Fracture toughness and the master curve for modified 9Cr-1Mo steel
NASA Astrophysics Data System (ADS)
Yoon, Ji-Hyun; Yoon, Eui-Pak
2006-12-01
Modified 9Cr-1Mo steel is a primary candidate material for the reactor pressure vessel of a Very High Temperature Gas-Cooled Reactor (VHTR) in the Korean Nuclear Hydrogen Development and Demonstration (NHDD) program. In this study, the T0 reference temperature, J-R fracture resistance and Charpy impact properties were evaluated for commercial Grade 91 steel as part of the preliminary testing for a selection of the RPV material for the VHTR. The fracture toughness of the modified 9Cr-1Mo steel was compared with that of SA508-Gr.3. The objective of this study was to obtain the pre-irradiation fracture toughness properties of the modified 9Cr-1Mo steel as reference data for an investigation of radiation effects. Charpy impact properties of the modified 9Cr-1Mo steel were similar to those of SA508-Gr.3. T0 reference temperatures were measured as -67.7 and -72.4°C from the tests with standard PCVN (pre-cracked Charpy V-notch) and half-sized PCVN specimens respectively, which were similar to the results for SA508-Gr.3. The KJc values of the modified 9Cr-1Mo steel with the test temperatures are successfully expressed by the Master Curve. The J-R fracture resistance of the modified 9Cr-1Mo steel at room temperature was nearly identical to that of SA508-Gr.3; in contrast, it was slightly higher at an elevated temperature.
Master Curve and Conventional Fracture Toughness of Modified 9Cr-1Mo Steel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ji-Hyun, Yoon; Sung-Ho, Kim; Bong-Sang, Lee
2006-07-01
Modified 9Cr-1Mo steel is a primary candidate material for reactor pressure vessel of Very High Temperature Gas-Cooled Reactor (VHTR) in Korean Nuclear Hydrogen Development and Demonstration (NHDD) program. In this study, T0 reference temperature, J-R fracture resistance and Charpy impact properties were evaluated for commercial Grade 91 steel as preliminary tests for the selection of the RPV material for VHTR. The fracture toughness of the modified 9Cr-1Mo steel was compared with those of SA508-Gr.3. The objective of this study was to obtain pre-irradiation fracture toughness properties of modified 9Cr-1Mo steel as reference data for the radiation effects investigation. The resultsmore » are as follows. Charpy impact properties of the modified 9Cr-1Mo steel were similar to those of SA508-Gr.3. T0 reference temperatures were measured as -67.7 deg C and -72.4 deg C from the tests with standard PCVN (pre-cracked Charpy V-notch) and half sized PCVN specimens respectively, which were similar to results for SA508-Gr.3. The K{sub Jc} values of modified 9Cr-1Mo with test temperatures are successfully expressed with the Master Curve. The J-R fracture resistance of modified 9Cr-1Mo steel at room temperature was almost the same as that of SA508-Gr.3. On the other hand it was a little bit higher at an elevated temperature. (authors)« less
NASA Astrophysics Data System (ADS)
Ramya, S.; Nanda Gopala Krishna, D.; Mudali, U. Kamachi
2018-01-01
In-situ Raman and X-ray photoelectron spectroscopic studies were performed for the identification of native and corroded surface oxide layers of modified 9Cr-1Mo steel. The Raman data obtained for native oxide layer of modified 9Cr-1Mo steel revealed that it was mainly composed of oxides of Fe and Cr. The presence of alloying element Mo was found to be less significant in the native oxide film. The oxides of Cr were dominant at the surface and were found to be decreasing closer to metal/oxide layer interface. The changes in the chemical composition of the native films upon in-situ pitting during potentiostatic polarization experiment were characterized by in-situ Raman analysis. The corrosion products of potentiostatically polarized modified 9Cr-1Mo steel was composed of dominant Fe (III) phases viz., γ- Fe2O3, α and γ - FeOOH along with the oxides of chromium. The results from Raman analysis were corroborated with the XPS experiments on as received and pitted samples of modified 9Cr-1Mo steel specimens. It was observed that the oxides of Cr and Mo contributed for the stability of the surface layer by forming Cr2O3 and MoO3. Also, the study attempted to find out the intermediate corrosion products inside the metastable pits to account for the pseudo passive behavior of modified 9Cr-1Mo steel in 0.1 M NaCl solution.
NASA Astrophysics Data System (ADS)
Mariappan, K.; Shankar, Vani; Sandhya, R.; Prasad Reddy, G. V.; Mathew, M. D.
2013-04-01
Influence of temperature and strain rate on low cycle fatigue (LCF) behavior of modified 9Cr-1Mo ferritic martensitic steel and 1.4W-0.06Ta reduced activation ferritic martensitic (RAFM) steel in normalized and tempered conditions was studied. Total strain controlled LCF tests between 300 and 873 K on modified 9Cr-1Mo steel and RAFM steel and at various strain rates on modified 9Cr-1Mo steel were performed at total strain amplitude of ±0.6%. Both the steels showed continuous cyclic softening at all temperatures. Whereas manifestations of dynamic strain aging (DSA) were observed in both the steels which decreased fatigue life at intermediate temperatures, at higher temperatures, oxidation played a crucial role in decreasing fatigue life.
NASA Astrophysics Data System (ADS)
Roy, Prabir Kumar
2018-04-01
This paper highlights a comparative assessment of creep life of 1.25Cr-0.5Mo, 2.25Cr-1Mo and modified 9Cr-1Mo steels based on accelerated creep rupture tests. Creep rupture test data have been analysed and creep life of the above mentioned materials have been assessed using Larson Miller parameter at the stress levels of 60 and 42 MPa for different temperatures. Limiting steam temperatures for minimum design life of 105 h at 42 and 60 MPa for the above mentioned steels have also been calculated. Microstructural studies for the three above mentioned steels are also done.
Fracture toughness of irradiated modified 9Cr-1Mo steel
NASA Astrophysics Data System (ADS)
Kim, Sung Ho; Yoon, Ji-Hyun; Ryu, Woo Seog; Lee, Chan Bock; Hong, Jun Hwa
2009-04-01
The effects of irradiation on fracture toughness of modified 9Cr-1Mo steel in the transition region were investigated. Half size precracked Charpy specimens were irradiated up to 1.2 × 10 21n/cm 2 ( E > 0.1 MeV) at 340 °C and 400 °C in the Korean research reactor. The irradiation induced transition temperature shift for a modified 9Cr-1Mo was evaluated by using the Master Curve methodology. The T0 temperature for the unirradiated specimens were measured as -67.7 °C and -72.4 °C from the tests with standard PCVN (precracked charpy V-notch) and half sized PCVN specimens, respectively. The T0 shifts of specimens after irradiation at 340 °C and 400 °C were 70.7 °C and 66.1 °C, respectively. The Weibull slopes for the fracture toughness data obtained from the unirradiated and irradiated modified 9Cr-1Mo steels were determined to confirm the applicability of master curve methodology to modified 9Cr-1Mo steel.
NASA Astrophysics Data System (ADS)
Chakraborty, Gopa; Das, C. R.; Albert, S. K.; Bhaduri, A. K.; Murugesan, S.; Dasgupta, Arup
2016-04-01
Dashpot piston, made up of modified 9Cr-1Mo steel, is a part of diverse safety rod used for safe shutdown of a nuclear reactor. This component was hardfaced using nickel base AWS ER NiCr-B alloy and extensive cracking was experienced during direct deposition of this alloy on dashpot piston. Cracking reduced considerably and the component was successfully hardfaced by application of Inconel 625 as buffer layer prior to hardface deposition. Hence, a separate study was undertaken to investigate the role of buffer layer in reducing the cracking and on the microstructure of the hardfaced deposit. Results indicate that in the direct deposition of hardfacing alloy on modified 9Cr-1Mo steel, both heat-affected zone (HAZ) formed and the deposit layer are hard making the thickness of the hard layer formed equal to combined thickness of both HAZ and deposit. This hard layer is unable to absorb thermal stresses resulting in the cracking of the deposit. By providing a buffer layer of Alloy 625 followed by a post-weld heat treatment, HAZ formed in the modified 9Cr-1Mo steel is effectively tempered, and HAZ formed during the subsequent deposition of the hardfacing alloy over the Alloy 625 buffer layer is almost completely confined to Alloy 625, which does not harden. This reduces the cracking susceptibility of the deposit. Further, unlike in the case of direct deposition on modified 9Cr-1Mo steel, dilution of the deposit by Ni-base buffer layer does not alter the hardness of the deposit and desired hardness on the deposit surface could be achieved even with lower thickness of the deposit. This gives an option for reducing the recommended thickness of the deposit, which can also reduce the risk of cracking.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shrestha, Triratna; Alsagabi, Sultan; Charit, Indrajit
The modified 9Cr-1Mo steel (Grade 91) is a material of choice in fossil-fuel-fired power plants with increased efficiency, service life, and reduction in emission of greenhouse gases. It is also considered a prospective material for the Next Generation Nuclear Power Plant for application in reactor pressure vessels at temperatures up to 650°C. In this paper, heat treatment of the modified 9Cr-1Mo steel was studied by normalizing and tempering the steel at various temperatures and times, with the ultimate goal of improving its creep resistance and optimizing material hardness. The microstructural evolution of the heat treated steels was correlated with themore » differential scanning calorimetric results. Optical microscopy, scanning and transmission electron microscopy in conjunction with microhardness profiles and calorimetric plots were used to understand the evolution of microstructure including precipitate structures in modified 9Cr-1Mo steel and relate it to the mechanical behavior of the steel. Thermo-CalcTM calculations were used to support experimental work and provide guidance in terms of the precipitate stability and microstructural evolution. Furthermore, the carbon isopleth and temperature dependencies of the volume fraction of different precipitates were constructed. The predicted and experimentally observed results were found to be in good agreement.« less
NASA Astrophysics Data System (ADS)
Baek, Jong-Hyuk; Kim, Sung-Ho; Lee, Chan-Bock; Hahn, Do-Hee
2009-08-01
The mechanical properties and microstructural evolution of modified 9Cr-1Mo steel have been studied to investigate steel property changes after long-term isothermal aging at 600 °C for 50,000 h. The microhardness and strength were maintained constantly after aging but the impact energy was dramatically reduced by 62 % during the aging period. From the viewpoint of microstructural evolution after the aging process, Cr-enrichment and Fe-depletion took place within the M23C6-type precipitates in the as-aged steel and V-depletion also happened within the VX-type precipitates after aging. In addition, the precipitates of the M2Mo-type Laves phase and the segregation of the impurity atoms would be formed during the long-term aging period. It was considered that the sharp reduction of the impact energy could be related to the formation of the Laves phases and the impurity segregation after aging at 600 °C. The phase stability was also verified by the specific heat results up to 950 °C from a DSC test. It was concluded from this study that the modified 9Cr-1Mo steel would keep its microstructural stability at 600 °C during the long-term aging period of 50,000 h, which was equivalent to the in-service life of the SFR fuel cladding.
Effect of heat treatment on microstructure and hardness of Grade 91 steel
Shrestha, Triratna; Alsagabi, Sultan; Charit, Indrajit; ...
2015-01-21
The modified 9Cr-1Mo steel (Grade 91) is a material of choice in fossil-fuel-fired power plants with increased efficiency, service life, and reduction in emission of greenhouse gases. It is also considered a prospective material for the Next Generation Nuclear Power Plant for application in reactor pressure vessels at temperatures up to 650°C. In this paper, heat treatment of the modified 9Cr-1Mo steel was studied by normalizing and tempering the steel at various temperatures and times, with the ultimate goal of improving its creep resistance and optimizing material hardness. The microstructural evolution of the heat treated steels was correlated with themore » differential scanning calorimetric results. Optical microscopy, scanning and transmission electron microscopy in conjunction with microhardness profiles and calorimetric plots were used to understand the evolution of microstructure including precipitate structures in modified 9Cr-1Mo steel and relate it to the mechanical behavior of the steel. Thermo-CalcTM calculations were used to support experimental work and provide guidance in terms of the precipitate stability and microstructural evolution. Furthermore, the carbon isopleth and temperature dependencies of the volume fraction of different precipitates were constructed. The predicted and experimentally observed results were found to be in good agreement.« less
Tensile properties and flow behavior analysis of modified 9Cr-1Mo steel clad tube material
NASA Astrophysics Data System (ADS)
Singh, Kanwarjeet; Latha, S.; Nandagopal, M.; Mathew, M. D.; Laha, K.; Jayakumar, T.
2014-11-01
The tensile properties and flow behavior of modified 9Cr-1Mo steel clad tube have been investigated in the framework of various constitutive equations for a wide range of temperatures (300-923 K) and strain rates (3 × 10-3 s-1, 3 × 10-4 s-1 and 3 × 10-5 s-1). The tensile flow behavior of modified 9Cr-1Mo steel clad tube was most accurately described by Voce equation. The variation of instantaneous work hardening rate (θ = dσ/dε) and σθ with stress (σ) indicated two stage behavior characterized by rapid decrease at low stresses (transient stage) followed by a gradual decrease in high stresses (Stage III). The variation of work hardening parameters and work hardening rate in terms of θ vs. σ and σθ vs. σ with temperature exhibited three distinct regimes. Rapid decrease in flow stress and work hardening parameters and rapid shift of θ vs. σ and σθ vs. σ towards low stresses with increase in temperature indicated dynamic recovery at high temperatures. Tensile properties of the material have been best predicted from Voce equation.
9 Cr-- 1 Mo steel material for high temperature application
Jablonski, Paul D; Alman, David; Dogan, Omer; Holcomb, Gordon; Cowen, Christopher
2012-11-27
One or more embodiments relates to a high-temperature, titanium alloyed, 9 Cr-1 Mo steel exhibiting improved creep strength and oxidation resistance at service temperatures up to 650.degree. C. The 9 Cr-1 Mo steel has a tempered martensite microstructure and is comprised of both large (0.5-3 .mu.m) primary titanium carbides and small (5-50 nm) secondary titanium carbides in a ratio of. from about 1:1.5 to about 1.5:1. The 9 Cr-1 Mo steel may be fabricated using exemplary austenizing, rapid cooling, and tempering steps without subsequent hot working requirements. The 9 Cr-1 Mo steel exhibits improvements in total mass gain, yield strength, and time-to-rupture over ASTM P91 and ASTM P92 at the temperature and time conditions examined.
Behavior of helium gas atoms and bubbles in low activation 9Cr martensitic steels
NASA Astrophysics Data System (ADS)
Hasegawa, Akira; Shiraishi, Haruki; Matsui, Hideki; Abe, Katsunori
1994-09-01
The behavior of helium-gas release from helium-implanted 9Cr martensitic steels (500 appm implanted at 873 K) during tensile testing at 873 K was studied. Modified 9Cr-1Mo, low-activation 9Cr-2W and 9Cr-0.5V were investigated. Cold-worked AISI 316 austenitic stainless steel was also investigated as a reference which was susceptible helium embrittlement at high temperature. A helium release peak was observed at the moment of rupture in all the specimens. The total quantity of helium released from these 9Cr steels was in the same range but smaller than that of 316CW steel. Helium gas in the 9Cr steels should be considered to remain in the matrix at their lath-packets even if deformed at 873 K. This is the reason why the martensitic steels have high resistance to helium embrittlement.
Heat treatment effects on toughness of 9Cr-1MoVNb and 12Cr-1MoVW steels irradiated at 365°C
NASA Astrophysics Data System (ADS)
Klueh, R. L.; Alexander, D. J.
1992-09-01
The 9Cr-1MoVNb and 12Cr-1MoVW steels were austenitized at 1040 and 1100°C to produce different prior austenite grain sizes, after which they were given different tempering treatments (1 h at 760°C or 2.5 h at 780°C). Subsize Charpy impact specimens from these materials were irradiated at 365°C up to 5 dpa. For 9Cr-1MoVNb steel in the unirradiated condition, the smaller the prior austenite grain size and the higher the tempering temperature, the lower the ductile-brittle transition temperature (DBTT). Regardless of the DBTT in the unirradiated condition, however, the DBTT shift for 9Cr-1MoVNb steel due to irradiation was the same for all heat treatments. This means heat treatment can be used to ensure a lower DBTT before and after irradiation. The 12Cr-1MoVW steel showed little effect of heat treatment on DBTT in the unirradiated condition, and the shift in DBTT was relatively constant. Thus, it appears that heat treatment cannot be used to reduce the effect of irradiation on DBTT for this steel.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Potirniche, Gabriel; Barlow, Fred D.; Charit, Indrajit
2013-11-26
A recent workshop on next-generation nuclear plant (NGNP) topics underscored the need for research studies on the creep fracture behavior of two materials under consideration for reactor pressure vessel (RPV) applications: 9Cr-1Mo and SA-5XX steels. This research project will provide a fundamental understanding of creep fracture behavior of modified 9Cr-1Mo steel welds for through modeling and experimentation and will recommend a design for an RPV structural health monitoring system. Following are the specific objectives of this research project: Characterize metallurgical degradation in welded modified 9Cr-1Mo steel resulting from aging processes and creep service conditions; Perform creep tests and characterize themore » mechanisms of creep fracture process; Quantify how the microstructure degradation controls the creep strength of welded steel specimens; Perform finite element (FE) simulations using polycrystal plasticity to understand how grain texture affects the creep fracture properties of welds; Develop a microstructure-based creep fracture model to estimate RPVs service life; Manufacture small, prototypic, cylindrical pressure vessels, subject them to degradation by aging, and measure their leak rates; Simulate damage evolution in creep specimens by FE analyses; Develop a model that correlates gas leak rates from welded pressure vessels with the amount of microstructural damage; Perform large-scale FE simulations with a realistic microstructure to evaluate RPV performance at elevated temperatures and creep strength; Develop a fracture model for the structural integrity of RPVs subjected to creep loads; and Develop a plan for a non-destructive structural health monitoring technique and damage detection device for RPVs.« less
NASA Astrophysics Data System (ADS)
Maduraimuthu, V.; Vasudevan, M.; Muthupandi, V.; Bhaduri, A. K.; Jayakumar, T.
2012-02-01
A novel variant of tungsten inert gas (TIG) welding called activated-TIG (A-TIG) welding, which uses a thin layer of activated flux coating applied on the joint area prior to welding, is known to enhance the depth of penetration during autogenous TIG welding and overcomes the limitation associated with TIG welding of modified 9Cr-1Mo steels. Therefore, it is necessary to develop a specific activated flux for enhancing the depth of penetration during autogeneous TIG welding of modified 9Cr-1Mo steel. In the current work, activated flux composition is optimized to achieve 6 mm depth of penetration in single-pass TIG welding at minimum heat input possible. Then square butt weld joints are made for 6-mm-thick and 10-mm-thick plates using the optimized flux. The effect of flux on the microstructure, mechanical properties, and residual stresses of the A-TIG weld joint is studied by comparing it with that of the weld joints made by conventional multipass TIG welding process using matching filler wire. Welded microstructure in the A-TIG weld joint is coarser because of the higher peak temperature in A-TIG welding process compared with that of multipass TIG weld joint made by a conventional TIG welding process. Transverse strength properties of the modified 9Cr-1Mo steel weld produced by A-TIG welding exceeded the minimum specified strength values of the base materials. The average toughness values of A-TIG weld joints are lower compared with that of the base metal and multipass weld joints due to the presence of δ-ferrite and inclusions in the weld metal caused by the flux. Compressive residual stresses are observed in the fusion zone of A-TIG weld joint, whereas tensile residual stresses are observed in the multipass TIG weld joint.
NASA Astrophysics Data System (ADS)
Skorobogatykh, V. N.; Danyushevskiy, I. A.; Schenkova, I. A.; Prudnikov, D. A.
2015-04-01
Currently, grade X10CrMoVNb9-1 (T91, P91) and 10Kh9MFB (10Kh9MFB-Sh) chromium steels are widely applied in equipment manufacturing for thermal power plants in Russia and abroad. Compilation and comparison of tensile, impact, and long-term strength tests results accumulated for many years of investigations of foreign grade X10CrMoVNb9-1, T91, P91, and domestic grade 10Kh9MFB (10Kh9MFB-Sh) steels is carried out. The property identity of metals investigated is established. High strength and plastic properties of steels, from which pipes and other products are made, for operation under creep conditions are confirmed. Design characteristics of long-term strength on the basis of tests with more than one million of hour-samples are determined ( and at temperatures of 500-650°C). The table of recommended allowable stresses for grade 10Kh9MFB, 10Kh9MFB-SH, X10CrMoVNb9-1, T91, and P91 steels is developed. The long-time properties of pipe welded joints of grade 10Kh9MFB+10Kh9MFB, 10Kh9MFB-Sh+10Kh9MFB-Sh, X10CrMoVNb9-1+X10CrMoVNb9-1, P91+P91, T91+T91, 10Kh9MFB (10Kh9MFB-Sh)+X10CrMoVNb9-1(T/P91) steels is researched. The welded joint reduction factor is experimentally determined.
NASA Astrophysics Data System (ADS)
Nagaraju, S.; Vasantharaja, P.; Brahadees, G.; Vasudevan, M.; Mahadevan, S.
2017-12-01
9Cr-1Mo steel designated as P9 is widely used in the construction of power plants and high-temperature applications. It is chosen for fabricating hexcan fuel subassembly wrapper components of fast breeder reactors. Arc welding processes are generally used for fabricating 9Cr-1Mo steel weld joints. A-TIG welding process is increasingly being adopted by the industries. In the present study, shielded metal arc (SMA), tungsten inert gas (TIG) and A-TIG welding processes are used for fabricating the 9Cr-1Mo steel weld joints of 10 mm thickness. Effect of the above welding processes on the microstructure evolution, mechanical properties and residual stresses of the weld joints has been studied in detail. All the three weld joints exhibited comparable strength and ductility values. 9Cr-1Mo steel weld joint fabricated by SMAW process exhibited lower impact toughness values caused by coarser grain size and inclusions. 9Cr-1Mo steel weld joint fabricated by TIG welding exhibited higher toughness due to finer grain size, while the weld joint fabricated by A-TIG welding process exhibited adequate toughness values. SMA steel weld joint exhibited compressive residual stresses in the weld metal and HAZ, while TIG and A-TIG weld joint exhibited tensile residual stresses in the weld metal and HAZ.
Heat treatment effects on impact toughness of 9Cr 1MoVNb and 12Cr 1MoVW steels irradiated to 100 dpa
NASA Astrophysics Data System (ADS)
Klueh, R. L.; Alexander, D. J.
1998-10-01
Plates of 9Cr-1MoVNb and 12Cr-1MoVW steels were given four different heat treatments: two normalizing treatments were used and for each normalizing treatment two tempers were used. Miniature Charpy specimens from each heat treatment were irradiated to ≈20 dpa at 365°C and to ≈100 dpa at 420°C in the Fast Flux Test Facility (FFTF). In previous work, the same steels were irradiated in FFTF to 4-5 dpa at 365°C and 35-36 dpa at 420°C. The tests indicated that prior austenite grain size, which was varied by the different normalizing treatments, affected the impact behavior of the 9Cr-1MoVNb but not the 12Cr-1MoVW. Tempering had relatively little effect on the impact behavior of both steels. Conclusions are presented on how heat treatment can be used to optimize impact properties.
NASA Astrophysics Data System (ADS)
Wang, Qijiang; Zhou, Yedong; Zhang, Qinglian
Production technical process of BaoSteel-produced 9Cr1Mo (P9) seamless pipe is presented, and creep property of isothermal annealed state of that steel is studied under the temperatures of 550 °C, 600 °C, 650 °C, 700 °C. Also, isothermal extrapolation method and Larson-Miller method are employed to extrapolate creep rupture strength of the steel at the creep time of 20000h, 40000h, 60000h and 100000h. The results show that high temperature properties of BaoSteel-produced 9Cr1Mo (P9) seamless pipe meets the API 530 standard of USA and the SH/T3037 standard of China's petrochemical industry, and the steel can be used in large scale petroleum cracking equipment. Meantime, the comparison of creep properties at 650 °C and transient elevated temperature properties at different temperatures between isothermal annealed state and normalized + tempered state of 9Cr1Mo (P9) seamless pipe as well as the microstructure analysis show that the normalized + tempered 9Cr1Mo (P9) seamless pipe presents better high temperature properties.
Molten salt corrosion behavior of structural materials in LiCl-KCl-UCl3 by thermogravimetric study
NASA Astrophysics Data System (ADS)
Rao, Ch Jagadeeswara; Ningshen, S.; Mallika, C.; Mudali, U. Kamachi
2018-04-01
The corrosion resistance of structural materials has been recognized as a key issue in the various unit operations such as salt purification, electrorefining, cathode processing and injection casting in the pyrochemical reprocessing of spent metallic nuclear fuels. In the present work, the corrosion behavior of the candidate materials of stainless steel (SS) 410, 2.25Cr-1Mo and 9Cr-1Mo steels was investigated in molten LiCl-KCl-UCl3 salt by thermogravimetric analysis under inert and reactive atmospheres at 500 and 600 °C, for 6 h duration. Insignificant weight gain (less than 1 mg/cm2) in the inert atmosphere and marginal weight gain (maximum 5 mg/cm2) in the reactive atmosphere were observed at both the temperatures. Chromium depletion rates and formation of Cr-rich corrosion products increased with increasing temperature of exposure in both inert and reactive atmospheres as evidenced by SEM and EDS analysis. The corrosion attack by LiCl-KCl-UCl3 molten salt, under reactive atmosphere for 6 h duration was more in the case of SS410 than 9Cr-1Mo steel followed by 2.25Cr-1Mo steel at 500 °C and the corrosion attack at 600 °C followed the order: 9Cr-1Mo steel >2.25Cr-1Mo steel > SS410. Outward diffusion of the minor alloying element, Mo was observed in 9Cr-1Mo and 2.25Cr-1Mo steels at both temperatures under reactive atmosphere. Laser Raman spectral analysis of the molten salt corrosion tested alloys under a reactive atmosphere at 500 and 600 °C for 6 h revealed the formation of unprotected Fe3O4 and α-as well as γ-Fe2O3. The results of the present study facilitate the selection of structural materials for applications in the corrosive molten salt environment at high temperatures.
Investigation of a Modified 9Cr-1Mo (P91) Pipe Failure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klueh, Ronald L; Shingledecker, John P
2006-04-01
A modified 9Cr-1Mo feedwater (condensate) line at an Eastman Chemical Company plant failed in January 2005. The line was in continuous service since start-up December 2001 until failure. The Plant Superintendent estimated there were three thermal cycles since start-up, although there may have been as many as 25 thermal cycles during commissioning. Normal operating temperature was 325 F (163 C) and pressure was 1762 psig. The line was steam traced with the tracing activated only when ambient outdoor temperature dropped to 40 F (5 C). A modified 9Cr-1Mo steel (P91) pipe failure in a feedwater line in a chemical plantmore » was investigated. The failure occurred in the vicinity of an elbow produced with socket welds of the pipe to the elbow. Based on metallography and hardness measurements, it was concluded that failure occurred because of an improper post-weld heat treatment of the socket weldment.« less
Optimizing Heat Treatment Process of Fe-13Cr-3Mo-3Ni Martensitic Stainless of Steel
NASA Astrophysics Data System (ADS)
Anwar, M. S.; Prifiharni, S.; Mabruri, E.
2017-05-01
The Fe-13Cr-3Mo-3Ni stainless steels are modified into martensitic stainless steels for steam turbine blades application. The working temperature of steam turbine was around 600 - 700 °C. The improvement properties of turbine blade material is necessary to maintain steam turbine work. The previous research revealed that it has corrosion resistance of Fe-13Cr-3Mo-3Ni which is better than 13Cr stainless steels in the chloride environment. In this work, the effect of heat treatment on microstructure and hardness of Fe-13Cr-3Mo-3Ni stainless steels has been studied. The steel was prepared by induction melting followed by hot forging. The steels were austenitized at 1000, 1050, and 1100 °C for 1 hour and were tempered at 600, 650, and 700 °C for 1 hour. The steels were then subjected to metallographic observation and hardness test of Rockwell C. The optimal heat treatment of Fe-13Cr-3Mo-3Ni was carried out austenitized in 1050 °C and tempered in 600 - 700 °C.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klueh, R L; Maziasz, P J; Vitek, J M
2006-09-23
Economic and environmental concerns demand that the power-generation industry seek increased efficiency for gas turbines. Higher efficiency requires higher operating temperatures, with the objective temperature for the hottest sections of new systems {approx} 593 C, and increasing to {approx} 650 C. Because of their good thermal properties, Cr-Mo-V cast ferritic steels are currently used for components such as rotors, casings, pipes, etc., but new steels are required for the new operating conditions. The Oak Ridge National Laboratory (ORNL) has developed new wrought Cr-W-V steels with 3-9% Cr, 2-3% W, 0.25% V (compositions are in wt.%), and minor amounts of additionalmore » elements. These steels have the strength and toughness required for turbine applications. Since cast alloys are expected to behave differently from wrought material, work was pursued to develop new cast steels based on the ORNL wrought compositions. Nine casting test blocks with 3, 9, and 11% Cr were obtained. Eight were Cr-W-V-Ta-type steels based on the ORNL wrought steels; the ninth was COST CB2, a 9Cr-Mo-Co-V-Nb cast steel, which was the most promising cast steel developed in a European alloy-development program. The COST CB2 was used as a control to which the new compositions were compared, and this also provided a comparison between Cr-W-V-Ta and Cr-Mo-V-Nb compositions. Heat treatment studies were carried out on the nine castings to determine normalizing-and-tempering treatments. Microstructures were characterized by both optical and transmission electron microscopy (TEM). Tensile, impact, and creep tests were conducted. Test results on the first nine cast steel compositions indicated that properties of the 9Cr-Mo-Co-V-Nb composition of COST CB2 were better than those of the 3Cr-, 9Cr-, and 11Cr-W-V-Ta steels. Analysis of the results of this first iteration using computational thermodynamics raised the question of the effectiveness in cast steels of the Cr-W-V-Ta combination versus the Cr-Mo-V-Nb combination in COST CB2. To explore this question, nine more casting test blocks, four 3Cr steels and five 11Cr steels were purchased, and microstructure and mechanical properties studies similar to those described above for the first iteration of test blocks were conducted. Experimental results from the second iteration indicated that 11 Cr steels with excellent properties are possible. The 11Cr-1.5Mo-V-Nb steels were superior to 11Cr-2W-V-Ta steels, and it appears the former class of steels can be developed to have tensile and creep properties exceeding those of COST CB2. The W-Nb combination in an 11Cr-2W-V-Nb steel had tensile and short-time creep properties at 650 C better than the 11Cr-1.5Mo-V-Nb steels, although long-time low-stress properties may not be as good because of Laves phase formation. Based on the results, the next step in the development of improved casting steels involves acquisition of 11Cr-1.5Mo-V-Nb-N-B-C and 11Cr-2W-V-Nb-N-B-C steels on which long-term creep-rupture tests (>10,000 h) be conducted. For better oxidation and corrosion resistance, development of 11Cr steels, as opposed to a 9Cr steels, such as COST CB2, are important for future turbine designs that envision operating temperatures of 650 C.« less
NASA Astrophysics Data System (ADS)
Wu, Baoye; Liu, Peng; Wang, Xizhao; Zhang, Fei; Deng, Leimin; Duan, Jun; Zeng, Xiaoyan
2018-05-01
Due to excellent properties, Cr12MoV mold steel, 9Cr18 stainless steel and H13A cemented carbide are widely used in industry. In this paper, the effect of absorption of laser light on ablation efficiency and roughness have been studied using a picosecond pulse Nd:YVO4 laser. The experimental results reveal that laser wavelength, original surface roughness and chemical composition play an important role in controlling ablation efficiency and roughness. Firstly, higher ablation efficiency with lower surface roughness is achieved on the ablation of 9Cr18 at 532, comparing with 1064 nm. Secondly, the ablation efficiency increases while the Ra of the ablated region decreases with the decrease of original surface roughness on ablation of Cr12MoV mold steel at 532 nm. Thirdly, the ablation efficiency of H13A cemented carbide is much higher than 9Cr18 stainless steel and Cr12MoV mold steel at 1064 nm. Scanning electron microscopy images reveals the formation of pores on the surface of 9Cr18 stainless steel and Cr12MoV mold steel at 532 nm while no pores are formed at 1064 nm. As to H13A cemented carbide, worm-like structure is formed at 1064 nm. The synergetic effects of the heat accumulation, plasma shielding and ablation threshold on laser ablation efficiency and machining quality were analyzed and discussed systematically in this paper.
Charpy impact toughness of martensitic steels irradiated in FFTF: Effect of heat treatment
NASA Astrophysics Data System (ADS)
Klueh, R. L.; Alexander, D. J.
Charpy tests were made on plates of 9Cr-1MoVNb and 12Cr-1MoVW steels given four different normalizing-and-tempering treatments. One-third-size Charpy specimens from each steel were irradiated to 7.4 - 8 (times) 10(sup 26) n/m(sup 2) (about 34 - 37 dpa) at 420 C in the Materials Open Test Assembly of the Fast Flux Test Facility. Specimens were also thermally aged to 20000 h at 400 C to determine the effect of aging during irradiation. Previous work on these steels irradiated to 4 - 5 dpa at 365 C in MOTA were reexamined in light of the new results. The tests indicated that prior austenite grain size, which was varied by different normalizing treatments, had an effect on impact behavior of the 9Cr-1MoVNb but not on the 12Cr-1MoVW. Tempering treatment had relatively little effect on the shift in DBTT for both steels. Conclusions are presented on how heat treatment can be used to optimize properties.
Hydrogen attack in Cr-Mo steels. [3Cr-1. 5Mo and 2. 25Cr-1Mo steels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ruoff, S.; Stone, D.; Wanagel, J.
Experiments conducted upon 3Cr-1.5Mo steel at elevated temperatures (600 C), and high pressure hydrogen (2000 psi), have shown a greater resistence to hydrogen attack compared with similar studies of 2.25Cr-lMo steels. Hydrogen exposure tests with and without an applied stress have been performed on both types of steels. Results of similar conditions show clear evidence of hydrogen attack in 2.25Cr-lMo steel, however, for the 3Cr-1.5Mo steel with exposure time up to 80 days without an applied stress no evidence of hydrogen attack is observed. For stress-rupture tests using stresses of 14 and 16 ksi, the 3Cr-1.5Mo steel showed no effectsmore » of hydrogen attack, and no damage was observed using a SEM.« less
NASA Astrophysics Data System (ADS)
Gowtham, K. N.; Vasudevan, M.; Maduraimuthu, V.; Jayakumar, T.
2011-04-01
Modified 9Cr-1Mo ferritic steel is used as a structural material for steam generator components of power plants. Generally, tungsten inert gas (TIG) welding is preferred for welding of these steels in which the depth of penetration achievable during autogenous welding is limited. Therefore, activated flux TIG (A-TIG) welding, a novel welding technique, has been developed in-house to increase the depth of penetration. In modified 9Cr-1Mo steel joints produced by the A-TIG welding process, weld bead width, depth of penetration, and heat-affected zone (HAZ) width play an important role in determining the mechanical properties as well as the performance of the weld joints during service. To obtain the desired weld bead geometry and HAZ width, it becomes important to set the welding process parameters. In this work, adaptative neuro fuzzy inference system is used to develop independent models correlating the welding process parameters like current, voltage, and torch speed with weld bead shape parameters like depth of penetration, bead width, and HAZ width. Then a genetic algorithm is employed to determine the optimum A-TIG welding process parameters to obtain the desired weld bead shape parameters and HAZ width.
DEVELOPMENT OF FERRITIC STEELS FOR HIGH TEMPERATURE SODIUM SERVICE. PART II
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, W.J.; Sheffield, G.S.; Birkle, A.J.
1963-11-30
The suitability of modified 2.25 Cr--1 Mo alloy steels for sodium service was investigated. Eleven modifications were examined to establish heat treatment behavior, mechanical properties, resistance to decarburization in liquid sodium, and weldability. Two of the alloys, 4S8 (2.25 Cr--1 Mo--0.6 V-- 0.1 Cb) and 4S4 (2.25 Cr--1 Mo-0.8 V), were found to have the best combination of properties. When heat treated by normalizing and tempering, their mechanical properties to 1200 deg F were found to be comparable to those of Type 304 stainless steel. A low chromium, nickel-base alloy was developed for welding the steels, to give either fullymore » heat treatable joints or to apply the butter-weld technique useful in field welding. It provides high joint efficiency without sacrifice in joint ductility. (auth)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mabruri, Efendi, E-mail: effe004@lipi.go.id; Anwar, Moch Syaiful, E-mail: moch.syaiful.anwar@lipi.go.id; Prifiharni, Siska, E-mail: siska.prifiharni@lipi.go.id
This paper reports the influence of Mo and Ni on the tensile properties of the modified 13Cr martensitic stainless steels in tempered condition. Four steels with different content of Mo and Ni were prepared by induction melting followed by hot forging, quenching and tempering. The experimental results showed that the addition of about 1% and 3% Mo has a beneficial effect to increase both the tensile strength and the elongation of the steels. On the contrary, the addition of about 3% Ni into the martensitic stainless steel results in decreasing of both the tensile strength and the elongation. Among themore » alloys investigated the 13Cr3Mo type steel exhibited largest tensile strength of 1348 MPa and largest elongation of 12%. The observation on the tensile fractured surfaces by using scanning electron microscope supported these findings.« less
Creep modeling for life evaluation and strengthening mechanism of tungsten alloyed 9-12% Cr steels
NASA Astrophysics Data System (ADS)
Park, Kyu-Seop; Bae, Dong-Sik; Lee, Sung-Keun; Lee, Goo-Hyun; Kim, Jung-Ho; Endo, Takao
2006-10-01
Recently, high strength tungsten (W) alloyed steels have been developed for use in power plants with higher steam conditions for environmental reasons as well as the improvement of thermal efficiency resulting in lower fuel costs. In order to establish a creep modeling of high strength martensitic steel and to understand the basic role of W in tungsten alloyed 9-12Cr steels, conventional martensitic steels (X20CrMoV121, X20CrMoWV121, and Mod9Cr-1Mo) and tungsten alloyed steels (NF616 and HCM12A) were employed for creep tests and creep behavior analyses by the Ω method. The proposed creep model, which takes into account both primary and tertiary creep, satisfactorily described the creep curves and accurately predicted creep life, as martensitic steel undergoes a relatively large amount of primary creep, up to nearly 30%, over its normal life. The tungsten alloyed steels exhibited a smaller minimum creep rate and a larger stress exponent compared to the conventional steels. In addition, in tungsten alloyed steel, the Ω value features strong stress dependence such that creep life is prolonged at lower stresses due to high Ω values. The importance of the Ω value from the standpoint of creep strengthening in primary and tertiary creep is discussed.
Corrosion behavior of steels in liquid lead bismuth with low oxygen concentrations
NASA Astrophysics Data System (ADS)
Kurata, Yuji; Futakawa, Masatoshi; Saito, Shigeru
2008-02-01
Corrosion tests in pots were conducted to elucidate corrosion behavior of various steels in liquid lead-bismuth for 3000 h under the condition of an oxygen concentration of 5 × 10 -8 wt% at 450 °C and an oxygen concentration of 3 × 10 -9 wt% at 550 °C, respectively. Significant corrosion was not observed at 450 °C for ferritic/martensitic steels, F82H, Mod.9Cr-1Mo steel, 410SS, 430SS except 2.25Cr-1Mo steel. Pb-Bi penetration into steels and dissolution of elements into Pb-Bi were severe at 550 °C even for ferritic/martensitic steels. Typical dissolution attack occurred for pure iron both at 550 °C without surface Fe 3O 4 and at 450 °C with a thin Fe 3O 4 film. Ferritization due to dissolution of Ni and Cr, and Pb-Bi penetration were recognized for austenitic stainless steels, 316SS and 14Cr-16Ni-2Mo steel at both temperatures of 450 °C and 550 °C. The phenomena were mitigated for 18Cr-20Ni-5Si steel. In some cases oxide films could not be a corrosion barrier in liquid lead-bismuth.
NASA Astrophysics Data System (ADS)
Andrews, Benjamin J.
The phenomena of creep and fatigue have each been thoroughly studied. More recently, attempts have been made to predict the damage evolution in engineering materials due to combined creep and fatigue loading, but these formulations have been strictly empirical and have not been used successfully outside of a narrow set of conditions. This work proposes a new creep-fatigue crack growth model based on constitutive creep equations (adjusted to experimental data) and Paris law fatigue crack growth. Predictions from this model are compared to experimental data in two steels: modified 9Cr-1Mo steel and AISI 316L stainless steel. Modified 9Cr-1Mo steel is a high-strength steel used in the construction of pressure vessels and piping for nuclear and conventional power plants, especially for high temperature applications. Creep-fatigue and pure creep experimental data from the literature are compared to model predictions, and they show good agreement. Material constants for the constitutive creep model are obtained for AISI 316L stainless steel, an alloy steel widely used for temperature and corrosion resistance for such components as exhaust manifolds, furnace parts, heat exchangers and jet engine parts. Model predictions are compared to pure creep experimental data, with satisfactory results. Assumptions and constraints inherent in the implementation of the present model are examined. They include: spatial discretization, similitude, plane stress constraint and linear elasticity. It is shown that the implementation of the present model had a non-trivial impact on the model solutions in 316L stainless steel, especially the spatial discretization. Based on these studies, the following conclusions are drawn: 1. The constitutive creep model consistently performs better than the Nikbin, Smith and Webster (NSW) model for predicting creep and creep-fatigue crack extension. 2. Given a database of uniaxial creep test data, a constitutive material model such as the one developed for modified 9Cr-1Mo can be developed for other materials. 3. Due to the assumptions used to develop the strip-yield model, model predictions are expected to show some scatter, especially in some situations. Several areas of future research are proposed from these conclusions: 1. Alternative methods for predicting fatigue crack growth, especially a constitutive fatigue crack growth model, 2. Continued development of new material models and refinement the existing ones, and 3. Implementation of the present creep-fatigue model as a user-defined subroutine in a finite element solver.
Oxidation and corrosion behavior of modified-composition, low-chromium 304 stainless steel alloys
NASA Technical Reports Server (NTRS)
Stephens, J. R.; Barrett, C. A.
1977-01-01
The effects of substituting less strategic elements than Cr on the oxidation and corrosion resistance of AISI 304 stainless steel were investigated. Cyclic oxidation resistance was evaluated at 870 C. Corrosion resistance was determined by exposure of specimens to a boiling copper-rich solution of copper sulfate and sulfuric acid. Alloy substitutes for Cr included Al, Mn, Mo, Si, Ti, V, Y, and misch metal. A level of about 12% Cr was the minimum amount of Cr required for adequate oxidation and corrosion resistance in the modified composition 304 stainless steels. This represents a Cr saving of at least 33%. Two alloys containing 12% Cr and 2% Al plus 2% Mo and 12% Cr plus 2.65% Si were identified as most promising for more detailed evaluation.
Corrosion Behavior of Yttria-Stabilized Zirconia-Coated 9Cr-1Mo Steel in Molten UCl3-LiCl-KCl Salt
NASA Astrophysics Data System (ADS)
Jagadeeswara Rao, Ch.; Venkatesh, P.; Prabhakara Reddy, B.; Ningshen, S.; Mallika, C.; Kamachi Mudali, U.
2017-02-01
For the electrorefining step in the pyrochemical reprocessing of spent metallic fuels of future sodium cooled fast breeder reactors, 9Cr-1Mo steel has been proposed as the container material. The electrorefining process is carried out using 5-6 wt.% UCl3 in LiCl-KCl molten salt as the electrolyte at 500 °C under argon atmosphere. In the present study, to protect the container vessel from hot corrosion by the molten salt, 8-9% yttria-stabilized zirconia (YSZ) ceramic coating was deposited on 9Cr-1Mo steel by atmospheric plasma spray process. The hot corrosion behavior of YSZ-coated 9Cr-1Mo steel specimen was investigated in molten UCl3-LiCl-KCl salt at 600 °C for 100-, 500-, 1000- and 2000-h duration. The results revealed that the weight change in the YSZ-coated specimen was insignificant even after exposure to molten salt for 2000 h, and delamination of coating did not occur. SEM examination showed the lamellar morphology of the YSZ coating after the corrosion test with occluded molten salt. The XRD analysis confirmed the presence of tetragonal and cubic phases of ZrO2, without any phase change. Formation of UO2 in some regions of the samples was evident from XRD results.
NASA Astrophysics Data System (ADS)
Melnikov, Eugene; Astafurova, Elena; Maier, Galina; Moskvina, Valentina
2017-12-01
The influence of multi-pass cold rolling on the phase composition and microhardness of austenitic Fe-18Cr-9Ni-0.21C, Fe-18Cr-9Ni-0.5Ti-0.08C, Fe-17Cr-13Ni-3Mo-0.01C (in wt %) steels with different stacking fault energies was studied. The metastable Fe-18Cr-9Ni-0.5Ti-0.08C steel undergoes γ → α' phase transformations during rolling, the volume fraction of strain-induced α'-martensite in steel structure is increased with increasing strain. Metastable austenite Fe-18Cr-9Ni-0.21C steel does not undergo the formation of an appreciable amount of strain-induced α'-martensite under rolling, but the magnetophase analysis reveals a small amount of ferrite phase in the structure of steel after rolling. The structure of stable Fe-17Cr-13Ni-3Mo-0.01C steel remains austenitic independently under strain. Investigations of microhardness of the steels show that their values are increased with strain and are dependent on propensity of steels to strain-induced martensitic transformation.
NASA Astrophysics Data System (ADS)
Ijiri, Masataka; Yoshimura, Toshihiko
2018-02-01
Low-alloy steels are based on carbon steel in combination with several percent or less (in many cases, 1 mass%) alloying elements, and they offer improved resistance to corrosion at a cost slightly higher than that of carbon steel. However, these materials do not exhibit the same corrosion resistance as stainless steel. The authors have previously developed a novel multifunction cavitation (MFC) technique, which combines ultrasonic cavitation with water jet cavitation. In this study, MFC was used to modify the surface of Cr-Mo steel (SCM435) and Ni-Cr-Mo steel (SNCM630). MFC was found to improve the residual stress value of the material as the result of surface modification while also imparting high strength and superior corrosion resistance.
NASA Astrophysics Data System (ADS)
Liu, Yu; Qin, Shengwei; Zhang, Jiazhi; Wang, Ying; Rong, Yonghua; Zuo, Xunwei; Chen, Nailu
2017-10-01
Based on the hardenability of three medium carbon steels, cylinders with the same 60-mm diameter and 240-mm length were designed for quenching in water to obtain microstructures, including a pearlite matrix (Chinese steel mark: 45), a bainite matrix (42CrMo), and a martensite matrix (40CrNiMo). Through the combination of normalized functions describing transformation plasticity (TP), the thermo-elasto-plastic constitutive equation was deduced. The results indicate that the finite element simulation (FES) of the internal stress distribution in the three kinds of hardenable steel cylinders based on the proposed exponent-modified (Ex-Modified) normalized function is more consistent with the X-ray diffraction (XRD) measurements than those based on the normalized functions proposed by Abrassart, Desalos, and Leblond, which is attributed to the fact that the Ex-Modified normalized function better describes the TP kinetics. In addition, there was no significant difference between the calculated and measured stress distributions, even though TP was taken into account for the 45 carbon steel; that is, TP can be ignored in FES. In contrast, in the 42CrMo and 40CrNiMo alloyed steels, the significant effect of TP on the residual stress distributions was demonstrated, meaning that TP must be included in the FES. The rationality of the preceding conclusions was analyzed. The complex quenching stress is a consequence of interactions between the thermal and phase transformation stresses. The separated calculations indicate that the three steels exhibit similar thermal stress distributions for the same water-quenching condition, but different phase transformation stresses between 45 carbon steel and alloyed steels, leading to different distributions of their axial and tangential stresses.
Effects of stress ratio on the temperature-dependent high-cycle fatigue properties of alloy steels
NASA Astrophysics Data System (ADS)
Lü, Zhi-yang; Wan, Ao-shuang; Xiong, Jun-jiang; Li, Kuang; Liu, Jian-zhong
2016-12-01
This paper addresses the effects of stress ratio on the temperature-dependent high-cycle fatigue (HCF) properties of alloy steels 2CrMo and 9CrCo, which suffer from substantial vibrational loading at small stress amplitude, high stress ratio, and high frequency in the high-temperature environments in which they function as blade and rotor spindle materials in advanced gas or steam turbine engines. Fatigue tests were performed on alloy steels 2CrMo and 9CrCo subjected to constant-amplitude loading at four stress ratios and at four and three temperatures, respectively, to determine their temperature-dependent HCF properties. The interaction mechanisms between high temperature and stress ratio were deduced and compared with each other on the basis of the results of fractographic analysis. A phenomenological model was developed to evaluate the effects of stress ratio on the temperature-dependent HCF properties of alloy steels 2CrMo and 9CrCo. Good correlation was achieved between the predictions and actual experiments, demonstrating the practical and effective use of the proposed method.
Characterization of High Damping Fe-Cr-Mo and Fe-Cr-Al Alloys for Naval Ships Application.
1988-03-01
austenitic , and martensitic. The high damping Fe-Cr-based alloys are closely related to ferritic stainless steels . Ferritic stainless steel consists of an Fe...cm reveme it Prectiaq #no ’uenf r oy o.o(a tflrowf U S9GO..P Damping; Ship Silencing; Ferritic Stainless Steels ; Ti-Ni 7 LhV I,. Cintunue on roere .r...decreased. E. METALLURGY OF THE IRON-CHROMIUM ALLOY SYSTEM 1. Physical Properties Stainless steels are divided into three main classes: ferritic
Modelling and analysis of creep deformation and fracture in a 1 Cr 1/2 Mo ferritic steel
NASA Astrophysics Data System (ADS)
Dyson, B. F.; Osgerby, D.
A quantitative model, based upon a proposed new mechanism of creep deformation in particle-hardened alloys, has been validated by analysis of creep data from a 13CrMo 4 4 (1Cr 1/2 Mo) material tested under a range of stresses and temperatures. The methodology that has been used to extract the model parameters quantifies, as a first approximation, only the main degradation (damage) processes - in the case of the 1CR 1/2 Mo steel, these are considered to be the parallel operation of particle-coarsening and a progressively increasing stress due to a constant-load boundary condition. These 'global' model parameters can then be modified (only slightly) as required to obtain a detailed description and 'fit' to the rupture lifetime and strain/time trajectory of any individual test. The global model parameter approach may be thought of as predicting average behavior and the detailed fits as taking account of uncertainties (scatter) due to variability in the material. Using the global parameter dataset, predictions have also been made of behavior under biaxial stressing; constant straining rate; constant total strain (stress relaxation) and the likely success or otherwise of metallographic and mechanical remanent lifetime procedures.
Dose dependence of true stress parameters in irradiated bcc, fcc, and hcp metals
NASA Astrophysics Data System (ADS)
Byun, T. S.
2007-04-01
The dose dependence of true stress parameters has been investigated for nuclear structural materials: A533B pressure vessel steels, modified 9Cr-1Mo and 9Cr-2WVTa ferritic martensitic steels, 316 and 316LN stainless steels, and Zircaloy-4. After irradiation to significant doses, these alloys show radiation-induced strengthening and often experience prompt necking at yield followed by large necking deformation. In the present work, the critical true stresses for deformation and fracture events, such as yield stress (YS), plastic instability stress (PIS), and true fracture stress (FS), were obtained from uniaxial tensile tests or calculated using a linear strain-hardening model for necking deformation. At low dose levels where no significant embrittlement was detected, the true fracture stress was nearly independent of dose. The plastic instability stress was also independent of dose before the critical dose-to-prompt-necking at yield was reached. A few bcc alloys such as ferritic martensitic steels experienced significant embrittlement at doses above ∼1 dpa; and the true fracture stress decreased with dose. The materials fractured before yield at or above 10 dpa.
Heat treated 9 Cr-1 Mo steel material for high temperature application
Jablonski, Paul D.; Alman, David; Dogan, Omer; Holcomb, Gordon; Cowen, Christopher
2012-08-21
The invention relates to a composition and heat treatment for a high-temperature, titanium alloyed, 9 Cr-1 Mo steel exhibiting improved creep strength and oxidation resistance at service temperatures up to 650.degree. C. The novel combination of composition and heat treatment produces a heat treated material containing both large primary titanium carbides and small secondary titanium carbides. The primary titanium carbides contribute to creep strength while the secondary titanium carbides act to maintain a higher level of chromium in the finished steel for increased oxidation resistance, and strengthen the steel by impeding the movement of dislocations through the crystal structure. The heat treated material provides improved performance at comparable cost to commonly used high-temperature steels such as ASTM P91 and ASTM P92, and requires heat treatment consisting solely of austenization, rapid cooling, tempering, and final cooling, avoiding the need for any hot-working in the austenite temperature range.
NASA Astrophysics Data System (ADS)
Park, Sang-Gyu; Kim, Min-Chul; Lee, Bong-Sang; Wee, Dang-Moon
2010-12-01
SA508 Gr.4N Ni-Mo-Cr low alloy steel has improved fracture toughness and strength compared to commercial low alloy steels such as SA508 Gr.3 Mn-Mo-Ni low alloy steel, which has less than 1% Ni. Higher strength and fracture toughness of low alloy steels can be achieved by increasing the Ni and Cr contents. In this study, the effects of the alloying elements of Ni and Cr on the microstructural characteristics and mechanical properties of SA508 Gr.4N Ni-Mo-Cr low alloy steel are evaluated. Changes in the stable phases of SA508 Gr.4N low alloy steel with these alloying elements were evaluated using thermodynamic calculation software. These values were then compared with the observed microstructural results. Additionally, tensile tests and Charpy impact test were carried out to evaluate the mechanical properties. The thermodynamic calculations show that Ni mainly affects the change of the matrix phase of γ and α rather than the carbide phase. Contrary to the Ni effect, Cr and Mo primarily affect the precipitation behavior of the carbide phases of Cr 23C 6, Cr 7C 3 and Mo 2C. In the microscopic observations, the lath martensitic structure becomes finer as the Ni content increases without affecting the carbides. When the Cr content decreases, the Cr carbide becomes unstable and carbide coarsening occurs. Carbide Mo 2C in the form of fine needles were observed in the high-Mo alloy. Greater strength was obtained after additions of Ni and Mo and the transition properties were improved as the Ni and Cr contents increased. These results were correlated with the thermodynamic calculation results.
Wear and corrosion resistance of laser-cladded Fe-based composite coatings on AISI 4130 steel
NASA Astrophysics Data System (ADS)
Fan, Li; Chen, Hai-yan; Dong, Yao-hua; Dong, Li-hua; Yin, Yan-sheng
2018-06-01
The wear and corrosion resistance of Fe72.2Cr16.8Ni7.3Mo1.6Mn0.7C0.2Si1.2 and Fe77.3Cr15.8Ni3.9Mo1.1Mn0.5C0.2Si1.2 coatings laser-cladded on AISI 4130 steel were studied. The coatings possess excellent wear and corrosion resistance despite the absence of expensive yttrium, tungsten, and cobalt and very little molybdenum. The microstructure mainly consists of dendrites and eutectic phases, such as duplex (γ+α)-Fe and the Fe-Cr (Ni) solid solution, confirmed via energy dispersive spectrometry and X-ray diffraction. The cladded Fe-based coatings have lower coefficients of friction, and narrower and shallower wear tracks than the substrate without the cladding, and the main wear mechanism is mild abrasive wear. Electrochemical test results suggest that the soft Fe72.2Cr16.8Ni7.3Mo1.6Mn0.7C0.2Si1.2 coating with high Cr and Ni concentrations has high passivation resistance, low corrosion current, and positive corrosion potential, providing a better protective barrier layer to the AISI 4130 steel against corrosion.
Hydrogen Induced Intergranular Cracking of Nickel-Base Alloys.
1982-02-01
alloys are discussed. Experimental The steel used in the present investigation is a fully bainitic 2 1/4 Cr-lMo pressure vessel steel , ASTM A542 Class 3...Appendix A describes recent experiments performed in order to study the influence of plastic deformation on hydrogen transport in a 214 Cr-lMo steel (8...PLASTIC DEFORMATION ON HYDROGEN TRANSPORT IN 2 1/4 Cr-lMo STEEL M. Kurkela, G.S. Frankel, and R.M. Latanision Department of Materials Science and
Toughness of 2,25Cr-1Mo steel and weld metal
NASA Astrophysics Data System (ADS)
Acarer, Mustafa; Arici, Gökhan; Acar, Filiz Kumdali; Keskinkilic, Selcuk; Kabakci, Fikret
2017-09-01
2,25Cr-1Mo steel is extensively used at elevated temperature structural applications in fossil fire power plants for steam pipes, nozzle chambers and petrochemical industry for hydrocracking unit due to its excellent creep resistance and good redundant to oxidation. Also they should have acceptable weldability and toughness. The steels are supplied in quenched and tempered condition and their welded components are subjected to post-weld heat treatment (PWHT). Tempering process is carried out at 690-710°C to improve toughness properties. However they are sensitive to reheat cracking and temper embrittlement. To measure temper embrittlement of the steels and their weld metal, temper embrittlement factor and formula (J factor - Watanabe and X formula- Bruscato) are used. Step cooling heat treatment is also applied to determine temper embrittlement. In this study, toughness properties of Cr Mo (W) steels were reviewed. Also transition temperature curves of 2,25Cr-1Mo steel and its weld metal were constructed before and after step cool heat treatment as experimental study. While 2,25Cr-1Mo steel as base metal was supplied, all weld metal samples were produced in Gedik Welding Company. Hardness measurements and microstructure evaluation were also carried out.
