentrate solar rays into the opening of a receiver mounted on a tower. In the receiver, the radiant energy is absorbed by a system of pipes filled with a flowing material which is heated and drives a turbogenerator directly or via a heat exchanger. It is shown that the optics involved in this concept preclude the optimization of the pipe material, since the local distribution of rays in the heater of tower power plants varies diurnally and annually. This requires each pipe section to be designed for maximum stress, even though that stress occurs only at brief intervals during the day.

  1. Analysis of corrosion layers on protective coatings and high temperature materials in simulated service environments of modern power plants using SNMS, SIMS, SEM, TEM, RBS and X-ray diffraction studies.

    PubMed

    Nickel, H; Quadakkers, W J; Singheiser, L

    2002-10-01

    In three different examples, the effects of the oxidation behaviour as well as the microstructural stability of high temperature materials and protective coatings was determined by combining the results of kinetic studies with extensive analytical investigations using, among other techniques, SNMS, SIMS, SEM, TEM, Rutherford back scattering (RBS) as well as X-ray diffraction. 1). The effect of water vapour on the oxidation behaviour of 9% Cr steels in simulated combustion gases has been determined. The effects of O2 and H2O content on the oxidation behaviour of 9% Cr steel in the temperature range 600-800 degrees C showed that in dry oxygen a protective scale was formed with an oxidation rate controlled by diffusion in the protective scale. In the presence of water vapour, after an incubation period, the scales became non-protective as a result of a change in the oxidation limiting process. The destruction of the protective scale by water vapour does not only depend on H2O content but also on the H2O/O2-ratio. 2). The increase of component surface temperature in modern gas turbines leads to an enhanced oxidation attack of the blade coating. Improvements in corrosion resistance and longer lifetime thermal barrier coatings in gas turbines have been achieved by improvement of the high temperature properties of MCrAlY coatings by additions of minor alloying elements such as yttrium, silicon and titanium. 3). The use of oxide dispersion strengthened (ODS) alloys provides excellent creep resistance up to much higher temperatures than can be achieved with conventional wrought or cast alloys in combination with suitable high temperature oxidation/corrosion resistance. Investigation of the growth mechanisms of protective chromia and alumina scales were examined by a two-stage oxidation method with 18O tracer. The distribution of the oxygen isotopes in the oxide scale was determined by SIMS and SNMS. The results show the positive influence of a Y2O3 dispersion on the

  2. Advanced Power Plant Development and Analyses Methodologies

    SciTech Connect

    G.S. Samuelsen; A.D. Rao

    2006-02-06

    Under the sponsorship of the U.S. Department of Energy/National Energy Technology Laboratory, a multi-disciplinary team led by the Advanced Power and Energy Program of the University of California at Irvine is defining the system engineering issues associated with the integration of key components and subsystems into advanced power plant systems with goals of achieving high efficiency and minimized environmental impact while using fossil fuels. These power plant concepts include ''Zero Emission'' power plants and the ''FutureGen'' H{sub 2} co-production facilities. The study is broken down into three phases. Phase 1 of this study consisted of utilizing advanced technologies that are expected to be available in the ''Vision 21'' time frame such as mega scale fuel cell based hybrids. Phase 2 includes current state-of-the-art technologies and those expected to be deployed in the nearer term such as advanced gas turbines and high temperature membranes for separating gas species and advanced gasifier concepts. Phase 3 includes identification of gas turbine based cycles and engine configurations suitable to coal-based gasification applications and the conceptualization of the balance of plant technology, heat integration, and the bottoming cycle for analysis in a future study. Also included in Phase 3 is the task of acquiring/providing turbo-machinery in order to gather turbo-charger performance data that may be used to verify simulation models as well as establishing system design constraints. The results of these various investigations will serve as a guide for the U. S. Department of Energy in identifying the research areas and technologies that warrant further support.

  3. Advanced Power Plant Development and Analysis Methodologies

    SciTech Connect

    A.D. Rao; G.S. Samuelsen; F.L. Robson; B. Washom; S.G. Berenyi

    2006-06-30

    Under the sponsorship of the U.S. Department of Energy/National Energy Technology Laboratory, a multi-disciplinary team led by the Advanced Power and Energy Program of the University of California at Irvine is defining the system engineering issues associated with the integration of key components and subsystems into advanced power plant systems with goals of achieving high efficiency and minimized environmental impact while using fossil fuels. These power plant concepts include 'Zero Emission' power plants and the 'FutureGen' H2 co-production facilities. The study is broken down into three phases. Phase 1 of this study consisted of utilizing advanced technologies that are expected to be available in the 'Vision 21' time frame such as mega scale fuel cell based hybrids. Phase 2 includes current state-of-the-art technologies and those expected to be deployed in the nearer term such as advanced gas turbines and high temperature membranes for separating gas species and advanced gasifier concepts. Phase 3 includes identification of gas turbine based cycles and engine configurations suitable to coal-based gasification applications and the conceptualization of the balance of plant technology, heat integration, and the bottoming cycle for analysis in a future study. Also included in Phase 3 is the task of acquiring/providing turbo-machinery in order to gather turbo-charger performance data that may be used to verify simulation models as well as establishing system design constraints. The results of these various investigations will serve as a guide for the U. S. Department of Energy in identifying the research areas and technologies that warrant further support.

  4. Coal gasification power plant and process

    DOEpatents

    Woodmansee, Donald E.

    1979-01-01

    In an integrated coal gasification power plant, a humidifier is provided for transferring as vapor, from the aqueous blowdown liquid into relatively dry air, both (I) at least a portion of the water contained in the aqueous liquid and (II) at least a portion of the volatile hydrocarbons therein. The resulting humidified air is advantageously employed as at least a portion of the hot air and water vapor included in the blast gas supplied via a boost compressor to the gasifier.

  5. MARS, 600 MWth NUCLEAR POWER PLANT

    SciTech Connect

    Cumo, M.; Naviglio, A.; Sorabella, L.

    2004-10-06

    MARS (Multipurpose Advanced Reactor, inherently Safe) is a 600 MWth, single loop, pressurized light water reactor (PWR), developed at the Dept. of Nuclear Engineering and Energy Conversion of the University of Rome ''La Sapienza''. The design was focused to a multipurpose reactor to be used in high population density areas also for industrial heat production and, in particular, for water desalting. Using the well-proven technology and the operation experience of PWRs, the project introduces a lot of innovative features hugely improving the safety performance while keeping the cost of KWh competitive with traditional large power plants. Extensive use of passive safety, in depth plant simplification and decommissioning oriented design were the guidelines along the design development. The latest development in the plant design, in the decommissioning aspects and in the experimental activities supporting the project are shown in this paper.

  6. Fatigue monitoring in Nuclear Power Plants

    SciTech Connect

    Ware, A.G.; Shah, V.N.

    1995-04-01

    This paper summarizes fatigue monitoring methods and surveys their application in the nuclear power industry. The paper is based on a review of the technical literature. Two main reasons for fatigue monitoring are more frequent occurrence of some transients than that assumed in the fatigue design analysis and the discovery of stressors that were not included in the fatigue design analysis but may cause significant fatigue damage at some locations. One fatigue monitoring method involves use of plant operating data and procedures to update the fatigue usage. Another method involves monitoring of plant operating parameters using existing, or if needed, supplementary plant instrumentation for online computation of fatigue usage. Use of fatigue monitoring has better defined the operational transients. Most operational transients have been found less severe and fewer in numbers than anticipated in the design fatigue analysis. Use of fatigue monitoring has assisted in quantifying newly discovered stressors and has helped in detecting the presence of thermal stratification of unsuspected locations.

  7. Power plant efficiency and combustion optimization

    SciTech Connect

    Chatterjee, A.K.; Nema, N.; Jain, A.

    1998-07-01

    Grasim, a leader producer of Rayon grade staple fiber has, with time come up with its own Captive Electric Power Generation Industry with a capacity of generating 113 MW Thermal Power for its in-house use involving state of the art technology and system. In the present paper, it is desired to share the technical development in the global environment and receive expert feedback for its own upgrade. The on site power plants have a variety of steam turbines and boilers of different capacities. At times the plants had to face power crisis due to number of reasons and has always come up with number of solutions for performance enhancement and efficiency improvement. It is desired to present the following cases: (1) Development of spiral coal caps--for atmospheric fluidized bed boilers, it is often experienced that unburned carbon is high in ash. The reason being that coal particles do not get sufficient retention time after being injected into the bed. Attempt has been made to increase the retention time and better mixing by creating a cyclone around the coal cap with help of spiral coal caps. (2) Combustion optimization--in view of the inherent design deficiency, combustion was optimized by controlling the three parameters i.e., time, temperature and turbulence. In pulverized fuel combustion boilers this was done by providing air damper regulation and in atmospheric fluidized bed combustion boilers this was done by creating a vortex and regulating fluidizing air. The details shall be given in paper. (3) Power plant efficiency improvement--by introducing online monitoring system and identifying various areas of losses for various operating reasons and the cost associated with each operating parameter and the impact of each variation.

  8. Ash from thermal power plants as secondary raw material.

    PubMed

    Cudić, Vladica; Kisić, Dragica; Stojiljković, Dragoslava; Jovović, Aleksandar

    2007-06-01

    The basic characteristic of thermal power plants in the Republic of Serbia is that they use low-grade brown coal (lignite) as a fuel. Depending on the location of coal mines, lignite may have different properties such as heating value, moisture, and mineral content, resulting in different residue upon combustion. Because of several million tonnes of ash and slag generated every year, their granularmetric particle size distribution, and transport and disposal methods, these plants have a negative impact on the environment. According to the waste classification system in the Republic of Serbia, ash and slag from thermal power plants are classified as hazardous waste, but with an option of usability. The proposed revision of waste legislation in Serbia brings a number of simple and modern solutions. A procedure is introduced which allows for end-of-waste criteria to be set, clarifying the point where waste ceases to be waste, and thereby introducing regulatory relief for recycled products or materials that represent low risk for the environment. The new proposal refocuses waste legislation on the environmental impacts of the generation and management of waste, taking into account the life cycle of resources, and develops new waste prevention programmes. Stakeholders, as well as the general public, should have the opportunity to participate in the drawing up of the programmes, and should have access to them.

  9. Laser Peening of Alloy 600 to Improve Intergranular Stress Corrosion Cracking Resistance in Power Plants

    SciTech Connect

    Chen, H; Rankin, J; Hackel, L; Frederick, G; Hickling, J; Findlan, S

    2004-04-20

    Laser peening is an emerging modern process that impresses a compressive stress into the surface of metals or alloys. This treatment can reduce the rate of intergranular stress corrosion cracking and fatigue cracking in structural metals or Alloy 600 needed for nuclear power plants.

  10. Central-station solar hydrogen power plant.

    SciTech Connect

    Diver, Richard B., Jr.; Siegel, Nathan Phillip; Kolb, Gregory J.

    2005-04-01

    Solar power towers can be used to make hydrogen on a large scale. Electrolyzers could be used to convert solar electricity produced by the power tower to hydrogen, but this process is relatively inefficient. Rather, efficiency can be much improved if solar heat is directly converted to hydrogen via a thermochemical process. In the research summarized here, the marriage of a high-temperature ({approx}1000 C) power tower with a sulfuric acid/hybrid thermochemical cycle was studied. The concept combines a solar power tower, a solid-particle receiver, a particle thermal energy storage system, and a hybrid-sulfuric-acid cycle. The cycle is 'hybrid' because it produces hydrogen with a combination of thermal input and an electrolyzer. This solar thermochemical plant is predicted to produce hydrogen at a much lower cost than a solar-electrolyzer plant of similar size. To date, only small lab-scale tests have been conducted to demonstrate the feasibility of a few of the subsystems and a key immediate issue is demonstration of flow stability within the solid-particle receiver. The paper describes the systems analysis that led to the favorable economic conclusions and discusses the future development path.

  11. Economic analysis of large solar power plants

    NASA Astrophysics Data System (ADS)

    Klaiss, Helmut; Nitsch, Joachim; Geyer, Michael

    1987-11-01

    The current status and future potential of solar-tower, parabolic-reflector/Stirling-engine, channel-collector, and photovoltaic solar power plants of capacity 10 MWe or more are discussed. Consideration is given to the geographic and technological limitations, initial investment and operating costs, presently operating facilities, market openings, and critical technological challenges controlling future expansion. Numerical data are presented in tables and graphs, and it is concluded that solar power production will soon become economically competitive. It is suggested that the channel collector, at present the most mature and cost-efficient technology, has the least potential for further improvement, and that parabolic/Stirling and photovoltaic systems are probably better suited to smaller applications than to large-scale commercial power production.

  12. Power plant IV - Them-Thek

    NASA Astrophysics Data System (ADS)

    Pons, M.

    A 10 MWe solar thermal hybrid central receiver-parabolic concentrator power plant is described. The THEK field of parabolic concentrators is employed to preheat and vaporize the water for heating the primary loop, while the THEM central receiver receives solar flux input from a field of heliostats to superheat fused salt, hitec, for the steam-powered generation of electricity. The preheat system also serves to maintain latent heat in the fused salt reservoir. An extra bypass with separation allows the vaporized portion of salt to return to the superheater as condensed salt descends to the reservoir to gain heat, thereby increasing the system efficiency by 8 percent to 33.8 percent. The power unit is coupled to turbines spinning at 9000 rpm. The central aperture closes during cloudy conditions to avoid heat losses in the primary loop.

  13. EDITORIAL: Safety aspects of fusion power plants

    NASA Astrophysics Data System (ADS)

    Kolbasov, B. N.

    2007-07-01

    This special issue of Nuclear Fusion contains 13 informative papers that were initially presented at the 8th IAEA Technical Meeting on Fusion Power Plant Safety held in Vienna, Austria, 10-13 July 2006. Following recommendation from the International Fusion Research Council, the IAEA organizes Technical Meetings on Fusion Safety with the aim to bring together experts to discuss the ongoing work, share new ideas and outline general guidance and recommendations on different issues related to safety and environmental (S&E) aspects of fusion research and power facilities. Previous meetings in this series were held in Vienna, Austria (1980), Ispra, Italy (1983), Culham, UK (1986), Jackson Hole, USA (1989), Toronto, Canada (1993), Naka, Japan (1996) and Cannes, France (2000). The recognized progress in fusion research and technology over the last quarter of a century has boosted the awareness of the potential of fusion to be a practically inexhaustible and clean source of energy. The decision to construct the International Thermonuclear Experimental Reactor (ITER) represents a landmark in the path to fusion power engineering. Ongoing activities to license ITER in France look for an adequate balance between technological and scientific deliverables and complying with safety requirements. Actually, this is the first instance of licensing a representative fusion machine, and it will very likely shape the way in which a more common basis for establishing safety standards and policies for licensing future fusion power plants will be developed. Now that ITER licensing activities are underway, it is becoming clear that the international fusion community should strengthen its efforts in the area of designing the next generations of fusion power plants—demonstrational and commercial. Therefore, the 8th IAEA Technical Meeting on Fusion Safety focused on the safety aspects of power facilities. Some ITER-related safety issues were reported and discussed owing to their potential

  14. Nuclear Power Plants | RadTown USA | US EPA

    EPA Pesticide Factsheets

    2016-05-16

    Nuclear power plants produce electricity from the heat created by splitting uranium atoms. In the event of a nuclear power plant emergency, follow instructions from emergency responders and public officials.

  15. 21. Power plant engine fuel oil piping diagrams, sheet 83 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    21. Power plant engine fuel oil piping diagrams, sheet 83 of 130 - Naval Air Station Fallon, Power Plant, 800 Complex, off Carson Road near intersection of Pasture & Berney Roads, Fallon, Churchill County, NV

  16. 8. EXTERIOR DETAIL, BUILDING 18 (POWER PLANT RESEARCH LABORATORY) (1991). ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. EXTERIOR DETAIL, BUILDING 18 (POWER PLANT RESEARCH LABORATORY) (1991). - Wright-Patterson Air Force Base, Area B, Building 18, Power Plant Laboratory Complex, Northeast corner of C & Fifth Streets, Dayton, Montgomery County, OH

  17. 7. EXTERIOR NORTHWEST VIEW, BUILDING 18 (POWER PLANT RESEARCH LABORATORY) ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. EXTERIOR NORTHWEST VIEW, BUILDING 18 (POWER PLANT RESEARCH LABORATORY) (1991). - Wright-Patterson Air Force Base, Area B, Building 18, Power Plant Laboratory Complex, Northeast corner of C & Fifth Streets, Dayton, Montgomery County, OH

  18. 2. EAST ELEVATION OF POWER PLANT TEST STAND (HORIZONTAL TEST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. EAST ELEVATION OF POWER PLANT TEST STAND (HORIZONTAL TEST STAND REMNANTS OF BUILDING-BLANK WHITE WALL ONLY ORIGINAL REMAINS. - Marshall Space Flight Center, East Test Area, Power Plant Test Stand, Huntsville, Madison County, AL

  19. 7. August, 1971. GV FROM POWER PLANT TO PENSTOCKS & ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. August, 1971. GV FROM POWER PLANT TO PENSTOCKS & PRESSURE HOUSE ON MOUNTAINSIDE. - Telluride Power Company, Olmsted Hydroelectric Plant, mouth of Provo River Canyon West of U.S. Route 189, Orem, Utah County, UT

  20. 14. INTERIOR OF POWER PLANT LOOKING SOUTHEAST AT ELECTRICAL PANEL. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. INTERIOR OF POWER PLANT LOOKING SOUTHEAST AT ELECTRICAL PANEL. - Potomac Power Plant, On West Virginia Shore of Potomac River, about 1 mile upriver from confluence with Shenandoah River, Harpers Ferry, Jefferson County, WV

  1. 9. Interior view, west side of power plant, electrical panels ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. Interior view, west side of power plant, electrical panels in place in center of photograph, looking northwest - Naval Air Station Fallon, Power Plant, 800 Complex, off Carson Road near intersection of Pasture & Berney Roads, Fallon, Churchill County, NV

  2. Fuel cell power plant economic and operational considerations

    NASA Technical Reports Server (NTRS)

    Lance, J. R.

    1984-01-01

    Fuel cell power plants intended for electric utility and cogeneration applications are now in the design and construction stage. This paper describes economic and operational considerations being used in the development and design of plants utilizing air cooled phosphoric acid fuel cells. Fuel cell power plants have some unique characteristics relative to other types of power plants. As a result it was necessary to develop specific definitions of the fuel cell power plant characteristics in order to perform cost of electricity calculations. This paper describes these characteristics and describes the economic analyses used in the Westinghouse fuel cell power plant program.

  3. NASA Ames Research Center 60 MW Power Supply Modernization

    NASA Technical Reports Server (NTRS)

    Choy, Yuen Ching; Ilinets, Boris V.; Miller, Ted; Nagel, Kirsten (Technical Monitor)

    2001-01-01

    The NASA Ames Research Center 60 MW DC Power Supply was built in 1974 to provide controlled DC power for the Thermophysics Facility Arc Jet Laboratory. The Power Supply has gradually losing reliability due to outdated technology and component life limitation. NASA has decided to upgrade the existing rectifier modules with contemporary high-power electronics and control equipment. NASA plans to complete this project in 2001. This project includes a complete replacement of obsolete thyristor stacks in all six rectifier modules and rectifier bridge control system. High power water-cooled thyristors and freewheeling diodes will be used. The rating of each of the six modules will be 4000 A at 5500 V. The control firing angle signal will be sent from the Facility Control System to six modules via fiberoptic cable. The Power Supply control and monitoring system will include a Master PLC in the Facility building and a Slave PLC in each rectifier module. This system will also monitor each thyristor level in each stack and the auxiliary equipment.

  4. Hybrid Wet/Dry Cooling for Power Plants (Presentation)

    SciTech Connect

    Kutscher, C.; Buys, A.; Gladden, C.

    2006-02-01

    This presentation includes an overview of cooling options, an analysis of evaporative enhancement of air-cooled geothermal power plants, field measurements at a geothermal plant, a preliminary analysis of trough plant, and improvements to air-cooled condensers.

  5. Equivalencing the Collector System of a Large Wind Power Plant

    SciTech Connect

    Muljadi, E.; Butterfield, C. P.; Ellis, A.; Mechenbier, J.; Hocheimer, J.; Young, R.; Miller, N.; Delmerico, R.; Zavadil, R.; Smith, J. C.

    2006-01-01

    As the size and number of wind power plants (also called wind farms) increases, power system planners will need to study their impact on the power system in more detail. As the level of wind power penetration into the grid increases, the transmission system integration requirements will become more critical [1-2]. A very large wind power plant may contain hundreds of megawatt-size wind turbines. These turbines are interconnected by an intricate collector system. While the impact of individual turbines on the larger power system network is minimal, collectively, wind turbines can have a significant impact on the power systems during a severe disturbance such as a nearby fault. Since it is not practical to represent all individual wind turbines to conduct simulations, a simplified equivalent representation is required. This paper focuses on our effort to develop an equivalent representation of a wind power plant collector system for power system planning studies. The layout of the wind power plant, the size and type of conductors used, and the method of delivery (overhead or buried cables) all influence the performance of the collector system inside the wind power plant. Our effort to develop an equivalent representation of the collector system for wind power plants is an attempt to simplify power system modeling for future developments or planned expansions of wind power plants. Although we use a specific large wind power plant as a case study, the concept is applicable for any type of wind power plant.

  6. Analysis of nuclear power plant construction costs

    SciTech Connect

    Not Available

    1986-01-01

    The objective of this report is to present the results of a statistical analysis of nuclear power plant construction costs and lead-times (where lead-time is defined as the duration of the construction period), using a sample of units that entered construction during the 1966-1977 period. For more than a decade, analysts have been attempting to understand the reasons for the divergence between predicted and actual construction costs and lead-times. More importantly, it is rapidly being recognized that the future of the nuclear power industry rests precariously on an improvement in the cost and lead-time situation. Thus, it is important to study the historical information on completed plants, not only to understand what has occurred to also to improve the ability to evaluate the economics of future plants. This requires an examination of the factors that have affected both the realized costs and lead-times and the expectations about these factors that have been formed during the construction process. 5 figs., 22 tabs.

  7. Solar powered wastewater treatment plant. Final report

    SciTech Connect

    Venhuizen, D.

    1981-11-06

    Enhancement of the ability of a hyacinth pond to provide secondary effluent was studied. Control of flow geometry was addressed, and the hyacinth pond's role as part of an overall treatment system was emphasized. The use of greenhouses over the ponds to protect the plants during the winter was evaluated. The thermal and structural performances of the greenhouses were analyzed. It was concluded that the plants could be kept alive and green with only a tarpaulin-like cover in the winter climate of Texas, but to keep the plants actively growing would require a tightly built greenhouse with good infiltration control. The third area of investigation was the potential of wind power for providing energy for wastewater aeration. Aeration methods amenable to the use of wind power as the prime mover were investigated and found to compare favorably with standard aeration methods. The wind distribution at the site was monitored to determine whether the wind could be relied upon as a source of aeration energy.

  8. Osmo-power - Theory and performance of an osmo-power pilot plant

    NASA Astrophysics Data System (ADS)

    Jellinek, H. H. G.; Masuda, H.

    A theoretical and experimental study of the production of useful energy by the natural process of osmosis is presented. Using the results of the study a conceptual design of an osmotic pilot plant is performed. The power produced by a 1.6 MW/sq km plant has a competitive cost with that produced by both fossil power plants and nuclear power plants.

  9. New Perspectives on Antiacne Plant Drugs: Contribution to Modern Therapeutics

    PubMed Central

    Yadav, Narayan Prasad

    2014-01-01

    Acne is a common but serious skin disease, which affects approximately 80% adolescents and young adults in 11–30 age group. 42.5% of men and 50.9% of women continue to suffer from this disease into their twenties. Bacterial resistance is now at the alarming stage due to the irrational use of antibiotics. Hence, search for new lead molecule/bioactive and rational delivery of the existing drug (for better therapeutic effect) to the site of action is the need of the hour. Plants and plant-derived products have been an integral part of health care system since time immemorial. Therefore, plants that are currently used for the treatment of acne and those with a high potential are summarized in the present review. Most active plant extracts, namely, P. granatum, M. alba, A. anomala, and M. aquifolium exhibit minimum inhibitory concentration (MIC) in the range of 4–50 µg/mL against P. acnes, while aromatic oils of C. obovoides, C. natsudaidai, C. japonica, and C. nardus possess MICs 0.005–0.6 μL/mL and phytomolecules such as rhodomyrtone, pulsaquinone, hydropulsaquinone, honokiol, magnolol, xanthohumol lupulones, chebulagic acid and rhinacanthin-C show MIC in the range of 0.5–12.5 μg/mL. Novel drug delivery strategies of important plant leads in the treatment of acne have also been discussed. PMID:25147793

  10. New perspectives on antiacne plant drugs: contribution to modern therapeutics.

    PubMed

    Sinha, Priyam; Srivastava, Shruti; Mishra, Nidhi; Yadav, Narayan Prasad

    2014-01-01

    Acne is a common but serious skin disease, which affects approximately 80% adolescents and young adults in 11-30 age group. 42.5% of men and 50.9% of women continue to suffer from this disease into their twenties. Bacterial resistance is now at the alarming stage due to the irrational use of antibiotics. Hence, search for new lead molecule/bioactive and rational delivery of the existing drug (for better therapeutic effect) to the site of action is the need of the hour. Plants and plant-derived products have been an integral part of health care system since time immemorial. Therefore, plants that are currently used for the treatment of acne and those with a high potential are summarized in the present review. Most active plant extracts, namely, P. granatum, M. alba, A. anomala, and M. aquifolium exhibit minimum inhibitory concentration (MIC) in the range of 4-50 µg/mL against P. acnes, while aromatic oils of C. obovoides, C. natsudaidai, C. japonica, and C. nardus possess MICs 0.005-0.6 μL/mL and phytomolecules such as rhodomyrtone, pulsaquinone, hydropulsaquinone, honokiol, magnolol, xanthohumol lupulones, chebulagic acid and rhinacanthin-C show MIC in the range of 0.5-12.5 μg/mL. Novel drug delivery strategies of important plant leads in the treatment of acne have also been discussed.

  11. Water treatment plants assessment at Talkha power plant.

    PubMed

    El-Sebaie, Olfat D; Abd El-Kerim, Ghazy E; Ramadan, Mohamed H; Abd El-Atey, Magda M; Taha, Sahr Ahmed

    2002-01-01

    Talkha power plant is the only power plant located in El-Mansoura. It generates electricity using two different methods by steam turbine and gas turbine. Both plants drew water from River Nile (208 m3 /h). The Nile raw water passes through different treatment processes to be suitable for drinking and operational uses. At Talkha power plant, there are two purification plants used for drinking water supply (100 m3/h) and for water demineralization supply (108 m3/h). This study aimed at studying the efficiency of the water purification plants. For drinking water purification plant, the annual River Nile water characterized by slightly alkaline pH (7.4-8), high annual mean values of turbidity (10.06 NTU), Standard Plate Count (SPC) (313.3 CFU/1 ml), total coliform (2717/100 ml), fecal coliform (0-2400/100 ml), and total algae (3 x 10(4) org/I). The dominant group of algae all over the study period was green algae. The blue green algae was abundant in Summer and Autumn seasons. The pH range, and the annual mean values of turbidity, TDS, total hardness, sulfates, chlorides, nitrates, nitrites, fluoride, and residual chlorine for purified water were in compliance with Egyptian drinking water standards. All the SPC recorded values with an annual mean value of 10.13 CFU/1 ml indicated that chlorine dose and contact time were not enough to kill the bacteria. However, they were in compliance with Egyptian decree (should not exceed 50 CFU/1 ml). Although the removal efficiency of the plant for total coliform and blue green algae was high (98.5% and 99.2%, respectively), the limits of the obtained results with an annual mean values of 40/100 ml and 15.6 org/l were not in compliance with the Egyptian decree (should be free from total coliform, fecal coliform and blue green algae). For water demineralization treatment plant, the raw water was characterized by slightly alkaline pH. The annual mean values of conductivity, turbidity, and TDS were 354.6 microS/cm, 10.84 NTU, and 214

  12. Progress and prospects for phosphoric acid fuel cell power plants

    SciTech Connect

    Bonville, L.J.; Scheffler, G.W.; Smith, M.J.

    1996-12-31

    International Fuel Cells (IFC) has developed the fuel cell power plant as a new, on-site power generation source. IFC`s commercial fuel cell product is the 200-kW PC25{trademark} power plant. To date over 100 PC25 units have been manufactured. Fleet operating time is in excess of one million hours. Individual units of the initial power plant model, the PC25 A, have operated for more than 30,000 hours. The first model {open_quotes}C{close_quotes} power plant has over 10,000 hours of operation. The manufacturing, application and operation of this power plant fleet has established a firm base for design and technology development in terms of a clear understanding of the requirements for power plant reliability and durability. This fleet provides the benchmark against which power plant improvements must be measured.

  13. 75 FR 77919 - Carolina Power & Light Company Shearon Harris Nuclear Power Plant, Unit 1; Environmental...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-14

    ... COMMISSION Carolina Power & Light Company Shearon Harris Nuclear Power Plant, Unit 1; Environmental... Progress Energy Carolinas, Inc., for operation of the Shearon Harris Nuclear Power Plant (HNP), Unit 1...: Regarding Shearon Harris Nuclear Power Plant, Unit 1--Final Report (NUREG-1437, Supplement 33).''...

  14. Construction poses highest power plant fire threat

    SciTech Connect

    Not Available

    1980-03-01

    Power plants are more vulnerable to fire during the construction period than at any other time. Data gathered from fires at plant construction sites show that 65% result from cutting and welding activities and that the Control of combustible materials and work processes is the key factor. Contractors need to cooperate on cleanup and to upgrade the quality of temporary buildings on the site. Among the steps which could reduce fire risks are the early installation of water for fire hydrants and automatic sprinklers, testing of tarpaulins for flame retardency, the use of metal or fire retardant scaffolding and forms, approved temporary heating equipment, flushing turbine oil systems before startup, and the use of non-flammable water pipe tubing. Seven safety rules are outlined for welding and cutting procedures. (DCK)

  15. Thermionic topping of electric power plants

    NASA Technical Reports Server (NTRS)

    Britt, E. J.; Fitzpatrick, G. O.; Rasor, N. S.

    1975-01-01

    The most likely use of thermionic conversion is in the form of a topping cycle combined with a steam-turbogenerator plant. A specific reference system is chosen in which the thermionic topping cycle occurs in thermionic heat exchangers referred to as large, modular thermionic units to which heat is transferred from a separate heat source and which reject their heat to a conventional steam turboelectric system. Results of analysis show that the performance and cost criteria for practical thermionic topping of large electric power plants are well within the reach of demonstrated and foreseeable converter capabilities. Thermionic topping has many significant advantages over unconventional cycles proposed for topping applications, including level of demonstrated and projected performance and lifetime, development time, and design simplicity.

  16. (Nuclear power plant control and instrumentation technology)

    SciTech Connect

    White, J.D.

    1990-10-10

    While on vacation, the traveler attended the European Nuclear Conference in Lyon, France. This trip was part of an outside activity approved by DOE. The traveler is a consultant to Loyola College, serving as chairman of a panel to assess the state of the art in the controls and instrumentation technology in the European nuclear community. This study is being conducted by Loyola College under subcontract to the National Science Foundation. The traveler was surprised by the level of automation claimed (by the company Siemens AG KWU) to be present in the German Konvoi nuclear power plants. The claim was that this was done to improve the safety of the plant by keeping the operator out of the loop'' for the first 30 minutes of some transients or accidents.

  17. High-power LEDs for plant cultivation

    NASA Astrophysics Data System (ADS)

    Tamulaitis, Gintautas; Duchovskis, Pavelas; Bliznikas, Zenius; Breive, Kestutis; Ulinskaite, Raimonda; Brazaityte, Ausra; Novickovas, Algirdas; Zukauskas, Arturas; Shur, Michael S.

    2004-10-01

    We report on high-power solid-state lighting facility for cultivation of greenhouse vegetables and on the results of the study of control of photosynthetic activity and growth morphology of radish and lettuce imposed by variation of the spectral composition of illumination. Experimental lighting modules (useful area of 0.22 m2) were designed based on 4 types of high-power light-emitting diodes (LEDs) with emission peaked in red at the wavelengths of 660 nm and 640 nm (predominantly absorbed by chlorophyll a and b for photosynthesis, respectively), in blue at 455 nm (phototropic function), and in far-red at 735 nm (important for photomorphology). Morphological characteristics, chlorophyll and phytohormone concentrations in radish and lettuce grown in phytotron chambers under lighting with different spectral composition of the LED-based illuminator and under illumination by high pressure sodium lamps with an equivalent photosynthetic photon flux density were compared. A well-balanced solid-state lighting was found to enhance production of green mass and to ensure healthy morphogenesis of plants compared to those grown using conventional lighting. We observed that the plant morphology and concentrations of morphologically active phytohormones is strongly affected by the spectral composition of light in the red region. Commercial application of the LED-based illumination for large-scale plant cultivation is discussed. This technology is favorable from the point of view of energy consumption, controllable growth, and food safety but is hindered by high cost of the LEDs. Large scale manufacturing of high-power red AlInGaP-based LEDs emitting at 650 nm and a further decrease of the photon price for the LEDs emitting in the vicinity of the absorption peak of chlorophylls have to be achieved to promote horticulture applications.

  18. Adapting the monitoring and control systems on the 300 MW power generation units at the Iriklinskaya GRES to modern operational requirements

    SciTech Connect

    Bilenko, V. A.; Chernomzav, I. Z.; Kuznetsov, N. A.; Rogachev, R. L.; Nefedov, K. A.; Gushchin, F. Yu.; Kirillov, N. G.; Kindyakov, V. N.; Butskikh, V. V.; Sadykov, V. S.

    2009-05-15

    Work done by JSC 'Interavtomatika' and the Iriklinskaya GRES (State Regional Electric Power Plant) to create automatic frequency and power control systems is reported. This involved reconstructing the turbine regulator systems and modernizing all the regulators for the power generator unit (those coupled to and those not coupled to the automatic frequency and power control systems) and the automatic burner control systems on the basis of a unified Simatic PCS7 PS controller system for the four 300 MW power generation units at the Iriklinskaya GRES.

  19. Nuclear power plants for mobile applications

    NASA Technical Reports Server (NTRS)

    Anderson, J. L.

    1972-01-01

    Mobile nuclear powerplants for applications other than large ships and submarines will require compact, lightweight reactors with especially stringent impact-safety design. The technical and economic feasibility that the broadening role of civilian nuclear power, in general, (land-based nuclear electric generating plants and nuclear ships) can extend to lightweight, safe mobile nuclear powerplants are examined. The paper discusses technical experience, identifies potential sources of technology for advanced concepts, cites the results of economic studies of mobile nuclear powerplants, and surveys future technical capabilities needed by examining the current use and projected needs for vehicles, machines, and habitats that could effectively use mobile nuclear reactor powerplants.

  20. Modeling of advanced fossil fuel power plants

    NASA Astrophysics Data System (ADS)

    Zabihian, Farshid

    The first part of this thesis deals with greenhouse gas (GHG) emissions from fossil fuel-fired power stations. The GHG emission estimation from fossil fuel power generation industry signifies that emissions from this industry can be significantly reduced by fuel switching and adaption of advanced power generation technologies. In the second part of the thesis, steady-state models of some of the advanced fossil fuel power generation technologies are presented. The impacts of various parameters on the solid oxide fuel cell (SOFC) overpotentials and outputs are investigated. The detail analyses of operation of the hybrid SOFC-gas turbine (GT) cycle when fuelled with methane and syngas demonstrate that the efficiencies of the cycles with and without anode exhaust recirculation are close, but the specific power of the former is much higher. The parametric analysis of the performance of the hybrid SOFC-GT cycle indicates that increasing the system operating pressure and SOFC operating temperature and fuel utilization factor improves cycle efficiency, but the effects of the increasing SOFC current density and turbine inlet temperature are not favourable. The analysis of the operation of the system when fuelled with a wide range of fuel types demonstrates that the hybrid SOFC-GT cycle efficiency can be between 59% and 75%, depending on the inlet fuel type. Then, the system performance is investigated when methane as a reference fuel is replaced with various species that can be found in the fuel, i.e., H2, CO2, CO, and N 2. The results point out that influence of various species can be significant and different for each case. The experimental and numerical analyses of a biodiesel fuelled micro gas turbine indicate that fuel switching from petrodiesel to biodiesel can influence operational parameters of the system. The modeling results of gas turbine-based power plants signify that relatively simple models can predict plant performance with acceptable accuracy. The unique

  1. Modular stellarator reactor: a fusion power plant

    SciTech Connect

    Miller, R.L.; Bathke, C.G.; Krakowski, R.A.; Heck, F.M.; Green, L.; Karbowski, J.S.; Murphy, J.H.; Tupper, R.B.; DeLuca, R.A.; Moazed, A.

    1983-07-01

    A comparative analysis of the modular stellarator and the torsatron concepts is made based upon a steady-state ignited, DT-fueled, reactor embodiment of each concept for use as a central electric-power station. Parametric tradeoff calculations lead to the selection of four design points for an approx. 4-GWt plant based upon Alcator transport scaling in l = 2 systems of moderate aspect ratio. The four design points represent high-aspect ratio. The four design points represent high-(0.08) and low-(0.04) beta versions of the modular stellarator and torsatron concepts. The physics basis of each design point is described together with supporting engineering and economic analyses. The primary intent of this study is the elucidation of key physics and engineering tradeoffs, constraints, and uncertainties with respect to the ultimate power reactor embodiment.

  2. Surveillance dosimetry of operating power plants

    SciTech Connect

    McElroy, W.N.; Davis, A.I.; Gold, R.

