Surface texture measurement for dental wear applications
NASA Astrophysics Data System (ADS)
Austin, R. S.; Mullen, F.; Bartlett, D. W.
2015-06-01
The application of surface topography measurement and characterization within dental materials science is highly active and rapidly developing, in line with many modern industries. Surface measurement and structuring is used extensively within oral and dental science to optimize the optical, tribological and biological performance of natural and biomimetic dental materials. Although there has historically been little standardization in the use and reporting of surface metrology instrumentation and software, the dental industry is beginning to adopt modern areal measurement and characterization techniques, especially as the dental industry is increasingly adopting digital impressioning techniques in order to leverage CAD/CAM technologies for the design and construction of dental restorations. As dental treatment becomes increasingly digitized and reliant on advanced technologies such as dental implants, wider adoption of standardized surface topography and characterization techniques will become evermore essential. The dental research community welcomes the advances that are being made in surface topography measurement science towards realizing this ultimate goal.
Sensor for the working surface cleanliness definition in vacuum
NASA Astrophysics Data System (ADS)
Deulin, E. A.; Mashurov, S. S.; Gatsenko, A. A.
2016-07-01
Modern development of nanotechnology as one of the modern science priority directions is impossible to imagine without the use of vacuum systems and technologies. And the better the vacuum (lower the pressure), the “cleaner” we get a surface, which is very important for nanotechnology. Determination of the cleanliness of the surface or the amount of molecular layers of adsorbed gases on the working surface of the products especially in industry, where the cleanliness of the working surface is a key parameter of the technological process and has a significant influence on the output parameters of the final product is the main goal of this work.
Basic Science Considerations in Primary Total Hip Replacement Arthroplasty
Mirza, Saqeb B; Dunlop, Douglas G; Panesar, Sukhmeet S; Naqvi, Syed G; Gangoo, Shafat; Salih, Saif
2010-01-01
Total Hip Replacement is one of the most common operations performed in the developed world today. An increasingly ageing population means that the numbers of people undergoing this operation is set to rise. There are a numerous number of prosthesis on the market and it is often difficult to choose between them. It is therefore necessary to have a good understanding of the basic scientific principles in Total Hip Replacement and the evidence base underpinning them. This paper reviews the relevant anatomical and biomechanical principles in THA. It goes on to elaborate on the structural properties of materials used in modern implants and looks at the evidence base for different types of fixation including cemented and uncemented components. Modern bearing surfaces are discussed in addition to the scientific basis of various surface engineering modifications in THA prostheses. The basic science considerations in component alignment and abductor tension are also discussed. A brief discussion on modular and custom designs of THR is also included. This article reviews basic science concepts and the rationale underpinning the use of the femoral and acetabular component in total hip replacement. PMID:20582240
Fundamental insights into interfacial catalysis.
Gong, Jinlong; Bao, Xinhe
2017-04-03
Surface and interfacial catalysis plays a vital role in chemical industries, electrochemistry and photochemical reactions. The challenges of modern chemistry are to optimize the chemical reaction processes and understand the detailed mechanism of chemical reactions. Since the early 1960s, the foundation of surface science systems has allowed the study of surface and interfacial phenomena on atomic/molecular level, and thus brought a number of significant developments to fundamental and technological processes, such as catalysis, material science and biochemistry, just to name a few. This themed issue describes the recent advances and developments in the fundamental understanding of surface and interfacial catalysis, encompassing areas of knowledge from metal to metal oxide, carbide, graphene, hexagonal boron nitride, and transition metal dichalcogenides under ultrahigh vacuum conditions, as well as under realistic reaction conditions.
Pious Science: The Gulen Community and the Making of a Conservative Modernity in Turkey
ERIC Educational Resources Information Center
Arslan, Berna
2009-01-01
This dissertation explores the ways in which the Islamic Fethullah Gulen community engages with science as a response to globalization and modernity. Framed with the theoretical discussions on multiple modernities, it investigates how the community contests for hegemony in the field of science against the project of secular modernity, and…
NASA Astrophysics Data System (ADS)
Davis, J. B.; Rigsby, C. A.; Muston, C.; Robinson, Z.; Morehead, A.; Stellwag, E. J.; Shinpaugh, J.; Thompson, A.; Teller, J.
2010-12-01
Graduate students and faculty at East Carolina University are working with area high schools to address the common science and mathematics deficiencies of many high school students. Project RaN (Reasoning about Nature), an interdisciplinary science/math/education research project, addresses these deficiencies by focusing on the history of science and the relationship between that history and modern scientific thought and practice. The geological sciences portion of project RaN has three specific goals: (1) to elucidate the relationships among the history of scientific discovery, the geological sciences, and modern scientific thought; (2) to develop, and utilize in the classroom, instructional modules that are relevant to the modern geological sciences curriculum and that relate fundamental scientific discoveries and principles to multiple disciplines and to modern societal issues; and (3) to use these activity-based modules to heighten students’ interest in science disciplines and to generate enthusiasm for doing science in both students and instructors. The educational modules that result from this linkage of modern and historical scientific thought are activity-based, directly related to the National Science Standards for the high school sciences curriculum, and adaptable to fit each state’s standard course of study for the sciences and math. They integrate historic sciences and mathematics with modern science, contain relevant background information on both the concept(s) and scientist(s) involved, present questions that compel students to think more deeply (both qualitatively and quantitatively) about the subject matter, and include threads that branch off to related topics. Modules on topics ranging from the density to cladistics to Kepler’s laws of planetary motion have been developed and tested. Pre- and post-module data suggest that both students and teachers benefit from these interdisciplinary historically based classroom experiences.
Publications of the Western Earth Surface Processes Team 2006
Powell, Charles L.; Stone, Paul
2007-01-01
The Western Earth Surface Processes Team (WESPT) of the U.S. Geological Survey (USGS) conducts geologic mapping, earth-surface process investigations, and related topical earth science studies in the western United States. This work is focused on areas where modern geologic maps and associated earth-science data are needed to address key societal and environmental issues such as ground-water quality, landslides and other potential geologic hazards, and land-use decisions. Areas of primary emphasis in 2006 included southern California, the San Francisco Bay region, the Mojave Desert, the Colorado Plateau region of northern Arizona, and the Pacific Northwest. The team has its headquarters in Menlo Park, California, and maintains smaller field offices at several other locations in the western United States. This compilation gives the bibliographical citations for 123 new publications, most of which are available online using the hyperlinks provided.
Living well in light of science.
McMahon, Darrin M
2016-11-01
This article discusses some findings of the modern science of happiness in the context of historical understandings of happiness. Comparing teachings of the ancient wisdom traditions to those of modern positive psychology and social science, I argue that there is surprising correspondence between the two. The happy life, both ancients and modern agree, involves training and the development and mastery of particular character traits. © 2016 New York Academy of Sciences.
Exploration of Venus' Deep Atmosphere and Surface Environment
NASA Technical Reports Server (NTRS)
Glaze, L. S.; Amato, M.; Garvin, J. B.; Johnson, N. M.
2017-01-01
Venus formed in the same part of our solar system as Earth, apparently from similar materials. Although both planets are about the same size, their differences are profound. Venus and Earth experienced vastly different evolutionary pathways resulting in unexplained differences in atmospheric composition and dynamics, as well as in geophysical processes of the planetary surfaces and interiors. Understanding when and why the evolutionary pathways of Venus and Earth diverged is key to understanding how terrestrial planets form and how their atmospheres and surfaces evolve. Measurements made in situ, within the near-surface or surface environment, are critical to addressing unanswered questions. We have made substantial progress modernizing and maturing pressure vessel technologies to enable science operations in the high temperature and pressure near-surface/surfaceenvironment of Venus.
Report of the panel on the land surface: Process of change, section 5
NASA Technical Reports Server (NTRS)
Adams, John B.; Barron, Eric E.; Bloom, Arthur A.; Breed, Carol; Dohrenwend, J.; Evans, Diane L.; Farr, Thomas T.; Gillespie, Allan R.; Isaks, B. L.; Williams, Richard S.
1991-01-01
The panel defined three main areas of study that are central to the Solid Earth Science (SES) program: climate interactions with the Earth's surface, tectonism as it affects the Earth's surface and climate, and human activities that modify the Earth's surface. Four foci of research are envisioned: process studies with an emphasis on modern processes in transitional areas; integrated studies with an emphasis on long term continental climate change; climate-tectonic interactions; and studies of human activities that modify the Earth's surface, with an emphasis on soil degradation. The panel concluded that there is a clear requirement for global coverage by high resolution stereoscopic images and a pressing need for global topographic data in support of studies of the land surface.
The Growth of Physical Science
NASA Astrophysics Data System (ADS)
Jeans, James
2009-07-01
1. The remote beginnings; 2. Ionia and early Greece; 3. Science and Alexandria; 4. Science in the dark ages; 5. The birth of modern science; 6. The century of genius; 7. The two centuries after Newton; 8. The era of modern physics.
Modern Dilemmas - Science (World History Series).
ERIC Educational Resources Information Center
Montgomery County Public Schools, Rockville, MD.
The publication, referred to as a unit on "Modern Dilemmas," was completed in 1969 and is part of a Modern World History pilot project integrating areas of art, literature, philosophy, and science into the social studies curriculum. The unit seeks to explore all of the facets of science as part of man's search for meaning, but because of time…
The development of surface science in China: retrospect and prospects
NASA Astrophysics Data System (ADS)
Xide, Xie
1994-01-01
It is generally agreed that the year of 1977 marked the birth of surface science in China, therefore the length of its history of development is only half of that shown in the title of this volume. Since 1977 laboratories with modern facilities for surface studies have been established in various universities and research institutes. Three open laboratories better equipped than others have been set up in Beijing, Xiamen and Shanghai for surface physics, surface chemistry and applied surface physics, respectively. Five National Conferences on Physics of Surfaces and Interfaces were held in 1982, 1984, 1985, 1988 and 1991. In 1993 China is going to host the Fourth International Conference on the Structure of Surfaces in Shanghai August 16-19 which will serve as a milestone in the history of development of surface science in China. With the access to many overseas laboratories, quite a number of Chinese scientists and students have had opportunities to work and study abroad and have brought back with them experiences acquired. During the Conferences just mentioned, one could witness a number of steady progresses made over the years. In the present review, a brief description about the establishment of some major research facilities and progresses of some of the research is given with emphasis on work related to semiconductor surfaces, interfaces, superlattices, heterojunctions and quantum wells. Although the review nominally covers the development of research in surface science in China, due to the limitation of the capabilities of the author, mostly work done at Fudan University is included. For this the author would like to express her deep apology to many Chinese colleagues whose works have not been properly mentioned.
Dowsett, H.J.; Poore, R.Z.
1990-01-01
A new planktic foraminifer transfer function (GSF18) related 5 North Atlantic assemblages to winter and summer sea surface temperature. GSF18, based on recombined and simplified core top census data, preserves most environmental information and reproduces modern North Atlantic conditions with approximately the same accuracy as previous transfer functions, but can be more readily applied to faunal samples ranging in age from Pliocene to Holocene. Transfer function GSF18 has been applied to faunal data from Deep Sea Drilling Project Hole 552A to produce a 2.5 m.y. sea-surface temperature (SST) time series. Estimates show several periods between 2.3 and 4.6 Ma during which mean SST's were both several degrees warmer and several degrees cooler than modern conditions. Between 2.9 and 4.0 Ma SST was generally warmer than modern except for a 250 k.y. interval centered at 3.3 Ma. Maximum SST, with respect to modern conditions, occurred after the cool interval near 3.1 Ma when SST was approximately 3.6??C warmer than present conditions. Comparison of SST estimates with stable isotope data suggest that after peak warming at 3.1 Ma, there was an overall surface water cooling with concomitant build up of global ice volume, culminating in Northern Hemisphere glaciation. This event is also indicated by the presence of ice rafted detritus in 552A sediments at about 2.45 Ma. ?? 1990 Elsevier Science Publishers B.V.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hermann, Raphael P
2017-01-01
This most comprehensive and unrivaled compendium in the field provides an up-to-date account of the chemistry of solids, nanoparticles and hybrid materials. Following a valuable introductory chapter reviewing important synthesis techniques, the handbook presents a series of contributions by about 150 international leading experts -- the "Who's Who" of solid state science. Clearly structured, in six volumes it collates the knowledge available on solid state chemistry, starting from the synthesis, and modern methods of structure determination. Understanding and measuring the physical properties of bulk solids and the theoretical basis of modern computational treatments of solids are given ample space, asmore » are such modern trends as nanoparticles, surface properties and heterogeneous catalysis. Emphasis is placed throughout not only on the design and structure of solids but also on practical applications of these novel materials in real chemical situations.« less
Iron deposition in modern and archaeological teeth
NASA Astrophysics Data System (ADS)
Williams, A.-M. M.; Siegele, R.
2014-09-01
Iron surface concentrations and profile maps were measured on the enamel of archaeological and modern teeth to determine how iron is deposited in tooth enamel and if it was affected by the post-mortem environment. Teeth from Australian children who died in the second half of the 19th century were compared with contemporary teeth extracted for orthodontic purposes. Surface analysis of the teeth was performed using the 3 MV Van Der Graff Accelerator at The Australian Nuclear Science and Technology Organisation (ANSTO), Sydney, Australia. A small sample of teeth were then cut in the mid sagittal plane and analysed using ANSTO High Energy Heavy Ion Microprobe. Maps and linear profiles were produced showing the distribution of iron across the enamel. Results show that both the levels and distribution of iron in archaeological teeth is quite different to contemporary teeth, raising the suggestion that iron has been significantly altered by the post-mortem environment.
Human Science for Human Freedom? Piaget's Developmental Research and Foucault's Ethical Truth Games
ERIC Educational Resources Information Center
Zhao, Guoping
2012-01-01
The construction of the modern subject and the pursuit of human freedom and autonomy, as well as the practice of human science has been pivotal in the development of modern education. But for Foucault, the subject is only the effect of discourses and power-knowledge arrangements, and modern human science is part of the very arrangement that has…
Bioinformatics in High School Biology Curricula: A Study of State Science Standards
ERIC Educational Resources Information Center
Wefer, Stephen H.; Sheppard, Keith
2008-01-01
The proliferation of bioinformatics in modern biology marks a modern revolution in science that promises to influence science education at all levels. This study analyzed secondary school science standards of 49 U.S. states (Iowa has no science framework) and the District of Columbia for content related to bioinformatics. The bioinformatics…
Modern Science and Conservative Islam: An Uneasy Relationship
ERIC Educational Resources Information Center
Edis, Taner
2009-01-01
Familiar Western debates about religion, science, and science education have parallels in the Islamic world. There are difficulties reconciling conservative, traditional versions of Islam with modern science, particularly theories such as evolution. As a result, many conservative Muslim thinkers are drawn toward creationism, hopes of Islamizing…
And yet, we were modern. The paradoxes of Iberian science after the Grand Narratives.
Pimentel, Juan; Pardo-Tomás, José
2017-06-01
In this article, we try to explain the origin of a disagreement; the sort that often arises when the subject is the history of early modern Spanish science. In the decades between 1970 and 1990, while some historians were trying to include Spain in the grand narrative of the rise of modern science, the very historical category of the Scientific Revolution was beginning to be dismantled. It could be said that Spaniards were boarding the flagship of modern science right before it sank. To understand this décalage it would be helpful to recall the role of the history of science during the years after the Franco dictatorship and Spain's transition to democracy. It was a discipline useful for putting behind us the Black Legend and Spanish exceptionalism.
NASA Astrophysics Data System (ADS)
Klop, Tanja; Severiens, Sabine E.; Knippels, Marie-Christine P. J.; van Mil, Marc H. W.; Ten Dam, Geert T. M.
2010-06-01
This article evaluated the impact of a four-lesson science module on the attitudes of secondary school students. This science module (on cancer and modern biotechnology) utilises several design principles, related to a social constructivist perspective on learning. The expectation was that the module would help students become more articulate in this particular field. In a quasi-experimental design (experimental-, control groups, and pre- and post-tests), secondary school students' attitudes (N = 365) towards modern biotechnology were measured by a questionnaire. Data were analysed using Chi-square tests. Significant differences were obtained between the control and experimental conditions. Results showed that the science module had a significant effect on attitudes, although predominantly towards a more supportive and not towards a more critical stance. It is discussed that offering a science module of this kind can indeed encourage students to become more aware of modern biotechnology, although promoting a more critical attitude towards modern biotechnology should receive more attention.
On What Basis Hope? Modern Progress and Postmodern Possibilities.
ERIC Educational Resources Information Center
Danforth, Scot
1997-01-01
Examines modern and postmodern concepts of hope as applied to services for persons having mental retardation. Contrasts modernist theories of special education, based on interventionist social science, with postmodernist views, which critique modern social science as perpetuating stigmatized "mentally retarded" identities defined by…
Planetary Exploration in the Classroom
NASA Astrophysics Data System (ADS)
Slivan, S. M.; Binzel, R. P.
1997-07-01
We have developed educational materials to seed a series of undergraduate level exercises on "Planetary Exploration in the Classroom." The goals of the series are to teach modern methods of planetary exploration and discovery to students having both science and non-science backgrounds. Using personal computers in a "hands-on" approach with images recorded by planetary spacecraft, students working through the exercises learn that modern scientific images are digital objects that can be examined and manipulated in quantitative detail. The initial exercises we've developed utilize NIH Image in conjunction with images from the Voyager spacecraft CDs. Current exercises are titled "Using 'NIH IMAGE' to View Voyager Images", "Resolving Surface Features on Io", "Discovery of Volcanoes on Io", and "Topography of Canyons on Ariel." We expect these exercises will be released during Fall 1997 and will be available via 'anonymous ftp'; detailed information about obtaining the exercises will be on the Web at "http://web.mit.edu/12s23/www/pec.html." This curriculum development was sponsored by NSF Grant DUE-9455329.
The Place of Science in the Modern World: A Speech by Robert Millikan
NASA Astrophysics Data System (ADS)
Williams, Kathryn R.
2001-07-01
A speech by Robert Millikan, reprinted in the May 1930 issue, pertains to issues still prevalent in the 21st century. In the "The Place of Science in the Modern World", the Nobel laureate defends science against charges of its detrimental effects on society, its materialistic intentions, and the destructive powers realized during the first World War. He also expresses concern that "this particular generation of Americans" may lack the moral qualities needed to make responsible use of the increased powers afforded by modern science.
Is homeopathy a science?--Continuity and clash of concepts of science within holistic medicine.
Schmidt, Josef M
2009-06-01
The question of whether homeopathy is a science is currently discussed almost exclusively against the background of the modern concept of natural science. This approach, however, fails to notice that homeopathy-in terms of history of science-rests on different roots that can essentially be traced back to two most influential traditions of science: on the one hand, principles and notions of Aristotelism which determined 2,000 years of Western history of science and, on the other hand, the modern concept of natural science that has been dominating the history of medicine for less than 200 years. While Aristotle's "science of the living" still included ontologic and teleologic dimensions for the sake of comprehending nature in a uniform way, the interest of modern natural science was reduced to functional and causal explanations of all phenomena for the purpose of commanding nature. In order to prevent further ecological catastrophes as well as to regain lost dimensions of our lives, the one-sidedness and theory-loadedness of our modern natural-scientific view of life should henceforth be counterbalanced by lifeworld-practical Aristotelic categories. In this way, the ground would be ready to conceive the scientific character of homeopathy-in a broader, Aristotelian sense.
Applying the Coupled-Cluster Ansatz to Solids and Surfaces in the Thermodynamic Limit
NASA Astrophysics Data System (ADS)
Gruber, Thomas; Liao, Ke; Tsatsoulis, Theodoros; Hummel, Felix; Grüneis, Andreas
2018-04-01
Modern electronic structure theories can predict and simulate a wealth of phenomena in surface science and solid-state physics. In order to allow for a direct comparison with experiment, such ab initio predictions have to be made in the thermodynamic limit, substantially increasing the computational cost of many-electron wave-function theories. Here, we present a method that achieves thermodynamic limit results for solids and surfaces using the "gold standard" coupled cluster ansatz of quantum chemistry with unprecedented efficiency. We study the energy difference between carbon diamond and graphite crystals, adsorption energies of water on h -BN, as well as the cohesive energy of the Ne solid, demonstrating the increased efficiency and accuracy of coupled cluster theory for solids and surfaces.
NASA Astrophysics Data System (ADS)
Battersby, Cara
2016-01-01
Many students graduate high school having never learned about the process and people behind modern science research. The BiteScis program addresses this gap by providing easily implemented lesson plans that incorporate the whos, whats, and hows of today's scienctific discoveries. We bring together practicing scientists (motivated graduate students from the selective communicating science conference, ComSciCon) with K-12 science teachers to produce, review, and disseminate K-12 lesson plans based on modern science research. These lesson plans vary in topic from environmental science to neurobiology to astrophysics, and involve a range of activities from laboratory exercises to art projects, debates, or group discussion. An integral component of the program is a series of short, "bite-size" articles on modern science research written for K-12 students. The "bite-size" articles and lesson plans will be made freely available online in an easily searchable web interface that includes association with a variety of curriculum standards. This ongoing program is in its first year with about 15 lesson plans produced to date.
Trimodernism and Social Sciences: A Note
ERIC Educational Resources Information Center
Snell, Joel C.
2012-01-01
The issues of premodern, modern, and postmodern can often confuse the social scientists because so much is drawn from modernism as the foundation of the social methodologies. Briefly, the author would like to differentiate the three modernism philosophies and indicate how a coalition of the three may apply to social sciences.
Valuing Science: A Turkish-American Comparison
ERIC Educational Resources Information Center
Titrek, Osman; Cobern, William W.
2011-01-01
The process of modernization began in Turkey under the reform government of Mustafa Kemal Ataturk (1881-1938). Turkey officially became a secular nation seeking to develop a modern economy with modern science and technology and political democracy. Turkey also has long been, and remains, a deeply religious society. Specifically, the practice of…
Sciences from below: feminisms, postcolonialities, and modernities.
Weaver, Harlan
2010-01-01
Sandra Harding's newest book, Sciences from Below: Feminisms, Postcolonialities, and Modernities, continues her work in feminist standpoint theory and science and technologies studies, asking how we might judge "good" science. Attentive to race, class, gender, and imperialism, Harding critically examines Northern and Southern sciences and technologies by adopting the perspective of those who see from below. This vision from the peripheries lets Harding question stories of modern scientific progress, revealing a multiplicity of "ethnosciences" and critiquing modernity itself. However, while Harding aims to produce knowledge for the North's others by emphasizing woman's experience, she fails to question the category "woman," ignoring contemporary transgender and queer scholarship. Further, it is Harding's care for the North's subjugated others that motivates her writing, revealing that the struggle to achieve the standpoint "from below" so critical to her project is fueled by what her ally Maria Puig de la Bellacasa would term not thinking from, but thinking with, or, more precisely, "thinking with care."
Origins of the historiography of modern Greek science.
Patiniotis, Manolis
2008-01-01
The purpose of the paper is to examine how Greek historians account for the presence of modern scientific ideas in the intellectual environment of eighteenth-century Greek-speaking society. It will also discuss the function of the history of modern Greek science in the context of Greek national historiography. As will be shown, the history of modem Greek science spent most of its life under the shadow of the history of ideas. Despite its seemingly secondary role, however, it occupied a distinctive place within national historiography because it formed the ground upon which different perceptions of the country's European identity converged. In this respect, one of the main goals of this paper is to outline the particular ideological presumptions, which shaped the historiography of modern Greek science under different historical circumstances. At the end an attempt will be made to articulate a viewpoint more in tandem with the recent methodological developments in the history of science.
People Interview: Black-tie science gets modern
NASA Astrophysics Data System (ADS)
2009-03-01
INTERVIEW Black-tie science gets modern Baroness Susan Greenfield CBE is director of the Royal Institution and professor of pharmacology at Oxford where she heads a multidisciplinary group studying neurodegenerative disorders. David Smith speaks to her about specialities, keeping busy and how science is changing.
[Elucidating! But how? Insights into the impositions of modern science communication].
Lehmkuh, Markus
2015-01-01
The talk promotes the view that science communication should abandon the claim that scientific information can convince others. This is identified as one of the impositions modern science communication is exposed to. Instead of convin cing others, science communication should focus on identifying societally relevant scientific knowledge and on communicating it accurately and coherently.
On Modern Cosmology and Its Place in Science Education
ERIC Educational Resources Information Center
Kragh, Helge
2011-01-01
Cosmology in its current meaning of the science of the universe is a topic that attracts as much popular as scientific interest. This paper argues that modern cosmology and its philosophical aspects should have a prominent place in science education. In the context of science teaching a partly historical approach is recommended, in particular an…
ERIC Educational Resources Information Center
Dmitrenko, ?amara ?.; Lavryk, Tatjana V.; Yaresko, Ekaterina V.
2015-01-01
Changes in the various fields of knowledge influenced the pedagogical science. The article explains the structure of the foundations of modern pedagogy through paradigmal and methodological aspects. Bases of modern pedagogy include complex of paradigms, object and subject of science, general and specific principles, methods and technologies.…
Also a Centennial Year for Ernest Orlando Lawrence
research with multidisciplinary teams of scientists and engineers-the team-based approach to modern science should be remembered as the inventor of the modern way of doing science," said Lawrence team member Revolutionary Idea that Changed Modern Physics A Few Important Events in Lawrence's Life E.O. Lawrence
Nanoarchitectonics of molecular aggregates: science and technology.
Ramanathan, Muruganathan; Hong, Kunlun; Ji, Qingmin; Yonamine, Yusuke; Hill, Jonathan P; Ariga, Katsuhiko
2014-01-01
The field of making, studying and using molecular aggregates, in which the individual molecules (monomers) are arranged in a regular fashion, has come a long way. Taking control over the aggregation of small molecules and polymers in bulk, on surfaces and at interfaces pose a considerable challenge for their utilization in modern high tech applications. In this review, we provide a detailed insight into recent trends in molecular aggregates from the perspectives of nanoarchitectonics.
Nanoarchitectonics of Molecular Aggregates: Science and Technology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramanathan, Nathan Muruganathan; Hong, Kunlun; Ji, Dr. Qingmin
2014-01-01
The field of making, studying and using molecular aggregates, in which the individual molecules (monomers) are arranged in a regular fashion, has come a long way. Taking control over the aggregation of small molecules and polymers in bulk, on surfaces and at interfaces pose a considerable challenge for their utilization in modern high tech applications. In this review we provide a detailed insight into recent trends in molecular aggregates from the perspectives of nanoarchitectonics.
Baber, Z
2001-03-01
In this paper, the role of scientific knowledge, institutions and colonialism in mutually co-producing each other is analysed. Under the overarching rubric of colonial structures and imperatives, amateur scientists sought to deploy scientific expertise to expand the empire while at the same time seeking to take advantage of the opportunities to develop their careers as 'scientists'. The role of a complex interplay of structure and agency in the development of modern science, not just in India but in Britain too is analysed. The role of science and technology in the incorporation of South Asian into the modern world system, as well as the consequences of the emergent structures in understanding the trajectory of modern science in post-colonial India is examined. Overall, colonial rule did not simply diffuse modern science from the core to the periphery. Rather the colonial encounter led to the development of new forms of scientific knowledge and institutions both in the periphery and the core.
ERIC Educational Resources Information Center
Qian, Min-hui
2006-01-01
Within the sphere of contemporary social sciences, the terms "modernity," "post-modernity" and "globalization" have penetrated, as the core concepts, into various fields of social sciences in a logical way. In constituting the concept of "modernity," sociology of education develops the educational theory, as sociological theory does, into a "grand…
MODERN SCIENCE. INSTRUCTIONAL GUIDE FOR SENIOR HIGH SCHOOL.
ERIC Educational Resources Information Center
RICE, GLORIA; AND OTHERS
ELEVEN UNITS OF STUDY INCLUDE--SCIENCE IN OUR LIVES TODAY, APPLIED CHEMISTRY, MODERN MATERIALS, MAN AND MECHANICS, HEAT AND FUELS, NUCLEAR ENERGY, SOUND, LIGHT, ELECTRICITY, ELECTRONICS, AND SPACE. ALL ARE DIRECTED AT THE STUDENT WHO WOULD USE THE INFORMATION GAINED IN EVERYDAY LIFE, RATHER THAN AT THE POTENTIAL SCIENCE STUDENT. UNIT 1 EXPLAINS…
Photo-realistic Terrain Modeling and Visualization for Mars Exploration Rover Science Operations
NASA Technical Reports Server (NTRS)
Edwards, Laurence; Sims, Michael; Kunz, Clayton; Lees, David; Bowman, Judd
2005-01-01
Modern NASA planetary exploration missions employ complex systems of hardware and software managed by large teams of. engineers and scientists in order to study remote environments. The most complex and successful of these recent projects is the Mars Exploration Rover mission. The Computational Sciences Division at NASA Ames Research Center delivered a 30 visualization program, Viz, to the MER mission that provides an immersive, interactive environment for science analysis of the remote planetary surface. In addition, Ames provided the Athena Science Team with high-quality terrain reconstructions generated with the Ames Stereo-pipeline. The on-site support team for these software systems responded to unanticipated opportunities to generate 30 terrain models during the primary MER mission. This paper describes Viz, the Stereo-pipeline, and the experiences of the on-site team supporting the scientists at JPL during the primary MER mission.
Valuing Science: A Turkish-American comparison
NASA Astrophysics Data System (ADS)
Titrek, Osman; Cobern, William W.
2011-02-01
The process of modernization began in Turkey under the reform government of Mustafa Kemal Ataturk (1881-1938). Turkey officially became a secular nation seeking to develop a modern economy with modern science and technology and political democracy. Turkey also has long been, and remains, a deeply religious society. Specifically, the practice of Islam is widespread, which raises the important question: whether the path of modernization in Turkey will look more like the American pattern or the European, where the Europeans are much more philosophically secular than the Americans? One way to look at this question is by examining how people value science vis-à-vis other important aspects of society and culture. Hence, our study is a comparative look at Turkish and American opinions about science. The American society, which is certainly a very modern society, is of particular interest in Turkey, given the significant religiosity of the American people, making the American and Turkish societies similar at least on this one significant point. Although we do not have comparable European data at this time, our Turkish-American comparison can be suggestive of whether or not Turkey is likely to follow the American pattern of a highly modernized yet deeply religious society.
NASA Astrophysics Data System (ADS)
Gomes, Ana; Skosey-LaLonde, Elena; Zinsious, Brandon; Gonçalves, Célia; Bicho, Nuno; Raja, Mussa; Cascalheira, João; Haws, Jonathan
2017-04-01
In the framework of the project "Stone Age Vilankulos: Modern Human Origins Research South of the Rio Save, Mozambique" a geoarchaeological survey was conducted in 2016 aiming to better understand the environmental history and landscape evolution of the study area including the environmental context of human occupation. During the survey, 23 sediment surface samples were collected across a variety of environments, namely: freshwater environment - Elephant River basin in Southwestern Mozambique - and brackish and marine tidal environments - Inhambane coastal area, Southeastern Mozambique. These samples will be used as modern analogues to interpret the sedimentological and paleontological record of 4 cores collected in a mangrove area of the Inhambane estuary and then reconstruct its palaeoenvironmental evolution. All the sampling points were georeferenced and the study area was overflown with a drone to collect photogrammetric data. Both surface and core samples were used for diatom, texture and geochemical analysis. Diatoms will be used as the main palaeontological proxy, because they are unicellular algae with a short-live cycle and largely sensible to environmental variables such as salinity, sediment texture and duration of the tidal inundation. Preliminary data on the modern diatoms analysis showed that diatom diversity is high and the equitability is low in all environments. Cores sedimentological description and dating are also presented. The work was supported by the project PTDC/EPHARQ/4168/2014, funded by the Portuguese Foundation for Science and Technology.
Cappella, Annalisa; Cummaudo, Marco; Arrigoni, Elena; Collini, Federica; Cattaneo, Cristina
2017-01-01
The main idea behind age assessment in adults is related to the analysis of the physiological degeneration of particular skeletal structures with age. The main issues with these procedures are due to the fact that they have not been tested on different modern populations and in different taphonomic contexts and that they tend to underestimate the age of older individuals. The purpose of this study was to test the applicability and the reliability of these methods on a contemporary population of skeletal remains of 145 elderly individuals of known sex and age. The results show that, due to taphonomic influences, some skeletal sites showed a lower survival. Therefore, the methods with the highest percentage of applicability were Lovejoy (89.6%) and Rougé-Maillart (81.3%), followed by Suchey-Brooks (59.3%), and those with the lowest percentage of applicability were Beauthier (26.2%) and Iscan (22.7%). In addition, this research has shown how for older adults the study of both acetabulum and auricular surface may be more reliable for aging. This is also in accordance with the fact that auricular surface and the acetabulum are the areas more frequently surviving taphonomic insult. © 2016 American Academy of Forensic Sciences.
ERIC Educational Resources Information Center
Blatt, Jessica
2009-01-01
This dissertation argues that changing ideas about race and engagement with race science were at the heart of a major transformation of political science in the 1920s, a transformation that I characterize as "becoming modern." This transformation was at once conceptual--visible in the basic categories and theoretical apparatus of the…
ERIC Educational Resources Information Center
Klop, Tanja; Severiens, Sabine E.; Knippels, Marie-Christine P. J.; van Mil, Marc H. W.; Ten Dam, Geert T. M.
2010-01-01
This article evaluated the impact of a four-lesson science module on the attitudes of secondary school students. This science module (on cancer and modern biotechnology) utilises several design principles, related to a social constructivist perspective on learning. The expectation was that the module would help students become more articulate in…
[Postmodernism and the issue of nursing].
Kong, Byung-Hye
2004-06-01
The purpose of this study was to illustrate the main stream of postmodernism which has influenced theory and research in the nursing science, and then to consider the meaning and value ofwhat the postmodern perspective has meant to nursing science in the 21st century. Derrida and Foucaults philosophical thoughts that characterized postmodernism through the interpretation of their major literature was studied. Based on their philosophy, it was shown how Derrida's idea could be applied in deconstructing the core paradigm in modern nursing science. In terms of Foucault's post-structuralism, reinterpretation of the nursing science in relation to power/knowledge was completed. Postmodernism created multiple and diverse paradigms of nursing theory as well as nursing research. This was accomplished by deconstructing the modernism of nursing science which was based on the positivism and medical-cure centralism. Specifically, the post-structuralist perspective revealed issues around the relationship of power and knowledge, which dominated and produced modern nursing science. Contemporary nursing science accepts pluralism and needs no unitary meta-paradigm, which can reintegrate multiple and diverse paradigms. In considering the issue of nursing science in postmodernism, it can be summarized as follows: the postmodern thinking discovers and reveals diverse and potential nursing values which were veiled by the domination of western modern nursing science. These were motivated to create nursing knowledge by conversation in interpersonal relationships, which can contribute to practical utilities for the caring-healing situation.
Discovering indigenous science: Implications for science education
NASA Astrophysics Data System (ADS)
Snively, Gloria; Corsiglia, John
2001-01-01
Indigenous science relates to both the science knowledge of long-resident, usually oral culture peoples, as well as the science knowledge of all peoples who as participants in culture are affected by the worldview and relativist interests of their home communities. This article explores aspects of multicultural science and pedagogy and describes a rich and well-documented branch of indigenous science known to biologists and ecologists as traditional ecological knowledge (TEK). Although TEK has been generally inaccessible, educators can now use a burgeoning science-based TEK literature that documents numerous examples of time-proven, ecologically relevant, and cost effective indigenous science. Disputes regarding the universality of the standard scientific account are of critical importance for science educators because the definition of science is a de facto gatekeeping device for determining what can be included in a school science curriculum and what cannot. When Western modern science (WMS) is defined as universal it does displace revelation-based knowledge (i.e., creation science); however, it also displaces pragmatic local indigenous knowledge that does not conform with formal aspects of the standard account. Thus, in most science classrooms around the globe, Western modern science has been taught at the expense of indigenous knowledge. However, because WMS has been implicated in many of the world's ecological disasters, and because the traditional wisdom component of TEK is particularly rich in time-tested approaches that foster sustainability and environmental integrity, it is possible that the universalist gatekeeper can be seen as increasingly problematic and even counter productive. This paper describes many examples from Canada and around the world of indigenous people's contributions to science, environmental understanding, and sustainability. The authors argue the view that Western or modern science is just one of many sciences that need to be addressed in the science classroom. We conclude by presenting instructional strategies that can help all science learners negotiate border crossings between Western modern science and indigenous science.
How to reconcile the multiculturalist and universalist approaches to science education
NASA Astrophysics Data System (ADS)
Hansson, Sven Ove
2017-06-01
The "multiculturalist" and "universalist" approaches to science education both fail to recognize the strong continuities between modern science and its forerunners in traditional societies. Various fact-finding practices in indigenous cultures exhibit the hallmarks of scientific investigations, such as collectively achieved rationality, a careful distinction between facts and values, a search for shared, well-founded judgments in empirical matters, and strivings for continuous improvement of these judgments. Prominent examples are hunters' discussions when tracking a prey, systematic agricultural experiments performed by indigenous farmers, and remarkably advanced experiments performed by craftspeople long before the advent of modern science. When the continuities between science and these prescientific practices are taken into account, it becomes obvious that the traditional forms of both multiculturalism and universalism should be replaced by a new approach that dissolves the alleged conflict between adherence to modern science and respect for traditional cultures.
... Home Current Issue Past Issues Special Section CAM Acupuncture From Ancient Practice to Modern Science Past Issues / ... percent of U.S. adults use acupuncture. What Is Acupuncture? Dr. Adeline Ge adjusts placement of acupuncture needles ...
Science versus (?) Art: Human Perception of Other Worlds
NASA Astrophysics Data System (ADS)
Hartmann, William K.
1998-09-01
At the time of the Renaissance, science and art were mixed together as a way to understand the human relation to the larger cosmos. Leonardo da Vinci exemplifies this approach. In modern times, the two have become separate, and even antagonistic, ``two cultures." Scientists have increasingly been satisfied to present quantitative measures of phenomena, without ever asking what the measures mean in human terms. Examples include the nature of the lunar surface, asteroid colors and brightness of the Io aurora, as will be discussed. However, in presenting the "big picture" to the public, and even to other working scientists, it is useful to revisit the Renaissance paradigm. Artists are increasingly working with scientists to translate the understanding of other worlds to the public, and this creates many opportunities for education projects in schools, and for careers in public outreach and science journalism.
Science, Technology, and the Modern Navy. Thirtieth Anniversary, 1946-1976
1976-01-01
THEORY /- I I EXPERIMENT 10- ED. 2 kV/cm h " 3001 provide very little mechanical loading on the S , . - - surface acoustic wave and do not affect it...coated small they did not affect past measurements and with a paraffin- like substance called Paraflint [27), they can be further reduced by suitable... like the plants that today mass-produce . I don’t know if anyone has considered mechan - items like telephones and typewriters. For other ical
Adhesion, friction, wear, and lubrication research by modern surface science techniques.
NASA Technical Reports Server (NTRS)
Keller, D. V., Jr.
1972-01-01
The field of surface science has undergone intense revitalization with the introduction of low-energy electron diffraction, Auger electron spectroscopy, ellipsometry, and other surface analytical techniques which have been sophisticated within the last decade. These developments have permitted submono- and monolayer structure analysis as well as chemical identification and quantitative analysis. The application of a number of these techniques to the solution of problems in the fields of friction, lubrication, and wear are examined in detail for the particular case of iron; and in general to illustrate how the accumulation of pure data will contribute toward the establishment of physiochemical concepts which are required to understand the mechanisms that are operational in friction systems. In the case of iron, LEED, Auger and microcontact studies have established that hydrogen and light-saturated organic vapors do not establish interfaces which prevent iron from welding, whereas oxygen and some oxygen and sulfur compounds do reduce welding as well as the coefficient of friction. Interpretation of these data suggests a mechanism of sulfur interaction in lubricating systems.
New directions in the history of modern science in China: global science and comparative history.
Elman, Benjamin A
2007-09-01
These essays collectively present new perspectives on the history of modem science in China since 1900. Fa-ti Fan describes how science under the Republic of China after 1911 exhibited a complex local and international character that straddled both imperialism and colonialism. Danian Hu focuses on the fate of relativity in the physics community in China after 1917. Zuoyue Wang hopes that a less nationalist political atmosphere in China will stimulate more transnational studies of modern science, which will in turn reveal the underlying commonalities in different national contexts. Sigrid Schmalzer compares the socialist and the capitalist contexts for science in China and reopens the sensitive question of the "mass line" during the Cultural Revolution. Grace Shen describes the tensions early Chinese scientists felt when choosing between foreign models for modem geology and their own professional identities in China. Taken together, these accounts present us with a comparative history of modern science in China that is both globally and locally informed.
History of mathematics and history of science reunited?
Gray, Jeremy
2011-09-01
For some years now, the history of modern mathematics and the history of modern science have developed independently. A step toward a reunification that would benefit both disciplines could come about through a revived appreciation of mathematical practice. Detailed studies of what mathematicians actually do, whether local or broadly based, have often led in recent work to examinations of the social, cultural, and national contexts, and more can be done. Another recent approach toward a historical understanding of the abstractness of modern mathematics has been to see it as a species of modernism, and this thesis will be tested by the raft of works on the history of modern applied mathematics currently under way.
Low energy positrons as probes of reconstructed semiconductor surfaces.
NASA Astrophysics Data System (ADS)
Fazleev, Nail G.; Weiss, Alex H.
2007-03-01
Positron probes of semiconductor surfaces that play a fundamental role in modern science and technology are capable to non-destructively provide information that is both unique to the probe and complimentary to that extracted using other more standard techniques. We discuss recent progress in studies of the reconstructed Si(100), Si(111), Ge(100), and Ge(111) surfaces, clean and exposed to hydrogen and oxygen, using a surface characterization technique, Positron-Annihilation-Induced Auger-Electron Spectroscopy (PAES). Experimental PAES results are analyzed by performing first-principles calculations of positron surface states and annihilation probabilities of surface-trapped positrons with relevant core electrons for the reconstructed surfaces, taking into account discrete lattice effects, the electronic reorganization due to bonding, and charge redistribution effects at the surface. Effects of the hydrogen and oxygen adsorption on semiconductor surfaces on localization of positron surface state wave functions and annihilation characteristics are also analyzed. Theoretical calculations confirm that PAES intensities, which are proportional to annihilation probabilities of the surface trapped positrons that results in a core hole, are sensitive to the crystal face, surface structure and elemental content of the semiconductors.
Evaluating Modern Defenses Against Control Flow Hijacking
2015-09-01
unsound and could introduce false negatives (opening up another possible set of attacks). CFG Construction using DSA We next evaluate the precision of CFG...Evaluating Modern Defenses Against Control Flow Hijacking by Ulziibayar Otgonbaatar Submitted to the Department of Electrical Engineering and...Computer Science in partial fulfillment of the requirements for the degree of Master of Science in Computer Science and Engineering at the MASSACHUSETTS
ERIC Educational Resources Information Center
Oliverio, Stefano
2014-01-01
Starting from a suggestion of Stephen Toulmin and through an interpretation of the criticism to which Neurath, one of the founders of the Vienna Circle, submits Descartes' views on science, the paper attempts to outline a pattern of modernity opposed to the Cartesian one, that has been obtaining over the last four centuries. In particular, it…
Furnham, Adrian
2007-05-01
To investigate whether personality traits, modern health worries (MHWs) and attitudes to science predict attitudes to, and beliefs about, complementary and alternative medicine (CAM). This study set out to test whether belief in, and use of CAM was significantly associated with high levels of MHWs, a high level of neuroticism and sceptical attitudes towards science. Two hundred and forty-three British adults completed a four part questionnaire that measured MHWs, the Big Five personality traits and beliefs about science and medicine and attitudes to CAM. There were many gender differences in MHWs (females expressed more), though results were similar to previous studies. Contrary to prediction, personality traits were not related to MHWs, CAM usage or beliefs about CAM. Regular and occasional users of CAM did have higher MHWs than those non or infrequent users. Those with high totalled MHWs also tended to believe in the importance of psychological factors in health and illness, as well as the potential harmful effects of modern medicine. Young males who had positive attitudes to science were least likely to be CAM users. Further, positive attitudes to science were associated with increased scepticism about CAM. Concern about health, belief about modern medicine and CAM are logically inter-related. Those who have high MHWs tend to be more sceptical about modern medicine and more convinced of the possible role of psychological factors in personal health and illness.
Retraining the Modern Civil Engineer.
ERIC Educational Resources Information Center
Priscoli, Jerome Delli
1983-01-01
Discusses why modern engineering requires social science and the nature of planning. After these conceptional discussions, 12 practical tools which social science brings to engineering are reviewed. A tested approach to training engineers in these tools is then described. Tools include institutional analysis, policy profiling, and other impact…
Archives and the Boundaries of Early Modern Science.
Popper, Nicholas
2016-03-01
This contribution argues that the study of early modern archives suggests a new agenda for historians of early modern science. While in recent years historians of science have begun to direct increased attention toward the collections amassed by figures and institutions traditionally portrayed as proto-scientific, archives proliferated across early modern Europe, emerging as powerful tools for creating knowledge in politics, history, and law as well as natural philosophy, botany, and more. The essay investigates the methods of production, collection, organization, and manipulation used by English statesmen and Crown officers such as Keeper of the State Papers Thomas Wilson and Secretary of State Joseph Williamson to govern their disorderly collections. Their methods, it is shown, were shared with contemporaries seeking to generate and manage other troves of evidence and in fact reflect a complex ecosystem of imitation and exchange across fields of inquiry. These commonalities suggest that historians of science should look beyond the ancestors of modern scientific disciplines to examine how practices of producing knowledge emerged and migrated throughout cultures of learning in Europe and beyond. Creating such a map of knowledge production and exchange, the essay concludes, would provide a renewed and expansive ambition for the field.
Zilsel's Thesis, Maritime Culture, and Iberian Science in Early Modern Europe.
Leitão, Henrique; Sánchez, Antonio
2017-01-01
Zilsel's thesis on the artisanal origins of modern science remains one of the most original proposals about the emergence of scientific modernity. We propose to inspect the scientific developments in Iberia in the early modern period using Zilsel's ideas as a guideline. Our purpose is to show that his ideas illuminate the situation in Iberia but also that the Iberian case is a remarkable illustration of Zilsel's thesis. Furthermore, we argue that Zilsel's thesis is essentially a sociological explanation that cannot be applied to isolated cases; its use implies global events that involve extended societies over large periods of time.
(Re)cognizing postmodernity: helps for historians--of science especially.
Forman, Paul
2010-06-01
Postmodernity, a historical era demarcated from modernity by a broad reversal in cultural presuppositions, is distinguished from postmodernism, an intellectual posture adopted by self-identified postmodernists early in postmodernity. Two principal features of postmodernity are addressed: first, the downgrading of science and the upgrading of technology in cultural rank--on which postmodernity and postmodernism are in accord; second, the displacement of the methodical, disinterested scientist, modernity's beau ideal, not by a fragmented subject as postmodernism claims, but by the single-minded entrepreneur, resourcefully pursuing his self-interest in disregard of all rules. The reversal in rank and role as between science and technology, setting in circa 1980, is a marker of the transition from modernity to postmodernity. That reversal is to be cognized primarily as rejection of rule-following, of proceeding methodically--'methodism' being the cultural perspective that uniquely distinguished modernity--but also as rejection of disinterestedness, the quality of mind especially highly esteemed in modernity. Postmodernity is constituted by this transvaluation of values, whose well-spring is the egocentric, transgressive (hence 'risk taking'), postmodern personality and its anti-social presumptions regarding personhood. Within the history of science itself there has been since circa 1980 a corresponding turn of scholarly attention away from science to technology, and a growing distaste for social perspectives, reflected, i.a., in the rejection of causalist 'influence' explanations in favor of voluntarist 'resource' explanations.
Surface chemistry of carbon dioxide revisited
NASA Astrophysics Data System (ADS)
Taifan, William; Boily, Jean-François; Baltrusaitis, Jonas
2016-12-01
This review discusses modern developments in CO2 surface chemistry by focusing on the work published since the original review by H.J. Freund and M.W. Roberts two decades ago (Surface Science Reports 25 (1996) 225-273). It includes relevant fundamentals pertaining to the topics covered in that earlier review, such as conventional metal and metal oxide surfaces and CO2 interactions thereon. While UHV spectroscopy has routinely been applied for CO2 gas-solid interface analysis, the present work goes further by describing surface-CO2 interactions under elevated CO2 pressure on non-oxide surfaces, such as zeolites, sulfides, carbides and nitrides. Furthermore, it describes additional salient in situ techniques relevant to the resolution of the interfacial chemistry of CO2, notably infrared spectroscopy and state-of-the-art theoretical methods, currently used in the resolution of solid and soluble carbonate species in liquid-water vapor, liquid-solid and liquid-liquid interfaces. These techniques are directly relevant to fundamental, natural and technological settings, such as heterogeneous and environmental catalysis and CO2 sequestration.