Development of low-chromium, chromium-tungsten steels for fusion
NASA Astrophysics Data System (ADS)
Klueh, R. L.; Alexander, D. J.; Kenik, E. A.
1995-12-01
High-chromium (9-12% Cr) CrMo and CrW ferritic steels are favored as candidates for fusion applications. In early work to develop reduced-activation steels, an Fe2.25Cr2W-0.25V-O.1C steel (designated 2.25Cr-2WV) had better strength than an Fe9Cr2W-0.25V-0.07Tra-0.1C (9Cr-2WVTa) steel (compositions are in weight percent). However, the 2.25Cr-2WV had poor impact properties, as determined by the ductile-brittle transition temperature and upper-shelf energy of subsize Charpy impact specimens. Because low-chromium steels have some advantages over high-chromium steels, a program to develop low-chromium steels is in progress. Microstructural analysis indicated that the reason for the inferior impact toughness of the 2.25Cr-2WV was the granular bainite obtained when the steel was normalized. Properties can be improved by developing an acicular bainite microstructure by increasing the cooling rate after austenitization. Alternatively, acicular bainite can be promoted by increasing the hardenability. Hardenability was changed by adding small amounts of boron and additional chromium to the 2.250-2WV composition. A combination of B, Cr, and Ta additions resulted in low-chromium reduced-activation steels with mechanical properties comparable to those of 9Cr-2WVTa.
Phase Evolution and Properties of Al2CrFeNiMo x High-Entropy Alloys Coatings by Laser Cladding
NASA Astrophysics Data System (ADS)
Wu, Wei; Jiang, Li; Jiang, Hui; Pan, Xuemin; Cao, Zhiqiang; Deng, Dewei; Wang, Tongmin; Li, Tingju
2015-10-01
A series of Al2CrFeNiMo x ( x = 0 to 2.0 at.%) high-entropy alloys coatings was synthesized on stainless steel by laser cladding. The effect of Mo content on the microstructures and mechanical properties of Al2CrFeNiMo x coatings was studied. The results show that the laser clad layer consists of the cladding zone, bonding zone, and heat-affected zone. The Al2CrFeNiMo x coatings are composed of two simple body-center cubic phases and the cladding zone is mainly composed of equiaxed grains. When the content of Mo reaches 2 at.%, a eutectic structure is found in the interdendritic regions. The surface microhardness of the Al2CrFeNiMo2 coating is 678 HV, which is about three times higher than that of the substrate (243 HV). Compared with stainless steel, the wear resistance of the coatings has been improved greatly. The wear mass loss of the Al2CrFeNiMo alloy is 9.8 mg, which is much less than that of the substrate (18.9 mg) and its wear scar width is the lowest among the Al2CrFeNiMo x coatings, indicating that the wear resistance of the Al2CrFeNiMo is the best.
Ai, Zhiyong; Sun, Wei; Jiang, Jinyang; Song, Dan; Ma, Han; Zhang, Jianchun; Wang, Danqian
2016-01-01
The electrochemical behaviour for passivation of new alloy corrosion-resistant steel Cr10Mo1 immersed in alkaline solutions with different pH values (13.3, 12.0, 10.5, and 9.0) and chloride contents (0.2 M and 1.0 M), was investigated by various electrochemical techniques: linear polarization resistance, electrochemical impedance spectroscopy and capacitance measurements. The chemical composition and structure of passive films were determined by XPS. The morphological features and surface composition of the immersed steel were evaluated by SEM together with EDS chemical analysis. The results evidence that pH plays an important role in the passivation of the corrosion-resistant steel and the effect is highly dependent upon the chloride contents. In solutions with low chloride (0.2 M), the corrosion-resistant steel has notably enhanced passivity with pH falling from 13.3 to 9.0, but does conversely when in presence of high chloride (1.0 M). The passive film on the corrosion-resistant steel presents a bilayer structure: an outer layer enriched in Fe oxides and hydroxides, and an inner layer, rich in Cr species. The film composition varies with pH values and chloride contents. As the pH drops, more Cr oxides are enriched in the film while Fe oxides gradually decompose. Increasing chloride promotes Cr oxides and Fe oxides to transform into their hydroxides with little protection, and this is more significant at lower pH (10.5 and 9.0). These changes annotate passivation characteristics of the corrosion-resistant steel in the solutions of different electrolyte. PMID:28773867
Ai, Zhiyong; Sun, Wei; Jiang, Jinyang; Song, Dan; Ma, Han; Zhang, Jianchun; Wang, Danqian
2016-09-01
The electrochemical behaviour for passivation of new alloy corrosion-resistant steel Cr10Mo1 immersed in alkaline solutions with different pH values (13.3, 12.0, 10.5, and 9.0) and chloride contents (0.2 M and 1.0 M), was investigated by various electrochemical techniques: linear polarization resistance, electrochemical impedance spectroscopy and capacitance measurements. The chemical composition and structure of passive films were determined by XPS. The morphological features and surface composition of the immersed steel were evaluated by SEM together with EDS chemical analysis. The results evidence that pH plays an important role in the passivation of the corrosion-resistant steel and the effect is highly dependent upon the chloride contents. In solutions with low chloride (0.2 M), the corrosion-resistant steel has notably enhanced passivity with pH falling from 13.3 to 9.0, but does conversely when in presence of high chloride (1.0 M). The passive film on the corrosion-resistant steel presents a bilayer structure: an outer layer enriched in Fe oxides and hydroxides, and an inner layer, rich in Cr species. The film composition varies with pH values and chloride contents. As the pH drops, more Cr oxides are enriched in the film while Fe oxides gradually decompose. Increasing chloride promotes Cr oxides and Fe oxides to transform into their hydroxides with little protection, and this is more significant at lower pH (10.5 and 9.0). These changes annotate passivation characteristics of the corrosion-resistant steel in the solutions of different electrolyte.
NASA Astrophysics Data System (ADS)
Si, Jiajia; Wu, Yidong; Wang, Tan; Liu, Yanhui; Hui, Xidong
2018-07-01
Various corrosive environments in daily life and industry have put forward high requirement on corrosion resistance of metals, especially steels. Unlike the strict demand in Cr content of crystalline stainless steels, amorphous steels (ASs) with lower Cr content can be endowed with outstanding corrosion resistance, while the intrinsic mechanism is not fully understood. Herein, we present a novel Fe92-x-y-zCrxMoyZr8Bz (6 ≤ x ≤ 40, 0 ≤ y ≤ 22, and 12 ≤ z ≤ 18) bulk amorphous steel (BAS) forming system and reveal the synergistic effect of Cr and Mo in determining the chemical stability of oxide films. It has been found the Fe92-x-zCrxZr8Bz BASs with 1 mm in diameter display a Cr-controlling active-passive transition at the Cr threshold of ∼25% in 1 M hydrochloric acid. When adding minor Mo into the BASs, the Cr threshold can be remarkably reduced by forming favorable hexavalent Mo oxides. The generation of Mo6+ is facilitated by atomic selective dissolution at the interface and can promote the passivation. In contrast, when the Cr content of the Mo-doped glasses exceeds 25%, few Mo6+ oxides would produce as the prior formation of protective passive films inhibits the further oxidation of Mo. Therefore, manipulating the active-passive transition properly is crucial to designing ASs with high stainlessness.
NASA Astrophysics Data System (ADS)
Gong, Xing; Marmy, Pierre; Qin, Ling; Verlinden, Bert; Wevers, Martine; Seefeldt, Marc
2016-01-01
Low cycle fatigue properties of a 9Cr-1Mo ferritic-martensitic steel (T91) have been tested in a low oxygen concentration (LOC) lead-bismuth eutectic (LBE) environment and in vacuum at 160-450 °C. The results show a clear fatigue endurance "trough" in LOC LBE, while no such a strong temperature dependence of the fatigue endurance is observed when the steel is tested in vacuum. The fractographic observations by means of scanning electron microscopy (SEM) show that ductile microdimples are prevalent on the fracture surfaces of the specimens tested in vacuum, whereas the fracture surfaces produced in LOC LBE at all the temperatures are characterized by quasi-cleavage. Interestingly, using electron backscatter diffraction (EBSD), martensitic laths close to the fatigue crack walls or to the fracture surfaces of the specimens tested in vacuum are found to have transformed into very fine equiaxed subgrains. Nevertheless, such microstructural modifications do not happen to the specimens tested in LOC LBE at 160-450 °C. These interesting microstructural distinctions indicate that liquid metal embrittlement (LME) is able to occur throughout the fatigue crack propagation phase in the full range of the temperatures investigated, i.e. LME is not very sensitive to temperature during the fatigue crack propagation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yamamoto, Yukinori; Babu, Prof. Sudarsanam Suresh; Shassere, Benjamin
Two different approaches have been proposed for improvement of cross-weld creep properties of the high temperature ferrous structural materials for fossil-fired energy applications. The traditional creep strength-enhanced ferritic (CSEF) steel weldments suffer from Type IV failures which occur at the fine-grained heat affected zone (FGHAZ). In order to minimize the premature failure at FGHAZ in the existing CSEF steels, such as modified 9Cr-1Mo ferritic-martensitic steels (Grade 91), a thermo-mechanical treatment consisting of aus-forging/rolling and subsequent aus-aging is proposed which promotes the formation of stable MX carbonitrides prior to martensitic transformation. Such MX remains undissolved during welding process, even in FGHAZ,more » which successfully improves the cross-weld creep properties. Another approach is to develop a new fully ferrtic, creep-resistant FeCrAl alloy which is essentially free from Type IV failure issues. Fe-30Cr-3Al base alloys with minor alloying additions were developed which achieved a combination of good oxidation/corrosion resistance and improved tensile and creep performance comparable or superior to Grade 92 steel.« less
Development of new ferritic steels as cladding material for metallic fuel fast breeder reactor
NASA Astrophysics Data System (ADS)
Tokiwai, Moriyasu; Horie, Masaaki; Kako, Kenji; Fujiwara, Masayuki
1993-09-01
The excellent thermal, chemical and neutronic properties of metallic fuel (U-Pu-Zr alloy) will lead to drastic improvements in fast reactor safety and the related fuel cycle economy. Some new high molybdenum 12Cr ferritic stainless steel candidate cladding alloys have been designed to achieve the mechanical properties required for high performance metallic fuel elements. These candidate claddings were irradiated by ion bombardment and tested to determine their strength and creep rupture properties. A 12Cr-8Mo and a 12Cr-8Mo-0.1Y 2O 3 steel were fabricated into cladding via a powder metallurgy process and by a mechanical alloying process, respectively. These claddings had two and three times the creep rupture strength (pressurized at 650°C for 10000 h) of a conventional 12Cr ferritic steel (HT-9). These two steels also showed no void formation up to 350 dpa by Ni 3+ irradiation. A zircaloy-2 lined steel cladding tube has also been fabricated for the purpose of reducing fuel-cladding interdiffusion and chemical interaction.
NASA Astrophysics Data System (ADS)
Shi, Chen; Li, Fan; Liang, Gen; Mao, Daheng
2018-01-01
Effects of different power ultrasonic on microstructure and mechanical properties of 35CrMo steel casting were investigated using optical microscopy (OM), scanning electron microscopy (SEM) and hardness testing. A self-developed experiment apparatus was used for the propagation of ultrasonic vibration into the 35CrMo steel melt to carry out ultrasonic treatment. The experimental results showed that compared to the traditional casting, ultrasonic treatment can obviously change the solidification microstructure of 35CrMo steel, which is changed from coarse dendrites to fined dendrites or equiaxed grains. With the increase of ultrasonic power, equiaxed crystal is remarkably refined and its area is broadened. The micro porosity percentage of ingot casting decreases significantly and the porosity defects can be suppressed under ultrasonic treatment. The mechanical properties of 35CrMo steel ingot after heat treatment were enhanced by ultrasonic treatment: the maximum tensile strength is improved by 8.4% and the maximum elongation increased by 1.5 times.
NASA Astrophysics Data System (ADS)
Raj, Baldev; Rao, K. Bhanu Sankara
2009-04-01
The alloys 316L(N) and Mod. 9Cr-1Mo steel are the major structural materials for fabrication of structural components in sodium cooled fast reactors (SFRs). Various factors influencing the mechanical behaviour of these alloys and different modes of deformation and failure in SFR systems, their analysis and the simulated tests performed on components for assessment of structural integrity and the applicability of RCC-MR code for the design and validation of components are highlighted. The procedures followed for optimal design of die and punch for the near net shape forming of petals of main vessel of 500 MWe prototype fast breeder reactor (PFBR); the safe temperature and strain rate domains established using dynamic materials model for forming of 316L(N) and 9Cr-1Mo steels components by various industrial processes are illustrated. Weldability problems associated with 316L(N) and Mo. 9Cr-1Mo are briefly discussed. The utilization of artificial neural network models for prediction of creep rupture life and delta-ferrite in austenitic stainless steel welds is described. The usage of non-destructive examination techniques in characterization of deformation, fracture and various microstructural features in SFR materials is briefly discussed. Most of the experience gained on SFR systems could be utilized in developing science and technology for fusion reactors. Summary of the current status of knowledge on various aspects of fission and fusion systems with emphasis on cross fertilization of research is presented.
Copper modified austenitic stainless steel alloys with improved high temperature creep resistance
Swindeman, R.W.; Maziasz, P.J.
1987-04-28
An improved austenitic stainless steel that incorporates copper into a base Fe-Ni-Cr alloy having minor alloying substituents of Mo, Mn, Si, T, Nb, V, C, N, P, B which exhibits significant improvement in high temperature creep resistance over previous steels. 3 figs.
Summer, Burkhard; Fink, Ulrich; Zeller, Richard; Rueff, Franziska; Maier, Sonja; Roider, Gabriele; Thomas, Peter
2007-07-01
Nickel, chromium, and cobalt released from stainless steel and CoCrMo alloys have been postulated to trigger hypersensitivity reactions. The objective of this study was to assess the ion release from a CoCrMo alloy and stainless steel in vitro and the cutaneous reactivity to it by patch test. 52 metal-allergic patients and 48 non-allergic controls were patch tested to stainless steel and CoCrMo discs. In addition, using atomic absorption spectrometry, the release of nickel, cobalt, and chromium from both materials was assessed upon 2-day exposure to distilled water, artificial sweat (AS), and cell culture medium. There was low nickel ion release from stainless steel (0.3-0.46 microg/cm(2)/2 days) and CoCrMo discs (up to 0.33 microg/cm(2)/2 days) into the different elution media. Chromium release from the 2 materials was also very low (0.06-0.38 microg/cm(2)/2 days from stainless steel and 0.52-1.36 microg/cm(2)/2 days from CoCrMo alloy). In contrast, AS led to abundant cobalt release (maximally 18.94 microg/cm(2)/2 days) from the CoCrMo discs, with concomitant eczematous reaction upon patch testing: 0 of the 52 metal-allergic patients reacted to stainless steel discs and 5 of the 52 patients to CoCrMo discs (all 5 patients were cobalt allergic and 3 also nickel and chromium allergic). None of the controls reacted to the discs. Apart from nickel being a focus of allergological research, our results point to the possibly underestimated association of cobalt release and potential hyperreactivity to CoCrMo alloy.
Fracture-tough, high hardness stainless steel and method of making same
NASA Technical Reports Server (NTRS)
Olson, Gregory B. (Inventor)
1993-01-01
A cryogenically-formed and tempered stainless steel is provided having improved fracture toughness and corrosion resistance at a given hardness level, such as, for example, of at least about Rc 60 for bearing applications. The steel consists essentially of, in weight %, about 21 to about 24% Co, about 11 to about 13% Cr, about 7 to about 9% Ni, about 0.1 to about 0.5% Mo, about 0.2 to about 0.3% V, about 0.28 to about 0.32% C, and the balance iron. The steel includes a cryogenically-formed martensitic microstructure tempered to include about 5 to about 10 volume % post-deformation retained austenite dispersed therein and M.sub.2 C-type carbides, where M is Cr, Mo, V, and/or Fe, dispersed in the microstructure.
NASA Astrophysics Data System (ADS)
Sun, Min; Xiao, Kui; Dong, Chaofang; Li, Xiaogang; Zhong, Ping
2013-10-01
Because Cr9Ni5MoCo14 is a new ultra-high-strength corrosion-resistant steel, it is important to study its corrosion behavior in sulfuric acid solution, which is used to simulate the aggressive environment. The effect of pH on the electrochemical and semiconducting properties of passive films formed on ultra-high-strength corrosion-resistant steel in sulfuric acid solution was investigated by means of the potentiodynamic polarization technique, electrochemical impedance spectroscopy (EIS), Mott-Schottky analysis, and X-ray photoelectron spectroscopy (XPS). The results indicated that Cr9Ni5MoCo14 steel showed a passive state in acid solutions. The corrosion behavior of this Cr9Ni5MoCo14 alloy was influenced by the passive film formed on the surface, including thickness, stability, and partitioning of elements of the passive film. The passive current density decreases with increasing pH, and the corrosion resistance was enhanced by the increasing thickness and depletion of the defects within the passive film. Moreover, an enrichment of chromium (primarily the oxides of Cr) and depletion of iron in the passive film led to improved corrosion resistance. These results can provide a theoretical basis for use of this alloy and further development of ultra-high-strength corrosion-resistant steel in today's society.
Prediction of Ductile Fracture Behaviors for 42CrMo Steel at Elevated Temperatures
NASA Astrophysics Data System (ADS)
Lin, Y. C.; Liu, Yan-Xing; Liu, Ge; Chen, Ming-Song; Huang, Yuan-Chun
2015-01-01
The ductile fracture behaviors of 42CrMo steel are studied by hot tensile tests with the deformation temperature range of 1123-1373 K and strain rate range of 0.0001-0.1 s-1. Effects of deformation temperature and strain rate on the flow stress and fracture strain of the studied steel are discussed in detail. Based on the experimental results, a ductile damage model is established to describe the combined effects of deformation temperature and strain rate on the ductile fracture behaviors of 42CrMo steel. It is found that the flow stress first increases to a peak value and then decreases, showing an obvious dynamic softening. This is mainly attributed to the dynamic recrystallization and material intrinsic damage during the hot tensile deformation. The established damage model is verified by hot forging experiments and finite element simulations. Comparisons between the predicted and experimental results indicate that the established ductile damage model is capable of predicting the fracture behaviors of 42CrMo steel during hot forging.
NASA Astrophysics Data System (ADS)
Gao, Zhi-yu; Kang, Yu; Li, Yan-shuai; Meng, Chao; Pan, Tao
2018-04-01
Elevated-temperature flow behavior of a novel Ni-Cr-Mo-B ultra-heavy-plate steel was investigated by conducting hot compressive deformation tests on a Gleeble-3800 thermo-mechanical simulator at a temperature range of 1123 K–1423 K with a strain rate range from 0.01 s‑1 to10 s‑1 and a height reduction of 70%. Based on the experimental results, classic strain-compensated Arrhenius-type, a new revised strain-compensated Arrhenius-type and classic modified Johnson-Cook constitutive models were developed for predicting the high-temperature deformation behavior of the steel. The predictability of these models were comparatively evaluated in terms of statistical parameters including correlation coefficient (R), average absolute relative error (AARE), average root mean square error (RMSE), normalized mean bias error (NMBE) and relative error. The statistical results indicate that the new revised strain-compensated Arrhenius-type model could give prediction of elevated-temperature flow stress for the steel accurately under the entire process conditions. However, the predicted values by the classic modified Johnson-Cook model could not agree well with the experimental values, and the classic strain-compensated Arrhenius-type model could track the deformation behavior more accurately compared with the modified Johnson-Cook model, but less accurately with the new revised strain-compensated Arrhenius-type model. In addition, reasons of differences in predictability of these models were discussed in detail.
Hydrogen consentration meter utilizing a diffusion tube composed of 2 1/4 C r
Roy, Prodyot; Sandusky, David W.; Hartle, Robert T.
1979-01-01
A diffusion tube hydrogen meter for improving the sensitivity and response time for the measurement of hydrogen in liquid sodium. The improved hydrogen meter has a composite membrane composed of pure nickel sleeve fitted, for example, over a 2 1/4 Cr-1 Mo steel or niobium diffusion tube. Since the hydrogen permeation rate through 2 1/4 Cr-1 Mo steels is a factor of four higher than pure nickel, and the permeation rate of hydrogen through niobium is two orders of magnitude greater than the 2 1/4 Cr-1 Mo steel, this results in a decrease in response time and an increase in the sensitivity.
Characterization of GTA weldments in 10Ni-8CO-2Cr-1MO steel
NASA Technical Reports Server (NTRS)
Stonesifer, F. R.; Smith, H. L.
1972-01-01
This study of 10Ni-8Co-2Cr-1Mo steel includes evaluations of tensile, impact, hardness, fracture toughness properties, and metallographic features. Base plate and three weldments in one-inch thicknesses were examined to compare as-welded properties with those obtained after reaging, and results of welding the 10%Ni alloy with 9-4-20 wire as opposed to a matching weld wire composition. Critical crack sizes are calculated for the material. The most desirable weld properties are obtained using the matching weld wire and a reaging cycle. However, the improvement gained through reaging is probably not sufficient to justify the additional cost for most practical applications.
The Effect of Rare-Earth Metals on Cast Steels
1954-04-01
as the 1-inch section is also illustrated in Figure 23 and consists of tempered bainite and tempered martensite. Both of the control steels (AE-1...section Tempered bainite and tempered martensite 4 inch section Figure 23 Microstructure ol the Mn-Cr-Mo base control steels . Etched with... bainite 4-inch Section Figure 25—Microstructures of the MnCr-Mo + Rare Earths f B cast steels . Etched with picral, SOOX - .1 €. Figure 26
Shassere, Benjamin A.; Yamamoto, Yukinori; Babu, Sudarsanam Suresh
2016-02-23
Detailed microstructure characterization of Grade 91 (Modified 9Cr-1Mo, ASTM A387) steel subjected to a thermo-mechanical treatment (TMT) process was performed to rationalize the cross-weld creep properties. A series of thermo-mechanical processing in the austenite phase region, followed by isothermal aging at temperatures at 973 to 1173 K (700 to 900ºC) was applied to the Grade 91 steel to promote precipitation kinetics of MX (M: Nb and V, X: C and N) in the austenite matrix. Detailed characterization of the base metals after standard tempering confirmed the presence of fine MX dispersion within the tempered martensitic microstructure in steels processed at/andmore » above 1073 K (800 ºC). Relatively low volume fraction of M 23C 6 precipitates was observed after processing at 1073 K (800 ºC). The cross-weld creep strength after processing was increased with respect to the increase of MX dispersion, indicating that these MX precipitates maintained during weld thermal cycles in the fine grained heat affected zone (FGHAZ) region and thereby contribute to improved creep resistant of welds in comparison to the welds made with the standard “normalization and tempering” processes. Lastly, the steels processed in this specific processing condition showed improved cross-weld creep resistance and sufficient room-temperature toughness. The above data is also analysed based on existing theories of creep deformation based on dislocation climb mechanism.« less
NASA Astrophysics Data System (ADS)
Shassere, Benjamin A.; Yamamoto, Yukinori; Babu, Sudarsanam Suresh
2016-05-01
Detailed microstructure characterization of Grade 91 (Modified 9Cr-1Mo, ASTM A387) steel subjected to a thermo-mechanical treatment process was performed to rationalize the cross-weld creep properties. A series of thermo-mechanical processing in the austenite phase region, followed by isothermal aging at temperatures at 973 K to 1173 K (700 °C to 900 °C), was applied to the Grade 91 steel to promote precipitation kinetics of MX (M: Nb and V, X: C and N) in the austenite matrix. Detailed characterization of the base metals after standard tempering confirmed the presence of fine MX dispersion within the tempered martensitic microstructure in steels processed at/and above 1073 K (800 °C). Relatively low volume fraction of M23C6 precipitates was observed after processing at 1073 K (800 °C). The cross-weld creep strength after processing was increased with respect to the increase of MX dispersion, indicating that these MX precipitates maintained during weld thermal cycles in the fine-grained heat-affected zone region and thereby contribute to improved creep resistant of welds in comparison to the welds made with the standard "normalization and tempering" processes. The steels processed in this specific processing condition showed improved cross-weld creep resistance and sufficient room temperature toughness. The above data are also analyzed based on existing theories of creep deformation based on dislocation climb mechanism.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shassere, Benjamin A.; Yamamoto, Yukinori; Babu, Sudarsanam Suresh
Detailed microstructure characterization of Grade 91 (Modified 9Cr-1Mo, ASTM A387) steel subjected to a thermo-mechanical treatment (TMT) process was performed to rationalize the cross-weld creep properties. A series of thermo-mechanical processing in the austenite phase region, followed by isothermal aging at temperatures at 973 to 1173 K (700 to 900ºC) was applied to the Grade 91 steel to promote precipitation kinetics of MX (M: Nb and V, X: C and N) in the austenite matrix. Detailed characterization of the base metals after standard tempering confirmed the presence of fine MX dispersion within the tempered martensitic microstructure in steels processed at/andmore » above 1073 K (800 ºC). Relatively low volume fraction of M 23C 6 precipitates was observed after processing at 1073 K (800 ºC). The cross-weld creep strength after processing was increased with respect to the increase of MX dispersion, indicating that these MX precipitates maintained during weld thermal cycles in the fine grained heat affected zone (FGHAZ) region and thereby contribute to improved creep resistant of welds in comparison to the welds made with the standard “normalization and tempering” processes. Lastly, the steels processed in this specific processing condition showed improved cross-weld creep resistance and sufficient room-temperature toughness. The above data is also analysed based on existing theories of creep deformation based on dislocation climb mechanism.« less
High Temperature Strengthening in 12Cr-W-Mo Steels by Controlling the Formation of Delta Ferrite
NASA Astrophysics Data System (ADS)
Wang, Shushen; Chang, Li; Lin, Deye; Chen, Xiaohua; Hui, Xidong
2014-09-01
Novel 12Cr-W-Mo-Co heat resistance steels (HRSs) with excellent mechanical properties have been developed for ultra-supercritical (USC) applications above 923 K (650 °C). The thermal analysis of the present steels indicates that the remelting temperature of secondary phases is increased by Co alloying, resulting in the improvement of microstructural stability. Delta ferrite in these HRSs is completely suppressed as the content of Co is increased up to 5 pct. The room temperature tensile strength (TS), yield strength (YS), and the elongation (EL) of the HRS with 5 pct Co reach 887.9, 652.6 MPa, and 21.07 pct, respectively. At 948 K (675 °C), the TS and YS of the HRS with 5 pct Co attain 360 and 290 MPa, respectively, which are higher than those of T/P122 steel by 27.4 and 22.1 pct, respectively. TEM study of the microstructure confirmed that the strengthening effects for these 12Cr-W-Mo-Co HRSs are attributed to the suppression of delta ferrite, the formation of fine martensitic laths with substructure, dislocation networks and walls, and the precipitation of second nanoscale phases.
NASA Astrophysics Data System (ADS)
Kawanishi, H.; Hajima, R.; Sekimura, N.; Arai, Y.; Ishino, S.
1988-07-01
Precipitation behavior has been studied using a carbon extraction replica technique in Ti-modified Type 316 stainless steels (JPCA-2) and 9Cr-2Mo ferritic/martensitic steels (JFMS) irradiated to 8.1 × 10 24 n/m 2 at 873 and 673 K, respectively, in the experimental fast breeder reactor JOYO. Precipitate identification and compositional analysis were carried out on extracted replicas. The results were compared to those from the as-received steel and a control which had been given the same thermal as-treatment as the specimens received during irradiations. Carbides, Ti-sulphides and phosphides were precipitated in JPCA-2. Precipitate observed in JFMS included carbides, Laves-phases and phosphides. The precipitates in both steels were concluded to be stable under irradiation except for MC and M 6C in JPCA-2. Small MC particles were found precipitated in JPCA-2 during both irradiation and aging. Irradiation proved to promote the precipitation of M 6C in JPCA-2.
NASA Astrophysics Data System (ADS)
Karthikeyan, T.; Thomas Paul, V.; Saroja, S.; Moitra, A.; Sasikala, G.; Vijayalakshmi, M.
2011-12-01
This paper presents the results of an experimental investigation where an enhancement in Charpy impact toughness and decrease in DBTT was obtained through grain refinement in 9Cr-1Mo steel. The steel in the normalized and tempered condition (1323 K/air cool + 1023 K/2 h/air cool) had an average prior-austenite grain size of 26 μm. By designing a two-stage normalizing (1323 K/2 h/water quench + 1223 K/2 h/air cool) and tempering treatment (1023 K/2 h/air cool), a homogeneous tempered martensite microstructure with a lesser prior-austenite grain size of 12 μm could be obtained. An improvement trend in impact properties of standard sized Charpy specimens was obtained in fine-grained steel: upper shelf energy increased from 175 J to 210 J, and DBTT reduced from 243 K to 228 K. This heat treatment is unique since an attempt to carry out a single-stage low temperature normalizing treatment (1223 K/2 h/air cool) did not give a complete martensite structure, due to the incomplete dissolution of carbides during austenitization.
NASA Astrophysics Data System (ADS)
Abe, F.; Araki, H.; Noda, T.
1991-10-01
The effect of W on dislocation recovery and precipitation behavior was investigated for martensitic 9Cr-(0,l,2,4)W-0.1C (wt pct) steels after quenching, tempering, and subsequent prolonged aging. The steels were low induced-radioactivation martensitic steels for fusion reactor structures, intended as a possible replacement for conventional (7 to 12)Cr-Mo steels. During tempering after quenching, homogeneous precipitation of fine W2C occurred in martensite, causing secondary hardening between 673 and 823 K. The softening above the secondary hardening temperature shifted to higher temperatures with increasing W concentration, which was correlated with the decrease in self-diffusion rates with increasing W concentration. Carbides M23C6 and M7C3 were precipitated in the 9Cr steel without W after high-temperature tempering at 1023 K. With increasing W concentration, M7C3 was replaced by M23C6, and M6C formed in addition to M23C6. During subsequent aging at temperatures between 823 and 973 K after tempering, the recovery of dislocations, the agglomeration of carbides, and the growth of martensite lath subgrains occurred. Intermetallic Fe2W Laves also precipitated in the δ-ferrite grains of the 9Cr-4W steel. The effect of W on dislocation recovery and precipitation behavior is discussed in detail.
NASA Astrophysics Data System (ADS)
Tomita, Yoshiyuki; Okabayashi, Kunio
1985-01-01
In the previous papers, a new heat treatment for improving the lower temperature mechanical propertise of the ultrahigh strength low alloy steels was suggested by the authors which produces a mixed structure of 25 vol pct lower bainite and 75 vol pct martensite through isothermal transformation at 593 K for a short time followed by water quenching (after austenitization at 1133 K). In this paper, two commercial Japanese ultrahigh strength steels, 0.40 pct C-Ni-Cr-Mo (AISI 4340 type) and 0.40 pct C-Cr-Mo (AISI 4140 type), have been studied to determine the effect of the modified heat treatment, coupled above new heat treatment with γ ⇆ α' repctitive heat treatment, on the mechanical properties from ambient temperature (287 K) to 123 K. The results obtained for various test temperatures have been compared with those for the new heat treatment reported previously and the conventional 1133 K direct water quenching treatment. The incorporation of intermediate four cyclic γ ⇆ α' repctitive heat treatment steps (after the initial austenitization at 1133 K and oil quenching) into the new heat treatment reported previously, as compared with the conventional 1133 K direct water quenching treatment, significantly improved 0.2 pct proof stress as well as notch toughness of the 0.40 pct C-Ni-Cr-Mo ultrahigh strength steel at similar fracture ductility levels from 287 to 123 K. Also, this heat treatment, as compared with the conventional 1133 K direct water quenching treatment, significantly improved both 0.2 pct proof stress and notch toughness of the 0.40 pct C-Cr-Mo ultrahigh strength steel with increased fracture ductility at 203 K and above. The microstructure consists of mixed areas of ultrafine grained martensite, within which is the refined blocky, highly dislocated structure, and the second phase lower bainite (about 15 vol pct), which appears in acicular form and partitions prior austenite grains. This newly developed heat treatment makes it possible to modify the new heat treatment reported previously so as to raise 0.2 pct proof stress to a higher level and keep notch toughness at the same level. The improvement in the mechanical properties is discussed in terms of metallographic observations and the modified law of mixtures and so forth.
Effect of Mo contents on corrosion behaviors of welded duplex stainless steel
NASA Astrophysics Data System (ADS)
Bae, Seong Han; Lee, Hae Woo
2013-05-01
The corrosion behaviour and change of the phase fraction in welded 24Cr Duplex stainless steel was investigated for different chemical composition ranges of Mo contents. Filler metal was produced by fixing the contents of Cr, Ni, N, and Mn while adjusting the Mo content to 0.5, 1.4, 2.5, 3.5 wt%. The δ-ferrite fraction was observed to increase as the content of Mo increased. A polarisation test conducted in a salt solution, indicated the pitting corrosion potential increased continuously to 3.5 wt% Mo, while the corrosion potential changed most between 0.5 and 1.41 wt% Mo. The location of the pitting corrosion in 0.5 wt% Mo steel was randomly distributed, but it occurred selectively at the grain boundary between the γ- and δ-ferrite phases in 1.4, 2.5 and 3.5 wt% Mo steel. Energy dispersive X-ray spectroscopy mapping analysis showed that areas deficient in Cr, Mo, and Ni occurred around the grain boundary of the γ- and δ-ferrite phases. Non-metallic inclusions are thought to act as initiation points for the pitting corrosion that occurs in the salt solution initially as a result of the potential difference between the matrix structure and the incoherent inclusions.
1992-09-01
Optical macrograph of flat-etched sample 75B3-8 ........................ 30 Figure 4.15 Constitutional supercooling in alloy solidification ... alloying elements such as Mn, Mo, Ni and Cr are added to increase the strength and hardenability of the steel. However, substantial limitations on...0.9 Carbon Equivalent CE = C + Mn + Si + Ni + Cu + Cr + Mo + V 6 15 5 Figure 2.1 Graville Diagram (Blicharski et al, 1989, p.318) 3 B. ULTRA LOW
NASA Astrophysics Data System (ADS)
Chen, Jie; Li, Changsheng; Jin, Xin; Chen, Liqing; Fang, Lei
2018-03-01
To develop an appropriate quenching process to produce Fe-0.9Mn-0.5Cr-2.4Ni-0.5Mo-C steel, the microstructures and mechanical properties of this steel were investigated under the direct quenching and tempering (DQT) and the direct quenching, reheated quenching and tempering (DQQT) heat treatment processes. The microstructure of the DQQT specimen was basically tempered sorbite with spherical precipitates, while quite a bit of tempered martensite was in the DQT specimen with dispersive nanoscaled precipitates. The yield strengths of the DQT and DQQT specimens were 1154 and 955 MPa, respectively. The yield strength of the DQT specimen was higher than that of the DQQT specimen because of its finer grain size, higher density of dislocations and dispersed precipitates. The DQQT specimen had spherical precipitates, which hindered the propagation of the crack. Moreover, the high-angle grain boundaries in the DQQT specimen took a higher proportion. Therefore, the Charpy impact values of DQT and DQQT specimens at - 60 °C were 38 and 75 J, respectively. Consequently, the mechanical properties of the Fe-0.9Mn-0.5Cr-2.4Ni-0.5Mo-C steel, which met the standard of 1000 MPa grade steel plate for hydropower station, were acquired by the DQQT process.
Data requirements to model creep in 9Cr-1Mo-V steel
NASA Technical Reports Server (NTRS)
Swindeman, R. W.
1988-01-01
Models for creep behavior are helpful in predicting response of components experiencing stress redistributions due to cyclic loads, and often the analyst would like information that correlates strain rate with history assuming simple hardening rules such as those based on time or strain. On the one hand, much progress has been made in the development of unified constitutive equations that include both hardening and softening through the introduction of state variables whose evolutions are history dependent. Although it is difficult to estimate specific data requirements for general application, there are several simple measurements that can be made in the course of creep testing and results reported in data bases. The issue is whether or not such data could be helpful in developing unified equations, and, if so, how should such data be reported. Data produced on a martensitic 9Cr-1Mo-V-Nb steel were examined with these issues in mind.
Failure Mechanism of a Stellite Coating on Heat-Resistant Steel
NASA Astrophysics Data System (ADS)
Wang, Dong; Zhao, Haixing; Wang, Huang; Li, Yuyan; Liu, Xia; He, Guo
2017-09-01
The Stellite 21 coating on the heat-resistant steel X12CrMoWVNbN10-1-1 (so-called COSTE) used in a steam turbine valve was found to be fatigue broken after service at around 873 K (600 °C) for about 8 years. In order to investigate the failure mechanism, a fresh Stellite 21 coating was also prepared on the same COSTE steel substrate by using the similar deposition parameters for comparison. It was found that the Stellite 21 coating was significantly diluted by the steel, resulting in a thin Fe-rich layer in the coating close to the fusion line. Such high Fe concentration together with the incessant Fe diffusion from the steel substrate to the coating during the service condition (about 873 K (600 °C) for long time) induced the eutectoid decomposition of the fcc α-Co(Fe,Cr,Mo) solid solution, forming an irregular eutectoid microstructure that was composed of the primitive cubic α'-FeCo(Cr,Mo) phase and the tetragonal σ-CrCo(Fe,Mo) phase. The brittle nature of such α'/ σ eutectoid microstructure contributed to the fatigue fracture of the Stellite 21 coating, resulting in an intergranular rupture mode.
NASA Astrophysics Data System (ADS)
Mohammadzadeh, Roghayeh; Akbari, Alireza; Grumsen, Flemming B.; Somers, Marcel A. J.
2017-10-01
Chromium-rich nitride precipitates in production of nickel-free austenitic stainless steel plates via pressurised solution nitriding of Fe-22.7Cr-2.4Mo ferritic stainless steel at 1473 K (1200 °C) under a nitrogen gas atmosphere was investigated. The microstructure, chemical and phase composition, morphology and crystallographic orientation between the resulted austenite and precipitates were investigated using optical microscopy, X-ray Diffraction (XRD), Scanning and Transmission Electron Microscopy (TEM) and Electron Back Scatter Diffraction (EBSD). On prolonged nitriding, Chromium-rich nitride precipitates were formed firstly close to the surface and later throughout the sample with austenitic structure. Chromium-rich nitride precipitates with a rod or strip-like morphology was developed by a discontinuous cellular precipitation mechanism. STEM-EDS analysis demonstrated partitioning of metallic elements between austenite and nitrides, with chromium contents of about 80 wt.% in the precipitates. XRD analysis indicated that the Chromium-rich nitride precipitates are hexagonal (Cr, Mo)2N. Based on the TEM studies, (Cr, Mo)2N precipitates presented a (1 1 1)γ//(0 0 2)(Cr, Mo)2N, ?γ//?(Cr, Mo)2N orientation relationship with respect to the austenite matrix. EBSD studies revealed that the austenite in the regions that have transformed into austenite and (Cr, Mo)2N have no orientation relation to the untransformed austenite.
Caustic stress corrosion tests for the LLTR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Indig, M.E.
1976-05-01
A series of tests have been performed in order to determine the effects of the caustic resulting from the Na/H/sub 2/O reaction on the materials used in the LLTR-MSG series of testing. Stainless steel, 2 /sup 1///sub 4/ Cr--1 Mo and carbon steel have been evaluated. Stress corrosion cracking susceptibility and general corrosion are reported. Over the range of temperature, caustic concentration and heating rate tested the stainless steel stressed to 90% of yield or above suffered cracking. Whereas, the 2-/sup 1///sub 4/ Cr--1 Mo and carbon steel were not cracked.
NASA Astrophysics Data System (ADS)
Karthikeyan, T.; Dash, Manmath Kumar; Ravikirana; Mythili, R.; Panneer Selvi, S.; Moitra, A.; Saroja, S.
2017-10-01
The effect of 'conventional normalizing and tempering' (CNT) and 'double austenitization based normalizing and tempering' (DNT) heat treatments on the microstructure, tensile, creep and impact toughness properties of 9Cr-1Mo steel has been studied. The tempered martensite microstructure obtained through DNT treatment exhibited smaller sizes of prior-austenite grains/martensite packets (28 μm/11 μm) compared to the CNT treatment (44 μm/14 μm). The tempered martensite morphology was largely retained after long-term thermal aging at 550 °C/5000 h, while the M23C6 and M2(C,N) type of precipitates were found to act as nucleation sites for precipitation of brittle Fe2Mo Laves phase. The grain refinement by DNT was found to be beneficial for minimizing the ductile-to-brittle transition characteristics (25 °C lower ductile-to-brittle transition temperature and 70 J higher upper shelf energy) over the CNT. Thermal embrittlement occurred in both heated treated steels, but the transition temperature of aged DNT steel remained below room temperature. Fractured Charpy specimens revealed ductile failure by void coalescence for high temperature tests, and a quasi-cleavage fracture at low temperatures with few isolated occurrence of intergranular crack in thermal embrittled steel. The DNT treated steel resulted in similar or better tensile and creep properties, when compared to the CNT treatment. The homogeneous fine grained tempered martensite microstructure obtained by DNT treatment resulted in improved embrittlement resistance and mechanical properties over the conventional treatment.
Thermomechanical Processing and Texture Development in Ni-Cr-Mo and Mn-Mo-B Armor Steels
1984-04-01
steel , has a fairly low hardenability with respect to the forma- tion of ferrite fcom austenite. However, both steels transformed isothermally to...plates of both armor steels . Because of the relatively low hardenabilities of these steels , particularly the Ni-Cr-Mo steel , ferrite formation could not be...Austenite at Selected Temperatures. To obtain some information on the kinetics of phase transformations in highly deformed austenite of the two
Characteristics of HY-180 and Ti-100 for Welded High Strength Structures
1974-12-01
materials in welded structures are reported. The 10Ni-8Co-2Cr-lMo steel arid the Ti- 6Al -2Cb-lTa-0. 8Mo titanium alloy were selected as candidate...only li- 6Al -iCb-na-0.»Mo (Ti-6-2-1-1) and’Ii- 6Al - 4V are competitive with 10Ni-8Co-2Cr-lMo steel on a strength-weight basis, while possessing ade...Ti- 6Al -2Cb-lTa-0. 8Mo has better toughness in plate form, based upon dynamic tear properties. There- fore the Ti- 6Al -2Cb-lTa-0.8Mo titanium alloy
A Weakest-Link Approach for Fatigue Limit of 30CrNiMo8 Steels (Preprint)
2011-03-01
34Application of a Weakest-Link Concept to the Fatigue Limit of the Bearing Steel Sae 52100 in a Bainitic Condition," Fatigue and Fracture of...AFRL-RX-WP-TP-2011-4206 A WEAKEST-LINK APPROACH FOR FATIGUE LIMIT OF 30CrNiMo8 STEELS (PREPRINT) S. Ekwaro-Osire and H.V. Kulkarni Texas...2011 4. TITLE AND SUBTITLE A WEAKEST-LINK APPROACH FOR FATIGUE LIMIT OF 30CrNiMo8 STEELS (PREPRINT) 5a. CONTRACT NUMBER In-house 5b. GRANT
NASA Astrophysics Data System (ADS)
Alamo, A.; Brachet, J. C.; Castaing, A.; Lepoittevin, C.; Barcelo, F.
1998-10-01
This paper essentially deals with chemical composition effects on metallurgical and mechanical behaviour of Fe-7.5/11CrWVTa low activation martensitic steels. Materials investigated are experimental alloys as well as large-scale heats having different contents of Cr (7.5-11%), Ta (0-0.1%), W (0.8-3%) and interstitial elements, like carbon (0.09-0.17%) and nitrogen (0.004-0.045%). For this purpose, phase transformation during heating and cooling have been investigated in anisothermal and isothermal conditions to establish the corresponding Continuous Cooling Transformation (CCT) and Time-Temperature-Transformation (TTT) diagrams. Austenitisation (normalisation) and tempering treatments were performed in a wide range of temperatures. Tensile and impact properties as a function of composition and metallurgical conditions have been determined and compared to 9Cr-1Mo conventional martensitic steels.
Corrosion Behavior of High Nitrogen Nickel-Free Fe-16Cr-Mn-Mo-N Stainless Steels
NASA Astrophysics Data System (ADS)
Chao, K. L.; Liao, H. Y.; Shyue, J. J.; Lian, S. S.
2014-04-01
The purpose of the current study is to develop austenitic nickel-free stainless steels with lower chromium content and higher manganese and nitrogen contents. In order to prevent nickel-induced skin allergy, cobalt, manganese, and nitrogen were used to substitute nickel in the designed steel. Our results demonstrated that manganese content greater than 14 wt pct results in a structure that is in full austenite phase. The manganese content appears to increase the solubility of nitrogen; however, a lower corrosion potential was found in steel with high manganese content. Molybdenum appears to be able to increase the pitting potential. The effects of Cr, Mn, Mo, and N on corrosion behavior of Fe-16Cr-2Co-Mn-Mo-N high nitrogen stainless steels were evaluated with potentiodynamic tests and XPS surface analysis. The results reveal that anodic current and pits formation of the Fe-16Cr-2Co-Mn-Mo-N high nitrogen stainless steels were smaller than those of lower manganese and nitrogen content stainless steel.
NASA Astrophysics Data System (ADS)
Tomita, Yoshiyuki
1990-09-01
Commercial low-alloy structural steels, 0.45 pct C (AISI 1045 grade), 0.40 pct C-Cr-Mo (AISI 4140 grade), and 0.40 pct C-Ni-Cr-Mo (AISI 4340 grade), have been studied to determine the effect of the decreased hot-rolling reduction treatment (DHRRT) from 98 to 80 pct on fracture toughness of quenched and highly tempered low-alloy structural steels. The significant conclusions are as follows: (1) the sulfide inclusions were modified through the DHRRT from a stringer (mean aspect ratio: 16.5 to 17.6) to an ellipse (mean aspect ratio: 3.8 to 4.5), independent of the steels studied; (2) the DHRRT significantly improved J Ic in the long-transverse and shorttransverse orientations, independent of the steels studied; and (3) the shelf energy in the Charpy V-notch impact test is also greatly improved by the DHRRT, independent of testing orientation and steels studied; however, (4) the ductile-to-brittle transition temperature was only slightly affected by the DHRRT. The beneficial effect on the J Ic is briefly discussed in terms of a crack extension model involving the formation of voids at the inclusion sites and their growth and eventual linking up through the rupture of the intervening ligaments by local shear.
Creep and Oxidation Behavior of Modified CF8C-Plus with W, Cu, Ni, and Cr
NASA Astrophysics Data System (ADS)
Unocic, Kinga A.; Dryepondt, Sebastien; Yamamoto, Yukinori; Maziasz, Philip J.
2016-04-01
The microstructures of modified CF8C-Plus (Fe-19Cr-12Ni-0.4W-3.8Mn-0.2Mo-0.6Nb-0.5Si-0.9C) with W and Cu (CF8CPWCu) and CF8CPWCu enhanced with 21Cr + 15Ni or 22Cr + 17.5Ni were characterized in the as-cast condition and after creep testing. When imaged at lower magnifications, the as-cast microstructure was similar among all three alloys as they all contained a Nb-rich interdendritic phase and Mn-based inclusions. Transmission electron microscopy (TEM) analysis showed the presence of nanoscale Cu-rich nanoprecipitates distributed uniformly throughout the matrix of CF8CPWCu, whereas in CF8CPWCu22/17, Cu precipitates were found primarily at the grain boundaries. The presence of these nanoscale Cu-rich particles, in addition to W-rich Cr23C6, nanoscale Nb carbides, and Z-phase (Nb2Cr2N2), improved the creep strength of the CF8CPWCu steel. Modification of CF8CPWCu with Cr and Ni contents slightly decreased the creep strength but significantly improved the oxidation behavior at 1073 K (800 °C). In particular, the addition of 22Cr and 17.5Ni strongly enhanced the oxidation resistance of the stainless steel resulting in a 100 degrees or greater temperature improvement, and this composition provided the best balance between improving both mechanical properties and oxidation resistance.
Creep and oxidation behavior of modified CF8C-plus with W, Cu, Ni, and Cr
DOE Office of Scientific and Technical Information (OSTI.GOV)
Unocic, Kinga A.; Dryepondt, Sebastien N.; Yamamoto, Yukinori
Here, the microstructures of modified CF8C-Plus (Fe-19Cr-12Ni-0.4W-3.8Mn-0.2Mo-0.6Nb-0.5Si-0.9C) with W and Cu (CF8CPWCu) and CF8CPWCu enhanced with 21Cr + 15Ni or 22Cr + 17.5Ni were characterized in the as-cast condition and after creep testing. When imaged at lower magnifications, the as-cast microstructure was similar among all three alloys as they all contained a Nb-rich interdendritic phase and Mn-based inclusions. Transmission electron microscopy (TEM) analysis showed the presence of nanoscale Cu-rich nanoprecipitates distributed uniformly throughout the matrix of CF8CPWCu, whereas in CF8CPWCu22/17, Cu precipitates were found primarily at the grain boundaries. The presence of these nanoscale Cu-rich particles, in addition to W-richmore » Cr 23C 6, nanoscale Nb carbides, and Z-phase (Nb 2Cr 2N 2), improved the creep strength of the CF8CPWCu steel. Modification of CF8CPWCu with Cr and Ni contents slightly decreased the creep strength but significantly improved the oxidation behavior at 1073 K (800 °C). In particular, the addition of 22Cr and 17.5Ni strongly enhanced the oxidation resistance of the stainless steel resulting in a 100 degrees or greater temperature improvement, and this composition provided the best balance between improving both mechanical properties and oxidation resistance.« less
Creep and oxidation behavior of modified CF8C-plus with W, Cu, Ni, and Cr
Unocic, Kinga A.; Dryepondt, Sebastien N.; Yamamoto, Yukinori; ...
2016-02-01
Here, the microstructures of modified CF8C-Plus (Fe-19Cr-12Ni-0.4W-3.8Mn-0.2Mo-0.6Nb-0.5Si-0.9C) with W and Cu (CF8CPWCu) and CF8CPWCu enhanced with 21Cr + 15Ni or 22Cr + 17.5Ni were characterized in the as-cast condition and after creep testing. When imaged at lower magnifications, the as-cast microstructure was similar among all three alloys as they all contained a Nb-rich interdendritic phase and Mn-based inclusions. Transmission electron microscopy (TEM) analysis showed the presence of nanoscale Cu-rich nanoprecipitates distributed uniformly throughout the matrix of CF8CPWCu, whereas in CF8CPWCu22/17, Cu precipitates were found primarily at the grain boundaries. The presence of these nanoscale Cu-rich particles, in addition to W-richmore » Cr 23C 6, nanoscale Nb carbides, and Z-phase (Nb 2Cr 2N 2), improved the creep strength of the CF8CPWCu steel. Modification of CF8CPWCu with Cr and Ni contents slightly decreased the creep strength but significantly improved the oxidation behavior at 1073 K (800 °C). In particular, the addition of 22Cr and 17.5Ni strongly enhanced the oxidation resistance of the stainless steel resulting in a 100 degrees or greater temperature improvement, and this composition provided the best balance between improving both mechanical properties and oxidation resistance.« less
NASA Astrophysics Data System (ADS)
Zhiyong, Zhu; Jung, Peter; Klein, Horst
1993-07-01
A high purity austenitic FeCrNiMo alloy and DIN 1.4914 martensitic stainless steel were irradiated with 6.2 MeV protons. The pulsed operation of a tokamak fusion reactor was simulated by simultaneous cycling of beam, temperature and stress similar to that anticipated in the NET (Next European Torus) design. Void swelling and irradiation creep of the FeCrNiMo alloy under cyclic and stationary conditions were identical within the experimental error. The martensitic steel showed no swelling at the present low doses (~0.2 dpa). The plastic deformation under continuous and cyclic irradiation was essentially determined by thermal creep. During irradiation the electrical resistivity of FeCrNiMo slightly increased, probably due to swelling, while that of DIN 1.4914 linearly decreased, probably due to segregation effects.
NASA Technical Reports Server (NTRS)
Saltsman, J. F.; Halford, G. R.
1976-01-01
Strainrange partitioning is used to predict the long time cyclic lives of the metal properties council (MPC) creep-fatigue interspersion and cyclic creep-rupture tests conducted with annealed 2 1/4 Cr-1Mo steel. Observed lives agree with predicted lives within factors of two. The strainrange partitioning life relations used for the long time predictions were established from short time creep-fatigue data generated at NASA-Lewis on the same heat of material.
The research of axial corrosion fatigue on 10Ni3CrMoV steel
NASA Astrophysics Data System (ADS)
Xie, Xing; Yi, Hong; Xu, Jian; Xie, Kun
2017-09-01
Fatigue life had been studied with 10CrNi3MoV steel at different load ratios and in different environmental medias. The microstructure and micro-topography had been observed and analyzed by means of SEM, EDS and TEM. Our findings indicated that, the fatigue life of 10Ni3CrMoV steel in seawater was shorter than in air, the difference in longevity was larger with the decreasing of axis stress. Corrosion pits had a great influence on corrosion fatigue life.
The Characteristics and Generating Mechanism of Large Precipitates in Ti-Containing H13 Tool Steel
NASA Astrophysics Data System (ADS)
Xie, You; Cheng, Guoguang; Chen, Lie; Zhang, Yandong; Yan, Qingzhong
2017-02-01
The characteristics of large precipitates in H13 tool steel with 0.015wt% Ti were studied. The result shows that three types of phases larger than 1 μm exist in the as-cast ingot, that is, (Ti, V) (C, N) type phase, (V, Mo, Cr)C type phase and sulfide. (Ti, V) (C, N) type phase could be further classified as the homogeneous Ti-rich one and the Ti-V-rich one in which Ti/V ratio gradually changes. (V, Mo, Cr)C type phase contains the V-rich one and the Mo-Cr-rich one. The compositional characteristics in all of them have little relation with the cutting position or cooling rate. The precipitating process could be well described through calculation by Thermo-Calc software. During solidification, the primary phase (Ti, V)(C, N) first starts to precipitate in the form of Ti-rich carbonitride. With the development of solidification, the ratio of Ti decreases and that of V increases. Then the primary phase Ti-V-rich (Ti, V)(C, N) and V-rich (V, Mo, Cr)C appears successively. Mo-Cr-rich (V, Mo, Cr)C phase does not precipitate until the solidification process reaches to the end. Sulfide precipitates before (V, Mo, Cr)C type phase and it could act as the nucleus of (V, Mo, Cr)C.
NASA Astrophysics Data System (ADS)
Mandal, Sumantra
2006-11-01
ABSTRACT In this paper, an artificial neural network (ANN) model has been suggested to predict the constitutive flow behavior of a 15Cr-15Ni-2.2Mo-Ti modified austenitic stainless steel under hot deformation. Hot compression tests in the temperature range 850°C- 1250°C and strain rate range 10-3-102 s-1 were carried out. These tests provided the required data for training the neural network and for subsequent testing. The inputs of the neural network are strain, log strain rate and temperature while flow stress is obtained as output. A three layer feed-forward network with ten neurons in a single hidden layer and back-propagation learning algorithm has been employed. A very good correlation between experimental and predicted result has been obtained. The effect of temperature and strain rate on flow behavior has been simulated employing the ANN model. The results have been found to be consistent with the metallurgical trend. Finally, a monte carlo analiysis has been carried out to find out the noise sensitivity of the developed model.
Microstructure characterization of heat affected zone after welding in Mod.9Cr–1Mo steel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sawada, K., E-mail: sawada.kota@nims.go.jp; Hara, T.; Tabuchi, M.