    1981-10-16

    The main focus of the research efforts presently underway is the LWR power reactor surveillance program in which metallurgical test specimens of the reactor PV and dosimetry sensors are placed in three or more surveillance capsules at or near the reactor PV inner wall. They are then irradiated in a temperature and neutron flux-spectrum environment as similar as possible to the PV itself for periods of about 1.5 to 15 effective full-power years (EFPY), with removal of the last capsule at a fluence corresponding to the 30- to 40-year plant end-of-life (EOL) fluence. Because the neutron flux level at the surveillance position is greater than at the vessel, the test is accelerated wit respect to the vessel exposure, allowing early assessment of EOL conditions.

  3. BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS

    SciTech Connect

    R. Viswanathan; K. Coleman

    2003-01-20

    The principal objective of this project is to develop materials technology for use in ultrasupercritical (USC) plant boilers capable of operating with 760 C (1400 F), 35 MPa (5000 psi) steam. In the 21st century, the world faces the critical challenge of providing abundant, cheap electricity to meet the needs of a growing global population while at the same time preserving environmental values. Most studies of this issue conclude that a robust portfolio of generation technologies and fuels should be developed to assure that the United States will have adequate electricity supplies in a variety of possible future scenarios. The use of coal for electricity generation poses a unique set of challenges. On the one hand, coal is plentiful and available at low cost in much of the world, notably in the U.S., China, and India. Countries with large coal reserves will want to develop them to foster economic growth and energy security. On the other hand, traditional methods of coal combustion emit pollutants and CO{sub 2} at high levels relative to other generation options. Maintaining coal as a generation option in the 21st century will require methods for addressing these environmental issues. This project has established a government/industry consortium to undertake a five-year effort to evaluate and develop of advanced materials that allow the use of advanced steam cycles in coal-based power plants. These advanced cycles, with steam temperatures up to 760 C, will increase the efficiency of coal-fired boilers from an average of 35% efficiency (current domestic fleet) to 47% (HHV). This efficiency increase will enable coal-fired power plants to generate electricity at competitive rates (irrespective of fuel costs) while reducing CO{sub 2} and other fuel-related emissions by as much as 29%. Success in achieving these objectives will support a number of broader goals. First, from a national prospective, the program will identify advanced materials that will make it possible to

  4. BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS

    SciTech Connect

    R. Viswanathan

    2002-04-15

    The principal objective of this project is to develop materials technology for use in ultrasupercritical (USC) plant boilers capable of operating with 760 C (1400 F), and up to 5500 psi with emphasis upon 35 MPa (5000 psi) steam. In the 21st century, the world faces the critical challenge of providing abundant, cheap electricity to meet the needs of a growing global population while at the same time preserving environmental values. Most studies of this issue conclude that a robust portfolio of generation technologies and fuels should be developed to assure that the United States will have adequate electricity supplies in a variety of possible future scenarios. The use of coal for electricity generation poses a unique set of challenges. On the one hand, coal is plentiful and available at low cost in much of the world, notably in the U.S., China, and India. Countries with large coal reserves will want to develop them to foster economic growth and energy security. On the other hand, traditional methods of coal combustion emit pollutants and CO{sub 2} at high levels relative to other generation options. Maintaining coal as a generation option in the 21st century will require methods for addressing these environmental issues. This project has established a government/industry consortium to undertake a five-year effort to evaluate and develop advanced materials that allow the use of advanced steam cycles in coal-based power plants. These advanced cycles, with steam temperatures up to 760 C, will increase the efficiency of coal-fired boilers from an average of 35% efficiency (current domestic fleet) to 47% (HHV). This efficiency increase will enable coal-fired power plants to generate electricity at competitive rates (irrespective of fuel costs) while reducing CO{sub 2} and other fuel-related emissions by as much as 29%. Success in achieving these objectives will support a number of broader goals. First, from a national prospective, the program will identify advanced

  5. BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS

    SciTech Connect

    R. Viswanathan; K. Coleman

    2002-07-15

    The principal objective of this project is to develop materials technology for use in ultrasupercritical (USC) plant boilers capable of operating with 760 C (1400 F), 35 MPa (5000 psi) steam. In the 21st century, the world faces the critical challenge of providing abundant, cheap electricity to meet the needs of a growing global population while at the same time preserving environmental values. Most studies of this issue conclude that a robust portfolio of generation technologies and fuels should be developed to assure that the United States will have adequate electricity supplies in a variety of possible future scenarios. The use of coal for electricity generation poses a unique set of challenges. On the one hand, coal is plentiful and available at low cost in much of the world, notably in the U.S., China, and India. Countries with large coal reserves will want to develop them to foster economic growth and energy security. On the other hand, traditional methods of coal combustion emit pollutants and CO{sub 2} at high levels relative to other generation options. Maintaining coal as a generation option in the 21st century will require methods for addressing these environmental issues. This project has established a government/industry consortium to undertake a five-year effort to evaluate and develop of advanced materials that allow the use of advanced steam cycles in coal-based power plants. These advanced cycles, with steam temperatures up to 760 C, will increase the efficiency of coal-fired boilers from an average of 35% efficiency (current domestic fleet) to 47% (HHV). This efficiency increase will enable coal-fired power plants to generate electricity at competitive rates (irrespective of fuel costs) while reducing CO{sub 2} and other fuel-related emissions by as much as 29%. Success in achieving these objectives will support a number of broader goals. First, from a national prospective, the program will identify advanced materials that will make it possible to

  6. Proposed Minor NSR Permit: Deseret Power Electric Cooperative - Bonanza Power Plant

    EPA Pesticide Factsheets

    Proposed minor NSR permit, technical support document, public notice bulletin, and supporting documentation for the Deseret Power Electric Cooperative Bonanza Power Plant, Uintah and Ouray Indian Reservation, Utah.

  7. Range Performance of Bombers Powered by Turbine-Propeller Power Plants

    NASA Technical Reports Server (NTRS)

    Cline, Charles W.

    1950-01-01

    Calculations have been made to find range? attainable by bombers of gross weights from l40,000 to 300,000 pounds powered by turbine-propeller power plants. Only conventional configurations were considered and emphasis was placed upon using data for structural and aerodynamic characteristics which are typical of modern military airplanes. An effort was made to limit the various parameters invoked in the airplane configuration to practical values. Therefore, extremely high wing loadings, large amounts of sweepback, and very high aspect ratios have not been considered. Power-plant performance was based upon the performance of a typical turbine-propeller engine equipped with propellers designed to maintain high efficiencies at high-subsonic speeds. Results indicated, in general, that the greatest range, for a given gross weight, is obtained by airplanes of high wing loading, unless the higher cruising speeds associated with the high-wing-loading airplanes require-the use of thinner wing sections. Further results showed the effect of cruising at-high speeds, of operation at very high altitudes, and of carrying large bomb loads.

  8. Large CFB power plant design and operating experience: Texas-New Mexico Power Company 150 MWe (net) CFB power plant

    SciTech Connect

    Riley, K.; Cleve, K.; Tanca, M.

    1995-12-31

    The first unit of the TNP One CFB power plant was successfully put on line by Texas-New Mexico Power Company (TNP) in Robertson County, Texas, US in 1990. Unit 2 came on line one year later. This grassroots plant fires Texas lignite. The two identical CFB units were each designed for 150 MWe net electrical generation. The units have operated at 155 MWe net for extended periods of time without modifications. The boilers have additional capacity but are limited by the balance of plant. The TNP One plant was awarded the Power Plant of the Year Award by Power magazine in 1991 advancing CFB technology in large generating facilities. The plant was designed for maximum fuel flexibility with guaranteed full load operation on either Texas lignite, western coal or natural gas. The plant has fired the following fuels, to date: lignite (base fuel), natural gas (0--100% with lignite), delayed petroleum coke (0--100% with lignite), plant generated waste oils (small amounts), oil filter fluff (small amounts) and a waste product of pelletized reflective tape. Future testing is planned to test burn shredded tires. While firing all fuels, the plant could attain full load and meet all environmentally permitted emissions without any boiler modifications or compromises in boiler efficiency. This high flexibility of the plant can be attributed to the two large fluidized bed heat exchangers (FBHEs) for steam temperature and combustor temperature control. The facility is a mine mouth operation burning the local Texas lignite. The delayed petroleum cokes fired originated from various supply sources from the Texas/Louisiana area.

  9. UF6 breeder reactor power plants for electric power generation

    NASA Technical Reports Server (NTRS)

    Rust, J. H.; Clement, J. D.; Hohl, F.

    1976-01-01

    The reactor concept analyzed is a U-233F6 core surrounded by a molten salt (Li(7)F, BeF2, ThF4) blanket. Nuclear survey calculations were carried out for both spherical and cylindrical geometries. Thermodynamic cycle calculations were performed for a variety of Rankine cycles. A conceptual design is presented along with a system layout for a 1000 MW stationary power plant. Advantages of the gas core breeder reactor (GCBR) are as follows: (1) high efficiency; (2) simplified on-line reprocessing; (3) inherent safety considerations; (4) high breeding ratio; (5) possibility of burning all or most of the long-lived nuclear waste actinides; and (6) possibility of extrapolating the technology to higher temperatures and MHD direct conversion.

  10. A Pilot Study Investigating the Effects of Advanced Nuclear Power Plant Control Room Technologies: Methods and Qualitative Results

    SciTech Connect

    BLanc, Katya Le; Powers, David; Joe, Jeffrey; Spielman, Zachary; Rice, Brandon; Fitzgerald, Kirk

    2015-08-01

    Control room modernization is an important part of life extension for the existing light water reactor fleet. None of the 99 currently operating commercial nuclear power plants in the U.S. has completed a full-scale control room modernization to date. Nuclear power plant main control rooms for the existing commercial reactor fleet remain significantly analog, with only limited digital modernizations. Upgrades in the U.S. do not achieve the full potential of newer technologies that might otherwise enhance plant and operator performance. The goal of the control room upgrade benefits research is to identify previously overlooked benefits of modernization, identify candidate technologies that may facilitate such benefits, and demonstrate these technologies through human factors research. This report describes a pilot study to test upgrades to the Human Systems Simulation Laboratory at INL.

  11. Fukushima nuclear power plant accident was preventable

    NASA Astrophysics Data System (ADS)

    Kanoglu, Utku; Synolakis, Costas

    2015-04-01

    On 11 March 2011, the fourth largest earthquake in recorded history triggered a large tsunami, which will probably be remembered from the dramatic live pictures in a country, which is possibly the most tsunami-prepared in the world. The earthquake and tsunami caused a major nuclear power plant (NPP) accident at the Fukushima Dai-ichi, owned by Tokyo Electric Power Company (TEPCO). The accident was likely more severe than the 1979 Three Mile Island and less severe than the Chernobyl 1986 accidents. Yet, after the 26 December 2004 Indian Ocean tsunami had hit the Madras Atomic Power Station there had been renewed interest in the resilience of NPPs to tsunamis. The 11 March 2011 tsunami hit the Onagawa, Fukushima Dai-ichi, Fukushima Dai-ni, and Tokai Dai-ni NPPs, all located approximately in a 230km stretch along the east coast of Honshu. The Onagawa NPP was the closest to the source and was hit by an approximately height of 13m tsunami, of the same height as the one that hit the Fukushima Dai-ichi. Even though the Onagawa site also subsided by 1m, the tsunami did not reach to the main critical facilities. As the International Atomic Energy Agency put it, the Onagawa NPP survived the event "remarkably undamaged." At Fukushima Dai-ichi, the three reactors in operation were shut down due to strong ground shaking. The earthquake damaged all offsite electric transmission facilities. Emergency diesel generators (EDGs) provided back up power and started cooling down the reactors. However, the tsunami flooded the facilities damaging 12 of its 13 EDGs and caused a blackout. Among the consequences were hydrogen explosions that released radioactive material in the environment. It is unfortunately clear that TEPCO and Japan's principal regulator Nuclear and Industrial Safety Agency (NISA) had failed in providing a professional hazard analysis for the plant, even though their last assessment had taken place only months before the accident. The main reasons are the following. One

  12. Plant-pathogen interactions: disease resistance in modern agriculture.

    PubMed

    Boyd, Lesley A; Ridout, Christopher; O'Sullivan, Donal M; Leach, Jan E; Leung, Hei

    2013-04-01

    The growing human population will require a significant increase in agricultural production. This challenge is made more difficult by the fact that changes in the climatic and environmental conditions under which crops are grown have resulted in the appearance of new diseases, whereas genetic changes within the pathogen have resulted in the loss of previously effective sources of resistance. To help meet this challenge, advanced genetic and statistical methods of analysis have been used to identify new resistance genes through global screens, and studies of plant-pathogen interactions have been undertaken to uncover the mechanisms by which disease resistance is achieved. The informed deployment of major, race-specific and partial, race-nonspecific resistance, either by conventional breeding or transgenic approaches, will enable the production of crop varieties with effective resistance without impacting on other agronomically important crop traits. Here, we review these recent advances and progress towards the ultimate goal of developing disease-resistant crops.

  13. Improvement of water treatment at thermal power plants

    NASA Astrophysics Data System (ADS)

    Larin, B. M.; Bushuev, E. N.; Larin, A. B.; Karpychev, E. A.; Zhadan, A. V.

    2015-04-01

    Prospective and existing technologies for water treatment at thermal power plants, including pretreatment, ion exchange, and membrane method are considered. The results obtained from laboratory investigations and industrial tests of the proposed technologies carried out at different thermal power plants are presented. The possibilities of improving the process and environmental indicators of water treatment plants are shown.

  14. Modern plant metabolomics: Advanced natural product gene discoveries, improved technologies, and future prospects

    SciTech Connect

    Sumner, Lloyd W.; Lei, Zhentian; Nikolau, Basil J.; Saito, Kazuki

    2014-10-24

    Plant metabolomics has matured and modern plant metabolomics has accelerated gene discoveries and the elucidation of a variety of plant natural product biosynthetic pathways. This study highlights specific examples of the discovery and characterization of novel genes and enzymes associated with the biosynthesis of natural products such as flavonoids, glucosinolates, terpenoids, and alkaloids. Additional examples of the integration of metabolomics with genome-based functional characterizations of plant natural products that are important to modern pharmaceutical technology are also reviewed. This article also provides a substantial review of recent technical advances in mass spectrometry imaging, nuclear magnetic resonance imaging, integrated LC-MS-SPE-NMR for metabolite identifications, and x-ray crystallography of microgram quantities for structural determinations. The review closes with a discussion on the future prospects of metabolomics related to crop species and herbal medicine.

  15. Modern plant metabolomics: Advanced natural product gene discoveries, improved technologies, and future prospects

    DOE PAGES

    Sumner, Lloyd W.; Lei, Zhentian; Nikolau, Basil J.; ...

    2014-10-24

    Plant metabolomics has matured and modern plant metabolomics has accelerated gene discoveries and the elucidation of a variety of plant natural product biosynthetic pathways. This study highlights specific examples of the discovery and characterization of novel genes and enzymes associated with the biosynthesis of natural products such as flavonoids, glucosinolates, terpenoids, and alkaloids. Additional examples of the integration of metabolomics with genome-based functional characterizations of plant natural products that are important to modern pharmaceutical technology are also reviewed. This article also provides a substantial review of recent technical advances in mass spectrometry imaging, nuclear magnetic resonance imaging, integrated LC-MS-SPE-NMR formore » metabolite identifications, and x-ray crystallography of microgram quantities for structural determinations. The review closes with a discussion on the future prospects of metabolomics related to crop species and herbal medicine.« less

  16. Affective imagery and acceptance of replacing nuclear power plants.

    PubMed

    Keller, Carmen; Visschers, Vivianne; Siegrist, Michael

    2012-03-01

    This study examined the relationship between the content of spontaneous associations with nuclear power plants and the acceptance of using new-generation nuclear power plants to replace old ones. The study also considered gender as a variable. A representative sample of the German- and French-speaking population of Switzerland (N= 1,221) was used. Log-linear models revealed significant two-way interactions between the association content and acceptance, association content and gender, and gender and acceptance. Correspondence analysis revealed that participants who were opposed to nuclear power plants mainly associated nuclear power plants with risk, negative feelings, accidents, radioactivity, waste disposal, military use, and negative consequences for health and environment; whereas participants favoring nuclear power plants mainly associated them with energy, appearance descriptions of nuclear power plants, and necessity. Thus, individuals opposing nuclear power plants had both more concrete and more diverse associations with them than people who were in favor of nuclear power plants. In addition, participants who were undecided often mentioned similar associations to those participants who were in favor. Males more often expressed associations with energy, waste disposal, and negative health effects. Females more often made associations with appearance descriptions, negative feelings, and negative environmental effects. The results further suggest that acceptance of replacing nuclear power plants was higher in the German-speaking part of the country, where all of the Swiss nuclear power plants are physically located. Practical implications for risk communication are discussed.

  17. 75 FR 3942 - Carolina Power & Light Company Shearon Harris Nuclear Power Plant, Unit 1 Environmental...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-25

    ... COMMISSION Carolina Power & Light Company Shearon Harris Nuclear Power Plant, Unit 1 Environmental Assessment...), for operation of the Shearon Harris Nuclear Power Plant, Unit 1 (HNP), located in New Hill, North... Environmental Impact Statement for License Renewal of Nuclear Plants: Regarding Shearon Harris Nuclear......

  18. Seismic analysis of nuclear power plant structures

    NASA Technical Reports Server (NTRS)

    Go, J. C.

    1973-01-01

    Primary structures for nuclear power plants are designed to resist expected earthquakes of the site. Two intensities are referred to as Operating Basis Earthquake and Design Basis Earthquake. These structures are required to accommodate these seismic loadings without loss of their functional integrity. Thus, no plastic yield is allowed. The application of NASTRAN in analyzing some of these seismic induced structural dynamic problems is described. NASTRAN, with some modifications, can be used to analyze most structures that are subjected to seismic loads. A brief review of the formulation of seismic-induced structural dynamics is also presented. Two typical structural problems were selected to illustrate the application of the various methods of seismic structural analysis by the NASTRAN system.

  19. Small power plant reverse trade mission

    SciTech Connect

    Not Available

    1989-09-06

    This draft report was prepared as required by Task No. 2 of the US Department of Energy, Grant No. FG07-89ID12850 Reverse Trade Mission to Acquaint International Representatives with US Power Plant and Drilling Technology'' (mission). As described in the grant proposal, this report covers the reactions of attendees toward US technology, its possible use in their countries, and an evaluation of the mission by the staff leaders. Note this is the draft report of one of two missions carried out under the same contract number. Because of the diversity of the mission subjects and the different attendees at each, a separate report for each mission has been prepared. This draft report has been sent to all mission attendees, specific persons in the US Department of Energy and Los Alamos National Lab., the California Energy Commission (CEC), and various other governmental agencies.

  20. Detecting Cyber Attacks On Nuclear Power Plants

    NASA Astrophysics Data System (ADS)

    Rrushi, Julian; Campbell, Roy

    This paper proposes an unconventional anomaly detection approach that provides digital instrumentation and control (I&C) systems in a nuclear power plant (NPP) with the capability to probabilistically discern between legitimate protocol frames and attack frames. The stochastic activity network (SAN) formalism is used to model the fusion of protocol activity in each digital I&C system and the operation of physical components of an NPP. SAN models are employed to analyze links between protocol frames as streams of bytes, their semantics in terms of NPP operations, control data as stored in the memory of I&C systems, the operations of I&C systems on NPP components, and NPP processes. Reward rates and impulse rewards are defined in the SAN models based on the activity-marking reward structure to estimate NPP operation profiles. These profiles are then used to probabilistically estimate the legitimacy of the semantics and payloads of protocol frames received by I&C systems.

  1. Optical study of solar tower power plants

    NASA Astrophysics Data System (ADS)

    Eddhibi, F.; Ben Amara, M.; Balghouthi, M.; Guizani, A.

    2015-04-01

    The central receiver technology for electricity generation consists of concentrating solar radiation coming from the solar tracker field into a central receiver surface located on the top of the tower. The heliostat field is constituted of a big number of reflective mirrors; each heliostat tracks the sun individually and reflects the sunlight to a focal point. Therefore, the heliostat should be positioned with high precision in order to minimize optical losses. In the current work, a mathematical model for the analysis of the optical efficiency of solar tower field power plant is proposed. The impact of the different factors which influence the optical efficiency is analyzed. These parameters are mainly, the shading and blocking losses, the cosine effect, the atmospheric attenuation and the spillage losses. A new method for the calculation of blocking and shadowing efficiency is introduced and validated by open literature.

  2. Power plant II - Sodium-water

    NASA Astrophysics Data System (ADS)

    Roche, M.

    The implementation of a sodium based heat exchange loop is presented as a means of reducing the required size of a solar thermal power plant heat exchanger. Sodium as a heat transfer fluid allows operations near 535 C with electromagnetic pumps. It is noted that sodium must be completely sealed in and surrounded with a neutral gas such as nitrogen or argon. The higher temperatures pave the way for a more efficient thermodynamic cycle, although the Themis receiver would necessarily need a faster loop in addition to more absorbent surfaces to adequately handle the sodium liquid. The steam lines would be helically wound in a chamber through which the sodium flows linearly downward. Storage is concluded to not be feasible under current technology due to the violent reactions possible between sodium and water or hitec salts. An auxiliary heat source would be required.

  3. 9. View southeast corner of perimeter acquisition radar power plant ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. View southeast corner of perimeter acquisition radar power plant room #214, control room; showing central monitoring station console in foreground. Well and booster control panel in left background and electric power management panel on far right - Stanley R. Mickelsen Safeguard Complex, Perimeter Acquisition Radar Power Plant, In Limited Access Area, Southwest of PARB at end of Service Road B, Nekoma, Cavalier County, ND

  4. 8. Perimeter acquisition radar power plant room #211, battery equipment ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. Perimeter acquisition radar power plant room #211, battery equipment room; showing battery racks. The dc power of these batteries is distributed to motor-control centers, the annunciator system, and fire alarm and tripping circuits - Stanley R. Mickelsen Safeguard Complex, Perimeter Acquisition Radar Power Plant, In Limited Access Area, Southwest of PARB at end of Service Road B, Nekoma, Cavalier County, ND

  5. Autonomous Control of Nuclear Power Plants

    SciTech Connect

    Basher, H.

    2003-10-20

    A nuclear reactor is a complex system that requires highly sophisticated controllers to ensure that desired performance and safety can be achieved and maintained during its operations. Higher-demanding operational requirements such as reliability, lower environmental impacts, and improved performance under adverse conditions in nuclear power plants, coupled with the complexity and uncertainty of the models, necessitate the use of an increased level of autonomy in the control methods. In the opinion of many researchers, the tasks involved during nuclear reactor design and operation (e.g., design optimization, transient diagnosis, and core reload optimization) involve important human cognition and decisions that may be more easily achieved with intelligent methods such as expert systems, fuzzy logic, neural networks, and genetic algorithms. Many experts in the field of control systems share the idea that a higher degree of autonomy in control of complex systems such as nuclear plants is more easily achievable through the integration of conventional control systems and the intelligent components. Researchers have investigated the feasibility of the integration of fuzzy logic, neural networks, genetic algorithms, and expert systems with the conventional control methods to achieve higher degrees of autonomy in different aspects of reactor operations such as reactor startup, shutdown in emergency situations, fault detection and diagnosis, nuclear reactor alarm processing and diagnosis, and reactor load-following operations, to name a few. With the advancement of new technologies and computing power, it is feasible to automate most of the nuclear reactor control and operation, which will result in increased safety and economical benefits. This study surveys current status, practices, and recent advances made towards developing autonomous control systems for nuclear reactors.

  6. Emotional consequences of nuclear power plant disasters.

    PubMed

    Bromet, Evelyn J

    2014-02-01

    The emotional consequences of nuclear power plant disasters include depression, anxiety, post-traumatic stress disorder, and medically unexplained somatic symptoms. These effects are often long term and associated with fears about developing cancer. Research on disasters involving radiation, particularly evidence from Chernobyl, indicates that mothers of young children and cleanup workers are the highest risk groups. The emotional consequences occur independently of the actual exposure received. In contrast, studies of children raised in the shadows of the Three Mile Island (TMI) and Chernobyl accidents suggest that although their self-rated health is less satisfactory than that of their peers, their emotional, academic, and psychosocial development is comparable. The importance of the psychological impact is underscored by its chronicity and by several studies showing that poor mental health is associated with physical health conditions, early mortality, disability, and overuse of medical services. Given the established increase in mental health problems following TMI and Chernobyl, it is likely that the same pattern will occur in residents and evacuees affected by the Fukushima meltdowns. Preliminary data from Fukushima indeed suggest that workers and mothers of young children are at risk of depression, anxiety, psychosomatic, and post-traumatic symptoms both as a direct result of their fears about radiation exposure and an indirect result of societal stigma. Thus, it is important that non-mental health providers learn to recognize and manage psychological symptoms and that medical programs be designed to reduce stigma and alleviate psychological suffering by integrating psychiatric and medical treatment within the walls of their clinics.Introduction of Emotional Consequences of Nuclear Power Plant Disasters (Video 2:15, http://links.lww.com/HP/A34).

  7. Use of a Modern Polymerization Pilot-Plant for Undergraduate Control Projects.

    ERIC Educational Resources Information Center

    Mendoza-Bustos, S. A.; And Others

    1991-01-01

    Described is a project where students gain experience in handling large volumes of hazardous materials, process start up and shut down, equipment failures, operational variations, scaling up, equipment cleaning, and run-time scheduling while working in a modern pilot plant. Included are the system design, experimental procedures, and results. (KR)

  8. 78 FR 42556 - Maine Yankee Atomic Power Company; Maine Yankee Atomic Power Plant Issuance of Environmental...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-16

    ... COMMISSION Maine Yankee Atomic Power Company; Maine Yankee Atomic Power Plant Issuance of Environmental..., 2011, with various implementation dates for each of the rule changes. Maine Yankee Atomic Power Company (MYAPC) is holder of Facility Operating License DPR-36 for the Maine Yankee Atomic Power Plant (MY)....

  9. EARLY-STAGE DESIGN AND EVALUATION FOR NUCLEAR POWER PLANT CONTROL ROOM UPGRADES

    SciTech Connect

    Ronald L. Boring; Jeffrey C. Joe; Thomas A. Ulrich; Roger T. Lew

    2015-03-01

    As control rooms are modernized with new digital systems at nuclear power plants, it is necessary to evaluate operator performance with these systems as part of a verification and validation process. While there is regulatory and industry guidance for some modernization activities, there are no well defined standard processes or predefined metrics available for assessing what is satisfactory operator interaction with new systems, especially during the early design stages. This paper proposes a framework defining the design process and metrics for evaluating human system interfaces as part of control room modernization. The process and metrics are generalizable to other applications and serve as a guiding template for utilities undertaking their own control room modernization activities.

  10. INTERIOR OF POWER PLANT SECTION OF BUILDING, FACING NORTHEAST, TOWARDS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR OF POWER PLANT SECTION OF BUILDING, FACING NORTHEAST, TOWARDS CHIMNEY - Vancouver Barracks, Paint Shop and Central Heating Plant, East Fifth Street southeast of McLoughlin Road, Vancouver, Clark County, WA

  11. Coal-Fired Power Plant Heat Rate Reductions

    EPA Pesticide Factsheets

    View a report that identifies systems and equipment in coal-fired power plants where efficiency improvements can be realized, and provides estimates of the resulting net plant heat rate reductions and costs for implementation.

  12. DC power transmission from the Leningradskaya Nuclear Power Plant to Vyborg

    SciTech Connect

    Koshcheev, L. A.; Shul'ginov, N. G.

    2011-05-15

    DC power transmission from the Leningradskaya Nuclear Power Plant (LAES) to city of Vyborg is proposed. This will provide a comprehensive solution to several important problems in the development and control of the unified power system (EES) of Russia.

  13. Communicating with stakeholders about nuclear power plant radiation.

    PubMed

    Bisconti, Ann Stouffer

    2011-01-01

    A national public opinion survey in 2008 measured public perceptions about radiation and specifically about radiation from nuclear power plants. The study also revealed effective messages for communicating with stakeholders about radiation from nuclear power plants. A comparison with a 1991 national survey on these topics shows that misperceptions about radiation persist, but fewer people now believe that those living near nuclear power plants are exposed to harmful levels of radiation.

  14. Steam-Electric Power-Plant-Cooling Handbook

    SciTech Connect

    Sonnichsen, J.C.; Carlson, H.A.; Charles, P.D.; Jacobson, L.D.; Tadlock, L.A.

    1982-02-01

    The Steam-Electric Power Plant Cooling Handbook provides summary data on steam-electric power plant capacity, generation and number of plants for each cooling means, by Electric Regions, Water Resource Regions and National Electric Reliability Council Areas. Water consumption by once-through cooling, cooling ponds and wet evaporative towers is discussed and a methodology for computation of water consumption is provided for a typical steam-electric plant which uses a wet evaporative tower or cooling pond for cooling.

  15. Next generation geothermal power plants. Draft final report

    SciTech Connect

    Brugman, John; Hattar, John; Nichols, Kenneth; Esaki, Yuri

    1994-12-01

    The goal of this project is to develop concepts for the next generation geothermal power plant(s) (NGGPP). This plant, compared to existing plants, will generate power for a lower levelized cost and will be more competitive with fossil fuel fired power plants. The NGGPP will utilize geothermal resources efficiently and will be equipped with contingencies to mitigate the risk of reservoir performance. The NGGPP design will attempt to minimize emission of pollutants and consumption of surface water and/or geothermal fluids for cooling service.

  16. Designing geothermal power plants to avoid reinventing the corrosion wheel

    SciTech Connect

    Conover, Marshall F.

    1982-10-08

    This paper addresses how designers can take into account, the necessary chemical and materials precautions that other geothermal power plants have learned. Current worldwide geothermal power plant capacity is presented as well as a comparison of steam composition from seven different geothermal resources throughout the world. The similarities of corrosion impacts to areas of the power plants are discussed and include the turbines, gas extraction system, heat rejection system, electrical/electronic systems, and structures. Materials problems and solutions in these corrosion impact areas are identified and discussed. A geothermal power plant design team organization is identified and the efficacy of a new corrosion/materials engineering position is proposed.

  17. Modern Quaternary plant lineages promote diversity through facilitation of ancient Tertiary lineages

    PubMed Central

    Valiente-Banuet, Alfonso; Rumebe, Adolfo Vital; Verdú, Miguel; Callaway, Ragan M.

    2006-01-01

    One of the most important floristic sorting periods to affect modern plant communities occurred during the shift from the wet Tertiary period to the unusually dry Quaternary, when most global deserts developed. During this time, a wave of new plant species emerged, presumably in response to the new climate. Interestingly, most Tertiary species that have been tracked through the fossil record did not disappear but remained relatively abundant despite the development of a much more unfavorable climate for species adapted to moist conditions. Here we find, by integrating paleobotanical, ecological, and phylogenetic analyses, that a large number of ancient Tertiary species in Mediterranean-climate ecosystems appear to have been preserved by the facilitative or “nurse” effects of modern Quaternary species. Our results indicate that these interdependent relationships among plants have played a central role in the preservation of the global biodiversity and provided a mechanism for stabilizing selection and the conservation of ecological traits over evolutionary time scales. PMID:17068126

  18. Measuring Human Performance in Simulated Nuclear Power Plant Control Rooms Using Eye Tracking

    SciTech Connect

    Kovesdi, Casey Robert; Rice, Brandon Charles; Bower, Gordon Ross; Spielman, Zachary Alexander; Hill, Rachael Ann; LeBlanc, Katya Lee

    2015-11-01

    Control room modernization will be an important part of life extension for the existing light water reactor fleet. As part of modernization efforts, personnel will need to gain a full understanding of how control room technologies affect performance of human operators. Recent advances in technology enables the use of eye tracking technology to continuously measure an operator’s eye movement, which correlates with a variety of human performance constructs such as situation awareness and workload. This report describes eye tracking metrics in the context of how they will be used in nuclear power plant control room simulator studies.

  19. Vegetation and plant food reconstruction of lowermost Bed II, Olduvai Gorge, using modern analogs.

    PubMed

    Copeland, Sandi R

    2007-08-01

    Vegetation and plant foods for hominins of lowermost Bed II, Olduvai Gorge were modeled by examining vegetation in modern habitats in northern Tanzania (Lake Manyara, Ngorongoro, Serengeti) that are analogous to the paleolandscape in terms of climate, land forms, and soil types, as indicated by previous paleoenvironmental studies of Olduvai. Plant species in the modern habitats were identified in a series of sample plots, and those known to be eaten by modern humans, chimpanzees, or baboons were considered potentially edible for early hominins. Within the 50-80 kyr deposition of lowermost Bed II, periods of drier climate were characterized by low lake stands and a broad eastern lacustrine plain containing a mosaic of springs, marsh, woodland, and edaphic grassland. Based on results of this study, plant food diversity in each of those habitats was relatively low, but the mosaic nature of the area meant that hominins could reach several different habitat types within short distances, with access to potential plant foods including marsh plants, grass grains, roots, shrub fruits, edible parts from palms, leafy herbaceous plants, and Acacia pods, flowers, and gum. Based on Manyara analogs, a greater variety of plant foods, such as tree fruits (e.g., Ficus, Trichilia) and the roots and fruits of shrubs (e.g., Cordia, Salvadora) would be expected further east along the rivers in the lacustrine terrace and alluvial fans. Interfluves of the alluvial fans were probably less wooded and offered relatively fewer varieties of plant foods, but there is sparse paleoenvironmental evidence for the character of Olduvai's alluvial fans, making the choice of appropriate modern analogs difficult. In the western side of the basin, based on modern analogs in the Serengeti, riverine habitats provided the greatest variety of edible plant food species (e.g., Acacia, Grewia, Justicia). If the interfluves were grassland, then a large variety of potentially edible grasses and forbs were present

  20. Generic seismic ruggedness of power plant equipment

    SciTech Connect

    Merz, K.L. )

    1991-08-01

    This report updates the results of a program with the overall objective of demonstrating the generic seismic adequacy of as much nuclear power plant equipment as possible by means of collecting and evaluating existing seismic qualification test data. These data are then used to construct ruggedness'' spectra below which equipment in operating plants designed to earlier earthquake criteria would be generically adequate. This document is an EPRI Tier 1 Report. The report gives the methodology for the collection and evaluation of data which are used to construct a Generic Equipment Ruggedness Spectrum (GERs) for each equipment class considered. The GERS for each equipment class are included in an EPRI Tier 2 Report with the same title. Associated with each GERS are inclusion rules, cautions, and checklists for field screening of in-place equipment for GERS applicability. A GERS provides a measure of equipment seismic resistance based on available test data. As such, a GERS may also be used to judge the seismic adequacy of similar new or replacement equipment or to estimate the seismic margin of equipment re-evaluated with respect to earthquake levels greater than considered to date, resulting in fifteen finalized GERS. GERS for relays (included in the original version of this report) are now covered in a separate report (NP-7147). In addition to the presentation of GERS, the Tier 2 report addresses the applicability of GERS to equipment of older vintage, methods for estimating amplification factors for evaluating devices installed in cabinets and enclosures, and how seismic test data from related studies relate to the GERS approach. 28 refs., 5 figs., 4 tabs.

  1. Inspection of Nuclear Power Plant Containment Structures

    SciTech Connect

    Graves, H.L.; Naus, D.J.; Norris, W.E.

    1998-12-01

    Safety-related nuclear power plant (NPP) structures are designed to withstand loadings from a number of low-probability external and interval events, such as earthquakes, tornadoes, and loss-of-coolant accidents. Loadings incurred during normal plant operation therefore generally are not significant enough to cause appreciable degradation. However, these structures are susceptible to aging by various processes depending on the operating environment and service conditions. The effects of these processes may accumulate within these structures over time to cause failure under design conditions, or lead to costly repair. In the late 1980s and early 1990s several occurrences of degradation of NPP structures were discovered at various facilities (e.g., corrosion of pressure boundary components, freeze- thaw damage of concrete, and larger than anticipated loss of prestressing force). Despite these degradation occurrences and a trend for an increasing rate of occurrence, in-service inspection of the safety-related structures continued to be performed in a somewhat cursory manner. Starting in 1991, the U.S. Nuclear Regulatory Commission (USNRC) published the first of several new requirements to help ensure that adequate in-service inspection of these structures is performed. Current regulatory in-service inspection requirements are reviewed and a summary of degradation experience presented. Nondestructive examination techniques commonly used to inspect the NPP steel and concrete structures to identify and quantify the amount of damage present are reviewed. Finally, areas where nondestructive evaluation techniques require development (i.e., inaccessible portions of the containment pressure boundary, and thick heavily reinforced concrete sections are discussed.

  2. Power Generation Investment Planning in a Modern Power System With High Share of Renewables

    NASA Astrophysics Data System (ADS)

    Oleinikova, I.; Ruksans, O.; Turcik, M.

