The finite-dimensional Freeman thesis.
Rudolph, Lee
2008-06-01
I suggest a modification--and mathematization--of Freeman's thesis on the relations among "perception", "the finite brain", and "the world", based on my recent proposal that the theory of finite topological spaces is both an adequate and a natural mathematical foundation for human psychology.
Spatial Extent of Charge Repulsion Regulates Assembly Pathways for Lysozyme Amyloid Fibrils
Hill, Shannon E.; Miti, Tatiana; Richmond, Tyson; Muschol, Martin
2011-01-01
Formation of large protein fibrils with a characteristic cross β-sheet architecture is the key indicator for a wide variety of systemic and neurodegenerative amyloid diseases. Recent experiments have strongly implicated oligomeric intermediates, transiently formed during fibril assembly, as critical contributors to cellular toxicity in amyloid diseases. At the same time, amyloid fibril assembly can proceed along different assembly pathways that might or might not involve such oligomeric intermediates. Elucidating the mechanisms that determine whether fibril formation proceeds along non-oligomeric or oligomeric pathways, therefore, is important not just for understanding amyloid fibril assembly at the molecular level but also for developing new targets for intervening with fibril formation. We have investigated fibril formation by hen egg white lysozyme, an enzyme for which human variants underlie non-neuropathic amyloidosis. Using a combination of static and dynamic light scattering, atomic force microscopy and circular dichroism, we find that amyloidogenic lysozyme monomers switch between three different assembly pathways: from monomeric to oligomeric fibril assembly and, eventually, disordered precipitation as the ionic strength of the solution increases. Fibril assembly only occurred under conditions of net repulsion among the amyloidogenic monomers while net attraction caused precipitation. The transition from monomeric to oligomeric fibril assembly, in turn, occurred as salt-mediated charge screening reduced repulsion among individual charged residues on the same monomer. We suggest a model of amyloid fibril formation in which repulsive charge interactions are a prerequisite for ordered fibril assembly. Furthermore, the spatial extent of non-specific charge screening selects between monomeric and oligomeric assembly pathways by affecting which subset of denatured states can form suitable intermolecular bonds and by altering the energetic and entropic requirements for the initial intermediates emerging along the monomeric vs. oligomeric assembly path. PMID:21483680
Direct methanol feed fuel cell with reduced catalyst loading
NASA Technical Reports Server (NTRS)
Kindler, Andrew (Inventor)
1999-01-01
Improvements to direct feed methanol fuel cells include new protocols for component formation. Catalyst-water repellent material is applied in formation of electrodes and sintered before application of ionomer. A membrane used in formation of an electrode assembly is specially pre-treated to improve bonding between catalyst and membrane. The improved electrode and the pre-treated membrane are assembled into a membrane electrode assembly.
Wald, Tomas; Spoutil, Frantisek; Osickova, Adriana; Prochazkova, Michaela; Benada, Oldrich; Kasparek, Petr; Bumba, Ladislav; Klein, Ophir D; Sedlacek, Radislav; Sebo, Peter; Prochazka, Jan; Osicka, Radim
2017-02-28
The formation of mineralized tissues is governed by extracellular matrix proteins that assemble into a 3D organic matrix directing the deposition of hydroxyapatite. Although the formation of bones and dentin depends on the self-assembly of type I collagen via the Gly-X-Y motif, the molecular mechanism by which enamel matrix proteins (EMPs) assemble into the organic matrix remains poorly understood. Here we identified a Y/F-x-x-Y/L/F-x-Y/F motif, evolutionarily conserved from the first tetrapods to man, that is crucial for higher order structure self-assembly of the key intrinsically disordered EMPs, ameloblastin and amelogenin. Using targeted mutations in mice and high-resolution imaging, we show that impairment of ameloblastin self-assembly causes disorganization of the enamel organic matrix and yields enamel with disordered hydroxyapatite crystallites. These findings define a paradigm for the molecular mechanism by which the EMPs self-assemble into supramolecular structures and demonstrate that this process is crucial for organization of the organic matrix and formation of properly structured enamel.
Sun, Yintao; Wollenberg, Alexander L; O'Shea, Timothy Mark; Cui, Yanxiang; Zhou, Z Hong; Sofroniew, Michael V; Deming, Timothy J
2017-10-25
Synthetic diblock copolypeptides were designed to incorporate oppositely charged ionic segments that form β-sheet-structured hydrogel assemblies via polyion complexation when mixed in aqueous media. The observed chain conformation directed assembly was found to be required for efficient hydrogel formation and provided distinct and useful properties to these hydrogels, including self-healing after deformation, microporous architecture, and stability against dilution in aqueous media. While many promising self-assembled materials have been prepared using disordered or liquid coacervate polyion complex (PIC) assemblies, the use of ordered chain conformations in PIC assemblies to direct formation of new supramolecular morphologies is unprecedented. The promising attributes and unique features of the β-sheet-structured PIC hydrogels described here highlight the potential of harnessing conformational order derived from PIC assembly to create new supramolecular materials.
Formation of Polymer Particles by Direct Polymerization on the Surface of a Supramolecular Template.
Schmuck, Carsten; Li, Mao; Zellermann, Elio
2018-04-06
Formation of polymeric materials on the surface of supramolecular assemblies is rather challenging due to the often weak non-covalent interactions between the self-assembled template and the monomers before polymerization. We herein describe that the introduction of a supramolecular anion recognition motif, the guanidiniocarbonyl pyrrole cation (GCP), into a short Fmoc-dipeptide 1 leads to self-assembled spherical nanoparticles in aqueous solution. Onto the surface of these nanoparticles negatively charged diacetylene monomers can be attached which after UV polymerization lead to the formation of a polymer shell around the self-assembled template. The hybrid supramolecular and polymeric nanoparticles demonstrated intriguing thermal hysteresis phenomenon. The template nanoparticle could be disassembled through the treatment with organic base which cleaved the Fmoc moiety on 1. This strategy thus showed that a supramolecular anion recognition motif allows the post-assembly formation of polymeric nanomaterials from anionic monomers around a cationic self-assembled template. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Nanocrystalline Precursors for the Co-Assembly of Crack-Free Metal Oxide Inverse Opals.
Phillips, Katherine R; Shirman, Tanya; Shirman, Elijah; Shneidman, Anna V; Kay, Theresa M; Aizenberg, Joanna
2018-05-01
Inorganic microstructured materials are ubiquitous in nature. However, their formation in artificial self-assembly systems is challenging as it involves a complex interplay of competing forces during and after assembly. For example, colloidal assembly requires fine-tuning of factors such as the size and surface charge of the particles and electrolyte strength of the solvent to enable successful self-assembly and minimize crack formation. Co-assembly of templating colloidal particles together with a sol-gel matrix precursor material helps to release stresses that accumulate during drying and solidification, as previously shown for the formation of high-quality inverse opal (IO) films out of amorphous silica. Expanding this methodology to crystalline materials would result in microscale architectures with enhanced photonic, electronic, and catalytic properties. This work describes tailoring the crystallinity of metal oxide precursors that enable the formation of highly ordered, large-area (mm 2 ) crack-free titania, zirconia, and alumina IO films. The same bioinspired approach can be applied to other crystalline materials as well as structures beyond IOs. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Whisker Formation Induced by Component and Assembly Ionic Contamination
NASA Astrophysics Data System (ADS)
Snugovsky, Polina; Meschter, Stephan; Bagheri, Zohreh; Kosiba, Eva; Romansky, Marianne; Kennedy, Jeffrey
2012-02-01
This paper describes the results of an intensive whisker formation study on Pb-free assemblies with different levels of cleanliness. Thirteen types of as-received surface-mount and pin-through-hole components were cleaned and intentionally contaminated with solutions containing chloride, sulfate, bromide, and nitrate. Then the parts were assembled on double-sided boards that were also cleaned or intentionally contaminated with three fluxes having different halide contents. The assemblies were subjected to high-temperature/high-humidity testing (85°C/85% RH). Periodic examination found that contamination triggered whisker formation on both exposed tin and solder fillets. Whisker occurrence and parameters depending on the type and level of contamination are discussed. Cross-sections were used to assess the metallurgical aspects of whisker formation and the microstructural changes occurring during corrosion.
Functional Analysis of the Accessory Protein TapA in Bacillus subtilis Amyloid Fiber Assembly
Romero, Diego; Vlamakis, Hera; Losick, Richard
2014-01-01
Bacillus subtilis biofilm formation relies on the assembly of a fibrous scaffold formed by the protein TasA. TasA polymerizes into highly stable fibers with biochemical and morphological features of functional amyloids. Previously, we showed that assembly of TasA fibers requires the auxiliary protein TapA. In this study, we investigated the roles of TapA sequences from the C-terminal and N-terminal ends and TapA cysteine residues in its ability to promote the assembly of TasA amyloid-like fibers. We found that the cysteine residues are not essential for the formation of TasA fibers, as their replacement by alanine residues resulted in only minor defects in biofilm formation. Mutating sequences in the C-terminal half had no effect on biofilm formation. However, we identified a sequence of 8 amino acids in the N terminus that is key for TasA fiber formation. Strains expressing TapA lacking these 8 residues were completely defective in biofilm formation. In addition, this TapA mutant protein exhibited a dominant negative effect on TasA fiber formation. Even in the presence of wild-type TapA, the mutant protein inhibited fiber assembly in vitro and delayed biofilm formation in vivo. We propose that this 8-residue sequence is crucial for the formation of amyloid-like fibers on the cell surface, perhaps by mediating the interaction between TapA or TapA and TasA molecules. PMID:24488317
Functional analysis of the accessory protein TapA in Bacillus subtilis amyloid fiber assembly.
Romero, Diego; Vlamakis, Hera; Losick, Richard; Kolter, Roberto
2014-04-01
Bacillus subtilis biofilm formation relies on the assembly of a fibrous scaffold formed by the protein TasA. TasA polymerizes into highly stable fibers with biochemical and morphological features of functional amyloids. Previously, we showed that assembly of TasA fibers requires the auxiliary protein TapA. In this study, we investigated the roles of TapA sequences from the C-terminal and N-terminal ends and TapA cysteine residues in its ability to promote the assembly of TasA amyloid-like fibers. We found that the cysteine residues are not essential for the formation of TasA fibers, as their replacement by alanine residues resulted in only minor defects in biofilm formation. Mutating sequences in the C-terminal half had no effect on biofilm formation. However, we identified a sequence of 8 amino acids in the N terminus that is key for TasA fiber formation. Strains expressing TapA lacking these 8 residues were completely defective in biofilm formation. In addition, this TapA mutant protein exhibited a dominant negative effect on TasA fiber formation. Even in the presence of wild-type TapA, the mutant protein inhibited fiber assembly in vitro and delayed biofilm formation in vivo. We propose that this 8-residue sequence is crucial for the formation of amyloid-like fibers on the cell surface, perhaps by mediating the interaction between TapA or TapA and TasA molecules.
The assembly dynamics of the cytolytic pore toxin ClyA
Benke, Stephan; Roderer, Daniel; Wunderlich, Bengt; Nettels, Daniel; Glockshuber, Rudi; Schuler, Benjamin
2015-01-01
Pore-forming toxins are protein assemblies used by many organisms to disrupt the membranes of target cells. They are expressed as soluble monomers that assemble spontaneously into multimeric pores. However, owing to their complexity, the assembly processes have not been resolved in detail for any pore-forming toxin. To determine the assembly mechanism for the ring-shaped, homododecameric pore of the bacterial cytolytic toxin ClyA, we collected a diverse set of kinetic data using single-molecule spectroscopy and complementary techniques on timescales from milliseconds to hours, and from picomolar to micromolar ClyA concentrations. The entire range of experimental results can be explained quantitatively by a surprisingly simple mechanism. First, addition of the detergent n-dodecyl-β-D-maltopyranoside to the soluble monomers triggers the formation of assembly-competent toxin subunits, accompanied by the transient formation of a molten-globule-like intermediate. Then, all sterically compatible oligomers contribute to assembly, which greatly enhances the efficiency of pore formation compared with simple monomer addition. PMID:25652783
Field-induced assembly of colloidal ellipsoids into well-defined microtubules
Crassous, Jérôme J.; Mihut, Adriana M.; Wernersson, Erik; Pfleiderer, Patrick; Vermant, Jan; Linse, Per; Schurtenberger, Peter
2014-01-01
Current theoretical attempts to understand the reversible formation of stable microtubules and virus shells are generally based on shape-specific building blocks or monomers, where the local curvature of the resulting structure is explicitly built-in via the monomer geometry. Here we demonstrate that even simple ellipsoidal colloids can reversibly self-assemble into regular tubular structures when subjected to an alternating electric field. Supported by model calculations, we discuss the combined effects of anisotropic shape and field-induced dipolar interactions on the reversible formation of self-assembled structures. Our observations show that the formation of tubular structures through self-assembly requires much less geometrical and interaction specificity than previously thought, and advance our current understanding of the minimal requirements for self-assembly into regular virus-like structures. PMID:25409686
Galaxy and Mass Assembly (GAMA): halo formation times and halo assembly bias on the cosmic web
NASA Astrophysics Data System (ADS)
Tojeiro, Rita; Eardley, Elizabeth; Peacock, John A.; Norberg, Peder; Alpaslan, Mehmet; Driver, Simon P.; Henriques, Bruno; Hopkins, Andrew M.; Kafle, Prajwal R.; Robotham, Aaron S. G.; Thomas, Peter; Tonini, Chiara; Wild, Vivienne
2017-09-01
We present evidence for halo assembly bias as a function of geometric environment (GE). By classifying Galaxy and Mass Assembly (GAMA) galaxy groups as residing in voids, sheets, filaments or knots using a tidal tensor method, we find that low-mass haloes that reside in knots are older than haloes of the same mass that reside in voids. This result provides direct support to theories that link strong halo tidal interactions with halo assembly times. The trend with GE is reversed at large halo mass, with haloes in knots being younger than haloes of the same mass in voids. We find a clear signal of halo downsizing - more massive haloes host galaxies that assembled their stars earlier. This overall trend holds independently of GE. We support our analysis with an in-depth exploration of the L-Galaxies semi-analytic model, used here to correlate several galaxy properties with three different definitions of halo formation time. We find a complex relationship between halo formation time and galaxy properties, with significant scatter. We confirm that stellar mass to halo mass ratio, specific star formation rate (SFR) and mass-weighed age are reasonable proxies of halo formation time, especially at low halo masses. Instantaneous SFR is a poor indicator at all halo masses. Using the same semi-analytic model, we create mock spectral observations using complex star formation and chemical enrichment histories, which approximately mimic GAMA's typical signal-to-noise ratio and wavelength range. We use these mocks to assert how well potential proxies of halo formation time may be recovered from GAMA-like spectroscopic data.
A Carbon Dioxide Bubble-Induced Vortex Triggers Co-Assembly of Nanotubes with Controlled Chirality.
Zhang, Ling; Zhou, Laicheng; Xu, Na; Ouyang, Zhenjie
2017-07-03
It is challenging to prepare co-organized nanotube systems with controlled nanoscale chirality in an aqueous liquid flow field. Such systems are responsive to a bubbled external gas. A liquid vortex induced by bubbling carbon dioxide (CO 2 ) gas was used to stimulate the formation of nanotubes with controlled chirality; two kinds of achiral cationic building blocks were co-assembled in aqueous solution. CO 2 -triggered nanotube formation occurs by formation of metastable intermediate structures (short helical ribbons and short tubules) and by transition from short tubules to long tubules in response to chirality matching self-assembly. Interestingly, the chirality sign of these assemblies can be selected for by the circulation direction of the CO 2 bubble-induced vortex during the co-assembly process. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Mechanisms Underlying the Active Self-Assembly of Microtubule Rings and Spools.
VanDelinder, Virginia; Brener, Stephanie; Bachand, George D
2016-03-14
Active self-assembly offers a powerful route for the creation of dynamic multiscale structures that are presently inaccessible with standard microfabrication techniques. One such system uses the translation of microtubule filaments by surface-tethered kinesin to actively assemble nanocomposites with bundle, ring, and spool morphologies. Attempts to observe mechanisms involved in this active assembly system have been hampered by experimental difficulties with performing observation during buffer exchange and photodamage from fluorescent excitation. In the present work, we used a custom microfluidic device to remove these limitations and directly study ring/spool formation, including the earliest events (nucleation) that drive subsequent nanocomposite assembly. Three distinct formation events were observed: pinning, collisions, and induced curvature. Of these three, collisions accounted for the majority of event leading to ring/spool formation, while the rate of pinning was shown to be dependent on the amount of photodamage in the system. We further showed that formation mechanism directly affects the diameter and rotation direction of the resultant rings and spools. Overall, the fundamental understanding described in this work provides a foundation by which the properties of motor-driven, actively assembled nanocomposites may be tailored toward specific applications.
Mechanisms underlying the active self-assembly of microtubule rings and spools
VanDelinder, Virginia; Brener, Stephanie; Bachand, George D.
2016-02-04
Here, active self-assembly offers a powerful route for the creation of dynamic multiscale structures that are presently inaccessible with standard microfabrication techniques. One such system uses the translation of microtubule filaments by surface-tethered kinesin to actively assemble nanocomposites with bundle, ring, and spool morphologies. Attempts to observe mechanisms involved in this active assembly system have been hampered by experimental difficulties with performing observation during buffer exchange and photodamage from fluorescent excitation. In the present work, we used a custom microfluidic device to remove these limitations and directly study ring/spool formation, including the earliest events (nucleation) that drive subsequent nanocomposite assembly.more » Three distinct formation events were observed: pinning, collisions, and induced curvature. Of these three, collisions accounted for the majority of event leading to ring/spool formation, while the rate of pinning was shown to be dependent on the amount of photodamage in the system. We further showed that formation mechanism directly affects the diameter and rotation direction of the resultant rings and spools. Overall, the fundamental understanding described in this work provides a foundation by which the properties of motor-driven, actively assembled nanocomposites may be tailored toward specific applications.« less
Induced-Dipole-Directed, Cooperative Self-Assembly of a Benzotrithiophene.
Ikeda, Toshiaki; Adachi, Hiroaki; Fueno, Hiroyuki; Tanaka, Kazuyoshi; Haino, Takeharu
2017-10-06
A benzotrithiophene derivative possessing phenylisoxazoles self-assembled to form stacks. The molecule isodesmically self-assembled in chloroform, whereas it self-assembled in a cooperative fashion in decalin and in methylcyclohexane. Thermodynamic studies based on isodesmic, van der Schoot, and Goldstein-Stryer mathematical models revealed that the self-assembly processes are enthalpically driven and entropically opposed. An enthalpy-entropy compensation plot indicates that the assembly processes in chloroform, decalin, and methylcyclohexane are closely related. The enthalpic gains in less-polar solvents are greater than those in more-polar solvents, resulting in the formation of large assemblies in decalin and in methylcyclohexane. The formation of large assemblies leads to cooperative assemblies. The elongation process is enthalpically more favored than the nucleation process, which drives the cooperativity of the self-assembly. DFT calculations suggested that a hexameric assembly is more stable than tetrameric or dimeric assemblies. Cooperative self-assemblies based on intermolecular interactions other than hydrogen bonding have rarely been reported. It is demonstrated herein that van der Waals interactions, including induced dipole-dipole interactions, can drive the cooperative assembly of planar π-conjugated molecules.
Diversity in virus assembly: biology makes things complicated
NASA Astrophysics Data System (ADS)
Zlotnick, Adam
2008-03-01
Icosahedral viruses have an elegance of geometry that implies a general path of assembly. However, structure alone provides insufficient information. Cowpea Chlorotic Mottle Virus (CCMV), an important system for studying virus assembly, consists of 90 coat protein (CP) homodimers condensed around an RNA genome. The crystal structure (Speir et al, 1995) reveals that assembly causes burial of hydrophobic surface and formation of β hexamers, the intertwining of N-termini of the CPs surrounding a quasi-sixfold. This structural view leads to reasonable and erroneous predictions: (i) CCMV capsids are extremely stable, and (ii) β hexamer formation is critical to assembly. Experimentally, we have found that capsids are based on a network of extremely weak (4-5 kT) pairwise interactions and that pentamer formation is the critical step in assembly kinetics. Because of the fragility of CP-Cp interaction, we can redirect assembly to generate and dissociate tubular nanostructures. The dynamic behavior of CCMV reflects the requirements and peculiarities of an evolved biological system; it does not necessarily reflect the behavior predicted from a more static picture of the virus.
Integrating Test-Form Formatting into Automated Test Assembly
ERIC Educational Resources Information Center
Diao, Qi; van der Linden, Wim J.
2013-01-01
Automated test assembly uses the methodology of mixed integer programming to select an optimal set of items from an item bank. Automated test-form generation uses the same methodology to optimally order the items and format the test form. From an optimization point of view, production of fully formatted test forms directly from the item pool using…
Gel phase formation in dilute triblock copolyelectrolyte complexes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Srivastava, Samanvaya; Andreev, Marat; Levi, Adam E.
Assembly of oppositely charged triblock copolyelectrolytes into phase-separated gels at low polymer concentrations (<1% by mass) has been observed in scattering experiments and molecular dynamics simulations. Here we show that in contrast to uncharged, amphiphilic block copolymers that form discrete micelles at low concentrations and enter a phase of strongly interacting micelles in a gradual manner with increasing concentration, the formation of a dilute phase of individual micelles is prevented in polyelectrolyte complexation-driven assembly of triblock copolyelectrolytes. Gel phases form and phase separate almost instantaneously on solvation of the copolymers. Furthermore, molecular models of self-assembly demonstrate the presence of oligo-chainmore » aggregates in early stages of copolyelectrolyte assembly, at experimentally unobservable polymer concentrations. Our discoveries contribute to the fundamental understanding of the structure and pathways of complexation-driven assemblies, and raise intriguing prospects for gel formation at extraordinarily low concentrations, with applications in tissue engineering, agriculture, water purification and theranostics.« less
Gel phase formation in dilute triblock copolyelectrolyte complexes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Srivastava, Samanvaya; Andreev, Marat; Levi, Adam E.
Assembly of oppositely charged triblock copolyelectrolytes into phase-separated gels at low polymer concentrations (<1% by mass) has been observed in scattering experiments and molecular dynamics simulations. Here we show that in contrast to uncharged, amphiphilic block copolymers that form discrete micelles at low concentrations and enter a phase of strongly interacting micelles in a gradual manner with increasing concentration, the formation of a dilute phase of individual micelles is prevented in polyelectrolyte complexation-driven assembly of triblock copolyelectrolytes. Gel phases form and phase separate almost instantaneously on solvation of the copolymers. Furthermore, molecular models of self-assembly demonstrate the presence of oligo-chainmore » aggregates in early stages of copolyelectrolyte assembly, at experimentally unobservable polymer concentrations. Finally, our discoveries contribute to the fundamental understanding of the structure and pathways of complexation-driven assemblies, and raise intriguing prospects for gel formation at extraordinarily low concentrations, with applications in tissue engineering, agriculture, water purification and theranostics.« less
Gel phase formation in dilute triblock copolyelectrolyte complexes
Srivastava, Samanvaya; Andreev, Marat; Levi, Adam E.; ...
2017-02-23
Assembly of oppositely charged triblock copolyelectrolytes into phase-separated gels at low polymer concentrations (<1% by mass) has been observed in scattering experiments and molecular dynamics simulations. Here we show that in contrast to uncharged, amphiphilic block copolymers that form discrete micelles at low concentrations and enter a phase of strongly interacting micelles in a gradual manner with increasing concentration, the formation of a dilute phase of individual micelles is prevented in polyelectrolyte complexation-driven assembly of triblock copolyelectrolytes. Gel phases form and phase separate almost instantaneously on solvation of the copolymers. Furthermore, molecular models of self-assembly demonstrate the presence of oligo-chainmore » aggregates in early stages of copolyelectrolyte assembly, at experimentally unobservable polymer concentrations. Finally, our discoveries contribute to the fundamental understanding of the structure and pathways of complexation-driven assemblies, and raise intriguing prospects for gel formation at extraordinarily low concentrations, with applications in tissue engineering, agriculture, water purification and theranostics.« less
Gel Phase Formation in Dilute Triblock Copolyelectrolyte Complexes
NASA Astrophysics Data System (ADS)
Srivastava, Samanvaya; Andreev, Marat; Prabhu, Vivek; de Pablo, Juan; Tirrell, Matthew
Assembly of oppositely charged triblock copolyelectrolytes into phase-separated gels at extremely low polymer concentrations (<1 % by mass) has been observed in scattering experiments and molecular dynamics simulations. In contrast to uncharged, amphiphilic block copolymers that form discrete micelles at low concentrations and enter a phase of strongly interacting micelles in a gradual manner with increasing polymer concentrations, the formation of a dilute phase of individual micelles is prevented in polyelectrolyte complexation-driven assemblies of triblock copolyelectrolytes. Gel phases form and phase separate almost instantaneously upon solvation of the copolymers. Furthermore, molecular models of self-assembly demonstrate the presence of oligo-chain aggregates in early stages of triblock copolyelectrolyte assembly, at experimentally unobservable polymer concentrations. Our discoveries not only contribute to our fundamental understanding of the structure and pathways of complexation driven assemblies, but also raise intriguing prospects for formation of gel structures at extraordinarily low concentrations, with applications in tissue engineering, agriculture, water purification and theranostics.
Gel phase formation in dilute triblock copolyelectrolyte complexes
NASA Astrophysics Data System (ADS)
Srivastava, Samanvaya; Andreev, Marat; Levi, Adam E.; Goldfeld, David J.; Mao, Jun; Heller, William T.; Prabhu, Vivek M.; de Pablo, Juan J.; Tirrell, Matthew V.
2017-02-01
Assembly of oppositely charged triblock copolyelectrolytes into phase-separated gels at low polymer concentrations (<1% by mass) has been observed in scattering experiments and molecular dynamics simulations. Here we show that in contrast to uncharged, amphiphilic block copolymers that form discrete micelles at low concentrations and enter a phase of strongly interacting micelles in a gradual manner with increasing concentration, the formation of a dilute phase of individual micelles is prevented in polyelectrolyte complexation-driven assembly of triblock copolyelectrolytes. Gel phases form and phase separate almost instantaneously on solvation of the copolymers. Furthermore, molecular models of self-assembly demonstrate the presence of oligo-chain aggregates in early stages of copolyelectrolyte assembly, at experimentally unobservable polymer concentrations. Our discoveries contribute to the fundamental understanding of the structure and pathways of complexation-driven assemblies, and raise intriguing prospects for gel formation at extraordinarily low concentrations, with applications in tissue engineering, agriculture, water purification and theranostics.
Singh, Virender; Rai, Ratan Kumar; Arora, Ashish; Sinha, Neeraj; Thakur, Ashwani Kumar
2014-01-01
Self-assembly of phenylalanine is linked to amyloid formation toxicity in phenylketonuria disease. We are demonstrating that L-phenylalanine self-assembles to amyloid fibrils at varying experimental conditions and transforms to a gel state at saturated concentration. Biophysical methods including nuclear magnetic resonance, resistance by alpha-phenylglycine to fibril formation and preference of protected phenylalanine to self-assemble show that this behaviour of L-phenylalanine is governed mainly by hydrophobic interactions. Interestingly, D-phenylalanine arrests the fibre formation by L-phenylalanine and gives rise to flakes. These flakes do not propagate further and prevent fibre formation by L-phenylalanine. This suggests the use of D-phenylalanine as modulator of L-phenylalanine amyloid formation and may qualify as a therapeutic molecule in phenylketonuria. PMID:24464217
Singh, Virender; Rai, Ratan Kumar; Arora, Ashish; Sinha, Neeraj; Thakur, Ashwani Kumar
2014-01-27
Self-assembly of phenylalanine is linked to amyloid formation toxicity in phenylketonuria disease. We are demonstrating that L-phenylalanine self-assembles to amyloid fibrils at varying experimental conditions and transforms to a gel state at saturated concentration. Biophysical methods including nuclear magnetic resonance, resistance by alpha-phenylglycine to fibril formation and preference of protected phenylalanine to self-assemble show that this behaviour of L-phenylalanine is governed mainly by hydrophobic interactions. Interestingly, D-phenylalanine arrests the fibre formation by L-phenylalanine and gives rise to flakes. These flakes do not propagate further and prevent fibre formation by L-phenylalanine. This suggests the use of D-phenylalanine as modulator of L-phenylalanine amyloid formation and may qualify as a therapeutic molecule in phenylketonuria.
NASA Astrophysics Data System (ADS)
Carny, Ohad; Gazit, Ehud
2011-04-01
Any attempt to uncover the origins of life must tackle the known `blind watchmaker problem'. That is to demonstrate the likelihood of the emergence of a prebiotic system simple enough to be formed spontaneously and yet complex enough to allow natural selection that will lead to Darwinistic evolution. Studies of short aromatic peptides revealed their ability to self-assemble into ordered and stable structures. The unique physical and chemical characteristics of these peptide assemblies point out to their possible role in the origins of life. We have explored mechanisms by which self-assembling short peptides and RNA fragments could interact together and go through a molecular co-evolution, using diphenylalanine supramolecular assemblies as a model system. The spontaneous formation of these self-assembling peptides under prebiotic conditions, through the salt-induced peptide formation (SIPF) pathway was demonstrated. These peptide assemblies possess the ability to bind and stabilize ribonucleotides in a sequence-depended manner, thus increase their relative fitness. The formation of these peptide assemblies is dependent on the homochirality of the peptide monomers: while homochiral peptides (L-Phe-L-Phe and D-Phe-D-Phe) self-assemble rapidly in aqueous environment, heterochiral diastereoisomers (L-Phe-D-Phe and D-Phe-L-Phe) do not tend to self-assemble. This characteristic consists with the homochirality of all living matter. Finally, based on these findings, we propose a model for the role of short self-assembling peptides in the prebiotic molecular evolution and the origin of life.
Carny, Ohad; Gazit, Ehud
2011-04-01
Any attempt to uncover the origins of life must tackle the known 'blind watchmaker problem'. That is to demonstrate the likelihood of the emergence of a prebiotic system simple enough to be formed spontaneously and yet complex enough to allow natural selection that will lead to Darwinistic evolution. Studies of short aromatic peptides revealed their ability to self-assemble into ordered and stable structures. The unique physical and chemical characteristics of these peptide assemblies point out to their possible role in the origins of life. We have explored mechanisms by which self-assembling short peptides and RNA fragments could interact together and go through a molecular co-evolution, using diphenylalanine supramolecular assemblies as a model system. The spontaneous formation of these self-assembling peptides under prebiotic conditions, through the salt-induced peptide formation (SIPF) pathway was demonstrated. These peptide assemblies possess the ability to bind and stabilize ribonucleotides in a sequence-depended manner, thus increase their relative fitness. The formation of these peptide assemblies is dependent on the homochirality of the peptide monomers: while homochiral peptides (L-Phe-L-Phe and D-Phe-D-Phe) self-assemble rapidly in aqueous environment, heterochiral diastereoisomers (L-Phe-D-Phe and D-Phe-L-Phe) do not tend to self-assemble. This characteristic consists with the homochirality of all living matter. Finally, based on these findings, we propose a model for the role of short self-assembling peptides in the prebiotic molecular evolution and the origin of life.
Qiu, Penghe; Mao, Chuanbin
2010-01-01
Branched hollow fibers are common in nature, but to form artificial fibers with a similar branched hollow structure is still a challenge. We discovered that polyvinylpyrrolidone (PVP) could self-assemble into branched hollow fibers in an aqueous solution after aging the PVP solution for about two weeks. Based on this finding, we demonstrated two approaches by which the self-assembly of PVP into branched hollow fibers could be exploited to template the formation of branched hollow inorganic fibers. First, inorganic material such as silica with high affinity against the PVP could be deposited on the surface of the branched hollow PVP fibers to form branched hollow silica fibers. To extend the application of PVP self-assembly in templating the formation of hollow branched fibers, we then adopted a second approach where the PVP molecules bound to inorganic nanoparticles (using gold nanoparticles as a model) co-self-assemble with the free PVP molecules in an aqueous solution, resulting in the formation of the branched hollow fibers with the nanoparticles embedded in the PVP matrix constituting the walls of the fibers. Heating the resultant fibers above the glass transition temperature of PVP led to the formation of branched hollow gold fibers. Our work suggests that the self-assembly of the PVP molecules in the solution can serve as a general method for directing the formation of branched hollow inorganic fibers. The branched hollow fibers may find potential applications in microfluidics, artificial blood vessel generation, and tissue engineering. PMID:20158250
A chronicle of galaxy mass assembly in the EAGLE simulation
NASA Astrophysics Data System (ADS)
Qu, Yan; Helly, John C.; Bower, Richard G.; Theuns, Tom; Crain, Robert A.; Frenk, Carlos S.; Furlong, Michelle; McAlpine, Stuart; Schaller, Matthieu; Schaye, Joop; White, Simon D. M.
2017-01-01
We analyse the mass assembly of central galaxies in the Evolution and Assembly of Galaxies and their Environments (EAGLE) hydrodynamical simulations. We build merger trees to connect galaxies to their progenitors at different redshifts and characterize their assembly histories by focusing on the time when half of the galaxy stellar mass was assembled into the main progenitor. We show that galaxies with stellar mass M* < 1010.5 M⊙ assemble most of their stellar mass through star formation in the main progenitor (`in situ' star formation). This can be understood as a consequence of the steep rise in star formation efficiency with halo mass for these galaxies. For more massive galaxies, however, an increasing fraction of their stellar mass is formed outside the main progenitor and subsequently accreted. Consequently, while for low-mass galaxies, the assembly time is close to the stellar formation time, the stars in high-mass galaxies typically formed long before half of the present-day stellar mass was assembled into a single object, giving rise to the observed antihierarchical downsizing trend. In a typical present-day M* ≥ 1011 M⊙ galaxy, around 20 per cent of the stellar mass has an external origin. This fraction decreases with increasing redshift. Bearing in mind that mergers only make an important contribution to the stellar mass growth of massive galaxies, we find that the dominant contribution comes from mergers with galaxies of mass greater than one-tenth of the main progenitor's mass. The galaxy merger fraction derived from our simulations agrees with recent observational estimates.
COX16 promotes COX2 metallation and assembly during respiratory complex IV biogenesis
Aich, Abhishek; Wang, Cong; Chowdhury, Arpita; Ronsör, Christin; Pacheu-Grau, David; Richter-Dennerlein, Ricarda; Dennerlein, Sven
2018-01-01
Cytochrome c oxidase of the mitochondrial oxidative phosphorylation system reduces molecular oxygen with redox equivalent-derived electrons. The conserved mitochondrial-encoded COX1- and COX2-subunits are the heme- and copper-center containing core subunits that catalyze water formation. COX1 and COX2 initially follow independent biogenesis pathways creating assembly modules with subunit-specific, chaperone-like assembly factors that assist in redox centers formation. Here, we find that COX16, a protein required for cytochrome c oxidase assembly, interacts specifically with newly synthesized COX2 and its copper center-forming metallochaperones SCO1, SCO2, and COA6. The recruitment of SCO1 to the COX2-module is COX16- dependent and patient-mimicking mutations in SCO1 affect interaction with COX16. These findings implicate COX16 in CuA-site formation. Surprisingly, COX16 is also found in COX1-containing assembly intermediates and COX2 recruitment to COX1. We conclude that COX16 participates in merging the COX1 and COX2 assembly lines. PMID:29381136
Capillary Assembly of Colloids: Interactions on Planar and Curved Interfaces
NASA Astrophysics Data System (ADS)
Liu, Iris B.; Sharifi-Mood, Nima; Stebe, Kathleen J.
2018-03-01
In directed assembly, small building blocks are assembled into an organized structure under the influence of guiding fields. Capillary interactions provide a versatile route for structure formation. Colloids adsorbed on fluid interfaces distort the interface, which creates an associated energy field. When neighboring distortions overlap, colloids interact to minimize interfacial area. Contact line pinning, particle shape, and surface chemistry play important roles in structure formation. Interface curvature acts like an external field; particles migrate and assemble in patterns dictated by curvature gradients. We review basic analysis and recent findings in this rapidly evolving literature. Understanding the roles of assembly is essential for tuning the mechanical, physical, and optical properties of the structure.
Acetanilide mediated reversible assembly and disassembly of Au nanoparticles.
Murugadoss, A; Kar, Manoranjan; Chattopadhyay, Arun
2008-08-01
Herein we report the generation of Au nanoparticles (NPs) by sparingly soluble acetanilide in water. We also report the formation of linear chain-like superstructures of self-assembled Au NPs, in the presence of excess acetanilide. This was achieved in two different ways. In the first method, acetanilide was added, with increasing concentration, into aqueous HAuCl(4) to produce Au NPs as well as for the formation of assembly, which varied according to the concentration of acetanilide. The other route involved formation of spherical Au NPs at the lowest concentration of acetanilide, which was followed by the formation of assembly of various lengths upon further addition of variable amount of acetanilide. The assemblies were stable in aqueous solution for days with characteristic UV-vis absorption spectra consisting of two peaks. While the wavelength of the first peak remained the same, the position of the second peak changed to longer wavelength with increasing acetanilide concentration. Interestingly, the linear chain-like arrays could be broken into individual particles by first dilution of the solution concentration followed by treatment with ultrasonic waves. The individual Au NPs again formed linear chain-like arrays upon addition of excess acetanilide.
Guided molecular self-assembly: a review of recent efforts
NASA Astrophysics Data System (ADS)
Huie, Jiyun C.
2003-04-01
This paper serves as an introductory review of significant and novel successes achieved in the fields of nanotechnology, particularly in the formation of nanostructures using guided molecular self-assembly methods. Self-assembly is a spontaneous process by which molecules and nanophase entities may materialize into organized aggregates or networks. Through various interactive mechanisms of self-assembly, such as electrostatics, chemistry, surface properties, and via other mediating agents, the technique proves indispensable to recent functional materials and device realizations. The discussion will extend to spontaneous and Langmuir-Blodgett formation of self-assembled monolayers on various substrates, and a number of different categories of self-assembly techniques based on the type of interaction exploited. Combinatorial techniques, known as soft lithography, of micro-contact printing and dip-pen nanolithography, which can be effectively used to up-size nanostructured molecular assemblies to submicrometer and micrometer scale patterns, will also be mentioned.
Interrogating viral capsid assembly with ion mobility-mass spectrometry
NASA Astrophysics Data System (ADS)
Uetrecht, Charlotte; Barbu, Ioana M.; Shoemaker, Glen K.; van Duijn, Esther; Heck, Albert J. R.
2011-02-01
Most proteins fulfil their function as part of large protein complexes. Surprisingly, little is known about the pathways and regulation of protein assembly. Several viral coat proteins can spontaneously assemble into capsids in vitro with morphologies identical to the native virion and thus resemble ideal model systems for studying protein complex formation. Even for these systems, the mechanism for self-assembly is still poorly understood, although it is generally thought that smaller oligomeric structures form key intermediates. This assembly nucleus and larger viral assembly intermediates are typically low abundant and difficult to monitor. Here, we characterised small oligomers of Hepatitis B virus (HBV) and norovirus under equilibrium conditions using native ion mobility mass spectrometry. This data in conjunction with computational modelling enabled us to elucidate structural features of these oligomers. Instead of more globular shapes, the intermediates exhibit sheet-like structures suggesting that they are assembly competent. We propose pathways for the formation of both capsids.
β-Hairpin-Mediated Formation of Structurally Distinct Multimers of Neurotoxic Prion Peptides
Gill, Andrew C.
2014-01-01
Protein misfolding disorders are associated with conformational changes in specific proteins, leading to the formation of potentially neurotoxic amyloid fibrils. During pathogenesis of prion disease, the prion protein misfolds into β-sheet rich, protease-resistant isoforms. A key, hydrophobic domain within the prion protein, comprising residues 109–122, recapitulates many properties of the full protein, such as helix-to-sheet structural transition, formation of fibrils and cytotoxicity of the misfolded isoform. Using all-atom, molecular simulations, it is demonstrated that the monomeric 109–122 peptide has a preference for α-helical conformations, but that this peptide can also form β-hairpin structures resulting from turns around specific glycine residues of the peptide. Altering a single amino acid within the 109–122 peptide (A117V, associated with familial prion disease) increases the prevalence of β-hairpin formation and these observations are replicated in a longer peptide, comprising residues 106–126. Multi-molecule simulations of aggregation yield different assemblies of peptide molecules composed of conformationally-distinct monomer units. Small molecular assemblies, consistent with oligomers, comprise peptide monomers in a β-hairpin-like conformation and in many simulations appear to exist only transiently. Conversely, larger assemblies are comprised of extended peptides in predominately antiparallel β-sheets and are stable relative to the length of the simulations. These larger assemblies are consistent with amyloid fibrils, show cross-β structure and can form through elongation of monomer units within pre-existing oligomers. In some simulations, assemblies containing both β-hairpin and linear peptides are evident. Thus, in this work oligomers are on pathway to fibril formation and a preference for β-hairpin structure should enhance oligomer formation whilst inhibiting maturation into fibrils. These simulations provide an important new atomic-level model for the formation of oligomers and fibrils of the prion protein and suggest that stabilization of β-hairpin structure may enhance cellular toxicity by altering the balance between oligomeric and fibrillar protein assemblies. PMID:24498083
BASIC: A Simple and Accurate Modular DNA Assembly Method.
Storch, Marko; Casini, Arturo; Mackrow, Ben; Ellis, Tom; Baldwin, Geoff S
2017-01-01
Biopart Assembly Standard for Idempotent Cloning (BASIC) is a simple, accurate, and robust DNA assembly method. The method is based on linker-mediated DNA assembly and provides highly accurate DNA assembly with 99 % correct assemblies for four parts and 90 % correct assemblies for seven parts [1]. The BASIC standard defines a single entry vector for all parts flanked by the same prefix and suffix sequences and its idempotent nature means that the assembled construct is returned in the same format. Once a part has been adapted into the BASIC format it can be placed at any position within a BASIC assembly without the need for reformatting. This allows laboratories to grow comprehensive and universal part libraries and to share them efficiently. The modularity within the BASIC framework is further extended by the possibility of encoding ribosomal binding sites (RBS) and peptide linker sequences directly on the linkers used for assembly. This makes BASIC a highly versatile library construction method for combinatorial part assembly including the construction of promoter, RBS, gene variant, and protein-tag libraries. In comparison with other DNA assembly standards and methods, BASIC offers a simple robust protocol; it relies on a single entry vector, provides for easy hierarchical assembly, and is highly accurate for up to seven parts per assembly round [2].
Hantavirus Gn and Gc glycoproteins self-assemble into virus-like particles.
Acuña, Rodrigo; Cifuentes-Muñoz, Nicolás; Márquez, Chantal L; Bulling, Manuela; Klingström, Jonas; Mancini, Roberta; Lozach, Pierre-Yves; Tischler, Nicole D
2014-02-01
How hantaviruses assemble and exit infected cells remains largely unknown. Here, we show that the expression of Andes (ANDV) and Puumala (PUUV) hantavirus Gn and Gc envelope glycoproteins lead to their self-assembly into virus-like particles (VLPs) which were released to cell supernatants. The viral nucleoprotein was not required for particle formation. Further, a Gc endodomain deletion mutant did not abrogate VLP formation. The VLPs were pleomorphic, exposed protrusions and reacted with patient sera.
Orai1 as New Therapeutic Target for Inhibiting Breast Tumor Metastasis
2009-09-01
includes focal adhesion assembly (formation of focal complex) and focal adhesion disassembly, we used live - cell imaging to quantify the rates of assembly...A and B) Live cell imaging of paxillin-GFP transfected MEF cells in the absence (A) or presence (B) of SKF96365. Scale bar: 10 µm. (C and D...includes focal adhesion assembly (formation of focal complexes) and focal adhesion disassembly, we used live - cell imaging to quantify the rates of focal
NASA Astrophysics Data System (ADS)
Grason, Gregory M.
2017-12-01
The spontaneous assembly of particulate or molecular 'building blocks' into larger architectures underlies structure formation in many biological and synthetic materials. Shape frustration of ill-fitting blocks holds a surprising key to more regular assemblies.
Hantavirus Gn and Gc Glycoproteins Self-Assemble into Virus-Like Particles
Acuña, Rodrigo; Cifuentes-Muñoz, Nicolás; Márquez, Chantal L.; Bulling, Manuela; Klingström, Jonas; Mancini, Roberta; Lozach, Pierre-Yves
2014-01-01
How hantaviruses assemble and exit infected cells remains largely unknown. Here, we show that the expression of Andes (ANDV) and Puumala (PUUV) hantavirus Gn and Gc envelope glycoproteins lead to their self-assembly into virus-like particles (VLPs) which were released to cell supernatants. The viral nucleoprotein was not required for particle formation. Further, a Gc endodomain deletion mutant did not abrogate VLP formation. The VLPs were pleomorphic, exposed protrusions and reacted with patient sera. PMID:24335294
Early assembly of the most massive galaxies.
Collins, Chris A; Stott, John P; Hilton, Matt; Kay, Scott T; Stanford, S Adam; Davidson, Michael; Hosmer, Mark; Hoyle, Ben; Liddle, Andrew; Lloyd-Davies, Ed; Mann, Robert G; Mehrtens, Nicola; Miller, Christopher J; Nichol, Robert C; Romer, A Kathy; Sahlén, Martin; Viana, Pedro T P; West, Michael J
2009-04-02
The current consensus is that galaxies begin as small density fluctuations in the early Universe and grow by in situ star formation and hierarchical merging. Stars begin to form relatively quickly in sub-galactic-sized building blocks called haloes which are subsequently assembled into galaxies. However, exactly when this assembly takes place is a matter of some debate. Here we report that the stellar masses of brightest cluster galaxies, which are the most luminous objects emitting stellar light, some 9 billion years ago are not significantly different from their stellar masses today. Brightest cluster galaxies are almost fully assembled 4-5 billion years after the Big Bang, having grown to more than 90 per cent of their final stellar mass by this time. Our data conflict with the most recent galaxy formation models based on the largest simulations of dark-matter halo development. These models predict protracted formation of brightest cluster galaxies over a Hubble time, with only 22 per cent of the stellar mass assembled at the epoch probed by our sample. Our findings suggest a new picture in which brightest cluster galaxies experience an early period of rapid growth rather than prolonged hierarchical assembly.
A new building block for DNA network formation by self-assembly and polymerase chain reaction.
Bußkamp, Holger; Keller, Sascha; Robotta, Marta; Drescher, Malte; Marx, Andreas
2014-01-01
The predictability of DNA self-assembly is exploited in many nanotechnological approaches. Inspired by naturally existing self-assembled DNA architectures, branched DNA has been developed that allows self-assembly to predesigned architectures with dimensions on the nanometer scale. DNA is an attractive material for generation of nanostructures due to a plethora of enzymes which modify DNA with high accuracy, providing a toolbox for many different manipulations to construct nanometer scaled objects. We present a straightforward synthesis of a rigid DNA branching building block successfully used for the generation of DNA networks by self-assembly and network formation by enzymatic DNA synthesis. The Y-shaped 3-armed DNA construct, bearing 3 primer strands is accepted by Taq DNA polymerase. The enzyme uses each arm as primer strand and incorporates the branched construct into large assemblies during PCR. The networks were investigated by agarose gel electrophoresis, atomic force microscopy, dynamic light scattering, and electron paramagnetic resonance spectroscopy. The findings indicate that rather rigid DNA networks were formed. This presents a new bottom-up approach for DNA material formation and might find applications like in the generation of functional hydrogels.
Self-Assembly: How Nature Builds
ERIC Educational Resources Information Center
Jones, M. Gail; Falvo, Michael R.; Broadwell, Bethany; Dotger, Sharon
2006-01-01
Self-assembly or spontaneous assembly is a process in which materials build themselves without assistance. This process plays a central role in the construction of biological structures and materials such as cells, viruses, and bone, and also in abiotic processes like phase transitions and crystal formation. The principles of self-assembly help…
Programming function into mechanical forms by directed assembly of silk bulk materials
Patel, Nereus; Duggan, Thomas; Perotto, Giovanni; Shirman, Elijah; Li, Chunmei; Kaplan, David L.; Omenetto, Fiorenzo G.
2017-01-01
We report simple, water-based fabrication methods based on protein self-assembly to generate 3D silk fibroin bulk materials that can be easily hybridized with water-soluble molecules to obtain multiple solid formats with predesigned functions. Controlling self-assembly leads to robust, machinable formats that exhibit thermoplastic behavior consenting material reshaping at the nanoscale, microscale, and macroscale. We illustrate the versatility of the approach by realizing demonstrator devices where large silk monoliths can be generated, polished, and reshaped into functional mechanical components that can be nanopatterned, embed optical function, heated on demand in response to infrared light, or can visualize mechanical failure through colorimetric chemistries embedded in the assembled (bulk) protein matrix. Finally, we show an enzyme-loaded solid mechanical part, illustrating the ability to incorporate biological function within the bulk material with possible utility for sustained release in robust, programmably shapeable mechanical formats. PMID:28028213
ICC Type II large-format FPA detector assemblies
NASA Astrophysics Data System (ADS)
Clynne, Thomas H.; Powers, Thomas P.
1997-08-01
ICC presents a new addition to their integrated detector assembly product line with the announcement of their type II large format staring class FPA units. A result of internally funded research and development, the ICC type II detector assembly can accommodate all existing large format staring class PtSi, InSb and MCT focal planes, up to 640 by 480. Proprietary methodologies completely eliminate all FPA stresses to allow for maximum FPA survivability. Standard optical and cryocooler interfaces allow for the use of BEI, AEG, TI SADA Hughes/Magnavox and Joule Thompson coolers. This unit has been qualified to the current SADA II thermal environmental specifications and was tailored around ICC's worldwide industry standard type IV product. Assembled in a real world flexible manufacturing environment, this unit features a wide degree of adaptability and can be easily modified to a user's specifications via standard options and add-ons that include optical interfaces, electrical interfaces and window/filter material selections.
Maity, Arunava; Gangopadhyay, Monalisa; Basu, Arghya; Aute, Sunil; Babu, Sukumaran Santhosh; Das, Amitava
2016-09-07
The helical handedness in achiral self-assemblies is mostly complex due to spontaneous symmetry breaking or kinetically controlled random assembly formation. Here an attempt has been made to address this issue through chiral anion exchange. A new class of cationic achiral C3-symmetric gelator devoid of any conventional gelation assisting functional units is found to form both right- and left-handed helical structures. A chiral counteranion exchange-assisted approach is successfully introduced to control the chirality sign and thereby to obtain preferred homochiral assemblies. Formation of anion-assisted chiral assembly was confirmed by circular dichroism (CD) spectroscopy, microscopic images, and crystal structure. The X-ray crystal structure reveals the construction of helical assemblies with opposite handedness for (+)- and (-)-chiral anion reformed gelators. The appropriate counteranion driven ion-pair-assisted hydrogen-bonding interactions are found responsible for the helical bias control in this C3-symmetric gelator.
Bearing assemblies, apparatuses, and motor assemblies using the same
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sexton, Timothy N.; Cooley, Craig H.; Knuteson, Cody W.
2015-12-29
Various embodiments of the invention relate to bearing assemblies, apparatuses and motor assemblies that include geometric features configured to impart a selected amount of heat transfer and/or hydrodynamic film formation. In an embodiment, a bearing assembly may include a plurality of superhard bearing pads distributed circumferentially about an axis. At least some of the plurality of superhard bearing pads may include a plurality of sub-superhard bearing elements defining a bearing surface. At least some of the plurality of sub-superhard bearing elements may be spaced from one another by one or more voids to impart a selected amount of heat transfermore » and hydrodynamic film formation thereon during operation. The bearing assembly may also include a support ring that carries the plurality of superhard bearing pads. In addition, at least a portion of the sub-superhard bearing elements may extend beyond the support ring.« less
Monodisperse self-assembly in a model with protein-like interactions
NASA Astrophysics Data System (ADS)
Wilber, Alex W.; Doye, Jonathan P. K.; Louis, Ard A.; Lewis, Anna C. F.
2009-11-01
We study the self-assembly behavior of patchy particles with "proteinlike" interactions that can be considered as a minimal model for the assembly of viral capsids and other shell-like protein complexes. We thoroughly explore the thermodynamics and dynamics of self-assembly as a function of the parameters of the model and find robust assembly of all target structures considered. Optimal assembly occurs in the region of parameter space where a free energy barrier regulates the rate of nucleation, thus preventing the premature exhaustion of the supply of monomers that can lead to the formation of incomplete shells. The interactions also need to be specific enough to prevent the assembly of malformed shells, but while maintaining kinetic accessibility. Free energy landscapes computed for our model have a funnel-like topography guiding the system to form the target structure and show that the torsional component of the interparticle interactions prevents the formation of disordered aggregates that would otherwise act as kinetic traps.
NASA Astrophysics Data System (ADS)
Lou, Chenguang; Martos-Maldonado, Manuel C.; Madsen, Charlotte S.; Thomsen, Rasmus P.; Midtgaard, Søren Roi; Christensen, Niels Johan; Kjems, Jørgen; Thulstrup, Peter W.; Wengel, Jesper; Jensen, Knud J.
2016-07-01
Peptide-based structures can be designed to yield artificial proteins with specific folding patterns and functions. Template-based assembly of peptide units is one design option, but the use of two orthogonal self-assembly principles, oligonucleotide triple helix and a coiled coil protein domain formation have never been realized for de novo protein design. Here, we show the applicability of peptide-oligonucleotide conjugates for self-assembly of higher-ordered protein-like structures. The resulting nano-assemblies were characterized by ultraviolet-melting, gel electrophoresis, circular dichroism (CD) spectroscopy, small-angle X-ray scattering and transmission electron microscopy. These studies revealed the formation of the desired triple helix and coiled coil domains at low concentrations, while a dimer of trimers was dominating at high concentration. CD spectroscopy showed an extraordinarily high degree of α-helicity for the peptide moieties in the assemblies. The results validate the use of orthogonal self-assembly principles as a paradigm for de novo protein design.
Crystal structure of human proteasome assembly chaperone PAC4 involved in proteasome formation.
Kurimoto, Eiji; Satoh, Tadashi; Ito, Yuri; Ishihara, Eri; Okamoto, Kenta; Yagi-Utsumi, Maho; Tanaka, Keiji; Kato, Koichi
2017-05-01
The 26S proteasome is a large protein complex, responsible for degradation of ubiquinated proteins in eukaryotic cells. Eukaryotic proteasome formation is a highly ordered process that is assisted by several assembly chaperones. The assembly of its catalytic 20S core particle depends on at least five proteasome-specific chaperones, i.e., proteasome-assembling chaperons 1-4 (PAC1-4) and proteasome maturation protein (POMP). The orthologues of yeast assembly chaperones have been structurally characterized, whereas most mammalian assembly chaperones are not. In the present study, we determined a crystal structure of human PAC4 at 1.90-Å resolution. Our crystallographic data identify a hydrophobic surface that is surrounded by charged residues. The hydrophobic surface is complementary to that of its binding partner, PAC3. The surface also exhibits charge complementarity with the proteasomal α4-5 subunits. This will provide insights into human proteasome-assembling chaperones as potential anticancer drug targets. © 2017 The Protein Society.
NASA Astrophysics Data System (ADS)
Yeranossian, Vahagn Frounzig
Nanoemulsions as an emerging technology have found many applications in consumer products, drug delivery, and even particle formation. However, knowledge gaps exist in how some of these emulsions are formed, specifically what pathways are traversed to reach the final state. Moreover, how these pathways affect the final properties of the nanoemulsions would affect the applications that these droplets possess. Some nanoemulsions possess unique properties, including the assembly of droplets. While the assembly of droplets is being studied in the Helgeson lab, work must be done to understand how the assembly itself could be used to control the growth of porous materials, such a hydrogels. Thus, this thesis aims to address two factors of nanoemulsions: the formation of water-in-oil nanoemulsions and the use of assemblying droplets in oil-in-water nanoemulsions to form macroporous hydrogels. To elucidate the formation mechanism of water-in-oil nanoemulsions, a combination of dynamic light scattering and small angle neutron scattering were used to study the intermediate and final states of the nanoemulsion during its formation. These nanoemulsions were prepared by slowly adding water to an oil and surfactant mixture and were diluted to effectively measure using scattering techniques without multiple scattering events. To develop a procedure to use assembled nanoemulsions for the growth of porous materials, a combination of optical microscopy and diffusional studies were employed. Optical microscopy images taken at various stages of the procedure help elucidate how the pore sizes of the final porous material is related to the droplet-rich domains of the assembled nanoemulsion. Meanwhile, diffusional measurements help confirm the size and interconnectedness of the macropores. From the work done in the completion of my thesis, the formation mechanism of the water-in-oil nanoemulsion studied has been elucidated. The neutron scattering measurements show that during the formation of the nanoemulsion, a combination of droplets and vesicles form. The presence of vesicles provides insight into how chemical additives in the water would affect the final droplet properties. This insight can be used to design water-in-oil nanoemulsions to be used for the controlled synthesis of solid nanoparticles. Additionally, this work demonstrates a potential procedure for developing macroporous hydrogels using nanoemulsions that are assembled into droplet-rich and droplet-poor domains. Through mild UV cross-linking conditions and mild solvent extraction techniques, the pore sizes could be equivalent to the droplet-rich domain sizes. The final hydrogels can control diffusivity of molecules, giving them potential applications in drug delivery.
Vasil'eva, S V; Streltsova, D A; Starostina, I A; Sanina, N A
2013-01-01
The functions of nitrogen oxide (NO) in the regulation of the reversible processes of Fe-S cluster assembly in proteins and the formation of Escherichia coli biofilms have been investigated. S-nitrosoglutathione (GSNO) and crystalline nitrosyl complexes of iron with sulfur-containing aliphatic ligands cisaconite (CisA) and penaconite have been used as NO donors for the first time. Wild-type E. coli cells of the strain MC4100, mutants deltaiscA and deltasufA, and the double paralog mutant deltaiscA/sufA with deletions in the alternative pathways of Fe2+ supply for cluster assembly (all derived from the above-named strain) were used in this study. Plankton growth of bacterial cultures, the mass of mature biofilms, and the expression of the SoxRS[2Fe-2S] regulon have been investigated and shown to depend on strain genotype, the process of Fe-S cluster assembly in iron-sulfur proteins, NO donor structure, and the presence of Fe2+ chelator ferene in the incubation medium. The antibiotic ciprofloxacine (CF) was used as an inhibitor of E. coli biofilm formation in the positive control. NO donors regulating Fe-S cluster assembly in E. coli have been shown to control plankton growth of the cultures and the process of mature biofilm formation; toxic doses of NO caused a dramatic (3- to 4-fold) stimulation of cell entry into biofilms as a response to nitrosative stress; NO donors CisA and GSNO in physiological concentrations suppressed the formation of mature biofilms, and the activity of these compounds was comparable to that of CE Regulation of both Fe-S cluster assembly in iron-sulfur proteins and biofilm formation by NO is indicative of the connection between these processes in E. coli.
Cholinergic Plasticity of Oscillating Neuronal Assemblies in Mouse Hippocampal Slices
Zylla, Maura M.; Zhang, Xiaomin; Reichinnek, Susanne; Draguhn, Andreas; Both, Martin
2013-01-01
The mammalian hippocampus expresses several types of network oscillations which entrain neurons into transiently stable assemblies. These groups of co-active neurons are believed to support the formation, consolidation and recall of context-dependent memories. Formation of new assemblies occurs during theta- and gamma-oscillations under conditions of high cholinergic activity. Memory consolidation is linked to sharp wave-ripple oscillations (SPW-R) during decreased cholinergic tone. We hypothesized that increased cholinergic tone supports plastic changes of assemblies while low cholinergic tone favors their stability. Coherent spatiotemporal network patterns were measured during SPW-R activity in mouse hippocampal slices. We compared neuronal activity within the oscillating assemblies before and after a transient phase of carbachol-induced gamma oscillations. Single units maintained their coupling to SPW-R throughout the experiment and could be re-identified after the transient phase of gamma oscillations. However, the frequency of SPW-R-related unit firing was enhanced after muscarinic stimulation. At the network level, these changes resulted in altered patterns of extracellularly recorded SPW-R waveforms. In contrast, recording of ongoing SPW-R activity without intermittent cholinergic stimulation revealed remarkably stable repetitive activation of assemblies. These results show that activation of cholinergic receptors induces plasticity at the level of oscillating hippocampal assemblies, in line with the different role of gamma- and SPW-R network activity for memory formation and –consolidation, respectively. PMID:24260462
Fichtman, Boris; Ramos, Corinne; Rasala, Beth; Harel, Amnon; Forbes, Douglass J
2010-12-01
Nuclear pore complexes (NPCs) are large proteinaceous channels embedded in double nuclear membranes, which carry out nucleocytoplasmic exchange. The mechanism of nuclear pore assembly involves a unique challenge, as it requires creation of a long-lived membrane-lined channel connecting the inner and outer nuclear membranes. This stabilized membrane channel has little evolutionary precedent. Here we mapped inner/outer nuclear membrane fusion in NPC assembly biochemically by using novel assembly intermediates and membrane fusion inhibitors. Incubation of a Xenopus in vitro nuclear assembly system at 14°C revealed an early pore intermediate where nucleoporin subunits POM121 and the Nup107-160 complex were organized in a punctate pattern on the inner nuclear membrane. With time, this intermediate progressed to diffusion channel formation and finally to complete nuclear pore assembly. Correct channel formation was blocked by the hemifusion inhibitor lysophosphatidylcholine (LPC), but not if a complementary-shaped lipid, oleic acid (OA), was simultaneously added, as determined with a novel fluorescent dextran-quenching assay. Importantly, recruitment of the bulk of FG nucleoporins, characteristic of mature nuclear pores, was not observed before diffusion channel formation and was prevented by LPC or OA, but not by LPC+OA. These results map the crucial inner/outer nuclear membrane fusion event of NPC assembly downstream of POM121/Nup107-160 complex interaction and upstream or at the time of FG nucleoporin recruitment.
Spindle formation in the mouse embryo requires Plk4 in the absence of centrioles.
Coelho, Paula A; Bury, Leah; Sharif, Bedra; Riparbelli, Maria G; Fu, Jingyan; Callaini, Giuliano; Glover, David M; Zernicka-Goetz, Magdalena
2013-12-09
During the first five rounds of cell division in the mouse embryo, spindles assemble in the absence of centrioles. Spindle formation initiates around chromosomes, but the microtubule nucleating process remains unclear. Here we demonstrate that Plk4, a protein kinase known as a master regulator of centriole formation, is also essential for spindle assembly in the absence of centrioles. Depletion of maternal Plk4 prevents nucleation and growth of microtubules and results in monopolar spindle formation. This leads to cytokinesis failure and, consequently, developmental arrest. We show that Plk4 function depends on its kinase activity and its partner protein, Cep152. Moreover, tethering Cep152 to cellular membranes sequesters Plk4 and is sufficient to trigger spindle assembly from ectopic membranous sites. Thus, the Plk4-Cep152 complex has an unexpected role in promoting microtubule nucleation in the vicinity of chromosomes to mediate bipolar spindle formation in the absence of centrioles. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Nandiyanto, Asep Bayu Dani
2016-02-01
When synthesizing particles using a liquid-phase synthesis method, reactant components show interaction with the reaction system itself. However, current reports described successful synthesis of material with only partial information on the component-component interaction and possible self-assembly mechanism occurring during the material synthesis process. Here, self-assembly concepts in the formation of nanostructured particles are presented. Influences of self-assembly parameters (i.e., surface charge, size, and concentration of components involving the reaction) on self-organized material fabrication are described. Because understanding the interaction of the component provides significant information in regard to practical uses, this report can be relevant to further material development and fabrication.
Hierarchical assembly of branched supramolecular polymers from (cyclic Peptide)-polymer conjugates.
Koh, Ming Liang; Jolliffe, Katrina A; Perrier, Sébastien
2014-11-10
We report the synthesis and assembly of (N-methylated cyclic peptide)-polymer conjugates for which the cyclic peptide is attached to either the α- or both α- and ω- end groups of a polymer. A combination of chromatographic, spectroscopic, and scattering techniques reveals that the assembly of the conjugates follows a two-level hierarchy, initially driven by H-bond formation between two N-methylated cyclic peptides, followed by unspecific, noncovalent aggregation of this peptide into small domains that behave as branching points and lead to the formation of branched supramolecular polymers.
Exploiting oleuropein for inhibiting collagen fibril formation.
Bharathy, H; Fathima, N Nishad
2017-08-01
Collagen fibrils accumulate in excessive amounts and impair the normal functioning of the organ; therefore it stimulates the interest for identifying the compounds that could prevent the formation of fibrils. Herein, inhibition of self-assembly of collagen using oleuropein has been studied. The changes in the physico-chemical characteristics of collagen on interaction with increasing concentration of oleuropein has been studied using techniques like viscosity, UV-vis, CD and FT-IR. The inhibitory effect of oleuropein on fibril formation of collagen was proved using SEM. Circular dichroism and FT-IR spectra elucidates the alterations in the secondary structure of collagen suggesting non-covalent interactions between oleuropein and collagen. The decreased rate of collagen fibril formation also confirms the inhibition in the self-assembly of collagen. Hence, our study suggests that inhibition of the self-assembly process using oleuropein may unfold new avenues to treat fibrotic diseases. Copyright © 2017 Elsevier B.V. All rights reserved.
Following in Real Time the Two-Step Assembly of Nanoparticles into Mesocrystals in Levitating Drops.
Agthe, Michael; Plivelic, Tomás S; Labrador, Ana; Bergström, Lennart; Salazar-Alvarez, German
2016-11-09
Mesocrystals composed of crystallographically aligned nanocrystals are present in biominerals and assembled materials which show strongly directional properties of importance for mechanical protection and functional devices. Mesocrystals are commonly formed by complex biomineralization processes and can also be generated by assembly of anisotropic nanocrystals. Here, we follow the evaporation-induced assembly of maghemite nanocubes into mesocrystals in real time in levitating drops. Analysis of time-resolved small-angle X-ray scattering data and ex situ scanning electron microscopy together with interparticle potential calculations show that the substrate-free, particle-mediated crystallization process proceeds in two stages involving the formation and rapid transformation of a dense, structurally disordered phase into ordered mesocrystals. Controlling and tailoring the particle-mediated formation of mesocrystals could be utilized to assemble designed nanoparticles into new materials with unique functions.
Role of proton balance in formation of self-assembled chitosan nanoparticles.
Dey, Anomitra; Kamat, Aditya; Nayak, Sonal; Danino, Dganit; Kesselman, Ellina; Dandekar, Prajakta; Jain, Ratnesh
2018-06-01
Researchers have explored the ability of chitosan to form nanoparticles, to suit varying applications, ranging from wound-healing to gene delivery. Ionic gelation is a widely used method for formulating chitosan nanoparticles, where self-assembly plays a crucial role. This self-assembly is initially promoted by hydrophilic-hydrophobic parity amongst individual chitosan residues, along with electrostatic and Van der Waals interactions with the cross-linker. However, until now the intrinsic ability of chitosan to self-assemble is not widely studied; hence, we investigate the self-assembly of chitosan, based on proton balance between its protonated and deprotonated residues, to promote facile nanoparticle synthesis. This is one of the first reports that highlights subtle but critical influence of proton balance in the chitosan polymer on the formation of chitosan nanoparticles. Copyright © 2018 Elsevier B.V. All rights reserved.
Shelkovnikova, Tatyana A; Kukharsky, Michail S; An, Haiyan; Dimasi, Pasquale; Alexeeva, Svetlana; Shabir, Osman; Heath, Paul R; Buchman, Vladimir L
2018-06-01
Paraspeckles are subnuclear bodies assembled on a long non-coding RNA (lncRNA) NEAT1. Their enhanced formation in spinal neurons of sporadic amyotrophic lateral sclerosis (ALS) patients has been reported but underlying mechanisms are unknown. The majority of ALS cases are characterized by TDP-43 proteinopathy. In current study we aimed to establish whether and how TDP-43 pathology may augment paraspeckle assembly. Paraspeckle formation in human samples was analysed by RNA-FISH and laser capture microdissection followed by qRT-PCR. Mechanistic studies were performed in stable cell lines, mouse primary neurons and human embryonic stem cell-derived neurons. Loss and gain of function for TDP-43 and other microRNA pathway factors were modelled by siRNA-mediated knockdown and protein overexpression. We show that de novo paraspeckle assembly in spinal neurons and glial cells is a hallmark of both sporadic and familial ALS with TDP-43 pathology. Mechanistically, loss of TDP-43 but not its cytoplasmic accumulation or aggregation augments paraspeckle assembly in cultured cells. TDP-43 is a component of the microRNA machinery, and recently, paraspeckles have been shown to regulate pri-miRNA processing. Consistently, downregulation of core protein components of the miRNA pathway also promotes paraspeckle assembly. In addition, depletion of these proteins or TDP-43 results in accumulation of endogenous dsRNA and activation of type I interferon response which also stimulates paraspeckle formation. We demonstrate that human or mouse neurons in vitro lack paraspeckles, but a synthetic dsRNA is able to trigger their de novo formation. Finally, paraspeckles are protective in cells with compromised microRNA/dsRNA metabolism, and their assembly can be promoted by a small-molecule microRNA enhancer. Our study establishes possible mechanisms behind paraspeckle hyper-assembly in ALS and suggests their utility as therapeutic targets in ALS and other diseases with abnormal metabolism of microRNA and dsRNA.
Banerji, Biswadip; Chatterjee, Moumita; Pal, Uttam; Maiti, Nakul C
2017-07-06
Both hydrogen-bonding and hydrophobic interactions play a significant role in molecular assembly, including self-assembly of proteins and peptides. In this study, we report the formation of annular protofibrillar structure (diameter ∼500 nm) made of a newly synthesized s-benzyl-protected cysteine tripeptide, which was primarily stabilized by hydrogen-bonding and hydrophobic interactions. Atomic force microscopy and field emission scanning electron microscopy analyses found small oligomers (diameter ∼60 nm) to bigger annular (outer diameter ∼300 nm; inner diameter, 100 nm) and protofibrillar structures after 1-2 days of incubation. Rotating-frame Overhauser spectroscopic (ROESY) analysis revealed the presence of several nonbonded proton-proton interactions among the residues, such as amide protons with methylene group, aromatic protons with tertiary butyl group, and methylene protons with tertiary butyl group. These added significant stability to bring the peptides closer to form a well-ordered assembled structure. Hydrogen-deuterium exchange NMR measurement further suggested that two individual amide protons among the three amide groups were strongly engaged with the adjacent tripeptide via H-bond interaction. However, the remaining amide proton was found to be exposed to solvent and remained noninteracting with other tripeptide molecules. In addition to chemical shift values, a significant change in amide bond vibrations of the tripeptide was found due to the formation of the self-assembled structure. The amide I mode of vibrations involving two amide linkages appeared at 1641 and 1695 cm -1 in the solid state. However, in the assembled state, the stretching band at 1695 cm -1 became broad and slightly shifted to ∼1689 cm -1 . On the contrary, the band at 1641 cm -1 shifted to 1659 cm -1 and indicated that the -C═O bond associated with this vibration became stronger in the assembled state. These changes in Fourier transform infrared spectroscopy frequency clearly indicated changes in the amide backbone conformation and the associated hydrogen-bonding pattern due to the formation of the assembled structure. In addition to hydrogen bonding, molecular dynamics simulation indicated that the number of π-π interactions also increased with increasing number of tripeptides participated in the self-assembly process. Combined results envisaged a cross β-sheet assembly unit consisting of four intermolecular hydrogen bonds. Such noncovalent peptide assemblies glued by hydrogen-bonding and other weak forces may be useful in developing nanocapsule and related materials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Amdursky, Nadav; Gazit, Ehud; Rosenman, Gil, E-mail: gilr@eng.tau.ac.il
Highlights: Black-Right-Pointing-Pointer We observe lag-phase crystallization process in insulin. Black-Right-Pointing-Pointer The crystallization is a result of the formation of higher order oligomers. Black-Right-Pointing-Pointer The crystallization also changes the secondary structure of the protein. Black-Right-Pointing-Pointer The spectroscopic signature can be used for amyloid inhibitors assay. -- Abstract: Insulin, as other amyloid proteins, can form amyloid fibrils at certain conditions. The self-assembled aggregation process of insulin can result in a variety of conformations, starting from small oligomers, going through various types of protofibrils, and finishing with bundles of fibrils. One of the most common consensuses among the various self-assembly processes that aremore » suggested in the literature is the formation of an early stage nucleus conformation. Here we present an additional insight for the self-assembly process of insulin. We show that at the early lag phase of the process (prior to fibril formation) the insulin monomers self-assemble into ordered nanostructures. The most notable feature of this early self-assembly process is the formation of nanocrystalline nucleus regions with a strongly bound electron-hole confinement, which also change the secondary structure of the protein. Each step in the self-assembly process is characterized by an optical spectroscopic signature, and possesses a narrow size distribution. By following the spectroscopic signature we can measure the potency of amyloid fibrils inhibitors already at the lag phase. We further demonstrate it by the use of epigallocatechin gallate, a known inhibitor for insulin fibrils. The findings can result in a spectroscopic-based application for the analysis of amyloid fibrils inhibitors.« less
Pavelin, Jonathan; McCormick, Dominique; Chiweshe, Stephen; Ramachandran, Saranya; Lin, Yao-Tang
2017-01-01
Successful generation of virions from infected cells is a complex process requiring orchestrated regulation of host and viral genes. Cells infected with human cytomegalovirus (HCMV) undergo a dramatic reorganization of membrane organelles resulting in the formation of the virion assembly compartment, a process that is not fully understood. Here we show that acidification of vacuoles by the cellular v-ATPase is a crucial step in the formation of the virion assembly compartment and disruption of acidification results in mis-localization of virion components and a profound reduction in infectious virus levels. In addition, knockdown of ATP6V0C blocks the increase in nuclear size, normally associated with HCMV infection. Inhibition of the v-ATPase does not affect intracellular levels of viral DNA synthesis or gene expression, consistent with a defect in assembly and egress. These studies identify a novel host factor involved in virion production and a potential target for antiviral therapy. PMID:29093211
Assembly of Multi-Phthalocyanines on a Porphyrin Template by Fourfold Rotaxane Formation.