NASA Astrophysics Data System (ADS)
Lu, Xiaolong; Shi, Ruixin; Hao, Changchun; Chen, Huan; Zhang, Lei; Li, Junhua; Xu, Guoqing; Sun, Runguang
2016-09-01
The interaction between proteins and lipids is one of the basic problems of modern biochemistry and biophysics. The purpose of this study is to compare the penetration degree of lysozyme into 1,2-diapalmitoyl-sn-glycero-3-phosphocholine (DPPC) and 1,2-dipalmitoyl-sn-glycero-3-phosphoethano-lamine (DPPE) by analyzing the data of surface pressure-area (π-A) isotherms and surface pressure-time (π-T) curves. Lysozyme can penetrate into both DPPC and DPPE monolayers because of the increase of surface pressure at an initial pressure of 15 mN/m. However, the changes of DPPE are larger than DPPC, indicating stronger interaction of lysozyme with DPPE than DPPC. The reason may be due to the different head groups and phase state of DPPC and DPPE monolayers at the surface pressure of 15 mN/m. Atomic force microscopy reveals that lysozyme was absorbed by DPPC and DPPE monolayers, which leads to self-aggregation and self-assembly, forming irregular multimers and conical multimeric. Through analysis, we think that the process of polymer formation is similar to the aggregation mechanism of amyloid fibers. Project supported by the National Natural Science Foundation of China (Grant Nos. 21402114 and 11544009), the Natural Science Basic Research Plan in Shaanxi Province of China (Grant No. 2016JM2010), the Fundamental Research Funds for the Central Universities of China (Grant No. GK201603026), and the National University Science and Technology Innovation Project of China (Grant No. 201610718013).
Speculative Truth - Henry Cavendish, Natural Philosophy, and the Rise of Modern Theoretical Science
NASA Astrophysics Data System (ADS)
McCormmach, Russell
2004-03-01
With a never-before published paper by Lord Henry Cavendish, as well as a biography on him, this book offers a fascinating discourse on the rise of scientific attitudes and ways of knowing. A pioneering British physicist in the late 18th and early 19th centuries, Cavendish was widely considered to be the first full-time scientist in the modern sense. Through the lens of this unique thinker and writer, this book is about the birth of modern science.
Geodesy, a Bibliometric Approach for 2000-2006
NASA Astrophysics Data System (ADS)
Vazquez, G.; Landeros, C. F.
2007-12-01
In recent years, bibliometric science has been frequently applied in the development and evaluation of scientific research. This work presents a bibliometric analysis for the research work performed in the field of geodesy "science of the measurement and mapping of the earth surface including its external gravity field". The objective of this work is to present a complete overview of the generated research on this field to assemble and study the most important publications occurred during the past seven years. The analysis was performed including the SCOPUS and WEB OF SCIENCE databases for all the geodetic scientific articles published between 2000 and 2006. The search profile was designed considering a strategy to seek for titles and article descriptors using the terms geodesy and geodetic and some other terms associated with the topics: geodetic surfaces, vertical measurements, reference systems and frames, modern space-geodetic techniques and satellite missions. Some preliminary results had been achieved specifically Bradford law of distribution for journals and education institutes, and Lotka's law for authors that also includes the cooperation between countries in terms of writing together scientific articles. In the particular case of distributions, the model suggested by Egghe (2002) was adopted for determining the cores.
Investigating the Purpose of Trigonometry in the Modern Sciences
ERIC Educational Resources Information Center
Hertel, Joshua T.
2013-01-01
This dissertation reports the results of a qualitative research project that aimed to develop a research-based perspective on the purpose of trigonometry in the modern sciences. The investigation was guided by three objectives. First, the study sought to identify the purpose of trigonometry as described by educators and high school textbooks.…
The Fateful Rift: The San Andreas Fault in the Modern Mind.
ERIC Educational Resources Information Center
Percy, Walker
1990-01-01
Claims that modern science is radically incoherent and that this incoherence lies within the practice of science. Details the work of the scientist and philosopher Charles Sanders Pierce, expounding on the difference between Rene Descartes' dualistic philosophy and Pierce's triadic view. Concludes with a brief description of the human existence.…
77 FR 75885 - Control of Communicable Diseases: Foreign; Scope and Definitions
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-26
... primary authority supporting this rulemaking is section 361 of the Public Health Service Act (42 U.S.C... the scope and definitions to part 71 to reflect modern science and current practices. HHS/CDC has... products'' in subpart F. This revision more adequately reflects modern science and current practice which...
Krakatoa Erupts!: Using a Historic Cataclysm to Teach Modern Science
ERIC Educational Resources Information Center
Clary, Renee; Wandersee, James
2011-01-01
Through integration of geology, biology, chemistry, and the history of science, the historic Krakatoa eruption offers a unique portal for student inquiry in the classroom. Students are inherently fascinated by natural disasters, and modern comparisons to the Krakatoa cataclysm are as close as the day's news. This article uses the historic Krakatoa…
Achieving Weak Light Response with Plasmonic Nanogold-Decorated Organic Phototransistors.
Luo, Xiao; Du, Lili; Liang, Yuanlong; Zhao, Feiyu; Lv, Wenli; Xu, Kun; Wang, Ying; Peng, Yingquan
2018-05-09
Weak light response of organic photodetectors has fascinating potentials in fields of modern science and technology. However, their photoresponsivity is hindered by poor photocarrier excitation and transport. Decorating active-layer surface with plasmonic nanometals is considered a viable strategy to address this issue. Here, we demonstrate a plasmonic nanogold decorated organic phototransistor achieving remarkable enhancement of photoresponsivity. Meanwhile, the photoresponsive range is broadened by 4 orders of magnitude. The proposed design is substantiated by a schematic energy level model combined with theoretical simulation analysis, enabling the development of the advanced optoelectronics.
Rosen, Michael R.; Elizabeth Gierlowski-Kordesch,
2015-01-01
We've invited Michael R. Rosen, water quality specialist within the USGS Water Science Field Team in Carson City and Elizabeth Gierlowski-Kordesch, professor of geology at Ohio University, to take a look at the intriguing new developments that are emerging in limnogeologic studies. These studies are increasing our understanding of how climate and movements of the Earth's surface influence terrestrial environments, as well as how contaminants are distributed and retained in the environment. They present a selection of recent significant research on sediments, rock, and biota that have been preserved in modern and ancient lake basins.
Divine Wind - The History and Science of Hurricanes
NASA Astrophysics Data System (ADS)
Emanuel, Kerry
2005-09-01
Imagine standing at the center of a Roman coliseum that is 20 miles across, with walls that soar 10 miles into the sky, towering walls with cascades of ice crystals falling along its brilliantly white surface. That's what it's like to stand in the eye of a hurricane. In Divine Wind , Kerry Emanuel, one of the world's leading authorities on hurricanes, gives us an engaging account of these awe-inspiring meteorological events, revealing how hurricanes and typhoons have literally altered human history, thwarting military incursions and changing the course of explorations. Offering an account of the physics of the tropical atmosphere, the author explains how such benign climates give rise to the most powerful storms in the world and tells what modern science has learned about them. Interwoven with this scientific account are descriptions of some of the most important hurricanes in history and relevant works of art and literature. For instance, he describes the 17th-century hurricane that likely inspired Shakespeare's The Tempest and that led to the British colonization of Bermuda. We also read about the Galveston Hurricane of 1900, by far the worst natural calamity in U.S. history, with a death toll between 8,000 and 12,000 that exceeded the San Francisco earthquake, the Johnstown Flood, and the Okeechobee Hurricane combined. Boasting more than one hundred color illustrations, from ultra-modern Doppler imagery to classic paintings by Winslow Homer, Divine Wind captures the profound effects that hurricanes have had on humanity. Its fascinating blend of history, science, and art will appeal to weather junkies, science buffs, and everyone who read Isaac's Storm .
Padela, Aasim I; Furber, Steven W; Kholwadia, Mohammad A; Moosa, Ebrahim
2014-02-01
The field of medicine provides an important window through which to examine the encounters between religion and science, and between modernity and tradition. While both religion and science consider health to be a 'good' that is to be preserved, and promoted, religious and science-based teachings may differ in their conception of what constitutes good health, and how that health is to be achieved. This paper analyzes the way the Islamic ethico-legal tradition assesses the permissibility of using vaccines that contain porcine-derived components by referencing opinions of several Islamic authorities. In the Islamic ethico-legal tradition controversy surrounds the use of proteins from an animal (pig) that is considered to be impure by Islamic law. As we discuss the Islamic ethico-legal constructs used to argue for or against the use of porcine-based vaccines we will call attention to areas where modern medical data may make the arguments more precise. By highlighting areas where science can buttress and clarify the ethico-legal arguments we hope to spur an enhanced applied Islamic bioethics discourse where religious scholars and medical experts use modern science in a way that remains faithful to the epistemology of Islamic ethics to clarify what Islam requires of Muslim patients and healthcare workers. © 2013 John Wiley & Sons Ltd.
Rosenberry, Donald O.; Melchior, Robert C.; Jones, Perry M.; Strietz, Andrew; Barr, Kelton D.; Lee, David R.; Piegat, James J.
2011-01-01
Tom Winter spent nearly 50 years conducting research in earth science, and he specialized in the exchange between groundwater and surface water. Tom's highly productive career began in Minnesota. This fi eld trip revisits many of the places where Tom conducted his early research and demonstrates the continuing relevance of that research. Stops and topics include the groundwater infl uence on the record low stage of White Bear Lake, the contribution of groundwater to continually rising water levels in an abandoned open-pit iron mine, hydrogeology of the Shingobee headwaters aquatic ecosystem research site, hydrogeology of Lake Sallie, geology associated with the Pillager water gap, and the hydrogeology of Little Rock Lake.
NASA Astrophysics Data System (ADS)
Uysal, Sibel
The purpose of this study is to examine the relationship between Turkish female science teachers' gender-related beliefs and those teachers' corresponding interaction with their male and female students. The data was collected from five different sources: Surveys, interviews, observations, chi square data from the observation phase, and interviews with selected teachers. The data was analyzed using the Ericson interpretive method of socio-cultural theories which provided a framework for understanding the development of teacher beliefs and their interactions with their students. In this study, the survey revealed three types of teachers ranging from traditional, moderate to modern. Moderate teachers exhibited characteristics that were on a continuum between the traditional and modern teachers. Traditional teachers believed that males and females should have certain defined roles. Females should be responsible for taking care of the needs of their children and their husbands. By comparison, modern teachers did not assign specific roles to either males or females. With regard to the role of women in science, traditional teachers believed that female scientists could not be as successful as male scientists. By comparison, modern teachers believed that female scientists could be as successful as male scientists. Modern teachers did indicate that they thought females needed to work harder than males to prove themselves. When it came to the teachers' views and beliefs regarding their female and male students' success in their science classrooms, traditional teachers believed that their male students were brighter than their female students. They also believed that female students excelled only because they worked harder. Modern teachers believed that success is dependent on each student's background and his or her interest in science. Classroom observation indicated that traditional and modern teachers interacted differently with their male and female students. Traditional teachers provided more speaking time to male students and permitted male students to ask more questions than their female students. Modern teachers, on the other hand, paid equal attention to all their students. Both groups' belief systems were apparent and impacted their interactions with their students.
ERIC Educational Resources Information Center
Koo, Charles M.
In 1978, China launched its "Four Modernizations" program, which included modernization in agriculture, industry, national defense, and science and technology. To promote this program and to mobilize the Chinese masses to take a more positive and active attitude toward modernization, the government called upon the forces of the mass…
NASA Astrophysics Data System (ADS)
Qu, Jing Cheng
1998-11-01
This dissertation records the historical paths of Chinese physicists educated in Germany and America, explores their representative achievements in modern physics that have not been recognized by Chinese scholars, and provides sociological analyses of their contributions to China's higher education. We have found that Chinese students of physics in Germany and America were not passive recipients of Western science, but active contributors. They were also crucial contributors to science education and important scientific projects upon their return to China. Chapter One briefly describes physics knowledge in ancient China and introduces the transplantation of modern science and technology to China. Three distinct historical periods have been identified. In Chapter Two and Chapter Three, 30 Chinese physicists educated in Germany and 89 in America have been investigated. This research analyzes the significant achievements of these physicists. It also examines the political changes, the social background, and other factors impacting on their studies in the two countries. The selected cases in the two chapters are Li Fo-ki, Chinese physics students in Berlin, Werner Heisenberg and his Chinese students, Max Born and his Chinese students, Robert Millikan and Chinese physicists, the first two Chinese physicists from Harvard, and the Science Society of China. Chapter Four explores the geographical distribution, education and careers, return and expatriation, and the social influence exerted by these Chinese physicists. Statistical compilation and quantitative analyses comprise the basic methodology. In terms of two periods and two generations, this dissertation explores the physicists' contributions to the development of modern science in China and to education in China. Significant cases from Beijing University, Qinghua University, and Yanjing University are analyzed. The last chapter, Chapter Five, concludes that some of the achievements of these Chinese physicists were critical steps in modern physics even though China remained domestically rather weak in the development of modern science. Returning to China, most of them became pioneers and active contributors to modern science and to higher education in China. They comprised the majority of the physics community of China and played a leading role in the formation of modern science in China. After 1949, China continued to benefit from the contributions of these physicists. China independently constructed an atomic bomb in 1964 and a hydrogen bomb in 1967. In 1970, China successfully launched a man-made satellite. The Chinese physicists trained in Western countries constituted the main research force behind these projects.
Lunar exploration and the advancement of biomedical research: a physiologist's view.
Piantadosi, Claude A
2006-10-01
Over the next few years, it will become apparent just how important lunar exploration is to biomedical research and vice versa, and how critical both are to the future of human spaceflight. NASA's Project Constellation should put a new lunar-capable vehicle into service by 2014 that will rely on proven Space Shuttle components and allow four astronauts to spend 7 d on the lunar surface. A modern space transportation system opens up a unique opportunity in the space sciences--the establishment of a permanent lunar laboratory for the physical and life sciences. This commentary presents a rationale for focusing American efforts in space on such a Moon base in order to promote understanding of the long-term physiological effects of living on a planetary body outside the Van Allen belts.
Proceedings of the Seventh International Conference on Mars
NASA Technical Reports Server (NTRS)
2007-01-01
The oral and poster sessions of the SEVENTH INTERNATIONAL CONFERENCE ON MARS included; The Distribution and Context of Water-related Minerals on Mars; Poster Session: Mars Geology; Geology of the Martian Surface: Lithologic Variation, Composition, and Structure; Water Through Mars' Geologic History; Poster Session: Mars Water and the Martian Interior; Volatiles and Interior Evolution; The Martian Climate and Atmosphere: Variations in Time and Space; Poster Session: The Martian Climate and Current Processes; Modern Mars: Weather, Atmospheric Chemistry, Geologic Processes, and Water Cycle; Public Lecture: Mars Reconnaissance Orbiter's New View of the Red Planet; The North and South Polar Layered Deposits, Circumpolar Regions, and Changes with Time; Poster Session: Mars Polar Science, Astrobiology, Future Missions/Instruments, and Other Mars Science; Mars Astrobiology and Upcoming Missions; and Martian Stratigraphy and Sedimentology: Reading the Sedimentary Record.
Cerebral localization in the nineteenth century--the birth of a science and its modern consequences.
Steinberg, David A
2009-07-01
Although many individuals contributed to the development of the science of cerebral localization, its conceptual framework is the work of a single man--John Hughlings Jackson (1835-1911), a Victorian physician practicing in London. Hughlings Jackson's formulation of a neurological science consisted of an axiomatic basis, an experimental methodology, and a clinical neurophysiology. His axiom--that the brain is an exclusively sensorimotor machine--separated neurology from psychiatry and established a rigorous and sophisticated structure for the brain and mind. Hughlings Jackson's experimental method utilized the focal lesion as a probe of brain function and created an evolutionary structure of somatotopic representation to explain clinical neurophysiology. His scientific theory of cerebral localization can be described as a weighted ordinal representation. Hughlings Jackson's theory of weighted ordinal representation forms the scientific basis for modern neurology. Though this science is utilized daily by every neurologist and forms the basis of neuroscience, the consequences of Hughlings Jackson's ideas are still not generally appreciated. For example, they imply the intrinsic inconsistency of some modern fields of neuroscience and neurology. Thus, "cognitive imaging" and the "neurology of art"--two topics of modern interest--are fundamentally oxymoronic according to the science of cerebral localization. Neuroscientists, therefore, still have much to learn from John Hughlings Jackson.
Teaching Einsteinian Physics at Schools: Part 1, Models and Analogies for Relativity
ERIC Educational Resources Information Center
Kaur, Tejinder; Blair, David; Moschilla, John; Stannard, Warren; Zadnik, Marjan
2017-01-01
The Einstein-First project aims to change the paradigm of school science teaching through the introduction of modern Einsteinian concepts of space and time, gravity and quanta at an early age. These concepts are rarely taught to school students despite their central importance to modern science and technology. The key to implementing the…
Probing Scientists' Beliefs: How Open-Minded Are Modern Scientists?
ERIC Educational Resources Information Center
Coll, Richard; Taylor, Neil
2004-01-01
Just how open-minded are modern scientists? In this paper we examine this question for the science faculty from New Zealand and UK universities. The Exeter questionnaire used by Preece and Baxter (2000) to examine superstitious beliefs of high school students and preservice science teachers was used as a basis for a series of in-depth interviews…
ERIC Educational Resources Information Center
Ramamurthy, Karthikeyan Natesan; Hinnov, Linda A.; Spanias, Andreas S.
2014-01-01
Modern data collection in the Earth Sciences has propelled the need for understanding signal processing and time-series analysis techniques. However, there is an educational disconnect in the lack of instruction of time-series analysis techniques in many Earth Science academic departments. Furthermore, there are no platform-independent freeware…
Courses in Modern Physics for Non-science Majors, Future Science Teachers, and Biology Students
NASA Astrophysics Data System (ADS)
Zollman, Dean
2001-03-01
For the past 15 years Kansas State University has offered a course in modern physics for students who are not majoring in physics. This course carries a prerequisite of one physics course so that the students have a basic introduction in classical topics. The majors of students range from liberal arts to engineering. Future secondary science teachers whose first area of teaching is not physics can use the course as part of their study of science. The course has evolved from a lecture format to one which is highly interactive and uses a combination of hands-on activities, tutorials and visualizations, particularly the Visual Quantum Mechanics materials. Another course encourages biology students to continue their physics learning beyond the introductory course. Modern Miracle Medical Machines introduces the basic physics which underlie diagnosis techniques such as MRI and PET and laser surgical techniques. Additional information is available at http://www.phys.ksu.edu/perg/
[Franz Joseph Gall and his "talking skulls" established the basis of modern brain sciences].
Wolfgang, Regal; Michael, Nanut
2008-01-01
The anatomist and brain scientist Franz Joseph Gall (1758-1828) developed the "phrenology" in the early 19(th) century. At this time, his new teachings were more seen as a temporary fashion than science and were discredited. No more than hundred years ago, it was realised that the phrenology established the basis of modern brain sciences. By all means Gall was the first one to combine defined regions of the cerebral cortex with distinct cognitive functions.
Inference for the physical sciences
Jones, Nick S.; Maccarone, Thomas J.
2013-01-01
There is a disconnect between developments in modern data analysis and some parts of the physical sciences in which they could find ready use. This introduction, and this issue, provides resources to help experimental researchers access modern data analysis tools and exposure for analysts to extant challenges in physical science. We include a table of resources connecting statistical and physical disciplines and point to appropriate books, journals, videos and articles. We conclude by highlighting the relevance of each of the articles in the associated issue. PMID:23277613
Trading secrets: Jews and the early modern quest for clandestine knowledge.
Jütte, Daniel
2012-12-01
This essay explores the significance and function of secrecy and secret sciences in Jewish-Christian relations and in Jewish culture in the early modern period. It shows how the trade in clandestine knowledge and the practice of secret sciences became a complex, sometimes hazardous space for contact between Jews and Christians. By examining this trade, the essay clarifies the role of secrecy in the early modern marketplace of knowledge. The attribution of secretiveness to Jews was a widespread topos in early modern European thought. However, relatively little is known about the implications of such beliefs in science or in daily life. The essay pays special attention to the fact that trade in secret knowledge frequently offered Jews a path to the center of power, especially at court. Furthermore, it becomes clear that the practice of secret sciences, the trade in clandestine knowledge, and a mercantile agenda were often inextricably interwoven. Special attention is paid to the Italian-Jewish alchemist, engineer, and entrepreneur Abramo Colorni (ca. 1544-1599), whose career illustrates the opportunities provided by the marketplace of secrets at that time. Much scholarly (and less scholarly) attention has been devoted to whether and what Jews "contributed" to what is commonly called the "Scientific Revolution." This essay argues that the question is misdirected and that, instead, we should pay more attention to the distinctive opportunities offered by the early modern economy of secrecy.
ERIC Educational Resources Information Center
Tibell, Lena A. E.; Harms, Ute
2017-01-01
Modern evolutionary theory is both a central theory and an integrative framework of the life sciences. This is reflected in the common references to evolution in modern science education curricula and contexts. In fact, evolution is a core idea that is supposed to support biology learning by facilitating the organization of relevant knowledge. In…
ERIC Educational Resources Information Center
Berg, A. I.; And Others
Five articles which were selected from a Russian language book on cybernetics and then translated are presented here. They deal with the topics of: computer-developed computers, heuristics and modern sciences, linguistics and practice, cybernetics and moral-ethical considerations, and computer chess programs. (Author/JY)
How to Use Pragmatism Pragmatically? Suggestions for the Twenty-First Century
ERIC Educational Resources Information Center
Biesta, Gert J. J.
2009-01-01
This purpose of this paper is to indicate how one should understand John Dewey's attention to and appreciation for the methods and views of modern science. Against the idea that Dewey is a believer in the methods and views of modern science--which would make his philosophy into a form of positivism or scientism--the author argues that Dewey's…
NASA Astrophysics Data System (ADS)
Scheffler, Matthias; Schneider, Wolf-Dieter
2008-12-01
Basic research in surface and interface science is highly interdisciplinary, covering the fields of physics, chemistry, biophysics, geo-, atmospheric and environmental sciences, material science, chemical engineering, and more. The various phenomena are interesting by themselves, and they are most important in nearly all modern technologies, as for example electronic, magnetic, and optical devices, sensors, catalysts, lubricants, hard and thermal-barrier coatings, protection against corrosion and crack formation under harsh environments. In fact, detailed understanding of the elementary processes at surfaces is necessary to support and to advance the high technology that very much founds the prosperity and lifestyle of our society. Current state-of-the-art experimental studies of elementary processes at surfaces, of surface properties and functions employ a variety of sophisticated tools. Some are capable of revealing the location and motion of individual atoms. Others measure excitations (electronic, magnetic and vibronic), employing, for example, special light sources such as synchrotrons, high magnetic fields, or free electron lasers. The surprising variety of intriguing physical phenomena at surfaces, interfaces, and nanostructures also pose a persistent challenge for the development of theoretical descriptions, methods, and even basic physical concepts. This second focus issue on the topic of 'Advances in Surface and Interface Science' in New Journal of Physics, following on from last year's successful collection, provides an exciting synoptic view on the latest pertinent developments in the field. Focus on Advances in Surface and Interface Science 2008 Contents Organic layers at metal/electrolyte interfaces: molecular structure and reactivity of viologen monolayers Stephan Breuer, Duc T Pham, Sascha Huemann, Knud Gentz, Caroline Zoerlein, Ralf Hunger, Klaus Wandelt and Peter Broekmann Spin polarized d surface resonance state of fcc Co/Cu(001) K Miyamoto, K Iori, K Sakamoto, H Narita, A Kimura, M Taniguchi, S Qiao, K Hasegawa, K Shimada, H Namatame and S Blügel Activated associative desorption of C + O → CO from Ru(001) induced by femtosecond laser pulses S Wagner, H Öström, A Kaebe, M Krenz, M Wolf, A C Luntz and C Frischkorn Surface structure of Sn-doped In2O3 (111) thin films by STM Erie H Morales, Yunbin He, Mykola Vinnichenko, Bernard Delley and Ulrike Diebold Coulomb oscillations in three-layer graphene nanostructures J Güttinger, C Stampfer, F Molitor, D Graf, T Ihn and K Ensslin Adsorption processes of hydrogen molecules on SiC(001), Si(001) and C(001) surfaces Xiangyang Peng, Peter Krüger and Johannes Pollmann Fermi surface nesting in several transition metal dichalcogenides D S Inosov, V B Zabolotnyy, D V Evtushinsky, A A Kordyuk, B Büchner, R Follath, H Berger and S V Borisenko Probing molecule-surface interactions through ultra-fast adsorbate dynamics: propane/Pt(111) A P Jardine, H Hedgeland, D Ward, Y Xiaoqing, W Allison, J Ellis and G Alexandrowicz A novel method achieving ultra-high geometrical resolution in scanning tunnelling microscopy R Temirov, S Soubatch, O Neucheva, A C Lassise and F S Tautz
NASA Technical Reports Server (NTRS)
Schubert, Siegfried
2008-01-01
This talk will review the status and progress of the NASA/Global Modeling and Assimilation Office (GMAO) atmospheric global reanalysis project called the Modern Era Retrospective-Analysis for Research and Applications (MERRA). An overview of NASA's emerging capabilities for assimilating a variety of other Earth Science observations of the land, ocean, and atmospheric constituents will also be presented. MERRA supports NASA Earth science by synthesizing the current suite of research satellite observations in a climate data context (covering the period 1979-present), and by providing the science and applications communities with of a broad range of weather and climate data with an emphasis on improved estimates of the hydrological cycle. MERRA is based on a major new version of the Goddard Earth Observing System Data Assimilation System (GEOS-5), that includes the Earth System Modeling Framework (ESMF)-based GEOS-5 atmospheric general circulation model and the new NOAA National Centers for Environmental Prediction (NCEP) unified grid-point statistical interpolation (GST) analysis scheme developed as a collaborative effort between NCEP and the GMAO. In addition to MERRA, the GMAO is developing new capabilities in aerosol and constituent assimilation, ocean, ocean biology, and land surface assimilation. This includes the development of an assimilation capability for tropospheric air quality monitoring and prediction, the development of a carbon-cycle modeling and assimilation system, and an ocean data assimilation system for use in coupled short-term climate forecasting.
Scientific Tourism Centres in Armenia
NASA Astrophysics Data System (ADS)
Mickaelian, A. M.; Farmanyan, S. V.; Mikayelyan, G. A.; Mikayelyan, A. A.
2016-12-01
Armenia is rich in scientific sites, among which archaeological sites of scientific nature, modern scientific institutions and science related museums can be mentioned. Examples of archaeological sites are ancient observatories, petroglyphs having astronomical nature, as well as intangible heritage, such as Armenian calendars. Modern institutions having tools or laboratories which can be represented in terms of tourism, are considered as scientific tourism sites. Science related museums are Museum of science and technology, Space museum, Geological museum and other museums. Despite the fact, that scientific tourism is a new direction, it has great perspectives, and Armenia has a great potential in this field. It is very important to introduce Armenia from this angle, including scientific archaeological sites as well as modern institutions and museums. This article presents major scientific tourism centers of Armenia.
The origin of scientific neurology and its consequences for modern and future neuroscience.
Steinberg, David A
2014-01-01
John Hughlings Jackson (1835-1911) created a science of brain function that, in scope and profundity, is among the great scientific discoveries of the 19th century. It is interesting that the magnitude of his achievement is not completely recognized even among his ardent admirers. Although thousands of practitioners around the world use the clinical applications of his science every day, the principles from which bedside neurology is derived have broader consequences-for modern and future science-that remain unrecognized and unexploited. This paper summarizes the scientific formalism that created modern neurology, demonstrates how its direct implications affect a current area of neuroscientific research, and indicates how Hughlings Jackson's ideas form a path toward a novel solution to an important open problem of the brain and mind.
Beyond postcolonialism ... and postpositivism: circulation and the global history of science.
Raj, Kapil
2013-06-01
This essay traces the parallel, but unrelated, evolution of two sets of reactions to traditional idealist history of science in a world-historical context. While the scholars who fostered the postcolonial approach, in dealing with modern science in the non-West, espoused an idealist vision, they nevertheless stressed its political and ideological underpinnings and engaged with the question of its putative Western roots. The postidealist history of science developed its own vision with respect to the question of the global spread of modern science, paying little heed to postcolonial debates. It then proposes a historiographical approach developed in large part by historians of South Asian politics, economics, and science that, without compromising the preoccupations of each of the two groups, could help construct a mutually comprehensible and connected framework for the understanding of the global workings of the sciences.
[Regulatory science: modern trends in science and education for pharmaceutical products].
Beregovykh, V V; Piatigorskaia, N V; Aladysheva, Zh I
2012-01-01
This article reviews modern trends in development of new instruments, standards and approaches to drugs safety, efficacy and quality assessment in USA and EU that can be called by unique term--"regulatory science" which is a new concept for Russian Federation. New education programs (curricula) developed by USA and EU universities within last 3 years are reviewed. These programs were designed in order to build workforce capable to utilize science approach for drug regulation. The principal mechanisms for financing research in regulatory science used by Food and Drug Administration are analyzed. There are no such science and relevant researches in Russian Federation despite the high demand as well as needs for the system for higher education and life-long learning education of specialists for regulatory affairs (or compliance).
Predicting Catalytic Activity of Nanoparticles by a DFT-Aided Machine-Learning Algorithm.
Jinnouchi, Ryosuke; Asahi, Ryoji
2017-09-07
Catalytic activities are often dominated by a few specific surface sites, and designing active sites is the key to realize high-performance heterogeneous catalysts. The great triumphs of modern surface science lead to reproduce catalytic reaction rates by modeling the arrangement of surface atoms with well-defined single-crystal surfaces. However, this method has limitations in the case for highly inhomogeneous atomic configurations such as on alloy nanoparticles with atomic-scale defects, where the arrangement cannot be decomposed into single crystals. Here, we propose a universal machine-learning scheme using a local similarity kernel, which allows interrogation of catalytic activities based on local atomic configurations. We then apply it to direct NO decomposition on RhAu alloy nanoparticles. The proposed method can efficiently predict energetics of catalytic reactions on nanoparticles using DFT data on single crystals, and its combination with kinetic analysis can provide detailed information on structures of active sites and size- and composition-dependent catalytic activities.
Bioinformatics in high school biology curricula: a study of state science standards.
Wefer, Stephen H; Sheppard, Keith
2008-01-01
The proliferation of bioinformatics in modern biology marks a modern revolution in science that promises to influence science education at all levels. This study analyzed secondary school science standards of 49 U.S. states (Iowa has no science framework) and the District of Columbia for content related to bioinformatics. The bioinformatics content of each state's biology standards was analyzed and categorized into nine areas: Human Genome Project/genomics, forensics, evolution, classification, nucleotide variations, medicine, computer use, agriculture/food technology, and science technology and society/socioscientific issues. Findings indicated a generally low representation of bioinformatics-related content, which varied substantially across the different areas, with Human Genome Project/genomics and computer use being the lowest (8%), and evolution being the highest (64%) among states' science frameworks. This essay concludes with recommendations for reworking/rewording existing standards to facilitate the goal of promoting science literacy among secondary school students.
Bioinformatics in High School Biology Curricula: A Study of State Science Standards
Sheppard, Keith
2008-01-01
The proliferation of bioinformatics in modern biology marks a modern revolution in science that promises to influence science education at all levels. This study analyzed secondary school science standards of 49 U.S. states (Iowa has no science framework) and the District of Columbia for content related to bioinformatics. The bioinformatics content of each state's biology standards was analyzed and categorized into nine areas: Human Genome Project/genomics, forensics, evolution, classification, nucleotide variations, medicine, computer use, agriculture/food technology, and science technology and society/socioscientific issues. Findings indicated a generally low representation of bioinformatics-related content, which varied substantially across the different areas, with Human Genome Project/genomics and computer use being the lowest (8%), and evolution being the highest (64%) among states' science frameworks. This essay concludes with recommendations for reworking/rewording existing standards to facilitate the goal of promoting science literacy among secondary school students. PMID:18316818
Supporting EarthScope Cyber-Infrastructure with a Modern GPS Science Data System
NASA Astrophysics Data System (ADS)
Webb, F. H.; Bock, Y.; Kedar, S.; Jamason, P.; Fang, P.; Dong, D.; Owen, S. E.; Prawirodirjo, L.; Squibb, M.
2008-12-01
Building on NASA's investment in the measurement of crustal deformation from continuous GPS, we are developing and implementing a Science Data System (SDS) that will provide mature, long-term Earth Science Data Records (ESDR's). This effort supports NASA's Earth Surface and Interiors (ESI) focus area and provide NASA's component to the EarthScope PBO. This multi-year development is sponsored by NASA's Making Earth System data records for Use in Research Environments (MEaSUREs) program. The SDS integrates the generation of ESDRs with data analysis and exploration, product generation, and modeling tools based on daily GPS data that include GPS networks in western North America and a component of NASA's Global GPS Network (GGN) for terrestrial reference frame definition. The system is expandable to multiple regional and global networks. The SDS builds upon mature data production, exploration, and analysis algorithms developed under NASA's REASoN, ACCESS, and SENH programs. This SDS provides access to positions, time series, velocity fields, and strain measurements derived from continuous GPS data obtained at tracking stations in both the Plate Boundary Observatory and other regional Western North America GPS networks, dating back to 1995. The SDS leverages the IT and Web Services developments carried out under the SCIGN/REASoN and ACCESS projects, which have streamlined access to data products for researchers and modelers, and which have created a prototype an on-the-fly interactive research environment through a modern data portal, GPS Explorer. This IT system has been designed using modern IT tools and principles in order to be extensible to any geographic location, scale, natural hazard, and combination of geophysical sensor and related data. We have built upon open GIS standards, particularly those of the OGC, and have used the principles of Web Service-based Service Oriented Architectures to provide scalability and extensibility to new services and capabilities.
Planetary geomorphology: Some historical/analytical perspectives
NASA Astrophysics Data System (ADS)
Baker, V. R.
2015-07-01
Three broad themes from the history of planetary geomorphology provide lessons in regard to the logic (valid reasoning processes) for the doing of that science. The long controversy over the origin of lunar craters, which was dominated for three centuries by the volcanic hypothesis, provides examples of reasoning on the basis of authority and a priori presumptions. Percival Lowell's controversy with geologists over the nature of linear markings on the surface of Mars illustrates the role of tenacity in regard to the beliefs of some individual scientists. Finally, modern controversies over the role of water in shaping the surface of Mars illustrate how the a priori method, i.e., belief produced according to reason, can seductively cloud the scientific openness to the importance of brute facts that deviate from a prevailing paradigm.
ERIC Educational Resources Information Center
Nikonova, Elina I.; Sharonov, Ivan A.; Sorokoumova, Svetlana N.; Suvorova, Olga V.; Sorokoumova, Elena A.
2016-01-01
The relevance of the study is conditioned by the changes in the content of socio-humanitarian education, aimed at the acquisition of knowledge, the development of tolerance, civic and moral education. The purpose of the paper is to identify the modern functions of a textbook on social sciences and humanities as an informational management tool of…
ERIC Educational Resources Information Center
Widdicombe, A. T.; Ravindrarajah, P.; Sapelkin, A.; Phillips, A. E.; Dunstan, D.; Dove, M. T.; Brazhkin, V. V.; Trachenko, K.
2014-01-01
The slow flow of a viscous liquid is a thought-provoking experiment that challenges students, academics and the public to think about some fundamental questions in modern science. In the Queensland demonstration--the world's longest-running experiment, which has earned the Ig Nobel prize--one drop of pitch takes about ten years to fall, leading to…
Modern network science of neurological disorders.
Stam, Cornelis J
2014-10-01
Modern network science has revealed fundamental aspects of normal brain-network organization, such as small-world and scale-free patterns, hierarchical modularity, hubs and rich clubs. The next challenge is to use this knowledge to gain a better understanding of brain disease. Recent developments in the application of network science to conditions such as Alzheimer's disease, multiple sclerosis, traumatic brain injury and epilepsy have challenged the classical concept of neurological disorders being either 'local' or 'global', and have pointed to the overload and failure of hubs as a possible final common pathway in neurological disorders.
A Multidisciplined Teaching Reform of Biomaterials Course for Undergraduate Students
NASA Astrophysics Data System (ADS)
Li, Xiaoming; Zhao, Feng; Pu, Fang; Liu, Haifeng; Niu, Xufeng; Zhou, Gang; Li, Deyu; Fan, Yubo; Feng, Qingling; Cui, Fu-zhai; Watari, Fumio
2015-12-01
The biomaterials science has advanced in a high speed with global science and technology development during the recent decades, which experts predict to be more obvious in the near future with a more significant position for medicine and health care. Although the three traditional subjects, such as medical science, materials science and biology that act as a scaffold to support the structure of biomaterials science, are still essential for the research and education of biomaterials, other subjects, such as mechanical engineering, mechanics, computer science, automatic science, nanotechnology, and Bio-MEMS, are playing more and more important roles in the modern biomaterials science development. Thus, the research and education of modern biomaterials science should require a logical integration of the interdisciplinary science and technology, which not only concerns medical science, materials science and biology, but also includes other subjects that have been stated above. This article focuses on multidisciplinary nature of biomaterials, the awareness of which is currently lacking in the education at undergraduate stage. In order to meet this educational challenge, we presented a multidisciplinary course that referred to not only traditional sciences, but also frontier sciences and lasted for a whole academic year for senior biomaterials undergraduate students with principles of a better understanding of the modern biomaterials science and meeting the requirements of the future development in this area. The course has been shown to gain the recognition of the participants by questionaries and specific "before and after" comments and has also gained high recognition and persistent supports from our university. The idea of this course might be also fit for the education and construction of some other disciplines.
Swazo, Norman K
2005-09-01
In this paper I appropriate the philosophical critique of Michel Foucault as it applies to the engagement of Western science and indigenous peoples in the context of biomedical research. The science of population genetics, specifically as pursued in the Human Genome Diversity Project, is the obvious example to illustrate (a) the contraposition of modern science and 'indigenous science', (b) the tendency to depreciate and marginalize indigenous knowledge systems, and (c) the subsumption of indigenous moral preferences in the juridical armature of international human rights law. I suggest that international bioethicists may learn from Foucault's critique, specifically of the need for vigilance about the knowledge/power relation expressed by the contraposition of modern science and 'indigeneity'.
Towards a Science of Science Teaching
ERIC Educational Resources Information Center
Yates, Carolyn
2009-01-01
This article is a contribution to the search for evidence-based models of learning to improve science education. The author believes that modern teachers should look to the sciences of cognitive psychology and neuroscience to build a science of science teaching. Understanding the relationships between learning and the brain's structure and…
Inhibition of the Thyroid Hormone Pathway in Xenopus laevis by 2-mercaptobenzothiazole
Modernizing the battery of EDSP Tier I tests is not only desirable, but it is inevitable. Advances in science over the past decade have enabled such modernization to occur. The studies presented here establish the groundwork for the Agency to move toward modernization of the AMA,...
Romanticism and Romantic Science: Their Contribution to Science Education
ERIC Educational Resources Information Center
Hadzigeorgiou, Yannis; Schulz, Roland
2014-01-01
The unique contributions of romanticism and romantic science have been generally ignored or undervalued in history and philosophy of science studies and science education. Although more recent research in history of science has come to delineate the value of both topics for the development of modern science, their merit for the educational field…
The Implications for Science Education of Heidegger's Philosophy of Science
ERIC Educational Resources Information Center
Shaw, Robert
2013-01-01
Science teaching always engages a philosophy of science. This article introduces a modern philosophy of science and indicates its implications for science education. The hermeneutic philosophy of science is the tradition of Kant, Heidegger, and Heelan. Essential to this tradition are two concepts of truth, truth as correspondence and truth as…
NASA Astrophysics Data System (ADS)
Malloy, Vanja
2013-09-01
John Keats once wrote that `there is no such thing as time and space' rather, believing that time and space are mental constructs that are subject to a variety of forms and as diverse as the human mind. In the 1920s through the 1930s, modern physics in many ways supported this idea through the various philosophical writings on the Theory of General Relativity to the masses by scientists such as Arthur Eddington and Albert Einstein. These new concepts of modern physics fundamentally changed our understanding of time and space and had substantial philosophical implications, which were absorbed by modern artists resulting in the 1936 Dimensionist Manifesto. Seeking to internalize the developments of modern science within modern art, this manifesto was widely endorsed by the most prominent figures of the avant-garde such as Marcel Duchamp, Jean Arp, Naum Gabo, Joan Miró, László Moholy-Nagy, Wassily Kandinsky and Alexander Calder. Of particular interest to this manifesto was the new concept of the fourth-dimension, which in many ways revolutionized the arts. Importantly, its interpretation varied widely in the artistic community, ranging from a purely physical four-dimensional space, to a kinetic concept of space in which space and time are linked, to a metaphysical interest in a space that exists beyond the material realm. The impact of modern science and astronomy on avant-garde art is currently a bourgeoning area of research with considerable implications to our rethinking of substantial artistic figures of this era. Through a case study of Alexander Calder's Mobiles and Ben Nicholson's Reliefs, this paper explores how these artworks were informed by an interest in modern science.
Writings on Physics and Philosophy
NASA Astrophysics Data System (ADS)
Pauli, Wolfgang Enz, Charles P.; Meyenn, Karl V.
Like Bohr, Einstein and Heisenberg, Wolfgang Pauli was not only a Nobel laureate and one of the creators of modern physics, but also an eminent philosopher of modern science. This is the first book in English to include all his famous articles on physics and epistemology. They were actually translated during Pauli's lifetime by R. Schlapp and are now edited and annotated by Pauli's former assistant Ch. Enz. Pauli writes about the philosophical significance of complementarity, about space,time and causality, symmetry and the exclusion principle, but also about therole of the unconscious in modern science. His famous article on Kepler is included as well as many historical essays on Bohr, Ehrenfest,and Einstein as well as on the influence of the unconscious on scientific theories. The book addresses not only physicists, philosophers and historians of science, but also the general public.
A Not-So-Gentle Refutation of the Defence of Homeopathy.
Zawiła-Niedźwiecki, Jakub; Olender, Jacek
2016-03-01
In a recent paper, Levy, Gadd, Kerridge, and Komesaroff attempt to defend the ethicality of homeopathy by attacking the utilitarian ethical framework as a basis for medical ethics and by introducing a distinction between evidence-based medicine and modern science. This paper demonstrates that their argumentation is not only insufficient to achieve that goal but also incorrect. Utilitarianism is not required to show that homeopathic practice is unethical; indeed, any normative basis of medical ethics will make it unethical, as a defence of homeopathic practice requires the rejection of modern natural sciences, which are an integral part of medical ethics systems. This paper also points out that evidence-based medicine lies at the very core of modern science. Particular arguments made by Levy et al. within the principlist medical ethics normative system are also shown to be wrong.
"The Name of the Rose": A Path to Discuss the Birth of Modern Science
ERIC Educational Resources Information Center
Guerra, Andreia; Braga, Marco
2014-01-01
Various science education researchers believe that science tuition should include some discussion about how science has developed over time. Therefore, deliberations about the nature of science should be integrated in the science curriculum. Many researchers argue that teaching the history of science is a good way to place the nature of science in…
Magic Universe - The Oxford Guide to Modern Science
NASA Astrophysics Data System (ADS)
Calder, Nigel
2003-11-01
As a prolific author, BBC commentator, and magazine editor, Nigel Calder has spent a lifetime spotting and explaining the big discoveries in all branches of science. In Magic Universe , he draws on his vast experience to offer readers a lively, far-reaching look at modern science in all its glory, shedding light on the latest ideas in physics, biology, chemistry, medicine, astronomy, and many other fields. What is truly magical about Magic Universe is Calder's incredible breadth. Migrating birds, light sensors in the human eye, black holes, antimatter, buckyballs and nanotubes--with exhilarating sweep, Calder can range from the strings of a piano to the superstrings of modern physics, from Pythagoras's theory of musical pitch to the most recent ideas about atoms and gravity and a ten-dimensional universe--all in one essay. The great virtue of this wide-ranging style--besides its liveliness and versatility--is that it allows Calder to illuminate how the modern sciences intermingle and cross-fertilize one another. Indeed, whether discussing astronauts or handedness or dinosaurs, Calder manages to tease out hidden connections between disparate fields of study. What is most wondrous about the "magic universe" is that one can begin with stellar dust and finish with life itself. Drawing on interviews with more than 200 researchers, from graduate students to Nobel prize-winners, Magic Universe takes us on a high-spirited tour through the halls of science, one that will enthrall everyone interested in science, whether a young researcher in a high-tech lab or an amateur buff sitting in the comfort of an armchair.
Science communication as political communication
Scheufele, Dietram A.
2014-01-01
Scientific debates in modern societies often blur the lines between the science that is being debated and the political, moral, and legal implications that come with its societal applications. This manuscript traces the origins of this phenomenon to professional norms within the scientific discipline and to the nature and complexities of modern science and offers an expanded model of science communication that takes into account the political contexts in which science communication takes place. In a second step, it explores what we know from empirical work in political communication, public opinion research, and communication research about the dynamics that determine how issues are debated and attitudes are formed in political environments. Finally, it discusses how and why it will be increasingly important for science communicators to draw from these different literatures to ensure that the voice of the scientific community is heard in the broader societal debates surrounding science. PMID:25225389
Science communication as political communication.
Scheufele, Dietram A
2014-09-16
Scientific debates in modern societies often blur the lines between the science that is being debated and the political, moral, and legal implications that come with its societal applications. This manuscript traces the origins of this phenomenon to professional norms within the scientific discipline and to the nature and complexities of modern science and offers an expanded model of science communication that takes into account the political contexts in which science communication takes place. In a second step, it explores what we know from empirical work in political communication, public opinion research, and communication research about the dynamics that determine how issues are debated and attitudes are formed in political environments. Finally, it discusses how and why it will be increasingly important for science communicators to draw from these different literatures to ensure that the voice of the scientific community is heard in the broader societal debates surrounding science.
NASA Astrophysics Data System (ADS)
Burke, Lydia E. Carol-Ann
An expanding body of research explores the social, political, cultural and personal challenges presented by the Western emphasis of curricula around the world. The aim of my study is to advance this field of inquiry by gaining insight into perceptions of Western modern science presented by students, teachers and administrators in a given Caribbean setting. Through this study I asked how my research participants described the nature of scientific knowledge, how they related scientific knowledge to other culturally-valued knowledges and the meanings they attached to the geographic origins of science teachers. Situating this work firmly within the practice of Foucauldian critical discourse analysis, I have utilised a conceptual framework defined by the power/knowledge and complicity/resistance themes of post-colonial theory to support my interpretation of participant commentary in an overall quest that is concerned about the ways in which Western modern science might be exerting a colonising influence. Fourteen students, nine teachers (both expatriate and local) and three administrators participated in the study. I combined a semi-structured question and answer interview format with a card sort activity. I used a procedure based on my own adaptation of Stephenson's Q methodology, where the respondents placed 24 statements hierarchically along a continuum of increasing strength of agreement, presenting their rationalisations, personal stories and illustrations as they sorted. I used an inverse factor analysis, in combination with the interview transcripts, to assist me in the identification of three discourse positions described by my research participants: The truth value of scientific knowledge, The pragmatic use of science to promote progress, and The priority of cultural preservation. The interview transcripts were also analysed for emergent themes, providing an additional layer of data interpretation. The research findings raise concerns regarding the hegemonic potency of certain scientific assumptions and assertions of participants, leading me to emphasise the importance of developing teachers' knowledge of the historical, philosophical and social background of Western modern science as well as focusing on developing the conceptual and intellectual engagement of students with Western modern science without demanding the kind of belief commitment that would insist that students replace alternative modes of meaning making.
Hyporheic flow and transport processes: mechanisms, models, and biogeochemical implications
Boano, Fulvio; Harvey, Judson W.; Marion, Andrea; Packman, Aaron I.; Revelli, Roberto; Ridolfi, Luca; Anders, Wörman
2014-01-01
Fifty years of hyporheic zone research have shown the important role played by the hyporheic zone as an interface between groundwater and surface waters. However, it is only in the last two decades that what began as an empirical science has become a mechanistic science devoted to modeling studies of the complex fluid dynamical and biogeochemical mechanisms occurring in the hyporheic zone. These efforts have led to the picture of surface-subsurface water interactions as regulators of the form and function of fluvial ecosystems. Rather than being isolated systems, surface water bodies continuously interact with the subsurface. Exploration of hyporheic zone processes has led to a new appreciation of their wide reaching consequences for water quality and stream ecology. Modern research aims toward a unified approach, in which processes occurring in the hyporheic zone are key elements for the appreciation, management, and restoration of the whole river environment. In this unifying context, this review summarizes results from modeling studies and field observations about flow and transport processes in the hyporheic zone and describes the theories proposed in hydrology and fluid dynamics developed to quantitatively model and predict the hyporheic transport of water, heat, and dissolved and suspended compounds from sediment grain scale up to the watershed scale. The implications of these processes for stream biogeochemistry and ecology are also discussed."