2015-03-15
The microstructure of the heat affected zone after welding was investigated in Mod.9Cr–1Mo steel, using TEM and STEM-EDX. The microstructure of thin foil was observed at the fusion line, and at the positions of 0.5 mm, 1.0 mm, 1.5 mm, 2.0 mm, 2.5 mm, 3.0 mm and 3.5 mm to the base metal side of the fusion line. Martensite structure with very fine lath and high dislocation density was confirmed at all positions. Twins with a twin plane of (112) were locally observed at all positions. Elemental mapping was obtained for all positions by means of STEM-EDX. Inclusions of mainlymore » Si were formed at the fusion line but not at the other positions. No precipitates could be detected at the fusion line or at the position of 0.5 mm. On the other hand, MX particles were observed at the positions of 1.0 mm, 1.5 mm, 2.0 mm, 2.5 mm, 3.0 mm and 3.5 mm even after welding. M{sub 23}C{sub 6} particles were also confirmed at the positions of 2.0 mm, 2.5 mm, 3.0 mm and 3.5 mm. Very fine equiaxed grains were locally observed at the positions of 2.0 mm and 2.5 mm. The Cr content of the equiaxed grains was about 12 mass%, although the martensite area included about 8 mass% Cr. - Graphical abstract: Display Omitted - Highlights: • Nonequilibrium microstructure of heat affected zone was observed after welding in Mod.9Cr–1Mo steel. • Inclusions containing Si were detected at the fusion line. • Undissolved M{sub 23}C{sub 6} and MX particles were confirmed in heat affected zone. • Twins with a twin plane of (112) were locally observed at all positions. • Very fine ferrite grains with high Cr content were observed in fine grained heat affected zone.« less
Jeong, Hyunjo; Nahm, Seung-Hoon; Jhang, Kyung-Young; Nam, Young-Hyun
2003-09-01
The objective of this paper is to develop a nondestructive method for estimating the fracture toughness (K(IC)) of CrMoV steels used as the rotor material of steam turbines in power plants. To achieve this objective, a number of CrMoV steel samples were heat-treated, and the fracture appearance transition temperature (FATT) was determined as a function of aging time. Nonlinear ultrasonics was employed as the theoretical basis to explain the harmonic generation in a damaged material, and the nonlinearity parameter of the second harmonic wave was the experimental measure used to be correlated to the fracture toughness of the rotor steel. The nondestructive procedure for estimating the K(IC) consists of two steps. First, the correlations between the nonlinearity parameter and the FATT are sought. The FATT values are then used to estimate K(IC) using the K(IC) versus excess temperature (i.e., T-FATT) correlation that is available in the literature for CrMoV rotor steel.
NASA Astrophysics Data System (ADS)
Wang, Juan; Wang, Jiteng; Li, Yajiang; Zheng, Deshuang
2015-07-01
The brazing of Mo-Cu composite and 304 stainless steel was carried out in vacuum with Ni-Cr-P filler metal at 980 °C for 20 min. Microstructure in Mo-Cu/304 stainless steel joint was investigated by field-emission scanning electron microscope (FE-SEM) with energy dispersive spectrometer (EDS) and shear strength was measured by shearing test. The results indicate that shear strength of the Mo-Cu/304 stainless steel joint is about 155 MPa. There forms eutectic structure of γ-Ni solid solution with Ni3P in the braze seam. Ni-Cu(Mo) and Ni-Fe solid solution are at the interface beside Mo-Cu composite and 304 stainless steel, respectively. Shear fracture exhibits mixed ductile-brittle fracture feature with trans-granular fracture, ductile dimples and tearing edges. Fracture originates from the interface between brazing seam and Mo-Cu composite and it propagates to the braze seam due to the formation of brittle Ni5P2 and Cr3P precipitation.
Irradiation-induced microchemical changes in highly irradiated 316 stainless steel
NASA Astrophysics Data System (ADS)
Fujii, K.; Fukuya, K.
2016-02-01
Cold-worked 316 stainless steel specimens irradiated to 74 dpa in a pressurized water reactor (PWR) were analyzed by atom probe tomography (APT) to extend knowledge of solute clusters and segregation at higher doses. The analyses confirmed that those clusters mainly enriched in Ni-Si or Ni-Si-Mn were formed at high number density. The clusters were divided into three types based on their size and Mn content; small Ni-Si clusters (3-4 nm in diameter), and large Ni-Si and Ni-Si-Mn clusters (8-10 nm in diameter). The total cluster number density was 7.7 × 1023 m-3. The fraction of large clusters was almost 1/10 of the total density. The average composition (in at%) for small clusters was: Fe, 54; Cr, 12; Mn, 1; Ni, 22; Si, 11; Mo, 1, and for large clusters it was: Fe, 44; Cr, 9; Mn, 2; Ni, 29; Si, 14; Mo,1. It was likely that some of the Ni-Si clusters correspond to γ‧ phase precipitates while the Ni-Si-Mn clusters were precursors of G phase precipitates. The APT analyses at grain boundaries confirmed enrichment of Ni, Si, P and Cu and depletion of Fe, Cr, Mo and Mn. The segregation behavior was consistent with previous knowledge of radiation induced segregation.
Microstructure and hardness of carbon and tool steel quenched with high-frequency currents
NASA Astrophysics Data System (ADS)
Fomin, Aleksandr A.; Fedoseev, Maksim E.; Palkanov, Pavel A.; Voyko, Aleksey V.; Fomina, Marina A.; Koshuro, Vladimir A.; Zakharevich, Andrey M.; Kalganova, Svetlana G.; Rodionov, Igor V.
2018-04-01
In the course of high-temperature treatment with high-frequency currents (HFC) in the range from 600 to 1300 °C, carbon and tool steels are strengthened. After the heat treatment the hardness reaches 64-70 HRC for carbon steel (carbon content 0.4-0.5%) and 68-71 HRC for tool steel 1.3343 (R6M5 steel analogue with 0.9-1.0% C content, W - 5-6 wt%, Mo - 3.5-5.3 wt%, V - 1.3-1.8 wt%, Cr - 3.8-4.3 wt%, Mn+Si - 0.5-1 wt%, Fe - balance). The resulting structure is a carbide network, and in the case of tool steel - complex carbides around a high-strength martensitic phase.
PLANE STRAIN FRACTURE TOUGHNESS DATA FOR HANDBOOK PRESENTATION
An experimental program was conducted to determine the plane strain fracture toughness (K sub IC) of the following classes of: (1) AISI Alloy Steels...4340, 4140 ); (2) 5Cr-Mo-V Steels; (3) Precipitation-Hardening Stainless Steels (17-7 PH, PH 15-7 Mo, 17-4, AM355); (4) Titanium Alloy, Ti-6Al-4V. The
Tribological behavior of CrN-coated Cr-Mo-V steels used as die materials
NASA Astrophysics Data System (ADS)
Çelik, Gülşah Aktaş; Polat, Şeyda; Atapek, Ş. Hakan
2017-12-01
DIN 1.2343 and 1.2367 steels are commonly used as die materials in aluminum extrusion, and single/duplex/multi-coatings enhance their surface properties. The design of an appropriate substrate/coating system is important for improving the tribological performance of these steels under service conditions because the load-carrying capacity of the system can be increased by decreasing the plastic deformation of the substrate. In this study, the tribological behavior of CrN-coated Cr-Mo-V steels (DIN 1.2343, 1.2367, and 1.2999 grades) was investigated using different setups and tribological pairs at room and elevated temperatures. The aim of this study was to reveal the wear resistance of a suggested system (1.2999/CrN) not yet studied and to understand both the wear and the failure characteristics of coated systems. The results showed that (i) among the steels studied, the DIN 1.2999 grade steel exhibited the lowest friction coefficient because it had the highest load-carrying capacity as a result of secondary hardening at elevated temperatures; (ii) at room temperature, both abrasive tracks and adhesive layers were observed on the worn surfaces; and (iii) a combination of chemical reactions and progressive oxidation caused aluminum adhesion on the worn surface, and the detachment of droplets and microcracking were the characteristic damage mechanisms at high temperatures.
Hinüber, C; Kleemann, C; Friederichs, R J; Haubold, L; Scheibe, H J; Schuelke, T; Boehlert, C; Baumann, M J
2010-11-01
Diamond-like carbon (DLC) films are favored for wear components because of diamond-like hardness, low friction, low wear, and high corrosion resistance (Schultz et al., Mat-wiss u Werkstofftech 2004;35:924-928; Lappalainen et al., J Biomed Mater Res B Appl Biomater 2003;66B:410-413; Tiainen, Diam Relat Mater 2001;10:153-160). Several studies have demonstrated their inertness, nontoxicity, and the biocompatibility, which has led to interest among manufacturers of surgical implants (Allen et al., J Biomed Mater Res B Appl Biomater 2001;58:319-328; Uzumaki et al., Diam Relat Mater 2006;15:982-988; Hauert, Diam Relat Mater 2003;12:583-589; Grill, Diam Relat Mater 2003;12:166-170). In this study, hydrogen-free amorphous, tetrahedrally bonded DLC films (ta-C) were deposited at low temperatures by physical vapor deposition on medical grade Co28Cr6Mo steel and the titanium alloy Ti6Al4V (Scheibe et al., Surf Coat Tech 1996;85:209-214). The mechanical performance of the ta-C was characterized by measuring its surface roughness, contact angle, adhesion, and wear behavior, whereas the biocompatibility was assessed by osteoblast (OB) attachment and cell viability via Live/Dead assay. There was no statistical difference found in the wettability as measured by contact angle measurements for the ta-C coated and the uncoated samples of either Co28Cr6Mo or Ti6Al4V. Rockwell C indentation and dynamic scratch testing on 2-10 μm thick ta-C films on Co28Cr6Mo substrates showed excellent adhesion with HF1 grade and up to 48 N for the critical load L(C2) during scratch testing. The ta-C coating reduced the wear from 3.5 × 10(-5) mm(3)/Nm for an uncoated control sample (uncoated Co28Cr6Mo against uncoated stainless steel) to 1.1 × 10(-7) mm(3)/Nm (coated Co28Cr6Mo against uncoated stainless steel) in reciprocating pin-on-disk testing. The lowest wear factor of 3.9 × 10(-10) mm(3)/Nm was measured using a ta-C coated steel ball running against a ta-C coated and polished Co28Cr6Mo disk. Student's t-test found that the ta-C coating had no statistically significant (p < 0.05) effect on OB attachment, when compared with the uncoated control samples. There was no significant difference (p < 0.05) in the Live/Dead assay results in cell death between the ta-C coated Co28Cr6Mo and Ti6Al4V samples and the uncoated controls. Therefore, these ta-C coatings show improved wear and corrosion (Dorner-Reisel et al., Diam Relat Mater 2003;11:823-827; Affato et al., J Biomed Mater Res B Appl Biomater 2000;53:221-226; Dorner-Reisel et al., Surf Coat Tech 2004;177-178:830-837; Kim et al., Diam Relat Mater 2004;14:35-41) performance and excellent in vitro cyto-compatibility, when compared with currently used uncoated Co28Cr6Mo and Ti6Al4V implant materials.
1993-09-01
in TIG weldments. The alloying elements used in ULCB steels are; Carbon (C), Manganese (Mn), Molybdenum (Mo), Nickel (Ni), Niobium (Nb), Chromium (Cr...process. 7 C. WELDING PROCESSES 1. Tungsten Inert Gas (TIG) Welding Tungsten Inert Gas (TIG) Welding (or Gas Tungsten Arc Welding ( GTAW )), produces... chromium (Cr), molybdenum (Mo), and sometimes vanadium (V). Reheat cracking occurs in the HAZ during postweld stress relieving, especially in thick
Phase transformations in cast duplex stainless steels
NASA Astrophysics Data System (ADS)
Kim, Yoon-Jun
Duplex stainless steels (DSS) constitute both ferrite and austenite as a matrix. Such a microstructure confers a high corrosion resistance with favorable mechanical properties. However, intermetallic phases such as sigma (sigma) and chi (chi) can also form during casting or high-temperature processing and can degrade the properties of the DSS. This research was initiated to develop time-temperature-transformation (TTT) and continuous-cooling-transformation (CCT) diagrams of two types of cast duplex stainless steels, CD3MN (Fe-22Cr-5Ni-Mo-N) and CD3MWCuN (Fe-25Cr-7Ni-Mo-W-Cu-N), in order to understand the time and temperature ranges for intermetallic phase formation. The alloys were heat treated isothermally or under controlled cooling conditions and then characterized using conventional metallographic methods that included tint etching, and also using electron microscopy (SEM, TEM) and wavelength dispersive spectroscopy (WDS). The kinetics of intermetallic-phase (sigma + chi) formation were analyzed using the Johnson-Mehl-Avrami (JMA) equation in the case of isothermal transformations and a modified form of this equation in the case of continuous cooling transformations. The rate of intermetallic-phase formation was found to be much faster in CD3MWCuN than CD3MN due mainly to differences in the major alloying contents such as Cr, Ni and Mo. To examine in more detail the effects of these elements of the phase stabilities, a series of eight steel castings was designed with the Cr, Ni and Mo contents systematically varied with respect to the nominal composition of CD3MN. The effects of varying the contents of alloying additions on the formation of intermetallic phases were also studied computationally using the commercial thermodynamic software package, Thermo-Calc. In general, a was stabilized with increasing Cr addition and chi by increasing Mo addition. However, a delicate balance among Ni and other minor elements such as N and Si also exists. Phase equilibria in DSS can be affected by local composition fluctuations in the cast alloy. This may cause discrepancy between thermodynamic prediction and experimental observation.
The effect of strain hardening on resistance to electrochemical corrosion of wires for orthopaedics
NASA Astrophysics Data System (ADS)
Przondziono, J.; Walke, W.; Hadasik, E.; Szymszal, J.
2012-05-01
The purpose of this research is to evaluate electrochemical corrosion resistance of wire with modified surface, made of stainless steel of Cr-Ni-Mo type, widely used in implants for orthopaedics, depending on hardening created in the process of drawing. Tests have been carried out in the environment imitating human osseous tissue. Pitting corrosion was determined on the ground of registered anodic polarisation curves by means of potentiodynamic method with application of electrochemical testing system VoltaLab® PGP 201. Wire corrosion tests were carried out in Tyrode solution on samples that were electrochemically polished as well as electrochemically polished and finally chemically passivated. Initial material for tests was wire rod made of X2CrNiMo17-12-2 steel with diameter of 5.5 mm in supersaturated condition. Wire rod was drawn up to diameter of 1.35 mm. This work shows the course of flow curve of wire made of this grade of steel and mathematical form of yield stress function. The study also presents exemplary curves showing the dependence of polarisation resistance in strain function in the drawing process of electrochemically passivated and electrochemically polished and then chemically passivated wire.
Fatigue curve needs for higher strength 2-1/4Cr-1Mo steel for petroleum process vessels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jaske, C.E.
This paper reviews the data needed to develop fatigue design rules for pressure vessels fabricated from heat-treated 2-1/4Cr-1Mo steel (SA-387, Grade 22, Class 2 plates and SA-336, Grade F22 forgings) that are operated or designed to operate at temperatures greater than 371 C (700F). The available data were reviewed, and the results of that review were used to develop recommendations for needed analytical and experimental work. Extension of the fatigue-curve approach currently used for temperatures up to 371 C (700F) and development of a fracture-mechanics-based, crack-growth approach were addressed. Both of these two approaches must include means for assessing themore » time-dependent effects of oxidation and/or creep when fatigue cycling occurs at low stain rates or includes hold times. The recommendations of this study provide a plan for the development of fatigue design rules for the use of heat-treated 2-1/4Cr-1Mo steel at temperatures in the range of 371 to 482 C (700 to 900 F).« less
Corrosion of Stainless-Steel Tubing in a Spacecraft Launch Environment
NASA Technical Reports Server (NTRS)
Barile, Ronald G.; MacDowell, Louis G.; Curran, Joe; Calle, Luz Maria; Hodge, Timothy
2001-01-01
This is a report of exposure of various metal tubing to oceanfront launch environments. The objective is to examine various types of corrosion-resistant tubing for Space Shuttle launch sites. The metals were stainless steels (austenitic, low-carbon, Mo-alloy, superaustenitic, duplex, and superferritic), Ni-Cr-Mo alloy, Ni-Mo-Cr-Fe-W alloy, and austenitic Ni-base superalloy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baek, K.K.; Sung, H.J.; Im, C.S.
1998-12-31
For successful application of high-alloyed stainless steels for Flue Gas Desulfurization (FGD) plants, pitting corrosion resistance of arc welds of N-added 6%Mo austenitic stainless steels (UNS N 08367) and super duplex stainless steels (UNS S 32550) made with various filler metals were evaluated using the Green Death solution. For Gas Tungsten Arc (GTA) and Gas Metal Arc (GMA) welds of N 08367, Critical Pitting Temperature (CPT) of base metal was 65--70 C, whereas weld made by ERNiCrMo-3 filler metal yielded CPT of 50 C. Welds made by ERNiCrMo-10 or ERNiCrMo-4 filler metals showed CPT of 60--65 C and 65--70C, respectively.more » For GTA and GMA welds of S 32550, CPT of welds made by ERNiCrMo-3 was 45--50 C, indicating that the filler metal can provide pitting corrosion resistance matching the S 32550 alloy. Thus, a proper pitting corrosion resistance of weldments of high-alloy stainless steels can be achieved by selecting filler metals having at least +10 higher Pitting Resistance Equivalent Number (PRE{sub N}) value than the base metal regardless of the type of arc welding process. The over-alloyed filler metals would compensate preferential segregation of Cr, MO along the dendrite boundary, which made the dendrite core more susceptible to pitting. Nitrogen addition to the GTA welds of N 08367 made with ERNiCrMo-3 failed to improve pitting corrosion resistance, which was attributed to the precipitation of nitrogen in the weld metal in the form of Nb-nitride.« less
Reaction of Unalloyed and Cr-Mo Alloyed Steels with Nitrogen from the Sintering Atmosphere
NASA Astrophysics Data System (ADS)
Dlapka, Magdalena; Gierl-Mayer, Christian; Calderon, Raquel de Oro; Danninger, Herbert; Bengtsson, Sven; Dudrova, Eva
2016-12-01
Nitrogen is usually regarded as an inert sintering atmosphere for PM steels; however, this cannot be taken for granted in particular for steels alloyed with nitride forming elements. Among those elements, chromium has become more and more important as an alloying element in sintered low alloy structural steels in the last decade due to the moderate alloying cost and the excellent mechanical properties obtainable, in particular when sinter hardening is applied. The high affinity of Cr to oxygen and the possible ways to overcome related problems have been the subject of numerous studies, while the fact that chromium is also a fairly strong nitride forming element has largely been neglected at least for low alloy steel grades, although frequently used materials like steels from Cr and Cr-Mo prealloyed powders are commonly sintered in atmospheres consisting mainly of nitrogen. In the present study, nitrogen pickup during sintering at different temperatures and for varying times has been studied for Cr-Mo prealloyed steel grades as well as for unalloyed carbon steel. Also the effect of the cooling rate and its influence on the properties, of the microstructure and the composition have been investigated. It showed that the main nitrogen uptake occurs not during isothermal sintering but rather during cooling. It could be demonstrated that a critical temperature range exists within which the investigated CrM-based steel is particularly sensitive to nitrogen pickup.
NASA Astrophysics Data System (ADS)
Xie, Xing; Yi, Hong; Xu, Jian; Gen, Liming; Chen, Luyun
2017-09-01
Fatigue initiation life has been studied with 10CrNi5MoV steel for use in ocean engineering at different load ratios and in different environmental media. The microstructure and micro-topography have been observed and analyzed by means of SEM, EDS and EBSD. Our findings indicate that, the initiation life of 10Ni5CrMoV steel in seawater is shorter than that in air, and the difference in longevity is larger with the increasing of load ratio. Corrosion pits had a great influence on initial corrosion fatigue life.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, M.; Soppet, W.K.; Rink, D.L.
This report provides an update on the evaluation of thermal-aging induced degradation of tensile properties of advanced ferritic-martensitic steels. The report is the first deliverable (level 3) in FY11 (M3A11AN04030103), under the Work Package A-11AN040301, 'Advanced Alloy Testing' performed by Argonne National Laboratory, as part of Advanced Structural Materials Program for the Advanced Reactor Concepts. This work package supports the advanced structural materials development by providing tensile data on aged alloys and a mechanistic model, validated by experiments, with a predictive capability on long-term performance. The scope of work is to evaluate the effect of thermal aging on the tensilemore » properties of advanced alloys such as ferritic-martensitic steels, mod.9Cr-1Mo, NF616, and advanced austenitic stainless steel, HT-UPS. The aging experiments have been conducted over a temperature of 550-750 C for various time periods to simulate the microstructural changes in the alloys as a function of time at temperature. In addition, a mechanistic model based on thermodynamics and kinetics has been used to address the changes in microstructure of the alloys as a function of time and temperature, which is developed in the companion work package at ANL. The focus of this project is advanced alloy testing and understanding the effects of long-term thermal aging on the tensile properties. Advanced materials examined in this project include ferritic-martensitic steels mod.9Cr-1Mo and NF616, and austenitic steel, HT-UPS. The report summarizes the tensile testing results of thermally-aged mod.9Cr-1Mo, NF616 H1 and NF616 H2 ferritic-martensitic steels. NF616 H1 and NF616 H2 experienced different thermal-mechanical treatments before thermal aging experiments. NF616 H1 was normalized and tempered, and NF616 H2 was normalized and tempered and cold-rolled. By examining these two heats, we evaluated the effects of thermal-mechanical treatments on material microstructures and associated mechanical properties during long-term aging at elevated temperatures. Thermal aging experiments at different temperatures and periods of time have been completed: 550 C for up to 5000 h, 600 C for up to 7500 h, and 650 C for more than 10,000 h. Tensile properties were measured on thermally aged specimens and aging effect on tensile behavior was assessed. Effects of thermal aging on deformation and failure mechanisms were investigated by using in-situ straining technique with simultaneous synchrotron XRD measurements.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Panin, S. V., E-mail: svp@ispms.tsc.ru; Vlasov, I. V., E-mail: good0@yandex.ru; Sergeev, V. P., E-mail: retc@ispms.tsc.ru
2015-10-27
Features of the structure and properties modification of 12Cr1MoV steel subjected to irradiation by zirconium ion beam have been investigated with the use of optical and electron microscopy as well as microhardness measurement. It has been shown that upon treatment the structure modification occurred across the entire cross-section of specimens with the thickness of 1 mm. Changes in the mechanical properties of these specimens under static, cyclic and impact loading are interpreted in terms of identified structure changes.
Stress Corrosion Behavior of 12Cr Martensite Steel for Steam Turbine LP Blade
NASA Astrophysics Data System (ADS)
Tianjian, Wang; Yubing, Pei; Zhenhuan, Gao; Hua, Fan; Gongxian, Yang
With the development of capacity and efficiency of coal-fired thermal power plant, the length of Low Pressure (LP) last-stage blade of steam turbine became longer. Therefore, the design static stress of blade gets closer or even higher than the yield strength of material. Because of the special operation condition of LP last stage blade, the stress corrosion crack of 12Cr-Ni-Mo-V-N Martensite stainless steel may happen especially at the root of the blade where designed the highest static stress. In this paper, the stress corrosion behavior of 12Cr-Ni-Mo-V-N Martensite stainless steels used for steam turbine LP last stage blade in 3vol% NaCl solution was studied, the constant stress is about 95%, 85%, 65% and 35% of yield stress respectively and the test was lasted for 3000 hours, the stress corrosion behavior was studied and then, the effect of shot penning strengthen for anti-stress corrosion property of 12Cr-Ni-Mo-V-N Martensitic steel was studied. The results showed that the purity of steel affects the stress corrosion behavior huge especially at the high and medium stress condition. The shot penning cannot enhances the anti-stress corrosion property of the 12Cr-Ni-Mo-V-N steel at high tensile constant stress condition, however it will make the anti-stress corrosion property better when the stress is low.
Low-Cycle Fatigue Behavior of 10CrNi3MoV High Strength Steel and Its Undermatched Welds
Liu, Xuesong; Berto, Filippo
2018-01-01
The use of high strength steel allows the design of lighter, more slender and simpler structures due to high strength and favorable ductility. Nevertheless, the increase of yield strength does not guarantee the corresponding improvement of fatigue resistance, which becomes a major concern for engineering structure design, especially for the welded joints. The paper presents a comparison of the low cycle fatigue behaviors between 10CrNi3MoV high strength steel and its undermatched weldments. Uniaxial tension tests, Push-pull, strain-controlled fatigue tests were conducted on base metal and weldments in the strain range of 0.2–1.2%. The monotonic and cyclic stress-strain curves, stress-life, strain-life and energy-life in terms of these materials were analyzed for fatigue assessment of materials discrepancy. The stress-life results of base metal and undermatched weld metal exhibit cyclic softening behaviors. Furthermore, the shapes of 10CrNi3MoV steel hysteresis loops show a satisfactory Masing-type behavior, while the weld metal shows a non-Masing type behavior. Strain, plastic and total strain energy density amplitudes against the number of reversals to failure results demonstrate that the undermatched weld metal presents a higher resistance to fatigue crack initiation than 10CrNi3MoV high strength steel. Finally, fatigue fracture surfaces of specimens were compared by scanning electron microscopy to identify the differences of crack initiation and the propagation between them. PMID:29695140
Low-Cycle Fatigue Behavior of 10CrNi3MoV High Strength Steel and Its Undermatched Welds.
Song, Wei; Liu, Xuesong; Berto, Filippo; Razavi, S M J
2018-04-24
The use of high strength steel allows the design of lighter, more slender and simpler structures due to high strength and favorable ductility. Nevertheless, the increase of yield strength does not guarantee the corresponding improvement of fatigue resistance, which becomes a major concern for engineering structure design, especially for the welded joints. The paper presents a comparison of the low cycle fatigue behaviors between 10CrNi3MoV high strength steel and its undermatched weldments. Uniaxial tension tests, Push-pull, strain-controlled fatigue tests were conducted on base metal and weldments in the strain range of 0.2⁻1.2%. The monotonic and cyclic stress-strain curves, stress-life, strain-life and energy-life in terms of these materials were analyzed for fatigue assessment of materials discrepancy. The stress-life results of base metal and undermatched weld metal exhibit cyclic softening behaviors. Furthermore, the shapes of 10CrNi3MoV steel hysteresis loops show a satisfactory Masing-type behavior, while the weld metal shows a non-Masing type behavior. Strain, plastic and total strain energy density amplitudes against the number of reversals to failure results demonstrate that the undermatched weld metal presents a higher resistance to fatigue crack initiation than 10CrNi3MoV high strength steel. Finally, fatigue fracture surfaces of specimens were compared by scanning electron microscopy to identify the differences of crack initiation and the propagation between them.
Stress-relief cracking of a new ferritic steel
NASA Astrophysics Data System (ADS)
Nawrocki, Jesse Gerald
The mechanism of stress-relief cracking in the coarse-grained heat-affected zone (CGHAZ) of low-alloy ferritic steels was studied through a tempering study, stress-relaxation testing, and detailed microstructural characterization. A new ferritic alloy steel, HCM2S, was used as the model system. Common 2.25Cr-1 Mo steel, which is susceptible to stress-relief cracking, was used for comparison to HCM2S. The CGHAZ was simulated using Gleeble techniques. A dense distribution of small tungsten-rich carbides within the prior austenite grains induced secondary hardening in the CGHAZ of HCM2S. The CGHAZ of 2.25Cr-1 Mo steel exhibited secondary hardening due to the intragranular precipitation of many Fe-rich M3C carbides. The hardness of HCM2S was more stable at longer times and high temperatures than 2.25Cr-1 Mo steel due to the intragranular precipitation of small W and V-rich carbides. The CGHAZs of HCM2S and 2.25Cr-1 Mo steel were susceptible to stress-relief cracking between 575 and 725°C. HCM2S exhibited C-curve behavior with respect to the time to failure as a function of post-weld heat treatment (PWHT) temperature. No segregation of tramp elements to prior austenite grain boundaries was detected in HCM2S. Both intergranular and intragranular carbide precipitation controlled the stress-relief cracking behavior. The amount of intergranular failure increased with test temperature due to the increasing amounts of Fe-rich M3C carbides at the prior austenite grain boundaries. These carbides acted as cavity nucleation sites. The cavities coalesced to form microcracks along prior austenite grain boundaries. Eventually, the remaining uncracked areas could not support the load and failed by ductile rupture. The balance of intergranular and intragranular carbide precipitation resulted in the C-curve behavior. The nose of the C-curve occurred at 675°C. The intragranular regions were strong because of a dense distribution of W/Fe-rich carbides, but the prior austenite grain boundaries were weak due to a large amount of intergranular M3C carbides. A mechanism for stress-relief cracking in the CGHAZ of HCM2S has been proposed. The results of this study form a basis for heat treating and welding processing variables for HCM2S and 2.25Cr-1 Mo steel to avoid stress-relief cracking. In addition, these results can be applied to other materials to avoid microstructures susceptible to stress-relief cracking.
Master curve characterization of the fracture toughness behavior in SA508 Gr.4N low alloy steels
NASA Astrophysics Data System (ADS)
Lee, Ki-Hyoung; Kim, Min-Chul; Lee, Bong-Sang; Wee, Dang-Moon
2010-08-01
The fracture toughness properties of the tempered martensitic SA508 Gr.4N Ni-Mo-Cr low alloy steel for reactor pressure vessels were investigated by using the master curve concept. These results were compared to those of the bainitic SA508 Gr.3 Mn-Mo-Ni low alloy steel, which is a commercial RPV material. The fracture toughness tests were conducted by 3-point bending with pre-cracked charpy (PCVN) specimens according to the ASTM E1921-09c standard method. The temperature dependency of the fracture toughness was steeper than those predicted by the standard master curve, while the bainitic SA508 Gr.3 steel fitted well with the standard prediction. In order to properly evaluate the fracture toughness of the Gr.4N steels, the exponential coefficient of the master curve equation was changed and the modified curve was applied to the fracture toughness test results of model alloys that have various chemical compositions. It was found that the modified curve provided a better description for the overall fracture toughness behavior and adequate T0 determination for the tempered martensitic SA508 Gr.4N steels.
Khaksar, Ladan; Shirokoff, John
2017-04-20
The chemical degradation of alloy components in sulfur-containing environments is a major concern in oil and gas production. This paper discusses the effect of elemental sulfur and its simplest anion, sulfide, on the corrosion of Cr-Mo alloy steel at pH 2 and 5 during 10, 20 and 30 h immersion in two different solutions. 4130 Cr-Mo alloy steel is widely used as tubing and tubular components in sour services. According to the previous research in aqueous conditions, contact of solid sulfur with alloy steel can initiate catastrophic corrosion problems. The corrosion behavior was monitored by the potentiodynamic polarization technique during the experiments. Energy dispersive X-ray spectroscopy (EDS) and scanning electron microscopy (SEM) have been applied to characterize the corrosion product layers after each experiment. The results show that under the same experimental conditions, the corrosion resistance of Cr-Mo alloy in the presence of elemental sulfur is significantly lower than its resistance in the presence of sulfide ions.
Ganeev, Artur; Nikitina, Marina; Sitdikov, Vil; Islamgaliev, Rinat; Hoffman, Andrew; Wen, Haiming
2018-01-01
Grade 91 (9Cr-1Mo) steel was subjected to various heat treatments and then to high-pressure torsion (HPT) at different temperatures. Its microstructure was studied using transmission electron microscopy (TEM) and X-ray diffraction (XRD). Effects of the tempering temperature and the HPT temperature on the microstructural features and microhardness in the ultrafine-grained (UFG) Grade 91 steel were researched. The study of the UFG structure formation takes into account two different microstructures observed: before HPT in both samples containing martensite and in fully ferritic samples. PMID:29671761
NASA Astrophysics Data System (ADS)
Vilar, Rui M.; Cizeron, Georges; Pelletier, Michel
1981-12-01
Transformations undergone by a 9 Cr-2 Mo-Nb-V steel on heating depend on the structure previously developped by quenching or tempering and on the heating rate. TTT and CCT diagrams, plotted after austenizing at 1000 and 1100°C, show only one diffusional transformation at high temperature producing equiaxed ferrite which contains a precipitate of M 23C 6 carbide; the activation energy of the process involved is 123.3 kJ/mol. At low temperatures a martensitic transformation is observed; the martensite is lath-type and autotempered.
NASA Astrophysics Data System (ADS)
Krishna, S. Chenna; Gangwar, Narendra Kumar; Jha, Abhay K.; Pant, Bhanu; George, Koshy M.
2015-04-01
The microstructure and hardness of a nitrogen-containing martensitic stainless steel were investigated as a function of heat treatment using optical microscopy, electron microscopy, amount of retained austenite, and hardness measurement. The steel was subjected to three heat treatments: hardening, cryo treatment, and tempering. The hardness of the steel in different heat-treated conditions ranged within 446-620 HV. The constituents of microstructure in hardened condition were lath martensite, retained austenite, M23C6, M7C3, MC carbides, and M(C,N) carbonitrides. Upon tempering at 500 °C, two new phases have precipitated: fine spherical Mo2C carbides and needle-shaped Cr2N particles.
Investigation of Local Hydrogen Uptake in Rescaled Model Occluded Sites Using Crevice Scaling Laws
2005-04-01
13- 8 Mo . Under anodic polarization, there is a combination of x and G in a crevice or crack where the stainless steel would be passive and remain...2004). 8 . G.A. Young, Jr., J.R. Scully, "The Effects of Test Temperature , Temper and Alloyed Copper on Hydrogen Controlled Crack Growth of an A1-Zn-Mg...sharp crack tip.[16] Precipitation-aged hardened martensitic stainless steels (i.e., Fe-Cr-Ni- Mo alloys) that release hydrolysable Cr and Fe cations
Kinetics of Cr/Mo-rich precipitates formation for 25Cr-6.9Ni-3.8Mo-0.3N super duplex stainless steel
NASA Astrophysics Data System (ADS)
Byun, Sang-Ho; Kang, Namhyun; Lee, Tae-Ho; Ahn, Sang-Kon; Lee, Hae Woo; Chang, Woong-Seong; Cho, Kyung-Mox
2012-04-01
The amount and composition of Cr-rich (σ) and Mo-rich (χ) precipitates in super duplex stainless steels was analyzed. An isothermal heat treatment was conducted at temperatures ranging from 700 °C to 1000 °C for up to 10 days. A time-temperature transformation (TTT) diagram was constructed for the mixture of σ and χ phases. The mixture of the σ and χ phases exhibited the fastest rate of formation at approximately 900 °C. Minor phases, such as Cr2N, M23C6, and M7C3, were also detected using a transmission electron microscopy (TEM). Also, a continuous cooling transformation (CCT) diagram was constructed for the mixture of σ and χ phases using the Johnson-Mehl-Avrami equation. Compared with the known CCT diagram of the σ phase, this study revealed faster kinetics with an order of magnitude difference and a new CCT diagram was also developed for a mixture of σ and χ phases. The calculated fraction of σ and χ phases obtained at a cooling speed of 0.5 °C/s was in good agreement with the experimental data.
NASA Astrophysics Data System (ADS)
Mann, B. S.
2013-12-01
This article deals with water droplet and cavitation erosion behavior of diode laser-treated X10CrNiMoV1222 stainless steel and Ti6Al4V alloy. After laser surface treatment, the water droplet and cavitation erosion resistance (WDER and CER) of these materials improved significantly. The main reason for the improvement is the increased surface hardness and formation of fine-grained microstructures after laser surface treatment. It is observed that there is a similarity in both the phenomena. The WDER and CER can be correlated with a single mechanical property based on modified ultimate resilience (MUR) provided the laser-treated layers are free from microcracks and interface defects. The CER and WDER behavior of HPDL-treated X10CrNiMoV1222 stainless steel and Ti6Al4V alloy samples using different test equipment as per ASTM G32-2003 and ASTM G73-1978, their correlation with MUR, and their damage mechanism compared on the basis of XRD analyses, optical and scanning electron micrographs are discussed and reported in this article.
NASA Astrophysics Data System (ADS)
Pfennig, Anja; Kranzmann, Axel
2018-05-01
Pipe steels suitable for carbon capture and storage technology (CCS) require resistance against the corrosive environment of a potential CCS-site, e.g. heat, pressure, salinity of the aquifer, CO2-partial pressure. Samples of different mild and high alloyed stainless injection-pipe steels partially heat treated: 42CrMo4, X20Cr13, X46Cr13, X35CrMo4 as well as X5CrNiCuNb16-4 were kept at T=60 °C and ambient pressure as well as p=100 bar for 700 h - 8000 h in a CO2-saturated synthetic aquifer environment similar to possible geological on-shore CCS-sites in the northern German Basin. Main corrosion products are FeCO3 and FeOOH. Corrosion rates obtained at 100 bar are generally much lower than those measured at ambient pressure. Highest surface corrosion rates are 0.8 mm/year for 42CrMo4 and lowest 0.01 mm/year for X5CrNiCuNb16-4 in the vapour phase at ambient pressure. At 100 bar the highest corrosion rates are 0.01 mm/year for 42CrMo4, X20Cr13 (liquid phase), X46Cr13 and less than 0.01 mm/year for X35CrMo4 and X5CrNiCuNb16-4 after 8000 h of exposure with no regard to atmosphere. Martensitic microstructure offers good corrosion resistance.
Phase identification in boron-containing powder metallurgy steel using EBSD in combination with EPMA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Ming-Wei, E-mail: mwwu@ntut.edu.tw; Cai, Wen-Zhang
2016-03-15
Boron (B) is extensively used to induce liquid phase sintering (LPS) in powder metallurgy (PM) steels and thereby increase the densification. The alloying elements in B-containing PM steels affect the boride phase, stability of the boride, the temperature of liquid formation, and the progress of LPS. However, the boride phase has not been systematically identified yet. The main objective of this study was to clarify the influences of alloying elements, including C, Cr, and Ni, on the boride phases using electron backscatter diffraction (EBSD) in combination with electron probe microanalysis (EPMA). Network structures consisting of ferrite, Fe{sub 2}B boride, andmore » Fe{sub 3}C carbide were extensively observed in the Fe–0.4B–0.5C steel. The portions of Fe{sub 2}B were sufficiently larger than those of Fe{sub 3}C, and Fe{sub 3}C was mostly distributed at the interfaces between ferrite and Fe{sub 2}B. Adding 1.5 wt.% Cr or 1.8 wt.% Ni to Fe–0.4B–0.5C steel completely changes the Fe{sub 2}B and Fe{sub 3}C phases to a M{sub 3}(B,C) phase, where M represents the metallic elements, including Fe, Cr, Mo, and Ni. Furthermore, Cr, Mo, B, and C atoms tend to concentrate on the M{sub 3}(B,C) phase, but Ni atoms do not. - Highlights: • Network structures consisting of ferrite, Fe{sub 2}B boride, and Fe{sub 3}C carbide were extensively observed in the Fe–0.4B–0.5C steel. • Adding 1.5 wt.% Cr or 1.8 wt.% Ni to Fe–0.4B–0.5C steel completely transforms the Fe{sub 2}B and Fe{sub 3}C phases to a M{sub 3}(B,C) phase. • Cr, Mo, B, and C atoms tend to concentrate on the M{sub 3}(B,C) phase, but Ni atoms do not.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clark, Williams; Zhao, Ji-Cheng
Cost effective and high performance alloys that are capable of operating at 760 °C or higher for extended periods of time under a very aggressive environment are critically required for the design and development of advanced ultrasupercritical (AUSC) boilers and steam turbines. Finely dispersed Laves phase precipitates have been shown by Takeyama and co-workers to be a viable strengthening mechanism in high temperature austenitic steels. There is currently no straightforward theory that can predict what other intermetallic phases can serve as potent precipitation-strengthening phases for steels; thus we employed a highly effective dual-anneal diffusion multiple (DADM) approach to screen formore » viable strengthening precipitates over a wide range of compositions. From the Fe-Co-Cr-Ni-Mo DADMs, the Fe-Cr-Mo based Chi phase was identified as a new strengthening phase for high temperature ferritic steels; and from the Fe-Mn-Cr-Nb-Ni-Mo-FeAl DADMs, the Laves phase was identified as a viable strengthening precipitate in Fe-Mn and Fe-Ni based austenitic steels. After identification of viable strengthening phases from the DADMs that covered compositions in the basic ternary and quaternary systems, we employed computation thermodynamics to perform multicomponent alloy design and optimization. For the new the Chi-phase strengthened steels, we performed thermodynamic calculations to vary the volume fraction of the Chi phase and introduced Nb and carbon to promote the formation of stable carbides for grain size control during solution heat treatment. For the Fe-Ni-Mn based austenitic steels, we performed extensive parametric optimization of compositions in order to reduce the expensive Ni content, add Cr and Al for oxidation resistance, and balance the alloying contents (Ni, Mn, Cr, Al, Mo) to suppress the ferritic phase and promote the austenitic matrix phase. Four steels (two ferritic + two austenitic) were designed and tested. The two Chi-phase strengthened ferritic steels exhibited excellent oxidation resistance and good creep-rupture strength at moderate temperatures, considering their ferritic matrix that usually results in lower creep resistance than austenitic steels. These steels showed brittleness and sample-to-sample variability in ductility. The low ductility might be due to the macro segregation during solidification or the significant grain growth during the solution heat treatments. We believe there is no inherent brittleness based on the chemistry of the steels. The creep-rupture performance of the steels is comparable to the 9Cr steels. Due to their ferritic matrix, the new Chi-phase strengthened ferritic steels may not be suited for the 760 °C AUSC applications, but they are very good candidates for intermediate temperature applications due to their outstanding oxidation resistance and high strength. Further study is required to find the source of low and highly variable ductility. We believe the compositions of the Chi-phase strengthened steels are not inherently brittle. The Chi-phase strengthened ferritic steels may also be excellent candidates for intermediate-temperature and room-temperature cast stainless steels, thus we highly recommend further investigations. The two Mn-containing austenitic steels based on the Laves phase showed good ductility, excellent oxidation resistance (slightly inferior to the two ferritic steels) at high temperatures and moderate creep strength. The creep-strength of the two austenitic steels based on the Larson-Miller parameters is higher than that of the traditional 316 stainless steels, but lower than the alumina-forming alloys (AFAs) developed at Oak Ridge National Laboratories. We do not recommend high priority in further studying these compositions unless higher Cr alloys are required for hot-corrosion resistance.« less
NASA Astrophysics Data System (ADS)
Tomita, Yoshiyuki; Okabayashi, Kunio
1983-11-01
In the previous paper, it was reported that isothermal heat treatment of a commercial Japanese 0.40 pct C-Ni-Cr-Mo ultrahigh strength steel (AISI 4340 type) at 593 K for a short time followed by water quenching, in which a mixed structure of 25 vol pct lower bainite and 75 vol pct martensite is produced, results in the improvement of low temperature mechanical properties (287 to 123 K). The purpose of this paper is to study whether above new heat treatment will still be effective in commercial practice for improving low temperature mechanical properties of the ultrahigh strength steel when applied to a commercial Japanese 0.40 pct C-Cr-Mo ultrahigh strength steel which is economical because it lacks the expensive nickel component (AISI 4140 type). At and above 203 K this new heat treatment, as compared with the conventional 1133 K direct water quenching treatment, significantly improved the strength, tensile ductility, and notch toughness of the 0.40 pct C-Cr-Mo ultrahigh strength steel. At and above 203 K the new heat treatment also produced superior fracture ductility and notch toughness results at similar strength levels as compared to those obtained by using γ α' repetitive heat treatment for the same steel. However, the new heat treatment remarkably decreased fracture ductility and notch toughness of the 0.40 pct C-Cr-Mo ultrahigh strength steel below 203 K, and thus no significant improvement in the mechanical properties was noticeable as compared with the properties produced by the conventional 1133 K direct water quenching treatment and the γ α' repetitive heat treatment. This contrasts with the fact that the new heat treatment, as compared with the conventional 1133 K direct water quenching treatment and the γ α' repetitive heat treatment, dramatically improved the notch toughness of the 0.40 pct C-Ni-Cr-Mo ultrahigh strength steel, providing a better combination of strength and ductility throughout the 287 to 123 K temperature range. The difference in the observed mechanical properties between the above two ultrahigh strength steels is discussed on the basis of the effect of nickel content, fracture profile, and so forth.
Corrosion Studies in Support of Medium Power Lead Alloy Cooled Reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eric Loewen; Ronald Ballinger; Jeongyoun Lim
2004-09-01
The performance of structural materials in lead or lead-bismuth eutectic (LBE) systems is evaluated. The materials evaluated included refractory metals (W, Mo, and Ta), several U.S. steels [austenitic steel (316L), carbon steels (F-22, Fe-Si), ferritic/martensitic steels (HT-9 and 410)], and several experimental Fe-Si-Cr alloys that were expected to demonstrate corrosion resistance. The materials were exposed in either an LBE rotating electrode or a dynamic corrosion cell for periods from 100 to 1000 h at temperatures of 400, 500, 600, and 700°C, depending on material and exposure location. Weight change and optical scanning electron microscopy or X-ray analysis of the specimenmore » were used to characterize oxide film thickness, corrosion depth, microstructure, and composition changes. The results of corrosion tests validate the excellent resistance of refractory metals (W, Ta, and Mo) to LBE corrosion. The tests conducted with stainless steels (410, 316L, and HT-9) produced mass transfer of elements (e.g., Ni and Cr) into the LBE, resulting in degradation of the material. With Fe-Si alloys a Si-rich layer (as SiO2) is formed on the surface during exposure to LBE from the selective dissolution of Fe.« less
Corrosion Studies in Support of Medium-Power Lead-Alloy-Cooled Reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Loewen, Eric P.; Ballinger, Ronald G.; Lim, Jeongyoun
2004-09-15
The performance of structural materials in lead or lead-bismuth eutectic (LBE) systems is evaluated. The materials evaluated included refractory metals (W, Mo, and Ta), several U.S. steels [austenitic steel (316L), carbon steels (F-22, Fe-Si), ferritic/martensitic steels (HT-9 and 410)], and several experimental Fe-Si-Cr alloys that were expected to demonstrate corrosion resistance. The materials were exposed in either an LBE rotating electrode or a dynamic corrosion cell for periods from 100 to 1000 h at temperatures of 400, 500, 600, and 700 deg. C, depending on material and exposure location. Weight change and optical scanning electron microscopy or X-ray analysis ofmore » the specimen were used to characterize oxide film thickness, corrosion depth, microstructure, and composition changes. The results of corrosion tests validate the excellent resistance of refractory metals (W, Ta, and Mo) to LBE corrosion. The tests conducted with stainless steels (410, 316L, and HT-9) produced mass transfer of elements (e.g., Ni and Cr) into the LBE, resulting in degradation of the material. With Fe-Si alloys a Si-rich layer (as SiO{sub 2}) is formed on the surface during exposure to LBE from the selective dissolution of Fe.« less
Corrosion Behavior and Durability of Low-Alloy Steel Rebars in Marine Environment
NASA Astrophysics Data System (ADS)
Liu, Ming; Cheng, Xuequn; Li, Xiaogang; Yue, Pan; Li, Jun
2016-11-01
The corrosion resistance of Cr-modified low-alloy steels and HRB400 carbon steel was estimated using the open-circuit potential, potentiodynamic polarization, electrochemical impedance spectroscopic, and weight loss methods in simulated concrete pore solution. Results show that Cr-modified steels exhibit a higher corrosion resistance with a higher critical chloride level (CTL), lower corrosion current density, and higher impedance than carbon steel. The CTL of the steels significantly reduces with increasing temperature. Weight loss measurement shows that the Cr-modified steels exhibit low corrosion rates and small corrosion pitting. The primary constituents of the corrosion scales are Fe2O3, Fe3O4, β-FeOOH, γ-FeOOH, and α-FeOOH. A large amount of α-FeOOH could be detected in the Cr-modified steel corrosion products. Moreover, the Cr-modified steels demonstrate a higher durability than HRB400 carbon steel.
NASA Astrophysics Data System (ADS)
Wang, Qi-wen; Li, Chang-sheng; Peng, Huan; Chen, Jie; Zhang, Jian
2018-03-01
To obtain the high-temperature strength and toughness of the medium-high-temperature-pressure steel, the microstructure evolution and mechanical properties of Fe-2Cr-Mo-0.12C steel subjected to three different tempering temperatures after being normalized were investigated. The results show that the microstructure of the sample, tempered in the range 675-725 °C for 50 min, did not change dramatically, yet the martensite/austenite constituents decomposed, and the bainite lath merged together and transformed into polygonal ferrite. At the same time, the precipitate size increased with an increase in tempering temperature. With the increase in the tempering temperature from 675 to 725 °C, the impact absorbed energy of the Fe-2Cr-Mo-0.12C steel at -40 °C increased from 257 to 325 J, and the high-temperature yield strength decreased; however, the high-temperature ultimate tensile strength tempered at 700 °C was outstanding (422-571 MPa) at different tested temperatures. The variations of the properties were attributed to the decomposition of M/A constituents and the coarsening of the precipitates. Fe-2Cr-Mo-0.12C steel normalized at 930 °C and tempered at 700 °C was found to have the best combination of ductility and strength.
NASA Astrophysics Data System (ADS)
Wang, Xiaowei; Zhang, Wei; Gong, Jianming; Wahab, Magd Abdel
2018-07-01
In this paper, Low Cycle Fatigue (LCF) and Creep-Fatigue Interaction (CFI) behavior of 9Cr-0.5Mo-1.8 W-V-Nb heat-resistant steel (ASME Grade P92 steel) at elevated temperature of 600 °C are investigated. Strain controlled LCF tests are conducted in fully reversed triangular waveform at different strain amplitudes ranging from 0.2% to 0.8%. CFI tests are conducted at 0.4% strain amplitude in trapezoid waveform with tensile hold time varying from 1 min to 60 min and compressive hold time varying from 1 min to 10 min. During LCF and CFI loadings, the evolution of cyclic stress, mean stress and stress relaxation behavior are investigated. It turns out that the softening behavior and lifetime degradation are dependent on strain amplitude, hold time and hold direction. In addition, the microstructure evolution and fracture behavior are characterized by optical, scanning and transmission electron microscope. The initial rapid softening behavior is attributed to the quick elimination of low angle boundaries, whereas no obvious microstructure alteration appears in the stable stage. Fracture behavior analysis reveals creep voids in long-term CFI tests facilitates the initiation and propagation of secondary cracks. The different responses of outer surface oxidation layer during cycling provides an explanation for severer damage of compressive hold and also accounts for the observed various fracture behavior of failed samples.
Sequential extraction of chromium, molybdenum, and vanadium in basic oxygen furnace slags.
Spanka, Marina; Mansfeldt, Tim; Bialucha, Ruth
2018-06-02
Basic oxygen furnace slags (BOS) are by-products of basic oxygen steel production. Whereas the solubility of some elements from these slags has been well investigated, information about the mineralogy and related leaching, i.e., availability of the environmentally relevant elements chromium (Cr), molybdenum (Mo), and vanadium (V), is still lacking. The aim of this study was to investigate these issues with a modified, four-fraction-based, sequential extraction procedure (F1-F4), combined with X-ray diffraction, of two BOS. Extractants with increasing strength were used (F1 demineralized water, F2 CH 3 COOH + HCl, F3 Na 2 EDTA + NH 2 OH·HCl, and F4 HF + HNO 3 + H 2 O 2 ), and after each fraction, X-ray diffraction was performed. The recovery of Cr was moderate (66.5%) for one BOS, but significantly better (100.2%) for the other one. High recoveries were achieved for the other elements (Mo, 100.8-107.9% and V, 112.6-87.0%), indicating that the sequential extraction procedure was reliable when adapted to BOS. The results showed that Cr and Mo primarily occurred in F4, representing rather immobile elements under natural conditions, which were strongly bound into/onto Fe minerals (srebrodolskite, magnetite, hematite, or wustite). In contrast, V was more mobile with proportional higher findings in F2 and F3, and the X-ray diffraction results reveal that V was not solely bound into Ca minerals (larnite, hatrurite, kirschsteinite, and calcite), but also bound to Fe minerals. The results indicated that the total amount of recovery was a poor indicator of the availability of elements and did not correspond to the leaching of elements from BOS.
Research on flow stress model and dynamic recrystallization model of X12CrMoWVNbN10-1-1 steel
NASA Astrophysics Data System (ADS)
Sui, Da-shan; Wang, Wei; Fu, Bo; Cui, Zhen-shan
2013-05-01
Plastic deformation behavior of X12CrMoWVNbN10-1-1 ferrite heat-resistant steel was studied systematically at high temperature. The stress-strain curves were measured at the temperature of 950°C-1250°C and strain rate of 0.0005s-1-0.1s-1 by Gleeble thermo-mechanical simulator. The flow stress model and dynamic recrystallization model were established based on Laasraoui two-stage model. The activation energy was calculated and the parameters were determined accordingly based on the experimental results and Sellars creep equation. The verification was performed to prove the models and it indicated the calculated results were identical to the experimental data.
Influence of low nickel (0.09 wt%) content on microstructure and toughness of P91 steel welds
NASA Astrophysics Data System (ADS)
Arivazhagan, B.; Vasudevan, M.; Kamaraj, M.
2015-05-01
Modified 9Cr-1Mo (P91) steel is widely used as a high temperature structural material in the fabrication of power plant components. Alloying elements significantly influences the microstructure and mechanical properties of P91 steel weldments. The alloying elements manganese and nickel significantly influence the lower critical phase transformation temperature (AC1) as well as tempering response of welds. In the existing published information there was wide spread use of high Mn+Ni filler wire. In the present study, weldment preparation was completed using GTA filler wire having low Nickel content (Mn+Ni of 0.58 wt% including nickel content of 0.09 wt%). Microstructure and mechanical properties characterization was done. There is a requirement on minimum toughness of 47 Joules for P91 steel tempered welds at room temperature. Microstructural observation revealed that the GTA welds have low δ-ferrite content (<0.5%) in the martensite matrix. In the as-weld condition, the toughness was 28 Joules whereas after PWHT at 760 °C-2 h it was 115 Joules. In the present study, toughness of low nickel weld was higher due to low δ-ferrite content (<0.5%), multipass grain refinement and weld metal deposition of single pass per layer of weldment.
NASA Astrophysics Data System (ADS)
Karuppasamy, S.; Sivan, V.; Natarajan, S.; Kumaresh Babu, S. P.; Duraiselvam, M.; Dhanuskodi, R.
2018-05-01
High cost imported components of seamless steel tube manufacturing plants wear frequently and need replacement to ensure the quality of the product. Hard chrome plating, which is time consuming and hazardous, is conventionally used to restore the original dimension of the worn-out surface of the machine components. High Velocity Oxy-Fuel (HVOF) thermal spray coatings with NiCrBSi super alloy powder and Cr3C2 NiCr75/25 alloy powder applied on a 50CrMo4 (DIN-1.7228) chromium molybdenum alloy steel, the material of the wear prone machine component, were evaluated for use as an alternative for hard chrome plating in this present work. The coating characteristics are evaluated using abrasive wear test, sliding wear test and microscopic analysis, hardness test, etc. The study results revealed that the HVOF based NiCrBSi and Cr3C2NiCr75/25 coatings have hardness in the range of 800-900 HV0.3, sliding wear rate in the range of 50-60 µm and surface finish around 5 microns. Cr3C2 NiCr75/25 coating is observed to be a better option out of the two coatings evaluated for the selected application.
NASA Astrophysics Data System (ADS)
Awasthi, Reena; Abraham, Geogy; Kumar, Santosh; Bhattacharyya, Kaustava; Keskar, Nachiket; Kushwaha, R. P.; Rao, Ramana; Tewari, R.; Srivastava, D.; Dey, G. K.
2017-06-01
In this study, corrosion characteristics of a nickel-based Ni-Mo-Cr-Si hardfacing alloy having 32Mo, 15Cr, and 3Si (wt pct) as alloying elements, deposited on stainless steel SS316L substrate by laser cladding, have been presented. Corrosion behavior of the laser clad layer was evaluated in reducing (0.1 M HCl) and oxidizing (0.5 M HNO3) environments, in comparison with the reference substrate SS316L, using electrochemical potentiodynamic technique at room temperature. The corrosion mechanisms have been evaluated on the basis of microstructural and microchemical analysis using scanning electron microscopy attached with energy-dispersive spectrometry. Passivity behavior of the laser clad layer was studied in 0.5 M H2SO4, using the potentiostatic technique and analyzing the passive layer by X-ray photoelectron spectroscopy. Laser clad layer of Ni-Mo-Cr-Si exhibited higher pitting corrosion resistance in chloride (reducing) environment, indicated by much higher breakdown potential ( 0.8 VSCE) and the absence of pitting as compared to substrate SS316L ( 0.3 VSCE). However, in oxidizing (0.5 M HNO3) environment, both the laser clad layer and substrate SS316L showed excellent and similar corrosion resistance exhibiting high breakdown potential ( 0.85 VSCE) and wide passivation range ( 0.8 VSCE) with low passive current density ( 4 to 7 × 10-6 A/cm2). The stable passive layer formed on laser clad layer of Ni-Mo-Cr-Si after exposure in 0.5 M H2SO4 solution at constant potential 0.6 VSCE (within the passive range), consisted oxides of Mo as Mo+4 (MoO2) and Mo+6 (MoO4)-2, Cr as Cr3+ (mixture of both Cr2O3 and Cr (OH)3), and Si as Si4+(SiO2), which have contributed to passivation and repassivation and therefore excellent corrosion behavior.
NASA Astrophysics Data System (ADS)
Pandey, C.; Mahapatra, M. M.
2016-06-01
The new generation super critical thermal power plants are required to operate at enhanced thermal efficiency of over 50% to reduce the fuel consumption and environmental pollution. Creep strength-enhanced ferritic steels, commonly known as Cr-Mo alloys such as P91 (X10CrMoVNb 9-1) are such material of choice for the next generation power plants. The operating requirement of these next generation power plants is that steam temperature of around 650 °C is maintained. For such high-temperature application, creep strength of material is the primary consideration together with adequate weld heat-affected zone (HAZ) toughness. Present work deals with the effect of high service temperature on impact toughness of P91 (X10CrMoVNb 9-1) base material, weld fusion zone, and HAZ. The impact toughness of HAZ for conventional weld groove design and narrow weld groove design has been evaluated experimentally in as-welded and at different post-weld heat treatment conditions. Fractography of the impact toughness specimens of base metal, weld fusion zone, and HAZ was carried out using scanning electron microscope. The effects of heat treatment schemes on the percentage of element present at the fracture surface were also studied.