    2014-04-01

    This article is focused on investment planning in power generation industry, which becomes an important direction of research under the conditions of newly formed environment of electricity market. The authors emphasize the key role of effective instruments and methods for estimation of the costs and economic efficiency of a generating capacity and its adequacy in a modern power system. In the paper, cost-based concepts are analyzed which form a basis for decision-making and long-term planning of investments in the power generation sector for a power system with high share of renewable energy sources. Mūsdienās energoinfrastruktūras attīstības un tā vadības procesā ir jāpieņem un jāpilda vairāki lēmumi par nepieciešamiem kapitālieguldījumiem, kas ir rūpīgi jāplāno un jāpamato. Viedo tīklu tehnoloģiju ieviešana un energosistēmas drošuma uzturēšana, ņemot vērā liberalizēto elektroenerģijas tirgu, rada nepieciešamību pēc principiāli jaunām pieejām un metodēm kapitālieguldījumu novērtēšanas uzdevumu risināšanai. Pētījums veltīts investīciju plānošanai elektroenerģijas ģenerācijas iekārtai elektroenerģijas tirgus apstākļos, ņemot vērā lielo atjaunīgo energoresursu (AER) īpatsvaru. Modernu energosistēmu vadība prasa pietiekamu ģenerācijas jaudas elastīgumu un to pareizo kombināciju. Lai to sasniegtu, vispirms ir nepieciešama dažādu ģenerācijas tehnoloģijas izmaksu novērtēšana, ko var veikt, izmantojot pienācīgo instrumentu. Tas arī ir pētījuma mērķis, kura rezultātā tika piedāvāta elektrostaciju ekonomiskas dzīvotspējas novērtēšanas koncepcija, balstoties uz elektroenerģijas ražošanas līmeņizmaksām (ed costs), lai salīdzinātu dažādu elektroenerģijas ražošanas tehnoloģijas izmaksas. Lai to sasniegtu tika veikti: - investīciju plānošana ģenerācijā, metožu pētīšana; - elektrostaciju darbības principu analīze elektroenerģijas tirgū; - elektrostaciju

  3. Evaluation of the ECAS open cycle MHD power plant design

    NASA Technical Reports Server (NTRS)

    Seikel, G. R.; Staiger, P. J.; Pian, C. C. P.

    1978-01-01

    The Energy Conversion Alternatives Study (ECAS) MHD/steam power plant is described. The NASA critical evaluation of the design is summarized. Performance of the MHD plant is compared to that of the other type ECAS plant designs on the basis of efficiency and the 30-year levelized cost of electricity. Techniques to improve the plant design and the potential performance of lower technology plants requiring shorter development time and lower development cost are then discussed.

  4. Eduard Strasburger (1844-1912): founder of modern plant cell biology.

    PubMed

    Volkmann, Dieter; Baluška, František; Menzel, Diedrik

    2012-10-01

    Eduard Strasburger, director of the Botany Institute and the Botanical Garden at the University of Bonn from 1881 to 1912, was one of the most admirable scientists in the field of plant biology, not just as the founder of modern plant cell biology but in addition as an excellent teacher who strongly believed in "education through science." He contributed to plant cell biology by discovering the discrete stages of karyokinesis and cytokinesis in algae and higher plants, describing cytoplasmic streaming in different systems, and reporting on the growth of the pollen tube into the embryo sac and guidance of the tube by synergides. Strasburger raised many problems which are hot spots in recent plant cell biology, e.g., structure and function of the plasmodesmata in relation to phloem loading (Strasburger cells) and signaling, mechanisms of cell plate formation, vesicle trafficking as a basis for most important developmental processes, and signaling related to fertilization.

  5. OVERVIEW OF A RECONFIGURABLE SIMULATOR FOR MAIN CONTROL ROOM UPGRADES IN NUCLEAR POWER PLANTS

    SciTech Connect

    Ronald L. Boring

    2012-10-01

    This paper provides background on a reconfigurable control room simulator for nuclear power plants. The main control rooms in current nuclear power plants feature analog technology that is growing obsolete. The need to upgrade control rooms serves the practical need of maintainability as well as the opportunity to implement newer digital technologies with added functionality. There currently exists no dedicated research simulator for use in human factors design and evaluation activities for nuclear power plant modernization in the U.S. The new research simulator discussed in this paper provides a test bed in which operator performance on new control room concepts can be benchmarked against existing control rooms and in which new technologies can be validated for safety and usability prior to deployment.

  6. Ways to Improve Russian Coal-Fired Power Plants

    SciTech Connect

    Tumanovskii, A. G. Olkhovsky, G. G.

    2015-07-15

    Coal is an important fuel for the electric power industry of Russia, especially in Ural and the eastern part of the country. It is fired in boilers of large (200 – 800 MW) condensing power units and in many cogeneration power plants with units rated at 50 – 180 MW. Many coal-fired power plants have been operated for more than 40 – 50 years. Though serviceable, their equipment is obsolete and does not comply with the current efficiency, environmental, staffing, and availability standards. It is urgent to retrofit and upgrade such power plants using advanced equipment, engineering and business ideas. Russian power-plant engineering companies have designed such advanced power units and their equipment such as boilers, turbines, auxiliaries, process and environmental control systems similar to those produced by the world’s leading manufacturers. Their performance and ways of implementation are discussed.

  7. Film fill for power plant cooling towers

    SciTech Connect

    Mirsky, G.R. ); Monjoie, M. )

    1991-01-01

    This paper reports on film fill, which is the use of flat or formed sheets to provide a surface upon which liquid and air come in contact with each other to affect the exchange of heat. The only other fill options available to a cooling tower designer is the use of splash fill or combinations whereby heat exchange occurs on the surface of water droplets, or both. As film fill allows the designer the opportunity to build a more compact, cost effective, energy efficient cooling tower; this type of fill material is receiving ever increasing acceptance and finding it way into more and more cooling tower applications. film fill is used to both counterflow and crossflow cooling towers, from small air conditioning applications to large natural draft towers serving 1300 to 1500 M.W. power plants around the world. It is being used in applications using unfiltered water high in suspended solids, high concentrations of dissolved salts, water carrying fibers, silt, mud, treated and untreated waste effluent, scale etc. These situations are caused by users who are: trying to reduce water make-up, using untreated or unfiltered water, or trying to save on the cost of chemical treatment.

  8. Macrofouling control in nuclear power plants

    SciTech Connect

    Ekis, E.W. Jr.; Keoplin-Gall, S.M.; McCarthy, R.E.

    1991-11-01

    Macrofouling of cooling-water systems is one of the more significant and costly problems encountered in the nuclear power industry. Both marine and freshwater macroinvertebrates can be responsible for losses in plant availability because of plugged intakes and heat transfer equipment. There is a greater diversity of macrofouling organisms in marine waters than in fresh waters. Marine macrofouling organisms include barnacles, mollusks, bryozoans, and hydroids. Barnacles are crustaceans with feathery appendages, which allow them to attach to a variety of surfaces. They are a major cause of severe macrofouling because they can remain attached even after death. The major freshwater macrofouling organisms include the Asiatic Clam (Corbicula fluminea) and the newest freshwater macrofouler, the Zebra Mussel (Dreissena polymorpha). The introduction of the Zebra Mussel into the Great Lakes has created economic and ecological problems that will not easily be solved. The threat of intercontinental dispersal of the Zebra Mussel in America is serious. Research programs have been initiated around the country to develop control methods for this macrofouling problem. The various control methodologies can be classified in the following categories: biological, chemical, physical, and mechanical. Laboratory experiments were performed to evaluate the efficacy of Actibrom against mature Zebra Mussels.

  9. 75 FR 13323 - James A. Fitzpatrick Nuclear Power Plant; Exemption

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-19

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION James A. Fitzpatrick Nuclear Power Plant; Exemption 1.0 Background Entergy Nuclear Operations, Inc... the James A. FitzPatrick Nuclear Power Plant (JAFNPP). The license provides, among other things,...

  10. 75 FR 16520 - James A. Fitzpatrick Nuclear Power Plant; Exemption

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-01

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION James A. Fitzpatrick Nuclear Power Plant; Exemption 1.0 Background Entergy Nuclear Operations, Inc... the James A. FitzPatrick Nuclear Power Plant (JAFNPP). The license provides, among other things,...

  11. 8. VIEW LOOKING WEST AT THE POWER PLANT TEST STAND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. VIEW LOOKING WEST AT THE POWER PLANT TEST STAND DURING AN ENGINE FIRING. DATE UNKNOWN, FRED ORDWAY COLLECTION, U.S. SPACE AND ROCKET CENTER, HUNTSVILLE, AL. - Marshall Space Flight Center, East Test Area, Power Plant Test Stand, Huntsville, Madison County, AL

  12. 10. Interior view, east side of power plant, generator bases ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. Interior view, east side of power plant, generator bases in foreground, electrical panels and fuel tanks in background looking northeast - Naval Air Station Fallon, Power Plant, 800 Complex, off Carson Road near intersection of Pasture & Berney Roads, Fallon, Churchill County, NV

  13. 15. INTERIOR OF POWER PLANT LOOKING SOUTHWEST. BACK SIDE OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. INTERIOR OF POWER PLANT LOOKING SOUTHWEST. BACK SIDE OF ELECTRICAL PANEL ON LEFT, AND C. 1910 GENERATOR COVER ON RIGHT. - Potomac Power Plant, On West Virginia Shore of Potomac River, about 1 mile upriver from confluence with Shenandoah River, Harpers Ferry, Jefferson County, WV

  14. Geoproducts hybrid geothermal/wood fired power plant

    SciTech Connect

    Lawford, T.

    1983-12-01

    This presentation describes the 15 MW(e) hybrid combined cycle power plant being constructed at Honey Lake, near Susanville, California. The power plant will use a wood fired system topping cycle, an organic Ranking (binary) bottoming cycle, and geothermal heating of combustion air and organic working fluid. In addition to a technical description, project economics, project merits, and project status are presented.

  15. Session 7: Geoproducts Hybrid Geothermal / Wood Fired Power Plant

    SciTech Connect

    Lawford, Tom

    1983-12-01

    This presentation describes the 15 MW(e) hybrid combined cycle power plant being constructed at Honey Lake, near Susanville, California. The power plant will use a wood fired system topping cycle, an organic Ranking (binary) bottoming cycle, and geothermal heating of combustion air and organic working fluid. In addition to a technical description, project economics, project merits, and project status are presented.

  16. 5. SOUTH ELEVATION OF POWER PLANT BUILDING. GRATE COVERED 'TRASH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. SOUTH ELEVATION OF POWER PLANT BUILDING. GRATE COVERED 'TRASH RACK' VISIBLE IN CENTER. THE STEEL FRAME STRUCTURE SUPPORTS MACHINES TO CLEAR DEBRIS CAUGHT ON THE TRASH RACK. - Potomac Power Plant, On West Virginia Shore of Potomac River, about 1 mile upriver from confluence with Shenandoah River, Harpers Ferry, Jefferson County, WV

  17. 13. INTERIOR OF POWER PLANT LOOKING EASTNORTHEAST. 1925 GE GENERATOR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. INTERIOR OF POWER PLANT LOOKING EAST-NORTHEAST. 1925 GE GENERATOR IN FOREGROUND, WITH C. 1910 GENERATOR COVER IN BACKGROUND. STEEL FRAME SUPPORTS HOISTING MECHANISM USED TO MOVE, REPAIR, OR REPLACE GENERATORS. - Potomac Power Plant, On West Virginia Shore of Potomac River, about 1 mile upriver from confluence with Shenandoah River, Harpers Ferry, Jefferson County, WV

  18. On-site sanitation: a viable alternative to modern wastewater treatment plants.

    PubMed

    Lamichhane, K M

    2007-01-01

    Rapid population growth and urbanization are exerting excessive pressure on soil and water resources. To address these problems this paper proposes a cheap and sustainable alternative sanitation system, which accelerates nutrient recycling ("closing the loop"): ecological sanitation (ecosan) is a potential alternative to conventional sanitation systems that replenishes the organic matter and nutrients of the soil that are taken off as the crop harvest. A comparison is made of the environmental and the operation and maintenance costs between a modern wastewater treatment plant and on-site sanitation. An elevated double box urine diverting toilet ("ecotoilet") is proposed and its advantages and disadvantages over a system with a centrally controlled modern WWTP are discussed. Bagmati Area Sewerage Project in Kathmandu is taken as an example of modern WWTP and ecosan being practiced in a village in Nepal is taken as an example of ecotoilet for the comparison.

  19. JPL - Small Power Systems Applications Project. [for solar thermal power plant development and commercialization

    NASA Technical Reports Server (NTRS)

    Ferber, R. R.; Marriott, A. T.; Truscello, V.

    1978-01-01

    The Small Power Systems Applications (SPSA) Project has been established to develop and commercialize small solar thermal power plants. The technologies of interest include all distributed and central receiver technologies which are potentially economically viable in power plant sizes of one to 10 MWe. The paper presents an overview of the SPSA Project and briefly discusses electric utility involvement in the Project.

  20. Systems Modeling for Z-IFE Power Plants

    SciTech Connect

    Meier, W R

    2006-11-08

    A preliminary systems model has been developed for Z-IFE power plants. The model includes cost and performance scaling for the target physics, z-pinch driver, chamber, power conversion system and target/RTL manufacturing plant. As the base case we consider the dynamic hohlraum target and a thick liquid wall chamber with flibe as the working fluid. Driver cost and efficiency are evaluated parametrically since various options are still being considered. The model allows for power plants made up of multiple chambers and power conversion units supplied by a central target/RTL manufacturing plant. Initial results indicate that plants with few chambers operating at high yield are economically more attractive than the 10-unit plant previously proposed. Various parametric and sensitivity studies have been completed and are discussed.

  1. MCFC power plant with CO{sub 2} separation

    SciTech Connect

    Kinoshita, Noboru

    1996-12-31

    Fuel cell power plant has been developed for many years with expectation of high system efficiency. In the meantime the gas turbine combined cycle has shown its considerable progress in improving system efficiency. Fuel cell power plant will no longer be attractive unless it exceeds the gas turbine combined cycle at least in the system efficiency. It is said CO{sub 2} separation could improve the efficiency of fuel cell power plant. IHI has developed the CO{sub 2} separator for fuel cell power plant. This study describes that the CO{sub 2} separator can increase the efficiency of the molten carbonate fuel cell (MCFC) power plant by 5% and the expected efficiency reaches 63 % in HHV basis.

  2. Nuclear power plant status diagnostics using artificial neural networks

    SciTech Connect

    Bartlett, E.B. . Dept. of Mechanical Engineering); Uhrig, R.E. . Dept. of Nuclear Engineering)

    1991-01-01

    In this work, the nuclear power plant operating status recognition issue is investigated using artificial neural networks (ANNs). The objective is to train an ANN to classify nuclear power plant accident conditions and to assess the potential of future work in the area of plant diagnostics with ANNS. To this end, an ANN was trained to recognize normal operating conditions as well as potentially unsafe conditions based on nuclear power plant training simulator generated accident scenarios. These scenarios include; hot and cold leg loss of coolant, control rod ejection, loss of offsite power, main steam line break, main feedwater line break and steam generator tube leak accidents. Findings show that ANNs can be used to diagnose and classify nuclear power plant conditions with good results.

  3. Nuclear power plant status diagnostics using artificial neural networks

    SciTech Connect

    Bartlett, E.B.; Uhrig, R.E.

    1991-12-31

    In this work, the nuclear power plant operating status recognition issue is investigated using artificial neural networks (ANNs). The objective is to train an ANN to classify nuclear power plant accident conditions and to assess the potential of future work in the area of plant diagnostics with ANNS. To this end, an ANN was trained to recognize normal operating conditions as well as potentially unsafe conditions based on nuclear power plant training simulator generated accident scenarios. These scenarios include; hot and cold leg loss of coolant, control rod ejection, loss of offsite power, main steam line break, main feedwater line break and steam generator tube leak accidents. Findings show that ANNs can be used to diagnose and classify nuclear power plant conditions with good results.

  4. HIGH EFFICIENCY FOSSIL POWER PLANT (HEFPP) CONCEPTUALIZATION PROGRAM

    SciTech Connect

    J.L. Justice

    1999-03-25

    This study confirms the feasibility of a natural gas fueled, 20 MW M-C Power integrated pressurized molten carbonate fuel cell combined in a topping cycle with a gas turbine generator plant. The high efficiency fossil power plant (HEFPP) concept has a 70% efficiency on a LHV basis. The study confirms the HEFPP has a cost advantage on a cost of electricity basis over the gas turbine based combined cycle plants in the 20 MW size range. The study also identifies the areas of further development required for the fuel cell, gas turbine generator, cathode blower, inverter, and power module vessel. The HEFPP concept offers an environmentally friendly power plant with minuscule emission levels when compared with the combined cycle power plant.

  5. Maximum power for a power plant with two Carnot-like cycles

    NASA Astrophysics Data System (ADS)

    Aragón-González, G.; León-Galicia, A.

    2017-01-01

    A stationary power plant with two Carnot-like cycles is optimized. Each cycle has the following irreversibilities: finite rate heat transfer between the working fluid and the external heat sources, internal dissipation of the working fluid, and heat leak between reservoirs. The optimal allocation or effectiveness of the heat exchangers for this power plant is determined by applying, two alternating design rules: fixed internal thermal conductance or fixed areas. The optimal relations obtained are substituted in the power and the maximum power, according to the isentropic ratio of each one of the Carnot-like cycles of the power plant, is calculated. Additionally, the efficiency to maximum power is presented.

  6. Optimal load distribution between units in a power plant.

    PubMed

    Bortoni, Edson C; Bastos, Guilherme S; Souza, Luiz E

    2007-10-01

    This paper presents a strategy for load distribution between the generating units in hydro power plants. The objective is to reach the maximum energy conversion efficiency for a given dispatched power. The developed tool employs a heuristic-based combinatorial optimization technique in conjunction with a set of system variables measurement allowing real-time load sharing. The developed equipment is used to give online energy conversion efficiency from each unit of the power plant. No specific previous information about the efficiency of system components is required. Simulation results of the proposed optimization technique when applied to typical hydro power plant data are presented.

  7. Computing and cognition in future power-plant operations

    SciTech Connect

    Kisner, R.A.; Sheridan, T.B.

    1983-01-01

    The intent of this paper is to speculate on the nature of future interactions between people and computers in the operation of power plants. In particular, the authors offer a taxonomy for examining the differing functions of operators in interacting with the plant and its computers, and the differing functions of the computers in interacting with the plant and its operators.

  8. Solar pond power plant feasibility study for Davis, California

    NASA Technical Reports Server (NTRS)

    Wu, Y. C.; Singer, M. J.; Marsh, H. E.; Harris, J.; Walton, A. L.

    1982-01-01

    The feasibility of constructing a solar pond power plant at Davis, California was studied. Site visits, weather data compilation, soil and water analyses, conceptual system design and analyses, a material and equipment market survey, conceptual site layout, and a preliminary cost estimate were studied. It was concluded that a solar pond power plant is technically feasible, but economically unattractive. The relatively small scale of the proposed plant and the high cost of importing salt resulted in a disproportionately high capital investment with respect to the annual energy production capacity of the plant. Cycle optimization and increased plant size would increase the economical attractiveness of the proposed concept.

  9. Dynamic simulation of a direct carbonate fuel cell power plant

    SciTech Connect

    Ernest, J.B.; Ghezel-Ayagh, H.; Kush, A.K.

    1996-12-31

    Fuel Cell Engineering Corporation (FCE) is commercializing a 2.85 MW Direct carbonate Fuel Cell (DFC) power plant. The commercialization sequence has already progressed through construction and operation of the first commercial-scale DFC power plant on a U.S. electric utility, the 2 MW Santa Clara Demonstration Project (SCDP), and the completion of the early phases of a Commercial Plant design. A 400 kW fuel cell stack Test Facility is being built at Energy Research Corporation (ERC), FCE`s parent company, which will be capable of testing commercial-sized fuel cell stacks in an integrated plant configuration. Fluor Daniel, Inc. provided engineering, procurement, and construction services for SCDP and has jointly developed the Commercial Plant design with FCE, focusing on the balance-of-plant (BOP) equipment outside of the fuel cell modules. This paper provides a brief orientation to the dynamic simulation of a fuel cell power plant and the benefits offered.

  10. Plant foods and the dietary ecology of Neanderthals and early modern humans.

    PubMed

    Henry, Amanda G; Brooks, Alison S; Piperno, Dolores R

    2014-04-01

    One of the most important challenges in anthropology is understanding the disappearance of Neanderthals. Previous research suggests that Neanderthals had a narrower diet than early modern humans, in part because they lacked various social and technological advances that lead to greater dietary variety, such as a sexual division of labor and the use of complex projectile weapons. The wider diet of early modern humans would have provided more calories and nutrients, increasing fertility, decreasing mortality and supporting large population sizes, allowing them to out-compete Neanderthals. However, this model for Neanderthal dietary behavior is based on analysis of animal remains, stable isotopes, and other methods that provide evidence only of animal food in the diet. This model does not take into account the potential role of plant food. Here we present results from the first broad comparison of plant foods in the diets of Neanderthals and early modern humans from several populations in Europe, the Near East, and Africa. Our data comes from the analysis of plant microremains (starch grains and phytoliths) in dental calculus and on stone tools. Our results suggest that both species consumed a similarly wide array of plant foods, including foods that are often considered low-ranked, like underground storage organs and grass seeds. Plants were consumed across the entire range of individuals and sites we examined, and none of the expected predictors of variation (species, geographic region, or associated stone tool technology) had a strong influence on the number of plant species consumed. Our data suggest that Neanderthal dietary ecology was more complex than previously thought. This implies that the relationship between Neanderthal technology, social behavior, and food acquisition strategies must be better explored.

  11. Facing technological challenges of Solar Updraft Power Plants

    NASA Astrophysics Data System (ADS)

    Lupi, F.; Borri, C.; Harte, R.; Krätzig, W. B.; Niemann, H.-J.

    2015-01-01

    The Solar Updraft Power Plant technology addresses a very challenging idea of combining two kinds of renewable energy: wind and solar. The working principle is simple: a Solar Updraft Power Plant (SUPP) consists of a collector area to heat the air due to the wide-banded ultra-violet solar radiation, the high-rise solar tower to updraft the heated air to the atmosphere, and in between the power conversion unit, where a system of coupled turbines and generators transforms the stream of heated air into electric power. A good efficiency of the power plant can only be reached with extra-large dimensions of the tower and/or the collector area. The paper presents an up-to-date review of the SUPP technology, focusing on the multi-physics modeling of the power plant, on the structural behavior of the tower and, last but not least, on the modeling of the stochastic wind loading process.

  12. EMOTIONAL CONSEQUENCES OF NUCLEAR POWER PLANT DISASTERS

    PubMed Central

    Bromet, Evelyn J.

    2014-01-01

    The emotional consequences of nuclear power plant disasters include depression, anxiety, post-traumatic stress disorder, and medically unexplained somatic symptoms. These effects are often long term and associated with fears about developing cancer. Research on disasters involving radiation, particularly evidence from Chernobyl, indicates that mothers of young children and cleanup workers are the highest risk groups. The emotional consequences occur independently of the actual exposure received. In contrast, studies of children raised in the shadows of the Three Mile Island (TMI) and Chernobyl accidents suggest that although their self-rated health is less satisfactory than that of their peers, their emotional, academic, and psychosocial development is comparable. The importance of the psychological impact is underscored by its chronicity and by several studies showing that poor mental health is associated with physical health conditions, early mortality, disability, and over-utilization of medical services. Given the established increase in mental health problems following TMI and Chernobyl, it is likely that the same pattern will occur in residents and evacuees affected by the Fukushima meltdowns. Preliminary data from Fukushima indeed suggest that workers and mothers of young children are at risk of depression, anxiety, psychosomatic, and post-traumatic symptoms both as a direct result of their fears about radiation exposure and an indirect result of societal stigma. Thus, it is important that nonmental health providers learn to recognize and manage psychological symptoms and that medical programs be designed to reduce stigma and alleviate psychological suffering by integrating psychiatric and medical treatment within the walls of their clinics. PMID:24378494

  13. Evaluation of Effectiveness Technological Process of Water Purification Exemplified on Modernized Water Treatment Plant at Otoczna

    NASA Astrophysics Data System (ADS)

    Jordanowska, Joanna; Jakubus, Monika

    2014-12-01

    The article presents the work of the Water Treatment Plant in the town of Otoczna, located in the Wielkopolska province, before and after the modernization of the technological line. It includes the quality characteristics of the raw water and treated water with particular emphasis on changes in the quality indicators in the period 2002 -2012 in relation to the physicochemical parameters: the content of total iron and total manganese, the ammonium ion as well as organoleptic parameters(colour and turbidity). The efficiency of technological processes was analysed, including the processes of bed start up with chalcedonic sand to remove total iron and manganese and ammonium ion. Based on the survey, it was found that the applied modernization helped solve the problem of water quality, especially the removal of excessive concentrations of iron, manganese and ammonium nitrogen from groundwater. It has been shown that one year after modernization of the technological line there was a high reduction degree of most parameters, respectively for the general iron content -99%, general manganese - 93% ammonia - 93%, turbidity - 94%. It has been proved, that chalcedonic turned out to be better filter material than quartz sand previously used till 2008. The studies have confirmed that the stage of modernization was soon followed by bed start-up for removing general iron from the groundwater. The stage of manganese removal required more time, about eight months for bed start-up. Furthermore, the technological modernization contributed to the improvement of the efficiency of the nitrification process.

  14. 7. Perimeter acquisition radar power plant room #202, battery equipment ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. Perimeter acquisition radar power plant room #202, battery equipment room; showing battery room (in background) and multiple source power converter (in foreground). The picture offers another look at the shock-isolation system developed for each platform - Stanley R. Mickelsen Safeguard Complex, Perimeter Acquisition Radar Power Plant, In Limited Access Area, Southwest of PARB at end of Service Road B, Nekoma, Cavalier County, ND

  15. Synchrotron Radiation Sheds Fresh Light on Plant Research: The Use of Powerful Techniques to Probe Structure and Composition of Plants.

    PubMed

    Vijayan, Permual; Willick, Ian R; Lahlali, Rachid; Karunakaran, Chithra; Tanino, Karen K

    2015-07-01

    While synchrotron radiation is a powerful tool in material and biomedical sciences, it is still underutilized in plant research. This mini review attempts to introduce the potential of synchrotron-based spectroscopic and imaging methods and their applications to plant sciences. Synchrotron-based Fourier transform infrared spectroscopy, X-ray absorption and fluorescence techniques, and two- and three-dimensional imaging techniques are examined. We also discuss the limitations of synchrotron-based research in plant sciences, specifically the types of plant samples that can be used. Despite limitations, the unique features of synchrotron radiation such as high brightness, polarization and pulse properties offer great advantages over conventional spectroscopic and imaging tools and enable the correlation of the structure and chemical composition of plants with biochemical function. Modern detector technologies and experimental methodologies are thus enabling plant scientists to investigate aspects of plant sciences such as ultrafast kinetics of biochemical reactions, mineral uptake, transport and accumulation, and dynamics of cell wall structure and composition during environmental stress in unprecedented ways using synchrotron beamlines. The potential for the automation of some of these synchrotron technologies and their application to plant phenotyping is also discussed.

  16. Short-Term Forecasting of Inertial Response from a Wind Power Plant: Preprint

    SciTech Connect

    Muljadi, Eduard; Gevorgian, Vahan; Hoke, Andy

    2016-09-01

    The total inertia stored in all rotating masses (synchronous generators, induction motors, etc.) connected to a power system grid is an essential force that keeps the system stable after disturbances. Power systems have been experiencing reduced inertia during the past few decades [1]. This trend will continue as the level of renewable generation (e.g., wind and solar) increases. Wind power plants (WPPs) and other renewable power plants with power electronic interfaces are capable of delivering frequency response (both droop and/or inertial response) by a control action; thus, the reduction in available online inertia can be compensated by designing the plant control to include frequency response. The source of energy to be delivered as inertial response is determined by the type of generation (wind, photovoltaic, concentrating solar power, etc.) and the control strategy chosen. The importance of providing ancillary services to ensure frequency control within a power system is evidenced from many recent publications with different perspectives (manufacturer, system operator, regulator, etc.) [2]-[6]. This paper is intended to provide operators with a method for the real-time assessment of the available inertia of a WPP. This is critical to managing power system stability and the reserve margin. In many states, modern WPPs are required to provide ancillary services (e.g., frequency regulation via governor response and inertial response) to the grid. This paper describes the method of estimating the available inertia and the profile of the forecasted response from a WPP.

  17. Modelling of some parameters from thermoelectric power plants

    NASA Astrophysics Data System (ADS)

    Popa, G. N.; Diniş, C. M.; Deaconu, S. I.; Maksay, Şt; Popa, I.

    2016-02-01

    Paper proposing new mathematical models for the main electrical parameters (active power P, reactive power Q of power supplies) and technological (mass flow rate of steam M from boiler and dust emission E from the output of precipitator) from a thermoelectric power plants using industrial plate-type electrostatic precipitators with three sections used in electrical power plants. The mathematical models were used experimental results taken from industrial facility, from boiler and plate-type electrostatic precipitators with three sections, and has used the least squares method for their determination. The modelling has been used equations of degree 1, 2 and 3. The equations were determined between dust emission depending on active power of power supplies and mass flow rate of steam from boiler, and, also, depending on reactive power of power supplies and mass flow rate of steam from boiler. These equations can be used to control the process from electrostatic precipitators.

  18. Draft Title V Permit to Operate: Deseret Power Electric Cooperative Bonanza Power Plant

    EPA Pesticide Factsheets

    Draft operating permit, Statement of Basis, public notice, and supporting documentation for the Deseret Power Electric Cooperative Bonanza Power Plant located within the exterior boundaries of the Uintah and Ouray Indian Reservation in Uintah County, UT.

  19. Parametric study of potential early commercial MHD power plants

    NASA Technical Reports Server (NTRS)

    Hals, F. A.

    1979-01-01

    Three different reference power plant configurations were considered with parametric variations of the various design parameters for each plant. Two of the reference plant designs were based on the use of high temperature regenerative air preheaters separately fired by a low Btu gas produced from a coal gasifier which was integrated with the power plant. The third reference plant design was based on the use of oxygen enriched combustion air preheated to a more moderate temperature in a tubular type metallic recuperative heat exchanger which is part of the bottoming plant heat recovery system. Comparative information was developed on plant performance and economics. The highest net plant efficiency of about 45 percent was attained by the reference plant design with the use of a high temperature air preheater separately fired with the advanced entrained bed gasifier. The use of oxygen enrichment of the combustion air yielded the lowest cost of generating electricity at a slightly lower plant efficiency. Both of these two reference plant designs are identified as potentially attractive for early MHD power plant applications.

  20. Direct carbonate fuel cell power plant operating with logistic fuels

    SciTech Connect

    Abens, S.G.; Steinfeld, G.

    1997-12-31

    In response to the US Department of Defense need for power generators which operate with logistic fuels, Energy Research Corporation and its subcontractors, Haldor Topsoe and Fluor Daniel, have conducted design studies and subscale equipment tests toward the development of fuel cell power plants with multifuel capability. A principal objective of this work was the development of a fixed-base carbonate fuel cell power plant design which can utilize both natural gas and military logistic fuels DF-2 and JP-8. To verify ERC`s technical approach, a 32 kW brassboard logistic fuel preprocessing system was assembled and operated with a Direct Carbonate Fuel Cell (DFC) stack. The project was conducted as part of DARPA`s Fuel Cell Power Plant Initiative Program for the development of dual use fuel cell power plants. The logistic fuel preprocessor consisted of a hydrodesulfurization plant which supplied desulfurized feed to an adiabatic prereformer. The methane-rich product gas provides fuel cell performance similar to that with natural gas. A preliminary design of a 3MW multifuel power plant prepared with input from the 32kW brassboard test confirmed that the thermal efficiency of a DFC power plant is nearly as high with logistic fuel (57%) as it is with natural gas (58%).

  1. Solar Thermal Power Plants with Parabolic-Trough Collectors

    NASA Astrophysics Data System (ADS)

    Zarza, E.; Valenzuela, L.; León, J.

    2004-12-01

    Parabolic-trough collectors (PTC) are solar concentrating devices suitable to work in the 150°C- 400°C temperature range. Power plants based on this type of solar collectors are a very efficient way to produce electricity with solar energy. At present, there are eight commercial solar plants (called SEGS-II, III,.. IX) producing electricity with parabolic-trough collectors and their total output power is 340 MW. Though all SEGS plants currently in operation use thermal oil as a heat transfer fluid between the solar field and the power block, direct steam generation (DSG) in the receiver tubes is a promising option to reduce the cost of electricity produced with parabolic- trough power plants. Most of technical uncertainties associated to the DSG technology were studied and solved in the DISS project and it is expected that this new technology will be commercially available in a short term. In Spain, the Royal Decree No. 436/204 (March 12th , 2004) has defined a premium of 0,18€/kWh for the electricity produced by solar thermal power plants, thus promoting the installation of solar thermal power plants up to a limit of 200 MW. Due to the current legal and financial framework defined in Spain, several projects to install commercial solar power plants with parabolic-trough collectors are currently underway.

  2. Performance calculations for 1000 MWe MHD/steam power plants

    NASA Technical Reports Server (NTRS)

    Pian, C. C. P.

    1981-01-01

    The effects of MHD generator operating conditions and constraints on the performance of MHD/steam power plants are investigated. Power plants using high temperature combustion air preheat (2500 F) and plants using intermediate temperature preheat (1100 F) with oxygen enrichment are considered. Variations of these two types of power plants are compared on the basis of fixed total electrical output (1000 MWe). Results are presented to show the effects of generator plant length and level of oxygen enrichment on the plant thermodynamic efficiency and on the required generator mass flow rate. Factors affecting the optimum levels of oxygen enrichment are analyzed. It is shown that oxygen enrichment can reduce magnet stored energy requirement.

  3. Nuclear power plant status diagnostics using an artificial neural network

    SciTech Connect

    Bartlett, E.B.; Uhrig, R.E. )

    1992-03-01

    In this paper, nuclear power plant operating status recognition is investigated using a self-optimizing stochastic learning algorithm artificial neutral network (ANN) with dynamic node architecture learning. The objective is to train the ANN to classify selected nuclear power plant accident conditions and assess the potential for future success in this area. The network is trained on normal operating conditions as well as on potentially unsafe conditions based on nuclear power plant training simulator-generated accident scenarios. These scenarios include hot-and cold-leg loss of coolant, control rod ejection, total loss of off-site power, main streamline break, main feedwater line break, and steam generator tube leak accidents as well as the normal operating condition. Findings show that ANNs can be used to diagnose and classify nuclear power plant conditions with good results. continued research work indicated.

  4. Preconstruction of the Honey Lake Hybrid Power Plant: Final report

    SciTech Connect

    Not Available

    1988-04-30

    The work undertaken under this Contract is the prosecution of the preconstruction activities, including preliminary engineering design, well field development, completion of environmental review and prosecution of permits, and the economic and financial analysis of the facility. The proposed power plant is located in northeastern California in Lassen County, approximately 25 miles east of the town of Susanville. The power plant will use a combination of wood residue and geothermal fluids for power generation. The plant, when fully constructed, will generate a combined net output of approximately 33 megawatts which will be sold to Pacific Gas and Electric Company (PGandE) under existing long-term power sales contracts. Transfer of electricity to the PGandE grid will require construction of a 22-mile transmission line from the power plant to Susanville. 11 refs., 12 figs., 4 tabs.

  5. Preconstruction of the Honey Lake Hybrid Power Plant

    SciTech Connect

    Not Available

    1988-04-30

    The work undertaken under this Contract is the prosecution of the preconstruction activities, including preliminary engineering design, well field development, completion of environmental review and prosecution of permits, and the economic and financial analysis of the facility. The proposed power plant is located in northeastern California in Lassen County, approximately 25 miles east of the town of Susanville. The power plant will use a combination of wood residue and geothermal fluids for power generation. The plant, when fully constructed, will generate a combined net output of approximately 33 megawatts which will be sold to Pacific Gas and Electric Company (PG E) under existing long-term power sales contracts. Transfer of electricity to the PG E grid will require construction of a 22-mile transmission line from the power plant to Susanville. 11 refs., 12 figs., 7 tabs.

  6. Prospects for advanced coal-fuelled fuel cell power plants

    NASA Astrophysics Data System (ADS)

    Jansen, D.; Vanderlaag, P. C.; Oudhuis, A. B. J.; Ribberink, J. S.

    1994-04-01

    As part of ECN's in-house R&D programs on clean energy conversion systems with high efficiencies and low emissions, system assessment studies have been carried out on coal gasification power plants integrated with high-temperature fuel cells (IGFC). The studies also included the potential to reduce CO2 emissions, and to find possible ways for CO2 extraction and sequestration. The development of this new type of clean coal technology for large-scale power generation is still far off. A significant market share is not envisaged before the year 2015. To assess the future market potential of coal-fueled fuel cell power plants, the promise of this fuel cell technology was assessed against the performance and the development of current state-of-the-art large-scale power generation systems, namely the pulverized coal-fired power plants and the integrated coal gasification combined cycle (IGCC) power plants. With the anticipated progress in gas turbine and gas clean-up technology, coal-fueled fuel cell power plants will have to face severe competition from advanced IGCC power plants, despite their higher efficiency.

  7. Stillwater Hybrid Geo-Solar Power Plant Optimization Analyses

    SciTech Connect

    Wendt, Daniel S.; Mines, Gregory L.; Turchi, Craig S.; Zhu, Guangdong; Cohan, Sander; Angelini, Lorenzo; Bizzarri, Fabrizio; Consoli, Daniele; De Marzo, Alessio

    2015-09-02

    The Stillwater Power Plant is the first hybrid plant in the world able to bring together a medium-enthalpy geothermal unit with solar thermal and solar photovoltaic systems. Solar field and power plant models have been developed to predict the performance of the Stillwater geothermal / solar-thermal hybrid power plant. The models have been validated using operational data from the Stillwater plant. A preliminary effort to optimize performance of the Stillwater hybrid plant using optical characterization of the solar field has been completed. The Stillwater solar field optical characterization involved measurement of mirror reflectance, mirror slope error, and receiver position error. The measurements indicate that the solar field may generate 9% less energy than the design value if an appropriate tracking offset is not employed. A perfect tracking offset algorithm may be able to boost the solar field performance by about 15%. The validated Stillwater hybrid plant models were used to evaluate hybrid plant operating strategies including turbine IGV position optimization, ACC fan speed and turbine IGV position optimization, turbine inlet entropy control using optimization of multiple process variables, and mixed working fluid substitution. The hybrid plant models predict that each of these operating strategies could increase net power generation relative to the baseline Stillwater hybrid plant operations.