Yamada, Yasuyuki; Kato, Tatsuhisa; Tanaka, Kentaro
2016-08-22
A stacked assembly composed of a porphyrin and two phthalocyanines was prepared through fourfold rotaxane formation. Two phthalocyanine molecules, bearing four 24-crown-8 units, were assembled onto a porphyrin template incorporating four sidechains with two dialkylammonium ions each through pseudorotaxane formation between crown ether units and ammonium ions. The Staudinger phosphite reaction, as the stoppering reaction, resulted in the formation of the stacked heterotrimer composed of a porphyrin and two phthalocyanines connected through a fourfold rotaxane structure. UV/Vis spectroscopic and electrochemical studies of the heterotrimer indicated that there is a significant electronic interaction between the two phthalocyanine units due to the close stacking. The electrochemical oxidation process of the stacked heterotrimer was studied by cyclic voltammetry and spectroelectrochemistry. Electron paramagnetic resonance (EPR) spectroscopy of a dinuclear Cu(II) complex, in which two Cu(II) phthalocyanines were assembled on a metal-free porphyrin template, revealed that two Cu(II) phthalocyanines were located within the stacking distance, which resulted in an antiferromagnetic interaction between the two S=1/2 spins in the ground state of the Cu(2+) ions in the heterotrimer. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Deshmukh, Sanket A; Solomon, Lee A; Kamath, Ganesh; Fry, H Christopher; Sankaranarayanan, Subramanian K R S
2016-08-24
Understanding the role of water in governing the kinetics of the self-assembly processes of amphiphilic peptides remains elusive. Here, we use a multistage atomistic-coarse-grained approach, complemented by circular dichroism/infrared spectroscopy and dynamic light scattering experiments to highlight the dual nature of water in driving the self-assembly of peptide amphiphiles (PAs). We show computationally that water cage formation and breakage near the hydrophobic groups control the fusion dynamics and aggregation of PAs in the micellar stage. Simulations also suggest that enhanced structural ordering of vicinal water near the hydrophilic amino acids shifts the equilibrium towards the fibre phase and stimulates structure and order during the PA assembly into nanofibres. Experiments validate our simulation findings; the measured infrared O-H bond stretching frequency is reminiscent of an ice-like bond which suggests that the solvated water becomes increasingly ordered with time in the assembled peptide network, thus shedding light on the role of water in a self-assembly process.
Liu, Gai; Gaines, Jennifer C; Robbins, Kevin J; Lazo, Noel D
2012-10-11
The self-assembly of amyloid proteins into β-sheet rich assemblies is associated with human amyloidoses including Alzheimer's disease, Parkinson's disease, and type 2 diabetes. An attractive therapeutic strategy therefore is to develop small molecules that would inhibit protein self-assembly. Natural polyphenols are potential inhibitors of β-sheet formation. How these compounds affect the kinetics of self-assembly studied by thioflavin T (ThT) fluorescence is not understood primarily because their presence interferes with ThT fluorescence. Here, we show that by plotting peak intensities from nuclear magnetic resonance (NMR) against incubation time, kinetic profiles in the presence of the polyphenol can be obtained from which kinetic parameters of self-assembly can be easily determined. In applying this technique to the self-assembly of the islet amyloid polypeptide in the presence of curcumin, a biphenolic compound found in turmeric, we show that the kinetic profile is atypical in that it shows a prenucleation period during which there is no observable decrease in NMR peak intensities.
Photo-reduction on the rupture of disulfide bonds and the related protein assembling
NASA Astrophysics Data System (ADS)
Wang, Wei
It has been found that many proteins can self-assemble into nanoscale assemblies when they unfold or partially unfold under harsh conditions, such as low pH, high temperature, or the presence of denaturants, and so on. These nanoscale assemblies can have some applications such as the drug-delivery systems (DDSs). Here we report a study that a very physical way, the UV illumination, can be used to facilitate the formation of protein fibrils and nanoparticles under native conditions by breaking disulfide bonds in some disulfide-containing proteins. By controlling the intensity of UV light and the illumination time, we realized the preparation of self-assembly nanoparticles which encapsulate the anticancer drug doxorubicin (DOX) and can be used as the DDS for inhibiting the growth of tumor. The formation of fibrillary assemblies was also observed. The rupture of disulfide bonds through photo-reduction process due to the effect of tryptophan and tyrosine was studied, and the physical mechanism of the assembling of the related disulfide-containing proteins was also discussed. We thank the financial support from NSF of China and the 973 project.
A biological approach to assembling tissue modules through endothelial capillary network formation.
Riesberg, Jeremiah J; Shen, Wei
2015-09-01
To create functional tissues having complex structures, bottom-up approaches to assembling small tissue modules into larger constructs have been emerging. Most of these approaches are based on chemical reactions or physical interactions at the interface between tissue modules. Here we report a biological assembly approach to integrate small tissue modules through endothelial capillary network formation. When adjacent tissue modules contain appropriate extracellular matrix materials and cell types that support robust endothelial capillary network formation, capillary tubules form and grow across the interface, resulting in assembly of the modules into a single, larger construct. It was shown that capillary networks formed in modules of dense fibrin gels seeded with human umbilical vein endothelial cells (HUVECs) and mesenchymal stem cells (MSCs); adjacent modules were firmly assembled into an integrated construct having a strain to failure of 117 ± 26%, a tensile strength of 2208 ± 83 Pa and a Young's modulus of 2548 ± 574 Pa. Under the same culture conditions, capillary networks were absent in modules of dense fibrin gels seeded with either HUVECs or MSCs alone; adjacent modules disconnected even when handled gently. This biological assembly approach eliminates the need for chemical reactions or physical interactions and their associated limitations. In addition, the integrated constructs are prevascularized, and therefore this bottom-up assembly approach may also help address the issue of vascularization, another key challenge in tissue engineering. Copyright © 2015 John Wiley & Sons, Ltd.
Free-standing supramolecular hydrogel objects by reaction-diffusion
Lovrak, Matija; Hendriksen, Wouter E. J.; Maity, Chandan; Mytnyk, Serhii; van Steijn, Volkert; Eelkema, Rienk; van Esch, Jan H.
2017-01-01
Self-assembly provides access to a variety of molecular materials, yet spatial control over structure formation remains difficult to achieve. Here we show how reaction–diffusion (RD) can be coupled to a molecular self-assembly process to generate macroscopic free-standing objects with control over shape, size, and functionality. In RD, two or more reactants diffuse from different positions to give rise to spatially defined structures on reaction. We demonstrate that RD can be used to locally control formation and self-assembly of hydrazone molecular gelators from their non-assembling precursors, leading to soft, free-standing hydrogel objects with sizes ranging from several hundred micrometres up to centimeters. Different chemical functionalities and gradients can easily be integrated in the hydrogel objects by using different reactants. Our methodology, together with the vast range of organic reactions and self-assembling building blocks, provides a general approach towards the programmed fabrication of soft microscale objects with controlled functionality and shape. PMID:28580948
An insight into polymerization-induced self-assembly by dissipative particle dynamics simulation.
Huang, Feng; Lv, Yisheng; Wang, Liquan; Xu, Pengxiang; Lin, Jiaping; Lin, Shaoliang
2016-08-14
Polymerization-induced self-assembly is a one-pot route to produce concentrated dispersions of block copolymer nano-objects. Herein, dissipative particle dynamics simulations with a reaction model were employed to investigate the behaviors of polymerization-induced self-assembly. The polymerization kinetics in the polymerization-induced self-assembly were analyzed by comparing with solution polymerization. It was found that the polymerization rate enhances in the initial stage and decreases in the later stage. In addition, the effects of polymerization rate, length of macromolecular initiators, and concentration on the aggregate morphologies and formation pathway were studied. The polymerization rate and the length of the macromolecular initiators are found to have a marked influence on the pathway of the aggregate formations and the final structures. Morphology diagrams were mapped correspondingly. A comparison between simulation results and experimental findings is also made and an agreement is shown. This work can enrich our knowledge about polymerization-induced self-assembly.
Hierarchical nanoparticle assemblies formed by decorating breath figures.
Böker, Alexander; Lin, Yao; Chiapperini, Kristen; Horowitz, Reina; Thompson, Mike; Carreon, Vincent; Xu, Ting; Abetz, Clarissa; Skaff, Habib; Dinsmore, A D; Emrick, Todd; Russell, Thomas P
2004-05-01
The combination of two self-assembly processes on different length scales leads to the formation of hierarchically structured nanoparticle arrays. Here, the formation of spherical cavities, or 'breath figures'-made by the condensation of micrometre-sized water droplets on the surface of a polymer solution-that self-assemble into a well-ordered hexagonal array, is combined with the self-assembly of CdSe nanoparticles at the polymer solution-water droplet interface. Complete evaporation of the solvent and water confines the particle assembly to an array of spherical cavities and allows for ex situ investigation. Fluorescence confocal, transmission electron and scanning electron microscope images show the preferential segregation of the CdSe nanoparticles to the polymer solution-water interface where they form a 5-7-nm-thick layer, thus functionalizing the walls of the holes. This process opens a new route to fabricating highly functionalized ordered microarrays of nanoparticles, potentially useful in sensory, separation membrane or catalytic applications.
Cytoplasmic Motifs in the Nipah Virus Fusion Protein Modulate Virus Particle Assembly and Egress.
Johnston, Gunner P; Contreras, Erik M; Dabundo, Jeffrey; Henderson, Bryce A; Matz, Keesha M; Ortega, Victoria; Ramirez, Alfredo; Park, Arnold; Aguilar, Hector C
2017-05-15
Nipah virus (NiV), a paramyxovirus in the genus Henipavirus , has a mortality rate in humans of approximately 75%. While several studies have begun our understanding of NiV particle formation, the mechanism of this process remains to be fully elucidated. For many paramyxoviruses, M proteins drive viral assembly and egress; however, some paramyxoviral glycoproteins have been reported as important or essential in budding. For NiV the matrix protein (M), the fusion glycoprotein (F) and, to a much lesser extent, the attachment glycoprotein (G) autonomously induce the formation of virus-like particles (VLPs). However, functional interactions between these proteins during assembly and egress remain to be fully understood. Moreover, if the F-driven formation of VLPs occurs through interactions with host cell machinery, the cytoplasmic tail (CT) of F is a likely interactive domain. Therefore, we analyzed NiV F CT deletion and alanine mutants and report that several but not all regions of the F CT are necessary for efficient VLP formation. Two of these regions contain YXXØ or dityrosine motifs previously shown to interact with cellular machinery involved in F endocytosis and transport. Importantly, our results showed that F-driven, M-driven, and M/F-driven viral particle formation enhanced the recruitment of G into VLPs. By identifying key motifs, specific residues, and functional viral protein interactions important for VLP formation, we improve our understanding of the viral assembly/egress process and point to potential interactions with host cell machinery. IMPORTANCE Henipaviruses can cause deadly infections of medical, veterinary, and agricultural importance. With recent discoveries of new henipa-like viruses, understanding the mechanisms by which these viruses reproduce is paramount. We have focused this study on identifying the functional interactions of three Nipah virus proteins during viral assembly and particularly on the role of one of these proteins, the fusion glycoprotein, in the incorporation of other viral proteins into viral particles. By identifying several regions in the fusion glycoprotein that drive viral assembly, we further our understanding of how these viruses assemble and egress from infected cells. The results presented will likely be useful toward designing treatments targeting this aspect of the viral life cycle and for the production of new viral particle-based vaccines. Copyright © 2017 American Society for Microbiology.
FAITH – Fast Assembly Inhibitor Test for HIV
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hadravová, Romana; Rumlová, Michaela, E-mail: michaela.rumlova@vscht.cz; Department of Biotechnology, University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague
Due to the high number of drug-resistant HIV-1 mutants generated by highly active antiretroviral therapy (HAART), there is continuing demand for new types of inhibitors. Both the assembly of the Gag polyprotein into immature and mature HIV-1 particles are attractive candidates for the blocking of the retroviral life cycle. Currently, no therapeutically-used assembly inhibitor is available. One possible explanation is the lack of a reliable and simple assembly inhibitor screening method. To identify compounds potentially inhibiting the formation of both types of HIV-1 particles, we developed a new fluorescent high-throughput screening assay. This assay is based on the quantification ofmore » the assembly efficiency in vitro in a 96-well plate format. The key components of the assay are HIV-1 Gag-derived proteins and a dual-labelled oligonucleotide, which emits fluorescence only when the assembly of retroviral particles is inhibited. The method was validated using three (CAI, BM2, PF74) reported assembly inhibitors. - Highlights: • Allows screening of assembly inhibitors of both mature and immature HIV-1 particles. • Based on Gag-derived proteins with CA in mature or immature conformation. • Simple and sensitive method suitable for high-throughput screening of inhibitors. • Unlike in other HIV assembly methods, works under physiological conditions. • No washing steps are necessary.« less
Ng, Johnathan; Wei, Yiyong; Zhou, Bin; Burapachaisri, Aonnicha; Guo, Edward; Vunjak-Novakovic, Gordana
2016-12-09
Cartilage formation from self-assembling mesenchymal stem cells (MSCs) in vitro recapitulate important cellular events during mesenchymal condensation that precedes native cartilage development. The goal of this study was to investigate the effects of cartilaginous extracellular matrix (ECM) components and culture regimen on cartilage formation by self-assembling human MSCs in vitro and in vivo. Human bone marrow-derived MSCs (hMSCs) were seeded and compacted in 6.5-mm-diameter transwell inserts with coated (type I, type II collagen) or uncoated (vehicle) membranes, at different densities (0.5 × 10 6 , 1.0 × 10 6 , 1.5 × 10 6 per insert). Pellets were formed by aggregating hMSCs (0.25 × 10 6 ) in round-bottomed wells. All tissues were cultured for up to 6 weeks for in vitro analyses. Discs (cultured for 6, 8 or 10 weeks) and pellets (cultured for 10 weeks) were implanted subcutaneously in immunocompromised mice to evaluate the cartilage stability in vivo. Type I and type II collagen coatings enabled cartilage disc formation from self-assembling hMSCs. Without ECM coating, hMSCs formed dome-shaped tissues resembling the pellets. Type I collagen, expressed in the prechondrogenic mesenchyme, improved early chondrogenesis versus type II collagen. High seeding density improved cartilage tissue properties but resulted in a lower yield of disc formation. Discs and pellets exhibited compositional and organizational differences in vitro and in vivo. Prolonged chondrogenic induction of the discs in vitro expedited endochondral ossification in vivo. The outcomes of cartilage tissues formed from self-assembling MSCs in vitro and in vivo can be modulated by the control of culture parameters. These insights could motivate new directions for engineering cartilage and bone via a cartilage template from self-assembling MSCs.
Baumbach, Janina; Novak, Zsofia Anna; Raff, Jordan W.; Wainman, Alan
2015-01-01
Acentriolar microtubule organizing centers (aMTOCs) are formed during meiosis and mitosis in several cell types, but their function and assembly mechanism is unclear. Importantly, aMTOCs can be overactive in cancer cells, enhancing multipolar spindle formation, merotelic kinetochore attachment and aneuploidy. Here we show that aMTOCs can form in acentriolar Drosophila somatic cells in vivo via an assembly pathway that depends on Asl, Cnn and, to a lesser extent, Spd-2—the same proteins that appear to drive mitotic centrosome assembly in flies. This finding enabled us to ablate aMTOC formation in acentriolar cells, and so perform a detailed genetic analysis of the contribution of aMTOCs to acentriolar mitotic spindle formation. Here we show that although aMTOCs can nucleate microtubules, they do not detectably increase the efficiency of acentriolar spindle assembly in somatic fly cells. We find that they are required, however, for robust microtubule array assembly in cells without centrioles that also lack microtubule nucleation from around the chromatin. Importantly, aMTOCs are also essential for dynein-dependent acentriolar spindle pole focusing and for robust cell proliferation in the absence of centrioles and HSET/Ncd (a kinesin essential for acentriolar spindle pole focusing in many systems). We propose an updated model for acentriolar spindle pole coalescence by the molecular motors Ncd/HSET and dynein in conjunction with aMTOCs. PMID:26020779
Amphiastral Mitotic Spindle Assembly in Vertebrate Cells Lacking Centrosomes
Hornick, Jessica E.; Mader, Christopher C.; Tribble, Emily K.; Bagne, Cydney C.; Vaughan, Kevin T.; Shaw, Sidney L.; Hinchcliffe, Edward H.
2011-01-01
Summary The role of centrosomes/centrioles during mitotic spindle assembly in vertebrates remains controversial. In cell-free extracts and experimentally derived acentrosomal cells, randomly oriented microtubules (MTs) self-organize around mitotic chromosomes and assemble anastral spindles [1, 2, 3]. However, vertebrate somatic cells normally assemble a connected pair of polarized, astral MT arrays – termed an amphiaster (“a star on both sides” [4]) – that is formed by the splitting and separation of the microtubule-organizing center (MTOC) well before nuclear envelope breakdown (NEB) [5]. Whether amphiaster formation requires splitting of duplicated centrosomes is not known. We found that when centrosomes were removed from living vertebrate cells early in their cell cycle, an acentriolar MTOC re-assembled, and prior to NEB, a functional amphiastral spindle formed. Cytoplasmic dynein, dynactin, and pericentrin are all recruited to the interphase aMTOC, and the activity of kinesin-5 is needed for amphiaster formation. Mitosis proceeded on time and these karyoplasts divided in two. However, ~35% of aMTOCs failed to split/separate before NEB, and these entered mitosis with persistent monastral spindles. The chromatin-mediated RAN-GTP pathway could not restore bipolarity to monastral spindles, and these cells exited mitosis as single daughters. Our data reveal the novel finding that MTOC separation and amphiaster formation does not absolutely require the centrosome, but in its absence, the fidelity of bipolar spindle assembly is highly compromised. PMID:21439826
Unknown Aspects of Self-Assembly of PbS Microscale Superstructures
Querejeta-Fernández, Ana; Hernández-Garrido, Juan C.; Yang, Hengxi; Zhou, Yunlong; Varela, Aurea; Parras, Marina; Calvino-Gámez, José J.; González-Calbet, Jose M.; Green, Peter F.; Kotov, Nicholas A.
2012-01-01
A lot of interesting and sophisticated examples of nanoparticle (NP) self-assembly (SA) are known. From both fundamental and technological standpoints this field requires advancements in three principle directions: a) understanding the mechanism and driving forces of three-dimensional (3D) SA with both nano- and micro-levels of organization; b) understanding of disassembly/deconstruction processes; and c) finding synthetic methods of assembly into continuous superstructures without insulating barriers. From this perspective, we investigated the formation of well-known star-like PbS superstructures and found a number of previously unknown or overlooked aspects that can advance the knowledge of NP self-assembly in these three directions. The primary one is that the formation of large seemingly monocrystalline PbS superstructures with multiple levels of octahedral symmetry can be explained only by SA of small octahedral NPs. We found five distinct periods in the formation PbS hyperbranched stars: 1) nucleation of early PbS NPs with an average diameter of 31 nm; 2) assembly into 100–500 nm octahedral mesocrystals; 3) assembly into 1000–2500 nm hyperbranched stars; 4) assembly and ionic recrystallization into six-arm rods accompanied by disappearance of fine nanoscale structure; 5) deconstruction into rods and cubooctahedral NPs. The switches in assembly patterns between the periods occur due to variable dominance of pattern–determining forces that include vander Waals and electrostatic (charge-charge, dipole-dipole, and polarization) interactions. The superstructure deconstruction is triggered by chemical changes in the deep eutectic solvent (DES) used as the media. PbS superstructures can be excellent models for fundamental studies of nanoscale organization and SA manufacturing of (opto)electronics and energy harvesting devices which require organization of PbS components at multiple scales. PMID:22515512
Unknown aspects of self-assembly of PbS microscale superstructures.
Querejeta-Fernández, Ana; Hernández-Garrido, Juan C; Yang, Hengxi; Zhou, Yunlong; Varela, Aurea; Parras, Marina; Calvino-Gámez, José J; González-Calbet, Jose M; Green, Peter F; Kotov, Nicholas A
2012-05-22
A lot of interesting and sophisticated examples of nanoparticle (NP) self-assembly (SA) are known. From both fundamental and technological standpoints, this field requires advancements in three principle directions: (a) understanding the mechanism and driving forces of three-dimensional (3D) SA with both nano- and microlevels of organization; (b) understanding disassembly/deconstruction processes; and (c) finding synthetic methods of assembly into continuous superstructures without insulating barriers. From this perspective, we investigated the formation of well-known star-like PbS superstructures and found a number of previously unknown or overlooked aspects that can advance the knowledge of NP self-assembly in these three directions. The primary one is that the formation of large seemingly monocrystalline PbS superstructures with multiple levels of octahedral symmetry can be explained only by SA of small octahedral NPs. We found five distinct periods in the formation PbS hyperbranched stars: (1) nucleation of early PbS NPs with an average diameter of 31 nm; (2) assembly into 100-500 nm octahedral mesocrystals; (3) assembly into 1000-2500 nm hyperbranched stars; (4) assembly and ionic recrystallization into six-arm rods accompanied by disappearance of fine nanoscale structure; (5) deconstruction into rods and cuboctahedral NPs. The switches in assembly patterns between the periods occur due to variable dominance of pattern-determining forces that include van der Waals and electrostatic (charge-charge, dipole-dipole, and polarization) interactions. The superstructure deconstruction is triggered by chemical changes in the deep eutectic solvent (DES) used as the media. PbS superstructures can be excellent models for fundamental studies of nanoscale organization and SA manufacturing of (opto)electronics and energy-harvesting devices which require organization of PbS components at multiple scales.
Nanoparticle string formation on self-assembled copolymer films
NASA Astrophysics Data System (ADS)
Jenczyk, J.; Woźniak-Budych, M.; Jarek, M.; Grzeszkowiak, M.; Nowaczyk, G.; Jurga, S.
2017-06-01
Nanoparticles (NP) string formations on self-assembled copolymeric substrates has been observed. These "thread of beads" like structures develop via simple colloidal droplet evaporation during meniscus rim withdrawal on polystyrene-block-poly(ethylene oxide) (PS-PEO) copolymer surfaces. It is shown that the process is triggered by the presence of the substrate impurities, which lead to NP aggregate formations serving as string initiation sites. The growth mechanism of these linear structures seems to be capillarity-driven. Moreover, there is an exceptional alignment coupling between NP strips and the block copolymer (BC) domains observed. BC directed NP assembly stems from a gold nanocrystal surface functionalization, which introduces selective affinity for one particular type of BC domain. The presented results reveal a potential fabrication method of NP wires characterized by remarkably low width and thickness comparable with the size of the individual constituent NP.
Electronic Energy Transfer in New Polymer Nanocomposite Assemblies
1994-07-13
for public release and sale; its distribution is unlimited. OL AISTfrRACT fMaimunt 20o war*) New light-harvesting thin film supramolecular assemblies...be supression or reduction of exciplex formation between excited donor molecules and ground state acceptor molecules that may lead to nonradiative...nonradiative excited state decay exists other than EET.33 One possibility for this nonradiative and non-EET pathway is exciplex formation between the
NASA Astrophysics Data System (ADS)
Gazit, Ehud
2013-03-01
The formation of ordered amyloid fibrils is the hallmark of several diseases of unrelated origin. In spite of grave clinical consequence, the mechanism of amyloid formation is not fully understood. We have suggested, based on experimental and bioinformatic analysis, that aromatic interactions may provide energetic contribution as well as order and directionality in the molecular-recognition and self-association processes that lead to the formation of these assemblies. This is in line with the well-known central role of aromatic-stacking interactions in self-assembly processes. Our works on the mechanism of aromatic peptide self-assembly, lead to the discovery that the diphenylalanine recognition motif self-assembles into peptide nanotubes with a remarkable persistence length. Other aromatic homodipeptides could self-assemble in nano-spheres, nano-plates, nano-fibrils and hydrogels with nano-scale order. We demonstrated that the peptide nanostructures have unique chemical, physical and mechanical properties including ultra-rigidity as aramides, semi-conductive, piezoelectric and non-linear optic properties. We also demonstrated the ability to use these peptide nanostructures as casting mold for the fabrication of metallic nano-wires and coaxial nano-cables. The application of the nanostructures was demonstrated in various fields including electrochemical biosensors, tissue engineering, and molecular imaging. Finally, we had developed ways for depositing of the peptide nanostructures and their organization. We had use inkjet technology as well as vapour deposition methods to coat surface and from the peptide ``nano-forests''. We recently demonstrated that even a single phenylalanine amino-acid can form well-ordered fibrilar assemblies.
Lakshmanan, Anupama; Cheong, Daniel W; Accardo, Angelo; Di Fabrizio, Enzo; Riekel, Christian; Hauser, Charlotte A E
2013-01-08
The self-assembly of abnormally folded proteins into amyloid fibrils is a hallmark of many debilitating diseases, from Alzheimer's and Parkinson diseases to prion-related disorders and diabetes type II. However, the fundamental mechanism of amyloid aggregation remains poorly understood. Core sequences of four to seven amino acids within natural amyloid proteins that form toxic fibrils have been used to study amyloidogenesis. We recently reported a class of systematically designed ultrasmall peptides that self-assemble in water into cross-β-type fibers. Here we compare the self-assembly of these peptides with natural core sequences. These include core segments from Alzheimer's amyloid-β, human amylin, and calcitonin. We analyzed the self-assembly process using circular dichroism, electron microscopy, X-ray diffraction, rheology, and molecular dynamics simulations. We found that the designed aliphatic peptides exhibited a similar self-assembly mechanism to several natural sequences, with formation of α-helical intermediates being a common feature. Interestingly, the self-assembly of a second core sequence from amyloid-β, containing the diphenylalanine motif, was distinctly different from all other examined sequences. The diphenylalanine-containing sequence formed β-sheet aggregates without going through the α-helical intermediate step, giving a unique fiber-diffraction pattern and simulation structure. Based on these results, we propose a simplified aliphatic model system to study amyloidosis. Our results provide vital insight into the nature of early intermediates formed and suggest that aromatic interactions are not as important in amyloid formation as previously postulated. This information is necessary for developing therapeutic drugs that inhibit and control amyloid formation.
Three Dimensional Assembly in Directed Self-assembly of Block Copolymers
Segal-Peretz, Tamar; Zhou, Chun; Ren, Jiaxing; ...
2016-09-02
The three-dimensional assembly of poly (styrene-b-methyl methacrylate) (PS-b-PMMA) in chemoepitaxy and graphoepitaxy directed self-assembly (DSA) was investigated using scanning transmission electron microscopy (STEM) tomography. The tomographic characterization revealed hidden morphologies and defects at the BCP- chemical pattern interface in lamellar DSA, and probed the formation of cylinders at the bottom of cylindrical DSA for contact hole shrink. Lastly, future work will include control over 3D assembly in sub-10 nm processes.
The formation of helical mesoporous silica nanotubes
NASA Astrophysics Data System (ADS)
Wan, Xiaobing; Pei, Xianfeng; Zhao, Huanyu; Chen, Yuanli; Guo, Yongmin; Li, Baozong; Hanabusa, Kenji; Yang, Yonggang
2008-08-01
Three chiral cationic gelators were synthesized. They can form translucent hydrogels in pure water. These hydrogels become highly viscous liquids under strong stirring. Mesoporous silica nanotubes with coiled pore channels in the walls were prepared using the self-assemblies of these gelators as templates. The mechanism of the formation of this hierarchical nanostructure was studied using transmission electron microscopy at different reaction times. The results indicated that there are some interactions between the silica source and the gelator. The morphologies of the self-assemblies of gelators changed gradually during the sol-gel transcription process. It seems that the silica source directed the organic self-assemblies into helical nanostructures.
Electrostatic self-assembly of polyions on charged substrates
NASA Astrophysics Data System (ADS)
Campbell, A.; Adams, W. W.; Bunning, T. J.; Visser, D.; Bliznyuk, V. N.; Tsukruk, V. V.
1997-03-01
The kinetics of formation of self-assembled monolayers is studied for polystyrene sulfonate(PSS) adsorbed on oppositely charged surfaces of amine terminated self-assembled monolayers(SAM) and polyallylamine(PAA). During the early stages of deposition in both cases, an inhomogeneous deposition is noted as measured by atomic force and friction force microscopy. Island formation of unperturbed PSS coils on defect sites is observed during the initial stage of deposition. Longer deposition times result in an equilibration of the polymer layers into highly flattened macromolecular chains. AFM and FFM measurements are combined with ellipsometer and X-ray reflectivity results to quantitate the layer thicknesses and roughness with time.
Baur, Tina; Ramadan, Kristijan; Schlundt, Andreas; Kartenbeck, Jürgen; Meyer, Hemmo H
2007-08-15
Despite the progress in understanding nuclear envelope (NE) reformation after mitosis, it has remained unclear what drives the required membrane fusion and how exactly this is coordinated with nuclear pore complex (NPC) assembly. Here, we show that, like other intracellular fusion reactions, NE fusion in Xenopus laevis egg extracts is mediated by SNARE proteins that require activation by NSF. Antibodies against Xenopus NSF, depletion of NSF or the dominant-negative NSF(E329Q) variant specifically inhibited NE formation. Staging experiments further revealed that NSF was required until sealing of the envelope was completed. Moreover, excess exogenous alpha-SNAP that blocks SNARE function prevented membrane fusion and caused accumulation of non-flattened vesicles on the chromatin surface. Under these conditions, the nucleoporins Nup107 and gp210 were fully recruited, whereas assembly of FxFG-repeat-containing nucleoporins was blocked. Together, we define NSF- and SNARE-mediated membrane fusion events as essential steps during NE formation downstream of Nup107 recruitment, and upstream of membrane flattening and completion of NPC assembly.
Bakthavachalu, Baskar; Huelsmeier, Joern; Sudhakaran, Indulekha P; Hillebrand, Jens; Singh, Amanjot; Petrauskas, Arnas; Thiagarajan, Devasena; Sankaranarayanan, M; Mizoue, Laura; Anderson, Eric N; Pandey, Udai Bhan; Ross, Eric; VijayRaghavan, K; Parker, Roy; Ramaswami, Mani
2018-05-16
Human Ataxin-2 is implicated in the cause and progression of amyotrophic lateral sclerosis (ALS) and type 2 spinocerebellar ataxia (SCA-2). In Drosophila, a conserved atx2 gene is essential for animal survival as well as for normal RNP-granule assembly, translational control, and long-term habituation. Like its human homolog, Drosophila Ataxin-2 (Atx2) contains polyQ repeats and additional intrinsically disordered regions (IDRs). We demonstrate that Atx2 IDRs, which are capable of mediating liquid-liquid phase transitions in vitro, are essential for efficient formation of neuronal mRNP assemblies in vivo. Remarkably, ΔIDR mutants that lack neuronal RNP granules show normal animal development, survival, and fertility. However, they show defects in long-term memory formation/consolidation as well as in C9ORF72 dipeptide repeat or FUS-induced neurodegeneration. Together, our findings demonstrate (1) that higher-order mRNP assemblies contribute to long-term neuronal plasticity and memory, and (2) that a targeted reduction in RNP-granule formation efficiency can alleviate specific forms of neurodegeneration. Copyright © 2018 Elsevier Inc. All rights reserved.
Synchronized HIV assembly by tunable PIP2 changes reveals PIP2 requirement for stable Gag anchoring
Mücksch, Frauke; Laketa, Vibor; Müller, Barbara; Schultz, Carsten; Kräusslich, Hans-Georg
2017-01-01
HIV-1 assembles at the plasma membrane (PM) of infected cells. PM association of the main structural protein Gag depends on its myristoylated MA domain and PM PI(4,5)P2. Using a novel chemical biology tool that allows rapidly tunable manipulation of PI(4,5)P2 levels in living cells, we show that depletion of PI(4,5)P2 completely prevents Gag PM targeting and assembly site formation. Unexpectedly, PI(4,5)P2 depletion also caused loss of pre-assembled Gag lattices from the PM. Subsequent restoration of PM PI(4,5)P2 reinduced assembly site formation even in the absence of new protein synthesis, indicating that the dissociated Gag molecules remained assembly competent. These results reveal an important role of PI(4,5)P2 for HIV-1 morphogenesis beyond Gag recruitment to the PM and suggest a dynamic equilibrium of Gag-lipid interactions. Furthermore, they establish an experimental system that permits synchronized induction of HIV-1 assembly leading to induced production of infectious virions by targeted modulation of Gag PM targeting. DOI: http://dx.doi.org/10.7554/eLife.25287.001 PMID:28574338
Opal-like Multicolor Appearance of Self-Assembled Photonic Array.
Arnon, Zohar A; Pinotsi, Dorothea; Schmidt, Matthias; Gilead, Sharon; Guterman, Tom; Sadhanala, Aditya; Ahmad, Shahab; Levin, Aviad; Walther, Paul; Kaminski, Clemens F; Fändrich, Marcus; Kaminski Schierle, Gabriele S; Adler-Abramovich, Lihi; Shimon, Linda J W; Gazit, Ehud
2018-06-20
Molecular self-assembly of short peptide building blocks leads to the formation of various material architectures that may possess unique physical properties. Recent studies had confirmed the key role of biaromaticity in peptide self-assembly, with the diphenylalanine (FF) structural family as an archetypal model. Another significant direction in the molecular engineering of peptide building blocks is the use of fluorenylmethoxycarbonyl (Fmoc) modification, which promotes the assembly process and may result in nanostructures with distinctive features and macroscopic hydrogel with supramolecular features and nanoscale order. Here, we explored the self-assembly of the protected, noncoded fluorenylmethoxycarbonyl-β,β-diphenyl-Ala-OH (Fmoc-Dip) amino acid. This process results in the formation of elongated needle-like crystals with notable aromatic continuity. By altering the assembly conditions, arrays of spherical particles were formed that exhibit strong light scattering. These arrays display vivid coloration, strongly resembling the appearance of opal gemstones. However, unlike the Rayleigh scattering effect produced by the arrangement of opal, the described optical phenomenon is attributed to Mie scattering. Moreover, by controlling the solution evaporation rate, i.e., the assembly kinetics, we were able to manipulate the resulting coloration. This work demonstrates a bottom-up approach, utilizing self-assembly of a protected amino acid minimal building block, to create arrays of organic, light-scattering colorful surfaces.
Nucleation by rRNA Dictates the Precision of Nucleolus Assembly.
Falahati, Hanieh; Pelham-Webb, Bobbie; Blythe, Shelby; Wieschaus, Eric
2016-02-08
Membrane-less organelles are intracellular compartments specialized to carry out specific cellular functions. There is growing evidence supporting the possibility that such organelles form as a new phase, separating from cytoplasm or nucleoplasm. However, a main challenge to such phase separation models is that the initial assembly, or nucleation, of the new phase is typically a highly stochastic process and does not allow for the spatiotemporal precision observed in biological systems. Here, we investigate the initial assembly of the nucleolus, a membrane-less organelle involved in different cellular functions including ribosomal biogenesis. We demonstrate that the nucleolus formation is precisely timed in D. melanogaster embryos and follows the transcription of rRNA. We provide evidence that transcription of rRNA is necessary for overcoming the highly stochastic nucleation step in the formation of the nucleolus, through a seeding mechanism. In the absence of rDNA, the nucleolar proteins studied are able to form high-concentration assemblies. However, unlike the nucleolus, these assemblies are highly variable in number, location, and time at which they form. In addition, quantitative study of the changes in the nucleoplasmic concentration and distribution of these nucleolar proteins in the wild-type embryos is consistent with the role of rRNA in seeding the nucleolus formation. Copyright © 2016 Elsevier Ltd. All rights reserved.
Kossoy, Elizaveta; Weissman, Haim; Rybtchinski, Boris
2015-01-02
In the current work, we demonstrate how coordination chemistry can be employed to direct self-assembly based on strong hydrophobic interactions. To investigate the influence of coordination sphere geometry on aqueous self-assembly, we synthesized complexes of the amphiphilic perylene diimide terpyridine ligand with the first-row transition-metal centers (zinc, cobalt, and nickel). In aqueous medium, aggregation of these complexes is induced by hydrophobic interactions between the ligands. However, the final shapes of the resulting assemblies depend on the preferred geometry of the coordination spheres typical for the particular metal center. The self-assembly process was characterized by UV/Vis spectroscopy, zeta potential measurements, and cryogenic transmission electron microscopy (cryo-TEM). Coordination of zinc(II) and cobalt(II) leads to the formation of unique nanospiral assemblies, whereas complexation of nickel(II) leads to the formation of straight nanofibers. Notably, coordination bonds are utilized not as connectors between elementary building blocks, but as directing interactions, enabling control over supramolecular geometry. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Sashital, Dipali G; Greeman, Candacia A; Lyumkis, Dmitry; Potter, Clinton S; Carragher, Bridget; Williamson, James R
2014-01-01
Ribosome assembly is a complex process involving the folding and processing of ribosomal RNAs (rRNAs), concomitant binding of ribosomal proteins (r-proteins), and participation of numerous accessory cofactors. Here, we use a quantitative mass spectrometry/electron microscopy hybrid approach to determine the r-protein composition and conformation of 30S ribosome assembly intermediates in Escherichia coli. The relative timing of assembly of the 3′ domain and the formation of the central pseudoknot (PK) structure depends on the presence of the assembly factor RimP. The central PK is unstable in the absence of RimP, resulting in the accumulation of intermediates in which the 3′-domain is unanchored and the 5′-domain is depleted for r-proteins S5 and S12 that contact the central PK. Our results reveal the importance of the cofactor RimP in central PK formation, and introduce a broadly applicable method for characterizing macromolecular assembly in cells. DOI: http://dx.doi.org/10.7554/eLife.04491.001 PMID:25313868
Molecular self-assembly using peptide nucleic acids.
Berger, Or; Gazit, Ehud
2017-01-01
Peptide nucleic acids (PNAs) are extensively studied for the control of genetic expression since their design in the 1990s. However, the application of PNAs in nanotechnology is much more recent. PNAs share the specific base-pair recognition characteristic of DNA together with material-like properties of polyamides, both proteins and synthetic polymers, such as Kevlar and Nylon. The first application of PNA was in the form of PNA-amphiphiles, resulting in the formation of either lipid integrated structures, hydrogels or fibrillary assemblies. Heteroduplex DNA-PNA assemblies allow the formation of hybrid structures with higher stability as compared with pure DNA. A systematic screen for minimal PNA building blocks resulted in the identification of guanine-containing di-PNA assemblies and protected guanine-PNA monomer spheres showing unique optical properties. Finally, the co-assembly of PNA with thymine-like three-faced cyanuric acid allowed the assembly of poly-adenine PNA into fibers. In summary, we believe that PNAs represent a new and important family of building blocks which converges the advantages of both DNA- and peptide-nanotechnologies. © 2016 Wiley Periodicals, Inc.
Elucidating dominant pathways of the nano-particle self-assembly process.
Zeng, Xiangze; Li, Bin; Qiao, Qin; Zhu, Lizhe; Lu, Zhong-Yuan; Huang, Xuhui
2016-09-14
Self-assembly processes play a key role in the fabrication of functional nano-structures with widespread application in drug delivery and micro-reactors. In addition to the thermodynamics, the kinetics of the self-assembled nano-structures also play an important role in determining the formed structures. However, as the self-assembly process is often highly heterogeneous, systematic elucidation of the dominant kinetic pathways of self-assembly is challenging. Here, based on mass flow, we developed a new method for the construction of kinetic network models and applied it to identify the dominant kinetic pathways for the self-assembly of star-like block copolymers. We found that the dominant pathways are controlled by two competing kinetic parameters: the encounter time Te, characterizing the frequency of collision and the transition time Tt for the aggregate morphology change from rod to sphere. Interestingly, two distinct self-assembly mechanisms, diffusion of an individual copolymer into the aggregate core and membrane closure, both appear at different stages (with different values of Tt) of a single self-assembly process. In particular, the diffusion mechanism dominates the middle-sized semi-vesicle formation stage (with large Tt), while the membrane closure mechanism dominates the large-sized vesicle formation stage (with small Tt). Through the rational design of the hydrophibicity of the copolymer, we successfully tuned the transition time Tt and altered the dominant self-assembly pathways.
Nanoengineered membrane electrode assembly interface
Song, Yujiang; Shelnutt, John A
2013-08-06
A membrane electrode structure suitable for use in a membrane electrode assembly (MEA) that comprises membrane-affixed metal nanoparticles whose formation is controlled by a photochemical process that controls deposition of the metal nanoparticles using a photocatalyst integrated with a polymer electrolyte membrane, such as an ionomer membrane. Impregnation of the polymer membrane with the photocatalyst prior to metal deposition greatly reduces the required amount of metal precursor in the deposition reaction solution by restricting metal reduction substantially to the formation of metal nanoparticles affixed on or near the surface of the polymer membrane with minimal formation of metallic particles not directly associated with the membrane.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mugridge, Jeffrey; Fiedler, Dorothea; Raymond, Kenneth
A ferrocene-based biscatecholamide ligand was prepared and investigated for the formation of metal-ligand supramolecular assemblies with different metals. Reaction with Ge(IV) resulted in the formation of a variety of Ge{sub n}L{sub m} coordination complexes, including [Ge{sub 2}L{sub 3}]{sup 4-} and [Ge{sub 2}L{sub 2}({mu}-OMe){sub 2}]{sup 2-}. The ligand's ability to swivel about the ferrocenyl linker and adopt different conformations accounts for formation of many different Ge{sub n}L{sub m} species. This study demonstrates why conformational ligand rigidity is essential in the rational design and directed self-assembly of supramolecular complexes.
Stochastic dynamics of virus capsid formation: direct versus hierarchical self-assembly
2012-01-01
Background In order to replicate within their cellular host, many viruses have developed self-assembly strategies for their capsids which are sufficiently robust as to be reconstituted in vitro. Mathematical models for virus self-assembly usually assume that the bonds leading to cluster formation have constant reactivity over the time course of assembly (direct assembly). In some cases, however, binding sites between the capsomers have been reported to be activated during the self-assembly process (hierarchical assembly). Results In order to study possible advantages of such hierarchical schemes for icosahedral virus capsid assembly, we use Brownian dynamics simulations of a patchy particle model that allows us to switch binding sites on and off during assembly. For T1 viruses, we implement a hierarchical assembly scheme where inter-capsomer bonds become active only if a complete pentamer has been assembled. We find direct assembly to be favorable for reversible bonds allowing for repeated structural reorganizations, while hierarchical assembly is favorable for strong bonds with small dissociation rate, as this situation is less prone to kinetic trapping. However, at the same time it is more vulnerable to monomer starvation during the final phase. Increasing the number of initial monomers does have only a weak effect on these general features. The differences between the two assembly schemes become more pronounced for more complex virus geometries, as shown here for T3 viruses, which assemble through homogeneous pentamers and heterogeneous hexamers in the hierarchical scheme. In order to complement the simulations for this more complicated case, we introduce a master equation approach that agrees well with the simulation results. Conclusions Our analysis shows for which molecular parameters hierarchical assembly schemes can outperform direct ones and suggests that viruses with high bond stability might prefer hierarchical assembly schemes. These insights increase our physical understanding of an essential biological process, with many interesting potential applications in medicine and materials science. PMID:23244740
Ionic liquid-induced aggregate formation and their applications.
Dutta, Rupam; Kundu, Sangita; Sarkar, Nilmoni
2018-06-01
In the last two decades, researchers have extensively studied highly stable and ordered supramolecular assembly formation using oppositely charged surfactants. Thereafter, surface-active ionic liquids (SAILs), a special class of room temperature ionic liquids (RTILs), replace the surfactants to form various supramolecular aggregates. Therefore, in the last decade, the building blocks of the supramolecular aggregates (micelle, mixed micelle, and vesicular assemblies) have changed from oppositely charged surfactant/surfactant pair to surfactant/SAIL and SAIL/SAIL pair. It is also found that various biomolecules can also interact with SAILs to construct biologically important supramolecular assemblies. The very latest addition to this combination of ion pairs is the dye molecules having a long hydrophobic chain part along with a hydrophilic ionic head group. Thus, dye/surfactant or dye/SAIL pair also produces different assemblies through electrostatic, hydrophobic, and π-π stacking interactions. Vesicles are one of the important self-assemblies which mimic cellular membranes, and thus have biological application as a drug carrier. Moreover, vesicles can act as a suitable microreactor for nanoparticle synthesis.
Cojal González, José D.; Iyoda, Masahiko; Rabe, Jürgen P.
2017-01-01
Fully conjugated macrocyclic oligothiophenes exhibit a combination of highly attractive structural, optical and electronic properties, and multifunctional molecular thin film architectures thereof are envisioned. However, control over the self-assembly of such systems becomes increasingly challenging, the more complex the target structures are. Here we show a robust self-assembly based on hierarchical non-covalent interactions. A self-assembled monolayer of hydrogen-bonded trimesic acid at the interface between an organic solution and graphite provides host-sites for the epitaxial ordering of Saturn-like complexes of fullerenes with oligothiophene macrocycles in mono- and bilayers. STM tomography verifies the formation of the templated layers. Molecular dynamics simulations corroborate the conformational stability and assign the adsorption sites of the adlayers. Scanning tunnelling spectroscopy determines their rectification characteristics. Current–voltage characteristics reveal the modification of the rectifying properties of the macrocycles by the formation of donor–acceptor complexes in a densely packed all-self-assembled supramolecular nanostructure. PMID:28281557
NASA Astrophysics Data System (ADS)
Cojal González, José D.; Iyoda, Masahiko; Rabe, Jürgen P.
2017-03-01
Fully conjugated macrocyclic oligothiophenes exhibit a combination of highly attractive structural, optical and electronic properties, and multifunctional molecular thin film architectures thereof are envisioned. However, control over the self-assembly of such systems becomes increasingly challenging, the more complex the target structures are. Here we show a robust self-assembly based on hierarchical non-covalent interactions. A self-assembled monolayer of hydrogen-bonded trimesic acid at the interface between an organic solution and graphite provides host-sites for the epitaxial ordering of Saturn-like complexes of fullerenes with oligothiophene macrocycles in mono- and bilayers. STM tomography verifies the formation of the templated layers. Molecular dynamics simulations corroborate the conformational stability and assign the adsorption sites of the adlayers. Scanning tunnelling spectroscopy determines their rectification characteristics. Current-voltage characteristics reveal the modification of the rectifying properties of the macrocycles by the formation of donor-acceptor complexes in a densely packed all-self-assembled supramolecular nanostructure.
Downhole delay assembly for blasting with series delay
Ricketts, Thomas E.
1982-01-01
A downhole delay assembly is provided which can be placed into a blasthole for initiation of explosive in the blasthole. The downhole delay assembly includes at least two detonating time delay devices in series in order to effect a time delay of longer than about 200 milliseconds in a round of explosions. The downhole delay assembly provides a protective housing to prevent detonation of explosive in the blasthole in response to the detonation of the first detonating time delay device. There is further provided a connection between the first and second time delay devices. The connection is responsive to the detonation of the first detonating time delay device and initiates the second detonating time delay device. A plurality of such downhole delay assemblies are placed downhole in unfragmented formation and are initiated simultaneously for providing a round of explosive expansions. The explosive expansions can be used to form an in situ oil shale retort containing a fragmented permeable mass of formation particles.
Self-Assembly of Molecular Threads into Reversible Gels
NASA Astrophysics Data System (ADS)
Sayar, Mehmet; Stupp, Samuel I.
2001-03-01
Reversible gels formed by low concentrations of molecular gelators that self-assemble into fibers with molecular width and extremely long length have been studied via Monte Carlo simulations. The gelators of interest have two kinds of interactions, one governs self-assembly into fibers and the other provides inter-fiber connectivity to drive the formation of a network. The off-lattice Monte Carlo simulation presented here is based on a point particle representation of gelators. In this model each particle can form only two strong bonds, that enable linear fiber formation, but a variable number of weak bonds which provide inter-fiber connectivity. The gel formation has been studied as a function of concentration of monomers, the strength of interactions, number of bonding sites per particle for weak interactions, and the stiffness of the fibers. The simulation results are compared with two experimental systems synthesized in our group in order to understand gelation mechanisms.
Assembly kinetics determine the architecture of α-actinin crosslinked F-actin networks.
Falzone, Tobias T; Lenz, Martin; Kovar, David R; Gardel, Margaret L
2012-05-29
The actin cytoskeleton is organized into diverse meshworks and bundles that support many aspects of cell physiology. Understanding the self-assembly of these actin-based structures is essential for developing predictive models of cytoskeletal organization. Here we show that the competing kinetics of bundle formation with the onset of dynamic arrest arising from filament entanglements and crosslinking determine the architecture of reconstituted actin networks formed with α-actinin crosslinks. Crosslink-mediated bundle formation only occurs in dilute solutions of highly mobile actin filaments. As actin polymerization proceeds, filament mobility and bundle formation are arrested concomitantly. By controlling the onset of dynamic arrest, perturbations to actin assembly kinetics dramatically alter the architecture of biochemically identical samples. Thus, the morphology of reconstituted F-actin networks is a kinetically determined structure similar to those formed by physical gels and glasses. These results establish mechanisms controlling the structure and mechanics in diverse semiflexible biopolymer networks.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Margulis, Katherine; Zhang, Xiangyi; Joubert, Lydia -Marie
Template–free fabrication of non–spherical polymeric nanoparticles is desirable for various applications, but has had limited success owing to thermodynamic favorability of sphere formation. Herein we present a simple way to prepare cubic nanoparticles of block copolymers by self–assembly from aqueous solutions at room temperature. Nanocubes with edges of 40–200 nm are formed spontaneously on different surfaces upon water evaporation from micellar solutions of triblock copolymers containing a central poly(ethylene oxide) block and terminal trimethylene carbonate/dithiolane blocks. These polymers self–assemble into 28±5 nm micelles in water. Upon drying, micelle aggregation and a kinetically controlled crystallization of central blocks evidently induce solidmore » cubic particle formation. An approach for preserving the structures of these cubes in water by thiol– or photo–induced crosslinking was developed. In conclusion, the ability to solubilize a model hydrophobic drug, curcumin, was also explored.« less
Margulis, Katherine; Zhang, Xiangyi; Joubert, Lydia -Marie; ...
2017-10-27
Template–free fabrication of non–spherical polymeric nanoparticles is desirable for various applications, but has had limited success owing to thermodynamic favorability of sphere formation. Herein we present a simple way to prepare cubic nanoparticles of block copolymers by self–assembly from aqueous solutions at room temperature. Nanocubes with edges of 40–200 nm are formed spontaneously on different surfaces upon water evaporation from micellar solutions of triblock copolymers containing a central poly(ethylene oxide) block and terminal trimethylene carbonate/dithiolane blocks. These polymers self–assemble into 28±5 nm micelles in water. Upon drying, micelle aggregation and a kinetically controlled crystallization of central blocks evidently induce solidmore » cubic particle formation. An approach for preserving the structures of these cubes in water by thiol– or photo–induced crosslinking was developed. In conclusion, the ability to solubilize a model hydrophobic drug, curcumin, was also explored.« less
Inflammasome Assembly in the Chorioamniotic Membranes during Spontaneous Labor at Term
Gomez-Lopez, Nardhy; Romero, Roberto; Xu, Yi; Garcia-Flores, Valeria; Leng, Yaozhu; Panaitescu, Bogdan; Miller, Derek; Abrahams, Vikki M.; Hassan, Sonia S.
2017-01-01
Problem Inflammasome activation requires two steps: priming and assembly of the multimeric complex. The second step includes assembly of the sensor molecule and adaptor protein ASC (an apoptosis-associated speck-like protein containing a CARD), which results in ASC speck formation and the recruitment of caspase (CASP)-1. Herein, we investigated whether there is inflammasome assembly in the chorioamniotic membranes and choriodecidual leukocytes from women who underwent spontaneous labor at term. Method of Study Using in situ proximity ligation assays, ASC/CASP-1 complexes were determined in the chorioamniotic membranes from women who delivered at term without labor or underwent spontaneous labor at term with or without acute histologic chorioamnionitis (n=10–11 each). Also, ASC speck formation was determined by flow cytometry in the choriodecidual leukocytes isolated from women who delivered at term with or without spontaneous labor (n=9–12 each). Results 1) ASC/CASP-1 complexes were detected in the chorioamniotic membranes; 2) ASC/CASP-1 complexes were greater in the chorioamniotic membranes from women who underwent spontaneous labor at term than in those without labor; 3) ASC/CASP-1 complexes were even more abundant in the chorioamniotic membranes from women who underwent spontaneous labor at term with acute histologic chorioamnionitis than in those without this placental lesion; 4) ASC speck formation was detected in the choriodecidual leukocytes; and 5) ASC speck formation was greater in the choriodecidual leukocytes isolated from women who underwent spontaneous labor at term than in those without labor. Conclusion There is inflammasome assembly in the chorioamniotic membranes and choriodecidual leukocytes during spontaneous labor at term. PMID:28233423
Han, Dongxue; Han, Jianlei; Huo, Shengwei; Qu, Zuoming; Jiao, Tifeng; Liu, Minghua; Duan, Pengfei
2018-05-29
The orthogonal- or co-assembly of achiral perylene bisimide (PBI) with chiral gelators can be regulated by solvents. While the coassembly leads to the formation of chiroptical nanofibers through chirality transfer, the orthogonal assemblies could not. Moreover, protonation on the coassembled nanofibers could light up the circularly polarized luminescence (CPL).
Utility of Horioka’s and Marra’s models for adhesive failure
Charles R. Frihart
2005-01-01
Bond formation primarily involves adhesive rheology and interface chemistry. Bonded assembly strength, however, primarily involves the viscoelastic dissipation of stress over the entire assembly. Models can aid in the understanding of where and why failure occurs and how to improve the strength of the assembly. Horioka and Marra have both proposed models which define...
Photoactive bile salts with critical micellar concentration in the micromolar range.
Gomez-Mendoza, Miguel; Marin, M Luisa; Miranda, Miguel A
2016-05-14
The aggregation behavior of bile salts is strongly dependent on the number of hydroxyl groups. Thus, cholic acid (CA), with three hydroxyls, starts forming aggregates at 15 mM, while deoxycholic, chenodeoxycholic or ursodeoxycholic acids, with two hydroxyls, start aggregating at 5-10 mM; for lithocholic acid, with only one hydroxyl group, aggregation is observed at lower concentration (2-3 mM). Here, the singular self-assembling properties of dansyl and naproxen derivatives of CA (3β-Dns-CA and 3β-NPX-CA, respectively) have been demonstrated on the basis of their photoactive properties. Thus, the emission spectra of 3β-Dns-CA registered at increasing concentrations (25-140 μM) showed a remarkable non-linear enhancement in the emission intensity accompanied by a hypsochromic shift of the maximum and up to a three-fold increase in the singlet lifetime. The inflection point at around 50-70 μM pointed to the formation of unprecedented assemblies at such low concentrations. In the case of 3β-NPX-CA, when the NPX relative triplet lifetime was plotted against concentration, a marked increase (up to two-fold) was observed at 40-70 μM, indicating the formation of new 3β-NPX-CA assemblies at ca. 50 μM. Additional evidence supporting the formation of new 3β-Dns-CA or 3β-NPX-CA assemblies at 40-70 μM was obtained from singlet excited state quenching experiments using iodide. Moreover, to address the potential formation of hybrid assemblies, 1 : 1 mixtures of 3β-Dns-CA and 3β-NPX-CA (2-60 μM, total concentration) were subjected to steady-state fluorescence experiments, and their behavior was compared to that of the pure photoactive derivatives. A lower increase in the emission was observed for 3β-NPX-CA in the mixture, while a huge increase was experienced by 3β-Dns-CA in the same concentration range (up to 60 μM total). A partial intermolecular energy transfer from NPX to Dns, consistent with their reported singlet energies, was revealed, pointing to the formation of extremely fluorescent hybrid assemblies at 5-10 μM (total concentration). The morphology of the entities was investigated by means of confocal microscopy. At 90 μM, 3β-Dns-CA showed disperse assemblies in the μm range.
Nup155 regulates nuclear envelope and nuclear pore complex formation in nematodes and vertebrates
Franz, Cerstin; Askjaer, Peter; Antonin, Wolfram; Iglesias, Carmen López; Haselmann, Uta; Schelder, Malgorzata; de Marco, Ario; Wilm, Matthias; Antony, Claude; Mattaj, Iain W
2005-01-01
Nuclear envelope (NE) formation during cell division in multicellular organisms is a central yet poorly understood biological process. We report that the conserved nucleoporin Nup155 has an essential function in NE formation in Caenorhabditis elegans embryos and in Xenopus laevis egg extracts. In vivo depletion of Nup155 led to failure of nuclear lamina formation and defects in chromosome segregation at anaphase. Nup155 depletion inhibited accumulation of nucleoporins at the nuclear periphery, including those recruited to chromatin early in NE formation. Electron microscopy analysis revealed that Nup155 is also required for the formation of a continuous nuclear membrane in vivo and in vitro. Time-course experiments indicated that Nup155 is recruited to chromatin at the time of NE sealing, suggesting that nuclear pore complex assembly has to progress to a relatively late stage before NE membrane assembly occurs. PMID:16193066
Schaef, Herbert T.; McGrail, B. Peter
2015-07-28
Downhole fluid injection systems are provided that can include a first well extending into a geological formation, and a fluid injector assembly located within the well. The fluid injector assembly can be configured to inject a liquid CO2/H2O-emulsion into the surrounding geological formation. CO2 sequestration methods are provided that can include exposing a geological formation to a liquid CO2/H2O-emulsion to sequester at least a portion of the CO2 from the emulsion within the formation. Hydrocarbon material recovery methods are provided that can include exposing a liquid CO2/H2O-emulsion to a geological formation having the hydrocarbon material therein. The methods can include recovering at least a portion of the hydrocarbon material from the formation.
Role of blockages in particle transport through homogeneous granular assemblies
NASA Astrophysics Data System (ADS)
Tejada, I. G.; Sibille, L.; Chareyre, B.
2016-09-01
This letter deals with the transport of particles through granular assemblies and, specifically, with the intermittent formation of blockages originated from collective and purely mechanical clogging of constrictions. We perform numerical experiments with a micro-hydromechanical model that is able to reproduce the complex interplay between the carrier fluid, the transported particles and the granular assembly. The probability distribution functions (PDFs) of the duration of blockages and displacements give the time scale on which the effect of blockages is erased and the advection-dispersion paradigm is valid. Our experiments show that these PDFs fit exponential laws, reinforcing the idea that the formation and destruction of blockages are homogeneous Poisson processes.
Directional antennas for electromagnetic mapping in a borehole
Reagor, David Wesley; Nguyen, Doan Ngoc; Ashworth, Stephen Paul
2017-05-02
A bottom hole assembly used for a field operation is disclosed herein. The bottom hole assembly can include at least one directional antenna disposed on an outer surface of a first tubing pipe of a tubing string, where the at least one directional antenna receives a first electric current from at least one power source, where the first electric current generates a first magnetic field that radiates from the at least one directional antenna into a formation. The bottom hole assembly can also include at least one receiver disposed on a second tubing pipe of the tubing string, where the at least one receiver receives the first magnetic field returning from the formation.
Newman, Joseph; Asfor, Amin S; Berryman, Stephen; Jackson, Terry; Curry, Stephen; Tuthill, Tobias J
2018-03-01
Productive picornavirus infection requires the hijacking of host cell pathways to aid with the different stages of virus entry, synthesis of the viral polyprotein, and viral genome replication. Many picornaviruses, including foot-and-mouth disease virus (FMDV), assemble capsids via the multimerization of several copies of a single capsid precursor protein into a pentameric subunit which further encapsidates the RNA. Pentamer formation is preceded by co- and posttranslational modification of the capsid precursor (P1-2A) by viral and cellular enzymes and the subsequent rearrangement of P1-2A into a structure amenable to pentamer formation. We have developed a cell-free system to study FMDV pentamer assembly using recombinantly expressed FMDV capsid precursor and 3C protease. Using this assay, we have shown that two structurally different inhibitors of the cellular chaperone heat shock protein 90 (hsp90) impeded FMDV capsid precursor processing and subsequent pentamer formation. Treatment of FMDV permissive cells with the hsp90 inhibitor prior to infection reduced the endpoint titer by more than 10-fold while not affecting the activity of a subgenomic replicon, indicating that translation and replication of viral RNA were unaffected by the drug. IMPORTANCE FMDV of the Picornaviridae family is a pathogen of huge economic importance to the livestock industry due to its effect on the restriction of livestock movement and necessary control measures required following an outbreak. The study of FMDV capsid assembly, and picornavirus capsid assembly more generally, has tended to be focused upon the formation of capsids from pentameric intermediates or the immediate cotranslational modification of the capsid precursor protein. Here, we describe a system to analyze the early stages of FMDV pentameric capsid intermediate assembly and demonstrate a novel requirement for the cellular chaperone hsp90 in the formation of these pentameric intermediates. We show the added complexity involved for this process to occur, which could be the basis for a novel antiviral control mechanism for FMDV. Copyright © 2018 Newman et al.
Wu, Chengtie; Han, Pingping; Liu, Xiaoguo; Xu, Mengchi; Tian, Tian; Chang, Jiang; Xiao, Yin
2014-01-01
The nanostructured surface of biomaterials plays an important role in improving their in vitro cellular bioactivity as well as stimulating in vivo tissue regeneration. Inspired by the mussel's adhesive versatility, which is thought to be due to the plaque-substrate interface being rich in 3,4-dihydroxy-l-phenylalamine (DOPA) and lysine amino acids, in this study we developed a self-assembly method to prepare a uniform calcium phosphate (Ca-P)/polydopamine composite nanolayer on the surface of β-tricalcium phosphate (β-TCP) bioceramics by soaking β-TCP bioceramics in Tris-dopamine solution. It was found that the addition of dopamine, reaction temperature and reaction time are three key factors inducing the formation of a uniform Ca-P/polydopamine composite nanolayer. The formation mechanism of a Ca-P/polydopamine composite nanolayer involved two important steps: (i) the addition of dopamine to Tris-HCl solution decreases the pH value and accelerates Ca and P ionic dissolution from the crystal boundaries of β-TCP ceramics; (ii) dopamine is polymerized to form self-assembled polydopamine film and, at the same time, nanosized Ca-P particles are mineralized with the assistance of polydopamine, in which the formation of polydopamine occurs simultaneously with Ca-P mineralization (formation of nanosized microparticles composed of calcium phosphate-based materials), and finally a self-assembled Ca-P/polydopamine composite nanolayer forms on the surface of the β-TCP ceramics. Furthermore, the formed self-assembled Ca-P/polydopamine composite nanolayer significantly enhances the surface roughness and hydrophilicity of β-TCP ceramics, and stimulates the attachment, proliferation, alkaline phosphate (ALP) activity and bone-related gene expression (ALP, OCN, COL1 and Runx2) of human bone marrow stromal cells. Our results suggest that the preparation of self-assembled Ca-P/polydopamine composite nanolayers is a viable method to modify the surface of biomaterials by significantly improving their surface physicochemical properties and cellular bioactivity for bone regeneration application. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Mechanisms of amyloid formation revealed by solution NMR
Karamanos, Theodoros K.; Kalverda, Arnout P.; Thompson, Gary S.; Radford, Sheena E.
2015-01-01
Amyloid fibrils are proteinaceous elongated aggregates involved in more than fifty human diseases. Recent advances in electron microscopy and solid state NMR have allowed the characterization of fibril structures to different extents of refinement. However, structural details about the mechanism of fibril formation remain relatively poorly defined. This is mainly due to the complex, heterogeneous and transient nature of the species responsible for assembly; properties that make them difficult to detect and characterize in structural detail using biophysical techniques. The ability of solution NMR spectroscopy to investigate exchange between multiple protein states, to characterize transient and low-population species, and to study high molecular weight assemblies, render NMR an invaluable technique for studies of amyloid assembly. In this article we review state-of-the-art solution NMR methods for investigations of: (a) protein dynamics that lead to the formation of aggregation-prone species; (b) amyloidogenic intrinsically disordered proteins; and (c) protein–protein interactions on pathway to fibril formation. Together, these topics highlight the power and potential of NMR to provide atomic level information about the molecular mechanisms of one of the most fascinating problems in structural biology. PMID:26282197
Phan, Stephanie; Salentinig, Stefan; Hawley, Adrian; Boyd, Ben J
2015-10-01
Lipid-based formulations are gaining interest for use as drug delivery systems for poorly water-soluble drug compounds. During digestion, the lipolysis products self-assemble with endogenous surfactants in the gastrointestinal tract to form colloidal structures, enabling enhanced drug solubilisation. Although earlier studies in the literature focus on assembled equilibrium systems, little is known about structure formation under dynamic lipolysis conditions. The purpose of this study was to investigate the likely colloidal structure formation in the small intestine after the ingestion of lipids, under equilibrium and dynamic conditions. The structural aspects were studied using small angle X-ray scattering and dynamic light scattering, and were found to depend on lipid composition, lipid chain length, prandial state and emulsification. Incorporation of phospholipids and lipolysis products into bile salt micelles resulted in swelling of the structure. At insufficient bile salt concentrations, a co-existing lamellar phase was observed, due to a reduction in the solubilisation capacity for lipolysis products. Emulsification accelerated the rate of lipolysis and structure formation. Copyright © 2015 Elsevier B.V. All rights reserved.
Kempf, Julie; Schmitzer, Andreea R
2017-05-05
We present the synthesis of two functionalized 2,4,7-triphenylbenzimidazole ligands and demonstrate the formation of their respective metal assemblies in phospholipid membranes. Anion transport experiments demonstrate the formation of metal-organic synthetic transporters (MOST) directly in phospholipid membranes. The formation of MOST in phospholipid membranes results in efficient architectures for chloride transport. We also demonstrate the insertion of these ligands and the formation of their metal-organic assemblies in bacterial membranes; the use of MOST makes the membranes of resistant bacteria more permeable to antibiotics. We also demonstrate that a combination of MOST with tetracycline lowers the sensitivity of resistant bacteria to tetracycline by 60-fold. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Apparatus for installing condition-sensing means in subterranean earth formations
Shuck, Lowell Z.
1981-01-01
The present invention is directed to an apparatus for installing strain gages or other sensors-transducers in wellbores penetrating subterranean earth formations. The subject apparatus comprises an assembly which is lowered into the wellbore, secured in place, and then actuated to sequentially clean the wellbore or casing surface at a selected location with suitable solvents, etchants and neutralizers, grind the surface to a relatively smooth finish, apply an adhesive to the surface, and attach the strain gages or the like to the adhesive-bearing surface. After installing the condition-sensing gages to the casing or earth formation the assembly is withdrawn from the wellbore leaving the sensing gages securely attached to the casing or the subterranean earth formation.
TESIS - The TNG EROs Spectroscopic Identification Survey
NASA Astrophysics Data System (ADS)
Saracco, P.; Longhetti, M.; Severgnini, P.; della Ceca, R.; Mannucci, F.; Ghinassi, F.; Drory, N.; Feulner, G.; Bender, R.; Maraston, C.; Hopp, U.
2003-06-01
The epoch at which massive galaxies (M [star] > 10^11M[ scriptstyle sun ]) have assembled provides crucial constraints on the current galaxy formation and evolution models. The LCDM hierarchical merging model predicts that massive galaxies are assembled through mergers of pre-existing disk galaxies at z <= 1.5 (Kauffmann & Charlot 1998; Cole et al. 2000). In the alternative view massive ellipticals formed at z> 3 in a single episode of star formation and follow a pure luminosity evolution (PLE).
Self-assembled polyhydroxy fatty acids vesicles: a mechanism for plant cutin synthesis.
Heredia-Guerrero, José A; Benítez, José J; Heredia, Antonio
2008-03-01
Despite its biological importance, the mechanism of formation of cutin, the polymeric matrix of plant cuticles, has not yet been fully clarified. Here, for the first time, we show the participation in the process of lipid vesicles formed by the self-assembly of endogenous polyhydroxy fatty acids. The accumulation and fusion of these vesicles (cutinsomes) at the outer part of epidermal cell wall is proposed as the mechanism for early cuticle formation.
Molecular Origin of the Self-Assembly of Lanreotide into Nanotubes: A Mutational Approach☆
Valéry, Céline; Pouget, Emilie; Pandit, Anjali; Verbavatz, Jean-Marc; Bordes, Luc; Boisdé, Isabelle; Cherif-Cheikh, Roland; Artzner, Franck; Paternostre, Maité
2008-01-01
Lanreotide, a synthetic, therapeutic octapeptide analog of somatostatin, self-assembles in water into perfectly hollow and monodisperse (24-nm wide) nanotubes. Lanreotide is a cyclic octapeptide that contains three aromatic residues. The molecular packing of the peptide in the walls of a nanotube has recently been characterized, indicating four hierarchical levels of organization. This is a fascinating example of spontaneous self-organization, very similar to the formation of the gas vesicle walls of Halobacterium halobium. However, this unique peptide self-assembly raises important questions about its molecular origin. We adopted a directed mutation approach to determine the molecular parameters driving the formation of such a remarkable peptide architecture. We have modified the conformation by opening the cycle and by changing the conformation of a Lys residue, and we have also mutated the aromatic side chains of the peptide. We show that three parameters are essential for the formation of lanreotide nanotubes: i), the specificity of two of the three aromatic side chains, ii), the spatial arrangement of the hydrophilic and hydrophobic residues, and iii), the aromatic side chain in the β-turn of the molecule. When these molecular characteristics are modified, either the peptides lose their self-assembling capability or they form less-ordered architectures, such as amyloid fibers and curved lamellae. Thus we have determined key elements of the molecular origins of lanreotide nanotube formation. PMID:17993497
The effect of zinc on amyloid β-protein assembly and toxicity: A mechanistic investigation
NASA Astrophysics Data System (ADS)
Solomonov, Inna; Sagi, Irit
2014-10-01
Neurotoxic assemblies of amyloid β-protein (Aβ) are widely believed to be the cause for Alzheimer's disease (AD). Therefore, understanding the factors and mechanisms that control, modulate, and inhibit formation of these assemblies is crucial for the development of therapeutic intervention of AD. This information also can contribute significantly to our understanding of the mechanisms of other amyloidosis diseases, such as Parkinson's disease, Huntington's disease, type 2 diabetes, amyotrophic lateral sclerosis (Lou Gehrig's disease) and prion diseases (e.g. Mad Cow disease). We have developed a multidisciplinary experimental strategy to study structural and dynamic mechanistic aspects that underlie the Aβ assembly process. Utilizing this strategy, we explored the molecular basis leading to the perturbation of the Aβ assembly process by divalent metal ions, mainly Zn2+ ions. Using Zn2+ as reaction physiological relevant probes, it was demonstrated that Zn2+ rapidly (milliseconds) induce self-assembly of Aβ aggregates and stabilize them in a manner that prevents formation of Aβ fibrils. Importantly, the early-formed intermediates are substantially more neurotoxic than fibrils. Our results suggest that relevant Aβ modulators should be targeted against the rapidly evolved intermediate states of Aβ assembly. The design of such modulators is challenging, as they have to compete with different natural mediators (such as Zn2+) of Aβ aggregation, which diverse Aβ assemblies in both specific and nonspecific manners.
RSV glycoprotein and genomic RNA dynamics reveal filament assembly prior to the plasma membrane.
Vanover, Daryll; Smith, Daisy V; Blanchard, Emmeline L; Alonas, Eric; Kirschman, Jonathan L; Lifland, Aaron W; Zurla, Chiara; Santangelo, Philip J
2017-09-22
The human respiratory syncytial virus G protein plays an important role in the entry and assembly of filamentous virions. Here, we report the use of fluorescently labeled soybean agglutinin to selectively label the respiratory syncytial virus G protein in living cells without disrupting respiratory syncytial virus infectivity or filament formation and allowing for interrogations of respiratory syncytial virus virion assembly. Using this approach, we discovered that plasma membrane-bound respiratory syncytial virus G rapidly recycles from the membrane via clathrin-mediated endocytosis. This event is then followed by the dynamic formation of filamentous and branched respiratory syncytial virus particles, and assembly with genomic ribonucleoproteins and caveolae-associated vesicles prior to re-insertion into the plasma membrane. We demonstrate that these processes are halted by the disruption of microtubules and inhibition of molecular motors. Collectively, our results show that for respiratory syncytial virus assembly, viral filaments are produced and loaded with genomic RNA prior to insertion into the plasma membrane.Assembly of filamentous RSV particles is incompletely understood due to a lack of techniques suitable for live-cell imaging. Here Vanover et al. use labeled soybean agglutinin to selectively label RSV G protein and show how filamentous RSV assembly, initiated in the cytoplasm, uses G protein recycled from the plasma membrane.
Görl, Daniel; Zhang, Xin; Stepanenko, Vladimir; Würthner, Frank
2015-01-01
New synthetic methodologies for the formation of block copolymers have revolutionized polymer science within the last two decades. However, the formation of supramolecular block copolymers composed of alternating sequences of larger block segments has not been realized yet. Here we show by transmission electron microscopy (TEM), 2D NMR and optical spectroscopy that two different perylene bisimide dyes bearing either a flat (A) or a twisted (B) core self-assemble in water into supramolecular block copolymers with an alternating sequence of (AmBB)n. The highly defined ultralong nanowire structure of these supramolecular copolymers is entirely different from those formed upon self-assembly of the individual counterparts, that is, stiff nanorods (A) and irregular nanoworms (B), respectively. Our studies further reveal that the as-formed supramolecular block copolymer constitutes a kinetic self-assembly product that transforms into thermodynamically more stable self-sorted homopolymers upon heating. PMID:25959777
Apparatuses for interaction with a subterranean formation, and methods of use thereof
Clark, Don T.; Jones, Richard L.; Turner, Terry D.; Hubbell, Joel M.; Sisson, James B.