Fracture mechanism maps in unirradiated and irradiated metals and alloys
NASA Astrophysics Data System (ADS)
Li, Meimei; Zinkle, S. J.
2007-04-01
This paper presents a methodology for computing a fracture mechanism map in two-dimensional space of tensile stress and temperature using physically-based constitutive equations. Four principal fracture mechanisms were considered: cleavage fracture, low temperature ductile fracture, transgranular creep fracture, and intergranular creep fracture. The methodology was applied to calculate fracture mechanism maps for several selected reactor materials, CuCrZr, 316 type stainless steel, F82H ferritic-martensitic steel, V4Cr4Ti and Mo. The calculated fracture maps are in good agreement with empirical maps obtained from experimental observations. The fracture mechanism maps of unirradiated metals and alloys were modified to include radiation hardening effects on cleavage fracture and high temperature helium embrittlement. Future refinement of fracture mechanism maps is discussed.
Nitrogen-containing superlow-carbon austenitic steel 02Kh25N22AM2
NASA Astrophysics Data System (ADS)
Fe'ldgandler, É. G.; Svistunova, T. V.; Savkina, L. Ya.; Lapshina, O. B.
1996-02-01
At present the equipment for manufacturing carbamide mineral fertilizers is produced from domestic steel 03Kh17N14M3 having "carbamide quality." Imported equipment also used in the industry is produced from steel of the 25-22-2 (Cr -Ni-Mo) type shipped by various firms, namely, 2RE69 (Sandvik, Sweden), 254SFER (Avesta, Sweden), 2522LCN (VDM, Germany), DM 1.4466 (Germany), and X2CrNiMo 25-22-2 (Dalmine, Italy). The imported steels are used because in some units steel 03Khl7Nl4M3 does not provide the requisite corrosion resistance in an intensified process of carbamide manufacturing. We currently possess domestic high-alloyed steel for producing new and repairing imported equipment operating under the severe conditions of carbamide synthesis. The present paper concerns the structure, mechanical properties, and corrosion resistance of industrially produced steel 02Kh25N22AM2 (ChS-108) and the recommended range of its application.
Nanoscale precipitation in a maraging steel studied by APFIM.
Stiller, Krystyna; Hättestrand, Mats
2004-06-01
This article summarizes findings from our previous investigations and recent studies concerning precipitation in a maraging steel of type 13Cr-9Ni-2Mo-2Cu (at.%) with small additions of Ti (1 at.%) and Al (0.7 at.%). The material was investigated after aging at 475 degrees C up to 400 h using both conventional and three-dimensional atom-probe analyses. The process of phase decomposition in the steel proved to be complicated. It consisted of precipitation of several phases with different chemistry. A Cu-rich phase was first to precipitate and Mo was last in the precipitation sequence. The influence of the complex precipitation path on the material properties is discussed. The investigation clearly demonstrated the usefulness of the applied techniques for investigation of nanoscale precipitation. It is also shown that, complementary methods (such as TEM and EFTEM) giving structural and chemical information on a larger scale must be applied to explain the good properties of the steel after prolonged aging.
Corrosion Behavior of Active Screen Plasma Nitrided 38CrMoAl Steel under Marine Environment
NASA Astrophysics Data System (ADS)
Yang, Li; He, Yongyong; Mao, JunYuan; Zhang, Lei
2017-10-01
The 38CrMoAl steels were nitrided at different temperatures for 7 h using active screen plasma discharge. The analysis showed that the thick compound layer composed of ɛ-Fe2-3N and γ‧-Fe4N was formed on the surface. The corrosion behavior was evaluated by measuring the anodic polarization curves in natural sea water (similar 3.5% NaCl solution), and observation of corroded surface were conducted. The electromechanical measurements indicated that the corrosion potential of the nitrided specimens shifted to a nobler value compared to that of untreated specimens. Passive regions were also observed in the polarization curves for all the nitrided specimens. These results indicate that active screen plasma nitriding can enhance the corrosion resistance of the 38CrMoAl steel under marine environment.
Thuvander, Mattias; Andersson, Marcus; Stiller, Krystyna
2013-09-01
Lath boundaries in a maraging stainless steel of composition 13Cr-8Ni-2Mo-2Cu-1Ti-0.7Al-0.3Mn-0.2Si-0.03C (at%) have been investigated using atom probe tomography following aging at 475 °C for up to 100 h. Segregation of Mo, Si and P to the lath boundaries was observed already after 5 min of aging, and the amount of segregation increases with aging time. At lath boundaries also precipitation of η-Ni₃(Ti, Al) and Cu-rich 9R, in contact with each other, takes place. These co-precipitates grow with time and because of coarsening the area number density decreases. After 100 h of aging a ∼5 nm thick film-like precipitation of a Mo-rich phase was observed at the lath boundaries. From the composition of the film it is suggested that the phase in question is the quasicrystalline R' phase. The film is perforated with Cu-rich 9R and η-Ni₃(Ti, Al) co-precipitates. Not all precipitate types present in the matrix do precipitate at the lath boundaries; the Si-containing G phase and γ'-Ni₃(Ti, Al, Si) and the Cr-rich α' phase were not observed at the lath boundaries. Copyright © 2012 Elsevier B.V. All rights reserved.
CORROSION STUDIES FOR A FUSED SALT-LIQUID METAL EXTRACTION PROCESS FOR THE LIQUID METAL FUEL REACTOR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Susskind, H.; Hill, F.B.; Green, L.
1960-06-30
Corrosion screening tests were carried out on potential materials of construction for use in a fused salt-liquid metal extraction process plant. The corrodents of interest were NaCl--KCl-- MgCl/sub 2/ eutectic, LiCl--KCl eutectic, Bi-- U fuel, and BiCl/sub 3/, either separately or in various combinations. Screening tests to determine the resistance of a wide range of commercial alloys to the corrodents were performed in static and tilting-furnace capsules. Some ceramic materials were tested in static capsules. Largerscale tests of metallic materials were conducted in thermal convection loops and in a forced circulation loop. Some of the tests were conducted isothermally atmore » 500 deg C, and others were performed under 40 to 50 deg C temperature differences at roughly the same teinperature level. On the basis of metallographic examination of exposed test tabs and chemical analyses of corrodents, it was found that the binary and ternary eutectics by themselves produced little attack on any of the materials tested. A wide variety of materials including 1020 mild steel, 2 1/4 Cr--1 Mo alloy steel, types 304 (ELC), 310, 316, 347, 430, and 446 stainless steel, 16-1 Croloy, Inconel, Hastelloy C, Inor-8, Mo, and Ta is, therefore, available for further study. Corrosion by the ternary salt-fuel system was characteristic of that produced by the fuel alone. Alloys such as 1020 mild steel, and 1 1/4 Cr--1/ 2 Mo, and 2 1/4 Cr--1 Mo alloy steel, which are resistant to fuel, would be likely choices at present for container materials. BiCl/sub 3/ produced extensive attack on ternary salt-fuel containers when the fuel contained insufficient concentrations of oxidizable solutes. Au and Al/sub 2/O/sub 3/ were the only materials not attacked by BiCl/sub 3/ in ternary salt alone. (auth)« less
Wan, Tong; Xiao, Ning; Shen, Hanjie; Yong, Xingyue
2016-11-01
The effects of Cl(-) on the corroded surface layer of 00Cr22Ni5Mo3N duplex stainless steel under cavitation in chloride solutions were investigated using nanoindentation in conjunction with XRD and XPS. The results demonstrate that Cl(-) had a strong effect on the nano-mechanical properties of the corroded surface layer under cavitation, and there was a threshold Cl(-) concentration. Furthermore, a close relationship between the nano-mechanical properties and the cavitation corrosion resistance of 00Cr22Ni5Mo3N duplex stainless steel was observed. The degradation of the nano-mechanical properties of the corroded surface layer was accelerated by the synergistic effect between cavitation erosion and corrosion. A key factor was the adsorption of Cl(-), which caused a preferential dissolution of the ferrous oxides in the passive film layer on the corroded surface layer. Cavitation further promoted the preferential dissolution of the ferrous oxides in the passive film layer. Simultaneously, cavitation accelerated the erosion of the ferrite in the corroded surface layer, resulting in the degradation of the nano-mechanical properties of the corroded surface layer on 00Cr22Ni5Mo3N duplex stainless steel under cavitation. Copyright © 2016. Published by Elsevier B.V.
Microstructure and elevated-temperature erosion-oxidation behaviour of aluminized 9Cr-1Mo Steel
NASA Astrophysics Data System (ADS)
Huttunen-Saarivirta, E.; Honkanen, M.; Tsipas, S. A.; Omar, H.; Tsipas, D.
2012-10-01
Degradation of materials by a combination of erosive wear and atmospheric oxidation at elevated temperatures constitutes a problem in some power generation processes, such as fluidized-bed combustion. In this work, 9Cr-1Mo steel, a common tube material in combustion chambers, is coated by a pack cementation method from an Al-containing pack in order to improve the resistance to erosion-oxidation at elevated temperatures. The resulting coating is studied in terms of microstructure and microhardness and tested for its resistance against impacts by sand particles in air at temperatures of 550-700 °C under several conditions, with thickness changes and appearance of the exposed surfaces being studied. The coating was found to contain several phases and layers, the outermost of which was essentially Al-rich and contained e.g., small AlN precipitates. The microhardness values for such coating ranged from 950 to 1100 HV20g. The coating provided the substrate with increased protection particularly against normal particle impacts, as manifested by smaller thickness losses for coated specimens as compared to uncoated counterparts. However, much of the coating was lost under all test conditions, despite the fact that particle debris formed a homogeneous layer on the surface. These results are described and discussed in this paper.
USSR and Eastern Europe Scientific Abstracts Engineering and Equipment No.29
1977-02-08
Perlite (12CrlMoV and 12Cr2MoVSib), ferrite - martensite (lCrllW2MoV), and austentite (Crl8Nil2Ti) steels are discussed for use in the heat-transfer...620°C. Other austentite steels have been developed, including EI695R, EP184, EP17, 45Crl0Mnl4Al-2 (which has a 20-40% ferrite phase ), 0Crl3Mnl2Ni2NSi2...middle zone of 10 mm and at the corners -- up to 40 mm. The shell was reinforced with a grid having square meshes of low -carbon steel wire, 1 mm in diam
Corrosion-resistant amorphous metallic films of Mo49Cr33B18 alloy
NASA Technical Reports Server (NTRS)
Ramesham, R.; Distefano, S.; Fitzgerald, D.; Thakoor, A. P.; Khanna, S. K.
1987-01-01
Corrosion-resistant amorphous metallic alloy films of Mo49Cr33B18 with a crystallization temperature of 590 C were deposited onto glass and quartz substrates by magnetron sputter-quench technique. The amorphous nature of the films was confirmed by their diffuse X-ray diffraction patterns. The deposited films are densely packed (zone T) and exhibit low stress and good adhesion to the substrate. Corrosion current of as-deposited coating of MoCrB amorphous metallic alloy is approximately three orders of magnitude less than the corrosion current of 304 stainless steel in 1N H2SO4 solution.
1980-09-01
freezing points were measured using the prepared thermocouple and reader. It was found that over this temperature range, temperatures were measured...Manning and E. Metcalfe, "Oxidation of Ferritic Steels in Steam," International Conference on Ferritic Steels for Fast Reactor Steam Generators
Takada, Yukyo; Okuno, Osamu
2005-09-01
This study investigated the effect of heat history on the corrosion of keepers used for dental magnetic attachments. Ferritic stainless steels of SUS 444 and 447J1 were prepared with heat treatments in the temperature range of 550-850 degrees C for 1-5 hours. The stainless steels were electrochemically and metallurgically examined by anodic polarization curves in a 0.9% NaCl solution and by microstructural observation using an electron probe microanalyzer with WDS. Heating both kinds of stainless steel at 650-750 degrees C for two hours or more led to the deterioration of their corrosion resistance. For example, there was evidence of a reduction in the breakdown potentials and an increase in the current densities of the anodic polarization curves. These phenomena were attributed mainly to the precipitation of the sigma (FeCr) or chi (Fe18Cr6Mo5) phase, which sometimes resulted in intergranular corrosion. When dental alloys are cast in investment molds embedding the keepers, the heat time required for thermal expansion of the molds should be kept under one hour.
Pramatarova, L; Pecheva, E; Krastev, V; Riesz, F
2007-03-01
Material surfaces play critical role in biology and medicine since most biological reactions occur on surfaces and interfaces. There are many examples showing that the surface properties of the materials control and are directly involved in biological reactions and processes in-vitro like blood compatibility, protein absorption, cell development, etc. The rules that govern the diversity of biological surface phenomenon are fundamental physical laws. Stainless steel doped with Cr, Ni and Mo is widely used material in medicine and dentistry due to its excellent corrosion resistance and mechanical properties. The interest in this material has stimulated extensive studies on improving its bone-bonding properties. This paper describes the surface modification of Cr-Ni stainless steel (AISI 316) by a whole surface sequential implantation of Ca and P ions (the basic ions of hydroxyapatite). Three groups of stainless steel samples are prepared: (i) ion-implanted, (ii) ion-implanted and thermally treated at 600( composite function)C in air for 1 h and (iii) initials. The surface chemistry and topography before and after the surface modification are characterized by X-ray photoelectron spectroscopy, Auger electron spectroscopy, magic mirror method, atomic force microscopy and contact angle measurements.
Höhndorf, H; Drössler, K; Stiehl, P
1977-06-01
The tissue around X 5 CrNiMo 18.10-steel implantates with different surfaces was examined in 72 guinea-pigs. Aside from controls, these animals were preoperatively sensibilized against chromium and nickel. The results can be summarized since the histologic findings showed no different peculiarities. The authors describe an intussusception of the implantate in connective tissue which evidently depends on time and surface. Further the spreading of alien material in the surrounding of the implantate, and morphologic findings are reported. The morphologic evidences are described and discussed in detail, since they are interpreted as signs of cell-mediated immune reactions. The presence of lymphocytes, lymphoblasts, histiocytes (mostly carrying alien material), and granulocytes, as well as proliferations at the arterioles suggest an overlapping of immune reactions.
NASA Astrophysics Data System (ADS)
Cheng, Heming; Huang, Xieqing; Fan, Jiang; Wang, Honggang
1999-10-01
The calculation of a temperature field has a great influence upon the analysis of thermal stresses and stains during quenching. In this paper, a 42CrMo steel cylinder was used an example for investigation. From the TTT diagram of the 42CrMo steel, the CCT diagram was simulated by mathematical transformation, and the volume fraction of phase constituents was calculated. The thermal physical properties were treated as functions of temperature and the volume fraction of phase constituents. The rational approximation was applied to the finite element method. The temperature field with phase transformation and non-linear surface heat-transfer coefficients was calculated using this technique, which can effectively avoid oscillationin the numerical solution for a small time step. The experimental results of the temperature field calculation coincide with the numerical solutions.
NASA Astrophysics Data System (ADS)
Xiong, Hui-Hui; Gan, Lei; Tong, Zhi-Fang; Zhang, Heng-Hua; Zhou, Yang
2018-05-01
The nucleation potential of transition metal (TM) carbides formed in steel can be predicted by the behavior of iron adsorption on their surface. Therefore, Fe adsorption on the (001) surface of (A1-xmx)C (A = Nb, Ti, m = Mo, V) was investigated by the first-principles method to reveal the initialization of Fe nucleation. The Mulliken population and partial density of state (PDOS) were also calculated and analyzed in this work. The results show that Fe adsorption depends on the composition and configuration of the composite carbides. The adsorption energy (Wads) of Fe on most of (A1-xmx)C is larger than that of Fe on pure TiC or NbC. The maximum Wads is found for Fe on (Nb0.5Mo0.5)C complex carbide, indicating that this carbide has the high nucleation capacity at early stage. The Fe adsorption could be improved by the segregation of Cr and Mn atoms on the surfaces of (Nb0.5Mo0.5)C and (Ti0.5Mo0.5)C. The PDOS analysis of (Cr, Mn)-doped systems further explains the strong interactions between Fe and Cr or Mn atoms.
NASA Astrophysics Data System (ADS)
Ahn, Yong-Sik; Song, Jeon-Young
2011-12-01
Exhaust manifolds are subjected to an environment in which heating and cooling cycles occur due to the running pattern of automotive engines. This temperature profile results in the repeated bending stress of exhaust pipes. Therefore, among high-temperature characteristics, the bending fatigue strength is an important factor that affects the lifespan of exhaust manifolds. Here, we report on the effect of the alloy composition, namely the weight fraction of the elements Cr, Mo, Nb, and Ti, on the high-temperature bending fatigue strength of the ferritic stainless steel used in exhaust manifolds. Little difference in the tensile strength and bending fatigue strength of the different composition steels was observed below 600 °C, with the exception of the low-Cr steel. However, steels with high Cr, Mo, or Nb fractions showed considerably larger bending fatigue strength at temperatures of 800 °C. After heating, the precipitates from the specimens were extracted electrolytically and analyzed using scanning electron microscopy energy dispersive spectrometry and transmission electron microscopy. Alloying with Cr and Mo was found to increase the bending fatigue strength due to the substitutional solid solution effect, while alloying with Nb enhanced the strength by forming fine intermetallic compounds, including NbC and Fe2Nb.
NASA Astrophysics Data System (ADS)
Han, Seung Youb; Shin, Sang Yong; Seo, Chang-Hyo; Lee, Hakcheol; Bae, Jin-Ho; Kim, Kisoo; Lee, Sunghak; Kim, Nack J.
2009-08-01
In this study, four API X80 pipeline steels were fabricated by varying Mo, Cr, and V additions, and their microstructures and crystallographic orientations were analyzed to investigate the effects of their alloying compositions on tensile properties and Charpy impact properties. Because additions of Mo and V promoted the formation of fine acicular ferrite (AF) and granular bainite (GB) while prohibiting the formation of coarse GB, they increased the strength and upper-shelf energy (USE) and decreased the energy transition temperature (ETT). The addition of Cr promoted the formation of coarse GB and hard secondary phases, thereby leading to an increased effective grain size, ETT, and strength, and a decreased USE. The addition of V resulted in a higher strength, a higher USE, a smaller effective grain size, and a lower ETT, because it promoted the formation of fine and homogeneous of AF and GB. The steel that contains 0.3 wt pct Mo and 0.06 wt pct V without Cr had the highest USE and the lowest ETT, because its microstructure was composed of fine AF and GB while its maintained excellent tensile properties.
NASA Astrophysics Data System (ADS)
Grobner, P. J.; Blšs, V.
1984-07-01
Metallographic studies have been conducted on a 0.024 pct C-16 pct Cr-1.5 pct Mo-5 pct Ni stainless steel to study the phase reactions associated with heat treatments and investigate the strengthening mechanisms of the steel. In the normalized condition, air cooled from 1010 °C, the microstructure consists of 20 pct ferrite and 80 pct martensite. Tempering in a temperature range between 500 and 600 °C results in a gradual transformation of martensite to a fine mixture of ferrite and austenite. At higher tempering temperatures, between 600 and 800 °C, progressively larger quantities of austenite form and are converted during cooling to proportionally increasing amounts of fresh martensite. The amount of retained austenite in the microstructure is reduced to zero at 800 °C, and the microstructure contains 65 pct re-formed martensite and 35 pct total ferrite. Chromium rich M23C6 carbides precipitate in the single tempered microstructures. The principal strengthening is produced by the presence of martensite in the microstructure. Additional strengthening is provided by a second tempering treatment at 400 °C due to the precipitation of ultrafine (Cr, Mo) (C,N) particles in the ferrite.
A XPS Study of the Passivity of Stainless Steels Influenced by Sulfate-Reducing Bacteria.
NASA Astrophysics Data System (ADS)
Chen, Guocun
The influence of sulfate-reducing bacteria (SRB) on the passivity of type 304 and 317L stainless steels (SS) was investigated by x-ray photoelectron spectroscopy (XPS), microbiological and electrochemical techniques. Samples were exposed to SRB, and then the resultant surfaces were analyzed by XPS, and the corrosion resistance by potentiodynamic polarization in deaerated 0.1 M HCl. To further understand their passivity, the SRB-exposed samples were analyzed by XPS after potentiostatic polarization at a passive potential in the hydrochloric solution. The characterization was performed under two surface conditions: unrinsed and rinsed by deaerated alcohol and deionized water. Comparisons were made with control samples immersed in uninoculated medium. SRB caused a severe loss of the passivity of 304 SS through sulfide formation and possible additional activation to form hexavalent chromium. The sulfides included FeS, FeS_2, Cr_2S _3, NiS and possibly Fe_ {rm 1-x}S. The interaction took place nonuniformly, resulting in undercutting of the passive film and preferential hydration of inner surface layers. The bacterial activation of the Cr^{6+ }^ecies was magnified by subsequent potentiostatic polarization. In contrast, 317L SS exhibited a limited passivity. The sulfides were formed mainly in the outer layers. Although Cr^{6+}^ecies were observed after the exposure, they were dissolved upon polarization. Since 317L SS has a higher Mo content, its higher passivity was ascribed to Mo existing as molybdate on the surface and Mo^{5+} species in the biofilm. Consequently, the interaction of SRB with Mo was studied. It was observed that molybdate could be retained on the surfaces of Mo coupons by corrosion products. In the presence of SRB, however, a considerable portion of the molybdate interacted with intermediate sulfur -containing proteins, forming Mo(V)-S complexes and reducing bacterial growth and sulfate reduction. The limited insolubility of the Mo(V)-S complexes in 0.1 M HCl provided a certain protection so that the pitting potential of the SRB-exposed Mo coupons was not considerably decreased. The interaction of the sulfur-containing proteins with Mo also provided mechanistic information about the adhesion of biofilm to Mo-bearing steels. Additionally, the interactions of SRB with other alloying elements, Cr and Ni, were investigated.
NASA Astrophysics Data System (ADS)
Popova, Natalya; Bayatanova, Lyayla; Nikonenko, Elena; Skakov, Mazhyn; Kozlov, Eduard
2017-01-01
The paper presents the transmission electron microscopy (TEM) investigation of 0.18C-1Cr-3Mn-1Mo- Fe steel specimens to study phase transitions and modification of fine structure after plasma-electrolytic treatment (carbonitriding at 850°C during 5 min). TEM investigations involve two points: on the specimen surface and at ˜40 µm distance from it. The experiments show that the structure in the original state is a mixture consisting of ferrite and perlite grains. Carbonitriding results in a considerable modification of the quality and quantity of steel structure. Thus, on the surface, α-phase is represented by lamellar martensite, while at ˜40 µm depth - by massive and lamellar martensite tempered at low and high temperatures. Moreover, on the subsurface of the martensite plates' boundaries retained austenite layers are observed, while inside plates the particles of alloyed cementite, carbonitrides of M23(C,N)6, M2C0.61N0.39, M6,2C3,5N0,3, M(C,N)2, Cr12Fe32Mo7Ni7 types, and β-graphite are present. In the specimen at the depth of ˜40 µm, retained austenite layers are observed on the boundaries of martensite laths and plates, while inside plates only the particles of alloyed cementite and M23(C,N)6 carbonitride are formed.
The effects of Ni, Mo, Ti and Si on the mechanical properties of Cr free Mn steel (Fe-25Mn-5Al-2C)
NASA Technical Reports Server (NTRS)
Schuon, S. R.
1982-01-01
The FeMnAlC alloys may hold potential as Cr-free replacements for high strategic material iron base superalloys, but little is known about their intermediate temperature (650 C to 870 C) mechanical properties. The effects of alloying elements on the mechanical properties of model FeMnAlC alloys were studied. Results showed that modified FeMnAlC alloys had promising short term, intermediate temperature properties but had relatively poor stress rupture lives at 172 MPa and 788 C. Room temperature and 788 C tensile strength of FeMnAlC alloys were better than common cast stainless steels. Changes in room temperature tensile and 788 C tensile strength and ductility, and 788 C stress rupture life were correlated with changes in Ni, Mo, Ti, and Si levels due to alloying effects on interstitial carbon levels and carbide morphology. Fe-25Mn-5Al-2C had a very poor stress rupture life at 172 MPa and 788 C. Addition of carbide-forming elements improved the stress rupture life.
Inelastic deformation and damage at high temperature
NASA Astrophysics Data System (ADS)
Krempl, E.
1992-06-01
Combined experimental and theoretical investigations into the inelastic deformation and damage behavior of engineering alloys at elevated temperatures are being pursued. The analysis of previously performed strain rate change and relaxation tests on modified 9Cr-1Mo steel showed the need for inclusion of a recovery of state term in the growth laws for the state variables of the viscoplasticity theory based on overstress (VBO). Recovery of state terms were introduced and the experimental results were satisfactorily simulated. The finite deformation theory of VBO has been developed further to include a convected derivative rationale for the choice of the objective stress rate. The reversing direct current voltage drop measurements during low cycle fatigue at elevated temperature were improved. A passive filter bank and new positioning devices for the coils were installed. Tests at 650 C and lasting several days showed excessive, uncontrollable temperature changes. It was decided to drop the test temperature to 538 C which is close to the operating temperature of type 304 stainless steel. The temperature fluctuations in torsion tests were within +/- 3 C which was considered satisfactory.
Tribological and corrosion properties of plasma nitrided and nitrocarburized 42CrMo4 steel
NASA Astrophysics Data System (ADS)
Kusmic, D.; Van Thanh, D.
2017-02-01
This article deals with tribological and corrosion resistance comparison of plasma nitrided and nitrocarburized 42CrMo4 steel used for breech mechanism in the armament production. Increasing of materials demands (like wear resistance, surface hardness, running-in properties and corrosion resistance) used for armament production and in other industrial application leads in the field of surface treatment. Experimental steel samples were plasma nitrided under different nitriding gas ratio at 500 °C for 15h and nitrocarburized for 45 min at temperature 590°C and consequently post-oxidized for 10 min at 430°C. Individual 42CrMo4 steel samples were subsequently metallographically evaluated and characterized by hardness and microhardness measuring. The wear test “ball on disc” was realized for measuring of adhesive wear and coefficient of friction during unlubricated sliding. NSS corrosion tests were realized for corrosion resistance evaluation and expressed by corroded area and calculated corrosion rate. The corrosion resistance evaluation is by the surface corrosion-free surfaces evaluation supplemented using the laser confocal microscopy. Due to different surface treatment and plasma nitriding conditions, there are wear resistance and corrosion resistance differences evident between the plasma nitrided steel samples as well.
Effect of Cr Contents and Heat Treating on Reverted Austenite in Maraging Steel Weldments
NASA Astrophysics Data System (ADS)
Kim, S. W.; Lee, H. W.
2018-05-01
By conducting flux cored arc welding (FCAW) on maraging steels with Cr contents of 1.4 and 5.2 wt%, this study observed the effects of Cr content and heat treating on reverted austenite formation in welded maraging steel. Aging treatment was carried out at the temperatures of 450, 480 and 530 °C for 3 h in each condition. As the aging temperature increased, reverted austenite was formed along the interdendritic and intercellular grain boundaries, and the proportion of reverted austenite increased with increasing Cr addition. The aging process led to the segregation of Ti and Mo along the interdendritic and intercellular grain boundaries. Some of the welded specimens were subjected to solution heat treatment at 820 and 1250 °C for 1 h after welding, resulting in a decrease in reverted austenite fraction.
Effect of Cr Contents and Heat Treating on Reverted Austenite in Maraging Steel Weldments
NASA Astrophysics Data System (ADS)
Kim, S. W.; Lee, H. W.
2018-03-01
By conducting flux cored arc welding (FCAW) on maraging steels with Cr contents of 1.4 and 5.2 wt%, this study observed the effects of Cr content and heat treating on reverted austenite formation in welded maraging steel. Aging treatment was carried out at the temperatures of 450, 480 and 530 °C for 3 h in each condition. As the aging temperature increased, reverted austenite was formed along the interdendritic and intercellular grain boundaries, and the proportion of reverted austenite increased with increasing Cr addition. The aging process led to the segregation of Ti and Mo along the interdendritic and intercellular grain boundaries. Some of the welded specimens were subjected to solution heat treatment at 820 and 1250 °C for 1 h after welding, resulting in a decrease in reverted austenite fraction.
Tribological properties and surface structures of ion implanted 9Cr18Mo stainless steels
NASA Astrophysics Data System (ADS)
Fengbin, Liu; Guohao, Fu; Yan, Cui; Qiguo, Sun; Min, Qu; Yi, Sun
2013-07-01
The polished quenched-and-tempered 9Cr18Mo steels were implanted with N ions and Ti ions respectively at a fluence of 2 × 1017 ions/cm2. The mechanical properties of the samples were investigated by using nanoindenter and tribometer. The results showed that the ion implantations would improve the nanohardness and tribological property, especially N ion implantation. The surface analysis of the implanted samples was carried out by using XRD, XPS and AES. It indicated that the surface exhibits graded layers after ion implantation. For N ion implantation, the surface about 20 nm thickness is mainly composed of supersaturated interstitial N solid solution, oxynitrides, CrxCy phase and metal nitrides. In the subsurface region, the metal nitrides dominate and the other phases disappear. For Ti ion implantation, the surface of about 20 nm thickness is mainly composed of titanium oxides and carbon amorphous phase, the interstitial solid solution of Ti in Fe is abundant in the subsurface region. The surface components and structures have significant contributions to the improved mechanical properties.
Jiang, Zhouhua; Feng, Hao; Li, Huabing; Zhu, Hongchun; Zhang, Shucai; Zhang, Binbin; Han, Yu; Zhang, Tao; Xu, Dake
2017-07-27
The relationship between microstructure and corrosion behavior of martensitic high nitrogen stainless steel 30Cr15Mo1N at different austenitizing temperatures was investigated by microscopy observation, electrochemical measurement, X-ray photoelectron spectroscopy analysis and immersion testing. The results indicated that finer Cr-rich M₂N dispersed more homogeneously than coarse M 23 C₆, and the fractions of M 23 C₆ and M₂N both decreased with increasing austenitizing temperature. The Cr-depleted zone around M 23 C₆ was wider and its minimum Cr concentration was lower than M₂N. The metastable pits initiated preferentially around coarse M 23 C₆ which induced severer Cr-depletion, and the pit growth followed the power law. The increasing of austenitizing temperature induced fewer metastable pit initiation sites, more uniform element distribution and higher contents of Cr, Mo and N in the matrix. In addition, the passive film thickened and Cr₂O₃, Cr 3+ and CrN enriched with increasing austenitizing temperature, which enhanced the stability of the passive film and repassivation ability of pits. Therefore, as austenitizing temperature increased, the metastable and stable pitting potentials increased and pit growth rate decreased, revealing less susceptible metastable pit initiation, larger repassivation tendency and higher corrosion resistance. The determining factor of pitting potentials could be divided into three stages: dissolution of M 23 C₆ (below 1000 °C), dissolution of M₂N (from 1000 to 1050 °C) and existence of a few undissolved precipitates and non-metallic inclusions (above 1050 °C).
NASA Astrophysics Data System (ADS)
Yadoiwa, Ariyasu; Mizobe, Koshiro; Kida, Katsuyuki
2018-03-01
13Cr % martensitic stainless steels were used in various industry, because they have excellent corrosion resistance and high hardness among other stainless steels. They are also expected as a bearing material, however, the research on rolling contact fatigue (RCF) is not enough. In this study, 13Cr-2Ni-2Mo stainless steels were quenched by induction heating and their RCF lives were evaluated. A Si3N4-ball was used in order to apply higher stress (Pmax = 5.6 GPa) than our previous tests (Pmax=5.3 GPa), in a single-ball RCF testing machine. It was found that the basic life (L10) was 2.20×106 cycles and Median life (L50) was 6.04×106 cycles. In addition, Weibull modulus became higher than the previous tests.
NASA Astrophysics Data System (ADS)
Senthur Prabu, S.; Devendranath Ramkumar, K.; Arivazhagan, N.
2017-11-01
In the present research work, dissimilar welding between Inconel 625 super alloy and AISI 904L super austenitic stainless steel using manual multi-pass continuous current gas tungsten arc (CCGTA) welding process employed with ERNiCrMo-4 and ERNiCrCoMo-1 fillers were performed to determine the mechanical properties and weldability. Tensile test results corroborated that the fracture had occurred at the parent metal of AISI 904L irrespective of filler used for all the trials. The presence of the macro and micro void coalescence in the fibrous matrix characterised for ductile mode of fracture. The hardness values at the weld interface of Inconel 625 side were observed to be higher for ERNiCrMo-4 filler due to the presence of strengthening elements such as W, Mo, Ni and Cr. The impact test accentuated that the weldments using ERNiCrMo-4 filler offered better impact toughness (41J) at room temperature. Bend test results showed that the weldments using these fillers exhibited good ductility without cracks.
2005-02-16
alloy is also given. The solidification mode of martensitic samples has been omitted and replaced with ’M’. Mo Ni +Cr Cr Ni ... alloys composed predominately of austenite. The four solidification modes present in the remaining 64 alloys , in order of increasing Cr/ Ni content, were...result in Fe- Ni -Cr-Mo alloys from the arc-melt condition. Solidification Solidification Primar- Secondar- Final microstrncture Mode
NASA Astrophysics Data System (ADS)
Park, Sang-Gyu; Lee, Ki-Hyoung; Min, Ki-Deuk; Kim, Min-Chul; Lee, Bong-Sang
2012-07-01
It is well known that SA508 Gr.4N low alloy steel offers improved fracture toughness and strength compared to commercial low alloy steels such as SA508 Gr.3 Mn-Mo-Ni low alloy steel. In this study, the effects of Cr, Mn, and Ni on temper embrittlement in SA508 Gr.4N low alloy steel were evaluated from the viewpoint of thermodynamic parameters such as P diffusivity and C activity. The changes of the ductile-brittle transition temperatures before and after aging were correlated with varying alloying element content, and the diffusivity of P and the activity of C were calculated and correlated with the transition behaviors. The addition of Ni, Cr, and Mn reduce the resistance to temper embrittlement, showing increased Transition-Temperature Shift (TTS) and an increased fraction of intergranular fracture. Although the diffusivity of P is changed by the addition of alloying elements, it does not considerably affect the temper embrittlement. The Mn and Cr content in the matrix significantly reduce the C activity, with showing an inversely proportional relationship to TTS. The change of susceptibility to temper embrittlement caused by Cr and Mn addition could be explained by the variation of C activity. Unlike Cr and Mn, Ni has little effect on the temper embrittlement and C activity.
NASA Astrophysics Data System (ADS)
Ruan, L. H.; Wu, K. M.; Qiu, J. A.; Shirzadi, A. A.; Rodionova, I. G.
2017-05-01
Cr - Mn - Mo - Ni pressure vessel steels containing 0.54 and 1.55% Si are studied. Metallographic and fractographic analyses of the steels after tempering at 650 and 700°C are performed. The impact toughness at - 30°C and the hardness of the steels are determined. The mass fraction of the carbide phase in the steels is computed with the help of the J-MatPro 4.0 software.
Jiang, Zhouhua; Feng, Hao; Zhu, Hongchun; Zhang, Shucai; Zhang, Binbin; Han, Yu; Zhang, Tao; Xu, Dake
2017-01-01
The relationship between microstructure and corrosion behavior of martensitic high nitrogen stainless steel 30Cr15Mo1N at different austenitizing temperatures was investigated by microscopy observation, electrochemical measurement, X-ray photoelectron spectroscopy analysis and immersion testing. The results indicated that finer Cr-rich M2N dispersed more homogeneously than coarse M23C6, and the fractions of M23C6 and M2N both decreased with increasing austenitizing temperature. The Cr-depleted zone around M23C6 was wider and its minimum Cr concentration was lower than M2N. The metastable pits initiated preferentially around coarse M23C6 which induced severer Cr-depletion, and the pit growth followed the power law. The increasing of austenitizing temperature induced fewer metastable pit initiation sites, more uniform element distribution and higher contents of Cr, Mo and N in the matrix. In addition, the passive film thickened and Cr2O3, Cr3+ and CrN enriched with increasing austenitizing temperature, which enhanced the stability of the passive film and repassivation ability of pits. Therefore, as austenitizing temperature increased, the metastable and stable pitting potentials increased and pit growth rate decreased, revealing less susceptible metastable pit initiation, larger repassivation tendency and higher corrosion resistance. The determining factor of pitting potentials could be divided into three stages: dissolution of M23C6 (below 1000 °C), dissolution of M2N (from 1000 to 1050 °C) and existence of a few undissolved precipitates and non-metallic inclusions (above 1050 °C). PMID:28773221
AC-Induced Bias Potential Effect on Corrosion of Steels
2009-02-05
induction, variable conduction Experimental Setup Super- martensitic stainless steel composition Analysis: C Mn Si Cr Ni Mo Cu N Typical 13 Cr ɘ.01 0.6... stainless steel used in pipelines. •Low carbon (ɘ.01): allows the formation of a “soft” martensite that is more resistant than standard martensitic ...Proposed AC Corrosion Models AC Simulated Corrosion testing Stainless steel pipe and coating Cathodic protection Experimental Setup Preliminary
NASA Astrophysics Data System (ADS)
Yang, R.; Zhang, X.; Mallipeddi, D.; Angelou, N.; Toftegaard, H. L.; Li, Y.; Ahlström, J.; Lorentzen, L.; Wu, G.; Huang, X.
2017-07-01
A martensitic gear steel (18CrNiMo7-6) was annealed at 180 °C for 2h and at ˜ 750 °C for 1h to design two different starting microstructures for shot peening. One maintains the original as-transformed martensite while the other contains irregular-shaped sorbite together with ferrite. These two materials were shot peened using two different peening conditions. The softer sorbite + ferrite microstructure was shot peened using 0.6 mm conditioned cut steel shots at an average speed of 25 m/s in a conventional shot peening machine, while the harder tempered martensite steel was shot peened using 1.5 mm steel shots at a speed of 50 m/s in an in-house developed shot peening machine. The shot speeds in the conventional shot peening machine were measured using an in-house lidar set-up. The microstructure of each sample was characterized by optical and scanning electron microscopy, and the mechanical properties examined by microhardness and tensile testing. The residual stresses were measured using an Xstress 3000 G2R diffractometer equipped with a Cr Kα x-ray source. The correspondence between the residual stress profile and the gradient structure produced by shot peening, and the relationship between the microstructure and strength, are analyzed and discussed.
NASA Astrophysics Data System (ADS)
Moon, Kyung-Man; Kim, Yun-Hae; Lee, Myeong-Hoon; Baek, Tae-Sil
2015-03-01
An optimum repair welding for the piston crown which is one of the engine parts exposed to the combustion chamber is considered to be very important to prolong the engine lifetime from an economical point of view. In this study, two types of filler metals such as 1.25Cr-0.5Mo, 0.5Mo were welded with SMAW method and the other two types of filler metals such as Inconel 625 and 718 were welded with GTAW method, respectively, and the used base metals were the cast and forged steels of the piston crown material. The weld metal zones welded with Inconel 625 and 718 filler metals exhibited higher corrosion resistance compared to 1.25Cr-0.5Mo and 0.5Mo filler metals. In particular, the weld metal zone welded with Inconel 718 and 0.5Mo, filler metals indicated the best and worst corrosion resistance, respectively. Consequently, it is suggested that the corrosion resistance of the weld metal zone surely depends on the chemical components of each filler metal and welding method irrespective of the types of piston crown material.
Quan, Guo-zheng; Luo, Gui-chang; Mao, An; Liang, Jian-ting; Wu, Dong-sen
2014-01-01
Fracturing by ductile damage occurs quite naturally in metal forming processes, and ductile fracture of strain-softening alloy, here 42CrMo steel, cannot be evaluated through simple procedures such as tension testing. Under these circumstances, it is very significant and economical to find a way to evaluate the ductile fracture criteria (DFC) and identify the relationships between damage evolution and deformation conditions. Under the guidance of the Cockcroft-Latham fracture criteria, an innovative approach involving hot compression tests, numerical simulations, and mathematic computations provides mutual support to evaluate ductile damage cumulating process and DFC diagram along with deformation conditions, which has not been expounded by Cockcroft and Latham. The results show that the maximum damage value appears in the region of upsetting drum, while the minimal value appears in the middle region. Furthermore, DFC of 42CrMo steel at temperature range of 1123~1348 K and strain rate of 0.01~10 s−1 are not constant but change in a range of 0.160~0.226; thus, they have been defined as varying ductile fracture criteria (VDFC) and characterized by a function of temperature and strain rate. In bulk forming operations, VDFC help technicians to choose suitable process parameters and avoid the occurrence of fracture. PMID:24592175
Influence of Surface Coating on Metal Ion Release: Evaluation in Patients With Metal Allergy.
Thomas, Peter; Weik, Thomas; Roider, Gabriele; Summer, Burkhard; Thomsen, Marc
2016-05-01
Nickel, chromium, and cobalt in stainless steel and Cobalt-chrome-molybdenum (CoCrMo) alloys may induce allergy. The objectives of this study were to evaluate surface coating regarding ion release, patch test reactivity, and arthroplasty performance. Materials and methods included patch test in 31 patients with metal allergy and 30 patients with no allergy to stainless steel and CoCrMo disks that are uncoated or coated by titanium nitride/zirconium nitride (TiN/ZrN). Assessment include atomic absorption spectrometry of released nickel, cobalt, and chromium from the disks after exposure to distilled water, artificial sweat and culture medium. Results showed that both coatings reduced the nickel and chromium release from stainless steel and CoCrMo disks and mostly the cobalt release from the disks (maximally 11.755 µg/cm(2)/5 d to 1.624 by Ti-N and to 0.442 by ZrN). Six of the 31 patients with metal allergy reacted to uncoated disks, but none reacted to the coated disks. The current authors report on exemplary patients with metal allergy who had symptom relief by revision with surface-coated arthroplasty. The authors concluded that the surface coating may prevent cutaneous and peri-implant allergic reactions. [Orthopedics. 2016; 39(3):S24-S30.]. Copyright 2016, SLACK Incorporated.
Quan, Guo-zheng; Luo, Gui-chang; Mao, An; Liang, Jian-ting; Wu, Dong-sen
2014-01-01
Fracturing by ductile damage occurs quite naturally in metal forming processes, and ductile fracture of strain-softening alloy, here 42CrMo steel, cannot be evaluated through simple procedures such as tension testing. Under these circumstances, it is very significant and economical to find a way to evaluate the ductile fracture criteria (DFC) and identify the relationships between damage evolution and deformation conditions. Under the guidance of the Cockcroft-Latham fracture criteria, an innovative approach involving hot compression tests, numerical simulations, and mathematic computations provides mutual support to evaluate ductile damage cumulating process and DFC diagram along with deformation conditions, which has not been expounded by Cockcroft and Latham. The results show that the maximum damage value appears in the region of upsetting drum, while the minimal value appears in the middle region. Furthermore, DFC of 42CrMo steel at temperature range of 1123~1348 K and strain rate of 0.01~10 s(-1) are not constant but change in a range of 0.160~0.226; thus, they have been defined as varying ductile fracture criteria (VDFC) and characterized by a function of temperature and strain rate. In bulk forming operations, VDFC help technicians to choose suitable process parameters and avoid the occurrence of fracture.
1997-01-01
Cr-Mo quenched and tempered (Q&T) steel . Both A723 Grade 1 and Grade 2 compositions were evaluated to determine the effects of strength, composition ...15] Craig, B., "Limitations of Alloying to Improve the Threshold for Hydrogen Stress Cracking of Steels ", Hydrogen Effects on Material Behavior ...considered are as follows: 1. Hydrogen mass transfer in steels and welded joints: analytical equipment; effect of element composition of weld metal and
NASA Astrophysics Data System (ADS)
Yajie, Cheng; Qingliang, Liao; Yue, Zhang
Due to composition segregation and cooling speed, streamline or banded structure were often obtained in the thermal forming parts along the direction of parts forming. Generally speaking, banded structure doesn't decrease the longitudinal mechanical properties, so the secondary banded structure can't get enough attention. The effect of secondary banded structure on the fatigue properties of micro alloyed DG20Mn and 35CrMo steel was investigated using the axial tensile fatigue test of stress ratio of 0.1. The result shows that secondary banded structure was obtained in the center of the steel parts, because of the composition segregation and the lower cooling rate in center part of steel. Secondary banded structure has no significant effect on axial tensile properties of both DG20Mn and 35CrMo, but decreases the axial tensile fatigue performance of DG20Mn steel. This study suggests that under the high cyclic tensile stress, multi-source damage cracks in steel initiated by large strain of pearlite of secondary banded structure, which is larger than damage strain, is the major factor of the decrease of fatigue life of steel.
NASA Astrophysics Data System (ADS)
Mabruri, E.; Syahlan, Z. A.; Sahlan; Prifiharni, S.; Anwar, M. S.; Chandra, S. A.; Romijarso, T. B.; Adjiantoro, B.
2017-05-01
The modified 410-1Mo stainless steel has been developed with higher tensile strength and elongation compared to the standard 410 stainless steel. This paper reports the influence of austenitizing temperature on the microstructure, hardness, impact resistance and corrosion resistance of the modified 410-1Mo steel. The steel samples were prepared by a process sequence of induction melting, hot forging, annealing, hardening, and tempering. The microstructure of the tempered steels revealed additional phase of delta ferrite at pre-austenitizing temperatures of 950 to 1050 °C and disappeared at a temperature of 1100 °C. The steels which underwent pre-austenitizing at 1100 °C showed the largest sized lath martensite and the largest amount of retained austenite. The tempered steels maintained hardness at austenitizing temperatures of 950 °C to 1000 °C and showed an increasing hardness at austenitizing temperatures from 1000 to 1100 °C. At a range of austenitizing temperatures, it was investigated that the steels exhibited higher impact resistance at 1050 °C. The tempered steels that were pre-austenitized at 950 °C and 1100 °C showed the lowest pitting potential due to the existence of carbides and coarse-high carbon martensite, respectively.
Optimization of TiNP/Ti Content for Si3N4/42CrMo Joints Brazed With Ag-Cu-Ti+TiNP Composite Filler
NASA Astrophysics Data System (ADS)
Wang, Tianpeng; Zhang, Jie; Liu, Chunfeng
The Si3N4 ceramic was brazed to 42CrMo steel by using TiN particles modified braze, and the proportion of TiNp reinforcement and active element Ti was optimized to improve the joint strength. The brazed joints were examined by means of SEM. and EDS investigations. Microstructural examination showed that TiN+Ti5Si3 reaction layer was adjacent to Si3N4, whereas TiC was formed in 42CrMo/filler reaction layer. The Ag-Cu-Ti brazing alloy showed intimate bonding with TiNp and Cu-Ti intermetallics precipitated in the joint. The strength tests demonstrated that the mechanical properties of joints increased and then decreased by increasing the TiNp content when a low Ti content (6wt.%) was supplied. When the Ti content (>6wt.%) was offered sufficiently, the joint strength decreased firstly and then stayed stable with increasing the TiNp content. The maximum four-point bending strength (221 MPa) was obtained when the contents of TiNp and Ti were 10vol.% and 6wt.%, respectively.
NASA Astrophysics Data System (ADS)
Kuo, I. C.; Chou, C. P.; Tseng, C. F.; Lee, I. K.
2009-03-01
Two types of martensitic stainless steel strips, PFB-132 and PFB-131S, were deposited on SS41 carbon steel substrate by a three-pass submerged arc cladding process. The effects of post-weld heat treatment (PWHT) on thermal fatigue resistance and hardness were evaluated by thermal fatigue and hardness testing, respectively. The weld metal microstructure was investigated by utilizing optical microscopy, scanning electron microscopy (SEM) equipped with energy dispersive X-ray spectroscopy (EDS) and transmission electron microscopy (TEM). Results showed that, by increasing the PWHT temperature, hardness decreased but there was a simultaneous improvement in weldment thermal fatigue resistance. During tempering, carbide, such as (Fe, Cr)23C6, precipitated in the weld metals and molybdenum appeared to promote (Fe, Cr, Mo)23C6 formation. The precipitates of (Fe, Cr, Mo)23C6 revealed a face-centered cubic (FCC) structure with fine grains distributed in the microstructure, thereby effectively increasing thermal fatigue resistance. However, by adding nickel, the AC1 temperature decreased, causing a negative effect on thermal fatigue resistance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morrison, M. L.; Buchanan, R. A.; Leon, R. V.
2005-01-01
Bulk metallic glasses (BMGs) represent an emerging class of materials with an amorphous structure and a unique combination of properties. The objectives of this investigation were to define the electrochemical behavior of a specific Zr-based BMG alloy in a physiologically relevant environment and to compare these properties to standard, crystalline biomaterials as well as other Zr-based BMG compositions. Cyclic-anodic-polarization studies were conducted with a Zr{sub 52.5}Cu{sub 17.9}Ni{sub 14.6}Al{sub 10.0}Ti{sub 5.0} (at %) BMG in a phosphate-buffered saline electrolyte with a physiologically relevant oxygen content at 37 C. The results were compared to three common, crystalline biomaterials: CoCrMo, 316L stainless steel,more » and Ti-6Al-4V. The BMG alloy was found to have a lower corrosion penetration rate (CPR), as compared to the 316L stainless steel, and an equivalent CPR, as compared to the CoCrMo and Ti-6Al-4V alloys. Furthermore, the BMG alloy demonstrated better localized corrosion resistance than the 316L stainless steel. However, the localized corrosion resistance of the BMG alloy was not as high as those of the CoCrMo and Ti-6Al-4V alloys in the tested environment. The excellent electrochemical properties demonstrated by the BMG alloy are combined with a low modulus and unparalleled strength. This unique combination of properties dramatically demonstrates the potential for amorphous alloys as a new generation of biomaterials.« less
NASA Astrophysics Data System (ADS)
Senthur Prabu, S.; Devendranath Ramkumar, K.; Arivazhagan, N.
2017-11-01
In the present investigation an attempt has been made to join the dissimilar combination of Inconel 625 super alloy and super austenitic stainless steel (AISI 904L) using manual multi-pass continuous current gas tungsten arc (CCGTA) welding processes. Two different filler wires such as ERNiCrMo-4 and ERNiCrCoMo-1 have been used to compare the metallurgical properties of these welded joints. Both optical microscopy and scanning electron microscopy techniques were adopted to disseminate the microstructure traits of these weldments. Formation of secondary phases at the HAZ and weld interface of AISI 904L was witnessed while using the ERNiCrCoMo-1 filler, along with Solidification Grain Boundary (SGB) and Migrated Grain Boundary (MGB) were also observed at the weld zone.
Song, Yan; Chai, Mengyu; Wu, Weijie; Liu, Yilun; Qin, Mu; Cheng, Guangxu
2018-01-01
Hydrogen embrittlement (HE) is a critical issue that hinders the reliability of hydrogenation reactors. Hence, it is of great significance to investigate the effect of hydrogen on fracture toughness of 2.25Cr-1Mo-0.25V steel and weld. In this work, the fracture behavior of 2.25Cr-1Mo-0.25V steel and welds was studied by three-point bending tests under hydrogen-free and hydrogen-charged conditions. The immersion charging method was employed to pre-charge hydrogen inside specimen and the fracture toughness of these joints was evaluated quantitatively. The microstructure and grain size of the specimens were observed by scanning electron microscopy (SEM) and by metallurgical microscopy to investigate the HE mechanisms. It was found that fracture toughness for both the base metal (BM) and the weld zone (WZ) significantly decreased under hydrogen-charged conditions due to the coexistence of the hydrogen-enhanced decohesion (HEDE) and hydrogen-enhanced localized plasticity (HELP) mechanisms. Moreover, the formation and growth of primary voids were observed in the BM, leading to a superior fracture toughness. In addition, the BM compared to the WZ shows superior resistance to HE because the finer grain size in the BM leads to a larger grain boundary area, thus distributing more of the diffusive hydrogen trapped in the grain boundary and reducing the hydrogen content. PMID:29584678
Hydrogen Environment Assisted Cracking of Modern Ultra-High Strength Martensitic Steels
NASA Astrophysics Data System (ADS)
Pioszak, Greger L.; Gangloff, Richard P.
2017-09-01
Martensitic steels (Aermet®100, Ferrium®M54™, Ferrium®S53®, and experimental CrNiMoWV at ultra-high yield strength of 1550 to 1725 MPa) similarly resist hydrogen environment assisted cracking (HEAC) in aqueous NaCl. Cracking is transgranular, ascribed to increased steel purity and rare earth addition compared to intergranular HEAC in highly susceptible 300M. Nano-scale precipitates ((Mo,Cr)2C and (W,V)C) reduce H diffusivity and the K-independent Stage II growth rate by 2 to 3 orders of magnitude compared to 300M. However, threshold K TH is similarly low (8 to 15 MPa√m) for each steel at highly cathodic and open circuit potentials. Transgranular HEAC likely occurs along martensite packet and {110}α'-block interfaces, speculatively governed by localized plasticity and H decohesion. Martensitic transformation produces coincident site lattice interfaces; however, a connected random boundary network persists in 3D to negate interface engineering. The modern steels are near-immune to HEAC when mildly cathodically polarized, attributed to minimal crack tip H production and uptake. Neither reduced Co and Ni in M54 and CrNiMoWV nor increased Cr in S53 broadly degrade HEAC resistance compared to baseline AM100. The latter suggests that crack passivity dominates acidification to widen the polarization window for HEAC resistance. Decohesion models predict the applied potential dependencies of K TH and d a/d t II with a single-adjustable parameter, affirming the importance of steel purity and trap sensitive H diffusivity.
Nano-composite stainless steel
Dehoff, Ryan R.; Blue, Craig A.; Peter, William H.; Chen, Wei; Aprigliano, Louis F.
2015-07-14
A composite stainless steel composition is composed essentially of, in terms of wt. % ranges: 25 to 28 Cr; 11 to 13 Ni; 7 to 8 W; 3.5 to 4 Mo; 3 to 3.5 B; 2 to 2.5 Mn; 1 to 1.5 Si; 0.3 to 1.7 C; up to 2 O; balance Fe. The composition has an austenitic matrix phase and a particulate, crystalline dispersed phase.
Surface modification to improve fireside corrosion resistance of Fe-Cr ferritic steels
Park, Jong-Hee; Natesan, Krishnamurti; Rink, David L.
2010-03-16
An article of manufacture and a method for providing an Fe--Cr ferritic steel article of manufacture having a surface layer modification for corrosion resistance. Fe--Cr ferritic steels can be modified to enhance their corrosion resistance to liquid coal ash and other chemical environments, which have chlorides or sulfates containing active species. The steel is modified to form an aluminide/silicide passivating layer to reduce such corrosion.
Effect of Pipe Body Alloy on Weldability of X80 Steel
NASA Astrophysics Data System (ADS)
Kong, Xianglei; Huang, Guojian; Fu, Kuijun; Liu, Fangfang; Huang, Minghao; Zhang, Yinghui
Effect of Mo, Ni, and Cr on impact property of pipe seam and heat-affected zone (HAZ) of X80 steel was investigated by thermal simulation test and butt welding test. The results showed that, there was an obvious relationship between strip's composition and the toughness of weld and HAZ, the more content of Mo, Ni and less of Cr in the strip matrix, the better of impact toughness of weld and HAZ. Metallographic microscope was used to compare microstructures of welding specimens, every welded seam microstructure was mainly acicular ferrite (AF) and a little volume of proeutectoid ferrite (PF), and with some granular precipitations on original austenite grain boundary, the difference was that there were more PF and less precipitations of the specimen with more content of Mo, Ni and less of Cr in the strip matrix. Because of the high price of Mo and Ni, alloy design must be considered comprehensively with the cost and property requirements in the production.
A two-stage constitutive model of X12CrMoWVNbN10-1-1 steel during elevated temperature
NASA Astrophysics Data System (ADS)
Zhu, Luobei; He, Jianli; Zhang, Ying
2018-02-01
In order to clarify the competition between work hardening (WH) caused by dislocation movements and the dynamic softening result from dynamic recovery (DRV) and dynamic recrystallization (DRX), a new two-stage flow stress model of X12CrMoWVNbN10-1-1 (X12) ferrite heat-resistant steel was established to describe the whole hot deformation behavior. And the parameters were determined by the experimental data operated on a Gleeble-3800 thermo- mechanical simulation. In this constitutive model, a single internal variable dislocation density evolution model is used to describe the influence of WH and DRV to flow stress. The DRX kinetic dynamic model can express accurately the contribution of DRX to the decline of flow stress, which was established on the Avrami equation. Furthermore, The established new model was compared with Fields-Bachofen (F-B) model and experimental data. The results indicate the new two-stage flow stress model can more accurately represent the hot deformation behavior of X12 ferrite heat-resistant steel, and the average error is only 0.0995.