  8. Review of the coal-fired, over-supercritical and ultra-supercritical steam power plants

    NASA Astrophysics Data System (ADS)

    Tumanovskii, A. G.; Shvarts, A. L.; Somova, E. V.; Verbovetskii, E. Kh.; Avrutskii, G. D.; Ermakova, S. V.; Kalugin, R. N.; Lazarev, M. V.

    2017-02-01

    The article presents a review of developments of modern high-capacity coal-fired over-supercritical (OSC) and ultra-supercritical (USC) steam power plants and their implementation. The basic engineering solutions are reported that ensure the reliability, economic performance, and low atmospheric pollution levels. The net efficiency of the power plants is increased by optimizing the heat balance, improving the primary and auxiliary equipment, and, which is the main thing, by increasing the throttle conditions. As a result of the enhanced efficiency, emissions of hazardous substances into the atmosphere, including carbon dioxide, the "greenhouse" gas, are reduced. To date, the exhaust steam conditions in the world power industry are p 0 ≈ 30 MPa and t 0 = 610/620°C. The efficiency of such power plants reaches 47%. The OSC plants are being operated in Germany, Denmark, Japan, China, and Korea; pilot plants are being developed in Russia. Currently, a project of a power plant for the ultra-supercritical steam conditions p 0 ≈ 35 MPa and t 0 = 700/720°C with efficiency of approximately 50% is being studied in the EU within the framework of the Thermie AD700 program, project AD 700PF. Investigations in this field have also been launched in the United States, Japan, and China. Engineering solutions are also being sought in Russia by the All-Russia Thermal Engineering Research Institute (VTI) and the Moscow Power Engineering Institute. The stated steam parameter level necessitates application of new materials, namely, nickel-base alloys. Taking into consideration high costs of nickel-base alloys and the absence in Russia of technologies for their production and manufacture of products from these materials for steam-turbine power plants, the development of power plants for steam parameters of 32 MPa and 650/650°C should be considered to be the first stage in creating the USC plants as, to achieve the above parameters, no expensive alloys are require. To develop and

  9. Effective method for MHD retrofit of power plants

    SciTech Connect

    Berry, G.F.; Dennis, C.B.; Johnson, T.R.; Minkov, V.

    1981-10-01

    Retrofitting existing power plants with an open-cycle MHD system has been re-examined in light of recent developments in the heat and seed recovery technology area. A new retrofit cycle configuration has been developed which provides for a direct gas-gas coupling; also, the MHD topping cycle can be decoupled from the existing plant for either separate or joint operation. As an example, the MHD retrofit concept has been applied to Illinois Power Company's Vermilion Station No. 1, a coal-fired power plant presently in operation. Substantial increases in efficiency have been demonstrated and the economic validity of the MHD retrofit approach has been established.

  10. Technical Basis for Flood Protection at Nuclear Power Plants

    DTIC Science & Technology

    2015-07-01

    ER D C/ CH L SR -1 5- 3 Technical Basis for Flood Protection at Nuclear Power Plants Co as ta l a nd H yd ra ul ic s La bo ra to ry...2015 Technical Basis for Flood Protection at Nuclear Power Plants James R. Leech, Loren L. Wehmeyer, David A. Margo, Landris T. Lee, Aaron R. Byrd...39180-6199 ERDC/CHL SR-15-3 ii Abstract Current flood- protection regulatory guidance for nuclear power plants is contained in the Regulatory Guide

  11. Preliminary Identification of Accident Initiating Events for IFE Power Plants

    SciTech Connect

    Cadwallader, Lee Charles; Latkowsk, J. F.

    2001-10-01

    This paper presents initial results of a task to identify accident initiating events for inertial fusion energy (IFE) power plant designs. Initiating events (IEs) are a fundamental building block of a probabilistic risk assessment; they are the ‘accident starters’ that are analyzed to determine the risks posed to members of the public in the vicinity of the power plant. The IE results for the SOMBRERO design are presented in tabular form. The SOMBRERO design was analyzed since it is representative of dry chamber wall, laser driven designs. This work is used to characterize IFE plant risk and to identify potential design changes that would mitigate the plant risk.

  12. Optimization of CCGT power plant and performance analysis using MATLAB/Simulink with actual operational data.

    PubMed

    Hasan, Naimul; Rai, Jitendra Nath; Arora, Bharat Bhushan

    2014-01-01

    In the Modern scenario, the naturally available resources for power generation are being depleted at an alarming rate; firstly due to wastage of power at consumer end, secondly due to inefficiency of various power system components. A Combined Cycle Gas Turbine (CCGT) integrates two cycles- Brayton cycle (Gas Turbine) and Rankine cycle (Steam Turbine) with the objective of increasing overall plant efficiency. This is accomplished by utilising the exhaust of Gas Turbine through a waste-heat recovery boiler to run a Steam Turbine. The efficiency of a gas turbine which ranges from 28% to 33% can hence be raised to about 60% by recovering some of the low grade thermal energy from the exhaust gas for steam turbine process. This paper is a study for the modelling of CCGT and comparing it with actual operational data. The performance model for CCGT plant was developed in MATLAB/Simulink.

  13. 76 FR 40403 - R.E. Ginna Nuclear Power Plant, LLC, R.E. Ginna Nuclear Power Plant, R.E. Ginna Independent Spent...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-08

    ... COMMISSION R.E. Ginna Nuclear Power Plant, LLC, R.E. Ginna Nuclear Power Plant, R.E. Ginna Independent Spent...) 50.80 approving the indirect transfer of Renewed Facility Operating License No. DPR-18, for the R.E. Ginna Nuclear Power Plant (Ginna), currently held by R.E. Ginna Nuclear Power Plant, LLC as owner...

  14. Commercial ballard PEM fuel cell natural gas power plant development

    SciTech Connect

    Watkins, D.S.; Dunnison, D.; Cohen, R.

    1996-12-31

    The electric utility industry is in a period of rapid change. Deregulation, wholesale and retail wheeling, and corporate restructuring are forcing utilities to adopt new techniques for conducting their business. The advent of a more customer oriented service business with tailored solutions addressing such needs as power quality is a certain product of the deregulation of the electric utility industry. Distributed and dispersed power are fundamental requirements for such tailored solutions. Because of their modularity, efficiency and environmental benefits, fuel cells are a favored solution to implement distributed and dispersed power concepts. Ballard Power Systems has been working to develop and commercialize Proton Exchange Membrane (PEM) fuel cell power plants for stationary power markets. PEM`s capabilities of flexible operation and multiple market platforms bodes well for success in the stationary power market. Ballard`s stationary commercialization program is now in its second phase. The construction and successful operation of a 10 kW natural gas fueled, proof-of-concept power plant marked the completion of phase one. In the second phase, we are developing a 250 kW market entry power plant. This paper discusses Ballard`s power plant development plan philosophy, the benefits from this approach, and our current status.

  15. Water recovery using waste heat from coal fired power plants.

    SciTech Connect

    Webb, Stephen W.; Morrow, Charles W.; Altman, Susan Jeanne; Dwyer, Brian P.

    2011-01-01

    The potential to treat non-traditional water sources using power plant waste heat in conjunction with membrane distillation is assessed. Researchers and power plant designers continue to search for ways to use that waste heat from Rankine cycle power plants to recover water thereby reducing water net water consumption. Unfortunately, waste heat from a power plant is of poor quality. Membrane distillation (MD) systems may be a technology that can use the low temperature waste heat (<100 F) to treat water. By their nature, they operate at low temperature and usually low pressure. This study investigates the use of MD to recover water from typical power plants. It looks at recovery from three heat producing locations (boiler blow down, steam diverted from bleed streams, and the cooling water system) within a power plant, providing process sketches, heat and material balances and equipment sizing for recovery schemes using MD for each of these locations. It also provides insight into life cycle cost tradeoffs between power production and incremental capital costs.

  16. Ocean thermal gradient hydraulic power plant.

    PubMed

    Beck, E J

    1975-07-25

    Solar energy stored in the oceans may be used to generate power by exploiting ploiting thermal gradients. A proposed open-cycle system uses low-pressure steam to elevate vate water, which is then run through a hydraulic turbine to generate power. The device is analogous to an air lift pump.

  17. 10 CFR Appendix B to Part 50 - Quality Assurance Criteria for Nuclear Power Plants and Fuel Reprocessing Plants

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 1 2013-01-01 2013-01-01 false Quality Assurance Criteria for Nuclear Power Plants and... Criteria for Nuclear Power Plants and Fuel Reprocessing Plants Introduction. Every applicant for a..., and components of the reactor. Nuclear power plants and fuel reprocessing plants include...

  18. 10 CFR Appendix B to Part 50 - Quality Assurance Criteria for Nuclear Power Plants and Fuel Reprocessing Plants

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 1 2014-01-01 2014-01-01 false Quality Assurance Criteria for Nuclear Power Plants and... Criteria for Nuclear Power Plants and Fuel Reprocessing Plants Introduction. Every applicant for a..., and components of the reactor. Nuclear power plants and fuel reprocessing plants include...

  19. 10 CFR Appendix B to Part 50 - Quality Assurance Criteria for Nuclear Power Plants and Fuel Reprocessing Plants

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Quality Assurance Criteria for Nuclear Power Plants and... Criteria for Nuclear Power Plants and Fuel Reprocessing Plants Introduction. Every applicant for a..., and components of the reactor. Nuclear power plants and fuel reprocessing plants include...

  20. Effect of thermal power plant emissions on Catharanthus roseus L

    SciTech Connect

    Khan, A.M.; Pandey, V.; Shukla, J.; Singh, N.; Yunus, M.; Singh, S.N.; Ahmad, K.J. )

    1990-06-01

    Most of the industrialized nations depend largely on the combustion of fossil fuels for their energy requirements. During the past few years in India quite a few thermal power plants have been commissioned to cater to the increasing energy requirements. As most of the power plants are coal-fired, a complex mixture of several pollutants is released in the atmosphere on the combustion of coal. Leaves by virtue of their unique position on plants and their functions, experience the maximum brunt of exposure and undergo certain changes in form, structure and function with the changes in surrounding environs, and such modifications are likely to serve as markers of environmental pollution. The present paper deals with the long term exposure effects of thermal power plant emissions on Catharanthus roseus L. - a common perennial shrub, with glossy leaves and white, mauve or pink colored flowers and of great medicinal value is grown as an ornamental plant all over the country.

  1. 78 FR 55118 - Seismic Instrumentation for Nuclear Power Plants

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-09

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Seismic Instrumentation for Nuclear Power Plants AGENCY: Nuclear Regulatory Commission. ACTION: Standard review plan-draft section revision; request for comment. SUMMARY: The U.S. Nuclear...

  2. 76 FR 66089 - Access Authorization Program for Nuclear Power Plants

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-25

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Access Authorization Program for Nuclear Power Plants AGENCY: Nuclear Regulatory Commission. ACTION: Regulatory guide; issuance. SUMMARY: The U.S. Nuclear Regulatory Commission (NRC) is issuing...

  3. CONTEXT VIEW FROM POWER PLANT TOP FLOOR AT REST OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    CONTEXT VIEW FROM POWER PLANT TOP FLOOR AT REST OF CLEVELAND TERMINAL. LOOKING NORTHWEST. - Pennsylvania Railway Ore Dock, Lake Erie at Whiskey Island, approximately 1.5 miles west of Public Square, Cleveland, Cuyahoga County, OH

  4. Low NOx demonstration project at Gaojing Power Plant, Beijing, China

    SciTech Connect

    Verhoeff, F.; Kissing, B.J.; Bos, H.G.

    1997-12-31

    In November 1996 Stork Thermeq in the Netherlands received the order for the design, manufacture and commissioning of 12 coal/oil-fired low-NOx burners for the Gaojing Power Plant in Beijing, China. The aim of this burner retrofit is to decrease the NOx emission of this power plant and to demonstrate that, with leading-edge combustion technology, considerable reductions of NOx emissions are possible. In this paper a description of the low-NOx combustion technology is given, and field experiences with these burners installed in a new boiler and in a modified existing boiler will be highlighted. Further, insight will be given to the design and construction of the new burners for the Gaojing Power Plant and the results of reference measurements in this power plant will be presented.

  5. 52. VIEW SHOWING SITE OF ARIZONA FALL POWER PLANT, LOOKING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    52. VIEW SHOWING SITE OF ARIZONA FALL POWER PLANT, LOOKING EAST. CURRENT LOCATION OF THE REAL-TIME WATER QUALITY MONITORING STATION Photographer: James Eastwood, July 1990 - Arizona Canal, North of Salt River, Phoenix, Maricopa County, AZ

  6. CONTROLLING MULTIPLE EMISSIONS FROM COAL-FIRED POWER PLANTS

    EPA Science Inventory

    The paper presents and analyzes nine existing and novel control technologies designed to achieve multipollutant emissions reductions. It provides an evaluation of multipollutant emission control technologies that are potentially available for coal-fired power plants of 25 MW capa...

  7. Analysis of UF6 breeder reactor power plants

    NASA Technical Reports Server (NTRS)

    Clement, J. D.; Rust, J. H.

    1976-01-01

    Gaseous UF6 fueled breeder reactor design and technical applications of such concepts are summarized. Special attention was given to application in nuclear power plants and to reactor efficiency and safety factors.

  8. 58. HAIWEE POWER PLANT LOOKING NORTH ALONG PATH OF AQUEDUCT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    58. HAIWEE POWER PLANT LOOKING NORTH ALONG PATH OF AQUEDUCT - Los Angeles Aqueduct, From Lee Vining Intake (Mammoth Lakes) to Van Norman Reservoir Complex (San Fernando Valley), Los Angeles, Los Angeles County, CA

  9. [Emergy evaluation of power plant eco-industrial park].

    PubMed

    Wang, Lingmei; Zhang, Jintun

    2004-06-01

    In this paper, new emergy indices for the material circulation utilization and energy cascade utilization were presented to evaluate the emergy of power plant eco-industrial park. The common contribution of the members in power plant eco-industrial park should be accounted for emergy yield ratio (PEYR) and emergy investment ratio (PEIR), namely, PEYR = sigma(i = 1)6 (Fi + Ri + Ni)/sigma(i = 1)6 Fi and PEIR = sigma(i = 1)6 Fi/sigma(i = 1)6 (Ni + Ri). Saved renewable and nonrenewable resources and purchased resources and decreased environmental load should be accounted for environmental loading ratio (PELR) and index of sustainability (PESI), namely, PELR = sigma(i = 1)6 Fi/F' and PESI = PEYR/PELR. Case analysis on the Shuozhou power plant eco-industrial park showed that new emergy indices were practical in evaluating the power plant eco-industrial park.

  10. Combined oil gun and coal guide for power plant boilers

    SciTech Connect

    Wiest, M.R.

    1990-08-28

    This paper discusses apparatus for introducing fuel into the combustion chamber of a power plant boiler. It comprises a coal guide; a coal disperser; tubular disperser support means; an oil gun; first actuator means; and second actuator means.

  11. 20. View of Mormon Flat Dam, power plant, and reservoir. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    20. View of Mormon Flat Dam, power plant, and reservoir. Photographer unknown, 1926. Source: Salt River Project. - Mormon Flat Dam, On Salt River, Eastern Maricopa County, east of Phoenix, Phoenix, Maricopa County, AZ

  12. 19. Downstream face of Mormon Flat Dam completed. Power plant ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    19. Downstream face of Mormon Flat Dam completed. Power plant is nearing completion. Photographer unknown, 1926. Source: Salt River Project. - Mormon Flat Dam, On Salt River, Eastern Maricopa County, east of Phoenix, Phoenix, Maricopa County, AZ

  13. 12. POWER PLANT PART OF BUILDING SHOWING RELATION TO ADDITION ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. POWER PLANT PART OF BUILDING SHOWING RELATION TO ADDITION AND EQUIPMENT PART OF BUILDING - Boswell Bay White Alice Site, Radio Relay Building, Chugach National Forest, Cordova, Valdez-Cordova Census Area, AK

  14. Structures and construction of nuclear power plants on lunar surface

    NASA Astrophysics Data System (ADS)

    Shimizu, Katsunori; Kobatake, Masuhiko; Ogawa, Sachio; Kanamori, Hiroshi; Okada, Yasuhiko; Mano, Hideyuki; Takagi, Kenji

    1991-07-01

    The best structure and construction techniques of nuclear power plants in the severe environments on the lunar surface are studied. Facility construction types (functional conditions such as stable structure, shield thickness, maintainability, safety distances, and service life), construction conditions (such as construction methods, construction equipment, number of personnel, time required for construction, external power supply, and required transportation) and construction feasibility (construction method, reactor transportation between the moon and the earth, ground excavation for installation, loading and unloading, transportation, and installation, filling up the ground, electric power supply of plant S (300 kW class) and plant L (3000 kW class)) are outlined. Items to pay attention to in construction are (1) automation and robotization of construction; (2) cost reduction by multi functional robots; and (3) methods of supplying power to robots. A precast concrete block manufacturing plant is also outlined.

  15. The optimization air separation plants for combined cycle MHD-power plant applications

    NASA Technical Reports Server (NTRS)

    Juhasz, A. J.; Springmann, H.; Greenberg, R.

    1980-01-01

    Some of the design approaches being employed during a current supported study directed at developing an improved air separation process for the production of oxygen enriched air for magnetohydrodynamics (MHD) combustion are outlined. The ultimate objective is to arrive at conceptual designs of air separation plants, optimized for minimum specific power consumption and capital investment costs, for integration with MHD combined cycle power plants.

  16. Trends and problems in development of the power plants electrical part

    NASA Astrophysics Data System (ADS)

    Gusev, Yu. P.

    2015-03-01

    The article discusses some problems relating to development of the electrical part of modern nuclear and thermal power plants, which are stemming from the use of new process and electrical equipment, such as gas turbine units, power converters, and intellectual microprocessor devices in relay protection and automated control systems. It is pointed out that the failure rates of electrical equipment at Russian and foreign power plants tend to increase. The ongoing power plant technical refitting and innovative development processes generate the need to significantly widen the scope of research works on the electrical part of power plants and rendering scientific support to works on putting in use innovative equipment. It is indicated that one of main factors causing the growth of electrical equipment failures is that some of components of this equipment have insufficiently compatible dynamic characteristics. This, in turn may be due to lack or obsolescence of regulatory documents specifying the requirements for design solutions and operation of electric power equipment that incorporates electronic and microprocessor control and protection devices. It is proposed to restore the system of developing new and updating existing departmental regulatory technical documents that existed in the 1970s, one of the fundamental principles of which was placing long-term responsibility on higher schools and leading design institutions for rendering scientific-technical support to innovative development of components and systems forming the electrical part of power plants. This will make it possible to achieve lower failure rates of electrical equipment and to steadily improve the competitiveness of the Russian electric power industry and energy efficiency of generating companies.

  17. Application of enhanced modern structured analysis techniques to Space Station Freedom electric power system requirements

    NASA Technical Reports Server (NTRS)

    Biernacki, John; Juhasz, John; Sadler, Gerald

    1991-01-01

    A team of Space Station Freedom (SSF) system engineers are in the process of extensive analysis of the SSF requirements, particularly those pertaining to the electrical power system (EPS). The objective of this analysis is the development of a comprehensive, computer-based requirements model, using an enhanced modern structured analysis methodology (EMSA). Such a model provides a detailed and consistent representation of the system's requirements. The process outlined in the EMSA methodology is unique in that it allows the graphical modeling of real-time system state transitions, as well as functional requirements and data relationships, to be implemented using modern computer-based tools. These tools permit flexible updating and continuous maintenance of the models. Initial findings resulting from the application of EMSA to the EPS have benefited the space station program by linking requirements to design, providing traceability of requirements, identifying discrepancies, and fostering an understanding of the EPS.

  18. Prediction of Technological Failures in Nuclear Power Plant Operation

    SciTech Connect

    Salnykov, A. A.

    2015-01-15

    A method for predicting operating technological failures in nuclear power plants which makes it possible to reduce the unloading of the generator unit during the onset and development of an anomalous engineering state of the equipment by detecting a change in state earlier and taking suitable measures. With the circulating water supply loop of a nuclear power plant as an example, scenarios and algorithms for predicting technological failures in the operation of equipment long before their actual occurrence are discussed.

  19. Hybrid solar central receiver for combined cycle power plant

    DOEpatents

    Bharathan, Desikan; Bohn, Mark S.; Williams, Thomas A.

    1995-01-01

    A hybrid combined cycle power plant including a solar central receiver for receiving solar radiation and converting it to thermal energy. The power plant includes a molten salt heat transfer medium for transferring the thermal energy to an air heater. The air heater uses the thermal energy to preheat the air from the compressor of the gas cycle. The exhaust gases from the gas cycle are directed to a steam turbine for additional energy production.

  20. Modeling of air pollution from the power plant ash dumps

    NASA Astrophysics Data System (ADS)

    Aleksic, Nenad M.; Balać, Nedeljko

    A simple model of air pollution from power plant ash dumps is presented, with emission rates calculated from the Bagnold formula and transport simulated by the ATDL type model. Moisture effects are accounted for by assumption that there is no pollution on rain days. Annual mean daily sedimentation rates, calculated for the area around the 'Nikola Tesla' power plants near Belgrade for 1987, show reasonably good agreement with observations.

  1. Hybrid solar central receiver for combined cycle power plant

    DOEpatents

    Bharathan, D.; Bohn, M.S.; Williams, T.A.

    1995-05-23

    A hybrid combined cycle power plant is described including a solar central receiver for receiving solar radiation and converting it to thermal energy. The power plant includes a molten salt heat transfer medium for transferring the thermal energy to an air heater. The air heater uses the thermal energy to preheat the air from the compressor of the gas cycle. The exhaust gases from the gas cycle are directed to a steam turbine for additional energy production. 1 figure.

  2. Inertial Fusion Power Plant Concept of Operations and Maintenance

    SciTech Connect

    Anklam, T.; Knutson, B.; Dunne, A. M.; Kasper, J.; Sheehan, T.; Lang, D.; Roberts, V.; Mau, D.

    2015-01-15

    Parsons and LLNL scientists and engineers performed design and engineering work for power plant pre-conceptual designs based on the anticipated laser fusion demonstrations at the National Ignition Facility (NIF). Work included identifying concepts of operations and maintenance (O&M) and associated requirements relevant to fusion power plant systems analysis. A laser fusion power plant would incorporate a large process and power conversion facility with a laser system and fusion engine serving as the heat source, based in part on some of the systems and technologies advanced at NIF. Process operations would be similar in scope to those used in chemical, oil refinery, and nuclear waste processing facilities, while power conversion operations would be similar to those used in commercial thermal power plants. While some aspects of the tritium fuel cycle can be based on existing technologies, many aspects of a laser fusion power plant presents several important and unique O&M requirements that demand new solutions. For example, onsite recovery of tritium; unique remote material handling systems for use in areas with high radiation, radioactive materials, or high temperatures; a five-year fusion engine target chamber replacement cycle with other annual and multi-year cycles anticipated for major maintenance of other systems, structures, and components (SSC); and unique SSC for fusion target waste recycling streams. This paper describes fusion power plant O&M concepts and requirements, how O&M requirements could be met in design, and how basic organizational and planning issues can be addressed for a safe, reliable, economic, and feasible fusion power plant.

  3. Inertial fusion power plant concept of operations and maintenance

    NASA Astrophysics Data System (ADS)

    Knutson, Brad; Dunne, Mike; Kasper, Jack; Sheehan, Timothy; Lang, Dwight; Anklam, Tom; Roberts, Valerie; Mau, Derek

    2015-02-01

    Parsons and LLNL scientists and engineers performed design and engineering work for power plant pre-conceptual designs based on the anticipated laser fusion demonstrations at the National Ignition Facility (NIF). Work included identifying concepts of operations and maintenance (O&M) and associated requirements relevant to fusion power plant systems analysis. A laser fusion power plant would incorporate a large process and power conversion facility with a laser system and fusion engine serving as the heat source, based in part on some of the systems and technologies advanced at NIF. Process operations would be similar in scope to those used in chemical, oil refinery, and nuclear waste processing facilities, while power conversion operations would be similar to those used in commercial thermal power plants. While some aspects of the tritium fuel cycle can be based on existing technologies, many aspects of a laser fusion power plant presents several important and unique O&M requirements that demand new solutions. For example, onsite recovery of tritium; unique remote material handling systems for use in areas with high radiation, radioactive materials, or high temperatures; a five-year fusion engine target chamber replacement cycle with other annual and multi-year cycles anticipated for major maintenance of other systems, structures, and components (SSC); and unique SSC for fusion target waste recycling streams. This paper describes fusion power plant O&M concepts and requirements, how O&M requirements could be met in design, and how basic organizational and planning issues can be addressed for a safe, reliable, economic, and feasible fusion power plant.

  4. Radial fryers. [Used tire power plants

    SciTech Connect

    Gawlicki, S.M.

    1993-01-01

    Experience has shown that tires have their limits as a primary power generation fuel. As a supplemental fuel, however, they may prove to be cost effective. This article discusses the use of tires as a alternate fuel source.

  5. Methodology and application of surrogate plant PRA analysis to the Rancho Seco Power Plant: Final report

    SciTech Connect

    Gore, B.F.; Huenefeld, J.C.

    1987-07-01

    This report presents the development and the first application of generic probabilistic risk assessment (PRA) information for identifying systems and components important to public risk at nuclear power plants lacking plant-specific PRAs. A methodology is presented for using the results of PRAs for similar (surrogate) plants, along with plant-specific information about the plant of interest and the surrogate plants, to infer important failure modes for systems of the plant of interest. This methodology, and the rationale on which it is based, is presented in the context of its application to the Rancho Seco plant. The Rancho Seco plant has been analyzed using PRA information from two surrogate plants. This analysis has been used to guide development of considerable plant-specific information about Rancho Seco systems and components important to minimizing public risk, which is also presented herein.

  6. Evaluation of Loss of Offsite Power Events at Nuclear Power Plants: 1980 - 1996

    SciTech Connect

    C. L. Atwood; D. A. Prawdzik; D. L. Kelly; F. M. Marshall; J. W. Stetkar

    1999-08-01

    It is recognized that the availability of AC power to commercial nuclear power plants is essential for safe operations and accident recovery. A loss of offsite power (LOSP) event, therefore, is considered an important contributor to total risk at nuclear power plants. In 1988, the U. S. Nuclear Regulatory Commission published NUREG-1032 to report on an evaluation of the risk from actual LOSP events that had occurred at nuclear power plants within the United States up through 1985. This paper summarizes a similar study, whose primary objective was to update the LOSP model parameters, frequency and recovery time, using power plant event data from 1980-1996, published as NUREG/CR-5496 in 1998. An additional objective of the study is to re-examine the engineering insights concerning LOSP events.

  7. Nuclear Power Plant Containment Pressure Boundary Research

    SciTech Connect

    Cherry, J.L.; Chokshi, N.C.; Costello, J.F.; Ellingwood, B.R.; Naus, D.J.

    1999-09-15

    Research to address aging of the containment pressure boundary in light-water reactor plants is summarized. This research is aimed at understanding the significant factors relating occurrence of corrosion, efficacy of inspection, and structural capacity reduction of steel containment and liners of concrete containment. This understanding will lead to improvements in risk-informed regulatory decision making. Containment pressure boundary components are described and potential aging factors identified. Quantitative tools for condition assessments of aging structures to maintain an acceptable level of reliability over the service life of the plant are discussed. Finally, the impact of aging (i.e., loss of shell thickness due to corrosion) on steel containment fragility for a pressurized water reactor ice-condenser plant is presented.

  8. Model Predictive Control of Integrated Gasification Combined Cycle Power Plants

    SciTech Connect

    B. Wayne Bequette; Priyadarshi Mahapatra

    2010-08-31

    The primary project objectives were to understand how the process design of an integrated gasification combined cycle (IGCC) power plant affects the dynamic operability and controllability of the process. Steady-state and dynamic simulation models were developed to predict the process behavior during typical transients that occur in plant operation. Advanced control strategies were developed to improve the ability of the process to follow changes in the power load demand, and to improve performance during transitions between power levels. Another objective of the proposed work was to educate graduate and undergraduate students in the application of process systems and control to coal technology. Educational materials were developed for use in engineering courses to further broaden this exposure to many students. ASPENTECH software was used to perform steady-state and dynamic simulations of an IGCC power plant. Linear systems analysis techniques were used to assess the steady-state and dynamic operability of the power plant under various plant operating conditions. Model predictive control (MPC) strategies were developed to improve the dynamic operation of the power plants. MATLAB and SIMULINK software were used for systems analysis and control system design, and the SIMULINK functionality in ASPEN DYNAMICS was used to test the control strategies on the simulated process. Project funds were used to support a Ph.D. student to receive education and training in coal technology and the application of modeling and simulation techniques.

  9. Growing the Space Station's electrical power plant

    NASA Technical Reports Server (NTRS)

    Sundberg, Gale R.

    1990-01-01

    For over a decade NASA LeRC has been defining, demonstrating, and evaluating power electronic components and multi-kilowatt, multiply redundant, electrical power systems as part of OAST charter. Whether one considers aircraft (commercial transport/military), Space Station Freedom, growth station, launch vehicles, or the new Human Exploration Initiative, the conclusions remain the same: high frequency AC power distribution and control is superior to all other approaches for achieving a fast, smart, safe, versatile, and growable electrical power system that will meet a wide range of mission options. To meet the cost and operability goals of future aerospace missions that require significantly higher electrical power and longer durations, we must learn to integrate multiple technologies in ways that enhance overall system synergisms. The way NASA is doing business in space electric power is challenged and some approaches for evolving large space vehicles and platforms in well constructed steps to provide safe, ground testable, growable, smart systems that provide simple, replicative logic structures, which enable hardware and software verification, validation, and implementation are proposed. Viewgraphs are included.

  10. Thermal energy storage heat exchanger: Molten salt heat exchanger design for utility power plants

    NASA Technical Reports Server (NTRS)

    Ferarra, A.; Yenetchi, G.; Haslett, R.; Kosson, R.

    1977-01-01

    The use of thermal energy storage (TES) in the latent heat of molten salts as a means of conserving fossil fuels and lowering the cost of electric power was evaluated. Public utility systems provided electric power on demand. This demand is generally maximum during late weekday afternoons, with considerably lower overnight and weekend loads. Typically, the average demand is only 60% to 80% of peak load. As peak load increases, the present practice is to purchase power from other grid facilities or to bring older less efficient fossil-fuel plants on line which increase the cost of electric power. The widespread use of oil-fired boilers, gas turbine and diesel equipment to meet peaking loads depletes our oil-based energy resources. Heat exchangers utilizing molten salts can be used to level the energy consumption curve. The study begins with a demand analysis and the consideration of several existing modern fossil-fuel and nuclear power plants for use as models. Salts are evaluated for thermodynamic, economic, corrosive, and safety characteristics. Heat exchanger concepts are explored and heat exchanger designs are conceived. Finally, the economics of TES conversions in existing plants and new construction is analyzed. The study concluded that TES is feasible in electric power generation. Substantial data are presented for TES design, and reference material for further investigation of techniques is included.

  11. ENERGY PRODUCTION AND POLLUTION PREVENTION AT SEWAGE TREATMENT PLANTS USING FUEL CELL POWER PLANTS

    EPA Science Inventory

    The paper discusses energy production and pollution prevention at sewage treatment plants using fuel cell power plants. Anaerobic digester gas (ADG) is produced at waste water treatment plants during the anaerobic treatment of sewage to reduce solids. The major constituents are...

  12. Effects of Aridity and Vegetation on Plant-wax δD in Modern Lake Sediments

    NASA Astrophysics Data System (ADS)

    Polissar, P. J.; Freeman, K. H.

    2010-12-01

    Plant waxes are preserved over geologic timescales, and are found in diverse ancient sediments and soils. Observations that these molecules have hydrogen isotopic signatures that can be systematically related to that of modern precipitation have fueled aspirations to reconstruct ancient precipitation δD values. However, molecular isotopic signatures also reflect climate and plant physiological factors, and until better understood, these limit our ability to quantitatively interpret sedimentary lipid records. To advance our understanding of the influence of both ecosystem flora and climate (especially aridity) at the field scale, we analyzed the deuterium content of plant-waxes from sediments in 28 modern lakes located in watersheds which receive precipitation with a wide range of δD values, and are characterized by distinct vegetation types and regional climates. We found that the apparent isotopic fractionation (ɛa) between plant-wax n-alkanes and precipitation differs with watershed ecosystem type and structure, and decreases with increasing regional aridity as measured by enrichment of 2H and 18O associated with evaporation of lake waters. The most negative ɛa values represent signatures least affected by aridity; these values were: -125 ± 5 ‰ for tropical evergreen and dry forests, -130 ‰ for a temperate broadleaf forest, -120 ± 9 ‰ for the high-altitude tropical páramo (herbs, shrubs and grasses), and -98 ± 6 ‰ for North American montane gymnosperm forests. Minimum ɛa values reflect ecosystem-dependent differences in leaf water enrichment and soil evaporation. Slopes of lipid/lakewater isotopic enrichments differ slightly with ecosystem structure (i.e. open shrublands vs. forests) and overall are quite small (slopes = 0 to 2), indicating low sensitivity of lipid δD variations to aridity compared with coexisting lake waters. This finding provides an approach for reconstructing ancient precipitation signatures based on plant-wax

  13. Investment and operating costs of binary cycle geothermal power plants

    NASA Technical Reports Server (NTRS)

    Holt, B.; Brugman, J.

    1974-01-01

    Typical investment and operating costs for geothermal power plants employing binary cycle technology and utilizing the heat energy in liquid-dominated reservoirs are discussed. These costs are developed as a function of reservoir temperature. The factors involved in optimizing plant design are discussed. A relationship between the value of electrical energy and the value of the heat energy in the reservoir is suggested.

  14. Solar Power Plants: Dark Horse in the Energy Stable

    ERIC Educational Resources Information Center

    Caputo, Richard S.

    1977-01-01

    Twelfth in a series of reports on solar energy, this article provides information relating to the following questions: (1) economic cost of solar-thermal-electric central power plants; (2) cost comparison with nuclear or coal plants; (3) locations of this energy source; and (4) its use and social costs. (CS)

  15. A NUMERICAL study of solar chimney power plants in Tunisia

    NASA Astrophysics Data System (ADS)

    Bahar F, Attig; S, Guellouz M.; M, Sahraoui; S, Kaddeche

    2015-04-01

    A 3D CFD (Computational fluid dynamics) model of a Solar Chimney Power Plant (SCPP) was developed and validated through comparison with the experimental data of the Manzanares plant. Then, it was employed to study the SCPP performance for locations throughout Tunisia.

  16. Emissions estimation for lignite-fired power plants in Turkey

    SciTech Connect

    Nurten Vardar; Zehra Yumurtaci

    2010-01-15

    The major gaseous emissions (e.g. sulfur dioxide, nitrogen oxides, carbon dioxide, and carbon monoxide), some various organic emissions (e.g. benzene, toluene and xylenes) and some trace metals (e.g. arsenic, cobalt, chromium, manganese and nickel) generated from lignite-fired power plants in Turkey are estimated. The estimations are made separately for each one of the thirteen plants that produced electricity in 2007, because the lignite-fired thermal plants in Turkey are installed near the regions where the lignite is mined, and characteristics and composition of lignite used in each power plant are quite different from a region to another. Emission factors methodology is used for the estimations. The emission factors obtained from well-known literature are then modified depending on local moisture content of lignite. Emission rates and specific emissions (per MWh) of the pollutants from the plants without electrostatic precipitators and flue-gas desulfurization systems are found to be higher than emissions from the plants having electrostatic precipitators and flue -gas desulfurization systems. Finally a projection for the future emissions due to lignite-based power plants is given. Predicted demand for the increasing generation capacity based on the lignite-fired thermal power plant, from 2008 to 2017 is around 30%. 39 refs., 13 figs., 10 tabs.

  17. STARFIRE: a commercial tokamak fusion power plant study

    SciTech Connect

    Not Available

    1980-09-01

    This volume contains chapters on each of the following topics: (1) radioactivity, (2) heat transport and energy conversion, (3) tritium systems, (4) electrical storage and power supplies, (5) support structure, (6) cryogenics, (7) instrumentation and control, (8) maintenance and operation, (9) balance of plant design, (10) safety and environmental analysis, (11) economic analysis, and (12) plant construction.

  18. Phytomonitoring of air pollution around a thermal power plant

    NASA Astrophysics Data System (ADS)

    Agrawal, M.; Agrawal, S. B.

    This study was undertaken in order to assess the impact of air pollutants on vegetation around Obra thermal power plant (1550 M W capacity) in the Mirzapur district of Uttar Pradesh. For this purpose, Mangifera indica, Citrus medico and Bouganvillaea spectabilis plants, most common at all sites, were selected as test plants. Five study sites were selected northeast (prevailing wind) of the thermal power plant. A control site was also selected at a distance of 30 km north of Obra. Responses of plants to pollutants in terms of presence of foliar injury symptoms and changes in chlorophyll, ascorbic acid and S content were measured. These changes were correlated with ambient SO 2 and suspended particulate matter (SPM) concentrations and the amount of dust settled on leaf surfaces. The SO 2 and SPM concentrations were quite high in the immediate vicinity of the power plant. There also exists a direct relationship between the concentration of SPM in air and amount of dust deposited on leaf surfaces. Maximum dust deposition was observed on M. indica plants. The levels of foliar injury, chlorophyll and ascorbic acid were found to decrease and that of S increase in plants around the power plant in comparison to those growing at a control site. The magnitude of such changes was maximum in M. indica and minimum in C. medica. A species specific direct relationship between the increase in the amount of S and decrease in chlorophyll content was observed. The study suggests that differential sensitivity of plants to SO 2 may be used in evaluating the air pollution impact around emission sources and M. indica plants can be used as an indicator plant for quantifying biological changes.