2007-12-25
An access casing assembly structured for placement at least partially within a subterranean formation by forcing the access casing assembly thereinto, comprising a plurality of casing sections operably coupled to form a central elongated cavity for providing access to the subterranean region is disclosed. Further, a tip portion of the access casing assembly may include a porous filter through which liquid or gas may communicate with the central elongated cavity. Also, a receiving member or at least one engagement hub may form a portion of the central elongated cavity and may include an engagement feature configured for selectively and lockingly engaging a locking structure of a device to be positioned within the access casing assembly. Methods of use are disclosed. A tensiometer is disclosed including a chamber structured for allowing at least partially filling with a fluid subsequent to contact therewith.
Eychenne, Thomas; Novikova, Elizaveta; Barrault, Marie-Bénédicte; Alibert, Olivier; Boschiero, Claire; Peixeiro, Nuno; Cornu, David; Redeker, Virginie; Kuras, Laurent; Nicolas, Pierre; Werner, Michel; Soutourina, Julie
2016-01-01
Mediator is a large coregulator complex conserved from yeast to humans and involved in many human diseases, including cancers. Together with general transcription factors, it stimulates preinitiation complex (PIC) formation and activates RNA polymerase II (Pol II) transcription. In this study, we analyzed how Mediator acts in PIC assembly using in vivo, in vitro, and in silico approaches. We revealed an essential function of the Mediator middle module exerted through its Med10 subunit, implicating a key interaction between Mediator and TFIIB. We showed that this Mediator–TFIIB link has a global role on PIC assembly genome-wide. Moreover, the amplitude of Mediator's effect on PIC formation is gene-dependent and is related to the promoter architecture in terms of TATA elements, nucleosome occupancy, and dynamics. This study thus provides mechanistic insights into the coordinated function of Mediator and TFIIB in PIC assembly in different chromatin contexts. PMID:27688401
NASA Astrophysics Data System (ADS)
Bagratashvili, V. N.; Rybaltovsky, A. O.; Minaev, N. V.; Timashev, P. S.; Firsov, V. V.; Yusupov, V. I.
2010-05-01
Fluorinated acrylic polymer (FAP) films have been impregnated with silver precursor (Ag(hfac)COD) by supercritical fluid technique and next irradiated with laser (λ = 532 nm). Laser-chemically reduced Ag atoms have been assembled into massifs of Ag nanoparticles (3 - 8 nm) in FAP/Ag(hfac)COD films matrix in the form of periodic layered nanostructures (horizontal to film surface) with unexpectedly short period (90 - 180 nm). The wavelet analysis of TEM images reveals the existence of even shorter-period structures in such films. Photolysis with non-coherent light or pyrolysis of FAP/Ag(hfac)COD film results in formation of Ag nanoparticles massifs but free of any periodic nanoparticle assemblies. Our interpretation of the observed effect of laser formation of short-period nano-sized Ag nanoparticle assemblies is based on self-enhanced interference process in the course of modification of optical properties of film.
Zhang, Jie; Li, Dong; Liu, Guang; Glover, Kerney Jebrell; Liu, Tianbo
2009-10-28
The kinetic properties of the self-assembly of hydrophilic Keplerate-type polyoxometalate (POM) {Mo(72)Fe(30)} macroanions into single-layer, vesicle-like blackberry structures in solutions were monitored by the static and dynamic laser light scattering techniques. In the presence of additional electrolytes, an obvious lag period at the initial stage of self-assembly was observed, followed by a fast increase of the scattered intensity. The whole kinetic curve is sigmoidal with a lag phase. A two-step nucleation-growth mechanism is proposed to explain this lag phase: the {Mo(72)Fe(30)} macroanions slowly associate into oligomers (mostly dimers), which are the thermodynamically unfavorable intermediates, at the initial stage; once the oligomers reach a critical concentration, the blackberry formation process is accelerated. Analytical ultracentrifugation (AUC) was used to confirm the oligomeric state in {Mo(72)Fe(30)} solution during the lag period. The length of the lag period is dependent on temperature, ionic strength, and the valent states of the additional salts, as well as the solvent content. The kinetics (including the lag period) of the blackberry formation of the {Mo(72)Fe(30)} macroanions show similarities to the self-assembly of virus capsid proteins (which are also soluble macroions) into spherical capsid shells, suggesting possible connections between the self-assembly behaviors of inorganic species and biological macromolecules.
Aerial cooperative transporting and assembling control using multiple quadrotor-manipulator systems
NASA Astrophysics Data System (ADS)
Qi, Yuhua; Wang, Jianan; Shan, Jiayuan
2018-02-01
In this paper, a fully distributed control scheme for aerial cooperative transporting and assembling is proposed using multiple quadrotor-manipulator systems with each quadrotor equipped with a robotic manipulator. First, the kinematic and dynamic models of a quadrotor with multi-Degree of Freedom (DOF) robotic manipulator are established together using Euler-Lagrange equations. Based on the aggregated dynamic model, the control scheme consisting of position controller, attitude controller and manipulator controller is presented. Regarding cooperative transporting and assembling, multiple quadrotor-manipulator systems should be able to form a desired formation without collision among quadrotors from any initial position. The desired formation is achieved by the distributed position controller and attitude controller, while the collision avoidance is guaranteed by an artificial potential function method. Then, the transporting and assembling tasks request the manipulators to reach the desired angles cooperatively, which is achieved by the distributed manipulator controller. The overall stability of the closed-loop system is proven by a Lyapunov method and Matrosov's theorem. In the end, the proposed control scheme is simplified for the real application and then validated by two formation flying missions of four quadrotors with 2-DOF manipulators.
NASA Astrophysics Data System (ADS)
Carrillo, Andreia Jessica; Jogee, Shardha; Kaplan, Kyle; Weinzirl, Tim; Blanc, Guillermo A.
2017-06-01
Integral field spectroscopy of nearby galaxies provides a powerful and unparalleled tool for studying how galaxies assemble the different components -- the bulge, bar, and disk-- that define the Hubble sequence. We explore the assembly and star formation history of these components using galaxies in the VIRUS-P Exploration of Nearby Galaxies (VENGA) survey of 30 nearby spiral galaxies. Compared to other integral field spectroscopy studies of spirals, our study benefits from high spatial sampling and resolution (typically a few 100 pc), large coverage from the bulge to the outer disk, broad wavelength range (3600-6800 A), and medium spectral resolution (120 km/s at 5000 A). In this poster, we present the methodology and data illustrating the exquisite, high-quality, spatially-resolved spectra out to large radii, and the distribution, kinematics, and metallicity of stars and ionized gas. We discuss the next steps in deriving the star formation history (SFH) of bulge, bar, and disk components, and elucidating their assembly pathway by comparing their SFH and structural properties to theoretical models of galaxy evolution. This project is supported by the NSF grants AST-1614798 and AST-1413652.
Gosal, Walraj S; Morten, Isobel J; Hewitt, Eric W; Smith, D Alastair; Thomson, Neil H; Radford, Sheena E
2005-08-26
Despite its importance in biological phenomena, a comprehensive understanding of the mechanism of amyloid formation remains elusive. Here, we use atomic force microscopy to map the formation of beta2-microglobulin amyloid fibrils with distinct morphologies and persistence lengths, when protein concentration, pH and ionic strength are varied. Using the resulting state-diagrams, we demonstrate the existence of two distinct competitive pathways of assembly, which define an energy landscape that rationalises the sensitivity of fibril morphology on the solution conditions. Importantly, we show that semi-flexible (worm-like) fibrils, which form rapidly during assembly, are kinetically trapped species, formed via a non-nucleated pathway that is explicitly distinct from that leading to the formation of the relatively rigid long-straight fibrils classically associated with amyloid. These semi-flexible fibrils also share an antibody epitope common to other protein oligomers that are known to be toxic species linked to human disease. The results demonstrate the heterogeneity of amyloid assembly, and have important implications for our understanding of the importance of oligomeric states in amyloid disease, the origins of prion strains, and the development of therapeutic strategies.
Molecular engineering of polymersome surface topology
Ruiz-Pérez, Lorena; Messager, Lea; Gaitzsch, Jens; Joseph, Adrian; Sutto, Ludovico; Gervasio, Francesco Luigi; Battaglia, Giuseppe
2016-01-01
Biological systems exploit self-assembly to create complex structures whose arrangements are finely controlled from the molecular to mesoscopic level. We report an example of using fully synthetic systems that mimic two levels of self-assembly. We show the formation of vesicles using amphiphilic copolymers whose chemical nature is chosen to control both membrane formation and membrane-confined interactions. We report polymersomes with patterns that emerge by engineering interfacial tension within the polymersome surface. This allows the formation of domains whose topology is tailored by chemical synthesis, paving the avenue to complex supramolecular designs functionally similar to those found in viruses and trafficking vesicles. PMID:27152331
ERIC Educational Resources Information Center
Bolton Inst., Inc., Wellesley, MA.
This model, developed and tested in Vermont, involved a two-day assembly using a technique concentrating on small-group dynamics to encourage productive community assessment and decision-making. Included are exhaustive documentation of an example assembly to consider options for integrating human and environmental requirements in Vermont as a…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deshmukh, Sanket; Solomon, Lee A.; Kamath, Ganesh
Understanding the role of water in governing the kinetics of the self-assembly processes of amphiphilic peptides has still remained elusive. Here, using a multi-stage atomistic-coarse-grained approach, complemented by circular dichroism/infra-red spectroscopy and dynamic light scattering experiments, we highlight the dual nature of water in dictating the mechanism and dynamics of self-assembly of peptide amphiphiles (PAs). Our computational study shows that (i) Water cage formation and breakage near the hydrophobic groups controls the fusion dynamics and aggregation of PAs in the micellar stage, and (ii) Enhanced structural ordering of vicinal water near the hydrophilic amino acids shifts the equilibrium towards themore » fiber phase and stimulates structure and order in the PAs when they assemble into a hexagonal nanofiber architecture. Finally, spectroscopy and microscopy studies authenticate our computational observation that water ordering near the PAs increases with increase in time. The measured infra-red O-H bond stretch frequency reminiscent of ice-like suggests that the solvated water becomes increasingly solid-like with increased structural order in the assembled peptide network – thus shedding light on the role of water in a self-assembly process.« less
Deshmukh, Sanket; Solomon, Lee A.; Kamath, Ganesh; ...
2016-08-24
Understanding the role of water in governing the kinetics of the self-assembly processes of amphiphilic peptides has still remained elusive. Here, using a multi-stage atomistic-coarse-grained approach, complemented by circular dichroism/infra-red spectroscopy and dynamic light scattering experiments, we highlight the dual nature of water in dictating the mechanism and dynamics of self-assembly of peptide amphiphiles (PAs). Our computational study shows that (i) Water cage formation and breakage near the hydrophobic groups controls the fusion dynamics and aggregation of PAs in the micellar stage, and (ii) Enhanced structural ordering of vicinal water near the hydrophilic amino acids shifts the equilibrium towards themore » fiber phase and stimulates structure and order in the PAs when they assemble into a hexagonal nanofiber architecture. Finally, spectroscopy and microscopy studies authenticate our computational observation that water ordering near the PAs increases with increase in time. The measured infra-red O-H bond stretch frequency reminiscent of ice-like suggests that the solvated water becomes increasingly solid-like with increased structural order in the assembled peptide network – thus shedding light on the role of water in a self-assembly process.« less
Impact of cationic surfactant on the self-assembly of sodium caseinate.
Vinceković, Marko; Curlin, Marija; Jurašin, Darija
2014-08-27
The impact of a cationic surfactant, dodecylammonium chloride (DDACl), on the self-assembly of sodium caseinate (SC) has been investigated by light scattering, zeta potential, and rheological measurements as well as by microscopy (transmission electron and confocal laser scanning microscopy). In SC dilute solutions concentration-dependent self-assembly proceeds through the formation of spherical associates and their aggregation into elongated structures composed of connected spheres. DDACl interacts with SC via its hydrophilic and hydrophobic groups, inducing changes in SC self-assembled structures. These changes strongly depend on the surfactant aggregation states (monomeric or micellar) as well as concentration ratio of both components, leading to the formation of soluble and insoluble complexes of nano- to microdimensions. DDACl monomers interact with SC self-assembled entities in a different way compared to their micelles. Surfactant monomers form soluble complexes (similar to surfactant mixed micelles) at lower SC concentration but insoluble gelatinous complexes at higher SC concentration. At surfactant micellar concentration soluble complexes with casein chains wrapped around surfactant micelles are formed. This study suggests that the use of proper cationic surfactant concentration will allow modification and control of structural changes of SC self-assembled entities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu Shengwei; Yu Jiaguo
Bi{sub 2}WO{sub 6} hierarchical multilayered flower-like assemblies are fabricated on a large scale by a simple hydrothermal method in the presence of polymeric poly(sodium 4-styrenesulfonate). Such 3D Bi{sub 2}WO{sub 6} assemblies are constructed from orderly arranged 2D layers, which are further composed of a large number of interconnected nanoplates with a mean side length of ca. 50 nm. The bimodal mesopores associated with such hierarchical assembly exhibit peak mesopore size of ca. 4 nm for the voids within a layer, and peak mesopore size of ca. 40 nm corresponding to the interspaces between stacked layers, respectively. The formation process ismore » discussed on the basis of the results of time-dependent experiments, which support a novel 'coupled cooperative assembly and localized ripening' formation mechanism. More interestingly, we have noticed that the collective effect related to such hierarchical assembly induces a significantly enhanced optical absorbance in the UV-visible region. This work may shed some light on the design of complex architectures and exploitation of their potential applications. - Graphical abstract: Bi{sub 2}WO{sub 6} hierarchical multilayered flower-like assemblies are fabricated on a large scale by a simple hydrothermal method in the presence of polymeric poly(sodium 4-styrenesulfonate)« less
Biocatalytic Self-Assembly on Magnetic Nanoparticles.
Conte, Maria P; Sahoo, Jugal Kishore; Abul-Haija, Yousef M; Lau, K H Aaron; Ulijn, Rein V
2018-01-24
Combining (bio)catalysis and molecular self-assembly provides an effective approach for the production and processing of self-assembled materials by exploiting catalysis to direct the assembly kinetics and hence controlling the formation of ordered nanostructures. Applications of (bio)catalytic self-assembly in biologically interfacing systems and in nanofabrication have recently been reported. Inspired by self-assembly in biological cells, efforts to confine catalysts on flat or patterned surfaces to exert spatial control over molecular gelator generation and nanostructure self-assembly have also emerged. Building on our previous work in the area, we demonstrate in this report the use of enzymes immobilized onto magnetic nanoparticles (NPs) to spatially localize the initiation of peptide self-assembly into nanofibers around NPs. The concept is generalized for both an equilibrium biocatalytic system that forms stable hydrogels and a nonequilibrium system that normally has a preset lifetime. Characterization of the hydrogels shows that self-assembly occurs at the site of enzyme immobilization on the NPs to give rise to gels with a "hub-and-spoke" morphology, where the nanofibers are linked through the enzyme-NP conjugates. This NP-controlled arrangement of self-assembled nanofibers enables both remarkable enhancements in the shear strength of hydrogel systems and a dramatic extension of the hydrogel stability in the nonequilibrium system. We are also able to show that the use of magnetic NPs enables the external control of both the formation of the hydrogel and its overall structure by application of an external magnetic field. We anticipate that the enhanced properties and stimuli-responsiveness of our NP-enzyme system will have applications ranging from nanomaterial fabrication to biomaterials and biosensing.
Centrioles: some self-assembly required.
Song, Mi Hye; Miliaras, Nicholas B; Peel, Nina; O'Connell, Kevin F
2008-12-01
Centrioles play an important role in organizing microtubules and are precisely duplicated once per cell cycle. New (daughter) centrioles typically arise in association with existing (mother) centrioles (canonical assembly), suggesting that mother centrioles direct the formation of daughter centrioles. However, under certain circumstances, centrioles can also selfassemble free of an existing centriole (de novo assembly). Recent work indicates that the canonical and de novo pathways utilize a common mechanism and that a mother centriole spatially constrains the self-assembly process to occur within its immediate vicinity. Other recently identified mechanisms further regulate canonical assembly so that during each cell cycle, one and only one daughter centriole is assembled per mother centriole.
Gillams, Richard J; Jia, Tony Z
2018-05-08
An increasing body of evidence relates the wide range of benefits mineral surfaces offer for the development of early living systems, including adsorption of small molecules from the aqueous phase, formation of monomeric subunits and their subsequent polymerization, and supramolecular assembly of biopolymers and other biomolecules. Each of these processes was likely a necessary stage in the emergence of life on Earth. Here, we compile evidence that templating and enhancement of prebiotically-relevant self-assembling systems by mineral surfaces offers a route to increased structural, functional, and/or chemical complexity. This increase in complexity could have been achieved by early living systems before the advent of evolvable systems and would not have required the generally energetically unfavorable formation of covalent bonds such as phosphodiester or peptide bonds. In this review we will focus on various case studies of prebiotically-relevant mineral-templated self-assembling systems, including supramolecular assemblies of peptides and nucleic acids, from nanoscience and surface science. These fields contain valuable information that is not yet fully being utilized by the origins of life and astrobiology research communities. Some of the self-assemblies that we present can promote the formation of new mineral surfaces, similar to biomineralization, which can then catalyze more essential prebiotic reactions; this could have resulted in a symbiotic feedback loop by which geology and primitive pre-living systems were closely linked to one another even before life’s origin. We hope that the ideas presented herein will seed some interesting discussions and new collaborations between nanoscience/surface science researchers and origins of life/astrobiology researchers.
Hong, Yooseong; Legge, Raymond L; Zhang, S; Chen, P
2003-01-01
Atomic force microscopy (AFM) and axisymmetric drop shape analysis-profile (ASDA-P) were used to investigate the mechanism of self-assembly of peptides. The peptides chosen consisted of 16 alternating hydrophobic and hydrophilic amino acids, where the hydrophilic residues possess alternating negative and positive charges. Two types of peptides, AEAEAKAKAEAEAKAK (EAK16-II) and AEAEAEAEAKAKAKAK (EAK16-IV), were investigated in terms of nanostructure formation through self-assembly. The experimental results, which focused on the effects of the amino acid sequence and pH, show that the nanostructures formed by the peptides are dependent on the amino acid sequence and the pH of the solution. For pH conditions around neutrality, one of the peptides used in this study, EAK16-IV, forms globular assemblies and has lower surface tension at air-water interfaces than another peptide, EAK16-II, which forms fibrillar assemblies at the same pH. When the pH is lowered below 6.5 or raised above 7.5, there is a transition from globular to fibrillar structures for EAK16-IV, but EAK16-II does not show any structural transition. Surface tension measurements using ADSA-P showed different surface activities of peptides at air-water interfaces. EAK16-II does not show a significant difference in surface tension for the pH range between 4 and 9. However, EAK16-IV shows a noticeable decrease in surface tension at pH around neutrality, indicating that the formation of globular assemblies is related to the molecular hydrophobicity.
Inflammasome assembly in the chorioamniotic membranes during spontaneous labor at term.
Gomez-Lopez, Nardhy; Romero, Roberto; Xu, Yi; Garcia-Flores, Valeria; Leng, Yaozhu; Panaitescu, Bogdan; Miller, Derek; Abrahams, Vikki M; Hassan, Sonia S
2017-05-01
Inflammasome activation requires two steps: priming and assembly of the multimeric complex. The second step includes assembly of the sensor molecule and adaptor protein ASC (an apoptosis-associated speck-like protein containing a CARD), which results in ASC speck formation and the recruitment of caspase (CASP)-1. Herein, we investigated whether there is inflammasome assembly in the chorioamniotic membranes and choriodecidual leukocytes from women who underwent spontaneous labor at term. Using in situ proximity ligation assays, ASC/CASP-1 complexes were determined in the chorioamniotic membranes from women who delivered at term without labor or underwent spontaneous labor at term with or without acute histologic chorioamnionitis (n=10-11 each). Also, ASC speck formation was determined by flow cytometry in the choriodecidual leukocytes isolated from women who delivered at term with or without spontaneous labor (n=9-12 each). (i) ASC/CASP-1 complexes were detected in the chorioamniotic membranes; (ii) ASC/CASP-1 complexes were greater in the chorioamniotic membranes from women who underwent spontaneous labor at term than in those without labor; (iii) ASC/CASP-1 complexes were even more abundant in the chorioamniotic membranes from women who underwent spontaneous labor at term with acute histologic chorioamnionitis than in those without this placental lesion; (iv) ASC speck formation was detected in the choriodecidual leukocytes; and (v) ASC speck formation was greater in the choriodecidual leukocytes isolated from women who underwent spontaneous labor at term than in those without labor. There is inflammasome assembly in the chorioamniotic membranes and choriodecidual leukocytes during spontaneous labor at term. Published 2017. This article is a U.S. Government work and is in the public domain in the USA.
2-d and 1-d Nanomaterials Construction through Peptide Computational Design and Solution Assembly
NASA Astrophysics Data System (ADS)
Pochan, Darrin
Self-assembly of molecules is an attractive materials construction strategy due to its simplicity in application. By considering peptidic molecules in the bottom-up materials self-assembly design process, one can take advantage of inherently biomolecular attributes; intramolecular folding events, secondary structure, and electrostatic/H-bonding/hydrophobic interactions to define hierarchical material structure and consequent properties. Importantly, while biomimicry has been a successful strategy for the design of new peptide molecules for intermolecular assembly, computational tools have been developed to de novo design peptide molecules required for construction of pre-determined, desired nanostructures and materials. A new system comprised of coiled coil bundle motifs theoretically designed to assemble into designed, one and two-dimensional nanostructures will be introduced. The strategy provides the opportunity for arbitrary nanostructure formation, i.e. structures not observed in nature, with peptide molecules. Importantly, the desired nanostructure was chosen first while the peptides needed for coiled coil formation and subsequent nanomaterial formation were determined computationally. Different interbundle, two-dimensional nanostructures are stabilized by differences in amino acid composition exposed on the exterior of the coiled coil bundles. Computation was able to determine molecules required for different interbundle symmetries within two-dimensional sheets stabilized by subtle differences in amino acid composition of the inherent peptides. Finally, polymers were also created through covalent interactions between bundles that allowed formation of architectures spanning flexible network forming chains to ultra-stiff polymers, all with the same building block peptides. The success of the computational design strategy is manifested in the nanomaterial results as characterized by electron microscopy, scattering methods, and biophysical techniques. Support from NSF DMREF program under awards DMR-1234161 and DMR-1235084.
2008-05-01
patterns. Our strategy to nucleate Ag nanoparticles has been to use a templating protein (e.g., streptavidin) that has been chemically pre- charged with...assembly is used to direct the formation of switching devices and wires to create logic circuitry, memory, and I/O interfaces . We can control the reaction...determines the formation of structures (through complementarity ). Sequence design is important because it determines many aspects of the target DNA
Keizer, Henk M; González, Juan J; Segura, Margarita; Prados, Pilar; Sijbesma, Rint P; Meijer, E W; de Mendoza, Javier
2005-08-05
The preorganization of bifunctional 2-ureido-4-pyrimidinones mediated by either 1,3-substituted adamantane or meta-substituted phenylene ring linkers leads to the preferred formation of stable pentameric (1)(5) and hexameric (2)(6) assemblies, respectively. Despite the high binding constant of the 2-ureido-4-pyrimidinone dimers and the highly preorganized structure of the monomer, the predominant formation of cycles (1)(5) and (2)(6) in solution occurs only within a specific concentration range.
NASA Astrophysics Data System (ADS)
Katsuyama, Kozo; Nagamine, Tsuyoshi; Furuya, Hirotaka
2010-10-01
In order to observe the structural change in the interior of irradiated fuel assemblies, a non-destructive post-irradiation examination (PIE) technique using X-ray computer tomography (X-ray CT) was developed. This X-ray CT technique was applied to observe the central void formations and fuel pin deformations of fuel assemblies which had been irradiated at high linear heat rating. The central void sizes in all fuel pins were measured on five cross sections of the core fuel column as a parameter for evaluating fuel thermal performance. In addition, the fuel pin deformations were analyzed from X-ray CT images obtained along the axial direction of a fuel assembly at the same separation interval. A dependence of void size on the linear heat rating was seen in the fuel assembly irradiated at high linear heat rating. In addition, significant undulations of the fuel pin were observed along the axial direction, coinciding with the wrapping wire pitch in the core fuel column. Application of the developed technique should provide enhanced resolution of measurements and simplify fuel PIEs.
Self-assembling semiconducting polymers--rods and gels from electronic materials.
Clark, Andrew P-Z; Shi, Chenjun; Ng, Benny C; Wilking, James N; Ayzner, Alexander L; Stieg, Adam Z; Schwartz, Benjamin J; Mason, Thomas G; Rubin, Yves; Tolbert, Sarah H
2013-02-26
In an effort to favor the formation of straight polymer chains without crystalline grain boundaries, we have synthesized an amphiphilic conjugated polyelectrolyte, poly(fluorene-alt-thiophene) (PFT), which self-assembles in aqueous solutions to form cylindrical micelles. In contrast to many diblock copolymer assemblies, the semiconducting backbone runs parallel, not perpendicular, to the long axis of the cylindrical micelle. Solution-phase micelle formation is observed by X-ray and visible light scattering. The micelles can be cast as thin films, and the cylindrical morphology is preserved in the solid state. The effects of self-assembly are also observed through spectral shifts in optical absorption and photoluminescence. Solutions of higher-molecular-weight PFT micelles form gel networks at sufficiently high aqueous concentrations. Rheological characterization of the PFT gels reveals solid-like behavior and strain hardening below the yield point, properties similar to those found in entangled gels formed from surfactant-based micelles. Finally, electrical measurements on diode test structures indicate that, despite a complete lack of crystallinity in these self-assembled polymers, they effectively conduct electricity.
Mondal, Arindam; Potts, Gregory K.; Dawson, Anthony R.; Coon, Joshua J.; Mehle, Andrew
2015-01-01
Negative-sense RNA viruses assemble large ribonucleoprotein (RNP) complexes that direct replication and transcription of the viral genome. Influenza virus RNPs contain the polymerase, genomic RNA and multiple copies of nucleoprotein (NP). During RNP assembly, monomeric NP oligomerizes along the length of the genomic RNA. Regulated assembly of the RNP is essential for virus replication, but how NP is maintained as a monomer that subsequently oligomerizes to form RNPs is poorly understood. Here we elucidate a mechanism whereby NP phosphorylation regulates oligomerization. We identified new evolutionarily conserved phosphorylation sites on NP and demonstrated that phosphorylation of NP decreased formation of higher-order complexes. Two phosphorylation sites were located on opposite sides of the NP:NP interface. In both influenza A and B virus, mutating or mimicking phosphorylation at these residues blocked homotypic interactions and drove NP towards a monomeric form. Highlighting the central role of this process during infection, these mutations impaired RNP formation, polymerase activity and virus replication. Thus, dynamic phosphorylation of NP regulates RNP assembly and modulates progression through the viral life cycle. PMID:25867750
The mechanism of monomer transfer between two structurally distinct PrP oligomers
Armiento, Aurora; Martin, Davy; Lepejova, Nad’a
2017-01-01
In mammals, Prion pathology refers to a class of infectious neuropathologies whose mechanism is based on the self-perpetuation of structural information stored in the pathological conformer. The characterisation of the PrP folding landscape has revealed the existence of a plethora of pathways conducing to the formation of structurally different assemblies with different biological properties. However, the biochemical interconnection between these diverse assemblies remains unclear. The PrP oligomerisation process leads to the formation of neurotoxic and soluble assemblies called O1 oligomers with a high size heterodispersity. By combining the measurements in time of size distribution and average size with kinetic models and data assimilation, we revealed the existence of at least two structurally distinct sets of assemblies, termed Oa and Ob, forming O1 assemblies. We propose a kinetic model representing the main processes in prion aggregation pathway: polymerisation, depolymerisation, and disintegration. The two groups interact by exchanging monomers through a disintegration process that increases the size of Oa. Our observations suggest that PrP oligomers constitute a highly dynamic population. PMID:28746342
The mechanism of monomer transfer between two structurally distinct PrP oligomers.
Armiento, Aurora; Moireau, Philippe; Martin, Davy; Lepejova, Nad'a; Doumic, Marie; Rezaei, Human
2017-01-01
In mammals, Prion pathology refers to a class of infectious neuropathologies whose mechanism is based on the self-perpetuation of structural information stored in the pathological conformer. The characterisation of the PrP folding landscape has revealed the existence of a plethora of pathways conducing to the formation of structurally different assemblies with different biological properties. However, the biochemical interconnection between these diverse assemblies remains unclear. The PrP oligomerisation process leads to the formation of neurotoxic and soluble assemblies called O1 oligomers with a high size heterodispersity. By combining the measurements in time of size distribution and average size with kinetic models and data assimilation, we revealed the existence of at least two structurally distinct sets of assemblies, termed Oa and Ob, forming O1 assemblies. We propose a kinetic model representing the main processes in prion aggregation pathway: polymerisation, depolymerisation, and disintegration. The two groups interact by exchanging monomers through a disintegration process that increases the size of Oa. Our observations suggest that PrP oligomers constitute a highly dynamic population.
Programming Cells for Dynamic Assembly of Inorganic Nano-Objects with Spatiotemporal Control.
Wang, Xinyu; Pu, Jiahua; An, Bolin; Li, Yingfeng; Shang, Yuequn; Ning, Zhijun; Liu, Yi; Ba, Fang; Zhang, Jiaming; Zhong, Chao
2018-04-01
Programming living cells to organize inorganic nano-objects (NOs) in a spatiotemporally precise fashion would advance new techniques for creating ordered ensembles of NOs and new bio-abiotic hybrid materials with emerging functionalities. Bacterial cells often grow in cellular communities called biofilms. Here, a strategy is reported for programming dynamic biofilm formation for the synchronized assembly of discrete NOs or hetero-nanostructures on diverse interfaces in a dynamic, scalable, and hierarchical fashion. By engineering Escherichia coli to sense blue light and respond by producing biofilm curli fibers, biofilm formation is spatially controlled and the patterned NOs' assembly is simultaneously achieved. Diverse and complex fluorescent quantum dot patterns with a minimum patterning resolution of 100 µm are demonstrated. By temporally controlling the sequential addition of NOs into the culture, multilayered heterostructured thin films are fabricated through autonomous layer-by-layer assembly. It is demonstrated that biologically dynamic self-assembly can be used to advance a new repertoire of nanotechnologies and materials with increasing complexity that would be otherwise challenging to produce. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Self-assembly of multi-stranded RNA motifs into lattices and tubular structures
Stewart, Jaimie Marie; Subramanian, Hari K. K.
2017-01-01
Abstract Rational design of nucleic acid molecules yields self-assembling scaffolds with increasing complexity, size and functionality. It is an open question whether design methods tailored to build DNA nanostructures can be adapted to build RNA nanostructures with comparable features. Here we demonstrate the formation of RNA lattices and tubular assemblies from double crossover (DX) tiles, a canonical motif in DNA nanotechnology. Tubular structures can exceed 1 μm in length, suggesting that this DX motif can produce very robust lattices. Some of these tubes spontaneously form with left-handed chirality. We obtain assemblies by using two methods: a protocol where gel-extracted RNA strands are slowly annealed, and a one-pot transcription and anneal procedure. We identify the tile nick position as a structural requirement for lattice formation. Our results demonstrate that stable RNA structures can be obtained with design tools imported from DNA nanotechnology. These large assemblies could be potentially integrated with a variety of functional RNA motifs for drug or nanoparticle delivery, or for colocalization of cellular components. PMID:28204562
Liquid crystals from mesogens containing gold nanoparticles
NASA Astrophysics Data System (ADS)
Lewandowski, Wiktor; Gorecka, Ewa
Long-range ordered structures made of nanoparticles are perspective materials for future optical, electronic and sensing technologies. Conspicuous physicochemical features of nanoparticle aggregates originate from distant-dependent collective interactions, therefore lately a lot of attention was put to the development of assembly strategies allowing control over nanoparticle spatial distribution. In this chapter we will focus on the assembly process based on using thermotropic liquid-crystalline molecules as surface nanoparticle ligands. First, we discuss architectural parameters that inuence structure and thermal properties of the aggregates. Then, we show that this approach enables formation of assemblies with metamaterial characteristic, gives access to dynamic materials with light-, magneto- and thermo-responsive behavior and allows formation of aggregates with unique structures, which all make this strategy an attractive object of research.
Plant metabolism and cell wall formation in space (microgravity) and on Earth
NASA Technical Reports Server (NTRS)
Lewis, Norman G.
1994-01-01
Variations in cell wall chemistry provide vascular plants with the ability to withstand gravitational forces, as well as providing facile mechanisms for correctional responses to various gravitational stimuli, e.g., in reaction wood formation. A principal focus of our current research is to precisely and systematically dissect the essentially unknown mechanism(s) of vascular plant cell wall assembly, particularly with respect to formation of its phenolic constituents, i.e., lignins and suberins, and how gravity impacts upon these processes. Formation of these phenolic polymers is of particular interest, since it appears that elaboration of their biochemical pathways was essential for successful land adaptation. By extrapolation, we are also greatly intrigued as to how the microgravity environment impacts upon 'normal' cell wall assembly mechanisms/metabolism.
Fabrication of artificial toroid nanostructures by modified β-sheet peptides.
Li, Wen; Li, Jingfang; Lee, Myongsoo
2013-09-25
Facial peptide P1 carrying repeating hydrophobic and hydrophilic residues as well as lysine terminals self-assemble into uniform toroid structures. The sensitive balance between the hydrophobic interactions and electrostatic repulsion dominates the formation of highly curved assemblies.
Piot, Madeleine; Hupin, Sébastien; Lavanant, Hélène; Afonso, Carlos; Bouteiller, Laurent; Proust, Anna; Izzet, Guillaume
2017-07-17
The metal-driven self-assembly of a Keggin-based hybrid bearing two remote pyridine units was investigated. The resulting supramolecular species were identified by combination of 2D diffusion NMR spectroscopy (DOSY) and electrospray ionization mass spectrometry (ESI-MS) as a mixture of molecular triangles and squares. This behavior is different from that of the structural analogue Dawson-based hybrid displaying a higher charge, which only led to the formation of molecular triangles. This study highlights the decisive effect of the charge of the POMs in their self-assembly processes that disfavors the formation of large assemblies. An isothermal titration calorimetry (ITC) experiment confirmed the stronger binding in the case of the Keggin hybrids. A correlation between the diffusion coefficient D and the molecular mass M of the POM-based building block and its coordination oligomers was also observed. We show that the diffusion coefficient of these compounds is mainly determined by their occupied volume rather than by their shape.
2018-01-01
The bacterial flagellum is a supramolecular motility machine. Flagellar assembly begins with the basal body, followed by the hook and finally the filament. A carboxyl-terminal cytoplasmic domain of FlhA (FlhAC) forms a nonameric ring structure in the flagellar type III protein export apparatus and coordinates flagellar protein export with assembly. However, the mechanism of this process remains unknown. We report that a flexible linker of FlhAC (FlhAL) is required not only for FlhAC ring formation but also for substrate specificity switching of the protein export apparatus from the hook protein to the filament protein upon completion of the hook structure. FlhAL was required for cooperative ring formation of FlhAC. Alanine substitutions of residues involved in FlhAC ring formation interfered with the substrate specificity switching, thereby inhibiting filament assembly at the hook tip. These observations lead us to propose a mechanistic model for export switching involving structural remodeling of FlhAC. PMID:29707633
Monomer-dependent secondary nucleation in amyloid formation.
Linse, Sara
2017-08-01
Secondary nucleation of monomers on the surface of an already existing aggregate that is formed from the same kind of monomers may lead to autocatalytic amplification of a self-assembly process. Such monomer-dependent secondary nucleation occurs during the crystallization of small molecules or proteins and self-assembled materials, as well as in protein self-assembly into fibrous structures. Indications of secondary nucleation may come from analyses of kinetic experiments starting from pure monomers or monomers supplemented with a low concentration of pre-formed aggregates (seeds). More firm evidence requires additional experiments, for example those employing isotope labels to distinguish new aggregates arising from the monomer from those resulting from fragmentation of the seed. In cases of amyloid formation, secondary nucleation leads to the formation of toxic oligomers, and inhibitors of secondary nucleation may serve as starting points for therapeutic developments. Secondary nucleation displays a high degree of structural specificity and may be enhanced by mutations or screening of electrostatic repulsion.
Assembly Kinetics Determine the Architecture of α-actinin Crosslinked F-actin Networks
Falzone, Tobias T.; Lenz, Martin; Kovar, David R.; Gardel, Margaret L.
2013-01-01
The actin cytoskeleton is organized into diverse meshworks and bundles that support many aspects of cell physiology. Understanding the self-assembly of these actin-based structures is essential for developing predictive models of cytoskeletal organization. Here we show that the competing kinetics of bundle formation with the onset of dynamic arrest arising from filament entanglements and cross-linking determine the architecture of reconstituted actin networks formed with α-actinin cross-links. Cross-link mediated bundle formation only occurs in dilute solutions of highly mobile actin filaments. As actin polymerization proceeds, filament mobility and bundle formation are arrested concomitantly. By controlling the onset of dynamic arrest, perturbations to actin assembly kinetics dramatically alter the architecture of biochemically identical samples. Thus, the morphology of reconstituted F-actin networks is a kinetically determined structure similar to those formed by physical gels and glasses. These results establish mechanisms controlling the structure and mechanics in diverse semi-flexible biopolymer networks. PMID:22643888
Evaporation-Induced Assembly of Quantum Dots into Nanorings
Chen, Jixin; Liao, Wei-Ssu; Chen, Xin; Yang, Tinglu; Wark, Stacey E.; Son, Dong Hee; Batteas, James D.; Cremer, Paul S.
2011-01-01
Herein, we demonstrate the controlled formation of two-dimensional periodic arrays of ring-shaped nanostructures assembled from CdSe semiconductor quantum dots (QDs). The patterns were fabricated by using an evaporative templating method. This involves the introduction of an aqueous solution containing both quantum dots and polystyrene microspheres onto the surface of a planar hydrophilic glass substrate. The quantum dots became confined to the meniscus of the microspheres during evaporation, which drove ring assembly via capillary forces at the polystyrene sphere/glass substrate interface. The geometric parameters for nanoring formation could be controlled by tuning the size of the microspheres and the concentration of the QDs employed. This allowed hexagonal arrays of nanorings to be formed with thicknesses ranging from single dot necklaces to thick multilayer structures over surface areas of many square millimeters. Moreover, the diameter of the ring structures could be simultaneously controlled. A simple model was employed to explain the forces involved in the formation of nanoparticle nanorings. PMID:19206264
Schreiber, Roy E; Avram, Liat; Neumann, Ronny
2018-01-09
High-order elementary reactions in homogeneous solutions involving more than two molecules are statistically improbable and very slow to proceed. They are not generally considered in classical transition-state or collision theories. Yet, rather selective, high-yield product formation is common in self-assembly processes that require many reaction steps. On the basis of recent observations of crystallization as well as reactions in dense phases, it is shown that self-assembly can occur by preorganization of reactants in a noncovalent supramolecular assembly, whereby directing forces can lead to an apparent one-step transformation of multiple reactants. A simple and general kinetic model for multiple reactant transformation in a dense phase that can account for many-bodied transformations was developed. Furthermore, the self-assembly of polyfluoroxometalate anion [H 2 F 6 NaW 18 O 56 ] 7- from simple tungstate Na 2 WO 2 F 4 was demonstrated by using 2D 19 F- 19 F NOESY, 2D 19 F- 19 F COSY NMR spectroscopy, a new 2D 19 F{ 183 W} NMR technique, as well as ESI-MS and diffusion NMR spectroscopy, and the crucial involvement of a supramolecular assembly was found. The deterministic kinetic reaction model explains the reaction in a dense phase and supports the suggested self-assembly mechanism. Reactions in dense phases may be of general importance in understanding other self-assembly reactions. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Carbon nanotube-templated assembly of regioregular poly(3-alkylthiophene) in solution
NASA Astrophysics Data System (ADS)
Zhu, Jiahua; Stevens, Eric; He, Youjun; Hong, Kunlun; Ivanov, Ilia
2016-09-01
Control of structural heterogeneity by rationally encoding of the molecular assemblies is a key enabling design of hierarchical, multifunctional materials of the future. Here we report the strategies to gain such control using solution- based assembly to construct a hybrid nano-assembly and a network hybrid structure of regioregular poly(3- alkylthiophene) - carbon nanotube (P3AT-CNT). The opto-electronic performance of conjugated polymer (P3AT) is defined by the structure of the aggregate in solution and in the solid film. Control of P3AT aggregation would allow formation of broad range of morphologies with very distinct electro-optical. We utilize interactive templating to confine the assembly behavior of conjugated polymers, replacing poorly controlled solution processing approach. Perfect crystalline surface of the single-walled and multi-walled carbon nanotube (SWCNT/MWCNT) acts as a template, seeding P3AT aggregation of the surface of the nanotube. The seed continues directional growth through pi-pi stacking leading to the formation of to well-defined P3AT-CNT morphologies, including comb-like nano-assemblies, super- structures and gel networks. Interconnected, highly-branched network structure of P3AT-CNT hybrids is of particular interest to enable efficient, long-range, balanced charge carrier transport. The structure and opto-electionic function of the intermediate assemblies and networks of P3AT/CNT hybrids are characterized by transmission election microscopy and UV-vis absorption.
NASA Astrophysics Data System (ADS)
Gao, Wenli; Feng, Bo; Ni, Yuxiang; Yang, Yongli; Lu, Xiong; Weng, Jie
2010-11-01
Titanium and its alloys are frequently used as surgical implants in load bearing situations, such as hip prostheses and dental implants, owing to their biocompatibility, mechanical and physical properties. In this paper, a layer-by-layer (LBL) self-assembly technique, based on the polyelectrolyte-mediated electrostatic adsorption of poly-L-lysine (PLL) and DNA, was used to the formation of multilayer on titanium surfaces. Then bovine serum albumin (BSA) adsorption and biomimetic mineralization of modified surfaces were studied. The chemical composition and wettability of assembled substrates were investigated by X-ray photoelectron spectroscopy (XPS), fluorescence microscopy and water contact angle measurement, respectively. The XPS analysis indicated that the layers were assembled successfully through electrostatic attractions. The measurement with ultraviolet (UV) spectrophotometer revealed that the LBL films enhanced ability of BSA adsorption onto titanium. The adsorption quantity of BSA on the surface terminated with PLL was higher than that of the surface terminated with DNA, and the samples of TiOH/P/D/P absorbed BSA most. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) showed that samples of assembled PLL or/and DNA had better bioactivity in inducing HA formation. Thus the assembling of PLL and DNA onto the surface of titanium in turn via a layer-by-layer self-assembly technology can improve the bioactivity of titanium.
Block-copolymer-controlled growth of CaCO3 microrings.
Gao, Yun-Xiang; Yu, Shu-Hong; Cong, Huaiping; Jiang, Jun; Xu, An-Wu; Dong, W F; Cölfen, Helmut
2006-04-06
A novel way for directed solution growth of hollow superstructures of CaCO3 has been successfully developed on the basis of controlled self-assembly and polymer concentration gradients using a double-hydrophilic block copolymer with a hydrophobic modification as a directing agent. A formation mechanism of such rings is proposed on the basis of the formation of CaCO3 nanoparticles in unstructured block copolymer assemblies with subsequent aggregation of these primary nanoparticles. This leads to the formation of a polymer concentration gradient from the inside to the outside of the particle. As the polymer contains multiple chelating units, this leads to a selective dissolution of the center of the particle.
Nilsson, Lina; Pamrén, Annelie; Islam, Tohidul; Brännström, Kristoffer; Golchin, Solmaz A; Pettersson, Nina; Iakovleva, Irina; Sandblad, Linda; Gharibyan, Anna L; Olofsson, Anders
2018-06-08
The pathological Aβ aggregates associated with Alzheimer's disease follow a nucleation-dependent path of formation. A nucleus represents an oligomeric assembly of Aβ peptides that acts as a template for subsequent incorporation of monomers to form a fibrillar structure. Nuclei can form de novo or via surface-catalyzed secondary nucleation, and the combined rates of elongation and nucleation control the overall rate of fibril formation. Transthyretin (TTR) obstructs Aβ fibril formation in favor of alternative non-fibrillar assemblies, but the mechanism behind this activity is not fully understood. This study shows that TTR does not significantly disturb fibril elongation; rather, it effectively interferes with the formation of oligomeric nuclei. We demonstrate that this interference can be modulated by altering the relative contribution of elongation and nucleation, and we show how TTR's effects can range from being essentially ineffective to almost complete inhibition of fibril formation without changing the concentration of TTR or monomeric Aβ. Copyright © 2018. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Ojkic, Nikola; Vavylonis, Dimitrios
2009-03-01
Fission yeast cells assemble an equatorial contractile ring for cytokinesis, the last step of mitosis. The ring assembles from ˜ 65 membrane-bound ``nodes''' containing myosin motors and other proteins. Actin filaments that grow out from the nodes establish transient connections among the nodes and aid in pulling them together in a process that appears as pair-wise attraction (Vavylonis et al. Science 97:319, 2008). We used scaling arguments, coarse grained stability analysis of homogeneous states, and Monte Carlo simulations of simple models, to explore the conditions that yield fast and efficient ring formation, as opposed to formation of isolated clumps. We described our results as a function of: number of nodes, rate of establishing connections, range of node interaction, distance traveled per node interaction and broad band width, w. Uniform cortical 2d distributions of nodes are stable over short times due to randomness of connections among nodes, but become unstable over long times due to fluctuations in the initial node distribution. Successful condensation of nodes into a ring requires sufficiently small w such that lateral contraction occurs faster then clump formation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Xiaoming; Nan, Zhaodong, E-mail: zdnan@yzu.edu.cn
Graphical abstract: Glass-slices were used as a template to induce formation and assembly of aragonite. Different morphologies, such as hemisphere, twinborn hemisphere and flower-shaped particles, were produced by direction of the glass-slices. Highlights: {yields} Glass-slices were used as a template to induce formation and assembly of aragonite. {yields} Hemisphere, twinborn hemisphere and flower-shaped particles were produced by direction of the glass-slices. {yields} Planes were always appeared in these as-synthesized samples. {yields} Thermodynamic theory was applied to explain the production of the aragonite. -- Abstract: A glass-slice was used as a template to induce formation and assembly of aragonite. Thermodynamic theorymore » was applied to explain the production of the aragonite. Transformation of three-dimensional nucleation to template-based two-dimensional surface nucleation caused the production of aragonite. Hemisphere, twinborn hemisphere and flower-shaped particles were produced by direction of the glass-slices. Planes were always appeared in these as-synthesized samples because the nucleation and the growth of these samples were adsorbed at the surfaces of the glass-slices. The formation mechanism of the as-formed sample was proposed. Compared with organic template, the present study provides a facile method to apply inorganic template to prepare functional materials.« less
Stewart, Sarah E; D'Angelo, Michael E; Paintavigna, Stefania; Tabor, Rico F; Martin, Lisandra L; Bird, Phillip I
2015-01-01
Streptolysin O (SLO) is a bacterial pore forming protein that is part of the cholesterol dependent cytolysin (CDC) family. We have used quartz crystal microbalance with dissipation monitoring (QCM-D) to examine SLO membrane binding and pore formation. In this system, SLO binds tightly to cholesterol-containing membranes, and assembles into partial and complete pores confirmed by atomic force microscopy. SLO binds to the lipid bilayer at a single rate consistent with the Langmuir isotherm model of adsorption. Changes in dissipation illustrate that SLO alters the viscoelastic properties of the bilayer during pore formation, but there is no loss of material from the bilayer as reported for small membrane-penetrating peptides. SLO mutants were used to further dissect the assembly and insertion processes by QCM-D. This shows the signature of SLO in QCM-D changes when pore formation is inhibited, and that bound and inserted SLO forms can be distinguished. Furthermore a pre-pore locked SLO mutant binds reversibly to lipid, suggesting that the partially complete wtSLO forms observed by AFM are anchored to the membrane. Copyright © 2014 Elsevier B.V. All rights reserved.
Kolesinski, Piotr; Rydzy, Malgorzata; Szczepaniak, Andrzej
2017-05-01
Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) is responsible for carbon dioxide conversion during photosynthesis and, therefore, is the most important protein in biomass generation. Modifications of this biocatalyst toward improvements in its properties are hindered by the complicated and not yet fully understood assembly process required for the formation of active holoenzymes. An entire set of auxiliary factors, including chaperonin GroEL/GroES and assembly chaperones RbcX or Rubisco accumulation factor 1 (RAF1), is involved in the folding and subsequent assembly of Rubisco subunits. Recently, it has been shown that cyanobacterial RAF1 acts during the formation of the large Rubisco subunit (RbcL) dimer. However, both its physiological function and its necessity in the prokaryotic Rubisco formation process remain elusive. Here, we demonstrate that the Synechocystis sp. PCC 6803 strain with raf1 gene disruption shows the same growth rate as wild-type cells under standard conditions. Moreover, the Rubisco biosynthesis process seems to be unperturbed in mutant cells despite the absence of RbcL-RAF1 complexes. However, in the tested environmental conditions, sulfur starvation triggers the degradation of RbcL and subsequent proteolysis of other polypeptides in wild-type but not Δraf1 strains. Pull-down experiments also indicate that, apart from Rubisco, RAF1 co-purifies with phycocyanins. We postulate that RAF1 is not an obligatory factor in cyanobacterial Rubisco assembly, but rather participates in environmentally regulated Rubisco homeostasis.
Keller, Paul W; Huang, Rick K; England, Matthew R; Waki, Kayoko; Cheng, Naiqian; Heymann, J Bernard; Craven, Rebecca C; Freed, Eric O; Steven, Alasdair C
2013-12-01
Retrovirus maturation involves sequential cleavages of the Gag polyprotein, initially arrayed in a spherical shell, leading to formation of capsids with polyhedral or conical morphology. Evidence suggests that capsids assemble de novo inside maturing virions from dissociated capsid (CA) protein, but the possibility persists of a displacive pathway in which the CA shell remains assembled but is remodeled. Inhibition of the final cleavage between CA and spacer peptide SP1/SP blocks the production of mature capsids. We investigated whether retention of SP might render CA assembly incompetent by testing the ability of Rous sarcoma virus (RSV) CA-SP to assemble in vitro into icosahedral capsids. Capsids were indeed assembled and were indistinguishable from those formed by CA alone, indicating that SP was disordered. We also used cryo-electron tomography to characterize HIV-1 particles produced in the presence of maturation inhibitor PF-46396 or with the cleavage-blocking CA5 mutation. Inhibitor-treated virions have a shell that resembles the CA layer of the immature Gag shell but is less complete. Some CA protein is generated but usually not enough for a mature core to assemble. We propose that inhibitors like PF-46396 bind to the Gag lattice where they deny the protease access to the CA-SP1 cleavage site and prevent the release of CA. CA5 particles, which exhibit no cleavage at the CA-SP1 site, have spheroidal shells with relatively thin walls. It appears that this lattice progresses displacively toward a mature-like state but produces neither conical cores nor infectious virions. These observations support the disassembly-reassembly pathway for core formation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Segal-Peretz, Tamar; Zhou, Chun; Ren, Jiaxing
The three-dimensional assembly of poly (styrene-b-methyl methacrylate) (PS-b-PMMA) in chemoepitaxy and graphoepitaxy directed self-assembly (DSA) was investigated using scanning transmission electron microscopy (STEM) tomography. The tomographic characterization revealed hidden morphologies and defects at the BCP- chemical pattern interface in lamellar DSA, and probed the formation of cylinders at the bottom of cylindrical DSA for contact hole shrink. Lastly, future work will include control over 3D assembly in sub-10 nm processes.
Yu, Hao; Sabetti, Mattia; Häner, Robert
2018-04-16
The assembly of supramolecular polymers from a phosphodiester-linked dimeric anthracene is described. AFM and TEM imaging reveals that the supramolecular polymers self-assemble into nanotubes in water. Subsequent photodimerization experiments indicate that the supramolecular polymerization occurs via end-to-end stacking rather than an interdigitation arrangement of the building blocks. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
A multi-stimuli responive, self-assembling, boronic acid dipeptide
Jones, Brad Howard; Martinez, Alina Marissa; Wheeler, Jill S.; ...
2015-08-11
Modification of the dipeptide of phenylalanine, FF, with a boronic acid (BA) functionality imparts unique aqueous self-assembly behavior that responds to multiple stimuli. Changes in pH and ionic strength are used to trigger hydrogelation via the formation of nanoribbon networks. Thus, we show for the first time that the binding of polyols to the BA functionality can modulate a peptide between its assembled and disassembled states.
Multiscale and Multifunctional Emulsions by Host–Guest Interaction-Mediated Self-Assembly
2018-01-01
Emulsions are widely used in numerous fields. Therefore, there has been increasing interest in the development of new emulsification strategies toward emulsions with advanced functions. Herein we report the formation of diverse emulsions by host–guest interaction-mediated interfacial self-assembly under mild conditions. In this strategy, a hydrophilic diblock copolymer with one block containing β-cyclodextrin (β-CD) can assemble at the oil/water interface when its aqueous solution is mixed with an oil phase of benzyl alcohol (BA), by host–guest interactions between β-CD and BA. This results in significantly reduced interfacial tension and the formation of switchable emulsions with easily tunable droplet sizes. Furthermore, nanoemulsions with excellent stability are successfully prepared simply via vortexing. The self-assembled oil-in-water emulsions also show catastrophic phase inversion, which can generate stable bicontinuous phase and water-in-oil emulsions, thereby further extending phase structures that can be realized by this host–guest self-assembly approach. Moreover, the host–guest nanoemulsions are able to engineer different nanoparticles and microstructures as well as solubilize a diverse array of hydrophobic drugs and dramatically enhance their oral bioavailability. The host–guest self-assembly emulsification is facile, energetically friendly, and fully translatable to industry, therefore representing a conceptually creative approach toward advanced emulsions. PMID:29806006
Mineral Surface Chemistry and Nanoparticle-aggregation Control Membrane Self-Assembly
NASA Astrophysics Data System (ADS)
Sahai, Nita; Kaddour, Hussein; Dalai, Punam; Wang, Ziqiu; Bass, Garrett; Gao, Min
2017-03-01
The self-assembly of lipid bilayer membranes to enclose functional biomolecules, thus defining a “protocell,” was a seminal moment in the emergence of life on Earth and likely occurred at the micro-environment of the mineral-water interface. Mineral-lipid interactions are also relevant in biomedical, industrial and technological processes. Yet, no structure-activity relationships (SARs) have been identified to predict lipid self-assembly at mineral surfaces. Here we examined the influence of minerals on the self-assembly and survival of vesicles composed of single chain amphiphiles as model protocell membranes. The apparent critical vesicle concentration (CVC) increased in the presence of positively-charged nanoparticulate minerals at high loadings (mg/mL) suggesting unfavorable membrane self-assembly in such situations. Above the CVC, initial vesicle formation rates were faster in the presence of minerals. Rates were correlated with the mineral’s isoelectric point (IEP) and reactive surface area. The IEP depends on the crystal structure, chemical composition and surface hydration. Thus, membrane self-assembly showed rational dependence on fundamental mineral properties. Once formed, membrane permeability (integrity) was unaffected by minerals. Suggesting that, protocells could have survived on rock surfaces. These SARs may help predict the formation and survival of protocell membranes on early Earth and other rocky planets, and amphiphile-mineral interactions in diverse other phenomena.
Mineral Surface Chemistry and Nanoparticle-aggregation Control Membrane Self-Assembly
Sahai, Nita; Kaddour, Hussein; Dalai, Punam; Wang, Ziqiu; Bass, Garrett; Gao, Min
2017-01-01
The self-assembly of lipid bilayer membranes to enclose functional biomolecules, thus defining a “protocell,” was a seminal moment in the emergence of life on Earth and likely occurred at the micro-environment of the mineral-water interface. Mineral-lipid interactions are also relevant in biomedical, industrial and technological processes. Yet, no structure-activity relationships (SARs) have been identified to predict lipid self-assembly at mineral surfaces. Here we examined the influence of minerals on the self-assembly and survival of vesicles composed of single chain amphiphiles as model protocell membranes. The apparent critical vesicle concentration (CVC) increased in the presence of positively-charged nanoparticulate minerals at high loadings (mg/mL) suggesting unfavorable membrane self-assembly in such situations. Above the CVC, initial vesicle formation rates were faster in the presence of minerals. Rates were correlated with the mineral’s isoelectric point (IEP) and reactive surface area. The IEP depends on the crystal structure, chemical composition and surface hydration. Thus, membrane self-assembly showed rational dependence on fundamental mineral properties. Once formed, membrane permeability (integrity) was unaffected by minerals. Suggesting that, protocells could have survived on rock surfaces. These SARs may help predict the formation and survival of protocell membranes on early Earth and other rocky planets, and amphiphile-mineral interactions in diverse other phenomena. PMID:28266537
Zheng, Min; Chiang, Ya-Ling; Lee, Hsiao-Lin; Kong, Lih-Ren; Hsu, Shang-Te Danny; Hwang, Ing-Shouh; Rothfield, Lawrence I.; Shih, Yu-Ling
2014-01-01
The pole-to-pole oscillation of the Min proteins in Escherichia coli results in the inhibition of aberrant polar division, thus facilitating placement of the division septum at the midcell. MinE of the Min system forms a ring-like structure that plays a critical role in triggering the oscillation cycle. However, the mechanism underlying the formation of the MinE ring remains unclear. This study demonstrates that MinE self-assembles into fibrillar structures on the supported lipid bilayer. The MinD-interacting domain of MinE shows amyloidogenic properties, providing a possible mechanism for self-assembly of MinE. Supporting the idea, mutations in residues Ile-24 and Ile-25 of the MinD-interacting domain affect fibril formation, membrane binding ability of MinE and MinD, and subcellular localization of three Min proteins. Additional mutations in residues Ile-72 and Ile-74 suggest a role of the C-terminal domain of MinE in regulating the folding propensity of the MinD-interacting domain for different molecular interactions. The study suggests a self-assembly mechanism that may underlie the ring-like structure formed by MinE-GFP observed in vivo. PMID:24914211
Mendoza-Meinhardt, Arturo; Botto, Lorenzo; Mata, Alvaro
2018-02-13
Membrane materials formed at the interface between two liquids have found applications in a large variety of technologies, from sensors to drug-delivery and catalysis. However, studying the formation of these membranes in real-time presents considerable challenges, owing to the difficulty of prescribing the location and instant of formation of the membrane, the difficulty of observing time-dependent membrane shape and thickness, and the poor reproducibility of results obtained using conventional mixing procedures. Here we report a fluidic device that facilitates characterisation of the time-dependent thickness, morphology and mass transport properties of materials self-assembled at fluid-fluid interfaces. In the proposed device the membrane forms from the controlled coalescence of two liquid menisci in a linear open channel. The linear geometry and controlled mixing of the solutions facilitate real-time visualisation, manipulation and improve reproducibility. Because of its small dimensions, the device can be used in conjunction with standard microscopy methods and reduces the required volumes of potentially expensive reagents. As an example application to tissue engineering, we use the device to characterise interfacial membranes formed by supra-molecular self-assembly of peptide-amphiphiles with either an elastin-like-protein or hyaluronic acid. The device can be adapted to study self-assembling membranes for applications that extend beyond bioengineering.
Yue, Mingli; Li, Yanchun; Hou, Ying; Cao, Wenxin; Zhu, Jiaqi; Han, Jiecai; Lu, Zhongyuan; Yang, Ming
2015-06-23
Developing a simple and efficient method to organize nanoscale building blocks into ordered superstructures, understanding the mechanism for self-assembly and revealing the essential collective properties are crucial steps toward the practical use of nanostructures in nanotechnology-based applications. In this study, we showed that the high-yield formation of ZnO nanoparticle chains with micrometer length can be readily achieved by the variation of solvents from methanol to water. Spectroscopic studies confirmed the solvent effect on the surface properties of ZnO nanoparticles, which were found to be critical for the formation of anisotropic assemblies. Quantum mechanical calculations and all atom molecular dynamic simulations indicated the contribution of hydrogen bonding for stabilizing the structure in water. Dissipative particle dynamics further revealed the importance of solvent-nanoparticle interactions for promoting one-dimensional self-assembly. The branching of chains was found upon aging, resulting in the size increase of the ensembles and network formation. Steady-state and time-resolved luminescent spectroscopes, which probed the variation of defect-related emission, revealed stronger Forster resonance energy transfer (FRET) between nanoparticles when the chain networks were formed. The high efficiency of FRET quenching can be ascribed to the presence of multiple energy transfer channels, as well as the short internanoparticle distances and the dipole alignment.
Collapsed state of polyglutamic acid results in amyloid spherulite formation
Stehli, Daniel; Mulaj, Mentor; Miti, Tatiana; Traina, Joshua; Foley, Joseph; Muschol, Martin
2015-01-01
Self-assembly of proteins and peptides into amyloid fibrils involves multiple distinct intermediates and late-stage fibrillar polymorphs. Understanding the conditions and mechanisms that promote the formation of one type of intermediate and polymorph over the other represents a fundamental challenge. Answers to this question are also of immediate biomedical relevance since different amyloid aggregate species have been shown to have distinct pathogenic potencies. One amyloid polymorph that has received comparatively little attention are amyloid spherulites. Here we report that self-assembly of the intrinsically disordered polymer poly(L-glutamic) acid (PLE) can generate amyloid spherulites. We characterize spherulite growth kinetics, as well as the morphological, optical and tinctorial features of this amyloid polymorph previously unreported for PLE. We find that PLE spherulites share both tinctorial and structural characteristics with their amyloid fibril counterparts. Differences in PLE's molecular weight, polydispersity or chemistry could not explain the selective propensity toward either fibril or spherulite formation. Instead, we provide evidence that PLE polymers can exist in either a collapsed globule or an extended random coil conformation. The collapsed globule consistently produces spherulites while the extended coil assembles into disordered fibril bundles. This results suggests that these 2 PLE conformers directly affect the morphology of the resulting macroscopic amyloid assembly. PMID:28232889
Collapsed state of polyglutamic acid results in amyloid spherulite formation.
Stehli, Daniel; Mulaj, Mentor; Miti, Tatiana; Traina, Joshua; Foley, Joseph; Muschol, Martin
2015-01-01
Self-assembly of proteins and peptides into amyloid fibrils involves multiple distinct intermediates and late-stage fibrillar polymorphs. Understanding the conditions and mechanisms that promote the formation of one type of intermediate and polymorph over the other represents a fundamental challenge. Answers to this question are also of immediate biomedical relevance since different amyloid aggregate species have been shown to have distinct pathogenic potencies. One amyloid polymorph that has received comparatively little attention are amyloid spherulites. Here we report that self-assembly of the intrinsically disordered polymer poly(L-glutamic) acid (PLE) can generate amyloid spherulites. We characterize spherulite growth kinetics, as well as the morphological, optical and tinctorial features of this amyloid polymorph previously unreported for PLE. We find that PLE spherulites share both tinctorial and structural characteristics with their amyloid fibril counterparts. Differences in PLE's molecular weight, polydispersity or chemistry could not explain the selective propensity toward either fibril or spherulite formation. Instead, we provide evidence that PLE polymers can exist in either a collapsed globule or an extended random coil conformation. The collapsed globule consistently produces spherulites while the extended coil assembles into disordered fibril bundles. This results suggests that these 2 PLE conformers directly affect the morphology of the resulting macroscopic amyloid assembly.
Tuning peptide self-assembly by an in-tether chiral center
Hu, Kuan; Xiong, Wei; Li, Hu; Zhang, Pei-Yu; Yin, Feng; Zhang, Qianling; Jiang, Fan; Li, Zigang
2018-01-01
The self-assembly of peptides into ordered nanostructures is important for understanding both peptide molecular interactions and nanotechnological applications. However, because of the complexity and various self-assembling pathways of peptide molecules, design of self-assembling helical peptides with high controllability and tunability is challenging. We report a new self-assembling mode that uses in-tether chiral center-induced helical peptides as a platform for tunable peptide self-assembly with good controllability. It was found that self-assembling behavior was governed by in-tether substitutional groups, where chirality determined the formation of helical structures and aromaticity provided the driving force for self-assembly. Both factors were essential for peptide self-assembly to occur. Experiments and theoretical calculations indicate long-range crystal-like packing in the self-assembly, which was stabilized by a synergy of interpeptide π-π and π-sulfur interactions and hydrogen bond networks. In addition, the self-assembled peptide nanomaterials were demonstrated to be promising candidate materials for applications in biocompatible electrochemical supercapacitors.
Exciplex formation and energy transfer in a self-assembled metal-organic hybrid system.
Haldar, Ritesh; Rao, K Venkata; George, Subi J; Maji, Tapas Kumar
2012-05-07
Exciting assemblies: A metal-organic self-assembly of pyrenebutyric acid (PBA), 1,10-phenanthroline (o-phen), and Mg(II) shows solid-state fluorescence originating from a 1:1 PBA-o-phen exciplex. This exciplex fluorescence is sensitized by another residual PBA chromophore through an excited-state energy-transfer process. The solvent polarity modulates the self-assembly and the corresponding exciplex as well as the energy transfer, resulting in tunable emission of the hybrid (see figure). Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Mirror image DNA nanostructures for chiral supramolecular assemblies.
Lin, Chenxiang; Ke, Yonggang; Li, Zhe; Wang, James H; Liu, Yan; Yan, Hao
2009-01-01
L-DNA, the mirror image of natural D-DNA, can be readily self-assembled into designer discrete or periodic nanostructures. The assembly products are characterized by polyacrylamide gel electrophoresis, circular dichroism spectrum, atomic force microscope, and fluorescence microscope. We found that the use of enantiomer DNA as building material leads to the formation of DNA supramolecules with opposite chirality. Therefore, the L-DNA self-assembly is a substantial complement to the structural DNA nanotechnology. Moreover, the L-DNA architectures feature superior nuclease resistance thus are appealing for in vivo medical applications.
Programmable Assembly of Peptide Amphiphile via Noncovalent-to-Covalent Bond Conversion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sato, Kohei; Ji, Wei; Palmer, Liam C.
Controlling the number of monomers in a supramolecular polymer has been a great challenge in programmable self-assembly of organic molecules. One approach has been to make use of frustrated growth of the supramolecular assembly by tuning the balance of attractive and repulsive intermolecular forces. We report here on the use of covalent bond formation among monomers, compensating for intermolecular electrostatic repulsion, as a mechanism to control the length of a supramolecular nanofiber formed by self-assembly of peptide amphiphiles. Circular dichroism spectroscopy in combination with dynamic light scattering, size-exclusion chromatography, and transmittance electron microscope analyses revealed that hydrogen bonds between peptidesmore » were reinforced by covalent bond formation, enabling the fiber elongation. To examine these materials for their potential biomedical applications, cytotoxicity of nanofibers against C2C12 premyoblast cells was tested. We demonstrated that cell viability increased with an increase in fiber length, presumably because of the suppressed disruption of cell membranes by the fiber end-caps.« less
Functional Hydrogel Materials Inspired by Amyloid
NASA Astrophysics Data System (ADS)
Schneider, Joel
2012-02-01
Protein assembly resulting in the formation of amyloid fibrils, assemblies rich in cross beta-sheet structure, is normally thought of as a deleterious event associated with disease. However, amyloid formation is also involved in a diverse array of normal biological functions such as cell adhesion, melanin synthesis, insect defense mechanism and modulation of water surface tension by fungi and bacteria. These findings indicate that Nature has evolved to take advantage of large, proteinaceous fibrillar assemblies to elicit function. We are designing functional materials, namely hydrogels, from peptides that self-assembled into fibrillar networks, rich in cross beta-sheet structure. These gels can be used for the direct encapsulation and delivery of small molecule-, protein- and cell-based therapeutics. Loaded gels exhibit shear-thinning/self-healing mechanical properties enabling their delivery via syringe. In addition to their use for delivery, we have found that some of these gels display antibacterial activity. Although cytocompatible towards mammalian cells, the hydrogels can kill a broad spectrum of bacteria on contact.
Programmable Assembly of Peptide Amphiphile via Noncovalent-to-Covalent Bond Conversion
Sato, Kohei; Ji, Wei; Palmer, Liam C.; ...
2017-06-22
Controlling the number of monomers in a supramolecular polymer has been a great challenge in programmable self-assembly of organic molecules. One approach has been to make use of frustrated growth of the supramolecular assembly by tuning the balance of attractive and repulsive intermolecular forces. We report here on the use of covalent bond formation among monomers, compensating for intermolecular electrostatic repulsion, as a mechanism to control the length of a supramolecular nanofiber formed by self-assembly of peptide amphiphiles. Circular dichroism spectroscopy in combination with dynamic light scattering, size-exclusion chromatography, and transmittance electron microscope analyses revealed that hydrogen bonds between peptidesmore » were reinforced by covalent bond formation, enabling the fiber elongation. To examine these materials for their potential biomedical applications, cytotoxicity of nanofibers against C2C12 premyoblast cells was tested. We demonstrated that cell viability increased with an increase in fiber length, presumably because of the suppressed disruption of cell membranes by the fiber end-caps.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zabet, Mahla; Mishra, Satish; Boy, Ramiz
Self-assembly and mechanical properties of triblock copolymers in a mid-block selective solvent are of interest in many applications. Herein, we report physical assembly of an ABA triblock copolymer, [PMMA–PnBA–PMMA] in two different mid-block selective solvents, n-butanol and 2-ethyl-1-hexanol. Gel formation resulting from end-block associations and the corresponding changes in mechanical properties have been investigated over a temperature range of -80 °C to 60 °C, from near the solvent melting points to above the gelation temperature. Shear-rheometry, thermal analysis, and small-angle neutron scattering data reveal formation and transition of structure in these systems from a liquid state to a gel statemore » to a percolated cluster network with decrease in temperature. The aggregated PMMA end-blocks display a glass transition temperature. Our results provide new understanding into the structural changes of a self-assembled triblock copolymer gel over a large length scale and wide temperature range.« less
Eychenne, Thomas; Novikova, Elizaveta; Barrault, Marie-Bénédicte; Alibert, Olivier; Boschiero, Claire; Peixeiro, Nuno; Cornu, David; Redeker, Virginie; Kuras, Laurent; Nicolas, Pierre; Werner, Michel; Soutourina, Julie
2016-09-15
Mediator is a large coregulator complex conserved from yeast to humans and involved in many human diseases, including cancers. Together with general transcription factors, it stimulates preinitiation complex (PIC) formation and activates RNA polymerase II (Pol II) transcription. In this study, we analyzed how Mediator acts in PIC assembly using in vivo, in vitro, and in silico approaches. We revealed an essential function of the Mediator middle module exerted through its Med10 subunit, implicating a key interaction between Mediator and TFIIB. We showed that this Mediator-TFIIB link has a global role on PIC assembly genome-wide. Moreover, the amplitude of Mediator's effect on PIC formation is gene-dependent and is related to the promoter architecture in terms of TATA elements, nucleosome occupancy, and dynamics. This study thus provides mechanistic insights into the coordinated function of Mediator and TFIIB in PIC assembly in different chromatin contexts. © 2016 Eychenne et al.; Published by Cold Spring Harbor Laboratory Press.
In vitro protease cleavage and computer simulations reveal the HIV-1 capsid maturation pathway
NASA Astrophysics Data System (ADS)
Ning, Jiying; Erdemci-Tandogan, Gonca; Yufenyuy, Ernest L.; Wagner, Jef; Himes, Benjamin A.; Zhao, Gongpu; Aiken, Christopher; Zandi, Roya; Zhang, Peijun
2016-12-01
HIV-1 virions assemble as immature particles containing Gag polyproteins that are processed by the viral protease into individual components, resulting in the formation of mature infectious particles. There are two competing models for the process of forming the mature HIV-1 core: the disassembly and de novo reassembly model and the non-diffusional displacive model. To study the maturation pathway, we simulate HIV-1 maturation in vitro by digesting immature particles and assembled virus-like particles with recombinant HIV-1 protease and monitor the process with biochemical assays and cryoEM structural analysis in parallel. Processing of Gag in vitro is accurate and efficient and results in both soluble capsid protein and conical or tubular capsid assemblies, seemingly converted from immature Gag particles. Computer simulations further reveal probable assembly pathways of HIV-1 capsid formation. Combining the experimental data and computer simulations, our results suggest a sequential combination of both displacive and disassembly/reassembly processes for HIV-1 maturation.
Supracolloidal fullerene-like cages: design principles and formation mechanisms.
Li, Zhan-Wei; Zhu, You-Liang; Lu, Zhong-Yuan; Sun, Zhao-Yan
2016-11-30
How to create novel desired structures by rational design of building blocks represents a significant challenge in materials science. Here we report a conceptually new design principle for creating supracolloidal fullerene-like cages through the self-assembly of soft patchy particles interacting via directional nonbonded interactions by mimicking non-planar sp 2 hybridized carbon atoms in C 60 . Our numerical investigations demonstrate that the rational design of patch configuration, size, and interaction can drive soft three-patch particles to reversibly self-assemble into a vast collection of supracolloidal fullerene-like cages. We further elucidate the formation mechanisms of supracolloidal fullerene-like cages by analyzing the structural characteristics and the formation process. Our results provide conceptual and practical guidance towards the experimental realization of supracolloidal fullerene-like cages, as well as a new perspective on understanding the fullerene formation mechanisms.
De novo centriole formation in human cells is error-prone and does not require SAS-6 self-assembly.
Wang, Won-Jing; Acehan, Devrim; Kao, Chien-Han; Jane, Wann-Neng; Uryu, Kunihiro; Tsou, Meng-Fu Bryan
2015-11-26
Vertebrate centrioles normally propagate through duplication, but in the absence of preexisting centrioles, de novo synthesis can occur. Consistently, centriole formation is thought to strictly rely on self-assembly, involving self-oligomerization of the centriolar protein SAS-6. Here, through reconstitution of de novo synthesis in human cells, we surprisingly found that normal looking centrioles capable of duplication and ciliation can arise in the absence of SAS-6 self-oligomerization. Moreover, whereas canonically duplicated centrioles always form correctly, de novo centrioles are prone to structural errors, even in the presence of SAS-6 self-oligomerization. These results indicate that centriole biogenesis does not strictly depend on SAS-6 self-assembly, and may require preexisting centrioles to ensure structural accuracy, fundamentally deviating from the current paradigm.