Effect of Cryogenic Treatment on Microstructure and Mechanical Properties of 0Cr12Mn5Ni4Mo3Al Steel
NASA Astrophysics Data System (ADS)
Bai, Xue; Zheng, Linbin; Cui, Jinyan; Wu, Sujun; Song, Ruokang; Xie, Di; Wang, Dawei; Li, Haisheng
2017-10-01
This paper systematically investigated the effect of cryogenic temperature and soaking time on the 0Cr12Mn5Ni4Mo3Al steel. Microstructure observation and mechanical tests were performed on the specimens by scanning electron microscopy, x-ray diffraction, Vickers hardness tests and tensile tests. Cryogenic treatments were carried out at different temperatures of -73, -120, -160 and -196 °C for a given soaking time of 4 h and at a specific temperature of -73 °C for different soaking time of 8, 12, 21 and 32 h, followed by the subsequent tempering treatment. The results showed that the volume fraction of martensite in this steel has significantly increased and the size of martensite lath has decreased after cryogenic treatment, which leads to the improvement of the mechanical properties of the steel. The cryogenic treatment affected the microstructure by promoting the transformation of retained austenite to martensite and the formation of reversed austenite in the steel. The optimal hardness and strength of this steel were obtained by cryogenic treatment at -73 °C for 8 h. It has been found that the soaking time is a critical parameter for the mechanical properties of 0Cr12Mn5Ni4Mo3Al steel. When the cryogenic temperature is lower than -73 °C, there is no further improvement of the mechanical properties.
NASA Astrophysics Data System (ADS)
Oh, Seung-Jin; Jun, Joong-Hwan; Lee, Min-Ha; Shon, In-Jin; Lee, Seok-Jae
2018-05-01
In this study, we successfully fabricated highly alloyed FeCrMoVC specimens within 2 min by using the spark plasma sintering (SPS) method. The densities of the sintered specimens were almost identical to their theoretical values. Fine (Mo, V)-rich carbides with lamellar structure were precipitated along the grain boundaries of the as-sintered specimen, whereas relatively large carbides were formed additionally in the transgranular region during the tempering treatment. Compared with the specimen produced by a conventional casting method, the FeCrMoVC specimens from SPS showed smaller grain size with finer carbides and higher hardness values.
Effect of Long-Term Service on Microstructure and Mechanical Properties of Martensitic 9% Cr Steel
NASA Astrophysics Data System (ADS)
Golański, Grzegorz; Zielińska-Lipiec, Anna; Zieliński, Adam; Sroka, Marek
2017-03-01
The paper presents the results of research on the X10CrMoVNbN9-1 (T91) steel after long-term service. The material for testing was taken from a pipe section of a boiler superheater coil serviced for around 105,000 h at the temperature of 540 °C, at the pressure of 12.5 MPa. A quantitative analysis including the measurement of mean diameter of subgrains and precipitates as well as the density of dislocations of the examined steel was performed by means of TEM. The microscopic tests of T91 steel were complemented with the results of tests on mechanical properties which included also the short creep tests. After service, the investigated steel was characterized by a retained lath microstructure of tempered martensite with fine subgrain and quite large density of dislocations as well as numerous precipitates. In the microstructure, apart from the particles of M23C6 and MX (VX, NbC, V-wings), the precipitates of Laves phase and single particles of Z phase were revealed. It has been shown that the extent of degradation of the T91 steel microstructure was minor, which resulted from its low temperature of service. Performed tests of mechanical properties showed that these properties fulfilled the minimum requirements for this steel in the as-received condition. A favorable influence of fine precipitates of Laves phase on mechanical properties was observed. Moreover, an insignificant influence of single precipitates of Z phase on the creep resistance of the examined steel was stated.
NASA Astrophysics Data System (ADS)
Zhou, Ze-an; Fu, Wan-tang; Zhu, Zhe; Li, Bin; Shi, Zhong-ping; Sun, Shu-hua
2018-05-01
The retained austenite content (RAC), the mechanical properties, and the resistance to cavitation erosion (CE) of the 00Cr13Mn8MoN steel after quenching and partitioning (Q&P) processing were investigated. The results show that the Q&P process affected the RAC, which reached the maximum value after partitioning at 400°C for 10 min. The tensile strength of the steel slightly decreased with increasing partitioning temperature and time. However, the elongation and product of strength and elongation first increased and then decreased. The sample partitioned at 400°C for 10 min exhibited the optimal property: a strength-ductility of 23.8 GPa·%. The resistance to CE for the 00Cr13Mn8MoN steel treated by the Q&P process was improved due to work hardening, spalling, and cavitation-induced martensitic transformation of the retained austenite.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bojack, A., E-mail: a.bojack@tudelft.nl; Delft University of Technology, Department of Materials Science and Engineering, Mekelweg 2, 2628 CD Delft; Zhao, L.
2012-09-15
In-situ analysis of the phase transformations in a 13Cr6Ni2Mo supermartensitic stainless steel (X2CrNiMoV13-5-2) was carried out using a thermo-magnetic technique, dilatometry and high temperature X-ray diffractometry (HT-XRD). A combination of the results obtained by the three applied techniques gives a valuable insight in the phase transformations during the austenitization treatment, including subsequent cooling, of the 13Cr6Ni2Mo supermartensitic stainless steel, where the magnetic technique offers a high accuracy in monitoring the austenite fraction. It was found by dilatometry that the austenite formation during heating takes place in two stages, most likely caused by partitioning of Ni into austenite. The in-situ evolutionmore » of the austenite fraction is monitored by high-temperature XRD and dilatometry. The progress of martensite formation during cooling was described with a Koistinen-Marburger relation for the results obtained from the magnetic and dilatometer experiments. Enhanced martensite formation at the sample surface was detected by X-ray diffraction, which is assumed to be due to relaxation of transformation stresses at the sample surface. Due to the high alloy content and high thermodynamic stability of austenite at room temperature, 4 vol.% of austenite was found to be stable at room temperature after the austenitization treatment. - Highlights: Black-Right-Pointing-Pointer We in-situ analyzed phase transformations and fractions of a 13Cr6Ni2Mo SMSS. Black-Right-Pointing-Pointer Higher accuracy of the austenite fraction was obtained from magnetic technique. Black-Right-Pointing-Pointer Austenite formation during heating takes place in two stages. Black-Right-Pointing-Pointer Enhanced martensite formation at the sample surface detected by X-ray diffraction.« less
Properties of super stainless steels for orthodontic applications.
Oh, Keun-Taek; Kim, Young-Sik; Park, Yong-Soo; Kim, Kyoung-Nam
2004-05-15
Orthodontic stainless-steel appliances are considered to be corrosion resistant, but localized corrosion can occur in the oral cavity. This study was undertaken to evaluate the properties of super stainless steels in orthodontic applications. Accordingly, the metallurgical properties, mechanical properties, corrosion resistance, amount of the released nickel, cytotoxicity, and characteristics of the passive film were investigated. Corrosion resistances of the specimens were high and in the following order: super austenitic stainless steel (SR-50A) > super ferritic stainless steel (SFSS) = super duplex stainless steel (SR-6DX) > 316L SS > super martensitic stainless steel (SR-3Mo) in artificial saliva, 37 degrees C. At 500 mV (SCE), current densities of SR-50A, SFSS, SR-6DX, 316L SS, and SR-3Mo were 5.96 microA/cm(2), 20.3 microA/cm(2), 31.9 microA/cm(2), 805 microA/cm(2), and 5.36 mA/cm(2), respectively. Open circuit potentials of SR-50A, 316L SS, SR-6DX, SR-3Mo, and SFSS were - 0.2, - 0.22, - 0.24, - 0.43, and - 0.46 V (SCE), respectively. SR-50A, SFSS, and SR-6DX released below 3 ng/ml nickel for 8 weeks, and increased a little with immersion time, and 316L SS released about 3.5 ng/ml nickel, but SR-3Mo released a large amount of nickel, which increased with immersion time. The study demonstrated that SR-50A, SR-6DX, and SFSS have high corrosion resistance and mild or no cytotoxicity, due to the passive film enhanced by synergistic effect of Mo + N or by high addition effect of Cr + W. All super stainless steels showed very low cytotoxicity regardless of their nickel contents, although SR-3Mo was found to be relatively cytotoxic. From these studies, these steels are considered suitable for orthodontic applications. Copyright 2004 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Shakhova, Ya. E.; Belyakov, A. N.; Kaibyshev, R. O.
2016-04-01
The structure and mechanical characteristics of a weld joint of 10Kh9K3V2MFBR steel (0.097 C, 0.17.Si, 0.54 Mn, 8.75 Cr, 0.21 Ni, 0.51 Mo, 0.07 Nb, 0.23 V, 0.004 N, 0.003 B, 1.6 W, 0.15 Cu, and Fe for balance, wt %) have been studied; the joint was produced by hand welding in an argon atmosphere using 03Kh20N45M7G6B welding wire (0.3 C, 20 Cr, 45 Ni, 7 Mo, 6 Mn, and 1 Nb, wt %). The weld joint is divided into the zone of the base metal, a thermal effect zone, which consists of zones that contain fine and coarse original austenitic grains, and the zone of seam metal. It has been shown that the weld joint of 10Kh9K3V2MFBR steel possesses high strength characteristics at the room temperature under static loading and a satisfactorily impact toughness, which has the minimum value of 30 J/cm2 in the zone of the seam metal and does not depend on the temperature. With a decrease in the temperature from the room temperature to 253 K, a ductile-brittle transition occurs in the thermal effect zone. Creep tests carried out at the temperature of 923 K have shown that the long-term strength of the weld seam is lower than that of the base material in the entire stress range being tested. At stresses of 140 MPa or higher, the acceleration of creep in the weld seam is observed, while at low stresses of about 120 MPa, the rates of creep in the weld seam and in the base metal remain similar until the transition to the stage of accelerated fracture occurs. The difference in the values of the long-term strength is due to premature fracture, which occurs in the thermal effect zone with the finegrained structure.
Buck, R.F.
1994-05-10
An iron-based, corrosion-resistant, precipitation strengthened, martensitic steel essentially free of delta ferrite for use at high temperatures has a nominal composition of 0.05--0.1 C, 8--12 Cr, 1--5 Co, 0.5--2.0 Ni, 0.41--1.0 Mo, 0.1--0.5 Ti, and the balance iron. This steel is different from other corrosion-resistant martensitic steels because its microstructure consists of a uniform dispersion of fine particles, which are very closely spaced, and which do not coarsen at high temperatures. Thus at high temperatures this steel combines the excellent creep strength of dispersion-strengthened steels, with the ease of fabricability afforded by precipitation hardenable steels. 2 figures.
Buck, Robert F.
1994-01-01
An iron-based, corrosion-resistant, precipitation strengthened, martensitic steel essentially free of delta ferrite for use at high temperatures has a nominal composition of 0.05-0.1 C, 8-12 Cr, 1-5 Co, 0.5-2.0 Ni, 0.41-1.0 Mo, 0.1-0.5 Ti, and the balance iron. This steel is different from other corrosion-resistant martensitic steels because its microstructure consists of a uniform dispersion of fine particles, which are very closely spaced, and which do not coarsen at high temperatures. Thus at high temperatures this steel combines the excellent creep strength of dispersion-strengthened steels, with the ease of fabricability afforded by precipitation hardenable steels.
Interface bonding of NiCrAlY coating on laser modified H13 tool steel surface
NASA Astrophysics Data System (ADS)
Reza, M. S.; Aqida, S. N.; Ismail, I.
2016-06-01
Bonding strength of thermal spray coatings depends on the interfacial adhesion between bond coat and substrate material. In this paper, NiCrAlY (Ni-164/211 Ni22 %Cr10 %Al1.0 %Y) coatings were developed on laser modified H13 tool steel surface using atmospheric plasma spray (APS). Different laser peak power, P p, and duty cycle, DC, were investigated in order to improve the mechanical properties of H13 tool steel surface. The APS spraying parameters setting for coatings were set constant. The coating microstructure near the interface was analyzed using IM7000 inverted optical microscope. Interface bonding of NiCrAlY was investigated by interfacial indentation test (IIT) method using MMT-X7 Matsuzawa Hardness Tester Machine with Vickers indenter. Diffusion of atoms along NiCrAlY coating, laser modified and substrate layers was investigated by energy-dispersive X-ray spectroscopy (EDXS) using Hitachi Tabletop Microscope TM3030 Plus. Based on IIT method results, average interfacial toughness, K avg, for reference sample was 2.15 MPa m1/2 compared to sample L1 range of K avg from 6.02 to 6.96 MPa m1/2 and sample L2 range of K avg from 2.47 to 3.46 MPa m1/2. Hence, according to K avg, sample L1 has the highest interface bonding and is being laser modified at lower laser peak power, P p, and higher duty cycle, DC, prior to coating. The EDXS analysis indicated the presence of Fe in the NiCrAlY coating layer and increased Ni and Cr composition in the laser modified layer. Atomic diffusion occurred in both coating and laser modified layers involved in Fe, Ni and Cr elements. These findings introduce enhancement of coating system by substrate surface modification to allow atomic diffusion.
Finite element modelling of creep crack growth in 316 stainless and 9Cr-1Mo steels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krishnaswamy, P.; Brust, F.W.
1994-09-01
The failure behavior of steels under sustained and cyclic loads has been addressed. The constitutive behavior of the two steels have been represented by the conventional strain-hardening law and the Murakami-Ohno model for reversed and cyclic loads. The laws have been implemented into the research finite element code FVP. Post processors for FVP to calculate various path independent integral fracture parameters have been written. Compact tension C(T) specimens have been tested under sustained and cyclic loads with both the load point displacement and crack growth monitored during the tests. FE models with extremely refined meshes for the C(T) specimens weremore » prepared and the experiment simulated numerically. Results from this analysis focus on the differences between the various constitutive models as well as the fracture parameters in characterizing the creep crack growth of the two steels.« less
NASA Astrophysics Data System (ADS)
Grin', E. A.; Anokhov, A. E.; Pchelintsev, A. V.; Krüger, E.-T.
2016-07-01
The technology of manufacture of live steam lines and hot reheat lines at FINOW Rohrsysteme GmbH are discussed. These pipelines are designed for high-performance CCGT units and are made from high-chromium martensitic steel X10CrMoVNb9-1 (P91). The principles of certification and evaluation of conformance of thermal and mechanical equipment made from new construction materials with the TRCU 032-2013 technical regulation of the Customs Union are detailed. The requirements outlined in Russian and international regulatory documents regarding the manufacture of pipes and semifinished products for pipeline systems are compared. The characteristic features of high-chromium martensitic steel, which define the requirements for its heat treatment and welding, are outlined. The methodology and the results of a comprehensive analysis of metal of pipes, fittings, and weld joints of steam lines are presented. It is demonstrated that the short-term mechanical properties of metal (P91 steel) of pipes, bends, and weld joints meet the requirements of European standards and Russian technical specifications. The experimental data on long-term strength of metal of pipes from a live steam line virtually match the corresponding reference curve from the European standard, while certain experimental points for metal of bends of this steam line and metal of pipes and bends from a hot reheat line lie below the reference curve, but they definitely stay within the qualifying (20%) interval of the scatter band. The presence of a weakened layer in the heat-affected zone of weld joints of steel P91 is established. It is shown that the properties of this zone govern the short-term and long-term strength of weld joints in general. The results of synthesis and analysis of research data support the notion that the certification testing of steam lines and other equipment made from chromium steels should necessarily involve the determination of long-term strength parameters.
2014-09-10
Cr-Mo, and stainless steel have to some extent found acceptance in various military and commercial CuBe-replacement roles. 1.1.2 Proposed...including low and high strength steels , stainless steel , Inconel and nickel. Figure 4-8 Activation line used to prepare components for nCoP plating...size up to a maximum thickness of 0.012”, can be produced in the tank by electroforming onto a flat stainless steel mandrel and subsequently
NASA Astrophysics Data System (ADS)
Kireeva, I. V.; Chumlyakov, Yu. I.; Pobedennaya, Z. V.; Platonova, Yu. N.; Kuksgauzen, I. V.; Kuksgauzen, D. A.; Poklonov, V. V.; Karaman, I.; Sehitoglu, H.
2016-12-01
Using [ overline{1} 49] - oriented single crystals of an FCC Fe20Ni20Mn20Cr20Co20 (at.%) high-entropy alloy subjected to tensile deformation, the temperature dependence of critical resolved shear stresses τcr(T) and the deformation mechanism of slip and twinning are investigated in the early stages of deformation at ɛ ≤ 5% within the temperature interval T = 77-573 K. It is shown that τcr increases with decreasing the testing temperature and the τcr(T) temperature dependence is controlled by the slip of perfect dislocations a/2<110>. The early deformation stages ɛ ≤ 5% are associated with the development of planar slip by pileups of perfect dislocations a/2<110>, stacking faults and mechanical twins, which is observed in the temperature interval from 77 to 423 K. A comparison of the temperature dependence τcr(T) and the development of mechanical twinning is performed between the [ overline{1} 49] -oriented single crystals of the Fe20Ni20Mn20Cr20Co20 high-entropy alloy, the single crystals of the austenitic stainless steel, Fe - 18% Cr - 12% Ni - 2Mo (wt.%) without nitrogen atoms (Steel 316) and Hadfield steel, Fe - 13% Mn - (1-1.3)% C (wt.%).
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-19
... which meets the following chemical, physical and mechanical specifications: C Mn P S Si Cr Cu Ni 0.10-0... specifications: C Mn P S Si Cr Cu Ni Mo 0.10-0.16% 0.70-0.90% 0.025% Max 0.006% Max 0.30-0.50% 0.50-0.70% 0.25... following chemical, physical and mechanical specifications: C Mn P S Si Cr Cu Ni V(wt.) Cb 0.10-0.14% 1.30-1...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-27
... following chemical, physical and mechanical specifications: C Mn P S Si Cr Cu Ni 0.10-0.14% 0.90% Max... mechanical specifications: C Mn P S Si Cr Cu Ni Mo 0.10-0.16% 0.70-0.90%........ 0.025% Max........ 0.006... mechanical specifications: C Mn P S Si Cr Cu Ni V(wt.) Cb 0.10-0.14% 1.30-1.80%...... 0.025% Max...... 0.005...
Effect of heat treatment on the microstructure of a 2CrMoNiWV rotor steel
NASA Astrophysics Data System (ADS)
Li, Cheng
A wide range of experiments have been carried out on a 2CrMoNiWV low alloy steel to investigate the effect of various heat treatment conditions on microstructural change, alloy carbide transformation mechanism and mechanical properties.Two complete continuous cooling transformation (CCT) diagrams were constructed for this steel on the basis of experimental dilatometry thermal analysis, metallographic examination and current phase transformation theory. The significance of these two diagrams is in that they can be directly utilised in industrial practice as a reference during heat treatment for this material. Meanwhile it was confirmed that this 2CrMoNiWV steel can be transformed to a fully bainitic microstructure over a wide range of cooling rates and this feature proved this steel suitable for large diameter steam turbine rotor application.An innovative carbide extraction technique for the XRD identification of carbide phase has been developed. The detailed description of this new technique and its advantages are discussed in this thesis. The extensive work using TEM/EDX has set up essential "finger prints" for the quick examination of large amounts of individual carbide existing at various heat treated conditions. Simultaneous measurements and determinations were made on particle composition, morphological change, the type, amount and distribution of these carbide phases. Thus the sequence of carbide transformation for this 2CrMoNiWV steel during tempering has been established.The characteristic microstructures of various heat treated specimens were carefully examined and discussed. Theoretical thermodynamic equilibria predictions were calculated using MTDATA. A very good agreement was found between experimental results and theoretical predictions on those critical transformation temperatures and a good correlation of carbide evolution sequences was obtained. Based on experimental results and theoretical predictions, the role of tungsten in promoting creep resistance to the material is elucidated.The usefulness of equilibrium thermodynamic calculations using MTDATA in predicting the microstructural changes and carbide evolution has been demonstrated in this work, particularly the separate effect of composition on the stable carbide dispersion where a thermodynamic approach offers great benefits.A possibly optimised heat treatment route is suggested for the large diameter rotor forgings which involves austenitising at 980°C for 10 hours following by oil quenching and then tempering at 675°C for 20 hours following by air cooling.Some general conclusions are drawn from this study, especially with regard to the effect of heat treatment on the microstructure of this 2CrMoNiWV steel and suggestions for further work are made.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dai, Steve Xunhu
Lithium silicate-based glass-ceramics with high coefficients of thermal expansion, designed to form matched hermetic seals in 304L stainless steel housing, show little evidence of interfacial chemical bonding, despite extensive inter-diffusion at the glass-ceramic-stainless steel (GC-SS) interface. A series of glass-ceramic compositions modified with a variety of oxidants, AgO, FeO, NiO, PbO, SnO, CuO, CoO, MoO 3 and WO 3, are examined for the feasibility of forming bonding oxides through reduction-oxidation (redox) at the GC-SS interface. The oxidants were selected according to their Gibbs free energy to allow for oxidation of Cr/Mn/Si from stainless steel, and yet to prevent a reductionmore » of P2O5 in the glass-ceramic where the P 2O 5 is to form Li 3PO 4 nuclei for growth of high expansion crystalline SiO 2 phases. Other than the CuO and CoO modified glass-ceramics, bonding from interfacial redox reactions were not achieved in the modified glass-ceramics, either because of poor wetting on the stainless steel or a reduction of the oxidants at the surface of glass-ceramic specimens rather than the GC-SS interface.« less
NASA Astrophysics Data System (ADS)
Bai, Ching-Yuan; Wen, Tse-Min; Hou, Kung-Hsu; Ger, Ming-Der
The low-temperature pack chromization, a reforming pack cementation process, is employed to modify AISI 1045 steel for the application of bipolar plates in PEMFC. The process is conducted to yield a coating, containing major Cr-carbides and minor Cr-nitrides, on the substrate in view of enhancing the steel's corrosion resistance and lowering interfacial contact resistance between the bipolar plate and gas diffusion layer. Electrical discharge machining and rolling approach are used as the pretreatment to produce an activated surface on the steel before pack chromization process to reduce operating temperatures and increase deposition rates. The rolled-chromized steel shows the lowest corrosion current density, 3 × 10 -8 A cm -2, and the smallest interfacial contact resistance, 5.9 mΩ cm 2, at 140 N cm -2 among all tested steels. This study clearly states the performance of 1045 carbon steel modified by activated and low-temperature pack chromization processes, which possess the potential to be bipolar plates in the application of PEMFC.
NASA Astrophysics Data System (ADS)
Dogan, A.; Arslan, H.; Dogan, T.
2015-06-01
Using different prediction methods, such as the General Solution Model of Kohler and Muggianu, the excess energy and activities of molybdenum for the sections of the phase diagram for the penternary Ni-Cr-Co-Al-Mo system with mole ratios xNi/ xMo = 1, xCr/ xMo = 1, xCo/ xMo = 1, and xAl/ xMo = r = 0.5 and 1, were thermodynamically investigated at a temperature of 2000 K, whereas the excess energy and activities of Bi for the section corresponding to the ternary Bi-Ga-Sb system with mole ratio xGa/ xSb = 1/9 were thermodynamically investigated at a temperature of 1073 K. In the case of r = 0.5 and 1 in the alloys Ni-Cr-Co-Al-Mo, a positive deviation in the activity coefficient was revealed, as molybdenum content increased. Moreover, in the calculations performed in Chou's GSM model, the obtained values for excess Gibbs energies are negative in the whole concentration range of bismuth at 1073 K and exhibit the minimum of about -2.2 kJ/mol at the mole ratio xGa/ xSb = 1/9 in the alloy Bi-Ga-Sb.
1300 K Compressive Properties of Directionally Solidified Ni-33Al-33Cr-1Mo
NASA Technical Reports Server (NTRS)
Whittenberger, J. Daniel; Raj, S. V.; Locci, Ivan E.
2000-01-01
The Ni-33Al-33Cr-1Mo eutectic has been directionally solidified by a modified Bridgeman technique at growth rates ranging from 7.6 to 508 mm/h to produce grain/cellular microstructures, containing alternating plates of NiAl and Cr alloyed with Mo. The grains had sharp boundaries for slower growth rates (< 12.7 mm/h), while faster growth rates (> 25.4 mm/h) lead to cells bounded by intercellular regions. Compressive testing at 1300 K indicated that alloys DS'ed at rates between 25.4 to 254 mm/h possessed the best strengths which exceed that for the as-cast alloy.
Hot Deformation Behavior of 1Cr12Ni3Mo2VN Martensitic Stainless Steel
NASA Astrophysics Data System (ADS)
He, Xiaomao; Jiang, Peng; Zhou, Leyu; Chen, Chao; Deng, Xiaochun
2017-08-01
1Cr12Ni3Mo2VN is a new type of martensitic stainless steel for the last-stage blades of large-capacity nuclear and thermal power turbines. The deformation behavior of this steel was studied by thermal compression experiments that performed on a Gleeble-3500 thermal simulator at a temperature range of 850°C to 1200°C and a strain rate of 0.01s-1 to 20s-1. When the deformation was performed at high temperature and low strain rate, a necklace type of microstructures was observed, the plastic deformation mechanism is grain boundary slip and migration, when at low temperature and lower strain rate, the slip bands were observed, the mechanism is intracrystalline slips, and when at strain rate of 20s-1, twins were observed, the mechanism are slips and twins. The Arrhenius equation was applied to describe the constitutive equation of the flow stress. The accuracy of the equation was verified by using the experimental data and the correlation coefficient R2 = 0.9786, and the equation can provide reasonable data for the design and numerical simulation of the forging process.
NASA Technical Reports Server (NTRS)
Stephens, J. R.; Barrett, C. A.; Gyorgak, C. A.
1979-01-01
An experimental program was undertaken to identify effective substitutes for part of the Cr in 304 stainless steel as a method of conserving the strategic element Cr. Although special emphasis was placed on tensile properties, oxidation and corrosion resistance were also examined. Results indicate that over the temperature range of -196 C to 540 C the yield stress of experimental austenitic alloys with only 12 percent Cr compare favorably with the 18 percent Cr in 304 stainless steel. Oxidation resistance and in most cases corrosion resistance for the experimental alloys were comparable to the commercial alloy. Effective substitutes for Cr included Al, Mo, Si, Ti, and V, while Ni and Mn contents were increased to maintain an austenitic structure.
Fracture behavior of neutron-irradiated high-manganese austenitic steels
NASA Astrophysics Data System (ADS)
Yoshida, H.; Miyata, K.; Narui, M.; Kayano, H.
1991-03-01
The instrumented Charpy impact test was applied to study the fracture behavior of high-manganese austenitic steels before and after neutron irradiations. Quarter-size specimens of a commercial high-manganese steel (18% Mn-5% Ni-16% Cr), three reference steels (21% Mn-1% Ni-9% Cr, 20% Mn-1% Ni-11% Cr, 15% Mn-1% Ni-13% Cr) and two model steels (17% Mn-4.5% Si-6.5% Cr, 22% Mn-4.5% Si-6.5% Cr-0.2% N) were used for the impact tests at temperatures between 77 and 523 K. The load-deflection curves showed typical features corresponding to characteristics of the fracture properties. The temperature dependences of fracture energy and failure deflection obtained from the curves clearly demonstrate only small effects up to 2 × 10 23 n/m 2 ( E > 0.1 MeV) and brittleness at room temperature in 17% Mn-Si-Cr steel at 1.6 × 10 25 n/m 2 ( E > 0.1 MeV), while ductility still remains in 22%Mn-Si-Cr steel.
Microstructural changes in cast martensitic steel after creep at 620°C
NASA Astrophysics Data System (ADS)
Borisova, Yu. I.; Dudko, V. A.; Skorobogatykh, V. N.; Shchenkova, I. A.; Kaibyshev, R. O.
2017-10-01
Microstructural changes in the cast steel GX12CrMoWVNbN10-1-1 (Fe-0.11 C-0.31 Si-0.89 Mn-9.57 Cr-0.66 Ni-1.01 Mo-1.00 W-0.21 V-0.06 Nb-0.05 Cu-0.05 N in wt %) have been investigated after tests for long-term strength at a temperature of 620°C in the range of stresses of 120-160 MPa. Upon short-term creep (up to 5000 h), the tempered troostite structure and distribution of particles of proeutectoid constituents change insignificantly, except for the precipitation of particles of the Laves phase ˜100 nm in size along boundaries of laths, blocks, packets, and initial austenite grains. Upon long-term creep (to 10000 h), the tempered troostite partially transforms into the subgrain structure, which is accompanied by a decrease in the dislocation density from 6.4 × 1014 to 3.1 × 1013 m-2 and connected with growth of sizes of M23C6 carbides of 105-150 nm and particles of the Laves phase to 380 nm, due to the dissolution of these particles located along path boundaries. Upon long-term creep, the average size of V(C,N) particles increases from 45 to 64 nm (while Nb(C,N) particles increase from 48 to 87 nm), and the Nb content in V-enriched carbonitrides and the V content in Nb-enriched M(C,N) particles substantially decrease. No formation of the Z phase has been revealed. The combination of M(C,N) nanoparticles with the presence of W in the solid solution has been found to be responsible for the enhanced high-temperature strength of the steel.
NASA Astrophysics Data System (ADS)
Kulecki, P.; Lichańska, E.
2017-12-01
The effect of ball milling powder mixtures of Höganäs pre-alloyed iron Astaloy CrM, low-carbon ferromanganese Elkem, elemental electrolytic Cu and C-UF graphite on the sintered structure and mechanical properties was evaluated. The mixing was conducted using Turbula mixer for 30 minutes and CDI-EM60 frequency inverter for 1 and 2 hours. Milling was performed on 150 g mixtures with (in weight %) CrM + 1% Mn, CrM + 2% Mn, CrM + 1% Mn + 1% Cu and CrM + 2% Mn + 1% Cu, all with 0.6%C. The green compacts were single pressed at 660 MPa according to PN-EN ISO 2740. Sintering was carried out in a laboratory horizontal furnace Carbolite STF 15/450 at 1250°C for 60 minutes in 5%H2 - 95%N2 atmosphere with a heating rate of 75°C/min, followed by sintering hardening at 60°C/min cooling rate. All the steels were characterized by martensitic structures. Mechanical testing revealed that steels based on milled powders have slightly higher mechanical properties compared to those only mixed and sintered. The best combination of mechanical properties, for ball milled CrM + 1% Mn + 1% Cu was UTS 1046 MPa, TRS 1336 MPa and A 1.94%.
NASA Astrophysics Data System (ADS)
Yang, Yinhui; Qian, Hao
2018-05-01
The influence of Mn addition on σ-phase precipitation kinetics and pitting corrosion of Fe-22Cr-1.9Ni-2.3Mo-0.2N-xMn low nickel type duplex stainless steel was investigated by medium- and high-temperature aging treatments of 600 °C and 800 °C. The microstructure analysis showed that the fine rod-shaped and coarsening dendritelike σ-phase precipitates formed at 600 °C and 800 °C, respectively, and the precipitate growth with the higher temperature was accelerated due to the partition of Mn, but Mn is not a strong σ-phase forming element like Cr, Mo during aging treatment at these two temperatures. At an early aging time of 800 °C, more precipitated nuclei with more Mn addition promote refinement of σ precipitates in later aging time. The kinetic behavior at 600 °C and 800 °C is related to diffusion-controlled growth of σ phase, and the σ-phase nucleation and growth are enhanced with more Mn addition and higher aging temperature due to a faster Mn diffusion rate. The difference in precipitation morphology for two aging temperatures was attributed to the different nucleation modes caused by kinetics parameter n variation. Increasing the aging temperature from 600 °C to 800 °C increased the susceptibility to pitting with higher Mn addition due to faster σ-phase precipitation kinetics.
Effect of tensile deformation on micromagnetic parameters in 0.2% carbon steel and 2.25Cr-1Mo steel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moorthy, V.; Vaidyanathan, S.; Jayakumar, T.
The influence of prior tensile deformation on the magnetic Barkhausen emission (MBE) and the hysteresis (B-H) curve has been studied in 0.2% carbon steel and 2.25Cr-1Mo steel under different tempered conditions. This study shows that the micromagnetic parameters can be used to identify the four stages of deformation, namely (1) perfectly elastic, (2) microplastic yielding, (3) macroyielding and (4) progressive plastic deformation. However, it is observed that the MBE profile shows more distinct changes at different stages of tensile deformation than the hysteresis curve. It has been established that the beginning of microplastic yielding and macroyielding can be identified frommore » the MBE profile which is not possible from the stress-strain plot. The onset of microplastic yielding can be identified from the decrease in the MBE peak height. The macroyielding can be identified from the merging of the initially present two-peak MBE profile into a single central peak with relatively higher peak height and narrow profile width. The difference between the variation of MBE and hysteresis curve parameters with strain beyond macroyielding indicates the difference in the deformation state of the surface and bulk of the sample.« less
Dynamic strain aging behavior of 10Cr steel under low cycle fatigue at 650°C
NASA Astrophysics Data System (ADS)
Mishnev, Roman; Dudova, Nadezhda; Kaibyshev, Rustam
2017-12-01
The low cycle fatigue behavior of a 10Cr-2W-0.7Mo-3Co-NbV steel with 80 ppm of B additions was studied at elevated temperatures of 600 and 650°C. The steel after normalizing and tempering at 770°C was tested under fully reversed tension-compression loading with the total strain amplitude controlled from ±0.2 to ±1.0% at temperatures of 600 and 650°C. It was revealed that the steel exhibits a positive temperature dependence of both the cyclic strain hardening exponent n' and the cyclic strength coefficient K ' during cyclic loading at 650°C. It was suggested that dynamic strain aging causes fatigue resistance degradation through facilitating microcrack initiation.
Mössbauer studies of a martensitic transformation and of cryogenic treatments of a D2 tool steel
NASA Astrophysics Data System (ADS)
Costa, B. F. O.; Blumers, M.; Kortmann, A.; Theisen, W.; Batista, A. C.; Klingelhöfer, G.
2013-04-01
A D2 tool steel X153CrVMo12 with composition C1.53 Cr12 V0.95 Mo0.80 Mn0.40(wt% Fe balanced) was studied by use of Mössbauer spectroscopy and X-ray diffraction. It was observed that the study of carbides by X-ray diffraction was difficult while Mössbauer spectroscopy gives some light on the process occurring during cryogenic treatment. With the increase of the martensitic phase the carbides decrease and are dissolved in solid solution of martensite as well as the chromium element.
Ratcheting induced cyclic softening behaviour of 42CrMo4 steel
NASA Astrophysics Data System (ADS)
Kreethi, R.; Mondal, A. K.; Dutta, K.
2015-02-01
Ratcheting is an important field of fatigue deformation which happens under stress controlled cyclic loading of materials. The aim of this investigation is to study the uniaxial ratcheting behavior of 42CrMo4 steel in annealed condition, under various applied stresses. In view of this, stress controlled fatigue tests were carried out at room temperature up to 200 cycles using a servo-hydraulic universal testing machine. The results indicate that accumulation of ratcheting strain increases monotonically with increasing maximum applied stress however; the rate of strain accumulation attains a saturation plateau after few cycles. The investigated steel shows cyclic softening behaviour under the applied stress conditions. The nature of strain accumulation and cyclic softening has been discussed in terms of dislocation distribution and plastic damage incurred in the material.
Cast, heat-resistant austenitic stainless steels having reduced alloying element content
Muralidharan, Govindarajan [Knoxville, TN; Sikka, Vinod Kumar [Oak Ridge, TN; Maziasz, Philip J [Oak Ridge, TN; Pankiw, Roman I [Greensburg, PA
2011-08-23
A cast, austenitic steel composed essentially of, expressed in weight percent of the total composition, about 0.4 to about 0.7 C, about 20 to about 30 Cr, about 20 to about 30 Ni, about 0.5 to about 1 Mn, about 0.6 to about 2 Si, about 0.05 to about 1 Nb, about 0.05 to about 1 W, about 0.05 to about 1.0 Mo, balance Fe, the steel being essentially free of Ti and Co, the steel characterized by at least one microstructural component selected from the group consisting of MC, M.sub.23C.sub.6, and M(C, N).
Cast, heat-resistant austenitic stainless steels having reduced alloying element content
Muralidharan, Govindarajan [Knoxville, TN; Sikka, Vinod Kumar [Oak Ridge, TN; Maziasz, Philip J [Oak Ridge, TN; Pankiw, Roman I [Greensburg, PA
2010-07-06
A cast, austenitic steel composed essentially of, expressed in weight percent of the total composition, about 0.4 to about 0.7 C, about 20 to about 30 Cr, about 20 to about 30 Ni, about 0.5 to about 1 Mn, about 0.6 to about 2 Si, about 0.05 to about 1 Nb, about 0.05 to about 1 W, about 0.05 to about 1.0 Mo, balance Fe, the steel being essentially free of Ti and Co, the steel characterized by at least one microstructural component selected from the group consisting of MC, M.sub.23C.sub.6, and M(C, N).
Boronization and Carburization of Superplastic Stainless Steel and Titanium-Based Alloys
Matsushita, Masafumi
2011-01-01
Bronization and carburization of fine-grain superplastic stainless steel is reviewed, and new experimental results for fine grain Ti88.5Al4.5V3Fe2Mo2 are reported. In superplastic duplex stainless steel, the diffusion of carbon and boron is faster than in non-superplastic duplex stainless steel. Further, diffusion is activated by uniaxial compressive stress. Moreover, non-superplastic duplex stainless steel shows typical grain boundary diffusion; however, inner grain diffusion is confirmed in superplastic stainless steel. The presence of Fe and Cr carbides or borides is confirmed by X-ray diffraction, which indicates that the diffused carbon and boron react with the Fe and Cr in superplastic stainless steel. The Vickers hardness of the carburized and boronized layers is similar to that achieved with other surface treatments such as electro-deposition. Diffusion of boron into the superplastic Ti88.5Al4.5V3Fe2Mo2 alloy was investigated. The hardness of the surface exposed to boron powder can be increased by annealing above the superplastic temperature. However, the Vickers hardness is lower than that of Ti boride. PMID:28824144
Brady, Michael P.; Muralidharan, Govindarajan; Leonard, Donovan .; ...
2014-08-29
Here, the oxidation behavior of SiMo cast iron, Ni-resist D 5S cast iron, cast chromia-forming austenitic stainless steels of varying Cr/Ni content based on CF8C plus, HK, and HP, and a developmental cast alumina-forming austenitic (AFA) stainless steel of interest for diesel exhaust system components were studied for up to 5000 h at 650-800 °C in air with 10% H 2O. At 650 °C, the Ni-resist D5S exhibited moderately better oxidation resistance than did the SiMo cast iron. However, the D5S suffered from oxide scale spallation issues at 700 °C and higher, whereas the oxide scales formed on SiMo castmore » iron remained adherent from 700-800 °C despite oxide scales hundreds of microns thick. The oxidation of the SiMo cast iron exhibited unusual temperature dependence, with periods of slower oxidation kinetics at 750-800 °C compared to 650-700 °C due to continuous silica-rich scale formation at the higher temperatures. The oxidation of the cast chromia-forming austenitics trended with the level of Cr and Ni additions, with small mass losses consistent with Cr oxy-hydroxide volatilization processes for the higher 25Cr/25-35Ni HK and HP type alloys, and transition to rapid Fe-base oxide formation and scale spallation in the lower 19Cr/12Ni CF8C plus type alloy. In contrast, small positive mass changes consistent with protective alumina scale formation were observed for the cast AFA alloy under all conditions studied. Implications of these findings for diesel exhaust system components are discussed.« less
Rodriguez, Alvaro A.; Tylczak, Joseph H.; Gao, Michael C.; ...
2018-01-01
The corrosion behavior of high-entropy alloys (HEAs) CoCrFeNi 2 and CoCrFeNi 2 Mo 0.25 was investigated in 3.5 wt. percent sodium chloride (NaCl) at 25°C by electrochemical methods. Their corrosion parameters were compared to those of HASTELLOY® C-276 (UNS N10276) and stainless steel 316L (UNS 31600) to assess the suitability of HEAs for potential industrial applications in NaCl simulating seawater type environments. The corrosion rates were calculated using corrosion current determined from electrochemical experiments for each of the alloys. In addition, potentiodynamic polarization measurements can indicate active, passive, and transpassive behavior of the metal as well as potential susceptibility to pittingmore » corrosion. Cyclic voltammetry (CV) can confirm the alloy susceptibility to pitting corrosion. Electrochemical impedance spectroscopy (EIS) elucidates the corrosion mechanism under studied conditions. The results of the electrochemical experiments and scanning electron microscopy (SEM) analyses of the corroded surfaces revealed general corrosion on alloy CoCrFeNi 2 Mo 0.25 and HASTELLOY C-276 and pitting corrosion on alloy CoCrFeNi 2 and stainless steel 316L.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rodriguez, Alvaro A.; Tylczak, Joseph H.; Gao, Michael C.
The corrosion behavior of high-entropy alloys (HEAs) CoCrFeNi 2 and CoCrFeNi 2 Mo 0.25 was investigated in 3.5 wt. percent sodium chloride (NaCl) at 25°C by electrochemical methods. Their corrosion parameters were compared to those of HASTELLOY® C-276 (UNS N10276) and stainless steel 316L (UNS 31600) to assess the suitability of HEAs for potential industrial applications in NaCl simulating seawater type environments. The corrosion rates were calculated using corrosion current determined from electrochemical experiments for each of the alloys. In addition, potentiodynamic polarization measurements can indicate active, passive, and transpassive behavior of the metal as well as potential susceptibility to pittingmore » corrosion. Cyclic voltammetry (CV) can confirm the alloy susceptibility to pitting corrosion. Electrochemical impedance spectroscopy (EIS) elucidates the corrosion mechanism under studied conditions. The results of the electrochemical experiments and scanning electron microscopy (SEM) analyses of the corroded surfaces revealed general corrosion on alloy CoCrFeNi 2 Mo 0.25 and HASTELLOY C-276 and pitting corrosion on alloy CoCrFeNi 2 and stainless steel 316L.« less
Corrosion property of 9Cr-ODS steel in nitric acid solution for spent nuclear fuel reprocessing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takeuchi, M.; Koizumi, T.; Inoue, M.
2013-07-01
Corrosion tests of oxide dispersion strengthened with 9% Cr (9Cr-ODS) steel, which is one of the desirable materials for cladding tube of sodium-cooled fast reactors, in pure nitric acid solution, spent FBR fuel solution, and its simulated solution were performed to understand the corrosion behavior in a spent nuclear fuel reprocessing. In this study, the 9Cr-ODS steel with lower effective chromium content was evaluated to understand the corrosion behavior conservatively. As results, the tube-type specimens of the 9Cr-ODS steels suffered severe weight loss owing to active dissolution at the beginning of the immersion test in pure nitric acid solution inmore » the range from 1 to 3.5 M. In contrast, the weight loss was decreased and they showed a stable corrosion in the higher nitric acid concentration, the dissolved FBR fuel solution, and its simulated solution by passivation. The corrosion rates of the 9Cr-ODS steel in the dissolved FBR fuel solution and its simulated solution were 1-2 mm/y and showed good agreement with each other. The passivation was caused by the shift of corrosion potential to noble side owing to increase in nitric acid concentration or oxidative ions in the dissolved FBR fuel solution and the simulated spent fuel solution. (authors)« less
NASA Astrophysics Data System (ADS)
Sokolov, G. N.; Artem'ev, A. A.; Dubcov, Yu. N.; Eremin, E. N.; Litvinenko-Ar'kov, V. B.
2017-08-01
The influence of nitrogen and titanium carbonitride particles on the structure and properties of high-chromium steel, deposited by flux cored wire, has been studied. It has been shown that the quality formation of the weld metal and pore absence in it are achieved with nitrogen concentration in wire filler no more than 0.32 mass%. It has been found that in adding titanium carbonitride particles from 0.2 to 0.6 mass% to wire filler the effect of weld Fe-C-Cr-Mo-Ni-N system metal modification is implemented and its operational properties increase. The developed flux cored wire has been recommended for oil and gas equipment welding.
NASA Technical Reports Server (NTRS)
Wigley, D. A.
1985-01-01
The results of a study to evaluate the dimensional changes created during machining and subsequent cycling to cryogenic temperatures for three different metallic alloys are presented. Experimental techniques are described and results presented for 18 Ni Grade 200 maraging steel, PH-13-8 Mo stainless steel, and Grain-refined HP 9-4-20.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-25
... which meets the following chemical, physical and mechanical specifications: C Mn P S Si Cr Cu Ni 0.10-0... specifications: C Mn P S Si Cr Cu Ni Mo 0.10-0.16% 0.70-0.90% 0.025% Max 0.006% Max 0.30-0.50% 0.50-0.70% 0.25... following chemical, physical and mechanical specifications: C Mn P S Si Cr Cu Ni V (wt.) Cb 0.10-0.14% 1.30...
NASA Technical Reports Server (NTRS)
Nieh, C. Y.; Wallace, J. F.
1981-01-01
Sputtered coatings of Mo, W, Pt, Ag, Au, Co, Cr, Ni, Ag + Cu, Mo + Pt, Si3N4, A1N, Cr3C2, Ta5Si3, and ZrO2 were applied to a 2-inch-square, 7-inch-long thermal fatigue test specimen which was then internally water cooled and alternately immersed in molten aluminum and cooled in air. After 15,000 cycles the thermal fatigue cracks at the specimen corners were measured. Results indicate that a significant improvement in thermal fatigue resistance was obtained with platinum, molybdenum, and tungsten coatings. Metallographic examination indicates that the improvement in thermal fatigue resistance resulted from protection of the surface of the die steel from oxidation. The high yield strength and ductility of molybdenum and tungsten contributed to the better thermal fatigue resistance.
a Study of Composite Coatings on 22MnCrNiMo Steel for Mooring Chain
NASA Astrophysics Data System (ADS)
Shen, Yan; Sahoo, Prasanta K.; Pan, Yipeng
In order to enhance the corrosion resistance of mooring chain, the composite coatings are carried out on the surface of 22MnCrNiMo steel for mooring chain by double-pulsed electrodeposition technology using centrifugal force in the rotating device. The microstructure and anti-corrosion performance of the composite coatings have been investigated experimentally. This paper mainly focuses on the experimental work to determine the structural characteristics and corrosion resistance of composite coatings in the presence of nano-SiC. The results show that the presence of nano-SiC has a significant effect on the preparation of composite coating during the process. The surface of the coating becomes compact and smooth at a moderate concentration of nano-SiC particles. Furthermore, the best corrosion resistance of the composite coatings can be obtained when the concentration of nano-SiC particles is 2.0g.L-1 after salt spray treatment.
The effect of microstructure on abrasive wear of steel
NASA Astrophysics Data System (ADS)
Kešner, A.; Chotëborský, R.; Linda, M.
2017-09-01
Abrasive wear of agricultural tools is one of the biggest problems in currently being. The amount of abrasive wear, depending on the microstructure, has been investigated in this work. Steels 25CrMo4 and 51CrV4 were used in this work to determine the effect of the microstructure on the abrasive wear. These steels are commonly used for components that have to withstand abrasive wear.SEM analysis was used to detect the microstructure. The standardized ASTM G65 method was used to compare the abrasive wear of steels. The results show that the abrasive wear depends on the microstructure of steels.
NASA Astrophysics Data System (ADS)
Mann, B. S.
2013-08-01
This article deals with high power diode laser (HPDL) surface modification of twin wire arc-sprayed (TWAS) and high pressure high velocity oxy-fuel (HP-HVOF) coatings to combat solid particle erosion occurring in fossil fuel power plants. To overcome solid particle impact wear above 673 K, Cr3C2-NiCr-, Cr3C2-CoNiCrAlY-, and WC-CrC-Ni-based HVOF coatings are used. WC-CoCr-based HVOF coatings are generally used below 673 K. Twin wire arc (TWA) spraying of Tafa 140 MXC and SHS 7170 cored wires is used for a wide range of applications for a temperature up to 1073 K. Laser surface modification of high chromium stainless steels for steam valve components and LPST blades is carried out regularly. TWA spraying using SHS 7170 cored wire, HP-HVOF coating using WC-CoCr powder, Ti6Al4V alloy, and high chromium stainless steels (X20Cr13, AISI 410, X10CrNiMoV1222, 13Cr4Ni, 17Cr4Ni) were selected in the present study. Using robotically controlled parameters, HPDL surface treatments of TWAS-coated high strength X10CrNiMoV1222 stainless steel and HP-HVOF-coated AISI 410 stainless steel samples were carried out and these were compared with HPDL-treated high chromium stainless steels and titanium alloy for high energy particle impact wear (HEPIW) resistance. The HPDL surface treatment of the coatings has improved the HEPIW resistance manifold. The improvement in HPDL-treated stainless steels and titanium alloys is marginal and it is not comparable with that of HPDL-treated coatings. These coatings were also compared with "as-sprayed" coatings for fracture toughness, microhardness, microstructure, and phase analyses. The HEPIW resistance has a strong relationship with the product of fracture toughness and microhardness of the HPDL-treated HP-HVOF and TWAS SHS 7170 coatings. This development opens up a possibility of using HPDL surface treatments in specialized areas where the problem of HEPIW is very severe. The HEPIW resistance of HPDL-treated high chromium stainless steels and titanium alloys, HPDL-treated TWAS SHS 7170 and HP-HVOF coatings, and their micrographs and X-ray diffraction analysis is reported in this article.
Evaluation of advanced austenitic alloys relative to alloy design criteria for steam service
DOE Office of Scientific and Technical Information (OSTI.GOV)
Swindeman, R.W.; Maziasz, P.J.; Bolling, E.
1990-05-01
The results are summarized for a 6-year activity on advanced austenitic stainless steels for heat recovery systems. Commercial, near-commercial, and developmental alloys were evaluated relative to criteria for metallurgical stability, fabricability, weldability, and mechanical strength. Fireside and steamside corrosion were also considered, but no test data were collected. Lean stainless steel alloys that were given special attention in the study were type 316 stainless steel, fine-grained type 347 stainless steel, 17-14CuMo stainless steel, Esshete 1250, Sumitomo ST3Cu{reg sign} stainless steel, and a group of alloys identified as HT-UPS (high-temperature, ultrafine-precipitation strengthened) steels that were basically 14Cr--16Ni--Mo steels modified by variousmore » additions of MC-forming elements. It was found that, by solution treating the MC-forming alloys to temperatures above 1150{degree}C and subsequently cold or warm working, excellent metallurgical stability and creep strength could be achieved. Test data to beyond 35,000 h were collected. The ability to clad the steels for improved fireside corrosion resistance was demonstrated. Weldability of the alloys was of concern, and hot cracking was found to be a problem in the HT-UPS alloys. By reducing the phosphorous content and selecting either CRE 16-8-2 stainless steel or alloy 556 filler metal, weldments were produced that had excellent strength and ductility. The major issues related to the development of the advanced alloys were identified and ways to resolve the issues suggested. 89 refs., 45 figs., 8 tabs.« less
Effect of Etching Methods in Metallographic Studies of Duplex Stainless Steel 2205
NASA Astrophysics Data System (ADS)
Kisasoz, A.; Karaaslan, A.; Bayrak, Y.
2017-03-01
Three different etching methods are used to uncover the ferrite-austenite structure and precipitates of secondary phases in stainless steel 22.5% Cr - 5.4% Ni - 3% Mo - 1.3% Mn. The structure is studied under a light microscope. The chemical etching is conducted in a glycerol solution of HNO3, HCl and HF; the electrochemical etching is conducted in solutions of KOH and NaOH.
Comparative study of the mechanical and tribological properties of a Hadfield and a Fermanal steel
NASA Astrophysics Data System (ADS)
Astudillo A., P. C.; Soriano G., A. F.; Barona Osorio, G. M.; Sánchez Sthepa, H.; Ramos, J.; Durán, J. F.; Pérez Alcázar, G. A.
2017-11-01
In this study, Fe-12.50Mn-1.10C-1.70Cr-0.40Mo-0.40Si-0.50(max)P-0.50(max)S (Hadfield alloy) and Fe-28.4Mn-0.86C-1.63Al-0.42Cu-1.80Mo-1.59Si-0.60W (Fermanal alloy) (Wt. %) in the aged condition were compared in terms of its tribological and microstructural properties. The x-ray diffraction (XRD) patterns were refined with the lines of the austenitic γ-phase, Chromium Iron Carbide (Cr2Fe14C), Iron Carbide (Fe2C), and Iron Oxide (Fe0.974O (II)) for the Hadfield alloy, and the lines of the austenitic γ-phase, martensite (M), Mn1.1Al0.9 phase and iron carbide (Fe7C3) for the Fermanal alloy. Mössbauer spectra were fit with two sites for the Hadfield alloy, which displayed as a broad singlet because of the austenitic disordered phase, and had a magnetic hyperfine field distribution, which corresponds to the Cr2Fe14C ferromagnetic carbides found by XRD. There were two paramagnetic sites, a singlet, which corresponds to the austenite disordered phase, and a doublet, which can be attributed to the Fe7C3 carbide. The obtained Rockwell C hardness for aged Hadfield and Fermanal alloys were 43.786 and 50.018 HRc, respectively.
Thermal stability of intermetallic phases in Fe-rich Fe-Cr-Ni-Mo alloys
Yang, Ying; Tan, Lizhen; Busby, Jeremy T.
2015-06-12
Understanding the stability of precipitate phases in the Fe-rich Fe-Cr-Ni-Mo alloys is critical to the alloy design and application of Mo-containing Austenitic steels. Coupled with thermodynamic modeling, stability of the chi and Laves phases in two Fe-Cr-Ni-Mo alloys were investigated at 1000, 850 and 700 °C for different annealing time. The morphologies, compositions and crystal structures of the matrix and precipitate phases were carefully examined by Scanning Electron Microscopy, Electron Probe Microanalysis, X-ray diffraction and Transmission Electron Microscopy. The two key findings resulted from this work. One is that the chi phase is stable at high temperature and transformed intomore » the Laves phase at low temperature. The other is that both the chi and Laves phases have large solubilites of Cr, Mo and Ni, among which the Mo solubility has a major role on the relative stability of the precipitate phases. The developed thermodynamic models were then applied to evaluating the Mo effect on the stability of precipitate phases in AISI 316 and NF709 alloys.« less
EFFECTS OF COMPOSITION ON THE MECHANICAL PROPERTIES OF NI-CR-MO-CO FILLER METALS.
STEEL, WELDING RODS), CHEMICAL ANALYSIS, CARBON ALLOYS , COBALT ALLOYS , CHROMIUM ALLOYS , MOLYBDENUM ALLOYS , NICKEL ALLOYS , MARAGING STEELS...ALUMINUM COMPOUNDS, TITANIUM , NONMETALS, SHIP HULLS, SHIP PLATES, SUBMARINE HULLS, WELDING , WELDS , MECHANICAL PROPERTIES, STATISTICAL ANALYSIS, MICROSTRUCTURE.
NASA Astrophysics Data System (ADS)
Al-Rumaih, Abdullah M.
Thick-wall vessels in petrochemical applications, fabricated from 2.25Cr-1Mo steel, operate in pressurized H2 at elevated temperature for more than 20 years. There is a concern regarding the interactive effects of temper-embrittlement and hydrogen-embrittlement on fitness-for-service during startup/shutdown near ambient temperatures. The database of degraded material properties is inadequate to enable accurate assessment. Specifically, H loss from small fracture mechanics specimens was substantial during either long-term or elevated temperature experiments. In addition, the influence of temperature on H-embrittlement of Cr-Mo steel is not fundamentally understood. The objectives of this research are to (1) design a novel laboratory method to retain H in small fracture mechanics specimens, (2) characterize the temperature dependent internal hydrogen embrittlement (IHE) of Cr-Mo weld metal using the developed method, and (3) model H distribution near a stressed crack tip in a H-trap laden bainitic microstructure to fundamentally understand the temperature dependent IHE. The new slotted CT specimen approach, with 3.0 wppm total H produced on the slot surface from acidified thiosulfate charging, quantitatively characterized the temperature dependent threshold stress intensity (KIH and K TH) and kinetics (da/dtRISE and da/dtHOLD) of IHE in Cr-Mo weld metal during both rising and slowly falling K loading. IHE was produced successfully and damage was more severe during rising K loading due to the role of crack tip plasticity in H cracking of low to moderate strength steel. The critical temperature at which embrittlement ceased is in the range 45°C < Tc ≤ 60°C for the weld metal and H content studied. This method provides a useful new tool to generate fracture mechanics based fitness-for-service data. A three-dimensional finite element diffusion model, that accounts for the effect of crack tip plasticity and trapping on H transport, established K, dK/dt and temperature dependencies of H distributed about the stressed crack tip in the slotted and standard CT specimens. The slot approach provides higher H levels for long times and/or elevated temperatures, and solves the problem of H loss during testing. The diffusion model was used to understand temperature dependent ME Stress field interaction energy (EH) vs. temperature at the blunted crack tip for Cr-Mo steel is lower than the estimated binding energies (EB) for the various surrounding reversible trap sites; indicating with probability calculations that H is unlikely to repartition from these traps to the stress field. Hydrogen transport to the fracture process zone (FPZ) from the surrounding bulk is by diffusion, enhanced by a plasticity-related mechanism. Interfaces and boundaries within the FPZ in the dilated region at the crack tip are the sites that form the interconnected H-fracture path. Trapped H concentration in these fracture sites critically governs the temperature dependent IHE, with negligible effect of temperature (≤100°C) on the crack tip stress field. The measured KIH for subcritical H cracking under rising K decreases systematically with increasing H trapped in the FPZ, as established by diffusion modeling for a variety of H cracking and temperature conditions. Diffusion model predictions of the critical trapped H concentration indicate that the Tc at which IHE is eliminated from Cr-Mo weld metal should be ≥110°C for a thick-wall hydroprocessing vessel with total-peak H of ≈4.0 wppm.