  19. Space Solar Power Satellite Systems, Modern Small Satellites, and Space Rectenna

    NASA Astrophysics Data System (ADS)

    Bergsrud, Corey Alexis Marvin

    Space solar power satellite (SSPS) systems is the concept of placing large satellite into geostationary Earth orbit (GEO) to harvest and convert massive amounts of solar energy into microwave energy, and to transmit the microwaves to a rectifying antenna (rectenna) array on Earth. The rectenna array captures and converts the microwave power into usable power that is injected into the terrestrial electric grid for use. This work approached the microwave power beam as an additional source of power (with solar) for lower orbiting satellites. Assuming the concept of retrodirectivity, a GEO-SSPS antenna array system tracks and delivers microwave power to lower orbiting satellites. The lower orbiting satellites are equipped with a stacked photovoltaic (PV)/rectenna array hybrid power generation unit (HPGU) in order to harvest solar and/or microwave energy for on-board use during orbit. The area, and mass of the PV array part of the HPGU was reduced at about 32% beginning-of-life power in order to achieve the spacecraft power requirements. The HPGU proved to offer a mass decrease in the PGU, and an increase in mission life due to longer living component life of the rectenna array. Moreover, greater mission flexibility is achieved through a track and power delivery concept. To validate the potential advantages offered by a HPGU, a mission concept was presented that utilizes modern small satellites as technology demonstrators. During launch, a smaller power receiving "daughter" satellite sits inside a larger power transmitting "mother" satellite. Once separated from the launch vehicle the daughter satellite is ejected away from the mother satellite, and each satellite deploys its respective power transmitting or power receiving hardware's for experimentation. The concept of close proximity mission operations between the satellites is considered. To validate the technology of the space rectenna array part of the HPGU, six milestones were completed in the design. The first

  20. Low-Rank Coal Grinding Performance Versus Power Plant Performance

    SciTech Connect

    Rajive Ganguli; Sukumar Bandopadhyay

    2008-12-31

    The intent of this project was to demonstrate that Alaskan low-rank coal, which is high in volatile content, need not be ground as fine as bituminous coal (typically low in volatile content) for optimum combustion in power plants. The grind or particle size distribution (PSD), which is quantified by percentage of pulverized coal passing 74 microns (200 mesh), affects the pulverizer throughput in power plants. The finer the grind, the lower the throughput. For a power plant to maintain combustion levels, throughput needs to be high. The problem of particle size is compounded for Alaskan coal since it has a low Hardgrove grindability index (HGI); that is, it is difficult to grind. If the thesis of this project is demonstrated, then Alaskan coal need not be ground to the industry standard, thereby alleviating somewhat the low HGI issue (and, hopefully, furthering the salability of Alaskan coal). This project studied the relationship between PSD and power plant efficiency, emissions, and mill power consumption for low-rank high-volatile-content Alaskan coal. The emissions studied were CO, CO{sub 2}, NO{sub x}, SO{sub 2}, and Hg (only two tests). The tested PSD range was 42 to 81 percent passing 76 microns. Within the tested range, there was very little correlation between PSD and power plant efficiency, CO, NO{sub x}, and SO{sub 2}. Hg emissions were very low and, therefore, did not allow comparison between grind sizes. Mill power consumption was lower for coarser grinds.

  1. MODERN PROPAGATION TECHNIQUES- A CONSERVAION TOOL FOR CERTAIN ENDEMIC MEDICINAL PLANTS IN NILGIRI BIOSPHERE RESERVE

    PubMed Central

    Paulsamy, S.; Arumugasamy, K.

    2002-01-01

    There plant species of medicinal and vegatational fire break importance such as Berberis tinctoria, Elaegnus kologa and Rhodomyrtus tomentosa were identified in Nilgiri Biosphere Reserve and their eco-physiological behaviors were analysed. The study revealed that generally all the there species were having shorter period of seed dormacy, poor viability of seeds and higher mortality of saplings. These poor eco-physiological features are the major factors for their limited distribution, lesser population and weaker establishment. Hence to overcome these factors the modern reproductive strategies like tissue culture techniques are suggested. PMID:22557048

  2. Modern propagation techniques- a conservaion tool for certain endemic medicinal plants in nilgiri biosphere reserve.

    PubMed

    Paulsamy, S; Arumugasamy, K

    2002-01-01

    There plant species of medicinal and vegatational fire break importance such as Berberis tinctoria, Elaegnus kologa and Rhodomyrtus tomentosa were identified in Nilgiri Biosphere Reserve and their eco-physiological behaviors were analysed. The study revealed that generally all the there species were having shorter period of seed dormacy, poor viability of seeds and higher mortality of saplings. These poor eco-physiological features are the major factors for their limited distribution, lesser population and weaker establishment. Hence to overcome these factors the modern reproductive strategies like tissue culture techniques are suggested.

  3. Winter study of power plant effects

    SciTech Connect

    Patrinos, A.A.N.

    1980-10-01

    As a part of DOE's Meteorological Effects of Thermal Energy Releases (METER) program a field study was undertaken at the Bowen Electric Generating Plant (Plant Bowen) in December 1979. The study was a joint endeavor of Battelle Pacific Northwest Laboratories (PNL), Pennsylvania State University (PSU), and Oak Ridge National Laboratory (ORNL) with the main objective of determining the effects of the plant's smokestack effluents on aerosol characteristics and precipitation chemistry. Other objectives included studies of cooling tower temperature and humidity (T/h) plumes and drift drop concentrations. Conducted over a period of three weeks, the study involved an instrumented aircraft, pilot balloons, a tethered balloon system, a dense network of wetfall chemistry collectors and numerous ground- and tower-based meteorological instruments. Rainfall samples collected during the precipitation event of December 13, 1979, revealed some evidence of plume washout. The tethered balloon flights rarely detected the faint presence of the T/h plumes while the airborne measurements program concentrated on the study of SO/sub 2/ to sulfate conversion. A series of plume observations confirmed the suitability of the plant's windset for plume direction determinations.

  4. Oxygen-enriched air production for MHD power plants

    NASA Astrophysics Data System (ADS)

    1980-05-01

    An analysis of several of the cryogenic air separation process cycle variations and compression schemes designed to minimize net system power requirements for supplying pressurized, oxygen-enriched air to the combustor of a 2000 MWt (coal input) baseload MHD power plant is presented.

  5. Wind Power Plant Prediction by Using Neural Networks: Preprint

    SciTech Connect

    Liu, Z.; Gao, W.; Wan, Y. H.; Muljadi, E.

    2012-08-01

    This paper introduces a method of short-term wind power prediction for a wind power plant by training neural networks based on historical data of wind speed and wind direction. The model proposed is shown to achieve a high accuracy with respect to the measured data.

  6. VIEW OF LOCATION OF CHILDS POWER PLANT (SHOWING POWERHOUSE AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF LOCATION OF CHILDS POWER PLANT (SHOWING POWERHOUSE AND TRANSFORMER FRAMEWORK AT LEFT, BELOW POWER LINES AND THE MAINTENANCE AND RESIDENTIAL COMPOUND UPSTREAM TO RIGHT) ALONG VERDE RIVER FROM FS ROAD #502. LOOKING UPSTREAM (WEST-SOUTHWEST) - Childs-Irving Hydroelectric Project, Forest Service Road 708/502, Camp Verde, Yavapai County, AZ

  7. Fire protection system HMI in power plant

    NASA Astrophysics Data System (ADS)

    Zainal, Yuda Bakti

    2015-05-01

    The central power station, a place where there are machines that generate power, equipped with substation where the voltage is produced by the generator and increased to a certain voltage with a step up voltage transformer. Effect on transformer oil is very important, transformer may malfunction if the oil that serves as a coolant and insulator gradually decreased its ability, over time their use. Power transformer on usability is vital, so it needs to be maintained so that the temperature rise must be overcome by applying a temperature control that can inform and control the control valve to open the hydrant tap transformer cooling. HMI implemented to facilitate the operators cope with excess heat in the transformer using thermocouple censor. Test results show that the control transformer and monitored using PLC and HMI. Transformer can maintain the condition of a maximum of 80 degrees Celsius heat.

  8. 75 FR 9958 - Carolina Power & Light Company, Shearon Harris Nuclear Power Plant, Unit 1; Exemption

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-04

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Carolina Power & Light Company, Shearon Harris Nuclear Power Plant, Unit 1; Exemption 1.0 Background Carolina Power & Light Company (the licensee), now doing business as Progress Energy...

  9. 77 FR 13156 - Carolina Power & Light Company; Shearon Harris Nuclear Power Plant, Unit 1; Exemption

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-05

    ... COMMISSION Carolina Power & Light Company; Shearon Harris Nuclear Power Plant, Unit 1; Exemption 1.0 Background Carolina Power & Light Company, the licensee, doing business as Progress Energy Carolinas Inc., is...) 50.46, ``Acceptance criteria for emergency core cooling systems for light- water nuclear...

  10. 75 FR 80547 - Carolina Power & Light Company, Shearon Harris Nuclear Power Plant, Unit No. 1; Exemption

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-22

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Carolina Power & Light Company, Shearon Harris Nuclear Power Plant, Unit No. 1; Exemption 1.0 Background Carolina Power & Light Company (CP&L, the licensee) is the holder of Renewed Facility...

  11. More on duel purpose solar-electric power plants

    NASA Astrophysics Data System (ADS)

    Hall, F. F.

    Rationale for such plants is reviewed and plant elements are listed. Dual purpose solar-electric plants would generate both electricity and hydrogen gas for conversion to ammonia or methanol or direct use as a fuel of unsurpassed specific power and cleanliness. By-product oxygen would also be sold to owners of hydrogen age equipment. Evolved gasses at high pressure could be fired in compressorless gas turbines, boilerless steam-turbines or fuel-cell-inverter hydrogen-electric power drives of high thermal efficiency as well as in conventional internal combustion engines.

  12. Use of expert systems in nuclear power plants

    SciTech Connect

    Uhrig, R.E.

    1989-01-01

    The application of technologies, particularly expert systems, to the control room activities in a nuclear power plant has the potential to reduce operator error and increase plant safety, reliability, and efficiency. Furthermore, there are a large number of nonoperating activities (testing, routine maintenance, outage planning, equipment diagnostics, and fuel management) in which expert systems can increase the efficiency and effectiveness of overall plant and corporate operations. This document presents a number of potential applications of expert systems in the nuclear power field. 36 refs., 2 tabs.

  13. State regulation and power plant productivity: background and recommendations

    SciTech Connect

    Not Available

    1980-09-01

    This report was prepared by representatives of several state regulatory agencies. It is a guide to some of the activities currently under way in state agencies to promote increased availability of electrical generating power plants. Standard measures of plant performance are defined and the nature of data bases that report such measures is discussed. It includes reviews of current state, federal, and industry programs to enhance power plant productivity and provides detailed outlines of programs in effect in California, Illinois, Michigan, New York, North Carolina, Ohio, and Texas. A number of actions are presented that could be adopted by state regulatory agencies, depending on local conditions. They include: develop a commission position or policy statement to encourage productivity improvements by utilities; coordinate state efforts with ongoing industry and government programs to improve the acquisition of power plant performance data and the maintenance of quality information systems; acquire the capability to perform independent analyses of power plant productivity; direct the establishment of productivity improvement programs, including explicit performance objectives for both existing and planned power plants, and a performance program; establish a program of incentives to motivate productivity improvement activities; and participate in ongoing efforts at all levels and initiate new actions to promote productivity improvements.

  14. Model-free adaptive control of advanced power plants

    DOEpatents

    Cheng, George Shu-Xing; Mulkey, Steven L.; Wang, Qiang

    2015-08-18

    A novel 3-Input-3-Output (3.times.3) Model-Free Adaptive (MFA) controller with a set of artificial neural networks as part of the controller is introduced. A 3.times.3 MFA control system using the inventive 3.times.3 MFA controller is described to control key process variables including Power, Steam Throttle Pressure, and Steam Temperature of boiler-turbine-generator (BTG) units in conventional and advanced power plants. Those advanced power plants may comprise Once-Through Supercritical (OTSC) Boilers, Circulating Fluidized-Bed (CFB) Boilers, and Once-Through Supercritical Circulating Fluidized-Bed (OTSC CFB) Boilers.

  15. 16. Photocopy of a photograph1921 EASTSIDE POWER PLANT LOOKING NORTH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    16. Photocopy of a photograph--1921 EASTSIDE POWER PLANT LOOKING NORTH - American Falls Water, Power & Light Company, Island Power Plant, Snake River, below American Falls Dam, American Falls, Power County, ID

  16. Small solar thermal electric power plants with early commercial potential

    NASA Technical Reports Server (NTRS)

    Jones, H. E.; Bisantz, D. J.; Clayton, R. N.; Heiges, H. H.; Ku, A. C.

    1979-01-01

    Cost-effective small solar thermal electric power plants (1- to 10-MW nominal size) offer an attractive way of helping the world meet its future energy needs. The paper describes the characteristics of a conceptual near-term plant (about 1 MW) and a potential 1990 commercial version. The basic system concept is one in which steam is generated using two-axis tracking, parabolic dish, and point-focusing collectors. The steam is transported through low-loss piping to a central steam turbine generator unit where it is converted to electricity. The plants have no energy storage and their output power level varies with the solar insolation level. This system concept, which is firmly based on state-of-the-art technology, is projected to offer one of the fastest paths for U.S. commercialization of solar thermal electric power plants through moderate technology advances and mass production.

  17. Environmental requirements at hydroelectric power plants

    SciTech Connect

    Cada, G.F.; Francfort, J.E.

    1993-12-31

    Hydroelectric power is the most mature and widely implemented of the renewable energy technologies. The energy of flowing water has been used to perform work directly since ancient times, and the use of hydropower turbines to generate electricity traces back to the 19th century. Two commonly used turbine types, the Francis and Kaplan turbines, are essentially refinements of the simple reaction turbine of Hero of Alexandria, dating from about 100 B.C. (NAS 1976). Hydroelectric power production provides over 10% of the net electrical generation in the US, more than petroleum or natural gas and far more than the other renewable energy technologies combined. On a regional basis, hydroelectric power represents 14% of the net electrical power generation in the Rocky Mountain states and nearly 63% along the Pacific Coast. Those states that have the largest percentages of their electricity generated by hydropower (e.g., Idaho, Oregon, Montana, and Washington) also tend to have the lowest average cost of electricity per kilowatt-hour.

  18. Shuttle orbter fuel cell power plant

    NASA Technical Reports Server (NTRS)

    1983-01-01

    This is one of the three fuel cells that make up the generating system which provides electrical power to the space shuttle orbiter. Each unit measures 14 inches (35 centimeters) high, 15 inches (38 centimeters) wide, 40 inches (101 centimeters) long and weighs 200 pounds.

  19. Submerged passively-safe power plant

    SciTech Connect

    Herring, J.S.

    1991-12-31

    The invention as presented consists of a submerged passively-safe power station including a pressurized water reactor capable of generating at least 600 MW of electricity, encased in a double hull vessel, and provides fresh water by using the spent thermal energy in a multistage flash desalination process.

  20. Submerged passively-safe power plant

    DOEpatents

    Herring, J. Stephen

    1993-01-01

    The invention as presented consists of a submerged passively-safe power station including a pressurized water reactor capable of generating at least 600 MW of electricity, encased in a double hull vessel, and provides fresh water by using the spent thermal energy in a multistage flash desalination process.

  1. Submerged passively-safe power plant

    DOEpatents

    Herring, J.S.

    1993-09-21

    The invention as presented consists of a submerged passively-safe power station including a pressurized water reactor capable of generating at least 600 MW of electricity, encased in a double hull vessel, and provides fresh water by using the spent thermal energy in a multistage flash desalination process. 8 figures.

  2. Evaluation of Hybrid Power Plants using Biomass, Photovoltaics and Steam Electrolysis for Hydrogen and Power Generation

    NASA Astrophysics Data System (ADS)

    Petrakopoulou, F.; Sanz, J.

    2014-12-01

    Steam electrolysis is a promising process of large-scale centralized hydrogen production, while it is also considered an excellent option for the efficient use of renewable solar and geothermal energy resources. This work studies the operation of an intermediate temperature steam electrolyzer (ITSE) and its incorporation into hybrid power plants that include biomass combustion and photovoltaic panels (PV). The plants generate both electricity and hydrogen. The reference -biomass- power plant and four variations of a hybrid biomass-PV incorporating the reference biomass plant and the ITSE are simulated and evaluated using exergetic analysis. The variations of the hybrid power plants are associated with (1) the air recirculation from the electrolyzer to the biomass power plant, (2) the elimination of the sweep gas of the electrolyzer, (3) the replacement of two electric heaters with gas/gas heat exchangers, and (4) the replacement two heat exchangers of the reference electrolyzer unit with one heat exchanger that uses steam from the biomass power plant. In all cases, 60% of the electricity required in the electrolyzer is covered by the biomass plant and 40% by the photovoltaic panels. When comparing the hybrid plants with the reference biomass power plant that has identical operation and structure as that incorporated in the hybrid plants, we observe an efficiency decrease that varies depending on the scenario. The efficiency decrease stems mainly from the low effectiveness of the photovoltaic panels (14.4%). When comparing the hybrid scenarios, we see that the elimination of the sweep gas decreases the power consumption due to the elimination of the compressor used to cover the pressure losses of the filter, the heat exchangers and the electrolyzer. Nevertheless, if the sweep gas is used to preheat the air entering the boiler of the biomass power plant, the efficiency of the plant increases. When replacing the electric heaters with gas-gas heat exchangers, the

  3. Thermal storage requirements for parabolic dish solar power plants

    NASA Technical Reports Server (NTRS)

    Wen, L.; Steele, H.

    1980-01-01

    The cost effectiveness of a high temperature thermal storage system is investigated for a representative parabolic dish solar power plant. The plant supplies electrical power in accordance with a specific, seasonally varying demand profile. The solar power received by the plant is supplemented by power from fuel combustion. The cost of electricity generated by the solar power plant is calculated, using the cost of mass-producible subsystems (specifically, parabolic dishes, receivers, and power conversion units) now being designed for this type of solar plant. The trade-off between fuel and thermal storage is derived in terms of storage effectiveness, the cost of storage devices, and the cost of fuel. Thermal storage requirements, such as storage capacity, storage effectiveness, and storage cost are established based on the cost of fuel and the overall objective of minimizing the cost of the electricity produced by the system. As the cost of fuel increases at a rate faster than general inflation, thermal storage systems in the $40 to $70/kWthr range could become cost effective in the near future.

  4. Layouts of trigeneration plants for centralized power supply

    NASA Astrophysics Data System (ADS)

    Klimenko, A. V.; Agababov, V. S.; Il'ina, I. P.; Rozhnatovskii, V. D.; Burmakina, A. V.

    2016-06-01

    One of the possible and, under certain conditions, sufficiently effective methods for reducing consumption of fuel and energy resources is the development of plants for combined generation of different kinds of energy. In the power industry of Russia, the facilities have become widespread in which the cogeneration technology, i.e., simultaneous generation of electric energy and heat, is implemented. Such facilities can use different plants, viz., gas- and steam-turbine plants and gas-reciprocating units. Cogeneration power supply can be further developed by simultaneously supplying the users not only with electricity and heat but also with cold. Such a technology is referred to as trigeneration. To produce electricity and heat, trigeneration plants can use the same facilities that are used in cogeneration, namely, gas-turbine plants, steam-turbine plants, and gas-reciprocating units. Cold can be produced in trigeneration plants using thermotransformers of various kinds, such as vaporcompression thermotransformers, air thermotransformers, and absorption thermotransformers, that operate as chilling machines. The thermotransformers can also be used in the trigeneration plants to generate heat. The main advantage of trigeneration plants based on gas-turbine plants or gas-reciprocating units over cogeneration plants is the increased thermodynamic power supply efficiency owing to utilization of the waste-gas heat not only in winter but also in summer. In the steam-turbine-based trigeneration plants equipped with absorption thermotransformers, the enhancement of the thermodynamic power supply efficiency is determined by the increase in the heat extraction load during the nonheating season. The article presents calculated results that demonstrate higher thermodynamic efficiency of a gas-turbine-based plant with an absorption thermotransformer that operates in the trigeneration mode compared with a cogeneration gas-turbine plant. The structural arrangements of trigeneration

  5. Scenarios for low carbon and low water electric power plant ...

    EPA Pesticide Factsheets

    In the water-energy nexus, water use for the electric power sector is critical. Currently, the operational phase of electric power production dominates the electric sector's life cycle withdrawal and consumption of fresh water resources. Water use associated with the fuel cycle and power plant equipment manufacturing phase is substantially lower on a life cycle basis. An outstanding question is: how do regional shifts to lower carbon electric power mixes affect the relative contribution of the upstream life cycle water use? To test this, we examine a range of scenarios comparing a baseline with scenarios of carbon reduction and water use constraints using the MARKet ALlocation (MARKAL) energy systems model with ORD's 2014 U.S. 9-region database (EPAUS9r). The results suggest that moving toward a low carbon and low water electric power mix may increase the non-operational water use. In particular, power plant manufacturing water use for concentrating solar power, and fuel cycle water use for biomass feedstock, could see sharp increases under scenarios of high deployment of these low carbon options. Our analysis addresses the following questions. First, how does moving to a lower carbon electricity generation mix affect the overall regional electric power water use from a life cycle perspective? Second, how does constraining the operational water use for power plants affect the mix, if at all? Third, how does the life cycle water use differ among regions under

  6. Terrestrial Solar Thermal Power Plants: On the Verge of Commercialization

    NASA Astrophysics Data System (ADS)

    Romero, M.; Martinez, D.; Zarza, E.

    2004-12-01

    Solar Thermal Power Plants (STPP) with optical concentration technologies are important candidates for providing the bulk solar electricity needed within the next few decades, even though they still suffer from lack of dissemination and confidence among citizens, scientists and decision makers. Concentrating solar power is represented nowadays at pilot-scale and demonstration-scale by four technologies, parabolic troughs, linear Fresnel reflector systems, power towers or central receiver systems, and dish/engine systems, which are ready to start up in early commercial/demonstration plants. Even though, at present those technologies are still three times more expensive than intermediate-load fossil thermal power plants, in ten years from now, STPP may already have reduced production costs to ranges competitive. An important portion of this reduction (up to 42%) will be obtained by R&D and technology advances in materials and components, efficient integration schemes with thermodynamic cycles, highly automated control and low-cost heat storage systems.

  7. Power plant siting and reuse of old sites

    SciTech Connect

    Oven, H.S.

    1995-12-31

    The State of Florida passed the Florida Electrical Power Plant Siting Act in 1973. The Act has been in effect since July 1, 1973. Power plants that were operating or had permits to construct were defined as existing power plants. This Act was designed to provide a one-stop Site of Florida. The Act also provided for coordination of long range planning by electric utilities and local and state planning agencies. The legislative intent was to consider the present and predicted growth in electric power demands and to provide for a centrally coordinated state approval system with respect to each proposed site. It was recognized that selection of sites and transmission corridors would have a significant impact on the welfare of the population, location and growth of industry and the use of the state`s natural resources. The decision to approve or deny would be based on standards and recommendations of the reviewing agencies.

  8. Dynamic interaction between an OTEC power plant and a power grid. Final report

    SciTech Connect

    Not Available

    1982-08-31

    The objectives of the research reported are: to identify and resolve potential technical problems that may arise from the incorporation of an OTEC power plant in the existing generation mix of Puerto Rico and to develop the tools and to identify the technical resources needed for dynamic analysis of island power systems to which OTEC power plants provide a substantial portion of the load demand. The issues addressed are system modelling and data gathering, network simplification, selection of OTEC plant site and power system, stability analysis, and economic dispatch when OTEC power plants contribute substantially to the island's load. The slow dynamics of the OTEC plant make it a reference for the rest of the power system during a transient, but this slowness is a drawback in terms of system recovery from fault-induced transients. It is found that simple dynamic models can, in most instances, describe the transient behavior of both the OTEC plant and the island's power system, but it was not possible to reduce the non-OTEC portion of the power system to a single generation point and a single load. (LEW)

  9. Optimal design of a pilot OTEC power plant in Taiwan

    SciTech Connect

    Tseng, C.H.; Kao, K.Y. ); Yang, J.C. )

    1991-12-01

    In this paper, an optimal design concept has been utilized to find the best designs for a complex and large-scale ocean thermal energy conversion (OTEC) plant. THe OTEC power plant under this study is divided into three major subsystems consisting of power subsystem, seawater pipe subsystem, and containment subsystem. The design optimization model for the entire OTEC plant is integrated from these sub-systems under the considerations of their own various design criteria and constraints. The mathematical formulations of this optimization model for the entire OTEC plant are described. The design variables, objective function, and constraints for a pilot plant under the constraints of the feasible technologies at this stage in Taiwan have been carefully examined and selected.

  10. Investigation of valve failure problems in LWR power plants

    SciTech Connect

    1980-04-01

    An analysis of component failures from information in the computerized Nuclear Safety Information Center (NSIC) data bank shows that for both PWR and BWR plants the component category most responsible for approximately 19.3% of light water reactor (LWR) power plant shutdowns. This investigation by Burns and Roe, Inc. shows that the greatest cause of shutdowns in LWRs due to valve failures is leakage from valve stem packing. Both BWR plants and PWR plants have stem leakage problems (BWRs, 21% and PWRs, 34%).

  11. Death, Disease, and Dirty Power. Mortality and health damage due to air pollution from power plants

    SciTech Connect

    Schneider, Conrad G.

    2000-10-01

    The Clean Air Task Force, on behalf of the Clear the Air campaign, commissioned Abt Associates to quantify the health impacts of fine particle air pollution, commonly known as soot, from power plants, as well as the expected benefits (avoidable deaths, hospitalizations, etc.) of policies that would reduce fine particle pollution from power plants. The health effects analyzed include death, hospitalizations, emergency room visits, asthma attacks, and a variety of lesser respiratory symptoms. This report summarizes the findings of the Abt Associates study, reviews the contribution of power plants to fine particle pollution, and discusses policies that will reduce power plant fine particle pollution and thus save thousands of lives. Key findings include: Fine particle pollution from US power plants cuts short the lives of over 30,000 people each year. In more polluted areas, fine particle pollution can shave several years off its victims' lives. Hundreds of thousands of Americans suffer from asthma attacks, cardiac problems and upper and lower respiratory problems associated with fine particles from power plants. The elderly, children, and those with respiratory disease are most severely impacted by fine particle pollution from power plants. Metropolitan areas with large populations near coal-fired power plants feel their impacts most acutely - their attributable death rates are much higher than in areas with few or no coal-fired power plants. Power plants outstrip all other polluters as the largest source of sulfates - the major component of fine particle pollution - in the US Approximately two-thirds (over 18,000) of the deaths due to fine particle pollution from power plants could be avoided by implementing policies that cut power plant sulfur dioxide and nitrogen oxide pollution 75 percent below 1997 emission levels. Fine particle pollution is responsible for increased risk of death and shortened life spans. Abt Associates' findings are based on a body of well

  12. Electric power plant emissions and public health

    SciTech Connect

    O'Connor, A.B.; Roy, C.

    2008-02-15

    The generation of electric power is one important source of pollutants such as mercury, sulfur dioxide, nitrogen oxides, and fine particulate matter that can affect the respiratory, cardiovascular, and central nervous systems and cause pregnancy complications. But protecting people from environmental health hazards has become increasingly complex. Air pollutants are often invisible and travel many miles virtually undetected. Nurses can play a critical role in preventive strategies, as well as in the national debate on energy production and dependence on fossil fuels.

  13. Information presentation in power plant control rooms

    NASA Astrophysics Data System (ADS)

    Kautto, A.

    1984-11-01

    The organization and presentation of information in a pressurized water reactor control room is discussed. Design of the alert function so as to reduce the number of alarms during plant shutdown, e.g., during the refuelling or maintenance period and during a disturbance, is considered. Validation of the Critical Function Monitoring System on a training simulator is described. Functional decomposition of information is shown to be helpful in designing displays. Criteria for designing displays, the structure of the information presentation system, and the main interactions are presented.

  14. [Risk communication in construction of new nuclear power plant].

    PubMed

    He, Gui-Zhen; Lü, Yong-Long

    2013-03-01

    Accompanied by construction of new nuclear power plants in the coming decades in China, risk management has become increasingly politicized and contentious. Nuclear risk communication is a critical component in helping individuals prepare for, respond to, and recover from nuclear power emergencies. It was discussed that awareness of trust and public attitudes are important determinants in nuclear power risk communication and management. However, there is limited knowledge about how to best communicate with at-risk populations around nuclear power plant in China. To bridge this gap, this study presented the attitudinal data from a field survey in under-building Haiyang nuclear power plant, Shandong Province to measure public support for and opposition to the local construction of nuclear power plant. The paper discussed the structure of the communication process from a descriptive point of view, recognizing the importance of trust and understanding the information openness. The results showed that decision-making on nuclear power was dominated by a closed "iron nuclear triangle" of national governmental agencies, state-owned nuclear enterprises and scientific experts. Public participation and public access to information on nuclear constructions and assessments have been marginal and media was a key information source. As information on nuclear power and related risks is very restricted in China, Chinese citizens (51%) tend to choose the government as the most trustworthy source. More respondents took the negative attitudes toward nuclear power plant construction around home. It drew on studies about risk communication to develop some guidelines for successful risk communication. The conclusions have vast implications for how we approach risk management in the future. The findings should be of interest to state and local emergency managers, community-based organizations, public health researchers, and policy makers.

  15. BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS

    SciTech Connect

    R. Viswanathan; K. Coleman; J. Shingledecker; J. Sarver; G. Stanko; W. Mohn; M. Borden; S. Goodstine; I. Perrin

    2004-07-30

    The U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) have recently initiated a project aimed at identifying, evaluating, and qualifying the materials needed for the construction of the critical components of coal-fired boilers capable of operating at much higher efficiencies than current generation of supercritical plants. This increased efficiency is expected to be achieved principally through the use of ultrasupercritical steam conditions (USC). The project goal initially was to assess/develop materials technology that will enable achieving turbine throttle steam conditions of 760 C (1400 F)/35 MPa (5000 psi), although this goal for the main steam temperature had to be revised down to 732 C (1350 F), based on a preliminary assessment of material capabilities. The project is intended to build further upon the alloy development and evaluation programs that have been carried out in Europe and Japan. Those programs have identified ferritic steels capable of meeting the strength requirements of USC plants up to approximately 620 C (1150 F) and nickel-based alloys suitable up to 700 C (1300 F). In this project, the maximum temperature capabilities of these and other available high-temperature alloys are being assessed to provide a basis for materials selection and application under a range of conditions prevailing in the boiler. This report provides a quarterly status report for the period of April to June 30, 2004.

  16. BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS

    SciTech Connect

    R. Viswanathan; K. Coleman; J. Shingledecker; J. Sarver; G. Stanko; M. Borden; W. Mohn; S. Goodstine; I. Perrin

    2005-01-31

    The U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) have recently initiated a project aimed at identifying, evaluating, and qualifying the materials needed for the construction of the critical components of coal-fired boilers capable of operating at much higher efficiencies than current generation of supercritical plants. This increased efficiency is expected to be achieved principally through the use of ultrasupercritical steam conditions (USC). The project goal initially was to assess/develop materials technology that will enable achieving turbine throttle steam conditions of 760 C (1400 F)/35 MPa (5000 psi), although this goal for the main steam temperature had to be revised down to 732 C (1350 F), based on a preliminary assessment of material capabilities. The project is intended to build further upon the alloy development and evaluation programs that have been carried out in Europe and Japan. Those programs have identified ferritic steels capable of meeting the strength requirements of USC plants up to approximately 620 C (1150 F) and nickel-based alloys suitable up to 700 C (1300 F). In this project, the maximum temperature capabilities of these and other available high-temperature alloys are being assessed to provide a basis for materials selection and application under a range of conditions prevailing in the boiler. This report provides a quarterly status report for the period of July 1 to September 30, 2004.

  17. BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS

    SciTech Connect

    K. Coleman; R. Viswanathan; J. Shingledecker; J. Sarver; G. Stanko; W. Mohn; M. Borden; S. Goodstine; I. Perrin

    2004-01-23

    The U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) have recently initiated a project aimed at identifying, evaluating, and qualifying the materials needed for the construction of the critical components of coal-fired boilers capable of operating at much higher efficiencies than current generation of supercritical plants. This increased efficiency is expected to be achieved principally through the use of ultrasupercritical steam conditions (USC). The project goal initially was to assess/develop materials technology that will enable achieving turbine throttle steam conditions of 760 C (1400 F)/35 MPa (5000 psi), although this goal for the main steam temperature had to be revised down to 732 C (1350 F), based on a preliminary assessment of material capabilities. The project is intended to build further upon the alloy development and evaluation programs that have been carried out in Europe and Japan. Those programs have identified ferritic steels capable of meeting the strength requirements of USC plants up to approximately 620 C (1150 F) and nickel-based alloys suitable up to 700 C (1300 F). In this project, the maximum temperature capabilities of these and other available high-temperature alloys are being assessed to provide a basis for materials selection and application under a range of conditions prevailing in the boiler. This report provides a quarterly status report for the period of October 1 to December 30, 2003.

  18. BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS

    SciTech Connect

    R. Viswanathan; K. Coleman; J. Shingledecker; J. Sarver; G. Stanko; W. Mohn; M. Borden; S. Goodstine; I. Perrin

    2004-04-23

    The U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) have recently initiated a project aimed at identifying, evaluating, and qualifying the materials needed for the construction of the critical components of coal-fired boilers capable of operating at much higher efficiencies than current generation of supercritical plants. This increased efficiency is expected to be achieved principally through the use of ultrasupercritical steam conditions (USC). The project goal initially was to assess/develop materials technology that will enable achieving turbine throttle steam conditions of 760 C (1400 F)/35 MPa (5000 psi), although this goal for the main steam temperature had to be revised down to 732 C (1350 F), based on a preliminary assessment of material capabilities. The project is intended to build further upon the alloy development and evaluation programs that have been carried out in Europe and Japan. Those programs have identified ferritic steels capable of meeting the strength requirements of USC plants up to approximately 620 C (1150 F) and nickel-based alloys suitable up to 700 C (1300 F). In this project, the maximum temperature capabilities of these and other available high-temperature alloys are being assessed to provide a basis for materials selection and application under a range of conditions prevailing in the boiler. This report provides a quarterly status report for the period of October 1 to December 30, 2003.

  19. Boiler Materials For Ultrasupercritical Coal Power Plants

    SciTech Connect

    R. Viswanathan; K. Coleman; J. Shingledecker; J. Sarver; G. Stanko; M. Borden; W. Mohn; S. Goodstine; I. Perrin

    2006-09-30

    The U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) have recently initiated a project aimed at identifying, evaluating, and qualifying the materials needed for the construction of the critical components of coal-fired boilers capable of operating at much higher efficiencies than current generation of supercritical plants. This increased efficiency is expected to be achieved principally through the use of ultrasupercritical steam conditions (USC). A limiting factor in this can be the materials of construction. The project goal is to assess/develop materials technology that will enable achieving turbine throttle steam conditions of 760 C (1400 F)/35 MPa (5000 psi). This goal seems achievable based on a preliminary assessment of material capabilities. The project is further intended to build further upon the alloy development and evaluation programs that have been carried out in Europe and Japan. Those programs have identified ferritic steels capable of meeting the strength requirements of USC plants up to approximately 620 C (1150 F) and nickel-based alloys suitable up to 700 C (1300 F). In this project, the maximum temperature capabilities of these and other available high-temperature alloys are being assessed to provide a basis for materials selection and application under a range of conditions prevailing in the boiler. This report provides a quarterly status report for the period of July 1 to September 30, 2006.

  20. Boiler Materials for Ultrasupercritical Coal Power Plants

    SciTech Connect

    R. Viswanathan; K. Coleman; J. Shingledecker; J. Sarver; G. Stanko; M. Borden; W. Mohn; S. Goodstine; I. Perrin

    2006-01-31

    The U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) have recently initiated a project aimed at identifying, evaluating, and qualifying the materials needed for the construction of the critical components of coal-fired boilers capable of operating at much higher efficiencies than current generation of supercritical plants. This increased efficiency is expected to be achieved principally through the use of ultrasupercritical steam conditions (USC). A limiting factor in this can be the materials of construction. The project goal is to assess/develop materials technology that will enable achieving turbine throttle steam conditions of 760 C (1400 F)/35 MPa (5000 psi). This goal seems achievable based on a preliminary assessment of material capabilities. The project is further intended to build further upon the alloy development and evaluation programs that have been carried out in Europe and Japan. Those programs have identified ferritic steels capable of meeting the strength requirements of USC plants up to approximately 620 C (1150 F) and nickel-based alloys suitable up to 700 C (1300 F). In this project, the maximum temperature capabilities of these and other available high-temperature alloys are being assessed to provide a basis for materials selection and application under a range of conditions prevailing in the boiler. This report provides a quarterly status report for the period of October 1 to December 30, 2005.