Bellec, Amandine; Arrigoni, Claire; Douillard, Ludovic; Fiorini-Debuisschert, Céline; Mathevet, Fabrice; Kreher, David; Attias, André-Jean; Charra, Fabrice
2014-10-31
Specific molecular tectons can be designed to form molecular sieves through self-assembly at the solid-liquid interface. After demonstrating a model tecton bearing apolar alkyl chains, we then focus on a modified structure involving asymmetric functionalization of some alkyl chains with polar hydroxyl groups in order to get chemical selectivity in the sieving. As the formation of supramolecular self-assembled networks strongly depends on molecule-molecule, molecule-substrate and molecule-solvent interactions, we compared the tectons' self-assembly on graphite for two types of solvent. We demonstrate the possibility to create hydroxylated stilbenoid molecular sieves by using 1-decanol as a solvent. Interestingly, with this solvent, the porous network is developed on top of a 1-decanol monolayer.
Wagner, Drew T; Zhang, Zhicheng; Meoded, Roy A; Cepeda, Alexis J; Piel, Jörn; Keatinge-Clay, Adrian T
2018-04-20
trans-Acyltransferase assembly lines possess enzymatic domains often not observed in their better characterized cis-acyltransferase counterparts. Within this repertoire of largely unexplored biosynthetic machinery is a class of enzymes called the pyran synthases that catalyze the formation of five- and six-membered cyclic ethers from diverse polyketide chains. The 1.55 Å resolution crystal structure of a pyran synthase domain excised from the ninth module of the sorangicin assembly line highlights the similarity of this enzyme to the ubiquitous dehydratase domain and provides insight into the mechanism of ring formation. Functional assays of point mutants reveal the central importance of the active site histidine that is shared with the dehydratases as well as the supporting role of a neighboring semiconserved asparagine.
Mechanisms of kinetic trapping in self-assembly and phase transformation
Hagan, Michael F.; Elrad, Oren M.; Jack, Robert L.
2011-01-01
In self-assembly processes, kinetic trapping effects often hinder the formation of thermodynamically stable ordered states. In a model of viral capsid assembly and in the phase transformation of a lattice gas, we show how simulations in a self-assembling steady state can be used to identify two distinct mechanisms of kinetic trapping. We argue that one of these mechanisms can be adequately captured by kinetic rate equations, while the other involves a breakdown of theories that rely on cluster size as a reaction coordinate. We discuss how these observations might be useful in designing and optimising self-assembly reactions. PMID:21932884
Zhong, Jian; Liu, Xunwei; Wei, Daixu; Yan, Juan; Wang, Ping; Sun, Gang; He, Dannong
2015-05-01
Understanding effect of temperature on the molecular self-assembly process will be helpful to unravel the structure-function relationship of biomolecule and to provide important information for the bottom-up approach to nanotechnology. In this work, the effect of incubation temperature on the secondary structures and morphological structures of regenerated silk fibroin (RSF) was systematically studied using atomic force microscopy and Fourier Transform infrared spectroscopy. The effect of incubation temperature on RSF self-assembly was dependent on RSF concentration. For the RSF solution with relatively low concentrations (15 μg/mL and 60 μg/mL), the increase of the incubation temperature mainly accelerated the formation and aggregation of antiparallel β-sheet protofibrils and decreased the formation of random coil protofilaments/globule-like molecules. For the RSF solution with relatively high concentrations (300 μg/mL and 1.5mg/mL), the increase of the incubation temperature mainly accelerated the formation and aggregation of antiparallel β-sheet RSF features (protofibrils and globule-like features) and decreased the formation of random coil bead-like features. This work implies that the morphology and conformation of biomacromolecules could be tuned by controlling the incubation temperature. Further, it will be beneficial to basic understanding of the nanoscale structure formation in different silk-based biomaterials. Copyright © 2015 Elsevier B.V. All rights reserved.
CDK1 Prevents Unscheduled PLK4-STIL Complex Assembly in Centriole Biogenesis.
Zitouni, Sihem; Francia, Maria E; Leal, Filipe; Montenegro Gouveia, Susana; Nabais, Catarina; Duarte, Paulo; Gilberto, Samuel; Brito, Daniela; Moyer, Tyler; Kandels-Lewis, Steffi; Ohta, Midori; Kitagawa, Daiju; Holland, Andrew J; Karsenti, Eric; Lorca, Thierry; Lince-Faria, Mariana; Bettencourt-Dias, Mónica
2016-05-09
Centrioles are essential for the assembly of both centrosomes and cilia. Centriole biogenesis occurs once and only once per cell cycle and is temporally coordinated with cell-cycle progression, ensuring the formation of the right number of centrioles at the right time. The formation of new daughter centrioles is guided by a pre-existing, mother centriole. The proximity between mother and daughter centrioles was proposed to restrict new centriole formation until they separate beyond a critical distance. Paradoxically, mother and daughter centrioles overcome this distance in early mitosis, at a time when triggers for centriole biogenesis Polo-like kinase 4 (PLK4) and its substrate STIL are abundant. Here we show that in mitosis, the mitotic kinase CDK1-CyclinB binds STIL and prevents formation of the PLK4-STIL complex and STIL phosphorylation by PLK4, thus inhibiting untimely onset of centriole biogenesis. After CDK1-CyclinB inactivation upon mitotic exit, PLK4 can bind and phosphorylate STIL in G1, allowing pro-centriole assembly in the subsequent S phase. Our work shows that complementary mechanisms, such as mother-daughter centriole proximity and CDK1-CyclinB interaction with centriolar components, ensure that centriole biogenesis occurs once and only once per cell cycle, raising parallels to the cell-cycle regulation of DNA replication and centromere formation. Copyright © 2016 Elsevier Ltd. All rights reserved.
Drosophila Chitinase 2 is expressed in chitin producing organs for cuticle formation.
Pesch, Yanina-Yasmin; Riedel, Dietmar; Behr, Matthias
2017-01-01
The architecture of the outer body wall cuticle is fundamental to protect arthropods against invading pathogens and numerous other harmful stresses. Such robust cuticles are formed by parallel running chitin microfibrils. Molting and also local wounding leads to dynamic assembly and disassembly of the chitin-matrix throughout development. However, the underlying molecular mechanisms that organize proper chitin-matrix formation are poorly known. Recently we identified a key region for cuticle thickening at the apical cell surface, the cuticle assembly zone, where Obstructor-A (Obst-A) coordinates the formation of the chitin-matrix. Obst-A binds chitin and the deacetylase Serpentine (Serp) in a core complex, which is required for chitin-matrix maturation and preservation. Here we present evidence that Chitinase 2 (Cht2) could be essential for this molecular machinery. We show that Cht2 is expressed in the chitin-matrix of epidermis, trachea, and the digestive system. There, Cht2 is enriched at the apical cell surface and the dense chitin-matrix. We further show that in Cht2 knockdown larvae the assembly zone is rudimentary, preventing normal cuticle formation and pore canal organization. As sequence similarities of Cht2 and the core complex proteins indicate evolutionarily conserved molecular mechanisms, our findings suggest that Cht2 is involved in chitin formation also in other insects. Copyright © 2016 Elsevier Ltd. All rights reserved.
Galli, A; Della Latta, V; Bologna, C; Pucciarelli, D; Cipriani, F; Backovic, A; Cervelli, T
2017-08-01
Adeno-associated virus type 2 (AAV) is a nonpathogenic parvovirus that is a promising tool for gene therapy. We aimed to construct plasmids for optimal expression and assembly of capsid proteins and evaluate adenovirus (Ad) protein effect on AAV single-stranded DNA (ssDNA) formation in Saccharomyces cerevisiae. Yeast expression plasmids have been developed in which the transcription of AAV capsid proteins (VP1,2,3) is driven by the constitutive ADH1 promoter or galactose-inducible promoters. Optimal VP1,2,3 expression was obtained from GAL1/10 bidirectional promoter. Moreover, we demonstrated that AAP is expressed in yeast and virus-like particles (VLPs) assembled inside the cell. Finally, the expression of two Ad proteins, E4orf6 and E1b55k, had no effect on AAV ssDNA formation. This study confirms that yeast is able to form AAV VLPs; however, capsid assembly and ssDNA formation are less efficient in yeast than in human cells. Moreover, the expression of Ad proteins did not affect AAV ssDNA formation. New manufacturing strategies for AAV-based gene therapy vectors (rAAV) are needed to reduce costs and time of production. Our study explores the feasibility of yeast as alternative system for rAAV production. © 2017 The Society for Applied Microbiology.
NASA Technical Reports Server (NTRS)
Srivastava, Sandanand; Dwivedi, Suren N.; Soon, Toh Teck; Bandi, Reddy; Banerjee, Soumen; Hughes, Cecilia
1989-01-01
The installation of robots and their use of assembly in space will create an exciting and promising future for the U.S. Space Program. The concept of assembly in space is very complicated and error prone and it is not possible unless the various parts and modules are suitably designed for automation. Certain guidelines are developed for part designing and for an easy precision assembly. Major design problems associated with automated assembly are considered and solutions to resolve these problems are evaluated in the guidelines format. Methods for gripping and methods for part feeding are developed with regard to the absence of gravity in space. The guidelines for part orientation, adjustments, compliances and various assembly construction are discussed. Design modifications of various fasteners and fastening methods are also investigated.
Fogel, Adam I; Stagi, Massimiliano; Perez de Arce, Karen; Biederer, Thomas
2011-09-16
Synapses are specialized adhesion sites between neurons that are connected by protein complexes spanning the synaptic cleft. These trans-synaptic interactions can organize synapse formation, but their macromolecular properties and effects on synaptic morphology remain incompletely understood. Here, we demonstrate that the synaptic cell adhesion molecule SynCAM 1 self-assembles laterally via its extracellular, membrane-proximal immunoglobulin (Ig) domains 2 and 3. This cis oligomerization generates SynCAM oligomers with increased adhesive capacity and instructs the interactions of this molecule across the nascent and mature synaptic cleft. In immature neurons, cis assembly promotes the adhesive clustering of SynCAM 1 at new axo-dendritic contacts. Interfering with the lateral self-assembly of SynCAM 1 in differentiating neurons strongly impairs its synaptogenic activity. At later stages, the lateral oligomerization of SynCAM 1 restricts synaptic size, indicating that this adhesion molecule contributes to the structural organization of synapses. These results support that lateral interactions assemble SynCAM complexes within the synaptic cleft to promote synapse induction and modulate their structure. These findings provide novel insights into synapse development and the adhesive mechanisms of Ig superfamily members.
Pyridyl-Amides as a Multimode Self-Assembly Driver for the Design of a Stimuli-Responsive π-Gelator.
Kartha, Kalathil K; Praveen, Vakayil K; Babu, Sukumaran Santhosh; Cherumukkil, Sandeep; Ajayaghosh, Ayyappanpillai
2015-10-01
An oligo(p-phenylenevinylene) (OPV) derivative connected to pyridyl end groups through an amide linkage (OPV-Py) resulted in a multistimuli-responsive π-gelator. When compared to the corresponding OPV π-gelator terminated by a phenyl-amide (OPV-Ph), the aggregation properties of OPV-Py were found to be significantly different, leading to multistimuli gelation and other morphological properties. The pyridyl moiety in OPV-Py initially interferes with the amide H-bonded assembly and gelation, however, protonation of the pyridyl moiety with trifluoroacetic acid (TFA) facilitated the formation of amide H-bonded assembly leading to gelation, which is reversible by the addition of N,N-diisopropyethylamine (DiPEA). Interestingly, addition of Ag(+) ions to a solution of OPV-Py facilitated the formation of a metallo-supramolecular assembly leading to gelation. Surprisingly, ultrasound-induced gelation was observed when OPV-Py was mixed with a dicarboxylic acid (A1). A detailed study using different spectroscopic and microscopic experimental techniques revealed the difference in the mode of assembly in the two molecules and the multistimuli-responsive nature of the OPV-Py gelation. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Chai, Zhimin; Abbasi, Salman A; Busnaina, Ahmed A
2018-05-30
Assembly of organic semiconductors with ordered crystal structure has been actively pursued for electronics applications such as organic field-effect transistors (OFETs). Among various film deposition methods, solution-based film growth from small molecule semiconductors is preferable because of its low material and energy consumption, low cost, and scalability. Here, we show scalable and controllable directed assembly of highly crystalline 2,7-dioctyl[1]benzothieno[3,2- b][1]benzothiophene (C8-BTBT) films via a dip-coating process. Self-aligned stripe patterns with tunable thickness and morphology over a centimeter scale are obtained by adjusting two governing parameters: the pulling speed of a substrate and the solution concentration. OFETs are fabricated using the C8-BTBT films assembled at various conditions. A field-effect hole mobility up to 3.99 cm 2 V -1 s -1 is obtained. Owing to the highly scalable crystalline film formation, the dip-coating directed assembly process could be a great candidate for manufacturing next-generation electronics. Meanwhile, the film formation mechanism discussed in this paper could provide a general guideline to prepare other organic semiconducting films from small molecule solutions.
Reactive oxygen species promote heat shock protein 90-mediated HBV capsid assembly
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Yoon Sik, E-mail: yumshak@naver.com; Seo, Hyun Wook, E-mail: suruk@naver.com; Jung, Guhung, E-mail: drjung@snu.ac.kr
2015-02-13
Hepatitis B virus (HBV) infection induces reactive oxygen species (ROS) production and has been associated with the development of hepatocellular carcinoma (HCC). ROS are also an important factor in HCC because the accumulated ROS leads to abnormal cell proliferation and chromosome mutation. In oxidative stress, heat shock protein 90 (Hsp90) and glutathione (GSH) function as part of the defense mechanism. Hsp90 prevents cellular component from oxidative stress, and GSH acts as antioxidants scavenging ROS in the cell. However, it is not known whether molecules regulated by oxidative stress are involved in HBV capsid assembly. Based on the previous study thatmore » Hsp90 facilitates HBV capsid assembly, which is an important step for the packing of viral particles, here, we show that ROS enrich Hsp90-driven HBV capsid formation. In cell-free system, HBV capsid assembly was facilitated by ROS with Hsp90, whereas it was decreased without Hsp90. In addition, GSH inhibited the function of Hsp90 to decrease HBV capsid assembly. Consistent with the result of cell-free system, ROS and buthionine sulfoximine (BS), an inhibitor of GSH synthesis, increased HBV capsid formation in HepG2.2.15 cells. Thus, our study uncovers the interplay between ROS and Hsp90 during HBV capsid assembly. - Highlights: • We examined H{sub 2}O{sub 2} and GSH modulate HBV capsid assembly. • H{sub 2}O{sub 2} facilitates HBV capsid assembly in the presence of Hsp90. • GSH inhibits function of Hsp90 in facilitating HBV capsid assembly. • H{sub 2}O{sub 2} and GSH induce conformation change of Hsp90.« less
Leem, Yun Jin; Cho, Keumnam; Oh, Kyung Hee; Han, Sung-Hwan; Nam, Ki Min; Chang, Jinho
2017-03-25
A self-assembled Ni(cyclam)-BTC film was formed on ITO in an acidic solution. Ni(cyclam)-BTC exhibited an enhanced electro-catalytic property for the oxygen evolution reaction (OER), which was strongly relevant to the Ni(iii)/Ni(iv) redox reaction activated by the potential dynamic process. A possible formation mechanism of Ni(cyclam)-BTC by self-assembly on ITO was also proposed.
Peptide Conjugates of Benzene Carboxylic Acids as Agonists and Antagonists of Amylin Aggregation.
Profit, Adam A; Vedad, Jayson; Desamero, Ruel Z B
2017-02-15
Human islet amyloid polypeptide (hIAPP), also known as amylin, is a 37 residue peptide hormone that is stored and co-secreted with insulin. hIAPP plays a pivotal role in type 2 diabetes and is the major component of amyloid deposits found in the pancreas of patients afflicted with the disease. The self-assembly of hIAPP and the formation of amyloid is linked to the death of insulin producing β-cells. Recent findings suggest that soluble hIAPP oligomers are the cytotoxic species responsible for β-cell loss whereas amyloid fibrils themselves may indeed be innocuous. Potential avenues of therapeutic intervention include the development of compounds that prevent hIAPP self-assembly as well as those that reduce or eliminate lag time and rapidly accelerate the formation of amyloid fibrils. Both of these approaches minimize temporal exposure to soluble cytotoxic hIAPP oligomers. Toward this end our laboratory has pursued an electrostatic repulsion approach to the development of potential inhibitors and modulators of hIAPP self-assembly. Peptide conjugates were constructed in which benzene carboxylic acids of varying charge were employed as electrostatic disrupting elements and appended to the N-terminal of the hIAPP 22-29 (NFGAILSS) self-recognition sequence. The self-assembly kinetics of conjugates were characterized by turbidity measurements and the structure of aggregates probed by Raman and CD spectroscopy while the morphology was assessed using transmission electron microscopy. Several benzene carboxylic acid peptide conjugates failed to self-assemble and some were found to inhibit the aggregation of full-length amylin while others served to enhance the rate of amyloid formation and/or increase the yield of amyloid produced. Studies reveal that the geometric display of free carboxylates on the benzene ring of the conjugates plays an important role in the activity of conjugates. In addition, a number of free benzene carboxylic acids were found to modulate amylin self-assembly on their own. The results of these investigations confirm the viability of the electrostatic repulsion approach to the modulation of amyloid formation and may aid the design and development of potential therapeutic agents.
Fritz-Laylin, Lillian K; Levy, Yaron Y; Levitan, Edward; Chen, Sean; Cande, W Zacheus; Lai, Elaine Y; Fulton, Chandler
2016-03-01
Centrioles are eukaryotic organelles whose number and position are critical for cilia formation and mitosis. Many cell types assemble new centrioles next to existing ones ("templated" or mentored assembly). Under certain conditions, centrioles also form without pre-existing centrioles (de novo). The synchronous differentiation of Naegleria amoebae to flagellates represents a unique opportunity to study centriole assembly, as nearly 100% of the population transitions from having no centrioles to having two within minutes. Here, we find that Naegleria forms its first centriole de novo, immediately followed by mentored assembly of the second. We also find both de novo and mentored assembly distributed among all major eukaryote lineages. We therefore propose that both modes are ancestral and have been conserved because they serve complementary roles, with de novo assembly as the default when no pre-existing centriole is available, and mentored assembly allowing precise regulation of number, timing, and location of centriole assembly. © 2016 Wiley Periodicals, Inc.
Status of the Planet Formation Imager (PFI) concept
NASA Astrophysics Data System (ADS)
Ireland, Michael J.; Monnier, John D.; Kraus, Stefan; Isella, Andrea; Minardi, Stefano; Petrov, Romain; ten Brummelaar, Theo; Young, John; Vasisht, Gautam; Mozurkewich, David; Rinehart, Stephen; Michael, Ernest A.; van Belle, Gerard; Woillez, Julien
2016-08-01
The Planet Formation Imager (PFI) project aims to image the period of planet assembly directly, resolving structures as small as a giant planet's Hill sphere. These images will be required in order to determine the key mechanisms for planet formation at the time when processes of grain growth, protoplanet assembly, magnetic fields, disk/planet dynamical interactions and complex radiative transfer all interact - making some planetary systems habitable and others inhospitable. We will present the overall vision for the PFI concept, focusing on the key technologies and requirements that are needed to achieve the science goals. Based on these key requirements, we will define a cost envelope range for the design and highlight where the largest uncertainties lie at this conceptual stage.
Peebles, P. J. E.
1998-01-01
It is argued that within the standard Big Bang cosmological model the bulk of the mass of the luminous parts of the large galaxies likely had been assembled by redshift z ∼ 10. Galaxy assembly this early would be difficult to fit in the widely discussed adiabatic cold dark matter model for structure formation, but it could agree with an isocurvature version in which the cold dark matter is the remnant of a massive scalar field frozen (or squeezed) from quantum fluctuations during inflation. The squeezed field fluctuations would be Gaussian with zero mean, and the distribution of the field mass therefore would be the square of a random Gaussian process. This offers a possibly interesting new direction for the numerical exploration of models for cosmic structure formation. PMID:9419326
Robinson, Bridget A.; Reed, Jonathan C.; Geary, Clair D.; Swain, J. Victor
2014-01-01
ABSTRACT During HIV-1 assembly, Gag polypeptides target to the plasma membrane, where they multimerize to form immature capsids that undergo budding and maturation. Previous mutational analyses identified residues within the Gag matrix (MA) and capsid (CA) domains that are required for immature capsid assembly, and structural studies showed that these residues are clustered on four exposed surfaces in Gag. Exactly when and where the three critical surfaces in CA function during assembly are not known. Here, we analyzed how mutations in these four critical surfaces affect the formation and stability of assembly intermediates in cells expressing the HIV-1 provirus. The resulting temporospatial map reveals that critical MA residues act during membrane targeting, residues in the C-terminal CA subdomain (CA-CTD) dimer interface are needed for the stability of the first membrane-bound assembly intermediate, CA-CTD base residues are necessary for progression past the first membrane-bound intermediate, and residues in the N-terminal CA subdomain (CA-NTD) stabilize the last membrane-bound intermediate. Importantly, we found that all four critical surfaces act while Gag is associated with the cellular facilitators of assembly ABCE1 and DDX6. When correlated with existing structural data, our findings suggest the following model: Gag dimerizes via the CA-CTD dimer interface just before or during membrane targeting, individual CA-CTD hexamers form soon after membrane targeting, and the CA-NTD hexameric lattice forms just prior to capsid release. This model adds an important new dimension to current structural models by proposing the potential order in which key contacts within the immature capsid lattice are made during assembly in cells. IMPORTANCE While much is known about the structure of the completed HIV-1 immature capsid and domains of its component Gag proteins, less is known about the sequence of events leading to formation of the HIV-1 immature capsid. Here we used biochemical and ultrastructural analyses to generate a temporospatial map showing the precise order in which four critical surfaces in Gag act during immature capsid formation in provirus-expressing cells. Because three of these surfaces make important contacts in the hexameric lattices that are found in the completed immature capsid, these data allow us to propose a model for the sequence of events leading to formation of the hexameric lattices. By providing a dynamic view of when and where critical Gag-Gag contacts form during the assembly process and how those contacts function in the nascent capsid, our study provides novel insights into how an immature capsid is built in infected cells. PMID:24623418
Self-assembly and continuous growth of hexagonal graphene flakes on liquid Cu
NASA Astrophysics Data System (ADS)
Cho, Seong-Yong; Kim, Min-Sik; Kim, Minsu; Kim, Ki-Ju; Kim, Hyun-Mi; Lee, Do-Joong; Lee, Sang-Hoon; Kim, Ki-Bum
2015-07-01
Graphene growth on liquid Cu has received great interest, owing to the self-assembly behavior of hexagonal graphene flakes with aligned orientation and to the possibility of forming a single grain of graphene through a commensurate growth of these graphene flakes. Here, we propose and demonstrate a two-step growth process which allows the formation of self-assembled, completely continuous graphene on liquid Cu. After the formation of full coverage on the liquid Cu, grain boundaries were revealed via selective hydrogen etching and the original grain boundaries were clearly resolved. This result indicates that, while the flakes self-assembled with the same orientation, there still remain structural defects, gaps and voids that were not resolved by optical microscopy or scanning electron microscopy. To overcome this limitation, the two-step growth process was employed, consisting of a sequential process of a normal single-layer graphene growth and self-assembly process with a low carbon flux, followed by the final stage of graphene growth at a high degree of supersaturation with a high carbon flux. Continuity of the flakes was verified via hydrogen etching and a NaCl-assisted oxidation process, as well as by measuring the electrical properties of the graphene grown by the two-step process. Two-step growth can provide a continuous graphene layer, but commensurate stitching should be further studied.Graphene growth on liquid Cu has received great interest, owing to the self-assembly behavior of hexagonal graphene flakes with aligned orientation and to the possibility of forming a single grain of graphene through a commensurate growth of these graphene flakes. Here, we propose and demonstrate a two-step growth process which allows the formation of self-assembled, completely continuous graphene on liquid Cu. After the formation of full coverage on the liquid Cu, grain boundaries were revealed via selective hydrogen etching and the original grain boundaries were clearly resolved. This result indicates that, while the flakes self-assembled with the same orientation, there still remain structural defects, gaps and voids that were not resolved by optical microscopy or scanning electron microscopy. To overcome this limitation, the two-step growth process was employed, consisting of a sequential process of a normal single-layer graphene growth and self-assembly process with a low carbon flux, followed by the final stage of graphene growth at a high degree of supersaturation with a high carbon flux. Continuity of the flakes was verified via hydrogen etching and a NaCl-assisted oxidation process, as well as by measuring the electrical properties of the graphene grown by the two-step process. Two-step growth can provide a continuous graphene layer, but commensurate stitching should be further studied. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr03352g
Regulation of tight junction assembly and epithelial morphogenesis by the heat shock protein Apg-2
Aijaz, Saima; Sanchez-Heras, Elena; Balda, Maria S; Matter, Karl
2007-01-01
Background Tight junctions are required for epithelial barrier formation and participate in the regulation of signalling mechanisms that control proliferation and differentiation. ZO-1 is a tight junction-associated adaptor protein that regulates gene expression, junction assembly and epithelial morphogenesis. We have previously demonstrated that the heat shock protein Apg-2 binds ZO-1 and thereby regulates its role in cell proliferation. Here, we addressed the question whether Apg-2 is also important for junction formation and epithelial morphogenesis. Results We demonstrate that depletion of Apg-2 by RNAi in MDCK cells did not prevent formation of functional tight junctions. Similar to ZO-1, however, reduced expression of Apg-2 retarded de novo junction assembly if analysed in a Ca-switch model. Formation of functional junctions, as monitored by measuring transepithelial electrical resistance, and recruitment of tight and adherens junction markers were retarded. If cultured in three dimensional extracellular matrix gels, Apg-2 depleted cells, as previously shown for ZO-1 depleted cells, did not form hollow polarised cysts but poorly organised, irregular structures. Conclusion Our data indicate that Apg-2 regulates junction assembly and is required for normal epithelial morphogenesis in a three-dimensional culture system, suggesting that Apg-2 is an important regulator of epithelial differentiation. As the observed phenotypes are similar to those previously described for ZO-1 depleted cells and depletion of Apg-2 retards junctional recruitment of ZO-1, regulation of ZO-1 is likely to be an important functional role for Apg-2 during epithelial differentiation. PMID:18028534
Regulation of tight junction assembly and epithelial morphogenesis by the heat shock protein Apg-2.
Aijaz, Saima; Sanchez-Heras, Elena; Balda, Maria S; Matter, Karl
2007-11-20
Tight junctions are required for epithelial barrier formation and participate in the regulation of signalling mechanisms that control proliferation and differentiation. ZO-1 is a tight junction-associated adaptor protein that regulates gene expression, junction assembly and epithelial morphogenesis. We have previously demonstrated that the heat shock protein Apg-2 binds ZO-1 and thereby regulates its role in cell proliferation. Here, we addressed the question whether Apg-2 is also important for junction formation and epithelial morphogenesis. We demonstrate that depletion of Apg-2 by RNAi in MDCK cells did not prevent formation of functional tight junctions. Similar to ZO-1, however, reduced expression of Apg-2 retarded de novo junction assembly if analysed in a Ca-switch model. Formation of functional junctions, as monitored by measuring transepithelial electrical resistance, and recruitment of tight and adherens junction markers were retarded. If cultured in three dimensional extracellular matrix gels, Apg-2 depleted cells, as previously shown for ZO-1 depleted cells, did not form hollow polarised cysts but poorly organised, irregular structures. Our data indicate that Apg-2 regulates junction assembly and is required for normal epithelial morphogenesis in a three-dimensional culture system, suggesting that Apg-2 is an important regulator of epithelial differentiation. As the observed phenotypes are similar to those previously described for ZO-1 depleted cells and depletion of Apg-2 retards junctional recruitment of ZO-1, regulation of ZO-1 is likely to be an important functional role for Apg-2 during epithelial differentiation.
Fu, Iris W; Markegard, Cade B; Chu, Brian K; Nguyen, Hung D
2013-10-01
Smart biomaterials that are self-assembled from peptide amphiphiles (PA) are known to undergo morphological transitions in response to specific physiological stimuli. The design of such customizable hydrogels is of significant interest due to their potential applications in tissue engineering, biomedical imaging, and drug delivery. Using a novel coarse-grained peptide/polymer model, which has been validated by comparison of equilibrium conformations from atomistic simulations, large-scale molecular dynamics simulations are performed to examine the spontaneous self-assembly process. Starting from initial random configurations, these simulations result in the formation of nanostructures of various sizes and shapes as a function of the electrostatics and temperature. At optimal conditions, the self-assembly mechanism for the formation of cylindrical nanofibers is deciphered involving a series of steps: (1) PA molecules quickly undergo micellization whose driving force is the hydrophobic interactions between alkyl tails; (2) neighboring peptide residues within a micelle engage in a slow ordering process that leads to the formation of β-sheets exposing the hydrophobic core; (3) spherical micelles merge together through an end-to-end mechanism to form cylindrical nanofibers that exhibit high structural fidelity to the proposed structure based on experimental data. As the temperature and electrostatics vary, PA molecules undergo alternative kinetic mechanisms, resulting in the formation of a wide spectrum of nanostructures. A phase diagram in the electrostatics-temperature plane is constructed delineating regions of morphological transitions in response to external stimuli. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Pham, John W; Sontheimer, Erik J
2005-11-25
Complexes in the Drosophila RNA-induced silencing complex (RISC) assembly pathway can be resolved using native gel electrophoresis, revealing an initiator called R1, an intermediate called R2, and an effector called R3 (now referred to as holo-RISC). Here we show that R1 forms when the Dicer-2/R2D2 heterodimer binds short interfering RNA (siRNA) duplexes. The heterodimer alone can initiate RISC assembly, indicating that other factors are dispensable for initiation. During assembly, R2 requires Argonaute 2 to convert into holo-RISC. This requirement is reminiscent of the RISC-loading complex, which also requires Argonaute 2 for assembly into RISC. We have compared R2 to the RISC-loading complex and show that the two complexes are similar in their sensitivities to ATP and to chemical modifications on siRNA duplexes, indicating that they are likely to be identical. We have examined the requirements for RISC formation and show that the siRNA 5'-termini are repeatedly monitored during RISC assembly, first by the Dcr-2/R2D2 heterodimer and again after R2 formation, before siRNA unwinding. The 2'-position of the 5'-terminal nucleotide also affects RISC assembly, because an siRNA strand bearing a 2'-deoxyribose at this position can inhibit the cognate strand from entering holo-RISC; in contrast, the 2'-deoxyribose-modified strand has enhanced activity in the RNA interference pathway.
Anderson, Gregory G; Goller, Carlos C; Justice, Sheryl; Hultgren, Scott J; Seed, Patrick C
2010-03-01
Uropathogenic Escherichia coli (UPEC) is the leading cause of urinary tract infections (UTIs). A murine UTI model has revealed an infection cascade whereby UPEC undergoes cycles of invasion of the bladder epithelium, intracellular proliferation in polysaccharide-containing biofilm-like masses called intracellular bacterial communities (IBC), and then dispersal into the bladder lumen to initiate further rounds of epithelial colonization and invasion. We predicted that the UPEC K1 polysaccharide capsule is a key constituent of the IBC matrix. Compared to prototypic E. coli K1 strain UTI89, a capsule assembly mutant had a fitness defect in functionally TLR4(+) and TLR4(-) mice, suggesting a protective role of capsule in inflamed and noninflamed hosts. K1 capsule assembly and synthesis mutants had dramatically reduced IBC formation, demonstrating the common requirement for K1 polysaccharide in IBC development. The capsule assembly mutant appeared dispersed in the cytoplasm of the bladder epithelial cells and failed to undergo high-density intracellular replication during later stages of infection, when the wild-type strain continued to form serial generations of IBC. Deletion of the sialic acid regulator gene nanR partially restored IBC formation in the capsule assembly mutant. These data suggest that capsule is necessary for efficient IBC formation and that aberrant sialic acid accumulation, resulting from disruption of K1 capsule assembly, produces a NanR-mediated defect in intracellular proliferation and IBC development. Together, these data demonstrate the complex but important roles of UPEC polysaccharide encapsulation and sialic acid signaling in multiple stages of UTI pathogenesis.
B. subtilis as a Model for Studying the Assembly of Fe-S Clusters in Gram-Positive Bacteria.
Dos Santos, Patricia C
2017-01-01
Complexes of iron and sulfur (Fe-S clusters) are widely distributed in nature and participate in essential biochemical reactions. The biological formation of Fe-S clusters involves dedicated pathways responsible for the mobilization of sulfur, the assembly of Fe-S clusters, and the transfer of these clusters to target proteins. Genomic analysis of Bacillus subtilis and other Gram-positive bacteria indicated the presence of only one Fe-S cluster biosynthesis pathway, which is distinct in number of components and organization from previously studied systems. B. subtilis has been used as a model system for the characterization of cysteine desulfurases responsible for sulfur mobilization reactions in the biogenesis of Fe-S clusters and other sulfur-containing cofactors. Cysteine desulfurases catalyze the cleavage of the C-S bond from the amino acid cysteine and subsequent transfer of sulfur to acceptor molecules. These reactions can be monitored by the rate of alanine formation, the first product in the reaction, and sulfide formation, a byproduct of reactions performed under reducing conditions. The assembly of Fe-S clusters on protein scaffolds and the transfer of these clusters to target acceptors are determined through a combination of spectroscopic methods probing the rate of cluster assembly and transfer. This chapter provides a description of reactions promoting the assembly of Fe-S clusters in bacteria as well as methods used to study functions of each biosynthetic component and identify mechanistic differences employed by these enzymes across different pathways. © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Huber, Matthias C.; Schreiber, Andreas; von Olshausen, Philipp; Varga, Balázs R.; Kretz, Oliver; Joch, Barbara; Barnert, Sabine; Schubert, Rolf; Eimer, Stefan; Kele, Péter; Schiller, Stefan M.
2015-01-01
Nanoscale biological materials formed by the assembly of defined block-domain proteins control the formation of cellular compartments such as organelles. Here, we introduce an approach to intentionally ‘program’ the de novo synthesis and self-assembly of genetically encoded amphiphilic proteins to form cellular compartments, or organelles, in Escherichia coli. These proteins serve as building blocks for the formation of artificial compartments in vivo in a similar way to lipid-based organelles. We investigated the formation of these organelles using epifluorescence microscopy, total internal reflection fluorescence microscopy and transmission electron microscopy. The in vivo modification of these protein-based de novo organelles, by means of site-specific incorporation of unnatural amino acids, allows the introduction of artificial chemical functionalities. Co-localization of membrane proteins results in the formation of functionalized artificial organelles combining artificial and natural cellular function. Adding these protein structures to the cellular machinery may have consequences in nanobiotechnology, synthetic biology and materials science, including the constitution of artificial cells and bio-based metamaterials.
Patterning nanofibrils through the templated growth of multiple modified amyloid peptides
Sakai, Hiroki; Watanabe, Ken; Kudoh, Fuki; Kamada, Rui; Chuman, Yoshiro; Sakaguchi, Kazuyasu
2016-01-01
There has been considerable interest in the patterning of functionalized nanowires because of the potential applications of these materials to the construction of nanodevices. A variety of biomolecular building blocks containing amyloid peptides have been used to functionalize nanowires. However, the patterning of self-assembled nanowires can be challenging because of the difficulties associated with controlling the self-assembly of these functionalized building blocks. Herein, we present a versatile approach for the patterning of nanowires based on the combination of templated fibril growth with a versatile functionalization method using our structure-controllable amyloid peptides (SCAPs). Using this approach, we have succeeded in the formation of multi-type nanowires with tandem domain structures in high yields. Given that the mixing-SCAP method can lead to the formation of tandem fibrils, it is noteworthy that our method allowed us to control the initiation of fibril formation from the gold nanoparticles, which were attached to a short fibril as initiation points. This approach could be used to prepare a wide variety of fibril patterns, and therefore holds great potential for the development of novel self-assembled nanodevices. PMID:27559011
Graphene Emerges as a Versatile Template for Materials Preparation.
Li, Zhengjie; Wu, Sida; Lv, Wei; Shao, Jiao-Jing; Kang, Feiyu; Yang, Quan-Hong
2016-05-01
Graphene and its derivatives are emerging as a class of novel but versatile templates for the controlled preparation and functionalization of materials. In this paper a conceptual review on graphene-based templates is given, highlighting their versatile roles in materials preparation. Graphene is capable of acting as a low-dimensional hard template, where its two-dimensional morphology directs the formation of novel nanostructures. Graphene oxide and other functionalized graphenes are amphiphilic and may be seen as soft templates for formatting the growth or inducing the controlled assembly of nanostructures. In addition, nanospaces in restacked graphene can be used for confining the growth of sheet-like nanostructures, and assemblies of interlinked graphenes can behave either as skeletons for the formation of composite materials or as sacrificial templates for novel materials with a controlled network structure. In summary, flexible graphene and its derivatives together with an increasing number of assembled structures show great potentials as templates for materials production. Many challenges remain, for example precise structural control of such novel templates and the removal of the non-functional remaining templates. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Nanosheet-assembled NiO microstructures for high-performance supercapacitors.
Purushothaman, Kamatchi Kamaraj; Babu, Inbamani Manohara; Sethuraman, Balasubramanian; Muralidharan, Gopalan
2013-11-13
Nanosheet-assembled NiO microstructures have been synthesized via a hydrothermal method. The presence of anionic surfactant in the fabrication process initiates the formation of lamellar micelles and a self-assembling process. This leads to the formation of NiO nanosheets and organizes it into microstructures. The effect of preparation temperature on the morphological, structural, and electrochemical properties and stability upon continuous charge/discharge cycles has been examined for supercapacitor applications. Electrochemical analysis demonstrated that NiO nanosheets prepared at 160 °C are capable of delivering a specific capacitance of 989 F g(-1) at a scan rate of 3 mV s(-1) for the potential window of 0-0.6 V. The nanosheets exhibit excellent capacity retention, 97% retention after 1000 continuous charge/discharge cycles, and an energy density of 49.45 W h kg(-1).
Alberdi, Araitz; Gomis-Perez, Carolina; Bernardo-Seisdedos, Ganeko; Alaimo, Alessandro; Malo, Covadonga; Aldaregia, Juncal; Lopez-Robles, Carlos; Areso, Pilar; Butz, Elisabeth; Wahl-Schott, Christian; Villarroel, Alvaro
2015-11-01
We show that the combination of an intracellular bi-partite calmodulin (CaM)-binding site and a distant assembly region affect how an ion channel is regulated by a membrane lipid. Our data reveal that regulation by phosphatidylinositol(4,5)bisphosphate (PIP2) and stabilization of assembled Kv7.2 subunits by intracellular coiled-coil regions far from the membrane are coupled molecular processes. Live-cell fluorescence energy transfer measurements and direct binding studies indicate that remote coiled-coil formation creates conditions for different CaM interaction modes, each conferring different PIP2 dependency to Kv7.2 channels. Disruption of coiled-coil formation by epilepsy-causing mutation decreases apparent CaM-binding affinity and interrupts CaM influence on PIP2 sensitivity. © 2015. Published by The Company of Biologists Ltd.
Structure formation in binary mixtures of lipids and detergents: self-assembly and vesicle division.
Noguchi, Hiroshi
2013-01-14
Self-assembly dynamics in binary surfactant mixtures and structure changes of lipid vesicles induced by detergent solution are studied using coarse-grained molecular simulations. Disk-shaped micelles, the bicelles, are stabilized by detergents surrounding the rim of a bilayer disk of lipids. The self-assembled bicelles are considerably smaller than bicelles formed from vesicle rupture, and their size is determined by the concentrations of lipids and detergents and the interactions between the two species. The detergent-adsorption induces spontaneous curvature of the vesicle bilayer and results in vesicle division into two vesicles or vesicle rupture into worm-like micelles. The division occurs mainly via the inverse pathway of the modified stalk model. For large spontaneous curvature of the monolayers of the detergents, a pore is often opened, thereby leading to vesicle division or worm-like micelle formation.
Sequence-Mandated, Distinct Assembly of Giant Molecules
Zhang, Wei; Lu, Xinlin; Mao, Jialin; ...
2017-10-24
Although controlling the primary structure of synthetic polymers is itself a great challenge, the potential of sequence control for tailoring hierarchical structures remains to be exploited, especially in the creation of new and unconventional phases. A series of model amphiphilic chain-like giant molecules was designed and synthesized by interconnecting both hydrophobic and hydrophilic molecular nanoparticles in precisely defined sequence and composition to investigate their sequence-dependent phase structures. Not only compositional variation changed the self-assembled supramolecular phases, but also specific sequences induce unconventional phase formation, including Frank-Kasper phases. The formation mechanism was attributed to the conformational change driven by the collectivemore » hydrogen bonding and the sequence-mandated topology of the molecules. Lastly, these results show that sequence control in synthetic polymers can have a dramatic impact on polymer properties and self-assembly.« less
Time lapse microscopy of temperature control during self-assembly of 3D DNA crystals
NASA Astrophysics Data System (ADS)
Conn, Fiona W.; Jong, Michael Alexander; Tan, Andre; Tseng, Robert; Park, Eunice; Ohayon, Yoel P.; Sha, Ruojie; Mao, Chengde; Seeman, Nadrian C.
2017-10-01
DNA nanostructures are created by exploiting the high fidelity base-pairing interactions of double-stranded branched DNA molecules. These structures present a convenient medium for the self-assembly of macroscopic 3D crystals. In some self-assemblies in this system, crystals can be formed by lowering the temperature, and they can be dissolved by raising it. The ability to monitor the formation and melting of these crystals yields information that can be used to monitor crystal formation and growth. Here, we describe the development of an inexpensive tool that enables direct observation of the crystal growth process as a function of both time and temperature. Using the hanging-drop crystallization of the well-characterized 2-turn DNA tensegrity triangle motif for our model system, its response to temperature has been characterized visually.
Sequence-Mandated, Distinct Assembly of Giant Molecules
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Wei; Lu, Xinlin; Mao, Jialin
Although controlling the primary structure of synthetic polymers is itself a great challenge, the potential of sequence control for tailoring hierarchical structures remains to be exploited, especially in the creation of new and unconventional phases. A series of model amphiphilic chain-like giant molecules was designed and synthesized by interconnecting both hydrophobic and hydrophilic molecular nanoparticles in precisely defined sequence and composition to investigate their sequence-dependent phase structures. Not only compositional variation changed the self-assembled supramolecular phases, but also specific sequences induce unconventional phase formation, including Frank-Kasper phases. The formation mechanism was attributed to the conformational change driven by the collectivemore » hydrogen bonding and the sequence-mandated topology of the molecules. Lastly, these results show that sequence control in synthetic polymers can have a dramatic impact on polymer properties and self-assembly.« less
Self-assembly of an electronically conductive network through microporous scaffolds.
Sebastian, H Bri; Bryant, Steven L
2017-06-15
Electron transfer spanning significant distances through a microporous structure was established via the self-assembly of an electronically conductive iridium oxide nanowire matrix enveloping the pore walls. Microporous formations were simulated using two scaffold materials of varying physical and chemical properties; paraffin wax beads, and agar gel. Following infiltration into the micropores, iridium nanoparticles self-assembled at the pore wall/ethanol interface. Subsequently, cyclic voltammetry was employed to electrochemically crosslink the metal, erecting an interconnected, and electronically conductive metal oxide nanowire matrix. Electrochemical and spectral characterization techniques confirmed the formation of oxide nanowire matrices encompassing lengths of at least 1.6mm, 400× distances previously achieved using iridium nanoparticles. Nanowire matrices were engaged as biofuel cell anodes, where electrons were donated to the nanowires by a glucose oxidizing enzyme. Copyright © 2017 Elsevier Inc. All rights reserved.
Rocket launcher mechanism of collaborative actin assembly defined by single-molecule imaging.
Breitsprecher, Dennis; Jaiswal, Richa; Bombardier, Jeffrey P; Gould, Christopher J; Gelles, Jeff; Goode, Bruce L
2012-06-01
Interacting sets of actin assembly factors work together in cells, but the underlying mechanisms have remained obscure. We used triple-color single-molecule fluorescence microscopy to image the tumor suppressor adenomatous polyposis coli (APC) and the formin mDia1 during filament assembly. Complexes consisting of APC, mDia1, and actin monomers initiated actin filament formation, overcoming inhibition by capping protein and profilin. Upon filament polymerization, the complexes separated, with mDia1 moving processively on growing barbed ends while APC remained at the site of nucleation. Thus, the two assembly factors directly interact to initiate filament assembly and then separate but retain independent associations with either end of the growing filament.
Rocket launcher mechanism of collaborative actin assembly defined by single-molecule imaging
Breitsprecher, Dennis; Jaiswal, Richa; Bombardier, Jeffrey P.; Gould, Christopher J.; Gelles, Jeff; Goode, Bruce L.
2013-01-01
Interacting sets of actin assembly factors work together in cells, but the underlying mechanisms have remained obscure. We used triple-color single molecule fluorescence microscopy to image the tumor-suppressor Adenomateous polyposis coli (APC) and the formin mDia1 during filament assembly. Complexes consisting of APC, mDia1, and actin monomers intiated actin filament formation, overcoming inhibition by capping protein and profilin. Upon filament polymerization, the complexes separated, with mDia1 moving processively on growing barbed ends while APC remained at the site of nucleation. Thus, the two assembly factors directly interact to initiate filament assembly, and then separate but retain independent associations with either end of the growing filament. PMID:22654058
RNA Seeds Higher Order Assembly of FUS Protein
Schwartz, Jacob C.; Wang, Xueyin; Podell, Elaine R.; Cech, Thomas R.
2014-01-01
SUMMARY The abundant nuclear RNA-binding protein FUS binds the CTD of RNA polymerase II in an RNA-dependent manner, affecting Ser2 phosphorylation and transcription. Here we examine the mechanism of this process and find that RNA binding nucleates the formation of higher order FUS RNP assemblies that bind the CTD. Both the low-complexity domain and the RGG domain of FUS contribute to assembly. The assemblies appear fibrous by electron microscopy and have characteristics of beta-zipper structures. These results support the emerging view that the pathologic protein aggregation seen in neurodegenerative diseases such as ALS may occur by exaggeration of functionally important assemblies of RNA-binding proteins. PMID:24268778
The Red Spiral Galaxy UGC11680: Clues for the Inside-Out Quenching.
NASA Astrophysics Data System (ADS)
Bárcenas, J.; Sanchez, S. F.
2016-06-01
Broadly, galaxies can be divided in two groups, thanks to the Color-Magnitude Diagram: the lively star formation ones, ``The blue Cloud'' and galaxies which halted their star formation, ``The Red Sequence''. It is a currently accepted that the galaxies start their lifespan as a blue objects, turning red when they stop to assembly more mass and thus more stars. Nevertheless, This change need to be quick (˜ 1 Gyr), due to the dearth of galaxies between this two populations (the so called ``green valley'').Previous works have found two distinct stellar mass assembly modes, they are termed as ``the inside-out'' and ``the outside-in'' growth scenarios in the literature. In the ``inside-out'' scenario, mass assembly is finished in the galactic central region. In some cases, the inflow gas can fuel the central SuperMassive BlackHole. The subsequent AGN feedback will then shut-off the central star formation. One possible case of this scenario is the galaxy UGC11680, an unusual face-on red spiral galaxy with an AGN type 2, at the red sequence belonging to the CALIFA survey. We used the so called fossil method to study its star formation history and try to understand what happened to its stellar populations.
Armen, Roger S; Daggett, Valerie
2005-12-13
The self-assembly of beta(2)-microglobulin into fibrils leads to dialysis-related amyloidosis. pH-mediated partial unfolding is required for the formation of the amyloidogenic intermediate that then self-assembles into amyloid fibrils. Two partially folded intermediates of beta(2)-microglobulin have been identified experimentally and linked to the formation of fibrils of distinct morphology, yet it remains difficult to characterize these partially unfolded states at high resolution using experimental approaches. Consequently, we have performed molecular dynamics simulations at neutral and low pH to determine the structures of these partially unfolded amyloidogenic intermediates. In the low-pH simulations, we observed the formation of alpha-sheet structure, which was first proposed by Pauling and Corey. Multiple simulations were performed, and two distinct intermediate state ensembles were identified that may account for the different fibril morphologies. The predominant early unfolding intermediate was nativelike in structure, in agreement with previous NMR studies. The late unfolding intermediate was significantly disordered, but it maintained an extended elongated structure, with hydrophobic clusters and residual alpha-extended chain strands in specific regions of the sequence that map to amyloidogenic peptides. We propose that the formation of alpha-sheet facilitates self-assembly into partially unfolded prefibrillar amyloidogenic intermediates.
Classification of coordination polygons and polyhedra according to their mode of self-assembly.
Swiegers, G F; Malefetse, T J
2001-09-03
This work extends techniques for the controlled formation of synthetic molecular containers by metal-mediated self-assembly. A new classification system based on the self-assembly of such species is proposed. The system: 1) allows a systematic identification of suitable acceptor-donor combinations, 2) widens the variety of design possibilities available, 3) allows a ready comparison of the self-assembly of different compounds, 4) reveals useful commonalities between different compounds, 5) aids in the development of novel architectures, and 6) permits identification of systems capable of being switched back-and-forth between architectures.
Shen, Sufen; Zhao, Huawen; Huang, Chengzhi; Wu, Liping
2010-02-01
The ability to construct self-assembled architectures is essential for the exploration of nanoparticle-structured properties. It is one of good strategies by employing molecule-modificated nanoparticles to prepare new materials with particular properties. Herein, we found that captopril (Cap), a biocompatible medicament, could adjust and control the formation of self-assembled gold nanorods (Au-NRs) in high ionic strength solutions. The assembly is in higher-order structures containing both end-to-end and side-by-side orientations. Furthermore, these structures of Au-NRs could be served as plasmonic waveguide in future biological nanodevices.
Self-recognition in the coordination driven self-assembly of 2-D polygons.
Addicott, Chris; Das, Neeladri; Stang, Peter J
2004-08-23
Self-recognition in the transition-metal-mediated self-assembly of some 2-D polygons is presented. Prolonged heating of two or three organoplatinum reagents with 4,4'-dipyridyl in aqueous acetone results in the predominant formation of a rectangle, triangle, and/or square. All mixtures are characterized with NMR and electrospray ionization mass spectrometry (ESIMS). Despite the potential for ill-defined oligomeric products, these mixed ligand systems prefer to self-assemble into discrete species.
Do supercontinents introvert or extrovert?: Sm-Nd isotope evidence
NASA Astrophysics Data System (ADS)
Brendan Murphy, J.; Damian Nance, R.
2003-10-01
In recent years, two end-member models for the formation of supercontinents have emerged. In the classical Wilson cycle, oceanic crust generated during supercontinent breakup (the interior ocean) is consumed during subsequent amalgamation so that the supercontinent turns “inside in” (introversion). Alternatively, following supercontinent breakup, the exterior margins of the dispersing continental fragments collide during reassembly so that the supercontinent turns “outside in” (extroversion). These end-member models can be distinguished by comparing the Sm-Nd crust-formation ages of accreted mafic complexes (e.g., ophiolites) in the collisional orogens formed during supercontinent assembly with the breakup age of the previous supercontinent. For supercontinents generated by introversion, these crust-formation ages postdate rifting of the previous supercontinent. For supercontinents generated by extroversion, the oceanic lithosphere consumed during reassembly predates breakup of the previous supercontinent, so that crust-formation ages of accreted mafic complexes are older than the age of rifting. In the Paleozoic Appalachian-Caledonide-Variscan orogen, a key collisional orogen in the assembly of Pangea, crust-formation ages of accretionary mafic complexes postdate the formation of the Iapetus Ocean (i.e., are younger than ca. 0.6 Ga), suggesting supercontinent reassembly by introversion. By contrast, the Neoproterozoic East African and Brasiliano orogens, which formed during the amalgamation of Gondwana, are characterized by mafic complexes with crust-formation ages (ca. 0.75 1.2 Ga) that predate the ca. 750 Ma breakup of Rodinia. Hence, these complexes must have formed from lithosphere in the exterior ocean that surrounded Rodinia, implying that this ocean was consumed during the amalgamation of Gondwana. These data indicate that Pangea and Gondwana were formed by introversion and extroversion, respectively, implying that supercontinents can be assembled by fundamentally distinct geodynamic processes.
Sreenivasachary, Nampally; Lehn, Jean-Marie
2005-01-01
The guanosine hydrazide 1 yields a stable supramolecular hydrogel based on the formation of a guanine quartet (G-quartet) in presence of metal cations. The effect of various parameters (concentration, nature of metal ion, and temperature) on the properties of this gel has been studied. Proton NMR spectroscopy is shown to allow a molecular characterization of the gelation process. Hydrazide 1 and its assemblies can be reversibly decorated by acylhydrazone formation with various aldehydes, resulting in formation of highly viscous dynamic hydrogels. When a mixture of aldehydes is used, the dynamic system selects the aldehyde that leads to the most stable gel. Mixing hydrazides 1, 9 and aldehydes 6, 8 in 1:1:1:1 ratio generated a constitutional dynamic library containing the four acylhydrazone derivatives A, B, C, and D. The library constitution displayed preferential formation of the acylhydrazone B that yields the strongest gel. Thus, gelation redirects the acylhydrazone distribution in the dynamic library as guanosine hydrazide 1 scavenges preferentially aldehyde 8, under the pressure of gelation because of the collective interactions in the assemblies of G-quartets B, despite the strong preference of the competing hydrazide 9 for 8. Gel formation and component selection are thermoreversible. The process amounts to gelation-driven self-organization with component selection and amplification in constitutional dynamic hydrogels based on G-quartet formation and reversible covalent connections. The observed self-organization and component selection occur by means of a multilevel self-assembly involving three dynamic processes, two of supramolecular and one of reversible covalent nature. They extend constitutional dynamic chemistry to phase-organization and phase-transition events. PMID:15840720
Sreenivasachary, Nampally; Lehn, Jean-Marie
2005-04-26
The guanosine hydrazide 1 yields a stable supramolecular hydrogel based on the formation of a guanine quartet (G-quartet) in presence of metal cations. The effect of various parameters (concentration, nature of metal ion, and temperature) on the properties of this gel has been studied. Proton NMR spectroscopy is shown to allow a molecular characterization of the gelation process. Hydrazide 1 and its assemblies can be reversibly decorated by acylhydrazone formation with various aldehydes, resulting in formation of highly viscous dynamic hydrogels. When a mixture of aldehydes is used, the dynamic system selects the aldehyde that leads to the most stable gel. Mixing hydrazides 1, 9 and aldehydes 6, 8 in 1:1:1:1 ratio generated a constitutional dynamic library containing the four acylhydrazone derivatives A, B, C, and D. The library constitution displayed preferential formation of the acylhydrazone B that yields the strongest gel. Thus, gelation redirects the acylhydrazone distribution in the dynamic library as guanosine hydrazide 1 scavenges preferentially aldehyde 8, under the pressure of gelation because of the collective interactions in the assemblies of G-quartets B, despite the strong preference of the competing hydrazide 9 for 8. Gel formation and component selection are thermoreversible. The process amounts to gelation-driven self-organization with component selection and amplification in constitutional dynamic hydrogels based on G-quartet formation and reversible covalent connections. The observed self-organization and component selection occur by means of a multilevel self-assembly involving three dynamic processes, two of supramolecular and one of reversible covalent nature. They extend constitutional dynamic chemistry to phase-organization and phase-transition events.
Cardozo, Marcos J.; Massazza, Diego A.; Parkinson, John S.; Studdert, Claudia A.
2017-01-01
Summary During chemotactic signaling by Escherichia coli, the small cytoplasmic CheW protein couples the histidine kinase CheA to chemoreceptor control. Although essential for assembly and operation of receptor signaling complexes, CheW in stoichiometric excess disrupts chemotactic behavior. To explore the mechanism of the CheW excess effect, we measured the physiological consequences of high cellular levels of wild-type CheW and of several CheW variants with reduced or enhanced binding affinities for receptor molecules. We found that high levels of CheW interfered with trimer assembly, prevented CheA activation, blocked cluster formation, disrupted chemotactic ability, and elevated receptor methylation levels. The severity of these effects paralleled the receptor binding affinities of the CheW variants. Because trimer formation may be an obligate step in the assembly of ternary signaling complexes and higher-order receptor arrays, we suggest that all CheW excess effects stem from disruption of trimer assembly. We propose that the CheW-binding sites in receptor dimers overlap their trimer contact sites and that high levels of CheW saturate the receptor binding sites, preventing trimer assembly. The CheW-trapped receptor dimers seem to be improved substrates for methyltransferase reactions, but cannot activate CheA or assemble into clusters, processes that are essential for chemotactic signaling. PMID:20487303
Many-molecule encapsulation by an icosahedral shell
Perlmutter, Jason D; Mohajerani, Farzaneh; Hagan, Michael F
2016-01-01
We computationally study how an icosahedral shell assembles around hundreds of molecules. Such a process occurs during the formation of the carboxysome, a bacterial microcompartment that assembles around many copies of the enzymes ribulose 1,5-bisphosphate carboxylase/ oxygenase and carbonic anhydrase to facilitate carbon fixation in cyanobacteria. Our simulations identify two classes of assembly pathways leading to encapsulation of many-molecule cargoes. In one, shell assembly proceeds concomitantly with cargo condensation. In the other, the cargo first forms a dense globule; then, shell proteins assemble around and bud from the condensed cargo complex. Although the model is simplified, the simulations predict intermediates and closure mechanisms not accessible in experiments, and show how assembly can be tuned between these two pathways by modulating protein interactions. In addition to elucidating assembly pathways and critical control parameters for microcompartment assembly, our results may guide the reengineering of viruses as nanoreactors that self-assemble around their reactants. DOI: http://dx.doi.org/10.7554/eLife.14078.001 PMID:27166515
Bickhart, Derek M; Rosen, Benjamin D; Koren, Sergey; Sayre, Brian L; Hastie, Alex R; Chan, Saki; Lee, Joyce; Lam, Ernest T; Liachko, Ivan; Sullivan, Shawn T; Burton, Joshua N; Huson, Heather J; Nystrom, John C; Kelley, Christy M; Hutchison, Jana L; Zhou, Yang; Sun, Jiajie; Crisà, Alessandra; Ponce de León, F Abel; Schwartz, John C; Hammond, John A; Waldbieser, Geoffrey C; Schroeder, Steven G; Liu, George E; Dunham, Maitreya J; Shendure, Jay; Sonstegard, Tad S; Phillippy, Adam M; Van Tassell, Curtis P; Smith, Timothy P L
2017-04-01
The decrease in sequencing cost and increased sophistication of assembly algorithms for short-read platforms has resulted in a sharp increase in the number of species with genome assemblies. However, these assemblies are highly fragmented, with many gaps, ambiguities, and errors, impeding downstream applications. We demonstrate current state of the art for de novo assembly using the domestic goat (Capra hircus) based on long reads for contig formation, short reads for consensus validation, and scaffolding by optical and chromatin interaction mapping. These combined technologies produced what is, to our knowledge, the most continuous de novo mammalian assembly to date, with chromosome-length scaffolds and only 649 gaps. Our assembly represents a ∼400-fold improvement in continuity due to properly assembled gaps, compared to the previously published C. hircus assembly, and better resolves repetitive structures longer than 1 kb, representing the largest repeat family and immune gene complex yet produced for an individual of a ruminant species.
Bickhart, Derek M.; Rosen, Benjamin D.; Koren, Sergey; Sayre, Brian L.; Hastie, Alex R.; Chan, Saki; Lee, Joyce; Lam, Ernest T.; Liachko, Ivan; Sullivan, Shawn T.; Burton, Joshua N.; Huson, Heather J.; Nystrom, John C.; Kelley, Christy M.; Hutchison, Jana L.; Zhou, Yang; Sun, Jiajie; Crisà, Alessandra; de León, F. Abel Ponce; Schwartz, John C.; Hammond, John A.; Waldbieser, Geoffrey C.; Schroeder, Steven G.; Liu, George E.; Dunham, Maitreya J.; Shendure, Jay; Sonstegard, Tad S.; Phillippy, Adam M.; Van Tassell, Curtis P.; Smith, Timothy P.L.
2018-01-01
The decrease in sequencing cost and increased sophistication of assembly algorithms for short-read platforms has resulted in a sharp increase in the number of species with genome assemblies. However, these assemblies are highly fragmented, with many gaps, ambiguities, and errors, impeding downstream applications. We demonstrate current state of the art for de novo assembly using the domestic goat (Capra hircus), based on long reads for contig formation, short reads for consensus validation, and scaffolding by optical and chromatin interaction mapping. These combined technologies produced the most continuous de novo mammalian assembly to date, with chromosome-length scaffolds and only 649 gaps. Our assembly represents a ~400-fold improvement in continuity due to properly assembled gaps compared to the previously published C. hircus assembly, and better resolves repetitive structures longer than 1 kb, representing the largest repeat family and immune gene complex ever produced for an individual of a ruminant species. PMID:28263316
Wu, Rentian; Wang, Jiafeng; Liang, Chun
2012-01-01
Regulation of DNA replication initiation is essential for the faithful inheritance of genetic information. Replication initiation is a multi-step process involving many factors including ORC, Cdt1p, Mcm2-7p and other proteins that bind to replication origins to form a pre-replicative complex (pre-RC). As a prerequisite for pre-RC assembly, Cdt1p and the Mcm2-7p heterohexameric complex accumulate in the nucleus in G1 phase in an interdependent manner in budding yeast. However, the nature of this interdependence is not clear, nor is it known whether Cdt1p is required for the assembly of the MCM complex. In this study, we provide the first evidence that Cdt1p, through its interaction with Mcm6p with the C-terminal regions of the two proteins, is crucial for the formation of the MCM complex in both the cytoplasm and nucleoplasm. We demonstrate that disruption of the interaction between Cdt1p and Mcm6p prevents the formation of the MCM complex, excludes Mcm2-7p from the nucleus, and inhibits pre-RC assembly and DNA replication. Our findings suggest a function for Cdt1p in promoting the assembly of the MCM complex and maintaining its integrity by interacting with Mcm6p.
Block copolymer self-assembly derived ultrafiltration membranes: From science to start-up
NASA Astrophysics Data System (ADS)
Wiesner, Ulrich
In the last ten years a novel method to generate asymmetric ultrafiltration membranes has been established. It is based on the combination of block copolymer self-assembly with non-solvent induced phase separation (NIPS) and is now referred to as SNIPS. NIPS as an industry proven method for the formation of phase inversion membranes opening a pathway to scale up and commercialization of these membranes. The combination of NIPS with block copolymer self-assembly leads to asymmetric membranes with narrow pore size distributions in the top surface layer (so called isoporous membranes) as well as high pore densities, thereby potentially combining high resolution with high flux in membrane separation processes. Such membranes have potential applications in the biopharmaceutical industry where a large fraction of the costs are currently associated with time-consuming non-membrane based separation processes. This talk will describe a family of isoporous ultrafiltration membranes based on the self-assembly behavior of an ABC triblock terpolymer which has led to the formation of a start-up company out of Cornell University. After introduction of the SNIPS process in general, and its application to such ABC triblock terpolymers in particular, open scientific questions associated with the formation mechanisms of the top surface separation layer in such membranes is discussed, which is at the heart of enabling high performance separation behavior. Furthermore, challenges translating scientific work into industrial settings are highlighted.
Shin, Suyong; Gu, Ming-Long; Yu, Chin-Yang; Jeon, Jongseol; Lee, Eunji; Choi, Tae-Lim
2018-01-10
A fractal nanostructure having a high surface area is potentially useful in sensors, catalysts, functional coatings, and biomedical and electronic applications. Preparation of fractal nanostructures on solid substrates has been reported using various inorganic or organic compounds. However, achieving such a process using polymers in solution has been extremely challenging. Here, we report a simple one-shot preparation of polymer fractal nanostructures in solution via an unprecedented assembly mechanism controlled by polymerization and self-assembly kinetics. This was possible only because one monomer was significantly more reactive than the other, thereby easily forming a diblock copolymer microstructure. Then, the second insoluble block containing poly(p-phenylenevinylene) (PPV) without any side chains spontaneously underwent self-assembly during polymerization by an in situ nanoparticlization of conjugated polymers (INCP) method. The formation of fractal structures in solution was confirmed by various imaging techniques such as atomic force microscopy, transmission electron microscopy (TEM), and cryogenic TEM. The diffusion-limited aggregation theory was adopted to explain the branching patterns of the fractal nanostructures according to the changes in polymerization conditions such as the monomer concentration and the presence of additives. Finally, after detailed kinetic analyses, we proposed a plausible mechanism for the formation of unique fractal nanostructures, where the gradual formation and continuous growth of micelles in a chain-growth-like manner were accounted for.
From the Cover: Understanding nature's design for a nanosyringe
NASA Astrophysics Data System (ADS)
Lopez, Carlos F.; Nielsen, Steve O.; Moore, Preston B.; Klein, Michael L.
2004-03-01
Synthetic and natural peptide assemblies can possess transport or conductance activity across biomembranes through the formation of nanopores. The fundamental mechanisms of membrane insertion necessary for antimicrobial or synthetic pore formation are poorly understood. We observe a lipid-assisted mechanism for passive insertion into a model membrane from molecular dynamics simulations. The assembly used in the study, a generic nanotube functionalized with hydrophilic termini, is assisted in crossing the membrane core by transleaflet lipid flips. Lipid tails occlude a purely hydrophobic nanotube. The observed insertion mechanism requirements for hydrophobic-hydrophilic matching have implications for the design of synthetic channels and antibiotics.
NASA Astrophysics Data System (ADS)
Silva, Diego; Natalello, Antonino; Sanii, Babak; Vasita, Rajesh; Saracino, Gloria; Zuckermann, Ronald N.; Doglia, Silvia Maria; Gelain, Fabrizio
2012-12-01
The importance of self-assembling peptides (SAPs) in regenerative medicine is becoming increasingly recognized. The propensity of SAPs to form nanostructured fibers is governed by multiple forces including hydrogen bonds, hydrophobic interactions and π-π aromatic interactions among side chains of the amino acids. Single residue modifications in SAP sequences can significantly affect these forces. BMHP1-derived SAPs is a class of biotinylated oligopeptides, which self-assemble in β-structured fibers to form a self-healing hydrogel. In the current study, selected modifications in previously described BMHP1-derived SAPs were designed in order to investigate the influence of modified residues on self-assembly kinetics and scaffold formation properties. The Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) analysis demonstrated the secondary structure (β-sheet) formation in all modified SAP sequences, whereas atomic force microscopy (AFM) analysis further confirmed the presence of nanofibers. Furthermore, the fiber shape and dimension analysis by AFM showed flattened and twisted fiber morphology ranging from ~8 nm to ~70 nm. The mechanical properties of the pre-assembled and post assembled solution were investigated by rheometry. The shear-thinning behavior and rapid re-healing properties of the pre-assembled solutions make them a preferable choice for injectable scaffolds. The wide range of stiffnesses (G') -from ~1000 to ~27 000 Pa - exhibited by the post-assembled scaffolds demonstrated their potential for a variety of tissue engineering applications. The extra cellular matrix (ECM) mimicking (physically and chemically) properties of SAP scaffolds enhanced cell adhesion and proliferation. The capability of the scaffold to facilitate murine neural stem cell (mNSC) proliferation was evaluated in vitro: the increased mNSCs adhesion and proliferation demonstrated the potential of newly synthesized SAPs for regenerative medicine approaches.The importance of self-assembling peptides (SAPs) in regenerative medicine is becoming increasingly recognized. The propensity of SAPs to form nanostructured fibers is governed by multiple forces including hydrogen bonds, hydrophobic interactions and π-π aromatic interactions among side chains of the amino acids. Single residue modifications in SAP sequences can significantly affect these forces. BMHP1-derived SAPs is a class of biotinylated oligopeptides, which self-assemble in β-structured fibers to form a self-healing hydrogel. In the current study, selected modifications in previously described BMHP1-derived SAPs were designed in order to investigate the influence of modified residues on self-assembly kinetics and scaffold formation properties. The Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) analysis demonstrated the secondary structure (β-sheet) formation in all modified SAP sequences, whereas atomic force microscopy (AFM) analysis further confirmed the presence of nanofibers. Furthermore, the fiber shape and dimension analysis by AFM showed flattened and twisted fiber morphology ranging from ~8 nm to ~70 nm. The mechanical properties of the pre-assembled and post assembled solution were investigated by rheometry. The shear-thinning behavior and rapid re-healing properties of the pre-assembled solutions make them a preferable choice for injectable scaffolds. The wide range of stiffnesses (G') -from ~1000 to ~27 000 Pa - exhibited by the post-assembled scaffolds demonstrated their potential for a variety of tissue engineering applications. The extra cellular matrix (ECM) mimicking (physically and chemically) properties of SAP scaffolds enhanced cell adhesion and proliferation. The capability of the scaffold to facilitate murine neural stem cell (mNSC) proliferation was evaluated in vitro: the increased mNSCs adhesion and proliferation demonstrated the potential of newly synthesized SAPs for regenerative medicine approaches. Electronic supplementary information (ESI) available. See DOI: 10.1039/c2nr32656f
Living in the matrix: assembly and control of Vibrio cholerae biofilms
Teschler, Jennifer K.; Zamorano-Sánchez, David; Utada, Andrew S.; Warner, Christopher J. A.; Wong, Gerard C. L.; Linington, Roger G.; Yildiz, Fitnat H.
2015-01-01
Preface Nearly all bacteria form biofilms as a strategy for survival and persistence. Biofilms are associated with biotic and abiotic surfaces and are composed of aggregates of cells that are encased by a self-produced or acquired extracellular matrix. Vibrio cholerae has been studied as a model organism for understanding biofilm formation in environmental pathogens, as it spends much of its life cycle outside of the human host in the aquatic environment. Given the important role of biofilm formation in the V. cholerae life cycle, the molecular mechanisms underlying this process and the signals that trigger biofilm assembly or dispersal have been areas of intense investigation over the past 20 years. In this Review, we discuss V. cholerae surface attachment, various matrix components and the regulatory networks controlling biofilm formation. PMID:25895940
Chemical Evolution and the Formation of Dwarf Galaxies in the Early Universe
NASA Astrophysics Data System (ADS)
Cote, Benoit; JINA-CEE, NuGrid, ChETEC
2018-06-01
Stellar abundances in local dwarf galaxies offer a unique window into the nature and nucleosynthesis of the first stars. They also contain clues regarding how galaxies formed and assembled in the early stages of the universe. In this talk, I will present our effort to connect nuclear astrophysics with the field of galaxy formation in order to define what can be learned about galaxy evolution using stellar abundances. In particular, I will describe the current state of our numerical chemical evolution pipeline which accounts for the mass assembly history of galaxies, present how we use high-redshift cosmological hydrodynamic simulations to calibrate our models and to learn about the formation of dwarf galaxies, and address the challenge of identifying the dominant r-process site(s) using stellar abundances.
NASA Astrophysics Data System (ADS)
Riechers, Dominik A.; Bolatto, Alberto D.; Carilli, Chris; Casey, Caitlin M.; Decarli, Roberto; Murphy, Eric Joseph; Narayanan, Desika; Walter, Fabian; ngVLA Galaxy Assembly through Cosmic Time Science Working Group, ngVLA Galaxy Ecosystems Science Working Group
2018-01-01
The Next Generation Very Large Array (ngVLA) will fundamentally advance our understanding of the formation processes that lead to the assembly of galaxies throughout cosmic history. The combination of large bandwidth with unprecedented sensitivity to the critical low-level CO lines over virtually the entire redshift range will open up the opportunity to conduct large-scale, deep cold molecular gas surveys, mapping the fuel for star formation in galaxies over substantial cosmic volumes. Imaging of the sub-kiloparsec scale distribution and kinematic structure of molecular gas in both normal main-sequence galaxies and large starbursts back to early cosmic epochs will reveal the physical processes responsible for star formation and black hole growth in galaxies over a broad range in redshifts. In the nearby universe, the ngVLA has the capability to survey the structure of the cold, star-forming interstellar medium at parsec-resolution out to the Virgo cluster. A range of molecular tracers will be accessible to map the motion, distribution, and physical and chemical state of the gas as it flows in from the outer disk, assembles into clouds, and experiences feedback due to star formation or accretion into central super-massive black holes. These investigations will crucially complement studies of the star formation and stellar mass histories with the Large UV/Optical/Infrared Surveyor and the Origins Space Telescope, providing the means to obtain a comprehensive picture of galaxy evolution through cosmic times.
Self-Assembly of Measles Virus Nucleocapsid-like Particles: Kinetics and RNA Sequence Dependence.
Milles, Sigrid; Jensen, Malene Ringkjøbing; Communie, Guillaume; Maurin, Damien; Schoehn, Guy; Ruigrok, Rob W H; Blackledge, Martin
2016-08-01
Measles virus RNA genomes are packaged into helical nucleocapsids (NCs), comprising thousands of nucleo-proteins (N) that bind the entire genome. N-RNA provides the template for replication and transcription by the viral polymerase and is a promising target for viral inhibition. Elucidation of mechanisms regulating this process has been severely hampered by the inability to controllably assemble NCs. Here, we demonstrate self-organization of N into NC-like particles in vitro upon addition of RNA, providing a simple and versatile tool for investigating assembly. Real-time NMR and fluorescence spectroscopy reveals biphasic assembly kinetics. Remarkably, assembly depends strongly on the RNA-sequence, with the genomic 5' end and poly-Adenine sequences assembling efficiently, while sequences such as poly-Uracil are incompetent for NC formation. This observation has important consequences for understanding the assembly process. © 2016 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.