Hyporheic flow and transport processes: Mechanisms, models, and biogeochemical implications
NASA Astrophysics Data System (ADS)
Boano, F.; Harvey, J. W.; Marion, A.; Packman, A. I.; Revelli, R.; Ridolfi, L.; Wörman, A.
2014-12-01
Fifty years of hyporheic zone research have shown the important role played by the hyporheic zone as an interface between groundwater and surface waters. However, it is only in the last two decades that what began as an empirical science has become a mechanistic science devoted to modeling studies of the complex fluid dynamical and biogeochemical mechanisms occurring in the hyporheic zone. These efforts have led to the picture of surface-subsurface water interactions as regulators of the form and function of fluvial ecosystems. Rather than being isolated systems, surface water bodies continuously interact with the subsurface. Exploration of hyporheic zone processes has led to a new appreciation of their wide reaching consequences for water quality and stream ecology. Modern research aims toward a unified approach, in which processes occurring in the hyporheic zone are key elements for the appreciation, management, and restoration of the whole river environment. In this unifying context, this review summarizes results from modeling studies and field observations about flow and transport processes in the hyporheic zone and describes the theories proposed in hydrology and fluid dynamics developed to quantitatively model and predict the hyporheic transport of water, heat, and dissolved and suspended compounds from sediment grain scale up to the watershed scale. The implications of these processes for stream biogeochemistry and ecology are also discussed.
Modern astronomical knowledge as component of general education for sustainable development
NASA Astrophysics Data System (ADS)
Nurgaliev, I.
{It is shown that 1) astronomical knowledge was a foundation of emerging modern physics and natural sciences based on mathematics, 2) mathematical basis of the natural sciences serves as an orientation of progress in the true objective of social sciences. The last example for this chain of impacts is the discovery of the fundamental demographic equation (N=aN^2-bN) full of the astronomical analogy [9]. Modern age endorses new imperatives on education. Reckless exploitation of the natural resources will cause irreversible exhaustion of the agro- and bio-potential of the planet during lifetime of a few generations. The adequate respond to the challenge lies in modern technologies and educating responsible (socially oriented) professionals. That is why the importance of teaching modern technologies along with providing the students with the understanding of global long term consequences of the human industrial activities is growing. The course ``Theoretical Foundations of Modern Technologies" at the Moscow State Agricultural University (Timiryazev Academy) taught by the author is discussed. New experimental project ``Space Technologies, Ecology and Safe Energetics in School of the Future" is presented as a project of a new age in the process of implementing at the Moscow city secondary schools by the colleagues and by the author. The new cosmological models in the frame of the Newtonian and general relativistic treatments developed by the author are considered in this report as an example of immediate implementation of new astro-knowledge into the education for modern agrarian students. The centrifugal forces acting between particles rotating randomly around each other are shown to be able to reverse gravitational collapse.
Space-Time, Relativity, and Cosmology
NASA Astrophysics Data System (ADS)
Wudka, Jose
2006-07-01
Space-Time, Relativity and Cosmology provides a historical introduction to modern relativistic cosmology and traces its historical roots and evolution from antiquity to Einstein. The topics are presented in a non-mathematical manner, with the emphasis on the ideas that underlie each theory rather than their detailed quantitative consequences. A significant part of the book focuses on the Special and General theories of relativity. The tests and experimental evidence supporting the theories are explained together with their predictions and their confirmation. Other topics include a discussion of modern relativistic cosmology, the consequences of Hubble's observations leading to the Big Bang hypothesis, and an overview of the most exciting research topics in relativistic cosmology. This textbook is intended for introductory undergraduate courses on the foundations of modern physics. It is also accessible to advanced high school students, as well as non-science majors who are concerned with science issues.• Uses a historical perspective to describe the evolution of modern ideas about space and time • The main arguments are described using a completely non-mathematical approach • Ideal for physics undergraduates and high-school students, non-science majors and general readers
Schweber, Silvan S
2009-01-01
During the 1970s, something deeply consequential happened in the cultural, economic, and social relationships between science and technology. Paul Forman has proposed that the abrupt reversal of the culturally ascribed primacy in the science-technology relationship circa 1980 be taken as a demarcation of postmodernity from modernity. Modernity's most basic cultural presuppositions-the superiority of theory to practice, the elevation of the public over the private and that of the disinterested over the interested, and the belief that the means sanctify the ends-were ascribed to science. In postmodernity, science is subsumed under technology, and the status of technology relative to science reflects our pragmatic-utilitarian subordination of means to ends. These cultural changes have resonated with deep epistemological and ontological changes within the sciences themselves, and all these have manifested themselves in universities becoming entrepreneurial, and the consequences thereof. Science Without Laws insightfully illustrates some of the changes within the life and human sciences by analyzing the role played by model systems and case studies.
The Nature of Science and the Role of Knowledge and Belief
NASA Astrophysics Data System (ADS)
Cobern, William W.
In everyday language we tend to think of knowledge as reasoned belief that a proposition is true and the natural sciences provide the archetypal example of what it means to know. Religious and ideological propositions are the typical examples of believed propositions. Moreover, the radical empiricist worldview so often associated with modern science has eroded society's meaningful sense of life. Western history, however, shows that knowledge and belief have not always been constructed separately. In addition, modern developments in the philosophy and history of science have seriously undermined the radical empiricist's excessive confidence in scientific methods. Acknowledging in the science classroom the parallel structure of knowledge and belief, and recognizing that science requires a presuppositional foundation that is itself not empirically verifiable would re introduce a valuable discussion on the meaning of science and its impact on life. Science would less likely be taught as a `rhetoric of conclusions'. The discussion would also help students to gain a firmer integration of science with other important knowledge and beliefs that they hold.
Carver, Rebecca Bruu; Castéra, Jérémy; Gericke, Niklas; Evangelista, Neima Alice Menezes
2017-01-01
In this paper we present the development and validation a comprehensive questionnaire to assess college students’ knowledge about modern genetics and genomics, their belief in genetic determinism, and their attitudes towards applications of modern genetics and genomic-based technologies. Written in everyday language with minimal jargon, the Public Understanding and Attitudes towards Genetics and Genomics (PUGGS) questionnaire is intended for use in research on science education and public understanding of science, as a means to investigate relationships between knowledge, determinism and attitudes about modern genetics, which are to date little understood. We developed a set of core ideas and initial items from reviewing the scientific literature on genetics and previous studies on public and student knowledge and attitudes about genetics. Seventeen international experts from different fields (e.g., genetics, education, philosophy of science) reviewed the initial items and their feedback was used to revise the questionnaire. We validated the questionnaire in two pilot tests with samples of university freshmen students. The final questionnaire contains 45 items, including both multiple choice and Likert scale response formats. Cronbach alpha showed good reliability for each section of the questionnaire. In conclusion, the PUGGS questionnaire is a reliable tool for investigating public understanding and attitudes towards modern genetics and genomic-based technologies. PMID:28114357
Carver, Rebecca Bruu; Castéra, Jérémy; Gericke, Niklas; Evangelista, Neima Alice Menezes; El-Hani, Charbel N
2017-01-01
In this paper we present the development and validation a comprehensive questionnaire to assess college students' knowledge about modern genetics and genomics, their belief in genetic determinism, and their attitudes towards applications of modern genetics and genomic-based technologies. Written in everyday language with minimal jargon, the Public Understanding and Attitudes towards Genetics and Genomics (PUGGS) questionnaire is intended for use in research on science education and public understanding of science, as a means to investigate relationships between knowledge, determinism and attitudes about modern genetics, which are to date little understood. We developed a set of core ideas and initial items from reviewing the scientific literature on genetics and previous studies on public and student knowledge and attitudes about genetics. Seventeen international experts from different fields (e.g., genetics, education, philosophy of science) reviewed the initial items and their feedback was used to revise the questionnaire. We validated the questionnaire in two pilot tests with samples of university freshmen students. The final questionnaire contains 45 items, including both multiple choice and Likert scale response formats. Cronbach alpha showed good reliability for each section of the questionnaire. In conclusion, the PUGGS questionnaire is a reliable tool for investigating public understanding and attitudes towards modern genetics and genomic-based technologies.
Changing Face of Wood Science in Modern Era: Contribution of Nanotechnology.
Mishra, Pawan Kumar; Giagli, Kyriaki; Tsalagkas, Dimitrios; Mishra, Harshita; Talegaonkar, Sushma; Gryc, Vladimír; Wimmer, Rupert
2018-02-14
Wood science and nanomaterials science interact together in two different aspects; a) fabrication of lignocellulosic nanomaterials derived from wood and plant-based sources and b) surface or bulk wood modification by nanoparticles. In this review, we attempt to visualize the impact of nanoparticles on the wood coating and preservation treatments based on a thorough registration of the patent databases. The study was carried out as an overview of the scientifically most followed trends on nanoparticles utilization in wood science and wood protection depicted by recent universal filed patents. This review is exclusively targeted on the solid (timber) wood as a subject material. Utilization of mainly metal nanoparticles as photoprotection, antibacterial, antifungal, antiabrasive and functional component on wood modification treatments was found to be widely patented. Additionally, an apparent minimization in the emission of volatile organic compounds (VOCs) has been succeeded. Bulk wood preservation and more importantly, wood coating, splay the range of strengthening wood dimensional stability and biological degradation, against moisture absorption and fungi respectively. Nanoparticle materials have addressed various issues of wood science in a more efficient and environmental way than the traditional methods. Nevertheless, abundant tests and regulations are still needed before industrializing or recycling these products. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Where Tradition and "Modern" Knowledge Meet: Exploring Two Islamic Schools in Singapore and Britain
ERIC Educational Resources Information Center
Tan, Charlene
2011-01-01
Muslims live in a "modern" world where subjects such as the English language, mathematics, sciences, and information and communication technology (ICT) are highly valued and enthusiastically transmitted in schools. How some Islamic schools attempt to equip their students with "modern knowledge" while remaining faithful to their…
Attitudes of Trainers and Medical Students towards Using Modern Practices
ERIC Educational Resources Information Center
Hadzhiiliev, Vassil Stefanov; Dobreva, Zhaneta Stoykova
2011-01-01
The development of universities as independent scientific centers determines their mission to incorporate the most modern achievements of science into the students' practical training. This research on the attitudes of the participants in this process towards the use of modern practices encompasses both trainers and students, and it consists of…
The "Next Generation Science Standards" and the Earth and Space Sciences
ERIC Educational Resources Information Center
Wysession, Michael E.
2013-01-01
The "Next Generation Science Standards" ("NGSS"), due to be released this spring, represents a revolutionary step toward establishing modern, national K-12 science education standards. Based on the recommendations of the National Research Council's "A Framework for K-12 Science Education: Practices, Crosscutting…
Gender Equity in Science Education
ERIC Educational Resources Information Center
Hall, Johanna R.
2011-01-01
The dearth of females in high-level science courses and professions is a well-documented phenomenon in modern society. Inequality in science instruction is a crucial component to the under representation of females in science. This paper provides a review of current literature published concerning gender inequality in K-12 science instruction.…
Soils regulate and mitigate climate change
USDA-ARS?s Scientific Manuscript database
Background/Question/Methods: The interaction of soil science and ecology can be traced back to the origins of soil science as an independent discipline within the natural sciences. Vasili Dokuchaev, the founder of modern soil science, identified five soil forming factors: parent material, climate, o...
Gendered Obstacles Faced by Historical Women in Physics and Astronomy
NASA Astrophysics Data System (ADS)
Jones, Kristen M.
2007-12-01
A gender gap still exists in modern science; this is especially evident in the fields of physics and astronomy. The cause of such a gap is the center of debate. Is this discrepancy the result of inherent ability or socialization? Most studies have focused on modern issues and how women are socialized today. The role of historical gender perspectives and social opinions in creating the field of modern science and any discrepancies within it has not yet been explored in depth. This project investigates the obstacles faced by historical women in physics and astronomy that stem from the officialized gender biases that accompanied the establishment of modern science. Such obstacles are both formal and informal. Four women were chosen to span the three hundred year period between the standardization of the field and the modern day: Laura Bassi, Mary Somerville, Lise Meitner, and Jocelyn Bell Burnell. The investigation reveals that formal obstacles significantly decreased over the time period, while informal obstacles eroded more gradually. Obstacles also reflected historical events such as the World Wars and the Enlightenment. Trends in obstacles faced by four prominent women physicists indicate that education, finances, support networks, and social opinion played a large role in determining success in the field. The applicability to modern day physics issues and the gender gap is discussed. Many thanks to the Pathways Scholars Program and the Ronald E. McNair Post-Baccalaureate Achievement Program for funding for this project.
[Hans Gross and the beginning of criminology on a scientific basis].
Bachhiesl, Christian
2007-01-01
Modern criminology--if one wants to consider it a separate scientific discipline at all--is usually perceived as being mainly influenced by the methods of natural sciences supplemented by components from the field of psychology, which, at least in some of its conceptions, tends to define itself as a natural science, too. If we take a look at the history of science, we will see development of criminology in this direction was not necessarily inevitable. The scientific work of the Austrian Hans Gross (1847-1915), one of the founding fathers of scientific criminology, serves as an example of the way how natural sciences and their exact methods became established in the methodological apparatus of modern criminology, although in praxi his claim for the application of exact methods was all too often replaced by irrational and intuitive ways of working. Still, Hans Gross' fundamental decision for the exact methods derived from the natural sciences is an important step towards a criminology that can be understood as a part of natural sciences, largely superseding the methods of cultural sciences and anthropological philosophy. This approach made the (criminal) human being an object of measurement and can result in the concept of man as a mere phenomenon of quantity. This is, on the one hand, ethically questionable; on the other hand, it made modern criminology more efficient and successful.
NASA Astrophysics Data System (ADS)
Mesjasz, Czesław
2000-05-01
Cybernetics, systems thinking or systems theory, have been viewed as instruments of enhancing predictive, normative and prescriptive capabilities of the social sciences, beginning from microscale-management and ending with various reference to the global system. Descriptions, explanations and predictions achieved thanks to various systems ideas were also viewed as supportive for potential governance of social phenomena. The main aim of the paper is to examine what could be the possible applications of modern systems thinking in predictive, normative and prescriptive approaches in modern social sciences, beginning from management theory and ending with global studies. Attention is paid not only to "classical" mathematical systems models but also to the role of predictive, normative and prescriptive interpretations of analogies and metaphors associated with application of the classical ("first order cybernetics") and modern ("second order cybernetics", "complexity theory") systems thinking in social sciences.
Oakley, Francis
2018-03-01
This paper is an intervention in the debate inaugurated by Peter Harrison in 2002 when he called into question the validity of what has come to be called 'the voluntarism and early-modern science thesis'. Though it subsequently drew support from such historians of science as J. E. McGuire, Margaret Osler, and Betty-Joe Teeter Dobbs, the origins of the thesis are usually traced back to articles published in 1934 and 1961 respectively by the philosopher Michael Foster and the historian of ideas Francis Oakley. Central to Harrison's critique of the thesis are claims he made about the meaning of the scholastic distinction between the potentia dei absoluta et ordinata and the role it played in the thinking of early-modern theologians and natural philosophers. This paper calls directly into question the accuracy of Harrison's claims on that very matter.
ERIC Educational Resources Information Center
Savitz, Maxine L.
1973-01-01
A science program was developed which is based on a mobile laboratory containing scientific experiments in biology, chemistry, physics, applied science, and mathematics. Discussion and experiments differ from the normal classroom setting as they utilize small groups and center around the relationship of modern science and technology of the urban…
ERIC Educational Resources Information Center
Sjöström, Jesper
2018-01-01
This forum article contributes to the understanding of how science teachers' identity is related to their worldviews, cultural values and educational philosophies, and to eco-transformation of science education. Special focus is put on "reform-minded" science teachers. The starting point is the paper "Science education reform in…
Ceres’ Evolution and Potential Habitability
NASA Astrophysics Data System (ADS)
Raymond, Carol Anne; Ammannito, Eleonora; Bland, Michael T.; Castillo-Rogez, Julie; De Sanctis, Maria Cristina; Ermakov, Anton; Fu, Roger; McCord, Thomas; Park, Ryan; Prettyman, Thomas H.; Ruesch, Ottaviano; Russell, Christopher T.; Dawn Team
2017-10-01
Dawn’s observations at Ceres confirm it is a volatile-rich body that has undergone ice-rock differentiation and global alteration [1-4], indicating that, as predicted by pre-Dawn thermochemical models, Ceres harbored an ancient subsurface ocean [5,6]. Density and shape data indicate that at present, Ceres has a crust composed of silicate, salts, clathrates and ≤ 35% water ice, overlying a denser core of hydrated silicates [7,8,9,10], whereas the original ice-dominated outer shell was likely lost to impact-induced sublimation early in Ceres’ history [11]. The interior structure constrains the maximum internal temperature to have been only a few hundred degrees [9]; however, rather than indicating a late formation for Ceres, it may indicate that circulation of fluids within Ceres modulated the temperature [12].The extent and longevity of the ocean are debatable; however, the modern surface of Ceres shows evidence of brine extrusion [e.g., 13], indicating at least pockets of subsurface liquid remain. Carbonates are found to dominate the composition of the brightest deposits on the surface, attesting to transport of crystallized brine material to the surface [14]. These multiple lines of evidence point to a warm aqueous subsurface environment with complex chemistry early in Ceres’ history and processes that exchanged material between the muddy ocean layer and the surface. Such history and the presence of organic material in localized deposits [15, 16] make Ceres an enticing target for future exploration. [1] Russell et al., Science, 2016 [2] Prettyman et al., Science, 2017 [3] De Sanctis et al., 2015 10.1038/nature18290 [4] Ammannito et al., Science, 2016 [5] McCord and Sotin, JGR, 2005 [6] Castillo-Rogez and McCord, Icarus, 2010 [7] Park et al., Nature, 2016 [8] Ermakov et al., JGR, 2017 [9] Fu et al., EPSL, 2017 [10] Bland et al., Nat. GeoSci., 2016 [11] Castillo-Rogez et al., LPSC, 2016 [12] Travis et al., Icarus, subm. [13] Ruesch et al., Science, 2106 [14] De Sanctis et al., Nature, 2016 [15] De Sanctis et al., Science, 2017 [16] Marchi et al., this meeting. Acknowledgements: Part of this work is being carried out at the Jet Propulsion Laboratory, California Institute of Technology, under contract to NASA.
From Nutty Professor to Buddy Love--Personality types in modern science.
Charlton, Bruce G
2007-01-01
People often suggest that scientists should have a specific personality type, usually conscientious and self-critical. But this is a mistake. Science as a social system needs to be conscientious and self-critical, but scientists as people do not necessarily have to conform to that stereotype. Since science works by a process of selection, it makes sense to have a wide range of personalities in science. It takes all types. However, the selection pressures within science have changed over recent decades. In the past, a successful scientist often resembled the white-coated, bespectacled and introverted Nutty Professor in Jerry Lewis's movie of that name. But the modern science superstar is more like the Nutty Professor's alter ego, nightclub singer 'Buddy Love': a sharp-suited, good-looking and charismatic charmer. While Nutty was dull but impartial, Buddy is compelling but self-seeking. Our attitude towards public scientific pronouncements should be adjusted accordingly.
ERIC Educational Resources Information Center
Shamsaei, Maryam; Shah, Mohd Hazim
2017-01-01
Iranian modern thinkers in either of the two categories: Western-minded and religious. The most prominent aspect of Western minded thinkers is their emphasis on separation of tradition and modernity. On the other hand, religious thinkers look forward to combining the two. The Western-minded thinkers believe that the most important burden on…
Reflections on Gibbs: From Statistical Physics to the Amistad V3.0
NASA Astrophysics Data System (ADS)
Kadanoff, Leo P.
2014-07-01
This note is based upon a talk given at an APS meeting in celebration of the achievements of J. Willard Gibbs. J. Willard Gibbs, the younger, was the first American physical sciences theorist. He was one of the inventors of statistical physics. He introduced and developed the concepts of phase space, phase transitions, and thermodynamic surfaces in a remarkably correct and elegant manner. These three concepts form the basis of different areas of physics. The connection among these areas has been a subject of deep reflection from Gibbs' time to our own. This talk therefore celebrated Gibbs by describing modern ideas about how different parts of physics fit together. I finished with a more personal note. Our own J. Willard Gibbs had all his many achievements concentrated in science. His father, also J. Willard Gibbs, also a Professor at Yale, had one great non-academic achievement that remains unmatched in our day. I describe it.
Skating on thin ice: surface chemistry under interstellar conditions
NASA Astrophysics Data System (ADS)
Fraser, H.; van Dishoeck, E.; Tielens, X.
Solid CO2 has been observed towards both active star forming regions and quiescent clouds (Gerakines et. al. (1999)). The high abundance of CO2 in the solid phase, and its low abundance in the gas phase, support the idea that CO2 is almost exclusively formed in the solid state. Several possible formation mechanisms have been postulated (Ruffle &Herbst (2001): Charnley &Kaufman (2000)), and the detection of CO2 towards quiescent sources such as Elias 16 (Whittet et. al. (1998)) clearly suggests that CO2 can be produced in the absence of UV or electron mediated processes. The most likely route is via the surface reactions between O atoms, or OH radicals, and CO. The tools of modern surface- science offer us the potential to determine many of the physical and chemical attributes of icy interstellar grain mantles under highly controlled conditions, that closely mimic interstellar environments. The Leiden Surface Reaction Simulation Device ( urfreside) combines UHV (UltraS High Vacuum) surface science techniques with an atomic beam to study chemical reactions occurring on the SURFACE and in the BULK of interstellar ice grain mimics. By simultaneously combining two or more surface analysis techniques, the chemical kinetics, reaction mechanisms and activation energies can be determined directly. The experiment is aimed at identifying the key barrierless reactions and desorption pathways on and in H2 O and CO ices under interstellar conditions. The results from traditional HV (high vacuum) and UHV studies of the CO + O and CO + OH reactions will be presented in this paper. Charnley, S.B., & Kaufman, M.J., 2000, ApJ, 529, L111 Gerakines, P.A., 1999, ApJ, 522, 357 Ruffle, D.P., & Herbst, E., 2001, MNRAS, 324, 1054 Whittet, D.C.B., et.al., 1998, ApJ, 498, L159
Science-Technology-Society or Technology-Society-Science? Insights from an Ancient Technology
ERIC Educational Resources Information Center
Lee, Yeung Chung
2010-01-01
Current approaches to science-technology-society (STS) education focus primarily on the controversial socio-scientific issues that arise from the application of science in modern technology. This paper argues for an interdisciplinary approach to STS education that embraces science, technology, history, and social and cultural studies. By employing…
Teachers, Research, and Reform: Improving Teaching and Learning in High School Science Courses.
ERIC Educational Resources Information Center
Kaiser, Bonnie
One of the challenges issued by the National Science Education Standards is for students to learn the content and process of modern scientific inquiry by engaging in research and entering science competitions. The Rockefeller University Precollege Science Education Outreach Programs (Science Outreach) provide access for about 70 students from…
Simon van der Meer (1925-2011):. A Modest Genius of Accelerator Science
NASA Astrophysics Data System (ADS)
Chohan, Vinod C.
2011-02-01
Simon van der Meer was a brilliant scientist and a true giant of accelerator science. His seminal contributions to accelerator science have been essential to this day in our quest for satisfying the demands of modern particle physics. Whether we talk of long base-line neutrino physics or antiproton-proton physics at Fermilab or proton-proton physics at LHC, his techniques and inventions have been a vital part of the modern day successes. Simon van der Meer and Carlo Rubbia were the first CERN scientists to become Nobel laureates in Physics, in 1984. Van der Meer's lesserknown contributions spanned a whole range of subjects in accelerator science, from magnet design to power supply design, beam measurements, slow beam extraction, sophisticated programs and controls.
The CYGNSS flight segment; A major NASA science mission enabled by micro-satellite technology
NASA Astrophysics Data System (ADS)
Rose, R.; Ruf, C.; Rose, D.; Brummitt, M.; Ridley, A.
While hurricane track forecasts have improved in accuracy by ~50% since 1990, there has been essentially no improvement in the accuracy of intensity prediction. This lack of progress is thought to be caused by inadequate observations and modeling of the inner core due to two causes: 1) much of the inner core ocean surface is obscured from conventional remote sensing instruments by intense precipitation in the inner rain bands and 2) the rapidly evolving stages of the tropical cyclone (TC) life cycle are poorly sampled in time by conventional polar-orbiting, wide-swath surface wind imagers. NASA's most recently awarded Earth science mission, the NASA EV-2 Cyclone Global Navigation Satellite System (CYGNSS) has been designed to address these deficiencies by combining the all-weather performance of GNSS bistatic ocean surface scatterometry with the sampling properties of a satellite constellation. This paper provides an overview of the CYGNSS flight segment requirements, implementation, and concept of operations for the CYGNSS constellation; consisting of 8 microsatellite-class spacecraft (<; 100kg) each hosting a GNSS receiver, operating in a 500 km orbit, inclined at 35° to provide 70% coverage of the historical TC track. The CYGNSS mission is enabled by modern electronic technology; it is an example of how nanosatellite technology can be applied to replace traditional "old school" solutions at significantly reduced cost while providing an increase in performance. This paper provides an overview of how we combined a reliable space-flight proven avionics design with selected microsatellite components to create an innovative, low-cost solution for a mainstream science investigation.
Constraining Lipid Biomarker Paleoclimate Proxies in a Small Arctic Watershed
NASA Astrophysics Data System (ADS)
Dion-Kirschner, H.; McFarlin, J. M.; Axford, Y.; Osburn, M. R.
2017-12-01
Arctic amplification of climate change renders high-latitude environments unusually sensitive to changes in climatic conditions (Serreze and Barry, 2011). Lipid biomarkers, and their hydrogen and carbon isotopic compositions, can yield valuable paleoclimatic and paleoecological information. However, many variables affect the production and preservation of lipids and their constituent isotopes, including precipitation, plant growth conditions, biosynthesis mechanisms, and sediment depositional processes (Sachse et al., 2012). These variables are particularly poorly constrained for high-latitude environments, where trees are sparse or not present, and plants grow under continuous summer light and cool temperatures during a short growing season. Here we present a source-to-sink study of a single watershed from the Kangerlussuaq region of southwest Greenland. Our analytes from in and around `Little Sugarloaf Lake' (LSL) include terrestrial and aquatic plants, plankton, modern lake water, surface sediments, and a sediment core. This diverse sample set allows us to fulfill three goals: 1) We evaluate the production of lipids and isotopic signatures in the modern watershed in comparison to modern climate. Our data exhibit genus-level trends in leaf wax production and isotopic composition, and help clarify the difference between terrestrial and aquatic signals. 2) We evaluate the surface sediment of LSL to determine how lipid biomarkers from the watershed are incorporated into sediments. We constrain the relative contributions of terrestrial plants, aquatic plants, and other aquatic organisms to the sediment in this watershed. 3) We apply this modern source-to-sink calibration to the analysis of a 65 cm sediment core record. Our core is organic-rich, and relatively high deposition rates allow us to reconstruct paleoenvironmental changes with high resolution. Our work will help determine the veracity of these common paleoclimate proxies, specifically for research in southwest Greenland, and will enable an accurate, high-resolution watershed-level reconstruction of Holocene conditions. Serreze, M. and Barry, R. (2011). Global and Planetary Change, 77, 85-96. Sachse, D., et al. (2012). Annual Review of Earth and Planetary Sciences, 40, 221-249.
Beck, Asia and second modernity.
Calhoun, Craig
2010-09-01
The work of Ulrich Beck has been important in bringing sociological attention to the ways issues of risk are embedded in contemporary globalization, in developing a theory of 'reflexive modernization', and in calling for social science to transcend 'methodological nationalism'. In recent studies, he and his colleagues help to correct for the Western bias of many accounts of cosmopolitanism and reflexive modernization, and seek to distinguish normative goals from empirical analysis. In this paper I argue that further clarification of this latter distinction is needed but hard to reach within a framework that still embeds the normative account in the idea that empirical change has a clear direction. Similar issues beset the presentation of diverse patterns in recent history as all variants of 'second modernity'. Lastly, I note that ironically, given the declared 'methodological cosmopolitanism' of the authors, the empirical studies here all focus on national cases. © London School of Economics and Political Science 2010.
Fort Benton Science Curriculum Outline.
ERIC Educational Resources Information Center
Fort Benton Public Schools, MT.
The science curriculum for the Fort Benton school system was developed with funds under Title III of the Elementary and Secondary Education Act to give students the background of a modern and forward-looking program in science taught in an imaginative, investigative, and inquiry-oriented fashion. The science curriculum guide outlines a planned…
The "Next Generation Science Standards" and the Earth and Space Sciences
ERIC Educational Resources Information Center
Wysession, Michael E.
2013-01-01
In this article, Michael E. Wysession comments on the "Next Generation Science Standards" (NGSS), which are based on the recommendations of the National Research Council and represent a revolutionary step toward establishing modern, national K-12 science education standards. The NGSS involves significant changes from traditional…
Approaches and Strategies in Next Generation Science Learning
ERIC Educational Resources Information Center
Khine, Myint Swe, Ed.; Saleh, Issa M., Ed.
2013-01-01
"Approaches and Strategies in Next Generation Science Learning" examines the challenges involved in the development of modern curriculum models, teaching strategies, and assessments in science education in order to prepare future students in the 21st century economies. This comprehensive collection of research brings together science educators,…
Intriguing Freshmen with Materials Science.
ERIC Educational Resources Information Center
Pond, Robert B., Sr.
Described is a course designed for engineering science and natural science freshmen and open to upperclass nonscience majors entitled "Science of Modern Materials" and which has been successfully presented for several years. This paper presents the philosophy behind the course, the teaching methods employed, and the content of the course. The…
Experimenter's laboratory for visualized interactive science
NASA Technical Reports Server (NTRS)
Hansen, Elaine R.; Klemp, Marjorie K.; Lasater, Sally W.; Szczur, Marti R.; Klemp, Joseph B.
1992-01-01
The science activities of the 1990's will require the analysis of complex phenomena and large diverse sets of data. In order to meet these needs, we must take advantage of advanced user interaction techniques: modern user interface tools; visualization capabilities; affordable, high performance graphics workstations; and interoperable data standards and translator. To meet these needs, we propose to adopt and upgrade several existing tools and systems to create an experimenter's laboratory for visualized interactive science. Intuitive human-computer interaction techniques have already been developed and demonstrated at the University of Colorado. A Transportable Applications Executive (TAE+), developed at GSFC, is a powerful user interface tool for general purpose applications. A 3D visualization package developed by NCAR provides both color shaded surface displays and volumetric rendering in either index or true color. The Network Common Data Form (NetCDF) data access library developed by Unidata supports creation, access and sharing of scientific data in a form that is self-describing and network transparent. The combination and enhancement of these packages constitutes a powerful experimenter's laboratory capable of meeting key science needs of the 1990's. This proposal encompasses the work required to build and demonstrate this capability.
Experimenter's laboratory for visualized interactive science
NASA Technical Reports Server (NTRS)
Hansen, Elaine R.; Klemp, Marjorie K.; Lasater, Sally W.; Szczur, Marti R.; Klemp, Joseph B.
1993-01-01
The science activities of the 1990's will require the analysis of complex phenomena and large diverse sets of data. In order to meet these needs, we must take advantage of advanced user interaction techniques: modern user interface tools; visualization capabilities; affordable, high performance graphics workstations; and interoperatable data standards and translator. To meet these needs, we propose to adopt and upgrade several existing tools and systems to create an experimenter's laboratory for visualized interactive science. Intuitive human-computer interaction techniques have already been developed and demonstrated at the University of Colorado. A Transportable Applications Executive (TAE+), developed at GSFC, is a powerful user interface tool for general purpose applications. A 3D visualization package developed by NCAR provides both color-shaded surface displays and volumetric rendering in either index or true color. The Network Common Data Form (NetCDF) data access library developed by Unidata supports creation, access and sharing of scientific data in a form that is self-describing and network transparent. The combination and enhancement of these packages constitutes a powerful experimenter's laboratory capable of meeting key science needs of the 1990's. This proposal encompasses the work required to build and demonstrate this capability.
The concepts of science in Japanese and Western education
NASA Astrophysics Data System (ADS)
Kawasaki, Ken
1996-01-01
Using structural linguistics, the present article offers an impartial frame of reference to analyze science education in the non-Western world. In Japan, science education has been free from epistemological reflection because Japan regards science only as effective technology for modernization. By not taking account of the world-view aspect of science, Japan can treat science as not self-referential. Issues of science education are then rather simple; they are only concerned with the question of ‘how to’, and answers to this question are judged according to the efficiency achieved for modernization. Science, however, is a way of seeing ‘nature’. This word is generally translated into Japanese as ‘shizen’ which has a totally different connotation and therefore does not lead to an understanding of the Western scientific spirit. Saussure's approach to language is used to expose the consequences of the misinterpretations that spring from this situation. In order to minimize or prevent these misinterpretations, it is emphasized that science education should be identified with foreign language education in the non-Western world.
Basic energy sciences: Summary of accomplishments
NASA Astrophysics Data System (ADS)
1990-05-01
For more than four decades, the Department of Energy, including its predecessor agencies, has supported a program of basic research in nuclear- and energy related sciences, known as Basic Energy Sciences. The purpose of the program is to explore fundamental phenomena, create scientific knowledge, and provide unique user facilities necessary for conducting basic research. Its technical interests span the range of scientific disciplines: physical and biological sciences, geological sciences, engineering, mathematics, and computer sciences. Its products and facilities are essential to technology development in many of the more applied areas of the Department's energy, science, and national defense missions. The accomplishments of Basic Energy Sciences research are numerous and significant. Not only have they contributed to Departmental missions, but have aided significantly the development of technologies which now serve modern society daily in business, industry, science, and medicine. In a series of stories, this report highlights 22 accomplishments, selected because of their particularly noteworthy contributions to modern society. A full accounting of all the accomplishments would be voluminous. Detailed documentation of the research results can be found in many thousands of articles published in peer-reviewed technical literature.
Basic Energy Sciences: Summary of Accomplishments
DOE R&D Accomplishments Database
1990-05-01
For more than four decades, the Department of Energy, including its predecessor agencies, has supported a program of basic research in nuclear- and energy-related sciences, known as Basic Energy Sciences. The purpose of the program is to explore fundamental phenomena, create scientific knowledge, and provide unique user'' facilities necessary for conducting basic research. Its technical interests span the range of scientific disciplines: physical and biological sciences, geological sciences, engineering, mathematics, and computer sciences. Its products and facilities are essential to technology development in many of the more applied areas of the Department's energy, science, and national defense missions. The accomplishments of Basic Energy Sciences research are numerous and significant. Not only have they contributed to Departmental missions, but have aided significantly the development of technologies which now serve modern society daily in business, industry, science, and medicine. In a series of stories, this report highlights 22 accomplishments, selected because of their particularly noteworthy contributions to modern society. A full accounting of all the accomplishments would be voluminous. Detailed documentation of the research results can be found in many thousands of articles published in peer-reviewed technical literature.
The discovery of circulation and the origin of modern medicine during the italian renaissance.
Thiene, G
1997-03-01
This historical article discusses the dawn of anatomy during the Italian Renaissance, the role of the University of Padua in the origin of modern medicine, milestones in the development of modern medicine, the discovery of circulation, Padua leadership and Galileo's persecution for his scientific theories. Copyright © 1997 Elsevier Science Inc. All rights reserved.
ERIC Educational Resources Information Center
Weaver, John A., Ed.; Morris, Marla, Ed.; Appelbaum, Peter, Ed.
This collection of essays offers new perspectives for science educators, curriculum theorists, and cultural critics on science education, French post-structural thought, and the science debates. This book contains chapters on the work of Bruno Latour, Michael Serres, and Jean Baudrillard plus chapters on postmodern approaches to science education…
ERIC Educational Resources Information Center
Antink-Meyer, Allison; Meyer, Daniel Z.
2016-01-01
The aim of this exploratory study was to learn about the misconceptions that may arise for elementary and high school science teachers in their reflections on science and engineering practice. Using readings and videos of real science and engineering work, teachers' reflections were used to uncover the underpinnings of their understandings. This…
The Mona Lisa of modern science.
Kemp, Martin
2003-01-23
No molecule in the history of science has reached the iconic status of the double helix of DNA. Its image has been imprinted on all aspects of society, from science, art, music, cinema, architecture and advertising. This review of the Mona Lisa of science examines the evolution of its form at the hands of both science and art.
Studies of oxidation and thermal reduction of the Cu(100) surface using a slow positron beam
NASA Astrophysics Data System (ADS)
Maddox, W. B.; Fazleev, N. G.; Nadesalingam, M. P.; Weiss, A. H.
2007-10-01
Positron probes of surfaces of oxides that play a fundamental role in modern science and technology are capable to non-destructively provide information that is both unique to the probe and complimentary to that extracted using other more standard techniques. We discuss recent progress in studies of oxidation and thermal reduction of the Cu(100) surface using positron-annihilation-induced Auger-electron spectroscopy (PAES). PAES measurements show a large increase in the intensity of the Cu M2,3VV Auger peak as the sample is subjected to a series of isochronal anneals in vacuum up to annealing temperature 300 C. The intensity then decreases monotonically as the annealing temperature is increased to 600 C. Experimental PAES results are analyzed by performing calculations of positron surface states and annihilation probabilities of surface-trapped positrons with relevant core electrons taking into account the charge redistribution at the surface and surface reconstruction. The effects of oxygen adsorption and defects on localization of the positron surface state wave function and positron annihilation characteristics are also analyzed. Possible explanations are provided for the observed behavior of the intensity of the positron annihilation induced Cu M2,3VV Auger peak with changes of the annealing temperature.
Universal Cosmic Absolute and Modern Science
NASA Astrophysics Data System (ADS)
Kostro, Ludwik
The official Sciences, especially all natural sciences, respect in their researches the principle of methodic naturalism i.e. they consider all phenomena as entirely natural and therefore in their scientific explanations they do never adduce or cite supernatural entities and forces. The purpose of this paper is to show that Modern Science has its own self-existent, self-acting, and self-sufficient Natural All-in Being or Omni-Being i.e. the entire Nature as a Whole that justifies the scientific methodic naturalism. Since this Natural All-in Being is one and only It should be considered as the own scientifically justified Natural Absolute of Science and should be called, in my opinion, the Universal Cosmic Absolute of Modern Science. It will be also shown that the Universal Cosmic Absolute is ontologically enormously stratified and is in its ultimate i.e. in its most fundamental stratum trans-reistic and trans-personal. It means that in its basic stratum. It is neither a Thing or a Person although It contains in Itself all things and persons with all other sentient and conscious individuals as well, On the turn of the 20th century the Science has begun to look for a theory of everything, for a final theory, for a master theory. In my opinion the natural Universal Cosmic Absolute will constitute in such a theory the radical all penetrating Ultimate Basic Reality and will substitute step by step the traditional supernatural personal Absolute.
A History of Soil Science Education in the United States
NASA Astrophysics Data System (ADS)
Brevik, Eric C.
2017-04-01
The formal study of soil science is a fairly recent undertaking in academics. Fields like biology, chemistry, and physics date back hundreds of years, but the scientific study of soils only dates to the late 1800s. Academic programs to train students in soil science are even more recent, with the first such programs only developing in the USA in the early 1900s. Some of the first schools to offer soil science training at the university level included the University of North Carolina (UNC), Earlham College (EC), and Cornell University. The first modern soil science textbook published in the United States was "Soils, Their Properties and Management" by Littleton Lyon, Elmer Fippin and Harry Buckman in 1909. This has evolved over time into the popular modern textbook "The Nature and Properties of Soils", most recently authored by Raymond Weil and Nyle Brady. Over time soil science education moved away from liberal arts schools such as UNC and EC and became associated primarily with land grant universities in their colleges of agriculture. There are currently about 71 colleges and universities in the USA that offer bachelors level soil science degree programs, with 54 of these (76%) being land grant schools. In the 1990s through the early 2000s enrollment in USA soil science programs was on the decline, even as overall enrollment at USA colleges and universities increased. This caused considerable concern in the soil science community. More recently there is evidence that soil science student numbers may be increasing, although additional information on this potential trend is desirable. One challenge soil science faces in the modern USA is finding an academic home, as soils are taught by a wide range of fields and soils classes are taken by students in many fields of study, including soil science, a range of agricultural programs, environmental science, environmental health, engineering, geology, geography, and others.
Western Australian school students' understanding of biotechnology
NASA Astrophysics Data System (ADS)
Dawson, Vaille; Schibeci, Renato
2003-01-01
Are science educators providing secondary school students with the background to understand the science behind recent controversies such as the recently introduced compulsory labelling of genetically modified foods? Research from the UK suggests that many secondary school students do not understand the processes or implications of modern biotechnology. The situation in Australia is unclear. In this study, 1116 15-year-old students from eleven Western Australian schools were surveyed to determine their understanding of, and attitude towards, recent advances in modern biotechnology. The results indicate that approximately one third of students have little or no understanding of biotechnology. Many students over-estimate the use of biotechnology in our society by confusing current uses with possible future applications. The results provide a rationale for the inclusion of biotechnology, a cutting edge science, in the school science curriculum
Kulkarni, Anil D; Sundaresan, Alamelu; Rashid, Muhammad J; Yamamoto, Shigeru; Karkow, Francisco
2014-01-01
The principal objective of this paper is to demonstrate the role of taste and flavor in health from the ancient science of Ayurveda to modern medicine; specifically their mechanisms and roles in space medicine and their clinical relevance in modern heath care. It also describes the brief history of the use of the monosodium glutamate or flavor enhancers ("Umami substance") that improve the quality of food intake by stimulating chemosensory perception. In addition, the dietary nucleotides are known to be the components of "Umami substance" and the benefit of their use has been proposed in various types of patients with cancer, radiation therapy, organ transplantation, and for application in space medicine.
Feminization and marginalization? Women Ayurvedic doctors and modernizing health care in Nepal.
Cameron, Mary
2010-03-01
The important diversity of indigenous medical systems around the world suggests that gender issues, well understood for Western science, may differ in significant ways for non-Western science practices and are an important component in understanding how social dimensions of women's health care are being transformed by global biomedicine. Based on ethnographic research conducted with formally trained women Ayurvedic doctors in Nepal, I identify important features of medical knowledge and practice beneficial to women patients, and I discuss these features as potentially transformed by modernizing health care development. The article explores the indirect link between Ayurveda's feminization and its marginalization, in relation to modern biomedicine, which may evolve to become more direct and consequential for women's health in the country.
Theme: The Role of Science in the Agricultural Education Curriculum.
ERIC Educational Resources Information Center
Agricultural Education Magazine, 2002
2002-01-01
Thirteen theme articles discuss integration of science and agriculture, the role of science in agricultural education, biotechnology, agriscience in Tennessee and West Virginia, agriscience and program survival, modernization of agricultural education curriculum, agriscience and service learning, and biotechnology websites. (SK)
ERIC Educational Resources Information Center
McCallie, Ellen; Bell, Larry; Lohwater, Tiffany; Falk, John H.; Lehr, Jane L.; Lewenstein, Bruce V.; Needham, Cynthia; Wiehe, Ben
2009-01-01
Science and technology are embedded in every aspect of modern life. This executive summary describes how Public Engagement with Science (PES), in the context of informal science education (ISE), can provide opportunities for public awareness of and participation in science and technology. PES is an approach that has developed in the last 10 years…
Georges Lemaître: Science and Religion
NASA Astrophysics Data System (ADS)
Coyne, George V.
In order to appreciate the contribution which Georges Lemaître made to the relationship between religion and science it is necessary to understand how the Catholic Church, of which he was a priest, passed in the course of three centuries, from a position of conflict with the sciences to one of compatible openness and dialogue. In doing this I hope to show that the natural sciences have played a significant role in helping to establish the kind of dialogue that is absolutely necessary for the enrichment of the multifaceted aspects of human culture. I will speak of the following four periods of history: (l) the rise of modern atheism in the seventeenth and eighteenth centuries; (2) anticlericalism in Europe in the nineteenth century; (3) the awakening within the Catholic Church to modern science in the first six decades of the twentieth century; (4) the Church's view today.
History of Science and History of Philologies.
Daston, Lorraine; Most, Glenn W
2015-06-01
While both the sciences and the humanities, as currently defined, may be too heterogeneous to be encompassed within a unified historical framework, there is good reason to believe that the history of science and the history of philologies both have much to gain by joining forces. This collaboration has already yielded striking results in the case of the history of science and humanist learning in early modern Europe. This essay argues that first, philology and at least some of the sciences (e.g., astronomy) remained intertwined in consequential ways well into the modern period in Western cultures; and second, widening the scope of inquiry to include other philological traditions in non-Western cultures offers rich possibilities for a comparative history of learned practices. The focus on practices is key; by shifting the emphasis from what is studied to how it is studied, deep commonalities emerge among disciplines--and intellectual traditions--now classified as disparate.
Tocheri, M W; Razdan, A; Williams, R C; Marzke, M W
2005-11-01
The structure and functions of the modern human hand are critical components of what distinguishes Homo sapiens from the great apes (Gorilla, Pan, and Pongo). In this study, attention is focused on the trapezium and trapezoid, the two most lateral bones of the distal carpal row, in the four extant hominid genera, representing the first time they have been quantified and analyzed together as a morphological-functional complex. Our objective is to quantify the relative articular and nonarticular surface areas of these two bones and to test whether modern humans exhibit significant shape differences from the great apes, as predicted by previous qualitative analyses and the functional demands of differing manipulative and locomotor strategies. Modern humans were predicted to show larger relative first metacarpal and scaphoid surfaces on the trapezium because of the regular recruitment of the thumb during manipulative behaviors; alternatively, great apes were predicted to show larger relative second metacarpal and scaphoid surfaces on the trapezoid because of the functional demands on the hands during locomotor behaviors. Modern humans were also expected to exhibit larger relative mutual joint surfaces between the trapezoid and adjacent carpals than do the great apes because of assumed transverse loads generated by the functional demands of the modern human power grip. Using 3D bone models acquired through laser digitizing, the relative articular and nonarticular areas on each bone are quantified and compared. Multivariate analyses of these data clearly distinguish modern humans from the great apes. In total, the observed differences between modern humans and the great apes support morphological predictions based on the fact that this region of the human wrist is no longer involved in weight-bearing during locomotor behavior and is instead recruited solely for manipulative behaviors. The results provide the beginnings of a 3D comparative standard against which further extant and fossil primate wrist bones can be compared within the contexts of manipulative and locomotor behaviors.
Surface analysis of stone and bone tools
NASA Astrophysics Data System (ADS)
Stemp, W. James; Watson, Adam S.; Evans, Adrian A.
2016-03-01
Microwear (use-wear) analysis is a powerful method for identifying tool use that archaeologists and anthropologists employ to determine the activities undertaken by both humans and their hominin ancestors. Knowledge of tool use allows for more accurate and detailed reconstructions of past behavior, particularly in relation to subsistence practices, economic activities, conflict and ritual. It can also be used to document changes in these activities over time, in different locations, and by different members of society, in terms of gender and status, for example. Both stone and bone tools have been analyzed using a variety of techniques that focus on the observation, documentation and interpretation of wear traces. Traditionally, microwear analysis relied on the qualitative assessment of wear features using microscopes and often included comparisons between replicated tools used experimentally and the recovered artifacts, as well as functional analogies dependent upon modern implements and those used by indigenous peoples from various places around the world. Determination of tool use has also relied on the recovery and analysis of both organic and inorganic residues of past worked materials that survived in and on artifact surfaces. To determine tool use and better understand the mechanics of wear formation, particularly on stone and bone, archaeologists and anthropologists have increasingly turned to surface metrology and tribology to assist them in their research. This paper provides a history of the development of traditional microwear analysis in archaeology and anthropology and also explores the introduction and adoption of more modern methods and technologies for documenting and identifying wear on stone and bone tools, specifically those developed for the engineering sciences to study surface structures on micro- and nanoscales. The current state of microwear analysis is discussed as are the future directions in the study of microwear on stone and bone tools.
NSF in a Changing World: The National Science Foundation's Strategic Plan.
ERIC Educational Resources Information Center
National Science Foundation, Washington, DC.