  1. Boiler Materials for Ultrasupercritical Coal Power Plants

    SciTech Connect

    R. Viswanathan; J. Sarver; M. Borden; K. Coleman; J. Blough; S. Goodstine; R.W. Swindeman; W. Mohn; I. Perrin

    2003-04-21

    The U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) have recently initiated a project aimed at identifying, evaluating, and qualifying the materials needed for the construction of the critical components of coal-fired boilers capable of operating at much higher efficiencies than current generation of supercritical plants. This increased efficiency is expected to be achieved principally through the use of ultrasupercritical steam conditions (USC). The project goal initially was to assess/develop materials technology that will enable achieving turbine throttle steam conditions of 760 C (1400 F)/35 MPa (5000 psi), although this goal for the main steam temperature had to be revised down to 732 C (1350 F), based on a preliminary assessment of material capabilities. The project is intended to build further upon the alloy development and evaluation programs that have been carried out in Europe and Japan. Those programs have identified ferritic steels capable of meeting the strength requirements of USC plants up to approximately 620 C (1150 F) and nickel-based alloys suitable up to 700 C (1300 F). In this project, the maximum temperature capabilities of these and other available high-temperature alloys are being assessed to provide a basis for materials selection and application under a range of conditions prevailing in the boiler. This report provides a quarterly status report for the period of July 1 to September 30, 2004.

  2. BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS

    SciTech Connect

    R. Viswanathan; K. Coleman; J. Shingledecker; J. Sarver; G. Stanko; M. Borden; W. Mohn; S. Goodstine; I. Perrin

    2005-04-27

    The U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) have recently initiated a project aimed at identifying, evaluating, and qualifying the materials needed for the construction of the critical components of coal-fired boilers capable of operating at much higher efficiencies than current generation of supercritical plants. This increased efficiency is expected to be achieved principally through the use of ultrasupercritical steam conditions (USC). The project goal initially was to assess/develop materials technology that will enable achieving turbine throttle steam conditions of 760 C (1400 F)/35 MPa (5000 psi), although this goal for the main steam temperature had to be revised down to 732 C (1350 F), based on a preliminary assessment of material capabilities. The project is intended to build further upon the alloy development and evaluation programs that have been carried out in Europe and Japan. Those programs have identified ferritic steels capable of meeting the strength requirements of USC plants up to approximately 620 C (1150 F) and nickel-based alloys suitable up to 700 C (1300 F). In this project, the maximum temperature capabilities of these and other available high-temperature alloys are being assessed to provide a basis for materials selection and application under a range of conditions prevailing in the boiler. This report provides a quarterly status report for the period of July 1 to September 30, 2004.

  3. Boiler Materials for Ultrasupercritical Coal Power Plants

    SciTech Connect

    R. Viswanathan; K. Coleman; J. Shingledecker; J. Sarver; G. Stanko; M. Borden; W. Mohn; S. Goodstine; I. Perrin

    2006-07-17

    The U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) have recently initiated a project aimed at identifying, evaluating, and qualifying the materials needed for the construction of the critical components of coal-fired boilers capable of operating at much higher efficiencies than current generation of supercritical plants. This increased efficiency is expected to be achieved principally through the use of ultrasupercritical steam conditions (USC). A limiting factor in this can be the materials of construction. The project goal is to assess/develop materials technology that will enable achieving turbine throttle steam conditions of 760 C (1400 F)/35 MPa (5000 psi). This goal seems achievable based on a preliminary assessment of material capabilities. The project is further intended to build further upon the alloy development and evaluation programs that have been carried out in Europe and Japan. Those programs have identified ferritic steels capable of meeting the strength requirements of USC plants up to approximately 620 C (1150 F) and nickel-based alloys suitable up to 700 C (1300 F). In this project, the maximum temperature capabilities of these and other available high-temperature alloys are being assessed to provide a basis for materials selection and application under a range of conditions prevailing in the boiler. This report provides a quarterly status report for the period of April 1 to June 30, 2006.

  4. Unit-sizing of hydro power plant

    NASA Astrophysics Data System (ADS)

    Maruzewski, P.; Rogeaux, C.; Laurier, P.

    2012-11-01

    In developing countries with great and unexploited renewable energy potential, Governments can exploit local resources for electricity supply, substantial energy savings and sustainable socio-economic development of these own countries. The decision-making process regarding the choice of renewable energy sources for energy supply in these countries is multidimensional, made up of a number of aspects at different levels such as economic, technical, environmental, and social. Therefore, reaching clear and unambiguous solutions may be very difficult. It is from this difficulty that the need arises to develop a tool for the design of hydro energy sources for electricity. The work involved in seeking a compromise solution requires an adequate technical assessment based on multiple criteria methods. One of the criteria is the assessment of the appropriate size of the hydropower plant. This paper presents the state-of-art of preliminary sizing of hydropower plant for the given renewable energy potential. The main step consists of carefully selecting and sizing the innovative hydraulic units based upon the suitability of the flow and head range. Since the flow and head data have now been confirmed, the potential annual energy generation can be properly assessed.

  5. BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS

    SciTech Connect

    R. Viswanathan; K. Coleman; J. Shingledecker; J. Sarver; G. Stanko; M. Borden; W. Mohn; S. Goodstine; I. Perrin

    2005-10-27

    The U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) have recently initiated a project aimed at identifying, evaluating, and qualifying the materials needed for the construction of the critical components of coal-fired boilers capable of operating at much higher efficiencies than current generation of supercritical plants. This increased efficiency is expected to be achieved principally through the use of ultrasupercritical steam conditions (USC). A limiting factor in this can be the materials of construction. The project goal is to assess/develop materials technology that will enable achieving turbine throttle steam conditions of 760 C (1400 F)/35 MPa (5000 psi). This goal seems achievable based on a preliminary assessment of material capabilities. The project is further intended to build further upon the alloy development and evaluation programs that have been carried out in Europe and Japan. Those programs have identified ferritic steels capable of meeting the strength requirements of USC plants up to approximately 620 C (1150 F) and nickel-based alloys suitable up to 700 C (1300 F). In this project, the maximum temperature capabilities of these and other available high-temperature alloys are being assessed to provide a basis for materials selection and application under a range of conditions prevailing in the boiler. This report provides a quarterly status report for the period of July 1 to September 30, 2005.

  6. BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS

    SciTech Connect

    R. Viswanathan; K. Coleman; J. Shingledecker; J. Sarver; G. Stanko; M. Borden; W. Mohn; S. Goodstine; I. Perrin

    2004-10-30

    The U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) have recently initiated a project aimed at identifying, evaluating, and qualifying the materials needed for the construction of the critical components of coal-fired boilers capable of operating at much higher efficiencies than current generation of supercritical plants. This increased efficiency is expected to be achieved principally through the use of ultrasupercritical steam conditions (USC). The project goal initially was to assess/develop materials technology that will enable achieving turbine throttle steam conditions of 760 C (1400 F)/35 MPa (5000 psi), although this goal for the main steam temperature had to be revised down to 732 C (1350 F), based on a preliminary assessment of material capabilities. The project is intended to build further upon the alloy development and evaluation programs that have been carried out in Europe and Japan. Those programs have identified ferritic steels capable of meeting the strength requirements of USC plants up to approximately 620 C (1150 F) and nickel-based alloys suitable up to 700 C (1300 F). In this project, the maximum temperature capabilities of these and other available high-temperature alloys are being assessed to provide a basis for materials selection and application under a range of conditions prevailing in the boiler. This report provides a quarterly status report for the period of April to June 30, 2004.

  7. BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS

    SciTech Connect

    R. Viswanathan; K. Coleman; J. Shingledecker; J. Sarver; G. Stanko; M. Borden; W. Mohn; S. Goodstine; I. Perrin

    2005-08-01

    The U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) have recently initiated a project aimed at identifying, evaluating, and qualifying the materials needed for the construction of the critical components of coal-fired boilers capable of operating at much higher efficiencies than current generation of supercritical plants. This increased efficiency is expected to be achieved principally through the use of ultrasupercritical steam conditions (USC). A limiting factor in this can be the materials of construction. The project goal is to assess/develop materials technology that will enable achieving turbine throttle steam conditions of 760 C (1400 F)/35 MPa (5000 psi). This goal seems achievable based on a preliminary assessment of material capabilities. The project is further intended to build further upon the alloy development and evaluation programs that have been carried out in Europe and Japan. Those programs have identified ferritic steels capable of meeting the strength requirements of USC plants up to approximately 620 C (1150 F) and nickel-based alloys suitable up to 700 C (1300 F). In this project, the maximum temperature capabilities of these and other available high-temperature alloys are being assessed to provide a basis for materials selection and application under a range of conditions prevailing in the boiler. This report provides a quarterly status report for the period of April 1 to June 30, 2005.

  8. How to Avoid Severe Incidents at Pumped Storage Power Plants

    NASA Astrophysics Data System (ADS)

    Yasuda, Masashi; Watanabe, Satoshi

    2016-11-01

    Pumped storage is now increasing its importance as the most powerful and reliable tool for stabilizing the electrical network, especially under the increase of intermittent power sources like wind-power and solar-power. However, pumped storage power plants have generally more machinery troubles than the conventional hydropower plants and sometimes they encountered unexpected severe incidents having long-term outage and a considerable restoration cost. The present paper provides some study results about general tendencies of machinery troubles in pumped storage, some examples of severe incidents mainly about the electro-mechanical troubles but also about the flood and fire, and possible scenarios which may lead into a severe result. Finally, it provides lessons learned and some recommendations to avoid severe incidents based on experiences.

  9. Regulatory Guidance for Lightning Protection in Nuclear Power Plants

    SciTech Connect

    Kisner, Roger A; Wilgen, John B; Ewing, Paul D; Korsah, Kofi; Antonescu, Christina E

    2006-01-01

    Abstract - Oak Ridge National Laboratory (ORNL) was engaged by the U.S. Nuclear Regulatory Commission (NRC) Office of Nuclear Regulatory Research (RES) to develop the technical basis for regulatory guidance to address design and implementation practices for lightning protection systems in nuclear power plants (NPPs). Lightning protection is becoming increasingly important with the advent of digital and low-voltage analog systems in NPPs. These systems have the potential to be more vulnerable than older analog systems to the resulting power surges and electromagnetic interference (EMI) when lightning strikes facilities or power lines. This paper discusses the technical basis for guidance to licensees and applicants covered in Regulatory Guide (RG) 1.204, Guidelines for Lightning Protection of Nuclear Power Plants, issued August 2005. RG 1.204 describes guidance for practices that are acceptable to the NRC staff for protecting nuclear power structures and systems from direct lightning strikes and the resulting secondary effects.

  10. Structural Materials and Fuels for Space Power Plants

    NASA Technical Reports Server (NTRS)

    Bowman, Cheryl; Busby, Jeremy; Porter, Douglas

    2008-01-01

    A fission reactor combined with Stirling convertor power generation is one promising candidate in on-going Fission Surface Power (FSP) studies for future lunar and Martian bases. There are many challenges for designing and qualifying space-rated nuclear power plants. In order to have an affordable and sustainable program, NASA and DOE designers want to build upon the extensive foundation in nuclear fuels and structural materials. This talk will outline the current Fission Surface Power program and outline baseline design options for a lunar power plant with an emphasis on materials challenges. NASA first organized an Affordable Fission Surface Power System Study Team to establish a reference design that could be scrutinized for technical and fiscal feasibility. Previous papers and presentations have discussed this study process in detail. Considerations for the reference design included that no significant nuclear technology, fuels, or material development were required for near term use. The desire was to build upon terrestrial-derived reactor technology including conventional fuels and materials. Here we will present an overview of the reference design, Figure 1, and examine the materials choices. The system definition included analysis and recommendations for power level and life, plant configuration, shielding approach, reactor type, and power conversion type. It is important to note that this is just one concept undergoing refinement. The design team, however, understands that materials selection and improvement must be an integral part of the system development.

  11. Nuclear Power Plant NDE Challenges - Past, Present, and Future

    SciTech Connect

    Doctor, S. R.

    2007-03-21

    The operating fleet of U.S. nuclear power plants was built to fossil plant standards (of workmanship, not fitness for service) and with good engineering judgment. Fortuitously, those nuclear power plants were designed using defense-in-depth concepts, with nondestructive examination (NDE) an important layer, so they can tolerate almost any component failure and still continue to operate safely. In the 30+ years of reactor operation, many material failures have occurred. Unfortunately, NDE has not provided the reliability to detect degradation prior to initial failure (breaching the pressure boundary). However, NDE programs have been improved by moving from prescriptive procedures to performance demonstrations that quantify inspection effectiveness for flaw detection probability and sizing accuracy. Other improvements include the use of risk-informed strategies to ensure that reactor components contributing the most risk receive the best and most frequent inspections. Another challenge is the recent surge of interest in building new nuclear power plants in the United States to meet increasing domestic energy demand. New construction will increase the demand for NDE but also offers the opportunity for more proactive inspections. This paper reviews the inception and evolution of NDE for nuclear power plants over the past 40 years, recounts lessons learned, and describes the needs remaining as existing plants continue operation and new construction is contemplated.

  12. ERC product improvement activities for direct fuel cell power plants

    SciTech Connect

    Bentley, C.; Carlson, G.; Doyon, J.

    1995-08-01

    This program is designed to advance the carbonate fuel cell technology from the current power plant demonstration status to the commercial design in an approximately five-year period. The specific objectives which will allow attainment of the overall program goal are: (1) Define market-responsive power plant requirements and specifications, (2) Establish the design for a multifuel, low-cost, modular, market-responsive power plant, (3) Resolve power plant manufacturing issues and define the design for the commercial manufacturing facility, (4) Define the stack and BOP equipment packaging arrangement and define module designs, (5) Acquire capability to support developmental testing of stacks and BOP equipment as required to prepare for commercial design, and (6) Resolve stack and BOP equipment technology issues and design, build, and field test a modular commercial prototype power plant to demonstrate readiness for commercial entry. A seven-task program, dedicated to attaining objective(s) in the areas noted above, was initiated in December 1994. Accomplishments of the first six months are discussed in this paper.

  13. Integrated simulation of the Escatron PFBC power plant

    SciTech Connect

    Romeo, L.M.; Cortes, C.; Martinez, D.

    1997-12-31

    The study of the phenomena in fluidized beds has a great importance for the knowledge and development of FBC technologies. But nowadays, and from an operational point of view, the interest lies not only in fluidized bed behavior, but also in the influence of fluidized bed variables in the rest of the power plant. Although there is a great variety of designs and studies on FBC power stations (AFBC, CFBC and PFBC, with different types of cycles and first and second generation fluidized beds), there is a lack of detailed studies considering the interactions between the bed variables and the performance of the cycles (steam and gas). In order to improve the knowledge from this particular standpoint, an integrated model of the Escatron PFBC 80 MWe power plant (Spain) has been developed. The model has been validated with actual plant data, being able to predict the behavior of the plant as a whole. To do this, it estimates the most important variables of the fluidized bed (i.e., bed temperature profiles, bed density, fuel feed rate, heat transfer, entrainment, gas and steam flow rates), as well as the operating parameters of the power cycles (i.e., steam and gas turbine loads, temperatures and pressures). A practical application of this model is the evaluation of operational and design changes affecting the response of the fluidized bed, the steam and gas cycles, and, in turn, the power plant efficiency and availability.

  14. ERC product improvement activities for direct fuel cell power plants

    SciTech Connect

    Maru, H.C.; Farooque, M.; Bentley, C.

    1995-12-01

    This program is designed to advance the carbonate fuel cell technology from the current power plant demonstration status to the commercial design in an approximately five-year period. The specific objectives which will allow attainment of the overall program goal are: (1) Define market-responsive power plant requirements and specifications, (2) Establish the design for a multifuel, low-cost, modular, market-responsive power plant, (3) Resolve power plant manufacturing issues and define the design for the commercial manufacturing facility, (4) Define the stack and BOP equipment packaging arrangement and define module designs, (5) Acquire capability to support developmental testing of stacks and BOP equipment as required to prepare for commercial design, and (6) Resolve stack and BOP equipment technology issues and design, build, and field test a modular commercial prototype power plant to demonstrate readiness for commercial entry. A seven-task program, dedicated to attaining objective(s) in the areas noted above, was initiated in December 1994. Accomplishments of the first six months are discussed in this paper.

  15. Insights into the Societal Risk of Nuclear Power Plant Accidents.

    PubMed

    Denning, Richard; Mubayi, Vinod

    2017-01-01

    The elements of societal risk from a nuclear power plant accident are clearly illustrated by the Fukushima accident: land contamination, long-term relocation of large numbers of people, loss of productive farm area, loss of industrial production, and significant loss of electric capacity. NUREG-1150 and other studies have provided compelling evidence that the individual health risk of nuclear power plant accidents is effectively negligible relative to other comparable risks, even for people living in close proximity to a plant. The objective of this study is to compare the societal risk of nuclear power plant accidents to that of other events to which the public is exposed. We have characterized the monetized societal risk in the United States from major societally disruptive events, such as hurricanes, in the form of a complementary cumulative distribution function. These risks are compared with nuclear power plant risks, based on NUREG-1150 analyses and new MACCS code calculations to account for differences in source terms determined in the more recent SOARCA study. A candidate quantitative societal objective is discussed for potential adoption by the NRC. The results are also interpreted with regard to the acceptability of nuclear power as a major source of future energy supply.

  16. Parametric analysis of closed cycle magnetohydrodynamic (MHD) power plants

    NASA Technical Reports Server (NTRS)

    Owens, W.; Berg, R.; Murthy, R.; Patten, J.

    1981-01-01

    A parametric analysis of closed cycle MHD power plants was performed which studied the technical feasibility, associated capital cost, and cost of electricity for the direct combustion of coal or coal derived fuel. Three reference plants, differing primarily in the method of coal conversion utilized, were defined. Reference Plant 1 used direct coal fired combustion while Reference Plants 2 and 3 employed on site integrated gasifiers. Reference Plant 2 used a pressurized gasifier while Reference Plant 3 used a ""state of the art' atmospheric gasifier. Thirty plant configurations were considered by using parametric variations from the Reference Plants. Parametric variations include the type of coal (Montana Rosebud or Illinois No. 6), clean up systems (hot or cold gas clean up), on or two stage atmospheric or pressurized direct fired coal combustors, and six different gasifier systems. Plant sizes ranged from 100 to 1000 MWe. Overall plant performance was calculated using two methodologies. In one task, the channel performance was assumed and the MHD topping cycle efficiencies were based on the assumed values. A second task involved rigorous calculations of channel performance (enthalpy extraction, isentropic efficiency and generator output) that verified the original (task one) assumptions. Closed cycle MHD capital costs were estimated for the task one plants; task two cost estimates were made for the channel and magnet only.

  17. Electricity: From Tabletop to Power Plant

    NASA Astrophysics Data System (ADS)

    Moran, Timothy

    2009-01-01

    While electricity is central to our daily lives, it remains "black box" technology to most students. They know that electricity is produced somewhere and that it costs money, but they do not have personal experience with the operation and scale of the machines that provide it. Fortunately, electricity generation can be added to the more basic circuit topics (series, parallel, current, voltage, etc.) with only a small investment in equipment. Providing students with hands-on experience with small power sources will help them make wise decisions about electricity.

  18. Virtual taphonomy using synchrotron tomographic microscopy reveals cryptic features and internal structure of modern and fossil plants.

    PubMed

    Smith, Selena Y; Collinson, Margaret E; Rudall, Paula J; Simpson, David A; Marone, Federica; Stampanoni, Marco

    2009-07-21

    While more commonly applied in zoology, synchrotron radiation X-ray tomographic microscopy (SRXTM) is well-suited to nondestructive study of the morphology and anatomy of both fossil and modern plants. SRXTM uses hard X-rays and a monochromatic light source to provide high-resolution data with little beam-hardening, resulting in slice data with clear boundaries between materials. Anatomy is readily visualized, including various planes of section from a single specimen, as clear as in traditional histological sectioning at low magnifications. Thus, digital sectioning of rare or difficult material is possible. Differential X-ray attenuation allows visualization of different layers or chemistries to enable virtual 3-dimensional (3D) dissections of material. Virtual potential fossils can be visualized and digital tissue removal reveals cryptic underlying morphology. This is essential for fossil identification and for comparisons between assemblages where fossils are preserved by different means. SRXTM is a powerful approach for botanical studies using morphology and anatomy. The ability to gain search images in both 2D and 3D for potential fossils gives paleobotanists a tool--virtual taphonomy--to improve our understanding of plant evolution and paleobiogeography.

  19. Virtual taphonomy using synchrotron tomographic microscopy reveals cryptic features and internal structure of modern and fossil plants

    PubMed Central

    Smith, Selena Y.; Collinson, Margaret E.; Rudall, Paula J.; Simpson, David A.; Marone, Federica; Stampanoni, Marco

    2009-01-01

    While more commonly applied in zoology, synchrotron radiation X-ray tomographic microscopy (SRXTM) is well-suited to nondestructive study of the morphology and anatomy of both fossil and modern plants. SRXTM uses hard X-rays and a monochromatic light source to provide high-resolution data with little beam-hardening, resulting in slice data with clear boundaries between materials. Anatomy is readily visualized, including various planes of section from a single specimen, as clear as in traditional histological sectioning at low magnifications. Thus, digital sectioning of rare or difficult material is possible. Differential X-ray attenuation allows visualization of different layers or chemistries to enable virtual 3-dimensional (3D) dissections of material. Virtual potential fossils can be visualized and digital tissue removal reveals cryptic underlying morphology. This is essential for fossil identification and for comparisons between assemblages where fossils are preserved by different means. SRXTM is a powerful approach for botanical studies using morphology and anatomy. The ability to gain search images in both 2D and 3D for potential fossils gives paleobotanists a tool—virtual taphonomy—to improve our understanding of plant evolution and paleobiogeography. PMID:19574457

  20. Power lines: Urban space, energy development and the making of the modern Southwest

    NASA Astrophysics Data System (ADS)

    Needham, Todd Andrew

    "Power Lines: Urban Space, Energy Development, and the Making of the Modern Southwest" explores the social and environmental transformation of the postwar Southwest and the resulting disputes between urban boosters, federal officials, Native Americans, and environmental activists. The dissertation focuses on the infrastructure built to provide the burgeoning populations of Phoenix, Los Angeles, and other Southwestern cities with electricity. This infrastructure allowed metropolitan boosters in the Southwest to attract Cold War defense manufacturing and to build a new suburban landscape even as industrialization on Indian lands provided electricity for those landscapes. Tracing the transition of electrical generation from a dispersed geography relying on local resources to a centralized geography utilizing primarily coal from Navajo land, "Power Lines" demonstrates the increasing centrality of Indian lands and labor to the metropolitan Southwest. Paying close attention to these networks reveals the far-reaching changes caused by postwar metropolitan growth. "Power Lines" challenges understandings of urban space that neglect the material resources that allow cities to "live." As the nation's cities and suburbs became increasingly energy-intensive, electrical utilities reached deep into the metropolitan periphery, transforming landscapes hundreds of miles from city centers into urban space. The construction of the new "geography of power" in the Southwest also reflects the impact of growth liberalism on postwar growth, as federal money funded suburban, manufacturing, and infrastructure developments. This pursuit of growth produced new political struggles, both as the development of energy resources conflicted with emerging environmentalist sensibilities and as American Indians increasingly resented the industrialization of their land for the benefit of others. By the 1970s, the simultaneous pursuit and criticism of growth came to define the modern Southwest. The

  1. System Definition and Analysis: Power Plant Design and Layout

    SciTech Connect

    None, None

    1996-05-01

    This is the Topical report for Task 6.0, Phase 2 of the Advanced Turbine Systems(ATS) Program. The report describes work by Westinghouse and the subcontractor, Gilbert/Commonwealth, in the fulfillment of completing Task 6.0. A conceptual design for critical and noncritical components of the gas fired combustion turbine system was completed. The conceptual design included specifications for the flange to flange gas turbine, power plant components, and balance of plant equipment. The ATS engine used in the conceptual design is an advanced 300 MW class combustion turbine incorporating many design features and technologies required to achieve ATS Program goals. Design features of power plant equipment and balance of plant equipment are described. Performance parameters for these components are explained. A site arrangement and electrical single line diagrams were drafted for the conceptual plant. ATS advanced features include design refinements in the compressor, inlet casing and scroll, combustion system, airfoil cooling, secondary flow systems, rotor and exhaust diffuser. These improved features, integrated with prudent selection of power plant and balance of plant equipment, have provided the conceptual design of a system that meets or exceeds ATS program emissions, performance, reliability-availability-maintainability, and cost goals.

  2. Emissions of mercury and other trace elements from coal-fired power plants in Japan.

    PubMed

    Ito, Shigeo; Yokoyama, Takahisa; Asakura, Kazuo

    2006-09-01

    To evaluate trace element emissions from modern coal-fired power plants into the atmospheric environment in Japan, trace elements in the coal used in electric utility boilers, stack concentrations, emission rates and emission ratios of coal-fired power plants, and proportions of trace elements in coal-fired power plants were studied. The elements were As, B, Be, Cd, Co, Cr, F, Hg, Mn, Ni, Pb, Sb, Se and V, which are designated in the Law of Pollutant Release and Transfer Register. The particulate trace elements were collected in an electrostatic precipitator and a wet desulfurization scrubber. Emissions into the atmosphere were lower than 1% of the quantity in coal, but the volatile trace elements showed somewhat higher emission ratios. For mercury, the mean concentration in coal was 0.045 ppm, the mean emission rate was 4.4 microg/kW h, and the mean emission ratio was 27%, the highest ratio among all elements in this study. The total annual emission of mercury from coal-fired power plants of the electric power industry in Japan was estimated to be 0.63 t/y. On the basis of these data, the atmospheric environment loads from a coal-fired power station were investigated. The calculation of stack gas dispersion showed that maximum annual mean ground level concentrations were in the order of 10(-2) to 10(-5) of the background concentrations, and that the adverse effect of the emissions from the coal-fired power station was small.

  3. Nuclear power plant safety related pump issues

    SciTech Connect

    Colaccino, J.

    1996-12-01

    This paper summarizes of a number of pump issues raised since the Third NRC/ASME Symposium on Valve and Pump Testing in 1994. General issues discussed include revision of NRC Inspection Procedure 73756, issuance of NRC Information Notice 95-08 on ultrasonic flow meter uncertainties, relief requests for tests that are determined by the licensee to be impractical, and items in the ASME OM-1995 Code, Subsection ISTB, for pumps. The paper also discusses current pump vibration issues encountered in relief requests and plant inspections - which include smooth running pumps, absolute vibration limits, and vertical centrifugal pump vibration measurement requirements. Two pump scope issues involving boiling water reactor waterlog and reactor core isolation cooling pumps are also discussed. Where appropriate, NRC guidance is discussed.

  4. The use of fly ash the thermal power plants in the construction

    NASA Astrophysics Data System (ADS)

    Fediuk, R. S.; Yushin, A. M.

    2015-10-01

    The problems of ecological and radiation safety of the construction of man-made waste like fly ash thermal power plants were researched. The chemical composition of TPPs ashes of Primorsky Territory was studied, defined their specific effective activity of natural radionuclides. The most modern research methods were used - differential thermal analysis, thermogravimetry, X-ray analysis. It was revealed that the ash of the Primorskaya TPP and Partizanskaya TPP has exceed the permissible parameters of radioactivity, so not suitable for use in construction. Ashes of Vladivostok TPP-2 and Artem TPP of Primorsky Region on parameters radioactivity and chemical composition have suitable for use as a filler in the concrete.

  5. Correlation and reassessment of the OTEC plant power cycle. Final report

    SciTech Connect

    Heydt, G.T.; Leidenfrost, W.; McDonald, A.T.; Ogborn, L.L.

    1984-07-01

    The purpose of this effort is to investigate alternative system concepts and component configurations to improve performance of the OTEC power system. Reliability, Availability, and Maintainability (RAM) characteristics were examined along with various methods of converting energy into utility-grade energy. A research program consisting of five tasks was developed: development of engineering guidelines for OTEC systems; thermal and mechanical evaluation of components; evaluation of electrical system requirements; evaluation of operating strategies for OTEC plants; and application of modern technology to OTEC design choices. These studies are discussed in detail along with recommendations and conclusions.

  6. Intelligent Component Monitoring for Nuclear Power Plants

    SciTech Connect

    Lefteri Tsoukalas

    2010-07-30

    Reliability and economy are two major concerns for a nuclear power generation system. Next generation nuclear power reactors are being developed to be more reliable and economic. An effective and efficient surveillance system can generously contribute toward this goal. Recent progress in computer systems and computational tools has made it necessary and possible to upgrade current surveillance/monitoring strategy for better performance. For example, intelligent computing techniques can be applied to develop algorithm that help people better understand the information collected from sensors and thus reduce human error to a new low level. Incidents incurred from human error in nuclear industry are not rare and have been proven costly. The goal of this project is to develop and test an intelligent prognostics methodology for predicting aging effects impacting long-term performance of nuclear components and systems. The approach is particularly suitable for predicting the performance of nuclear reactor systems which have low failure probabilities (e.g., less than 10-6 year-). Such components and systems are often perceived as peripheral to the reactor and are left somewhat unattended. That is, even when inspected, if they are not perceived to be causing some immediate problem, they may not be paid due attention. Attention to such systems normally involves long term monitoring and possibly reasoning with multiple features and evidence, requirements that are not best suited for humans.

  7. Insights into deep-time terrestrial carbon cycle processes from modern plant isotope ecology

    NASA Astrophysics Data System (ADS)

    Sheldon, N. D.; Smith, S. Y.

    2012-12-01

    While the terrestrial biosphere and soils contain much of the readily exchangeable carbon on Earth, how those reservoirs function on long time scales and at times of higher atmospheric CO2 and higher temperatures is poorly understood, which limits our ability to make accurate future predictions of their response to anthropogenic change. Recent data compilation efforts have outlined the response of plant carbon isotope compositions to a variety of environmental factors including precipitation amount and timing, elevation, and latitude. The compilations involve numerous types of plants, typically only found at a limited number of climatic conditions. Here, we expand on those efforts by examining the isotopic response of specific plant groups found both globally and across environmental gradients including: 1) ginkgo, 2) conifers, and 3) C4 grasses. Ginkgo is presently widely distributed as a cultivated plant and the ginkgoalean fossil record spans from the Permian to the present, making it an ideal model organism to understand climatic influence on carbon cycling both in modern and ancient settings. Ginkgo leaves have been obtained from a range of precipitation conditions (400-2200 mm yr-1), including dense sampling from individuals and populations in both Mediterranean and temperate climate areas and samples of different organs and developmental stages. Ginkgo carbon isotope results plot on the global C3 plant array, are consistent among trees at single sites, among plant organs, and among development stages, making ginkgo a robust recorder of both climatic conditions and atmospheric δ13C. In contrast, a climate-carbon isotope transect in Arizona highlights that conifers (specifically, pine and juniper) record large variability between organs and have a very different δ13C slope as a function of climate than the global C3 plant array, while C4 plants have a slope with the opposite sign as a function of climate. This has a number of implications for paleo

  8. Technological renovation of thermal power plants as a long-term check factor of electricity price growth

    NASA Astrophysics Data System (ADS)

    Veselov, F. V.; Novikova, T. V.; Khorshev, A. A.

    2015-12-01

    The paper focuses on economic aspects of the Russian thermal generation sector's renovation in a competitive market environment. Capabilities of the existing competitive electricity and capacity pricing mechanisms, created during the wholesale market reform, to ensure the wide-scale modernization of thermal power plants (TPPs) are estimated. Some additional stimulating measures to focus the investment process on the renovation of the thermal generation sector are formulated, and supplementing and supporting costs are assessed. Finally, the systemic effect of decelerating wholesale electricity prices caused by efficiency improvements at thermal power plants is analyzed depending on the scales of renovation and fuel prices.

  9. Fiber optic sensors for nuclear power plant applications

    SciTech Connect

    Kasinathan, Murugesan; Sosamma, Samuel; BabuRao, Chelamchala; Murali, Nagarajan; Jayakumar, Tammana

    2012-05-17

    Studies have been carried out for application of Raman Distributed Temperature Sensor (RDTS) in Nuclear Power Plants (NPP). The high temperature monitoring in sodium circuits of Fast Breeder Reactor (FBR) is important. It is demonstrated that RDTS can be usefully employed in monitoring sodium circuits and in tracking the percolating sodium in the surrounding insulation in case of any leak. Aluminum Conductor Steel Reinforced (ACSR) cable is commonly used as overhead power transmission cable in power grid. The suitability of RDTS for detecting defects in ACSR overhead power cable, is also demonstrated.

  10. Fiber optic sensors for nuclear power plant applications

    NASA Astrophysics Data System (ADS)

    Kasinathan, Murugesan; Sosamma, Samuel; BabuRao, Chelamchala; Murali, Nagarajan; Jayakumar, Tammana

    2012-05-01

    Studies have been carried out for application of Raman Distributed Temperature Sensor (RDTS) in Nuclear Power Plants (NPP). The high temperature monitoring in sodium circuits of Fast Breeder Reactor (FBR) is important. It is demonstrated that RDTS can be usefully employed in monitoring sodium circuits and in tracking the percolating sodium in the surrounding insulation in case of any leak. Aluminum Conductor Steel Reinforced (ACSR) cable is commonly used as overhead power transmission cable in power grid. The suitability of RDTS for detecting defects in ACSR overhead power cable, is also demonstrated.

  11. Reliability analysis of a utility-scale solar power plant

    NASA Astrophysics Data System (ADS)

    Kolb, G. J.

    1992-10-01

    This paper presents the results of a reliability analysis for a solar central receiver power plant that employs a salt-in-tube receiver. Because reliability data for a number of critical plant components have only recently been collected, this is the first time a credible analysis can be performed. This type of power plant will be built by a consortium of western US utilities led by the Southern California Edison Company. The 10 MW plant is known as Solar Two and is scheduled to be on-line in 1994. It is a prototype which should lead to the construction of 100 MW commercial-scale plants by the year 2000. The availability calculation was performed with the UNIRAM computer code. The analysis predicted a forced outage rate of 5.4 percent and an overall plant availability, including scheduled outages, of 91 percent. The code also identified the most important contributors to plant unavailability. Control system failures were identified as the most important cause of forced outages. Receiver problems were rated second with turbine outages third. The overall plant availability of 91 percent exceeds the goal identified by the US utility study. This paper discuses the availability calculation and presents evidence why the 91 percent availability is a credible estimate.

  12. Dynamic simulation models and performance of an OTEC power plant

    SciTech Connect

    Wormley, D.N.; Carmichael, D.A.; Umans, S.

    1983-08-01

    In this study, the aspects of plant performance which influence the potential for integration of an OTEC plant into a utility grid are considered. A set of simulation models have been developed for the evaluation of OTEC dynamic plant performance. A detailed nonlinear dynamic model has been forumlated which is useful for the assessment of component performance including heat exchangers, turbines, pumps and control systems. A reduced order linear model has been developed which is useful for studies of plant stability, control system development and transient performance of the plant connected to a utility grid. This model is particularly suitable for transient dynamic studies of an OTEC plant as a unit in a utility grid. A quasi-steady power availability model has also been developed which is useful to determine plant ouput power as a function of ocean thermal gradients so that the influence of daily and seasonal temperature variations may be easily computed. The study has found no fundamental technical barriers which would prohibit the interconnection of an OTEC plant into a utility grid. It has also shown that detailed consideration of turbine nozzle angle control is merited and such a control has the potential to provide superior performance in comparison to turbine bypass valve control.

  13. Gasification CFD Modeling for Advanced Power Plant Simulations

    SciTech Connect

    Zitney, S.E.; Guenther, C.P.

    2005-09-01

    In this paper we have described recent progress on developing CFD models for two commercial-scale gasifiers, including a two-stage, coal slurry-fed, oxygen-blown, pressurized, entrained-flow gasifier and a scaled-up design of the PSDF transport gasifier. Also highlighted was NETL’s Advanced Process Engineering Co-Simulator for coupling high-fidelity equipment models with process simulation for the design, analysis, and optimization of advanced power plants. Using APECS, we have coupled the entrained-flow gasifier CFD model into a coal-fired, gasification-based FutureGen power and hydrogen production plant. The results for the FutureGen co-simulation illustrate how the APECS technology can help engineers better understand and optimize gasifier fluid dynamics and related phenomena that impact overall power plant performance.

  14. Aging management of containment structures in nuclear power plants

    SciTech Connect

    Naus, D.J.; Oland, C.B.; Ellingwood, B.R.; Graves, H.L. III; Norris, W.E.

    1994-12-31

    Research is being conducted by ORNL under US Nuclear Regulatory Commission (USNRC) sponsorship to address aging management of nuclear power plant containment and other safety-related structures. Documentation is being prepared to provide the USNRC with potential structural safety issues and acceptance criteria for use in continued service evaluations of nuclear power plants. Accomplishments include development of a Structural Materials Information Center containing data and information on the time variation of 144 material properties under the influence of pertinent environmental stressors or aging factors, evaluation of models for potential concrete containment degradation factors, development of a procedure to identify critical structures and degradation factors important to aging management, evaluations of nondestructive evaluation techniques. assessments of European and North American repair practices for concrete, review of parameters affecting corrosion of metals embedded in concrete, and development of methodologies for making current condition assessments and service life predictions of new or existing reinforced concrete structures in nuclear power plants.

  15. Solar power plant performance evaluation: simulation and experimental validation

    NASA Astrophysics Data System (ADS)

    Natsheh, E. M.; Albarbar, A.

    2012-05-01

    In this work the performance of solar power plant is evaluated based on a developed model comprise photovoltaic array, battery storage, controller and converters. The model is implemented using MATLAB/SIMULINK software package. Perturb and observe (P&O) algorithm is used for maximizing the generated power based on maximum power point tracker (MPPT) implementation. The outcome of the developed model are validated and supported by a case study carried out using operational 28.8kW grid-connected solar power plant located in central Manchester. Measurements were taken over 21 month's period; using hourly average irradiance and cell temperature. It was found that system degradation could be clearly monitored by determining the residual (the difference) between the output power predicted by the model and the actual measured power parameters. It was found that the residual exceeded the healthy threshold, 1.7kW, due to heavy snow in Manchester last winter. More important, the developed performance evaluation technique could be adopted to detect any other reasons that may degrade the performance of the P V panels such as shading and dirt. Repeatability and reliability of the developed system performance were validated during this period. Good agreement was achieved between the theoretical simulation and the real time measurement taken the online grid connected solar power plant.