Static Electricity-Responsive Supramolecular Assembly.
Jintoku, Hirokuni; Ihara, Hirotaka; Matsuzawa, Yoko; Kihara, Hideyuki
2017-12-01
Stimuli-responsive materials can convert between molecular scale and macroscopic scale phenomena. Two macroscopic static electricity-responsive phenomena based on nanoscale supramolecular assemblies of a zinc porphyrin derivative are presented. One example involves the movement of supramolecular assemblies in response to static electricity. The assembly of a pyridine (Py) complex of the above-mentioned derivative in cyclohexane is drawn to a positively charged material, whereas the assembly of a 3,5-dimethylpyridine complex is drawn to a negatively charged material. The second phenomenon involves the movement of a non-polar solvent in response to static electrical stimulation. A cyclohexane solution containing a small quantity of the Py-complexed assembly exhibited a strong movement response towards negatively charged materials. Based on spectroscopic measurements and electron microscope observations, it was revealed that the assembled formation generates the observed response to static electricity. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Supra-Nanoparticle Functional Assemblies through Programmable Stacking
Tian, Cheng; Cordeiro, Marco Aurelio L.; Lhermitte, Julien; ...
2017-05-25
The quest for the by-design assembly of material and devices from nanoscale inorganic components is well recognized. Conventional self-assembly is often limited in its ability to control material morphology and structure simultaneously. We report a general method of assembling nanoparticles in a linear “pillar” morphology with regulated internal configurations. Our approach is inspired by supramolecular systems, where intermolecular stacking guides the assembly process to form diverse linear morphologies. Programmable stacking interactions were realized through incorporation of DNA coded recognition between the designed planar nanoparticle clusters. This resulted in the formation of multilayered pillar architectures with a well-defined internal nanoparticle organization.more » Furthermore, by controlling the number, position, size, and composition of the nanoparticles in each layer, a broad range of nanoparticle pillars were assembled and characterized in detail. In addition, we demonstrated the utility of this stacking assembly strategy for investigating plasmonic and electrical transport properties.« less
Supra-Nanoparticle Functional Assemblies through Programmable Stacking
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tian, Cheng; Cordeiro, Marco Aurelio L.; Lhermitte, Julien
The quest for the by-design assembly of material and devices from nanoscale inorganic components is well recognized. Conventional self-assembly is often limited in its ability to control material morphology and structure simultaneously. We report a general method of assembling nanoparticles in a linear “pillar” morphology with regulated internal configurations. Our approach is inspired by supramolecular systems, where intermolecular stacking guides the assembly process to form diverse linear morphologies. Programmable stacking interactions were realized through incorporation of DNA coded recognition between the designed planar nanoparticle clusters. This resulted in the formation of multilayered pillar architectures with a well-defined internal nanoparticle organization.more » Furthermore, by controlling the number, position, size, and composition of the nanoparticles in each layer, a broad range of nanoparticle pillars were assembled and characterized in detail. In addition, we demonstrated the utility of this stacking assembly strategy for investigating plasmonic and electrical transport properties.« less
Supra-Nanoparticle Functional Assemblies through Programmable Stacking.
Tian, Cheng; Cordeiro, Marco Aurelio L; Lhermitte, Julien; Xin, Huolin L; Shani, Lior; Liu, Mingzhao; Ma, Chunli; Yeshurun, Yosef; DiMarzio, Donald; Gang, Oleg
2017-07-25
The quest for the by-design assembly of material and devices from nanoscale inorganic components is well recognized. Conventional self-assembly is often limited in its ability to control material morphology and structure simultaneously. Here, we report a general method of assembling nanoparticles in a linear "pillar" morphology with regulated internal configurations. Our approach is inspired by supramolecular systems, where intermolecular stacking guides the assembly process to form diverse linear morphologies. Programmable stacking interactions were realized through incorporation of DNA coded recognition between the designed planar nanoparticle clusters. This resulted in the formation of multilayered pillar architectures with a well-defined internal nanoparticle organization. By controlling the number, position, size, and composition of the nanoparticles in each layer, a broad range of nanoparticle pillars were assembled and characterized in detail. In addition, we demonstrated the utility of this stacking assembly strategy for investigating plasmonic and electrical transport properties.
Morphogenetic Pathway of Spore Wall Assembly in Saccharomyces cerevisiae
Coluccio, Alison; Bogengruber, Edith; Conrad, Michael N.; Dresser, Michael E.; Briza, Peter; Neiman, Aaron M.
2004-01-01
The Saccharomyces cerevisiae spore is protected from environmental damage by a multilaminar extracellular matrix, the spore wall, which is assembled de novo during spore formation. A set of mutants defective in spore wall assembly were identified in a screen for mutations causing sensitivity of spores to ether vapor. The spore wall defects in 10 of these mutants have been characterized in a variety of cytological and biochemical assays. Many of the individual mutants are defective in the assembly of specific layers within the spore wall, leading to arrests at discrete stages of assembly. The localization of several of these gene products has been determined and distinguishes between proteins that likely are involved directly in spore wall assembly and probable regulatory proteins. The results demonstrate that spore wall construction involves a series of dependent steps and provide the outline of a morphogenetic pathway for assembly of a complex extracellular structure. PMID:15590821
Neural syntax: cell assemblies, synapsembles and readers
Buzsáki, György
2010-01-01
Summary A widely discussed hypothesis in neuroscience is that transiently active ensembles of neurons, known as ‘cell assemblies’, underlie numerous operations of the brain, from encoding memories to reasoning. However, the mechanisms responsible for the formation and disbanding of cell assemblies and temporal evolution of cell assembly sequences are not well understood. I introduce and review three interconnected topics, which could facilitate progress in defining cell assemblies, identifying their neuronal organization and revealing causal relationships between assembly organization and behavior. First, I hypothesize that cell assemblies are best understood in light of their output product, as detected by ‘reader-actuator’ mechanisms. Second, I suggest that the hierarchical organization of cell assemblies may be regarded as a neural syntax. Third, constituents of the neural syntax are linked together by dynamically changing constellations of synaptic weights (‘synapsembles’). Existing support for this tripartite framework is reviewed and strategies for experimental testing of its predictions are discussed. PMID:21040841
Self-assembly of concentric quantum double rings.
Mano, Takaaki; Kuroda, Takashi; Sanguinetti, Stefano; Ochiai, Tetsuyuki; Tateno, Takahiro; Kim, Jongsu; Noda, Takeshi; Kawabe, Mitsuo; Sakoda, Kazuaki; Kido, Giyuu; Koguchi, Nobuyuki
2005-03-01
We demonstrate the self-assembled formation of concentric quantum double rings with high uniformity and excellent rotational symmetry using the droplet epitaxy technique. Varying the growth process conditions can control each ring's size. Photoluminescence spectra emitted from an individual quantum ring complex show peculiar quantized levels that are specified by the carriers' orbital trajectories.
Three-Dimensional Control of Self-Assembled Quantum Dot Configurations
2010-06-17
Lateral Quantum Dot Molecules Around Self-Assembled Nanoholes . Appl. Phys. Lett. 2003, 82, 2892–2894. 7. Alonso-Gonzalez, P.; Martin-Sanchez, J.; Gonzalez...Y.; Alen, B.; Fuster, D.; Gonzalez, L. Formation of Lateral Low Density In(Ga)As Quantum Dot Pairs in GaAs Nanoholes . Cryst. Growth Des. 2009, 9
Kadota, Jun; Yamamoto, Takaharu; Yoshiuchi, Shiro; Bi, Erfei; Tanaka, Kazuma
2004-01-01
Septins are filament-forming proteins that function in cytokinesis in a wide variety of organisms. In budding yeast, the small GTPase Cdc42p triggers the recruitment of septins to the incipient budding site and the assembly of septins into a ring. We herein report that Bni1p and Cla4p, effectors of Cdc42p, are required for the assembly of the septin ring during the initiation of budding but not for its maintenance after the ring converts to a septin collar. In bni1Δ cla4-75-td mutant, septins were recruited to the incipient budding site. However, the septin ring was not assembled, and septins remained at the polarized growing sites. Bni1p, a formin family protein, is a member of the polarisome complex with Spa2p, Bud6p, and Pea2p. All spa2Δ cla4-75-td, bud6Δ cla4-75-td, and pea2Δ cla4-75-td mutants showed defects in septin ring assembly. Bni1p stimulates actin polymerization for the formation of actin cables. Point mutants of BNI1 that are specifically defective in actin cable formation also exhibited septin ring assembly defects in the absence of Cla4p. Consistently, treatment of cla4Δ mutant with the actin inhibitor latrunculin A inhibited septin ring assembly. Our results suggest that polarisome components and Cla4p are required for the initial assembly of the septin ring and that the actin cytoskeleton is involved in this process. PMID:15371547
NASA Astrophysics Data System (ADS)
Schill, S.; Zimmermann, K.; Ryder, O. S.; Campbell, N.; Collins, D. B.; Gianneschi, N.; Bertram, T. H.
2013-12-01
Spontaneous self-assembly of marine exudate particles has previously been observed in filtered seawater samples. The chemicophysical properties of these particles may alter the chemical composition and CCN properties of nascent marine aerosol, yet to date simultaneous measurement of seawater exudate particle formation rates and number distributions, with aerosol particle formation rates and CCN activity are lacking. Here, we use a novel Marine Aerosol Reference Tank (MART) system to experimentally mimic a phytoplankton bloom via sequential addition of biological surrogates, including sterol, galactose, lipopolysaccharide, BSA protein, and dipalmitoylphosphatidylcholine. Nascent sea-spray aerosol are generated in the MART system via a continuous plunging waterfall. Exudate particle assembly in the water is monitored via dynamic light scattering (DLS) and transmission electron microscopy (TEM) to obtain both the assembly kinetics of the particles as well as particle number distributions Simultaneous characterization of both particle production rates and super-saturated particle hygroscopicity are also discussed. This study permits analysis of the controlling role of the molecular composition of dissolved organic carbon in setting the production rates of colloidal material in the surface oceans.
Tailorable Exciton Transport in Doped Peptide–Amphiphile Assemblies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Solomon, Lee A.; Sykes, Matthew E.; Wu, Yimin A.
Light-harvesting biomaterials are an attractive target in photovoltaics, photocatalysis, and artificial photosynthesis. Through peptide self-assembly, complex nanostructures can be engineered to study the role of chromophore organization during light absorption and energy transport. To this end, we demonstrate the one-dimensional transport of excitons along naturally occurring, light-harvesting, Zn-protoporphyrin IX chromophores within self-assembled peptide-amphiphile nanofibers. The internal structure of the nanofibers induces packing of the porphyrins into linear chains. We find that this peptide assembly can enable long-range exciton diffusion, yet it also induces the formation of excimers between adjacent molecules, which serve as exciton traps. Electronic coupling between neighboring porphyrinmore » molecules is confirmed by various spectroscopic methods. The exciton diffusion process is then probed through transient photoluminescence and absorption measurements and fit to a model for one-dimensional hopping. Because excimer formation impedes exciton hopping, increasing the interchromophore spacing allows for improved diffusivity, which we control through porphyrin doping levels. We show that diffusion lengths of over 60 nm are possible at low porphyrin doping, representing an order of magnitude improvement over the highest doping fractions.« less
Does Thioflavin-T Detect Oligomers Formed During Amyloid Fibril Assembly
NASA Astrophysics Data System (ADS)
Persichilli, Christopher; Hill, Shannon E.; Mast, Jason; Muschol, Martin
2011-03-01
Recent results have shown that oligomeric intermediates of amyloid fibril assembly represent the main toxic species in disorders such as Alzheimer's disease and type II diabetes. Thioflavin-T (ThT) is among the most commonly used indicator dyes for mature amyloid fibrils in vitro. We used ThT to monitor amyloid fibril formation of lysozyme (HEWL), and correlated ThT fluorescence to concurrent dynamic light scattering and atomic force microscopy measurements. Specifically, we tested the ability of ThT to discern among oligomer-free vs. oligomeric fibril assembly pathways. We found that ThT fluorescence did not detect oligomer growth; however, fluorescence increases did coincide with the formation of monomeric filaments in the oligomer-free assembly pathway. This implies that ThT fluorescence is not generally suitable for the detection of oligomeric intermediates. The results further suggest different internal structures for oligomeric vs. monomeric filaments. This research was supported, in part, by funding through the Byrd Alzheimer's Institute (ARG-2007-22) and the BITT-Florida Center of Excellence for M.M., an NSF-REU grant (DMR-1004873) for C. P. and an NSF-IGERT fellowship for S.H.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, Tao; Meyer, Travis A.; Modlin, Charles
In this paper, we describe the co-assembly of two different building units: collagen-mimetic peptides and DNA origami. Two peptides CP ++ and sCP ++ are designed with a sequence comprising a central block (Pro-Hyp-Gly) and two positively charged domains (Pro-Arg-Gly) at both N- and C-termini. Co-assembly of peptides and DNA origami two-layer (TL) nanosheets affords the formation of one-dimensional nanowires with repeating periodicity of similar to 10 nm. Structural analyses suggest a face-to-face stacking of DNA nanosheets with peptides aligned perpendicularly to the sheet surfaces. We demonstrate the potential of selective peptide-DNA association between face-to-face and edge-to-edge packing by tailoringmore » the size of DNA nanostructures. Finally, this study presents an attractive strategy to create hybrid biomolecular assemblies from peptide and DNA-based building blocks that takes advantage of the intrinsic chemical and physical properties of the respective components to encode structural and, potentially, functional complexity within readily accessible biomimetic materials.« less
Guarani, Virginia; Jardel, Claude; Chrétien, Dominique; Lombès, Anne; Bénit, Paule; Labasse, Clémence; Lacène, Emmanuelle; Bourillon, Agnès; Imbard, Apolline; Benoist, Jean-François; Dorboz, Imen; Gilleron, Mylène; Goetzman, Eric S; Gaignard, Pauline; Slama, Abdelhamid; Elmaleh-Bergès, Monique; Romero, Norma B; Rustin, Pierre; Ogier de Baulny, Hélène; Paulo, Joao A; Harper, J Wade; Schiff, Manuel
2016-01-01
Previously, we identified QIL1 as a subunit of mitochondrial contact site (MICOS) complex and demonstrated a role for QIL1 in MICOS assembly, mitochondrial respiration, and cristae formation critical for mitochondrial architecture (Guarani et al., 2015). Here, we identify QIL1 null alleles in two siblings displaying multiple clinical symptoms of early-onset fatal mitochondrial encephalopathy with liver disease, including defects in respiratory chain function in patient muscle. QIL1 absence in patients’ fibroblasts was associated with MICOS disassembly, abnormal cristae, mild cytochrome c oxidase defect, and sensitivity to glucose withdrawal. QIL1 expression rescued cristae defects, and promoted re-accumulation of MICOS subunits to facilitate MICOS assembly. MICOS assembly and cristae morphology were not efficiently rescued by over-expression of other MICOS subunits in patient fibroblasts. Taken together, these data provide the first evidence of altered MICOS assembly linked with a human mitochondrial disease and confirm a central role for QIL1 in stable MICOS complex formation. DOI: http://dx.doi.org/10.7554/eLife.17163.001 PMID:27623147
Chopra, Anant; Kutys, Matthew L; Zhang, Kehan; Polacheck, William J; Sheng, Calvin C; Luu, Rebeccah J; Eyckmans, Jeroen; Hinson, J Travis; Seidman, Jonathan G; Seidman, Christine E; Chen, Christopher S
2018-01-08
Truncating mutations in the sarcomere protein titin cause dilated cardiomyopathy due to sarcomere insufficiency. However, it remains mechanistically unclear how these mutations decrease sarcomere content in cardiomyocytes. Utilizing human induced pluripotent stem cell-derived cardiomyocytes, CRISPR/Cas9, and live microscopy, we characterize the fundamental mechanisms of human cardiac sarcomere formation. We observe that sarcomerogenesis initiates at protocostameres, sites of cell-extracellular matrix adhesion, where nucleation and centripetal assembly of α-actinin-2-containing fibers provide a template for the fusion of Z-disk precursors, Z bodies, and subsequent striation. We identify that β-cardiac myosin-titin-protocostamere form an essential mechanical connection that transmits forces required to direct α-actinin-2 centripetal fiber assembly and sarcomere formation. Titin propagates diastolic traction stresses from β-cardiac myosin, but not α-cardiac myosin or non-muscle myosin II, to protocostameres during sarcomerogenesis. Ablating protocostameres or decoupling titin from protocostameres abolishes sarcomere assembly. Together these results identify the mechanical and molecular components critical for human cardiac sarcomerogenesis. Copyright © 2017 Elsevier Inc. All rights reserved.
Self-assembly of multi-stranded RNA motifs into lattices and tubular structures
Stewart, Jaimie Marie; Subramanian, Hari K. K.; Franco, Elisa
2017-02-16
Rational design of nucleic acidmolecules yields selfassembling scaffolds with increasing complexity, size and functionality. It is an open question whether design methods tailored to build DNA nanostructures can be adapted to build RNA nanostructures with comparable features. We demonstrate the formation of RNA lattices and tubular assemblies from double crossover (DX) tiles, a canonical motif in DNA nanotechnology. Tubular structures can exceed 1 m in length, suggesting that this DX motif can produce very robust lattices. Some of these tubes spontaneously form with left-handed chirality. We obtain assemblies by using two methods: a protocol where gel-extracted RNA strands are slowlymore » annealed, and a one-pot transcription and anneal procedure. We then identify the tile nick position as a structural requirement for lattice formation. These results demonstrate that stable RNA structures can be obtained with design tools imported from DNA nanotechnology. These large assemblies could be potentially integrated with a variety of functional RNA motifs for drug or nanoparticle delivery, or for colocalization of cellular components.« less
Self-assembly of multi-stranded RNA motifs into lattices and tubular structures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stewart, Jaimie Marie; Subramanian, Hari K. K.; Franco, Elisa
Rational design of nucleic acidmolecules yields selfassembling scaffolds with increasing complexity, size and functionality. It is an open question whether design methods tailored to build DNA nanostructures can be adapted to build RNA nanostructures with comparable features. We demonstrate the formation of RNA lattices and tubular assemblies from double crossover (DX) tiles, a canonical motif in DNA nanotechnology. Tubular structures can exceed 1 m in length, suggesting that this DX motif can produce very robust lattices. Some of these tubes spontaneously form with left-handed chirality. We obtain assemblies by using two methods: a protocol where gel-extracted RNA strands are slowlymore » annealed, and a one-pot transcription and anneal procedure. We then identify the tile nick position as a structural requirement for lattice formation. These results demonstrate that stable RNA structures can be obtained with design tools imported from DNA nanotechnology. These large assemblies could be potentially integrated with a variety of functional RNA motifs for drug or nanoparticle delivery, or for colocalization of cellular components.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zabet, Mahla; Mishra, Satish; Boy, Ramiz
We present that self-assembly and mechanical properties of triblock copolymers in a mid-block selective solvent are of interest in many applications. Herein, we report physical assembly of an ABA triblock copolymer, [PMMA–PnBA–PMMA] in two different mid-block selective solvents, n-butanol and 2-ethyl-1-hexanol. Gel formation resulting from end-block associations and the corresponding changes in mechanical properties have been investigated over a temperature range of -80 °C to 60 °C, from near the solvent melting points to above the gelation temperature. Shear-rheometry, thermal analysis, and small-angle neutron scattering data reveal formation and transition of structure in these systems from a liquid state tomore » a gel state to a percolated cluster network with decrease in temperature. The aggregated PMMA end-blocks display a glass transition temperature. Finally, our results provide new understanding into the structural changes of a self-assembled triblock copolymer gel over a large length scale and wide temperature range.« less
WAVE binds Ena/VASP for enhanced Arp2/3 complex–based actin assembly
Havrylenko, Svitlana; Noguera, Philippe; Abou-Ghali, Majdouline; Manzi, John; Faqir, Fahima; Lamora, Audrey; Guérin, Christophe; Blanchoin, Laurent; Plastino, Julie
2015-01-01
The WAVE complex is the main activator of the Arp2/3 complex for actin filament nucleation and assembly in the lamellipodia of moving cells. Other important players in lamellipodial protrusion are Ena/VASP proteins, which enhance actin filament elongation. Here we examine the molecular coordination between the nucleating activity of the Arp2/3 complex and the elongating activity of Ena/VASP proteins for the formation of actin networks. Using an in vitro bead motility assay, we show that WAVE directly binds VASP, resulting in an increase in Arp2/3 complex–based actin assembly. We show that this interaction is important in vivo as well, for the formation of lamellipodia during the ventral enclosure event of Caenorhabditis elegans embryogenesis. Ena/VASP's ability to bind F-actin and profilin-complexed G-actin are important for its effect, whereas Ena/VASP tetramerization is not necessary. Our data are consistent with the idea that binding of Ena/VASP to WAVE potentiates Arp2/3 complex activity and lamellipodial actin assembly. PMID:25355952
Assembly of the first disk galaxies under radiative feedback from the first stars.
NASA Astrophysics Data System (ADS)
Pawlik, A. H.; Bromm, V.; Milosavljević, M.
The first galaxies are thought to have reionized the universe in the first billion year after the Big Bang. However, the properties of these galaxies are currently poorly understood. Here we investigate how Lyman-Werner dissociating and ionizing radiation from the first stars affects the assembly of the first galaxies in zoomed cosmological radiation-hydrodynamical simulations. We focus on a galaxy assembling inside a halo that reaches a mass of s-1m 109 M⊙ at z = 10. Photodissociation and photoionization impede gas accretion and suppress star formation in the minihalo progenitor, thus exerting a strong negative feedback on the initial phase of galaxy assembly. The radiative feedback also leads to a significant reduction in the central dark matter densities of the minihalo. The properties of the galaxy become insensitive to the inclusion of radiation once the minihalo turns into an atomic cooler. The formation of a rotationally supported extended disk inside the atomically cooling galaxy is therefore a robust outcome of our simulations. Dwarf galaxies such as simulated here will be probed in observations with the upcoming James Webb Space Telescope.
Tailorable Exciton Transport in Doped Peptide-Amphiphile Assemblies.
Solomon, Lee A; Sykes, Matthew E; Wu, Yimin A; Schaller, Richard D; Wiederrecht, Gary P; Fry, H Christopher
2017-09-26
Light-harvesting biomaterials are an attractive target in photovoltaics, photocatalysis, and artificial photosynthesis. Through peptide self-assembly, complex nanostructures can be engineered to study the role of chromophore organization during light absorption and energy transport. To this end, we demonstrate the one-dimensional transport of excitons along naturally occurring, light-harvesting, Zn-protoporphyrin IX chromophores within self-assembled peptide-amphiphile nanofibers. The internal structure of the nanofibers induces packing of the porphyrins into linear chains. We find that this peptide assembly can enable long-range exciton diffusion, yet it also induces the formation of excimers between adjacent molecules, which serve as exciton traps. Electronic coupling between neighboring porphyrin molecules is confirmed by various spectroscopic methods. The exciton diffusion process is then probed through transient photoluminescence and absorption measurements and fit to a model for one-dimensional hopping. Because excimer formation impedes exciton hopping, increasing the interchromophore spacing allows for improved diffusivity, which we control through porphyrin doping levels. We show that diffusion lengths of over 60 nm are possible at low porphyrin doping, representing an order of magnitude improvement over the highest doping fractions.
Zabet, Mahla; Mishra, Satish; Boy, Ramiz; ...
2017-03-25
We present that self-assembly and mechanical properties of triblock copolymers in a mid-block selective solvent are of interest in many applications. Herein, we report physical assembly of an ABA triblock copolymer, [PMMA–PnBA–PMMA] in two different mid-block selective solvents, n-butanol and 2-ethyl-1-hexanol. Gel formation resulting from end-block associations and the corresponding changes in mechanical properties have been investigated over a temperature range of -80 °C to 60 °C, from near the solvent melting points to above the gelation temperature. Shear-rheometry, thermal analysis, and small-angle neutron scattering data reveal formation and transition of structure in these systems from a liquid state tomore » a gel state to a percolated cluster network with decrease in temperature. The aggregated PMMA end-blocks display a glass transition temperature. Finally, our results provide new understanding into the structural changes of a self-assembled triblock copolymer gel over a large length scale and wide temperature range.« less
Jiang, Tao; Meyer, Travis A.; Modlin, Charles; ...
2017-09-26
In this paper, we describe the co-assembly of two different building units: collagen-mimetic peptides and DNA origami. Two peptides CP ++ and sCP ++ are designed with a sequence comprising a central block (Pro-Hyp-Gly) and two positively charged domains (Pro-Arg-Gly) at both N- and C-termini. Co-assembly of peptides and DNA origami two-layer (TL) nanosheets affords the formation of one-dimensional nanowires with repeating periodicity of similar to 10 nm. Structural analyses suggest a face-to-face stacking of DNA nanosheets with peptides aligned perpendicularly to the sheet surfaces. We demonstrate the potential of selective peptide-DNA association between face-to-face and edge-to-edge packing by tailoringmore » the size of DNA nanostructures. Finally, this study presents an attractive strategy to create hybrid biomolecular assemblies from peptide and DNA-based building blocks that takes advantage of the intrinsic chemical and physical properties of the respective components to encode structural and, potentially, functional complexity within readily accessible biomimetic materials.« less
Automated solar module assembly line
NASA Technical Reports Server (NTRS)
Bycer, M.
1980-01-01
The solar module assembly machine which Kulicke and Soffa delivered under this contract is a cell tabbing and stringing machine, and capable of handling a variety of cells and assembling strings up to 4 feet long which then can be placed into a module array up to 2 feet by 4 feet in a series of parallel arrangement, and in a straight or interdigitated array format. The machine cycle is 5 seconds per solar cell. This machine is primarily adapted to 3 inch diameter round cells with two tabs between cells. Pulsed heat is used as the bond technique for solar cell interconnects. The solar module assembly machine unloads solar cells from a cassette, automatically orients them, applies flux and solders interconnect ribbons onto the cells. It then inverts the tabbed cells, connects them into cell strings, and delivers them into a module array format using a track mounted vacuum lance, from which they are taken to test and cleaning benches prior to final encapsulation into finished solar modules. Throughout the machine the solar cell is handled very carefully, and any contact with the collector side of the cell is avoided or minimized.
NASA Astrophysics Data System (ADS)
Sayin, Mustafa; Dahint, Reiner
2017-03-01
Nanostructure formation via self-assembly processes offers a fast and cost-effective approach to generate surface patterns on large lateral scale. In particular, if the high precision of lithographic techniques is not required, a situation typical of many biotechnological and biomedical applications, it may be considered as the method of choice as it does not require any sophisticated instrumentation. However, in many cases the variety and complexity of the surface structures accessible with a single self-assembly based technique is limited. Here, we report on a new approach which combines two different self-assembly strategies, colloidal lithography and layer-by-layer deposition of polyelectrolytes, in order to significantly expand the spectrum of accessible patterns. In particular, flat and donut-like charge-patterned templates have been generated, which facilitate subsequent deposition of gold nanoparticles in dot, grid, ring, out-of-ring and circular patch structures. Potential applications are e.g. in the fields of biofunctional interfaces with well-defined lateral dimensions, optical devices with tuned properties, and controlled three-dimensional material growth.
Fréal, Amélie; Fassier, Coralie; Le Bras, Barbara; Bullier, Erika; De Gois, Stéphanie; Hazan, Jamilé; Hoogenraad, Casper C; Couraud, François
2016-04-20
The axon initial segment (AIS) is required for generating action potentials and maintaining neuronal polarity. Significant progress has been made in deciphering the basic building blocks composing the AIS, but the underlying mechanisms required for AIS formation remains unclear. The scaffolding protein ankyrin-G is the master-organizer of the AIS. Microtubules and their interactors, particularly end-binding proteins (EBs), have emerged as potential key players in AIS formation. Here, we show that the longest isoform of ankyrin-G (480AnkG) selectively associates with EBs via its specific tail domain and that this interaction is crucial for AIS formation and neuronal polarity in cultured rodent hippocampal neurons. EBs are essential for 480AnkG localization and stabilization at the AIS, whereas 480AnkG is required for the specific accumulation of EBs in the proximal axon. Our findings thus provide a conceptual framework for understanding how the cooperative relationship between 480AnkG and EBs induces the assembly of microtubule-AIS structures in the proximal axon. Neuronal polarity is crucial for the proper function of neurons. The assembly of the axon initial segment (AIS), which is the hallmark of early neuronal polarization, relies on the longest 480 kDa ankyrin-G isoform. The microtubule cytoskeleton and its interacting proteins were suggested to be early key players in the process of AIS formation. In this study, we show that the crosstalk between 480 kDa ankyrin-G and the microtubule plus-end tracking proteins, EBs, at the proximal axon is decisive for AIS assembly and neuronal polarity. Our work thus provides insight into the functional mechanisms used by 480 kDa ankyrin-G to drive the AIS formation and thereby to establish neuronal polarity. Copyright © 2016 the authors 0270-6474/16/364421-13$15.00/0.
Methods for forming wellbores in heated formations
Guimerans, Rosalvina Ramona; Mansure, Arthur James
2012-09-25
A method for forming a wellbore in a heated formation includes flowing liquid cooling fluid to a bottom hole assembly in a wellbore in a heated formation. At least a portion of the liquid cooling fluid is vaporized at or near a region to be cooled. Vaporizing the liquid cooling fluid absorbs heat from the region to be cooled.
Al-Hilaly, Youssra K.; Biasetti, Luca; Blakeman, Ben J. F.; Pollack, Saskia J.; Zibaee, Shahin; Abdul-Sada, Alaa; Thorpe, Julian R.; Xue, Wei-Feng; Serpell, Louise C.
2016-01-01
Parkinson’s disease (PD) is characterized by intracellular, insoluble Lewy bodies composed of highly stable α-synuclein (α-syn) amyloid fibrils. α-synuclein is an intrinsically disordered protein that has the capacity to assemble to form β-sheet rich fibrils. Oxidiative stress and metal rich environments have been implicated in triggering assembly. Here, we have explored the composition of Lewy bodies in post-mortem tissue using electron microscopy and immunogold labeling and revealed dityrosine crosslinks in Lewy bodies in brain tissue from PD patients. In vitro, we show that dityrosine cross-links in α-syn are formed by covalent ortho-ortho coupling of two tyrosine residues under conditions of oxidative stress by fluorescence and confirmed using mass-spectrometry. A covalently cross-linked dimer isolated by SDS-PAGE and mass analysis showed that dityrosine dimer was formed via the coupling of Y39-Y39 to give a homo dimer peptide that may play a key role in formation of oligomeric and seeds for fibril formation. Atomic force microscopy analysis reveals that the covalent dityrosine contributes to the stabilization of α-syn assemblies. Thus, the presence of oxidative stress induced dityrosine could play an important role in assembly and toxicity of α-syn in PD. PMID:27982082
Andreu, José M.; Schaffner-Barbero, Claudia; Huecas, Sonia; Alonso, Dulce; Lopez-Rodriguez, María L.; Ruiz-Avila, Laura B.; Núñez-Ramírez, Rafael; Llorca, Oscar; Martín-Galiano, Antonio J.
2010-01-01
Cell division protein FtsZ can form single-stranded filaments with a cooperative behavior by self-switching assembly. Subsequent condensation and bending of FtsZ filaments are important for the formation and constriction of the cytokinetic ring. PC190723 is an effective bactericidal cell division inhibitor that targets FtsZ in the pathogen Staphylococcus aureus and Bacillus subtilis and does not affect Escherichia coli cells, which apparently binds to a zone equivalent to the binding site of the antitumor drug taxol in tubulin (Haydon, D. J., Stokes, N. R., Ure, R., Galbraith, G., Bennett, J. M., Brown, D. R., Baker, P. J., Barynin, V. V., Rice, D. W., Sedelnikova, S. E., Heal, J. R., Sheridan, J. M., Aiwale, S. T., Chauhan, P. K., Srivastava, A., Taneja, A., Collins, I., Errington, J., and Czaplewski, L. G. (2008) Science 312, 1673–1675). We have found that the benzamide derivative PC190723 is an FtsZ polymer-stabilizing agent. PC190723 induced nucleated assembly of Bs-FtsZ into single-stranded coiled protofilaments and polymorphic condensates, including bundles, coils, and toroids, whose formation could be modulated with different solution conditions. Under conditions for reversible assembly of Bs-FtsZ, PC190723 binding reduced the GTPase activity and induced the formation of straight bundles and ribbons, which was also observed with Sa-FtsZ but not with nonsusceptible Ec-FtsZ. The fragment 2,6-difluoro-3-methoxybenzamide also induced Bs-FtsZ bundling. We propose that polymer stabilization by PC190723 suppresses in vivo FtsZ polymer dynamics and bacterial division. The biochemical action of PC190723 on FtsZ parallels that of the microtubule-stabilizing agent taxol on the eukaryotic structural homologue tubulin. Both taxol and PC190723 stabilize polymers against disassembly by preferential binding to each assembled protein. It is yet to be investigated whether both ligands target structurally related assembly switches. PMID:20212044
De novo centriole formation in human cells is error-prone and does not require SAS-6 self-assembly
Wang, Won-Jing; Acehan, Devrim; Kao, Chien-Han; Jane, Wann-Neng; Uryu, Kunihiro; Tsou, Meng-Fu Bryan
2015-01-01
Vertebrate centrioles normally propagate through duplication, but in the absence of preexisting centrioles, de novo synthesis can occur. Consistently, centriole formation is thought to strictly rely on self-assembly, involving self-oligomerization of the centriolar protein SAS-6. Here, through reconstitution of de novo synthesis in human cells, we surprisingly found that normal looking centrioles capable of duplication and ciliation can arise in the absence of SAS-6 self-oligomerization. Moreover, whereas canonically duplicated centrioles always form correctly, de novo centrioles are prone to structural errors, even in the presence of SAS-6 self-oligomerization. These results indicate that centriole biogenesis does not strictly depend on SAS-6 self-assembly, and may require preexisting centrioles to ensure structural accuracy, fundamentally deviating from the current paradigm. DOI: http://dx.doi.org/10.7554/eLife.10586.001 PMID:26609813
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kudo, Takuya; Inoue, Tomoya; Kita, Takashi
2008-10-01
Self-assembling process of InAs/GaAs quantum dots has been investigated by analyzing reflection high-energy electron diffraction chevron images reflecting the crystal facet structure surrounding the island. The chevron image shows dramatic changes during the island formation. From the temporal evolution of the chevron tail structure, the self-assembling process has been found to consist of four steps. The initial islands do not show distinct facet structures. Then, the island surface is covered by high-index facets, and this is followed by the formation of stable low-index facets. Finally, the flow of In atoms from the islands occurs, which contributes to flatten the wettingmore » layer. Furthermore, we have investigated the island shape evolution during the GaAs capping layer growth by using the same real-time analysis technique.« less
Membrane tension controls the assembly of curvature-generating proteins
Simunovic, Mijo; Voth, Gregory A.
2015-01-01
Proteins containing a Bin/Amphiphysin/Rvs (BAR) domain regulate membrane curvature in the cell. Recent simulations have revealed that BAR proteins assemble into linear aggregates, strongly affecting membrane curvature and its in-plane stress profile. Here, we explore the opposite question: do mechanical properties of the membrane impact protein association? By using coarse-grained molecular dynamics simulations, we show that increased surface tension significantly impacts the dynamics of protein assembly. While tensionless membranes promote a rapid formation of long-living linear aggregates of N-BAR proteins, increase in tension alters the geometry of protein association. At high tension, protein interactions are strongly inhibited. Increasing surface density of proteins leads to a wider range of protein association geometries, promoting the formation of meshes, which can be broken apart with membrane tension. Our work indicates that surface tension may play a key role in recruiting proteins to membrane-remodelling sites in the cell. PMID:26008710
Role of local assembly in the hierarchical crystallization of associating colloidal hard hemispheres
NASA Astrophysics Data System (ADS)
Lei, Qun-li; Hadinoto, Kunn; Ni, Ran
2017-10-01
Hierarchical self-assembly consisting of local associations of simple building blocks for the formation of complex structures widely exists in nature, while the essential role of local assembly remains unknown. In this work, by using computer simulations, we study a simple model system consisting of associating colloidal hemispheres crystallizing into face-centered-cubic crystals comprised of spherical dimers of hemispheres, focusing on the effect of dimer formation on the hierarchical crystallization. We found that besides assisting the crystal nucleation because of increasing the symmetry of building blocks, the association between hemispheres can also induce both reentrant melting and reentrant crystallization depending on the range of interaction. Especially when the interaction is highly sticky, we observe a novel reentrant crystallization of identical crystals, which melt only in a certain temperature range. This offers another axis in fabricating responsive crystalline materials by tuning the fluctuation of local association.
Self-assembled peptide-based nanostructures: Smart nanomaterials toward targeted drug delivery.
Habibi, Neda; Kamaly, Nazila; Memic, Adnan; Shafiee, Hadi
2016-02-01
Self-assembly of peptides can yield an array of well-defined nanostructures that are highly attractive nanomaterials for many biomedical applications such as drug delivery. Some of the advantages of self-assembled peptide nanostructures over other delivery platforms include their chemical diversity, biocompatibility, high loading capacity for both hydrophobic and hydrophilic drugs, and their ability to target molecular recognition sites. Furthermore, these self-assembled nanostructures could be designed with novel peptide motifs, making them stimuli-responsive and achieving triggered drug delivery at disease sites. The goal of this work is to present a comprehensive review of the most recent studies on self-assembled peptides with a focus on their "smart" activity for formation of targeted and responsive drug-delivery carriers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hillson, Nathan
j5 automates and optimizes the design of the molecular biological process of cloning/constructing DNA. j5 enables users to benefit from (combinatorial) multi-part scar-less SLIC, Gibson, CPEC, Golden Gate assembly, or variants thereof, for which automation software does not currently exist, without the intense labor currently associated with the process. j5 inputs a list of the DNA sequences to be assembled, along with a Genbank, FASTA, jbei-seq, or SBOL v1.1 format sequence file for each DNA source. Given the list of DNA sequences to be assembled, j5 first determines the cost-minimizing assembly strategy for each part (direct synthesis, PCR/SOE, or oligo-embedding),more » designs DNA oligos with Primer3, adds flanking homology sequences (SLIC, Gibson, and CPEC; optimized with Primer3 for CPEC) or optimized overhang sequences (Golden Gate) to the oligos and direct synthesis pieces, and utilizes BLAST to check against oligo mis-priming and assembly piece incompatibility events. After identifying DNA oligos that are already contained within a local collection for reuse, the program estimates the total cost of direct synthesis and new oligos to be ordered. In the instance that j5 identifies putative assembly piece incompatibilities (multiple pieces with high flanking sequence homology), the program suggests hierarchical subassemblies where possible. The program outputs a comma-separated value (CSV) file, viewable via Excel or other spreadsheet software, that contains assembly design information (such as the PCR/SOE reactions to perform, their anticipated sizes and sequences, etc.) as well as a properly annotated genbank file containing the sequence resulting from the assembly, and appends the local oligo library with the oligos to be ordered j5 condenses multiple independent assembly projects into 96-well format for high-throughput liquid-handling robotics platforms, and generates configuration files for the PR-PR biology-friendly robot programming language. j5 thus provides a new way to design DNA assembly procedures much more productively and efficiently, not only in terms of time, but also in terms of cost. To a large extent, however, j5 does not allow people to do something that could not be done before by hand given enough time and effort. An exception to this is that, since the very act of using j5 to design the DNA assembly process standardizes the experimental details and workflow, j5 enables a single person to concurrently perform the independent DNA construction tasks of an entire group of researchers. Currently, this is not readily possible, since separate researchers employ disparate design strategies and workflows, and furthermore, their designs and workflows are very infrequently fully captured in an electronic format which is conducive to automation.« less
Ma, Ming-Guo
2012-01-01
Hierarchically nanosized hydroxyapatite (HA) with flower-like structure assembled from nanosheets consisting of nanorod building blocks was successfully synthesized by using CaCl2, NaH2PO4, and potassium sodium tartrate via a hydrothermal method at 200°C for 24 hours. The effects of heating time and heating temperature on the products were investigated. As a chelating ligand and template molecule, the potassium sodium tartrate plays a key role in the formation of hierarchically nanostructured HA. On the basis of experimental results, a possible mechanism based on soft-template and self-assembly was proposed for the formation and growth of the hierarchically nanostructured HA. Cytotoxicity experiments indicated that the hierarchically nanostructured HA had good biocompatibility. It was shown by in-vitro experiments that mesenchymal stem cells could attach to the hierarchically nanostructured HA after being cultured for 48 hours. Objective The purpose of this study was to develop facile and effective methods for the synthesis of novel hydroxyapatite (HA) with hierarchical nanostructures assembled from independent and discrete nanobuilding blocks. Methods A simple hydrothermal approach was applied to synthesize HA by using CaCl2, NaH2PO4, and potassium sodium tartrate at 200°C for 24 hours. The cell cytotoxicity of the hierarchically nanostructured HA was tested by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay. Results HA displayed the flower-like structure assembled from nanosheets consisting of nanorod building blocks. The potassium sodium tartrate was used as a chelating ligand, inducing the formation and self-assembly of HA nanorods. The heating time and heating temperature influenced the aggregation and morphology of HA. The cell viability did not decrease with the increasing concentration of hierarchically nanostructured HA added. Conclusion A novel, simple and reliable hydrothermal route had been developed for the synthesis of hierarchically nanosized HA with flower-like structure assembled from nanosheets consisting of nanorod building blocks. The HA with the hierarchical nanostructure was formed via a soft-template assisted self-assembly mechanism. The hierarchically nanostructured HA has a good biocompatibility and essentially no in-vitro cytotoxicity. PMID:22619527
Molecular and Cellular Mechanisms of Shigella flexneri Dissemination
Agaisse, Hervé
2016-01-01
The intracellular pathogen Shigella flexneri is the causative agent of bacillary dysentery in humans. The disease is characterized by bacterial invasion of intestinal cells, dissemination within the colonic epithelium through direct spread from cell to cell, and massive inflammation of the intestinal mucosa. Here, we review the mechanisms supporting S. flexneri dissemination. The dissemination process primarily relies on actin assembly at the bacterial pole, which propels the pathogen throughout the cytosol of primary infected cells. Polar actin assembly is supported by polar expression of the bacterial autotransporter family member IcsA, which recruits the N-WASP/ARP2/3 actin assembly machinery. As motile bacteria encounter cell-cell contacts, they form plasma membrane protrusions that project into adjacent cells. In addition to the ARP2/3-dependent actin assembly machinery, protrusion formation relies on formins and myosins. The resolution of protrusions into vacuoles occurs through the collapse of the protrusion neck, leading to the formation of an intermediate membrane-bound compartment termed vacuole-like protrusions (VLPs). VLP formation requires tyrosine kinase and phosphoinositide signaling in protrusions, which relies on the integrity of the bacterial type 3 secretion system (T3SS). The T3SS is also required for escaping double membrane vacuoles through the activity of the T3SS translocases IpaB and IpaC, and the effector proteins VirA and IcsB. Numerous factors supporting envelope biogenesis contribute to IcsA exposure and maintenance at the bacterial pole, including LPS synthesis, membrane proteases, and periplasmic chaperones. Although less characterized, the assembly and function of the T3SS in the context of bacterial dissemination also relies on factors supporting envelope biogenesis. Finally, the dissemination process requires the adaptation of the pathogen to various cellular compartments through transcriptional and post-transcriptional mechanisms. PMID:27014639
Molecular and Cellular Mechanisms of Shigella flexneri Dissemination.
Agaisse, Hervé
2016-01-01
The intracellular pathogen Shigella flexneri is the causative agent of bacillary dysentery in humans. The disease is characterized by bacterial invasion of intestinal cells, dissemination within the colonic epithelium through direct spread from cell to cell, and massive inflammation of the intestinal mucosa. Here, we review the mechanisms supporting S. flexneri dissemination. The dissemination process primarily relies on actin assembly at the bacterial pole, which propels the pathogen throughout the cytosol of primary infected cells. Polar actin assembly is supported by polar expression of the bacterial autotransporter family member IcsA, which recruits the N-WASP/ARP2/3 actin assembly machinery. As motile bacteria encounter cell-cell contacts, they form plasma membrane protrusions that project into adjacent cells. In addition to the ARP2/3-dependent actin assembly machinery, protrusion formation relies on formins and myosins. The resolution of protrusions into vacuoles occurs through the collapse of the protrusion neck, leading to the formation of an intermediate membrane-bound compartment termed vacuole-like protrusions (VLPs). VLP formation requires tyrosine kinase and phosphoinositide signaling in protrusions, which relies on the integrity of the bacterial type 3 secretion system (T3SS). The T3SS is also required for escaping double membrane vacuoles through the activity of the T3SS translocases IpaB and IpaC, and the effector proteins VirA and IcsB. Numerous factors supporting envelope biogenesis contribute to IcsA exposure and maintenance at the bacterial pole, including LPS synthesis, membrane proteases, and periplasmic chaperones. Although less characterized, the assembly and function of the T3SS in the context of bacterial dissemination also relies on factors supporting envelope biogenesis. Finally, the dissemination process requires the adaptation of the pathogen to various cellular compartments through transcriptional and post-transcriptional mechanisms.
Oligonucleotide Length-Dependent Formation of Virus-Like Particles.
Maassen, Stan J; de Ruiter, Mark V; Lindhoud, Saskia; Cornelissen, Jeroen J L M
2018-05-23
Understanding the assembly pathway of viruses can contribute to creating monodisperse virus-based materials. In this study, the cowpea chlorotic mottle virus (CCMV) is used to determine the interactions between the capsid proteins of viruses and their cargo. The assembly of the capsid proteins in the presence of different lengths of short, single-stranded (ss) DNA is studied at neutral pH, at which the protein-protein interactions are weak. Chromatography, electrophoresis, microscopy, and light scattering data show that the assembly efficiency and speed of the particles increase with increasing length of oligonucleotides. The minimal length required for assembly under the conditions used herein is 14 nucleotides. Assembly of particles containing such short strands of ssDNA can take almost a month. This slow assembly process enabled the study of intermediate states, which confirmed a low cooperative assembly for CCMV and allowed for further expansion of current assembly theories. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Compression of next-generation sequencing reads aided by highly efficient de novo assembly
Jones, Daniel C.; Ruzzo, Walter L.; Peng, Xinxia
2012-01-01
We present Quip, a lossless compression algorithm for next-generation sequencing data in the FASTQ and SAM/BAM formats. In addition to implementing reference-based compression, we have developed, to our knowledge, the first assembly-based compressor, using a novel de novo assembly algorithm. A probabilistic data structure is used to dramatically reduce the memory required by traditional de Bruijn graph assemblers, allowing millions of reads to be assembled very efficiently. Read sequences are then stored as positions within the assembled contigs. This is combined with statistical compression of read identifiers, quality scores, alignment information and sequences, effectively collapsing very large data sets to <15% of their original size with no loss of information. Availability: Quip is freely available under the 3-clause BSD license from http://cs.washington.edu/homes/dcjones/quip. PMID:22904078
NASA Astrophysics Data System (ADS)
Ocakoglu, Kasim; Joya, Khurram S.; Harputlu, Ersan; Tarnowska, Anna; Gryko, Daniel T.
2014-07-01
Self-assembled supramolecular organization of nano-structured biomimetic light-harvesting modules inside solid-state nano-templates can be exploited to develop excellent light-harvesting materials for artificial photosynthetic devices. We present here a hybrid light-harvesting system mimicking the chlorosomal structures of the natural photosynthetic system using synthetic zinc chlorin units (ZnChl-C6, ZnChl-C12 and ZnChl-C18) that are self-aggregated inside the anodic aluminum oxide (AAO) nano-channel membranes. AAO nano-templates were modified with a TiO2 matrix and functionalized with long hydrophobic chains to facilitate the formation of supramolecular Zn-chlorin aggregates. The transparent Zn-chlorin nano-aggregates inside the alkyl-TiO2 modified AAO nano-channels have a diameter of ~120 nm in a 60 μm length channel. UV-Vis studies and fluorescence emission spectra further confirm the formation of the supramolecular ZnChl aggregates from monomer molecules inside the alkyl-functionalized nano-channels. Our results prove that the novel and unique method can be used to produce efficient and stable light-harvesting assemblies for effective solar energy capture through transparent and stable nano-channel ceramic materials modified with bio-mimetic molecular self-assembled nano-aggregates.Self-assembled supramolecular organization of nano-structured biomimetic light-harvesting modules inside solid-state nano-templates can be exploited to develop excellent light-harvesting materials for artificial photosynthetic devices. We present here a hybrid light-harvesting system mimicking the chlorosomal structures of the natural photosynthetic system using synthetic zinc chlorin units (ZnChl-C6, ZnChl-C12 and ZnChl-C18) that are self-aggregated inside the anodic aluminum oxide (AAO) nano-channel membranes. AAO nano-templates were modified with a TiO2 matrix and functionalized with long hydrophobic chains to facilitate the formation of supramolecular Zn-chlorin aggregates. The transparent Zn-chlorin nano-aggregates inside the alkyl-TiO2 modified AAO nano-channels have a diameter of ~120 nm in a 60 μm length channel. UV-Vis studies and fluorescence emission spectra further confirm the formation of the supramolecular ZnChl aggregates from monomer molecules inside the alkyl-functionalized nano-channels. Our results prove that the novel and unique method can be used to produce efficient and stable light-harvesting assemblies for effective solar energy capture through transparent and stable nano-channel ceramic materials modified with bio-mimetic molecular self-assembled nano-aggregates. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr01661k
Self-Assembly of a [1+1] Ionic Hexagonal Macrocycle and its Antiproliferative Activity
NASA Astrophysics Data System (ADS)
Singh, Khushwant; Gangrade, Ankit; Bhowmick, Sourav; Jana, Achintya; Mandal, Biman B.; Das, Neeladri
2018-04-01
A unique irregular hexagon was self-assembled using an organic donor clip (bearing terminal pyridyl units) and a complementary organometallic acceptor clip. The resulting metallamacrocycle was characterized by multinuclear NMR, mass spectrometry, and elemental analyses. Molecular modeling confirmed hexagonal shaped cavity for this metallamacrocycle which is a unique example of a discrete hexagonal framework self-assembled from only two building blocks. Cytotoxicity of the Pt-based acceptor tecton and the self-assembled PtII-based macrocycle was evaluated using three cancer cell lines and results were compared with cisplatin. Results confirmed a positive effect of the metallamacrocycle formation on cell growth inhibition.
Assembly of the epithelial Na+ channel evaluated using sucrose gradient sedimentation analysis.
Cheng, C; Prince, L S; Snyder, P M; Welsh, M J
1998-08-28
Three subunits, alpha, beta, and gamma, contribute to the formation of the epithelial Na+ channel. To investigate the oligomeric assembly of the channel complex, we used sucrose gradient sedimentation analysis to determine the sedimentation properties of individual subunits and heteromultimers comprised of multiple subunits. When the alpha subunit was expressed alone, it first formed an oligomeric complex with a sedimentation coefficient of 11 S, and then generated a higher order multimer of 25 S. In contrast, individual beta and gamma subunits predominately assembled into 11 S complexes. We obtained similar results with expression in cells and in vitro. When we co-expressed beta with alpha or with alpha plus gamma, the beta subunit assembled into a 25 S complex. Glycosylation of the alpha subunit was not required for assembly into a 25 S complex. We found that the alpha subunit formed intra-chain disulfide bonds. Although such bonds were not required to generate an oligomeric complex, under nonreducing conditions the alpha subunit formed a complex that migrated more homogeneously at 25 S. This suggests that intra-chain disulfide bonds may stabilize the complex. These data suggest that the epithelial Na+ channel subunits form high order oligomeric complexes and that the alpha subunit contains the information that facilitates such formation. Interestingly, the ability of the alpha, but not the beta or gamma, subunit to assemble into a 25 S homomeric complex correlates with the ability of these subunits to generate functional channels when expressed alone.
NASA Astrophysics Data System (ADS)
Han, Wei; MacEwan, Sarah R.; Chilkoti, Ashutosh; López, Gabriel P.
2015-07-01
The programmed self-assembly of block copolymers into higher order nanoscale structures offers many attractive attributes for the development of new nanomaterials for numerous applications including drug delivery and biosensing. The incorporation of biomimetic silaffin peptides in these block copolymers enables the formation of hybrid organic-inorganic materials, which can potentially enhance the utility and stability of self-assembled nanostructures. We demonstrate the design, synthesis and characterization of amphiphilic elastin-like polypeptide (ELP) diblock copolymers that undergo temperature-triggered self-assembly into well-defined spherical micelles. Genetically encoded incorporation of the silaffin R5 peptide at the hydrophilic terminus of the diblock ELP leads to presentation of the silaffin R5 peptide on the coronae of the micelles, which results in localized condensation of silica and the formation of near-monodisperse, discrete, sub-100 nm diameter hybrid ELP-silica particles. This synthesis method, can be carried out under mild reaction conditions suitable for bioactive materials, and will serve as the basis for the development and application of functional nanomaterials. Beyond silicification, the general strategies described herein may also be adapted for the synthesis of other biohybrid nanomaterials as well.The programmed self-assembly of block copolymers into higher order nanoscale structures offers many attractive attributes for the development of new nanomaterials for numerous applications including drug delivery and biosensing. The incorporation of biomimetic silaffin peptides in these block copolymers enables the formation of hybrid organic-inorganic materials, which can potentially enhance the utility and stability of self-assembled nanostructures. We demonstrate the design, synthesis and characterization of amphiphilic elastin-like polypeptide (ELP) diblock copolymers that undergo temperature-triggered self-assembly into well-defined spherical micelles. Genetically encoded incorporation of the silaffin R5 peptide at the hydrophilic terminus of the diblock ELP leads to presentation of the silaffin R5 peptide on the coronae of the micelles, which results in localized condensation of silica and the formation of near-monodisperse, discrete, sub-100 nm diameter hybrid ELP-silica particles. This synthesis method, can be carried out under mild reaction conditions suitable for bioactive materials, and will serve as the basis for the development and application of functional nanomaterials. Beyond silicification, the general strategies described herein may also be adapted for the synthesis of other biohybrid nanomaterials as well. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr01407g
ERIC Educational Resources Information Center
Hendrickson, Amy; Patterson, Brian; Ewing, Maureen
2010-01-01
The psychometric considerations and challenges associated with including constructed response items on tests are discussed along with how these issues affect the form assembly specifications for mixed-format exams. Reliability and validity, security and fairness, pretesting, content and skills coverage, test length and timing, weights, statistical…
Versatile assembly of p-carboxylatocalix[4]arene-O-alkyl ethers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kennedy, Stuart; Teat, Simon J.; Dalgarno, Scott J.
Crystallisation of lower-rim tetra-O-alkylated p-carboxylatocalix[4]arenes from pyridine results in the formation of both bi-layer and pillar type supramolecular motifs. Full alkylation at the calixarene lower rim has significant influence over the supramolecular self-assembly motif, including preclusion of pyridine guest molecules from the calixarene cavity in the solid state.
The Lead-Lead Oxide Secondary Cell as a Teaching Resource
ERIC Educational Resources Information Center
Smith, Michael J.; Fonseca, Antonio M.; Silva, M. Manuela
2009-01-01
The assembly and use of a laboratory version of a secondary cell based on the lead-lead oxide system is described. The cell is easy to construct, sufficiently robust for student use, and has a conveniently low practical capacity of about 5 mA h. This modest cell capacity allows cell assembly, electrode formation and discharge characterization…
Blanes-Mira, Clara; Merino, Jaime M; Valera, Elvira; Fernández-Ballester, Gregorio; Gutiérrez, Luis M; Viniegra, Salvador; Pérez-Payá, Enrique; Ferrer-Montiel, Antonio
2004-01-01
Synthetic peptides patterned after the C-terminus of synaptosomal associated protein of 25 kDa (SNAP25) efficiently abrogate regulated exocytosis. In contrast, the use of SNAP25 N-terminal-derived peptides to modulate SNAP receptors (SNARE) complex assembly and neurosecretion has not been explored. Here, we show that the N-terminus of SNAP25, specially the segment that encompasses 22Ala-44Ile, is essential for the formation of the SNARE complex. Peptides patterned after this protein domain are potent inhibitors of SNARE complex formation. The inhibitory activity correlated with their propensity to adopt an alpha-helical secondary structure. These peptides abrogated SNARE complex formation only when added previous to the onset of aggregate assembly. Analysis of the mechanism of action revealed that these peptides disrupted the binary complex formed by SNAP25 and syntaxin. The identified peptides inhibited Ca2+-dependent exocytosis from detergent-permeabilized excitable cells. Noteworthy, these amino acid sequences markedly protected intact hippocampal neurones against hypoglycaemia-induced, glutamate-mediated excitotoxicity with a potency that rivalled that displayed by botulinum neurotoxins. Our findings indicate that peptides patterned after the N-terminus of SNAP25 are potent inhibitors of SNARE complex formation and neuronal exocytosis. Because of their activity in intact neurones, these cell permeable peptides may be hits for antispasmodic and analgesic drug development.
Kim, Jiyoung; Kim, Yeon-Soo
2018-06-06
Human immunodeficiency virus type 1 (HIV-1) Tat, an important regulator of viral transcription, interacts with diverse cellular proteins and promotes or inhibits cell proliferation. Here, we show that ribosomal protein S3 (RPS3) plays an important role in mitosis through an interaction with α-tubulin and that Tat binds to and inhibits the localization of RPS3 in the mitotic spindle during mitosis. RPS3 colocalized with α-tubulin around chromosomes in the mitotic spindle. Depletion of RPS3 promoted α-tubulin assembly, while overexpression of RPS3 impaired α-tubulin assembly. Depletion of RPS3 resulted in aberrant mitotic spindle formation, segregation failure, and defective abscission. Moreover, ectopic expression of RPS3 rescued the cell proliferation defect in RPS3-knockdown cells. HIV-1 Tat interacted with RPS3 through its basic domain and increased the level of RPS3 in the nucleus. Expression of Tat caused defects in mitotic spindle formation and chromosome assembly in mitosis. Moreover, the localization of RPS3 in the mitotic spindle was disrupted when HIV-1 Tat was expressed in HeLa and Jurkat cells. These results suggest that Tat inhibits cell proliferation via an interaction with RPS3 and thereby disrupts mitotic spindle formation during HIV-1 infection. These results might provide insight into the mechanism underlying lymphocyte pathogenesis during HIV-1 infection.
Ionic self-assembly for functional hierarchical nanostructured materials.
Faul, Charl F J
2014-12-16
CONSPECTUS: The challenge of constructing soft functional materials over multiple length scales can be addressed by a number of different routes based on the principles of self-assembly, with the judicious use of various noncovalent interactions providing the tools to control such self-assembly processes. It is within the context of this challenge that we have extensively explored the use of an important approach for materials construction over the past decade: exploiting electrostatic interactions in our ionic self-assembly (ISA) method. In this approach, cooperative assembly of carefully chosen charged surfactants and oppositely charged building blocks (or tectons) provides a facile noncovalent route for the rational design and production of functional nanostructured materials. Generally, our research efforts have developed with an initial focus on establishing rules for the construction of novel noncovalent liquid-crystalline (LC) materials. We found that the use of double-tailed surfactant species (especially branched double-tailed surfactants) led to the facile formation of thermotropic (and, in certain cases, lyotropic) phases, as demonstrated by extensive temperature-dependent X-ray and light microscopy investigations. From this core area of activity, research expanded to cover issues beyond simple construction of anisotropic materials, turning to the challenge of inclusion and exploitation of switchable functionality. The use of photoactive azobenzene-containing ISA materials afforded opportunities to exploit both photo-orientation and surface relief grating formation. The preparation of these anisotropic LC materials was of interest, as the aim was the facile production of disposable and low-cost optical components for display applications and data storage. However, the prohibitive cost of the photo-orientation processes hampered further exploitation of these materials. We also expanded our activities to explore ISA of biologically relevant tectons, specifically deoxyguanosine monophosphate. This approach proved, in combination with block copolymer (BCP) self-assembly, very fruitful for the construction of complex and hierarchical functional materials across multiple length scales. Molecular frustration and incommensurability, which played a major role in structure formation in combination with nucleotide assembly, have now become important tools to tune supramolecular structure formation. These concepts, that is, the use of BCP assembly and incommensurability, in combination with metal-containing polymeric materials, have provided access to novel supramolecular morphologies and, more importantly, design rules to prepare such constructs. These design rules are now also being applied to the assembly of electroactive oligo(aniline)-based materials for the preparation of highly ordered functional soft materials, and present an opportunity for materials development for applications in energy storage. In this Account, we therefore discuss investigations into (i) the inclusion and preparation of supramolecular photoactive and electroactive materials; (ii) the exploitation and control over multiple noncovalent interactions to fine-tune function, internal structure, and long-range order and (iii) exploration of construction over multiple length scales by combination of ISA with well-known BCP self-assembly. Combination of ISA with tuning of volume fractions, mutual compatibility, and molecular frustration now provides a versatile tool kit to construct complex and hierarchical functional materials in a facile noncovalent way. A direct challenge for future ISA activities would certainly be the construction of functional mesoscale objects. However, within a broader scientific context, the challenge would be to exploit this powerful assembly tool for application in areas of research with societal impact, for example, energy storage and generation. The hope is that this Account will provide a platform for such future research activities and opportunities.
Kar, Sudeshna; Drew, Michael G B; Pramanik, Animesh
2011-09-01
In the biomimetic design two hydrophobic pentapetides Boc-Ile-Aib-Leu-Phe-Ala-OMe (I) and Boc-Gly-Ile-Aib-Leu-Phe-OMe (II) (Aib: α-aminoisobutyric acid) containing one Aib each are found to undergo solvent assisted self-assembly in methanol/water to form vesicular structures, which can be disrupted by simple addition of acid. The nanovesicles are found to encapsulate dye molecules that can be released by the addition of acid as confirmed by fluorescence microscopy and UV studies. The influence of solvent polarity on the morphology of the materials generated from the peptides has been examined systematically, and shows that fibrillar structures are formed in less polar chloroform/petroleum ether mixture and vesicular structures are formed in more polar methanol/water. Single crystal X-ray diffraction studies reveal that while β-sheet mediated self-assembly leads to the formation of fibrillar structures, the solvated β-sheet structure leads to the formation of vesicular structures. The results demonstrate that even hydrophobic peptides can generate vesicular structures from polar solvent which may be employed in model studies of complex biological phenomena.
Li, Chuang; Peng, Qiongfang; Wan, Xiao; Sun, Haili; Tang, Jun
2017-10-15
Promyelocytic leukemia protein (PML) nuclear bodies (NBs), which are sub-nuclear protein structures, are involved in a variety of important cellular functions. PML-NBs are assembled by PML isoforms, and contact between small ubiquitin-like modifiers (SUMOs) with the SUMO interaction motif (SIM) are critically involved in this process. PML isoforms contain a common N-terminal region and a variable C-terminus. However, the contribution of the C-terminal regions to PML-NB formation remains poorly defined. Here, using high-resolution microscopy, we show that mutation of the SIM distinctively influences the structure of NBs formed by each individual PML isoform, with that of PML-III and PML-V minimally changed, and PML-I and PML-IV dramatically impaired. We further identify several C-terminal elements that are important in regulating NB structure and provide strong evidence to suggest that the 8b element in PML-IV possesses a strong ability to interact with SUMO-1 and SUMO-2, and critically participates in NB formation. Our findings highlight the importance of PML C-termini in NB assembly and function, and provide molecular insight into the PML-NB assembly of each distinctive isoform. © 2017. Published by The Company of Biologists Ltd.
The Role Of Mergers In Galaxy Formation And Transformations
NASA Astrophysics Data System (ADS)
Conselice, Christopher J.; Mundy, Carl; Duncan, Kenneth
2017-06-01
Baryonic assembly of galaxies is one of the largest questions in extragalactic studies, which relates to many other issues, including environment, feedback, star formation, gas accretion and merging. In fact, all of these processes are related and must be accounted for and understood to paint a full picture of galaxy assembly. Perhaps the most straightforward of these processes to measure are the merging and star formation histories. I will present results of combining in a new reanalysis of the three deepest and large NIR surveys take to date: UDS, Ultra-VISTA and VIDEO as part of the REFINE project. Using consistently measured stellar masses and photometric redshifts for galaxies in these fields up to z =3, I will show how the major and minor merger rate can consistently be measured across these fields. Our new method involves a full use of the PDF for photo-zs and stellar masses. We show how the merger fraction and rate are lower than previous results and the implications for this for other methods of galaxy assembly and feedback mechanisms. Invited Talk presented at the conference Galaxy Evolution Across Time, 12-16 June, Paris, France
Formation mechanism of self-assembled polarization-dependent periodic nanostructures in β-Ga2O3
NASA Astrophysics Data System (ADS)
Nakanishi, Y.; Shimotsuma, Y.; Sakakura, M.; Shimizu, M.; Miura, K.
2018-02-01
We have successfully observed self-assembled periodic nanostructures inside Si single crystal and GaP crystal, by the femtosecond double-pulse irradiation. These results experimentally indicate that the self-assembly of the periodic nanostructures inside semiconductors triggered by ultrashort pulses irradiation are possibly associated with a direct or an indirect band gap. More recently we have also empirically classified the photoinduced bulk nanogratings into the following three types: (1) structural deficiency, (2) compressed structure, (3) partial crystallization. We have still a big question about what material properties are involved in the bulk nanograting structure formation. In this study, to expand the selectivity of the material for bulk nanograting formation, we have employed β-Ga2O3 crystals (indirect bandgap Eg 4.8 eV) as a sample for femtosecond laser irradiation. The nanograting structure inside β-Ga2O3 crystal was aligned perpendicular to the laser polarization direction. Such phenomenon is similar to the nanograting in SiO2 glass (Eg 9 eV). Moreover, to clarify the band structure, we have also investigate the photoinduced structure in Sn doped β-Ga2O3 crystals, which exhibit direct bandgap according to the first principle calculation.
Trask, T M; Ritty, T M; Broekelmann, T; Tisdale, C; Mecham, R P
1999-01-01
Aggregation of fibrillin molecules via disulphide bonds is postulated to be an early step in microfibril assembly. By expressing fragments of fibrillin 1 and fibrillin 2 in a mammalian expression system, we found that the N-terminal region of each protein directs the formation of homodimers and that disulphide bonds stabilize this interaction. A large fragment of fibrillin 1 containing much of the region downstream from the N-terminus remained as a monomer when expressed in the same cell system, indicating that this region of the protein lacks dimerization domains. This finding also confirms that the overexpression of fibrillin fragments does not in itself lead to spurious dimer formation. Pulse-chase analysis demonstrated that dimer formation occurred intracellularly, suggesting that the process of fibrillin aggregation is initiated early after biosynthesis of the molecules. These findings also implicate the N-terminal region of fibrillin 1 and fibrillin 2 in directing the formation of a dimer intermediate that aggregates to form the functional microfibril. PMID:10359653
Kataoka, Kensuke; Noto, Tomoko; Mochizuki, Kazufumi
2016-08-09
Multiple heterochromatic loci are often clustered into a higher order nuclear architecture called a heterochromatin body in diverse eukaryotes. Although phosphorylation of Heterochromatin Protein 1 (HP1) family proteins regulates heterochromatin dynamics, its role in heterochromatin bodies remains unknown. We previously reported that dephosphorylation of the HP1-like protein Pdd1p is required for the formation of heterochromatin bodies during the process of programmed DNA elimination in the ciliated protozoan Tetrahymena Here, we show that the heterochromatin body component Jub4p is required for Pdd1p phosphorylation, heterochromatin body formation, and DNA elimination. Moreover, our analyses of unphosphorylatable Pdd1p mutants demonstrate that Pdd1p phosphorylation is required for heterochromatin body formation and DNA elimination, whereas it is dispensable for local heterochromatin assembly. Therefore, both phosphorylation and the following dephosphorylation of Pdd1p are necessary to facilitate the formation of heterochromatin bodies. We suggest that Jub4p-mediated phosphorylation of Pdd1p creates a chromatin environment that is a prerequisite for subsequent heterochromatin body assembly and DNA elimination.
Vedula, Pavan; Cruz, Lissette A; Gutierrez, Natasha; Davis, Justin; Ayee, Brian; Abramczyk, Rachel; Rodriguez, Alexis J
2016-06-30
Quantifying multi-molecular complex assembly in specific cytoplasmic compartments is crucial to understand how cells use assembly/disassembly of these complexes to control function. Currently, biophysical methods like Fluorescence Resonance Energy Transfer and Fluorescence Correlation Spectroscopy provide quantitative measurements of direct protein-protein interactions, while traditional biochemical approaches such as sub-cellular fractionation and immunoprecipitation remain the main approaches used to study multi-protein complex assembly/disassembly dynamics. In this article, we validate and quantify multi-protein adherens junction complex assembly in situ using light microscopy and Fluorescence Covariance Analysis. Utilizing specific fluorescently-labeled protein pairs, we quantified various stages of adherens junction complex assembly, the multiprotein complex regulating epithelial tissue structure and function following de novo cell-cell contact. We demonstrate: minimal cadherin-catenin complex assembly in the perinuclear cytoplasm and subsequent localization to the cell-cell contact zone, assembly of adherens junction complexes, acto-myosin tension-mediated anchoring, and adherens junction maturation following de novo cell-cell contact. Finally applying Fluorescence Covariance Analysis in live cells expressing fluorescently tagged adherens junction complex proteins, we also quantified adherens junction complex assembly dynamics during epithelial monolayer formation.
Progesterone regulation of primordial follicle assembly in bovine fetal ovaries.
Nilsson, Eric E; Skinner, Michael K
2009-12-10
Fertility in mammals is dependant on females having an adequate primordial follicle pool to supply oocytes for fertilization. The formation of primordial follicles is called ovarian follicular assembly. In rats and mice progesterone and estradiol have been shown to inhibit follicle assembly with assembly occurring after birth when the pups are removed from the high-steroid maternal environment. In contrast, primordial follicle assembly in other species, such as cattle and humans, occurs during fetal development before birth. The objective of the current study is to determine if progesterone levels regulate primordial follicle assembly in fetal bovine ovaries. Ovaries and blood were collected from bovine fetuses. Interestingly, ovarian progesterone and estradiol concentrations were found to decrease with increasing fetal age and correlated to increased primordial follicle assembly. Microarray analysis of fetal ovary RNA suggests that progesterone membrane receptor and estrogen nuclear receptor are expressed. Treatment of fetal bovine ovary cultures with a higher progesterone concentration significantly decreased primordial follicle assembly. Observations indicate that progesterone affects ovarian primordial follicle assembly in cattle, as it does in rats and mice.
Allosteric Control of Icosahedral Capsid Assembly
Lazaro, Guillermo R.
2017-01-01
During the lifecycle of a virus, viral proteins and other components self-assemble to form an ordered protein shell called a capsid. This assembly process is subject to multiple competing constraints, including the need to form a thermostable shell while avoiding kinetic traps. It has been proposed that viral assembly satisfies these constraints through allosteric regulation, including the interconversion of capsid proteins among conformations with different propensities for assembly. In this article we use computational and theoretical modeling to explore how such allostery affects the assembly of icosahedral shells. We simulate assembly under a wide range of protein concentrations, protein binding affinities, and two different mechanisms of allosteric control. We find that, above a threshold strength of allosteric control, assembly becomes robust over a broad range of subunit binding affinities and concentrations, allowing the formation of highly thermostable capsids. Our results suggest that allostery can significantly shift the range of protein binding affinities that lead to successful assembly, and thus should be accounted for in models that are used to estimate interaction parameters from experimental data. PMID:27117092
Multi-scale coarse-graining for the study of assembly pathways in DNA-brick self-assembly.
Fonseca, Pedro; Romano, Flavio; Schreck, John S; Ouldridge, Thomas E; Doye, Jonathan P K; Louis, Ard A
2018-04-07
Inspired by recent successes using single-stranded DNA tiles to produce complex structures, we develop a two-step coarse-graining approach that uses detailed thermodynamic calculations with oxDNA, a nucleotide-based model of DNA, to parametrize a coarser kinetic model that can reach the time and length scales needed to study the assembly mechanisms of these structures. We test the model by performing a detailed study of the assembly pathways for a two-dimensional target structure made up of 334 unique strands each of which are 42 nucleotides long. Without adjustable parameters, the model reproduces a critical temperature for the formation of the assembly that is close to the temperature at which assembly first occurs in experiments. Furthermore, the model allows us to investigate in detail the nucleation barriers and the distribution of critical nucleus shapes for the assembly of a single target structure. The assembly intermediates are compact and highly connected (although not maximally so), and classical nucleation theory provides a good fit to the height and shape of the nucleation barrier at temperatures close to where assembly first occurs.
Progesterone Regulation of Primordial Follicle Assembly In Bovine Fetal Ovaries
Nilsson, Eric E.; Skinner, Michael K.