The National Science Foundation's (NSF) role as a leader and steward of the Nation's science and engineering enterprise faces new tests--promoting new approaches to research, education, and workforce training that reach all Americans; responding to the increased importance of science and engineering in many aspects of daily life; modernizing the…
ERIC Educational Resources Information Center
Prather, J. Preston
Most students enter their first formal science courses with intelligently conceived and sophisticated concepts of science. Some of these may be compatible with the principles of modern science, but others may be incorrect, inadequate, outdated, or otherwise unacceptable. Conceptual frameworks based on intuitive misperceptions, naive inferences,…
Designing Intelligent Knowledge: Epistemological Faith and the Democratization of Science
ERIC Educational Resources Information Center
Pierce, Clayton
2007-01-01
In this essay, Clayton Pierce examines the epistemological standpoints of Intelligent Design (ID) and evolutionary science education, focusing specifically on the pedagogical question of how ID and modern science-based education fail to promote democratic relations in how students learn, think, and associate with science and technology in society.…
Shaking the Tree, Making a Rhizome: Towards a Nomadic Geophilosophy of Science Education
ERIC Educational Resources Information Center
Gough, Noel
2006-01-01
This essay enacts a philosophy of science education inspired by Gilles Deleuze and Felix Guattari's figurations of rhizomatic and nomadic thought. It imagines rhizomes shaking the tree of modern Western science and science education by destabilising arborescent conceptions of knowledge as hierarchically articulated branches of a central stem or…
Consciousness and Science: A Non-Dual Perspective on the Theology-Science Dialogue
ERIC Educational Resources Information Center
Sriraman, Bharath; Benesch, Walter
2013-01-01
In modern science, the synthesis of "nature/mind" in observation, experiment, and explanation, especially in physics and biology increasingly reveal a non-linear totality in which subject, object, and situation have become inseparable. This raises the interesting ontological question of the true nature of reality? Western science as seen in its…
Well-ordered science and Indian epistemic cultures: toward a polycentered history of science.
Ganeri, Jonardon
2013-06-01
This essay defends the view that "modern science," as with modernity in general, is a polycentered phenomenon, something that appears in different forms at different times and places. It begins with two ideas about the nature of rational scientific inquiry: Karin Knorr Cetina's idea of "epistemic cultures," and Philip Kitcher's idea of science as "a system of public knowledge," such knowledge as would be deemed worthwhile by an ideal conversation among the whole public under conditions of mutual engagement. This account of the nature of scientific practice provides us with a new perspective from which to understand key elements in the philosophical project of Jaina logicians in the seventh, eighth, and ninth centuries C.E. Jaina theory seems exceptionally well targeted onto two of the key constituents in the ideal conversation--the classification of all human points of view and the representation of end states of the deliberative process. The Buddhist theory of the Kathāvatthu contributes to Indian epistemic culture in a different way: by supplying a detailed theory of how human dialogical standpoints can be revised in the ideal conversation, an account of the phenomenon Kitcher labels "tutoring." Thus science in India has its own history, one that should be studied in comparison and contrast with the history of science in Europe. In answer to Joseph Needham, it was not 'modern science' which failed to develop in India or China but rather non-well-ordered science, science as unconstrained by social value and democratic consent. What I argue is that this is not a deficit in the civilisational histories of these countries, but a virtue.
Managing complexity in simulations of land surface and near-surface processes
Coon, Ethan T.; Moulton, J. David; Painter, Scott L.
2016-01-12
Increasing computing power and the growing role of simulation in Earth systems science have led to an increase in the number and complexity of processes in modern simulators. We present a multiphysics framework that specifies interfaces for coupled processes and automates weak and strong coupling strategies to manage this complexity. Process management is enabled by viewing the system of equations as a tree, where individual equations are associated with leaf nodes and coupling strategies with internal nodes. A dynamically generated dependency graph connects a variable to its dependencies, streamlining and automating model evaluation, easing model development, and ensuring models aremore » modular and flexible. Additionally, the dependency graph is used to ensure that data requirements are consistent between all processes in a given simulation. Here we discuss the design and implementation of these concepts within the Arcos framework, and demonstrate their use for verification testing and hypothesis evaluation in numerical experiments.« less
NASA Astrophysics Data System (ADS)
Drori, Gili S.
This study is a comparative investigation of the ways by which the globalization of modern science affects the characteristics of different nation-states. Whereas much research and policy discussion focuses on science as an instrumental, or technical, system with immediate consequences for national conditions, such as economic development, science should also be regarded as a general cultural framework, which is highly institutionalized at the global level. As such, the institutionalization of science at both the global and national levels affects a wide variety of national properties. Following this line of reasoning, this dissertation study employs cross-national and longitudinal data and multiple-indicator methods to show national-level consequences of scientific expansion on the processes of rationalization and modernization of social and political life. It appears that the cross-national expansion of science practice results in, or is associated with, a variety of measures of (a) the standardization of civil and governmental procedures and (b) the expansion of the political rights and political engagement. I conclude from these empirical findings that scientization encourages (a) greater general societal rationalization and (b) expanded notions of social actorhood and agency. This evidence demonstrates how the globalization of science alters local conditions, both civil and political, by supporting the institutionalization of bureaucratic practices and participatory politics. Thus, the expansion of science--clearly affected by global processes--carries a general secularized faith in a rationalized world and in human agency. In this sense, the practice of science is a national ritual, whose social role is as a legitimacy-providing institution, rather then a technically functional institution. On a broader level, the study emphasizes the relations between globalization processes and the sovereignty of the nation-state. I conclude that science carries modernist and global notions of rational governance, identity politics, self-determination, and democratization. Science globalization processes, therefore, encourage the worldwide institutionalization of the liberal mode of governmentality.
Fuzzy Logic in Legal Education
ERIC Educational Resources Information Center
Balkir, Z. Gonul; Alniacik, Umit; Apaydin, Eylem
2011-01-01
The necessity of examination of every case within its peculiar conditions in social sciences requires different approaches complying with the spirit and nature of social sciences. Multiple realities require different and various perceptual interpretations. In modern world and social sciences, interpretation of perception of valued and multi-valued…
How to Reconcile the Multiculturalist and Universalist Approaches to Science Education
ERIC Educational Resources Information Center
Hansson, Sven Ove
2018-01-01
The "multiculturalist" and "universalist" approaches to science education both fail to recognize the strong continuities between modern science and its forerunners in traditional societies. Various fact-finding practices in indigenous cultures exhibit the hallmarks of scientific investigations, such as collectively achieved…
The Symbiotic Relationship between Liberal Studies and Science
ERIC Educational Resources Information Center
Unah, Jim I.
2008-01-01
The Artistic and Humanistic studies (liberal studies) and the science and technology disciplines (science) constitute the two dominant cultures in a modern university. Subsumed in these cultures are the professional disciplines of law, architecture, engineering, medicine, accounting, administration and a few others. Essentially, the university…
NASA Astrophysics Data System (ADS)
Craney, Chris; Mazzeo, April; Lord, Kaye
1996-07-01
During the past five years the nation's concern for science education has expanded from a discussion about the future supply of Ph.D. scientists and its impact on the nation's scientific competitiveness to the broader consideration of the science education available to all students. Efforts to improve science education have led many authors to suggest greater collaboration between high school science teachers and their college/university colleagues. This article reviews the experience and outcomes of the Teachers + Occidental = Partnership in Science (TOPS) van program operating in the Los Angeles Metropolitan area. The program emphasizes an extensive ongoing staff development, responsiveness to teachers' concerns, technical and on-site support, and sustained interaction between participants and program staff. Access to modern technology, including computer-driven instruments and commercial data analysis software, coupled with increased teacher content knowledge has led to empowerment of teachers and changes in student interest in science. Results of student and teacher questionnaires are reviewed.
New Trends in E-Science: Machine Learning and Knowledge Discovery in Databases
NASA Astrophysics Data System (ADS)
Brescia, Massimo
2012-11-01
Data mining, or Knowledge Discovery in Databases (KDD), while being the main methodology to extract the scientific information contained in Massive Data Sets (MDS), needs to tackle crucial problems since it has to orchestrate complex challenges posed by transparent access to different computing environments, scalability of algorithms, reusability of resources. To achieve a leap forward for the progress of e-science in the data avalanche era, the community needs to implement an infrastructure capable of performing data access, processing and mining in a distributed but integrated context. The increasing complexity of modern technologies carried out a huge production of data, whose related warehouse management and the need to optimize analysis and mining procedures lead to a change in concept on modern science. Classical data exploration, based on local user own data storage and limited computing infrastructures, is no more efficient in the case of MDS, worldwide spread over inhomogeneous data centres and requiring teraflop processing power. In this context modern experimental and observational science requires a good understanding of computer science, network infrastructures, Data Mining, etc. i.e. of all those techniques which fall into the domain of the so called e-science (recently assessed also by the Fourth Paradigm of Science). Such understanding is almost completely absent in the older generations of scientists and this reflects in the inadequacy of most academic and research programs. A paradigm shift is needed: statistical pattern recognition, object oriented programming, distributed computing, parallel programming need to become an essential part of scientific background. A possible practical solution is to provide the research community with easy-to understand, easy-to-use tools, based on the Web 2.0 technologies and Machine Learning methodology. Tools where almost all the complexity is hidden to the final user, but which are still flexible and able to produce efficient and reliable scientific results. All these considerations will be described in the detail in the chapter. Moreover, examples of modern applications offering to a wide variety of e-science communities a large spectrum of computational facilities to exploit the wealth of available massive data sets and powerful machine learning and statistical algorithms will be also introduced.
Prediction: The Modern-Day Sport-Science and Sports-Medicine "Quest for the Holy Grail".
McCall, Alan; Fanchini, Maurizio; Coutts, Aaron J
2017-05-01
In high-performance sport, science and medicine practitioners employ a variety of physical and psychological tests, training and match monitoring, and injury-screening tools for a variety of reasons, mainly to predict performance, identify talented individuals, and flag when an injury will occur. The ability to "predict" outcomes such as performance, talent, or injury is arguably sport science and medicine's modern-day equivalent of the "Quest for the Holy Grail." The purpose of this invited commentary is to highlight the common misinterpretation of studies investigating association to those actually analyzing prediction and to provide practitioners with simple recommendations to quickly distinguish between methods pertaining to association and those of prediction.
A Webcast of Bird Nesting as a State-of-the-Art Citizen Science.
Zárybnická, Markéta; Sklenicka, Petr; Tryjanowski, Piotr
2017-01-01
The quality of people's knowledge of nature has always had a significant influence on their approach to wildlife and nature conservation. However, direct interactions of people with nature are greatly limited nowadays, especially because of urbanization and modern lifestyles. As a result, our isolation from the natural world has been growing. Here, we present an example of a state-of-the-art Citizen Science project with its educational, scientific, and popularizing benefits. We conclude that modern media and new forms of education offer an effective opportunity for inspiring children and others to have fun learning to act like scientists. This approach provides broad opportunities for developing the hitherto neglected educational potential of Citizen Science.
[Cardiology was born with the modern medical science].
de Micheli, Alfredo
2015-01-01
Modern medical science was born in the post-Renaissance age and began to consolidate towards the middle of the XVII century thanks to physicists, physiologists and biologists, most of whom were direct or indirect pupils of Galileo. The discovery of blood circulation by Harvey is now considered the only progress in physiology at the beginning of the XVII century, comparable to the current advances seen in physical sciences. The history of this exploit could be written from view point of the progressive advance in knowledge. In his experiments, Harvey referred to the authentic not imaginary experiments, and put forward irrefutable quantitative arguments. We can therefore claim that his discovery of blood circulation was the first proper explanation of an organic process and the starting point leading to experimental physiology. So it seems justified to assert that modern medical science did not all rise suddenly, but was gradually structured starting from the middle of the XVII century following the path traced by William Harvey in light of Galileo's thought. Copyright © 2014 Instituto Nacional de Cardiología Ignacio Chávez. Published by Masson Doyma México S.A. All rights reserved.
NASA Astrophysics Data System (ADS)
Mosher, Mark Robert
1992-01-01
By examining the works of the Argentine writer, Jorge Luis Borges, and the parallels it has with modern physics, literature and science converge in their quest for truth regarding the structure and meaning of the universe. The classical perception of physics as a "hard" science--that of quantitative, rational thought which was established during the Newtonian era--has been replaced by the "new physics," which integrates the so-called "soft" elements into its paradigm. It presents us with a universe based not exclusively on a series of particle-like interactions, or a "billiard-ball" hypothesis where discrete objects have a measurable position and velocity in absolute space and time, but rather on a combination of these mechanistic properties and those that make up the non-physical side of nature such as intuition, consciousness, and emotion. According to physicists like James Jeans science has been "humanized" to the extent that the universe as a "great machine" has been converted into a "great thought.". In nearly all his collections of essays and short stories, Borges complements the new physics by producing a literature that can be described as "scientized." The abstract, metaphysical implications and concerns of the new world-view, such as space, time, language, consciousness, free will, determinism, etc., appear repeatedly throughout Borges' texts, and are treated in terms that are remarkably similar to those expressed in the scientific texts whose authors include Albert Einstein, Niels Bohr, Werner Heisenberg, and Erwin Schrodinger. As a final comparison, Borges and post-modern physicists address the question of the individual's ability to ever comprehend the universe. They share an attitude of incredulity toward all models and theories of reality simply because they are based on partial information, and therefore seen only as conjectures.
Globalization of Science Education: Comment and a Commentary
ERIC Educational Resources Information Center
Fensham, Peter J.
2011-01-01
The globalized nature of modern society has generated a number of pressures that impact internationally on countries' policies and practices of science education. Among these pressures are key issues of health and environment confronting global science, global economic control through multi-national capitalism, comparative and competitive…
Promising Teacher Practices: Students' Views about Their Science Learning
ERIC Educational Resources Information Center
Moeed, Azra; Easterbrook, Matthew
2016-01-01
Internationally, conceptual and procedural understanding, understanding the Nature of Science, and scientific literacy are considered worthy goals of school science education in modern times. The empirical study presented here reports on promising teacher practices that in the students' views afford learning opportunities and support their science…
Contributions of Basic Sciences to Science of Education. Studies in Educational Administration.
ERIC Educational Resources Information Center
Lall, Bernard M.
The science of education has been influenced by the basic sciences to the extent that educational research now has been able to modernize its approach by accepting and using the basic scientific methodology and experimental techniques. Using primarily the same steps of scientific investigations, education today holds a place of much greater esteem…
ERIC Educational Resources Information Center
Neumann, Dieter
2002-01-01
Interprets Edward Spranger's "Forms of Life" against the background of the findings of modern biology. Shows how far Spranger's diagnosis of different human types, which are not affected by external influences on characteristics, conform with research hypotheses of modern biological sciences. (CAJ)
Facilities available for biomedical science research in the public universities in Lagos, Nigeria.
John, T A
2010-03-01
Across the world, basic medical scientists and physician scientists work on common platforms in state-of-the-arts laboratories doing translational research that occasionally results in bedside application. Biotechnology industries capitalise on useful findings for colossal profit.1 In Nigeria and the rest of Africa, biomedical science has not thrived and the contribution of publications to global high impact journals is low.2 This work investigated facilities available for modern biomedical research in Lagos public universities to extract culprit factors. The two public universities in Lagos, Nigeria were investigated by a cross sectional questionnaire survey of the technical staff manning biomedical science departments. They were asked about availability of 47 modern biomedical science research laboratory components such as cold room and microscopes and six research administration components such as director of research and grants administration. For convenient basic laboratory components such as autoclaves and balances, 50% responses indicated "well maintained and always functional" whereas for less convenient complex, high maintenance, state-of-the-arts equipment 19% responses indicated "well maintained and always functional." Respondents indicated that components of modern biomedical science research administration were 44% of expectation. The survey reveal a deficit in state-of the-arts research equipment and also a deficit in high maintenance, expensive equipment indicating that biomedical science in the investigated environment lacks the momentum of global trends and also lacks buoyant funding. In addition, administration supporting biomedical science is below expectation and may also account for the low contributions of research articles to global high impact journals.
The wage of fame: how non-epistemic motives have enabled the phenomenal success of modern science.
Franck, Georg
2015-01-01
This paper ventures an economic view of modern science. It points out how science works as a closed economy of attention where researchers invest their own attention in order to get the attention of fellow researchers. Attention thus enters economy in two properties: (1) as a scarce resource energising scientific production and (2) as a means of gratification rewarding the effort of the working scientist. Economising on attention as a scarce resource is another expression of thought economy. The income of expert attention is what gives rise to reputation, renown, prominence and eventually fame. By its being conceived as a closed economy of attention, science shows to be capable of self-organising a tendency towards overall efficiency and thus towards collective rationality. © 2014 S. Karger AG, Basel.
The future(s) of open science.
Mirowski, Philip
2018-04-01
Almost everyone is enthusiastic that 'open science' is the wave of the future. Yet when one looks seriously at the flaws in modern science that the movement proposes to remedy, the prospect for improvement in at least four areas are unimpressive. This suggests that the agenda is effectively to re-engineer science along the lines of platform capitalism, under the misleading banner of opening up science to the masses.
Laser Remote Sensing of Pollution on Water Surfaces
NASA Technical Reports Server (NTRS)
Bunkin, A. F.; Surovegin, Aleksander L.
1992-01-01
One of the most important problems of modern environmental science is the detection and identification of various impurities in the ocean. Sources of impurities in sea water are diverse. The most common of them are accidental transport, agricultural, and oil industry spills. Once the ecological balance is disturbed, biological processes in sea water become affected, resulting in changes in chlorophyll concentrations, water turbidity, and temperature. During the last few years, we have created new types of lidars and arranged nearly ten aircraft and shipboard expeditions. Some aircraft expeditions dealt with terrestrial investigations. Others were devoted to oceanological research, the results of which are discussed here. Emphasis is on the detection of phytoplankton chlorophyll and hydrocarbon in sea water.
NASA Astrophysics Data System (ADS)
Bazzul, Jesse; Carter, Lyn
2017-06-01
This article is a response to Anna Danielsonn, Maria Berge, and Malena Lidar's paper, "Knowledge and power in the technology classroom: a framework for studying teachers and students in action", and an appeal to science educators of all epistemological orientations to (re)consider the work of Michel Foucault for research in science education. Although this essay does not come close to outlining the importance of Foucault's work for science education, it does present a lesser-known side of Foucault as an anti-polemical, realist, modern philosopher interested in the way objective knowledge is entangled with governance in modernity. This latter point is important for science educators, as it is the intersection of objective knowledge and institutional imperatives that characterizes the field(s) of science education. Considering the lack of engagement with philosophy and social theory in science education, this paper offers one of many possible readings of Foucault (we as authors have also published different readings of Foucault) in order to engage crucial questions related to truth, power, governance, discourse, ethics and education.
GIS Toolsets for Planetary Geomorphology and Landing-Site Analysis
NASA Astrophysics Data System (ADS)
Nass, Andrea; van Gasselt, Stephan
2015-04-01
Modern Geographic Information Systems (GIS) allow expert and lay users alike to load and position geographic data and perform simple to highly complex surface analyses. For many applications dedicated and ready-to-use GIS tools are available in standard software systems while other applications require the modular combination of available basic tools to answer more specific questions. This also applies to analyses in modern planetary geomorphology where many of such (basic) tools can be used to build complex analysis tools, e.g. in image- and terrain model analysis. Apart from the simple application of sets of different tools, many complex tasks require a more sophisticated design for storing and accessing data using databases (e.g. ArcHydro for hydrological data analysis). In planetary sciences, complex database-driven models are often required to efficiently analyse potential landings sites or store rover data, but also geologic mapping data can be efficiently stored and accessed using database models rather than stand-alone shapefiles. For landings-site analyses, relief and surface roughness estimates are two common concepts that are of particular interest and for both, a number of different definitions co-exist. We here present an advanced toolset for the analysis of image and terrain-model data with an emphasis on extraction of landing site characteristics using established criteria. We provide working examples and particularly focus on the concepts of terrain roughness as it is interpreted in geomorphology and engineering studies.
Making Early Modern Medicine: Reproducing Swedish Bitters.
Ahnfelt, Nils-Otto; Fors, Hjalmar
2016-05-01
Historians of science and medicine have rarely applied themselves to reproducing the experiments and practices of medicine and pharmacy. This paper delineates our efforts to reproduce "Swedish Bitters," an early modern composite medicine in wide European use from the 1730s to the present. In its original formulation, it was made from seven medicinal simples: aloe, rhubarb, saffron, myrrh, gentian, zedoary and agarikon. These were mixed in alcohol together with some theriac, a composite medicine of classical origin. The paper delineates the compositional history of Swedish Bitters and the medical rationale underlying its composition. It also describes how we go about to reproduce the medicine in a laboratory using early modern pharmaceutical methods, and analyse it using contemporary methods of pharmaceutical chemistry. Our aim is twofold: first, to show how reproducing medicines may provide a path towards a deeper understanding of the role of sensual and practical knowledge in the wider context of early modern medical culture; and second, how it may yield interesting results from the point of view of contemporary pharmaceutical science.
[Trueness of modern natural science (1): the scientific revolution and the problem of philosophy].
Maeda, Y
2001-12-01
How can one characterize modern Europe? This problem is essentially related to the meaning of modern natural science, which was developed during the scientific revolution. Then how did viewpoints change during this revolution? The answer to this question also determined the basic character of modern philosophy. Through the examination of Aristotle's geocentric theory and kinematics, I have come to believe that the defect of Aristotle's was that he concluded that a visible sense image is an actual reflection of the reality as it is. From this point of view, the traditional theory of truth called "correspondence theory" is found to be an insufficient one. Therefore, in this paper I will show that the methodological and philosophical question "How do we see reality among phenomena?" is a very important one. This question is the one Plato struggled with, and also the one which guided Kant. It may be said that this can be seen as a group for a new metaphysics as a basic theory of reality.
[Archaic stereotypies and modern approaches for understanding of ageing].
Grigoryeva, I A; Kelasev, V N
2017-01-01
In the article we discussed the processes of awareness of the place of elderly people in modern society, elaboration of adequate relation to global aging and elderly themselves are still going in social sciences. These processes are expressed in a clash of archaic stereotypes and new approaches which changed social and age structure requires. Not only elderly people are providers of archaic stereotypes, but scientific institutions and practices as well. Reorientation of science, media and social policy towards study and realization of «postponed aging» opportunities is needed.
The Phobos Atlas and Geo-portal: geodesy and cartography approach for planetary exploration
NASA Astrophysics Data System (ADS)
Karachevtseva, Irina; Kozlova, Natalia; Kokhanov, Alexander; Oberst, Jürgen; Zubarev, Anatoliy; Nadezhdina, Irina; Patraty, Vyacheslav; Konopikhin, Anatoliy; Garov, Andrey
New Phobos mapping. Methods of image processing and modern GIS technologies provide the opportunity for high quality planetary mapping. The new Phobos DTM and global orthomosaic have been used for developing a geodatabase (Karachevtseva et al., 2012) which provides data for various surface spatial analyses: statistics of crater density, as well as studies of gravity field, geomorphology, and photometry. As mapping is the best way to visualize results of research based on spatial context we created the Phobos atlas. The new Phobos atlas includes: control points network which were calculated during photogrammetry processing of SRC images (Zubarev et al., 2012) and fundamental body parameters as a reference basis for Phobos research as well as GIS analyses of surface objects and geomorphologic studies. According to the structure of the atlas we used various scales and projections based on different coordinate system, including three-axial ellipsoid which parameters (a=13.24 km, b=11.49 km, c=9.48 km) derived from new Phobos shape model (Nadezhdina and Zubarev, 2014). The new Phobos atlas includes about 30 thematic original maps that illustrate the surface of the small body based on Mars Express data (Oberst et al., 2008) and illustrates results of various studies of Phobos:, geomorphology parameters of craters (Basilevsky et al., 2014), morphometry studies (Koknanov et al., 2012), statistics of crater size-frequency distributions based on multi-fractal approach (Uchaev Dm. et al., 2012). Phobos Geo-portal. The spatial data products which used for preparing maps for the Phobos atlas are available at the planetary data storage with access via Geo-portal (http://cartsrv.mexlab.ru/geoportal/), based on modern spatial and web-based technologies (Karachevtseva et al., 2013). Now we are developing Geodesy and Cartography node which can integrate various types of information not only for Phobos data, but other planets and their satellites, and it can be used for geo-spatial support of future missions to celestial bodies. Our technological solutions are open-source, which makes it possible to increase the functionality of the system, for example, using 3D-modeling. Phobos Geo-portal provides access to results of calculation of the gravity field parameters (Uchaev Dm. et al., 2013); catalog of craters and calculations of surface roughness (Karachevtseva et al., 2012); surface compositional studies based on HRSC color-channel data (Patsyn et al., 2012). Acknowledgments: The Phobos study was supported by RBRF under grant for “Geodesy, cartography and research satellites Phobos and Deimos” (Helmholtz-Russia Joint Research Group), grant agreement No. 11-05-91323. References: Basilevsky A.T., Lorenz C.A., Shingareva T.V., Head J.W., Ramsley K.R., Zubarev A.E. Surface Geology and Geomorphology of Phobos, 2014, Elsevier, Planetary and Space Science, in press. Karachevtseva I. P., Shingareva K. B., Konopikhin A. A., Mukabenova B. V., Nadezhdina I. E., Zubarev A. E., 2012. GIS mapping of Phobos on the results of data processing of remote sensing satellite Mars Express, Modern problems of remote sensing of the Earth from Space. Space Research Institute, Moscow, 304-311 (in Russian). Karachevtseva I.P., Oberst J., Zubarev A.E., Nadezhdina I.E., Kokhanov A.A., Garov A. S. Uchaev D.V., Uchaev Dm.V., Malinnikov V.A., Klimkin N.D. 2014, The Phobos information system. Elsevier, Planetary and Space Science. http://dx.doi.org/10.1016/j.pss.2013.12.015 Kokhanov A.A., Basilevsky A.T., Karachevtseva I.P., Nadezhdina I.E., Zubarev A.E. Depth/Diameter Ratio and Inner Walls Steepness of Large Phobos Craters. The 44th Lunar and Planetary Science Conference, The Woodlands, Texas, USA, March 18-22, 2013. Abstracts [#2289]. Nadezhdina I.E., Zubarev A.E. Create reference coordinate network as a basis for studying the physical parameters of Phobos. 2014, Solar System Research, Moscow, Nauka, in press. Oberst J., Schwarz, G., Behnke, T., Hoffmann, H., Matz, K.-D., Flohrer, J., Hirsch, H., Roatsch, T., Scholten, F., Hauber, E., Brinkmann, B., Jaumann, R., Williams, D., Kirk, R., Duxbury, T., Leu, C., Neukum, G., 2008. The imaging performance of the SRC on Mars Express. Planet. Space Sci. 56, 473-491. Patsyn V.S, Malinnikov V.A., Grechishev A.V. Research of spectrometric characteristics of the surface of Phobos on the HRSC data from the Mars Express spacecraft // Modern problems of remote the earth sensing from space, Space Research Institute, Moscow, 2012, V. 9, No. 4, pp. 312-318. (in Russian). Uchaev, Dm.V., Malinnikov, V.A., Oberst, J., 2012. Multifractal approach to crater distribution modelling according to their diameters. Izv. Vyssh. Uchevn. Zaved., Geod. Aerofotos"emka 6, 3-8. (in Russian). Uchaev, Dm.V., Uchaev, D. V., Prutov, I., 2013. Multiscale representation of gravitational fields of small celestial bodies. Izv. Vyssh. Uchevn. Zaved., Geod. Aerofotos"emka 4, 3-8. (In Russian). Zubarev, A. E., Nadezhdina, I.E., Konopikhin, A. A., 2012. Problems of processing of remote sensing data for modeling shapes of small bodies in the Solar system, Modern problems of remote sensing of the Earth from Space. Space Research Institute, Moscow, 277-285 (in Russian).
The triumph of politics over wilderness science
Craig W. Allin
2000-01-01
The National Wilderness Preservation System reflects the triumph of politics over science. The history of wilderness allocation has reflected political rather than scientific sensibilities. The preeminence of politics over science extends to wilderness management as well and is illustrated here by representative examples from the modern history of Yellowstone National...
ERIC Educational Resources Information Center
Morgenthau, Hans J.
In this tenth book of a series entitled "Perspectives in Humanism," analyses are included concerning the meaning of science for modern man and its effects on contemporary politics. Natural, social, and humanistic sciences are discussed in connection with religion, philosophy, and politics to indicate the importance of the scholar who fulfills the…
Agriculture and Biology Teaching. Science and Technology Education Document Series 11.
ERIC Educational Resources Information Center
Rao, A. N.; Pritchard, Alan J.
The six-chapter document is part of Unesco's Science and Technology Education Programme to encourage an international exchange of ideas and information on science and technology education. Chapters discuss: (1) development of agriculture (beginning and modern); (2) agroecosystems (land utilization, soils, food production, irrigation, and…
Igniting the Sparkle: An Indigenous Science Education Model.
ERIC Educational Resources Information Center
Cajete, Gregory A.
This book describes a culturally responsive science curriculum that the author has been teaching for 25 years. The curriculum integrates Native American traditional values, teaching principles, and concepts of nature with those of modern Western science. Every Indigenous culture has an orientation to learning that is metaphorically represented in…
CONASTA Brings Teachers a Kaleidoscope of Science
ERIC Educational Resources Information Center
Teaching Science, 2015
2015-01-01
From star systems to social systems, CONASTA 64 connects teachers to researchers and scientists working on the cutting edge of modern science. We asked two CONASTA 64 Keynote speakers, Steven Tingay and Ian Walker to share their passion for their work and their dedication for giving back to the science community.
Feyerabend on Science and Education
ERIC Educational Resources Information Center
Kidd, Ian James
2013-01-01
This article offers a sympathetic interpretation of Paul Feyerabend's remarks on science and education. I present a formative episode in the development of his educational ideas--the "Berkeley experience"--and describe how it affected his views on the place of science within modern education. It emerges that Feyerabend arrived at a…
ERIC Educational Resources Information Center
Dade County Public Schools, Miami, FL.
This instructional package contains two biological units developed for the Dade County Florida Quinmester Program. "Introduction to Life Sciences" develops student understandings of cell structure and function, and compares different levels of cellular organization. "Cell Biology" investigates the origin of modern cellular…
Future Trends in the Kinesiology Sciences
ERIC Educational Resources Information Center
Knudson, Duane
2016-01-01
Kinesiology emerged from its preventative medicine and education roots to establish itself as a recognized field of inquiry with numerous sub-disciplines. This article presents four trends in modern science that will likely influence the future of kinesiology sciences. Will recent increases in greater scientific specialization be overcome by the…
Birth of the science of immunology.
Schmalstieg, Frank C; Goldman, Armond S
2010-05-01
The science of immunology emerged in the last of the 19th and the first of the 20th century. Substantial progress in physics, chemistry and microbiology was essential for its development. Indeed, microorganisms became one of the principal investigative tools of the major founders of that science - Louis Pasteur, Robert Koch, Ilya Ilich Metchnikoff, Paul Ehrlich and Jules Bordet. It is pertinent that these pioneering scientists were born when questioning and exploration were encouraged because of the legacies of the previous century of enlightenment. Mentors greatly aided their development. Their discoveries were shaped by their individual personalities. In turn they developed other contributors to the nascent field. Their discoveries included the types of leukocytes, the roles of neutrophils in inflammation and defence, cellular lysis due to complement, the principles of humoral and cellular immunology, passive and active immunization, tissue antigens, anaphylaxis, anaphylactoid reactions and autoimmunity. Their work formed the basis of modern immunology that developed many decades later. Immunology has enormously impacted our understanding of the pathogenesis, diagnosis and treatment of infections, immune-mediated disorders and inflammation. Burgeoning advances forecast further important clinical applications of immunology. Yet, their applications will be problematic because few physicians sufficiently understand the science. We propose that understanding modern immunology requires a grasp of how that science developed - who made the discoveries, how they were made, their successes and failures, their interactions and debates all reveal the foundation of modern immunology.
Meteorites, the Moon and the History of Geology.
ERIC Educational Resources Information Center
Marvin, Ursula B.
1986-01-01
Traces the historical events that linked geology with the planetary sciences. Reviews the origins of meteorities as a modern science and highlights the advances made in this area. Discusses lunar related theories and research. (ML)
ERIC Educational Resources Information Center
Fox, Jeffrey L.
1986-01-01
Discusses various topics and issues related to the scientific enterprise in Cuba. Notes that Cuban science is emphasizing biotechnology and research on the island's chief crop (sugarcane), although hampered by limited personnel and lack of modern laboratory equipment. (JN)
neoPASCAL: A Cubesat-based approach to validate Mars GCMs using a network of landed sensors
NASA Astrophysics Data System (ADS)
Moores, John; Podmore, Hugh; Lee, Regina S. K.; Haberle, Robert
2017-10-01
Beginning in the 1990s, concepts for a network of 15-20 small (12.8 kg) landers to measure surface pressure across Mars were proposed (Merrihew et al., 1996). Such distributed measurements were seen as particularly valuable as they held the promise of validating Mars Global Circulation Models (GCMs), for which the diurnal and seasonal variations in surface pressure may be diagnostically related to atmospheric parameters (Haberle et al., 1996). MicroMET, later renamed PASCAL, was a Discovery contender, however, the total mass required for the 20 landers and a support orbiter presented a challenge compared to the delivered science.In the 20 years since this concept originated, miniaturization of spacecraft systems, sensors and components has made substantial progress. Several small planetary science spacecraft based on the CubeSat design approach will launch in the next few years. Yet, only one meteorological station (REMS) currently operates on the surface of Mars. Meanwhile, the output from atmospheric models have become ever more critical for understanding key Martian geological processes including volatile transport, identifying the extent and persistence of surface brines, understanding the sources and sinks of methane and investigating the past climate of Mars, to name only a few areas.As such, it is time to reconsider the PASCAL concept. We find that modern equipment opens up payload space in the original 12.8 kg entry-vehicles from 23 g to nearly 1 kg, sufficient for adding small imagers, spectrometers and other additional or alternate payloads to examine atmosphere and surface over a wide geographic range of settings. If, instead, we seek the minimum solution for spacecraft mass, we find that a pressure-sensing vehicle would mass < 250 g at entry making these spacecraft appealing secondary payloads for future Mars missions.
Carl Sagan and Joseph Shklovsky: Intelligent Life in the Universe
NASA Astrophysics Data System (ADS)
Kurt, Vladimir
J. S. Shklovsky and Carl Sagan played an outstanding role in modern astronomy. Their names are well known not only to professional astronomers, but also to millions of educated people in many countries, which are interested in modern state of science research. Among these trends of modern science, which are difficult to define, are such problems, as the creation of Solar system, the origin of life on Earth, the evolution of living organisms on Earth from the simplest viruses to Homo Sapiens, the evolution of intelligence and technology. Finally, both outstanding scientists were deeply interested in the problem of SETI (Search Extraterrestrial Intelligence), i.e. search of extraterrestrial civilizations and methods of making contacts with them. And both scientists were high professionals in their fields. Joseph Shklovsky was a theoretical astronomer in all fields of modern astronomy (geophysics and physics of the upper atmosphere of the Earth, Sun and Solar Corona, Interplanetary Medium and Solar Wind, Interstellar Medium, Supernova and their remnants, the Galaxy and galaxies, Quasars and Cosmology). There is hardly a field in modern astrophysics (except perhaps the theory of the interior structure of stars), where Joseph Shklovsky has not l a bright stamp of his talent…
ERIC Educational Resources Information Center
Joint Economic Committee, Washington, DC.
The policies and performance of the post-Mao Chinese government (1976 to the present) in the four modernization areas of industry, agriculture, science and technology, and the military are examined. Realizing that the program to modernize the economy of the People's Republic of China, which was initiated by Mao's successors in 1977, was much too…
ERIC Educational Resources Information Center
Hains, Bryan J.; Hansen, Gary L.; Hustedde, Ronald J.
2017-01-01
It can be argued that agricultural science is one of the original forms of science education. However, over the past century, agricultural science education has habitually been perceived as an educational venue meant solely for production agriculturalists. When examining modern agricultural education we find it to be a minority within the broader…
Science Education and the Emergence of the Specialized Scientist in Nineteenth Century Greece
ERIC Educational Resources Information Center
Tampakis, Konstantinos
2013-01-01
In this paper, I describe the strong and reciprocal relations between the emergence of the specialized expert in the natural sciences and the establishment of science education, in early Modern Greece. Accordingly, I show how science and public education interacted within the Greek state from its inception in the early 1830, to the first decade of…
ERIC Educational Resources Information Center
Albion, Peter R.; Spence, Karen G.
2013-01-01
The teaching of science is important, both to meet the need for future workers in fields requiring scientific capability and to equip students for full participation in modern societies where many decisions depend upon knowledge of science. However, many teachers in Australian primary schools do not allocate science education sufficient amounts of…
2012 Global Summit on Regulatory Science (GSRS-2012)--modernizing toxicology.
Miller, Margaret A; Tong, Weida; Fan, Xiaohui; Slikker, William
2013-01-01
Regulatory science encompasses the tools, models, techniques, and studies needed to assess and evaluate product safety, efficacy, quality, and performance. Several recent publications have emphasized the role of regulatory science in improving global health, supporting economic development and fostering innovation. As for other scientific disciplines, research in regulatory science is the critical element underpinning the development and advancement of regulatory science as a modern scientific discipline. As a regulatory agency in the 21st century, the Food and Drug Administration (FDA) has an international component that underpins its domestic mission; foods, drugs, and devices are developed and imported to the United States from across the world. The Global Summit on Regulatory Science, an international conference for discussing innovative technologies, approaches, and partnerships that enhance the translation of basic science into regulatory applications, is providing leadership for the advancement of regulatory sciences within the global context. Held annually, this international conference provides a platform where regulators, policy makers, and bench scientists from various countries can exchange views on how to develop, apply, and implement innovative methodologies into regulatory assessments in their respective countries, as well as developing a harmonized strategy to improve global public health through global collaboration.
Bernard, H. Russell
2012-01-01
A recent poll showed that most people think of science as technology and engineering—life-saving drugs, computers, space exploration, and so on. This was, in fact, the promise of the founders of modern science in the 17th century. It is less commonly understood that social and behavioral sciences have also produced technologies and engineering that dominate our everyday lives. These include polling, marketing, management, insurance, and public health programs. PMID:23213222
Promoting astronomy in developing countries: A historical perspective
NASA Astrophysics Data System (ADS)
Kochhar, Rk
2006-08-01
Any international effort to promote astronomy world wide today must necessarily take into account its cultural and historical component. The past few decades have ushered in an age, which we may call the Age of Cultural Copernicanism. In analogy with the cosmological principle that the universe has no preferred location or direction, Cultural Copernicanism would imply that no cultural or geographical area, or ethnic or social group, can be deemed to constitute a superior entity or a benchmark for judging or evaluating others. In this framework, astronomy (as well as science in general) is perceived as a multi-stage civilizational cumulus where each stage builds on the knowledge gained in the previous stages and in turn leads to the next. This framework however is a recent development. The 19th century historiography consciously projected modern science as a characteristic product of the Western civilization decoupled from and superior to its antecedents, with the implication that all material and ideological benefits arising from modern science were reserved for the West. As a reaction to this, the orientalized East has often tended to view modern science as "their" science, distance itself from its intellectual aspects, and seek to defend, protect and reinvent "our" science and the alleged (anti-science) Eastern mode of thought. This defensive mindset works against the propagation of modern astronomy in most of the non-Western countries. There is thus need to construct a history of world astronomy that is truly universal and unselfconscious. Similarly , the planetarium programs , for use the world over, should be culturally sensitive. IAU can help produce cultural-specific modules. Equipped with this paradigmatic background, we can now address the question of actual means to be adopted for the task at hand. Astronomical activity requires a certain minimum level of industrial activity support. Long-term maintenance of astronomical equipment is not a trivial task. There are any number of examples of an expensive facility falling victim to AIDS: Astronomical Instrument Deficiency Syndrome. The facilities planned in different parts of the world should be commensurate with the absorbing power of the acceptor rather than the level of the gifter.
Defense Systems Modernization and Sustainment Initiative
2008-07-21
surface coatings, including metals and plastics , and coating application processes were developed for repairing bearing surfaces. The Modernization through...technologies and applications utilized by the NC3R team. " : eea -cy c le en- ne Oglsti t trei eci d ’leet ~h SSt re*,0 an tnding ecsio Uiprrts ren.c" O e
Major Challenges for the Modern Chemistry in Particular and Science in General.
Uskokovíc, Vuk
2010-11-01
In the past few hundred years, science has exerted an enormous influence on the way the world appears to human observers. Despite phenomenal accomplishments of science, science nowadays faces numerous challenges that threaten its continued success. As scientific inventions become embedded within human societies, the challenges are further multiplied. In this critical review, some of the critical challenges for the field of modern chemistry are discussed, including: (a) interlinking theoretical knowledge and experimental approaches; (b) implementing the principles of sustainability at the roots of the chemical design; (c) defining science from a philosophical perspective that acknowledges both pragmatic and realistic aspects thereof; (d) instigating interdisciplinary research; (e) learning to recognize and appreciate the aesthetic aspects of scientific knowledge and methodology, and promote truly inspiring education in chemistry. In the conclusion, I recapitulate that the evolution of human knowledge inherently depends upon our ability to adopt creative problem-solving attitudes, and that challenges will always be present within the scope of scientific interests.
Achterberg, Peter; de Koster, Willem; van der Waal, Jeroen
2017-08-01
Following up on suggestions that attitudes toward science are multi-dimensional, we analyze nationally representative survey data collected in the United States in 2014 ( N = 2006), and demonstrate the existence of a science confidence gap: some people place great trust in scientific methods and principles, but simultaneously distrust scientific institutions. This science confidence gap is strongly associated with level of education: it is larger among the less educated than among the more educated. We investigate explanations for these educational differences. Whereas hypotheses deduced from reflexive-modernization theory do not pass the test, those derived from theorizing on the role of anomie are corroborated. The less educated are more anomic (they have more modernity-induced cultural discontents), which not only underlies their distrust in scientific institutions, but also fuels their trust in scientific methods and principles. This explains why this science confidence gap is most pronounced among the less educated.
Major Challenges for the Modern Chemistry in Particular and Science in General
Uskokovíc, Vuk
2013-01-01
In the past few hundred years, science has exerted an enormous influence on the way the world appears to human observers. Despite phenomenal accomplishments of science, science nowadays faces numerous challenges that threaten its continued success. As scientific inventions become embedded within human societies, the challenges are further multiplied. In this critical review, some of the critical challenges for the field of modern chemistry are discussed, including: (a) interlinking theoretical knowledge and experimental approaches; (b) implementing the principles of sustainability at the roots of the chemical design; (c) defining science from a philosophical perspective that acknowledges both pragmatic and realistic aspects thereof; (d) instigating interdisciplinary research; (e) learning to recognize and appreciate the aesthetic aspects of scientific knowledge and methodology, and promote truly inspiring education in chemistry. In the conclusion, I recapitulate that the evolution of human knowledge inherently depends upon our ability to adopt creative problem-solving attitudes, and that challenges will always be present within the scope of scientific interests. PMID:24465151
Modernizing Natural History: Berkeley's Museum of Vertebrate Zoology in Transition.
Sunderland, Mary E
2013-01-01
Throughout the twentieth century calls to modernize natural history motivated a range of responses. It was unclear how research in natural history museums would participate in the significant technological and conceptual changes that were occurring in the life sciences. By the 1960s, the Museum of Vertebrate Zoology at the University of California, Berkeley, was among the few university-based natural history museums that were able to maintain their specimen collections and support active research. The MVZ therefore provides a window to the modernization of natural history. This paper concentrates on the directorial transitions that occurred at the MVZ between 1965 and 1971. During this period, the MVZ had four directors: Alden H. Miller (Director 1940-1965), an ornithologist; Aldo Starker Leopold (Acting Director 1965-1966), a conservationist and wildlife biologist; Oliver P. Pearson (Director 1966-1971), a physiologist and mammalogist; and David B. Wake (Director 1971-1998), a morphologist, developmental biologist, and herpetologist. The paper explores how a diversity of overlapping modernization strategies, including hiring new faculty, building infrastructure to study live animals, establishing new kinds of collections, and building modern laboratories combined to maintain collections at the MVZ's core. The paper examines the tensions between the different modernization strategies to inform an analysis of how and why some changes were institutionalized while others were short-lived. By exploring the modernization of collections-based research, this paper emphasizes the importance of collections in the transformation of the life sciences.
Thought Experiments in Physics Education: A Simple and Practical Example.
ERIC Educational Resources Information Center
Lattery, Mark J.
2001-01-01
Uses a Galilean thought experiment to enhance learning in a college-level physical science course. Presents both modern and historical perspectives of Galileo's work. As a final project, students explored Galileo's thought experiment in the laboratory using modern detectors with satisfying results. (Contains 25 references.) (Author/ASK)
Heavenly Conflicts: The Bible and Astronomy.
ERIC Educational Resources Information Center
Avalos, Hector
1998-01-01
The relationship between the Bible and modern astronomy has been complicated and often turbulent. Many scientists would argue that for modern astronomy to be born, biblical cosmology had to die. Article includes a history of the church/science relationship, a primer in biblical cosmologies, and a discussion of some philosophical problems behind…
Disciplining and popularizing: evolution and its publics from the modern synthesis to the present.
Smocovitis, Vassiliki Betty
2014-03-01
This paper serves as an introduction to a special collection of papers exploring the centrifugal and centripetal forces in the process of disciplining and popularizing the science of evolution in the period preceding and after the modern synthesis of evolution. Published by Elsevier Ltd.
Collaborative Thinking: The Challenge of the Modern University
ERIC Educational Resources Information Center
Corrigan, Kevin
2012-01-01
More collaborative work in the humanities could be instrumental in helping to break down the traditional rigid boundaries between academic divisions and disciplines in modern universities. The value of the traditional model of the solitary humanities scholar or the collaborative science paradigm should not be discounted. However, increasing the…
ERIC Educational Resources Information Center
Warner, Julian
2000-01-01
Presents an abstract for a planned session on historical perspectives on encyclopedism, from 17th century initiatives to modern thought. Presentations include: "Concepts of Encyclopedia and the Organisation and Retrieval of Knowledge: Historical Perspectives" (W. Boyd Rayward); "Encyclopedism at the End of Modernity" (Mikel…
Dorothy L. Sayers and C. S. Lewis: Christian Postmodernism beyond Boundaries
ERIC Educational Resources Information Center
Yuasa, Kyoko
2012-01-01
Modern critics do not consider science fiction and mystery novels to be "serious reading", but Dorothy L. Sayers and C. S. Lewis questioned the boundaries between "popular" and "serious" literature. Both Christian writers critically discuss the spiritual crisis of the modern world in each fiction genre. This paper…
Hippocrates' complaint and the scientific ethos in early modern England.
Yeo, Richard
2018-04-01
Among the elements of the modern scientific ethos, as identified by R.K. Merton and others, is the commitment of individual effort to a long-term inquiry that may not bring substantial results in a lifetime. The challenge this presents was encapsulated in the aphorism of the ancient Greek physician, Hippocrates of Kos: vita brevis, ars longa (life is short, art is long). This article explores how this complaint was answered in the early modern period by Francis Bacon's call for the inauguration of the sciences over several generations, thereby imagining a succession of lives added together over time. However, Bacon also explored another response to Hippocrates: the devotion of a 'whole life', whether brief or long, to science. The endorsement of long-term inquiry in combination with intensive lifetime involvement was embraced by some leading Fellows of the Royal Society, such as Robert Boyle and Robert Hooke. The problem for individuals, however, was to find satisfaction in science despite concerns, in some fields, that current observations and experiments would not yield material able to be extended by future investigations.
Mirkin, B M; Naumova, L G
2015-01-01
L.G. Ramensky (1884-1953) was an outstanding Soviet geobotanist of the first part of XX century. Considered is his theoretical legacy and its contribution to modern vegetation science. L.G. Ramensky formulated the principle of vegetation continuum based on which the modern paradigm of vegetation science has been put into shape. The scientist made a contribution to the development of such important theoretical conceptions as types of plant strategy, coenosis and coenobiosis (coexistence of species), patterns of interannual variability in plant communities, ecological successions. The unique ecological scales were established by L.G. Ramensky that characterize the distribution of 1400 species over the gradients of soil moistening, richness, and salinization as well as moistening variability, pastoral digression, and alluvial intensity. He came out against mechanistic notions by V.N. Sukachev on a biogeocoenosis structure. The scientist did not offer his own method of plant communities classification but his well-reasoned criticism of dominant classification played a great role in adoption of floristical classification principles (Braun-Blanquet approach) by phytocenology in our country.