NASA Astrophysics Data System (ADS)
Kong, J. H.; Lee, D. J.; On, H. Y.; Lee, S. H.; Sung, J. H.; Lee, H. W.
2009-04-01
The effect of the High Temperature Gas Nitriding (HTGN) and tempering treatment of 17Cr-1Ni-0.5C-0.8Mo (CNMo) steel was experimentally investigated. The HTGN was carried out at 1050 °C for 1 h in a gaseous atmosphere containing 98.07 kPa of nitrogen. Chromium nitrides in the austenite and martensite phase appeared at the nitrogen-permeated surface layer after the HTGN treatment. The hardness of the outmost surface of the HTGN treated specimen measured 708 Hv. When it was tempered at 500 °C for 1 h, the hardness of the outmost surface was 763 Hv as a result of the precipitation of mostly micro Cr2N, which was densely packed with a small amount of Cr23C6 and the secondary hardening effect. In addition, an improvement in the corrosion resistance was observed in the tempered specimen.
Effect of parameters on picosecond laser ablation of Cr12MoV cold work mold steel
NASA Astrophysics Data System (ADS)
Wu, Baoye; Liu, Peng; Zhang, Fei; Duan, Jun; Wang, Xizhao; Zeng, Xiaoyan
2018-01-01
Cr12MoV cold work mold steel, which is a difficult-to-machining material, is widely used in the mold and dye industry. A picosecond pulse Nd:YVO4 laser at 1064 nm was used to conduct the study. Effects of operation parameters (i.e., laser fluence, scanning speed, hatched space and number of scans) were studied on ablation depth and quality of Cr12MoV at the repetition rate of 20 MHz. The experimental results reveal that all the four parameters affect the ablation depth significantly. While the surface roughness depends mainly on laser fluence or scanning speed and secondarily on hatched space or number of scans. For laser fluence and scanning speed, three distinct surface morphologies were observed experiencing transition from flat (Ra < 1.40 μm) to bumpy (Ra = 1.40 - 2.40 μm) eventually to rough (Ra > 2.40 μm). However, for hatched space and number of scan, there is a small bumpy and rough zone or even no rough zone. Mechanisms including heat accumulation, plasma shielding and combustion reaction effects are proposed based on the ablation depth and processing morphology. By appropriate management of the laser fluence and scanning speed, high ablation depth with low surface roughness can be obtained at small hatched space and high number of scans.
Chao, Yong-lie; Lui, Chang-hong; Li, Ning; Yang, Xiao-yu
2005-02-01
To investigate a kind of Co-Cr-Mo alloys used for both porcelain fused to metal (PFM) restorations and casting framework of removable partial dentures. The Co-Cr-Mo alloy underwent the design for elementary compositions of the alloys and the production from the raw materials by means of a vacuum melt furnace. The strength, hardness, plasticity and casting ability of the alloy were examined with metal tensile test. Vickers hardness test and grid casting were examined respectively. The microstructure of the Co-Cr-Mo alloy was also inspected by scanning electron microscope and X-ray diffraction analysis. The elementary composition of DA9-4 alloy mainly consisted of Co 54%-67%, Cr 21%-26%, Mo 5%-8%, W 5%-8%, Si 1%-3%, Mn 0.1%-0.25% and trace elements. The yield strength of the alloy was 584 MPa, while the tensile strength was 736 MPa. The coefficient of expansion was 15.0%, the Vickers hardness reached 322, and the casting ratio exibited 100%. The DA9-4 Co-Cr-Mo alloy used for PFM and framework shown in this paper can meet the clinical demands and have reached the objects of the experiment plan.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dogan, O.N.; Hawk, J.A.; Schrems, K.K.
2006-06-01
A new class of materials, namely TiC-reinforced cast chromium (Cr) steels, was developed for applications requiring high abrasion resistance and good fracture toughness. The research approach was to modify the carbide structure of commercial AISI 440C steel for better fracture resistance while maintaining the already high abrasion resistance. The new alloys contained 12Cr, 2.5–4.5Ti, and 1–1.5C (wt.%) and were melted in a vacuum induction furnace. Their microstructure was composed primarily of a martensitic matrix with a dispersion of TiC precipitates. Modification of TiC morphology was accomplished through changing the cooling rate during solidification. Wear rates of the TiC-reinforced Cr steelsmore » were comparable to that of AISI 440C steel, but the impact resistance was much improved.« less
NASA Astrophysics Data System (ADS)
Kumaresh Babu, S. P.; Natarajan, S.
2010-07-01
Higher productivity is registered with Flux cored arc welding (FCAW) process in many applications. Further, it combines the characteristics of shielded metal arc welding (SMAW), gas metal arc welding (GMAW), and submerged arc welding (SAW) processes. This article describes the experimental work carried out to evaluate and compare corrosion and its inhibition in SA 387 Gr.22 (2.25Cr-1Mo) steel weldments prepared by FCAW process with four different heat inputs exposed to hydrochloric acid medium at 0.1, 0.5, and 1.0 M concentrations. The parent metal, weld metal, and heat-affected zone are chosen as regions of exposure for the study carried out at 100 °C. Electrochemical polarization techniques such as Tafel line extrapolation (Tafel) and linear polarization resistance (LPR) have been used to measure the corrosion current. The role of hexamine and mixed inhibitor (thiourea + hexamine in 0.5 M HCl), each at 100 ppm concentration is studied in these experiments. Microstructural observation, hardness survey, surface characterization, and morphology using scanning electron microscope (SEM) and x-ray diffraction (XRD) have been made on samples to highlight the nature and extent of film formation. The film is found to contain Fe2Si, FeSi2, FeMn3, Fe7Mo3, Fe3O4, FeO, FeCr, AlO7Fe3SiO3, and KFe4Mn77Si19.
Design of Boiler Welding for Improvement of Lifetime and Cost Control.
Thong-On, Atcharawadi; Boonruang, Chatdanai
2016-11-03
Fe-2.25Cr-1Mo a widely used material for headers and steam tubes of boilers. Welding of steam tube to header is required for production of boiler. Heat affected zone of the weld can have poor mechanical properties and poor corrosion behavior leading to weld failure. The cost of material used for steam tube and header of boiler should be controlled. This study propose a new materials design for boiler welding to improve the lifetime and cost control, using tungsten inert gas (TIG) welding of Fe-2.25Cr-1Mo tube to carbon steel pipe with chromium-containing filler. The cost of production could be reduced by the use of low cost material such as carbon steel pipe for boiler header. The effect of chromium content on corrosion behavior of the weld was greater than that of the microstructure. The lifetime of the welded boiler can be increased by improvement of mechanical properties and corrosion behavior of the heat affected zone.
Design of Boiler Welding for Improvement of Lifetime and Cost Control
Thong-On, Atcharawadi; Boonruang, Chatdanai
2016-01-01
Fe-2.25Cr-1Mo a widely used material for headers and steam tubes of boilers. Welding of steam tube to header is required for production of boiler. Heat affected zone of the weld can have poor mechanical properties and poor corrosion behavior leading to weld failure. The cost of material used for steam tube and header of boiler should be controlled. This study propose a new materials design for boiler welding to improve the lifetime and cost control, using tungsten inert gas (TIG) welding of Fe-2.25Cr-1Mo tube to carbon steel pipe with chromium-containing filler. The cost of production could be reduced by the use of low cost material such as carbon steel pipe for boiler header. The effect of chromium content on corrosion behavior of the weld was greater than that of the microstructure. The lifetime of the welded boiler can be increased by improvement of mechanical properties and corrosion behavior of the heat affected zone. PMID:28774014
Electrochemical investigations of Cr-Ni-Mo stainless steel used in urology
NASA Astrophysics Data System (ADS)
Przondziono, J.; Walke, W.
2011-05-01
The influence of chemical passivation process on physical and chemical characteristics of samples made of X2CrNiMo 17-7-2 steel with differentiated hardening, in the solution simulating the environment of human urine was analysed in the study. Wire obtained in cold drawing process is used for the production of stents and appliances in urological treatment. Proper roughness of the surface was obtained through mechanical working - grinding (Ra = 0,40 μn) and electrochemical polishing (Ra = 0,12 μn). Chemical passivation process was carried out in 40% solution of HN03 within 60 minutes in the temperature of 65°C. The tests of corrosion resistance were made on the ground of registered anodic polarisation curves and Stern method. For evaluation of phenomena occurring on the surface of tested steel, electrochemical impedance spectroscopy (EIS) was applied.
NASA Astrophysics Data System (ADS)
Jeong, W. C.
2014-11-01
Effect of carbon on the microstructure and mechanical properties of 0.011 and 0.032 pct carbon dual-phase steels was investigated. r m value was increased to 1.52 at around 400 MPa tensile strength level through the optimal design in the steel chemistry and proper control of phase transformation during continuous galvanizing cycle. The isolated martensite particles are expected to increase the strength but are expected not to be desirable for the deep drawability.
Creep and microstructural processes in a low-alloy 2.25%Cr1.6%W steel (ASTM Grade 23)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kucharova, K.; Sklenicka, V., E-mail: sklen@ipm.cz; CEITEC — IPM, Institute of Physics of Materials, Academy of Sciences of the Czech Republic, CZ-616 62 Brno
2015-11-15
A low-alloy 2.25%Cr1%Mo steel (ASTM Grade 22) has been greatly improved by the substitution of almost all of the 1%Mo by 1.6%W. The improved material has been standardized as P/T23 steel (Fe–2.25Cr–1.6W–0.25V–0.05Nb–0.07C). The present investigation was conducted on T23 steel in an effort to obtain a more complete description and understanding of the role of the microstructural evolution and deformation processes in high-temperature creep. Constant load tensile creep tests were carried out in an argon atmosphere in the temperature range 500–650 °C at stresses ranging from 50 to 400 MPa. It was found that the diffusion in the matrix latticemore » is the creep-rate controlling process. The results of an extensive transmission electron microscopy (TEM) analysis programme to investigate microstructure evolution as a function of temperature are described and compared with the thermodynamic calculations using the software package Thermo-Calc. The significant creep-strength drop of T23 steel after long-term creep exposures can be explained by the decrease in dislocation hardening, precipitation hardening and solid solution hardening due to the instability of the microstructure at high temperature. - Highlights: • The constant load creep tests of T23 steel were carried out at 500–650 °C. • The stress exponents of the creep rate correspond to power law (dislocation) creep. • Diffusion in the matrix lattice is the creep-rate controlling process. • The microstructure instability is the main creep degradation process in T23 steel.« less
Electrochemical corrosion of a noble metal-bearing alloy-oxide composite
Chen, X.; Ebert, W. L.; Indacochea, J. E.
2017-04-27
The effects of added Ru and Pd on the microstructure and electrochemical behaviour of a composite material made by melting those metals with AISI 410 stainless steel, Zr, Mo, and lanthanide oxides were assessed using electrochemical and microscopic methods Furthermore, the lanthanide oxides reacted with Zr to form durable lanthanide zirconates and Mo alloyed with steel to form FeMoCr intermetallics. The noble metals alloyed with the steel to provide solid solution strengthening and inhibit carbide/nitride formation. In a passive film formed during electrochemical tests in acidic NaCl solution, but became less effective as corrosion progressed and regions over the intermetallicsmore » eventually failed.« less
NASA Astrophysics Data System (ADS)
Sahiner, Nurettin; Demirci, Sahin; Sahiner, Mehtap; Al-Lohedan, Hamad
2015-11-01
Polyethyleneimine (PEI) microgels were synthesized by micro emulsion polymerization technique and converted to positively charged forms by chemical treatments with various modifying agents with different functional groups, such as 2-bromoethanol (-OH), 4-bromobutyronitrile (-CN), 2-bromoethylamine hydrobromide (-NH2), and glycidol (-OH). The functionalization of PEI microgels was confirmed by FT-IR, TGA and zeta potential measurements. Furthermore, a second modification of the modified PEI microgels was induced on 4-bromo butyronitrile-modified PEI microgels (PEI-CN) by amidoximation, to generate new functional groups on the modified PEI microgels. The PEI and modified PEI microgels were also tested for their antimicrobial effects against various bacteria such as Bacillus subtilis ATCC 6633, Escherichia coli ATCC 8739 and Staphylococcus aureus ATCC 25323. Moreover, the PEI-based particles were used for removal of organic dyes such as methyl orange (MO) and congo red (CR). The absorption capacity of PEI-based microgels increased with modification from 101.8 mg/g to 218.8 mg/g with 2-bromoethylamine, 216.2 m/g with 1-bromoethanol, and 224.5 mg/g with 4-bromobutyronitrile for MO. The increase in absorption for CR dyes was from 347.3 mg/g to 390.4 mg/g with 1-bromoethanol, 399.6 mg/g with glycidol, and 349.9 mg/g with 4-bromobutyronitrile.
NASA Astrophysics Data System (ADS)
Pu, Enxiang; Zheng, Wenjie; Song, Zhigang; Feng, Han; Zhu, Yuliang
2017-03-01
Hot deformation behavior of a Fe-24Cr-22Ni-7Mo-0.5N superaustenitic stainless steel was investigated by hot compression tests in a wide temperature range of 950-1250 °C and strain rate range of 0.001-10 s-1. The flow curves show that the flow stress decreases as the deformation temperature increases or the strain rate decreases. The processing maps developed on the basis of the dynamic materials model and flow stress data were adopted to optimize the parameters of hot working. It was found that the strain higher than 0.2 has no significant effect on the processing maps. The optimum processing conditions were in the temperature range of 1125-1220 °C and strain rate range of 0.1-3 s-1. Comparing to other stable domains, microstructural observations in this domain revealed the complete dynamic recrystallization (DRX) with finer and more uniform grain size. Flow instability occurred in the domain of temperature lower than 1100 °C and strain rate higher than 0.1 s-1.
Behavior of implanted hydrogen in ferritic/martensitic steels under irradiation
NASA Astrophysics Data System (ADS)
Wan, F.; Takahashi, H.; Ohnuki, S.; Nagasaki, R.
1988-07-01
The aim of this study was to clarify the behavior of hydrogen under irradiation in ferritic/martensitic stainless steel Fe-10Cr-2Mo-1Ni. Hydrogen was implanted into the specimens by ion accelerator or chemical cathodic charging method, followed by electron irradiation in a HVEM at temperatures from room temperature to 773 K. Streaks in the electron diffraction patterns were observed only during electron irradiation at 623-723 K. From these results it is suggested that the occurrence of the streak pattern is due to the formation of radiation-induced complexes of Ni or Cr with hydrogen along <100> directions.
Birosca, S; Ding, R; Ooi, S; Buckingham, R; Coleman, C; Dicks, K
2015-06-01
Nowadays flow-forming has become a desired near net shape manufacturing method as it provides excellent mechanical properties with improved surface finish and significant manufacturing cost reduction. However, the material is subjected to excessive plastic deformation during flow-forming process, generating a very fine and complex microstructure. In addition, the intense dislocation density and residual stress that is generated in the component during processing makes the microstructure characterisation using conventional micro-analytical tools challenging. Thus, the microstructure/property relationship study in such a material is rather difficult. In the present study a flow-formed Cr-Mo-V steel nanostructure and crystallographic texture were characterised by means of Transmission Kikuchi Diffraction (TKD). Here, TKD is shown to be a powerful technique in revealing very fine martensite laths within an austenite matrix. Moreover, fine precipitates in the order of 20-70 nm on the martensite lath boundaries were clearly imaged and characterised. This greatly assisted in understanding the preferable site formation of the carbides in such a complex microstructure. The results showed that the actual TKD spatial resolution was in the range of 5-10 nm using 25 kV for flow-formed Cr-Mo-V steel. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Ferrante, J.
1975-01-01
Auger electron spectroscopy and sputtering were used to study the interaction of SO2 with modified 440C, which is a nominally 77-wt%-Fe, 14-wt%-Cr, and 4-wt%-Mo bearing steel with C, S, Si, Ni, V, P, and Mn making up the balance. The sample was polycrystalline. Three temperatures were used: room temperature, 500 C, and 600 C. The reaction time was varied from 30 minutes to 2 hours. A surface cleaned of oxides was the starting point for each reaction. For reactions at 500 C, the major constituents Cr, O, Fe, and S were present in the surface film. At 600 C, the principal constituents of the film were Cr, O, and S with no Fe present. Therefore, a transition in film composition occurred between 500 and 600 C. Oxides were the primary constituents of the films at both temperatures. Room-temperature reactions indicated that SO2 adsorbed dissociatively, with approximately equal quantities of S and O on the surface. For the same reaction time (1 hr) and pressure, a strong temperature dependence of film thickness was observed. The film formed at 600 C was approximately seven times thicker than that formed at 500 C.
Critical cracking potentials of 26Cr-1 Mo ferritic stainless steels in boiling 42% LiCl solution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kwon, H.S.; Troiano, A.R.; Hehemann, R.F.
This paper reports that the critical cracking potentials (E[sub cc] for 26Cr-1Mo ferritic stainless steels (UNS S44627), above which stress corrosion cracking (SCC) does occur, have been measured at constant load in a hot chloride solution. Various factors affecting E[sub cc] for the low interstitial 26Cr-1Mo alloy (E-Brite) is shown to be a potential for crack initiation and is determined by the competing rates of generation of new surface by slip-induced film breakdown and repassivation. E[sub cc] for E-Brite is very sensitive to the microstructural conditions developed by prior thermal and mechanical treatments; varying in the range of -485 mVmore » for the mill annealed to -625 mV for the grain coarsened. On the other hand, the minimum potential permitting crack growth is insensitive to these treatments and corresponds to the most active value of E[sub cc] -625 mV. When strained at a constant strain rate (2.5 [times] 10[sup [minus]6]/S), the critical potential above which E-Brite is susceptible to SCC corresponds to the most active value of E[sub cc] measured at constant load. Thus, it appears that the most active value of E[sub cc](-625 mV) is a repassivation potential for growing cracks, and E[sub cc] approaches that for crack propagation as a limiting condition.« less
Tool Steel Heat Treatment Optimization Using Neural Network Modeling
NASA Astrophysics Data System (ADS)
Podgornik, Bojan; Belič, Igor; Leskovšek, Vojteh; Godec, Matjaz
2016-11-01
Optimization of tool steel properties and corresponding heat treatment is mainly based on trial and error approach, which requires tremendous experimental work and resources. Therefore, there is a huge need for tools allowing prediction of mechanical properties of tool steels as a function of composition and heat treatment process variables. The aim of the present work was to explore the potential and possibilities of artificial neural network-based modeling to select and optimize vacuum heat treatment conditions depending on the hot work tool steel composition and required properties. In the current case training of the feedforward neural network with error backpropagation training scheme and four layers of neurons (8-20-20-2) scheme was based on the experimentally obtained tempering diagrams for ten different hot work tool steel compositions and at least two austenitizing temperatures. Results show that this type of modeling can be successfully used for detailed and multifunctional analysis of different influential parameters as well as to optimize heat treatment process of hot work tool steels depending on the composition. In terms of composition, V was found as the most beneficial alloying element increasing hardness and fracture toughness of hot work tool steel; Si, Mn, and Cr increase hardness but lead to reduced fracture toughness, while Mo has the opposite effect. Optimum concentration providing high KIc/HRC ratios would include 0.75 pct Si, 0.4 pct Mn, 5.1 pct Cr, 1.5 pct Mo, and 0.5 pct V, with the optimum heat treatment performed at lower austenitizing and intermediate tempering temperatures.
Comparison of metal release from various metallic biomaterials in vitro.
Okazaki, Yoshimitsu; Gotoh, Emiko
2005-01-01
To investigate the metal release of each base and alloying elements in vitro, SUS316L stainless steel, Co-Cr-Mo casting alloy, commercially pure Ti grade 2, and Ti-6Al-4V, V-free Ti-6Al-7Nb and Ti-15Zr-4Nb-4Ta alloys were immersed in various solutions, namely, alpha-medium, PBS(-), calf serum, 0.9% NaCl, artificial saliva, 1.2 mass% L-cysteine, 1 mass% lactic acid and 0.01 mass% HCl for 7d. The difference in the quantity of Co released from the Co-Cr-Mo casting alloy was relatively small in all the solutions. The quantities of Ti released into alpha-medium, PBS(-), calf serum, 0.9% NaCl and artificial saliva were much lower than those released into 1.2% L-cysteine, 1% lactic acid and 0.01% HCl. The quantity of Fe released from SUS316L stainless steel decreased linearly with increasing pH. On the other hand, the quantity of Ti released from Ti materials increased with decreasing pH, and it markedly attenuated at pHs of approximately 4 and higher. The quantity of Ni released from stainless steel gradually decreased with increasing pH. The quantities of Al released from the Ti-6Al-4V and Ti-6Al-7Nb alloys gradually decreased with increasing pH. A small V release was observed in calf serum, PBS(-), artificial saliva, 1% lactic acid, 1.2% l-cysteine and 0.01% HCl. The quantity of Ti released from the Ti-15Zr-4Nb-4Ta alloy was smaller than those released from the Ti-6Al-4V and Ti-6Al-7Nb alloys in all the solutions. In particular, it was approximately 30% or smaller in 1% lactic acid, 1.2% L-cysteine and 0.01% HCl. The quantity of (Zr + Nb + Ta) released was also considerably lower than that of (Al + Nb) or (Al + V) released. Therefore, the Ti-15Zr-4Nb-4Ta alloy with its low metal release in vitro is considered advantageous for long-term implants. Copyright 2004 Elsevier Ltd.
Development in high-grade dual phase steels with low C and Si design
NASA Astrophysics Data System (ADS)
Zhu, Guo-hui; Zhang, Xue-hui; Mao, Wei-min
2009-12-01
Cold rolled dual phase steels with low C and Si addition were investigated in terms of combination of composition and processing in order to improve mechanical properties and workability including welding and galvanizing. Mo and Cr could be used as alloying elements to partially replace C and Si to assure enough hardening ability of the steels and also give solute-hardening. Mo addition is more effective than Cr addition in terms of obtaining the required volume fraction of martensite and mechanical strength. The ferrite grain was effectively refined by addition of Nb microalloying, which gives optimized mechanical properties. The experimental results show that it is possible to obtain the required mechanical properties of high grade 800 MPa dual phase steel, i.e., tensile strength > 780 MPa, elongation > 15%, and yield/tensile strength ratio < 0.6 in the condition of low carbon (C < 0.11 wt.%) and low silicon design (Si < 0.05 wt.%) through adequate combination of composition and processing.
Study of the Effects of High Temperatures on the Engineering Properties of Steel 42CrMo4
NASA Astrophysics Data System (ADS)
Brnic, Josip; Turkalj, Goran; Canadija, Marko; Lanc, Domagoj; Brcic, Marino
2015-02-01
The paper presents and analyzes the experimental results of the effect of elevated temperatures on the engineering properties of steel 42CrMo4. Experimental data relating to the mechanical properties of the material, the creep resistance as well as Charpy impact energy. Temperature dependence of the mentioned properties is also shown. Some of creep curves were simulated using rheological models and an analytical equation. Finally, an assessment of fracture toughness was made that was based on experimentally determined Charpy impact energy. Based on the obtained results it is visible that the tensile strength (617 MPa) and yield strength (415 MPa) have the highest value at the room temperature while at the temperature of 700 °C (973 K) these values significantly decrease. This steel can be considered resistant to creep at 400 °C (673 K), but at higher temperatures this steel can be subjected to low levels of stress in a shorter time.
NASA Astrophysics Data System (ADS)
Wang, Jingjing; Sun, Jian; Yu, Xinhai; Chen, Guohong; Fu, Qiuhua; Gao, Chao; Tang, Wenming
2017-10-01
Small-caliber, thick-wall 12Cr1MoVG seamless steel tube welded joints were fabricated in this study by gas tungsten arc welding and shielded metal arc welding techniques, then the microstructures, mechanical properties, and residual stress distributions of the joints with or without post-weld heat treatment (PWHT) were compared. The welded joints are mainly composed of bcc ferrite (F), Fe3C, and M7C3 carbides. PWHT did not cause an apparent microstructure evolution in the joints, but promoted granular pearlite decomposition and growth of F grains and carbides, therefore decreasing the yield, tensile strength, and hardness while increasing the impact toughness and elongation of the welded joints. PWHT also released the circumferential residual stress and altered the stress state in the joint from tensile to compressive. Although the mechanical properties and bending performance of the small-caliber, thick-wall 12Cr1MoVG seamless welded joints without PWHT are acceptable, our results show that the joints with PWHT are more reliable.
The Tribological Difference between Biomedical Steels and CoCrMo-Alloys
Fischer, Alfons; Weiß, Sabine; Wimmer, Markus A.
2012-01-01
In orthopedic surgery different self-mating metal couples are used for sliding wear applications. Despite the fact that in mechanical engineering self-mating austenitic alloys often lead to adhesion and seizure in biomedical engineering the different grades of Co-base alloys show good clinical results e.g. as hip joints. The reason stems from the fact that they generate a so-called tribomaterial during articulation, which consists of a mixture of nanometer small metallic grains and organic substances from the interfacial medium, which act as boundary lubricant. Even though stainless steels also generate such a tribomaterial they were ruled out from the beginning already in the 1950 as “inappropriate”. On the basis of materials with a clinical track record this contribution shows that the cyclic creep characteristics within the shear zone underneath the tribomaterial are another important criterion for a sufficient wear behavior. By means of sliding wear and torsional fatigue tests followed by electron microscopy it is shown, that austenitic materials generate wear particles of either nano- or of microsize. The latter are produced by crack initiation and propagation within the shear fatigue zone which is related to the formation of subsurface dislocation cells and, therefore, by the fact that a Ni-containing CrNiMo solid solution allows for wavy-slip. In contrast to this a Ni-free CrMnMo solid solution with further additions of C and N only shows planar slip. This leads to the formation of nanosize wear particles and distinctly improves the wear behavior. Still the latter does not fully achieve that of CoCrMo, which also shows solely planar-slip behavior. This explains why for metallurgical reasons the Ni-containing 316L-type of steels had to fail in such boundary lubricated sliding wear tribosystems. PMID:22498283
Corrosion behavior of austenitic steels and their components in niobium-containing chloride melts
NASA Astrophysics Data System (ADS)
Abramov, A. V.; Polovov, I. B.; Rebrin, O. I.; Volkovich, V. A.; Lisienko, D. G.
2014-02-01
The mechanism of corrosion of austenitic steels 12Kh18N10T, 10Kh17N13M2T, and 03Kh17N14M3 and metals Cr, Fe, Ni, and Mo in a NaCl-KCl-NbCl n ( n = 3.5, Nb content is 5 ± 0.1 wt %) melt at 750°C is studied. The metal and steel corrosion rates under these conditions are determined. The character of material fracture and the mechanisms of material corrosion are found.
NASA Astrophysics Data System (ADS)
Natesan, K.; Li, Meimei; Chopra, O. K.; Majumdar, S.
2009-07-01
Sodium environmental effects are key limiting factors in the high temperature structural design of advanced sodium-cooled reactors. A guideline is needed to incorporate environmental effects in the ASME design rules to improve the performance reliability over long operating times. This paper summarizes the influence of sodium exposure on mechanical performance of selected austenitic stainless and ferritic/martensitic steels. Focus is on Type 316SS and mod.9Cr-1Mo. The sodium effects were evaluated by comparing the mechanical properties data in air and sodium. Carburization and decarburization were found to be the key factors that determine the tensile and creep properties of the steels. A beneficial effect of sodium exposure on fatigue life was observed under fully reversed cyclic loading in both austenitic stainless steels and ferritic/martensitic steels. However, when hold time was applied during cyclic loading, the fatigue life was significantly reduced. Based on the mechanical performance of the steels in sodium, consideration of sodium effects in high temperature structural design of advanced fast reactors is discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiong, Y.; Song, J.; Luo, D.
The prevention of tritium losses via permeation through structure components is an important issue in fusion technology. The production of thin layers on materials with low diffusivity and/or low surface recombination constants (so-called permeation barriers) seems to be the most practical method to reduce or hinder the permeation of tritium through materials. TiN+TiC+TiN multiple films are deposited on the surface of 1Cr18Ni9Ti stainless steel by ion-beam assisted deposition technology. The characteristics of films are tested by XPS ASEM and XRD, which shows that the film are compact and uniform with a thickness of about 15 μm, and have a goodmore » adherence with the substrate below 773 K. The diffraction peaks in the XRD patterns for TiC and TiN are broadened, implying that the multiple films are deposited on the surface of 1Cr18Ni9Ti stainless steel. Meanwhile, the C-H bonded CH{sub 4}-appears in the infrared spectra of multiple films, suggesting that the CH{sub 4}- is in a static state, so hydrogen atom cannot migrate from the site bonded with carbon to a neighboring site. The measured deuterium permeability in 1Cr18Ni9Ti stainless steel coated with multiple films is 2-3 orders of magnitude lower than that of pure 1Cr18Ni9Ti stainless steel substrate from 473 K to 773 K. However, this barrier is partly destroyed above 773 K.« less
NASA Astrophysics Data System (ADS)
Yu, Wen-Tao; Li, Jing; Shi, Cheng-Bin; Zhu, Qin-Tian
2017-02-01
The effects of holding time during both austenitizing and spheroidizing on microstructure and mechanical properties of high-carbon martensitic stainless steel 8Cr13MoV were experimentally studied. The results showed that the amount of carbides and the proportion of fine carbides decrease first and then increase with the increase in austenitizing time ( t 1) in the case of short spheroidizing time ( t 2), whereas the amount of the lamellar carbides increases. In the case of long t 2, both the amount of carbides and the proportion of fine carbides decrease, and the amount of the lamellar carbides did not increase. The hardness of the steel decreases first and then increases with the increase of t 1. Under the conditions of different t 1, the change in the size of carbides and hardness of the steel show a same trend with the variation of t 2. The size of spheroidized carbides increases, whereas the hardness of the steel decreases with increasing t 2. The longer the holding time of austenitizing, the higher is the spheroidizing rate at the earlier stage. However, the spheroidizing rate shows an opposite trend with t 1 at the later stage of spheroidizing. The effect of cooling rate on microstructure is similar with t 2. With increasing cooling rate, the dimension of carbides became smaller, and the amount of lamellar carbides increased. The elongation of the sample fracture exhibits no corresponding relationship with holding time, whereas it is closely related to the precipitation of secondary carbides caused by the alloying elements segregation.
NASA Astrophysics Data System (ADS)
de Oliveira, Mariana Perez; Calderón-Hernández, José Wilmar; Magnabosco, Rodrigo; Hincapie-Ladino, Duberney; Alonso-Falleiros, Neusa
2017-04-01
The influence of niobium addition in a supermartensitic stainless steel with 13Cr-5Ni-2Mo has been studied. The steel with Nb tempered at 600 °C for 2 h showed improved mechanical resistance properties and lower degree of sensitization, without compromising elongation and pitting corrosion resistance, when compared to the reference steel. In order to understand the Nb effect in such steel, mainly regarding phase transformation, different tempering time intervals have been studied. The better performance of the SM2MoNb is attributed to the hindering effect that Nb has in the kinetics of the phase transformations during tempering, delaying the precipitation start and coarsening stages of the present phases.
Creep Strength of Dissimilar Welded Joints Using High B-9Cr Steel for Advanced USC Boiler
NASA Astrophysics Data System (ADS)
Tabuchi, Masaaki; Hongo, Hiromichi; Abe, Fujio
2014-10-01
The commercialization of a 973 K (700 °C) class pulverized coal power system, advanced ultra-supercritical (A-USC) pressure power generation, is the target of an ongoing research project initiated in Japan in 2008. In the A-USC boiler, Ni or Ni-Fe base alloys are used for high-temperature parts at 923 K to 973 K (650 °C to 700 °C), and advanced high-Cr ferritic steels are planned to be used at temperatures lower than 923 K (650 °C). In the dissimilar welds between Ni base alloys and high-Cr ferritic steels, Type IV failure in the heat-affected zone (HAZ) is a concern. Thus, the high B-9Cr steel developed at the National Institute for Materials Science, which has improved creep strength in weldments, is a candidate material for the Japanese A-USC boiler. In the present study, creep tests were conducted on the dissimilar welded joints between Ni base alloys and high B-9Cr steels. Microstructures and creep damage in the dissimilar welded joints were investigated. In the HAZ of the high B-9Cr steels, fine-grained microstructures were not formed and the grain size of the base metal was retained. Consequently, the creep rupture life of the dissimilar welded joints using high B-9Cr steel was 5 to 10 times longer than that of the conventional 9Cr steel welded joints at 923 K (650 °C).
Phase Transformations and Microstructural Evolution of Mo-Bearing Stainless Steels
NASA Astrophysics Data System (ADS)
Anderson, T. D.; Dupont, J. N.; Perricone, M. J.; Marder, A. R.
2007-01-01
The good corrosion resistance of superaustenitic stainless steel (SASS) alloys has been shown to be a direct consequence of high concentrations of Mo, which can have a significant effect on the microstructural development of welds in these alloys. In this research, the microstructural development of welds in the Fe-Ni-Cr-Mo system was analyzed over a wide variety of Cr/Ni ratios and Mo contents. The system was first simulated by construction of multicomponent phase diagrams using the CALPHAD technique. Data from vertical sections of these diagrams are presented over a wide compositional range to produce diagrams that can be used as a guide to understand the influence of composition on microstructural development. A large number of experimental alloys were then prepared via arc-button melting for comparison with the diagrams. Each alloy was characterized using various microscopy techniques. The expected δ-ferrite and γ-austenite phases were accompanied by martensite at low Cr/Ni ratios and by σ phase at high Mo contents. A total of 20 possible phase transformation sequences are proposed, resulting in various amounts and morphologies of the γ, δ, σ, and martensite phases. The results were used to construct a map of expected phase transformation sequence and resultant microstructure as a function of composition. The results of this work provide a working guideline for future base metal and filler metal development of this class of materials.
Corrosion of 316 stainless steel in high temperature molten Li2BeF4 (FLiBe) salt
NASA Astrophysics Data System (ADS)
Zheng, Guiqiu; Kelleher, Brian; Cao, Guoping; Anderson, Mark; Allen, Todd; Sridharan, Kumar
2015-06-01
In support of structural material development for the fluoride-salt-cooled high-temperature reactor (FHR), corrosion tests of 316 stainless steel were performed in the potential primary coolant, molten Li2BeF4 (FLiBe) at 700 °C for an exposure duration up to 3000 h. Tests were performed in both 316 stainless steel and graphite capsules. Corrosion in both capsule materials occurred by the dissolution of chromium from the stainless steel into the salt which led to the depletion of chromium predominantly along the grain boundaries of the test samples. The samples tested in graphite capsules showed a factor of two greater depth of corrosion attack as measured in terms of chromium depletion, compared to those tested in 316 stainless steel capsules. The samples tested in graphite capsules showed the formation of Cr7C3 particulate phases throughout the depth of the corrosion layer. Samples tested in both types of capsule materials showed the formation of MoSi2 phase due to increased activity of Mo and Si as a result of Cr depletion, and furthermore corrosion promoted the formation of a α-ferrite phase in the near-surface regions of the 316 stainless steel. Based on the corrosion tests, the corrosion attack depth in FLiBe salt was predicted as 17.1 μm/year and 31.2 μm/year for 316 stainless steel tested in 316 stainless steel and in graphite capsules respectively. It is in an acceptable range compared to the Hastelloy-N corrosion in the Molten Salt Reactor Experiment (MSRE) fuel salt.
Krischak, G D; Gebhard, F; Mohr, W; Krivan, V; Ignatius, A; Beck, A; Wachter, N J; Reuter, P; Arand, M; Kinzl, L; Claes, L E
2004-03-01
Stainless steel and commercially pure titanium are widely used materials in orthopedic implants. However, it is still being controversially discussed whether there are significant differences in tissue reaction and metallic release, which should result in a recommendation for preferred use in clinical practice. A comparative study was performed using 14 stainless steel and 8 commercially pure titanium plates retrieved after a 12-month implantation period. To avoid contamination of the tissue with the elements under investigation, surgical instruments made of zirconium dioxide were used. The tissue samples were analyzed histologically and by inductively coupled plasma atomic emission spectrometry (ICP-AES) for accumulation of the metals Fe, Cr, Mo, Ni, and Ti in the local tissues. Implant corrosion was determined by the use of scanning electron microscopy (SEM). With grades 2 or higher in 9 implants, steel plates revealed a higher extent of corrosion in the SEM compared with titanium, where only one implant showed corrosion grade 2. Metal uptake of all measured ions (Fe, Cr, Mo, Ni) was significantly increased after stainless steel implantation, whereas titanium revealed only high concentrations for Ti. For the two implant materials, a different distribution of the accumulated metals was found by histological examination. Whereas specimens after steel implantation revealed a diffuse siderosis of connective tissue cells, those after titanium exhibited occasionally a focal siderosis due to implantation-associated bleeding. Neither titanium- nor stainless steel-loaded tissues revealed any signs of foreign-body reaction. We conclude from the increased release of toxic, allergic, and potentially carcinogenic ions adjacent to stainless steel that commercially pure Ti should be treated as the preferred material for osteosyntheses if a removal of the implant is not intended. However, neither material provoked a foreign-body reaction in the local tissues, thus cpTi cannot be recommend as the 'golden standard' for osteosynthesis material in general.
NASA Astrophysics Data System (ADS)
Shrestha, Triratna
Modified 9Cr-1 Mo (Grade 91) steel is currently considered as a candidate material for reactor pressure vessels (RPVs) and reactor internals for the Very High Temperature Reactor (VHTR), and in fossil-fuel fired power plants at higher temperatures and stresses. The tensile creep behavior of Grade 91 steel was studied in the temperature range of 600°C to 750°C and stresses between 35 MPa and 350 MPa. Heat treatment of Grade 91 steel was studied by normalizing and tempering the steel at various temperatures and times. Moreover, Thermo-Ca1c(TM) calculation was used to predict the precipitate stability and their evolution, and construct carbon isopleths of Grade 91 steel. Residual stress distribution across gas tungsten arc welds (GTAW) in Grade 91 steel was measured by the time-of-flight neutron diffraction using the Spectrometer for Materials Research at Temperature and Stress (SMARTS) diffractometer at Lujan Neutron Scattering Center, Los Alamos National Laboratory, Los Alamos, NM, USA. Analysis of creep results yielded stress exponents of ˜9-11 in the higher stress regime and ˜1 in the lower stress regime. The creep behavior of Grade 91 steel was described by the modified Bird-Mukherjee-Dorn relation. The rate-controlling creep deformation mechanism in the high stress regime was identified as the edge dislocation climb with a stress exponent of n = 5. On the other hand, the deformation mechanism in the Newtonian viscous creep regime (n = 1) was identified as the Nabarro-Herring creep. Creep rupture data were analyzed in terms of Monkman-Grant relation and Larson-Miller parameter. Creep damage tolerance factor and stress exponent were used to identify the cause of creep damage. The fracture surface morphology of the ruptured specimens was studied by scanning electron microscopy to elucidate the failure mechanisms. Fracture mechanism map for Grade 91 steel was developed based on the available material parameters and experimental observations. The microstructural evolution of heat treated steel was correlated with the differential scanning calorimetric study. The combination of microstructural studies with optical microscopy, scanning and transmission electron microscopy, microhardness profiles, and calorimetric plots helped in the understanding of the evolution of microstructure and precipitates in Grade 91 steel. The residual stresses were determined at the mid-thickness of the plate, 4.35 mm and 2.35 mm below the surface of the as-welded and post-weld heat treated plate. The residual stresses of the as-welded plate were compared with the post-weld heat treated plate. The post-weld heat treatment significantly reduced the residual stress in the base metal, heat affected zone, and the weld zone. Vickers microhardness profiles of the as-welded, and post-weld heat treated specimens were also determined and correlated with the observed residual stress profile and microstructure.
1983-06-01
frequency with a vacuum environment. In work concerning nuclear steam generator design ; Brinkman, et al. [Ref. 13], investigated time dependent...Nuclear Steam Generator Design ," Journal of Nuclear Materials, Vol. 62, pp. 181-204, 1976. 14. K. D. Challenger, A. K. Miller, C. R. Brinkman, "An
Nucleation and microstructure development in Cr-Mo-V tool steel during gas atomization
NASA Astrophysics Data System (ADS)
Behúlová, M.; Grgač, P.; Čička, R.
2017-11-01
Nucleation studies of undercooled metallic melts are of essential interest for the understanding of phase selection, growth kinetics and microstructure development during their rapid non-equilibrium solidification. The paper deals with the modelling of nucleation processes and microstructure development in the hypoeutectic tool steel Ch12MF4 with the chemical composition of 2.37% C, 12.06 % Cr, 1.2% Mo, 4.0% V and balance Fe [wt. %] in the process of nitrogen gas atomization. Based on the classical theory of homogeneous nucleation, the nucleation temperature of molten rapidly cooled spherical particles from this alloy with diameter from 40 μm to 600 μm in the gas atomization process is calculated using various estimations of parameters influencing the nucleation process - the Gibbs free energy difference between solid and liquid phases and the solid/liquid interfacial energy. Results of numerical calculations are compared with experimentally measured nucleation temperatures during levitation experiments and microstructures developed in rapidly solidified powder particles from the investigated alloy.
Wei, Zheng; Edin, Jonathan; Karlsson, Anna Emelie; Petrovic, Katarina; Soroka, Inna L; Odnevall Wallinder, Inger; Hedberg, Yolanda
2018-02-09
The extent of metal release from implant materials that are irradiated during radiotherapy may be influenced by irradiation-formed radicals. The influence of gamma irradiation, with a total dose of relevance for radiotherapy (e.g., for cancer treatments) on the extent of metal release from biomedical stainless steel AISI 316L and a cobalt-chromium alloy (CoCrMo) was investigated in physiological relevant solutions (phosphate buffered saline with and without 10 g/L bovine serum albumin) at pH 7.3. Directly after irradiation, the released amounts of metals were significantly higher for irradiated CoCrMo as compared to nonirradiated CoCrMo, resulting in an increased surface passivation (enhanced passive conditions) that hindered further release. A similar effect was observed for 316L showing lower nickel release after 1 h of initially irradiated samples as compared to nonirradiated samples. However, the effect of irradiation (total dose of 16.5 Gy) on metal release and surface oxide composition and thickness was generally small. Most metals were released initially (within seconds) upon immersion from CoCrMo but not from 316L. Albumin induced an increased amount of released metals from AISI 316L but not from CoCrMo. Albumin was not found to aggregate to any greater extent either upon gamma irradiation or in the presence of trace metal ions, as determined using different light scattering techniques. Further studies should elucidate the effect of repeated friction and fractionated low irradiation doses on the short- and long term metal release process of biomedical materials. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2018. © 2018 The Authors Journal of Biomedical Materials Research Part B: Applied Biomaterials Published by Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Kourdani, Ahmad; Derakhshandeh-Haghighi, Reza
2018-04-01
The current work was carried out to characterize welding of Inconel 625 superalloy and 316L stainless steel. In the present study, shielded metal arc welding (SMAW) and gas tungsten arc welding (GTAW) with two types of filler metals (ERNiCrMo-3 and ERSS316L) and an electrode (ENiCrMo-3) were utilized. This paper describes the selection of the proper welding method and welding consumables in dissimilar metal joining. During solidification of ERNiCrMo-3 filler metal, Nb and Mo leave dendritic cores and are rejected to inter-dendritic regions. However, ERSS316L filler metal has small amounts of elements with a high tendency for segregation. So, occurrence of constitutional super-cooling for changing the solidification mode from cellular to dendritic or equiaxed is less probable. Using GTAW with lower heat input results in higher cooling rate and finer microstructure and less Nb segregation. The interface between weld metal and base metal and also unmixed zones was evaluated by scanning electron microscopy and energy dispersive X-ray (EDX) analysis. Microhardness measurements, tensile test, and Charpy impact test were performed to see the effect of these parameters on mechanical properties of the joints.
NASA Astrophysics Data System (ADS)
Smith, A. L.; Kauric, G.; van Eijck, L.; Goubitz, K.; Wallez, G.; Griveau, J.-C.; Colineau, E.; Clavier, N.; Konings, R. J. M.
2017-09-01
The structure of α-Cs2Mo2O7 (monoclinic in space group P21 / c), which can form during irradiation in fast breeder reactors in the space between nuclear fuel and cladding, has been refined in this work at room temperature from neutron diffraction data. Furthermore, the compounds' thermal expansion and polymorphism have been investigated using high temperature X-ray diffraction combined with high temperature Raman spectroscopy. A phase transition has been observed at Ttr(α → β)=(621.9±0.8) K using Differential Scanning Calorimetry, and the structure of the β-Cs2Mo2O7 phase, orthorhombic in space group Pbcm, has been solved ab initio from the high temperature X-ray diffraction data. Furthermore, the low temperature heat capacity of α-Cs2Mo2O7 has been measured in the temperature range T=(1.9-313.2) K using a Quantum Design PPMS (Physical Property Measurement System) calorimeter. The heat capacity and entropy values at T=298.15 K have been derived as Cp,mo (Cs2Mo2O7 , cr , 298.15 K) = (211.9 ± 2.1) J K-1mol-1 and Smo (Cs2Mo2O7 , cr , 298.15 K) = (317.4 ± 4.3) J K-1mol-1 . When combined with the enthalpy of formation reported in the literature, these data yield standard entropy and Gibbs energy of formation as Δf Smo (Cs2Mo2O7 , cr , 298.15 K) = - (628.2 ± 4.4) J K-1mol-1 and Δf Gmo (Cs2Mo2O7 , cr , 298.15 K) = - (2115.1 ± 2.5) kJmol-1 . Finally, the cesium partial pressure expected in the gap between fuel and cladding following the disproportionation reaction 2Cs2MoO4=Cs2Mo2O7+2Cs(g)+ 1/2 O2(g) has been calculated from the newly determined thermodynamic functions.
NASA Astrophysics Data System (ADS)
Tian, Jia-Jia; Wei, Ying-Kang; Li, Cheng-Xin; Yang, Guan-Jun; Li, Chang-Jiu
2018-01-01
Corrosion of metal plays a detrimental role in service lifetime of parts or systems. Therefore, coating a protective film which is fully dense and defects free on the base metal is an effective approach to protect the base metal from corrosion. In this study, a dense NiCr-20Mo coating with excellent lamellar interface bonding was deposited by plasma spraying of the novel shell-core-structured Mo-clad-NiCr powders, and then post-spray shot peening treatment by cold spraying of steel shots was applied to the plasma-sprayed NiCr-20Mo coating to obtain a fully dense coating through eliminating possibly existed pores and un-bonded interfaces within the NiCr-20Mo coating. Corrosion behaviors of the NiCr-20Mo coatings before and after shot peening were tested to investigate the effect of the post-spray shot peening on the corrosion behavior of the NiCr-20Mo coating. Results showed that a much dense and uniform plasma-sprayed NiCr-20Mo coating with perfect lamellar bonding at most of interfaces was deposited. However, the electrochemical tests revealed the existence of through-thickness pores in the as-plasma-sprayed NiCr-20Mo coating. Through the post-spray shot peening treatment, a completely dense top layer in the coating was formed, and with the increase in the shot peening intensity from one pass to three passes, the dense top layer became thicker from 100 μm to reach 300 μm of the whole coating thickness. Thus, a fully dense bulk-like coating was obtained. Corrosion test results showed that the dense coating layer resulting from densification of shot peening can act as an effective barrier coating to prevent the penetration of the corrosive medium and consequently protect the substrate from corrosion effectively. Therefore, a fully dense bulk-like NiCr-20Mo coating with excellent corrosion resistance can be achieved through the plasma spraying of Mo-clad-NiCr powders followed by appropriate post-spray shot peening treatment.
Fernandes, Diana M; Barbosa, André D S; Pires, João; Balula, Salete S; Cunha-Silva, Luís; Freire, Cristina
2013-12-26
A novel hybrid composite material, PMo10V2@MIL-101 was prepared by the encapsulation of the tetra-butylammonium (TBA) salt of the vanadium-substituted phosphomolybdate [PMo10V2O40](5-) (PMo10V2) into the porous metal-organic framework (MOF) MIL-101(Cr). The materials characterization by powder X-ray diffraction, Fourier transform infrared spectra and scanning electron microscopy confirmed the preparation of the composite material without disruption of the MOF porous structure. Pyrolytic graphite electrodes modified with the original components (MIL-101(Cr), PMo10V2), and the composite material PMo10V2@MIL-101 were prepared and their electrochemical responses were studied by cyclic voltammetry. Surface confined redox processes were observed for all the immobilized materials. MIL-101(Cr) showed one-electron reduction process due to chromium centers (Cr(III) → Cr(II)), while PMo10V2 presented five reduction processes: the peak at more positive potentials is attributed to two superimposed 1-electron vanadium reduction processes (V(V) → V(IV)) and the other four peaks to Mo-centred two-electron reduction processes (Mo(VI) → Mo(V)). The electrochemical behavior of the composite material PMo10V2@MIL-101 showed both MIL-101(Cr) and PMo10V2 redox features, although with the splitting of the two vanadium processes and the shift of the Mo- and Cr- centered processes to more negative potentials. Finally, PMo10V2@MIL-101 modified electrode showed outstanding enhanced vanadium-based electrocatalytic properties towards ascorbic acid oxidation, in comparison with the free PMo10V2, as a result of its immobilization into the porous structure of the MOF. Furthermore, PMo10V2@MIL-101 modified electrode showed successful simultaneous detection of ascorbic acid and dopamine.
Laser weldability of 21Cr-6Ni-9Mn stainless steel: Part II - Weldability diagrams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tate, Stephen B.; Javernick, Daniel Anthony; Lienert, Thomas J.
In this second part of the study, weldability diagrams developed to relate solidification crack susceptibility and chemical composition for laser welded type 21Cr-6Ni-9Mn (21-6-9) stainless steel are presented. Sigmajig testing on 14 commercial 21-6-9 alloys, 20 experimental 21-6-9 alloys, and 7 other high-N, high-Mn austenitic stainless steels was used to develop weldability diagrams for solidification crack susceptibility for laser welding of type 21-6-9. Three travel speeds were used to show the changes in minimum Cr eq/Ni eq for primary ferrite solidification as solidification rate increase d with travel speed . Primary austenite solidification was observed below 1.55 Cr eq/Ni eqmore » (Espy equivalents) at 21 mm/s travel speed. At 42 mm/s travel speed , a mix of solidification modes were displayed for alloys from 1.55-1.75 Cr eq/Ni eq. Primary ferrite solidification was observed above 1.75 Cr eq/Ni eq at both 42 and 85 mm/s travel speeds. No solidification cracking was observed for alloys with primary ferrite solidification. Lastly, variable cracking behavior was found in alloys with primary austenite solidification, but in general cracking was observed in alloys with greater than 0.02 wt-% combined impurity content according to (P+0.2S).« less
Laser weldability of 21Cr-6Ni-9Mn stainless steel: Part II - Weldability diagrams
Tate, Stephen B.; Javernick, Daniel Anthony; Lienert, Thomas J.; ...
2016-11-02
In this second part of the study, weldability diagrams developed to relate solidification crack susceptibility and chemical composition for laser welded type 21Cr-6Ni-9Mn (21-6-9) stainless steel are presented. Sigmajig testing on 14 commercial 21-6-9 alloys, 20 experimental 21-6-9 alloys, and 7 other high-N, high-Mn austenitic stainless steels was used to develop weldability diagrams for solidification crack susceptibility for laser welding of type 21-6-9. Three travel speeds were used to show the changes in minimum Cr eq/Ni eq for primary ferrite solidification as solidification rate increase d with travel speed . Primary austenite solidification was observed below 1.55 Cr eq/Ni eqmore » (Espy equivalents) at 21 mm/s travel speed. At 42 mm/s travel speed , a mix of solidification modes were displayed for alloys from 1.55-1.75 Cr eq/Ni eq. Primary ferrite solidification was observed above 1.75 Cr eq/Ni eq at both 42 and 85 mm/s travel speeds. No solidification cracking was observed for alloys with primary ferrite solidification. Lastly, variable cracking behavior was found in alloys with primary austenite solidification, but in general cracking was observed in alloys with greater than 0.02 wt-% combined impurity content according to (P+0.2S).« less
High-Temperature Intergranular Crack Growth in Martensitic 2-1/4 Cr1Mo Steel,
1987-01-01
segregation of sulphur to crack-tip regions. Crack advance appears to occur by discrete jumps when a critical concentration of sulphur is achieved over the...jump-distance. At high stress intensities, reater than 48-55 HPam ,-the mo.e of fracture changes to interranular microvoid coalescence (IGMVC), and is...stze of crack opening displacement (5) at 500C. using 6 K(! - v2 )/20 E, where v - 0.3, 0 - 840 MPs and E = 160 GPa --6) ’ 27 7 Equilibriua concentration
NASA Astrophysics Data System (ADS)
Ilyin, A. M.; Neustroev, V. S.; Shamardin, V. K.; Shestakov, V. P.; Tazhibaeva, I. L.; Krivchenkoa, V. A.
2000-12-01
In this study 13Cr2MoVNb ferritic-martensitic steel (FMS) and 16Cr15Ni3MoNb austenitic stainless steel (ASS) tensile specimens were subjected to standard heat treatments and divided into two groups. Specimens in group 1 (FMS only) were aged at 400°C in a stress free and in an elastically stressed state with a tensile load (100 MPa) then doped with hydrogen in an electrolytic cell. Specimens in group 2 were subjected to cold work (up to 10%) and exposed to short-time heating at 500° for 0.5 h. All specimens were fractured at room temperature in an Auger spectrometer and Auger analysis of the fracture surfaces was performed in situ after fracturing. A noticeable increase of N and P segregation levels and a widening of the depth distribution on the grain boundary facets were observed in the FMS after aging in the stressed state. Cold-worked FMS and ASS showed a ductile dimple mode of fracture, but relatively high levels of S, P and N were observed on the dimple surfaces. We consider the origin of such effects in terms of the stressed state and plastic-deformation-enhanced segregation.
3D-atom probe characterization of nano-precipitates in a PM processed tool steels
NASA Astrophysics Data System (ADS)
Niederkofler, M.; Leisch, M.
2004-07-01
The microstructure of a powder metallurgical processed high speed steel (nom. composition (wt.%): 1.6 C, 4.8 Cr, 2.0 Mo, 5.0 V, 105 W, 8.0 Co and balance Fe) has been examined using 3D-atom probe technique. By the depth profiling of the time to flight mass spectrometer and position sensitive recording, cylindrical volumes of 10-15 nm in diameter and up to 40 nm in depth have been probed and characterized. The depth profiling measurements of the samples show generally a very homogeneous structure which was expected by the powder metallurgical processing of the material. Different morphologies of the precipitates were recorded. Besides the needle shaped precipitates with an extend up to 20 nm and thickness of few atomic layers, platelets and spherical particles are observed as well. The species which can be assigned to the precipitates appear to some extend as MC molecules in the mass histogram, while the leading constituents in this MC are Mo, V and Cr. Beside distinct particles agglomerations like one-dimensional atomic chains of the alloy components are also observed in the 3D reconstructions of the tool steel matrix.
NASA Astrophysics Data System (ADS)
Dépinoy, Sylvain; Toffolon-Masclet, Caroline; Urvoy, Stéphane; Roubaud, Justine; Marini, Bernard; Roch, François; Kozeschnik, Ernst; Gourgues-Lorenzon, Anne-Françoise
2017-05-01
The effect of the tempering heat treatment, including heating prior to the isothermal step, on carbide precipitation has been determined in a 2.25 Cr-1 Mo bainitic steel for thick-walled applications. The carbides were identified using their amount of metallic elements, morphology, nucleation sites, and diffraction patterns. The evolution of carbide phase fraction, morphology, and composition was investigated using transmission electron microscopy, X-ray diffraction, as well as thermodynamic calculations. Upon heating, retained austenite into the as-quenched material decomposes into ferrite and cementite. M7C3 carbides then nucleate at the interface between the cementite and the matrix, triggering the dissolution of cementite. M2C carbides precipitate separately within the bainitic laths during slow heating. M23C6 carbides precipitate at the interfaces (lath boundaries or prior austenite grain boundaries) and grow by attracting nearby chromium atoms, which results in the dissolution of M7C3 and, depending on the temperature, coarsening, or dissolution of M2C carbides, respectively.
Coarsening behaviour of M23C6 carbides in creep-resistant steel exposed to high temperatures
NASA Astrophysics Data System (ADS)
Godec, M.; Skobir Balantič, D. A.
2016-07-01
High operating temperatures can have very deleterious effects on the long-term performance of high-Cr, creep-resistant steels used, for example, in the structural components of power plants. For the popular creep-resistant steel X20CrMoV12.1 we analysed the processes of carbide growth using a variety of analytical techniques: transmission electron microscopy (TEM) and diffraction (TED), scanning electron microscopy (SEM), and electron backscatter diffraction (EBSD). The evolution of the microstructure after different aging times was the basis for a much better understanding of the boundary-migration processes and the growth of the carbides. We present an explanation as to why some locations are preferential for this growth, and using EBSD we were able to define the proper orientational relationship between the carbides and the matrix.