2009-01-01
Fertility in mammals is dependant on females having an adequate primordial follicle pool to supply oocytes for fertilization. The formation of primordial follicles is called ovarian follicular assembly. In rats and mice progesterone and estradiol have been shown to inhibit follicle assembly with assembly occurring after birth when the pups are removed from the high-steroid maternal environment. In contrast, primordial follicle assembly in other species, such as cattle and humans, occurs during fetal development before birth. The objective of the current study is to determine if progesterone levels regulate primordial follicle assembly in fetal bovine ovaries. Ovaries and blood were collected from bovine fetuses. Interestingly, ovarian progesterone and estradiol concentrations were found to decrease with increasing fetal age and correlated to increased primordial follicle assembly. Microarray analysis of fetal ovary RNA suggests that progesterone membrane receptor and estrogen nuclear receptor are expressed. Treatment of fetal bovine ovary cultures with a higher progesterone concentration significantly decreased primordial follicle assembly. Observations indicate that progesterone affects ovarian primordial follicle assembly in cattle, as it does in rats and mice. PMID:19747959
Asymmetry of intronic pre-miRNA structures in functional RISC assembly
Lin, Shi-Lung; Chang, Donald; Ying, Shao-Yao
2006-01-01
The two oligonucleotide strands of a siRNA duplex are functionally asymmetric in assembling the RNAi effector, RNA-induced gene silencing complex (RISC). Based on this asymmetric RISC assembly model in vitro, formation of a microRNA (miRNA) and complementary miRNA (miRNA*) duplex was proposed to be an essential step for the assembly of miRNA-associated RISC (miRISC). We observed here that a strong structural bias exists in the selection of a mature miRNA strand for RISC assembly in zebrafish using an intronic miRNA-like vector to target EGFP mRNA for regulation. The position of the stemloop in a precursor miRNA (pre-miRNA) was involved in the determination of miRNA–miRNA* asymmetry of the pre-miRNA stemarm, leading to different miRNA maturation during miRISC assembly. These findings suggest that the miRISC assembly is likely different from the RISC assembly model of siRNA in zebrafish, providing the first in vivo evidence for asymmetric miRISC assembly. PMID:16005165
Multi-scale coarse-graining for the study of assembly pathways in DNA-brick self-assembly
NASA Astrophysics Data System (ADS)
Fonseca, Pedro; Romano, Flavio; Schreck, John S.; Ouldridge, Thomas E.; Doye, Jonathan P. K.; Louis, Ard A.
2018-04-01
Inspired by recent successes using single-stranded DNA tiles to produce complex structures, we develop a two-step coarse-graining approach that uses detailed thermodynamic calculations with oxDNA, a nucleotide-based model of DNA, to parametrize a coarser kinetic model that can reach the time and length scales needed to study the assembly mechanisms of these structures. We test the model by performing a detailed study of the assembly pathways for a two-dimensional target structure made up of 334 unique strands each of which are 42 nucleotides long. Without adjustable parameters, the model reproduces a critical temperature for the formation of the assembly that is close to the temperature at which assembly first occurs in experiments. Furthermore, the model allows us to investigate in detail the nucleation barriers and the distribution of critical nucleus shapes for the assembly of a single target structure. The assembly intermediates are compact and highly connected (although not maximally so), and classical nucleation theory provides a good fit to the height and shape of the nucleation barrier at temperatures close to where assembly first occurs.
NASA Astrophysics Data System (ADS)
Forbes, Duncan A.; Bastian, Nate; Gieles, Mark; Crain, Robert A.; Kruijssen, J. M. Diederik; Larsen, Søren S.; Ploeckinger, Sylvia; Agertz, Oscar; Trenti, Michele; Ferguson, Annette M. N.; Pfeffer, Joel; Gnedin, Oleg Y.
2018-02-01
We discuss some of the key open questions regarding the formation and evolution of globular clusters (GCs) during galaxy formation and assembly within a cosmological framework. The current state of the art for both observations and simulations is described, and we briefly mention directions for future research. The oldest GCs have ages greater than or equal to 12.5 Gyr and formed around the time of reionization. Resolved colour-magnitude diagrams of Milky Way GCs and direct imaging of lensed proto-GCs at z˜6 with the James Webb Space Telescope (JWST) promise further insight. GCs are known to host multiple populations of stars with variations in their chemical abundances. Recently, such multiple populations have been detected in ˜2 Gyr old compact, massive star clusters. This suggests a common, single pathway for the formation of GCs at high and low redshift. The shape of the initial mass function for GCs remains unknown; however, for massive galaxies a power-law mass function is favoured. Significant progress has been made recently modelling GC formation in the context of galaxy formation, with success in reproducing many of the observed GC-galaxy scaling relations.
Forbes, Duncan A; Bastian, Nate; Gieles, Mark; Crain, Robert A; Kruijssen, J M Diederik; Larsen, Søren S; Ploeckinger, Sylvia; Agertz, Oscar; Trenti, Michele; Ferguson, Annette M N; Pfeffer, Joel; Gnedin, Oleg Y
2018-02-01
We discuss some of the key open questions regarding the formation and evolution of globular clusters (GCs) during galaxy formation and assembly within a cosmological framework. The current state of the art for both observations and simulations is described, and we briefly mention directions for future research. The oldest GCs have ages greater than or equal to 12.5 Gyr and formed around the time of reionization. Resolved colour-magnitude diagrams of Milky Way GCs and direct imaging of lensed proto-GCs at z ∼6 with the James Webb Space Telescope (JWST) promise further insight. GCs are known to host multiple populations of stars with variations in their chemical abundances. Recently, such multiple populations have been detected in ∼2 Gyr old compact, massive star clusters. This suggests a common, single pathway for the formation of GCs at high and low redshift. The shape of the initial mass function for GCs remains unknown; however, for massive galaxies a power-law mass function is favoured. Significant progress has been made recently modelling GC formation in the context of galaxy formation, with success in reproducing many of the observed GC-galaxy scaling relations.
Bastian, Nate; Gieles, Mark; Crain, Robert A.; Kruijssen, J. M. Diederik; Larsen, Søren S.; Ploeckinger, Sylvia; Agertz, Oscar; Trenti, Michele; Ferguson, Annette M. N.; Pfeffer, Joel; Gnedin, Oleg Y.
2018-01-01
We discuss some of the key open questions regarding the formation and evolution of globular clusters (GCs) during galaxy formation and assembly within a cosmological framework. The current state of the art for both observations and simulations is described, and we briefly mention directions for future research. The oldest GCs have ages greater than or equal to 12.5 Gyr and formed around the time of reionization. Resolved colour-magnitude diagrams of Milky Way GCs and direct imaging of lensed proto-GCs at z∼6 with the James Webb Space Telescope (JWST) promise further insight. GCs are known to host multiple populations of stars with variations in their chemical abundances. Recently, such multiple populations have been detected in ∼2 Gyr old compact, massive star clusters. This suggests a common, single pathway for the formation of GCs at high and low redshift. The shape of the initial mass function for GCs remains unknown; however, for massive galaxies a power-law mass function is favoured. Significant progress has been made recently modelling GC formation in the context of galaxy formation, with success in reproducing many of the observed GC-galaxy scaling relations. PMID:29507511
Reimers, Jeffrey R; Panduwinata, Dwi; Visser, Johan; Chin, Yiing; Tang, Chunguang; Goerigk, Lars; Ford, Michael J; Sintic, Maxine; Sum, Tze-Jing; Coenen, Michiel J J; Hendriksen, Bas L M; Elemans, Johannes A A W; Hush, Noel S; Crossley, Maxwell J
2015-11-10
Modern quantum chemical electronic structure methods typically applied to localized chemical bonding are developed to predict atomic structures and free energies for meso-tetraalkylporphyrin self-assembled monolayer (SAM) polymorph formation from organic solution on highly ordered pyrolytic graphite surfaces. Large polymorph-dependent dispersion-induced substrate-molecule interactions (e.g., -100 kcal mol(-1) to -150 kcal mol(-1) for tetratrisdecylporphyrin) are found to drive SAM formation, opposed nearly completely by large polymorph-dependent dispersion-induced solvent interactions (70-110 kcal mol(-1)) and entropy effects (25-40 kcal mol(-1) at 298 K) favoring dissolution. Dielectric continuum models of the solvent are used, facilitating consideration of many possible SAM polymorphs, along with quantum mechanical/molecular mechanical and dispersion-corrected density functional theory calculations. These predict and interpret newly measured and existing high-resolution scanning tunnelling microscopy images of SAM structure, rationalizing polymorph formation conditions. A wide range of molecular condensed matter properties at room temperature now appear suitable for prediction and analysis using electronic structure calculations.
Halogen-bonding-triggered supramolecular gel formation
NASA Astrophysics Data System (ADS)
Meazza, Lorenzo; Foster, Jonathan A.; Fucke, Katharina; Metrangolo, Pierangelo; Resnati, Giuseppe; Steed, Jonathan W.
2013-01-01
Supramolecular gels are topical soft materials involving the reversible formation of fibrous aggregates using non-covalent interactions. There is significant interest in controlling the properties of such materials by the formation of multicomponent systems, which exhibit non-additive properties emerging from interaction of the components. The use of hydrogen bonding to assemble supramolecular gels in organic solvents is well established. In contrast, the use of halogen bonding to trigger supramolecular gel formation in a two-component gel (‘co-gel’) is essentially unexplored, and forms the basis for this study. Here, we show that halogen bonding between a pyridyl substituent in a bis(pyridyl urea) and 1,4-diiodotetrafluorobenzene brings about gelation, even in polar media such as aqueous methanol and aqueous dimethylsulfoxide. This demonstrates that halogen bonding is sufficiently strong to interfere with competing gel-inhibitory interactions and create a ‘tipping point’ in gel assembly. Using this concept, we have prepared a halogen bond donor bis(urea) gelator that forms co-gels with halogen bond acceptors.
Developing chemical strategies for the assembly of nanoparticles into mesoscopic objects.
Maneeprakorn, Weerakanya; Malik, Mohammad A; O'Brien, Paul
2010-02-17
Nanoparticles of Au, Ag, CdS, and CdSe have been linked together by a chemical reaction to form controlled assemblies of similar or different types of nanoparticles through amido or azo linkage. The capping of nanoparticles was exchanged with bifunctional groups containing active functional groups at the tails. The reaction between the tails of the capping agents resulted in the formation of amido or azo linkages. These reactions were carried out under very dilute conditions to control the assembly and avoid the polymerization. The assemblies formed included the dimers, trimers, tetramers, and hexa- or heptamers. These reactions are the first examples for the systematic approach to establish the chemical route for the controlled assembly of nanoparticles and open the way for the fabrication of nanoparticle based devices for various application.
Ribis, John W; Ravichandran, Priyanka; Putnam, Emily E; Pishdadian, Keyan; Shen, Aimee
2017-01-01
The spore-forming bacterial pathogen Clostridium difficile is a leading cause of health care-associated infections in the United States. In order for this obligate anaerobe to transmit infection, it must form metabolically dormant spores prior to exiting the host. A key step during this process is the assembly of a protective, multilayered proteinaceous coat around the spore. Coat assembly depends on coat morphogenetic proteins recruiting distinct subsets of coat proteins to the developing spore. While 10 coat morphogenetic proteins have been identified in Bacillus subtilis , only two of these morphogenetic proteins have homologs in the Clostridia : SpoIVA and SpoVM. C. difficile SpoIVA is critical for proper coat assembly and functional spore formation, but the requirement for SpoVM during this process was unknown. Here, we show that SpoVM is largely dispensable for C. difficile spore formation, in contrast with B. subtilis . Loss of C. difficile SpoVM resulted in modest decreases (~3-fold) in heat- and chloroform-resistant spore formation, while morphological defects such as coat detachment from the forespore and abnormal cortex thickness were observed in ~30% of spoVM mutant cells. Biochemical analyses revealed that C. difficile SpoIVA and SpoVM directly interact, similarly to their B. subtilis counterparts. However, in contrast with B. subtilis , C. difficile SpoVM was not essential for SpoIVA to encase the forespore. Since C. difficile coat morphogenesis requires SpoIVA-interacting protein L (SipL), which is conserved exclusively in the Clostridia , but not the more broadly conserved SpoVM, our results reveal another key difference between C. difficile and B. subtilis spore assembly pathways. IMPORTANCE The spore-forming obligate anaerobe Clostridium difficile is the leading cause of antibiotic-associated diarrheal disease in the United States. When C. difficile spores are ingested by susceptible individuals, they germinate within the gut and transform into vegetative, toxin-secreting cells. During infection, C. difficile must also induce spore formation to survive exit from the host. Since spore formation is essential for transmission, understanding the basic mechanisms underlying sporulation in C. difficile could inform the development of therapeutic strategies targeting spores. In this study, we determine the requirement of the C. difficile homolog of SpoVM, a protein that is essential for spore formation in Bacillus subtilis due to its regulation of coat and cortex formation. We observed that SpoVM plays a minor role in C. difficile spore formation, in contrast with B. subtilis , indicating that this protein would not be a good target for inhibiting spore formation.
Ribis, John W.; Ravichandran, Priyanka; Putnam, Emily E.; Pishdadian, Keyan
2017-01-01
ABSTRACT The spore-forming bacterial pathogen Clostridium difficile is a leading cause of health care-associated infections in the United States. In order for this obligate anaerobe to transmit infection, it must form metabolically dormant spores prior to exiting the host. A key step during this process is the assembly of a protective, multilayered proteinaceous coat around the spore. Coat assembly depends on coat morphogenetic proteins recruiting distinct subsets of coat proteins to the developing spore. While 10 coat morphogenetic proteins have been identified in Bacillus subtilis, only two of these morphogenetic proteins have homologs in the Clostridia: SpoIVA and SpoVM. C. difficile SpoIVA is critical for proper coat assembly and functional spore formation, but the requirement for SpoVM during this process was unknown. Here, we show that SpoVM is largely dispensable for C. difficile spore formation, in contrast with B. subtilis. Loss of C. difficile SpoVM resulted in modest decreases (~3-fold) in heat- and chloroform-resistant spore formation, while morphological defects such as coat detachment from the forespore and abnormal cortex thickness were observed in ~30% of spoVM mutant cells. Biochemical analyses revealed that C. difficile SpoIVA and SpoVM directly interact, similarly to their B. subtilis counterparts. However, in contrast with B. subtilis, C. difficile SpoVM was not essential for SpoIVA to encase the forespore. Since C. difficile coat morphogenesis requires SpoIVA-interacting protein L (SipL), which is conserved exclusively in the Clostridia, but not the more broadly conserved SpoVM, our results reveal another key difference between C. difficile and B. subtilis spore assembly pathways. IMPORTANCE The spore-forming obligate anaerobe Clostridium difficile is the leading cause of antibiotic-associated diarrheal disease in the United States. When C. difficile spores are ingested by susceptible individuals, they germinate within the gut and transform into vegetative, toxin-secreting cells. During infection, C. difficile must also induce spore formation to survive exit from the host. Since spore formation is essential for transmission, understanding the basic mechanisms underlying sporulation in C. difficile could inform the development of therapeutic strategies targeting spores. In this study, we determine the requirement of the C. difficile homolog of SpoVM, a protein that is essential for spore formation in Bacillus subtilis due to its regulation of coat and cortex formation. We observed that SpoVM plays a minor role in C. difficile spore formation, in contrast with B. subtilis, indicating that this protein would not be a good target for inhibiting spore formation. PMID:28959733
Terminal Supraparticle Assemblies from Similarly Charged Protein Molecules and Nanoparticles
Park, Jai Il; Nguyen, Trung Dac; de Queirós Silveira, Gleiciani; Bahng, Joong Hwan; Srivastava, Sudhanshu; Sun, Kai; Zhao, Gongpu; Zhang, Peijun; Glotzer, Sharon C.; Kotov, Nicholas A.
2015-01-01
Self-assembly of proteins and inorganic nanoparticles into terminal assemblies makes possible a large family of uniformly sized hybrid colloids. These particles can be compared in terms of utility, versatility and multifunctionality to other known types of terminal assemblies. They are simple to make and offer theoretical tools for designing their structure and function. To demonstrate such assemblies, we combine cadmium telluride nanoparticles with cytochrome C protein and observe spontaneous formation of spherical supraparticles with a narrow size distribution. Such self-limiting behaviour originates from the competition between electrostatic repulsion and non-covalent attractive interactions. Experimental variation of supraparticle diameters for several assembly conditions matches predictions obtained in simulations. Similar to micelles, supraparticles can incorporate other biological components as exemplified by incorporation of nitrate reductase. Tight packing of nanoscale components enables effective charge and exciton transport in supraparticles as demonstrated by enzymatic nitrate reduction initiated by light absorption in the nanoparticle. PMID:24845400
Lipid-bilayer-assisted two-dimensional self-assembly of DNA origami nanostructures
NASA Astrophysics Data System (ADS)
Suzuki, Yuki; Endo, Masayuki; Sugiyama, Hiroshi
2015-08-01
Self-assembly is a ubiquitous approach to the design and fabrication of novel supermolecular architectures. Here we report a strategy termed `lipid-bilayer-assisted self-assembly' that is used to assemble DNA origami nanostructures into two-dimensional lattices. DNA origami structures are electrostatically adsorbed onto a mica-supported zwitterionic lipid bilayer in the presence of divalent cations. We demonstrate that the bilayer-adsorbed origami units are mobile on the surface and self-assembled into large micrometre-sized lattices in their lateral dimensions. Using high-speed atomic force microscopy imaging, a variety of dynamic processes involved in the formation of the lattice, such as fusion, reorganization and defect filling, are successfully visualized. The surface modifiability of the assembled lattice is also demonstrated by in situ decoration with streptavidin molecules. Our approach provides a new strategy for preparing versatile scaffolds for nanofabrication and paves the way for organizing functional nanodevices in a micrometer space.
Lipid-bilayer-assisted two-dimensional self-assembly of DNA origami nanostructures
Endo, Masayuki; Sugiyama, Hiroshi
2015-01-01
Self-assembly is a ubiquitous approach to the design and fabrication of novel supermolecular architectures. Here we report a strategy termed ‘lipid-bilayer-assisted self-assembly' that is used to assemble DNA origami nanostructures into two-dimensional lattices. DNA origami structures are electrostatically adsorbed onto a mica-supported zwitterionic lipid bilayer in the presence of divalent cations. We demonstrate that the bilayer-adsorbed origami units are mobile on the surface and self-assembled into large micrometre-sized lattices in their lateral dimensions. Using high-speed atomic force microscopy imaging, a variety of dynamic processes involved in the formation of the lattice, such as fusion, reorganization and defect filling, are successfully visualized. The surface modifiability of the assembled lattice is also demonstrated by in situ decoration with streptavidin molecules. Our approach provides a new strategy for preparing versatile scaffolds for nanofabrication and paves the way for organizing functional nanodevices in a micrometer space. PMID:26310995
Fan, Wen; Chen, Min; Yang, Shu; Wu, Limin
2015-01-01
Self-assembly of colloidal particles into colloidal films has many actual and potential applications. While various strategies have been developed to direct the assembly of colloidal particles, fabrication of crack-free and transferrable colloidal film with controllable crystal structures still remains a major challenge. Here we show a centrifugation-assisted assembly of colloidal silica spheres into free-standing colloidal film by using the liquid/liquid interfaces of three immiscible phases. Through independent control of centrifugal force and interparticle electrostatic repulsion, polycrystalline, single-crystalline and quasi-amorphous structures can be readily obtained. More importantly, by dehydration of silica particles during centrifugation, the spontaneous formation of capillary water bridges between particles enables the binding and pre-shrinkage of the assembled array at the fluid interface. Thus the assembled colloidal films are not only crack-free, but also robust and flexible enough to be easily transferred on various planar and curved substrates. PMID:26159121
RPA binds histone H3-H4 and functions in DNA replication-coupled nucleosome assembly.
Liu, Shaofeng; Xu, Zhiyun; Leng, He; Zheng, Pu; Yang, Jiayi; Chen, Kaifu; Feng, Jianxun; Li, Qing
2017-01-27
DNA replication-coupled nucleosome assembly is essential to maintain genome integrity and retain epigenetic information. Multiple involved histone chaperones have been identified, but how nucleosome assembly is coupled to DNA replication remains elusive. Here we show that replication protein A (RPA), an essential replisome component that binds single-stranded DNA, has a role in replication-coupled nucleosome assembly. RPA directly binds free H3-H4. Assays using a synthetic sequence that mimics freshly unwound single-stranded DNA at replication fork showed that RPA promotes DNA-(H3-H4) complex formation immediately adjacent to double-stranded DNA. Further, an RPA mutant defective in H3-H4 binding exhibited attenuated nucleosome assembly on nascent chromatin. Thus, we propose that RPA functions as a platform for targeting histone deposition to replication fork, through which RPA couples nucleosome assembly with ongoing DNA replication. Copyright © 2017, American Association for the Advancement of Science.
Ait-Goughoulte, Malika; Hourioux, Christophe; Patient, Romuald; Trassard, Sylvie; Brand, Denys; Roingeard, Philippe
2006-01-01
SUMMARY Hepatitis C virus (HCV) core protein, expressed with a Semliki forest virus (SFV) replicon, self-assembles into HCV-like particles (HCV-LP) at the endoplasmic reticulum (ER) membrane, providing an opportunity to study HCV assembly and morphogenesis by electron microscopy. We used this model to investigate whether the processing of the HCV core protein by the signal peptide peptidase (SPP) is required for the HCV-LP assembly. We designed several mutants as there are conflicting reports concerning the cleavage of mutant proteins by SPP. Production of the only core mutant protein that escaped SPP processing led to the formation of multiple layers of electron-dense ER membrane, with no evidence of HCV-LP assembly. Our data shed light on the HCV core residues involved in SPP cleavage and suggest that this cleavage is essential for HCV assembly. PMID:16528035
How HIV-1 Gag assembles in cells: putting together pieces of the puzzle
Lingappa, Jaisri R; Reed, Jonathan C; Tanaka, Motoko; Chutiraka, Kasana; Robinson, Bridget A
2014-01-01
During the late stage of the viral life cycle, HIV-1 Gag assembles into a spherical immature capsid, and undergoes budding, release, and maturation. Here we review events involved in immature capsid assembly from the perspective of five different approaches used to study this process: mutational analysis, structural studies, assembly of purified recombinant Gag, assembly of newly-translated Gag in a cell-free system, and studies in cells using biochemical and imaging techniques. We summarize key findings obtained using each approach, point out where there is consensus, and highlight unanswered questions. Particular emphasis is placed on reconciling data suggesting that Gag assembles by two different paths, depending on the assembly environment. Specifically, in assembly systems that lack cellular proteins, high concentrations of Gag can spontaneously assemble using purified nucleic acid as a scaffold. However, in the more complex intracellular environment, barriers that limit self-assembly are present in the form of cellular proteins, organelles, host defenses, and the absence of free nucleic acid. To overcome these barriers and promote efficient immature capsid formation in an unfavorable environment, Gag appears to utilize an energy-dependent, host-catalyzed, pathway of assembly intermediates in cells. Overall, we show how data obtained using a variety of techniques has led to our current understanding of HIV assembly. PMID:25066606
Structural design principles for self-assembled coordination polygons and polyhedra.
Young, Neil J; Hay, Benjamin P
2013-02-18
Strategies for the design of ligands that combine with metal ions to form high-symmetry coordination assemblies are reviewed. Evaluation of crystal structure evidence reveals that prior design approaches, based on the concept of complementary bonding vector angles, fail to predict the majority of known examples. After explaining the reasons for this failure, it is shown how an alternative approach, de novo structure-based design, provides a practical method that predicts a much wider range of component shapes encoded to direct the formation of such assemblies.
Ordered Self-Assembled Monolayers of Peptide Nucleic Acids with DNA Recognition Capability
NASA Astrophysics Data System (ADS)
Briones, C.; Mateo-Marti, E.; Gómez-Navarro, C.; Parro, V.; Román, E.; Martín-Gago, J. A.
2004-11-01
We report on the formation of ordered self-assembled monolayers (SAMs) of single-stranded peptide nucleic acids (ssPNA). In spite of their remarkable length (7nm) thiolated PNAs assemble standing up on gold surfaces similarly to the SAMs of short alkanethiols. SAMs of ssPNA recognize complementary nucleic acids, acting as specific biosensors that discriminate even a point mutation in target ssDNA. These results are obtained by surface characterization techniques that avoid labeling of the target molecule: x-ray photoemission, x-ray absorption and atomic force microscopy.
ten Cate, A Tessa; Dankers, Patricia Y W; Sijbesma, Rint P; Meijer, E W
2005-07-22
Stereoselective cyclization of cystine-based bifunctional 2-ureido-4[1H]-pyrimidinone derivatives in CDCl(3) solutions was demonstrated by (1)H NMR spectroscopy. Thiolate-catalyzed disulfide exchange in solution led to the equilibration of different diastereomers of 1. At low concentrations, where formation of cyclic assemblies is the dominant mode of association, the molecules act as their own template. At these concentrations the meso diastereomer is formed preferentially, indicating a higher stability of its cyclic assemblies under the applied conditions, in comparison to the other diastereomers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jung, Seung-Ho; Chen, Chen; Cha, Sang-Ho
Detailed understanding of the mechanism of dielectrophoresis (DEP) and the drastic improvement of its efficiency for small size-quantized nanoparticles (NPs) open the door for the convergence of microscale and nanoscale technologies. It is hindered, however, by the severe reduction of DEP force in particles with volumes below a few hundred cubic nanometers. We report here DEP assembly of size-quantized CdTe nanoparticles (NPs) with a diameter of 4.2 nm under AC voltage of 4–10 V. Calculations of the nominal DEP force for these NPs indicate that it is several orders of magnitude smaller than the force of the Brownian motion destroyingmore » the assemblies even for the maximum applied AC voltage. Despite this, very efficient formation of NP bridges between electrodes separated by a gap of 2 μm was observed even for AC voltages of 6 V and highly diluted NP dispersions. The resolution of this conundrum was found in the intrinsic ability of CdTe NPs to self-assemble. The species being assembled by DEP are substantially bigger than the individual NPs. DEP assembly should be treated as a process taking place for NP chains with a length of ~140 nm. The self-assembled chains increase the nominal volume where the polarization of the particles takes place, while retaining the size-quantized nature of the material. The produced NP bridges were found to be photoactive, producing photocurrent upon illumination. DEP bridges of quantum confined NPs can be used in fast parallel manufacturing of novel MEMS components, sensors, and optical and optoelectronic devices. Purposeful engineering of self-assembling properties of NPs makes possible further facilitation of the DEP and increase of complexity of the produced nano- and microscale structures.« less
Biomimetic assembly of polypeptide-stabilized CaCO(3) nanoparticles.
Zhang, Zhongping; Gao, Daming; Zhao, Hui; Xie, Chenggen; Guan, Guijian; Wang, Dapeng; Yu, Shu-Hong
2006-05-04
In this paper, we report a simple polypeptide-directed strategy for fabricating large spherical assembly of CaCO(3) nanoparticles. Stepwise growth and assembly of a large number of nanoparticles have been observed, from the formation of an amorphous liquidlike CaCO(3)-polypeptide precursor, to the crystallization and stabilization of polypeptide-capped nanoparticles, and eventually, the spherical assembly of nanoparticles. The "soft" poly(aspartate)-capping layer binding on a nanoparticle surface resulted in the unusual soft nature of nanoparticle assembly, providing a reservoir of primary nanoparticles with a moderate mobility, which is the basis of a new strategy for reconstructing nanoparticle assembly into complex nanoparticle architectures. Moreover, the findings of the secondary assembly of nanoparticle microspheres and the morphology transformation of nanoparticle assembly demonstrate a flexible and controllable pathway for manipulating the shapes and structures of nanoparticle assembly. In addition, the combination of the polypeptide with a double hydrophilic block copolymer (DHBC) allows it to possibly further control the shape and complexity of the nanoparticle assembly. A clear perspective is shown here that more complex nanoparticle materials could be created by using "soft" biological proteins or peptides as a mediating template at the organic-inorganic interface.
The yin and yang of formative research in designing serious (exer-)games
USDA-ARS?s Scientific Manuscript database
Despite its relevance, formative research on games may be an undervalued part of the game development process. At the 2014 International Society of Behavioral Nutrition and Physical Activity exergaming preconference satellite meeting, a roundtable discussion was held to assemble experiences and sugg...
Imaging enzyme-triggered self-assembly of small molecules inside live cells
Gao, Yuan; Shi, Junfeng; Yuan, Dan; Xu, Bing
2012-01-01
Self-assembly of small molecules in water to form nanofibers, besides generating sophisticated biomaterials, promises a simple system inside cells for regulating cellular processes. But lack of a convenient approach for studying the self-assembly of small molecules inside cells hinders the development of such systems. Here we report a method to image enzyme-triggered self-assembly of small molecules inside live cells. After linking a fluorophore to a self-assembly motif to make a precursor, we confirmed by 31P NMR and rheology that enzyme-triggered conversion of the precursor to a hydrogelator results in the formation of a hydrogel via self-assembly. The imaging contrast conferred by the nanofibers of the hydrogelators allowed the evaluation of intracellular self-assembly; the dynamics, and the localization of the nanofibers of the hydrogelators in live cells. This approach explores supramolecular chemistry inside cells and may lead to new insights, processes, or materials at the interface of chemistry and biology. PMID:22929790
Extracellular chloride signals collagen IV network assembly during basement membrane formation
Cummings, Christopher F.; Pedchenko, Vadim; Brown, Kyle L.; Colon, Selene; Rafi, Mohamed; Jones-Paris, Celestial; Pokydeshava, Elena; Liu, Min; Pastor-Pareja, Jose C.; Stothers, Cody; Ero-Tolliver, Isi A.; McCall, A. Scott; Vanacore, Roberto; Bhave, Gautam; Santoro, Samuel; Blackwell, Timothy S.; Zent, Roy; Pozzi, Ambra
2016-01-01
Basement membranes are defining features of the cellular microenvironment; however, little is known regarding their assembly outside cells. We report that extracellular Cl− ions signal the assembly of collagen IV networks outside cells by triggering a conformational switch within collagen IV noncollagenous 1 (NC1) domains. Depletion of Cl− in cell culture perturbed collagen IV networks, disrupted matrix architecture, and repositioned basement membrane proteins. Phylogenetic evidence indicates this conformational switch is a fundamental mechanism of collagen IV network assembly throughout Metazoa. Using recombinant triple helical protomers, we prove that NC1 domains direct both protomer and network assembly and show in Drosophila that NC1 architecture is critical for incorporation into basement membranes. These discoveries provide an atomic-level understanding of the dynamic interactions between extracellular Cl− and collagen IV assembly outside cells, a critical step in the assembly and organization of basement membranes that enable tissue architecture and function. Moreover, this provides a mechanistic framework for understanding the molecular pathobiology of NC1 domains. PMID:27216258
Multiple assembly chaperones govern biogenesis of the proteasome regulatory particle base.
Funakoshi, Minoru; Tomko, Robert J; Kobayashi, Hideki; Hochstrasser, Mark
2009-05-29
The central protease of eukaryotes, the 26S proteasome, has a 20S proteolytic core particle (CP) and an attached 19S regulatory particle (RP). The RP is further subdivided into lid and base subcomplexes. Little is known about RP assembly. Here, we show that four conserved assembly factors govern biogenesis of the yeast RP base. Nas2 forms a complex with the Rpt4 and Rpt5 ATPases and enhances 26S proteasome formation in vivo and in vitro. Other RP subcomplexes contain Hsm3, which is related to mammalian proteasome subunit S5b. Hsm3 also contributes to base assembly. Larger Hsm3-containing complexes include two additional proteins, Nas6 and Rpn14, which function as assembly chaperones as well. Specific deletion combinations affecting these four factors cause severe perturbations to RP assembly. Our results demonstrate that proteasomal RP biogenesis requires multiple, functionally overlapping chaperones and suggest a model in which subunits form specific subcomplexes that then assemble into the base.
Visualization of Bacterial Microcompartment Facet Assembly Using High-Speed Atomic Force Microscopy
Sutter, Markus; Faulkner, Matthew; Aussignargues, Clément; ...
2015-11-30
Bacterial microcompartments (BMCs) are proteinaceous organelles widespread among bacterial phyla. They compartmentalize enzymes within a selectively permeable shell and play important roles in CO 2 fixation, pathogenesis, and microbial ecology. Here, we combine X-ray crystallography and high-speed atomic force microscopy to characterize, at molecular resolution, the structure and dynamics of BMC shell facet assembly. Our results show that preformed hexamers assemble into uniformly oriented shell layers, a single hexamer thick. We also observe the dynamic process of shell facet assembly. Shell hexamers can dissociate from and incorporate into assembled sheets, indicating a flexible intermolecular interaction. Furthermore, we demonstrate that themore » self-assembly and dynamics of shell proteins are governed by specific contacts at the interfaces of shell proteins. Our study provides novel insights into the formation, interactions, and dynamics of BMC shell facets, which are essential for the design and engineering of self-assembled biological nanoreactors and scaffolds based on BMC architectures.« less
Flexible Silk-Inorganic Nanocomposites: From Transparent to Highly Reflective
2010-02-16
assembly. The organized assembly of the silk fibroin with clay ( montmorillonite ) nanosheets results in highly transparent nanoscale films with...mechanical and optical properties of the nanocomposites. For that purpose we utilized individually dispersed, aluminosilicate layers of montmorillonite (MMT...to the thickness of an individual aluminosilicate layer of montmorillonite ,[43] and indicates that monolayer formation occurs upon adsorption (Fig. 2a
Photogeneration of Charge Carriers in Bilayer Assemblies of Conjugated Rigid-Rod Polymers
1994-07-08
photoinduced electron transfer and exciplex formation at the bilayer interface. Thus photocarrier generation on photoexcitation of the conjugated rigid...rod polymers in the bilayer occurs by photoinduced electron transfer, forming intermolecular exciplexes which dissociate efficiently in electric field...photogeneration, conjugated rigid-rod polymers, is. MACI COD bilayer assemblies, electron transfer, exciplexes . 11. SEOJUTY CLASUICA 10. 51(11MIE CLASSIMIAVION
Evaluating Statistical Targets for Assembling Parallel Mixed-Format Test Forms
ERIC Educational Resources Information Center
Debeer, Dries; Ali, Usama S.; van Rijn, Peter W.
2017-01-01
Test assembly is the process of selecting items from an item pool to form one or more new test forms. Often new test forms are constructed to be parallel with an existing (or an ideal) test. Within the context of item response theory, the test information function (TIF) or the test characteristic curve (TCC) are commonly used as statistical…
NASA Astrophysics Data System (ADS)
Lin, Haixin; Lee, Sangmin; Sun, Lin; Spellings, Matthew; Engel, Michael; Glotzer, Sharon C.; Mirkin, Chad A.
2017-03-01
DNA-programmable assembly has been used to deliberately synthesize hundreds of different colloidal crystals spanning dozens of symmetries, but the complexity of the achieved structures has so far been limited to small unit cells. We assembled DNA-modified triangular bipyramids (~250-nanometer long edge, 177-nanometer short edge) into clathrate architectures. Electron microscopy images revealed that at least three different structures form as large single-domain architectures or as multidomain materials. Ordered assemblies, isostructural to clathrates, were identified with the help of molecular simulations and geometric analysis. These structures are the most sophisticated architectures made via programmable assembly, and their formation can be understood based on the shape of the nanoparticle building blocks and mode of DNA functionalization.
Tablet—next generation sequence assembly visualization
Milne, Iain; Bayer, Micha; Cardle, Linda; Shaw, Paul; Stephen, Gordon; Wright, Frank; Marshall, David
2010-01-01
Summary: Tablet is a lightweight, high-performance graphical viewer for next-generation sequence assemblies and alignments. Supporting a range of input assembly formats, Tablet provides high-quality visualizations showing data in packed or stacked views, allowing instant access and navigation to any region of interest, and whole contig overviews and data summaries. Tablet is both multi-core aware and memory efficient, allowing it to handle assemblies containing millions of reads, even on a 32-bit desktop machine. Availability: Tablet is freely available for Microsoft Windows, Apple Mac OS X, Linux and Solaris. Fully bundled installers can be downloaded from http://bioinf.scri.ac.uk/tablet in 32- and 64-bit versions. Contact: tablet@scri.ac.uk PMID:19965881
Methods of fabricating a conductor assembly having a curvilinear arcuate shape
Meinke, Rainer [Melbourne, FL
2011-08-23
A method for manufacture of a conductor assembly along a curvilinear axis. The assembly may be of the type which, when conducting current, generates a magnetic field or in which, in the presence of a changing magnetic field, a voltage is induced. In one example, the assembly includes a structure having a curved shape extending along the axis. A surface of the structure is positioned for formation of a channel along the curved shape. The structure is rotated about a second axis. While rotating the structure, a channel is formed in the surface that results in a helical shape in the structure. The channel extends both around and along the first axis.
Painting with light-powered bacteria.
Arlt, Jochen; Martinez, Vincent A; Dawson, Angela; Pilizota, Teuta; Poon, Wilson C K
2018-02-22
Self-assembly is a promising route for micro- and nano-fabrication with potential to revolutionise many areas of technology, including personalised medicine. Here we demonstrate that external control of the swimming speed of microswimmers can be used to self assemble reconfigurable designer structures in situ. We implement such 'smart templated active self assembly' in a fluid environment by using spatially patterned light fields to control photon-powered strains of motile Escherichia coli bacteria. The physics and biology governing the sharpness and formation speed of patterns is investigated using a bespoke strain designed to respond quickly to changes in light intensity. Our protocol provides a distinct paradigm for self-assembly of structures on the 10 μm to mm scale.
Human Foamy Virus Capsid Formation Requires an Interaction Domain in the N Terminus of Gag
Tobaly-Tapiero, Joelle; Bittoun, Patricia; Giron, Marie-Lou; Neves, Manuel; Koken, Marcel; Saïb, Ali; de Thé, Hugues
2001-01-01
Retroviral Gag expression is sufficient for capsid assembly, which occurs through interaction between distinct Gag domains. Human foamy virus (HFV) capsids assemble within the cytoplasm, although their budding, which mainly occurs in the endoplasmic reticulum, requires the presence of homologous Env. Yet little is known about the molecular basis of HFV Gag precursor assembly. Using fusions between HFV Gag and a nuclear reporter protein, we have identified a strong interaction domain in the N terminus of HFV Gag which is predicted to contain a conserved coiled-coil motif. Deletion within this region in an HFV provirus abolishes viral production through inhibition of capsid assembly. PMID:11287585
VAGUE: a graphical user interface for the Velvet assembler.
Powell, David R; Seemann, Torsten
2013-01-15
Velvet is a popular open-source de novo genome assembly software tool, which is run from the Unix command line. Most of the problems experienced by new users of Velvet revolve around constructing syntactically and semantically correct command lines, getting input files into acceptable formats and assessing the output. Here, we present Velvet Assembler Graphical User Environment (VAGUE), a multi-platform graphical front-end for Velvet. VAGUE aims to make sequence assembly accessible to a wider audience and to facilitate better usage amongst existing users of Velvet. VAGUE is implemented in JRuby and targets the Java Virtual Machine. It is available under an open-source GPLv2 licence from http://www.vicbioinformatics.com/. torsten.seemann@monash.edu.
Alivisatos, A. Paul; Colvin, Vicki L.
1998-01-01
Methods are described for attaching semiconductor nanocrystals to solid inorganic surfaces, using self-assembled bifunctional organic monolayers as bridge compounds. Two different techniques are presented. One relies on the formation of self-assembled monolayers on these surfaces. When exposed to solutions of nanocrystals, these bridge compounds bind the crystals and anchor them to the surface. The second technique attaches nanocrystals already coated with bridge compounds to the surfaces. Analyses indicate the presence of quantum confined clusters on the surfaces at the nanolayer level. These materials allow electron spectroscopies to be completed on condensed phase clusters, and represent a first step towards synthesis of an organized assembly of clusters. These new products are also disclosed.
Cushen, Julia D; Otsuka, Issei; Bates, Christopher M; Halila, Sami; Fort, Sébastien; Rochas, Cyrille; Easley, Jeffrey A; Rausch, Erica L; Thio, Anthony; Borsali, Redouane; Willson, C Grant; Ellison, Christopher J
2012-04-24
Block copolymers demonstrate potential for use in next-generation lithography due to their ability to self-assemble into well-ordered periodic arrays on the 3-100 nm length scale. The successful lithographic application of block copolymers relies on three critical conditions being met: high Flory-Huggins interaction parameters (χ), which enable formation of <10 nm features, etch selectivity between blocks for facile pattern transfer, and thin film self-assembly control. The present paper describes the synthesis and self-assembly of block copolymers composed of naturally derived oligosaccharides coupled to a silicon-containing polystyrene derivative synthesized by activators regenerated by electron transfer atom transfer radical polymerization. The block copolymers have a large χ and a low degree of polymerization (N) enabling formation of 5 nm feature diameters, incorporate silicon in one block for oxygen reactive ion etch contrast, and exhibit bulk and thin film self-assembly of hexagonally packed cylinders facilitated by a combination of spin coating and solvent annealing techniques. As observed by small angle X-ray scattering and atomic force microscopy, these materials exhibit some of the smallest block copolymer features in the bulk and in thin films reported to date.
Young, Lydia M.; Tu, Ling-Hsien; Raleigh, Daniel P.; Ashcroft, Alison E.
2017-01-01
Although amyloid assembly in vitro is commonly investigated using single protein sequences, fibril formation in vivo can be more heterogeneous, involving co-assembly of proteins of different length, sequence and/or post-translational modifications. Emerging evidence suggests that co-polymerization can alter the rate and/or mechanism of aggregation and can contribute to pathogenicity. Electrospray ionization-ion mobility spectrometry-mass spectrometry (ESI-IMS-MS) is uniquely suited to the study of these heterogeneous ensembles. Here, ESI-IMS-MS combined with analysis of fibrillation rates using thioflavin T (ThT) fluorescence, is used to track the course of aggregation of variants of islet-amyloid polypeptide (IAPP) in isolation and in pairwise mixtures. We identify a sub-population of extended monomers as the key precursors of amyloid assembly, and reveal that the fastest aggregating sequence in peptide mixtures determines the lag time of fibrillation, despite being unable to cross-seed polymerization. The results demonstrate that co-polymerization of IAPP sequences radically alters the rate of amyloid assembly by altering the conformational properties of the mixed oligomers that form. PMID:28970890
NASA Astrophysics Data System (ADS)
Korkmaz, Nuriye; Ostermann, Kai; Rödel, Gerhard
2011-03-01
Surface layer proteins have the appealing property to self-assemble in nanosized arrays in solution and on solid substrates. In this work, we characterize the formation of assembly structures of the recombinant surface layer protein SbsC of Geobacillus stearothermophilus ATTC 12980, which was tagged with enhanced green fluorescent protein and expressed in the yeast Saccharomyces cerevisiae. The tubular structures formed by the protein in vivo are retained upon bursting the cells by osmotic shock; however, their average length is decreased. During dialysis, monomers obtained by treatment with chaotropic chemicals recrystallize again to form tube-like structures. This process is strictly dependent on calcium (Ca2 + ) ions, with an optimal concentration of 10 mM. Further increase of the Ca2 + concentration results in multiple non-productive nucleation points. We further show that the lengths of the S-layer assemblies increase with time and can be controlled by pH. After 48 h, the average length at pH 9.0 is 4.13 µm compared to 2.69 µm at pH 5.5. Successful chemical deposition of platinum indicates the potential of recrystallized mSbsC-eGFP structures for nanobiotechnological applications.
NASA Astrophysics Data System (ADS)
Goswami, Monojoy; Sumpter, Bobby; Kilbey, Michael
Here we report the formation of phase separated BCP-surfactant complexes resulting from the electrostatic self-assembly of charge-neutral block copolymers with oppositely charged surfactants. Complexation behaviors of oppositely charged polyelectrolytes has gained considerable attention in the field of soft condensed matter physics due to their potential application as functional nanomaterials for batteries, wastewater treatment and drug delivery systems. Numerous experiments have examined the self-assembled structures resulting from complexation of charge-neutral BCP and surfactants, however, there is a lack of comprehensive understanding at the fundamental level. To help bridge this gap, we use, MD simulations to study self-assembly and dynamics of the BCP-surfactant complex at the molecular level. Our results show an overcharging effect in BCPs with hydrophobic neutral blocks and a formation of core-shell colloidal structure. Hydrophilic neutral blocks, on the other hand, show stable, hairy colloidal structures with neutral blocks forming a loosely-bound, fuzzy outer layer. Our results qualitatively agree with previous SANS and SAXS experiments. This work was supported by the U.S. Department of Energy (DOE), Office of Basic Energy Sciences, Materials Science and Engineering Division.
Whisker Formation on SAC305 Soldered Assemblies
NASA Astrophysics Data System (ADS)
Meschter, S.; Snugovsky, P.; Bagheri, Z.; Kosiba, E.; Romansky, M.; Kennedy, J.; Snugovsky, L.; Perovic, D.
2014-11-01
This article describes the results of a whisker formation study on SAC305 assemblies, evaluating the effects of lead-frame materials and cleanliness in different environments: low-stress simulated power cycling (50-85°C thermal cycling), thermal shock (-55°C to 85°C), and high temperature/high humidity (85°C/85% RH). Cleaned and contaminated small outline transistors, large leaded quad flat packs (QFP), plastic leaded chip carrier packages, and solder balls with and without rare earth elements (REE) were soldered to custom designed test boards with Sn3Ag0.5Cu (SAC305) solder. After assembly, all the boards were cleaned, and half of them were recontaminated (1.56 µg/cm2 Cl-). Whisker length, diameter, and density were measured. Detailed metallurgical analysis on components before assembly and on solder joints before and after testing was performed. It was found that whiskers grow from solder joint fillets, where the thickness is less than 25 µm, unless REE was present. The influence of lead-frame and solder ball material, microstructure, cleanliness, and environment on whisker characteristics is discussed. This article provides detailed metallurgical observations and select whisker length data obtained during this multiyear testing program.
Microscale Mechanics of Actin Networks During Dynamic Assembly and Dissociation
NASA Astrophysics Data System (ADS)
Gurmessa, Bekele; Robertson-Anderson, Rae; Ross, Jennifer; Nguyen, Dan; Saleh, Omar
Actin is one of the key components of the cytoskeleton, enabling cells to move and divide while maintaining shape by dynamic polymerization, dissociation and crosslinking. Actin polymerization and network formation is driven by ATP hydrolysis and varies depending on the concentrations of actin monomers and crosslinking proteins. The viscoelastic properties of steady-state actin networks have been well-characterized, yet the mechanical properties of these non-equilibrium systems during dynamic assembly and disassembly remain to be understood. We use semipermeable microfluidic devices to induce in situ dissolution and re-polymerization of entangled and crosslinked actin networks, by varying ATP concentrations in real-time, while measuring the mechanical properties during disassembly and re-assembly. We use optical tweezers to sinusoidally oscillate embedded microspheres and measure the resulting force at set time-intervals and in different regions of the network during cyclic assembly/disassembly. We determine the time-dependent viscoelastic properties of non-equilibrium network intermediates and the reproducibility and homogeneity of network formation and dissolution. Results inform the role that cytoskeleton reorganization plays in the dynamic multifunctional mechanics of cells. NSF CAREER Award (DMR-1255446) and a Scialog Collaborative Innovation Award funded by Research Corporation for Scientific Advancement (Grant No. 24192).
Self-assembly programming of DNA polyominoes.
Ong, Hui San; Syafiq-Rahim, Mohd; Kasim, Noor Hayaty Abu; Firdaus-Raih, Mohd; Ramlan, Effirul Ikhwan
2016-10-20
Fabrication of functional DNA nanostructures operating at a cellular level has been accomplished through molecular programming techniques such as DNA origami and single-stranded tiles (SST). During implementation, restrictive and constraint dependent designs are enforced to ensure conformity is attainable. We propose a concept of DNA polyominoes that promotes flexibility in molecular programming. The fabrication of complex structures is achieved through self-assembly of distinct heterogeneous shapes (i.e., self-organised optimisation among competing DNA basic shapes) with total flexibility during the design and assembly phases. In this study, the plausibility of the approach is validated using the formation of multiple 3×4 DNA network fabricated from five basic DNA shapes with distinct configurations (monomino, tromino and tetrominoes). Computational tools to aid the design of compatible DNA shapes and the structure assembly assessment are presented. The formations of the desired structures were validated using Atomic Force Microscopy (AFM) imagery. Five 3×4 DNA networks were successfully constructed using combinatorics of these five distinct DNA heterogeneous shapes. Our findings revealed that the construction of DNA supra-structures could be achieved using a more natural-like orchestration as compared to the rigid and restrictive conventional approaches adopted previously. Copyright © 2016 Elsevier B.V. All rights reserved.
Yang, Wanggui; Chen, Yali; Wong, Man Shing; Lo, Pik Kwan
2012-10-08
One of the most important criteria for the successful DNA-templated polymerization to generate fully synthetic biomimetic polymers is to design the complementary structural monomers, which assemble to the templates strongly and precisely before carrying polymerization. In this study, water-soluble, laterally thymine-substituted donor-acceptor π-conjugated molecules were designed and synthesized to self-assemble with complementary oligoadenines templates, dA(20) and dA(40), into stable and tubular assemblies through noncovalent interactions including π-π stacking, dipole-dipole interactions, and the complementary adenine-thymine (A-T) hydrogen-bonding. UV-vis, fluorescence, circular dichroism (CD), atomic force microscopy (AFM), and transmission electron microscopy (TEM) techniques were used to investigate the formation of highly robust nanofibrous structures. Our results have demonstrated for the first time that the dipole-dipole interactions are stronger and useful to reinforce the assembly of donor-acceptor π-conjugated molecules to DNA templates and the formation of the stable and robust supramolecular nanofibrous complexes together with the complementary hydrogen bonding interactions. This provides an initial step toward DNA-templated polymerization to create fully synthetic DNA-mimetic polymers for biotechnological applications. This study also presents an opportunity to precisely position donor-acceptor type molecules in a controlled manner and tailor-make advanced materials for various biotechnological applications.
The DEAD-box Protein Dbp2 Functions with the RNA-binding Protein Yra1 to Promote mRNP Assembly
Ma, Wai Kit; Cloutier, Sara C.; Tran, Elizabeth J.
2013-01-01
Eukaryotic gene expression involves numerous biochemical steps that are dependent on RNA structure and ribonucleoprotein (RNP) complex formation. The DEAD-box class of RNA helicases plays fundamental roles in formation of RNA and RNP structure in every aspect of RNA metabolism. In an effort to explore the diversity of biological roles for DEAD-box proteins, our laboratory recently demonstrated that the DEAD-box protein Dbp2 associates with actively transcribing genes and is required for normal gene expression in Saccharomyces cerevisiae. We now provide evidence that Dbp2 interacts genetically and physically with the mRNA export factor Yra1. In addition, we find that Dbp2 is required for in vivo assembly of mRNA-binding proteins Yra1, Nab2 and Mex67 onto poly(A)+ RNA. Strikingly, we also show that Dbp2 is an efficient RNA helicase in vitro and that Yra1 decreases the efficiency of ATP-dependent duplex unwinding. We provide a model whereby mRNP assembly requires Dbp2 unwinding activity and once the mRNP is properly assembled, inhibition by Yra1 prevents further rearrangements. Both Yra1 and Dbp2 are conserved in multicellular eukaryotes suggesting that this constitutes a broadly conserved mechanism for stepwise assembly of mature mRNPs in the nucleus. PMID:23721653
Stockley, Peter G; Twarock, Reidun; Bakker, Saskia E; Barker, Amy M; Borodavka, Alexander; Dykeman, Eric; Ford, Robert J; Pearson, Arwen R; Phillips, Simon E V; Ranson, Neil A; Tuma, Roman
2013-03-01
The formation of a protective protein container is an essential step in the life-cycle of most viruses. In the case of single-stranded (ss)RNA viruses, this step occurs in parallel with genome packaging in a co-assembly process. Previously, it had been thought that this process can be explained entirely by electrostatics. Inspired by recent single-molecule fluorescence experiments that recapitulate the RNA packaging specificity seen in vivo for two model viruses, we present an alternative theory, which recognizes the important cooperative roles played by RNA-coat protein interactions, at sites we have termed packaging signals. The hypothesis is that multiple copies of packaging signals, repeated according to capsid symmetry, aid formation of the required capsid protein conformers at defined positions, resulting in significantly enhanced assembly efficiency. The precise mechanistic roles of packaging signal interactions may vary between viruses, as we have demonstrated for MS2 and STNV. We quantify the impact of packaging signals on capsid assembly efficiency using a dodecahedral model system, showing that heterogeneous affinity distributions of packaging signals for capsid protein out-compete those of homogeneous affinities. These insights pave the way to a new anti-viral therapy, reducing capsid assembly efficiency by targeting of the vital roles of the packaging signals, and opens up new avenues for the efficient construction of protein nanocontainers in bionanotechnology.
Mayans, Enric; Casanovas, Jordi; Gil, Ana M; Jiménez, Ana I; Cativiela, Carlos; Puiggalí, Jordi; Alemán, Carlos
2017-04-25
Microstructures from small phenylalanine-based peptides have attracted great attention lately because these compounds are considered to be a new class of tunable materials. In spite of the extensive studies on uncapped diphenylalanine and tetraphenylalanine peptides, studies on the self-assembly of uncapped triphenylananine (FFF) are very scarce and nonsystematic. In this work, we demonstrate that FFF assemblies can organize in a wide number of well-defined supramolecular structures, which include laminated helical-ribbons, leaflike dendrimers, doughnut-, needle-, and flower-shapes. These organizations are produced by the attractive or repulsive interactions between already formed assemblies and therefore can be controlled through the choice of solvents used as the incubation medium. Thus, the formation of the desired supramolecular structures is regulated through the protonation/deprotonation of the terminal groups, the polarity of the incubation medium, which affects both peptide···solvent interactions and the cavity solvation energy (i.e., solvent···solvent interactions), and the steric interactions between own assemblies that act as building blocks. Finally, the β-sheet disposition in the latter structural motifs has been examined using both theoretical calculations and Fourier transform infrared spectroscopy. Results indicate that FFF molecules can adopt both parallel and antiparallel β-sheets. However, the former one is the most energetically favored because of the formation of π-π stacking interactions between the aromatic rings of hydrogen-bonded strands.
Inclusion of Cu nano-cluster 1D arrays inside a C3-symmetric artificial oligopeptide via co-assembly
NASA Astrophysics Data System (ADS)
Gong, Ruiying; Li, Fei; Yang, Chunpeng; Wan, Xiaobo
2015-12-01
A peptide sequence N3-GVGV-OMe (G: glycine; V: valine) was attached to a benzene 1,3,5-tricarboxamide (BTA) derivative via ``click chemistry'' to afford a C3-symmetric artificial oligopeptide. The key feature of this oligopeptide is that the binding sites (triazole groups formed by click reaction) are located at the center, while the three oligopeptide arms with a strong tendency to assemble are located around it, which provides inner space to accommodate nanoparticles via self-assembly. The inclusion of Cu nanoclusters and the formation of one-dimensional (1D) arrays inside the nanofibers of the C3-symmetric artificial oligopeptide assembly were observed, which is quite different from the commonly observed nanoparticle growth on the surface of the pre-assembled oligopeptide nanofibers via the coordination sites located outside. Our finding provides an instructive concept for the design of other stable organic-inorganic hybrid 1D arrays with the inorganic nanoparticles inside.A peptide sequence N3-GVGV-OMe (G: glycine; V: valine) was attached to a benzene 1,3,5-tricarboxamide (BTA) derivative via ``click chemistry'' to afford a C3-symmetric artificial oligopeptide. The key feature of this oligopeptide is that the binding sites (triazole groups formed by click reaction) are located at the center, while the three oligopeptide arms with a strong tendency to assemble are located around it, which provides inner space to accommodate nanoparticles via self-assembly. The inclusion of Cu nanoclusters and the formation of one-dimensional (1D) arrays inside the nanofibers of the C3-symmetric artificial oligopeptide assembly were observed, which is quite different from the commonly observed nanoparticle growth on the surface of the pre-assembled oligopeptide nanofibers via the coordination sites located outside. Our finding provides an instructive concept for the design of other stable organic-inorganic hybrid 1D arrays with the inorganic nanoparticles inside. Electronic supplementary information (ESI) available: Detailed synthesis, gel preparation, general methods for characterization, and the characterisation of BTA-C3-GVGVOMe assembly including or not including Cu nano-cluster arrays. See DOI: 10.1039/c5nr06095h
41 CFR 101-30.401-1 - Publications providing Federal catalog data.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Logistics Services Center (DLSC) files chosen, assembled, and formatted to meet recognized needs for... produced in microfiche form; however, some are produced in hard copy form. The following publications are... format for all descriptive-type item identifications. The data are arranged in NSN sequence within...
Morrell, R W; Park, D C
1993-09-01
Older adults may be disadvantaged in the performance of procedural assembly tasks because of age-related declines in working memory operations. It was hypothesized that adding illustrations to instructional text may lessen age-related performance differences by minimizing processing demands on working memory in the elderly. In the present study, younger and older adults constructed a series of 3-dimensional objects from 3 types of instructions (text only, illustration only, or text and illustrations). Results indicated that instructions consisting of text and illustrations reduced errors in construction for both age groups compared with the other formats. Younger adults, however, outperformed older adults under all instructional format conditions. Measures of spatial and verbal working memory and text comprehension ability accounted for substantial age-related variance across the different format conditions but did not fully account for the age differences observed.
Short peptides self-assemble to produce catalytic amyloids
NASA Astrophysics Data System (ADS)
Rufo, Caroline M.; Moroz, Yurii S.; Moroz, Olesia V.; Stöhr, Jan; Smith, Tyler A.; Hu, Xiaozhen; Degrado, William F.; Korendovych, Ivan V.
2014-04-01
Enzymes fold into unique three-dimensional structures, which underlie their remarkable catalytic properties. The requirement to adopt a stable, folded conformation is likely to contribute to their relatively large size (>10,000 Da). However, much shorter peptides can achieve well-defined conformations through the formation of amyloid fibrils. To test whether short amyloid-forming peptides might in fact be capable of enzyme-like catalysis, we designed a series of seven-residue peptides that act as Zn2+-dependent esterases. Zn2+ helps stabilize the fibril formation, while also acting as a cofactor to catalyse acyl ester hydrolysis. These results indicate that prion-like fibrils are able to not only catalyse their own formation, but they can also catalyse chemical reactions. Thus, they might have served as intermediates in the evolution of modern-day enzymes. These results also have implications for the design of self-assembling nanostructured catalysts including ones containing a variety of biological and non-biological metal ions.
In-plane nuclear field formation investigated in single self-assembled quantum dots
NASA Astrophysics Data System (ADS)
Yamamoto, S.; Matsusaki, R.; Kaji, R.; Adachi, S.
2018-02-01
We studied the formation mechanism of the in-plane nuclear field in single self-assembled In0.75Al0.25As /Al0.3Ga0.7As quantum dots. The Hanle curves with an anomalously large width and hysteretic behavior at the critical transverse magnetic field were observed in many single quantum dots grown in the same sample. In order to explain the anomalies in the Hanle curve indicating the formation of a large nuclear field perpendicular to the photo-injected electron spin polarization, we propose a new model based on the current phenomenological model for dynamic nuclear spin polarization. The model includes the effects of the nuclear quadrupole interaction and the sign inversion between in-plane and out-of-plane components of nuclear g factors, and the model calculations reproduce successfully the characteristics of the observed anomalies in the Hanle curves.
Tunicamycin Prevents Cellulose Microfibril Formation in Oocystis solitaria.
Quader, H
1984-07-01
The effect of tunicamycin (TM) on the development of the cell wall in Oocystis solitaria has been investigated. It was found that 10 micromolar TM completely stops the assembly of new microfibrils as observed at the ultrastructural level. During cell wall formation, freeze fracture replicas of the E-face of the plasma membrane reveal two major substructures: the terminal complexes (TC), paired and unpaired, and the microfibril imprints extending from unpaired TCs. In cells treated for 3 hours or longer with TM, the TCs are no longer visible, whereas microfibril imprints are still present. Because of the reported highly selective mode of action of TM, our results implicate a role for lipid-intermediates in cellulose synthesis in O. solitaria. It is assumed that TM prevents the formation of a glycoprotein which probably is a fundamental part of the TCs and may act as a primer for the assembly of the microfibrils.
Jimenez-Sandoval, Pedro; Vique-Sanchez, Jose Luis; Hidalgo, Marisol López; Velazquez-Juarez, Gilberto; Diaz-Quezada, Corina; Arroyo-Navarro, Luis Fernando; Moran, Gabriela Montero; Fattori, Juliana; Jessica Diaz-Salazar, A; Rudiño-Pinera, Enrique; Sotelo-Mundo, Rogerio; Figueira, Ana Carolina Migliorini; Lara-Gonzalez, Samuel; Benítez-Cardoza, Claudia G; Brieba, Luis G
2017-11-01
The protozoan parasite Trichomonas vaginalis contains two nearly identical triosephosphate isomerases (TvTIMs) that dissociate into stable monomers and dimerize upon substrate binding. Herein, we compare the role of the "ball and socket" and loop 3 interactions in substrate assisted dimer assembly in both TvTIMs. We found that point mutants at the "ball" are only 39 and 29-fold less catalytically active than their corresponding wild-type counterparts, whereas Δloop 3 deletions are 1502 and 9400-fold less active. Point and deletion mutants dissociate into stable monomers. However, point mutants assemble as catalytic competent dimers upon binding of the transition state substrate analog PGH, whereas loop 3 deletions remain monomeric. A comparison between crystal structures of point and loop 3 deletion monomeric mutants illustrates that the catalytic residues in point mutants and wild-type TvTIMs are maintained in the same orientation, whereas the catalytic residues in deletion mutants show an increase in thermal mobility and present structural disorder that may hamper their catalytic role. The high enzymatic activity present in monomeric point mutants correlates with the formation of dimeric TvTIMs upon substrate binding. In contrast, the low activity and lack of dimer assembly in deletion mutants suggests a role of loop 3 in promoting the formation of the active site as well as dimer assembly. Our results suggest that in TvTIMs the active site is assembled during dimerization and that the integrity of loop 3 and ball and socket residues is crucial to stabilize the dimer. Copyright © 2017 Elsevier B.V. All rights reserved.
PA700, the regulatory complex of the 26S proteasome, interferes with alpha-synuclein assembly.
Ghee, Medeva; Melki, Ronald; Michot, Nadine; Mallet, Jacques
2005-08-01
Parkinson's disease is characterized by the loss of dopaminergic neurons in the nigrostriatal pathway accompanied by the presence of intracellular cytoplasmic inclusions, termed Lewy bodies. Fibrillized alpha-synuclein forms the major component of Lewy bodies. We reported a specific interaction between rat alpha-synuclein and tat binding protein 1, a subunit of PA700, the regulatory complex of the 26S proteasome. It has been demonstrated that PA700 prevents the aggregation of misfolded, nonubiquinated substrates. In this study, we examine the effect of PA700 on the aggregation of wild-type and A53T mutant alpha-synuclein. PA700 inhibits both wild-type and A53T alpha-synuclein fibril formation as measured by Thioflavin T fluorescence. Using size exclusion chromatography, we present evidence for a stable PA700-alpha-synuclein complex. Sedimentation analyses reveal that PA700 sequesters alpha-synuclein in an assembly incompetent form. Analysis of the morphology of wild-type and A53T alpha-synuclein aggregates during the course of fibrillization by electron microscopy demonstrate the formation of amyloid-like fibrils. Secondary structure analyses of wild-type and A53T alpha-synuclein assembled in the presence of PA700 revealed a decrease in the overall amount of assembled alpha-synuclein with no significant change in protein conformation. Thus, PA700 acts on alpha-synuclein assembly and not on the structure of fibrils. We hypothesize that PA700 sequesters alpha-synuclein oligomeric species that are the precursors of the fibrillar form of the protein, thus preventing its assembly into fibrils.
The Properties of the Massive Star-forming Galaxies with an Outside-in Assembly Mode
NASA Astrophysics Data System (ADS)
Wang, Enci; Kong, Xu; Wang, Huiyuan; Wang, Lixin; Lin, Lin; Gao, Yulong; Liu, Qing
2017-08-01
Previous findings show that massive ({M}* > {10}10 {M}⊙ ) star-forming (SF) galaxies usually have an “inside-out” stellar mass assembly mode. In this paper, we have for the first time selected a sample of 77 massive SF galaxies with an “outside-in” assembly mode (called the “targeted sample”) from the Mapping Nearby Galaxies at the Apache Point Observatory (MaNGA) survey. For comparison, two control samples are constructed from the MaNGA sample matched in stellar mass: a sample of 154 normal SF galaxies and a sample of 62 quiescent galaxies. In contrast to normal SF galaxies, the targeted galaxies appear to be smoother and more bulge-dominated and have a smaller size and higher concentration, star formation rate, and gas-phase metallicity as a whole. However, they have a larger size and lower concentration than quiescent galaxies. Unlike the normal SF sample, the targeted sample exhibits a slightly positive gradient of the 4000 Å break and a pronounced negative gradient of Hα equivalent width. Furthermore, the median surface mass density profile is between those of the normal SF and quiescent samples, indicating that the gas accretion of quiescent galaxies is not likely to be the main approach for the outside-in assembly mode. Our results suggest that the targeted galaxies are likely in the transitional phase from normal SF galaxies to quiescent galaxies, with rapid ongoing central stellar mass assembly (or bulge growth). We discuss several possible formation mechanisms for the outside-in mass assembly mode.
NASA Astrophysics Data System (ADS)
Smoak, Evan M.; Carlo, Andrew D.; Fowles, Catherine C.; Banerjee, Ipsita A.
2010-01-01
Gibberellins are a group of naturally occurring diterpenoid based phytohormones that play a vital role in plant growth and development. In this work, we have studied the self-assembly of gibberellic acid, a phytohormone, which belongs to the family of gibberellins, and designed amide derivatives of gibberellic acid (GA3) for the facile, green synthesis of gold nanoparticles. It was found that the derivatives self-assembled into nanofibers and nanoribbons in aqueous solutions at varying pH. Further, upon incubation with tetrachloroaurate, the self-assembled GA3-amide derivatives efficiently nucleated and formed gold nanoparticles when heated to 60 °C. Energy dispersive x-ray spectroscopy, transmission electron microscopy and scanning electron microscopy analyses revealed that uniform coatings of gold nanoparticles in the 10-20 nm range were obtained at low pH on the nanowire surfaces without the assistance of additional reducing agents. This simple method for the development of morphology controlled gold nanoparticles using a plant hormone derivative opens doors for a new class of plant biomaterials which can efficiently yield gold nanoparticles in an environmentally friendly manner. The gold encrusted nanowires formed using biomimetic methods may lead on to the formation of conductive nanowires, which may be useful for a wide range of applications such as in optoelectronics and sensors. Further, the spontaneous formation of highly organized nanostructures obtained from plant phytohormone derivatives such as gibberellic acid is of particular interest as it might help in further understanding the supramolecular assembly mechanism of more highly organized biological structures.
Longitudinal domain wall formation in elongated assemblies of ferromagnetic nanoparticles
Varón, Miriam; Beleggia, Marco; Jordanovic, Jelena; Schiøtz, Jakob; Kasama, Takeshi; Puntes, Victor F.; Frandsen, Cathrine
2015-01-01
Through evaporation of dense colloids of ferromagnetic ~13 nm ε-Co particles onto carbon substrates, anisotropic magnetic dipolar interactions can support formation of elongated particle structures with aggregate thicknesses of 100–400 nm and lengths of up to some hundred microns. Lorenz microscopy and electron holography reveal collective magnetic ordering in these structures. However, in contrast to continuous ferromagnetic thin films of comparable dimensions, domain walls appear preferentially as longitudinal, i.e., oriented parallel to the long axis of the nanoparticle assemblies. We explain this unusual domain structure as the result of dipolar interactions and shape anisotropy, in the absence of inter-particle exchange coupling. PMID:26416297
Self-assembled InAs quantum dot formation on GaAs ring-like nanostructure templates
Strom, NW; Wang, Zh M; AbuWaar, ZY; Mazur, Yu I; Salamo, GJ
2007-01-01
The evolution of InAs quantum dot (QD) formation is studied on GaAs ring-like nanostructures fabricated by droplet homo-epitaxy. This growth mode, exclusively performed by a hybrid approach of droplet homo-epitaxy and Stransky-Krastanor (S-K) based QD self-assembly, enables one to form new QD morphologies that may find use in optoelectronic applications. Increased deposition of InAs on the GaAs ring first produced a QD in the hole followed by QDs around the GaAs ring and on the GaAs (100) surface. This behavior indicates that the QDs prefer to nucleate at locations of high monolayer (ML) step density.
Pd-Pt and Fe-Ni nanoparticles formed by covalent molecular assembly in supercritical carbon dioxide.
Puniredd, Sreenivasa Reddy; Weiyi, Seah; Srinivasan, M P
2008-04-01
We report the formation of Pd-Pt nanoparticles within a dendrimer-laden ultrathin film matrix immobilized on a solid support and constructed by covalent layer-by-layer (LbL) assembly using supercritical carbon dioxide (SCCO2) as the processing medium. Particle size distribution and composition were controlled by precursor composition. The precursor compositions are optimized for Pd-Pt nanoparticles and later extended to the formation of Fe-Ni nanoparticles. As an example of the application of nanoparticles in tribology, Fe-Ni nanoparticle-laden films were observed to exhibit better tribological properties than those containing the monometallic species, thereby suggesting that combination of nanoparticles can be used to derive greater benefits.
Krysiński, Paweł; Blanchard, G J
2005-04-01
We report on the formation of a gold oxide layer and the reaction of this oxide with an acid chloride to form a stable, relatively complete monolayer bound through an ester-like bond to the gold oxide surface. We have used cyclic voltammetry, FTIR and optical ellipsometry to characterize this novel monolayer structure. The exposed functional groups of this monolayer can participate in subsequent surface reactions, opening the door to the use of oxide-based surface attachment chemistry on metallic substrates. This chemistry will allow for the formation of films tailored to contain both hydrophobic and hydrophilic regions, stacked at predetermined distances from the substrate that may serve as biomembrane mimetic assemblies.
Linked supramolecular building blocks for enhanced cluster formation
McLellan, Ross; Palacios, Maria A.; Beavers, Christine M.; ...
2015-01-09
Methylene-bridged calix[4]arenes have emerged as extremely versatile ligand supports in the formation of new polymetallic clusters possessing fascinating magnetic properties. Metal ion binding rules established for this building block allow one to partially rationalise the complex assembly process. The ability to covalently link calix[4]arenes at the methylene bridge provides significantly improved control over the introduction of different metal centres to resulting cluster motifs. Clusters assembled from bis-calix[4]arenes and transition metal ions or 3d-4f combinations display characteristic features of the analogous calix[4]arene supported clusters, thereby demonstrating an enhanced and rational approach towards the targeted synthesis of complex and challenging structures.
Dynamic phases, pinning, and pattern formation for driven dislocation assemblies
Zhou, Caizhi; Reichhardt, Charles; Olson Reichhardt, Cynthia J.; ...
2015-01-23
We examine driven dislocation assemblies and show that they can exhibit a set of dynamical phases remarkably similar to those of driven systems with quenched disorder such as vortices in superconductors, magnetic domain walls, and charge density wave materials. These phases include pinned-jammed, fluctuating, and dynamically ordered states, and each produces distinct dislocation patterns as well as specific features in the noise fluctuations and transport properties. Lastly, our work suggests that many of the results established for systems with quenched disorder undergoing plastic depinning transitions can be applied to dislocation systems, providing a new approach for understanding pattern formation andmore » dynamics in these systems.« less
Reversible Self-Assembly of Water-Soluble Gold(I) Complexes.
Aguiló, Elisabet; Moro, Artur J; Gavara, Raquel; Alfonso, Ignacio; Pérez, Yolanda; Zaccaria, Francesco; Guerra, Célia Fonseca; Malfois, Marc; Baucells, Clara; Ferrer, Montserrat; Lima, João Carlos; Rodríguez, Laura
2018-02-05
The reaction of the gold polymers containing bipyridyl and terpyridyl units, [Au(C≡CC 15 H 10 N 3 )] n and [Au(C≡CC 10 H 7 N 2 )] n , with the water-soluble phosphines 1,3,5-triaza-7-phosphatricyclo[3.3.1.13.7]decane and 3,7-diacetyl-1,3,7-triaza-5-phosphabicyclo[3.3.1]nonane gives rise to the formation of four gold(I) alkynyl complexes that self-assemble in water (H 2 O) and dimethyl sulfoxide (DMSO), through different intermolecular interactions, with an impact on the observed luminescence displayed by the supramolecular assemblies. A detailed analysis carried out by NMR studies performed in different DMSO/deuterated H 2 O mixtures indicates the presence of two different assembly modes in the aggregates: (i) chain assemblies, which are based mainly on aurophilic interactions, and (ii) stacked assemblies, which are based on Au···π and π···π interactions. These different supramolecular environments can also be detected by their intrinsic optical properties (differences in absorption and emission spectra) and are predicted by the changes in the relative binding energy from density functional theory calculations carried out in DMSO and H 2 O. Small-angle X-ray scattering (SAXS) experiments performed in the same mixture of solvents are in agreement with the formation of aggregates in all cases. The aromatic units chosen, bipyridine and terpyridine, allow the use of external stimuli to reversibly change the aggregation state of the supramolecular assemblies. Interaction with the Zn 2+ cation is observed to disassemble the aggregates, while encapsulating agents competing for Zn 2+ complexation revert the process to the aggregation stage, as verified by SAXS and NMR. The adaptive nature of the supramolecular assemblies to the metal-ion content is accompanied by significant changes in the absorption and emission spectra, signaling the aggregation state and also the content on Zn 2+ .