PaleoGeo: a Web based GIS database for paleoenvironmental studies
NASA Astrophysics Data System (ADS)
Song, Wonsuh; Kondo, Yasuhisa; Oguchi, Takashi
2014-05-01
Paleoenvironmental studies cover various fields such as paleohydrology, geomorphology, paleooceanology, paleobiology, paleoclimatology, and chronology. It is difficult for an individual researcher to collect and compile enormous data regarding these fields. We have been compiling portal data and presenting them using a web-based geographical information system (Web-GIS) called PaleoGeo for the multidisciplinary project 'Replacement of Neanderthals by Modern Humans'. The aim of the project is to reconstruct the distribution of Neanderthals and modern humans in time and space in relation to past climate change. We have been collecting information from almost three thousand articles of 13 journals regarding paleoenvironmental research (i.e., Boreas, Catena, Climatic Change, Earth Surface Processes and Landforms, Geomorphology, Journal of Quaternary Science, Palaeogeography, Palaeoclimatology, and Palaeoecology, Quaternary International, Quaternary Research, Quaternary Science Reviews, The Holocene, and The Journal of Geology). The topics of the articles were classified into six themes (paleohydrology, earth surface processes and materials, paleooceanology, paleobiology, palaeoclimatology, and chronology) and 19 subthemes (hydrology, flood, fluvial, glacier, fluvial/glacier, sedimentology, soil, slope process, periglacial, peat land, eolian, sea-level, biology, vegetation, zoology, vegetation/zoology, archaeology, climate, atmosphere, and chronology). The collected data consist of the journal name, information about each paper (authors, title, volume, year, and page numbers), site location (country name, longitude, and latitude), theme, subtheme, keywords, DOI (Digital Object Identifier), and period (era). Location data are indispensable for paleoenvironmental studies. The PaleoGeo shows information with a map, which is an advantage of this database system. However, the number of the paleoenvironmental studies is growing rapidly and we have to effectively cover them as many as possible. We plan to simplify the input data (latitude, longitude, title and DOI only) to include more publications. So far information about >7500 sites has been collected and the number is increasing. The collected data are accessible via the internet (http://neangis.csis.u-tokyo.ac.jp/paleogeo/).
NASA Astrophysics Data System (ADS)
Munyeme, G.
The economic and social impact of science based technologies has become increasingly dominant in modern world The benefits are a result of combined leading-edge science and technology skills which offers opportunities for new innovations Knowledge in basic sciences has become the cornerstone of sustainable economic growth and national prosperity Unfortunately in many developing countries research and education in basic sciences are inadequate to enable science play its full role in national development For this reason most developing countries have not fully benefited from the opportunities provided by modern technologies The lack of human and financial resources is the main reason for slow transfer of scientific knowledge and technologies to developing countries Developing countries therefore need to develop viable research capabilities and knowledge in basic sciences The advert of the International Heliophysical Year IHY may provide opportunities for strengthening capacity in basic science research in developing countries Among the science goals of the IHY is the fostering of international scientific cooperation in the study of heliophysical phenomena This paper will address and provide an in depth discussion on how basic science research can be enhanced in a developing country using the framework of science goals and objectives of IHY It will further highlight the hurdles and experiences of creating in-country training capacity and research capabilities in space science It will be shown that some of these hurdles can be
[The medical theory of Lee Je-ma and its character].
Lee, Kyung-Lock
2005-12-01
Lee Je-ma 1837-1900) was a prominent scholar as well as an Korean physician. classified every people into four distinctive types: greater yang [tai yang] person, lesser yin [shao yin] person, greater yin [tai yin] person, lesser yin [shao yin] person. This theory would dictate proper treatment for each type in accordance with individual differences of physical and temperament features. Using these four types he created The Medical Science of Four Types. This article is intended to look into the connection between Lee Je-Ma's 'The Medical Science of Four Types' and 'The Modern' with organizing his ideas about the human body and the human being. Through The Modern, the theory of human being underwent a complete change. Human being in The Premodern, which was determined by sex, age and social status has been changed to the individual human being, which is featured by equality. Lee Je-Ma's medical theory of The Medical Science of Four Types would be analyzed as follow. His concept of human body is oriented toward observable objectivity. But on the other hand, it still remains transcendent status of medical science, which is subordinated by philosophy. According to Lee Je-Ma's theory of human being, human is an equal individual in a modern way of thinking, not as a part of hierarchical group. But on the other hand, it still remains incomplete from getting rid of morality aspect that includes virtue and vice in the concept of human body. The common factors in Lee Je-Ma's ideas about the human body and the human being is 'Dualism of mind and body that means all kinds of status and results depends on each individual. As is stated above, Lee Je-Ma's medical theory has many aspects of The Modern and it proves that Korean traditional medicine could be modernized by itself.
NASA Astrophysics Data System (ADS)
Greenslade, Thomas B.
2018-05-01
Some of you may remember the 1979 television series "Connections" that was written and narrated by James Burke, a British science writer. Burke's technique was to choose a number of seemingly unrelated ideas and show how they led to developments in science and technology. This is an enjoyable business, even if some of the connections seem to be stretched at times, and led to a book by Burke. In a number of talks that I have given over the years, I have made somewhat less fanciful connections that suggest how the technologies of high vacuum and high voltage led to what used to be called "modern physics." Today we might limit the "modern" era to the years from 1890 to 1920 that gave the first workable theories of small-scale physics.
Teaching Scientists to Communicate: Evidence-Based Assessment for Undergraduate Science Education
ERIC Educational Resources Information Center
Mercer-Mapstone, Lucy; Kuchel, Louise
2015-01-01
Communication skills are one of five nationally recognised learning outcomes for an Australian Bachelor of Science (BSc) degree. Previous evidence indicates that communication skills taught in Australian undergraduate science degrees are not developed sufficiently to meet the requirements of the modern-day workplace--a problem faced in the UK and…
ERIC Educational Resources Information Center
Martin, William C.
The paper examines science fiction literature as a product and part of the social consciousness of the modern capitalist world order. This world order is seen as emphasizing science, technology, movement, growth, urbanization, industrialization, complex organization, and progress. The document is organized into two sections. The first section…
Teaching about the Life and Health of Cells. ERIC Digest.
ERIC Educational Resources Information Center
Haury, David L.
Modern technology in life and health sciences brings a new understanding to the study of cells and as a result, the National Science Education Standards emphasize understanding of science and technology. This ERIC Digest describes the central role of cell biology (cytology) in understanding these areas and explains conceptual difficulties and…
Space Science Educational Media Resources, A Guide for Junior High School Teachers.
ERIC Educational Resources Information Center
McIntyre, Kenneth M.
This guide, developed by a panel of teacher consultants, is a correlation of educational media resources with the "North Carolina Curricular Bulletin for Eighth Grade Earth and Space Science" and the state adopted textbook, pModern Earth Science." The three major divisions are (1) the Earth in Space (Astronomy), (2) Space…
Science and the Making of the Modern World.
ERIC Educational Resources Information Center
Marks, John
An account of the development of science and the growth of the scientific community is presented in this book. It aims to provide the reader with some of the background knowledge needed to make informed and intelligent contributions to contemporary debates on the interaction between science, technology, and society. Highlighted are the historical…
ERIC Educational Resources Information Center
Boe, Maria Vetleseter; Henriksen, Ellen Karoline; Lyons, Terry; Schreiner, Camilla
2011-01-01
Young people's participation in science, technology, engineering and mathematics (STEM) is a matter of international concern. Studies and careers that require physical sciences and advanced mathematics are most affected by the problem and women in particular are under-represented in many STEM fields. This article views international research about…
Focus: science, history, and modern India. Introduction.
Phalkey, Jahnavi
2013-06-01
Histories of science in India are revisitations of the colonial question. Science is ideology to be unraveled and exposed--as modernity and progress making or violence and oppression making--depending on where you stand on the interpretive spectrum. It has been seen as ideologically driven practice, as a mode of knowledge production whose history is inseparable from the social and political uses to which it is tethered. In the colonial as well as the postcolonial context, science and technology have been seen as the "ideology of empire," "tools of empire," "tentacles of progress," and "reasons of state." Yet science and technology are practices and bodies of knowledge that inhabitants of the subcontinent have engaged with enthusiasm, that they have used to invent themselves in their global, national, and individual lives. We know remarkably little about the histories of these complex engagements. A departure from current historiographical preoccupations is called for to map and explain the lives, institutions, practices, and stories of science on the subcontinent as they connect with, and where they break away from, the world at large.
Charlton, Bruce G
2009-03-01
why are so many leading modern scientists so dull and lacking in scientific ambition? because the science selection process ruthlessly weeds-out interesting and imaginative people. At each level in education, training and career progression there is a tendency to exclude smart and creative people by preferring Conscientious and Agreeable people. The progressive lengthening of scientific training and the reduced independence of career scientists have tended to deter vocational 'revolutionary' scientists in favour of industrious and socially adept individuals better suited to incremental 'normal' science. High general intelligence (IQ) is required for revolutionary science. But educational attainment depends on a combination of intelligence and the personality trait of Conscientiousness; and these attributes do not correlate closely. Therefore elite scientific institutions seeking potential revolutionary scientists need to use IQ tests as well as examination results to pick-out high IQ 'under-achievers'. As well as high IQ, revolutionary science requires high creativity. Creativity is probably associated with moderately high levels of Eysenck's personality trait of 'Psychoticism'. Psychoticism combines qualities such as selfishness, independence from group norms, impulsivity and sensation-seeking; with a style of cognition that involves fluent, associative and rapid production of many ideas. But modern science selects for high Conscientiousness and high Agreeableness; therefore it enforces low Psychoticism and low creativity. Yet my counter-proposal to select elite revolutionary scientists on the basis of high IQ and moderately high Psychoticism may sound like a recipe for disaster, since resembles a formula for choosing gifted charlatans and confidence tricksters. A further vital ingredient is therefore necessary: devotion to the transcendental value of Truth. Elite revolutionary science should therefore be a place that welcomes brilliant, impulsive, inspired, antisocial oddballs - so long as they are also dedicated truth-seekers.
The modern Chinese family in light of economic and legal history.
Huang, Philip C C
2011-01-01
Most social science theory and the currently powerful Chinese ideology of modernizationism assume that, with modern development, family-based peasant farm production will disappear, to be replaced by individuated industrial workers and the three-generation family by the nuclear family. The actual record of China’s economic history, however, shows the powerful persistence of the small family farm, as well as of the three-generation family down to this day, even as China’s GDP becomes the second largest in the world. China’s legal system, similarly, encompasses a vast informal sphere, in which familial principles operate more than individualist ones. And, in between the informal-familial and the formal-individualist, there is an enormous intermediate sphere in which the two tendencies are engaged in a continual tug of war. The economic behavior of the Chinese family unit reveals great contrasts with what is assumed by conventional economics. It has a different attitude toward labor from that of both the individual worker and the capitalist firm. It also has a different structural composition, and a different attitude toward investment, children’s education, and marriage. Proper attention to how Chinese modernity differs socially, economically, and legally from the modern West points to the need for a different kind of social science; it also lends social–economic substance to claims for a modern Chinese culture different from the modern West’s.
ERIC Educational Resources Information Center
Faruqi, Yasmeen Mahnaz
2007-01-01
This paper discusses the basic tenets of Islam and the Islamic view of nature that were influential in the development of science in the so-called "Golden Age of Islam". These findings have been the catalyst for present day Muslim scholars, who have emphasized the importance of Islamic science, as the means of understanding Western…
So you want to be a science writer
Fleischman, John; Szalinski, Christina
2014-01-01
The Internet destroyed the ecology of traditional science journalism, drying up ad revenues and pushing “old school” mass media toward extinction. But the new technology opened a wider landscape for digital science writers, online “content curators,” and scientists to chronicle the wonders and worries of modern science. For those thinking of a career in science writing, here is a flash history, a quick overview, some advice, and a few cautions. PMID:24970484
Walters, Lisa
2010-01-01
This article explores Margaret Cavendish's depictions of alchemy, witchcraft and fairy lore in her scientific treatise Philosophical Letters and in fictional texts from Natures Pictures and Poems and Fancies. Though Cavendish was a dedicated materialist, she appropriates theories of magic from early modern science and folklore into her materialist epistemology. As Cavendish draws upon a fusion of early modern conceptions of magic, she creates a radical theory of matter which not only challenges patriarchy and binary oppositions, but also explores the plurality and mystery that can exist within an infinitely complex material world.
Changes in the ''Urania - Postepy Astronomii'' astronomical magazine
NASA Astrophysics Data System (ADS)
Czart, Krzysztof; Mikołajewski, Maciej
2014-12-01
''Urania - Postepy Astronomii'' is one of the oldest popular science magazines about astronomy in the world. During 2012-2013 it undergone revolutionary changes into a modern magazine suitable for 21st century market of popular science press, at the same time maintaining a high level of popularization. The main changes included: diversity of content, full colour for all pages, changing website into modern internet portal, using social media, ambitious project of a digital archive of all issues from 1922 to 2011, web store to provide easier access for everyone, and projects aimed at schools and school libraries.
Moments in the Modern History of the Language Sciences.
ERIC Educational Resources Information Center
Swales, John M.
1999-01-01
Discusses the beginning of the ascendancy of the language sciences in the past 50 years to become the "queen" of social studies. Focuses on contributions by Mikhail Bakhtin, Ludwig Wittgenstein, Noam Chomsky, Erving Goffman, and Michael Halliday. (SC)
stability Science & Innovation Collaboration Careers Community Environment Science & Innovation . Provide a safe, secure, and effective stockpile Protect against the nuclear threat Counter emerging excellence STRATEGY We will create a modern workplace that is environmentally responsible, safe, and secure
NASA Astrophysics Data System (ADS)
2018-01-01
The large amount of data generated by modern space missions calls for a change of organization of data distribution and access procedures. Although long term archives exist for telescopic and space-borne observations, high-level functions need to be developed on top of these repositories to make Planetary Science and Heliophysics data more accessible and to favor interoperability. Results of simulations and reference laboratory data also need to be integrated to support and interpret the observations. Interoperable software and interfaces have recently been developed in many scientific domains. The Virtual Observatory (VO) interoperable standards developed for Astronomy by the International Virtual Observatory Alliance (IVOA) can be adapted to Planetary Sciences, as demonstrated by the VESPA (Virtual European Solar and Planetary Access) team within the Europlanet-H2020-RI project. Other communities have developed their own standards: GIS (Geographic Information System) for Earth and planetary surfaces tools, SPASE (Space Physics Archive Search and Extract) for space plasma, PDS4 (NASA Planetary Data System, version 4) and IPDA (International Planetary Data Alliance) for planetary mission archives, etc, and an effort to make them interoperable altogether is starting, including automated workflows to process related data from different sources.
Gnotobiology in modern medicine
NASA Technical Reports Server (NTRS)
Podoprigora, G. I.
1980-01-01
A review is given of currently accepted theories and applications of gnotobiology. A brief history of gnotobiology is supplied. Problems involved in creating germ-free gnotobiota and the use of these animals in experimental biology are cited. Examples of how gnotobiology is used in modern medical practice illustrate the future prospects for this area of science.
Post-Modern Software Development
NASA Technical Reports Server (NTRS)
Filman, Robert E.
2005-01-01
The history of software development includes elements of art, science, engineering, and fashion(though very little manufacturing). In all domains, old ideas give way or evolve to new ones: in the fine arts, the baroque gave way to rococo, romanticism, modernism, postmodernism, and so forth. What is the postmodern programming equivalent? That is, what comes after object orientation?
Teacher's Guide to SERAPHIM Software III. Modern Chemistry.
ERIC Educational Resources Information Center
Bogner, Donna J.
Designed to assist chemistry teachers in selecting appropriate software programs, this publication is the third in a series of six teacher's guides from Project SERAPHIM, a program sponsored by the National Science Foundation. This guide is keyed to the chapters of the text "Modern Chemistry." Program suggestions are arranged in the same…
Teacher's Guide to SERAPHIM Software IV Chemistry: A Modern Course.
ERIC Educational Resources Information Center
Bogner, Donna J.
Designed to assist chemistry teachers in selecting appropriate software programs, this publication is the fourth in a series of six teacher's guides from Project SERAPHIM, a program sponsored by the National Science Foundation. This guide is keyed to the chapters of the text "Chemistry: A Modern Course." Program suggestions are arranged…
ERIC Educational Resources Information Center
Shieh, Chich-Jen; Yu, Lean
2016-01-01
In the information explosion era with constant changes of information, educators have promoted various effective learning strategies for students adapting to the complex modern society. The impact and influence of traditional teaching method have information technology integrated modern instruction and science concept learning play an important…
Eighth Graders Explore Form and Function of Modern and Fossil Organisms
ERIC Educational Resources Information Center
Teske, Jolene K.; Pittman, Phoebe J. Z.
2016-01-01
Arts integration into science has been shown to motivate students and promote long-term retention of content. To add to the literature addressing arts integration, an experiment was conducted with middle school students studying the anatomical similarities and differences between modern and fossil marine invertebrates and different types of extant…
Unsayable Somethings: Modern American Poetry, Language, and the Logic of Experience
ERIC Educational Resources Information Center
McWhorter, Ellen
2009-01-01
By exploring the categorical similarities between popular models of science, political economy, psychology, and sexuality, this dissertation addresses modern U.S. poetry's obsession with conjuring the unsayable. Chapters 1 and 2 explore the social and conceptual landscape that came to align the sayable with the cognitive and credible, while…
Mathematical Biology Modules Based on Modern Molecular Biology and Modern Discrete Mathematics
ERIC Educational Resources Information Center
Robeva, Raina; Davies, Robin; Hodge, Terrell; Enyedi, Alexander
2010-01-01
We describe an ongoing collaborative curriculum materials development project between Sweet Briar College and Western Michigan University, with support from the National Science Foundation. We present a collection of modules under development that can be used in existing mathematics and biology courses, and we address a critical national need to…
The Story of Nanomaterials in Modern Technology: An Advanced Course for Chemistry Teachers
ERIC Educational Resources Information Center
Blonder, Ron
2011-01-01
Nanoscience is an important new field in modern science. It deals with the ability to create materials, devices, and systems having fundamentally new properties and functions by working at the atomic, molecular, and macromolecular levels. Many teachers in the educational system have relatively limited knowledge related to nanochemistry and…
Commodification of Ghana's Volta River: An Example of Ellul's Autonomy of Technique
ERIC Educational Resources Information Center
Agbemabiese, Lawrence; Byrne, John
2005-01-01
Jacques Ellul argued that modernity's nearly exclusive reliance on science and technology to design society would threaten human freedom. Of particular concern for Ellul was the prospect of the technical milieu overwhelming culture. The commodification of the Volta River in order to modernize Ghana illustrates the Ellulian dilemma of the autonomy…
A Fruitful Exchange/Conflict: Engineers and Mathematicians in Early Modern Italy
ERIC Educational Resources Information Center
Maffioli, Cesare S.
2013-01-01
Exchanges of learning and controversies between engineers and mathematicians were important factors in the development of early modern science. This theme is discussed by focusing, first, on architectural and mathematical dynamism in mid 16th-century Milan. While some engineers-architects referred to Euclid and Vitruvius for improving their…
ERIC Educational Resources Information Center
Morgan, Robert P.; Eastwood, Lester F., Jr.
Research on this National Science Foundation grant to study the application of modern communications technology to educational networking was divided into three parts: assessment of the role of technology in non-traditional post-secondary education; assessment of communications technologies and educational services of current or potential future…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lara-Castells, María Pilar de, E-mail: Pilar.deLara.Castells@csic.es; Mitrushchenkov, Alexander O.; Stoll, Hermann
2015-09-14
A combined density functional (DFT) and incremental post-Hartree-Fock (post-HF) approach, proven earlier to calculate He-surface potential energy surfaces [de Lara-Castells et al., J. Chem. Phys. 141, 151102 (2014)], is applied to describe the van der Waals dominated Ag{sub 2}/graphene interaction. It extends the dispersionless density functional theory developed by Pernal et al. [Phys. Rev. Lett. 103, 263201 (2009)] by including periodic boundary conditions while the dispersion is parametrized via the method of increments [H. Stoll, J. Chem. Phys. 97, 8449 (1992)]. Starting with the elementary cluster unit of the target surface (benzene), continuing through the realistic cluster model (coronene), andmore » ending with the periodic model of the extended system, modern ab initio methodologies for intermolecular interactions as well as state-of-the-art van der Waals-corrected density functional-based approaches are put together both to assess the accuracy of the composite scheme and to better characterize the Ag{sub 2}/graphene interaction. The present work illustrates how the combination of DFT and post-HF perspectives may be efficient to design simple and reliable ab initio-based schemes in extended systems for surface science applications.« less
Surface changes of poly-L-lactic acid due to annealing
NASA Astrophysics Data System (ADS)
Juřík, P.; Michaljaničová, I.; Slepička, P.; Kolskáa, Z.; Švorčík, V.
2017-11-01
Surface modifications are very important part of both current cutting-edge research and modern manufacturing. Our research is focused on poly-L-lactic acid, which is biocompatible and biodegradable polymer that offers applications in modern medicine. We observed morphological changes of the surface of metalized samples due to annealing and studied effect of modifications on total surface area and pore surface and volume. We observed that annealing of non-metalized samples had most pronounced effect up to the 70°C, after which all observed parameters dropped significantly. Metallization has changed behaviour of the samples significantly and resulted in generally lower surface area and porosity when compared to non-metalized samples.
The Modern Era of Research in Biosphere Atmosphere Interactions
NASA Astrophysics Data System (ADS)
Fung, I. Y.; Sellers, P. J.; Randall, D. A.; Tucker, C. J.; Field, C. B.; Berry, J. A.; Ustin, S.
2015-12-01
Dr. Diane Wickland, the Program Scientist for NASA's EOS InterDisciplinary Science (IDS), encouraged and nurtured the growth of the field of global ecology and eco-climatology. This talk reviews the developments in, and integration of, theory, satellite and field observations that enabled the global modeling of biosphere-atmosphere interactions. Emphasis will be placed on the advances made during the EOS era in global datasets and global coupled carbon-climate models. The advances include functional classifications of the land surface using the NDVI, a global terrestrial carbon-energy-water model, and the greening of the CSU GCM. An equally important achievement of the EOS-IDS program is a new generation of multi-disciplinary scientists who are now leaders in the field.
NASA Astrophysics Data System (ADS)
Starikov, A. I.; Nekrasov, R. Yu; Teploukhov, O. J.; Soloviev, I. V.; Narikov, K. A.
2016-10-01
Manufactures, machinery and equipment improve of constructively as science advances and technology, and requirements are improving of quality and longevity. That is, the requirements for surface quality and precision manufacturing, oil and gas equipment parts are constantly increasing. Production of oil and gas engineering products on modern machine tools with computer numerical control - is a complex synthesis of technical and electrical equipment parts, as well as the processing procedure. Technical machine part wears during operation and in the electrical part are accumulated mathematical errors. Thus, the above-mentioned disadvantages of any of the following parts of metalworking equipment affect the manufacturing process of products in general, and as a result lead to the flaw.
ERIC Educational Resources Information Center
Rimoldi, Horacio J. A.
The document, written in Spanish, discusses the relationship between research in the social sciences and the role of the university in social science education. The author considers the education of researchers, the application of research, the need for interdisciplinary research methods, and problems involved in cross-cultural studies. He states…
Coast Guard Polar Icebreaker Modernization: Background, Issues, and Options for Congress
2011-04-14
entirely in some other part of the federal budget, such as the Department of Defense (DOD) budget, the National Science Foundation (NSF) budget, or...4 One National Science Foundation Ship............................................................................5 Summary...Alaska. Operations to support National Science Foundation (NSF) research activities in the Arctic and Antarctic has accounted in the past for a
ERIC Educational Resources Information Center
Dogru, Mustafa
2008-01-01
Helping students to improve their problems solving skills is the primary target of science teacher trainees. In modern science, for training the students, methods should be used for improving their thinking skills, making connections with events and concepts and scientific operations skills rather than information and definition giving. One of…
That Is Not Where that Element Goes ... Ah, the Nature of Science
ERIC Educational Resources Information Center
Nargund, Vanashri; Rogers, Meredith A. Park
2009-01-01
Learning how the periodic table has developed over time can provide an important foundation for students' future science learning, as they begin to explore the explanatory power of other models in science. In this activity, students are given the opportunity to investigate the generation of the modern periodic table, through a process of creating…
NASA Astrophysics Data System (ADS)
Martínez, G. M.; Newman, C. N.; De Vicente-Retortillo, A.; Fischer, E.; Renno, N. O.; Richardson, M. I.; Fairén, A. G.; Genzer, M.; Guzewich, S. D.; Haberle, R. M.; Harri, A.-M.; Kemppinen, O.; Lemmon, M. T.; Smith, M. D.; de la Torre-Juárez, M.; Vasavada, A. R.
2017-10-01
We analyze the complete set of in-situ meteorological data obtained from the Viking landers in the 1970s to today's Curiosity rover to review our understanding of the modern near-surface climate of Mars, with focus on the dust, CO2 and H2O cycles and their impact on the radiative and thermodynamic conditions near the surface. In particular, we provide values of the highest confidence possible for atmospheric opacity, atmospheric pressure, near-surface air temperature, ground temperature, near-surface wind speed and direction, and near-surface air relative humidity and water vapor content. Then, we study the diurnal, seasonal and interannual variability of these quantities over a span of more than twenty Martian years. Finally, we propose measurements to improve our understanding of the Martian dust and H2O cycles, and discuss the potential for liquid water formation under Mars' present day conditions and its implications for future Mars missions. Understanding the modern Martian climate is important to determine if Mars could have the conditions to support life and to prepare for future human exploration.
Cracraft, Joel; Houde, Peter; Ho, Simon Y W; Mindell, David P; Fjeldså, Jon; Lindow, Bent; Edwards, Scott V; Rahbek, Carsten; Mirarab, Siavash; Warnow, Tandy; Gilbert, M Thomas P; Zhang, Guojie; Braun, Edward L; Jarvis, Erich D
2015-09-25
Mitchell et al. argue that divergence-time estimates for our avian phylogeny were too young because of an "inappropriate" maximum age constraint for the most recent common ancestor of modern birds and that, as a result, most modern bird orders diverged before the Cretaceous-Paleogene mass extinction event 66 million years ago instead of after. However, their interpretations of the fossil record and timetrees are incorrect. Copyright © 2015, American Association for the Advancement of Science.
Veronesi, Umberto; Martinón-Torres, Marcos
2018-06-18
Glass distillation equipment from an early modern alchemical laboratory was analyzed for its technology of manufacture and potential origin. Chemical data show that the assemblage can be divided into sodium-rich, colorless distillation vessels made with glass from Venice or its European imitation, and potassium-rich dark-brown non-specialized forms produced within the technological tradition of forest glass typical for central and north-western Europe. These results complete our understanding of the supply of technical apparatus at one of the best-preserved alchemical laboratories and highlight an early awareness of the need for high-quality instruments to guarantee the successful outcome of specialized chemical operations. This study demonstrates the potential of archaeological science to inform historical research around the practice of early chemistry and the development of modern science. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
For the greater credibility: Jesuit science and education in modern Portugal (1858-1910).
Malta Romeiras, Francisco
2018-03-01
Upon the restoration of the Society of Jesus in Portugal in 1858, the Jesuits founded two important colleges that made significant efforts in the promotion of hands-on experimental teaching of the natural sciences. At the Colégio de Campolide (Lisbon, 1858-1910) and the Colégio de São Fiel (Louriçal do Campo, 1863-1910) the Jesuits created modern chemistry and physics laboratories, organized significant botanical, zoological and geological collections, promoted scientific expeditions with their students to observe eclipses and to collect novel species of animals and plants, and engaged in original research work in physics, botany, and zoology. The successful implementation of modern scientific practices gained these colleges public recognition as the most prominent secondary institutions in nineteenth-century Portugal, and this made a major contribution to countering the widespread and commonly accepted anti-Jesuit accusations of obscurantism and scientific backwardness.
Models of science-policy interaction: exploring approaches to Bisphenol A management in the EU.
Udovyk, O
2014-07-01
This study investigated science-policy interaction models and their limitations under conditions of uncertainty. In detail, it looked at the management of the suspected endocrine-disrupting chemical Bisphenol A (BPA). Despite growing evidence that BPA is hazardous to human and environmental health, the level of scientific uncertainty is still high and, as a result, there is significant disagreement on the actual extent and type of risk. Analysis of decision-making processes at different regulatory levels (EU, Sweden, and the Swedish municipality of Gothenburg) exposed chemicals risk management and associated science-policy interaction under uncertainty. The results of the study show that chemicals management and associated science-policy interaction follow the modern model of science-policy interaction, where science is assumed to 'speak truth to policy' and highlights existing limitations of this model under conditions of uncertainty. The study not only explores alternative models (precautionary, consensus, science-policy demarcation. and extended participation) but also shows their limitations. The study concludes that all models come with their particular underlying assumptions, strengths, and limitations. At the same time, by exposing serious limitations of the modern model, the study calls for a rethinking of the relationship between science, policy, and management. Copyright © 2014 Elsevier B.V. All rights reserved.
Discover the Cosmos - Bringing Cutting Edge Science to Schools across Europe
NASA Astrophysics Data System (ADS)
Doran, Rosa
2015-03-01
The fast growing number of science data repositories is opening enormous possibilities to scientists all over the world. The emergence of citizen science projects is engaging in science discovery a large number of citizens globally. Astronomical research is now a possibility to anyone having a computer and some form of data access. This opens a very interesting and strategic possibility to engage large audiences in the making and understanding of science. On another perspective it would be only natural to imagine that soon enough data mining will be an active part of the academic path of university or even secondary schools students. The possibility is very exciting but the road not very promising. Even in the most developed nations, where all schools are equipped with modern ICT facilities the use of such possibilities is still a very rare episode. The Galileo Teacher Training Program GTTP, a legacy of IYA2009, is participating in some of the most emblematic projects funded by the European Commission and targeting modern tools, resources and methodologies for science teaching. One of this projects is Discover the Cosmos which is aiming to target this issue by empowering educators with the necessary skills to embark on this innovative path: teaching science while doing science.
Modernity, postmodernity and disability in developing countries.
Lysack, C
1997-06-01
This paper examines the implications of two theoretical perspectives, modernity and postmodernity, for provision of community-based disability services in developing countries. The author argues that modernity's embrace of the 'wonders' of science and technology have significantly affected our understanding of what community is. Modernity, in fact, leads us to view communities in one of two major ways: as inferior, or as ideal. Both views are deeply flawed. Postmodernity's profound scepticism of truth claims and authority provides a useful critique of community conceived in modern terms. The critique is helpful to the extent that it reveals the power of language in constructing our ideas of community. It also highlights a new way of thinking about participation, individualism and choice in community disability initiatives.
NASA Technical Reports Server (NTRS)
Schutz, Bob E.
1993-01-01
Satellite Laser Ranging (SLR) has a rich history of development which began in the 1960s with 10 meter-level first generation systems. These systems evolved with order of magnitude improvements to the systems that now produce several millimeter single shot range precisions. What began, in part, as an interesting application of the new laser technology has become an essential component of modern, precision space geodesy, which in turn enables contributions to a variety of science areas. Modern space geodesy is the beneficiary of technological developments which have enabled precision geodetic measurements. Aside from SLR and its closely related technique, Lunar Laser Ranging (LLR), Very Long Baseline Interferometry (VLBI) has made prominent science contributions also. In recent years, the Global Positioning System (GPS) has demonstrated a rapidly growing popularity as the result of demonstrated low cost with high precision instrumentation. Other modern techniques such as DORIS have demonstrated the ability to make significant science contributions; furthermore, PRARE can be expected to contribute in its own right. An appropriate question is 'why should several techniques be financially supported'? While there are several answers, I offer the opinion that, in consideration of the broad science areas that are the benefactors of space geodesy, no single technique can meet all the requirements and/or expectations of the science areas in which space geodesy contributes or has the potential for contributing. The more well-known science areas include plate tectonics, earthquake processes, Earth rotation/orientation, gravity (static and temporal), ocean circulation, land, and ice topography, to name a few applications. It is unfortunate that the modern space geodesy techniques are often viewed as competitive, but this view is usually encouraged by funding competition, especially in an era of growing needs but diminishing budgets. The techniques are, for the most part, complementary and the ability to reduce the data to geodetic parameters from several techniques promotes confidence in the geophysical interpretations. In the following sections, the current SLR applications are reviewed in the context of the other techniques. The strengths and limitations of SLR are reviewed and speculation about the future prospects are offered.
Orientational imaging of a single plasmonic nanoparticle using dark-field hyperspectral imaging
NASA Astrophysics Data System (ADS)
Mehta, Nishir; Mahigir, Amirreza; Veronis, Georgios; Gartia, Manas Ranjan
2017-08-01
Orientation of plasmonic nanostructures is an important feature in many nanoscale applications such as catalyst, biosensors DNA interactions, protein detections, hotspot of surface enhanced Raman spectroscopy (SERS), and fluorescence resonant energy transfer (FRET) experiments. However, due to diffraction limit, it is challenging to obtain the exact orientation of the nanostructure using standard optical microscope. Hyperspectral Imaging Microscopy is a state-of-the-art visualization technology that combines modern optics with hyperspectral imaging and computer system to provide the identification and quantitative spectral analysis of nano- and microscale structures. In this work, initially we use transmitted dark field imaging technique to locate single nanoparticle on a glass substrate. Then we employ hyperspectral imaging technique at the same spot to investigate orientation of single nanoparticle. No special tagging or staining of nanoparticle has been done, as more likely required in traditional microscopy techniques. Different orientations have been identified by carefully understanding and calibrating shift in spectral response from each different orientations of similar sized nanoparticles. Wavelengths recorded are between 300 nm to 900 nm. The orientations measured by hyperspectral microscopy was validated using finite difference time domain (FDTD) electrodynamics calculations and scanning electron microscopy (SEM) analysis. The combination of high resolution nanometer-scale imaging techniques and the modern numerical modeling capacities thus enables a meaningful advance in our knowledge of manipulating and fabricating shaped nanostructures. This work will advance our understanding of the behavior of small nanoparticle clusters useful for sensing, nanomedicine, and surface sciences.
The new classic data acquisition system for NPOI
NASA Astrophysics Data System (ADS)
Sun, B.; Jorgensen, A. M.; Landavazo, M.; Hutter, D. J.; van Belle, G. T.; Mozurkewich, David; Armstrong, J. T.; Schmitt, H. R.; Baines, E. K.; Restaino, S. R.
2014-07-01
The New Classic data acquisition system is an important portion of a new project of stellar surface imaging with the NPOI, funded by the National Science Foundation, and enables the data acquisition necessary for the project. The NPOI can simultaneously deliver beams from 6 telescopes to the beam combining facility, and in the Classic beam combiner these are combined 4 at a time on 3 separate spectrographs with all 15 possible baselines observed. The Classic data acquisition system is limited to 16 of 32 wavelength channels on two spectrographs and limited to 30 s integrations followed by a pause to ush data. Classic also has some limitations in its fringe-tracking capability. These factors, and the fact that Classic incorporates 1990s technology which cannot be easily replaced are motivation for upgrading the data acquisition system. The New Classic data acquisition system is based around modern electronics, including a high-end Stratix FPGA, a 200 MB/s Direct Memory Access card, and a fast modern Linux computer. These allow for continuous recording of all 96 channels across three spectrographs, increasing the total amount of data recorded by a an estimated order of magnitude. The additional computing power on the data acquisition system also allows for the implementation of more sophisticated fringe-tracking algorithms which are needed for the Stellar Surface Imaging project. In this paper we describe the New Classic system design and implementation, describe the background and motivation for the system as well as show some initial results from using it.
[Perspective and application of metabonomics in modern study of traditional Chinese medicine].
Qin, Kun-Ming; Wang, Bin; Chen, Lin-Wei; Zhang, Mao-Sen; Yang, Guang-Ming; Shu, Ya-Chun; Cai, Bao-Chang
2014-08-01
Metabonomics is a new method to study on the metabolic network and the relationship between body and environment, which conforms to the way of traditional Chinese medicine (TCM) research. In the study process of modernization of traditional Chinese medicine, effectively conjunction with metabonomics method will facilitate the integration of TCM with modern biological science and technology, and promote the modernization of TCM. This paper introduce the application of metabonomics in the research of toxicity mechanism of TCM, compatibility mechanism of TCM formula, pharmacology effect of TCM and processing mechanism of TCM. This paper summarize the problems in the TCM metabonomics research and prospect its bright future.
Chemical surface alteration of biodegradable magnesium exposed to corrosion media.
Willumeit, Regine; Fischer, Janine; Feyerabend, Frank; Hort, Norbert; Bismayer, Ulrich; Heidrich, Stefanie; Mihailova, Boriana
2011-06-01
The understanding of corrosion processes of metal implants in the human body is a key problem in modern biomaterial science. Because of the complicated and adjustable in vivo environment, in vitro experiments require the analysis of various physiological corrosion media to elucidate the underlying mechanism of "biological" metal surface modification. In this paper magnesium samples were incubated under cell culture conditions (i.e. including CO(2)) in electrolyte solutions and cell growth media, with and without proteins. Chemical mapping by high-resolution electron-induced X-ray emission spectroscopy and infrared reflection microspectroscopy revealed a complex structure of the formed corrosion layer. The presence of CO(2) in concentrations close to that in blood is significant for the chemistry of the oxidised layer. The presence of proteins leads to a less dense but thicker passivation layer which is still ion and water permeable, as osmolality and weight measurements indicate. Copyright © 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Two-billion-year-old evaporites capture Earth's great oxidation.
Blättler, C L; Claire, M W; Prave, A R; Kirsimäe, K; Higgins, J A; Medvedev, P V; Romashkin, A E; Rychanchik, D V; Zerkle, A L; Paiste, K; Kreitsmann, T; Millar, I L; Hayles, J A; Bao, H; Turchyn, A V; Warke, M R; Lepland, A
2018-04-20
Major changes in atmospheric and ocean chemistry occurred in the Paleoproterozoic era (2.5 to 1.6 billion years ago). Increasing oxidation dramatically changed Earth's surface, but few quantitative constraints exist on this important transition. This study describes the sedimentology, mineralogy, and geochemistry of a 2-billion-year-old, ~800-meter-thick evaporite succession from the Onega Basin in Russian Karelia. The deposit consists of a basal unit dominated by halite (~100 meters) followed by units dominated by anhydrite-magnesite (~500 meters) and dolomite-magnesite (~200 meters). The evaporite minerals robustly constrain marine sulfate concentrations to at least 10 millimoles per kilogram of water, representing an oxidant reservoir equivalent to more than 20% of the modern ocean-atmosphere oxidizing capacity. These results show that substantial amounts of surface oxidant accumulated during this critical transition in Earth's oxygenation. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yi, Cheol-Woo W.; Kwak, Ja Hun; Peden, Charles H.F.
2007-09-21
Modern surface science techniques have been commonly applied to understand issues arising from practical catalytic systems.[1-4] However, the applicability of most of the results obtained from model systems has been limited, due, primarily, to the vastly different conditions studies on model and practical systems are carried out (catalyst composition, reaction conditions etc.).[5, 6] Therefore, the need to conduct experiments on compositionally similar systems (model and practical) is necessary to obtain valuable information on the workings of real catalysts. In this communication we demonstrate the utility of surface science studies on model catalysts in understanding the properties of high surface area,more » BaO-based NO x storage-reduction (NSR) catalysts.[7] We present evidence for the facile formation of surface barium aluminate-like species even at very low coverages of BaO. This Ba-aluminate layer, however, can react with NO 2 resulting in the formation of a bulk-like Ba(NO 3) 2 phase. In order to construct model catalysts that are representative of the practical NO x storage systems, we first needed to estimate the BaO covareges on the high surface area catalysts. Since the publication of the work by Fanson et al.[8], BaO loadings of 8 – 10 wt.% on a γ-alumina support (200 m 2/g) have been regarded as corresponding to one monolayer (ML) coverage, based on the unit cell size of bulk BaO. The coverage equivalent of one ML, however, was significantly underestimated. Assuming complete spreading of the BaO layer and using a Ba–O distance of ~ 2.77 Å (one unit of BaO occupies 1.53 × 10 -19 m 2), 10 wt.% loading of BaO would cover only about 1/3 of the alumina surface. Table 1 shows our calculated estimates of two-dimensional BaO coverages as a function of loading on a -Al 2O 3 surface (200 m 2/g) based on the lattice parameters of bulk BaO[9] (5.54 Å). Based on these values, for our model system studies we prepared BaO/Al 2O 3/NiAl(110) materials in which the BaO coverages were very close to those of 4, 8, and 20 wt.% BaO/γ-Al 2O 3 high surface area catalysts used in prior studies.« less
USGS Training in Afghanistan: Modern Earthquake Hazards Assessments
NASA Astrophysics Data System (ADS)
Medlin, J. D.; Garthwaite, M.; Holzer, T.; McGarr, A.; Bohannon, R.; Bergen, K.; Vincent, T.
2007-05-01
Afghanistan is located in a tectonically active region where ongoing deformation has generated rugged mountainous terrain, and where large earthquakes occur frequently. These earthquakes can present a significant hazard, not only from strong ground shaking, but also from liquefaction and extensive land sliding. The magnitude 6.1 earthquake of March 25, 2002 highlighted the vulnerability of Afghanistan to such hazards, and resulted in over 1000 fatalities. The USGS has provided the first of a series of Earth Science training courses to the Afghan Geological Survey (AGS). This course was concerned with modern earthquake hazard assessments, and is an integral part of a larger USGS effort to provide a comprehensive seismic-hazard assessment for Afghanistan. Funding for these courses is provided by the US Agency for International Development Afghanistan Reconstruction Program. The particular focus of this training course, held December 2-6, 2006 in Kabul, was on providing a background in the seismological and geological methods relevant to preparing for future earthquakes. Topics included identifying active faults, modern tectonic theory, geotechnical measurements of near-surface materials, and strong-motion seismology. With this background, participants may now be expected to educate other members of the community and be actively involved in earthquake hazard assessments themselves. The December, 2006, training course was taught by four lecturers, with all lectures and slides being presented in English and translated into Dari. Copies of the lectures were provided to the students in both hardcopy and digital formats. Class participants included many of the section leaders from within the AGS who have backgrounds in geology, geophysics, and engineering. Two additional training sessions are planned for 2007, the first entitled "Modern Concepts in Geology and Mineral Resource Assessments," and the second entitled "Applied Geophysics for Mineral Resource Assessments."
Data-driven predictions in the science of science.
Clauset, Aaron; Larremore, Daniel B; Sinatra, Roberta
2017-02-03
The desire to predict discoveries-to have some idea, in advance, of what will be discovered, by whom, when, and where-pervades nearly all aspects of modern science, from individual scientists to publishers, from funding agencies to hiring committees. In this Essay, we survey the emerging and interdisciplinary field of the "science of science" and what it teaches us about the predictability of scientific discovery. We then discuss future opportunities for improving predictions derived from the science of science and its potential impact, positive and negative, on the scientific community. Copyright © 2017, American Association for the Advancement of Science.
Variations and asymmetries in regional brain surface in the genus Homo.
Balzeau, Antoine; Holloway, Ralph L; Grimaud-Hervé, Dominique
2012-06-01
Paleoneurology is an important field of research within human evolution studies. Variations in size and shape of an endocast help to differentiate among fossil hominin species whereas endocranial asymmetries are related to behavior and cognitive function. Here we analyse variations of the surface of the frontal, parieto-temporal and occipital lobes among different species of Homo, including 39 fossil hominins, ten fossil anatomically modern Homo sapiens and 100 endocasts of extant modern humans. We also test for the possible asymmetries of these features in a large sample of modern humans and observe individual particularities in the fossil specimens. This study contributes important new information about the brain evolution in the genus Homo. Our results show that the general pattern of surface asymmetry for the different regional brain surfaces in fossil species of Homo does not seem to be different from the pattern described in a large sample of anatomically modern H. sapiens, i.e., the right hemisphere has a larger surface than the left, as do the right frontal, the right parieto-temporal and the left occipital lobes compared with the contra-lateral side. It also appears that Asian Homo erectus specimens are discriminated from all other samples of Homo, including African and Georgian specimens that are also sometimes included in that taxon. The Asian fossils show a significantly smaller relative size of the parietal and temporal lobes. Neandertals and anatomically modern H. sapiens, who share the largest endocranial volume of all hominins, show differences when considering the relative contribution of the frontal, parieto-temporal and occipital lobes. These results illustrate an original variation in the pattern of brain organization in hominins independent of variations in total size. The globularization of the brain and the enlargement of the parietal lobes could be considered derived features observed uniquely in anatomically modern H. sapiens. Copyright © 2012 Elsevier Ltd. All rights reserved.
The Bachelor of Arts: Slipping into the Twilight or Facing a New Dawn?
ERIC Educational Resources Information Center
Gannaway, Deanne
2015-01-01
Undergraduate students have historically engaged with the humanities and social sciences through the Bachelor of Arts (BA) degree programme. Recent experiences suggest that the relevance and the value of the degree to the modern world is now being challenged: populist press questions the value of the humanities to the modern knowledge economy;…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fedorov, M. V., E-mail: fedorov@gmail.com
2016-03-15
Basic premises, approximations, and results of L.V. Keldysh’s 1964 work on multiphoton ionization of atoms are discussed, as well as its influence on the modern science of the interaction of atomic–molecular systems with a strong laser field.
STEM Learning Is Everywhere: Summary of a Convocation on Building Learning Systems
ERIC Educational Resources Information Center
Olson, Steve; Labov, Jay
2014-01-01
Science, technology, engineering, and mathematics (STEM) permeate the modern world. The jobs people do, the foods they eat, the vehicles in which they travel, the information they receive, the medicines they take, and many other facets of modern life are constantly changing as STEM knowledge steadily accumulates. Yet STEM education in the United…
ERIC Educational Resources Information Center
Kovalev, Dmitry A.; Khussainova, Gulzada A.; Balagazova, Svetlana T.; Tamarasar, Zhankul
2016-01-01
This article considers improvement of public morale, raising the emotional and aesthetic culture of young people, their patriotic feelings by providing the musical-pedagogical conditions of training future teachers for the implementation of innovative processes in modern school. The world science would benefit from using the Kazakh musical…
Semantic Meaning of Money in the Perception of Modern Russian Youth
ERIC Educational Resources Information Center
Knyazeva, Tatiana N.; Semenova, Lidiya E.; Chevachina, Anna V.; Batuta, Marina B.; Sidorina, Elena V.
2016-01-01
In connection with socio-economic transformations taking place in our country, which caused changes in the system of values and, as a consequence, in moral-economic relationships and human behavior, the subject of money becomes one of the most significant topics in modern Russian researches in various fields of science. The main method to study…
ERIC Educational Resources Information Center
Gnanakkan, Dionysius Joseph
2017-01-01
This multiple case-study investigated how high school biology teachers used modern learning technologies (probes, interactive simulations and animations, animated videos) in their classrooms and why they used the learning technologies. Another objective of the study was to assess whether the use of learning technologies alleviated misconceptions…
How Galileo and Kepler Countered Aristotle's Cosmological Errors
NASA Astrophysics Data System (ADS)
Gingerich, O.
2009-08-01
Aristotle made two major common sense assumptions that ultimately had to be refuted to open the way to modern science. One was the dichotomy between celestial and terrestrial. The other was the separation of astronomy from physics. Galileo, particularly with his examination of the moon in the Sidereus nuncius, was a pioneer in destroying the first assumption, while Kepler, whose Astronomia nova was subtitled ``based on causes, or celestial physics,'' broke the stranglehold of the second. The importance of these fundamental contributions toward establishing the nature of modern science, which paved the way for Isaac Newton, is often overshadowed by their more specific contributions in optics or mechanics.
Stambler, I S
2015-01-01
The years 2015-2016 mark a double anniversary--the 170th anniversary of birth and the 100th anni- versary of death--of one of the greatest Russian scientists, a person that may be considered a founding figure of modern immunology, aging and longevity science--Elie Metchnikoff (May 15, 1845-July 15, 1916). At this time of the rapid aging of the world population and the rapid development of technologies that may ameliorate degenerative aging processes, Metchnikoff's pioneering contribution to the search for anti-aging and healthspan-extending means needs to be recalled and honored.
NASA Astrophysics Data System (ADS)
Stöhr, Joachim
2011-03-01
My talk will review the development of soft x-ray spectroscopy and microscopy and its impact on our understanding of chemical bonding, magnetism and dynamics at surfaces and interfaces. I will first outline important soft x-ray spectroscopy and microscopy techniques that have been developed over the last 30 years and their key strengths such as elemental and chemical specificity, sensitivity to small atomic concentrations, separation of charge and spin properties, spatial resolution down to the nanometer scale, and temporal resolution down to the intrinsic femtosecond timescale of atomic and electronic motions. I will then present scientific breakthroughs based on soft x-ray studies in three selected areas: the nature of molecular bonding and reactivity on metal surfaces, the molecular origin of liquid crystal alignment on surfaces, and the microscopic origin of interface-mediated spin alignments in modern magnetic devices. My talk will also cover the use of soft x-rays for revealing the temporal evolution of electronic structure, addressing the key problem of ``function,'' down to the intrinsic femtosecond time scale of charge and spin configuration changes. As examples I will present the formation and breaking of chemical bonds in surface complexes and the motion of the magnetization in magnetic devices. Work supported by the Office of Basic Energy Science of the US Department of Energy.