  16. Integration of ocean thermal energy conversion power plants with existing power systems

    SciTech Connect

    Arunasalam, N.

    1986-01-01

    The problem of integrating an Ocean Thermal Energy Conversion (OTEC) power plant with existing power systems is studied. A nonlinear model of an OTEC power system is developed. The dynamics of the large local induction motor load, and the coaxial cable connection to the mainland are included in the model. The effect of the motor load and the coaxial cable on the steady-state stability of the OTEC power plant is investigated using linearized analysis. The transient stability of the OTEC system is investigated through simulation. The contribution made by the motor load and the coaxial cable to the transient stability is studied. The occurrence of self excitation phenomena is analyzed using linear methods and simulation. The effects of wave and vessel motion on the electrical power output of the OTEC plant is investigated.

  17. Human Systems Interface and Plant Modernization Process: Technical Basis and Human Factors Review Guidance

    DTIC Science & Technology

    2000-03-01

    inspection and investigation reports; licens-ee event reports; and Commission papers and The NUREG series comprises (1) brochures their attachments...nuclear power plant (NPP), and (2) performing HSI reviews undertaken as part of an inspection or other type of regulatory review involving HSI design or...described in three main documents, NUREGs 0800, 0711, and 0700. In addition, several NRC inspection manuals are relevant. To provide the reader with

  18. Power plant VI - Sodium-air

    NASA Astrophysics Data System (ADS)

    Genier, R.

    A sodium-air cycle central receiver solar electric generating plant is described. The system is designed for liquid sodium to be heated to 750 C in the central receiver heat exchangers, pumped down to the tower base to transfer heat to an air loop, then be returned to the receiver aperture. The air loop would heat to 730 C, insufficient for efficient operation of turbines, and would require a further heating by a supplementary burner to temperatures of 950 C. An efficiency of 35.4 percent is projected for a total output of 10,620 kW. The flux is furnished by a field of 743 heliostats with a total surface area of 36,425 sq m, and received by a tower 120 m tall outfitted with a receiver inclined 45 deg from the horizontal. The sodium-air heat exchange is envisioned to take place in a tank of air interpenetrated by continuous, closed, boustrophedonic loops filled with superheated sodium.

  19. Annual Energy Production (AEP) optimization for tidal power plants based on Evolutionary Algorithms - Swansea Bay Tidal Power Plant AEP optimization

    NASA Astrophysics Data System (ADS)

    Kontoleontos, E.; Weissenberger, S.

    2016-11-01

    In order to be able to predict the maximum Annual Energy Production (AEP) for tidal power plants, an advanced AEP optimization procedure is required for solving the optimization problem which consists of a high number of design variables and constraints. This efficient AEP optimization procedure requires an advanced optimization tool (EASY software) and an AEP calculation tool that can simulate all different operating modes of the units (bidirectional turbine, pump and sluicing mode). The EASY optimization software is a metamodel-assisted Evolutionary Algorithm (MAEA) that can be used in both single- and multi-objective optimization problems. The AEP calculation tool, developed by ANDRITZ HYDRO, in combination with EASY is used to maximize the tidal annual energy produced by optimizing the plant operation throughout the year. For the Swansea Bay Tidal Power Plant project, the AEP optimization along with the hydraulic design optimization and the model testing was used to evaluate all different hydraulic and operating concepts and define the optimal concept that led to a significant increase of the AEP value. This new concept of a triple regulated “bi-directional bulb pump turbine” for Swansea Bay Tidal Power Plant (16 units, nominal power above 320 MW) along with its AEP optimization scheme will be presented in detail in the paper. Furthermore, the use of an online AEP optimization during operation of the power plant, that will provide the optimal operating points to the control system, will be also presented.

  20. PSF Analysis Support System for Nuclear Power Plants

    SciTech Connect

    Satoko Sakajo; Takashi Nakagawa; Naotaka Terashita

    2002-07-01

    Research during recent years has revealed that human errors tend to reflect the quality of performance shaping factors (PSFs). Therefore, from the viewpoint of reducing human error, PSFs, which include error-likely equipment design, written procedures, and other factors, must be analyzed and improved. This paper provides methodologies to identify and qualify the potential PSFs included in tasks at a nuclear power plant (NPP). The methodologies were applied to actual plants. (authors)

  1. Energy conversion/power plant cost-cutting

    SciTech Connect

    Nichols, K.

    1996-12-31

    This presentation by Kenneth Nichols, Barber-Nichols, Inc., is about cost-cutting in the energy conversion phase and power plant phase of geothermal energy production. Mr. Nichols discusses several ways in which improvements could be made, including: use of more efficient compressors and other equipment as they become available, anticipating reservoir resource decline and planning for it, running smaller binary systems independent of human operators, and designing plants so that they are relatively maintenance-free.

  2. Lines of development of tower-type solar power plants

    NASA Astrophysics Data System (ADS)

    Henseler, H.-J.

    1981-10-01

    Problem areas in the development of tower-type solar power plants are discussed. The mode of functioning of such plants is briefly reviewed and the economic shortcomings of solar energy devices are summarized. Technical aspects and requirements of the system devices are summarized. Technical aspects and requirements of the system components are detailed, including the reflector, the receiver, the circuit, the tower, and the storage.

  3. Automated chemical monitoring in new projects of nuclear power plant units

    NASA Astrophysics Data System (ADS)

    Lobanok, O. I.; Fedoseev, M. V.

    2013-07-01

    The development of automated chemical monitoring systems in nuclear power plant units for the past 30 years is briefly described. The modern level of facilities used to support the operation of automated chemical monitoring systems in Russia and abroad is shown. Hardware solutions suggested by the All-Russia Institute for Nuclear Power Plant Operation (which is the General Designer of automated process control systems for power units used in the AES-2006 and VVER-TOI Projects) are presented, including the structure of additional equipment for monitoring water chemistry (taking the Novovoronezh 2 nuclear power plant as an example). It is shown that the solutions proposed with respect to receiving and processing of input measurement signals and subsequent construction of standard control loops are unified in nature. Simultaneous receipt of information from different sources for ensuring that water chemistry is monitored in sufficient scope and with required promptness is one of the problems that have been solved successfully. It is pointed out that improved quality of automated chemical monitoring can be supported by organizing full engineering follow-up of the automated chemical monitoring system's equipment throughout its entire service life.

  4. Flexibility of CCS Power Plants and Transport Systems

    NASA Astrophysics Data System (ADS)

    Nimtz, Michael; Krautz, Hans-Joachim

    2013-04-01

    Growing shares of renewable energy in the German power grid urge fossil fuelled power plants to reduce load or to shut down completely with increasing frequency and amplitude. Shut down, load changes and the following restart or ramp-up often have to be carried out as fast as possible. To realize such fast transitions is already complicated and expensive for conventional power plants - if further measures for CO2 reduction are applied, the task is even harder. Capture equipment and transport systems will add further process steps as well as additional masses of fluids and construction material. This will result in a change of time constants and a generally slower system reaction on changes in parameters like load, temperature and pressure in the power plant components and capture units. On the other hand there is only limited time to earn money by selling electricity - if there is a chance to sell more electricity in a short term, efficiencies should be as high as possible. Any capture unit that would reduce the efficiency causes economic conflicts. Therefore measures are analysed to offset the power generation from the capture process in time or to reduce the capture load temporarily. The poster will present a case study for different CCS power plant configurations and load scenarios representing typical grid load from renewable energies. Approaches to balance the load and/or the CO2 output of these power plants will be presented. These approaches comprise: bypassing of flue gas, intermediate storage of heat and/or fluids. Amounts of additional steam, electrical energy and other process fluids (e.g. scrubbing fluids like MEA) and size of auxiliary equipment will be shown .Finally, effects on the transport system (e.g. cooling down of CO2 in the pipeline and changes in mass and volume flow) will be presented and discussed.

  5. A methodology for evaluating ``new`` technologies in nuclear power plants

    SciTech Connect

    Korsah, K.; Clark, R.L.; Holcomb, D.E.

    1994-06-01

    As obsolescence and spare parts issues drive nuclear power plants to upgrade with new technology (such as optical fiber communication systems), the ability of the new technology to withstand stressors present where it is installed needs to be determined. In particular, new standards may be required to address qualification criteria and their application to the nuclear power plants of tomorrow. This paper discusses the failure modes and age-related degradation mechanisms of fiber optic communication systems, and suggests a methodology for identifying when accelerated aging should be performed during qualification testing.

  6. Thermal energy storage units for solar electric power plants

    NASA Astrophysics Data System (ADS)

    Gudkov, V. I.; Chakalev, K. N.

    Several types of heat storage units for solar power plants with thermodynamic cycles of energy conversion are examined, including specific-heat units (particularly water-vapor devices), thermochemical units, and phase-change units. The dependence of specific capital costs for heat storage units upon time of operation is discussed, and particular consideration is give to types of connections of specific-heat units into the thermal circuit of a power plant, and to a phase-change unit that uses a heat pipe for internal heat transport.

  7. Nuclear power plant alarm systems: Problems and issues

    SciTech Connect

    O'Hara, J.M.; Brown, W.S.

    1991-01-01

    Despite the incorporation of advanced technology into nuclear power plant alarm systems, human factors problems remain. This paper identifies to be addressed in order to allow advanced technology to be used effectively in the design of nuclear power plant alarm systems. The operator's use and processing of alarm system information will be considered. Based upon a review of alarm system research, issues related to general system design, alarm processing, display and control are discussed. It is concluded that the design of effective alarm systems depends on an understanding of the information processing capabilities and limitations of the operator. 39 refs.

  8. Nuclear power plant fire protection: philosophy and analysis. [PWR; BWR

    SciTech Connect

    Berry, D. L.

    1980-05-01

    This report combines a fire severity analysis technique with a fault tree methodology for assessing the importance to nuclear power plant safety of certain combinations of components and systems. Characteristics unique to fire, such as propagation induced by the failure of barriers, have been incorporated into the methodology. By applying the resulting fire analysis technique to actual conditions found in a representative nuclear power plant, it is found that some safety and nonsafety areas are both highly vulnerable to fire spread and impotant to overall safety, while other areas prove to be of marginal importance. Suggestions are made for further experimental and analytical work to supplement the fire analysis method.

  9. Neural networks and their application to nuclear power plant diagnosis

    SciTech Connect

    Reifman, J.

    1997-10-01

    The authors present a survey of artificial neural network-based computer systems that have been proposed over the last decade for the detection and identification of component faults in thermal-hydraulic systems of nuclear power plants. The capabilities and advantages of applying neural networks as decision support systems for nuclear power plant operators and their inherent characteristics are discussed along with their limitations and drawbacks. The types of neural network structures used and their applications are described and the issues of process diagnosis and neural network-based diagnostic systems are identified. A total of thirty-four publications are reviewed.

  10. Fire models for assessment of nuclear power plant fires

    SciTech Connect

    Nicolette, V.F.; Nowlen, S.P.

    1989-01-01

    This paper reviews the state-of-the-art in available fire models for the assessment of nuclear power plants fires. The advantages and disadvantages of three basic types of fire models (zone, field, and control volume) and Sandia's experience with these models will be discussed. It is shown that the type of fire model selected to solve a particular problem should be based on the information that is required. Areas of concern which relate to all nuclear power plant fire models are identified. 17 refs., 6 figs.

  11. Dealing with uncertainties in fusion power plant conceptual development

    NASA Astrophysics Data System (ADS)

    Kemp, R.; Lux, H.; Kovari, M.; Morris, J.; Wenninger, R.; Zohm, H.; Biel, W.; Federici, G.

    2017-04-01

    Although the ultimate goal of most current fusion research is to build an economically attractive power plant, the present status of physics and technology does not provide the performance necessary to achieve this goal. Therefore, in order to model how such plants may operate and what their output might be, extrapolations must be made from existing experimental data and technology. However, the expected performance of a plant built to the operating point specifications can only ever be a ‘best guess’. Extrapolations far beyond the current operating regimes are necessarily uncertain, and some important interactions, for example the coupling of conducted power from the scape-off layer to the divertor surface, lack reliable predictive models. This means both that the demands on plant systems at the target operating point can vary significantly from the nominal value, and that the overall plant performance may potentially fall short of design targets. In this contribution we discuss tools and techniques that have been developed to assess the robustness of the operating points for the EU-DEMO tokamak-based demonstration power plant, and the consequences for its design. The aim is to make explicit the design choices and areas where improved modelling and DEMO-relevant experiments will have the greatest impact on confidence in a successful DEMO design.

  12. Safeguard Requirements for Fusion Power Plants

    SciTech Connect

    Robert J. Goldston and Alexander Glaser

    2012-08-10

    Nuclear proliferation risks from magnetic fusion energy associated with access to fissile materials can be divided into three main categories: 1) clandestine production of fissile material in an undeclared facility, 2) covert production and diversion of such material in a declared and safeguarded facility, and 3) use of a declared facility in a breakout scenario, in which a state openly produces fissile material in violation of international agreements. The degree of risk in each of these categories is assessed, taking into account both state and non-state actors, and it is found that safeguards are required for fusion energy to be highly attractive from a non-proliferation standpoint. Specific safeguard requirements and R&D needs are outlined for each category of risk, and the technical capability of the ITER experiment, under construction, to contribute to this R&D is noted. A preliminary analysis indicates a potential legal pathway for fusion power systems to be brought under the Treaty for the Non-Proliferation of Nuclear Weapons. "Vertical" proliferation risks associated with tritium and with the knowledge that can be gained from inertial fusion energy R&D are outlined.

  13. Analysis of nuclear power plant component failures

    SciTech Connect

    Not Available

    1984-01-01

    Items are shown that have caused 90% of the nuclear unit outages and/or deratings between 1971 and 1980 and the magnitude of the problem indicated by an estimate of power replacement cost when the units are out of service or derated. The funding EPRI has provided on these specific items for R and D and technology transfer in the past and the funding planned in the future (1982 to 1986) are shown. EPRI's R and D may help the utilities on only a small part of their nuclear unit outage problems. For example, refueling is the major cause for nuclear unit outages or deratings and the steam turbine is the second major cause for nuclear unit outages; however, these two items have been ranked fairly low on the EPRI priority list for R and D funding. Other items such as nuclear safety (NRC requirements), reactor general, reactor and safety valves and piping, and reactor fuel appear to be receiving more priority than is necessary as determined by analysis of nuclear unit outage causes.

  14. Heterogonous Nanofluids for Nuclear Power Plants

    NASA Astrophysics Data System (ADS)

    Alammar, Khalid

    2014-09-01

    Nuclear reactions can be associated with high heat energy release. Extracting such energy efficiently requires the use of high-rate heat exchangers. Conventional heat transfer fluids, such as water and oils are limited in their thermal conductivity, and hence nanofluids have been introduced lately to overcome such limitation. By suspending metal nanoparticles with high thermal conductivity in conventional heat transfer fluids, thermal conductivity of the resulting homogeneous nanofluid is increased. Heterogeneous nanofluids offer yet more potential for heat transfer enhancement. By stratifying nanoparticles within the boundary layer, thermal conductivity is increased where temperature gradients are highest, thereby increasing overall heat transfer of a flowing fluid. In order to test the merit of this novel technique, a numerical study of a laminar pipe flow of a heterogeneous nanofluid was conducted. Effect of Iron-Oxide distribution on flow and heat transfer characteristics was investigated. With Iron-Oxide volume concentration of 0.009 in water, up to 50% local heat transfer enhancement was predicted for the heterogeneous compared to homogeneous nanofluids. Increasing the Reynolds number is shown to increase enhancement while having negligible effect on pressure drop. Using permanent magnets attached externally to the pipe, an experimental investigation conducted at MIT nuclear reactor laboratory for similar flow characteristics of a heterogeneous nanofluid have shown upto 160% enhancement in heat transfer. Such results show that heterogeneous nanofluids are promising for augmenting heat transfer rates in nuclear power heat exchanger systems.

  15. Central Heating and Power Plant Alternatives Review, Fort Wainwright, Alaska

    DTIC Science & Technology

    2003-05-01

    purchased from Usibelli Coal Mine, Inc. FWA maintains a coal pile for inven- tory. The typical inventory is a 90-day supply. Current Upgrade Strategy...ancillary businesses. 4. This assessment assumes that GVEA will purchase power from the nearby coal facilities (Healy and Aurora power plants) first , before...resource, which would add substantially to the costs. Typical installed costs of photo- voltaic systems are on the order $10,000/kW, or about $1 Million for

  16. Calculation of the characteristics of solar power plants

    NASA Astrophysics Data System (ADS)

    Azimov, S. A.; Akbarov, R. Iu.; Pirmatov, I. I.

    A general scheme is developed for calculating the shading of heliostats in solar power plants, with reference both to solar furnaces and to tower systems. Results are presented on the relationship between the filling of the middle of a concentrator and the time of year and time of day under clear-sky conditions, and to the relationship between the light energy power incident on circles in focal planes 30 and 40 cm in diameter and the turn angle of the heliostat.

  17. Aging management guideline for commercial nuclear power plants - heat exchangers

    SciTech Connect

    Booker, S.; Lehnert, D.; Daavettila, N.; Palop, E.

    1994-06-01

    This Aging Management Guideline (AMG) describes recommended methods for effective detection and mitigation of age-related degradation mechanisms in commercial nuclear power plant heat exchangers important to license renewal. The intent of this AMG is to assist plant maintenance and operations personnel in maximizing the safe, useful life of these components. It also supports the documentation of effective aging management programs required under the License Renewal Rule 10 CFR 54. This AMG is presented in a manner that allows personnel responsible for performance analysis and maintenance to compare their plant-specific aging mechanisms (expected or already experienced) and aging management program activities to the more generic results and recommendations presented herein.

  18. Greenhouse Gas emissions from California Geothermal Power Plants

    DOE Data Explorer

    Sullivan, John

    2014-03-14

    The information given in this file represents GHG emissions and corresponding emission rates for California flash and dry steam geothermal power plants. This stage of the life cycle is the fuel use component of the fuel cycle and arises during plant operation. Despite that no fossil fuels are being consumed during operation of these plants, GHG emissions nevertheless arise from GHGs present in the geofluids and dry steam that get released to the atmosphere upon passing through the system. Data for the years of 2008 to 2012 are analyzed.

  19. Designing microarray and RNA-Seq experiments for greater systems biology discovery in modern plant genomics.

    PubMed

    Yang, Chuanping; Wei, Hairong

    2015-02-01

    Microarray and RNA-seq experiments have become an important part of modern genomics and systems biology. Obtaining meaningful biological data from these experiments is an arduous task that demands close attention to many details. Negligence at any step can lead to gene expression data containing inadequate or composite information that is recalcitrant for pattern extraction. Therefore, it is imperative to carefully consider experimental design before launching a time-consuming and costly experiment. Contemporarily, most genomics experiments have two objectives: (1) to generate two or more groups of comparable data for identifying differentially expressed genes, gene families, biological processes, or metabolic pathways under experimental conditions; (2) to build local gene regulatory networks and identify hierarchically important regulators governing biological processes and pathways of interest. Since the first objective aims to identify the active molecular identities and the second provides a basis for understanding the underlying molecular mechanisms through inferring causality relationships mediated by treatment, an optimal experiment is to produce biologically relevant and extractable data to meet both objectives without substantially increasing the cost. This review discusses the major issues that researchers commonly face when embarking on microarray or RNA-seq experiments and summarizes important aspects of experimental design, which aim to help researchers deliberate how to generate gene expression profiles with low background noise but with more interaction to facilitate novel biological discoveries in modern plant genomics.

  20. Systems Analysis Of Advanced Coal-Based Power Plants

    NASA Technical Reports Server (NTRS)

    Ferrall, Joseph F.; Jennings, Charles N.; Pappano, Alfred W.

    1988-01-01

    Report presents appraisal of integrated coal-gasification/fuel-cell power plants. Based on study comparing fuel-cell technologies with each other and with coal-based alternatives and recommends most promising ones for research and development. Evaluates capital cost, cost of electricity, fuel consumption, and conformance with environmental standards. Analyzes sensitivity of cost of electricity to changes in fuel cost, to economic assumptions, and to level of technology. Recommends further evaluation of integrated coal-gasification/fuel-cell integrated coal-gasification/combined-cycle, and pulverized-coal-fired plants. Concludes with appendixes detailing plant-performance models, subsystem-performance parameters, performance goals, cost bases, plant-cost data sheets, and plant sensitivity to fuel-cell performance.

  1. Water vulnerabilities for existing coal-fired power plants.

    SciTech Connect

    Elcock, D.; Kuiper, J.; Environmental Science Division

    2010-08-19

    This report was funded by the U.S. Department of Energy's (DOE's) National Energy Technology Laboratory (NETL) Existing Plants Research Program, which has an energy-water research effort that focuses on water use at power plants. This study complements the Existing Plants Research Program's overall research effort by evaluating water issues that could impact power plants. Water consumption by all users in the United States over the 2005-2030 time period is projected to increase by about 7% (from about 108 billion gallons per day [bgd] to about 115 bgd) (Elcock 2010). By contrast, water consumption by coal-fired power plants over this period is projected to increase by about 21% (from about 2.4 to about 2.9 bgd) (NETL 2009b). The high projected demand for water by power plants, which is expected to increase even further as carbon-capture equipment is installed, combined with decreasing freshwater supplies in many areas, suggests that certain coal-fired plants may be particularly vulnerable to potential water demand-supply conflicts. If not addressed, these conflicts could limit power generation and lead to power disruptions or increased consumer costs. The identification of existing coal-fired plants that are vulnerable to water demand and supply concerns, along with an analysis of information about their cooling systems and related characteristics, provides information to help focus future research and development (R&D) efforts to help ensure that coal-fired generation demands are met in a cost-effective manner that supports sustainable water use. This study identified coal-fired power plants that are considered vulnerable to water demand and supply issues by using a geographical information system (GIS) that facilitated the analysis of plant-specific data for more than 500 plants in the NETL's Coal Power Plant Database (CPPDB) (NETL 2007a) simultaneously with 18 indicators of water demand and supply. Two types of demand indicators were evaluated. The first type

  2. Advanced coal gasifier-fuel cell power plant systems design

    NASA Technical Reports Server (NTRS)

    Heller, M. E.

    1983-01-01

    Two advanced, high efficiency coal-fired power plants were designed, one utilizing a phosphoric acid fuel cell and one utilizing a molten carbonate fuel cell. Both incorporate a TRW Catalytic Hydrogen Process gasifier and regenerator. Both plants operate without an oxygen plant and without requiring water feed; they, instead, require makeup dolomite. Neither plant requires a shift converter; neither plant has heat exchangers operating above 1250 F. Both plants have attractive efficiencies and costs. While the molten carbonate version has a higher (52%) efficiency than the phosphoric acid version (48%), it also has a higher ($0.078/kWh versus $0.072/kWh) ten-year levelized cost of electricity. The phosphoric acid fuel cell power plant is probably feasible to build in the near term: questions about the TRW process need to be answered experimentally, such as weather it can operate on caking coals, and how effective the catalyzed carbon-dioxide acceptor will be at pilot scale, both in removing carbon dioxide and in removing sulfur from the gasifier.

  3. Performance of small-scale tidal power plants

    NASA Astrophysics Data System (ADS)

    Fay, J. A.; Smachlo, M. A.

    1983-12-01

    Small-scale tidal power plants - having electric power between 1 and 100 MW, approximately - possess several attractive economic and environmental benefits. The dynamical behavior of such systems is calculated in terms of dimensionless variables and parameters, so that the size of the system is inconsequential (except for one parameter related to the slope of the walls of the tidal basin). Two measures of system performance are defined: capacity factor (ratio of average to rated power) and effectiveness (ratio of average to ideal tidal power). It was found that improving both parameters is mutually incompatible so that an economic analysis will determine the optimum values of the system design and performance parameters. The effects of variation of tidal range and basin shape were determined. Using typical variable flow properties of low-head hydroturbines, a favorable design head could be determined from the analysis. It was found that the change in the area of the intertidal zone relative to the surface area of the tidal pond is greater for small, as compared to large, systems, possibly leading to proportionately greater environmental effects. A comparison of the performance of several tidal power plant designs with the methodology of this paper showed generally good agreement with the dimensionless performance parameters and only a modest difference among them over several orders of magnitude in size of power plant.

  4. Decentralised optimisation of cogeneration in virtual power plants

    SciTech Connect

    Wille-Haussmann, Bernhard; Erge, Thomas; Wittwer, Christof

    2010-04-15

    Within several projects we investigated grid structures and management strategies for active grids with high penetration of renewable energy resources and distributed generation (RES and DG). Those ''smart grids'' should be designed and managed by model based methods, which are elaborated within these projects. Cogeneration plants (CHP) can reduce the greenhouse gas emissions by locally producing heat and electricity. The integration of thermal storage devices is suitable to get more flexibility for the cogeneration operation. If several power plants are bound to centrally managed clusters, it is called ''virtual power plant''. To operate smart grids optimally, new optimisation and model reduction techniques are necessary to get rid with the complexity. There is a great potential for the optimised management of CHPs, which is not yet used. Due to the fact that electrical and thermal demands do not occur simultaneously, a thermally driven CHP cannot supply electrical peak loads when needed. With the usage of thermal storage systems it is possible to decouple electric and thermal production. We developed an optimisation method based on mixed integer linear programming (MILP) for the management of local heat supply systems with CHPs, heating boilers and thermal storages. The algorithm allows the production of thermal and electric energy with a maximal benefit. In addition to fuel and maintenance costs it is assumed that the produced electricity of the CHP is sold at dynamic prices. This developed optimisation algorithm was used for an existing local heat system with 5 CHP units of the same type. An analysis of the potential showed that about 10% increase in benefit is possible compared to a typical thermally driven CHP system under current German boundary conditions. The quality of the optimisation result depends on an accurate prognosis of the thermal load which is realised with an empiric formula fitted with measured data by a multiple regression method. The key

  5. Peach Bottom and Vermont Yankee Nuclear Power Plants

    SciTech Connect

    1992-12-31

    A dramatic and extraordinary instance of state and local government control of nuclear power, the purchase by New York of the Shoreham plant is nonetheless indicative of the political demands that some states confront for additional involvement in the regulation of the radiological hazards associated with commercial nuclear power plants. Although the Supreme Court has appeared to expand, in the eight years since PG&E and Silkwood, the acceptable extent of state regulation, some states, in addition to New York, have acquired, with the acquiescence of the NRC, a degree of involvement that exceeds the role for state and local governments provided by the Court. For example, the Commonwealth of Pennsylvania concluded with the Philadelphia Electric Company (PECO) in June 1989 an agreement that commits PECO to various initiatives, not otherwise required under NRC regulations, for the safe operation of the Peach Bottom nuclear power plant in Pennsylvania. In July 1991 the State of Vermont and Vermont Yankee Nuclear Power Corporation (Vermont Yankee) concluded an agreement similar to that concluded between Pennsylvania and PECO. The agreement also commits Vermont Yankee to certain initiatives, not otherwise required under NRC regulations, related to its operation of the Vermont Yankee nuclear power plant in Vermont. The agreement was precipitated by a challenge to an application, submitted to the NRC by Vermont Yankee in April 1989, to amend the Vermont Yankee plant license to extend its expiration date from December 11, 2007 to March 21, 2012. The amendment would allow the Vermont Yankee plant to operate for forty full years.

  6. Legionnaires' disease bacteria in power plant cooling systems: Phase 2

    SciTech Connect

    Tyndall, R.L.; Christensen, S.W.; Solomon, J.A.

    1985-04-01

    Legionnaires' Disease Bacteria (Legionella) are a normal component of the aquatic community. The study investigated various environmental factors that affect Legionella profiles in power plant cooling waters. The results indicate that each of the four factors investigated (incubation temperature, water quality, the presence and type of associated biota, and the nature of the indigenous Legionella population) is important in determining the Legionella profile of these waters. Simple predictive relationships were not found. At incubation temperatures of 32/sup 0/ and 37/sup 0/C, waters from a power plant where infectious Legionella were not observed stimulated the growth of stock Legionella cultures more than did waters from plants where infectious Legionella were prevalent. This observation is consistent with Phase I results, which showed that densities of Legionella were frequently reduced in closed-cycle cooling systems despite the often higher infectivity of Legionella in closed-cycle waters. In contrast, water from power plants where infectious Legionella were prevalent supported the growth of indigenous Legionella pneumophila at 42/sup 0/C, while water from a power plant where infectious Legionella were absent did not support growth of indigenous Legionella. Some Legionella are able to withstand a water temperature of 85/sup 0/C for several hours, thus proving more tolerant than was previously realized. Finally, the observation that water from two power plants where infectious Legionella were prevalent usually supported the growth of Group A Legionella at 45/sup 0/C indicates the presence, of soluble Legionella growth promoters in these waters. This test system could allow for future identification and control of these growth promoters and, hence, of Legionella. 25 refs., 23 figs., 10 tabs.

  7. MOLTEN CARBONATE FUEL CELL POWER PLANT LOCATED AT TERMINAL ISLAND WASTEWATER TREATMENT PLANT

    SciTech Connect

    William W. Glauz

    2004-09-01

    The Los Angeles Department of Water and Power (LADWP) has developed one of the most recognized fuel cell demonstration programs in the United States. In addition to their high efficiencies and superior environmental performance, fuel cells and other generating technologies that can be located at or near the load, offers several electric utility benefits. Fuel cells can help further reduce costs by reducing peak electricity demand, thereby deferring or avoiding expenses for additional electric utility infrastructure. By locating generators near the load, higher reliability of service is possible and the losses that occur during delivery of electricity from remote generators are avoided. The potential to use renewable and locally available fuels, such as landfill or sewage treatment waste gases, provides another attractive outlook. In Los Angeles, there are also many oil producing areas where the gas by-product can be utilized. In June 2000, the LADWP contracted with FCE to install and commission the precommercial 250kW MCFC power plant. The plant was delivered, installed, and began power production at the JFB in August 2001. The plant underwent manufacturer's field trials up for 18 months and was replace with a commercial plant in January 2003. In January 2001, the LADWP contracted with FCE to provide two additional 250kW MCFC power plants. These commercial plants began operations during mid-2003. The locations of these plants are at the Terminal Island Sewage Treatment Plant at the Los Angeles Harbor (for eventual operation on digester gas) and at the LADWP Main Street Service Center east of downtown Los Angeles. All three carbonate fuel cell plants received partial funding through the Department of Defense's Climate Change Fuel Cell Buydown Program. This report covers the technical evaluation and benefit-cost evaluation of the Terminal Island 250kW MCFC power plant during its first year of operation from June 2003 to July 2004.

  8. Comparison and evaluation of power plant options for geosynchronous power stations. Part 1: Synchronous solar power

    NASA Technical Reports Server (NTRS)

    Williams, J. R.

    1973-01-01

    The present state-of-the-art is described for the development of solar power generators in far out synchronous orbit for power generation. Concepts of geosynchronous solar power satellites are discussed including photovoltaic arrays for power satellites, solar-thermal power satellites, and power transmission to earth.

  9. A solar thermal electric power plant for small communities

    NASA Technical Reports Server (NTRS)

    Holl, R. J.

    1979-01-01

    A solar power plant has been designed with a rating of 1000-kW electric and a 0.4 annual capacity factor. It was configured as a prototype for plants in the 1000 to 10,000-kWe size range for application to small communities or industrial users either grid-connected or isolated from a utility grid. A small central receiver was selected for solar energy collection after being compared with alternative distributed collectors. Further trade studies resulted in the selection of Hitec (heat transfer salt composed of 53 percent KNO3, 40 percent NaNO2, 7 percent NaNO3) as both the receiver coolant and the sensible heat thermal stroage medium and the steam Rankine cycle for power conversion. The plant is configured with road-transportable units to accommodate remote sites and minimize site assembly requirements. Results of the analyses indicate that busbar energy costs are competitive with diesel-electric plants in certain situations, e.g., off-grid, remote regions with high insolation. Sensitivity of energy costs to plant power rating and system capacity factor are given.

  10. US nuclear power plant operating cost and experience summaries

    SciTech Connect

    Kohn, W.E.; Reid, R.L.; White, V.S.

    1998-02-01

    NUREG/CR-6577, U.S. Nuclear Power Plant Operating Cost and Experience Summaries, has been prepared to provide historical operating cost and experience information on U.S. commercial nuclear power plants. Cost incurred after initial construction are characterized as annual production costs, representing fuel and plant operating and maintenance expenses, and capital expenditures related to facility additions/modifications which are included in the plant capital asset base. As discussed in the report, annual data for these two cost categories were obtained from publicly available reports and must be accepted as having different degrees of accuracy and completeness. Treatment of inconclusive and incomplete data is discussed. As an aid to understanding the fluctuations in the cost histories, operating summaries for each nuclear unit are provided. The intent of these summaries is to identify important operating events; refueling, major maintenance, and other significant outages; operating milestones; and significant licensing or enforcement actions. Information used in the summaries is condensed from annual operating reports submitted by the licensees, plant histories contained in Nuclear Power Experience, trade press articles, and the Nuclear Regulatory Commission (NRC) web site (www.nrc.gov).

  11. Radon measurements in the Catalagzi Thermal Power Plant, Turkey.

    PubMed

    Aytekin, H; Bayata, S; Baldik, R; Celebi, N

    2008-01-01

    The Catalağzi Thermal Power Plant (CTPP) (41(0)30'48.4('')N and 0.31(0)53'41.5('')E) is located at nearly 13 km North-east of Zonguldak city, which is located at the West Black Sea coast in Turkey. The middling products with high ash content of bituminous coals are used in this plant. Seasonal radon concentration measurements have been carried out by using CR-39 plastic track detectors in and around the CTPP. The annual average radon concentration has been found to vary from a minimum of 39.8 +/- 28.9 Bq m(-3) in the ash area to a maximum of approximately 75.0 +/- 15.7 Bq m(-3) in the service building of the power plant. The annual average radon concentration in the dwellings of the thermal power plant colony of the plant is 71.0 +/- 33.4 Bq m(-3). The effective dose has been found to vary from 0.38 to 0.71 mSv y(-1) with a mean value of 0.56 mSv y(-1), which is lower than the effective dose values 3-10 mSv given as the range of action levels recommended by International Commission on Radiological Protection: Protection against radon-222 at home and at work, ICRP Publication 65 (1993).

  12. 76 FR 75771 - Emergency Planning Guidance for Nuclear Power Plants

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-05

    ... / Monday, December 5, 2011 / Rules and Regulations#0;#0; ] NUCLEAR REGULATORY COMMISSION 10 CFR Part 50 and Part 52 RIN 3150-AI10 Emergency Planning Guidance for Nuclear Power Plants AGENCY: Nuclear Regulatory Commission. ACTION: Issuance of NUREG documents and interim staff guidance. SUMMARY: The U.S....

  13. Power Plants, Steam and Gas Turbines WebQuest

    ERIC Educational Resources Information Center

    Ulloa, Carlos; Rey, Guillermo D.; Sánchez, Ángel; Cancela, Ángeles

    2012-01-01

    A WebQuest is an Internet-based and inquiry-oriented learning activity. The aim of this work is to outline the creation of a WebQuest entitled "Power Generation Plants: Steam and Gas Turbines." This is one of the topics covered in the course "Thermodynamics and Heat Transfer," which is offered in the second year of Mechanical…

  14. Is natural background or radiation from nuclear power plants leukemogenic

    SciTech Connect

    Cronkite, E.P.

    1989-01-01

    The objective in this review is to provide some facts about normal hemopoietic cell proliferation relevant to leukemogenesis, physical, chemical, and biological facts about radiation effects with the hope that each person will be able to decide for themselves whether background radiation or emissions from nuclear power plants and facilities significantly add to the spontaneous leukemia incidence. 23 refs., 1 tab.

  15. Understanding Inertial and Frequency Response of Wind Power Plants: Preprint

    SciTech Connect

    Muljadi, E.; Gevorgian, V.; Singh, M.; Santoso, S.

    2012-07-01

    The objective of this paper is to analyze and quantify the inertia and frequency responses of wind power plants with different wind turbine technologies (particularly those of fixed speed, variable slip with rotor-resistance controls, and variable speed with vector controls).

  16. 48. MAP OF SANTA ANA RIVER POWER PLANT NO. 2 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    48. MAP OF SANTA ANA RIVER POWER PLANT NO. 2 OF THE EDISON ELECTRIC CO. THROUGH UNSURVEYED LAND IN THE SAN BERNARDINO FOREST RESERVE, APPROVED MAY 26, 1904, F. C. FINKLE, CHIEF HYDRAULIC ENGINEER. SCE drawing no. 53988. - Santa Ana River Hydroelectric System, Redlands, San Bernardino County, CA

  17. Radiation protection performance indicators at the Nuclear Power Plant Krsko.

    PubMed

    Janzekovic, Helena

    2006-06-01

    Nuclear power plant safety performance indicators are developed "by nuclear operating organisations to monitor their own performance and progress, to set their own challenging goals for improvement, and to gain additional perspective on performance relative to that of other plants". In addition, performance indicators are widely used by regulatory authorities although the use is not harmonised. Two basic performance indicators related to good radiation protection practice are collective radiation exposure and volume of low-level radioactive waste. In 2000, Nuclear Power Plant Krsko, a Westinghouse pressurised water reactor with electrical output 700 MW, finished an extensive modernisation including the replacement of both steam generators. While the annual volume of low-level radioactive waste does not show a specific trend related to modernisation, the annual collective dose reached maximum, i.e. 2.60 man Sv, and dropped to 1.13 man Sv in 2001. During the replacement of the steam generators in 2000, the dose associated with this activity was 1.48 man Sv. The annual doses in 2002 and 2003 were 0.53 and 0.80 man Sv, respectively, nearing thus the goal set by the US Institute of Nuclear Power Operators, which is 0.65 man Sv. Therefore, inasmuch as collective dose as the radiation protection performance indicator are concerned, the modernisation of the Krsko nuclear power plant was a success.