Reed, Jonathan C; Westergreen, Nick; Barajas, Brook C; Ressler, Dylan T B; Phuong, Daryl J; Swain, John V; Lingappa, Vishwanath R; Lingappa, Jaisri R
2018-05-01
During immature capsid assembly in cells, human immunodeficiency virus type 1 (HIV-1) Gag co-opts a host RNA granule, forming a pathway of intracellular assembly intermediates containing host components, including two cellular facilitators of assembly, ABCE1 and DDX6. A similar assembly pathway has been observed for other primate lentiviruses. Here we asked whether feline immunodeficiency virus (FIV), a nonprimate lentivirus, also forms RNA granule-derived capsid assembly intermediates. First, we showed that the released FIV immature capsid and a large FIV Gag-containing intracellular complex are unstable during analysis, unlike for HIV-1. We identified harvest conditions, including in situ cross-linking, that overcame this problem, revealing a series of FIV Gag-containing complexes corresponding in size to HIV-1 assembly intermediates. Previously, we showed that assembly-defective HIV-1 Gag mutants are arrested at specific assembly intermediates; here we identified four assembly-defective FIV Gag mutants, including three not previously studied, and demonstrated that they appear to be arrested at the same intermediate as the cognate HIV-1 mutants. Further evidence that these FIV Gag-containing complexes correspond to assembly intermediates came from coimmunoprecipitations demonstrating that endogenous ABCE1 and the RNA granule protein DDX6 are associated with FIV Gag, as shown previously for HIV-1 Gag, but are not associated with a ribosomal protein, at steady state. Additionally, we showed that FIV Gag associates with another RNA granule protein, DCP2. Finally, we validated the FIV Gag-ABCE1 and FIV Gag-DCP2 interactions with proximity ligation assays demonstrating colocalization in situ Together, these data support a model in which primate and nonprimate lentiviruses form intracellular capsid assembly intermediates derived from nontranslating host RNA granules. IMPORTANCE Like HIV-1 Gag, FIV Gag assembles into immature capsids; however, it is not known whether FIV Gag progresses through a pathway of immature capsid assembly intermediates derived from host RNA granules, as shown for HIV-1 Gag. Here we showed that FIV Gag forms complexes that resemble HIV-1 capsid assembly intermediates in size and in their association with ABCE1 and DDX6, two host facilitators of HIV-1 immature capsid assembly that are found in HIV-1 assembly intermediates. Our studies also showed that known and novel assembly-defective FIV Gag mutants fail to progress past putative intermediates in a pattern resembling that observed for HIV-1 Gag mutants. Finally, we used imaging to demonstrate colocalization of FIV Gag with ABCE1 and with the RNA granule protein DCP2. Thus, we conclude that formation of assembly intermediates derived from host RNA granules is likely conserved between primate and nonprimate lentiviruses and could provide targets for future antiviral strategies. Copyright © 2018 American Society for Microbiology.
Dynamic Nanoparticles Assemblies
WANG, LIBING; XU, LIGUANG; KUANG, HUA; XU, CHUANLAI; KOTOV, NICHOLAS A.
2012-01-01
CONSPECTUS Importance Although nanoparticle (NP) assemblies are at the beginning of their development, their unique geometrical shapes and media-responsive optical, electronic and magnetic properties have attracted significant interest. Nanoscale assembly bridges multiple sizes of materials: individual nanoparticles, discrete molecule-like or virus-like nanoscale agglomerates, microscale devices, and macroscale materials. The capacity to self-assemble can greatly facilitate the integration of nanotechnology with other technologies and, in particular, with microscale fabrication. In this Account, we describe developments in the emerging field of dynamic NP assemblies, which are spontaneously formed superstructures containing more than two inorganic nanoscale particles that display ability to change their geometrical, physical, chemical, and other attributes. In many ways, dynamic assemblies can represent a bottleneck in the ‘bottom-up’ fabrication of NP-based devices because they can produce a much greater variety of assemblies, but they also provide a convenient tool for variation of geometries and dimensions of nanoparticle assemblies. Classification Superstructures of NPs (and those held together by similar intrinsic forces) are classified into two groups: Class 1 where media and external fields can alter shape, conformation, and order of stable superstructures with a nearly constant number same. The future development of successful dynamic assemblies requires understanding the equilibrium in dynamic NP systems. The dynamic nature of Class 1 assemblies is associated with the equilibrium between different conformations of a superstructure and is comparable to the isomerization in classical chemistry. Class 2 assemblies involve the formation and/or breakage of linkages between the NPs, which is analogous to the classical chemical equilibrium for the formation of a molecule from atoms. Finer classification of NP assemblies in accord with established conventions in the field may include different size dimensionalities: discrete assemblies (artificial molecules), one-dimensional (spaced chains) and two-dimensional (sheets) and three-dimensional (superlattices, twisted structures) assemblies. Notably, these dimensional attributes must be regarded as primarily topological in nature because all of these superstructures can acquire complex three-dimensional shapes. Preparation We discuss three primary strategies used to prepare NP superstructures: (1) anisotropy-based assemblies utilizing either intrinsic force field anisotropy around NPs or external anisotropy associated with templates and/or applied fields; (2) assembly methods utilizing uniform NPs with isotropic interactions; and (3) methods based on mutual recognition of biomolecules, such as DNA and antigen-antibody interactions. Applications We consider optical, electronic, and magnetic properties of dynamic superstructures, focusing primarily on multiparticle effects in NP superstructures as represented by surface plasmon resonance, NP-NP charge transport, and multibody magnetization. Unique properties of NP superstructures are being applied to biosensing, drug delivery, and nanoelectronics. For both Class 1 and Class 2 dynamic assemblies, biosensing is the most dominant and well-developed area of dynamic nanostructures being successfully transitioned into practice. We can foresee the rapid development of dynamic NP assemblies toward applications in harvesting of dissipated energy, photonics, and electronics. The final part of the review is devoted to the fundamental questions facing dynamic assemblies of NPs in the future. PMID:22449243
Chen, Hongxia; Lee, Minsu; Lee, Jaebeom; Kim, Jae-Ho; Gal, Yeong-Soon; Hwang, Yoon-Hwae; An, Won Gun; Koh, Kwangnak
2007-01-01
We designed and synthesized phenylboronic acid as a molecular recognition model system for saccharide detection. The phenylboronic acid derivatives that have boronic acid moiety are well known to interact with saccharides in aqueous solution; thus, they can be applied to a functional interface of saccharide sensing through the formation of self-assembled monolayer (SAM). In this study, self-assembled phenylboronic acid derivative monolayers were formed on Au surface and carefully characterized by atomic force microscopy (AFM), Fourier transform infrared reflection absorption spectroscopy (FTIR-RAS), surface enhanced Raman spectroscopy (SERS), and surface electrochemical measurements. The saccharide sensing application was investigated using surface plasmon resonance (SPR) spectroscopy. The phenylboronic acid monolayers showed good sensitivity of monosaccharide sensing even at the low concentration range (1.0 × 10−12 M). The SPR angle shift derived from interaction between phenylboronic acid and monosaccharide was increased with increasing the alkyl spacer length of synthesized phenylboronic acid derivatives.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Whitley, Dexter S.; Yu, Kwang; Sample, Robert C.
2010-09-30
Although previous work identified 12 complementation groups with possible roles in virus assembly, currently only one frog virus 3 protein, the major capsid protein (MCP), has been linked with virion formation. To identify other proteins required for assembly, we used an antisense morpholino oligonucleotide to target 53R, a putative myristoylated membrane protein, and showed that treatment resulted in marked reductions in 53R levels and a 60% drop in virus titers. Immunofluorescence assays confirmed knock down and showed that 53R was found primarily within viral assembly sites, whereas transmission electron microscopy detected fewer mature virions and, in some cells, dense granularmore » bodies that may represent unencapsidated DNA-protein complexes. Treatment with a myristoylation inhibitor (2-hydroxymyristic acid) resulted in an 80% reduction in viral titers. Collectively, these data indicate that 53R is an essential viral protein that is required for replication in vitro and suggest it plays a critical role in virion formation.« less
Self Assembled Bi-functional Peptide Hydrogels with Biomineralization-Directing Peptides
Gungormus, Mustafa; Branco, Monica; Fong, Hanson; Schneider, Joel P.; Tamerler, Candan; Sarikaya, Mehmet
2014-01-01
A peptide-based hydrogel has been designed that directs the formation of hydroxyapatite. MDG1, a twenty-seven residue peptide, undergoes triggered folding to form an unsymmetrical β-hairpin that self-assembles in response to an increase in solution ionic strength to yield a mechanically rigid, self supporting hydrogel. The C-terminal portion of MDG1 contains a heptapeptide (MLPHHGA) capable of directing the mineralization process. Circular dichroism spectroscopy indicates that the peptide folds and assembles to form a hydrogel network rich in β-sheet secondary structure. Oscillatory rheology indicates that the hydrogel is mechanical rigid (G′ ∼ 2500 Pa) before mineralization. In separate experiments, mineralization was induced both biochemically and with cementoblast cells. Mineralization-domain had little effect on the mechanical rigidity of the gel. SEM and EDS show that MDG1 gels are capable of directing the formation of hydroxapatite. Control hydrogels, prepared by peptides either lacking the mineral-directing portion or reversing its sequence, indicated that the heptapeptide is necessary and its actions are sequence specific. PMID:20591477
Growth and assembly of cobalt oxide nanoparticle rings at liquid nanodroplets with solid junction.
Zhou, Yilong; Powers, Alexander S; Zhang, Xiaowei; Xu, Tao; Bustillo, Karen; Sun, Litao; Zheng, Haimei
2017-09-28
Using liquid cell TEM, we imaged the formation of CoO nanoparticle rings. Nanoparticles nucleated and grew tracing the perimeter of droplets sitting on the SiN x solid substrate, and finally formed necklace-like rings. By tracking single nanoparticle trajectories during the ring formation and an estimation of the forces between droplets and nanoparticles using a simplified model, we found the junction of liquid nanodroplets with a solid substrate is the attractive site for CoO nanoparticles. Coalescing droplets were capable of pushing nanoparticles to the perimeter of the new droplet and nanoparticles on top of the droplets rolled off toward the perimeter. We propose that the curved surface morphology of the droplets created a force gradient that contributed to the assembly of nanoparticles at the droplet perimeter. Revealing the dynamics of nanoparticle movements and the interactions of nanoparticles with the liquid nanodroplet provides insights on developing novel self-assembly strategies for building precisely defined nanostructures on solid substrates.
Maran, Umamageswaran; Britt, David; Fox, Christopher B; Harris, Joel M; Orendt, Anita M; Conley, Hiram; Davis, Robert; Hlady, Vladamir; Stang, Peter J
2009-08-24
The self-assembly and characterization of a novel supramolecular amphiphile built from a new 60 degree amphiphilic precursor that incorporates hydrophilic platinum(II) metals and hydrophobic dioctadecyloxy chains is reported. The amphiphilic macrocycle and its precursor compound have been characterized by multinuclear NMR spectroscopy, ESI-MS, and other standard techniques. The coacervate morphology of the amphiphile at the liquid-liquid interface has been studied by using confocal optical microscopy and in situ Raman spectroscopy. The self-assembly of the amphiphilic macrocycle at the air-water interface has been investigated through Langmuir-trough techniques. The study indicates the possible formation of surface micelle-like aggregates. The disparity between the experimental molecular areas and those derived from molecular models support the idea of aggregation. AFM images of the surface aggregates show the formation of a flat topology with arbitrary ridgelike patterns. Reasonable molecular-packing arrangements are proposed to explain the molecular organization within the observed structures.
Self-assembled Nanofibrils for Immunomodulation
NASA Astrophysics Data System (ADS)
Zhao, Fan
This thesis has been mainly focused on applying self-assembled nanofibrils as unique depots for controlled release to modulate immune system, with two major chapters on modulation of innate immunity in chapter 2 and adaptive immunity in chapter 3, respectively. There are 5 chapters in the thesis. Chapter 1 gives a detailed review on the discovery, synthesis and application of self-assembled nanofibrils of therapeutic agents (termed as "self-delivery drugs"), including bioactive molecules; Chapter 2 demonstrates the supramolecular hydrogel of chemotactic peptides as a prolonged inflammation model through proper molecular engineering; Chapter 3 reports a suppressive antibody response achieved by encapsulation of antigens by supramolecular hydrogel of glycopeptide; Chapter 4 illustrates an example of supramolecular hydrogel formation of molecules with extremely low solubility, based on the fact that many small organic drugs have poor solubility. Chapter 5 used beta-galatosidase as a model to study glycosidase-instructed supramolecular hydrogel formation, with potential to target cancer cells due to their distinct metabolic profile.
Siebert, Matthias; Böhme, Mathias A; Driller, Jan H; Babikir, Husam; Mampell, Malou M; Rey, Ulises; Ramesh, Niraja; Matkovic, Tanja; Holton, Nicole; Reddy-Alla, Suneel; Göttfert, Fabian; Kamin, Dirk; Quentin, Christine; Klinedinst, Susan; Andlauer, Till Fm; Hell, Stefan W; Collins, Catherine A; Wahl, Markus C; Loll, Bernhard; Sigrist, Stephan J
2015-08-14
Synaptic vesicles (SVs) fuse at active zones (AZs) covered by a protein scaffold, at Drosophila synapses comprised of ELKS family member Bruchpilot (BRP) and RIM-binding protein (RBP). We here demonstrate axonal co-transport of BRP and RBP using intravital live imaging, with both proteins co-accumulating in axonal aggregates of several transport mutants. RBP, via its C-terminal Src-homology 3 (SH3) domains, binds Aplip1/JIP1, a transport adaptor involved in kinesin-dependent SV transport. We show in atomic detail that RBP C-terminal SH3 domains bind a proline-rich (PxxP) motif of Aplip1/JIP1 with submicromolar affinity. Pointmutating this PxxP motif provoked formation of ectopic AZ-like structures at axonal membranes. Direct interactions between AZ proteins and transport adaptors seem to provide complex avidity and shield synaptic interaction surfaces of pre-assembled scaffold protein transport complexes, thus, favouring physiological synaptic AZ assembly over premature assembly at axonal membranes.
Self-organization of network dynamics into local quantized states
Nicolaides, Christos; Juanes, Ruben; Cueto-Felgueroso, Luis
2016-02-17
Self-organization and pattern formation in network-organized systems emerges from the collective activation and interaction of many interconnected units. A striking feature of these non-equilibrium structures is that they are often localized and robust: only a small subset of the nodes, or cell assembly, is activated. Understanding the role of cell assemblies as basic functional units in neural networks and socio-technical systems emerges as a fundamental challenge in network theory. A key open question is how these elementary building blocks emerge, and how they operate, linking structure and function in complex networks. Here we show that a network analogue of themore » Swift-Hohenberg continuum model—a minimal-ingredients model of nodal activation and interaction within a complex network—is able to produce a complex suite of localized patterns. Thus, the spontaneous formation of robust operational cell assemblies in complex networks can be explained as the result of self-organization, even in the absence of synaptic reinforcements.« less
Self-organization of network dynamics into local quantized states.
Nicolaides, Christos; Juanes, Ruben; Cueto-Felgueroso, Luis
2016-02-17
Self-organization and pattern formation in network-organized systems emerges from the collective activation and interaction of many interconnected units. A striking feature of these non-equilibrium structures is that they are often localized and robust: only a small subset of the nodes, or cell assembly, is activated. Understanding the role of cell assemblies as basic functional units in neural networks and socio-technical systems emerges as a fundamental challenge in network theory. A key open question is how these elementary building blocks emerge, and how they operate, linking structure and function in complex networks. Here we show that a network analogue of the Swift-Hohenberg continuum model-a minimal-ingredients model of nodal activation and interaction within a complex network-is able to produce a complex suite of localized patterns. Hence, the spontaneous formation of robust operational cell assemblies in complex networks can be explained as the result of self-organization, even in the absence of synaptic reinforcements.
Self-organization of network dynamics into local quantized states
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nicolaides, Christos; Juanes, Ruben; Cueto-Felgueroso, Luis
Self-organization and pattern formation in network-organized systems emerges from the collective activation and interaction of many interconnected units. A striking feature of these non-equilibrium structures is that they are often localized and robust: only a small subset of the nodes, or cell assembly, is activated. Understanding the role of cell assemblies as basic functional units in neural networks and socio-technical systems emerges as a fundamental challenge in network theory. A key open question is how these elementary building blocks emerge, and how they operate, linking structure and function in complex networks. Here we show that a network analogue of themore » Swift-Hohenberg continuum model—a minimal-ingredients model of nodal activation and interaction within a complex network—is able to produce a complex suite of localized patterns. Thus, the spontaneous formation of robust operational cell assemblies in complex networks can be explained as the result of self-organization, even in the absence of synaptic reinforcements.« less
Iki, Taichiro; Ishikawa, Masayuki; Yoshikawa, Manabu
2017-01-01
Small RNA-mediated gene silencing is involved in a variety of biological processes among many eukaryotic organisms. The silencing effector, generally referred to as RNA-induced silencing complex (RISC), comprises an ARGONAUTE (AGO) protein and a small single-stranded guide RNA in its core. RISCs recognize target genes containing sequences complementary to the guide RNA and repress their expression transcriptionally or posttranscriptionally. In vitro systems that recapitulate RISC assembly are useful not only to decipher the molecular mechanisms underlying the assembly process itself but also to dissect the downstream silencing pathways mediated by RISCs. Here, we describe a method for in vitro plant RISC assembly, which relies on an extract of evacuolated protoplasts derived from Nicotiana tabacum BY-2 suspension-cultured cells. In this extract, synthetic duplexes of small RNAs are incorporated into AGO proteins that are synthesized by in vitro translation, and then duplex unwinding and selective strand elimination result in formation of mature RISCs.
Hovden, Robert; Wolf, Stephan E.; Holtz, Megan E.; Marin, Frédéric; Muller, David A.; Estroff, Lara A.
2015-01-01
Intricate biomineralization processes in molluscs engineer hierarchical structures with meso-, nano- and atomic architectures that give the final composite material exceptional mechanical strength and optical iridescence on the macroscale. This multiscale biological assembly inspires new synthetic routes to complex materials. Our investigation of the prism–nacre interface reveals nanoscale details governing the onset of nacre formation using high-resolution scanning transmission electron microscopy. A wedge-polishing technique provides unprecedented, large-area specimens required to span the entire interface. Within this region, we find a transition from nanofibrillar aggregation to irregular early-nacre layers, to well-ordered mature nacre suggesting the assembly process is driven by aggregation of nanoparticles (∼50–80 nm) within an organic matrix that arrange in fibre-like polycrystalline configurations. The particle number increases successively and, when critical packing is reached, they merge into early-nacre platelets. These results give new insights into nacre formation and particle-accretion mechanisms that may be common to many calcareous biominerals. PMID:26631940
Tarabout, Christophe; Roux, Stéphane; Gobeaux, Frédéric; Fay, Nicolas; Pouget, Emilie; Meriadec, Cristelle; Ligeti, Melinda; Thomas, Daniel; IJsselstijn, Maarten; Besselievre, François; Buisson, David-Alexandre; Verbavatz, Jean-Marc; Petitjean, Michel; Valéry, Céline; Perrin, Lionel; Rousseau, Bernard; Artzner, Franck; Paternostre, Maité; Cintrat, Jean-Christophe
2011-01-01
Supramolecular self-assembly is an attractive pathway for bottom-up synthesis of novel nanomaterials. In particular, this approach allows the spontaneous formation of structures of well-defined shapes and monodisperse characteristic sizes. Because nanotechnology mainly relies on size-dependent physical phenomena, the control of monodispersity is required, but the possibility of tuning the size is also essential. For self-assembling systems, shape, size, and monodispersity are mainly settled by the chemical structure of the building block. Attempts to change the size notably by chemical modification usually end up with the loss of self-assembly. Here, we generated a library of 17 peptides forming nanotubes of monodisperse diameter ranging from 10 to 36 nm. A structural model taking into account close contacts explains how a modification of a few Å of a single aromatic residue induces a fourfold increase in nanotube diameter. The application of such a strategy is demonstrated by the formation of silica nanotubes of various diameters. PMID:21518895
3D superstructures with an orthorhombic lattice assembled by colloidal PbS quantum dots.
Ushakova, Elena V; Cherevkov, Sergei A; Litvin, Aleksandr P; Parfenov, Peter S; Kasatkin, Igor A; Fedorov, Anatoly V; Gun'ko, Yurii K; Baranov, Alexander V
2018-05-03
We report a new type of metamaterial comprising a highly ordered 3D network of 3-7 nm lead sulfide quantum dots self-assembled in an organic matrix formed by amphiphilic ligands (oleic acid molecules). The obtained 3D superstructures possess an orthorhombic lattice with the distance between the nanocrystals as large as 10-40 nm. Analysis of self-assembly and destruction of the superstructures in time performed by a SAXS technique shows that their morphology depends on the quantity of amphiphilic ligands and width of the quantum dot size and its distribution. Formation of the superstructures is discussed in terms of a model describing the lyotropic crystal formation by micelles from three-phase mixtures. The results show that the organic molecules possessing surfactant properties and capable of forming micelles with nanoparticles as a micelle core can be utilized as building blocks for the creation of novel metamaterials based on a highly ordered 3D network of semiconductors, metals or magnetic nanoparticles.
Role of electrostatic interactions in the assembly of empty spherical viral capsids
NASA Astrophysics Data System (ADS)
Šiber, Antonio; Podgornik, Rudolf
2007-12-01
We examine the role of electrostatic interactions in the assembly of empty spherical viral capsids. The charges on the protein subunits that make the viral capsid mutually interact and are expected to yield electrostatic repulsion acting against the assembly of capsids. Thus, attractive protein-protein interactions of nonelectrostatic origin must act to enable the capsid formation. We investigate whether the interplay of repulsive electrostatic and attractive interactions between the protein subunits can result in the formation of spherical viral capsids of a preferred radius. For this to be the case, we find that the attractive interactions must depend on the angle between the neighboring protein subunits (i.e., on the mean curvature of the viral capsid) so that a particular angle(s) is (are) preferred energywise. Our results for the electrostatic contributions to energetics of viral capsids nicely correlate with recent experimental determinations of the energetics of protein-protein contacts in the hepatitis B virus [P. Ceres A. Zlotnick, Biochemistry 41, 11525 (2002)].
Directed Assembly of Molecules on Graphene/Ru(0001)
NASA Astrophysics Data System (ADS)
Zhang, L. Z.; Zhang, H. G.; Sun, J. T.; Pan, Y.; Liu, Q.; Mao, J. H.; Zhou, H. T.; Low, T.; Guo, H. M.; Du, S. X.; Gao, H.-J.
2012-02-01
Recently, the graphene monolayers have been seen to adopt a superstructure - moir'e pattern - on Ru(0001). By using low temperature scanning tunneling spectroscopy, we identified the laterally localized electronic states on this system. The individual states are separated by 3 nm and comprise regions of about 90 carbon atoms. This constitutes a highly regular quantum dot-array with molecular precision. It is evidenced by quantum well resonances with energies that relate to the corrugation of the graphene layer. By using scanning tunneling microscopy/spectroscopy, we demonstrate the selective adsorption and formation of ordered molecular arrays of FePc and pentacene molecules on the graphene/Ru(0001) templates. With in-depth investigations of the molecular adsorption and assembly processes we reveal the existence lateral electric dipoles in the epitaxial graphene monolayers and the capability of the dipoles in directing and driving the molecular adsorption and assembly. When increasing the molecular coverage, we observed the formation of regular Kagome lattices that duplicate the lattice of the moir'e pattern of monolayer graphene.
Barge, Laura M; Cardoso, Silvana S S; Cartwright, Julyan H E; Doloboff, Ivria J; Flores, Erika; Macías-Sánchez, Elena; Sainz-Díaz, C Ignacio; Sobrón, Pablo
2016-11-01
Rio Tinto in southern Spain has become of increasing astrobiological significance, in particular for its similarity to environments on early Mars. We present evidence of tubular structures from sampled terraces in the stream bed at the source of the river, as well as ancient, now dry, terraces. This is the first reported finding of tubular structures in this particular environment. We propose that some of these structures could be formed through self-assembly via an abiotic mechanism involving templated precipitation around a fluid jet, a similar mechanism to that commonly found in so-called chemical gardens. Laboratory experiments simulating the formation of self-assembling iron oxyhydroxide tubes via chemical garden/chemobrionic processes form similar structures. Fluid-mechanical scaling analysis demonstrates that the proposed mechanism is plausible. Although the formation of tube structures is not itself a biosignature, the iron mineral oxidation gradients across the tube walls in laboratory and field examples may yield information about energy gradients and potentially habitable environments.
Barge, Laura M.; Doloboff, Ivria J.; Flores, Erika; Sobrón, Pablo
2016-01-01
Rio Tinto in southern Spain has become of increasing astrobiological significance, in particular for its similarity to environments on early Mars. We present evidence of tubular structures from sampled terraces in the stream bed at the source of the river, as well as ancient, now dry, terraces. This is the first reported finding of tubular structures in this particular environment. We propose that some of these structures could be formed through self-assembly via an abiotic mechanism involving templated precipitation around a fluid jet, a similar mechanism to that commonly found in so-called chemical gardens. Laboratory experiments simulating the formation of self-assembling iron oxyhydroxide tubes via chemical garden/chemobrionic processes form similar structures. Fluid-mechanical scaling analysis demonstrates that the proposed mechanism is plausible. Although the formation of tube structures is not itself a biosignature, the iron mineral oxidation gradients across the tube walls in laboratory and field examples may yield information about energy gradients and potentially habitable environments. PMID:27956875
Emergence of reconfigurable wires and spinners via dynamic self-assembly
Kokot, Gasper; Piet, David; Whitesides, George M.; ...
2015-03-26
Dissipative colloidal materials use energy to generate and maintain structural complexity. The energy injection rate, and properties of the environment are important control parameters that influence the outcome of dynamic self-assembly. Here we demonstrate that dispersions of magnetic microparticles confined at the air-liquid interface, and energized by a uniaxial in-plane alternating magnetic field, self-assemble into a variety of structures that range from pulsating clusters and single-particle-thick wires to dynamic arrays of spinners (self-assembled short chains) rotating in either direction. The spinners emerge via spontaneous breaking of the uniaxial symmetry of the energizing magnetic field. Demonstration of the formation and disaggregationmore » of particle assemblies suggests strategies to form new meso-scale structures with the potential to perform functions such as mixing and sensing.« less
Wu, Shuo; Zhao, Qiong; Zhang, Pinghu; Kulp, John; Hu, Lydia; Hwang, Nicky; Zhang, Jiming; Block, Timothy M; Xu, Xiaodong; Du, Yanming; Chang, Jinhong; Guo, Ju-Tao
2017-08-15
Chronic hepatitis B virus (HBV) infection is a global public health problem. Although the currently approved medications can reliably reduce the viral load and prevent the progression of liver diseases, they fail to cure the viral infection. In an effort toward discovery of novel antiviral agents against HBV, a group of benzamide (BA) derivatives that significantly reduced the amount of cytoplasmic HBV DNA were discovered. The initial lead optimization efforts identified two BA derivatives with improved antiviral activity for further mechanistic studies. Interestingly, similar to our previously reported sulfamoylbenzamides (SBAs), the BAs promote the formation of empty capsids through specific interaction with HBV core protein but not other viral and host cellular components. Genetic evidence suggested that both SBAs and BAs inhibited HBV nucleocapsid assembly by binding to the heteroaryldihydropyrimidine (HAP) pocket between core protein dimer-dimer interfaces. However, unlike SBAs, BA compounds uniquely induced the formation of empty capsids that migrated more slowly in native agarose gel electrophoresis from A36V mutant than from the wild-type core protein. Moreover, we showed that the assembly of chimeric capsids from wild-type and drug-resistant core proteins was susceptible to multiple capsid assembly modulators. Hence, HBV core protein is a dominant antiviral target that may suppress the selection of drug-resistant viruses during core protein-targeting antiviral therapy. Our studies thus indicate that BAs are a chemically and mechanistically unique type of HBV capsid assembly modulators and warranted for further development as antiviral agents against HBV. IMPORTANCE HBV core protein plays essential roles in many steps of the viral replication cycle. In addition to packaging viral pregenomic RNA (pgRNA) and DNA polymerase complex into nucleocapsids for reverse transcriptional DNA replication to take place, the core protein dimers, existing in several different quaternary structures in infected hepatocytes, participate in and regulate HBV virion assembly, capsid uncoating, and covalently closed circular DNA (cccDNA) formation. It is anticipated that small molecular core protein assembly modulators may disrupt one or multiple steps of HBV replication, depending on their interaction with the distinct quaternary structures of core protein. The discovery of novel core protein-targeting antivirals, such as benzamide derivatives reported here, and investigation of their antiviral mechanism may lead to the identification of antiviral therapeutics for the cure of chronic hepatitis B. Copyright © 2017 American Society for Microbiology.
A Localized Complex of Two Protein Oligomers Controls the Orientation of Cell Polarity
Lasker, Keren; Ahrens, Daniel G.; Eckart, Michael R.
2017-01-01
ABSTRACT Signaling hubs at bacterial cell poles establish cell polarity in the absence of membrane-bound compartments. In the asymmetrically dividing bacterium Caulobacter crescentus, cell polarity stems from the cell cycle-regulated localization and turnover of signaling protein complexes in these hubs, and yet the mechanisms that establish the identity of the two cell poles have not been established. Here, we recapitulate the tripartite assembly of a cell fate signaling complex that forms during the G1-S transition. Using in vivo and in vitro analyses of dynamic polar protein complex formation, we show that a polymeric cell polarity protein, SpmX, serves as a direct bridge between the PopZ polymeric network and the cell fate-directing DivJ histidine kinase. We demonstrate the direct binding between these three proteins and show that a polar microdomain spontaneously assembles when the three proteins are coexpressed heterologously in an Escherichia coli test system. The relative copy numbers of these proteins are essential for complex formation, as overexpression of SpmX in Caulobacter reorganizes the polarity of the cell, generating ectopic cell poles containing PopZ and DivJ. Hierarchical formation of higher-order SpmX oligomers nucleates new PopZ microdomain assemblies at the incipient lateral cell poles, driving localized outgrowth. By comparison to self-assembling protein networks and polar cell growth mechanisms in other bacterial species, we suggest that the cooligomeric PopZ-SpmX protein complex in Caulobacter illustrates a paradigm for coupling cell cycle progression to the controlled geometry of cell pole establishment. PMID:28246363
Two-dimensional hexagonally oriented CdCl2.H2O nanorod assembly: formation and replication.
Deng, Zhaoxiang; Mao, Chengde
2004-09-14
This paper reports a simple bottom-up method that can controllably fabricate 2D hexagonally oriented and randomly distributed CdCl(2).H(2)O nanorods on mica surfaces. The as-formed nanorod assemblies have been successfully replicated into various matrixes, including gold, poly(dimethylsiloxane), and polyurethane. Thus, this method is compatible with soft-lithography towards further applications.
DOT National Transportation Integrated Search
2003-03-01
Recognizing that the fuel tax is a declining revenue source for Oregon's road system, the 2001 Oregon Legislative Assembly passed House Bill 3946, mandating the formation of the Road User Fee Task Force with the mission to develop a design for revenu...
Sugioka, Kenji; Hamill, Danielle R; Lowry, Joshua B; McNeely, Marie E; Enrick, Molly; Richter, Alyssa C; Kiebler, Lauren E; Priess, James R; Bowerman, Bruce
2017-01-01
The centriole/basal body is a eukaryotic organelle that plays essential roles in cell division and signaling. Among five known core centriole proteins, SPD-2/Cep192 is the first recruited to the site of daughter centriole formation and regulates the centriolar localization of the other components in C. elegans and in humans. However, the molecular basis for SPD-2 centriolar localization remains unknown. Here, we describe a new centriole component, the coiled-coil protein SAS-7, as a regulator of centriole duplication, assembly and elongation. Intriguingly, our genetic data suggest that SAS-7 is required for daughter centrioles to become competent for duplication, and for mother centrioles to maintain this competence. We also show that SAS-7 binds SPD-2 and regulates SPD-2 centriolar recruitment, while SAS-7 centriolar localization is SPD-2-independent. Furthermore, pericentriolar material (PCM) formation is abnormal in sas-7 mutants, and the PCM-dependent induction of cell polarity that defines the anterior-posterior body axis frequently fails. We conclude that SAS-7 functions at the earliest step in centriole duplication yet identified and plays important roles in the orchestration of centriole and PCM assembly. DOI: http://dx.doi.org/10.7554/eLife.20353.001 PMID:28092264
Design and fabrication of a foldable 3D silicon based package for solid state lighting applications
NASA Astrophysics Data System (ADS)
Sokolovskij, R.; Liu, P.; van Zeijl, H. W.; Mimoun, B.; Zhang, G. Q.
2015-05-01
Miniaturization of solid state lighting (SSL) luminaires as well as reduction of packaging and assembly costs are of prime interest for the SSL lighting industry. A novel silicon based LED package for lighting applications is presented in this paper. The proposed design consists of 5 rigid Si tiles connected by flexible polyimide hinges with embedded interconnects (ICs). Electrical, optical and thermal characteristics were taken into consideration during design. The fabrication process involved polyimide (PI) application and patterning, aluminium interconnect integration in the flexible hinge, LED reflector cavity formation and metalization followed by through wafer DRIE etching for chip formation and release. A method to connect chip front to backside without TSVs was also integrated into the process. Post-fabrication wafer level assembly included LED mounting and wirebond, phosphor-based colour conversion and silicone encapsulation. The package formation was finalized by vacuum assisted wrapping around an assembly structure to form a 3D geometry, which is beneficial for omnidirectional lighting. Bending tests were performed on the flexible ICs and optical performance at different temperatures was evaluated. It is suggested that 3D packages can be expanded to platforms for miniaturized luminaire applications by combining monolithic silicon integration and system-in-package (SiP) technologies.
Buchan, Alison M J; Lin, Chin-Yu; Choi, Jimmy; Barber, Diane L
2002-08-09
Somatostatin regulates multiple biological functions by acting through a family of five G protein-coupled receptors, somatostatin receptors (SSTRs) 1-5. Although all five receptor subtypes inhibit adenylate cyclase activity and decrease intracellular cAMP levels, specific receptor subtypes also couple to additional signaling pathways. In CCL39 fibroblasts expressing either human SSTR1 or SSTR2, we demonstrate that activation of SSTR1 (but not SSTR2) attenuated both thrombin- and integrin-stimulated Rho-GTP complex formation. The reduction in Rho-GTP formation in the presence of somatostatin was associated with decreased translocation of Rho and LIM kinase to the plasma membrane and fewer focal contacts. Activation of Rho resulted in the formation of intracellular actin stress fibers and cell migration. In CCL39-R1 cells, somatostatin treatment prevented actin stress fiber assembly and attenuated thrombin-stimulated cell migration through Transwell membranes to basal levels. To show that native SSTR1 shares the ability to inhibit Rho activation, we demonstrated that somatostatin treatment of human umbilical vein endothelial cells attenuated thrombin-stimulated Rho-GTP accumulation. These data show for the first time that a G protein-coupled receptor, SSTR1, inhibits the activation of Rho, the assembly of focal adhesions and actin stress fibers, and cell migration.
Polarized light scattering by macromolecular self-assembly of J-aggregates
NASA Astrophysics Data System (ADS)
Rebane, Aleksander; Mikhaylov, Alexander
2018-02-01
We have recently reported that by sending a tightly collimated (0.05 - 2 mm diameter) red- or near-IR laser beam through an aqueous solution of pseudoisocyanine (PIC) J-aggregates, a macroscopic tube-like structure is formed surrounding the laser beam on the time scale of minutes. This self-assembled structure is comprised of heterogeneous material containing micrometer-size rod-like strands or microcrystals. Because the illumination wavelength is far redshifted from the linear absorption range of the PIC and J-aggregates, the self-assembly is likely induced by some very weak background absorption or dissipation. Furthermore, strong correlation of the effect with the characteristic Jaggregate peak in the absorption spectrum and critical dependence of the "tube" formation on pH of the solution indicate molecular charge related non-equilibrium nature of the underlying mechanism. Most interestingly, the structure formation is accompanied by strongly polarized scattering. When observed between crossed polarizers, the angular intensity distribution of the scattered light resembles Maltese cross figure, indicating that the scattering rods are arranged in a circular pattern around the beam axis direction. It appears that the illumination is creating in the medium a radially directed gradient of either concentration-, temperature- or other type of parameter that controls the microcrystal formation.
Arai, Noriyoshi; Yasuoka, Kenji; Zeng, Xiao Cheng
2016-08-23
A vesicle in a cell is an enclosed structure in which the interior fluid is encompassed by a lipid bilayer. Synthetic vesicles are known as the liposomes. Liposomes with a single phospholipid bilayer are called unilamellar liposomes; otherwise, they are called multilamellar liposomes or onion-like liposomes (vesicles). One prototype synthetic onion-like vesicle, namely, onion-like dendrimersomes, have been recently produced via the self-assembly of amphiphilic Janus dendrimers (Proc. Natl. Acad. Sci. U.S.A. 2016, 113, 1162). Herein, we show computer simulation evidence of another type of onion-like vesicle, namely, onion-like oligomersomes, via the self-assembly of amphiphilic Janus oligomers in water. Specifically, we investigate the minimum-sized oligomers (or minimalist model) that can give rise to the onion-like oligomersomes as well as the composition-dependent phase diagrams. Insights into the formation condition and formation process of the onion-like oligomersomes are obtained. We demonstrate that the discharge of the in-vesicle water is through the remarkable "peeling-one-onion-layer-at-a-time" fashion, a feature that can be utilized for a clinical dosing regimen. The ability to control the formation of onion-like oligomersomes by design can be exploited for applications in drug and gene delivery.
Dependence of Halo Bias and Kinematics on Assembly Variables
NASA Astrophysics Data System (ADS)
Xu, Xiaoju; Zheng, Zheng
2018-06-01
Using dark matter haloes identified in a large N-body simulation, we study halo assembly bias, with halo formation time, peak maximum circular velocity, concentration, and spin as the assembly variables. Instead of grouping haloes at fixed mass into different percentiles of each assembly variable, we present the joint dependence of halo bias on the values of halo mass and each assembly variable. In the plane of halo mass and one assembly variable, the joint dependence can be largely described as halo bias increasing outward from a global minimum. We find it unlikely to have a combination of halo variables to absorb all assembly bias effects. We then present the joint dependence of halo bias on two assembly variables at fixed halo mass. The gradient of halo bias does not necessarily follow the correlation direction of the two assembly variables and it varies with halo mass. Therefore in general for two correlated assembly variables one cannot be used as a proxy for the other in predicting halo assembly bias trend. Finally, halo assembly is found to affect the kinematics of haloes. Low-mass haloes formed earlier can have much higher pairwise velocity dispersion than those of massive haloes. In general, halo assembly leads to a correlation between halo bias and halo pairwise velocity distribution, with more strongly clustered haloes having higher pairwise velocity and velocity dispersion. However, the correlation is not tight, and the kinematics of haloes at fixed halo bias still depends on halo mass and assembly variables.
Surface mediated assembly of small, metastable gold nanoclusters
NASA Astrophysics Data System (ADS)
Pettibone, John M.; Osborn, William A.; Rykaczewski, Konrad; Talin, A. Alec; Bonevich, John E.; Hudgens, Jeffrey W.; Allendorf, Mark D.
2013-06-01
The unique properties of metallic nanoclusters are attractive for numerous commercial and industrial applications but are generally less stable than nanocrystals. Thus, developing methodologies for stabilizing nanoclusters and retaining their enhanced functionality is of great interest. We report the assembly of PPh3-protected Au9 clusters from a heterogeneous mixture into films consisting of sub 3 nm nanocluster assemblies. The depositing nanoclusters are metastable in solution, but the resulting nanocluster assemblies are stabilized indefinitely in air or fresh solvent. The films exhibit distinct structure from Au nanoparticles observed by X-ray diffraction, and film dissolution data support the preservation of small nanoclusters. UV-Vis spectroscopy, electrospray ionization mass spectrometry, X-ray photoelectron spectroscopy and electron microscopy are used to elucidate information regarding the nanocluster formation and assembly mechanism. Preferential deposition of nanocluster assemblies can be achieved on multiple substrates, including polymer, Cr, Si, SiO2, SiNx, and metal-organic frameworks (MOFs). Unlike other vapor phase coating processes, nanocluster assembly on the MIL-68(In) MOF crystal is capable of preferentially coating the external surface and stabilizing the crystal structure in hydrothermal conditions, which should enhance their storage, separation and delivery capabilities.The unique properties of metallic nanoclusters are attractive for numerous commercial and industrial applications but are generally less stable than nanocrystals. Thus, developing methodologies for stabilizing nanoclusters and retaining their enhanced functionality is of great interest. We report the assembly of PPh3-protected Au9 clusters from a heterogeneous mixture into films consisting of sub 3 nm nanocluster assemblies. The depositing nanoclusters are metastable in solution, but the resulting nanocluster assemblies are stabilized indefinitely in air or fresh solvent. The films exhibit distinct structure from Au nanoparticles observed by X-ray diffraction, and film dissolution data support the preservation of small nanoclusters. UV-Vis spectroscopy, electrospray ionization mass spectrometry, X-ray photoelectron spectroscopy and electron microscopy are used to elucidate information regarding the nanocluster formation and assembly mechanism. Preferential deposition of nanocluster assemblies can be achieved on multiple substrates, including polymer, Cr, Si, SiO2, SiNx, and metal-organic frameworks (MOFs). Unlike other vapor phase coating processes, nanocluster assembly on the MIL-68(In) MOF crystal is capable of preferentially coating the external surface and stabilizing the crystal structure in hydrothermal conditions, which should enhance their storage, separation and delivery capabilities. Electronic supplementary information (ESI) available: Further details on stored plating solution preparation, film characterization, solution processing, MOF crystal FIB reconstruction and stability are available. See DOI: 10.1039/c3nr01708g
Substrate-driven chemotactic assembly in an enzyme cascade.
Zhao, Xi; Palacci, Henri; Yadav, Vinita; Spiering, Michelle M; Gilson, Michael K; Butler, Peter J; Hess, Henry; Benkovic, Stephen J; Sen, Ayusman
2018-03-01
Enzymatic catalysis is essential to cell survival. In many instances, enzymes that participate in reaction cascades have been shown to assemble into metabolons in response to the presence of the substrate for the first enzyme. However, what triggers metabolon formation has remained an open question. Through a combination of theory and experiments, we show that enzymes in a cascade can assemble via chemotaxis. We apply microfluidic and fluorescent spectroscopy techniques to study the coordinated movement of the first four enzymes of the glycolysis cascade: hexokinase, phosphoglucose isomerase, phosphofructokinase and aldolase. We show that each enzyme independently follows its own specific substrate gradient, which in turn is produced by the preceding enzymatic reaction. Furthermore, we find that the chemotactic assembly of enzymes occurs even under cytosolic crowding conditions.
Substrate-driven chemotactic assembly in an enzyme cascade
NASA Astrophysics Data System (ADS)
Zhao, Xi; Palacci, Henri; Yadav, Vinita; Spiering, Michelle M.; Gilson, Michael K.; Butler, Peter J.; Hess, Henry; Benkovic, Stephen J.; Sen, Ayusman
2018-03-01
Enzymatic catalysis is essential to cell survival. In many instances, enzymes that participate in reaction cascades have been shown to assemble into metabolons in response to the presence of the substrate for the first enzyme. However, what triggers metabolon formation has remained an open question. Through a combination of theory and experiments, we show that enzymes in a cascade can assemble via chemotaxis. We apply microfluidic and fluorescent spectroscopy techniques to study the coordinated movement of the first four enzymes of the glycolysis cascade: hexokinase, phosphoglucose isomerase, phosphofructokinase and aldolase. We show that each enzyme independently follows its own specific substrate gradient, which in turn is produced by the preceding enzymatic reaction. Furthermore, we find that the chemotactic assembly of enzymes occurs even under cytosolic crowding conditions.
Self-assembly of nanocomposite materials
Brinker, C. Jeffrey; Sellinger, Alan; Lu, Yunfeng
2001-01-01
A method of making a nanocomposite self-assembly is provided where at least one hydrophilic compound, at least one hydrophobic compound, and at least one amphiphilic surfactant are mixed in an aqueous solvent with the solvent subsequently evaporated to form a self-assembled liquid crystalline mesophase material. Upon polymerization of the hydrophilic and hydrophobic compounds, a robust nanocomposite self-assembled material is formed. Importantly, in the reaction mixture, the amphiphilic surfactant has an initial concentration below the critical micelle concentration to allow formation of the liquid-phase micellar mesophase material. A variety of nanocomposite structures can be formed, depending upon the solvent evaporazation process, including layered mesophases, tubular mesophases, and a hierarchical composite coating composed of an isotropic worm-like micellar overlayer bonded to an oriented, nanolaminated underlayer.
Directed Self-Assembly of Gradient Concentric Carbon Nanotube Rings
NASA Astrophysics Data System (ADS)
Hong, Suck Won; Jeong, Wonje; Ko, Hyunhyub; Tsukruk, Vladimir; Kessler, Michael; Lin, Zhiqun
2008-03-01
Hundreds of gradient concentric rings of linear conjugated polymer, (poly[2-methoxy-5-(2-ethylhexyloxy)-1,4- phenylenevinylene], i.e., MEH-PPV) with remarkable regularity over large areas were produced by controlled, repetitive ``stick- slip'' motions of the contact line in a confined geometry consisting of a sphere on a flat substrate (i.e., sphere-on-flat geometry). Subsequently, MEH-PPV rings exploited as template to direct the formation of gradient concentric rings of multiwalled carbon nanotubes (MWNTs) with controlled density. This method is simple, cost effective, and robust, combining two consecutive self-assembly processes, namely, evaporation-induced self- assembly of polymers in a sphere-on-flat geometry, followed by subsequent directed self-assembly of MWNTs on the polymer- templated surfaces.
In Situ Generation of Two-Dimensional Au–Pt Core–Shell Nanoparticle Assemblies
2010-01-01
Two-dimensional assemblies of Au–Pt bimetallic nanoparticles are generated in situ on polyethyleneimmine (PEI) silane functionalized silicon and indium tin oxide (ITO) coated glass surfaces. Atomic force microscopy (AFM), UV–Visible spectroscopy, and electrochemical measurements reveal the formation of core–shell structure with Au as core and Pt as shell. The core–shell structure is further supported by comparing with the corresponding data of Au nanoparticle assemblies. Static contact angle measurements with water show an increase in hydrophilic character due to bimetallic nanoparticle generation on different surfaces. It is further observed that these Au–Pt core–shell bimetallic nanoparticle assemblies are catalytically active towards methanol electro-oxidation, which is the key reaction for direct methanol fuel cells (DMFCs). PMID:20651923
Alivisatos, A.P.; Colvin, V.L.
1998-05-12
Methods are described for attaching semiconductor nanocrystals to solid inorganic surfaces, using self-assembled bifunctional organic monolayers as bridge compounds. Two different techniques are presented. One relies on the formation of self-assembled monolayers on these surfaces. When exposed to solutions of nanocrystals, these bridge compounds bind the crystals and anchor them to the surface. The second technique attaches nanocrystals already coated with bridge compounds to the surfaces. Analyses indicate the presence of quantum confined clusters on the surfaces at the nanolayer level. These materials allow electron spectroscopies to be completed on condensed phase clusters, and represent a first step towards synthesis of an organized assembly of clusters. These new products are also disclosed. 10 figs.
Muscle assembly: a titanic achievement?
Gregorio, C C; Granzier, H; Sorimachi, H; Labeit, S
1999-02-01
The formation of perfectly aligned myofibrils in striated muscle represents a dramatic example of supramolecular assembly in eukaryotic cells. Recently, considerable progress has been made in deciphering the roles that titin, the third most abundant protein in muscle, has in this process. An increasing number of sarcomeric proteins (ligands) are being identified that bind to specific titin domains. Titin may serve as a molecular blueprint for sarcomere assembly and turnover by specifying the precise position of its ligands within each half-sarcomere in addition to functioning as a molecular spring that maintains the structural integrity of the contracting myofibrils.
Thermodynamically stable vesicle formation from glycolipid biosurfactant sponge phase.
Imura, Tomohiro; Yanagishita, Hiroshi; Ohira, Junko; Sakai, Hideki; Abe, Masahiko; Kitamoto, Dai
2005-06-25
Thermodynamically stable vesicle (L(alpha1)) formation from glycolipid biosurfactant sponge phase (L(3)) and its mechanism were investigated using a "natural" biocompatible mannosyl-erythritol lipid-A (MEL-A)/L-alpha-dilauroylphosphatidylcholine (DLPC) mixture by varying the composition. The trapping efficiency for calcein and turbidity measurements clearly indicated the existence of three regions: while the trapping efficiencies of the mixed MEL-A/DLPC assemblies at the compositions with X(DLPC)< or =0.1 or X(DLPC)> or =0.8 were almost zero, the mixed assemblies at the compositions with 0.1
Jin, Yiguang; Chen, Shufeng; Xin, Rui; Zhou, Yisheng
2008-07-15
Isoniazid (INH, isonicotinic acid hydrazide) is one of the most commonly used anti-tubercular drugs. However, resistance of Mycobacterium tuberculosis strains to anti-mycobacterial agents including INH is an increasing problem worldwide. Development of new anti-mycobacterial agents thus has attracted attention. Five lipid derivatives of INH were prepared in this study. They formed monolayers at the air/water interface, and some nanostructures with different morphologies were obtained through molecular self-assembly in water. The derivatives included one fatty acyl derivative containing a 12-C hydrocarbon-long chain (1), three fatty alcohol derivatives with a succinyl as spacer and an 8, 12 or 16-C hydrocarbon-long chain (2, 3 and 4), and one tetrahydro-2H-1,3,5-thiadiazine-2-thione (THTT) derivative containing a 12-C hydrocarbon-long chain (5). The surface pressure-area isotherms depended on the volume and configuration of heads and the length of tails of derivatives. Compound 2 had a relatively large head and a short tail, easily standing uprightly at the interface. Under a certain surface pressure, the linear polar head groups of 3 could be partly squeezed out and insert into subphase because the length of heads were comparable to the one of tails. The very long tails of 4 always maintained above the interface and led to a high collapse pressure. Compound 5 possessed an extended and large head consisting of the THTT and INH groups so that the relatively short tails tilted at the interface and difficultly contact with each other. The THTT rings might be partly squeezed out and enter into air under a certain surface pressure. The self-assembly behaviours of derivatives in water depended on the molecular configuration and agreed with the corresponding monolayer behaviours. The flexible and medium-long tails (1 and 3) led to the derivatives to form nanoscale vesicles, though the short or very long tails did not (2 and 4). Interestingly, intermolecular hydrogen bonding could occur between the molecules of 5, and improve the derivative forming helical nanofibres other than vesicles. The molecular self-assembly of INH's lipid derivatives was explored in details in this study. The formation mechanisms of self-assembled nanostructures were analyzed. Various types of self-assembled nanostructures were obtained and the formation mechanisms were analyzed. The relationship between the self-assembly and the molecular configuration of amphiphilic derivatives was also revealed. The lipid derivatives of INH show promising anti-Mycobacterium action because the amphiphilic prodrugs allow for better penetration of the bacterial cells. The self-assembled nanostructures may likely be the potential self-assembled drug delivery systems for tuberculosis therapy.
Dynamics of self-assembled cytosine nucleobases on graphene
NASA Astrophysics Data System (ADS)
Saikia, Nabanita; Johnson, Floyd; Waters, Kevin; Pandey, Ravindra
2018-05-01
Molecular self-assembly of cytosine (C n ) bases on graphene was investigated using molecular dynamics methods. For free-standing C n bases, simulation conditions (gas versus aqueous) determine the nature of self-assembly; the bases prefer to aggregate in the gas phase and are stabilized by intermolecular H-bonds, while in the aqueous phase, the water molecules disrupt base-base interactions, which facilitate the formation of π-stacked domains. The substrate-induced effects, on the other hand, find the polarity and donor-acceptor sites of the bases to govern the assembly process. For example, in the gas phase, the assembly of C n bases on graphene displays short-range ordered linear arrays stabilized by the intermolecular H-bonds. In the aqueous phase, however, there are two distinct configurations for the C n bases assembly on graphene. For the first case corresponding to low surface coverage, the bases are dispersed on graphene and are isolated. The second configuration archetype is disordered linear arrays assembled with medium and high surface coverage. The simulation results establish the role of H-bonding, vdW π-stacking, and the influence of graphene surface towards the self-assembly. The ability to regulate the assembly into well-defined patterns can aid in the design of self-assembled nanostructures for the next-generation DNA based biosensors and nanoelectronic devices.
Self-assembly of convex particles on spherocylindrical surfaces.
Lázaro, Guillermo R; Dragnea, Bogdan; Hagan, Michael F
2018-05-25
The precise control of assembly and packing of proteins and colloids on curved surfaces has fundamental implications in nanotechnology. In this paper, we describe dynamical simulations of the self-assembly of conical subunits around a spherocylindrical template, and a continuum theory for the bending energy of a triangular lattice with spontaneous curvature on a surface with arbitrary curvature. We find that assembly depends sensitively on mismatches between subunit spontaneous curvature and the mean curvature of the template, as well as anisotropic curvature of the template (mismatch between the two principal curvatures). Our simulations predict assembly morphologies that closely resemble those observed in experiments in which virus capsid proteins self-assemble around metal nanorods. Below a threshold curvature mismatch, our simulations identify a regime of optimal assembly leading to complete, symmetrical particles. Outside of this regime we observe defective particles, whose morphologies depend on the degree of curvature mismatch. To learn how assembly is affected by the nonuniform curvature of a spherocylinder, we also study the simpler cases of assembly around spherical and cylindrical cores. Our results show that both the intrinsic (Gaussian) and extrinsic (mean) curvatures of a template play significant roles in guiding the assembly of anisotropic subunits, providing a rich design space for the formation of nanoscale materials.
Müller, Michael; König, Finja; Meyer, Nina; Gattlen, Jasmin; Pieles, Uwe; Peters, Kirsten; Kreikemeyer, Bernd; Mathes, Stephanie; Saxer, Sina
2018-01-01
Self-assembling peptide hydrogels can be modified regarding their biodegradability, their chemical and mechanical properties and their nanofibrillar structure. Thus, self-assembling peptide hydrogels might be suitable scaffolds for regenerative therapies and tissue engineering. Owing to the use of various peptide concentrations and buffer compositions, the self-assembling peptide hydrogels might be influenced regarding their mechanical characteristics. Therefore, the mechanical properties and stability of a set of self-assembling peptide hydrogels, consisting of 11 amino acids, made from four beta sheet self-assembling peptides in various peptide concentrations and buffer compositions were studied. The formed self-assembling peptide hydrogels exhibited stiffnesses ranging from 0.6 to 205 kPa. The hydrogel stiffness was mostly affected by peptide sequence followed by peptide concentration and buffer composition. All self-assembling peptide hydrogels examined provided a nanofibrillar network formation. A maximum self-assembling peptide hydrogel dissolution of 20% was observed for different buffer solutions after 7 days. The stability regarding enzymatic and bacterial digestion showed less degradation in comparison to the self-assembling peptide hydrogel dissolution rate in buffer. The tested set of self-assembling peptide hydrogels were able to form stable scaffolds and provided a broad spectrum of tissue-specific stiffnesses that are suitable for a regenerative therapy. PMID:29657766
Wang, Haitao; Zhang, Wenfeng; Xu, Chenhui; Bi, Xianghong; Chen, Boxue; Yang, Shangfeng
2013-01-01
A non-conjugated polymer poly(vinylpyrrolidone) (PVP) was applied as a new cathode buffer layer in P3HT:PCBM bulk heterojunction polymer solar cells (BHJ-PSCs), by means of either spin coating or self-assembly, resulting in significant efficiency enhancement. For the case of incorporation of PVP by spin coating, power conversion efficiency (PCE) of the ITO/PEDOT:PSS/P3HT:PCBM/PVP/Al BHJ-PSC device (3.90%) is enhanced by 29% under the optimum PVP spin-coating speed of 3000 rpm, which leads to the optimum thickness of PVP layer of ~3 nm. Such an efficiency enhancement is found to be primarily due to the increase of the short-circuit current (J(sc)) (31% enhancement), suggesting that the charge collection increases upon the incorporation of a PVP cathode buffer layer, which originates from the conjunct effects of the formation of a dipole layer between P3HT:PCBM active layer and Al electrodes, the chemical reactions of PVP molecules with Al atoms, and the increase of the roughness of the top Al film. Incorporation of PVP layer by doping PVP directly into the P3HT:PCBM active layer leads to an enhancement of PCE by 13% under the optimum PVP doping ratio of 3%, and this is interpreted by the migration of PVP molecules to the surface of the active layer via self-assembly, resulting in the formation of the PVP cathode buffer layer. While the formation of the PVP cathode buffer layer is fulfilled by both fabrication methods (spin coating and self-assembly), the dependence of the enhancement of the device performance on the thickness of the PVP cathode buffer layer formed by self-assembly or spin coating is different, because of the different aggregation microstructures of the PVP interlayer.
Horard, Béatrice; Sapey-Triomphe, Laure; Bonnefoy, Emilie; Loppin, Benjamin
2018-05-11
Anti-Silencing Factor 1 (ASF1) is a conserved H3-H4 histone chaperone involved in both Replication-Coupled and Replication-Independent (RI) nucleosome assembly pathways. At DNA replication forks, ASF1 plays an important role in regulating the supply of H3.1/2 and H4 to the CAF-1 chromatin assembly complex. ASF1 also provides H3.3-H4 dimers to HIRA and DAXX chaperones for RI nucleosome assembly. The early Drosophila embryo is an attractive system to study chromatin assembly in a developmental context. The formation of a diploid zygote begins with the unique, genome-wide RI assembly of paternal chromatin following sperm protamine eviction. Then, within the same cytoplasm, syncytial embryonic nuclei undergo a series of rapid, synchronous S and M phases to form the blastoderm embryo. Here, we have investigated the implication of ASF1 in these two distinct assembly processes. We show that depletion of the maternal pool of ASF1 with a specific shRNA induces a fully penetrant, maternal effect embryo lethal phenotype. Unexpectedly, despite the depletion of ASF1 protein to undetectable levels, we show that asf1 knocked-down (KD) embryos can develop to various stages, thus demonstrating that ASF1 is not absolutely required for the amplification of cleavage nuclei. Remarkably, we found that ASF1 is required for the formation of the male pronucleus, although ASF1 protein does not reside in the decondensing sperm nucleus. In asf1 KD embryos, HIRA localizes to the male nucleus but is only capable of limited and insufficient chromatin assembly. Finally, we show that the conserved HIRA B domain, which is involved in ASF1-HIRA interaction, is dispensable for female fertility. We conclude that ASF1 is critically required to load H3.3-H4 dimers on the HIRA complex prior to histone deposition on paternal DNA. This separation of tasks could optimize the rapid assembly of paternal chromatin within the gigantic volume of the egg cell. In contrast, ASF1 is surprisingly dispensable for the amplification of cleavage nuclei, although chromatin integrity is likely compromised in KD embryos.
ERIC Educational Resources Information Center
Vahabi, Mandana
2010-01-01
Objective: To test whether the format in which women receive probabilistic information about breast cancer and mammography affects their comprehension. Methods: A convenience sample of 180 women received pre-assembled randomized packages containing a breast health information brochure, with probabilities presented in either verbal or numeric…
Formation of newly synthesized adeno-associated virus capsids in the cell nucleus.
Bell, Peter; Vandenberghe, Luk H; Wilson, James M
2014-06-01
Adeno-associated virus (AAV) particles inside the nucleus of a HEK 293 cell are shown by electron microscopy. Cells have been triple-transfected for vector production and were analyzed for capsid formation three days later. Newly assembled particle are visible as seemingly unstructured conglomerates or crystal-like arrays.
Reimers, Jeffrey R.; Panduwinata, Dwi; Visser, Johan; Chin, Yiing; Tang, Chunguang; Goerigk, Lars; Ford, Michael J.; Sintic, Maxine; Sum, Tze-Jing; Coenen, Michiel J. J.; Hendriksen, Bas L. M.; Elemans, Johannes A. A. W.; Hush, Noel S.; Crossley, Maxwell J.
2015-01-01
Modern quantum chemical electronic structure methods typically applied to localized chemical bonding are developed to predict atomic structures and free energies for meso-tetraalkylporphyrin self-assembled monolayer (SAM) polymorph formation from organic solution on highly ordered pyrolytic graphite surfaces. Large polymorph-dependent dispersion-induced substrate−molecule interactions (e.g., −100 kcal mol−1 to −150 kcal mol−1 for tetratrisdecylporphyrin) are found to drive SAM formation, opposed nearly completely by large polymorph-dependent dispersion-induced solvent interactions (70–110 kcal mol−1) and entropy effects (25–40 kcal mol−1 at 298 K) favoring dissolution. Dielectric continuum models of the solvent are used, facilitating consideration of many possible SAM polymorphs, along with quantum mechanical/molecular mechanical and dispersion-corrected density functional theory calculations. These predict and interpret newly measured and existing high-resolution scanning tunnelling microscopy images of SAM structure, rationalizing polymorph formation conditions. A wide range of molecular condensed matter properties at room temperature now appear suitable for prediction and analysis using electronic structure calculations. PMID:26512115
De Micco, Veronica; Ruel, Katia; Joseleau, Jean-Paul; Aronne, Giovanna
2010-08-01
During cell wall formation and degradation, it is possible to detect cellulose microfibrils assembled into thicker and thinner lamellar structures, respectively, following inverse parallel patterns. The aim of this study was to analyse such patterns of microfibril aggregation and cell wall delamination. The thickness of microfibrils and lamellae was measured on digital images of both growing and degrading cell walls viewed by means of transmission electron microscopy. To objectively detect, measure and classify microfibrils and lamellae into thickness classes, a method based on the application of computerized image analysis combined with graphical and statistical methods was developed. The method allowed common classes of microfibrils and lamellae in cell walls to be identified from different origins. During both the formation and degradation of cell walls, a preferential formation of structures with specific thickness was evidenced. The results obtained with the developed method allowed objective analysis of patterns of microfibril aggregation and evidenced a trend of doubling/halving lamellar structures, during cell wall formation/degradation in materials from different origin and which have undergone different treatments.
NASA Astrophysics Data System (ADS)
Gunawardhana, M. L. P.; Hopkins, A. M.; Sharp, R. G.; Brough, S.; Taylor, E.; Bland-Hawthorn, J.; Maraston, C.; Tuffs, R. J.; Popescu, C. C.; Wijesinghe, D.; Jones, D. H.; Croom, S.; Sadler, E.; Wilkins, S.; Driver, S. P.; Liske, J.; Norberg, P.; Baldry, I. K.; Bamford, S. P.; Loveday, J.; Peacock, J. A.; Robotham, A. S. G.; Zucker, D. B.; Parker, Q. A.; Conselice, C. J.; Cameron, E.; Frenk, C. S.; Hill, D. T.; Kelvin, L. S.; Kuijken, K.; Madore, B. F.; Nichol, B.; Parkinson, H. R.; Pimbblet, K. A.; Prescott, M.; Sutherland, W. J.; Thomas, D.; van Kampen, E.
2011-08-01
The stellar initial mass function (IMF) describes the distribution in stellar masses produced from a burst of star formation. For more than 50 yr, the implicit assumption underpinning most areas of research involving the IMF has been that it is universal, regardless of time and environment. We measure the high-mass IMF slope for a sample of low-to-moderate redshift galaxies from the Galaxy and Mass Assembly survey. The large range in luminosities and galaxy masses of the sample permits the exploration of underlying IMF dependencies. A strong IMF-star formation rate dependency is discovered, which shows that highly star-forming galaxies form proportionally more massive stars (they have IMFs with flatter power-law slopes) than galaxies with low star formation rates. This has a significant impact on a wide variety of galaxy evolution studies, all of which rely on assumptions about the slope of the IMF. Our result is supported by, and provides an explanation for, the results of numerous recent explorations suggesting a variation of or evolution in the IMF.
NASA Astrophysics Data System (ADS)
Xue, Mingshan; Xu, Tao; Xie, Xiaolin; Ou, Junfei; Wang, Fajun; Li, Wen
2015-11-01
Synthesis and understanding of hierarchically nanostructured materials are significant for exploring peculiar functional properties and underlying applications. In this study, the self-assembly formation and detailed transformation process of ZnO nanoplatelets grown by hydrothermal methods with the addition of compound surfactants (CTAB and Tween-20) have been investigated. The initial growth of ZnO nanoplatelets as well as the subsequent formation of bilayer nanorod arrays and divergent nanocone arrays on the surface and side face of these nanoplatelets were found. Compared with the formation of bulk/block crystals without the case of surfactants, the addition of compound surfactants into zinc nitrate solution is responsible for the self-assembly processes of ZnO because of the effective role of CTAB in decreasing the degree of crystallinity and the positive effect of Tween-20 on decreasing the particle size owing to the space hindered effect. As-formed hierarchically micro-nanostructured ZnO exhibits superhydrophobicity without any chemical modification, which can make water droplets suspend on the air film trapped between the nanoplatelet and nanoplatelet as well as between nanocone and nanocone.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ciszek, Jacob W.; Huang, Ling; Tsonchev, Stefan
The assembly mechanism by which hundreds of thousands of two-segment gold-polypyrrole nanorods are assembled into kinetically controlled shape-directed superstructures is examined to predict the range of nanoparticle sizes and materials that can be utilized in their formation. Four processes are responsible for assembly: templating, capillary force assembly, adhesion, and polymer hydration. It is shown that templating, where rods are prepositioned for assembly, is scale invariant and that the energy-minimized state after this step is highly disordered. In addition, we predict that superstructures can be made independently from patterns of rods separated by a distance as small as six times themore » inter-rod spacing. Both modeling and experiment show that adhesion and polymer dehydration, which induces curvature in the superstructures, are applicable to other materials. However, the high surface energy and low elastic modulus of polypyrrole are advantageous toward generating three-dimensional structures, inducing curvature at gold/polypyrrole length ratios as large as 7:1.« less
Ikeda, Masato; Nobori, Tadahito; Schmutz, Marc; Lehn, Jean-Marie
2005-01-07
The bow-shaped molecule 1 bearing a self-complementary DAAD-ADDA (D=donor A=acceptor) hydrogen-bonding array generates, in hydrocarbon solvents, highly ordered supramolecular sheet aggregates that subsequently give rise to gels by formation of an entangled network. The process of hierarchical self-assembly of compound 1 was investigated by the concentration and temperature dependence of UV-visible and (1)H NMR spectra, fluorescence spectra, and electron microscopy data. The temperature dependence of the UV-visible spectra indicates a highly cooperative process for the self-assembly of compound 1 in decaline. The electron micrograph of the decaline solution of compound 1 (1.0 mM) revealed supramolecular sheet aggregates forming an entangled network. The selected area electronic diffraction patterns of the supramolecular sheet aggregates were typical for single crystals, indicative of a highly ordered assembly. The results exemplify the generation, by hierarchical self-assembly, of highly organized supramolecular materials presenting novel collective properties at each level of organization.
Zhang, Zheng; Wu, Yuyang; Yu, Feng; Niu, Chaoqun; Du, Zhi; Chen, Yong; Du, Jie
2017-10-01
The construction and self-assembly of DNA building blocks are the foundation of bottom-up development of three-dimensional DNA nanostructures or hydrogels. However, most self-assembly from DNA components is impeded by the mishybridized intermediates or the thermodynamic instability. To enable rapid production of complicated DNA objects with high yields no need for annealing process, herein different DNA building blocks (Y-shaped, L- and L'-shaped units) were assembled in presence of a cationic comb-type copolymer, poly (L-lysine)-graft-dextran (PLL-g-Dex), under physiological conditions. The results demonstrated that PLL-g-Dex not only significantly promoted the self-assembly of DNA blocks with high efficiency, but also stabilized the assembled multi-level structures especially for promoting the complicated 3D DNA hydrogel formation. This study develops a novel strategy for rapid and high-yield production of DNA hydrogel even derived from instable building blocks at relatively low DNA concentrations, which would endow DNA nanotechnology for more practical applications.
Okesola, Babatunde O; Mata, Alvaro
2018-05-21
Nature is enriched with a wide variety of complex, synergistic, and highly functional protein-based multicomponent assemblies. As such, nature has served as a source of inspiration for using multicomponent self-assembly as a platform to create highly ordered, complex, and dynamic protein and peptide-based nanostructures. Such an assembly system relies on the initial interaction of distinct individual building blocks leading to the formation of a complex that subsequently assembles into supramolecular architectures. This approach not only serves as a powerful platform for gaining insight into how proteins co-assemble in nature but also offers huge opportunities to harness new properties not inherent in the individual building blocks. In the past decades, various multicomponent self-assembly strategies have been used to extract synergistic properties from proteins and peptides. This review highlights the updates in the field of multicomponent self-assembly of proteins and peptides and summarizes various strategies, including covalent conjugation, ligand-receptor interactions, templated/directed assembly and non-specific co-assembly, for driving the self-assembly of multiple proteins and peptide-based building blocks into functional materials. In particular, we focus on peptide- or protein-containing multicomponent systems that, upon self-assembly, enable the emergence of new properties or phenomena. The ultimate goal of this review is to highlight the importance of multicomponent self-assembly in protein and peptide engineering, and to advocate its growth in the fields of materials science and nanotechnology.
Activation of Toll-like receptors nucleates assembly of the MyDDosome signaling hub.
Latty, Sarah Louise; Sakai, Jiro; Hopkins, Lee; Verstak, Brett; Paramo, Teresa; Berglund, Nils A; Cammorota, Eugenia; Cicuta, Pietro; Gay, Nicholas J; Bond, Peter J; Klenerman, David; Bryant, Clare E
2018-01-24
Infection and tissue damage induces assembly of supramolecular organizing centres (SMOCs)), such as the Toll-like receptor (TLR) MyDDosome, to co-ordinate inflammatory signaling. SMOC assembly is thought to drive digital all-or-none responses, yet TLR activation by diverse microbes induces anything from mild to severe inflammation. Using single-molecule imaging of TLR4-MyDDosome signaling in living macrophages, we find that MyDDosomes assemble within minutes of TLR4 stimulation. TLR4/MD2 activation leads only to formation of TLR4/MD2 heterotetramers, but not oligomers, suggesting a stoichiometric mismatch between activated receptors and MyDDosomes. The strength of TLR4 signalling depends not only on the number and size of MyDDosomes formed but also how quickly these structures assemble. Activated TLR4, therefore, acts transiently nucleating assembly of MyDDosomes, a process that is uncoupled from receptor activation. These data explain how the oncogenic mutation of MyD88 (L265P) assembles MyDDosomes in the absence of receptor activation to cause constitutive activation of pro-survival NF-κB signalling. © 2018, Latty et al.
Activation of Toll-like receptors nucleates assembly of the MyDDosome signaling hub
Latty, Sarah Louise; Sakai, Jiro; Hopkins, Lee; Verstak, Brett; Paramo, Teresa; Berglund, Nils A; Cammorota, Eugenia; Cicuta, Pietro; Gay, Nicholas J; Bond, Peter J; Klenerman, David
2018-01-01
Infection and tissue damage induces assembly of supramolecular organizing centres (SMOCs)), such as the Toll-like receptor (TLR) MyDDosome, to co-ordinate inflammatory signaling. SMOC assembly is thought to drive digital all-or-none responses, yet TLR activation by diverse microbes induces anything from mild to severe inflammation. Using single-molecule imaging of TLR4-MyDDosome signaling in living macrophages, we find that MyDDosomes assemble within minutes of TLR4 stimulation. TLR4/MD2 activation leads only to formation of TLR4/MD2 heterotetramers, but not oligomers, suggesting a stoichiometric mismatch between activated receptors and MyDDosomes. The strength of TLR4 signalling depends not only on the number and size of MyDDosomes formed but also how quickly these structures assemble. Activated TLR4, therefore, acts transiently nucleating assembly of MyDDosomes, a process that is uncoupled from receptor activation. These data explain how the oncogenic mutation of MyD88 (L265P) assembles MyDDosomes in the absence of receptor activation to cause constitutive activation of pro-survival NF-κB signalling. PMID:29368691
Printing 1D Assembly Array of Single Particle Resolution for Magnetosensing.
Gao, Meng; Kuang, Minxuan; Li, Lihong; Liu, Meijin; Wang, Libin; Song, Yanlin
2018-05-01
Magnetosensing is a ubiquitous ability for many organism species in nature. 1D assembly, especially that arranged in single-particle-resolution regulation, is able to sense the direction of magnetic field depending on the enhanced dipolar interaction in the linear orientation. Inspired by the magnetosome structure in magnetotactic bacteria, a 1D assembly array of single particle resolution with controlled length and well-behaved configuration is prepared via inkjet printing method assisted with magnetic guiding. In the fabrication process, chains in a "tip-to-tip" regulation with the desired number of particles are prepared in a confined tiny inkjet-printed droplet. By adjusting the receding angle of the substrate, the assembled 1D morphology is kept/deteriorated depending on the pinning/depinning behavior during ink evaporation, which leads to the formation of well-behaved 1D assembly/aggregated dot assembly. Owing to the high-aspect-ratio characteristic of the assembled structure, the as-prepared 1D arrays can be used for magnetic field sensing with anisotropic magnetization M // /M ⊥ up to 6.03. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Simulations of polymorphic icosahedral shells assembling around many cargo molecules
NASA Astrophysics Data System (ADS)
Mohajerani, Farzaneh; Perlmutter, Jason; Hagan, Michael
Bacterial microcompartments (BMCs) are large icosahedral shells that sequester the enzymes and reactants responsible for particular metabolic pathways in bacteria. Although different BMCs vary in size and encapsulate different cargoes, they are constructed from similar pentameric and hexameric shell proteins. Despite recent groundbreaking experiments which visualized the formation of individual BMCs, the detailed assembly pathways and the factors which control shell size remain unclear. In this talk, we describe theoretical and computational models that describe the dynamical encapsulation of hundreds of cargo molecules by self-assembling icosahedral shells. We present phase diagrams and analysis of dynamical simulation trajectories showing how the thermodynamics, assembly pathways, and emergent structures depend on the interactions among shell proteins and cargo molecules. Our model suggests a mechanism for controlling insertion of the 12 pentamers required for a closed shell topology, and the relationship between assembly pathway and BMC size polydispersity. In addition to elucidating how native BMCs assemble,our results establish principles for reengineering BMCs or viral capsids as customizable nanoreactors that can assemble around a programmable set of enzymes and reactants. Supported by NIH R01GM108021 and Brandeis MRSEC DMR-1420382.