Transforming Science Education for the Anthropocene—Is It Possible?
NASA Astrophysics Data System (ADS)
Gilbert, Jane
2016-04-01
Since its inception, science education has been the focus of a great many reform attempts. In general, the aim has been to improve science understanding and/or make science study more interesting and/or relevant to a wider range of students. However, these reform attempts have had limited success. This paper argues that this is in part because science education as a discipline has some "blind spots", some unacknowledged assumptions that obstruct its development and make it immune to change. While this has long been a problem, the paper argues that, in the new, "postnormal" conditions of the twenty-first century, it is now imperative that we see these blind spots and think differently about what science education is for. School science as we now know it (along with the other school subjects) developed as part of, and in parallel with, modern economies/societies, which in turn depended on the burning of fossil fuels. However, because this period of "carbonised modernity" is now coming to an end, many of the assumptions it was built on must be re-examined. This has (or should have) major implications for science education. Via an exploration of three very different "orientations to the future", the paper aims to provoke discussion of how science education could be reconceptualised to support our transition into the post-carbon, Anthropocene era.
Science for Survival: The Modern Synthesis of Evolution and the Biological Sciences Curriculum Study
ERIC Educational Resources Information Center
Green, Lisa Anne
2012-01-01
In this historical dissertation, I examined the process of curriculum development in the Biological Sciences Curriculum Study (BSCS) in the United States during the period 1959-1963. The presentation of evolution in the high school texts was based on a more robust form of Darwinian evolution which developed during the 1930s and 1940s called…
ERIC Educational Resources Information Center
Paraskevas, Michael; Zarouchas, Thomas; Angelopoulos, Panagiotis; Perikos, Isidoros
2013-01-01
Now days the growing need for highly qualified computer science educators in modern educational environments is commonplace. This study examines the potential use of Greek School Network (GSN) to provide a robust and comprehensive e-training course for computer science educators in order to efficiently exploit advanced IT services and establish a…
Western Science and Local Thai Wisdom: Using Museum Toys to Develop Bi-Gnosis
ERIC Educational Resources Information Center
Kanhadilok, Peeranut; Watts, Mike
2013-01-01
This article focuses on some of the intersections of two worldviews: Western modern science and a Buddhism-based way of life in Thailand. It enters the debate on the place and practice of Indigenous forms of knowledge and the clashes with formal science education curricula. Our goal is "balanced bi-gnosis": the possession of, and…
M-Learning for Qur'an Memorization and Teaching Its Sciences
ERIC Educational Resources Information Center
Sameh, Ahmed
2013-01-01
Providing a Conversional, Animated Qur'an Memorizer on modern smart phones will allow young generation technology savvies to be able to immerse themselves inside Qur'an and its sciences. Using technological means to deal with Qur'an and its sciences is at the focus of attention of the Noor Center in Taibah University. In this project we use the…
ERIC Educational Resources Information Center
Štefaniková, Sona; Prokop, Pavol
2015-01-01
The popularity of science education is decreasing in certain parts of the world and negative attitudes toward science are common in learners from various cultures. Learners' interest in science and the effectiveness of their memory can be enhanced by utilizing modern concepts of an evolutionary-based approach in psychology. Survival-relevant…
ERIC Educational Resources Information Center
Balashova, Yuliya B.
2016-01-01
This research reconstructs the traditions of scientific enlightenment in Russia. The turn of the nineteenth and twentieth centuries was chosen as the most representative period. The modern age saw the establishment of the optimal model for advancing science in the global context and its crucial segment--Russian science. This period was…
ERIC Educational Resources Information Center
Aceska, Natalija
2016-01-01
The process of globalization, more progressive development of the scientific findings, new technology and the way of communicating with the new forms of literacy in which the most secure spot has been taken by the development of natural sciences in the spirit of "sustainable development" have been the reasons that make science and…
ERIC Educational Resources Information Center
Schütte, Kerstin; Köller, Olaf
2015-01-01
Considerable research has focused on how best to satisfy modern societies' needs for skilled labour in the field of science. The present study evaluated an intervention programme designed to increase secondary school students' motivation to pursue a science career. Students from 3 schools of the highest educational track participated for up to 2…
From Stories to Scientific Models and Back: Narrative Framing in Modern Macroscopic Physics
ERIC Educational Resources Information Center
Fuchs, Hans U.
2015-01-01
Narrative in science learning has become an important field of inquiry. Most applications of narrative are extrinsic to science--such as when they are used for creating affect and context. Where they are intrinsic, they are often limited to special cases and uses. To extend the reach of narrative in science, a hypothesis of narrative framing of…
ERIC Educational Resources Information Center
Peterman, Karen; Pan, Yi; Robertson, Jane; Lee, Shelley Glenn
2014-01-01
Biotechnology constitutes one of the most challenging, cutting-edge, and rapidly growing fields in science today. Both the practical implications and the hands-on nature of this "modern science" make the topic of biotechnology an attractive addition to the high school science curriculum. The current study is the first of its kind to…
ERIC Educational Resources Information Center
Freeman, Robert R., Ed.; And Others
This collection of 22 papers from the Conference on Information in the Language Sciences held in Warrenton, Va., in 1966, sponsored by the Center for Applied Linguistics, stresses three themes: general trends, information needs of the languages sciences, and system design. Discussions attempt to formulate modern rational approaches to the complex…
Physics and Modern Warfare: The Awkward Silence.
ERIC Educational Resources Information Center
Woollett, E. L.
1980-01-01
Discusses the great dependence of the present arms race on a healthy physics enterprise and the pervasive connections between pure and applied science and military needs. This discussion is intended to orient college students about some problems directly related to progress made in science. (HM)
How the Alchemy Makes Inquiry, Evidence, and Exclusion.
ERIC Educational Resources Information Center
Popkewitz, Thomas S.
2002-01-01
Modern teaching and teacher education "magically" transform sciences, social sciences, and humanities. The alchemy of school subjects provides a way to think about frames of reference organizing inquiry and constitutes evidence in teacher education, also obscuring the normalizing and dividing practices of teaching (including…
Institutes on Ancient and Modern Studies.
ERIC Educational Resources Information Center
Heidelberg Coll., Tiffin, OH.
Readings and ten weeks of discussions at institutes about current societal malaise, problems of growth, implications of growth for freedom and justice, and the "good" society are summarized. College, university, and secondary-school participants represented the humanities, social sciences, and sciences. Focusing on current problems, institute…
The second modern condition? Compressed modernity as internalized reflexive cosmopolitization.
Kyung-Sup, Chang
2010-09-01
Compressed modernity is a civilizational condition in which economic, political, social and/or cultural changes occur in an extremely condensed manner in respect to both time and space, and in which the dynamic coexistence of mutually disparate historical and social elements leads to the construction and reconstruction of a highly complex and fluid social system. During what Beck considers the second modern stage of humanity, every society reflexively internalizes cosmopolitanized risks. Societies (or their civilizational conditions) are thereby being internalized into each other, making compressed modernity a universal feature of contemporary societies. This paper theoretically discusses compressed modernity as nationally ramified from reflexive cosmopolitization, and, then, comparatively illustrates varying instances of compressed modernity in advanced capitalist societies, un(der)developed capitalist societies, and system transition societies. In lieu of a conclusion, I point out the declining status of national societies as the dominant unit of (compressed) modernity and the interactive acceleration of compressed modernity among different levels of human life ranging from individuals to the global community. © London School of Economics and Political Science 2010.
Virtual Special Issue on Catalysis at the U.S. Department of Energy’s National Laboratories
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pruski, Marek; Sadow, Aaron; Slowing, Igor
Catalysis research at the U.S. Department of Energy's (DOE's) National Laboratories covers a wide range of research topics in heterogeneous catalysis, homogeneous/ molecular catalysis, electrocatalysis, and surface science. Since much of the work at National Laboratories is funded by DOE, the research is largely focused on addressing DOE’s mission to ensure America’s security and prosperity by addressing its energy, environmental, and nuclear challenges through trans-formative science and technology solutions. The catalysis research carried out at the DOE National Laboratories ranges from very fundamental catalysis science, funded by DOE’s Office of Basic Energy Sciences (BES), to applied research and development (R&D)more » in areas such as biomass conversion to fuels and chemicals, fuel cells, and vehicle emission control with primary funding from DOE’s Office of Energy Efficiency and Renewable Energy. National Laboratories are home to many DOE Office of Science national scientific user facilities that provide researchers with the most advanced tools of modern science, including accelerators, colliders, supercomputers, light sources, and neutron sources, as well as facilities for studying the nanoworld and the terrestrial environment. National Laboratory research programs typically feature teams of researchers working closely together, often joining scientists from different disciplines to attack scientific and technical problems using a variety of tools and techniques available at the DOE national scientific user facilities. Along with collaboration between National Laboratory scientists, interactions with university colleagues are common in National Laboratory catalysis R&D. In some cases, scientists have joint appoint-ments at a university and a National Laboratory.« less
Virtual Special Issue on Catalysis at the U.S. Department of Energy’s National Laboratories
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pruski, Marek; Sadow, Aaron D.; Slowing, Igor I.
Catalysis research at the U.S. Department of Energy’s (DOE’s) National Laboratories covers a wide range of research topics in heterogeneous catalysis, homogeneous/molecular catalysis, biocatalysis, electrocatalysis, and surface science. Since much of the work at National Laboratories is funded by DOE, the research is largely focused on addressing DOE’s mission to ensure America’s security and prosperity by addressing its energy, environmental, and nuclear challenges through transformative science and technology solutions. The catalysis research carried out at the DOE National Laboratories ranges from very fundamental catalysis science, funded by DOE’s Office of Basic Energy Sciences (BES), to applied research and development (R&D)more » in areas such as biomass conversion to fuels and chemicals, fuel cells, and vehicle emission control with primary funding from DOE’s Office of Energy Efficiency and Renewable Energy. National Laboratories are home to many DOE Office of Science national scientific user facilities that provide researchers with the most advanced tools of modern science, including accelerators, colliders, supercomputers, light sources, and neutron sources, as well as facilities for studying the nanoworld and the terrestrial environment. National Laboratory research programs typically feature teams of researchers working closely together, often joining scientists from different disciplines to tackle scientific and technical problems using a variety of tools and techniques available at the DOE national scientific user facilities. Along with collaboration between National Laboratory scientists, interactions with university colleagues are common in National Laboratory catalysis R&D. In some cases, scientists have joint appointments at a university and a National Laboratory.« less
NASA Astrophysics Data System (ADS)
Balthasar, Heike; Dumke, Alexander; van Gasselt, Stephan; Gross, Christoph; Michael, Gregory; Musiol, Stefanie; Neu, Dominik; Platz, Thomas; Rosenberg, Heike; Schreiner, Björn; Walter, Sebastian
2014-05-01
Since 2003 the High Resolution Stereo Camera (HRSC) experiment on the Mars Express mission is in orbit around Mars. First images were sent to Earth on January 14th, 2004. The goal-oriented HRSC data dissemination and the transparent representation of the associated work and results are the main aspects that contributed to the success in the public perception of the experiment. The Planetary Sciences and Remote Sensing Group at Freie Universität Berlin (FUB) offers both, an interactive web based data access, and browse/download options for HRSC press products [www.fu-berlin.de/planets]. Close collaborations with exhibitors as well as print and digital media representatives allows for regular and directed dissemination of, e.g., conventional imagery, orbital/synthetic surface epipolar images, video footage, and high-resolution displays. On a monthly basis we prepare press releases in close collaboration with the European Space Agency (ESA) and the German Aerospace Center (DLR) [http://www.geo.fu-berlin.de/en/geol/fachrichtungen/planet/press/index.html]. A release comprises panchromatic, colour, anaglyph, and perspective views of a scene taken from an HRSC image of the Martian surface. In addition, a context map and descriptive texts in English and German are provided. More sophisticated press releases include elaborate animations and simulated flights over the Martian surface, perspective views of stereo data combined with colour and high resolution, mosaics, and perspective views of data mosaics. Altogether 970 high quality PR products and 15 movies were created at FUB during the last decade and published via FUB/DLR/ESA platforms. We support educational outreach events, as well as permanent and special exhibitions. Examples for that are the yearly "Science Fair", where special programs for kids are offered, and the exhibition "Mars Mission and Vision" which is on tour until 2015 through 20 German towns, showing 3-D movies, surface models, and images of the HRSC camera experiment. Press and media appearances of group members, and talks to school classes and interested communities also contribute to the public outreach. For HRSC data dissemination we use digital platforms. Since 2007 HRSC image data can be viewed and accessed via the online interface HRSCview [http://hrscview.fu-berlin.de] which was built in cooperation with the DLR Institute for Planetary Research. Additionally HRSC ortho images (level 4) are presented in a modern MapServer setup in GIS-read format since 2013 [http://www.geo.fu-berlin.de/en/geol/fachrichtungen/planet/projects/marsexpress/level4downloads/index.html]. All of these offers ensured the accessibility of HRSC data and products to the science community as well as to the general public for the last ten years and will do so also in the future, taking advantage of modern and user-optimized applications and networks.
The NASA Modern Era Reanalysis for Research and Applications, Version-2 (MERRA-2)
NASA Astrophysics Data System (ADS)
Gelaro, R.; McCarty, W.; Molod, A.; Suarez, M.; Takacs, L.; Todling, R.
2014-12-01
The NASA Modern Era Reanalysis for Research Applications Version-2 (MERRA-2) is a reanalysis for the satellite era using an updated version of the Goddard Earth Observing System Data Assimilation System Version-5 (GEOS-5) produced by the Global Modeling and Assimilation Office (GMAO). MERRA-2 will assimilate meteorological and aerosol observations not available to MERRA and includes improvements to the GEOS-5 model and analysis scheme so as to provide an ongoing climate analysis beyond MERRA's terminus. MERRA-2 will also serve as a development milestone for a future GMAO coupled Earth system analysis. Production of MERRA-2 began in June 2014 in four processing streams, with convergence to a single near-real time climate analysis expected by early 2015. This talk provides an overview of the MERRA-2 system developments and key science results. For example, compared with MERRA, MERRA-2 exhibits a well-balanced relationship between global precipitation and evaporation, with significantly reduced sensitivity to changes in the global observing system through time. Other notable improvements include reduced biases in the tropical middle- and upper-tropospheric wind and near-surface temperature over continents.
The modern library: lost and found.
Lindberg, D A
1996-01-01
The modern library, a term that was heard frequently in the mid-twentieth century, has fallen into disuse. The over-promotion of computers and all that their enthusiasts promised probably hastened its demise. Today, networking is transforming how libraries provide--and users seek--information. Although the Internet is the natural environment for the health sciences librarian, it is going through growing pains as we face issues of censorship and standards. Today's "modern librarian" must not only be adept at using the Internet but must become familiar with digital information in all its forms--images, full text, and factual data banks. Most important, to stay "modern," today's librarians must embark on a program of lifelong learning that will enable them to make optimum use of the advantages offered by modern technology. PMID:8938334
Science for Survival: The Modern Synthesis of Evolution and The Biological Sciences Curriculum Study
NASA Astrophysics Data System (ADS)
Green, Lisa Anne
In this historical dissertation, I examined the process of curriculum development in the Biological Sciences Curriculum Study (BSCS) in the United States during the period 1959-1963. The presentation of evolution in the high school texts was based on a more robust form of Darwinian evolution which developed during the 1930s and 1940s called "the modern synthesis of evolution." Building primarily on the work of historians Vassiliki Smocovitis and John L. Rudolph, I used the archival papers and published writings of the four architects of the modern synthesis and the four most influential leaders of the BSCS in regards to evolution to investigate how the modern synthetic theory of evolution shaped the BSCS curriculum. The central question was "Why was evolution so important to the BSCS to make it the central theme of the texts?" Important answers to this question had already been offered in the historiography, but it was still not clear why every citizen in the world needed to understand evolution. I found that the emphasis on natural selection in the modern synthesis shifted the focus away from humans as passive participants to the recognition that humans are active agents in their own cultural and biological evolution. This required re-education of the world citizenry, which was accomplished in part by the BSCS textbooks. I also found that BSCS leaders Grobman, Glass, and Muller had serious concerns regarding the effects of nuclear radiation on the human gene pool, and were actively involved in informing th public. Lastly, I found that concerns of 1950s reform eugenicists were addressed in the BSCS textbooks, without mentioning eugenics by name. I suggest that the leaders of the BSCS, especially Bentley Glass and Hermann J. Muller, thought that students needed to understand genetics and evolution to be able to make some of the tough choices they might be called on to make as the dominant species on earth and the next reproductive generation in the nuclear age. This was science for survival.
Engineering Education's Contribution to the Space Program.
ERIC Educational Resources Information Center
Stever, H. Guyford
1988-01-01
States that an expanding future in space requires new technology. Stresses that from engineering education, space requires people with a fundamental knowledge of modern science instruments, all engineering sciences, an appreciation and capability for detail and systems design, and an understanding of costs and competitiveness, machines, materials,…
ERIC Educational Resources Information Center
Clary, Renee; Wandersee, James
2009-01-01
The study of polar exploration is fascinating and offers students insights into the history, culture, and politics that affect the developing sciences at the farthest ends of Earth. Therefore, the authors think there is value in incorporating polar exploration accounts within modern science classrooms, and so they conducted research to test their…
On a Modern Philosophy of Evaluating Scientific Publications
NASA Astrophysics Data System (ADS)
Guz, A. N.; Rushchitsky, J. J.; Chernyshenko, I. S.
2005-10-01
Current approaches to the citation analysis of scientific publications are outlined. Science Citation Index, Impact Factor, Immediacy Index, and the selection procedure for Essential Science Indicators—a relatively new citation analysis tool—are described. The new citation evaluation tool has yet not been discussed adequately by mechanicians
ERIC Educational Resources Information Center
Blonder, Ron; Sakhnini, Sohair
2017-01-01
The high-school chemistry curriculum is loaded with many important chemical concepts that are taught at the high-school level and it is therefore very difficult to add modern contents to the existing curriculum. However, many studies have underscored the importance of integrating modern chemistry contents such as nanotechnology into a high-school…
Tibetan-English Dictionary of Modern Tibetan. Bibliotheca Himalayica, Series II, Vol. 9.
ERIC Educational Resources Information Center
Goldstein, Melvyn C., Ed.
Recent political events have triggered a revolution in the Tibetan language. The entrance of Tibet into the world arena of politics, science and technology has led to the creation of thousands of new lexical items in a relatively short period of time. Because of these changes, modern literary Tibetan is extremely difficult for non-Tibetans to…
2010 Army Modernization Strategy
2010-01-01
Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions...Science and Technology (S&T) Program, and shortening the time between requirement identification and solution delivery. • Continuously modernize equipment...available, as quickly as possible, so they can succeed anywhere, every time . Our Soldiers deserve nothing less. Army Strong! U.S. Soldiers engage enemy
ERIC Educational Resources Information Center
Tatkovic, Nevenka; Sehanovic, Jusuf; Ruzic, Maja
2005-01-01
This work deals with the need of introducing modern aspects of communication on higher education of future teachers using information and communication technologies. The emphasis is put on the importance for future teachers to have basic information science knowledge and skills and their preparations for using ICT. A growth of the number of…
Europe Report, Science and Technology
1986-09-30
to certain basic products of the food industry such as beer, vinegar , 51 spirits, starches, etc. It is also assumed that modern biotechnologies...Czechoslovak food production. This is also the objective of innovative and modernizing programs in the fermented food sectors. The program for the...cattle and improves fodder utilization, assuming balanced doses of fodder. The development of fermentation techniques of production will occur within
ERIC Educational Resources Information Center
Ray, Douglas, Ed.; Poonwassie, Deo H., Ed.
This book contains 27 essays and case studies that focus on the potential for education to lessen social inequality in various countries. Three widespread forms of inequality involve aboriginal societies in modern industrial states, long established communities denied full status, and recent immigrants. Chapters are: "Modern Inequality and…
ERIC Educational Resources Information Center
Larsen, Marianne
This paper asserts that early teacher identity reflected wider contradictions and tensions within 19th century society, noting that Victorian society in England and Canada struggled to embrace modernity, and while committed to the Enlightenment project of science and progress and the principles of rationality and reason, much traditionalism still…
The Thermal Infrared Sensor onboard NASA's Mars 2020 Mission
NASA Astrophysics Data System (ADS)
Martinez, G.; Perez-Izquierdo, J.; Sebastian, E.; Ramos, M.; Bravo, A.; Mazo, M.; Rodriguez-Manfredi, J. A.
2017-12-01
NASA's Mars 2020 rover mission is scheduled for launch in July/August 2020 and will address key questions about the potential for life on Mars. The Mars Environmental Dynamics Analyzer (MEDA) is one of the seven instruments onboard the rover [1] and has been designed to assess the environmental conditions across the rover traverse. MEDA will extend the current record of in-situ meteorological measurements at the surface [2] to other locations on Mars. The Thermal InfraRed Sensor (TIRS) [3] is one of the six sensors comprising MEDA. TIRS will use three downward-looking channels to measure (1) the surface skin temperature (with high heritage from the Rover Environmental Monitoring Station onboard the Mars Science Laboratory mission [4]), (2) the upwelling thermal infrared radiation from the surface and (3) the reflected solar radiation at the surface, and two upward-looking channels to measure the (4) downwelling thermal infrared radiation at the surface and (5) the atmospheric temperature. In combination with other MEDA's sensors, TIRS will allow the quantification of the surface energy budget [5] and the determination of key geophysical properties of the terrain such as the albedo and thermal inertia with an unprecedented spatial resolution. Here we present a general description of the TIRS, with focus on its scientific requirements and results from field campaigns showing the performance of the different channels. References:[1] Rodríguez-Manfredi, J. A. et al. (2014), MEDA: An environmental and meteorological package for Mars 2020, LPSC, 45, 2837. [2] Martínez, G.M. et al. (2017), The Modern Near-Surface Martian Climate: A Review of In-situ Meteorological Data from Viking to Curiosity, Space Science Reviews, 1-44. [3] Pérez-Izquierdo, J. et al. (2017), The Thermal Infrared Sensor (TIRS) of the Mars Environmental Dynamics Analyzer (MEDA) Instrument onboard Mars 2020, IEEE. [4] Sebastián, E. et al. (2010), The Rover Environmental Monitoring Station Ground Temperature Sensor: A Pyrometer for Measuring Ground Temperature on Mars," Sensors, vol. 10(10), pp. 9211-9231. [5] Martínez, G. M. et al. (2014), Surface energy budget and thermal inertia at Gale Crater: Calculations from ground-based measurements, J.Geophys. Res. Planets, 119.
Publications of the Western Earth Surface Processes Team, 1999
Stone, Paul; Powell, Charles L.
2000-01-01
The Western Earth Surfaces Processes Team (WESPT) of the U.S. Geological Survey, Geologic Division (USGS, GD), conducts geologic mapping and related topical earth- science studies in the western United States. This work is focused on areas where modern geologic maps and associated earth-science data are needed to address key societal and environmental issues such as ground-water quality, potential geologic hazards, and land-use decisions. Areas of primary emphasis currently include southern California, the San Francisco Bay region, and the Pacific Northwest. The team has its headquarters in Menlo Park, California, and maintains field offices at several other locations in the western United States. The results of research conducted by the WESPT are released to the public as a variety of databases, maps, text reports, and abstracts, both through the internal publication system of the USGS and in diverse external publications such as scientific journals and books. This report lists publications of the WESPT released in 1999 as well as additional 1997 and 1998 publications that were not included in the previous list (USGS Open-file Report 99-302). Most of the publications listed were authored or coauthored by WESPT staff. The list also includes some publications authored by non-USGS cooperators with the WESPT, as well as some authored by USGS staff outside the WESPT in cooperation with WESPT projects.
ERIC Educational Resources Information Center
Collins, Anne Wrigley
2011-01-01
Modern science education reform recommends that teachers provide K-12 science students a more complete picture of the scientific enterprise, one that lies beyond content knowledge and centers more on the processes and culture of scientists. In the case of Research Experience for Teachers (RET) programs, the "teacher" becomes "researcher" and it is…
ERIC Educational Resources Information Center
Patrick, John J.
To maintain the legacy of freedom from the Age of Enlightenment, educators must effectively teach about the interrelated ideas of modern science and constitutional democracy in both social studies and science courses. The United States most directly and fully exemplifies the civic and scientific ideas which have developed as a result of the Age of…
1999-10-12
The project provided state-of-the-art training to students on the use of modern field and laboratory equipment in Environmental Science , Chemistry...laboratory instruction in Environmental Science , Chemistry, and Biology during the past 1998-99 academic year at the University of the Incarnate Word...development of maps at selected study sites. Dr. William F. Thomann, Environmental Science provided instruction on field and laboratory studies of water
Science Fairs for Science Literacy
NASA Astrophysics Data System (ADS)
Mackey, Katherine; Culbertson, Timothy
2014-03-01
Scientific discovery, technological revolutions, and complex global challenges are commonplace in the modern era. People are bombarded with news about climate change, pandemics, and genetically modified organisms, and scientific literacy has never been more important than in the present day. Yet only 29% of American adults have sufficient understanding to be able to read science stories reported in the popular press [Miller, 2010], and American students consistently rank below other nations in math and science [National Center for Education Statistics, 2012].
Reinventing Image Detective: An Evidence-Based Approach to Citizen Science Online
NASA Astrophysics Data System (ADS)
Romano, C.; Graff, P. V.; Runco, S.
2017-12-01
Usability studies demonstrate that web users are notoriously impatient, spending as little as 15 seconds on a home page. How do you get users to stay long enough to understand a citizen science project? How do you get users to complete complex citizen science tasks online?Image Detective, a citizen science project originally developed by scientists and science engagement specialists at the NASA Johnson Space center to engage the public in the analysis of images taken from space by astronauts to help enhance NASA's online database of astronaut imagery, partnered with the CosmoQuest citizen science platform to modernize, offering new and improved options for participation in Image Detective. The challenge: to create a web interface that builds users' skills and knowledge, creating engagement while learning complex concepts essential to the accurate completion of tasks. The project team turned to usability testing for an objective understanding of how users perceived Image Detective and the steps required to complete required tasks. A group of six users was recruited online for unmoderated and initial testing. The users followed a think-aloud protocol while attempting tasks, and were recorded on video and audio. The usability test examined users' perception of four broad areas: the purpose of and context for Image Detective; the steps required to successfully complete the analysis (differentiating images of Earth's surface from those showing outer space and identifying common surface features); locating the image center point on a map of Earth; and finally, naming geographic locations or natural events seen in the image.Usability test findings demonstrated that the following best practices can increase participation in Image Detective and can be applied to the successful implementation of any citizen science project:• Concise explanation of the project, its context, and its purpose;• Including a mention of the funding agency (in this case, NASA);• A preview of the specific tasks required of participants;• A dedicated user interface for the actual citizen science interaction.In addition, testing revealed that users may require additional context when a task is complex, difficult, or unusual (locating a specific image and its center point on a map of Earth). Video evidence will be made available with this presentation.
Reinventing Image Detective: An Evidence-Based Approach to Citizen Science Online
NASA Technical Reports Server (NTRS)
Romano, Cia; Graff, Paige V.; Runco, Susan
2017-01-01
Usability studies demonstrate that web users are notoriously impatient, spending as little as 15 seconds on a home page. How do you get users to stay long enough to understand a citizen science project? How do you get users to complete complex citizen science tasks online? Image Detective, a citizen science project originally developed by scientists and science engagement specialists at the NASA Johnson Space center to engage the public in the analysis of images taken from space by astronauts to help enhance NASA's online database of astronaut imagery, partnered with the CosmoQuest citizen science platform to modernize, offering new and improved options for participation in Image Detective. The challenge: to create a web interface that builds users' skills and knowledge, creating engagement while learning complex concepts essential to the accurate completion of tasks. The project team turned to usability testing for an objective understanding of how users perceived Image Detective and the steps required to complete required tasks. A group of six users was recruited online for unmoderated and initial testing. The users followed a think-aloud protocol while attempting tasks, and were recorded on video and audio. The usability test examined users' perception of four broad areas: the purpose of and context for Image Detective; the steps required to successfully complete the analysis (differentiating images of Earth's surface from those showing outer space and identifying common surface features); locating the image center point on a map of Earth; and finally, naming geographic locations or natural events seen in the image. Usability test findings demonstrated that the following best practices can increase participation in Image Detective and can be applied to the successful implementation of any citizen science project: (1) Concise explanation of the project, its context, and its purpose; (2) Including a mention of the funding agency (in this case, NASA); (3) A preview of the specific tasks required of participants; (4) A dedicated user interface for the actual citizen science interaction. In addition, testing revealed that users may require additional context when a task is complex, difficult, or unusual (locating a specific image and its center point on a map of Earth). Video evidence will be made available with this presentation.
NASA Technical Reports Server (NTRS)
Berrick, Stephen W.; Shen, Suhung; Ostrenga, Dana
2008-01-01
The Modern Era Retrospective-analysis for Research and Applications (MERRA) dataset is a NASA satellite era, 30 year (1979 - present), reanalysis using the Goddard Earth Observing System Data Assimilation System, Version 5 (GEOS-5). The project, run out of NASA's Global Modeling and Assimilation Office at Goddard Space Flight Center, provides the science and application communities with a state-of-the-art global analysis with emphasis on improved estimates of the hydrological cycle over a broad range of weather and climate time scales. MERRA products are generated as a long-term synthesis that places the NASA EOS suite of observations in a climate context. The MERRA analysis is performed at a horizontal resolution of 2/3 longitude x 1/2 latitude (540x361 global gridpoints) with observational analyses every 6 hours. The MERRA output data will include 3 dimensional state fields for every 6 hourly analysis cycle on 42 pressure levels (or 72 terrain following model coordinate levels) from the surface through the stratosphere. Several data products are specifically designed to support chemistry and stratosphere transport modeling. The 2 dimensional surface and atmospheric diagnostics (numbering 259) are being stored on the native grid at 1 hourly intervals. These include radiation and vertical integrals of the atmosphere for water and energy budget studies and also surface diagnostics where the diurnal cycle is important. The one hourly surface and near surface data product will also facilitate research on the integrated analysis of Earth system observations in the land, ocean and cryosphere. The MERRA products are archived and distributed by the Goddard Earth Sciences Data and Information Services Center (GES DISC) through its Modeling DISC Web (MDISC) portal. Multiple data access methods and services are available for MERRA data through MDISC: (1) Mirador offers a quick, comprehensive search of MERRA and all GES DISC archived data holdings, allowing searches on keywords, location names or latitude/longitude box, and date/time, with responses within a few seconds. (2) Giovanni is a GES DISC developed Web application that provides data visualization and analysis online. Giovanni features popular visualizations such as latitude-longitude maps, animations, cross sections, profiles, time series, etc. and some basic statistical analysis functions such as scatter plots and correlation coefficient maps. Users are able to download results in several different formats, including Google Earth. (3) On-the-fly parameter subsetting of data within a spatial/temporal window is provided through a simple select and click Web page. (4) MERRA data are also available via OPeNDAP, GrADS Data Server (GDS) and can be converted to netCDF on the fly.
Numerous Seasonal Lineae on Coprates Montes, Mars
2016-07-07
The white arrows indicate locations in this scene where numerous seasonal dark streaks have been identified in the Coprates Montes area of Mars' Valles Marineris by repeated observations from orbit. The streaks, called recurring slope lineae or RSL, extend downslope during a warm season, fade in the colder part of the year, and repeat the process the next Martian year. They are regarded as the strongest evidence for the possibility of liquid water on the surface of modern Mars. This oblique perspective for this view uses a three-dimensional terrain model derived from a stereo pair of observations by the High Resolution Imaging Science Experiment (HiRISE) camera on NASA's Mars Reconnaissance Orbiter. The scene covers an area approximately 1.6 miles (2.5 kilometers) wide. http://photojournal.jpl.nasa.gov/catalog/PIA20757
ERIC Educational Resources Information Center
Boltax, Ariana L.; Armanious, Stephanie; Kosinski-Collins, Melissa S.; Pontrello, Jason K.
2015-01-01
Modern research often requires collaboration of experts in fields, such as math, chemistry, biology, physics, and computer science to develop unique solutions to common problems. Traditional introductory undergraduate laboratory curricula in the sciences often do not emphasize connections possible between the various disciplines. We designed an…
A System-Science Approach towards Model Construction for Curriculum Development.
ERIC Educational Resources Information Center
Chang, Ren-Jung; Yang, Hui-Chin
A new morphological model based on modern system science and engineering is constructed and proposed for curriculum research and development. A curriculum system is recognized as an engineering system that constitutes three components: clients, resources, and knowledge. Unlike the objective models that are purely rational and neatly sequential in…
Teaching Oscillations by a Model of Nanoresonator
ERIC Educational Resources Information Center
Lindell, A.; Viiri, J.
2009-01-01
Nanoscience offers fascinating opportunities for science education as it links the achievements of modern technology to traditional models of science. In this article we present a nanotechnology orientated lesson on oscillations, suitable for physics courses at high schools and universities. The focus of the lesson is in forced oscillations on a…
World War II in Social Studies and Science Curricula.
ERIC Educational Resources Information Center
Mayer, Victor J.
2000-01-01
Western educators are forgetting the need to impart knowledge about modern warfare's consequences. Science texts contain little about radiation damage. The nuclear bomb's destructiveness to humans and the biosphere should be a teacher responsibility in several curriculum areas. "War is hell" should be educators' main message. (Contains…
Graphical User Interface Programming in Introductory Computer Science.
ERIC Educational Resources Information Center
Skolnick, Michael M.; Spooner, David L.
Modern computing systems exploit graphical user interfaces for interaction with users; as a result, introductory computer science courses must begin to teach the principles underlying such interfaces. This paper presents an approach to graphical user interface (GUI) implementation that is simple enough for beginning students to understand, yet…
A Current Appraisal of the Behavioral Sciences, Revised Edition.
ERIC Educational Resources Information Center
Handy, Rollo; Harwood, E. C.
This book discusses modern scientific inquiry and examines the procedures of inquiry into human behavior used in the behavioral science disciplines. Psychologists look at the individual's adjustive procedures and the evolution of those adjustments within a species. Anthropologists inquire into the behavioral similarities and differences of human…
Bernoulli's Principle: Science as a Human Endeavor
ERIC Educational Resources Information Center
McCarthy, Deborah
2008-01-01
What do the ideas of Daniel Bernoulli--an 18th-century Swiss mathematician, physicist, natural scientist, and professor--and your students' next landing of the space shuttle via computer simulation have in common? Because of his contribution, referred in physical science as Bernoulli's principle, modern flight is possible. The mini learning-cycle…
Science 2.0: When Students Become Digital Citizens
ERIC Educational Resources Information Center
Smith, Ben; Mader, Jared
2016-01-01
Modern science learning requires the use of digital tools and a shift in teaching philosophy and pedagogy. The backbone to this shift rests in a yet unaddressed skill: digital citizenship. The authors discuss the Digital Citizen standard where "students (will) recognize the rights, responsibilities, and opportunities of living, learning, and…
Institutional and Individual Influences on Scientists' Data Sharing Behaviors
ERIC Educational Resources Information Center
Kim, Youngseek
2013-01-01
In modern research activities, scientific data sharing is essential, especially in terms of data-intensive science and scholarly communication. Scientific communities are making ongoing endeavors to promote scientific data sharing. Currently, however, data sharing is not always well-deployed throughout diverse science and engineering disciplines.…
Modern Lesson Plans in Environmental Science.
ERIC Educational Resources Information Center
Kotsonis, Helen Hoch; Baker, Bill
This sourcebook, developed for teachers of ecology, biology, general science and hygiene, contains 27 lesson plans that have been organized into 5 units. The units are: The Dynamics of Pollution, Conservation and the Environment, Biological Controls and their Relationship to the Environment, Urban Ecology, and Environment and Health. The lesson…
ERIC Educational Resources Information Center
Demski, Jennifer
2009-01-01
Algebra, geometry, earth science, physics--these require patience and perseverance to master. That kind of academic stamina is hard to advertise to kids nurtured on the instant engagement and gratification of modern digital technology. And there's little hope they'll be sustained by an intrinsic interest in math and science; they have to be shown…
Argonne to lead 8 DOE Grid Modernization Projects | Argonne National
Photos Videos Fact Sheets, Brochures and Reports Summer Science Writing Internship Careers Education Photos Videos Fact Sheets, Brochures and Reports Summer Science Writing Internship Argonne to lead 8 DOE Performance and Reliability of Combined Transmission-Distribution with High Solar Penetration Develop a
ERIC Educational Resources Information Center
Grinnell, Frederick
Science is many things to many people: a way of thinking and an activity of individuals in the laboratory; a highly structured institution that recruits, instructs, and regulates its members; and a sensitive, interactive, and integrated segment of modern culture and society. This book presents an introduction to these aspects of science from the…
Physics First: Impact on SAT Math Scores
ERIC Educational Resources Information Center
Bouma, Craig E.
2013-01-01
Improving science, technology, engineering, and mathematics (STEM) education has become a national priority and the call to modernize secondary science has been heard. A Physics First (PF) program with the curriculum sequence of physics, chemistry, and biology (PCB) driven by inquiry- and project-based learning offers a viable alternative to the…
Campus Cyberinfrastructure: A Crucial Enabler for Science
ERIC Educational Resources Information Center
Freeman, Peter A.; Almes, Guy T.
2005-01-01
Driven by the needs of college/university researchers and guided by a blue-ribbon advisory panel chaired by Daniel E. Atkins, the National Science Foundation (NSF) has initiated a broad, multi-directorate activity to create modern cyberinfrastructure and to apply it to transforming the effectiveness of the scientific research enterprise in higher…
Two Worlds of Academic Publishing: Chemistry and German Sociology in Comparison
ERIC Educational Resources Information Center
Volkmann, Ute; Schimank, Uwe; Rost, Markus
2014-01-01
The communication infrastructure of modern science is provided by profit-oriented business firms: the publishing houses which print and distribute academic books and journals. Surprisingly, beyond some rather superficial impressions, in science studies little is known about how academic publishers work--in particular, how markets for books and…
ERIC Educational Resources Information Center
Gvirtz, Silvina; Aisenstein, Angela; Cornejo, Jorge N.; Valerani, Alejandra
2001-01-01
Analyzes the politicization of the natural sciences curriculum in Argentinean schools in relation to evolutionist theories and the teaching of astronomy and cosmography. Concludes that the ways in which content is selected and arranged arise as a solution to ideological conflicts. (MM)
ERIC Educational Resources Information Center
Wighting, Mervyn J.
2005-01-01
When Mount St. Helens threatened to erupt again in 2004, it grabbed headlines and captured the imagination of the country. Science classrooms nationwide used the event as an opportunity to make real-world connections to Earth science concepts introduced in the classroom. Thanks to modern technology, teachers no longer have to wait for the next…
A Course in Natural Science and National Security in the Nuclear Age.
ERIC Educational Resources Information Center
Blumberg, Avrom A.
1983-01-01
Topics and instructional strategies for an upper-level, problem-oriented science and society course at De Paul University are described. Objectives and grading procedures for "Problems in Modern Warfare, Arms Control, and Disarmament" are also described. Course syllabus, bibliography, and sample quizzes/examinations are available from…
Analyzing Tibetan Monastics Conception of Universe Through Their Drawings
NASA Astrophysics Data System (ADS)
Sonam, Tenzin; Chris Impey
2016-06-01
Every culture and tradition has their own representation of the universe that continues to evolve through new technologies and discoveries, and as a result of cultural exchange. With the recent introduction of Western science into the Tibetan Buddhist monasteries in India, this study explores the monastics’ conception of the universe prior to their formal instruction in science. Their drawings were analyzed using Tversky’s three criteria for drawing analysis namely—segmentation, order, and hierarchical structure of knowledge. Among the sixty Buddhist monastics included in this study, we find that most of them draw a geocentric model of the universe with the Solar System as the dominant physical system, reflecting little influence of modern astronomical knowledge. A few monastics draw the traditional Buddhist model of the world. The implications of the monastics' representation of the universe for their assimilation of modern science is discussed.
Medical research funding may have over-expanded and be due for collapse.
Charlton, B G; Andras, P
2005-01-01
The continual and uninterrupted expansion of medical research funding is generally assumed to be a permanent feature of modern societies, but this expectation may turn out to be mistaken. Sciences tend to go through boom and bust phases. Twentieth century physics is an example where huge increases in funding followed an era of scientific breakthroughs. Speculative over-expansion led to diminishing returns on investment, then a collapse in funding. We predict that medicine will follow the same trajectory. After prolonged over-funding of the 'basic-to-applied' model of clinical innovation, and a progressive shift towards Big Science organization, medical research has become increasingly inefficient and ineffective. Although incremental improvements to existing treatment strategies continue, the rate of significant therapeutic breakthroughs has been declining for three decades. Medical science now requires rationalization and modernization. From this perspective, the current level of medical research funding looks like a bubble due to burst.
Dev, Sukhendu B
2009-01-01
The advances in biological sciences have been phenomenal since the structure of DNA was decoded, especially if one considers the input from physical sciences, not only in terms of analytical tools, but also understanding and solving some of the key problems in biology. In this article, I trace briefly the history of this transition, from physical sciences to biology, and argue that progress in modern biology can be accelerated if there is far more meaningful crosstalk between the biologists and the physical scientists, simply because biology has become far more complex and interdisciplinary, and the need for such crosstalk cannot be overemphasized. Without a concerted effort in this area progress will be hindered, and the two camps will continue to work on their own, using their own specialized language, thus making communication highly ineffective. I support my argument giving a vast array of examples and also quoting leading authorities.
Knowledge in motion: The cultural politics of modern science translations in Arabic.
Elshakry, Marwa S
2008-12-01
This essay looks at the problem of the global circulation of modem scientific knowledge by looking at science translations in modern Arabic. In the commercial centers of the late Ottoman Empire, emerging transnational networks lay behind the development of new communities of knowledge, many of which sought to break with old linguistic and literary norms to redefine the basis of their authority. Far from acting as neutral purveyors of "universal truths," scientific translations thus served as key instruments in this ongoing process of sociopolitical and epistemological transformation and mediation. Fierce debates over translators' linguistic strategies and choices involved deliberations over the character of language and the nature of "science" itself. They were also crucially shaped by such geopolitical factors as the rise of European imperialism and anticolonial nationalism in the region. The essay concludes by arguing for the need for greater attention to the local factors involved in the translation of scientific concepts across borders.
Data-driven modeling of surface temperature anomaly and solar activity trends
Friedel, Michael J.
2012-01-01
A novel two-step modeling scheme is used to reconstruct and analyze surface temperature and solar activity data at global, hemispheric, and regional scales. First, the self-organizing map (SOM) technique is used to extend annual modern climate data from the century to millennial scale. The SOM component planes are used to identify and quantify strength of nonlinear relations among modern surface temperature anomalies (<150 years), tropical and extratropical teleconnections, and Palmer Drought Severity Indices (0–2000 years). Cross-validation of global sea and land surface temperature anomalies verifies that the SOM is an unbiased estimator with less uncertainty than the magnitude of anomalies. Second, the quantile modeling of SOM reconstructions reveal trends and periods in surface temperature anomaly and solar activity whose timing agrees with published studies. Temporal features in surface temperature anomalies, such as the Medieval Warm Period, Little Ice Age, and Modern Warming Period, appear at all spatial scales but whose magnitudes increase when moving from ocean to land, from global to regional scales, and from southern to northern regions. Some caveats that apply when interpreting these data are the high-frequency filtering of climate signals based on quantile model selection and increased uncertainty when paleoclimatic data are limited. Even so, all models find the rate and magnitude of Modern Warming Period anomalies to be greater than those during the Medieval Warm Period. Lastly, quantile trends among reconstructed equatorial Pacific temperature profiles support the recent assertion of two primary El Niño Southern Oscillation types. These results demonstrate the efficacy of this alternative modeling approach for reconstructing and interpreting scale-dependent climate variables.
Imparting Icephobicity with Substrate Flexibility
NASA Astrophysics Data System (ADS)
Schutzius, Thomas; Vasileiou, Thomas; Poulikakos, Dimos
2017-11-01
Ice accumulation poses serious safety and performance issues for modern infrastructure. Rationally designed superhydrophobic surfaces have demonstrated potential as a passive means to mitigate ice accretion; however, further studies on solutions that reduce impalement and contact time for impacting supercooled droplets are urgently needed. Here we demonstrate the collaborative effect of substrate flexibility and surface texture on enhancing icephobicity and repelling viscous droplets. We first investigate the influence of increased viscosity on impalement resistance and droplet-substrate contact time. Then we examine the effect of droplet partial solidification on recoil by impacting supercooled water droplets onto surfaces containing ice nucleation promoters. We demonstrate a passive method for shedding partially solidified droplets that does not rely on the classic recoil mechanism. Using an energy-based model, we identify a previously unexplored mechanism whereby the substrate oscillation governs the rebound process by efficiently absorbing the droplet kinetic energy and rectifying it back, allowing for droplet recoil. This mechanism applies for a range of droplet viscosities and ice slurries, which do not rebound from rigid superhydrophobic substrates. Partial support of the Swiss National Science Foundation under Grant No. 162565 and the European Research Council under Advanced Grant No. 669908 (INTICE) is acknowledged.
Bolliger, Stephan A; Thali, Michael J; Ross, Steffen; Buck, Ursula; Naether, Silvio; Vock, Peter
2008-02-01
The transdisciplinary research project Virtopsy is dedicated to implementing modern imaging techniques into forensic medicine and pathology in order to augment current examination techniques or even to offer alternative methods. Our project relies on three pillars: three-dimensional (3D) surface scanning for the documentation of body surfaces, and both multislice computed tomography (MSCT) and magnetic resonance imaging (MRI) to visualise the internal body. Three-dimensional surface scanning has delivered remarkable results in the past in the 3D documentation of patterned injuries and of objects of forensic interest as well as whole crime scenes. Imaging of the interior of corpses is performed using MSCT and/or MRI. MRI, in addition, is also well suited to the examination of surviving victims of assault, especially choking, and helps visualise internal injuries not seen at external examination of the victim. Apart from the accuracy and three-dimensionality that conventional documentations lack, these techniques allow for the re-examination of the corpse and the crime scene even decades later, after burial of the corpse and liberation of the crime scene. We believe that this virtual, non-invasive or minimally invasive approach will improve forensic medicine in the near future.
NASA Astrophysics Data System (ADS)
Sjöström, Jesper
2018-03-01
This forum article contributes to the understanding of how science teachers' identity is related to their worldviews, cultural values and educational philosophies, and to eco-transformation of science education. Special focus is put on `reform-minded' science teachers. The starting point is the paper Science education reform in Confucian learning cultures: teachers' perspectives on policy and practice in Taiwan by Ying-Syuan Huang and Anila Asghar. It highlights several factors that can explain the difficulties of implementing "new pedagogy" in science education. One important factor is Confucian values and traditions, which seem to both hinder and support the science teachers' implementation of inquiry-based and learner-centered approaches. In this article Confucianism is compared with other learning cultures and also discussed in relation to different worldviews and educational philosophies in science education. Just like for the central/north European educational tradition called Bildung, there are various interpretations of Confucianism. However, both have subcultures (e.g. reflexive Bildung and Neo-Confucianism) with similarities that are highlighted in this article. If an "old pedagogy" in science education is related to essentialism, rationalist-objectivist focus, and a hierarchical configuration, the so called "new pedagogy" is often related to progressivism, modernism, utilitarianism, and a professional configuration. Reflexive Bildung problematizes the values associated with such a "new pedagogy" and can be described with labels such as post-positivism, reconstructionism and problematizing/critical configurations. Different educational approaches in science education, and corresponding eco-identities, are commented on in relation to transformation of educational practice.
Reflections on the history of indoor air science, focusing on the last 50 years.
Sundell, J
2017-07-01
The scientific articles and Indoor Air conference publications of the indoor air sciences (IAS) during the last 50 years are summarized. In total 7524 presentations, from 79 countries, have been made at Indoor Air conferences held between 1978 (49 presentations) and 2014 (1049 presentations). In the Web of Science, 26 992 articles on indoor air research (with the word "indoor" as a search term) have been found (as of 1 Jan 2016) of which 70% were published during the last 10 years. The modern scientific history started in the 1970s with a question: "did indoor air pose a threat to health as did outdoor air?" Soon it was recognized that indoor air is more important, from a health point of view, than outdoor air. Topics of concern were first radon, environmental tobacco smoke, and lung cancer, followed by volatile organic compounds, formaldehyde and sick building syndrome, house dust-mites, asthma and allergies, Legionnaires disease, and other airborne infections. Later emerged dampness/mold-associated allergies and today's concern with "modern exposures-modern diseases." Ventilation, thermal comfort, indoor air chemistry, semi-volatile organic compounds, building simulation by computational fluid dynamics, and fine particulate matter are common topics today. From their beginning in Denmark and Sweden, then in the USA, the indoor air sciences now show increasing activity in East and Southeast Asia. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
[Dr Guillermo Contreras Da Silva, a relevant figure in the development of Chilean microbiology].