  18. Microgrids, virtual power plants and our distributed energy future

    SciTech Connect

    Asmus, Peter

    2010-12-15

    Opportunities for VPPs and microgrids will only increase dramatically with time, as the traditional system of building larger and larger centralized and polluting power plants by utilities charging a regulated rate of return fades. The key questions are: how soon will these new business models thrive - and who will be in the driver's seat? (author)

  19. Choosing Actuators for Automatic Control Systems of Thermal Power Plants

    SciTech Connect

    Gorbunov, A. I.; Serdyukov, O. V.

    2015-03-15

    Two types of actuators for automatic control systems of thermal power plants are analyzed: (i) pulse-controlled actuator and (ii) analog-controlled actuator with positioning function. The actuators are compared in terms of control circuit, control accuracy, reliability, and cost.

  20. Within compound, looking northwest, Power Plant (Building 5761) and Guard ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Within compound, looking northwest, Power Plant (Building 5761) and Guard Tower (Building 5762) to left, Electrical Substation to right - Beale Air Force Base, Perimeter Acquisition Vehicle Entry Phased-Array Warning System, End of Spencer Paul Road, north of Warren Shingle Road (14th Street), Marysville, Yuba County, CA

  1. Innovative Technology Reduces Power Plant Emissions-Commercialization Success

    NASA Technical Reports Server (NTRS)

    Parrish, Clyde; Chung, Landy

    2004-01-01

    Overview of emission control system development: (1) Development of new oxidizer scrubber system to eliminate NOx waste and produce fertilizer (2) Technology licensed and a 1 to 3 MWatt-scale prototype installed on power plant (3) Development of method to oxidize NO to NO2 (4) Experience gained from licensing NASA technology.

  2. Innovative Technology Reduces Power Plant Emissions - Commercialization Success

    NASA Technical Reports Server (NTRS)

    Parrish, Clyde

    2004-01-01

    Emission control system development includes: (1) Development of new oxidizer scrubber system to eliminate NOx waste and produce fertilizer (2) Technology licensed and a 1 to 3 MWatt-scale prototype installed on. power plant (3) Development of method to oxidize NO. to N02 (4) Experience gained from licensing NASA technology

  3. Method of optimizing performance of Rankine cycle power plants

    DOEpatents

    Pope, William L.; Pines, Howard S.; Doyle, Padraic A.; Silvester, Lenard F.

    1982-01-01

    A method for efficiently operating a Rankine cycle power plant (10) to maximize fuel utilization efficiency or energy conversion efficiency or minimize costs by selecting a turbine (22) fluid inlet state which is substantially in the area adjacent and including the transposed critical temperature line (46).

  4. View of Arizona rim towers from top of power plant. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of Arizona rim towers from top of power plant. Left tower supports Circuit 3, second tower from left supports Circuit 12, middle tower supports Circuit 10, second tower from right supports Circuit 9, and right tower supports Circuit 8, view southeast - Hoover Dam, Circuits 1-15, U.S. Highway 93, Boulder City, Clark County, NV

  5. View of Nevada rim towers from top of power plant. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of Nevada rim towers from top of power plant. Left tower supports Circuits 7 and 14, middle tower supports Circuit 6, and right tower supports Circuit 5, view west - Hoover Dam, Circuits 1-15, U.S. Highway 93, Boulder City, Clark County, NV

  6. Radioactive Effluents from Nuclear Power Plants Annual Report 2007

    SciTech Connect

    U.S. Nuclear Regulatory Commission, Office of Nuclear Reactor Regulation

    2010-12-10

    This report describes radioactive effluents from commercial nuclear power plants (NPPs) in the United States. This information was reported by the licensees for radioactive discharges that occurred in 2007. The report provides information relevant to the potential impact of NPPs on the environment and on public health.

  7. Radioactive Effluents from Nuclear Power Plants Annual Report 2008

    SciTech Connect

    U.S. Nuclear Regulatory Commission, Office of Nuclear Reactor Regulation

    2010-12-10

    This report describes radioactive effluents from commercial nuclear power plants (NPPs) in the United States. This information was reported by the licensees for radioactive discharges that occurred in 2008. The report provides information relevant to the potential impact of NPPs on the environment and on public health.

  8. 17. Mormon Flat power plant under construction. Notice location of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    17. Mormon Flat power plant under construction. Notice location of spillway gates. Needle valves at lower left are for bypass. Photographer unknown, March 1926. Source: Salt River Project. - Mormon Flat Dam, On Salt River, Eastern Maricopa County, east of Phoenix, Phoenix, Maricopa County, AZ

  9. Within compound, looking southeast Power Plant (Building 5761) to left, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Within compound, looking southeast Power Plant (Building 5761) to left, Satellite Communications Terminal (Building 5771), center - Beale Air Force Base, Perimeter Acquisition Vehicle Entry Phased-Array Warning System, End of Spencer Paul Road, north of Warren Shingle Road (14th Street), Marysville, Yuba County, CA

  10. Within compound, from Gate House, looking northwest, Power Plant (Building ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Within compound, from Gate House, looking northwest, Power Plant (Building 5761) to left, Electrical Substation (Building 5770) and Supply Warehouse (Building 5768) center, Satellite Communications Terminal (Building 5771) to far left - Beale Air Force Base, Perimeter Acquisition Vehicle Entry Phased-Array Warning System, End of Spencer Paul Road, north of Warren Shingle Road (14th Street), Marysville, Yuba County, CA

  11. Within compound, from Guard Tower, looking southeast, Power Plant (Building ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Within compound, from Guard Tower, looking southeast, Power Plant (Building 5761) to left, Satellite Communications Terminal (Building 5771) center, Supply Warehouse (Building 5768) to left - Beale Air Force Base, Perimeter Acquisition Vehicle Entry Phased-Array Warning System, End of Spencer Paul Road, north of Warren Shingle Road (14th Street), Marysville, Yuba County, CA

  12. Exposure to airborne asbestos in thermal power plants in Mongolia

    PubMed Central

    Damiran, Naransukh; Silbergeld, Ellen K; Frank, Arthur L; Lkhasuren, Oyuntogos; Ochir, Chimedsuren; Breysse, Patrick N

    2015-01-01

    Background: Coal-fired thermal power plants (TPPs) in Mongolia use various types of asbestos-containing materials (ACMs) in thermal insulation of piping systems, furnaces, and other products. Objective: To investigate the occupational exposure of insulation workers to airborne asbestos in Mongolian power plants. Methods: Forty-seven air samples were collected from four power plants in Mongolia during the progress of insulation work. The samples were analyzed by phase contrast microscopy (PCM) and transmission electron microscopy (TEM). Results: The average phase contrast microscopy equivalent (PCME) asbestos fiber concentration was 0.93 f/cm3. Sixteen of the 41 personal and one of the area samples exceeded the United States Occupational Safety and Health Administration (US OSHA) short-term exposure limit of 1.0 f/cm3. If it is assumed that the short-term samples collected are representative of full-shift exposure, then the exposures are approximately 10 times higher than the US OSHA 8-hour permissible exposure limit of 0.1 f/cm3. Conclusion: Power plant insulation workers are exposed to airborne asbestos at concentrations that exceed the US OSHA Permissible Exposure Limit. Action to mitigate the risks should be taken in Mongolia. PMID:25730489

  13. Evaluation of Foreign Investment in Power Plants using Real Options

    NASA Astrophysics Data System (ADS)

    Kato, Moritoshi; Zhou, Yicheng

    This paper proposes new methods for evaluating foreign investment in power plants under market uncertainty using a real options approach. We suppose a thermal power plant project in a deregulated electricity market. One of our proposed methods is that we calculate the cash flow generated by the project in a reference year using actual market data to incorporate periodic characteristics of energy prices into a yearly cash flow model. We make the stochastic yearly cash flow model with the initial value which is the cash flow in the reference year, and certain trend and volatility. Then we calculate the real options value (ROV) of the project which has abandonment options using the yearly cash flow model. Another our proposed method is that we evaluate foreign currency/domestic currency exchange rate risk by representing ROV in foreign currency as yearly pay off and exchanging it to ROV in domestic currency using a stochastic exchange rate model. We analyze the effect of the heat rate and operation and maintenance costs of the power plant on ROV, and evaluate exchange rate risk through numerical examples. Our proposed method will be useful for the risk management of foreign investment in power plants.

  14. Assessment of control rooms of nuclear power plants

    NASA Astrophysics Data System (ADS)

    Norros, L.; Ranta, J.; Wahlstroem, B.

    1983-05-01

    The NUREG 0700 recommendations were assessed for implementation in the control rooms of Finnish nuclear power plants. Direct conclusions drawn from the American situation are misleading, because of differences in, for example, procurement of instruments or personnel training. If the review is limited to control room details, the NRC program (checklist) is successful. It can also be used during planning to observe small discrepancies.

  15. OVERVIEW FROM OIL STORAGE TANKS. FOUNDATION OF 1980 POWER PLANT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    OVERVIEW FROM OIL STORAGE TANKS. FOUNDATION OF 1980 POWER PLANT IN FOREGROUND, CORNER OF CARPENTER SHOP TO THE RIGHT, CORNER OF BAGASSE STORAGE BUILDING TO THE LEFT. MACHINE SHOP AND BOILER HOUSE IN MIDDLE GROUND, 1948 STACK AND BOILING HOUSE TO REAR. VIEW FROM THE WEST - Lihue Plantation Company, Sugar Mill Building, Haleko Road, Lihue, Kauai County, HI

  16. Report on aging of nuclear power plant reinforced concrete structures

    SciTech Connect

    Naus, D.J.; Oland, C.B.; Ellingwood, B.R.

    1996-03-01

    The Structural Aging Program provides the US Nuclear Regulatory Commission with potential structural safety issues and acceptance criteria for use in continued service assessments of nuclear power plant safety-related concrete structures. The program was organized under four task areas: Program Management, Materials Property Data Base, Structural Component Assessment/Repair Technology, and Quantitative Methodology for Continued Service Determinations. Under these tasks, over 90 papers and reports were prepared addressing pertinent aspects associated with aging management of nuclear power plant reinforced concrete structures. Contained in this report is a summary of program results in the form of information related to longevity of nuclear power plant reinforced concrete structures, a Structural Materials Information Center presenting data and information on the time variation of concrete materials under the influence of environmental stressors and aging factors, in-service inspection and condition assessments techniques, repair materials and methods, evaluation of nuclear power plant reinforced concrete structures, and a reliability-based methodology for current and future condition assessments. Recommendations for future activities are also provided. 308 refs., 61 figs., 50 tabs.

  17. Defects and statistical degradation analysis of photovoltaic power plants

    NASA Astrophysics Data System (ADS)

    Sundarajan, Prasanna

    As the photovoltaic (PV) power plants age in the field, the PV modules degrade and generate visible and invisible defects. A defect and statistical degradation rate analysis of photovoltaic (PV) power plants is presented in two-part thesis. The first part of the thesis deals with the defect analysis and the second part of the thesis deals with the statistical degradation rate analysis. In the first part, a detailed analysis on the performance or financial risk related to each defect found in multiple PV power plants across various climatic regions of the USA is presented by assigning a risk priority number (RPN). The RPN for all the defects in each PV plant is determined based on two databases: degradation rate database; defect rate database. In this analysis it is determined that the RPN for each plant is dictated by the technology type (crystalline silicon or thin-film), climate and age. The PV modules aging between 3 and 19 years in four different climates of hot-dry, hot-humid, cold-dry and temperate are investigated in this study. In the second part, a statistical degradation analysis is performed to determine if the degradation rates are linear or not in the power plants exposed in a hot-dry climate for the crystalline silicon technologies. This linearity degradation analysis is performed using the data obtained through two methods: current-voltage method; metered kWh method. For the current-voltage method, the annual power degradation data of hundreds of individual modules in six crystalline silicon power plants of different ages is used. For the metered kWh method, a residual plot analysis using Winters' statistical method is performed for two crystalline silicon plants of different ages. The metered kWh data typically consists of the signal and noise components. Smoothers remove the noise component from the data by taking the average of the current and the previous observations. Once this is done, a residual plot analysis of the error component is

  18. Supercritical power plant 600 MW with cryogenic oxygen plant and CCS installation

    NASA Astrophysics Data System (ADS)

    Kotowicz, Janusz; Dryjańska, Aleksandra

    2013-09-01

    This article describes a thermodynamic analysis of an oxy type power plant. The analyzed power plant consists of: 1) steam turbine for supercritical steam parameters of 600 °C/29 MPa with a capacity of 600 MW; 2) circulating fluidized bed boiler, in which brown coal with high moisture content (42.5%) is burned in the atmosphere enriched in oxygen; 3) air separation unit (ASU); 4) CO2 capture installation, where flue gases obtained in the combustion process are compressed to the pressure of 150 MPa. The circulated fluidized bed (CFB) boiler is integrated with a fuel dryer and a cryogenic air separation unit. Waste nitrogen from ASU is heated in the boiler, and then is used as a coal drying medium. In this study, the thermal efficiency of the boiler, steam cycle thermal efficiency and power demand were determined. These quantities made possible to determine the net efficiency of the test power plant.

  19. Design considerations for an inertial confinement fusion reactor power plant

    SciTech Connect

    Massey, J.V.; Simpson, J.E.

    1981-08-10

    To further define the engineering and economic concerns for inertial confinement fusion reactors (ICR's), a conceptual design study was performed by Bechtel Group Incorporated under the direction of Lawrence Livermore National Laboratory (LLNL). The study examined alternatives to the LLNL HYLIFE concept and expanded the previous balance of plant design to incorporate information from recent liquid metal cooled fast breeder reactor (LMFBR) power plant studies. The majority of the effort was to incorporate present laser and target physics models into a reactor design with a low coolant flowrate and a high driver repetition rate. An example of such a design is the LLNL JADE concept. In addition to producing a power plant design for LLNL using the JADE example, Bechtel has also examined the applicability of the EAGLE (Energy Absorbing Gas Lithium Ejector) concept.

  20. Advanced steam power plant concepts with optimized life-cycle costs: A new approach for maximum customer benefit

    SciTech Connect

    Seiter, C.

    1998-07-01

    The use of coal power generation applications is currently enjoying a renaissance. New highly efficient and cost-effective plant concepts together with environmental protection technologies are the main factors in this development. In addition, coal is available on the world market at attractive prices and in many places it is more readily available than gas. At the economical leading edge, standard power plant concepts have been developed to meet the requirements of emerging power markets. These concepts incorporate the high technological state-of-the-art and are designed to achieve lowest life-cycle costs. Low capital cost, fuel costs and operating costs in combination with shortest lead times are the main assets that make these plants attractive especially for IPPs and Developers. Other aspects of these comprehensive concepts include turnkey construction and the willingness to participate in BOO/BOT projects. One of the various examples of such a concept, the 2 x 610-MW Paiton Private Power Project Phase II in Indonesia, is described in this paper. At the technological leading edge, Siemens has always made a major contribution and was pacemaker for new developments in steam power plant technology. Modern coal-fired steam power plants use computer-optimized process and plant design as well as advanced materials, and achieve efficiencies exceeding 45%. One excellent example of this high technology is the world's largest lignite-fired steam power plant Schwarze Pumpe in Germany, which is equipped with two 800 MW Siemens steam turbine generators with supercritical steam parameters. The world's largest 50-Hz single-shaft turbine generator with supercritical steam parameters rated at 1025 MW for the Niederaussem lignite-fired steam power plant in Germany is a further example of the sophisticated Siemens steam turbine technology and sets a new benchmark in this field.

  1. Nighttime NOx Chemistry in Coal-Fired Power Plant Plumes

    NASA Astrophysics Data System (ADS)

    Fibiger, D. L.; McDuffie, E. E.; Dube, W. P.; Veres, P. R.; Lopez-Hilfiker, F.; Lee, B. H.; Green, J. R.; Fiddler, M. N.; Ebben, C. J.; Sparks, T.; Weinheimer, A. J.; Montzka, D.; Campos, T. L.; Cohen, R. C.; Bililign, S.; Holloway, J. S.; Thornton, J. A.; Brown, S. S.

    2015-12-01

    Nitrogen oxides (NOx = NO + NO2) play a key role in atmospheric chemistry. During the day, they catalyze ozone (O3) production, while at night they can react to form nitric acid (HNO3) and nitryl chloride (ClNO2) and remove O3 from the atmosphere. These processes are well studied in the summer, but winter measurements are more limited. Coal-fired power plants are a major source of NOx to the atmosphere, making up approximately 30% of emissions in the US (epa.gov). NOx emissions can vary seasonally, as well as plant-to-plant, with important impacts on the details of the plume chemistry. In particular, due to inefficient plume dispersion, nighttime NOx emissions from power plants are held in concentrated plumes, where rates of mixing with ambient O3 have a strong influence on plume evolution. We will show results from the aircraft-based WINTER campaign over the northeastern United States, where several nighttime intercepts of power plant plumes were made. Several of these intercepts show complete O3 titration, which can have a large influence on NOx lifetime, and thus O3 production, in the plume. When power plant NO emissions exceed background O3 levels, O3 is completely consumed converting NO to NO2. In the presence of O3, NO2 will be oxidized to NO3, which will then react with NO2 to form N2O5, which can then form HNO3 and/or ClNO2 and, ultimately, remove NOx from the atmosphere or provide next-day oxidant sources. If there is no O3 present, however, no further chemistry can occur and NO and NO2 will be transported until mixing with sufficient O3 for higher oxidation products. Modeling results of plume development and mixing, which can tell us more about this transport, will also be presented.

  2. Optimization of a Virtual Power Plant to Provide Frequency Support.

    SciTech Connect

    Neely, Jason C.; Johnson, Jay; Gonzalez, Sigifredo; Lave, Matthew Samuel; Delhotal, Jarod James

    2015-12-01

    Increasing the penetration of distributed renewable sources, including photovoltaic (PV) sources, poses technical challenges for grid management. The grid has been optimized over decades to rely upon large centralized power plants with well-established feedback controls, but now non-dispatchable, renewable sources are displacing these controllable generators. This one-year study was funded by the Department of Energy (DOE) SunShot program and is intended to better utilize those variable resources by providing electric utilities with the tools to implement frequency regulation and primary frequency reserves using aggregated renewable resources, known as a virtual power plant. The goal is to eventually enable the integration of 100s of Gigawatts into US power systems.

  3. Hydrogen Production from Hydrogen Sulfide in IGCC Power Plants

    SciTech Connect

    Elias Stefanakos; Burton Krakow; Jonathan Mbah

    2007-07-31

    IGCC power plants are the cleanest coal-based power generation facilities in the world. Technical improvements are needed to help make them cost competitive. Sulfur recovery is one procedure in which improvement is possible. This project has developed and demonstrated an electrochemical process that could provide such an improvement. IGCC power plants now in operation extract the sulfur from the synthesis gas as hydrogen sulfide. In this project H{sub 2}S has been electrolyzed to yield sulfur and hydrogen (instead of sulfur and water as is the present practice). The value of the byproduct hydrogen makes this process more cost effective. The electrolysis has exploited some recent developments in solid state electrolytes. The proof of principal for the project concept has been accomplished.

  4. A modernized high-pressure heater protection system for nuclear and thermal power stations

    NASA Astrophysics Data System (ADS)

    Svyatkin, F. A.; Trifonov, N. N.; Ukhanova, M. G.; Tren'kin, V. B.; Koltunov, V. A.; Borovkov, A. I.; Klyavin, O. I.

    2013-09-01

    Experience gained from operation of high-pressure heaters and their protection systems serving to exclude ingress of water into the turbine is analyzed. A formula for determining the time for which the high-pressure heater shell steam space is filled when a rupture of tubes in it occurs is analyzed, and conclusions regarding the high-pressure heater design most advisable from this point of view are drawn. A typical structure of protection from increase of water level in the shell of high-pressure heaters used in domestically produced turbines for thermal and nuclear power stations is described, and examples illustrating this structure are given. Shortcomings of components used in the existing protection systems that may lead to an accident at the power station are considered. A modernized protection system intended to exclude the above-mentioned shortcomings was developed at the NPO Central Boiler-Turbine Institute and ZioMAR Engineering Company, and the design solutions used in this system are described. A mathematical model of the protection system's main elements (the admission and check valves) has been developed with participation of specialists from the St. Petersburg Polytechnic University, and a numerical investigation of these elements is carried out. The design version of surge tanks developed by specialists of the Central Boiler-Turbine Institute for excluding false operation of the high-pressure heater protection system is proposed.

  5. Enhancement of NRC station blackout requirements for nuclear power plants

    SciTech Connect

    McConnell, M. W.

    2012-07-01

    The U.S. Nuclear Regulatory Commission (NRC) established a Near-Term Task Force (NTTF) in response to Commission direction to conduct a systematic and methodical review of NRC processes and regulations to determine whether the agency should make additional improvements to its regulatory system and to make recommendations to the Commission for its policy direction, in light of the accident at the Fukushima Dai-ichi Nuclear Power Plant. The NTTF's review resulted in a set of recommendations that took a balanced approach to defense-in-depth as applied to low-likelihood, high-consequence events such as prolonged station blackout (SBO) resulting from severe natural phenomena. Part 50, Section 63, of Title 10 of the Code of Federal Regulations (CFR), 'Loss of All Alternating Current Power,' currently requires that each nuclear power plant must be able to cool the reactor core and maintain containment integrity for a specified duration of an SBO. The SBO duration and mitigation strategy for each nuclear power plant is site specific and is based on the robustness of the local transmission system and the transmission system operator's capability to restore offsite power to the nuclear power plant. With regard to SBO, the NTTF recommended that the NRC strengthen SBO mitigation capability at all operating and new reactors for design-basis and beyond-design-basis external events. The NTTF also recommended strengthening emergency preparedness for prolonged SBO and multi-unit events. These recommendations, taken together, are intended to clarify and strengthen US nuclear reactor safety regarding protection against and mitigation of the consequences of natural disasters and emergency preparedness during SBO. The focus of this paper is on the existing SBO requirements and NRC initiatives to strengthen SBO capability at all operating and new reactors to address prolonged SBO stemming from design-basis and beyond-design-basis external events. The NRC initiatives are intended to

  6. Water Extraction from Coal-Fired Power Plant Flue Gas

    SciTech Connect

    Bruce C. Folkedahl; Greg F. Weber; Michael E. Collings

    2006-06-30

    The overall objective of this program was to develop a liquid disiccant-based flue gas dehydration process technology to reduce water consumption in coal-fired power plants. The specific objective of the program was to generate sufficient subscale test data and conceptual commercial power plant evaluations to assess process feasibility and merits for commercialization. Currently, coal-fired power plants require access to water sources outside the power plant for several aspects of their operation in addition to steam cycle condensation and process cooling needs. At the present time, there is no practiced method of extracting the usually abundant water found in the power plant stack gas. This project demonstrated the feasibility and merits of a liquid desiccant-based process that can efficiently and economically remove water vapor from the flue gas of fossil fuel-fired power plants to be recycled for in-plant use or exported for clean water conservation. After an extensive literature review, a survey of the available physical and chemical property information on desiccants in conjunction with a weighting scheme developed for this application, three desiccants were selected and tested in a bench-scale system at the Energy and Environmental Research Center (EERC). System performance at the bench scale aided in determining which desiccant was best suited for further evaluation. The results of the bench-scale tests along with further review of the available property data for each of the desiccants resulted in the selection of calcium chloride as the desiccant for testing at the pilot-scale level. Two weeks of testing utilizing natural gas in Test Series I and coal in Test Series II for production of flue gas was conducted with the liquid desiccant dehumidification system (LDDS) designed and built for this study. In general, it was found that the LDDS operated well and could be placed in an automode in which the process would operate with no operator intervention or

  7. Experience in connecting the power generating units of thermal power plants to automatic secondary frequency regulation within the united power system of Russia

    SciTech Connect

    Zhukov, A. V.; Komarov, A. N.; Safronov, A. N.; Barsukov, I. V.

    2009-05-15

    The principles of central control of the power generating units of thermal power plants by automatic secondary frequency and active power overcurrent regulation systems, and the algorithms for interactions between automatic power control systems for the power production units in thermal power plants and centralized systems for automatic frequency and power regulation, are discussed. The order of switching the power generating units of thermal power plants over to control by a centralized system for automatic frequency and power regulation and by the Central Coordinating System for automatic frequency and power regulation is presented. The results of full-scale system tests of the control of power generating units of the Kirishskaya, Stavropol, and Perm GRES (State Regional Electric Power Plants) by the Central Coordinating System for automatic frequency and power regulation at the United Power System of Russia on September 23-25, 2008, are reported.

  8. Small-Scale Geothermal Power Plant Field Verification Projects: Preprint

    SciTech Connect

    Kutscher, C.

    2001-07-03

    In the spring of 2000, the National Renewable Energy Laboratory issued a Request for Proposal for the construction of small-scale (300 kilowatt [kW] to 1 megawatt [MW]) geothermal power plants in the western United States. Five projects were selected for funding. Of these five, subcontracts have been completed for three, and preliminary design work is being conducted. The three projects currently under contract represent a variety of concepts and locations: a 1-MW evaporatively enhanced, air-cooled binary-cycle plant in Nevada; a 1-MW water-cooled Kalina-cycle plant in New Mexico; and a 750-kW low-temperature flash plant in Utah. All three also incorporate direct heating: onion dehydration, heating for a fish hatchery, and greenhouse heating, respectively. These projects are expected to begin operation between April 2002 and September 2003. In each case, detailed data on performance and costs will be taken over a 3-year period.

  9. Hybrid Cooling for Geothermal Power Plants: Final ARRA Project Report

    SciTech Connect

    Bharathan, D.

    2013-06-01

    Many binary-cycle geothermal plants use air as the heat rejection medium. Usually this is accomplished by using an air-cooled condenser (ACC) system to condense the vapor of the working fluid in the cycle. Many air-cooled plants suffer a loss of production capacity of up to 50% during times of high ambient temperatures. Use of limited amounts of water to supplement the performance of ACCs is investigated. Deluge cooling is found to be one of the least-cost options. Limiting the use of water in such an application to less than one thousand operating hours per year can boost plant output during critical high-demand periods while minimizing water use in binary-cycle geothermal power plants.

  10. 76 FR 39908 - Calvert Cliffs Nuclear Power Plant, LLC; Calvert Cliffs Nuclear Power Plant, Unit Nos. 1 and 2...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-07

    .... Calvert Cliffs Nuclear Power Plant, LLC is owned by Constellation Energy Nuclear Group, LLC (CENG). The... one of CENG's parent companies, Constellation Energy Group, Inc (CEG). According to the application... Generation; and Throughout the transaction, the direct ownership by CEG of 100 percent of...

  11. Power conditioning subsystems for photovoltaic central-station power plants - Technology and performance

    NASA Technical Reports Server (NTRS)

    Krauthamer, S.; Das, R.; Bulawka, A.

    1985-01-01

    Central-Station (CS) Photovoltaic (PV) systems have the potential of economically displacing significant amounts of centrally generated electricity. However, the technical viability and, to some extent, the economic viability of central-station PV generation technology will depend upon the availability of large power conditioners that are efficient, safe, reliable, and economical. This paper is an overview of the technical and cost requirements that must be met to develop economically viable power conditioning subsystems (PCS) for central-station power plants. The paper also examines various already commercially available PCS hardware that may be suitable for use in today's central PV power stations.

  12. Performance assessment of OTEC power systems and thermal power plants. Final report. Volume I

    SciTech Connect

    Leidenfrost, W.; Liley, P.E.; McDonald, A.T.; Mudawwar, I.; Pearson, J.T.

    1985-05-01

    The focus of this report is on closed-cycle ocean thermal energy conversion (OTEC) power systems under research at Purdue University. The working operations of an OTEC power plant are briefly discussed. Methods of improving the performance of OTEC power systems are presented. Brief discussions on the methods of heat exchanger analysis and design are provided, as are the thermophysical properties of the working fluids and seawater. An interactive code capable of analyzing OTEC power system performance is included for use with an IBM personal computer.

  13. Performance assessment of OTEC power systems and thermal power plants, volume 1

    NASA Astrophysics Data System (ADS)

    Leidenfrost, W.; Liley, P. E.; McDonald, A. T.; Mudawwar, I.; Pearson, J. T.

    1985-05-01

    The focus of this report is on closed-cycle ocean thermal energy conversion (OTEC) power systems under research at Purdue University. The working operations of an OTEC power plant are briefly discussed. Methods of improving the performance of OTEC power systems are presented. Brief discussions on the methods of heat exchanger analysis and design are provided, as are the thermophysical properties of the working fluids and seawater. An interactive code capable of analyzing OTEC power system performance is included for use with an IBM personal computer.

  14. Reactive power interconnection requirements for PV and wind plants : recommendations to NERC.

    SciTech Connect

    McDowell, Jason; Walling, Reigh; Peter, William; Von Engeln, Edi; Seymour, Eric; Nelson, Robert; Casey, Leo; Ellis, Abraham; Barker, Chris.

    2012-02-01

    Voltage on the North American bulk system is normally regulated by synchronous generators, which typically are provided with voltage schedules by transmission system operators. In the past, variable generation plants were considered very small relative to conventional generating units, and were characteristically either induction generator (wind) or line-commutated inverters (photovoltaic) that have no inherent voltage regulation capability. However, the growing level of penetration of non-traditional renewable generation - especially wind and solar - has led to the need for renewable generation to contribute more significantly to power system voltage control and reactive power capacity. Modern wind-turbine generators, and increasingly PV inverters as well, have considerable dynamic reactive power capability, which can be further enhanced with other reactive support equipment at the plant level to meet interconnection requirements. This report contains a set of recommendations to the North-America Electricity Reliability Corporation (NERC) as part of Task 1-3 (interconnection requirements) of the Integration of Variable Generation Task Force (IVGTF) work plan. The report discusses reactive capability of different generator technologies, reviews existing reactive power standards, and provides specific recommendations to improve existing interconnection standards.

  15. Impacts of TMDLs on coal-fired power plants.

    SciTech Connect

    Veil, J. A.; Environmental Science Division

    2010-04-30

    The Clean Water Act (CWA) includes as one of its goals restoration and maintenance of the chemical, physical, and biological integrity of the Nation's waters. The CWA established various programs to accomplish that goal. Among the programs is a requirement for states to establish water quality standards that will allow protection of the designated uses assigned to each water body. Once those standards are set, state agencies must sample the water bodies to determine if water quality requirements are being met. For those water bodies that are not achieving the desired water quality, the state agencies are expected to develop total maximum daily loads (TMDLs) that outline the maximum amount of each pollutant that can be discharged to the water body and still maintain acceptable water quality. The total load is then allocated to the existing point and nonpoint sources, with some allocation held in reserve as a margin of safety. Many states have already developed and implemented TMDLs for individual water bodies or regional areas. New and revised TMDLs are anticipated, however, as federal and state regulators continue their examination of water quality across the United States and the need for new or revised standards. This report was funded by the U.S. Department of Energy's (DOE's) National Energy Technology Laboratory (NETL) Existing Plants Research Program, which has an energy-water research effort that focuses on water use at power plants. This study complements its overall research effort by evaluating water issues that could impact power plants. One of the program missions of the DOE's NETL is to develop innovative environmental control technologies that will enable full use of the Nation's vast coal reserves, while at the same time allowing the current fleet of coal-fired power plants to comply with existing and emerging environmental regulations. Some of the parameters for which TMDLs are being developed are components in discharges from coal-fired power

  16. Revised seismic and geologic siting regulations for nuclear power plants

    SciTech Connect

    Murphy, A.J.; Chokshi, N.C.

    1997-02-01

    The primary regulatory basis governing the seismic design of nuclear power plants is contained in Appendix A to Part 50, General Design Criteria for Nuclear Power Plants, of Title 10 of the Code of Federal Regulations (CFR). General Design Criteria (GDC) 2 defines requirements for design bases for protection against natural phenomena. GDC 2 states the performance criterion that {open_quotes}Structures, systems, and components important to safety shall be designed to withstand the effects of natural phenomena such as earthquakes, . . . without loss of capability to perform their safety functions. . .{close_quotes}. Appendix A to Part 100, Seismic and Geologic Siting Criteria for Nuclear Power Plants, has been the principal document which provided detailed criteria to evaluate the suitability of proposed sites and suitability of the plant design basis established in consideration of the seismic and geologic characteristics of the proposed sites. Appendix A defines required seismological and geological investigations and requirements for other design conditions such as soil stability, slope stability, and seismically induced floods and water waves, and requirements for seismic instrumentation. The NRC staff is in the process of revising Appendix A. The NRC has recently revised seismic siting and design regulations for future applications. These revisions are discussed in detail in this paper.

  17. Dynamic Models for Wind Turbines and Wind Power Plants

    SciTech Connect

    Singh, M.; Santoso, S.

    2011-10-01

    The primary objective of this report was to develop universal manufacturer-independent wind turbine and wind power plant models that can be shared, used, and improved without any restrictions by project developers, manufacturers, and engineers. Manufacturer-specific models of wind turbines are favored for use in wind power interconnection studies. While they are detailed and accurate, their usages are limited to the terms of the non-disclosure agreement, thus stifling model sharing. The primary objective of the work proposed is to develop universal manufacturer-independent wind power plant models that can be shared, used, and improved without any restrictions by project developers, manufacturers, and engineers. Each of these models includes representations of general turbine aerodynamics, the mechanical drive-train, and the electrical characteristics of the generator and converter, as well as the control systems typically used. To determine how realistic model performance is, the performance of one of the models (doubly-fed induction generator model) has been validated using real-world wind power plant data. This work also documents selected applications of these models.

  18. Overview of past, present and future marine power plants

    NASA Astrophysics Data System (ADS)

    Morsy El-Gohary, M.

    2013-06-01

    In efforts to overcome an foreseeable energy crisis predicated on limited oil and gas supplies, reserves; economic variations facing the world, and of course the environmental side effects of fossil fuels, an urgent need for energy sources that provide sustainable, safe and economic supplies for the world is imperative. The current fossil fuel energy system must be improved to ensure a better and cleaner transportation future for the world. Despite the fact that the marine transportation sector consumes only 5% of global petroleum production; it is responsible for 15% of the world NO x and SO x emissions. These figures must be the engine that powers the scientific research worldwide to develop new solutions for a very old energy problem. In this paper, the most effective types of marine power plants were discussed. The history of the development of each type was presented first and the technical aspects were discussed second. Also, the fuel cells as a new type of power plants used in marine sector were briefed to give a complete overview of the past, present and future of the marine power plants development. Based on the increased worldwide concerns regarding harmful emissions, many researchers have introduced solutions to this problem, including the adoption of new cleaner fuels. This paper was guided using the same trend and by implementing the hydrogen as fuel for marine internal combustion engine, gas turbines, and fuel cells.

  19. The Acceptance Strategy for Nuclear Power Plant In Indonesia

    NASA Astrophysics Data System (ADS)

    Suhaemi, Tjipta; Syaukat, Achmad

    2010-06-01

    THE ACCEPTANCE STRATEGY FOR NUCLEAR POWER PLANT IN INDONESIA. Indonesia has planned to build nuclear power plants. Some feasibility studies have been conducted intensively. However, the processes of NPP introduction are still uncertain. National Energy Plan in Indonesia, which has been made by some governmental agencies, does not yet give positive impact to the government decision to construct the nuclear power plant (NPP). This paper discusses the process of NPP introduction in Indonesia, which has been colored with debate of stakeholder and has delayed decision for go-nuclear. The technology paradigm is used to promote NPP as an alternative of reliable energy resources. This paradigm should be complemented with international politic-economic point of view. The international politic-economic point of view shows that structural powers, consisting of security, production, finance, and knowledge structures, within which the NPP is introduced, have dynamic characteristics. The process of NPP introduction in Indonesia contains some infrastructure development (R&D, legislation, regulation, energy planning, site study, public acceptance efforts, etc), but they need a better coherent NPP implementation program and NPP Acceptance Program. Strategic patterns for NPP acceptance described in this paper are made by considering nuclear regulation development and the interest of basic domestic participation. The first NPP program in Indonesia having proven technology and basic domestic participation is and important milestone toward and optimal national energy-mix.

  20. Fouling assemblages on offshore wind power plants and adjacent substrata

    NASA Astrophysics Data System (ADS)

    Wilhelmsson, Dan; Malm, Torleif

    2008-09-01

    A significant expansion of offshore wind power is expected in the near future, with thousands of turbines in coastal waters, and various aspects of how this may influence the coastal ecology including disturbance effects from noise, shadows, electromagnetic fields, and changed hydrological conditions are accordingly of concern. Further, wind power plants constitute habitats for a number of organisms, and may locally alter assemblage composition and biomass of invertebrates, algae and fish. In this study, fouling assemblages on offshore wind turbines were compared to adjacent hard substrate. Influences of the structures on the seabed were also investigated. The turbines differed significantly from adjacent boulders in terms of assemblage composition of epibiota and motile invertebrates. Species number and Shannon-Wiener diversity were, also, significantly lower on the wind power plants. It was also indicated that the turbines might have affected assemblages of invertebrates and algae on adjacent boulders. Off shore wind power plant offer atypical substrates for fouling assemblages in terms of orientation, depth range, structure, and surface texture. Some potential ecological implications of the addition of these non-natural habitats for coastal ecology are discussed.