NASA Astrophysics Data System (ADS)
Rizvanov, R. G.; Mulikov, D. Sh.; Karetnikov, D. V.; Fairushin, A. M.; Tokarev, A. S.
2018-03-01
This paper presents the results of the tests of joints of chrome-molybdenum steel, obtained by rotary friction welding. On their basis, conclusions were drawn about the weldability of this type of steel by friction welding, and also the applicability of this welding technology in the manufacture of heat exchange equipment.
NASA Astrophysics Data System (ADS)
You, Y.; Yan, M. F.
2013-05-01
C and N atoms are the most frequent foreign interstitial atoms (FIAs), and often incorporated into the surface layers of steels to enhance their properties by thermochemical treatments. Al, Si, Ti, V, Cr, Mn, Co, Ni, Cu, Nb and Mo are the most common alloying elements in steels, also can be called foreign substitutional atoms (FSAs). The FIA and FSA interactions play an important role in the diffusion of C and N atoms, and the microstructures and mechanical properties of surface modified layers. Ab initio calculations based on the density functional theory are carried out to investigate FIA interactions with FSA in ferromagnetic bcc iron. The FIA-FSA interactions are analyzed systematically from five aspects, including interaction energies, density of states (DOS), bond populations, electron density difference maps and local magnetic moments.
NASA Astrophysics Data System (ADS)
Gupta, Ankur; Bhargava, A. K.; Tewari, R.; Tiwari, A. N.
2013-09-01
Commercial grade 17Cr-7Ni precipitation-hardenable stainless steel has been modified by adding boron in the range 0.45 to 1.8 wt pct and using the chill block melt-spinning technique of rapid solidification (RS). Application of RS has been found to increase the solid solubility of boron and hardness of 17Cr-7Ni precipitation-hardenable stainless steel. The hardness of the boron-modified rapidly solidified alloys has been found to increase up to ~280 pct after isochronal aging to peak hardness. A TEM study has been carried out to understand the aging behavior. The presence of M23(B,C)6 and M2(B,C) borocarbides and epsilon-carbide in the matrix of austenite and ferrite with a change in heat treatment temperature has been observed. A new equation for Creq is also developed which includes the boron factor on ferrite phase stability. The study also emphasizes that aluminum only takes part in ferrite phase stabilization and remains in the solution.
Formation of austenite in high Cr ferritic/martensitic steels by high fluence neutron irradiation
NASA Astrophysics Data System (ADS)
Lu, Z.; Faulkner, R. G.; Morgan, T. S.
2008-12-01
High Cr ferritic/martensitic steels are leading candidates for structural components of future fusion reactors and new generation fission reactors due to their excellent swelling resistance and thermal properties. A commercial grade 12%CrMoVNb ferritic/martensitic stainless steel in the form of parent plate and off-normal weld materials was fast neutron irradiated up to 33 dpa (1.1 × 10 -6 dpa/s) at 400 °C and 28 dpa (1.7 × 10 -6 dpa/s) at 465 °C, respectively. TEM investigation shows that the fully martensitic weld metal transformed to a duplex austenite/ferrite structure due to high fluence neutron irradiation, the austenite was heavily voided (˜15 vol.%) and the ferrite was relatively void-free; whilst no austenite phases were detected in plate steel. Thermodynamic and phase equilibria software MTDATA has been employed for the first time to investigate neutron irradiation-induced phase transformations. The neutron irradiation effect is introduced by adding additional Gibbs free energy into the system. This additional energy is produced by high energy neutron irradiation and can be estimated from the increased dislocation loop density caused by irradiation. Modelling results show that neutron irradiation reduces the ferrite/austenite transformation temperature, especially for high Ni weld metal. The calculated results exhibit good agreement with experimental observation.
Robie, R.A.; Wiggins, L.B.; Barton, P.B.; Hemingway, B.S.
1985-01-01
The heat capacity of CuFeS2 (chalcopyrite) was measured between 6.3 and 303.5 K. At 298.15 K, Cp,mo and Smo(T) are (95.67??0.14) J??K-1??mol-1 and (124.9??0.2) J??K-1??mol-1, respectively. From a consideration of the results of two sets of equilibrium measurements we conclude that ??fHmo(CuFeS2, cr, 298.15 K) = -(193.6??1.6) kJ??mol-1 and that the recent bomb-calorimetric determination by Johnson and Steele (J. Chem. Thermodynamics 1981, 13, 991) is in error. The standard molar Gibbs free energy of formation of bornite (Cu5FeS4) is -(444.9??2.1) kJ??mol-1 at 748 K. ?? 1985.
NASA Astrophysics Data System (ADS)
Switzner, Nathan
Friction welding, a solid-state joining method, is presented as a novel alternative process step for lining mild steel pipe and forged components internally with a corrosion resistant (CR) metal alloy for petrochemical applications. Currently, fusion welding is commonly used for stainless steel overlay cladding, but this method is costly, time-consuming, and can lead to disbonding in service due to a hard martensite layer that forms at the interface due to partial mixing at the interface between the stainless steel CR metal and the mild steel base. Firstly, the process parameter space was explored for inertia friction butt welding using AISI type 304L stainless steel and AISI 1018 steel to determine the microstructure and mechanical properties effects. A conceptual model for heat flux density versus radial location at the faying surface was developed with consideration for non-uniform pressure distribution due to frictional forces. An existing 1 D analytical model for longitudinal transient temperature distribution was modified for the dissimilar metals case and to account for material lost to the flash. Microstructural results from the experimental dissimilar friction welds of 304L stainless steel to 1018 steel were used to discuss model validity. Secondly, the microstructure and mechanical property implications were considered for replacing the current fusion weld cladding processes with friction welding. The nominal friction weld exhibited a smaller heat softened zone in the 1018 steel than the fusion cladding. As determined by longitudinal tensile tests across the bond line, the nominal friction weld had higher strength, but lower apparent ductility, than the fusion welds due to the geometric requirements for neck formation adjacent to a rigid interface. Martensite was identified at the dissimilar friction weld interface, but the thickness was smaller than that of the fusion welds, and the morphology was discontinuous due to formation by a mechanism of solid-state mixing. Thirdly, the corrosion resistance of multiple austenitic stainless steels (types 304, 316, and 309) processed in varying ways was compared for acid chloride environments using advanced electrochemical techniques. Physical simulation of fusion claddings and friction weld claddings (wrought stainless steels) was used for sample preparation to determine compositional and microstructural effects. Pitting resistance correlated firstly with Cr content, with N and Mo additions providing additional benefits. The high ferrite fraction of as-welded samples reduced their corrosion resistance. Wrought type 309L outperformed as-welded type 309L in dissolved mass loss and reverse corrosion rate from the potentiodynamic scan in 1.0 N HCl/3.5% NaCl solution. Electrochemical impedance results indicated that wrought 309L and 316L developed a corrosion resistant passive film more rapidly than other alloys in 0.1 N HCl/3.5% NaCl, and also performed well in long term (160-day) corrosion testing in the same environment. Fourthly, to prove the concept of internal CR lining by friction welding, a conical work piece of 304L stainless steel was friction welded internally to 1018 steel.
NASA Astrophysics Data System (ADS)
Girina, O.; Fonstein, N.; Yakubovsky, O.; Panahi, D.; Bhattacharya, D.; Jansto, S.
The influence of Nb, Mo, Cr and B on phase transformations and mechanical properties are studied in a 0.15C-2.0Mn-0.3Si-0.020Ti dual phase steel separately and in combination. The formation and decomposition of austenite together with recrystallization of ferrite are evaluated by dilatometry and constructed CCT-diagrams in laboratory processed cold rolled material cooled after full austenitization and from intercritical temperature range. The effect of alloying elements on formation of austenite through their effect on initial hot rolled structure is taken into account. The interpretation of phase transformations during heating and cooling is supported by metallography. The effect of alloying elements on mechanical properties and structure are evaluated by annealing simulations. It has been shown that mechanical properties are strongly influenced by alloying additions such as Nb, Mo, Cr and B through their effect on ferrite formation during continuous cooling and corresponding enrichment of remaining austenite by carbon. Depending on combined effect of these alloying elements, different phase transformations can be promoted during cooling. This allows controlling of final microstructural constituents and mechanical properties.
NASA Astrophysics Data System (ADS)
Wendler, Marco; Hauser, Michael; Sandig, Eckhard Frank; Volkova, Olena
2018-04-01
The influence of chemical composition, temperature, and pressure on the nitrogen solubility of various high alloy stainless steel grades, namely Fe-14Cr-(0.17-7.77)Mn-6Ni-0.5Si-0.03C [wt pct], Fe-15Cr-3Mn-4Ni-0.5Si-0.1C [wt pct], and Fe-19Cr-3Mn-4Ni-0.5Si-0.15C [wt pct], was studied in the melt. The temperature-dependent N-solubility was determined using an empirical approach proposed by Wada and Pehlke. The thus calculated N-concentrations overestimate the actual N-solubility of all the studied Fe-Cr-Mn-Ni-Si-C steel melts at a given temperature and pressure. Consequently, the calculation model has to be modified by Si and C because both elements are not recognized in the original equation. The addition of the 1st and 2nd order interaction parameters for Si and C to the model by Wada and Pehlke allows a precise estimation of the temperature-dependent nitrogen solubility in the liquid steel bath, and fits very well with the measured nitrogen concentrations during processing of the steels. Moreover, the N-solubility enhancing effect of Cr- and Mn-additions has been demonstrated.
Gate Tunable Transport in Graphene/MoS₂/(Cr/Au) Vertical Field-Effect Transistors.
Nazir, Ghazanfar; Khan, Muhammad Farooq; Aftab, Sikandar; Afzal, Amir Muhammad; Dastgeer, Ghulam; Rehman, Malik Abdul; Seo, Yongho; Eom, Jonghwa
2017-12-28
Two-dimensional materials based vertical field-effect transistors have been widely studied due to their useful applications in industry. In the present study, we fabricate graphene/MoS₂/(Cr/Au) vertical transistor based on the mechanical exfoliation and dry transfer method. Since the bottom electrode was made of monolayer graphene (Gr), the electrical transport in our Gr/MoS₂/(Cr/Au) vertical transistors can be significantly modified by using back-gate voltage. Schottky barrier height at the interface between Gr and MoS₂ can be modified by back-gate voltage and the current bias. Vertical resistance (R vert ) of a Gr/MoS₂/(Cr/Au) transistor is compared with planar resistance (R planar ) of a conventional lateral MoS₂ field-effect transistor. We have also studied electrical properties for various thicknesses of MoS₂ channels in both vertical and lateral transistors. As the thickness of MoS₂ increases, R vert increases, but R planar decreases. The increase of R vert in the thicker MoS₂ film is attributed to the interlayer resistance in the vertical direction. However, R planar shows a lower value for a thicker MoS₂ film because of an excess of charge carriers available in upper layers connected directly to source/drain contacts that limits the conduction through layers closed to source/drain electrodes. Hence, interlayer resistance associated with these layers contributes to planer resistance in contrast to vertical devices in which all layers contribute interlayer resistance.
1984-11-01
role of the carbide formers Mo. V. and Cr and the sequence of precipitation on transition temperature and fracture mode in a series of steels . In all... precipitation hardening in 11 microalloyed steels to Ashby-Orowan model. Figure 2-5: Schematic form of environmental cracking kinetics showing three 23...in steel are Ti solute additions and Ti precipitates . A direct connection between Ti and decreased susceptibility was apparently first established by
NASA Technical Reports Server (NTRS)
Saltsman, James F.; Halford, Gary R.
1994-01-01
Strainrange partitioning (SRP) was originally developed on an inelastic strain basis for isothermal fatigue in the high-strain regime where the inelastic strainrange could be determined accurately. However, most power-generating equipment operates in the regime where the inelastic strains are small and difficult to determine with any degree of accuracy. This shortcoming led to the development of the total strain version of SRP (TS-SRP). Power-generating equipment seldom operates under isothermal conditions, and isothermal life prediction methods cannot be depended on to predict the lives of anisothermal cycles. To overcome this shortcoming, a method was proposed for extending TS-SRP to characterize anisothermal fatigue behavior and to predict the lives of thermomechanical fatigue (TMF) cycles using apppropriate anisothermal data. The viability of this method, referred to as TMF/TS-SRP, was demonstrated using TMF data for two high-temperature aerospace alloys. In this report, data from the literature are used to examine the ability of TMF/TS-SRP to characterize the failure and flow behavior of three low-strength, high-ductility alloys widely used for ground-based power-generating equipment. The three alloys are type 304 stainless steel, 1Cr-1Mo-0.25V steel, and 2.25Cr-1Mo steel. Because of the limited nature of the data, it was possible to evaluate the characterization, but not the predictive capability of TMF/TS-SRP.
NASA Astrophysics Data System (ADS)
Linderov, M. L.; Segel, C.; Weidner, A.; Biermann, H.; Vinogradov, A. Yu.
2018-04-01
Modern metastable steels with TRIP/TWIP effects have a unique set of physical-mechanical properties. They combine both high-strength and high-plasticity characteristics, which is governed by processes activated during deformation, namely, twinning, the formation of stacking faults, and martensitic transformations. To study the behavior of these phenomena in CrMnNi TRIP/TWIP steels and stainless CrNiMo steel, which does not have these effects in the temperature range under study, we used the method of acoustic emission and modern methods of signal processing, including the cluster analysis of spectral-density functions. The results of this study have been compared with a detailed microstructural analysis performed with a scanning electron microscope using electron backscatter diffraction (EBSD).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farmer, J C
2007-12-04
The infrastructure for transportation in the United States allows for a high level of mobility and freight activity for the current population of 300 million residents, and several million business establishments. According to a Department of Transportation study, more than 230 million motor vehicles, ships, airplanes, and railroads cars were used on 6.4 million kilometers (4 million miles) of highways, railroads, airports, and waterways in 1998. Pipelines and storage tanks were considered to be part of this deteriorating infrastructure. The annual direct cost of corrosion in the infrastructure category was estimated to be approximately $22.6 billion in 1998. There weremore » 583,000 bridges in the United States in 1998. Of this total, 200,000 bridges were steel, 235,000 were conventional reinforced concrete, 108,000 bridges were constructed using pre-stressed concrete, and the balance was made using other materials of construction. Approximately 15 percent of the bridges accounted for at this point in time were structurally deficient, primarily due to corrosion of steel and steel reinforcement. Iron-based amorphous metals, including SAM2X5 (Fe{sub 49.7}Cr{sub 17.7}Mn{sub 1.9}Mo{sub 7.4}W{sub 1.6}B{sub 15.2}C{sub 3.8}Si{sub 2.4}) and SAM1651 (Fe{sub 48}Mo{sub 14}Cr{sub 15}Y{sub 2}C{sub 15}B{sub 6}) have been developed, and have very good corrosion resistance. These materials have been prepared as a melt-spun ribbons, as well as gas atomized powders and thermal-spray coatings. During electrochemical testing in several environments, including seawater at 90 C, the passive film stabilities of these materials were found to be comparable to that of more expensive high-performance alloys, based on electrochemical measurements of the passive film breakdown potential and general corrosion rates. These materials also performed very well in standard salt fog tests. Chromium (Cr), molybdenum (Mo) and tungsten (W) provided corrosion resistance, and boron (B) enabled glass formation. The high boron content of this particular amorphous metal made it an effective neutron absorber, and suitable for criticality control applications. These amorphous alloys appear to maintain their corrosion resistance up to the glass transition temperature. Visionary research is proposed to extend the application of corrosion-resistant iron-based amorphous metal coatings, and variants of these coatings, to protection of the Nation's transportation infrastructure. Specific objectives of the proposed work are: (1) fabrication of appropriate test samples for evaluation of concept; (2) collection of production and test data for coated steel reinforcement bars, enabling systematic comparison of various coating options, based upon performance and economic considerations; and (3) construction and testing of concrete structures with coated steel reinforcement bars, thereby demonstrating the value of amorphous-metal coatings. The benefits of ceramic coatings as thermal barriers will also be addressed.« less
Correlation of microstructure and low cycle fatigue properties for 13.5Cr1.1W0.3Ti ODS steel
NASA Astrophysics Data System (ADS)
He, P.; Klimenkov, M.; Möslang, A.; Lindau, R.; Seifert, H. J.
2014-12-01
Reduced activation oxide dispersion strengthened (ODS) steels are prospective structural materials for the blanket system and first wall components in Tokamak-type fusion reactors. Under the pulsed operation, these components will be predominantly subjected to cyclic thermal-mechanical loading which leads to inevitable fatigue damage. In this work, strain controlled isothermal fatigue tests were conducted for 13.5Cr1.1W0.3Ti ODS steel at 550 °C. The total strain range varied from 0.54% to 0.9%. After thermomechanical processing, 13.5CrWTi-ODS steel exhibits a remarkable lifetime extension with a factor of 10-20 for strain ranges Δε ⩽ 0.7%. 13.5Cr ODS steel shows no cyclic softening at all during the whole testing process irrespective of the strain range. TEM observations reveal ultrastable grain structure and constant dislocation densities around 1014 m-2, independent of the number of cycles or the applied strain amplitude. The presence of the stabilized ultrafine Y-Ti-O dispersoids enhances the microstructural stability and therefore leads to outstanding fatigue resistance for 13.5Cr1.1W0.3Ti-ODS steel.
New alloys to conserve critical elements. [replacing chromium in steels
NASA Technical Reports Server (NTRS)
Stephens, J. R.
1978-01-01
Previous studies and surveys on availability of domestic reserves have shown that chromium is a most critical element within the U.S. metal industry. More precisely, the bulk of chromium is consumed in the production of stainless steels, specifically Type 304 stainless steel (304SS) which contains 18% Cr. The present paper deals with means of reducing chromium in commercial stainless steels by substituting more abundant or less expensive elements with the intent of maintaining the properties of 304SS. The discussion focuses on some of the oxidation and corrosion properties of new substitute stainless steels with only 12% Cr, which represents a potential saving of 33% of the chromium consumed in the production of 304SS. The alloying elements substituted for Cr in 304SS are selected according to their potential for protective oxide formation during high-temperature oxidation; these are Al, Si, Ti, Y, and misch metal which is 99.7% rare-earth metals containing 50 to 55% cerium. Other alloying elements to impart corrosion resistance are Mn, Mo, and V.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liaw, P.K.; Nicholas, T.
This volume includes topics on fatigue crack propagation; isothermal and thermal-mechanical fatigue; and microstructure, fracture, and damage. Papers are presented on transients in fatigue crack growth, elevated-temperature fatigue crack propagation, the role of crack closure in crack retardation in P/M and I/M aluminum alloys, the acoustic interrogation of fatigue overload effects, and the effects of frequency and environment on crack growth in Inconel 718. Special attention is given to isothermal fatigue failure mechanisms in low-tin lead-based solder, the stress and strain controlled low-cycle fatigue of Pb-Sn solder for electronic packaging applications, load sequence effects on the deformation of isolated microplasticmore » grains, and thermal fatigue of stainless steel. Other papers are on the influence of thermal aging on the creep crack growth behavior of a Cr-Mo steel, the effect of cyclic loading on the fracture toughness of a modified 4340 steel, and the effects of hot rolling condition and boron microalloying on phase transformation and microstructure in niobium-bearing interstitial free steel.« less
NASA Astrophysics Data System (ADS)
vellaichamy, Lakshmanan; Paulraj, Sathiya
2018-02-01
The dissimilar welding of Incoloy 800HT and P91 steel using Gas Tungsten arc welding process (GTAW) This material is being used in the Nuclear Power Plant and Aerospace Industry based application because Incoloy 800HT possess good corrosion and oxidation resistance and P91 possess high temperature strength and creep resistance. This work discusses on multi-objective optimization using gray relational analysis (GRA) using 9CrMoV-N filler materials. The experiment conducted L9 orthogonal array. The input parameter are current, voltage, speed. The output response are Tensile strength, Hardness and Toughness. To optimize the input parameter and multiple output variable by using GRA. The optimal parameter is combination was determined as A2B1C1 so given input parameter welding current at 120 A, voltage at 16 V and welding speed at 0.94 mm/s. The output of the mechanical properties for best and least grey relational grade was validated by the metallurgical characteristics.
Microstructure of a Creep-Resistant 10 Pct Chromium Steel Containing 250 ppm Boron
NASA Astrophysics Data System (ADS)
Golpayegani, Ardeshir; Liu, Fang; Svensson, Henrik; Andersson, Marcus; Andrén, Hans-Olof
2011-04-01
The microstructure of a trial martensitic chromium steel containing a high content of boron (250 ppm) was characterized in detail in the as-tempered and aged conditions. This steel has a similar composition and heat treatment as the TAF steel that still is unsurpassed in creep strength among all 9 to 12 pct chromium steels. Characterization was performed by using scanning electron microscopy, energy-filtered transmission electron microscopy, secondary ion mass spectroscopy, and atom probe tomography. Focus was placed on investigating different types of precipitates that play a key role in improving the creep resistance of these steels. The low tempering temperature of 963 K (690 °C) is enough for the precipitation of the full volume fraction of both MX and M23C6. A high boron content, more than 1 at. pct, was found in M23C6 precipitates and they grow slowly during aging. The high boron level in the steel results in metal borides rather than BN with the approximate formula (Mo0.66Cr0.34)2(Fe0.75V0.25)B2. Two families of MX precipitates were found, one at lath boundaries about 35 nm in size and one dense inside the laths, only 5 to 15 nm in size.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dai, Steve Xunhu
2015-09-01
Among glass-ceramic compositions modified with a variety of oxidants (AgO, FeO, NiO, PbO, SnO, CuO, CoO, MoO 3 and WO 3) only CuO and CoO doped glass-ceramics showed existence of bonding oxides through reduction-oxidation (redox) at the GC-SS interface. The CuO-modified glass-ceramics demonstrate the formation of a continuous layer of strong bonding Cr 2O 3 at the interface in low partial oxygen (PO 2) atmosphere. However, in a local reducing atmosphere, the CuO is preferentially reduced at the surface of glass-ceramic rather than the GC-SS interface for redox. The CoO-modified glass-ceramics demonstrate improved GC-SS bonding. But the low mobility ofmore » Co ++ ions in the GC limited the amount of CoO that can diffuse to and participate in redox at the interface.« less
NASA Astrophysics Data System (ADS)
Feng, Xiangyi; Dong, Shiyun; Yan, Shixing; Liu, Xiaoting; Xu, Binshi; Pan, Fusheng
2018-03-01
In this article, by using orthogonal test the technological test was conducted and the optimum processing of the remanufacturing35CrMoA axle were obtained. The evolution of microstructure and mechanical property of HAZ were investigated. The microstructure of HAZ was characterized by means of OM and SEM. Meanwhile hardness distribution in HAZ and tensile property of cladding-HAZ-substrate samples were measured. The microstructure of cladding and HAZ were observed. The microsturcture evoltion and the mechanism of harden in the HAZ was discussed and revealed. The results indicated that the remanufacturing part has excellent strength due to grain refining and dispersive distribution of nanoscale cementite. The remanufacturing part will have uniform microstructure and hardness matching with that of 35CrMoA axle by using stress-relieving annealing at 580°.
Thermodynamic modeling and experimental validation of the Fe-Al-Ni-Cr-Mo alloy system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Teng, Zhenke; Zhang, F; Miller, Michael K
2012-01-01
NiAl-type precipitate-strengthened ferritic steels have been known as potential materials for the steam turbine applications. In this study, thermodynamic descriptions of the B2-NiAl type nano-scaled precipitates and body-centered-cubic (BCC) Fe matrix phase for four alloys based on the Fe-Al-Ni-Cr-Mo system were developed as a function of the alloy composition at the aging temperature. The calculated phase structure, composition, and volume fraction were validated by the experimental investigations using synchrotron X-ray diffraction and atom probe tomography. With the ability to accurately predict the key microstructural features related to the mechanical properties in a given alloy system, the established thermodynamic model inmore » the current study may significantly accelerate the alloy design process of the NiAl-strengthened ferritic steels.« less
In vitro corrosion characteristics of commercially available orthodontic wires.
Yonekura, Yasuyuki; Endo, Kazuhiko; Iijima, Masahiro; Ohno, Hiroki; Mizoguchi, Itaru
2004-06-01
The corrosion characteristics of orthodontic alloy wires were investigated both in as-received and grinded conditions in 0.9% NaCl solution by atomic absorption spectrophotometry and potentiodynamic polarization measurements. The amount of each metal ion released from most alloys was larger for the grinded wires than for the as-received wires (p<0.01). The fact that the beta-Ti alloy wire (Ti-Mo-Zr) does not contain allergenic metals such as Ni, Co, and Cr, and the finding that resistance to both general and localized corrosion is the highest among the six wires investigated suggest that this wire is the most biocompatible orthodontic wire. Since a small amount of Ni, Cr or Co ions were released from Ni-Ti, Co-Cr and stainless steel wires, special attention should be paid during their clinical use for patients with allergic tendencies.
High temperature oxidation behavior of ODS steels
NASA Astrophysics Data System (ADS)
Kaito, T.; Narita, T.; Ukai, S.; Matsuda, Y.
2004-08-01
Oxide dispersion strengthened (ODS) steels are being developing for application as advanced fast reactor cladding and fusion blanket materials, in order to allow increased operation temperature. Oxidation testing of ODS steel was conducted under a controlled dry air atmosphere to evaluate the high temperature oxidation behavior. This showed that 9Cr-ODS martensitic steels and 12Cr-ODS ferritic steels have superior high temperature oxidation resistance compared to 11 mass% Cr PNC-FMS and 17 mass% Cr ferritic stainless steel. This high temperature resistance is attributed to earlier formation of the protective α-Cr 2O 3 on the outer surface of ODS steels.
NASA Astrophysics Data System (ADS)
Manisekaran, T.; Kamaraj, M.; Sharrif, S. M.; Joshi, S. V.
2007-10-01
Hydroturbine steels, such as 13Cr-4Ni martensitic steels, are generally subjected to heavy-erosive wear and loss of efficiency due to solid particulate entrainment in the water. Surface-modified steels have proven to give better performance in terms of erosive wear resistance. In the present study, an attempt is made to investigate the effect of angle of impingement and particle size on slurry-jet erosion behavior of pulsed plasma nitrided and laser hardened 13Cr-4Ni steels. Laser hardening process has shown good performance at all angles of impingement due to martensitic transformation of retained austenite. Plastic deformation mode of material removal was also an evident feature of all laser-hardened surface damage locations. However, pulsed-plasma nitrided steels have exhibited chip formation and micro-cutting mode of erosive wear. Erosion with 150-300 μm size was twice compared to 150 μm size slurry particulates.
NASA Astrophysics Data System (ADS)
Liu, Peng
High temperature hydrogen attack (HTHA) is a form of surface decarburization, internal decarburization, and/or intergranular cracking in steels exposed to high temperature (>400°F) and high hydrogen pressure. Hydrogen attack is an irreversible process which can cause permanent damage resulting in degradation of mechanical properties and failures such as leakage, bursting, fire, and/or explosion. The continuous progression of hydrogen attack in C-0.5Mo steel and weldments below the C-0.5Mo Nelson Curve has caused a significant concern for the integrity and serviceability of C-0.5Mo steel utilized for pressure vessels and piping in the petroleum refinery and petrochemical industries. A state-of-the-art literature review was implemented to provide a comprehensive overview of the published research efforts on hydrogen attack studies. The evolution of "Nelson Curves" for carbon steel, C-0.5Mo, and Cr-Mo steels was historically reviewed in regard to design applications and limitations. Testing techniques for hydrogen attack assessment were summarized under the categories of hydrogen exposure testing, mechanical evaluation, and dilatometric swelling testing. In accord with the demands of these industries, fundamental studies of hydrogen attack in C-0.5Mo steel and weldments were accomplished in terms of quantitative methodologies for hydrogen damage evaluation; hydrogen damage assessment of service exposed weldments and autoclave exposed materials; effects of carbon and alloying elements, heat treatments, hot and cold working, welding processes and postweld heat treatment (PWHT) on hydrogen attack susceptibility; development of continuous cooling transformation (CCT) diagrams for C-0.5Mo base metals and the coarse grained heat-affected zone (CGHAZ); carbide evaluation for the C-0.5Mo steel after service exposure and heat treatment; methane evolution by the reaction of hydrogen and carbides; hydrogen diffusion and methane pressure through the wall thickness of one-sided hydrogen exposure assembly; hydrogen attack mechanism and hydrogen attack limit modeling.
NASA Astrophysics Data System (ADS)
Li, Hui-yan; Dong, Chao-fang; Xiao, Kui; Li, Xiao-gang; Zhong, Ping
2016-11-01
The effects of Cl- ion concentration and pH values on the corrosion behavior of Cr12Ni3Co12Mo4W ultra-high-strength martensitic stainless steel (UHSMSS) were investigated by a series of electrochemical tests combined with observations by stereology microscopy and scanning electron microscopy. A critical Cl- ion concentration was found to exist (approximately 0.1wt%), above which pitting occurred. The pitting potential decreased with increasing Cl- ion concentration. A UHSMSS specimen tempered at 600°C exhibited a better pitting corrosion resistance than the one tempered at 400°C. The corrosion current density and passive current density of the UHSMSS tempered at 600°C decreased with increasing pH values of the corrosion solution. The pits developed a shallower dish geometry with increasing polarization potential. A lacy cover on the pits of the UHSMSS tempered at 400°C accelerated pitting, whereas corrosion products deposited in the pits of the UHSMSS tempered at 600°C hindered pitting.
NASA Astrophysics Data System (ADS)
Mabruri, Efendi; Pasaribu, Rahmat Ramadhan; Sugandi, Moh. Tri; Sunardi
2018-05-01
This paper reports the influence of high tempering temperature and holding time on the mechanical properties and microstructure of the recently modified 410 martensitic stainless steel. The modified steel was prepared by induction melting followed by hot forging, quenching and tempering. The hardness and tensile strength of the steels decreased with increasing tempering temperature from 600 to 700 °C and with increasing holding time from 1 to 6 h. Based on microstructural images, it was observed the coarsening of lath martensite and of the metal carbides as well. However, a relatively high hardness and strength were still exibited by this steel after tempering at a such high temperature of 600-700 °C. The partition of Mo into the carbides identified by EDS analysis may correlate with this situation.
Alumina-Forming Austenitic Stainless Steels Strengthened by Laves Phase and MC Carbide Precipitates
NASA Astrophysics Data System (ADS)
Yamamoto, Y.; Brady, M. P.; Lu, Z. P.; Liu, C. T.; Takeyama, M.; Maziasz, P. J.; Pint, B. A.
2007-11-01
Creep strengthening of Al-modified austenitic stainless steels by MC carbides or Fe2Nb Laves phase was explored. Fe-20Cr-15Ni-(0-8)Al and Fe-15Cr-20Ni-5Al base alloys (at. pct) with small additions of Nb, Mo, W, Ti, V, C, and B were cast, thermally-processed, and aged. On exposure from 650 °C to 800 °C in air and in air with 10 pct water vapor, the alloys exhibited continuous protective Al2O3 scale formation at an Al level of only 5 at. pct (2.4 wt pct). Matrices of the Fe-20Cr-15Ni-5Al base alloys consisted of γ (fcc) + α (bcc) dual phase due to the strong α-Fe stabilizing effect of the Al addition and exhibited poor creep resistance. However, adjustment of composition to the Fe-15Cr-20Ni-5Al base resulted in alloys that were single-phase γ-Fe and still capable of alumina scale formation. Alloys that relied solely on Fe2Nb Laves phase precipitates for strengthening exhibited relatively low creep resistance, while alloys that also contained MC carbide precipitates exhibited creep resistance comparable to that of commercially available heat-resistant austenitic stainless steels. Phase equilibria studies indicated that NbC precipitates in combination with Fe2Nb were of limited benefit to creep resistance due to the solution limit of NbC within the γ-Fe matrix of the alloys studied. However, when combined with other MC-type strengtheners, such as V4C3 or TiC, higher levels of creep resistance were obtained.
NASA Astrophysics Data System (ADS)
Abe, Fujio; Tabuchi, M.; Tsukamoto, S.
Boundary hardening is shown to be the most important strengthening mechanism in creep of tempered martensitic 9% Cr steel base metal and welded joints at 650 °C. The enrichment of soluble boron near prior austenite grain boundaries (PAGBs) by the GB segregation is essential for the reduction of coarsening rate of M23C6 carbides near PAGBs, enhancing the boundary and sub-boundary hardening near PAGBs, and also for the change in α/γ transformation behavior in heat-affected-zone (HAZ) of welded joints during heating of welding, producing the same microstructure in HAZ as in the base metal. Excess addition of nitrogen to the 9Cr-boron steel promotes the formation of boron nitrides during normalizing heat treatment, which consumes most of soluble boron and degrades the creep strength. A NIMS 9Cr steel (MARBN; Martensitic 9Cr steel strengthened by boron and MX nitrides) with 120-150 ppm boron and 60-90 ppm nitrogen, where no boron nitride forms during normalizing heat treatment, exhibits not only much higher creep strength of base metal than Grades 91, 92 and 122 but also substantially no degradation in creep strength due to Type IV fracture in HAZ of welded joints at 650°C. The protective Cr2O3-rich scale forms on the surface of 9Cr steel by pre-oxidation treatment in Ar gas, which significantly improves the oxidation resistance in steam at 650°C.
NASA Astrophysics Data System (ADS)
Popovici, T. D.; Dijmărescu, M. R.
2017-08-01
The aim of the research presented in this paper is to determine a cutting force prediction model for milling machining of the X105CrMo17 stainless steel. The analysed material is a martensitic stainless steel which, due to the high Carbon content (∼1%) and Chromium (∼17%), has high hardness and good corrosion resistance characteristics. This material is used for the steel structures parts which are subject of wear in corrosive environments, for making valve seats, bearings, various types of cutters, high hardness bushings, casting shells and nozzles, measuring instruments, etc. The paper is structured into three main parts in accordance to the considered research program; they are preceded by an introduction and followed by relevant conclusions. In the first part, for a more detailed knowledge of the material characteristics, a quality and quantity micro-analysis X-ray and a spectral analysis were performed. The second part presents the physical experiment in terms of input, necessary means, process and registration of the experimental data. In the third part, the experimental data is analysed and the cutting force model is developed in terms of the cutting regime parameters such as cutting speed, feed rate, axial depth and radial depth.
Dietrich, Matthew; Huling, Justin; Krekeler, Mark P S
2018-03-15
A geochemical investigation of both ballfield sediment and street sediment in a park adjacent to a major steel manufacturing site in Middletown, Ohio revealed Pb, Cu, Cr and Zn exceeded background levels, but in heterogeneous ways and in varying levels of health concern. Pb, Sn, and Zn had geoaccumulation values>2 (moderate to heavy pollutants) in street sediment samples. Cr had a geoaccumulation value>1, while Ni, W, Fe and Mn had geoaccumulation values between 1 and 0 in street sediment. Street sediment contamination factors for respective elements are Zn (10.41), Sn (5.45), Pb (4.70), Sb (3.45), Cr (3.19), W (2.59), and Mn (2.43). The notable elements with the highest factors for ball fields are Zn (1.72), Pb (1.36), Cr (0.99), V (0.95), and Mn (1.00). High correlation coefficients of known constituents of steel, such as Fe and Mo, Ni and Cr, W and Co, W and V, as well as particulate steel and coal spherule fragments found by SEM suggest probable sourcing of some of the metals from the AK Steel facility directly adjacent to the park. However, overall extensive heterogeneity of metal pollutants in the area points to the difficulties in sourcing pollutant metals, with many outside sources likely contributing as well. This study demonstrates that different sediment media can be impacted by significantly different metal pollutants even when in very close proximity to a single source and points to unrecognized complexity in urban pollution processes in the region. This study pertains to large-scale regional importance, as Middletown, Ohio is indicative of a typical post-industrial Midwestern U.S. city where limited investigation has been conducted regarding urban pollution and sourcing of materials. Copyright © 2017 Elsevier B.V. All rights reserved.
Ion-irradiation-induced damage of steels characterized by means of nanoindentation
NASA Astrophysics Data System (ADS)
Heintze, C.; Recknagel, C.; Bergner, F.; Hernández-Mayoral, M.; Kolitsch, A.
2009-05-01
Self-ion irradiation was used to simulate the damage caused by fast neutrons in the austenitic stainless steel SS 304 SA, the ferritic/martensitic steel Eurofer'97 and a Fe-9 at.%Cr model alloy. The irradiation-induced hardness change in the damage layer was evaluated by means of nanoindentation. Three-step irradiations were performed at room temperature and 300 °C up to 1 and 10 dpa. An irradiation-induced hardness change was shown for all materials. No influence of irradiation temperature could be resolved. Irradiation-induced hardening exhibits different fluence dependencies in Eurofer'97 and Fe-9 at.%Cr. While the data indicate a saturation-like behaviour for Fe-9 at.%Cr, an increase of hardness with fluence up to 10 dpa was found for Eurofer'97.
NASA Astrophysics Data System (ADS)
Scapin, M.; Peroni, L.; Fichera, C.; Cambriani, A.
2014-08-01
High chromium ferritic/martensitic steel T91 (9% Cr, 1% Mo), on account of its radiation resistance, is a candidate material for nuclear reactor applications. Its joining by an impact method to create a cold joint is tested in the realm of scoping tests toward the safe operation of nuclear fuels, encapsulated in representative T91 materials. Hitherto, T91 mechanical characterization at high strain rates is relatively unknown, particularly, in relation to impact joining and also to nuclear accidents. In this study, the mechanical characterization of T91 steel was performed in tension by varying the strain-rate (10-3 up to 104 s-1) and temperature (20-800°C) on dog-bone specimens, using standard testing machines or Hopkinson Bar apparati. As expected, the material is both temperature and strain-rate sensitive and different sets of parameters for the Johnson-Cook strength model were extracted via a numerical inverse procedure, in order to obtain the most suitable set to be used in this field of applications.
The Microstructural Evolution of Vacuum Brazed 1Cr18Ni9Ti Using Various Filler Metals
Chen, Yunxia; Cui, Haichao; Lu, Binfeng; Lu, Fenggui
2017-01-01
The microstructures and weldability of a brazed joint of 1Cr18Ni9Ti austenitic stainless steel with BNi-2, BNi82CrSiBFe and BMn50NiCuCrCo filler metals in vacuum were investigated. It can be observed that an interdiffusion region existed between the filler metal and the base metal for the brazed joint of Ni-based filler metals. The width of the interdiffusion region was about 10 μm, and the microstructure of the brazed joint of BNi-2 filler metal was dense and free of obvious defects. In the case of the brazed joint of BMn50NiCuCrCo filler metal, there were pits, pores and crack defects in the brazing joint due to insufficient wettability of the filler metal. Crack defects can also be observed in the brazed joint of BNi82CrSiBFe filler metal. Compared with BMn50NiCuCrCo and BNi82CrSiBFe filler metals, BNi-2 filler metal is the best material for 1Cr18Ni9Ti austenitic stainless steel vacuum brazing because of its distinct weldability. PMID:28772745
NASA Astrophysics Data System (ADS)
Pinto, M.; Calderón, X.; Mejía Ospino, E.; Cabanzo, R.; Poveda, Juan C.
2016-02-01
In the present study, optical microscopy in stereoscopic mode coupled to laser- induced p-breakdown spectroscopy (μ-LIBS) was applied for analysing HP-40 steel samples. microLIBS (μ-LIBS) is a new growing area that employs low energy laser pulses for the generation of plasma emission, which allow the realization of localized microanalysis [1]. This new LIBS instrument was used for the surface characterization of the steel samples in the spectral range from 356 to 401nm. Elements such as Cr, Ni, Fe, Nb, Pb, Mo, C, Mn and Si in the steel samples were investigated. The results allowed the construction of elemental distribution profiles of the samples. Complementary the HP-40 steel samples were superficially characterized by Scanning Electron Microscope (SEM).
NASA Astrophysics Data System (ADS)
Wu, C.; Han, S.
2018-05-01
In order to obtain an optimal heat treatment for a low alloy high strength Ni-Cr-Mo-V steel, the microstructural evolution and mechanical properties of the material were studied. For this purpose, a series of quenching and temper experiments were carried out. The results showed that the effects of tempering temperature, time, original microstructure on the microstructural evolution and final properties were significant. The martensite can be completely transformed into the tempered lath structure. The width and length of the lath became wider and shorter, respectively with increasing temperature and time. The amount and size of the precipitates increased with temperature and time. The yield strength (YS), ultimate tensile strength (UTS) and hardness decreased with temperature and time, but the reduction in area (Z), elongation (E) and impact toughness displayed an opposite trend, which was related to the morphological evolution of the lath tempered structure.
Gradient microstructure and microhardness in a nitrided 18CrNiMo7-6 gear steel
NASA Astrophysics Data System (ADS)
Yang, R.; Wu, G. L.; Zhang, X.; Fu, W. T.; Huang, X.
2017-07-01
A commercial gear steel (18CrNiMo7-6) containing a tempered martensite structure was nitrided using a pressurized gas nitriding process under a pressure of 5 atm at 530 °C for 5 hours. The mechanical properties and microstructure of the nitrided sample were characterized by Vickers hardness measurements, X-ray diffraction, and backscatter electron imaging in a scanning electron microscope. A micro-hardness gradient was identified over a distance of 500 μm with hardness values of 900 HV at the top surface and 300 HV in the core. This micro-hardness gradient corresponds to a gradient in the microstructure that changes from a nitride compound layer at the top surface (∼ 20 μm thick) to a diffusion zone with a decreasing nitrogen concentration and precipitate density with distance from the surface, finally reaching the core matrix layer with a recovered martensite structure.
NASA Astrophysics Data System (ADS)
Ibrahim, Khalil; Mahbubur Rahman, M.; Taha, Hatem; Mohammadpour, Ehsan; Zhou, Zhifeng; Yin, Chun-Yang; Nikoloski, Aleksandar; Jiang, Zhong-Tao
2018-05-01
Mo, CrN, and Mo:CrN sputtered coatings synthesized onto silicon Si(100) substrates were investigated as solar selective surfaces and their potential applications in optical devices. These coatings were characterized using XRD, SEM, UV-vis, and FTIR techniques. XRD investigation, showed a change in CrN thin film crystallite characteristic due to Mo doping. Compared to the CrN coating, the Mo:CrN film has a higher lattice parameter and lower grain size of 4.19 nm and 106.18 nm, respectively. FESEM morphology confirmed the decrement in Mo:CrN crystal size due to Mo doping. Optical analysis showed that in the visible range of the solar spectrum, the CrN coatings exhibit the highest solar absorptance of 66% while the lowest thermal emittance value of 5.67 was recorded for the CrN coating doped with Mo. Consequently, the highest solar selectivity of 9.6, and the energy band-gap of 2.88 eV were achieved with the Mo-doped CrN coatings. Various optical coefficients such as optical absorption coefficient, refractive index, extinction coefficient, real and imaginary parts of dielectric constants, and energy loss functions of these coatings were also estimated from the optical reflectance data recorded in the wavelength range of 190-2300 nm.
Galvanizing and Galvannealing Behavior of CMnSiCr Dual-Phase Steels
NASA Astrophysics Data System (ADS)
Lin, Ko-Chun; Chu, Peng-Wei; Lin, Chao-Sung; Chen, Hon-Bor
2013-06-01
Alloying elements, such as Mn, Mo, Si, and Cr, are commonly used to enhance the strength of advanced high-strength steels. Those elements also play an important role in the hot-dip galvanizing (GI) and galvannealing (GA) process. In this study, two kinds of CMnSiCr dual-phase steels were galvanized and galvannealed using a hot-dip simulator to investigate the effect of the alloying elements on the microstructure of the GI and GA coatings. The results showed that the dual-phase steels had good galvanizability because no bare spots were observed and the Fe-Zn phases were readily formed at the interface. However, the alloying reaction during the GA process was significantly hindered. XPS analysis showed that external oxidation occurred under an extremely low dew point [213 K to 203 K (-60 °C to -70 °C)] atmosphere during the annealing prior to hot dipping. However, most of the oxides were reduced during the GI process. After the GI process, the Al was present as solid solutes in the Fe-Zn phase, suggesting that the Fe-Zn phase was formed from the transformation of the Fe-Al inhibition alloy. Meanwhile, the solubility of Si in the ζ phase was extremely low. With continued GA reaction, the ζ phase transformed into the δ phase, which contained approximately 1.0 at.pct Si. The Si also diffused into the Zn layer during the GA reaction. Hence, the ζ phase did not homogeneously nucleate at the steel substrate/Zn coating interface, but was found at the area away from the interface. Therefore, the Fe-Zn phases on the CMnSiCr dual-phase steels were relatively non-uniform compared to those on interstitial-free steel.
Huang, Liping; Li, Ming; Pan, Yuzhen; Quan, Xie; Yang, Jinhui; Puma, Gianluca Li
2018-04-16
The deposition and separation of W and Mo from aqueous solutions with simultaneous hydrogen production was investigated in stacked bioelectrochemical systems (BESs) composed of microbial electrolysis cell (1#) serially connected with parallel connected microbial fuel cell (2#). The impact of W/Mo molar ratio (in the range 0.01 mM : 1 mM and vice-versa), initial pH (1.5 to 4.0) and cathode material (stainless steel mesh (SSM), carbon rod (CR) and titanium sheet (TS)) on the BES performance was systematically investigated. The concentration of Mo(VI) was more influential than W(VI) in determining the rate of deposition of both metals and the rate of hydrogen production. Complete metal recovery was achieved at equimolar W/Mo ratio of 0.05 mM : 0.05 mM. The rates of metal deposition and hydrogen production increased at acidic pH, with the fastest rates at pH 1.5. The morphology of the metal deposits and the valence of the Mo were correlated with W/Mo ratio and pH. CR cathodes (2#) coupled with SSM cathodes (1#) achieved a significant rate of hydrogen production (0.82 ± 0.04 m 3 /m 3 /d) with W and Mo deposition (0.049 ± 0.003 mmol/L/h and 0.140 ± 0.004 mmol/L/h (1#); 0.025 ± 0.001 mmol/L/h and 0.090 ± 0.006 mmol/L/h (2#)). Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Tomita, Yoshiyuki; Okabayashi, Kunio
1985-01-01
A study has been systematically made of the effect of bainite on the mechanical properties of a commercial Japanese 0.40 pct C-Ni-Cr-Mo high strength steel (AISI 4340 type) having a mixed structure of martensite and bainite. Isothermal transformation of lower bainite at 593 K, which appeared in acicular form and partitioned prior austenite grains, in association with tempered marprovided provided a better combination of strength and fracture ductility, improving true notch tensile strength (TNTS) and fracture appearance transition temperature (FATT) in Charpy impact tests. This occurred regardless of the volume fraction of lower bainite present and/or the tempering conditions employed to create a difference in strength between the two phases. Upper bainite which was isothermally transformed at 673 K appeared as masses that filled prior austenite grains and had a very detrimental effect on the strength and fracture ductility of the steel. Significant damage occurred to TNTS and FATT, irrespective of the volume fraction of upper bainite present and/or the tempering conditions employed when the upper bainite was associated with tempered martensite. However, when the above two types of bainite appeared in the same size, shape, and distribution within tempered martensite approximately equalized to the strength of the bainite, a similar trend or a marked similarity was observed between the tensile properties of the mixed structures and the volume fraction of bainite. From the above results, it is assumed that the mechanical properties of high strength steels having a mixed structure of martensite and bainite are affected more strongly by the size, shape, and distribution of bainite within martensite than by the difference in strength between martensite and bainite or by the type of mixed bainite present. The remarkable effects of the size, shape, and distribution of bainite within martensite on the mechanical properties of the steel are briefly discussed in terms of the modified law of mixtures, metallographic examinations, and the analyses of stress-strain diagrams.
Effect of electroslag remelting on carbides in 8Cr13MoV martensitic stainless steel
NASA Astrophysics Data System (ADS)
Zhu, Qin-tian; Li, Jing; Shi, Cheng-bin; Yu, Wen-tao
2015-11-01
The effect of electroslag remelting (ESR) on carbides in 8Cr13MoV martensitic stainless steel was experimentally studied. Phases precipitated from liquid steel during solidification were calculated using the Thermo-Calc software. The carbon segregation was analyzed by original position analysis (OPA), and the carbides were analyzed by optical microscopy (OM), scanning electron microscopy (SEM), energy- dispersive X-ray spectroscopy (EDS) and X-ray diffraction (XRD). The results indicated that more uniform carbon distribution and less segregation were obtained in the case of samples subjected to the ESR process. After ESR, the amount of netty carbides decreased significantly, and the chromium and vanadium contents in the grain-boundary carbides was reduced. The total area and average size of carbides were obviously smaller after the ESR process. In the sample subjected to ESR, the morphology of carbides changed from lamellar and angular to globular or lump, whereas the types of carbides did not change; both M23C6 and M7C3 were present before and after the ESR process.
NASA Astrophysics Data System (ADS)
Sun, Hunying; Zhou, Zhangjian; Wang, Man; Li, Shaofu; Zhang, Liwei; Zou, Lei
2013-03-01
A new type lCr30Ni30Mo2TiZr super-austenitic stainless steel has been developed. The microstructures, precipitation phases and mechanical properties of the steel under different deformation processes and heat treatment (solution, stabilized treatment) were investigated using X-ray Diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) as well as mechanical tests. The results indicate that coarse carbides such as Cr-rich M23C6, sigma (σ), and little chi (χ) phases were formed in the steel, and large α' -Cr phases were also detected at three joint grain boundaries, and they were promoted by large strain. The precipitate phases were dissolved or transformed to intermetallic phase even at higher elevated temperature, and influenced the mechanical property obviously. These intermetallic compounds seriously reduced elongation of the rolled steel at room temperature and 700 °C, but increased the forged one at 700 °C. Impact absorbed energies of the stabilized specimens were lower than half of that solution status.
Corrosion Performance of Fe-Cr-Ni Alloys in Artificial Saliva and Mouthwash Solution
Porcayo-Calderon, J.; Casales-Diaz, M.; Salinas-Bravo, V. M.; Martinez-Gomez, L.
2015-01-01
Several austenitic stainless steels suitable for high temperature applications because of their high corrosion resistance and excellent mechanical properties were investigated as biomaterials for dental use. The steels were evaluated by electrochemical techniques such as potentiodynamic polarization curves, cyclic polarization curves, measurements of open circuit potential, and linear polarization resistance. The performance of steels was evaluated in two types of environments: artificial saliva and mouthwash solution at 37°C for 48 hours. In order to compare the behavior of steels, titanium a material commonly used in dental applications was also tested in the same conditions. Results show that tested steels have characteristics that may make them attractive as biomaterials for dental applications. Contents of Cr, Ni, and other minor alloying elements (Mo, Ti, and Nb) determine the performance of stainless steels. In artificial saliva steels show a corrosion rate of the same order of magnitude as titanium and in mouthwash have greater corrosion resistance than titanium. PMID:26064083
High Temperature Uniaxial Compression and Stress-Relaxation Behavior of India-Specific RAFM Steel
NASA Astrophysics Data System (ADS)
Shah, Naimish S.; Sunil, Saurav; Sarkar, Apu
2018-07-01
India-specific reduced activity ferritic martensitic steel (INRAFM), a modified 9Cr-1Mo grade, has been developed by India as its own structural material for fabrication of the Indian Test Blanket Module (TBM) to be installed in the International Thermonuclear Energy Reactor (ITER). The extensive study on mechanical and physical properties of this material has been currently going on for appraisal of this material before being put to use in the ITER. High temperature compression, stress-relaxation, and strain-rate change behavior of the INRAFM steel have been investigated. The optical microscopic and scanning electron microscopic characterizations were carried out to observe the microstructural changes that occur during uniaxial compressive deformation test. Comparable true plastic stress values at 300 °C and 500 °C and a high drop in true plastic stress at 600 °C were observed during the compression test. Stress-relaxation behaviors were investigated at 500 °C, 550 °C, and 600 °C at a strain rate of 10-3 s-1. The creep properties of the steel at different temperatures were predicted from the stress-relaxation test. The Norton's stress exponent ( n) was found to decrease with the increasing temperature. Using Bird-Mukherjee-Dorn relationship, the temperature-compensated normalized strain rate vs stress was plotted. The stress exponent ( n) value of 10.05 was obtained from the normalized plot. The increasing nature of the strain rate sensitivity ( m) with the test temperature was found from strain-rate change test. The low plastic stability with m 0.06 was observed at 600 °C. The activation volume ( V *) values were obtained in the range of 100 to 300 b3. By comparing the experimental values with the literature, the rate-controlling mechanisms at the thermally activated region of high temperature were found to be the nonconservative movement of jogged screw dislocations and thermal breaking of attractive junctions.
High Temperature Uniaxial Compression and Stress-Relaxation Behavior of India-Specific RAFM Steel
NASA Astrophysics Data System (ADS)
Shah, Naimish S.; Sunil, Saurav; Sarkar, Apu
2018-05-01
India-specific reduced activity ferritic martensitic steel (INRAFM), a modified 9Cr-1Mo grade, has been developed by India as its own structural material for fabrication of the Indian Test Blanket Module (TBM) to be installed in the International Thermonuclear Energy Reactor (ITER). The extensive study on mechanical and physical properties of this material has been currently going on for appraisal of this material before being put to use in the ITER. High temperature compression, stress-relaxation, and strain-rate change behavior of the INRAFM steel have been investigated. The optical microscopic and scanning electron microscopic characterizations were carried out to observe the microstructural changes that occur during uniaxial compressive deformation test. Comparable true plastic stress values at 300 °C and 500 °C and a high drop in true plastic stress at 600 °C were observed during the compression test. Stress-relaxation behaviors were investigated at 500 °C, 550 °C, and 600 °C at a strain rate of 10-3 s-1. The creep properties of the steel at different temperatures were predicted from the stress-relaxation test. The Norton's stress exponent (n) was found to decrease with the increasing temperature. Using Bird-Mukherjee-Dorn relationship, the temperature-compensated normalized strain rate vs stress was plotted. The stress exponent (n) value of 10.05 was obtained from the normalized plot. The increasing nature of the strain rate sensitivity (m) with the test temperature was found from strain-rate change test. The low plastic stability with m 0.06 was observed at 600 °C. The activation volume (V *) values were obtained in the range of 100 to 300 b3. By comparing the experimental values with the literature, the rate-controlling mechanisms at the thermally activated region of high temperature were found to be the nonconservative movement of jogged screw dislocations and thermal breaking of attractive junctions.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-06
..., physical and mechanical specifications: C Mn P S Si Cr Cu Ni 0.10 - 0.14[percnt] 0.90[percnt] 0.025[percnt..., physical and mechanical specifications: C Mn P S Si Cr Cu Ni Mo 0.10 - 0.16[percnt] 0.70 - 0.025[percn 0... following chemical, physical and mechanical specifications: [[Page 47543
Michel, R; Zilkens, J
1978-01-01
Using instrumental neutron activation analysis, 11 samples of tissue in contact with A.O. angle plates and 8 samples of fascial tissue were examined for their content of trace elements, half a year to 5 1/2 years after hip joint intertrochanteric osteotomies. Significant increases in the concentrations of the elements Cr, Fe, Co, Ni and Mo, all of which are contained in the A. O. steel plates (V4A steel), were found both in the contact tissue and in the tissue of the fascia lata femoris about 4--8 cm away from the angle plates, whereas the levels of concentration of elements not specific for the alloy in question, namely, Zn, Se, Rb and Cs, were normal or just subnormal. It was possible to prove by means of element correlations that the elements Cr, Co, Ni and Mo are present in constant ratios in those tissue samples which are loaded with traces of metals foreign to the body. However, only the Mo:Cr ratio corresponds to that of the angle plates. The authors considered Ni to be a useful indicator for the degree of metal loading of a tissue, since Ni will normally occur in human tissue in very low concentrations (less than or equal to 10(-6) g/g dry substance) and was identified by the authors--contrary to previous studies--even in the fascial tissue located up to 8 cm away from the contact tissue. Non-linear correlations were found between iron and the other components of the steel, reflecting the complicated regulatory mechanisms governing the presence of iron in the organism. The results of the analysis are discussed in respect of possible long-term action of the implantate components liberated by corrosion, which, in case of long-term implantates might place an overall burden of foreign ions on the body.
NASA Astrophysics Data System (ADS)
Ogorodnikova, O. V.; Zhou, Z.; Sugiyama, K.; Balden, M.; Gasparyan, Yu.; Efimov, V.