Cabello, Felipe C
2008-02-01
The influence of the work of Dr. Guillermo Contreras Da Silva and his colaborators on the evolution of microbiology in Chile is briefly analyzed. Dr. Contreras was trained in modern virology at Yale University with Dr. J. Melnick under the sponsorhip of the Rockefeller Foundation. During this training, he used serological methods to classify Cocksakie viruses. After his return to Chile, he studied the epidemiology of enteroviruses, including poliovirus. His laboratory, the country's first in modern virology, took an active role in Chile's first Sabin polio vaccination in 1961. Dr. Contreras and his group transformed the teaching and the character of microbiology in Chile from a descriptive medically oriented discipline into an autonomous, quantitative and experimental science. They modernized microbiology with the introduction of molecular biology and microbial genetics and fostered collaborations with allied biological sciences. Dr. Contreras was a Guggenheim Fellow, and until his retirement, was the Chief of the Viral Products Division, Bureau of Biologies, Ottawa, Canada.
Nam, Yun Sik; Won, Sung-Ok; Lee, Kang-Bong
2014-07-01
A guidebook detailing the process of forensic investigation was written in 1440 A.C.E. It outlines the fundamentals and details of each element of criminal investigation during the era of the Chosun dynasty in Korea. Because this old guidebook was written in terms of personal experience rather than on scientific basis, it includes many fallacies from the perspective of modern forensic science. However, the book describes methods to form a scientific basis for the experiments performed. We demonstrate the modern scientific basis for ancient methods to monitor trace amounts of blood and detect lethal arsenic poisoning from a postmortem examination as described in this old forensic guidebook. Traces of blood and arsenic poisoning were detected according to the respective color changes of brownish red, due to the reaction of ferric ions in blood with acetic ions of vinegar, and dark blue, due to the reaction of silver with arsenic sulfide. © 2014 American Academy of Forensic Sciences.
Carazo, J M; Stelzer, E H
1999-01-01
The BioImage Database Project collects and structures multidimensional data sets recorded by various microscopic techniques relevant to modern life sciences. It provides, as precisely as possible, the circumstances in which the sample was prepared and the data were recorded. It grants access to the actual data and maintains links between related data sets. In order to promote the interdisciplinary approach of modern science, it offers a large set of key words, which covers essentially all aspects of microscopy. Nonspecialists can, therefore, access and retrieve significant information recorded and submitted by specialists in other areas. A key issue of the undertaking is to exploit the available technology and to provide a well-defined yet flexible structure for dealing with data. Its pivotal element is, therefore, a modern object relational database that structures the metadata and ameliorates the provision of a complete service. The BioImage database can be accessed through the Internet. Copyright 1999 Academic Press.
Fonseca, Alexandre Brasil; de Souza, Thaís Salema Nogueira; Frozi, Daniela Sanches; Pereira, Rosangela Alves
2011-09-01
The scope of this work was to illustrate what dietary modernity represents for sociology and anthropology, which is a subject based on a bibliographic review that is discussed in this article. Initially, the presence of the theme of food and nutrition was assessed in studies in the social sciences, by focusing on the approaches related to dietary modernity, especially as found in the works of Claude Fischler. The main subjects of discussion were related to food and nutrition and changes in the work environment, the expansion of commerce, the feminization of society and the question of identity. By understanding the food phenomenon and consumption thereof using a more qualitative approach, it is possible to make progress in configuring the nutritional sciences, adopting a comprehensive approach to food and nutrition in this day and age. Future studies should be dedicated to investigating food consumption as a social phenomenon in order to aggregate new analytical components with a biomedical emphasis to the body of results.
Barac, Bosko
2002-05-01
Modern neurology has completely changed in its concepts of science and medical discipline regarding the etiologies and the capabilities in the diagnostics, management, rehabilitation and prevention of neurological diseases. Advances in neurological sciences produced a rapid growth in the number of neurologists, new subspecialties and neurological institutions worldwide, opening questions on their possible application due to financial restrictions in many countries. Neurology in Croatia followed the modern tendencies in the world: in line with its humanistic tradition its orientation to the patient early appeared. From this experience developed a care on the optimal organization of neurological services, later on initiated in the Research Group on the Organization and Delivery of Neurological Services, founded in the World Federation of Neurology. The main activities and the Recommendations related to Neurology in Public Health are described, with the proposed levels of organization of neurological services, aiming at the optimal and rational neurological care. Problems of international collaboration on cost-effectiveness in neurology are accentuated.
Longevity and progressive abandonment of the Rocky Flats surface, Front Range, Colorado
NASA Astrophysics Data System (ADS)
Riihimaki, Catherine A.; Anderson, Robert S.; Safran, Elizabeth B.; Dethier, David P.; Finkel, Robert C.; Bierman, Paul R.
2006-08-01
The post-orogenic evolution of the Laramide landscape of the western U.S. has been characterized by late Cenozoic channel incision of basins and their adjacent ranges. One means of constraining the incision history of basins is dating the remnants of gravel-capped surfaces above modern streams. Here, we focus on an extensive remnant of the Rocky Flats surface between Golden and Boulder, Colorado, and use in situ-produced 10Be and 26Al concentrations in terrace alluvium to constrain the Quaternary history of this surface. Coal and Ralston Creeks, both tributaries of the South Platte River, abandoned the Rocky Flats surface and formed the Verdos and Slocum pediments, which are cut into Cretaceous bedrock between Rocky Flats and the modern stream elevations. Rocky Flats alluvium ranges widely in age, from > 2 Ma to ˜ 400 ka, with oldest ages to the east and younger ages closer to the mountain front. Numerical modeling of isotope concentration depth profiles suggests that individual sites have experienced multiple resurfacing events. Preliminary results indicate that Verdos and Slocum alluvium along Ralston Creek, which is slightly larger than Coal Creek, is several hundred thousand years old. Fluvial incision into these surfaces appears therefore to progress headward in response to downcutting of the South Platte River. The complex ages of these surfaces call into question any correlation of such surfaces based solely on their elevation above the modern channel.
Further consideration of the curvature of the Neandertal Femur.
Chapman, Tara; Sholukha, Victor; Semal, Patrick; Louryan, Stéphane; Van Sint Jan, Serge
2018-01-01
Neandertal femora are particularly known for having a marked sagittal femoral curvature. This study examined femoral curvature in Neandertals in comparison to a modern human population from Belgium by the use of three-dimensional (3D) quadric surfaces modeled from the bone surface. 3D models provide detailed information and enabled femoral curvature to be analyzed in conjunction with other morphological parameters. 3D models were created from CT scans of 75 modern human femora and 7 Neandertal femora. Quadric surfaces (QS) were created from the triangulated surface vertices in all areas of interest (neck, head, diaphyseal shaft, condyles) extracted from previously placed anatomical landmarks. The diaphyseal shaft was divided into five QS shapes and curvature was measured by degrees of difference between QS shapes. Each bone was placed in a local coordinate system enabling each bone to be analyzed in the same way. The use of 3D quadric surface fitting allowed the distribution of curvature with similarly curved femora to be analyzed and the different patterns of curvature between the two groups to be determined. The Neandertals were shown to have a higher degree of femoral curvature and a more distal point of femoral curvature than the modern human population from Belgium. Morphological aspects of the Neandertal femur are different from this modern human population although mainly seem unrelated to femoral curvature. The relative lack of correlations with other femoral bony morphological factors suggests femoral curvature variations may be related to other aspects. © 2017 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Hearty, T. J., III; Vollmer, B.; Wei, J. C.; Huwe, P. M.; Albayrak, A.; Wu, D. L.; Cullather, R. I.; Meyer, D. L.; Lee, J. N.; Blaisdell, J. M.; Susskind, J.; Nowicki, S.
2017-12-01
The surface air and skin temperatures reported by the Atmospheric Infrared Sounder (AIRS), the Modern-Era Retrospective analysis for Research and Applications (MERRA), and MERRA-2 at Summit, Greenland are compared with near surface air temperatures measured at National Oceanic and Atmospheric Administration (NOAA) and Greenland Climate Network (GC-Net) weather stations. Therefore this investigation requires familiarity with a heterogeneous set of swath, grid, and point data in several different formats, different granularity, and different sampling. We discuss the current subsetting capabilities available at the GES DISC (Goddard Earth Sciences Data Information Services Center) to perform the inter-comparisons necessary to evaluate the quality and trustworthiness of these datasets. We also explore potential future services which may assist users with this type of intercomparison. We find the AIRS Surface Skin Temperature (TS) is best correlated with the NOAA 2 m air temperature (T2M) but it tends to be colder than the station measurements. The difference may be the result of the frequent near surface temperature inversions in the region. The AIRS Surface Air Temperature (SAT) is also well correlated with the NOAA T2M but it has a warm bias with respect to the NOAA T2M during the cold season and a larger standard error than surface temperature. This suggests that the extrapolation of the temperature profile to the surface is not valid for the strongest inversions. Comparing the temperature lapse rate derived from the 2 stations shows that the lapse rate can increase closer to the surface. We also find that the difference between the AIRS SAT and TS is sensitive to near surface inversions. The MERRA-2 surface and near surface temperatures show improvements over MERRA but little sensitivity to near surface temperature inversions.
Franck, Georg
2012-07-16
Your attention please: Phenomenal conciousness, that is, how something feels, does not exist for an observer. As science relies on observations, it is not aware of the nature of subjectivity and thus science is not often defined as a collective intelligence. In this Essay, the roles of intelligence and attention are discussed, as well as an analysis of scientific communication and citation, in order to evaluate whether science is a case of collective intelligence.
Historical continuity in the methodology of modern medical science: Leonardo leads the way.
Pasipoularides, Ares
2014-02-01
Early modern medical science did not arise ex nihilo, but was the culmination of a long history stretching back through the Renaissance, the Middle Ages, Byzantium and Roman times, into Greek Antiquity. The long interval between Aristotle and Galen and Harvey and Descartes was punctuated by outstanding visionaries, including Leonardo, the ultimate Renaissance man. His attitude and mindset were based on Aristotelian pursuit of empirical fact and rational thought. He declared himself to be a "man without letters" to underscore his disdain for those whose culture was only mnemonics and philosophical inferences from authoritative books. Leonardo read the Book of Nature with the immense curiosity of the pioneering scientist, ushering in the methodology of modern medical science with help from forerunners. He left no publications, but extensive personal Notebooks: on his scientific research, hydrodynamics, physiological anatomy, etc. Apparently, numerous successors availed themselves of his methodologies and insights, albeit without attribution. In his Notebooks, disordered and fragmentary, Leonardo manifests the exactitude of the engineer and scientist, the spontaneous freshness of one speaking of what he has at heart and that he knows well. His style is unrefined, but intensely personal, rich with emotion and, sometimes, poetic. Leonardo, the visionary anatomist, strived consistently not merely to imitate nature by depicting body structures, but to perceive through analysis and simulations the intimate physiologic processes; i.e., the biomechanics underlying the workings of all bodily organs and components, even the mysterious beating heart. It is fitting to regard him as the first modern medical scientist. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
ERIC Educational Resources Information Center
Sakhnini, Sohair; Blonder, Ron
2015-01-01
Nanoscale science and technology (NST) is an important new field in modern science. In the current study, we seek to answer the question: "What are the essential concepts of NST that should be taught in high school"? A 3-round Delphi study methodology was applied based on 2 communities of experts in nanotechnology research and science…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arkin, Adam; Bader, David C.; Coffey, Richard
Understanding the fundamentals of genomic systems or the processes governing impactful weather patterns are examples of the types of simulation and modeling performed on the most advanced computing resources in America. High-performance computing and computational science together provide a necessary platform for the mission science conducted by the Biological and Environmental Research (BER) office at the U.S. Department of Energy (DOE). This report reviews BER’s computing needs and their importance for solving some of the toughest problems in BER’s portfolio. BER’s impact on science has been transformative. Mapping the human genome, including the U.S.-supported international Human Genome Project that DOEmore » began in 1987, initiated the era of modern biotechnology and genomics-based systems biology. And since the 1950s, BER has been a core contributor to atmospheric, environmental, and climate science research, beginning with atmospheric circulation studies that were the forerunners of modern Earth system models (ESMs) and by pioneering the implementation of climate codes onto high-performance computers. See http://exascaleage.org/ber/ for more information.« less
Translations on Eastern Europe, Scientific Affairs, Number 542.
1977-04-18
transplanting human tissue has not as yet been given a final juridical approval like euthanasia, artificial insemination , abortion, birth control, and others...and data teleprocessing. This computer may also be used as a satellite computer for complex systems. The IZOT 310 has a large instruction...a well-known truth that modern science is using the most modern and leading technical facilities—from bathyscaphes to satellites , from gigantic
[Science in the crosshairs of enlightenment. Significance of hypothetical thinking].
Wieland, Wolfgang
2011-01-01
To further the enlightenment primarily or even only by means of science was the hope of most representatives of the movement of the enlightenment which gave its name to a whole period of European cultural history. Only a few of its representatives, like Montesquieu and Rousseau, doubted for good reasons, whether and how the goals of the enlightenment can be reached at all by the means of science alone. In his Discours préliminaires to the Encyclopédie D'Alembert still wanted to limit science proper to the narrower field of those kinds of research which were strictly based on observations and calculations alone. In this way he remained committed to Descartes' ideal method of receiving authentic knowledge only by deduction from evident axioms or fundamental theorems. Pascal's casual discovery of the calculation of probabilities allowed to apply mathematics on the hidden laws of the apparent casualties of the human life world. Bacon's project of empirical science as a rational and methodological art of conducting experiments could replace the methodological ideal of science more geometrico. Lichtenberg's refined sensibility for the subjunctive linguistic forms of hypothetical thinking indicates a new understanding of inventing and testing hypotheses as the two most important methods of the experimental sciences when compared to the formal sciences of logic and mathematics. Whoever is studying the history of science of modern times in the cross wire of the enlightenment, will realize soon that science has always been in need of being illuminated about its own chances, risks and side effects. The project of enlightenment through science had to be complemented by the project of an enlightenment about science right from its beginning. Because of the implicit risks and side effects the project of enlightenment has to be enlightenment despite of science and because of science. On the one hand, as a special form of human practice the sciences are directed towards theoretical goals and practical purposes such that their agents cannot be conscious of all aspects of their practices in advance and reflect about all of them at the same time. On the other hand, the agents of such scientific practices are rarely trained, to analyze the cognitive implications of their own actions with the conceptual means of philosophical analysis. Furthermore, the agents of scientific research are hardly able to foresee the theoretical results of their research or even predict the chances and risks of eventual applications with the methods of the social sciences. Despite of the chastening experiences with the ambivalence of the theoretical results and practical applications of the modern sciences and despite of the illuminating effects of modern history and theory of science, contemporary scientists are not fully conscious yet of what they are really doing and what science really is. The contemplative ideal of scientific investigations for their own sake has been replaced in modern times by the practical ideal of scientific research in the service of humanity. The emancipation of the modem sciences from philosophical authorities and religious institutions has freed at first the sciences from alien restrictions to their self-chosen objects and purposes of research. However, the increasing economic constraints and the political dependences prevented even more so that scientists could realize the autonomy which the representatives of the enlightenment had been hoping for. KANT defined the goal of enlightenment as "man's emergence from his self-incurred immaturity". Quoting HORACE'S Sapere aude! he appealed to the courage of his comrades to use their own reason without the guidance of others in philosophical and especially in religious matters. Intellectual maturity as the proper goal of the enlightenment remained to be an undelivered promise despite of the emancipation of the sciences from traditional philosophical authorities and religious institutions. It is not only arguable whether or not enlightenment in this understanding is possible for most people, but also whether it is even desirable for all people considering the implicit ambivalence of the modern sciences. Kant's main philosophical works can be adequately interpreted as the first and unique attempt to understand the potential of the cognitive capacities of human beings about the chances and risks of enlightenment itself by means of a critical inquiry. This holds especially for the practical fruits of the enlightenment as, e.g., with respect to the emancipation from superstition and the appeal to religious tolerance, to the republican idea of the state and the establishment of civil and human rights, to the humanization of the law and execution of legal penalty as well as the unalienable rights of each individual human being.
Pycortex: an interactive surface visualizer for fMRI
Gao, James S.; Huth, Alexander G.; Lescroart, Mark D.; Gallant, Jack L.
2015-01-01
Surface visualizations of fMRI provide a comprehensive view of cortical activity. However, surface visualizations are difficult to generate and most common visualization techniques rely on unnecessary interpolation which limits the fidelity of the resulting maps. Furthermore, it is difficult to understand the relationship between flattened cortical surfaces and the underlying 3D anatomy using tools available currently. To address these problems we have developed pycortex, a Python toolbox for interactive surface mapping and visualization. Pycortex exploits the power of modern graphics cards to sample volumetric data on a per-pixel basis, allowing dense and accurate mapping of the voxel grid across the surface. Anatomical and functional information can be projected onto the cortical surface. The surface can be inflated and flattened interactively, aiding interpretation of the correspondence between the anatomical surface and the flattened cortical sheet. The output of pycortex can be viewed using WebGL, a technology compatible with modern web browsers. This allows complex fMRI surface maps to be distributed broadly online without requiring installation of complex software. PMID:26483666
NASA Technical Reports Server (NTRS)
Atwell, William; Koontz, Steve; Normand, Eugene
2012-01-01
In this paper we review the discovery of cosmic ray effects on the performance and reliability of microelectronic systems as well as on human health and safety, as well as the development of the engineering and health science tools used to evaluate and mitigate cosmic ray effects in earth surface, atmospheric flight, and space flight environments. Three twentieth century technological developments, 1) high altitude commercial and military aircraft; 2) manned and unmanned spacecraft; and 3) increasingly complex and sensitive solid state micro-electronics systems, have driven an ongoing evolution of basic cosmic ray science into a set of practical engineering tools (e.g. ground based test methods as well as high energy particle transport and reaction codes) needed to design, test, and verify the safety and reliability of modern complex electronic systems as well as effects on human health and safety. The effects of primary cosmic ray particles, and secondary particle showers produced by nuclear reactions with spacecraft materials, can determine the design and verification processes (as well as the total dollar cost) for manned and unmanned spacecraft avionics systems. Similar considerations apply to commercial and military aircraft operating at high latitudes and altitudes near the atmospheric Pfotzer maximum. Even ground based computational and controls systems can be negatively affected by secondary particle showers at the Earth's surface, especially if the net target area of the sensitive electronic system components is large. Accumulation of both primary cosmic ray and secondary cosmic ray induced particle shower radiation dose is an important health and safety consideration for commercial or military air crews operating at high altitude/latitude and is also one of the most important factors presently limiting manned space flight operations beyond low-Earth orbit (LEO).
Charlton, Bruce G
2006-01-01
Until recently it seemed that the continued expansion of scientific ways of thinking was destined to render religion extinct and spirituality unfeasible. But the example of the United States disproves this, since America is the most successful scientific nation of this era, church-going remains strong and New Age spiritualities are thriving. Therefore, despite the obvious conflicts; science, religion and spirituality are essentially compatible. Future science will continue to win territory from religion since its validation procedures are more objective and reliable. However, churches can survive and grow by dropping those aspects of doctrine which clash with science, and expanding their social functions. The fast-growing US 'mega-church' movement shows the way - since these organizations are minimally dogmatic but instead provide a family-orientated and morally-cohesive social milieu. Like organized religion, New Age spirituality comes into conflict with science when it makes incredible or bizarre factual claims. However, in practice modern spirituality is based on subjective evaluations which do not clash with the procedures of science. Indeed, the reliance upon individual, emotion-based evaluations (e.g., 'my truth', 'whatever works for you') renders New Age spirituality 'science-proof', and has enabled it to expand massively in an age of science. Science, religion and spirituality perform different functions in the modern world, and their relationship is therefore one of mutual-dependence. Borderline disputes will inevitably occur, but as part of a broader context of complementarity. Science, 'social' churches and New Age spirituality all have a bright future.
Hockberger, Philip E.; Miller, Richard J.
2005-01-01
There are compelling reasons for teaching a philosophy of science course to undergraduate life science students. The main reason is to help them understand that modern science is not based upon a single, consistent philosophical system; nor is it based upon common sense, or a method, set of rules or formulas that can be used to make unerring predictions. Rather, science is a dynamic process that is constantly being modified and refined to reflect and encompass an ever-expanding set of hypotheses, observations, and theories. To illustrate these points, we developed a course that examined the history and philosophical underpinnings of modern science, and we discussed famous experiments that challenged the prevailing norm and led to Kuhnian revolutions in scientific thought. Building upon this knowledge, students investigated how different philosophical systems address controversial social issues in the biological sciences. They examined the teaching of intelligent design and creationism in public schools, the implications of legalized abortion and physician-assisted suicide, the potential impact of DNA fingerprinting on human rights and racism, the promise and pitfalls of stem cell research, and the neurobiological basis of consciousness and its relevance to mental health therapies and the animal rights movement. We believe undergraduate life science students should be exposed to these issues and have an opportunity to develop informed opinions about them before they graduate from college. Exploration of such topics will help them become better prepared for the inevitable public debates that they will face as science educators, researchers, and leaders of society. PMID:21289866
Hockberger, Philip E; Miller, Richard J
2005-09-01
There are compelling reasons for teaching a philosophy of science course to undergraduate life science students. The main reason is to help them understand that modern science is not based upon a single, consistent philosophical system; nor is it based upon common sense, or a method, set of rules or formulas that can be used to make unerring predictions. Rather, science is a dynamic process that is constantly being modified and refined to reflect and encompass an ever-expanding set of hypotheses, observations, and theories. To illustrate these points, we developed a course that examined the history and philosophical underpinnings of modern science, and we discussed famous experiments that challenged the prevailing norm and led to Kuhnian revolutions in scientific thought. Building upon this knowledge, students investigated how different philosophical systems address controversial social issues in the biological sciences. They examined the teaching of intelligent design and creationism in public schools, the implications of legalized abortion and physician-assisted suicide, the potential impact of DNA fingerprinting on human rights and racism, the promise and pitfalls of stem cell research, and the neurobiological basis of consciousness and its relevance to mental health therapies and the animal rights movement. We believe undergraduate life science students should be exposed to these issues and have an opportunity to develop informed opinions about them before they graduate from college. Exploration of such topics will help them become better prepared for the inevitable public debates that they will face as science educators, researchers, and leaders of society.
Four windows on modern science in flavor and fragrance chemistry at Firmenich.
Starkenmann, Christian; Wünsche, Laurent
2012-01-01
Four young scientists, recently hired by Firmenich, presented lectures at the University of Geneva. The objective was to stimulate young students to choose sciences. The challenges in the discovery, synthesis, or extraction of new molecules were presented, as well as the structure-activity relationships of human odorant receptors.
A Careful Look at Modern Case Selection Methods
ERIC Educational Resources Information Center
Herron, Michael C.; Quinn, Kevin M.
2016-01-01
Case studies appear prominently in political science, sociology, and other social science fields. A scholar employing a case study research design in an effort to estimate causal effects must confront the question, how should cases be selected for analysis? This question is important because the results derived from a case study research program…
ERIC Educational Resources Information Center
Wang, Lin
2013-01-01
Background: Cultural-historical activity theory is an important theory in modern psychology. In recent years, it has drawn more attention from related disciplines including information science. Argument: This paper argues that activity theory and domain analysis which uses the theory as one of its bases could bring about some important…
First Encounters of the Close Kind: The Formation Process of Airline Flight Crews
1987-01-01
process and aircrew performance, Foushee notes an interesting etymological parallel: "Webster’s New Collegiate Dictionary (1961) defines cockpit as ’a...here combines applications from the physical science of chemistry and the modern science of computers. In chemistry , a shell is a space occupied by
ERIC Educational Resources Information Center
Pramling, Niklas; Saljo, Roger
2007-01-01
The article reports an empirical study of how authors in popular science magazines attempt to render scientific knowledge intelligible to wide audiences. In bridging the two domains of "popular" and "scientific" knowledge, respectively, metaphor becomes central. We ask the empirical question of what metaphors are used when communicating about…
ERIC Educational Resources Information Center
Pennsylvania State Dept. of Education, Harrisburg. Bureau of Curriculum Services.
This document is a report on a course in nuclear science for the high school curriculum. The course is designed to provide a basic but comprehensive understanding of the atom in the light of modern knowledge, and to show how people attempt to harness the tremendous energy liberated through fission and fusion reactions. The course crosses what are…
ERIC Educational Resources Information Center
Batt, John
1990-01-01
The pedagogical power of narrative has been much underestimated. Master cases using narrative or electronic narrative significantly enhance learning. The modern "bite"-oriented casebook does not make effective use of narrative materials or meet neurological needs. A useful approach might combine master cases, electronic narrative, high-quality…
Towards a Post-Modern Science Education Curriculum-Discourse: Repetition of a Dream Catcher.
ERIC Educational Resources Information Center
Blades, David W.
1997-01-01
Discusses Kierkegaard's idea of repetition as a dynamic conversation between groups that reveals possible changes in a discourse. Describes an instructor's experiences imparting a science education methods course in a Native American school in Saskatchewan, highlighting the conversation between the instructors' past and Native American culture.…
Modernity's "Other" and the Transformation of the University
ERIC Educational Resources Information Center
Richards, Howard
2015-01-01
In a dehumanized world in which meanings derived from dominant liberal world views are tacitly assumed to exist objectively and to impose themselves on discourses and on minds quite independently of who expresses them, this paper endorses what Immanuel Wallerstein calls "unthinking social science" and then rethinking social science in…
Catalyzing curriculum evolution in graduate science education.
Gutlerner, Johanna L; Van Vactor, David
2013-05-09
Strategies in life science graduate education must evolve in order to train a modern workforce capable of integrative solutions to challenging problems. Our institution has catalyzed such evolution through building a postdoctoral Curriculum Fellows Program that provides a collaborative and scholarly education laboratory for innovation in graduate training. Copyright © 2013 Elsevier Inc. All rights reserved.
Horban', A Ie
2012-01-01
The article analyzes some factors that complicate the availability of scholarly communication professionals of health of Ukraine to introduce the achievements of medical science into practice. Improved access will help the implementation created by the Ministry of Health of Ukraine United e-data-processing system.
Puerto Ricans in Science and Biomedicine: Report of a Conference.
ERIC Educational Resources Information Center
American Association for the Advancement of Science, Washington, DC.
Twelve divisions and institutes of the National Institutes of Health (NIH) cosponsored this conference to examine the barriers to participation of Puerto Ricans in the United States to careers in science and biomedicine. Areas addressed during the conference included: (1) perspectives from the NIH; (2) historical and modern perspectives of…
A Review of Mindfulness Research Related to Alleviating Math and Science Anxiety
ERIC Educational Resources Information Center
Ahmed, Khalique; Trager, Bradley; Rodwell, Megan; Foinding, Linda; Lopez, Cori
2017-01-01
Defined as nonjudgmentally paying attention to the present moment (Kabat-Zinn, 1994), modern-day mindfulness has gained considerable attention in various science fields. However, despite this growth, many uses of mindfulness remain unexplored. In this paper, we focus on the application of mindfulness programs in educational settings, specifically…
ERIC Educational Resources Information Center
Matthews, Kelly E.; Adams, Peter; Goos, Merrilyn
2010-01-01
Modern biological sciences require practitioners to have increasing levels of knowledge, competence, and skills in mathematics and programming. A recent review of the science curriculum at the University of Queensland, a large, research-intensive institution in Australia, resulted in the development of a more quantitatively rigorous undergraduate…
ERIC Educational Resources Information Center
Li, Xiaolan
2013-01-01
Asian Americans have been recognized as the "model minority" in the United States since the 1960s. Students from Asian countries are winning in international competitions, especially in science and mathematics. Modern Western scholars working within the constructivist learning theory advocate malleable intelligence and effort, which…
Preparing High School Students for the Interdisciplinary Nature of Modern Biology
ERIC Educational Resources Information Center
Nagle, Barbara
2013-01-01
Fostering interdisciplinary learning in biology will require significant changes in the way one teaches science to K-12 students. The perspective on interdisciplinary biology teaching and learning in this essay is based on the author's experiences as a former research cell biologist, high school science teacher, and developer of secondary science…
A Guided Inquiry on Hubble Plots and the Big Bang
ERIC Educational Resources Information Center
Forringer, Ted
2014-01-01
In our science for non-science majors course "21st Century Physics," we investigate modern "Hubble plots" (plots of velocity versus distance for deep space objects) in order to discuss the Big Bang, dark matter, and dark energy. There are two potential challenges that our students face when encountering these topics for the…
Math and Science 1967-68, Volume II, Project "Interweave", End of Project Report.
ERIC Educational Resources Information Center
East Maine School District 63, Niles, IL.
This document contains materials given to teachers participating in an inservice program aimed at helping them teach topics in modern mathematics and science. The mathematics portion of the project was a series of 11 television programs introducing the topics of equations, number lines, operations, functions, centimeter blocks, lattices, brackets,…
Attitude Change When Presenting Science Museum Visitors with Risk-Benefit Information
ERIC Educational Resources Information Center
Phelan, Siëlle; Specht, Inga; Schnotz, Wolfgang; Lewalter, Doris
2017-01-01
Visitors to modern science museums are likely to encounter exhibitions presenting conflicting information, such as risks and benefits of new scientific developments. Such exhibitions encourage visitors to reflect upon different sides of a story and to form or adjust their attitudes toward the topic on display. However, there is very little…
Locating the Problem Within: Race, Learning Disabilities, and Science
ERIC Educational Resources Information Center
Freedman, Justin E.; Ferri, Beth A.
2017-01-01
Background/Context: In this paper we draw on an intersectional critical framework to analyze and account for the simultaneous interworkings of race and dis/ability. Specifically, we draw on this framework to examine two aims of modern science: (a) to identify distinct biological markers of race and (b) to locate biological and neurological origins…
A brief history of the most remarkable numbers e, i and γ in mathematical sciences with applications
NASA Astrophysics Data System (ADS)
Debnath, Lokenath
2015-08-01
This paper deals with a brief history of the most remarkable Euler numbers e, i and γ in mathematical sciences. Included are many properties of the constants e, i and γ and their applications in algebra, geometry, physics, chemistry, ecology, business and industry. Special attention is given to the growth and decay phenomena in many real-world problems including stability and instability of their solutions. Some specific and modern applications of logarithms, complex numbers and complex exponential functions to electrical circuits and mechanical systems are presented with examples. Included are the use of complex numbers and complex functions in the description and analysis of chaos and fractals with the aid of modern computer technology. In addition, the phasor method is described with examples of applications in engineering science. The major focus of this paper is to provide basic information through historical approach to mathematics teaching and learning of the fundamental knowledge and skills required for students and teachers at all levels so that they can understand the concepts of mathematics, and mathematics education in science and technology.
Diffusion of knowledge and globalization in the web of twentieth century science
NASA Astrophysics Data System (ADS)
Naumis, G. G.; Phillips, J. C.
2012-08-01
Scientific communication is an essential part of modern science: whereas Archimedes worked alone, Newton (correspondence with Hooke, 1676) acknowledged that “If I have seen a little further, it is by standing on the shoulders of Giants.” How is scientific communication reflected in the patterns of citations in scientific papers? How have these patterns changed in the 20th century, as both means of communication and individual transportation changed rapidly, compared to the earlier post-Newton 18th and 19th centuries? Here we discuss a diffusive model for scientific communications, based on a unique 2009 scientometric study of 25 million papers and 600 million citations that encapsulates the epistemology of modern science. The diffusive model predicts and explains, using no adjustable parameters, a surprisingly universal internal structure in the development of scientific research, which is essentially constant across the natural sciences, but which because of globalization changed qualitatively around 1960. Globalization corresponds physically to anomalous diffusion, which has been observed near the molecular glass transition, and can enhance molecular diffusion by factors as large as 100.
On being a (modern) scientist: risks of public engagement in the UK interspecies embryo debate.
Porter, James; Williams, Clare; Wainwright, Steven; Cribb, Alan
2012-12-01
In 2006, a small group of UK academic scientists made headlines when they proposed the creation of interspecies embryos - mixing human and animal genetic material. A public campaign was fought to mobilize support for the research. Drawing on interviews with the key scientists involved, this paper argues that engaging the public through communicating their ideas via the media can result in tensions between the necessity of, and inherent dangers in, scientists campaigning on controversial issues. Some scientists believed that communicating science had damaged their professional standing in the eyes of their peers, who, in turn, policed the boundaries around what they believed constituted a "good" scientist. Tensions between promoting "science" versus promotion of the "scientist;" engaging the public versus publishing peer-reviewed articles and winning grants; and building expectations versus overhyping the science reveal the difficult choices scientists in the modern world have to make over the potential gains and risks of communicating science. We conclude that although scientists' participation in public debates is often encouraged, the rewards of such engagement remain. Moreover, this participation can detrimentally affect scientists' careers.
The Dilemma of Science and Morals
Stent, Gunther S.
1974-01-01
The conflicts between science and morals which still continue to arise despite the apparent hegemony of atheistic scientism over traditional Judeo-Christianity in the twentieth century reflect a basic contradiction in the metaphysical foundation of Western lives. As was set forth by Machiavelli, the contradiction inherent in Western ethics is that it is based on the simultaneous belief in both objectively valid moral truths and purely relative values of communal purpose. The achievements of twentieth century science have intensified these contradictions. Modern physics has put in question the validity of its own metaphysical basis, namely the belief in Natural Law, and modern biology has been unable to come to terms with the Cartesian dualism of body and soul. By contrast, Chinese lives are comparatively free of these contradictions, being founded on the philosophies of Confucianism and Taoism, to which the concepts of objectively valid truth or Natural Law are foreign. Recent developments in Western attitudes regarding science and morals can be interpreted as a movement away from the traditional belief in absolute truths towards a Chinese relativism. PMID:4531410
Strätling, M
1997-01-01
In 1769/70 the Scottish physician and philosopher John Gregory (1724-1773) published Lectures On the Duties and Qualifications of a Physician. Gregory developed a truely ethical - in the sense of (moral) philosophically based - system of conduct in a physician. His concept of practising and teaching ethics in medicine and science is established on a very broad footing: combining Bacon's (1561-1626) general philosophy of nature and science with both, the general, likewise empirically based moral philosophy of his personal friend David Hume (1711-1776), and with the principles upheld by the so-called Common-Sense Philosophy. His Lectures had - particularly via the famous Code of Medical Ethics of Thomas Percival (1740-1804) - a decisive influence on our contemporary concepts of ethics in medicine and science. John Gregory is, without doubt, one of the most important and certainly the most comprehensive among the founders of what is known today as modern Bioethics.
Natural laminar flow experiments on modern airplane surfaces
NASA Technical Reports Server (NTRS)
Holmes, B. J.; Obara, C. J.; Yip, L. P.
1984-01-01
Flight and wind-tunnel natural laminar flow experiments have been conducted on various lifting and nonlifting surfaces of several airplanes at unit Reynolds numbers between 0.63 x 10 to the 6th power/ft and 3.08 x 10 to the 6th power/ft, at Mach numbers from 0.1 to 0.7, and at lifting surface leading-edge sweep angles from 0 deg to 63 deg. The airplanes tested were selected to provide relatively stiff skin conditions, free from significant roughness and waviness, on smooth modern production-type airframes. The observed transition locations typically occurred downstream of the measured or calculated pressure peak locations for the test conditions involved. No discernible effects on transition due to surface waviness were observed on any of the surfaces tested. None of the measured heights of surface waviness exceeded the empirically predicted allowable surface waviness. Experimental results consistent with spanwise contamination criteria were observed. Large changes in flight-measured performance and stability and control resulted from loss of laminar flow by forced transition. Rain effects on the laminar boundary layer caused stick-fixed nose-down pitch-trim changes in two of the airplanes tested. No effect on transition was observed for flight through low-altitude liquid-phase clouds. These observations indicate the importance of fixed-transition tests as a standard flight testing procedure for modern smooth airframes.
Surface pollen and its relationship to vegetation in the Zoige Basin, eastern Tibetan Plateau
NASA Astrophysics Data System (ADS)
Li, Furong; Zhao, Yan; Sun, Jinghui; Zhao, Wenwei; Guo, Xiaoli; Zhang, Ke
2011-09-01
We use a data set of 23 surface pollen samples from moss polsters in the Zoige Basin to explore the relationship between modern pollen assemblages and contemporary vegetation patterns. The surface pollen samples spanned four types of plant communities: Carex muliensis marsh, Stipa and Kobresia meadow, Carex-dominated forb meadow and Sibiraea angustata scrub. Principal-components analysis (PCA) was used to determine the relationships between modern pollen and vegetation and environmental variables. The results show that the pollen assemblages of surface moss samples generally reflect the features of the modern vegetation, basically similar in the vegetation types and the dominant genera; however, they don't show a very clear distinction between different communities. Our results also demonstrate that pollen representation of different families or genus varied. Some tree taxa, such as Pinus and Betula, and herb types, such as Artemisia are over-represented, while Asteraceae, Ranunculaceae and Cyperaceae are moderately represented, and Poaceae and Rosaceae are usually under-represented in our study region. PCA results indicate that the distribution of vegetation in the Zoige Basin is mainly controlled by precipitation and altitude.
Network Interdependency Modeling for Risk Assessment on Built Infrastructure Systems
2013-10-01
does begin to address infrastructure decay as a source of risk comes from the Department of Homeland Security (DHS). In 2009, the DHS Science and...network of connected edges and nodes. The National Research Council (2005) reported that the study of networks as a science and applications of...principles from this science are still in its early stages. As modern infrastructures have become more interlinked, knowledge of an infrastructure’s network
Oil Pollution in the Marine Environment: A 35 Year Perspective of Communicating Broadly
NASA Astrophysics Data System (ADS)
Farrington, J. W.; Tripp, B. W.
2006-12-01
Large accidental oil spills such as the tanker Torrey Canyon off the United Kingdom in 1967 and the Santa Barbara Oil Well Blowout of 1969, and attendant publicity, demonstrated that oil spills could be messy, have adverse effects on birds and other wildlife by oiling, and capture the public attention. However, careful scientific study of oil spills using modern biological sciences methods and modern geochemical analyses were needed to overcome the "out of sight, out of mind" conclusion that all was well when visible oil slicks on the water's surface disappeared. Documenting the long lasting persistence of chemicals from spilled oils and attendant biological effects began with a few dedicated scientists who not only published their findings in the scientific literature, but also made them known in testimony before Congress, in interviews with the press and publishing in magazines designed to communicate science to the public. They served as examples for our own efforts, and those of colleagues, to communicate the magnitude of the chronic input of petroleum compounds to the oceans as a result of the every day use of fossil fuels and how this input was quantitatively much larger than inputs from accidental spills and resulted in contamination of coastal areas near urban harbors and at offshore dumpsites. Over a period of the past thirty years mainly during 1971-2000, we used a combination of participation in review and advisory panels and committees, testimony before Congress, letters to government officials, public lectures, articles in the lay press, print and electronic media interviews, and museum exhibits to communicate the message from our scientific papers in ways that could be understood by the general public and acted on by their elected and appointed officials. Lessons learned from these efforts will be summarized
ERIC Educational Resources Information Center
Joint Economic Committee, Washington, DC.
The politics and performance of the post-Mao Chinese government (1976 to the present) in the areas of foreign economic relations and Sino-American normalization are examined. Realizing that the four modernizations program for bringing up to date agriculture, industry, science and technology, and defense, initiated by Mao's successors in 1977, was…
Implications of Modern Decision Science for Military Decision-Support Systems
2005-01-01
B. Another major challenge is learning how to exploit the technology of modern recreational games , including massively parallel online activities... online .7 In preparing this monograph, we also concluded that the most valuable aspects of game theory for high-level decision support are the basic...Philosophy, online at http://plato.stanford.edu/ entries/ game -theory. 8 In one example that still rankles, some Cold War game theorists (and military
Optimizing Engineering Tools Using Modern Ground Architectures
2017-12-01
Considerations,” International Journal of Computer Science & Engineering Survey , vol. 5, no. 4, 2014. [10] R. Bell. (n.d). A beginner’s guide to big O notation...scientific community. Traditional computing architectures were not capable of processing the data efficiently, or in some cases, could not process the...thesis investigates how these modern computing architectures could be leveraged by industry and academia to improve the performance and capabilities of
ERIC Educational Resources Information Center
Podoski, Kazimierz
This paper, one of several on the theme of economy and culture in the politics of nation building, was written for the Ninth World Congress of the International Political Science Association. The author's aim is to indicate the role of modern education policy in the world's socio-economic development, especially in developing countries. Access to…
New Hydrophobic IOL Materials and Understanding the Science of Glistenings.
Tetz, Manfred; Jorgensen, Matthew R
2015-01-01
An introduction to the history of intraocular lenses (IOLs) is given, leading up to modern hydrophobic examples. The roles of hydrophobicity, hygroscopy, materials chemistry, and edge design are discussed in the context of IOLs. The four major types of IOL materials are compared in terms of their chemistry and biocompatibility. An example of a modern "hydrophobic" acrylic polymer with higher water content is discussed in detail.
A Trial of Physics Education for Liberal Arts Students Using the Advancing Physics
NASA Astrophysics Data System (ADS)
Ochi, Nobuaki
A new approach to physics education for liberal arts students was performed in a Japanese university. The Advancing Physics, a modern textbook developed by the Institute of Physics, was employed as the base of this approach. The textbook includes a variety of modern topics about science and technology with beautiful pictures, while the use of math is kept to a minimum. From results of the questionnaire after one-semester lectures, it turned out that students' interest in science and technology rose substantially. On the other hand, there were some difficulties in lecturing, mathematical techniques in particular, which should be modified by the next trial. This result is an indication of a potential of the Advancing Physics for liberal arts education.
Wang, Jessica
2010-01-01
Recent scholarship has frequently emphasized modern states' use of social science to impose universalized conceptions of rationality and order upon diverse, highly localized settings. The New Deal era experiences of William M. Leiserson and David J. Saposs, however, provide an analytical alternative. As students of the pioneering labor economist John R. Commons, Leiserson and Saposs sought to create mechanisms for state oversight of industrial labor relations that recognized local practices and arrangements. Although their approach failed to take hold within the National Labor Relations Board, localized institutional and political contingencies, and not a hegemonic modernism, account best for their frustrated aspirations in the late 1930s. © 2010 Wiley Periodicals, Inc.
What does Islam say about dieting?
Hossain, Mohammad Zakir
2014-08-01
Dieting is very important to maintain a healthy and peaceful life. Today, most of the health problems are related with dieting. Thus, the modern health science recommends a number of suggestions regarding dieting for better health such as learning the five basic food groups (grains, vegetables, fruits, dairy, and meat); eating three times a day; decreasing the amount of fat; increasing the amount of fruits, vegetables and grains; including an adequate amount of iron; and avoiding excessive rich food, salt, sugar, and fat. Religion can also play a vital role for our good health and lifestyle. The main concern of this paper was to present an analytical justification regarding what Islam as a religion advocates about dieting along with the modern food and nutrition sciences.
García, Susana V
2007-01-01
In this study we analyze the organization of natural science teaching within the Argentinian school context starting with teaching practices and material support in the late XIX century. By that time, school staff and teachers fostered modernization and nationalization of teaching by using collections with national issues and the foundation of museums within the schools. In particular, we examine the official debates over the mineralogical collections offered for sale by the naturalist Enrique de Carlés, and the "school museums" by professors Pedro Scalabrini and Guillermo Navarro. These account for the tension between searching for modern didactic materials associated with foreign models, and the importance of counting on elements that represented the country nature and industry.
Enabling Students to Develop a Scientific Mindset
NASA Astrophysics Data System (ADS)
Kalman, Calvin
2010-02-01
This paper is centered on getting students to understand the nature of science (NOS) by considering historical material in relation to modern philosophers of science. This paper incorporates the methodology of contrasting cases in the calculus-based introductory physics course on optics and modern physics. Students study one philosopher all semester as a group project and report regularly on how their philosopher would view the subject matter of the course. Almost all of the students were able to argue successfully on the final examination about all three philosophers. Students become aware that the same textual material can be viewed in a variety of ways. The answers that students give about the NOS have become clearer at the end of the course.
Bruteau's philosophy of spiritual evolution and consciousness: foundation for a nursing cosmology.
McCarthy, M Patrice
2011-01-01
The ontological foundation of the modern world view based on irreconcilable dichotomies has held hegemonic status since the dawn of the scientific revolution. The post-modern critique has exposed the inadequacies of the modern perspective and challenged the potential for any narrative to adequately ground a vision for the future. This paper proposes that the philosophy of Beatrice Bruteau can support a foundation for a visionary world view consistent with nursing's respect for human dignity and societal health. The author discusses the key concepts of Bruteau's perspective on societal evolution based on an integrated study of science, mathematics, religion, and philosophy. This perspective is discussed as a foundation to move beyond the dichotomous influence of the modern world view and the deconstructive critique of the post-modern perspective. The author suggests spiritual evolution and a participatory consciousness as an ontological foundation for a cosmology congruent with nursing's social mandate. © 2010 Blackwell Publishing Ltd.
Li, Xiao Ying; Li, Ying; Zhang, Yao; Kang, Wan Li; Zhao, Li Ping; Ding, Peng Ju; Dai, Wen Tao; Huang, Hai Rong; Huang, Yan Feng; Li, Wei Min
2015-07-01
Our study was to investigate the epidemiological characteristics of M.tuberculosis from a national tuberculosis referral center in China. All strains isolated from TB patients, were genotyped by the RD105 deletion, 8 and 51 SNP loci and VNTR. The high differentiation SNPs of modern Beijing strains were analyzed for protein function and structure. 413 M. tuberculosis were included. Of 379 Beijing lineage M. tuberculosis, 'modern' and 'ancient' strains respectively represented 85.5% (324/379) and 14.5% (55/379). Rv2494 (V48A) and Rv0245 (S103F) were confirmed as high differentiation SNPs associated with modern strains. In a word, Modern Beijing lineage M.tuberculosis was dominant and the structural models suggested that modern sub-lineage may more easily survive in 'extreme' host condition. Copyright © 2015 The Editorial Board of Biomedical and Environmental Sciences. Published by China CDC. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tong, Y.Y.; Rice, C.; Godbout, N.
1999-04-07
Due to its fundamental importance in heterogeneous catalysis, as well as in electrocatalysis, the chemisorption and reaction of CO on transition metal surfaces has been an important focus of modern surface science. Here, the NMR spectroscopy of {sup 13}CO adsorbed onto transition metal surfaces has been shown to be a very powerful probe of molecular structure and dynamics of CO itself, as well as a probe of the electronic properties of the transition metal surfaces onto which it is adsorbed. The authors have investigated the {sup 195}Pt and {sup 13}C nuclear magnetic resonance (NMR) spectroscopy of clean-surface platinum catalysts andmore » of CO chemisorbed onto Pt catalysts surfaces. They use Knight shift, relaxation, and J-coupling data to deduce information about the Fermi level local density of states (E{sub f}-LDOS) at catalyst surfaces. There is a linear correlation between the Knight shifts of chemisorbed CO and the clean surface E{sub f}-LDOS of platinum onto which the CO is bound, as determined by {sup 13}C and {sup 195}Pt NMR. The correlation amounts to {approximately} 12 ppm/Ry{sup {minus}1} {center_dot} atom{sup {minus}1}, the same as that which can be deduced for CO on palladium, as well as from the electrode potential dependence of {sup 13}C Knight shifts and infrared vibrational frequencies, {nu}{sub CO}, and the relationship between {nu}{sub CO} and the E{sub f}-LDOS at clean platinum surfaces. The ability to now directly relate meal and adsorbate electronic properties opens up new avenues for investigating metal-ligand interactions in heterogeneous catalysis and electrocatalysis.« less
Using NASA Space Imaging Technology to Teach Earth and Sun Topics
NASA Astrophysics Data System (ADS)
Verner, E.; Bruhweiler, F. C.; Long, T.
2011-12-01
We teach an experimental college-level course, directed toward elementary education majors, emphasizing "hands-on" activities that can be easily applied to the elementary classroom. This course, Physics 240: "The Sun-Earth Connection" includes various ways to study selected topics in physics, earth science, and basic astronomy. Our lesson plans and EPO materials make extensive use of NASA imagery and cover topics about magnetism, the solar photospheric, chromospheric, coronal spectra, as well as earth science and climate. In addition we are developing and will cover topics on ecosystem structure, biomass and water on Earth. We strive to free the non-science undergraduate from the "fear of science" and replace it with the excitement of science such that these future teachers will carry this excitement to their future students. Hands-on experiments, computer simulations, analysis of real NASA data, and vigorous seminar discussions are blended in an inquiry-driven curriculum to instill confident understanding of basic physical science and modern, effective methods for teaching it. The course also demonstrates ways how scientific thinking and hands-on activities could be implemented in the classroom. We have designed this course to provide the non-science student a confident basic understanding of physical science and modern, effective methods for teaching it. Most of topics were selected using National Science Standards and National Mathematics Standards that are addressed in grades K-8. The course focuses on helping education majors: 1) Build knowledge of scientific concepts and processes; 2) Understand the measurable attributes of objects and the units and methods of measurements; 3) Conduct data analysis (collecting, organizing, presenting scientific data, and to predict the result); 4) Use hands-on approaches to teach science; 5) Be familiar with Internet science teaching resources. Here we share our experiences and challenges we face while teaching this course.