Cardoso, Silvana S S; Cartwright, Julyan H E; Checa, Antonio G; Sainz-Díaz, C Ignacio
2016-10-01
We show with laboratory experiments that self-assembled mineral tube formation involving precipitation around a templating jet of fluid - a mechanism well-known in the physical sciences from the tubular growth of so-called chemical gardens - functions with carbonates, and we analyse the microstructures and compositions of the precipitates. We propose that there should exist biological examples of fluid-flow-templated tubes formed from carbonates. We present observational and theoretical modelling evidence that the complex structure of biomineral calcium carbonate tubules that forms the 'rose' of the watering-pot shells, Clavagelloidea, may be an instance of this mechanism in biomineralization. We suggest that this is an example of self-organization and self-assembly processes in biomineralization, and that such a mechanism is of interest for the production of tubes as a synthetic biomaterial. The work discussed in the manuscript concerns the self-assembly of calcium carbonate micro-tubes and nano-tubes under conditions of fluid flow together with chemical reaction. We present the results of laboratory experiments on tube self-assembly together with theoretical calculations. We show how nature may already be making use of this process in molluscan biomineralization of the so-called watering-pot shells, and we propose that we may be able to take advantage of the formation mechanism to produce synthetic biocompatible micro- and nano-tubes. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
DNA-programmable nanoparticle crystallization.
Park, Sung Yong; Lytton-Jean, Abigail K R; Lee, Byeongdu; Weigand, Steven; Schatz, George C; Mirkin, Chad A
2008-01-31
It was first shown more than ten years ago that DNA oligonucleotides can be attached to gold nanoparticles rationally to direct the formation of larger assemblies. Since then, oligonucleotide-functionalized nanoparticles have been developed into powerful diagnostic tools for nucleic acids and proteins, and into intracellular probes and gene regulators. In contrast, the conceptually simple yet powerful idea that functionalized nanoparticles might serve as basic building blocks that can be rationally assembled through programmable base-pairing interactions into highly ordered macroscopic materials remains poorly developed. So far, the approach has mainly resulted in polymerization, with modest control over the placement of, the periodicity in, and the distance between particles within the assembled material. That is, most of the materials obtained thus far are best classified as amorphous polymers, although a few examples of colloidal crystal formation exist. Here, we demonstrate that DNA can be used to control the crystallization of nanoparticle-oligonucleotide conjugates to the extent that different DNA sequences guide the assembly of the same type of inorganic nanoparticle into different crystalline states. We show that the choice of DNA sequences attached to the nanoparticle building blocks, the DNA linking molecules and the absence or presence of a non-bonding single-base flexor can be adjusted so that gold nanoparticles assemble into micrometre-sized face-centred-cubic or body-centred-cubic crystal structures. Our findings thus clearly demonstrate that synthetically programmable colloidal crystallization is possible, and that a single-component system can be directed to form different structures.
NASA Astrophysics Data System (ADS)
Sreenivasulu, Gollapudi; Lochbiler, Thomas A.; Panda, Manashi; Srinivasan, Gopalan; Chavez, Ferman A.
2016-04-01
Multiferroic composites of ferromagnetic and ferroelectric phases are of importance for studies on mechanical strain mediated coupling between the magnetic and electric subsystems. This work is on DNA-assisted self-assembly of superstructures of such composites with nanometer periodicity. The synthesis involved oligomeric DNA-functionalized ferroelectric and ferromagnetic nanoparticles, 600 nm BaTiO3 (BTO) and 200 nm NiFe2O4 (NFO), respectively. Mixing BTO and NFO particles, possessing complementary DNA sequences, resulted in the formation of ordered core-shell heteronanocomposites held together by DNA hybridization. The composites were imaged by scanning electron microscopy and scanning microwave microscopy. The presence of heteroassemblies along with core-shell architecture is clearly observed. The reversible nature of the DNA hybridization allows for restructuring the composites into mm-long linear chains and 2D-arrays in the presence of a static magnetic field and ring-like structures in a rotating-magnetic field. Strong magneto-electric (ME) coupling in as-assembled composites is evident from static magnetic field H induced polarization and low-frequency magnetoelectric voltage coefficient measurements. Upon annealing the nanocomposites at high temperatures, evidence for the formation of bulk composites with excellent cross-coupling between the electric and magnetic subsystems is obtained by H-induced polarization and low-frequency ME voltage coefficient. The ME coupling strength in the self-assembled composites is measured to be much stronger than in bulk composites with randomly distributed NFO and BTO prepared by direct mixing and sintering.
Zhao, Nan; Zhu, Donghui
2014-01-01
Magnesium (Mg) biomaterials are a new generation of biodegradable materials and have promising potential for orthopedic applications. After implantation in bone tissues, these materials will directly interact with extracellular matrix (ECM) biomolecules and bone cells. Type I collagen, the major component of bone ECM, forms the architecture scaffold that provides physical support for bone cell attachment. However, it is still unknown how Mg substrate affects collagen assembly on top of it as well as subsequent cell attachment and growth. Here, we studied the effects of collagen monomer concentration, pH, assembly time, and surface roughness of two Mg materials (pure Mg and AZ31) on collagen fibril formation. Results showed that formation of fibrils would not initiate until the monomer concentration reached a certain level depending on the type of Mg material. The thickness of collagen fibril increased with the increase of assembly time. The structures of collagen fibrils formed on semi-rough surfaces of Mg materials have a high similarity to that of native bone collagen. Next, cell attachment and growth after collagen assembly were examined. Materials with rough surface showed higher collagen adsorption but compromised bone cell attachment. Interestingly, surface roughness and collagen structure did not affect cell growth on AZ31 for up to a week. Findings from this work provide some insightful information on Mg-tissue interaction at the interface and guidance for future surface modifications of Mg biomaterials. PMID:25303459
Diz-Muñoz, Alba; Thurley, Kevin; Chintamen, Sana; Altschuler, Steven J.; Fletcher, Daniel A.; Weiner, Orion D.
2016-01-01
For efficient polarity and migration, cells need to regulate the magnitude and spatial distribution of actin assembly. This process is coordinated by reciprocal interactions between the actin cytoskeleton and mechanical forces. Actin polymerization-based protrusion increases tension in the plasma membrane, which in turn acts as a long-range inhibitor of actin assembly. These interactions form a negative feedback circuit that limits the magnitude of membrane tension in neutrophils and prevents expansion of the existing front and the formation of secondary fronts. It has been suggested that the plasma membrane directly inhibits actin assembly by serving as a physical barrier that opposes protrusion. Here we show that efficient control of actin polymerization-based protrusion requires an additional mechanosensory feedback cascade that indirectly links membrane tension with actin assembly. Specifically, elevated membrane tension acts through phospholipase D2 (PLD2) and the mammalian target of rapamycin complex 2 (mTORC2) to limit actin nucleation. In the absence of this pathway, neutrophils exhibit larger leading edges, higher membrane tension, and profoundly defective chemotaxis. Mathematical modeling suggests roles for both the direct (mechanical) and indirect (biochemical via PLD2 and mTORC2) feedback loops in organizing cell polarity and motility—the indirect loop is better suited to enable competition between fronts, whereas the direct loop helps spatially organize actin nucleation for efficient leading edge formation and cell movement. This circuit is essential for polarity, motility, and the control of membrane tension. PMID:27280401
Peptide self-assembly: thermodynamics and kinetics.
Wang, Juan; Liu, Kai; Xing, Ruirui; Yan, Xuehai
2016-10-21
Self-assembling systems play a significant role in physiological functions and have therefore attracted tremendous attention due to their great potential for applications in energy, biomedicine and nanotechnology. Peptides, consisting of amino acids, are among the most popular building blocks and programmable molecular motifs. Nanostructures and materials assembled using peptides exhibit important potential for green-life new technology and biomedical applications mostly because of their bio-friendliness and reversibility. The formation of these ordered nanostructures pertains to the synergistic effect of various intermolecular non-covalent interactions, including hydrogen-bonding, π-π stacking, electrostatic, hydrophobic, and van der Waals interactions. Therefore, the self-assembly process is mainly driven by thermodynamics; however, kinetics is also a critical factor in structural modulation and function integration. In this review, we focus on the influence of thermodynamic and kinetic factors on structural assembly and regulation based on different types of peptide building blocks, including aromatic dipeptides, amphiphilic peptides, polypeptides, and amyloid-relevant peptides.
Self-Assembly of Trimer Colloids: Effect of Shape and Interaction Range†
Hatch, Harold W.; Yang, Seung-Yeob; Mittal, Jeetain; Shen, Vincent K.
2016-01-01
Trimers with one attractive bead and two repulsive beads, similar to recently synthesized trimer patchy colloids, were simulated with flat-histogram Monte Carlo methods to obtain the stable self-assembled structures for different shapes and interaction potentials. Extended corresponding states principle was successfully applied to self-assembling systems in order to approximately collapse the results for models with the same shape, but different interaction range. This helps us directly compare simulation results with previous experiment, and good agreement was found between the two. In addition, a variety of self-assembled structures were observed by varying the trimer geometry, including spherical clusters, elongated clusters, monolayers, and spherical shells. In conclusion, our results help to compare simulations and experiments, via extended corresponding states, and we predict the formation of self-assembled structures for trimer shapes that have not been experimentally synthesized. PMID:27087490
Selective directed self-assembly of coexisting morphologies using block copolymer blends
NASA Astrophysics Data System (ADS)
Stein, A.; Wright, G.; Yager, K. G.; Doerk, G. S.; Black, C. T.
2016-08-01
Directed self-assembly (DSA) of block copolymers is an emergent technique for nano-lithography, but is limited in the range of structures possible in a single fabrication step. Here we expand on traditional DSA chemical patterning. A blend of lamellar- and cylinder-forming block copolymers assembles on specially designed surface chemical line gratings, leading to the simultaneous formation of coexisting ordered morphologies in separate areas of the substrate. The competing energetics of polymer chain distortions and chemical mismatch with the substrate grating bias the system towards either line/space or dot array patterns, depending on the pitch and linewidth of the prepattern. This is in contrast to the typical DSA, wherein assembly of a single-component block copolymer on chemical templates generates patterns of either lines/spaces (lamellar) or hexagonal dot arrays (cylinders). In our approach, the chemical template encodes desired local spatial arrangements of coexisting design motifs, self-assembled from a single, sophisticated resist.
A KiDS weak lensing analysis of assembly bias in GAMA galaxy groups
NASA Astrophysics Data System (ADS)
Dvornik, Andrej; Cacciato, Marcello; Kuijken, Konrad; Viola, Massimo; Hoekstra, Henk; Nakajima, Reiko; van Uitert, Edo; Brouwer, Margot; Choi, Ami; Erben, Thomas; Fenech Conti, Ian; Farrow, Daniel J.; Herbonnet, Ricardo; Heymans, Catherine; Hildebrandt, Hendrik; Hopkins, Andrew M.; McFarland, John; Norberg, Peder; Schneider, Peter; Sifón, Cristóbal; Valentijn, Edwin; Wang, Lingyu
2017-07-01
We investigate possible signatures of halo assembly bias for spectroscopically selected galaxy groups from the Galaxy And Mass Assembly (GAMA) survey using weak lensing measurements from the spatially overlapping regions of the deeper, high-imaging-quality photometric Kilo-Degree Survey. We use GAMA groups with an apparent richness larger than 4 to identify samples with comparable mean host halo masses but with a different radial distribution of satellite galaxies, which is a proxy for the formation time of the haloes. We measure the weak lensing signal for groups with a steeper than average and with a shallower than average satellite distribution and find no sign of halo assembly bias, with the bias ratio of 0.85^{+0.37}_{-0.25}, which is consistent with the Λ cold dark matter prediction. Our galaxy groups have typical masses of 1013 M⊙ h-1, naturally complementing previous studies of halo assembly bias on galaxy cluster scales.
Acharya, Amitabha; Ramanujam, Balaji; Mitra, Atanu; Rao, Chebrolu P
2010-07-27
This paper deals with the self-assembly of the 1:1 complex of two different amphiphiles, namely, a glucosyl-salicyl-imino conjugate (L) and phenylalanine (Phe), forming nanofibers over a period of time through pi...pi interactions. Significant enhancement observed in the fluorescence intensity of L at approximately 423 nm band and the significant decrease observed in the absorbance of the approximately 215 nm band are some characteristics of this self-assembly. Matrix-assisted laser desorption ionization/time of flight titration carried out at different time intervals supports the formation of higher aggregates. Atomic force microscopy (AFM), transmission electron microscopy, and scanning electron miscroscopy results showed the formation of nanofibers for the solutions of L with phenylalanine. In dynamic light scattering measurements, the distribution of the particles extends to a higher diameter range over time, indicating a slow kinetic process of assembly. Similar spectral and microscopy studies carried out with the control molecules support the role of the amino acid moiety over the simple -COOH moiety as well as the side chain phenyl moiety in association with the amino acid, in the formation of these fibers. All these observations support the presence of pi...pi interactions between the initially formed 1:1 complexes leading to the fiber formation. The aggregation of 1:1 complexes leading to fibers followed by the formation of bundles has been modeled by molecular mechanics studies. Thus the fiber formation with L is limited to phenylalanine and not to any other naturally occurring amino acid and hence a polymer composed of two different biocompatible amphiphiles. AFM studies carried out between the fiber forming mixture and proteins resulted in the observation that only BSA selectively adheres to the fiber among the three alpha-helical and two beta-sheet proteins studied and hence may be of use in some medical applications.
Structure and dynamics of optically directed self-assembly of nanoparticles
Roy, Debjit; Mondal, Dipankar; Goswami, Debabrata
2016-01-01
Self-assembly of nanoparticles leading to the formation of colloidal clusters often serves as the representative analogue for understanding molecular assembly. Unravelling the in situ structure and dynamics of such clusters in liquid suspensions is highly challenging. Presently colloidal clusters are first isolated from their generating environment and then their structures are probed by light scattering methods. In order to measure the in situ structure and dynamics of colloidal clusters, we have generated them using the high-repetition-rate femtosecond laser pulse optical tweezer. Since the constituent of our dimer, trimer or tetramer clusters are 250 nm radius two-photon resonant fluorophore coated nanospheres under the optical trap, they inherently produce Two-Photon Fluorescence, which undergo intra-nanosphere Fluorescence Energy Transfer. This unique energy transfer signature, in turn, enables us to visualize structures and orientations of these colloidal clusters during the process of their formation and subsequent dynamics in a liquid suspension. We also show that due to shape-birefringence, orientation and structural control of these colloidal clusters are possible as the polarization of the trapping laser is changed from linear to circular. We thus report important progress in sampling the smallest possible aggregates of nanoparticles, dimers, trimers or tetramers, formed early in the self-assembly process. PMID:27006305
Tailoring magnetic properties of Co nanocluster assembled films using hydrogen
NASA Astrophysics Data System (ADS)
Romero, C. P.; Volodin, A.; Paddubrouskaya, H.; Van Bael, M. J.; Van Haesendonck, C.; Lievens, P.
2018-07-01
Tailoring magnetic properties in nanocluster assembled cobalt (Co) thin films was achieved by admitting a small percentage of H2 gas (∼2%) into the Co gas phase cluster formation chamber prior to deposition. The oxygen content in the films is considerably reduced by the presence of hydrogen during the cluster formation, leading to enhanced magnetic interactions between clusters. Two sets of Co samples were fabricated, one without hydrogen gas and one with hydrogen gas. Magnetic properties of the non-hydrogenated and the hydrogen-treated Co nanocluster assembled films are comparatively studied using magnetic force microscopy and vibrating sample magnetometry. When comparing the two sets of samples the considerably larger coercive field of the H2-treated Co nanocluster film and the extended micrometer-sized magnetic domain structure confirm the enhancement of magnetic interactions between clusters. The thickness of the antiferromagnetic CoO layer is controlled with this procedure and modifies the exchange bias effect in these films. The exchange bias shift is lower for the H2-treated Co nanocluster film, which indicates that a thinner antiferromagnetic CoO reduces the coupling with the ferromagnetic Co. The hydrogen-treatment method can be used to tailor the oxidation levels thus controlling the magnetic properties of ferromagnetic cluster-assembled films.
Ocakoglu, Kasim; Joya, Khurram S; Harputlu, Ersan; Tarnowska, Anna; Gryko, Daniel T
2014-08-21
Self-assembled supramolecular organization of nano-structured biomimetic light-harvesting modules inside solid-state nano-templates can be exploited to develop excellent light-harvesting materials for artificial photosynthetic devices. We present here a hybrid light-harvesting system mimicking the chlorosomal structures of the natural photosynthetic system using synthetic zinc chlorin units (ZnChl-C6, ZnChl-C12 and ZnChl-C18) that are self-aggregated inside the anodic aluminum oxide (AAO) nano-channel membranes. AAO nano-templates were modified with a TiO2 matrix and functionalized with long hydrophobic chains to facilitate the formation of supramolecular Zn-chlorin aggregates. The transparent Zn-chlorin nano-aggregates inside the alkyl-TiO2 modified AAO nano-channels have a diameter of ∼120 nm in a 60 μm length channel. UV-Vis studies and fluorescence emission spectra further confirm the formation of the supramolecular ZnChl aggregates from monomer molecules inside the alkyl-functionalized nano-channels. Our results prove that the novel and unique method can be used to produce efficient and stable light-harvesting assemblies for effective solar energy capture through transparent and stable nano-channel ceramic materials modified with bio-mimetic molecular self-assembled nano-aggregates.
Patterned assembly of colloidal particles by confined dewetting lithography.
Celio, Hugo; Barton, Emily; Stevenson, Keith J
2006-12-19
We report the assembly of colloidal particles into confined arrangements and patterns on various cleaned and chemically modified solid substrates using a method which we term "confined dewetting lithography" or CDL for short. The experimental setup for CDL is a simple deposition cell where an aqueous suspension of colloidal particles (e.g., polystyrene spheres) is placed between a floating deposition template (i.e., metal microgrid) and the solid substrate. The voids of the deposition template serve as an array of micrometer-sized reservoirs where several hydrodynamic processes are confined. These processes include water evaporation, meniscus formation, convective flow, rupturing, dewetting, and capillary-bridge formation. We discuss the optimal conditions where the CDL has a high efficiency to deposit intricate patterns of colloidal particles using polystyrene spheres (PS; 4.5, 2.0, 1.7, 0.11, 0.064 microm diameter) and square and hexagonal deposition templates as model systems. We find that the optimization conditions of the CDL method, when using submicrometer, sulfate-functionalized PS particles, are primarily dependent on minimizing attractive particle-substrate interactions. The CDL methodology described herein presents a relatively simple and rapid method to assemble virtually any geometric pattern, including more complex patterns assembled using PS particles with different diameters, from aqueous suspensions by choosing suitable conditions and materials.
Tong, C Z; Yoon, S F
2008-09-10
We have directly imaged the formation of a GaAs quantum ring (QR) using droplet epitaxy followed by annealing in arsenic ambient. Based on the atomic force micrograph measurement and the analysis of surface energy, we determine that the formation of self-assembled GaAs QRs is due to the gallium atom's diffusion and crystallization driven by the gradient of surface energy. The phenomenon that GaAs is etched by the gallium droplets is reported and analyzed. It has been demonstrated that the epitaxy layers, such as AlAs and InGaP, can be used as the etching stop layer and hence can be used to control the shape and height of the QRs.
Formation of Nanoparticle Stripe Patterns via Flexible-Blade Flow Coating
NASA Astrophysics Data System (ADS)
Lee, Dong Yun; Kim, Hyun Suk; Parkos, Cassandra; Lee, Cheol Hee; Emrick, Todd; Crosby, Alfred
2011-03-01
We present the controlled formation of nanostripe patterns of nanoparticles on underlying substrates by flexible-blade flow coating. This technique exploits the combination of convective flow of confined nanoparticle solutions and programmed translation of a substrate to fabricate nanoparticle-polymer line assemblies with width below 300 nm, thickness of a single nanoparticle, and lengths exceeding 10 cm. We demonstrate how the incorporation of a flexible blade into this technique allows capillary forces to self-regulate the uniformity of convective flow processes across large lateral lengths. Furthermore, we exploit solvent mixture dynamics to enhance intra-assembly particle packing and dimensional range. This facile technique opens up a new paradigm for integration of nanoscale patterns over large areas for various applications.
Membrane Assembly and Ion Transport Ability of a Fluorinated Nanopore
Godbout, Raphaël; Légaré, Sébastien; Auger, Maud; Carpentier, Claudia; Otis, François; Auger, Michèle; Lagüe, Patrick; Voyer, Normand
2016-01-01
A novel 21-residue peptide incorporating six fluorinated amino acids was prepared. It was designed to fold into an amphiphilic alpha helical structure of nanoscale length with one hydrophobic face and one fluorinated face. The formation of a fluorous interface serves as the main vector for the formation of a superstructure in a bilayer membrane. Fluorescence assays showed this ion channel's ability to facilitate the translocation of alkali metal ions through a phospholipid membrane, with selectivity for sodium ions. Computational studies showed that a tetramer structure is the most probable and stable supramolecular assembly for the active ion channel structure. The results illustrate the possibility of exploiting multiple Fδ-:M+ interactions for ion transport and using fluorous interfaces to create functional nanostructures. PMID:27835700
Lin, Jian; Fu, Zhixing; Zhang, Jiaxu; Zhu, Yujia; Hu, Dandan; Li, Dongsheng; Wu, Tao
2017-03-20
A series of electronically active viologen dications (RV) with tunable substituent groups were utilized to hybridize with [Ge 4 S 10 ] 4- (T2 cluster) to form the hybrids of T2@RV. These hybrids exhibited variable supermolecular assembly formation, tunable optical absorption properties, and different photoelectric response under the influence of different RV dications. Raman testing and time-dependent photocurrent response indicated that the photosensitivity and photostability of T2@RV could be integrated while choosing suitable RV dications. Current research provides a general method to build a tunable hybrid system based on crystalline metal chalcogenide compounds through the replacement of photoinactive cationic organic templates with photoactive ones with different substituent groups.
Membrane Assembly and Ion Transport Ability of a Fluorinated Nanopore.
Godbout, Raphaël; Légaré, Sébastien; Auger, Maud; Carpentier, Claudia; Otis, François; Auger, Michèle; Lagüe, Patrick; Voyer, Normand
2016-01-01
A novel 21-residue peptide incorporating six fluorinated amino acids was prepared. It was designed to fold into an amphiphilic alpha helical structure of nanoscale length with one hydrophobic face and one fluorinated face. The formation of a fluorous interface serves as the main vector for the formation of a superstructure in a bilayer membrane. Fluorescence assays showed this ion channel's ability to facilitate the translocation of alkali metal ions through a phospholipid membrane, with selectivity for sodium ions. Computational studies showed that a tetramer structure is the most probable and stable supramolecular assembly for the active ion channel structure. The results illustrate the possibility of exploiting multiple Fδ-:M+ interactions for ion transport and using fluorous interfaces to create functional nanostructures.
Geometrical frustration yields fibre formation in self-assembly
NASA Astrophysics Data System (ADS)
Lenz, Martin; Witten, Thomas A.
2017-11-01
Controlling the self-assembly of supramolecular structures is vital for living cells, and a central challenge for engineering at the nano- and microscales. Nevertheless, even particles without optimized shapes can robustly form well-defined morphologies. This is the case in numerous medical conditions where normally soluble proteins aggregate into fibres. Beyond the diversity of molecular mechanisms involved, we propose that fibres generically arise from the aggregation of irregular particles with short-range interactions. Using a minimal model of ill-fitting, sticky particles, we demonstrate robust fibre formation for a variety of particle shapes and aggregation conditions. Geometrical frustration plays a crucial role in this process, and accounts for the range of parameters in which fibres form as well as for their metastable character.
Pröller, Stephan; Moseguí González, Daniel; Zhu, Chenhuii; ...
2017-06-01
In order to tailor the assembling of polymers and organic molecules, a deeper understanding of the kinetics involved in thin film production is necessary. While post-production characterization only provides insight on the final film structure, more sophisticated experimental setups are needed to probe the structure formation processes in situ during deposition. The drying kinetics of a deposited organic thin film strongly influences the assembling process on the nanometer scale. Lastly, this work presents an experimental setup that enables fine control of the atmosphere composition surrounding the sample during slot die coating, while simultaneously probing the film formation kinetics using inmore » situ grazing incidence X-ray scattering and spectroscopy.« less
Self-assembly of nanosize coordination cages on si(100) surfaces.
Busi, Marco; Laurenti, Marco; Condorelli, Guglielmo G; Motta, Alessandro; Favazza, Maria; Fragalà, Ignazio L; Montalti, Marco; Prodi, Luca; Dalcanale, Enrico
2007-01-01
Bottom-up fabrication of 3D organic nanostructures on Si(100) surfaces has been achieved by a two-step procedure. Tetradentate cavitand 1 was grafted on the Si surface together with 1-octene (Oct) as a spatial spectator by photochemical hydrosilylation. Ligand exchange between grafted cavitand 1 and self-assembled homocage 2, derived from cavitand 5 bearing a fluorescence marker, led to the formation of coordination cages on Si(100). Formation, quantification, and distribution of the nanoscale molecular containers on a silicon surface was assessed by using three complementary analytical techniques (AFM, XPS, and fluorescence) and validated by control experiments on cavitand-free silicon surfaces. Interestingly, the fluorescence of pyrene at approximately 4 nm above the Si(100) surface can be clearly observed.
Controlled assembly of artificial protein-protein complexes via DNA duplex formation.
Płoskoń, Eliza; Wagner, Sara C; Ellington, Andrew D; Jewett, Michael C; O'Reilly, Rachel; Booth, Paula J
2015-03-18
DNA-protein conjugates have found a wide range of applications. This study demonstrates the formation of defined, non-native protein-protein complexes via the site specific labeling of two proteins of interest with complementary strands of single-stranded DNA in vitro. This study demonstrates that the affinity of two DNA-protein conjugates for one another may be tuned by the use of variable lengths of DNA allowing reversible control of complex formation.
Pandey, R B; Farmer, B L
2014-11-07
Multi-scale aggregation to network formation of interacting proteins (H3.1) are examined by a knowledge-based coarse-grained Monte Carlo simulation as a function of temperature and the number of protein chains, i.e., the concentration of the protein. Self-assembly of corresponding homo-polymers of constitutive residues (Cys, Thr, and Glu) with extreme residue-residue interactions, i.e., attractive (Cys-Cys), neutral (Thr-Thr), and repulsive (Glu-Glu), are also studied for comparison with the native protein. Visual inspections show contrast and similarity in morphological evolutions of protein assembly, aggregation of small aggregates to a ramified network from low to high temperature with the aggregation of a Cys-polymer, and an entangled network of Glu and Thr polymers. Variations in mobility profiles of residues with the concentration of the protein suggest that the segmental characteristic of proteins is altered considerably by the self-assembly from that in its isolated state. The global motion of proteins and Cys polymer chains is enhanced by their interacting network at the low temperature where isolated chains remain quasi-static. Transition from globular to random coil transition, evidenced by the sharp variation in the radius of gyration, of an isolated protein is smeared due to self-assembly of interacting networks of many proteins. Scaling of the structure factor S(q) with the wave vector q provides estimates of effective dimension D of the mass distribution at multiple length scales in self-assembly. Crossover from solid aggregates (D ∼ 3) at low temperature to a ramified fibrous network (D ∼ 2) at high temperature is observed for the protein H3.1 and Cys polymers in contrast to little changes in mass distribution (D ∼ 1.6) of fibrous Glu- and Thr-chain configurations.
NASA Astrophysics Data System (ADS)
Pandey, R. B.; Farmer, B. L.
2014-11-01
Multi-scale aggregation to network formation of interacting proteins (H3.1) are examined by a knowledge-based coarse-grained Monte Carlo simulation as a function of temperature and the number of protein chains, i.e., the concentration of the protein. Self-assembly of corresponding homo-polymers of constitutive residues (Cys, Thr, and Glu) with extreme residue-residue interactions, i.e., attractive (Cys-Cys), neutral (Thr-Thr), and repulsive (Glu-Glu), are also studied for comparison with the native protein. Visual inspections show contrast and similarity in morphological evolutions of protein assembly, aggregation of small aggregates to a ramified network from low to high temperature with the aggregation of a Cys-polymer, and an entangled network of Glu and Thr polymers. Variations in mobility profiles of residues with the concentration of the protein suggest that the segmental characteristic of proteins is altered considerably by the self-assembly from that in its isolated state. The global motion of proteins and Cys polymer chains is enhanced by their interacting network at the low temperature where isolated chains remain quasi-static. Transition from globular to random coil transition, evidenced by the sharp variation in the radius of gyration, of an isolated protein is smeared due to self-assembly of interacting networks of many proteins. Scaling of the structure factor S(q) with the wave vector q provides estimates of effective dimension D of the mass distribution at multiple length scales in self-assembly. Crossover from solid aggregates (D ˜ 3) at low temperature to a ramified fibrous network (D ˜ 2) at high temperature is observed for the protein H3.1 and Cys polymers in contrast to little changes in mass distribution (D ˜ 1.6) of fibrous Glu- and Thr-chain configurations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adams, Peter G.; Mothersole, David J.; Ng, Irene W.
2011-01-01
In the model photosynthetic bacterium Rhodobacter sphaeroides domains of light-harvesting 2 (LH2) complexes surround and interconnect dimeric reaction centre–light-harvesting 1–PufX (RC–LH1–PufX) ‘core’ complexes, forming extensive networks for energy transfer and trapping. These complexes are housed in spherical intracytoplasmic membranes (ICMs), which are assembled in a stepwise process where biosynthesis of core complexes tends to dominate the early stages of membrane invagination. The kinetics of LH2 assembly were measured in PufX mutants that assemble monomeric core complexes, as a consequence of either a twelve-residue N-terminal truncation of PufX (PufXΔ12) or the complete removal of PufX (PufX -). Lower rates of LH2more » assembly and retarded maturation of membrane invagination were observed for the larger and less curved ICM from the PufX - mutant, consistent with the proposition that local membrane curvature, initiated by arrays of bent RC–LH1–PufX dimers, creates a favourable environment for stable assembly of LH2 complexes. Transmission electron microscopy and high-resolution atomic force microscopy were used to examine ICM morphology and membrane protein organisation in these mutants. Some partitioning of core and LH2 complexes was observed in PufX - membranes, resulting in locally ordered clusters of monomeric RC–LH1 complexes. The distribution of core and LH2 complexes in the three types of membrane examined is consistent with previous models of membrane curvature and domain formation (Frese et al., 2008), which demonstrated that a combination of crowding and asymmetries in sizes and shapes of membrane protein complexes drives membrane organisation.« less
Adams, Peter G; Mothersole, David J; Ng, Irene W; Olsen, John D; Hunter, C Neil
2011-09-01
In the model photosynthetic bacterium Rhodobacter sphaeroides domains of light-harvesting 2 (LH2) complexes surround and interconnect dimeric reaction centre-light-harvesting 1-PufX (RC-LH1-PufX) 'core' complexes, forming extensive networks for energy transfer and trapping. These complexes are housed in spherical intracytoplasmic membranes (ICMs), which are assembled in a stepwise process where biosynthesis of core complexes tends to dominate the early stages of membrane invagination. The kinetics of LH2 assembly were measured in PufX mutants that assemble monomeric core complexes, as a consequence of either a twelve-residue N-terminal truncation of PufX (PufXΔ12) or the complete removal of PufX (PufX(-)). Lower rates of LH2 assembly and retarded maturation of membrane invagination were observed for the larger and less curved ICM from the PufX(-) mutant, consistent with the proposition that local membrane curvature, initiated by arrays of bent RC-LH1-PufX dimers, creates a favourable environment for stable assembly of LH2 complexes. Transmission electron microscopy and high-resolution atomic force microscopy were used to examine ICM morphology and membrane protein organisation in these mutants. Some partitioning of core and LH2 complexes was observed in PufX(-) membranes, resulting in locally ordered clusters of monomeric RC-LH1 complexes. The distribution of core and LH2 complexes in the three types of membrane examined is consistent with previous models of membrane curvature and domain formation (Frese et al., 2008), which demonstrated that a combination of crowding and asymmetries in sizes and shapes of membrane protein complexes drives membrane organisation. 2011 Elsevier B.V. All rights reserved.
Cilurzo, Felisa; Cristiano, Maria Chiara; Di Marzio, Luisa; Cosco, Donato; Carafa, Maria; Ventura, Cinzia Anna; Fresta, Massimo; Paolino, Donatella
2015-01-01
The ability of some surfactants to self-assemble in a water/oil bi-phase environment thus forming supramolecular structure leading to the formation of w/o/w multiple emulsions was investigated. The w/o/w multiple emulsions obtained by self-assembling (one-step preparation method) were compared with those prepared following the traditional two-step procedure. Methyl-nicotinate was used as a hydrophilic model drug. The formation of the multiple emulsion structure was evidenced by optical microscopy, which showed a mean size of the inner oil droplets of 6 μm and 10 μm for one-step and two-step multiple emulsions, respectively. The in vitrobiopharmaceutical features of the various w/o/w multiple emulsion formulations were evaluated by means of viscosimetry studies, drug release and in vitro percutaneous permeation experiments through human stratum corneum and viable epidermis membranes. The self-assembled multiple emulsions allowed a more gradual percutaneous permeation (a zero-order permeation rate) than the two-step ones. The in vivotopical carrier properties of the two different multiple emulsions were evaluated on healthy human volunteers by using the spectrophotometry of reflectance, an in vivonon invasive method. These multiple emulsion systems were also compared with conventional emulsion formulations. Our findings demonstrated that the multiple emulsions obtained by self-assembling were able to provide a more sustained drug delivery into the skin and hence a longer therapeutic action than two-step multiple emulsions and conventional emulsion formulations. Finally, our findings showed that the supramolecular micro-assembly of multiple emulsions was able to influence not only the biopharmaceutical characteristics but also the potential in vivotherapeutic response.
Na, Na; Shi, Ruixia; Long, Zi; Lu, Xin; Jiang, Fubin; Ouyang, Jin
2014-10-01
In this study, the real-time analysis of self-assembled nucleobases was employed by Venturi easy ambient sonic-spray ionization mass spectrometry (V-EASI-MS). With the analysis of three nucleobases including 6-methyluracil (6MU), uracil (U) and thymine (T) as examples, different orders of clusters centered with different metal ions were recorded in both positive and negative modes. Compared with the results obtained by traditional electrospray ionization mass spectrometry (ESI-MS) under the same condition, more clusters with high orders, such as [6MU7+Na](+), [6MU15+2NH4](2+), [6MU10+Na](+), [T7+Na](+), and [T15+2NH4](2+) were detected by V-EASI-MS, which demonstrated the soft ionization ability of V-EASI for studying the non-covalent interaction in a self-assembly process. Furthermore, with the injection of K(+) to the system by a syringe pumping, the real-time monitoring of the formation of nucleobases clusters was achieved by the direct extraction of samples from the system under the Venturi effect. Therefore, the effect of cations on the formation of clusters during self-assembly of nucleobases was demonstrated, which was in accordance with the reports. Free of high voltage, heating or radiation during the ionization, this technique is much soft and suitable for obtaining the real-time information of the self-assembly system, which also makes it quite convenient for extraction samples from the reaction system. This "easy and soft" ionization technique has provided a potential pathway for monitoring and controlling the self-assembly processes. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Ginzburg, Valeriy
Spontaneous symmetry breaking and formation of anisotropic structures from apparently isotropic building blocks is an exciting and not fully understood topic. I will discuss two examples of such self-assembly. The first example is related to the assembly of ``hairy'' nanoparticles in homopolymer matrices. The particles can assemble into long strings (they can also form other morphologies, as well) even though the shape of each particle and the distribution of ligands on the particle surface is spherically symmetric. Using the approach developed by Thompson, Ginzburg, Matsen, and Balazs, we show that presence of other particles can re-distribute the ligands and effectively ``polarize'' the particle-particle interaction, giving rise to the formation of 1d particle strings. In the second example, we consider aqueous solutions of methylcellulose (MC) polymers. It has been shown recently that at high temperature, the polymers form high-aspect ratio ``fibrils'' with diameter ~15 nm and length in the hundreds on nanometers. Using coarse-grained Molecular Dynamics (CG-MD), we propose that the ``fibrils'' are result of one-dimensional self-assembly of single molecule ``rings''. Each MC polymer chain is forced into a ring because of the balance between internal chain rigidity (favoring more expanded configuration) and unfavorable polymer-water interactions (favoring more collapsed conformation). We also develop a theory predicting rheology and phase behavior of aqueous MC, and validate it against experimental data. Both examples show that anisotropic self-assembly can show up in unexpected places, and various theoretical tools are needed to successfully model it. Funded by The Dow Chemical Company through Grant 223278AF. Collaborators: R. L. Sammler (Dow), W. Huang and R. Larson (U. of Michigan).
Geib, Scott M; Hall, Brian; Derego, Theodore; Bremer, Forest T; Cannoles, Kyle; Sim, Sheina B
2018-04-01
One of the most overlooked, yet critical, components of a whole genome sequencing (WGS) project is the submission and curation of the data to a genomic repository, most commonly the National Center for Biotechnology Information (NCBI). While large genome centers or genome groups have developed software tools for post-annotation assembly filtering, annotation, and conversion into the NCBI's annotation table format, these tools typically require back-end setup and connection to an Structured Query Language (SQL) database and/or some knowledge of programming (Perl, Python) to implement. With WGS becoming commonplace, genome sequencing projects are moving away from the genome centers and into the ecology or biology lab, where fewer resources are present to support the process of genome assembly curation. To fill this gap, we developed software to assess, filter, and transfer annotation and convert a draft genome assembly and annotation set into the NCBI annotation table (.tbl) format, facilitating submission to the NCBI Genome Assembly database. This software has no dependencies, is compatible across platforms, and utilizes a simple command to perform a variety of simple and complex post-analysis, pre-NCBI submission WGS project tasks. The Genome Annotation Generator is a consistent and user-friendly bioinformatics tool that can be used to generate a .tbl file that is consistent with the NCBI submission pipeline. The Genome Annotation Generator achieves the goal of providing a publicly available tool that will facilitate the submission of annotated genome assemblies to the NCBI. It is useful for any individual researcher or research group that wishes to submit a genome assembly of their study system to the NCBI.
Hall, Brian; Derego, Theodore; Bremer, Forest T; Cannoles, Kyle
2018-01-01
Abstract Background One of the most overlooked, yet critical, components of a whole genome sequencing (WGS) project is the submission and curation of the data to a genomic repository, most commonly the National Center for Biotechnology Information (NCBI). While large genome centers or genome groups have developed software tools for post-annotation assembly filtering, annotation, and conversion into the NCBI’s annotation table format, these tools typically require back-end setup and connection to an Structured Query Language (SQL) database and/or some knowledge of programming (Perl, Python) to implement. With WGS becoming commonplace, genome sequencing projects are moving away from the genome centers and into the ecology or biology lab, where fewer resources are present to support the process of genome assembly curation. To fill this gap, we developed software to assess, filter, and transfer annotation and convert a draft genome assembly and annotation set into the NCBI annotation table (.tbl) format, facilitating submission to the NCBI Genome Assembly database. This software has no dependencies, is compatible across platforms, and utilizes a simple command to perform a variety of simple and complex post-analysis, pre-NCBI submission WGS project tasks. Findings The Genome Annotation Generator is a consistent and user-friendly bioinformatics tool that can be used to generate a .tbl file that is consistent with the NCBI submission pipeline Conclusions The Genome Annotation Generator achieves the goal of providing a publicly available tool that will facilitate the submission of annotated genome assemblies to the NCBI. It is useful for any individual researcher or research group that wishes to submit a genome assembly of their study system to the NCBI. PMID:29635297
Thermodynamics, morphology, and kinetics of early-stage self-assembly of π-conjugated oligopeptides
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
Synthetic oligopeptides containing π-conjugated cores self-assemble novel materials with attractive electronic and photophysical properties. All-atom, explicit solvent molecular dynamics simulations of Asp-Phe-Ala-Gly-OPV3-Gly-Ala-Phe-Asp peptides were used to parameterize an implicit solvent model to simulate early-stage self-assembly. Under low-pH conditions, peptides assemble into β-sheet-like stacks with strongly favorable monomer association free energies of ΔF ≈ -25kBT. Aggregation at high-pH produces disordered aggregates destabilized by Coulombic repulsion between negatively charged Asp termini (ΔF ≈ -5kBT). In simulations of hundreds of monomers over 70 ns we observe the spontaneous formation of up to undecameric aggregates under low-pH conditions. Modeling assembly as a continuous-time Markovmore » process, we infer transition rates between different aggregate sizes and microsecond relaxation times for early-stage assembly. Our data suggests a hierarchical model of assembly in which peptides coalesce into small clusters over tens of nanoseconds followed by structural ripening and diffusion limited aggregation on longer time scales. This work provides new molecular-level understanding of early-stage assembly, and a means to study the impact of peptide sequence and aromatic core chemistry upon the thermodynamics, assembly kinetics, and morphology of the supramolecular aggregates.« less
Bhanjadeo, Madhabi M; Nayak, Ashok K; Subudhi, Umakanta
2017-04-01
DNA based self-assembled nanostructures and DNA origami has proven useful for organizing nanomaterials with firm precision. However, for advanced applications like nanoelectronics and photonics, large-scale organization of self-assembled branched DNA (bDNA) into periodic lattices is desired. In this communication for the first time we report a facile method of self-assembly of Y-shaped bDNA nanostructures on the cationic surface of Aluminum (Al) foil to prepare periodic two dimensional (2D) bDNA lattice. Particularly those Y-shaped bDNA structures having smaller overhangs and unable to self-assemble in solution, they are easily assembled on the surface of Al foil in the absence of ligase. Field emission scanning electron microscopy (FESEM) analysis shows homogenous distribution of two-dimensional bDNA lattices across the Al foil. When the assembled bDNA structures were recovered from the Al foil and electrophoresed in nPAGE only higher order polymeric bDNA structures were observed without a trace of monomeric structures which confirms the stability and high yield of the bDNA lattices. Therefore, this enzyme-free economic and efficient strategy for developing bDNA lattices can be utilized in assembling various nanomaterials for functional molecular components towards development of DNA based self-assembled nanodevices. Copyright © 2017 Elsevier Inc. All rights reserved.
Thermodynamics, morphology, and kinetics of early-stage self-assembly of π-conjugated oligopeptides
None, None
2016-03-22
Synthetic oligopeptides containing π-conjugated cores self-assemble novel materials with attractive electronic and photophysical properties. All-atom, explicit solvent molecular dynamics simulations of Asp-Phe-Ala-Gly-OPV3-Gly-Ala-Phe-Asp peptides were used to parameterize an implicit solvent model to simulate early-stage self-assembly. Under low-pH conditions, peptides assemble into β-sheet-like stacks with strongly favorable monomer association free energies of ΔF ≈ -25kBT. Aggregation at high-pH produces disordered aggregates destabilized by Coulombic repulsion between negatively charged Asp termini (ΔF ≈ -5kBT). In simulations of hundreds of monomers over 70 ns we observe the spontaneous formation of up to undecameric aggregates under low-pH conditions. Modeling assembly as a continuous-time Markovmore » process, we infer transition rates between different aggregate sizes and microsecond relaxation times for early-stage assembly. Our data suggests a hierarchical model of assembly in which peptides coalesce into small clusters over tens of nanoseconds followed by structural ripening and diffusion limited aggregation on longer time scales. This work provides new molecular-level understanding of early-stage assembly, and a means to study the impact of peptide sequence and aromatic core chemistry upon the thermodynamics, assembly kinetics, and morphology of the supramolecular aggregates.« less
Construction of energy transfer pathways self-assembled from DNA-templated stacks of anthracene.
Iwaura, Rika; Yui, Hiroharu; Someya, Yuu; Ohnishi-Kameyama, Mayumi
2014-01-05
We describe optical properties of anthracene stacks formed from single-component self-assembly of thymidylic acid-appended anthracene 2,6-bis[5-(3'-thymidylic acid)pentyloxy] anthracene (TACT) and the binary self-assembly of TACT and complementary 20-meric oligoadenylic acid (TACT/dA20) in an aqueous buffer. UV-Vis and emission spectra for the single-component self-assembly of TACT and the binary self-assembly of TACT/dA20 were very consistent with stacked acene moieties in both self-assemblies. Interestingly, time-resolved fluorescence spectra from anthracene stacks exhibited very different features of the single-component and binary self-assemblies. In the single-component self-assembly of TACT, a dynamic Stokes shift (DSS) and relatively short fluorescence lifetime (τ=0.35ns) observed at around 450nm suggested that the anthracene moieties were flexible. Moreover, a broad emission at 530nm suggested the formation of an excited dimer (excimer). In the binary self-assembly of TACT/dA20, we detected a broad, red-shifted emission component at 534nm with a lifetime (τ=0.4ns) shorter than that observed in the TACT single-component self-assembly. Combining these results with the emission spectrum of the binary self-assembly of TACT/5'-HEX dA20, we concluded that the energy transfer pathway was constructed by columnar anthracene stacks formed from the DNA-templated self-assembly of TACT. Copyright © 2013 Elsevier B.V. All rights reserved.
Photocontrolled reversible self-assembly of dodecamer nitrilase.
Yu, Qiao; Wang, Yong; Zhao, Shengyun; Ren, Yuhong
2017-01-01
Naturally photoswitchable proteins act as a powerful tool for the spatial and temporal control of biological processes by inducing the formation of a photodimerizer. In this study, a method for the precise and reversible inducible self-assembly of dodecamer nitrilase in vivo (in Escherichia coli ) and in vitro (in a cell-free solution) was developed by means of the photoswitch-improved light-inducible dimer (iLID) system which could induce protein-protein dimerization. Nitrilase was fused with the photoswitch protein AsLOV2-SsrA to achieve the photocontrolled self-assembly of dodecamer nitrilase. The fusion protein self-assembled into a supramolecular assembly when illuminated at 470 nm. Scanning electron microscopy showed that the assembly formed a circular sheet structure. Self-assembly was also induced by light in E. coli . Dynamic light scattering and turbidity assay experiments showed that the assemblies formed within a few seconds under 470-nm light and completely disassembled within 5 min in the dark. Assembly and disassembly could be maintained for at least five cycles. Both in vitro and in vivo, the assemblies retained 90% of the initial activity of nitrilase and could be reused at least four times in vitro with 90% activity. An efficient method was developed for the photocontrolled assembly and disassembly of dodecamer nitrilase and for scaffold-free reversible self-assembly of multiple oligomeric enzymes in vivo and in vitro, providing new ideas and methods for immobilization of enzyme without carrier.
A three-dimensional neural spheroid model for capillary-like network formation.
Boutin, Molly E; Kramer, Liana L; Livi, Liane L; Brown, Tyler; Moore, Christopher; Hoffman-Kim, Diane
2018-04-01
In vitro three-dimensional neural spheroid models have an in vivo-like cell density, and have the potential to reduce animal usage and increase experimental throughput. The aim of this study was to establish a spheroid model to study the formation of capillary-like networks in a three-dimensional environment that incorporates both neuronal and glial cell types, and does not require exogenous vasculogenic growth factors. We created self-assembled, scaffold-free cellular spheroids using primary-derived postnatal rodent cortex as a cell source. The interactions between relevant neural cell types, basement membrane proteins, and endothelial cells were characterized by immunohistochemistry. Transmission electron microscopy was used to determine if endothelial network structures had lumens. Endothelial cells within cortical spheroids assembled into capillary-like networks with lumens. Networks were surrounded by basement membrane proteins, including laminin, fibronectin and collagen IV, as well as key neurovascular cell types. Existing in vitro models of the cortical neurovascular environment study monolayers of endothelial cells, either on transwell inserts or coating cellular spheroids. These models are not well suited to study vasculogenesis, a process hallmarked by endothelial cell cord formation and subsequent lumenization. The neural spheroid is a new model to study the formation of endothelial cell capillary-like structures in vitro within a high cell density three-dimensional environment that contains both neuronal and glial populations. This model can be applied to investigate vascular assembly in healthy or disease states, such as stroke, traumatic brain injury, or neurodegenerative disorders. Copyright © 2017 Elsevier B.V. All rights reserved.
Arunachalam, M; Ghosh, Pradyut
2010-02-01
A bowl-shaped tripodal receptor with an appropriately positioned amide functionality on the benzene platform and electron-withdrawing p-nitrophenyl terminals (L(1)) has been designed, synthesized, and studied for the anion binding properties. The single-crystal X-ray crystallographic analysis on crystals of L(1) with tetrabutylammonium salts of nitrate (1), acetate (2), fluoride (3), and chloride (4) obtained in moist dioxane medium showed encapsulation of two NO(3)(-), [(AcO)(2)(H(2)O)(4)](2-), [F(2)(H(2)O)(6)](2-), and [Cl(2)(H(2)O)(4)](2-) respectively as the anionic guests inside the staggered dimeric capsular assembly of L(1). The p-nitro substitution in the aryl terminals assisted the formation of dimeric capsular assembly of L(1) exclusively upon binding/encapsulating above different guests. Though L(1) demonstrates capsule formation upon anion or hydrated anion complexation for all of the anions studied here, its positional isomer with the o-nitro-substituted tripodal triamide receptor L(2) selectively formed the dimeric capsular assembly upon encapsulation of [F(2)(H(2)O)(6)](2-) and noncapsular aggregates in the cases of other anions such as Cl(-), NO(3)(-), and AcO(-). Interestingly, structural investigations upon anion exchange of the complexes revealed that both isomers have selectivity toward the formation of a [F(2)(H(2)O)(6)](2-) encapsulated dimeric capsule. In contrast, solution-state (1)H NMR titration studies of L(1) and L(2) in DMSO-d(6) with AcO(-) indicated 1:3 (host:guest) binding.
Bailey, D S; Burke, J; Sinclair, R; Mukherjee, B B
1981-01-01
Glycoprotein biosynthesis was studied with mouse L-cells grown in suspension culture. Glucose-deprived cells incorporated [3H]mannose into 'high-mannose' protein-bound oligosaccharides and a few relatively high-molecular-weight lipid-linked oligosaccharides. The latter were retained by DEAE-cellulose and turned over quite slowly during pulse--chase experiments. Increased heterogeneity in size of lipid-linked oligosaccharides developed during prolonged glucose deprivation. Sequential elongation of lipid-linked oligosaccharides was also observed, and conditions that prevented the assembly of the higher lipid-linked oligosaccharides also prevented the formation of the larger protein-bound 'high-mannose' oligosaccharides. In parallel experiments, [3H]mannose was incorporated into a total polyribosome fraction, suggesting that mannose residues were transferred co-translationally to nascent protein. Membrane preparations from these cells catalysed the assembly from UDP-N-acetyl-D-[6-3H]glucosamine and GDP-D-[U-14C]mannose of polyisoprenyl diphosphate derivatives whose oligosaccharide moieties were heterogeneous in size. Elongation of the N-acetyl-D-[6-3H]glucosamine-initiated glycolipids with mannose residues produced several higher lipid-linked oligosaccharides similar to those seen during glucose deprivation in vivo. Glucosylation of these mannose-containing oligosaccharides from UDP-D-[6-3H]glucose was restricted to those of a relatively high molecular weight. Protein-bound saccharides formed in vitro were mainly smaller in size than those assembled on the lipid acceptors. These results support the involvement of lipid-linked saccharides in the synthesis of asparagine-linked glycoproteins, but show both in vivo and in vitro that protein-bound 'high-mannose' oligosaccharide formation can occur independently of higher lipid-linked oligosaccharide synthesis. PMID:7306042
Molecular codes for neuronal individuality and cell assembly in the brain
Yagi, Takeshi
2012-01-01
The brain contains an enormous, but finite, number of neurons. The ability of this limited number of neurons to produce nearly limitless neural information over a lifetime is typically explained by combinatorial explosion; that is, by the exponential amplification of each neuron's contribution through its incorporation into “cell assemblies” and neural networks. In development, each neuron expresses diverse cellular recognition molecules that permit the formation of the appropriate neural cell assemblies to elicit various brain functions. The mechanism for generating neuronal assemblies and networks must involve molecular codes that give neurons individuality and allow them to recognize one another and join appropriate networks. The extensive molecular diversity of cell-surface proteins on neurons is likely to contribute to their individual identities. The clustered protocadherins (Pcdh) is a large subfamily within the diverse cadherin superfamily. The clustered Pcdh genes are encoded in tandem by three gene clusters, and are present in all known vertebrate genomes. The set of clustered Pcdh genes is expressed in a random and combinatorial manner in each neuron. In addition, cis-tetramers composed of heteromultimeric clustered Pcdh isoforms represent selective binding units for cell-cell interactions. Here I present the mathematical probabilities for neuronal individuality based on the random and combinatorial expression of clustered Pcdh isoforms and their formation of cis-tetramers in each neuron. Notably, clustered Pcdh gene products are known to play crucial roles in correct axonal projections, synaptic formation, and neuronal survival. Their molecular and biological features induce a hypothesis that the diverse clustered Pcdh molecules provide the molecular code by which neuronal individuality and cell assembly permit the combinatorial explosion of networks that supports enormous processing capability and plasticity of the brain. PMID:22518100
Gugliuzza, Annarosa; Aceto, Marianna Carmela; Macedonio, Francesca; Drioli, Enrico
2008-08-28
Next generation PEEK-WC membranes have been fabricated by using an innovative self-assembly technique. Patterned architectures have been achieved via a solvent-reduced and water-assisted process, resulting in honeycomb packed geometry. The membranes exhibit monodisperse pores with size and shape comparable to those left by templating water droplets. Influencing factors for the formation of self-assembled poly-(etheretherketone) with Cardo [PEEK-WC] membranes have been evaluated, identifying the critical parameters for nucleation, growth, and propagation of the droplet-mobile arrays through the overall films. Structure-transport relationships have been discussed according to the results achieved from the implementation of membrane distillation processes, yielding indication about the suitability of self-assembled PEEK-WC films to work as interfaces in contactor operations.
NASA Astrophysics Data System (ADS)
Sangeetha, Neralagatta M.; Moutet, Pierre; Lagarde, Delphine; Sallen, Gregory; Urbaszek, Bernhard; Marie, Xavier; Viau, Guillaume; Ressier, Laurence
2013-09-01
Formation of 3D close-packed assemblies of upconverting NaYF4 colloidal nanocrystals (NCs) on surfaces, by Atomic Force Microscopy (AFM) nanoxerography is presented. The surface potential of the charge patterns, the NC concentration, the polarizability of the NCs and the polarity of the dispersing solvent are identified as the key parameters controlling the assembly of NaYF4 NCs into micropatterns of the desired 3D architecture. This insight allowed us to fabricate micrometer sized Quick Response (QR) codes encoded in terms of upconversion luminescence intensity or color. Topographically hidden messages could also be readily incorporated within these microtags. This work demonstrates that AFM nanoxerography has enormous potential for generating high-security anti-counterfeiting microtags.Formation of 3D close-packed assemblies of upconverting NaYF4 colloidal nanocrystals (NCs) on surfaces, by Atomic Force Microscopy (AFM) nanoxerography is presented. The surface potential of the charge patterns, the NC concentration, the polarizability of the NCs and the polarity of the dispersing solvent are identified as the key parameters controlling the assembly of NaYF4 NCs into micropatterns of the desired 3D architecture. This insight allowed us to fabricate micrometer sized Quick Response (QR) codes encoded in terms of upconversion luminescence intensity or color. Topographically hidden messages could also be readily incorporated within these microtags. This work demonstrates that AFM nanoxerography has enormous potential for generating high-security anti-counterfeiting microtags. Electronic supplementary information (ESI) available: Detailed experimental procedures for the synthesis of upconverting NaYF4 nanocrystals and their transmission electron microscopy images. KFM and AFM images corresponding to the assembly of positively charged β-NaYF4:Er3+,Yb3+ nanocrystals from water suspensions by AFM nanoxerography. Photoluminescence spectra of β-NaYF4:Er3+,Yb3+ nanocrystals in a hexane suspension and assembled on charge patterns. See DOI: 10.1039/c3nr02734a
Guiding the folding pathway of DNA origami
NASA Astrophysics Data System (ADS)
Dunn, Katherine E.; Dannenberg, Frits; Ouldridge, Thomas E.; Kwiatkowska, Marta; Turberfield, Andrew J.; Bath, Jonathan
2015-09-01
DNA origami is a robust assembly technique that folds a single-stranded DNA template into a target structure by annealing it with hundreds of short `staple' strands. Its guiding design principle is that the target structure is the single most stable configuration. The folding transition is cooperative and, as in the case of proteins, is governed by information encoded in the polymer sequence. A typical origami folds primarily into the desired shape, but misfolded structures can kinetically trap the system and reduce the yield. Although adjusting assembly conditions or following empirical design rules can improve yield, well-folded origami often need to be separated from misfolded structures. The problem could in principle be avoided if assembly pathway and kinetics were fully understood and then rationally optimized. To this end, here we present a DNA origami system with the unusual property of being able to form a small set of distinguishable and well-folded shapes that represent discrete and approximately degenerate energy minima in a vast folding landscape, thus allowing us to probe the assembly process. The obtained high yield of well-folded origami structures confirms the existence of efficient folding pathways, while the shape distribution provides information about individual trajectories through the folding landscape. We find that, similarly to protein folding, the assembly of DNA origami is highly cooperative; that reversible bond formation is important in recovering from transient misfoldings; and that the early formation of long-range connections can very effectively enforce particular folds. We use these insights to inform the design of the system so as to steer assembly towards desired structures. Expanding the rational design process to include the assembly pathway should thus enable more reproducible synthesis, particularly when targeting more complex structures. We anticipate that this expansion will be essential if DNA origami is to continue its rapid development and become a reliable manufacturing technology.
Conte, Laura; Trumpower, Bernard L; Zara, Vincenzo
2011-01-01
The yeast cytochrome bc(1) complex, a component of the mitochondrial respiratory chain, is composed of ten distinct protein subunits. In the assembly of the bc(1) complex, some ancillary proteins, such as the chaperone Bcs1p, are actively involved. The deletion of the nuclear gene encoding this chaperone caused the arrest of the bc(1) assembly and the formation of a functionally inactive bc(1) core structure of about 500-kDa. This immature bc(1) core structure could represent, on the one hand, a true assembly intermediate or, on the other hand, a degradation product and/or an incorrect product of assembly. The experiments here reported show that the gradual expression of Bcs1p in the yeast strain lacking this protein was progressively able to rescue the bc(1) core structure leading to the formation of the functional homodimeric bc(1) complex. Following Bcs1p expression, the mature bc(1) complex was also progressively converted into two supercomplexes with the cytochrome c oxidase complex. The capability of restoring the bc(1) complex and the supercomplexes was also possessed by the mutated yeast R81C Bcsp1. Notably, in the human ortholog BCS1L, the corresponding point mutation (R45C) was instead the cause of a severe bc(1) complex deficiency. Differently from the yeast R81C Bcs1p, two other mutated Bcs1p's (K192P and F401I) were unable to recover the bc(1) core structure in yeast. This study identifies for the first time a productive assembly intermediate of the yeast bc(1) complex and gives new insights into the molecular mechanisms involved in the last steps of bc(1) assembly. Copyright © 2010 Elsevier B.V. All rights reserved.
Guiding the folding pathway of DNA origami.
Dunn, Katherine E; Dannenberg, Frits; Ouldridge, Thomas E; Kwiatkowska, Marta; Turberfield, Andrew J; Bath, Jonathan
2015-09-03
DNA origami is a robust assembly technique that folds a single-stranded DNA template into a target structure by annealing it with hundreds of short 'staple' strands. Its guiding design principle is that the target structure is the single most stable configuration. The folding transition is cooperative and, as in the case of proteins, is governed by information encoded in the polymer sequence. A typical origami folds primarily into the desired shape, but misfolded structures can kinetically trap the system and reduce the yield. Although adjusting assembly conditions or following empirical design rules can improve yield, well-folded origami often need to be separated from misfolded structures. The problem could in principle be avoided if assembly pathway and kinetics were fully understood and then rationally optimized. To this end, here we present a DNA origami system with the unusual property of being able to form a small set of distinguishable and well-folded shapes that represent discrete and approximately degenerate energy minima in a vast folding landscape, thus allowing us to probe the assembly process. The obtained high yield of well-folded origami structures confirms the existence of efficient folding pathways, while the shape distribution provides information about individual trajectories through the folding landscape. We find that, similarly to protein folding, the assembly of DNA origami is highly cooperative; that reversible bond formation is important in recovering from transient misfoldings; and that the early formation of long-range connections can very effectively enforce particular folds. We use these insights to inform the design of the system so as to steer assembly towards desired structures. Expanding the rational design process to include the assembly pathway should thus enable more reproducible synthesis, particularly when targeting more complex structures. We anticipate that this expansion will be essential if DNA origami is to continue its rapid development and become a reliable manufacturing technology.
Crystallization and Microphase Separation in Chiral Block Copolymers
NASA Astrophysics Data System (ADS)
Ho, Rong-Ming
2012-02-01
Block copolymers composed of chiral entities, denoted as chiral block copolymers (BCP*s), were designed to fabricate helical architectures from self-assembly. A helical phase (denoted H*) was discovered in the self-assembly of poly(styrene)-b-poly(L-lactide) (PS-PLLA) BCPs*. To examine the phase behavior of the PS-PLLA, self-assembled superstructures resulting from the competition between crystallization and microphase separation of the PS-PLLA in solution were examined. A kinetically controlled process by changing non-solvent addition rate was utilized to control the BCP* self-assembly. Single-crystal lozenge lamellae were obtained by the slow self-assembly (i.e., slow non-solvent addition rate) of PS-PLLA whereas amorphous helical ribbon superstructures were obtained from the fast self-assembly (i.e., fast non-solvent addition rate). As a result, the formation of helical architectures from the self-assembly of the PS-PLLA reflects the impact of chirality on microphase separation, but the chiral effect might be overwhelmed by crystallization. Consequently, various crystalline PS-PLLA nanostructures in bulk were obtained by controlling the crystallization temperature of PLLA (Tc,PLLA) at which crystalline helices and crystalline cylinders occur while Tc,PLLA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Wen-Sheng, E-mail: wsxu@uchicago.edu; Freed, Karl F., E-mail: freed@uchicago.edu; Department of Chemistry, The University of Chicago, Chicago, Illinois 60637
2016-06-07
Telechelic polymers are chain macromolecules that may self-assemble through the association of their two mono-functional end groups (called “stickers”). A deep understanding of the relation between microscopic molecular details and the macroscopic physical properties of telechelic polymers is important in guiding the rational design of telechelic polymer materials with desired properties. The lattice cluster theory (LCT) for strongly interacting, self-assembling telechelic polymers provides a theoretical tool that enables establishing the connections between important microscopic molecular details of self-assembling polymers and their bulk thermodynamics. The original LCT for self-assembly of telechelic polymers considers a model of fully flexible linear chains [J.more » Dudowicz and K. F. Freed, J. Chem. Phys. 136, 064902 (2012)], while our recent work introduces a significant improvement to the LCT by including a description of chain semiflexibility for the bonds within each individual telechelic chain [W.-S. Xu and K. F. Freed, J. Chem. Phys. 143, 024901 (2015)], but the physically associative (or called “sticky”) bonds between the ends of the telechelics are left as fully flexible. Motivated by the ubiquitous presence of steric constraints on the association of real telechelic polymers that impart an additional degree of bond stiffness (or rigidity), the present paper further extends the LCT to permit the sticky bonds to be semiflexible but to have a stiffness differing from that within each telechelic chain. An analytical expression for the Helmholtz free energy is provided for this model of linear telechelic polymer melts, and illustrative calculations demonstrate the significant influence of the stiffness of the sticky bonds on the self-assembly and thermodynamics of telechelic polymers. A brief discussion is also provided for the impact of self-assembly on glass-formation by combining the LCT description for this extended model of telechelic polymers with the Adam-Gibbs relation between the structural relaxation time and the configurational entropy.« less
Enomoto, Taro; Yasui, Yoshizumi; Takemoto, Yoshiji
2010-07-16
Synthesis of the pentacyclic core of ecteinascidin 743 is described. This synthesis features concise construction of the diazabicyclo[3.3.1]nonane skeleton using gold(I)-catalyzed one-pot keto amide formation, acid-promoted enamide formation, and oxidative Friedel-Crafts cyclization as the key steps.
Structures of SAS-6 suggest its organization in centrioles.
van Breugel, Mark; Hirono, Masafumi; Andreeva, Antonina; Yanagisawa, Haru-aki; Yamaguchi, Shoko; Nakazawa, Yuki; Morgner, Nina; Petrovich, Miriana; Ebong, Ima-Obong; Robinson, Carol V; Johnson, Christopher M; Veprintsev, Dmitry; Zuber, Benoît
2011-03-04
Centrioles are cylindrical, ninefold symmetrical structures with peripheral triplet microtubules strictly required to template cilia and flagella. The highly conserved protein SAS-6 constitutes the center of the cartwheel assembly that scaffolds centrioles early in their biogenesis. We determined the x-ray structure of the amino-terminal domain of SAS-6 from zebrafish, and we show that recombinant SAS-6 self-associates in vitro into assemblies that resemble cartwheel centers. Point mutations are consistent with the notion that centriole formation in vivo depends on the interactions that define the self-assemblies observed here. Thus, these interactions are probably essential to the structural organization of cartwheel centers.
Kuppuswamy, Chamundeeswari
2007-01-01
This article analyses the international governance of human reproductive cloning. Noting that bioethics is a new field of engagement for international lawyers, it recounts some of the institutional developments in bioethical law making. The role of UNESCO and the United Nations General Assembly is scrutinized and the author discusses the relative merits of the institutions' governance of human reproductive cloning. The author suggests that some international institutions and mechanisms are better suited than others for bioethical law making. The 2005 General Assembly resolution on human cloning is analysed in this context.
Self-assembly of silica nanoparticles by tuning substrate-adsorbate interaction
NASA Astrophysics Data System (ADS)
Utsav, Khanna, Sakshum; Mukhopadhayay, Indrajit; Banerjee, Rupak
2018-05-01
We report on self-assembled nanodisc formations of silica nanoparticles on a surface modified silicon substrate using modified Langmuir-Schafer deposition technique (stamping). The size, inter-particle separation as well as the packing of the silica nanoparticles within the nanodiscs formed spontaneously can be tuned by the surface pressure applied on the water surface. We obtain self-assembled nanodiscs of silica nanoparticle arranged in a hexagonal symmetry. We also observe that by varying the surface pressure of deposition at the water-molecule-air interface we obtain such 2D disc-shaped structure with varying sizes and a packing ratio of the silica nanoparticle.
Assembly of synthetic cellulose I.
Lee, J H; Brown, R M; Kuga, S; Shoda, S; Kobayashi, S
1994-08-02
Cellulose microfibrils with an electron diffraction pattern characteristic of crystalline native cellulose I have been assembled abiotically by means of a cellulase-catalyzed polymerization of beta-cellobiosyl fluoride substrate monomer in acetonitrile/acetate buffer. Substantial purification of the Trichoderma viride cellulase enzyme was found to be essential for the formation of the synthetic cellulose I allomorph. Assembly of synthetic cellulose I appears to be a result of a micellar aggregation of the partially purified enzyme and the substrate in an organic/aqueous solvent system favoring the alignment of glucan chains with the same polarity and extended chain conformation, resulting in crystallization to form the metastable cellulose I allomorph.
Fabrication of textured SnO2 transparent conductive films using self-assembled Sn nanospheres
NASA Astrophysics Data System (ADS)
Fukumoto, Michitaka; Nakao, Shoichiro; Hirose, Yasushi; Hasegawa, Tetsuya
2018-06-01
We present a novel method to fabricate textured surfaces on transparent conductive SnO2 films by processing substrates through a bottom-up technique with potential for industrially scalable production. The substrate processing consists of three steps: deposition of precursor Sn films on glass substrates, formation of a self-assembled Sn nanosphere layer with reductive annealing, and conversion of Sn to SnO2 by oxidative annealing. Ta-doped SnO2 films conformally deposited on the self-assembled nanospherical SnO2 templates exhibited attractive optical and electrical properties, namely, enhanced haze values and low sheet resistances, for applications as transparent electrodes in photovoltaics.
Veen, Sandra J; Kegel, Willem K
2009-11-19
We demonstrate a new structural instability of shell-like assemblies of polyoxometalates. Besides the colloidal instability, that is, the formation of aggregates that consist of many single layered POM-shells, these systems also display an instability on a structural scale within the shell-like assemblies. This instability occurs at significantly lower ionic strength than the colloidal stability limit and only becomes evident after a relatively long time. For the polyoxometalate, abbreviated as {Mo(72)Fe(30)}, it is shown that the structural stability limit of POM-shells lies between a NaCl concentration of 1.00 and 5.00 mM in aqueous solution.
Zagami, Roberto; Romeo, Andrea; Castriciano, Maria A; Monsù Scolaro, Luigi
2017-01-01
When mixtures of D 2 O/DCl are used to foster the self-assembly formation of TPPS 4 porphyrin J-aggregates in aqueous solutions, an inverse kinetic isotope effect of 0.4 and an inverse equilibrium isotope effect of 0.6 are clearly detected. Most importantly, the addition of at least 10 % D 2 O causes an inversion in the handedness of the final chiral J-aggregates, thus evidencing an important role of deuterium in driving the enantiomeric excess in the scalemic mixture of such supramolecular assemblies. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
The self-assembled behavior of DNA bases on the interface.
Liu, Lei; Xia, Dan; Klausen, Lasse H; Dong, Mingdong
2014-01-27
A successful example of self-assembly in a biological system is that DNA can be an excellent agent to self-assemble into desirable two and three-dimensional nanostructures in a well-ordered manner by specific hydrogen bonding interactions between the DNA bases. The self-assembly of DNA bases have played a significant role in constructing the hierarchical nanostructures. In this review article we will introduce the study of nucleic acid base self-assembly by scanning tunneling microscopy (STM) at vacuum and ambient condition (the liquid/solid interface), respectively. From the ideal condition to a more realistic environment, the self-assembled behaviors of DNA bases are introduced. In a vacuum system, the energetic advantages will dominate the assembly formation of DNA bases, while at ambient condition, more factors such as conformational freedom and the biochemical environment will be considered. Therefore, the assemblies of DNA bases at ambient condition are different from the ones obtained under vacuum. We present the ordered nanostructures formed by DNA bases at both vacuum and ambient condition. To construct and tailor the nanostructure through the interaction between DNA bases, it is important to understand the assembly behavior and features of DNA bases and their derivatives at ambient condition. The utilization of STM offers the advantage of investigating DNA base self-assembly with sub-molecular level resolution at the surface.
The Self-Assembled Behavior of DNA Bases on the Interface
Liu, Lei; Xia, Dan; Klausen, Lasse H.; Dong, Mingdong
2014-01-01
A successful example of self-assembly in a biological system is that DNA can be an excellent agent to self-assemble into desirable two and three-dimensional nanostructures in a well-ordered manner by specific hydrogen bonding interactions between the DNA bases. The self-assembly of DNA bases have played a significant role in constructing the hierarchical nanostructures. In this review article we will introduce the study of nucleic acid base self-assembly by scanning tunneling microscopy (STM) at vacuum and ambient condition (the liquid/solid interface), respectively. From the ideal condition to a more realistic environment, the self-assembled behaviors of DNA bases are introduced. In a vacuum system, the energetic advantages will dominate the assembly formation of DNA bases, while at ambient condition, more factors such as conformational freedom and the biochemical environment will be considered. Therefore, the assemblies of DNA bases at ambient condition are different from the ones obtained under vacuum. We present the ordered nanostructures formed by DNA bases at both vacuum and ambient condition. To construct and tailor the nanostructure through the interaction between DNA bases, it is important to understand the assembly behavior and features of DNA bases and their derivatives at ambient condition. The utilization of STM offers the advantage of investigating DNA base self-assembly with sub-molecular level resolution at the surface. PMID:24473140
J-aggregation in porphyrin nanoparticles induced by diphenylalanine
NASA Astrophysics Data System (ADS)
Li, Fengqing; Liu, Dongzhi; Wang, Tianyang; Hu, Jianxin; Meng, Fancui; Sun, Haiya; Shang, Zhi; Li, Pingan; Feng, Wenhui; Li, Wei; Zhou, Xueqin
2017-08-01
In this report, L-diphenylalanine-decorated tetraphenylporphyrin (TPPtFFC) was synthesized and self-assembled into regular nano-architechtures. The morphology of the assemblies varied with the concentration of TPPtFFC. The absorption spectra of the nanoparticles show the Soret band merges with the Q bands and redistributes with great red-shift, indicative of the formation of J-aggregates of the porphyrin molecules. The fluorescence emission of the nanoparticles is merged and red-shifted to near-infrared region. Studies of absorption and fluorescence spectra reveal an indispensible role of diphenylalanine group in the formation of J-aggregates. The Raman spectra disclose that diprotonation of the porphyrin core contributes to delocalized coherent excited states in the nanoparticles. The positive cotton effect in circular dichroism spectra corresponding to the Soret band of TPPtFFC in solution confirms the formation of J-aggregates with right-handed chirality of the dipole moment. This report will shed light on the rational design of porphyrin-peptide conjugates to mimic naturally light-harvesting complexes.
Enhanced stiffness of silk-like fibers by loop formation in the corona leads to stronger gels.
Rombouts, Wolf H; Domeradzka, Natalia E; Werten, Marc W T; Leermakers, Frans A M; de Vries, Renko J; de Wolf, Frits A; van der Gucht, Jasper
2016-11-01
We study the self-assembly of protein polymers consisting of a silk-like block flanked by two hydrophilic blocks, with a cysteine residue attached to the C-terminal end. The silk blocks self-assemble to form fibers while the hydrophilic blocks form a stabilizing corona. Entanglement of the fibers leads to the formation of hydrogels. Under oxidizing conditions the cysteine residues form disulfide bridges, effectively connecting two corona chains at their ends to form a loop. We find that this leads to a significant increase in the elastic modulus of the gels. Using atomic force microscopy, we show that this stiffening is due to an increase of the persistence length of the fibers. Self-consistent-field calculations indicate a slight decrease of the lateral pressure in the corona upon loop formation. We argue that this small decrease in the repulsive interactions affects the stacking of the silk-like blocks in the core, resulting in a more rigid fiber. © 2016 Wiley Periodicals, Inc.