Introductory science and mathematics education for 21st-Century biologists.
Bialek, William; Botstein, David
2004-02-06
Galileo wrote that "the book of nature is written in the language of mathematics"; his quantitative approach to understanding the natural world arguably marks the beginning of modern science. Nearly 400 years later, the fragmented teaching of science in our universities still leaves biology outside the quantitative and mathematical culture that has come to define the physical sciences and engineering. This strikes us as particularly inopportune at a time when opportunities for quantitative thinking about biological systems are exploding. We propose that a way out of this dilemma is a unified introductory science curriculum that fully incorporates mathematics and quantitative thinking.
A perspective on the future public health: an integrative and ecological framework.
Hanlon, Phil; Carlisle, Sandra; Hannah, Margaret; Lyon, Andrew; Reilly, David
2012-11-01
Modernity has brought health and social benefits to many societies, not least through the insights of science and technology. Yet, modernity has also been associated with a number of cultural characteristics, such as materialism, individualism, consumerism and an addiction to continuing economic growth, that seem potentially harmful to health and well-being and inimical to social equity. There is an emerging body of evidence that suggests that, in the affluent world, some of our most intractable contemporary health problems are, in fact, the product of modernity. This suggests that the tools of modernity (its science and its technology) are ill suited to finding solutions. This poses a problem for public health, as this discipline is itself a product of modernity and thus appears ill equipped to deal with the conditions and challenges of a rapidly changing and unstable world, one where the very sustainability of human society is now in question. This paper argues that a new paradigm for the future public health is needed. It presents an integrative, ecological framework as a starting point from which public health might grasp the opportunities for change inherent in the 'modern' threats we face. It suggests a number of features that will need to underpin such a paradigm shift in thinking and practice. However, as this paper is written from the perspective of an affluent, developed society (albeit from a perspective that is explicitly critical of the goals, trends and values that seem to characterise such societies), other voices from other places need to be heard. We hope that others will want to engage with our arguments and suggestions, whether to challenge and refute these, or to further their development.
Helping teachers change science instruction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Consuegra, G.F.
1994-12-31
Scientists and science educators jointly believe that science is important to society. So strong are these beliefs that many educational and scientific organizations have issued reports and recommendations calling for systemic revisions to science education. Collectively these documents describe an enlightened view of science and science education. Such a view includes identifying key concepts, skills, and attitudes in science for the scientifically literate citizen, and describes effective instructional strategies, delineates characteristics of successful science programs for others to imitate and emulate, and lists resources for educators, scientists, and parents to use. The effects of these resources have been clearly visiblemore » over the past five years. Science process-based objectives provide infrastructure and promote modern and traditional science teachers` efforts to provide science programming that supports scientific literacy needed for the 21st century.« less
Degradation of glass artifacts: application of modern surface analytical techniques.
Melcher, Michael; Wiesinger, Rita; Schreiner, Manfred
2010-06-15
A detailed understanding of the stability of glasses toward liquid or atmospheric attack is of considerable importance for preserving numerous objects of our cultural heritage. Glasses produced in the ancient periods (Egyptian, Greek, or Roman glasses), as well as modern glass, can be classified as soda-lime-silica glasses. In contrast, potash was used as a flux in medieval Northern Europe for the production of window panes for churches and cathedrals. The particular chemical composition of these potash-lime-silica glasses (low in silica and rich in alkali and alkaline earth components), in combination with increased levels of acidifying gases (such as SO(2), CO(2), NO(x), or O(3)) and airborne particulate matter in today's urban or industrial atmospheres, has resulted in severe degradation of important cultural relics, particularly over the last century. Rapid developments in the fields of microelectronics and computer sciences, however, have contributed to the development of a variety of nondestructive, surface analytical techniques for the scientific investigation and material characterization of these unique and valuable objects. These methods include scanning electron microscopy in combination with energy- or wavelength-dispersive spectrometry (SEM/EDX or SEM/WDX), secondary ion mass spectrometry (SIMS), and atomic force microscopy (AFM). In this Account, we address glass analysis and weathering mechanisms, exploring the possibilities (and limitations) of modern analytical techniques. Corrosion by liquid substances is well investigated in the glass literature. In a tremendous number of case studies, the basic reaction between aqueous solutions and the glass surfaces was identified as an ion-exchange reaction between hydrogen-bearing species of the attacking liquid and the alkali and alkaline earth ions in the glass, causing a depletion of the latter in the outermost surface layers. Although mechanistic analogies to liquid corrosion are obvious, atmospheric attack on glass ("weathering") is much more complex due to the multiphase system (atmosphere, water film, glass surface, and bulk glass) and added complexities (such as relative humidity and atmospheric pollutant concentration). Weathered medieval stained glass objects, as well as artifacts under controlled museum conditions, typically have less transparent or translucent surfaces, often with a thick weathering crust on top, consisting of sulfates of the glass constituents K, Ca, Na, or Mg. In this Account, we try to answer questions about glass analysis and weathering in three main categories. (i) Which chemical reactions are involved in the weathering of glass surfaces? (ii) Which internal factors (such as the glass composition or surface properties) play a dominant role for the weathering process? Can certain environmental or climatic factors be identified as more harmful for glasses than others? Is it possible to set up a quantitative relationship or at least an approximation between the degree of weathering and the factors described above? (iii) What are the consequences for the restoration and conservation strategies of endangered glass objects? How can a severe threat to precious glass objects be avoided, or at least minimized, to preserve these artifacts of our cultural heritage for future generations?
Developing an in-situ Detector of Neutron-Induced Fission for Actinide Sputtering Characterization
NASA Astrophysics Data System (ADS)
Fellers, Deion
2016-09-01
The physical mechanism describing the transfer of large amounts of energy due to fission in a material is not well understood and represents one of the modern challenges facing nuclear scientists, with applications including nuclear energy and national defense. Fission fragments cause damage to the material from sputtering of matter as they pass through or near the material's surface. We have developed a new technique at the Los Alamos Neutron Science Center for characterizing the ejecta by using ultracold neutrons (neutrons with kinetic energy less than 300 neV) to induce fission at finely controlled depths in an actinide. This program will ultimately provide a detailed description of the properties of the sputtered particles as a function of the depth of the fission in the material. A key component of this project is accurately quantifying the number of neutron induced fissions in the sample. This poster depicts the development of an in-situ detector of neutron-induced fission for the AShES (Actinide Sputtering from ultracold neutron Exposure at the Surface) experiment.
Jain, Anjali; Duvvuri, L Sailaja; Farah, Shady; Beyth, Nurit; Domb, Abraham J; Khan, Wahid
2014-12-01
Better health is basic requirement of human being, but the rapid growth of harmful pathogens and their serious health effects pose a significant challenge to modern science. Infections by pathogenic microorganisms are of great concern in many fields such as medical devices, drugs, hospital surfaces/furniture, dental restoration, surgery equipment, health care products, and hygienic applications (e.g., water purification systems, textiles, food packaging and storage, major or domestic appliances etc.) Antimicrobial polymers are the materials having the capability to kill/inhibit the growth of microbes on their surface or surrounding environment. Recently, they gained considerable interest for both academic research and industry and were found to be better than their small molecular counterparts in terms of enhanced efficacy, reduced toxicity, minimized environmental problems, resistance, and prolonged lifetime. Hence, efforts have focused on the development of antimicrobial polymers with all desired characters for optimum activity. In this Review, an overview of different antimicrobial polymers, their mechanism of action, factors affecting antimicrobial activity, and application in various fields are given. Recent advances and the current clinical status of these polymers are also discussed. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Sakkas, Vasilios A; Islam, Md Azharul; Stalikas, Constantine; Albanis, Triantafyllos A
2010-03-15
The use of chemometric methods such as response surface methodology (RSM) based on statistical design of experiments (DOEs) is becoming increasingly widespread in several sciences such as analytical chemistry, engineering and environmental chemistry. Applied catalysis, is certainly not the exception. It is clear that photocatalytic processes mated with chemometric experimental design play a crucial role in the ability of reaching the optimum of the catalytic reactions. The present article reviews the major applications of RSM in modern experimental design combined with photocatalytic degradation processes. Moreover, the theoretical principles and designs that enable to obtain a polynomial regression equation, which expresses the influence of process parameters on the response are thoroughly discussed. An original experimental work, the photocatalytic degradation of the dye Congo red (CR) using TiO(2) suspensions and H(2)O(2), in natural surface water (river water) is comprehensively described as a case study, in order to provide sufficient guidelines to deal with this subject, in a rational and integrated way. (c) 2009 Elsevier B.V. All rights reserved.
Understanding Radiation Thermometry. Part II
NASA Technical Reports Server (NTRS)
Risch, Timothy K.
2015-01-01
This document is a two-part course on the theory and practice of radiation thermometry. Radiation thermometry is the technique for determining the temperature of a surface or a volume by measuring the electromagnetic radiation it emits. This course covers the theory and practice of radiative thermometry and emphasizes the modern application of the field using commercially available electronic detectors and optical components. The course covers the historical development of the field, the fundamental physics of radiative surfaces, along with modern measurement methods and equipment.
Understanding Radiation Thermometry. Part I
NASA Technical Reports Server (NTRS)
Risch Timothy K.
2015-01-01
This document is a two-part course on the theory and practice of radiation thermometry. Radiation thermometry is the technique for determining the temperature of a surface or a volume by measuring the electromagnetic radiation it emits. This course covers the theory and practice of radiative thermometry and emphasizes the modern application of the field using commercially available electronic detectors and optical components. The course covers the historical development of the field, the fundamental physics of radiative surfaces, along with modern measurement methods and equipment.
The interface between tradition and science: naturopaths' perspectives of modern practice.
Steel, Amie; Adams, Jon
2011-10-01
Although there has been much international commentary, little is known about the interface between traditional knowledge and scientific research in modern naturopathic practice. This study aimed to explore this interface from the perspective of naturopaths. Semistructured interviews were conducted with naturopaths in current practice. The participants were selected using purposive sampling, and the data from the interviews were interpreted using thematic analysis. Interviews were conducted in a place suitable to each participant. Twelve (12) naturopaths in current clinical practice were interviewed. The participants represented a diversity of characteristics including gender, time in practice, level of qualification, and clinical contact hours per week. Thematic analysis was used to identify common themes from the interviews. Analysis identified a disparity in practitioner definition of what constitutes traditional information. However, it also identified that traditional knowledge is considered a valid source of information, whereas the validity and value of modern research is questioned. There is also tension between these two information sources, with science being argued to both support traditional knowledge, while also undermining its value. This tension seems to be overcome by practitioners' use of traditional knowledge to direct their own research, as well as drawing upon their knowledge of science to explain traditional knowledge as yet not researched. The findings of this qualitative study reveal tensions and ambiguities around the interface between tradition and science with regard to naturopathic clinical practice. Understanding these findings may assist individuals and groups within the naturopathic profession, as well as those outside the profession engaging and collaborating with naturopaths.
Anima, R.J.; Eittreim, S.L.; Edwards, B.D.; Stevenson, A.J.
2002-01-01
A combination of side-scanning sonar and high-resolution seismic reflection data image seafloor bedrock exposures and erosional features across the nearshore shelf. Sediment-filled troughs incise the inner shelf rock exposures and tie directly to modern coastal streams. The resulting bedrock geometry can be related to its resistance to erosion. Comparison of the depth of the transgressive erosional surface to recently developed sea level curves suggests a period of slow sea level rise during the early stages of post-interglacial marine transgression. The slow rise of sea level suggests an erosional episode that limited the preservation of buried paleo-channels beyond 70 m water depth. Seafloor features suggest that localized faulting in the area may have influenced the morphology of bedrock exposures and the coastline. ?? 2002 Elsevier Science B.V. All rights reserved.
Crew Field Notes: A New Tool for Planetary Surface Exploration
NASA Technical Reports Server (NTRS)
Horz, Friedrich; Evans, Cynthia; Eppler, Dean; Gernhardt, Michael; Bluethmann, William; Graf, Jodi; Bleisath, Scott
2011-01-01
The Desert Research and Technology Studies (DRATS) field tests of 2010 focused on the simultaneous operation of two rovers, a historical first. The complexity and data volume of two rovers operating simultaneously presented significant operational challenges for the on-site Mission Control Center, including the real time science support function. The latter was split into two "tactical" back rooms, one for each rover, that supported the real time traverse activities; in addition, a "strategic" science team convened overnight to synthesize the day's findings, and to conduct the strategic forward planning of the next day or days as detailed in [1, 2]. Current DRATS simulations and operations differ dramatically from those of Apollo, including the most evolved Apollo 15-17 missions, due to the advent of digital technologies. Modern digital still and video cameras, combined with the capability for real time transmission of large volumes of data, including multiple video streams, offer the prospect for the ground based science support room(s) in Mission Control to witness all crew activities in unprecedented detail and in real time. It was not uncommon during DRATS 2010 that each tactical science back room simultaneously received some 4-6 video streams from cameras mounted on the rover or the crews' backpacks. Some of the rover cameras are controllable PZT (pan, zoom, tilt) devices that can be operated by the crews (during extensive drives) or remotely by the back room (during EVAs). Typically, a dedicated "expert" and professional geologist in the tactical back room(s) controls, monitors and analyses a single video stream and provides the findings to the team, commonly supported by screen-saved images. It seems obvious, that the real time comprehension and synthesis of the verbal descriptions, extensive imagery, and other information (e.g. navigation data; time lines etc) flowing into the science support room(s) constitute a fundamental challenge to future mission operations: how can one analyze, comprehend and synthesize -in real time- the enormous data volume coming to the ground? Real time understanding of all data is needed for constructive interaction with the surface crews, and it becomes critical for the strategic forward planning process.
The rolling evolution of biomedical science as an essential tool in modern clinical practice.
Blann, Andrew
2016-01-01
The British Journal of Biomedical Science is committed to publishing high-quality original research that represents a clear advance in the practice of biomedical science, and reviews that summarise recent advances in the field of biomedical science. The overall aim of the Journal is to provide a platform for the dissemination of new and innovative information on the diagnosis and management of disease that is valuable to the practicing laboratory scientist. The Editorial that follows describes the Journal and provides a perspective of its aims and objectives.
Computational Science and Innovation
NASA Astrophysics Data System (ADS)
Dean, D. J.
2011-09-01
Simulations - utilizing computers to solve complicated science and engineering problems - are a key ingredient of modern science. The U.S. Department of Energy (DOE) is a world leader in the development of high-performance computing (HPC), the development of applied math and algorithms that utilize the full potential of HPC platforms, and the application of computing to science and engineering problems. An interesting general question is whether the DOE can strategically utilize its capability in simulations to advance innovation more broadly. In this article, I will argue that this is certainly possible.
The Historical 'Science Driver': Early Telescopes and Scientific Incentive.
NASA Astrophysics Data System (ADS)
Abrahams, Peter
2011-01-01
The term 'science driver' was first used in the 1980s. The modern meaning of 'science' is far removed from its meaning in the first centuries of the telescope. It is anachronistic to refer to the 'science driver' of a historic telescope. However, there were scientific motivations behind many early telescopes, large reflectors in particular. The chronology of larger and improved telescopes will be placed in the context of the rationale for their creation. The evolution of scientific purpose of these instruments will be extracted and examined for patterns and significance.
Women physicists in Russia in a period of new reforms in fundamental science and higher education
NASA Astrophysics Data System (ADS)
Didenko, N.; Domashevskaya, E.; Ermolaeva, E.; Kunitsyna, E.; Vitman, R.
2015-12-01
New holistic reforms in the system of higher education and the State Academy of Sciences have been carried out in Russia recently. New types of universities were founded, and funding of science is shifting to a grants model. The Russian Ministry of Higher Education and Science is also working to attract well-known foreign scientists, especially expatriate Russians, through megagrants of 3-5 million to establish modern laboratories. Women are participating to an adequate degree in all parts of the ongoing reforms.
The Influence of Accelerator Science on Physics Research
NASA Astrophysics Data System (ADS)
Haussecker, Enzo F.; Chao, Alexander W.
2011-06-01
We evaluate accelerator science in the context of its contributions to the physics community. We address the problem of quantifying these contributions and present a scheme for a numerical evaluation of them. We show by using a statistical sample of important developments in modern physics that accelerator science has influenced 28% of post-1938 physicists and also 28% of post-1938 physics research. We also examine how the influence of accelerator science has evolved over time, and show that on average it has contributed to a physics Nobel Prize-winning research every 2.9 years.
In the maw of the Ouroboros: an analysis of scientific literacy and democracy
NASA Astrophysics Data System (ADS)
Bang, Lars
2017-10-01
This paper explores the concept of scientific literacy through its relation to democracy and citizenship. Scientific literacy has received international attention in the twenty-first century as demonstrated by the Programme for International Student Assessment survey of 2006. It is no longer just a concept but has become a stated and testable outcome in the science education research community. This paper problematizes the `marriage' between scientific literacy and democracy, particularly the idea that scientific literacy is a presupposed necessity to proper citizenship and awareness of the role of science in modern society. A perusal of the science education literature can provide a history of scientific literacy, as it exists as a research category. Through Gilles Deleuze's notion of the Dogmatic Image of Thought and its relation to a Spinozist understanding of individuation/Becoming, it is argued that scientific literacy is not a recent invention and is problematic in its relation to democracy. This article is thus intended to act more as vehicle to move, stimulate and dramatize thought and potentially reconceptualise scientific literacy, than a comprehensive historical analysis. The concept of scientific literacy has undergone specific transformations in the last two centuries and has been enacted in different manifestations throughout modernity. Here the analysis draws upon Deleuze's reading of Michel Foucault and the notion of the Diagram related to Foucault's oeuvre, and is specifically using Foucault's notion of rationalities as actualized threads or clusters of discourse. The obvious link between science and democracy is an effect of specific rationalities within the epistemological field of science, rather than intrinsic, essential characteristics of science or scientific literacy. There is nothing intrinsic in its function for democracy. Through a case study of the work of Charles W. Eliot and Herbert Spencer and the modern enactment of scientific literacy in contemporary science education, this paper shows the cultural and historical contingencies on which the relation between scientific literacy and democracy has been constructed through a rationality this article calls the Man of Science. The mythical Ouroboros will be used as a Fresh Image of Thought to explore the movements and folds within the discursive formation of Scientific Literacy, the rationality of the Man of Science, and their relation to democracy.
The State of Economic Science: Views of Six Nobel Laureates.
ERIC Educational Resources Information Center
Sichel, Werner, Ed.
In this collection of essays six noted economists question the state of economic science today. Kenneth J. Arrow focuses on the theories of individual and social choice and general economic equilibrium. Arguing that macroeconomics is the key to understanding the modern economic system, Robert M. Solow provides an historical review of the ideas of…
The Culture of Science and the Rhetoric of Scientism: From Francis Bacon to the Darwin Fish
ERIC Educational Resources Information Center
Lessl, Thomas M.
2007-01-01
The culture of modern science continues to establish its public identity by appealing to values and historical conceptions that reflect its appropriation of various religious ideals during its formative period, most especially in the rhetoric of Francis Bacon. These elements have persisted because they continue to achieve similar goals, but the…
ERIC Educational Resources Information Center
Appel, Stephen W.
1989-01-01
Examines the construction of racial scientific discourse within the milieu of an extremely racially segregated society. Traces the influence of capitalism, racism, Social Darwinism, eugenics, and "racial science" on the pedagogy of modern apartheid in South Africa. Finds evidence of pervasive effects of "scientific" ideas on…
Augmenting Primary and Secondary Education with Polymer Science and Engineering
ERIC Educational Resources Information Center
Cersonsky, Rose K.; Foster, Leanna L.; Ahn, Taeyong; Hall, Ryan J.; van der Laan, Harry L.; Scott, Timothy F.
2017-01-01
Despite the prevalence of polymers in modern everyday life, there is little introduction to the topic in science education throughout primary or secondary schooling in the United States. Of the few states that do include polymer education, this is only found at the high school level, primarily in biology or chemistry. Over the past year, we have…
Teaching Argumentation through the Visual Models in a Resource-Based Learning Environment
ERIC Educational Resources Information Center
Chang, Shu-Nu
2007-01-01
Scientific literacy is the ultimate goal in science education world-wide; especially in this modern society of science and technology. How to help individuals to make good judgments and promote their skills of argumentation becomes an important issue. Meanwhile, in the Information Age, visual image is an important medium for conveying information.…
The critical role of peptide chemistry in the life sciences.
Kent, Stephen B H
2015-03-01
Peptide chemistry plays a key role in the synthesis and study of protein molecules and their functions. Modern ligation methods enable the total synthesis of enzymes and the systematic dissection of the chemical basis of enzyme catalysis. Predicted developments in peptide science are described. Copyright © 2015 European Peptide Society and John Wiley & Sons, Ltd.
Cross-Age Peer Tutoring in Physics: Tutors, Tutees, and Achievement in Electricity
ERIC Educational Resources Information Center
Korner, Marianne; Hopf, Martin
2015-01-01
International comparisons reveal that lower-secondary-level students in Austria perform below the OECD mean in science. Guided by the search for remedies and improvements in science teaching, this study investigates whether cross-age peer tutoring is an appropriate method for teaching physics. A modern and concise definition of peer tutoring is…
ERIC Educational Resources Information Center
National Academy of Sciences - National Research Council, Washington, DC. National Materials Advisory Board.
Electrochemical phenomena play a fundamental role in providing essential materials and devices for modern society. This report reviews the status of current knowledge of electrochemical science and technology and makes recommendations for future research and development in this multidisciplinary field. The report identifies new technological…
Knowing Who Knows: Laypersons' Capabilities to Judge Experts' Pertinence for Science Topics
ERIC Educational Resources Information Center
Bromme, Rainer; Thomm, Eva
2016-01-01
Because modern societies are built on elaborate divisions of cognitive labor, individuals remain laypersons in most knowledge domains. Hence, they have to rely on others' expertise when deciding on many science-related issues in private and public life. Even children already locate and discern expertise in the minds of others (e.g., Danovitch…
NGSS and the Landscape of Engineering in K-12 State Science Standards
ERIC Educational Resources Information Center
Moore, Tamara J.; Tank, Kristina M.; Glancy, Aran W.; Kersten, Jennifer A.
2015-01-01
Recent documents pertaining to K-12 education have fostered a connection between engineering and science education to help better prepare our students and future citizens to better meet the current and future challenges of our modern and technological society. With that connection, there has been a concerted effort to raise the visibility of…
ERIC Educational Resources Information Center
Lamb, Richard; Cavagnetto, Andy; Akmal, Tariq
2016-01-01
A critical problem with the examination of learning in education is that there is an underlying assumption that the dynamic systems associated with student information processing can be measured using static linear assessments. This static linear approach does not provide sufficient ability to characterize learning. Much of the modern research…
Akuginow and Haines-Stiles Receive 2013 Robert C. Cowen Journalism Award: Citation
NASA Astrophysics Data System (ADS)
Alley, Richard
2014-01-01
From Cosmos to Mars and Pluto and back home, Geoffrey Haines-Stiles and Erna Akuginow have invested their careers reporting the best modern science in novel, compelling, and accessible ways through documentaries, live events, print, and new media. They are outstanding recipients of the AGU Robert C. Cowen Award for Sustained Achievement in Science Journalism.
The Nobel Prize in the Physics Class: Science, History, and Glamour
ERIC Educational Resources Information Center
Eshach, Haim
2009-01-01
This paper introduces a novel strategy for teaching physics: using the Nobel Physics Prize as an organizational theme for high school or even first year university physics, bringing together history, social contexts of science, and central themes in modern physics. The idea underlying the strategy is that the glamour and glitter of the Nobel Prize…
Dilemmas in Examining Understanding of Nature of Science in Vietnam
ERIC Educational Resources Information Center
Hatherley-Greene, Peter
2017-01-01
The two authors, Thi Phuong Thao-Do and Chokchai Yuenyong, explored the Nature of Science as it is understood in Vietnam, a fast-developing "ancient" and modern country which continues to be shaped by uniquely Asian social norms and values. Upon reviewing their paper, I observed strong parallels to the country, the United Arab Emirates,…
ERIC Educational Resources Information Center
Freeman, Robert R.; And Others
The main results of the survey-and-analysis stage include a substantial collection of preliminary data on the language-sciences information user community, its professional specialties and information channels, its indexing tools, and its terminologies. The prospects and techniques for the development of a modern, discipline-based information…
Beyond the Triple Helix: Framing STS in the Developmental Context
ERIC Educational Resources Information Center
Amir, Sulfikar; Nugroho, Yanuar
2013-01-01
For the past three decades or so, the field of Science and Technology Studies (STS) has shed light on the interrelationship between modern science and technology, on one side, and contemporary society, on the other. A majority of this knowledge and insights are situated in the context of Western societies, or more precisely, in economically and…
Encouraging Girls into Science and Technology with Feminine Role Model: Does This Work?
ERIC Educational Resources Information Center
Bamberger, Yael M.
2014-01-01
This study examines the effect of a program that aimed to encourage girls to choose a science, technology, engineering, and mathematics (STEM) career in Israel. The program involved school visits to a high-tech company and meeting with role model female scientists. Sixty ninth-grade female students from a Jewish modern-orthodox single-sex…
Map Resource Packet: Course Models for the History-Social Science Framework, Grade Seven.
ERIC Educational Resources Information Center
California State Dept. of Education, Sacramento.
This packet of maps is an auxiliary resource to the "World History and Geography: Medieval and Early Modern Times. Course Models for the History-Social Science Framework, Grade Seven." The set includes: outline, precipitation, and elevation maps; maps for locating key places; landform maps; and historical maps. The list of maps are…
How Science Really Works: The Student Experience of Research-Led Education
ERIC Educational Resources Information Center
Smyth, Lillian; Davila, Federico; Sloan, Thomas; Rykers, Ellen; Backwell, Sam; Jones, Stephen B.
2016-01-01
There has been a shift in modern tertiary education theory that has moved away from a traditional, didactic model of education, towards a more student-led, constructivist approach. Nowhere is this more the case than in science and mathematical education, where the concept of research-led education is gaining more and more traction. The focus of…
Post-Colonial Science Education: The Challenge of Negotiating Researcher Positioning
ERIC Educational Resources Information Center
Burke, Lydia E. Carol-Ann
2014-01-01
In this paper, I describe a methodology that I employed, and resultant methods that I designed, to facilitate a Critical Discourse Analysis exploring perspectives on Western modern science as a school subject discipline in a given Caribbean context. Using specific themes from post-colonial theory, I sought to engage with some of the viewpoints…
The Prussian Academy of Sciences during the Third Reich
ERIC Educational Resources Information Center
Notzoldt, Peter; Walther, Peter Th.
2004-01-01
In 1933, the Prussian Academy of Sciences and Humanities was an exclusive learned society, out of touch with modern methods and funding, which had also failed to re-establish itself as a "centre of research". During the Nazi regime, it was at best peripherally involved in the restructuring of German academia. While some of its members…
A Bright Spark: Open Teaching of Science Using Faraday's Lectures on Candles
ERIC Educational Resources Information Center
Walker, Mark; Groger, Martin; Schutler, Kirsten; Mosler, Bernd
2008-01-01
As well as being a founding father of modern chemistry and physics Michael Faraday was also a skilled lecturer, able to explain scientific principles and ideas simply and concisely to nonscientific audiences. However science didactics today emphasizes the use of open and student-centered methods of teaching in which students find and develop…
Tribology. LC Science Tracer Bullet.
ERIC Educational Resources Information Center
Havas, George D., Comp.
Tribology is the science and technology of interacting surfaces in relative motion. It incorporates a number of scientific fields, including friction, wear, lubrication, materials science, and various branches of surface physics and surface chemistry. Tribology forms a vital part of engineering science. The interacting surfaces may be on machinery…
How Pressure Became a Scalar, Not a Vector
NASA Astrophysics Data System (ADS)
Chalmers, Alan
2018-06-01
The gradual emergence of a science of hydrostatics during the course of the seventeenth century is testament to the fact that a technical concept of pressure that was up to the task was far from obvious. The first published version of a theory of hydrostatics containing the essentials of the modern theory appeared in book 2 of Isaac Newton's Principia. Newton derived the propositions of hydrostatics from a definition of a fluid as a medium unable to withstand a distorting force. Newton's reasoning required that pressure be understood as a force per unit area acting on either side of imaginary planes within the body of a fluid. For a fluid in equilibrium, the forces at some location within a fluid are independent of the orientation of such planes. As Newton came to realize, within the body of a liquid, pressure acts equally in all directions so that there is no resultant pressing in any direction. Pressure has an intensity but not a direction. In modern terms, it is a scalar, not a vector. Although earlier scholars such as Simon Stevin, Blaise Pascal, and Robert Boyle helped set the scene for Newton's innovations, they were unable to transcend the common sense of pressure as a directed force acting on the solid surfaces bounding a fluid.
Pollen assemblages as paleoenvironmental proxies in the Florida Everglades
Willard, D.A.; Weimer, L.M.; Riegel, W.L.
2001-01-01
Analysis of 170 pollen assemblages from surface samples in eight vegetation types in the Florida Everglades indicates that these wetland sub-environments are distinguishable from the pollen record and that they are useful proxies for hydrologic and edaphic parameters. Vegetation types sampled include sawgrass marshes, cattail marshes, sloughs with floating aquatics, wet prairies, brackish marshes, tree islands, cypress swamps, and mangrove forests. The distribution of these vegetation types is controlled by specific environmental parameters, such as hydrologic regime, nutrient availability, disturbance level, substrate type, and salinity; ecotones between vegetation types may be sharp. Using R-mode cluster analysis of pollen data, we identified diagnostic species groupings; Q-mode cluster analysis was used to differentiate pollen signatures of each vegetation type. Cluster analysis and the modern analog technique were applied to interpret vegetational and environmental trends over the last two millennia at a site in Water Conservation Area 3A. The results show that close modern analogs exist for assemblages in the core and indicate past hydrologic changes at the site, correlated with both climatic and land-use changes. The ability to differentiate marshes with different hydrologic and edaphic requirements using the pollen record facilitates assessment of relative impacts of climatic and anthropogenic changes on this wetland ecosystem on smaller spatial and temporal scales than previously were possible. ?? 2001 Elsevier Science B.V.
How Pressure Became a Scalar, Not a Vector
NASA Astrophysics Data System (ADS)
Chalmers, Alan
2018-04-01
The gradual emergence of a science of hydrostatics during the course of the seventeenth century is testament to the fact that a technical concept of pressure that was up to the task was far from obvious. The first published version of a theory of hydrostatics containing the essentials of the modern theory appeared in book 2 of Isaac Newton's Principia. Newton derived the propositions of hydrostatics from a definition of a fluid as a medium unable to withstand a distorting force. Newton's reasoning required that pressure be understood as a force per unit area acting on either side of imaginary planes within the body of a fluid. For a fluid in equilibrium, the forces at some location within a fluid are independent of the orientation of such planes. As Newton came to realize, within the body of a liquid, pressure acts equally in all directions so that there is no resultant pressing in any direction. Pressure has an intensity but not a direction. In modern terms, it is a scalar, not a vector. Although earlier scholars such as Simon Stevin, Blaise Pascal, and Robert Boyle helped set the scene for Newton's innovations, they were unable to transcend the common sense of pressure as a directed force acting on the solid surfaces bounding a fluid.
Forerunner of the Science of Psychoanalysis? An Essay on the Spanish and Portuguese Inquisition.
Simms, Norman
2015-01-01
The inquisitions in Spain and Portugual were state organs, rather than church-run enterprises; their purpose to modernize disparate jurisdictions during the final stages of Reconquista (return of Moorish areas to Christian administration) to ensure security and loyalty. So many Jews converted (under duress or willingly for strategic reasons) and inter-married with middle-class and aristocratic families, that their sincerity and loyalty was suspected, This meant going beyond traditional monitoring of ritual acts and social behaviour; there was a need to look below the surface, to interpret ambiguity, and to break codes of duplicity. Inquisitors developed techniques of a form of psychoanalysis before the discoveries of Freud: methods of questioning to bring out repressed beliefs and motivations, unriddling equivocational performance and speech-acts, and integrating fragments of information from family members, business associates and neighbours collected over many years. Torture, more threatened than actual, and lengthy incarceration punctuated by periods of exile and re-arrest after years quiet, provoked desperate confessions and specious denunciations, all of which had to be subject to intense scrutiny and analysis. The assumption was modern: a person's self was no longer equivalent to their words and actions; instead, a deep dark and traumatized inner self to be revealed.
I.M. Sechenov (1829 - 1905) and the scientific self-understanding for medical sciences.
Kofler, Walter
2007-01-01
There is no discussion about the historic relevance of I. Sechenov for physiology and neurosciences as the "father of Russian modern physiology". But he is relevant for modern natural science too because of his basic epistemological and ontological work. He did not accept the up to now basic paradigm of "Ignorabimus" which can be seen as the reason to exclude even the generalizable aspects of individuality, creativity and spontaneity from natural science. He developed techniques for empirical based science to deal with materialistic and idealistic aspects of the comprehensive person the "ignoramus" according to the actual stay of knowledge and the acceptable ontologies. He demonstrated that ontologies ("paradigms") can be used as tools according to the given problem which should be solved. So Sechenov can be seen as a precursor of the so efficient philosophical positions of Einstein and Th. Kuhn. The stay of the art in physiology and neurosciences changed since the time of Sechenov dramatically. Therefore the philosophical positions of the 19th century should be discussed. Maybe this is indispensable for the needed linkage between materialistic and idealistic aspects of a person. For this the proposals of Sechenov are helpful up to now but nearly unknown. There is no discussion about the historic relevance of I. Sechenov as the "father of Russian physiology." But he is relevant for modern natural science too because of his epistemological and ontological work. He did not accept the up to now basic paradigm of "Ignorabimus" that can be seen as the reason to exclude even the generalizable aspects of individuality, creativity, and spontaneity from natural science. He demonstrated that ontologies ("paradigms") and epistemology can be used as tools according to the given problem. So Sechenov can be seen as a precursor of the so efficient philosophical positions of Einstein and Th. Kuhn. The state of the art changed dramatically. Therefore, the philosophical positions of the nineteenth century should be questioned. Maybe this is indispensable for the needed link between materialistic and idealistic aspects of a person as a whole. In this respect the proposals of Sechenov are helpful for medical science in the twenty-first century too but nearly unknown.
NASA Astrophysics Data System (ADS)
Tilley, Richard J. D.
2003-05-01
Colour is an important and integral part of everyday life, and an understanding and knowledge of the scientific principles behind colour, with its many applications and uses, is becoming increasingly important to a wide range of academic disciplines, from physical, medical and biological sciences through to the arts. Colour and the Optical Properties of Materials carefully introduces the science behind the subject, along with many modern and cutting-edge applications, chose to appeal to today's students. For science students, it provides a broad introduction to the subject and the many applications of colour. To more applied students, such as engineering and arts students, it provides the essential scientific background to colour and the many applications. Features: * Introduces the science behind the subject whilst closely connecting it to modern applications, such as colour displays, optical amplifiers and colour centre lasers * Richly illustrated with full-colour plates * Includes many worked examples, along with problems and exercises at the end of each chapter and selected answers at the back of the book * A Web site, including additional problems and full solutions to all the problems, which may be accessed at: www.cardiff.ac.uk/uwcc/engin/staff/rdjt/colour Written for students taking an introductory course in colour in a wide range of disciplines such as physics, chemistry, engineering, materials science, computer science, design, photography, architecture and textiles.
Gil-Riaño, Sebastián
2018-06-01
This essay revisits the drafting of the first UNESCO Statement on Race (1950) in order to reorient historical understandings of mid-twentieth-century anti-racism and science. Historians of science have primarily interpreted the UNESCO statements as an oppositional project led by anti-racist scientists from the North Atlantic and concerned with dismantling racial typologies, replacing them with population-based conceptions of human variation. Instead of focusing on what anti-racist scientists opposed, this article highlights the futures they imagined and the applied social-science projects that anti-racist science drew from and facilitated. The scientific experts who participated in drafting the first UNESCO Statement on Race played important roles in late colonial, post-colonial and international projects designed to modernize, assimilate and improve so-called backward communities - typically indigenous or Afro-descendent groups in the global South. Such connections between anti-racist science and the developmental imaginaries of the late colonial period indicate that the transition from fixed racial typologies to sociocultural and psychological conceptualizations of human diversity legitimated the flourishing of modernization discourses in the Cold War era. In this transition to an economic-development paradigm, 'race' did not vanish so much as fragment into a series of finely tuned and ostensibly anti-racist conceptions that offered a moral incentive for scientific elites to intervene in the ways of life of those deemed primitive.
Paul Ehrenfest and the dilemmas of modernity.
van Lunteren, Frans H; Hollestelle, Marijn J
2013-09-01
This essay considers the highly ambivalent attitude of the Austrian-Dutch physicist Paul Ehrenfest toward contemporary developments in both science and society. On the one hand, he was in the vanguard of the quantum and relativity revolutions, supported industrialization and economic planning based on mathematical models, and, in general, cherished technocratic ideals. The essay highlights several influences that shaped his attitude in these respects, from his ties with the Philips Physics Laboratory and his sojourns in the United States to the utopian visions of H. G. Wells. On the other hand, he was extremely worried about the harmful consequences of contemporary changes in science and society, such as specialization, the growing pace of city life, and the increasing dependence on modern technologies, be they material or mathematical. In this regard, he agreed with cultural critics such as Max Nordau, Henri Bergson, Ostwald Spengler, and Ludwig Klages. Rather than attempting to solve this paradox, the essay suggests that this kind of ambiguity characterized a great deal of innovative science in the period.
Families made by science. Arnold Gesell and the technologies of modern child adoption.
Herman, E
2001-12-01
This essay considers the effort to transform child adoption into a modern scientific enterprise during the first half of the twentieth century via a case study of Arnold Gesell (1880-1961), a Yale developmentalist well known for his studies of child growth and the applied technologies that emerged from them: normative scales promising to measure and predict development. Scientific adoption was a central aspiration for many human scientists, helping professionals, and state regulators. They aimed to reduce the numerous hazards presumed to be inherent in adopting children, especially infants, who were not one's "own." By importing insights and techniques drawn from the world of science into the practical world of family formation, scientific adoption stood for kinship by design. This case study explores one point of intersection between the history of science and the history of social welfare and social policy, simultaneously illustrating the cultural progress and power of scientific authority and the numerous obstacles to its practical realization.
Ayurvedic college education, reifying biomedicine and the need for reflexivity.
Bode, Maarten; Shankar, Prasan
2017-05-16
The paper analyses the experiences with government sanctioned Ayurvedic college education of 14 young Ayurvedic doctors working at the Integrative Health Centre in Bangalore, India. Unfamiliarity with Ayurvedic logic and Indian natural philosophies, lack of clinical training and the mixing-up of Ayurvedic and biomedical notions are their main complaints. The 14 young Ayurvedic doctors also missed a convincing perspective on how to integrate Ayurvedic logic, modern scientific knowledge and biomedical diagnostics. Ayurvedic state sanctioned education seems to be caught between Ayurveda's natural philosophy of health and the techno-science of biomedicine. The Ayurvedic doctors under scrutiny face the danger of becoming 'half-baked products' when they do not learn to reflect on the tension between Indian traditional knowledge and biomedical learning. The paper argues that the logic of modern science and biomedicine's claim to value-free knowledge captivates Ayurvedic education and research. This hinders Ayurveda's development as a vibrant alterity to biomedicine. What is needed is a critical social science perspective on the construction of medical knowledge and India's hierarchical medical landscape.
A Historical Analysis of the Relationship of Faith and Science and its Significance within Education
NASA Astrophysics Data System (ADS)
Yegge, John G.
Science curriculum and pedagogy are at the center of a centuries-long debate concerning the appropriate relationship of faith and science. The difficulties that science educators face seem to be based in misinformation about the historical roots of this conflict. To address that conflict, the goals of this research were to separate myth from reality and to provide a necessary context to the current tensions that are disrupting science pedagogy and curriculum content within American public schools. Working within a theoretical framework of historical literacy, this qualitative, historical analysis was a comprehensive examination of the relationship of faith and science from ancient times through the Renascence to the emergence and development of Darwinism. The historical approach methodology was utilized as a means to document the systematic examination of past events, in order to illuminate and interpret the meaning of those events. The historical record revealed that science and religion are not necessarily incompatible and that the early Christian religion provided a fertile environment in which modern science could emerge. Also noted were many instances where the record was inconsistent with what educators have commonly taught as historical fact. Finally, the complex sources of tension between modern fundamentalist Christianity and Darwinism, which has appeared as a flashpoint in public discourse within science education, were examined in depth. Based on this analysis, the study includes recommendations for educators in their approach to addressing these challenges and teaching science. This analysis can produce positive social change for educators and their students, as this information is advanced as a means to enhance historical literacy among educators and their students.
Medical implication in the Bible and its relevance to modern medicine.
Sun, Jun-Fang
2013-11-01
The Holy Bible, as the root of Western civilization, has imposed great influence in the fields far beyond religion. In this thesis, the author intended to reveal the medical implication in the Holy Bible and its relevance to the modern medical science by exploring the biblical medical information and comparing it with the current medical theory and practice. The conclusion of the exploration is surprising yet inspiring: the Holy Bible, as an ancient religious book, contains rich medical information around themes such as sexual relations, dietary guidelines, hygiene, etc., which is not at odds, but in harmony with the modern medicine.
Popplow, Marcus
2015-12-01
Recent critical approaches to what has conventionally been described as "scientific" and "technical" knowledge in early modern Europe have provided a wealth of new insights. So far, the various analytical concepts suggested by these studies have not yet been comprehensively discussed. The present essay argues that such comprehensive approaches might prove of special value for long-term and cross-cultural reflections on technology-related knowledge. As heuristic tools, the notions of "formalization" and "interaction" are proposed as part of alternative narratives to those highlighting the emergence of "science" as the most relevant development for technology-related knowledge in early modern Europe.
Analysis of Defenses Against Code Reuse Attacks on Modern and New Architectures
2015-09-01
soundness or completeness. An incomplete analysis will produce extra edges in the CFG that might allow an attacker to slip through. An unsound analysis...Analysis of Defenses Against Code Reuse Attacks on Modern and New Architectures by Isaac Noah Evans Submitted to the Department of Electrical...Engineering and Computer Science in partial fulfillment of the requirements for the degree of Master of Engineering in Electrical Engineering and Computer
Impact of the macroeconomic factors on university budgeting the US and Russia
NASA Astrophysics Data System (ADS)
Bogomolova, Arina; Balk, Igor; Ivachenko, Natalya; Temkin, Anatoly
2017-10-01
This paper discuses impact of macroeconomics factor on the university budgeting. Modern developments in the area of data science and machine learning made it possible to utilise automated techniques to address several problems of humankind ranging from genetic engineering and particle physics to sociology and economics. This paper is the first step to create a robust toolkit which will help universities sustain macroeconomic challenges utilising modern predictive analytics techniques.
ERIC Educational Resources Information Center
Zachlod, Michelle, Ed.
California State Standard 7.1 is delineated in the following manner: "Students analyze the causes and effects of the vast expansion and ultimate disintegration of the Roman Empire." One important legacy of ancient Rome is the foundation it set for the development of modern democracies. The Roman Stoics built upon the Greek Stoic model by…
Marginalia, commonplaces, and correspondence: scribal exchange in early modern science.
Yale, Elizabeth
2011-06-01
In recent years, historians of science have increasingly turned their attention to the "print culture" of early modern science. These studies have revealed that printing, as both a technology and a social and economic system, structured the forms and meanings of natural knowledge. Yet in early modern Europe, naturalists, including John Aubrey, John Evelyn, and John Ray, whose work is discussed in this paper, often shared and read scientific texts in manuscript either before or in lieu of printing. Scribal exchange, exemplified in the circulation of writings like commonplace books, marginalia, manuscript treatises, and correspondence, was the primary means by which communities of naturalists constructed scientific knowledge. Print and manuscript were necessary partners. Manuscript fostered close collaboration, and could be circulated relatively cheaply; but, unlike print, it could not reliably secure priority or survival for posterity. Naturalists approached scribal and print communication strategically, choosing the medium that best suited their goals at any given moment. As a result, print and scribal modes of disseminating information, constructing natural knowledge, and organizing communities developed in tandem. Practices typically associated with print culture manifested themselves in scribal texts and exchanges, and vice versa. "Print culture" cannot be hived off from "scribal culture." Rather, in their daily jottings and exchanges, naturalists inhabited, and produced, one common culture of communication. Copyright © 2010 Elsevier Ltd. All rights reserved.
Adams, Peter; Goos, Merrilyn
2010-01-01
Modern biological sciences require practitioners to have increasing levels of knowledge, competence, and skills in mathematics and programming. A recent review of the science curriculum at the University of Queensland, a large, research-intensive institution in Australia, resulted in the development of a more quantitatively rigorous undergraduate program. Inspired by the National Research Council's BIO2010 report, a new interdisciplinary first-year course (SCIE1000) was created, incorporating mathematics and computer programming in the context of modern science. In this study, the perceptions of biological science students enrolled in SCIE1000 in 2008 and 2009 are measured. Analysis indicates that, as a result of taking SCIE1000, biological science students gained a positive appreciation of the importance of mathematics in their discipline. However, the data revealed that SCIE1000 did not contribute positively to gains in appreciation for computing and only slightly influenced students' motivation to enroll in upper-level quantitative-based courses. Further comparisons between 2008 and 2009 demonstrated the positive effect of using genuine, real-world contexts to enhance student perceptions toward the relevance of mathematics. The results support the recommendation from BIO2010 that mathematics should be introduced to biology students in first-year courses using real-world examples, while challenging the benefits of introducing programming in first-year courses. PMID:20810961
Sorgner, Helene
2016-06-01
This paper compares Feyerabend's arguments in Science in a Free Society to the controversial theory of expertise proposed by Harry Collins and Robert Evans as a Third Wave of Science Studies. Is the legitimacy of democratic decisions threatened by the unquestioned authority of scientific advice? Or does, on the contrary, science need protection from too much democratic participation in technical decisions? Where Feyerabend's political relativism envisions democratic society as inherently pluralist and demands equal contribution of all traditions and worldviews to public decision-making, Collins and Evans hold a conception of elective modernism, defending the reality and value of technical expertise and arguing that science deserves a privileged status in modern democracies, because scientific values are also democratic values. I will argue that Feyerabend's political relativism provides a valuable framework for the evaluation of Collins' and Evans' theory of expertise. By constructing a dialog between Feyerabend and this more recent approach in Science and Technology Studies, the aim of this article is not only to show where the two positions differ and in what way they might be reconciled, but also how Feyerabend's philosophy provides substantial input to contemporary debate. Copyright © 2015 Elsevier Ltd. All rights reserved.
A cogenerative inquiry using postcolonial theory to envisage culturally inclusive science education
NASA Astrophysics Data System (ADS)
Adams, Jennifer; Luitel, Bal Chandra; Afonso, Emilia; Taylor, Peter Charles
2008-12-01
This forum constitutes a cogenerative inquiry using postcolonial theory drawn from the review paper by Zembylas and Avraamidou. Three teacher educators from African, Asian and Caribbean countries reflect on problems confronting their professional practices and consider the prospects of creating culturally inclusive science education. We learn that in Mozambique, Nepal and the Caribbean scientism patrols the borders of science education serving to exclude local epistemological beliefs and discourses and negating culturally contextualized teaching and learning. Despite the diverse cultural hybridities of these countries, science education is disconnected from the daily lives of the majority of their populations, serving inequitably the academic Western-oriented aspirations of an elite group who are "living hybridity but talking scientism." The discussants explore their autobiographies to reveal core cultural values and beliefs grounded in their non-Western traditions and worldviews but which are in conflict with the Western Modern Worldview (WMW) and thus have no legitimate role in the standard school/college science classroom. They reflect on their hybrid cultural identities and reveal the interplay of multiple selves grounded in both the WMW and non-WMWs and existing in a dialectical tension of managed contradiction in a Third Space. They argue for dialectical logic to illuminate a Third Space wherein students of science education may be empowered to challenge hegemonies of cultural reproduction and examine reflexively their own identities, coming to recognize and reconcile their core cultural beliefs with those of Western modern science, thereby dissipating otherwise strongly delineated cultural borders.