2017-03-01
In this paper, reduced-activation ferritic/martensitic (RAFM) steels including Eurofer (9Cr) and oxide dispersion strengthening (ODS) steels by the addition of Y2O3 particles with different amounts of Cr, namely, (9-16)Cr were exposed to low energy deuterium (D) plasma (~20-200 eV per D) up to a fluence of 2.9 × 1025 D m-2 in the temperature range from 290 K to 700 K. The depth profile of D in steels was measured up to 8 µm depth by nuclear reaction analysis (NRA) and the total retained amount of D in those materials was determined by thermal desorption spectroscopy (TDS). It was found that the D retention in ODS steels is higher compared to Eurofer due to the much higher density of fine dispersoids and finer grain size. This work shows that in addition to the sintering temperature and time, the type, size and concentration of the doping particles have an enormous effect on the increase in the D retention. The D retention in undamaged ODS steels strongly depends on the Cr content: ODS with 12Cr has a minimum and the D retention in the case of ODS with (14-16)Cr is higher compared to (9-12)Cr. The replacing of Ti by Al in ODS-14Cr steels reduces the D retention. The formation of nano-structure surface roughness enriched in W or Ta due to combination of preferential sputtering of light elements and radiation-induced segregation was observed at incident D ion energy of 200 eV for both Eurofer and ODS steels. Both the surface roughness and the eroded layer enhance with increasing the temperature. The surface modifications result in a reduction of the D retention near the surface due to increasing the desorption flux and can reduce the overall D retention.
Corrosion of austenitic steels and their components in vanadium-containing chloride melts
NASA Astrophysics Data System (ADS)
Abramov, A. V.; Polovov, I. B.; Rebrin, O. I.; Lisienko, D. G.
2014-08-01
The corrosion of austenitic 12Kh18N10T, 10Kh17N13M2T, and 03Kh17N14M3 steels and their components (Cr, Fe, Ni, Mo) in NaCl-KCl-VCl2 melts with 5 wt % V at 750°C is studied. The rates and mechanisms of corrosion of the materials under these conditions are determined. The processes that occur during contact of the metals and steels with vanadium-containing chloride electrolytes are investigated.
Development of Co-based bulk metallic glasses as potential biomaterials.
Zhou, Zeyan; Wei, Qin; Li, Qiang; Jiang, Bingliang; Chen, You; Sun, Yanfei
2016-12-01
A new series of Co80-x-yCrxMoyP14B6 (x=5 y=5; x=5 y=10; x=10 y=10, all values in at.%) bulk metallic glasses (BMGs) with a maximum diameter of 1.5mm has been developed for using them as potential bio-implant materials by a combination of fluxing treatment and J-quenching technique. The performance of the present Co-based BMGs in biomedical implant applications was investigated as compared to the CoCrMo biomedical alloy (ASTM F75) and 316L stainless steel (316L SS). The corrosion behavior of the samples was investigated in both Hank's solution (pH=7.4) and artificial saliva solution (pH=6.3) at 37°C employing electrochemical measurements. The results indicate that the Co-based BMGs exhibit much higher corrosion resistance in the simulated body solutions than that of 316L SS. Compared with the corrosion resistance of ASTM F75, that of Co70Cr5Mo5P14B6 and Co65Cr5Mo10P14B6 BMGs is found to be lower and that of Co60Cr10Mo10P14B6 BMG is higher. The concentrations of Co, Cr, and Mo ions released into the simulated body solutions from our Co-based BMGs after potentiodynamic polarization are significantly lower than that released from ASTM F75. The biocompatibility of the specimens was evaluated using an in vitro test of NIH3T3 cell culture in the specimen extraction media for 1, 3, 5, and 7days, revealing the non-cytotoxicity of the Co-based BMGs towards NIH3T3 cells. Moreover, examinations on the cell adhesion and growth on the surface of the specimens indicate that the Co-based BMGs exhibit better cell viability compared to ASTM F75 and 316L SS biomedical alloys. Copyright © 2016 Elsevier B.V. All rights reserved.
KCl-Induced High-Temperature Corrosion Behavior of HVAF-Sprayed Ni-Based Coatings in Ambient Air
NASA Astrophysics Data System (ADS)
Jafari, Reza; Sadeghimeresht, Esmaeil; Farahani, Taghi Shahrabi; Huhtakangas, Matti; Markocsan, Nicolaie; Joshi, Shrikant
2018-02-01
KCl-induced high-temperature corrosion behavior of four HVAF-sprayed Ni-based coatings (Ni21Cr, Ni5Al, Ni21Cr7Al1Y and Ni21Cr9Mo) under KCl deposit has been investigated in ambient air at 600 °C up to 168 h. The coatings were deposited onto 16Mo3 steel—a widely used boiler tube material. Uncoated substrate, 304L and Sanicro 25 were used as reference materials in the test environment. SEM/EDS and XRD techniques were utilized to characterize the as-sprayed and exposed samples. The results showed that the small addition of KCl significantly accelerated degradation to the coatings. All coatings provided better corrosion resistance compared to the reference materials. The alumina-forming Ni5Al coating under KCl deposit was capable of forming a more protective oxide scale compared to the chromia-forming coatings as penetration of Cl through diffusion paths was hindered. Both active corrosion and chromate formation mechanisms were found to be responsible for the corrosion damages. The corrosion resistance of the coatings based on the microstructure analysis and kinetics had the following ranking (from the best to worst): Ni5Al > Ni21Cr > Ni21Cr7Al1Y > Ni21Cr9Mo.
CRADA Final Report for CRADA Number NFE-08-01671 Materials for Advanced Turbocharger Designs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maziasz, P. J.; Wilson, M.
2014-11-28
Results were obtained on residual stresses in the weld of the steel shaft to the Ni-based superalloy turbine wheel for turbochargers. Neutron diffraction studies at the HFIR Residual Stress Facility showed asymmetric tensile stresses after electron-beam welding of the wheel and shaft. A post-weld heat-treatment was found to relieve and reduce the residual stresses. Results were also obtained on cast CF8C-Plus steel as an upgrade alternative to cast irons (SiMo, Ni-resist) for higher temperature capability and performance for the turbocharger housing. CF8C-Plus steel has demonstrated creep-rupture resistance at 600-950oC, and is more creep-resistant than HK30Nb, but lacks oxidation-resistance at 800oCmore » and above in 10% water vapor. New modified CF8C-Plus Cu/W steels with Cr and Ni additions show better oxidation resistance at 800oC in 10% water vapor, and have capability to higher temperatures. For automotive gasoline engine turbocharger applications, higher temperatures are required, so at the end of this project, testing began at 1000oC and above.« less
NASA Astrophysics Data System (ADS)
Komolwit, Piyamanee
The effects of cobalt additions on the mechanical properties and strengthening mechanisms of a martensitic precipitation strengthening stainless steel whose composition is (in wt. %) 0.005C/12Cr/5Mo/1.5Ni has been investigated for cobalt levels of 9, 12, 15, 18, and 21 wt. %. Hardness, yield strength and ultimate tensile strength increase as the cobalt content increases, while the Charpy impact energy decreases as tempering temperature increases. At the peak strength of the 21 wt. % cobalt alloy, which is after tempering at 550°C, the yield strength is 1772 MPa, the ultimate tensile strength is 1916 MPa, and the hardness is 55 HRC. The martensite start temperature decreases as cobalt content increases. In this alloys there is no retained austenite after austenitizing, oil quenching and then refrigerating in liquid nitrogen prior to tempering. These alloys contain no reverted austenite except for the 21 wt. % cobalt alloy after tempering at 600°C. Optical micrographs show lath martensite as the matrix for all alloys. Increasing cobalt content has little effect on prior austenite grain size. Transmission electron micrographs show a substructure of lath martensite and a b.c.c. matrix for all alloys after tempering at 525°C. Precipitates were observed in dark field images at all cobalt levels and were seen in bright field images of 21 wt. % cobalt alloy. One of the precipitates was identified as omega phase with a trigonal structure with lattice parameter of a = b = 4.1 A, c = 2.51 A with c/a = 0.612. The particle size appears to be 17 nanometers in diameter and they were found only in the foils of 21 wt. % cobalt alloy. The second precipitate type was identified as a monoclinic phase with a monoclinic structure with lattice parameters of a = 5.464 A, b = 2.843 A, c = 3.178 A, and alpha = gamma = 90° and beta = 63.4°. The monoclinic phase particles appear to significantly contribute to the strength of these alloys, with particles size and volume fraction increasing with increasing cobalt content for the same condition. Limited observation on the effects of carbon additions to a 12Cr/12Co/5Mo/4.5Ni martensitic precipitation strengthening stainless steel has been made for carbon levels of 0.005 wt. %, 0.025 wt. % and 0.05 wt. %. A small addition of chromium, one weight percent, to a 0.005C/12Co/5Mo/5Ni martensitic precipitation strengthening stainless steel was found to increase hardness, strength, Charpy impact energy, and ductility. Results on the effects of cobalt, carbon and chromium additions helped in the selection of modified alloys which were used to investigate the effects of composition and heat treatment on strength and toughness. The first set of modified alloys are referred to as the low carbon modified alloys. These alloys have a better Charpy impact energy than the alloys used to investigate the effect of cobalt on strength and the hardness and strength of these alloys are similar to those of alloys used to investigate the effects of cobalt on strength. Fractographs of these alloys show quasi-cleavage fracture, the presence of ductile fracture increases with increasing cobalt content. The martensite start temperature is lowered by the chromium additions and results in the existence of retained austenite even after refrigeration after austenitizing. Refrigeration prior to tempering is not necessary for these alloys to achieve a high yield strength and good Charpy impact energy. The second set of modified alloys are referred to as the carbon-titanium modified alloys. These alloys differ from the first set of modified alloys in that these alloys contain small additions of carbon and titanium and have lower cobalt levels. Lower cobalt levels were required because carbon lowers the martensite start temperature. These alloys have improved Charpy impact energy and ductility. The carbon addition lowers the martensite start temperature and the martensite start temperature of these alloys is sufficiently low that they contain retain austenite even after refrigeration after austenitizing. Refrigeration prior to tempering is necessity for the alloys to maintain their yield strength and hardness. The effects of austenitizing temperature, cooling rate after austenitization, refrigeration and double austenitization on the mechanical properties of the modified alloys were investigated. Lowering the austenitization temperature decreases the Charpy impact energy and hardness of these alloys. (Abstract shortened by UMI.)
Fracture Toughness and Strength in a New Class of Bainitic Chromium-Tungsten Steels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mao, S. X.; Sikka, V. K.
This project dealt with developing an understanding of the toughening and stengthening mechanisms for a new class of Fe-3Cr-W(V) steels developed at Oak Ridge National Laboratory (ORNL) in collaboration with Nooter Corporation and other industrial partners. The new steele had 50% higher tensile strength up to 650 degrees Celsius than currently used steels and the potential for not requiring any postweld heat treatment (PWHT) and for reducing equipment weight by 25%. This project was closely related to the Nooter project described in the report Development of a New Class of Fe-3Cr-W(V) Ferritic steels for Industrial Process Applications (ORNL/TM-2005/82). The projectmore » was carried out jointly by the University of Pittsburgh and ORNL. The University of Pittsburgh carried out fracture toughness measurements and microstructural analysis on base metal and welded plates prepared at ORNL. The project focused on three areas. The first dealt with detailed microstructural analysis of base compositions of 3Cr-3WV and 3Cr-3WBV(Ta) in both normalized (N) and normalized and tempered (NT) conditions. The second aspect of the prject dealt with determining tensile properties and fracture toughness values of K{subIC} at room temperature for both 3Cr-3Wv and 3Cr-3WV(Ta) compositions. The third focus of the project was to measure the fracture toughness values of the base metal and the heat-affectged zone (HAZ) of a plate of Fe-3Cr-W(Mo)V steel plate welded by the gas tungsten are (GTA) process. The HAZ toughness was measured in both the as-welded and the PWHT condition.« less
Development of Advanced Ods Ferritic Steels for Fast Reactor Fuel Cladding
NASA Astrophysics Data System (ADS)
Ukai, S.; Oono, N.; Ohtsuka, S.; Kaito, T.
Recent progress of the 9CrODS steel development is presented focusing on their microstructure control to improve sufficient high-temperature strength as well as cladding manufacturing capability. The martensitic 9CrODS steel is primarily candidate cladding materials for the Generation IV fast reactor fuel. They are the attractive composite-like materials consisting of the hard residual ferrite and soft tempered martensite, which are able to be easily controlled by α-γ phase transformation. The residual ferrite containing extremely nanosized oxide particles leads to significantly improved creep rupture strength in 9CrODS cladding. The creep strength stability at extended time of 60,000 h at 700 ºC is ascribed to the stable nanosized oxide particles. It was also reviewed that 9CrODS steel has well irradiation stability and fuel pin irradiation test was conducted up to 12 at% burnup and 51 dpa at the cladding temperature of 700ºC.
Precipitation and Phase Transformations in 2101 Lean Duplex Stainless Steel During Isothermal Aging
NASA Astrophysics Data System (ADS)
Maetz, Jean-Yves; Cazottes, Sophie; Verdu, Catherine; Kleber, Xavier
2016-01-01
The effect of isothermal aging at 963 K (690 °C) on the microstructure of a 2101 lean duplex stainless steel, with the composition Fe-21.5Cr-5Mn-1.6Ni-0.22N-0.3Mo, was investigated using a multi-technique and multi-scale approach. The kinetics of phase transformation and precipitation was followed from a few minutes to thousands of hours using thermoelectric power measurements; based on these results, certain aging states were selected for electron microscopy characterization. Scanning electron microscopy, electron back-scattered diffraction, and transmission electron microscopy were used to quantitatively describe the microstructural evolution through crystallographic analysis, chemical analysis, and volume fraction measurements from the macroscopic scale down to the nanometric scale. During aging, the precipitation of M23C6 carbides, Cr2N nitrides, and σ phase as well as the transformation of ferrite into austenite and austenite into martensite was observed. These complex microstructural changes are controlled by Cr volume diffusion. The precipitation and phase transformation mechanisms are described.
Chemical projectile-target interaction during hypervelocity cratering experiments (MEMIN project).
NASA Astrophysics Data System (ADS)
Ebert, M.; Hecht, L.; Deutsch, A.; Kenkmann, T.
2012-04-01
The detection and identification of meteoritic components in impact-derived rocks are of great value for confirming an impact origin and reconstructing the type of extraterrestrial material that repeatedly stroke the Earth during geologic evolution [1]. However, little is known about processes that control the projectile distribution into the various impactites that originate during the cratering and excavation process, and inter-element fractionation between siderophile elements during impact cratering. In the context of the MEMIN project, cratering experiments have been performed using spheres of Cr-V-Co-Mo-W-rich steel and of the iron meteorite Campo del Cielo (IAB) as projectiles accelerated to about 5 km/s, and blocks of Seeberger sandstone as target. The experiments were carried out at the two-stage acceleration facilities of the Fraunhofer Ernst-Mach-Institute (Freiburg). Our results are based on geochemical analyses of highly shocked ejecta material. The ejecta show various shock features including multiple sets of planar deformations features (PDF) in quartz, diaplectic quartz, and partial melting of the sandstone. Melting is concentrated in the phyllosilicate-bearing sandstone matrix but involves quartz, too. Droplets of molten projectile have entered the low-viscosity sandstone melt but not quartz glass. Silica-rich sandstone melts are enriched in the elements that are used to trace the projectile, like Fe, Ni, Cr, Co, and V (but no or little W and Mo). Inter-element ratios of these "projectile" tracer elements within the contaminated sandstone melt may be strongly modified from the original ratios in the projectiles. This fractionation most likely result from variation in the lithophile or siderophile character and/or from differences in reactivity of these tracer elements with oxygen [2] during interaction of metal melt with silicate melt. The shocked quartz with PDF is also enriched in Fe and Ni (experiment with a meteorite iron projectile) and in Fe, Cr, Co and V (experiment with the steel projectile). An enrichment of W and Mo in the shocked quartzes could not be observed. It is suggested that two types of geochemical mixing processes between projectile and target occur during the impact process: (i) After shock compression with formation of PDF in Qtz and diaplectic quartz glass, up to about 1 % of projectile matter is added to these phases without detectable fractionation between the meteoritic tracer elements (except W and Mo). We suggest that projectile material was introduced to shocked quartz from a metallic vapour phase, which was formed near the projectile-target interface. The lack of W and Mo enrichment in shocked target material probably results from the relatively high melting and boiling points of these elements. (ii) In addition heterogeneous melting of sandstone and projectile and subsequent mixing of both melts inter-element fractionation occurred according to the chemical properties of the elements. Fractionation processes similar to our type (ii) are known from natural impactites [3]. We acknowledge support by the German Science Foundation (DFG FOR 887)
NASA Astrophysics Data System (ADS)
Hwang, Byoungchul; Lee, Tae-Ho; Kim, Sung-Joon
2010-12-01
Effects of deformation-induced martensite and grain size on ductile-to-brittle transition behavior of austenitic 18Cr-10Mn-(0.3˜0.6)N stainless steels with different alloying elements were investigated by means of Charpy impact tests and microstructural analyses. The steels all exhibited ductile-to-brittle transition behavior due to unusual brittle fracture at low temperatures despite having a face-centered cubic structure. The ductileto-brittle transition temperature (DBTT) obtained from Chapry impact tests did not coincide with that predicted by an empirical equation depending on N content in austenitic Cr-Mn-N stainless steels. Furthermore, a decrease of grain size was not effective in terms of lowering DBTT. Electron back-scattered diffraction and transmission electron microscopy analyses of the cross-sectional area of the fracture surface showed that some austenites with lower stability could be transformed to α'-martensite by localized plastic deformation near the fracture surface. Based on these results, it was suggested that when austenitic 18Cr-10Mn-N stainless steels have limited Ni, Mo, and N content, the deterioration of austenite stability promotes the formation of deformation-induced martensite and thus increases DBTT by substantially decreasing low-temperature toughness.
NASA Astrophysics Data System (ADS)
Ghosh, D.; Mitra, S. K.
2014-05-01
This paper investigates the high-temperature corrosion behavior of microstructurally different regions of the weldment of 9 Cr-1 Mo steel used in thermal power plant boiler in SO2 + O2 environment. The weldment is produced by tungsten inert gas welding method, and the different regions of the weldment (weld metal, heat-affected zone, and base metal) are exposed in SO2 + O2 (ratio 2:1) environment at 973 K for 120 h. The reaction kinetics and corrosion growth rate of different regions of weldment in isothermal condition are evaluated. The post corroded scales of the different specimens are studied in SEM, EDS, and XRD. The results indicate that the weld metal shows higher corrosion rate followed by HAZ and base metal. The higher rate of corrosion of weldmetal is mainly attributed to the least protective inner scale of Cr2O3 with minimum Cr Content. This is due to the formation of delta ferrite, which leads to the precipitation of the Cr-based secondary phases and depletes the free Cr from the matrix. The thermal cycles during welding at high temperature are favorable for the formation of delta ferrite. On the other hand, in absence of delta ferrite, the base metal and HAZ regions of the weldment show lower corrosion rate than weld metal. The difference in corrosion rate in the three regions of the weldment is supplemented by post-corroded scale characterizations.
Zhang, Hong-Yu; Zhu, Yu-Jiao; Hu, Xiang-Yu; Sun, Yan-Fang; Sun, Yu-Long; Han, Jian-Min; Yan, Yu; Zhou, Ming
2014-01-01
Surface grafting of polyelectrolyte brush, such as 3-sulfopropyl methacrylate potassium salt (SPMK), on hip implant materials has been reported to reduce the wear of the orthopaedic bearing surface. However, the biotribocorrosion behaviour of the SPMK brush has not been taken into consideration in previous research. In the present study, SPMK was grafted on Co28Cr6Mo alloy through photo-induced polymerization, and the biotribocorrosion behaviour was investigated by a series of frictional-electrochemical tests using a universal materials tester combined with an electrochemical measurement (three-electrode) system. Co28Cr6Mo disk and polyethylene (PE) pin were used as the contact pair, and the lubricants were 0.9% saline solution (NaCl) and 0.9% saline solution coupled with 25% bovine serum albumin (BSA). The results showed that SPMK was successfully grafted on Co28Cr6Mo alloy, which was confirmed by the comparison of Raman spectroscopy and static contact angle of the samples before and after surface modification. The greatly reduced electrochemical parameters such as corrosion current and pitting potential indicated that the corrosion rate of Co28Cr6Mo alloy was significantly reduced following SPMK grafting. Additionally, the frictional-electrochemical coupled measurement performed under reciprocating sliding demonstrated that the lowest corrosion current was obtained for the SPMK-grafted Co28Cr6Mo disk, with 0.9% NaCl coupled with 25% BSA as the electrolyte. It is indicated from the present study that SPMK polyelectrolyte brush can greatly improve the anti-biotribocorrosion properties of Co28Cr6Mo alloy, and thus has potential application on surface modification of hip implant materials.
Zhang, Qi; Li, Kewen; Yan, Jinhong; Wang, Zhuo; Wu, Qi; Bi, Long; Yang, Min; Han, Yisheng
2018-03-18
The objective was to investigate whether a graphene coating could improve the surface bioactivity of a cobalt-chromium-molybdenum-based alloy (CoCrMo). Graphene was produced by chemical vapor deposition and transferred to the surface of the CoCrMo alloy using an improved wet transfer approach. The morphology of the samples was observed, and the adhesion force and stabilization of graphene coating were analyzed by a nanoscratch test and ultrasonication test. In an in vitro study, the adhesion and proliferation of bone marrow mesenchymal stem cells (BMSCs) cultured on the samples were quantified via an Alamar Blue assay and cell counting kit-8 (CCK-8) assay. The results showed that it is feasible to apply graphene to modify the surface of a CoCrMo alloy, and the enhancement of the adhesion and proliferation of BMSCs was also shown in the present study. In conclusion, graphene exhibits considerable potential for enhancing the surface bioactivity of CoCrMo alloy. Copyright © 2018 Elsevier Inc. All rights reserved.
Correlation Between Intercritical Heat-Affected Zone and Type IV Creep Damage Zone in Grade 91 Steel
NASA Astrophysics Data System (ADS)
Wang, Yiyu; Kannan, Rangasayee; Li, Leijun
2018-04-01
A soft zone in Cr-Mo steel weldments has been reported to accompany the infamous Type IV cracking, the highly localized creep damage in the heat-affected zone of creep-resistant steels. However, the microstructural features and formation mechanism of this soft zone are not well understood. In this study, using microhardness profiling and microstructural verification, the initial soft zone in the as-welded condition was identified to be located in the intercritical heat-affected zone of P91 steel weldments. It has a mixed structure, consisting of Cr-rich re-austenitized prior austenite grains and fine Cr-depleted, tempered martensite grains retained from the base metal. The presence of these further-tempered retained grains, originating from the base metal, is directly responsible for the hardness reduction of the identified soft zone in the as-welded condition. The identified soft zone exhibits a high location consistency at three thermal stages. Local chemistry analysis and thermodynamic calculation show that the lower chromium concentrations inside these retained grains thermodynamically decrease their potentials for austenitic transformation during welding. Heterogeneous grain growth is observed in the soft zone during postweld heat treatment. The mismatch of strengths between the weak Cr-depleted grains and strong Cr-rich grains enhances the creep damage. Local deformation of the weaker Cr-depleted grains accelerates the formation of creep cavities.
Effect of ageing on precipitation and impact energy of 2101 economical duplex stainless steel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang Wei; College of Materials Science and Engineering, Shanghai Jiaotong University, Shanghai 200240; Jiang Laizhu
2009-01-15
The impact energy and microstructure of a thermally aged 2101 duplex stainless steel with composition of Fe-21.4Cr-1.2Ni-5.7Mn-0.23 N-0.31Mo were studied. The results showed that the room temperature impact energy of specimens decreased gradually with ageing temperature up to 700 deg. C and then increased with aging over 700 deg. C. The minimum value of impact energy was 37 J after 700 deg. C aging, which was only 34% of that for as-annealed specimens. For specimens aged at 700 deg. C, the room temperature impact energy decreased significantly after 3 min and was halved after 10 min. Fractographs showed that, withmore » increasing aging time, the fracture morphology changed from fibrous fracture to transgranular and intragranular fracture. Scanning electron micrographs revealed that many precipitates were distributed along {alpha}/{gamma} and {alpha}/{alpha} interfaces. The precipitates were extracted and confirmed by X-ray diffraction to be Cr{sub 2}N. Therefore, it can be concluded that precipitation of Cr{sub 2}N is the main reason for the decrease of impact energy in aged 2101 duplex stainless steel.« less
Sigma phases in an 11%Cr ferritic/martensitic steel with the normalized and tempered condition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shen, Yinzhong, E-mail: shenyz@sjtu.edu.cn
At the present time 9–12% Cr ferritic/martensitic (F/M) steels with target operating temperatures up to 650 °C and higher are being developed in order to further increase thermal efficiency so as to reduce coal consumption and air pollution. An 11% Cr F/M steel was prepared by reference to the nominal chemical composition of SAVE12 steel with an expected maximum use temperature of 650 °C. The precipitate phases of the 11% Cr F/M steel normalized at 1050 °C for 0.5 h and tempered at 780 °C for 1.5 h were investigated by transmission electron microscopy. Except for Cr-/Cr-Fe-Co-rich M{sub 23}C{sub 6},more » Nb-/V-/Ta-Nb-/Nd-rich MX, Fe-rich M{sub 5}C{sub 2}, Co-rich M{sub 3}C and Fe-Co-rich M{sub 6}C phases previously identified in the steel, two types of sigma phases consisting of σ-FeCr and σ-FeCrW were found to be also present in the normalized and tempered steel. Identified σ-FeCr and σ-FeCrW phases have a simple tetragonal crystal structure with estimated lattice parameters a/c = 0.8713/0.4986 and 0.9119/0.5053 nm, respectively. The compositions in atomic pct of the observed sigma phases were determined to be approximately 50Fe-50Cr for the σ-FeCr, and 30Fe-55Cr-10W in addition to a small amount of Ta, Co and Mn for the σ-FeCrW. The sigma phases in the steel exhibit various blocky morphologies, and appear to have a smaller amount compared with the dominant phases Cr-rich M{sub 23}C{sub 6} and Nb-/V-/Ta-Nb-rich MX of the steel. The σ-FeCr phase in the steel was found to precipitate at δ-ferrite/martensite boundaries, suggesting that δ-ferrite may rapidly induce the formation of sigma phase at δ-ferrite/martensite boundaries in high Cr F/M steels containing δ-ferrite. The formation mechanism of sigma phases in the steel is also discussed in terms of the presence of δ-ferrite, M{sub 23}C{sub 6} precipitation, precipitation/dissolution of M{sub 2}X, and steel composition. - Highlights: •Precipitate phases in normalized and tempered 11%Cr F/M steel are presented in detail. • σ-FeCr phase, 50Fe50Cr (in at.%), was identified in normalized and tempered 11%Cr F/M steel. • σ-FeCrW phase, 30Fe55Cr10W (in at.%), was identified in normalized and tempered 11%Cr F/M steel. • Sigma phase in the 11%Cr F/M steel was found to precipitate at δ-ferrite/martensite boundaries. • δ-ferrite may rapidly induce the sigma phase formation at δ-ferrite/martensite boundaries.« less
NASA Astrophysics Data System (ADS)
Awasthi, Reena; Limaye, P. K.; Kumar, Santosh; Kushwaha, Ram P.; Viswanadham, C. S.; Srivastava, Dinesh; Soni, N. L.; Patel, R. J.; Dey, G. K.
2015-03-01
In this study, dry sliding wear characteristics of the Ni-based hardfacing alloy (Ni-Mo-Cr-Si) deposited on stainless steel SS316L substrate by laser cladding have been presented. Dry sliding wear behavior of the laser clad layer was evaluated against two different counter bodies, AISI 52100 chromium steel (~850 VHN) and tungsten carbide ball (~2200 VHN) to study both adhesive and abrasive wear characteristics, in comparison with the substrate SS316L using ball on plate reciprocating wear tester. The wear resistance was evaluated as a function of load and sliding speed for a constant sliding amplitude and sliding distance. The wear mechanisms were studied on the basis of wear surface morphology and microchemical analysis of the wear track using SEM-EDS. Laser clad layer of Ni-Mo-Cr-Si on SS316L exhibited much higher hardness (~700 VHN) than that of substrate SS316L (~200 VHN). The laser clad layer exhibited higher wear resistance as compared to SS316L substrate while sliding against both the counterparts. However, the improvement in the wear resistance of the clad layer as compared to the substrate was much higher while sliding against AISI 52100 chromium steel than that while sliding against WC, at the same contact stress intensity.
NASA Astrophysics Data System (ADS)
Singh, Akhilesh Kumar; Debnath, Tapas; Dey, Vidyut; Rai, Ram Naresh
2017-10-01
P-91 is modified 9Cr-1Mo steel. Fabricated structures and components of P-91 has a lot of application in power and chemical industry owing to its excellent properties like high temperature stress corrosion resistance, less susceptibility to thermal fatigue at high operating temperatures. The weld quality and surface finish of fabricated structure of P91 is very good when welded by Tungsten Inert Gas welding (TIG). However, the process has its limitation regarding weld penetration. The success of a welding process lies in fabricating with such a combination of parameters that gives maximum weld penetration and minimum weld width. To carry out an investigation on the effect of the autogenous TIG welding parameters on weld penetration and weld width, bead-on-plate welds were carried on P91 plates of thickness 6 mm in accordance to a Taguchi L9 design. Welding current, welding speed and gas flow rate were the three control variables in the investigation. After autogenous (TIG) welding, the dimension of the weld width, weld penetration and weld area were successfully measured by an image analysis technique developed for the study. The maximum error for the measured dimensions of the weld width, penetration and area with the developed image analysis technique was only 2 % compared to the measurements of Leica-Q-Win-V3 software installed in optical microscope. The measurements with the developed software, unlike the measurements under a microscope, required least human intervention. An Analysis of Variance (ANOVA) confirms the significance of the selected parameters. Thereafter, Taguchi's method was successfully used to trade-off between maximum penetration and minimum weld width while keeping the weld area at a minimum.
Current status and future R&D for reduced-activation ferritic/martensitic steels
NASA Astrophysics Data System (ADS)
Hishinuma, A.; Kohyama, A.; Klueh, R. L.; Gelles, D. S.; Dietz, W.; Ehrlich, K.
1998-10-01
International research and development programs on reduced-activation ferritic/martensitic steels, the primary candidate-alloys for a DEMO fusion reactor and beyond, are briefly summarized, along with some information on conventional steels. An International Energy Agency (IEA) collaborative test program to determine the feasibility of reduced-activation ferritic/martensitic steels for fusion is in progress and will be completed within this century. Baseline properties including typical irradiation behavior for Fe-(7-9)%Cr reduced-activation ferritic steels are shown. Most of the data are for a heat of modified F82H steel, purchased for the IEA program. Experimental plans to explore possible problems and solutions for fusion devices using ferromagnetic materials are introduced. The preliminary results show that it should be possible to use a ferromagnetic vacuum vessel in tokamak devices.
NASA Astrophysics Data System (ADS)
Park, Eun Seo; Yoo, Dae Kyoung; Sung, Jee Hyun; Kang, Chang Yong; Lee, Jun Hee; Sung, Jang Hyun
2004-12-01
Reversed austenite transformation and existence of retained austenite during tempering of the super martensitic stainless steel of Fe-14Cr-7Ni-0.3Nb-0.7Mo-0.03C were studied by means of experiments on microstructure and X-ray diffraction, and tensile and hardness tests. Acicular type retained austenite at the lath boundary of martensite with the interior appeared after solution annealing. This retained austenite still existed, and reversed austenite was not formed, with tempering up to 24h at 450°C. The reversed austenite began to form above 550°C, and the volume fraction of reversed austenite decreased with increasing tempering temperature after showing a maximum value of 19.2% at 650°C. This maximum volume fraction of reversed austenite was responsible for the lowest value of strength and hardness. The Ni contents of plate type reversed austenite and the surrounding matrix increased and decreased respectively, implying that the reversed austenite was formed as a result of nickel diffusion. The orientation relationships between reversed austenite and the surrounding matrix showed a K-S relationship of(bar 11bar 1)_γ //(01bar 1)_m and[011]_γ //[bar 111]_m.
Hot Corrosion Behavior of Stainless Steel with Al-Si/Al-Si-Cr Coating
NASA Astrophysics Data System (ADS)
Fu, Guangyan; Wu, Yongzhao; Liu, Qun; Li, Rongguang; Su, Yong
2017-03-01
The 1Cr18Ni9Ti stainless steel with Al-Si/Al-Si-Cr coatings is prepared by slurry process and vacuum diffusion, and the hot corrosion behavior of the stainless steel with/without the coatings is studied under the condition of Na2SO4 film at 950 °C in air. Results show that the corrosion kinetics of stainless steel, the stainless steel with Al-Si coating and the stainless steel with Al-Si-Cr coating follow parabolic laws in several segments. After 24 h corrosion, the sequence of the mass gain for the three alloys is the stainless steel with Al-Si-Cr coating < the stainless steel with Al-Si coating < the stainless steel without any coating. The corrosion products of the three alloys are layered. Thereinto, the corrosion products of stainless steel without coating are divided into two layers, where the outside layer contains a composite of Fe2O3 and FeO, and the inner layer is Cr2O3. The corrosion products of the stainless steel with Al-Si coating are also divided into two layers, of which the outside layer mainly consists of Cr2O3, and the inner layer is mainly SiO2. The corrosion film of the stainless steel with Al-Si-Cr coating is thin and dense, which combines well with substrate. Thereinto, the outside layer is mainly Cr2O3, and the inside layer is Al2O3. In the matrix of all of the three alloys, there exist small amount of sulfides. Continuous and protective films of Cr2O3, SiO2 and Al2O3 form on the surface of the stainless steel with Al-Si and Al-Si-Cr coatings, which prevent further oxidation or sulfide corrosion of matrix metals, and this is the main reason for the much smaller mass gain of the two alloys than that of the stainless steel without any coatings in the 24 h hot corrosion process.
NASA Astrophysics Data System (ADS)
Han, Seongho; Seong, Hwangoo; Ahn, Yeonsang; Garcia, C. I.; DeArdo, A. J.; Kim, Inbae
2009-08-01
The effects of alloying elements and coiling temperature on recrystallization behavior and bainitic transformation were investigated based on 0.07C-Mn-Cr-Nb steel with a low carbon equivalent. Based on the ferrite recrystallization behavior, the proper intercritical annealing temperature of all studied steels was suggested to produce TRIP steel with good strength and elongation balance. All steels coiled at 550 °C showed much faster ferrite recrystallization behavior than steels coiled at 700 °C. In addition to the coiling temperature, the effect of increasing carbon content on the ferrite recrystallization was minor at a coiling temperature of 550 °C, but much more prominent at a coiling temperature of 700 °C. The highest Mo added steel showed the best strength and elongation balance, and the highest carbon and Mo added steel showed the highest tensile strength at a coiling temperature of 550 °C. The steel containing a higher amount of elemental Al (0.7 wt.% Al) exhibited much better elongation than the lower Al added steel (0.04 wt.% Al) in TS 780 MPa grade, about 24 % and 19 %, respectively.
NASA Astrophysics Data System (ADS)
Abrahams, Rachel
2017-06-01
Intermediate alloy steels are widely used in applications where both high strength and toughness are required for extreme/dynamic loading environments. Steels containing greater than 10% Ni-Co-Mo are amongst the highest strength martensitic steels, due to their high levels of solution strengthening, and preservation of toughness through nano-scaled secondary hardening, semi-coherent hcp-M2 C carbides. While these steels have high yield strengths (σy 0.2 % >1200 MPa) with high impact toughness values (CVN@-40 >30J), they are often cost-prohibitive due to the material and processing cost of nickel and cobalt. Early stage-I steels such as ES-1 (Eglin Steel) were developed in response to the high cost of nickel-cobalt steels and performed well in extreme shock environments due to the presence of analogous nano-scaled hcp-Fe2.4 C epsilon carbides. Unfortunately, the persistence of W-bearing carbides limited the use of ES-1 to relatively thin sections. In this study, we discuss the background and accelerated development cycle of AF96, an alternative Cr-Mo-Ni-Si stage-I temper steel using low-cost heuristic and Integrated Computational Materials Engineering (ICME)-assisted methods. The microstructure of AF96 was tailored to mimic that of ES-1, while reducing stability of detrimental phases and improving ease of processing in industrial environments. AF96 is amenable to casting and forging, deeply hardenable, and scalable to 100,000 kg melt quantities. When produced at the industrial scale, it was found that AF96 exhibits near-statistically identical mechanical properties to ES-1 at 50% of the cost.
NASA Astrophysics Data System (ADS)
Li, Xiao; Ye, Jiansong; Zhang, Hangcheng; Feng, Tao; Chen, Jianqing; Hu, Xiaojun
2017-08-01
We firstly used sandblasting to treat austenite stainless steel and then deposited a Cr/CrN interlayer by close field unbalanced magnetron sputtering on it. After that, diamond films were prepared on the interlayer. It is found that the sandblasting process induces phase transition from austenite to martensite in the surface region of the stainless steel, which decreases thermal stress in diamond films due to lower thermal expansion coefficient of martensite phase compared with that of austenite phase. The sandblasting also makes stainless steel's surface rough and the Cr/CrN interlayer film inherits the rough surface. This decreases the carburization extent of the interlayer, increases nucleation density and modifies the stress distribution. Due to lower residual stress and small extent of the interlayer's carburization, the diamond film on sandblast treated austenite stainless steel shows enhanced adhesion strength.
Miretzky, P; Cirelli, A Fernandez
2010-08-15
In aqueous systems, chromium usually exists in both trivalent and hexavalent oxidation states, being Cr(VI) of particular importance and concern due to its great toxicity. Industrial sources of Cr(VI) are leather tanning, mining of chrome ore, production of steel and alloys, etc. The most common conventional method for Cr(VI) removal is reduction to Cr(III) at pH 2.0 and precipitation of Cr (OH)(3) with lime at pH 9-10. The disadvantage of precipitation is the disposal of the solid waste. Adsorption of Cr by different low cost materials seems to be a suitable choice for wastewater treatment. Many by-products of agriculture have proved to be suitable low cost adsorbents for Cr(VI) and Cr(III) removal from water. Lignocellulosic residues, which include both wood residues and agricultural residues, have adsorption capacity comparable to other natural sorbents, but they have the advantage of very low or no cost, great availability and simple operational process. This study is a review of the recent literature on the use of natural and modified lignocellulosic residues for Cr adsorption. The Cr maximum adsorption capacity and the adsorption mechanism under different experimental conditions are reported when possibly. Copyright 2010 Elsevier B.V. All rights reserved.
Section 3: Optimization of a 550/690-MPa high-performance bridge steel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Magee, A.B.; Gross, J.H.; Stout, R.D.
1997-04-01
This project to develop a high-performance bridge steel was intended to avoid susceptibility of the steel to weld heat-affected-zone cracking and therefore minimize the requirement for preheat, and to increase its fracture toughness at service temperatures. Previous studies by the Lehigh University Center for Advanced Technology for Large Structural Systems have suggested that a Cu-Ni steels with the following composition was an excellent candidate for such a bridge steel: C/0.070; Mn/1.50; P/0.009; S/0.005; Si/0.25; Cu/1.00; Ni/0.75; Cr/0.50; Mo/0.50; V/0.06; Cb/0.010. To confirm that observation, 227-kg heats of the candidate steel were melted and processed to 25- and 50-mm-thick plate bymore » various thermomechanical practices, and the weldability and mechanical properties determined. To evaluate the feasibility of reduced alloy content, two 227-kg heats of a lower hardenability steel were melted with C reduced to 0.06, Mn to 1.25, and Mo to 0.25 and similarly processed and tested. The results indicate that the steels were not susceptible to hydrogen-induced weld-heat-affected-zone cracking when welded without preheat. Jominy end-quench tests of the higher-hardenability steel indicate that a minimum yield-strength of 690 MPa should be readily attainable in thicknesses through 50 mm and marginally at 100 mm. The toughness of the steel readily met AASHTO specifications for Zone 3 in all conditions and thicknesses, and may be sufficiently tough so that the critical crack size will minimize fatigue-crack-extension problems.« less
Conti, Malcolm Caligari; Karl, Andreas; Wismayer, Pierre Schembri; Buhagiar, Joseph
2014-01-01
High failure rates of cobalt-chromium-molybdenum (Co-Cr-Mo) metal-on-metal hip prosthesis were reported by various authors, probably due to the alloy's limited hardness and tribological properties. This thus caused the popularity of the alloy in metal-on-metal hip replacements to decrease due to its poor wear properties when compared with other systems such as ceramic-on-ceramic. S-phase surface engineering has become an industry standard when citing surface hardening of austenitic stainless steels. This hardening process allows the austenitic stainless steel to retain its corrosion resistance, while at the same time also improving its hardness and wear resistance. By coupling S-phase surface engineering, using the proprietary Kolsterising® treatment from Bodycote Hardiff GmbH, that is currently being used mainly on stainless steel, with Co-Cr-Mo alloys, an improvement in hardness and tribological characteristics is predicted. The objective of this paper is to analyze the biocompatibility of a Kolsterised® Co-Cr-Mo alloy, and to characterize the material surface in order to show the advantages gained by using the Kolsterised® material relative to the original untreated alloy, and other materials. This work has been performed on 3 fronts including; Material characterization, “In-vitro” corrosion testing, and Biological testing conforming to BS EN ISO 10993–18:2009 - Biological evaluation of medical devices. Using these techniques, the Kolsterised® cobalt-chromium-molybdenum alloys were found to have good biocompatibility and an augmented corrosion resistance when compared with the untreated alloy. The Kolsterised® samples also showed a 150% increase in surface hardness over the untreated material thus predicting better wear properties. PMID:24451266
Conti, Malcolm Caligari; Karl, Andreas; Wismayer, Pierre Schembri; Buhagiar, Joseph
2014-01-01
High failure rates of cobalt-chromium-molybdenum (Co-Cr-Mo) metal-on-metal hip prosthesis were reported by various authors, probably due to the alloy's limited hardness and tribological properties. This thus caused the popularity of the alloy in metal-on-metal hip replacements to decrease due to its poor wear properties when compared with other systems such as ceramic-on-ceramic. S-phase surface engineering has become an industry standard when citing surface hardening of austenitic stainless steels. This hardening process allows the austenitic stainless steel to retain its corrosion resistance, while at the same time also improving its hardness and wear resistance. By coupling S-phase surface engineering, using the proprietary Kolsterising(®) treatment from Bodycote Hardiff GmbH, that is currently being used mainly on stainless steel, with Co-Cr-Mo alloys, an improvement in hardness and tribological characteristics is predicted. The objective of this paper is to analyze the biocompatibility of a Kolsterised(®) Co-Cr-Mo alloy, and to characterize the material surface in order to show the advantages gained by using the Kolsterised(®) material relative to the original untreated alloy, and other materials. This work has been performed on 3 fronts including; Material characterization, "In-vitro" corrosion testing, and Biological testing conforming to BS EN ISO 10993-18:2009 - Biological evaluation of medical devices. Using these techniques, the Kolsterised(®) cobalt-chromium-molybdenum alloys were found to have good biocompatibility and an augmented corrosion resistance when compared with the untreated alloy. The Kolsterised(®) samples also showed a 150% increase in surface hardness over the untreated material thus predicting better wear properties.
NASA Astrophysics Data System (ADS)
Kozvonin, V. A.; Shatsov, A. A.; Ryaposov, I. V.; Zakirova, M. G.; Generalova, K. N.
2016-08-01
Temper-resistant low-carbon Cr-Mn-Ni-Mo-V-Nb steels with concentrations of carbon of 0.15 and 0.27 wt % have been studied. It has been shown that, upon quenching, various morphological types of the α phase can be formed. The structure of the steels is stable in the course of heating below critical temperatures and remains a lath-type structure in the intercritical temperature range. Specific features of structural and phase transformations, as well as the dependence of the mechanical characteristics of the steels, on the tempering temperature have been determined.
2017-01-01
Producing predictions of the probabilistic risks of operating materials for given lengths of time at stated operating conditions requires the assimilation of existing deterministic creep life prediction models (that only predict the average failure time) with statistical models that capture the random component of creep. To date, these approaches have rarely been combined to achieve this objective. The first half of this paper therefore provides a summary review of some statistical models to help bridge the gap between these two approaches. The second half of the paper illustrates one possible assimilation using 1Cr1Mo-0.25V steel. The Wilshire equation for creep life prediction is integrated into a discrete hazard based statistical model—the former being chosen because of its novelty and proven capability in accurately predicting average failure times and the latter being chosen because of its flexibility in modelling the failure time distribution. Using this model it was found that, for example, if this material had been in operation for around 15 years at 823 K and 130 MPa, the chances of failure in the next year is around 35%. However, if this material had been in operation for around 25 years, the chance of failure in the next year rises dramatically to around 80%. PMID:29039773
NASA Astrophysics Data System (ADS)
Arbuzov, V. L.; Berger, I. F.; Bobrovskii, V. I.; Voronin, V. I.; Danilov, S. E.; Kazantsev, V. A.; Kataev, N. V.; Sagaradze, V. V.
2018-04-01
Structural and microstructural changes that arise in the course of the heat treatment of Cr-Ni-Mo austenitic stainless steels with different concentrations of titanium and phosphorus have been studied. It has been found that the alloying with phosphorus decreases the lattice parameter of these steels. The phosphorus contribution to this effect is 0.015 ± 0.002 Å/at %. Aging at a temperature of 670 K for about 20 h leads to the precipitation of dispersed needle-like particles, which are most likely to be iron phosphides. In the temperature range of 700-800 K, in austenitic steels, the atomic separation of the solid solution occurs, the intensity of which decreases upon alloying with titanium or phosphorus at concentrations of 1.0 and 0.1 wt %, respectively. At higher temperatures (about 950 K), the formed precipitates of the Ni3Ti (γ') phase increase in size to 7-10 nm.
High-Temperature Intergranular Crack Growth in Martensitic 2-1/4 Cr-1Mo Steel,
1987-01-01
segregation of sulphur to crack-tip regions. Crack advance appears to occur by discrete jumps wtfen a critical concentration of sulphur is achieved over the...7 Equilibrium concentration (Co) of sulphur in iron containing 0.53 Mn (vt.%) 27 -- 3 - K CONEX1TS (cont’d) ILLUSTRATIONS I Notched beand tesetpiece...the range of quenched conditions 17 Calculated average concentration of sulphur (atomic 2) required to promote grain boundary fracture for a range of
NASA Astrophysics Data System (ADS)
Rieth, M.; Dafferner, B.
1996-10-01
In the last few years a lot of different low activation CrWVTa steels have been developed world-wide. Without irradiation some of these alloys show clearly a better low temperature embrittlement behaviour than commercial CrNiMoV(Nb) alloys. Within the MANITU project a study was carried out to compare, prior to the irradiation program, the embrittlement behaviour of different alloys in the unirradiated condition performing instrumented Charpy impact bending tests with sub-size specimens. The low activation materials (LAM) considered were different OPTIFER alloys (Forschungszentrum Karlsruhe), F82H (JAERI), 9Cr2WVTa (ORNL), and GA3X (PNL). The modified commercial 10-11% CrNiMoVNb steels were MANET and OPTIMAR. A meaningful comparison between these alloys could be drawn, since the specimens of all materials were manufactured and tested under the same conditions.
Bogachev, Igor; Yudin, Artem; Grigoryev, Evgeniy; ...
2015-11-02
Refractory oxide dispersion strengthened 13Cr-2Mo steel powder was successfully consolidated to near theoretical density using high voltage electric discharge compaction. Cylindrical samples with relative density from 90% to 97% and dimensions of 10 mm in diameter and 10–15 mm in height were obtained. Consolidation conditions such as pressure and voltage were varied in some ranges to determine the optimal compaction regime. Three different concentrations of yttria were used to identify its effect on the properties of the samples. It is shown that the utilized ultra-rapid consolidation process in combination with high transmitted energy allows obtaining high density compacts, retaining themore » initial structure with minimal grain growth. The experimental results indicate some heterogeneity of the structure which may occur in the external layers of the tested samples due to various thermal and electromagnetic in-processing effects. As a result, the choice of the optimal parameters of the consolidation enables obtaining samples of acceptable quality.« less
NASA Astrophysics Data System (ADS)
Lee, Sang-Hoon; Na, Hye-Sung; Park, Gi-Deok; Kim, Byung-Hoon; Song, Sang-Woo; Kang, Chung-Yun
2013-09-01
The effect of Ti on the ferrite-phase transformation in the middle portion of high-thickness Cr-Mo steel vessels was studied. The phase diagrams and ferrite continuous cooling transformation (CCT) curves were calculated thermodynamically, and dilatometry tests were performed to determine the start and finish times of the ferrite transformation. When the Ti concentration was 0.015 mass%, Δ( F s - F f ) of ferrite CCT curve decreased owing to an increase in the concentration of Mn dissolved as a result of (Mn, Ti) oxide formation. When the Ti concentration was 0.03 mass% or greater, the ferrite CCT curves shifted considerably to the right along the time axis owing to an increase in Ti oxide formation and the precipitation of Ti4C2S2, both of which affect the concentration of Mn dissolved in the austenite matrix. As a result, a completely bainitic structure was obtained when the Ti concentration was 0.03 mass% or greater.
Bogachev, Igor; Yudin, Artem; Grigoryev, Evgeniy; Chernov, Ivan; Staltsov, Maxim; Khasanov, Oleg; Olevsky, Eugene
2015-11-02
Refractory oxide dispersion strengthened 13Cr-2Mo steel powder was successfully consolidated to near theoretical density using high voltage electric discharge compaction. Cylindrical samples with relative density from 90% to 97% and dimensions of 10 mm in diameter and 10-15 mm in height were obtained. Consolidation conditions such as pressure and voltage were varied in some ranges to determine the optimal compaction regime. Three different concentrations of yttria were used to identify its effect on the properties of the samples. It is shown that the utilized ultra-rapid consolidation process in combination with high transmitted energy allows obtaining high density compacts, retaining the initial structure with minimal grain growth. The experimental results indicate some heterogeneity of the structure which may occur in the external layers of the tested samples due to various thermal and electromagnetic in-processing effects. The choice of the optimal parameters of the consolidation enables obtaining samples of acceptable quality.
High Load Ratio Fatigue Strength and Mean Stress Evolution of Quenched and Tempered 42CrMo4 Steel
NASA Astrophysics Data System (ADS)
Bertini, Leonardo; Le Bone, Luca; Santus, Ciro; Chiesi, Francesco; Tognarelli, Leonardo
2017-08-01
The fatigue strength at a high number of cycles with initial elastic-plastic behavior was experimentally investigated on quenched and tempered 42CrMo4 steel. Fatigue tests on unnotched specimens were performed both under load and strain controls, by imposing various levels of amplitude and with several high load ratios. Different ratcheting and relaxation trends, with significant effects on fatigue, are observed and discussed, and then reported in the Haigh diagram, highlighting a clear correlation with the Smith-Watson-Topper model. High load ratio tests were also conducted on notched specimens with C (blunt) and V (sharp) geometries. A Chaboche model with three parameter couples was proposed by fitting plain specimen cyclic and relaxation tests, and then finite element analyses were performed to simulate the notched specimen test results. A significant stress relaxation at the notch root became clearly evident by reporting the numerical results in the Haigh diagram, thus explaining the low mean stress sensitivity of the notched specimens.
Experimental study of hot cracking at circular welding joints of 42CrMo steel
NASA Astrophysics Data System (ADS)
Zhang, Yan; Chen, Genyu; Chen, Binghua; Wang, Jinhai; Zhou, Cong
2017-12-01
The hot cracking at circular welding joints of quenched and tempered 42CrMo steel were studied. The flow of the molten pool and the solidification process of weld were observed with a high-speed video camera. The information on the variations in the weld temperature was collected using an infrared (IR) thermal imaging system. The metallurgical factors of hot cracking were analyzed via metallographic microscope and scanning electron microscope (SEM). The result shows that leading laser laser-metal active gas (MAG) hybrid welding process has a smaller solid-liquid boundary movement rate (VSL) and a smaller solid-liquid boundary temperature gradient (GSL) compared with leading arc laser-MAG hybrid welding process and laser welding process. Additionally, the metal in the molten pool has superior permeability while flowing toward the dendritic roots and can compensate for the inner-dendritic pressure balance. Therefore, leading laser laser-MAG hybrid welding process has the lowest hot cracking susceptibility.
Scratch Testing of Hot-Pressed Monolithic Chromium Diboride (CrB2) and CrB2 + MoSi2 Composite
NASA Astrophysics Data System (ADS)
Bhatt, B.; Murthy, T. S. R. Ch.; Singh, K.; Sashanka, A.; Vishwanadh, B.; Sonber, J. K.; Sairam, K.; Nageswara Rao, G. V. S.; Srinivasa Rao, T.; Kain, Vivekanand
2017-10-01
The tribological performance of hot-pressed monolithic CrB2 and a newly developed CrB2 + 20 vol.% MoSi2 composite was investigated by using scratch test. The test was carried out under progressive loading ranging from 0.9 to 30 N over a scratch distance of 3 mm. In situ values of coefficient of friction (COF), depth of penetration and acoustic emission were recorded. The wear volume and fracture toughness were also calculated. COF of both materials is increased with increasing the scratch length and progressive load. COF of the composite was observed to be slightly higher compared to the monolithic CrB2. The wear volume of the composite is 60% higher compared to monolithic CrB2. Fracture toughness values of 2.48 and 2.81 MPa m1/2 were calculated for monolithic CrB2 and CrB2 + 20 vol.% MoSi2 composite, respectively. Microstructural characterization indicates that the abrasive wear is the dominant wear mechanism in both the materials.
NASA Astrophysics Data System (ADS)
Zhu, Z. Y.; Mo, J. L.; Wang, D. W.; Zhao, J.; Zhu, M. H.; Zhou, Z. R.
2018-04-01
In this work, the interfacial friction and wear and vibration characteristics are studied by sliding a chromium bearing steel ball (AISI 52100) over both multi-grooved and single-grooved forged steel disks (20CrMnMo) at low and high rotating speeds in order to reveal the effect mechanism of groove-textured surface on tribological behaviors. The results show that the grooves modify the contact state of the ball and the disk at the contact interface. This consequently causes variations in the normal displacement, normal force, and friction force signals. The changes in these three signals become more pronounced with increasing groove width at a low speed. The collision behavior between the ball and the groove increase the amplitude of vibration acceleration at a high speed. The test results suggest that grooves with appropriate widths could trap wear debris on the ball surface while avoiding a strong collision between the disk and the ball, resulting in an improvement in the wear states.
Effect of heavy tempering on microstructure and yield strength of 28CrMo48VTiB martensitic steel
NASA Astrophysics Data System (ADS)
Sun, Yu; Gu, Shunjie; Wang, Qian; Wang, Huibin; Wang, Qingfeng; Zhang, Fucheng
2018-02-01
The 28CrMo48VTiB martensitic steel for sulfide stress cracking (SSC) resistance oil country tubular goods (OCTG) of C110 grade was thermally processed through quenching at 890 °C and tempering at 600 °C-720 °C for 30-90 min. The microstructures of all samples were characterized using field emission scanning electron microscopy (FESEM), electron backscattering diffraction (EBSD), transmission electron microscopy (TEM) and x-ray diffractometry (XRD). Also, the tensile properties were measured. The results indicated that the yield strength (YS) decreased as both the tempering temperature and duration increased, due to the coarsening of martensitic packet/block/lath structures, the reduction of dislocation density, as well as the increase of both the volume fraction and average diameter of the precipitates. The martensitic lath width was the key microstructural parameter controlling the YS of this heavily-tempered martensitic steel, whereas the corresponding relationship was in accordance with the Langford-Cohen model. Furthermore, the martensitic structure boundary and the solid solution strengthening were the two most significant factors dominating the YS, in comparison with the dislocation and precipitation strengthening.
NASA Astrophysics Data System (ADS)
Abe, Fujio
2016-09-01
Metallurgical factors causing the heat-to-heat variation in time to rupture have been investigated for 300 series stainless steels for boiler and heat exchanger seamless tubes, 18Cr-8Ni (JIS SUS 304HTB), 18Cr-12Ni-Mo (JIS SUS 316HTB), 18Cr-10Ni-Ti (JIS SUS321 HTB), and 18Cr-12Ni-Nb (JIS SUS 347HTB), at 873 K to 1023 K (600 °C to 750 °C) using creep rupture data for nine heats of the respective steels in the NIMS Creep Data Sheets. The maximum time to rupture was 222,705.3 hours. The heat-to-heat variation in time to rupture of the 304HTB and 316HTB becomes more significant with longer test durations at times above ~10,000 hours at 973 K (700 °C) and reaches to about an order of magnitude difference between the strongest and weakest heats at 100,000 hours, whereas that of the 321HTB and 347HTB is very large of about an order of magnitude difference from a short time of ~100 hours to long times exceeding 100,000 hours at 873 K to 973 K (600 °C to 700 °C). The heat-to-heat variation in time to rupture is mainly explained by the effect of impurities: Al and Ti for the 304HTB and 316HTB, which reduces the concentration of dissolved nitrogen available for the creep strength by the formation of AlN and TiN during creep, and boron for the 347HTB, which enhances fine distributions of M23C6 carbides along grain boundaries. The heat-to-heat variation in time to rupture of the 321HTB is caused by the heat-to-heat variation in grain size, which is inversely proportional to the concentration of Ti. The fundamental creep rupture strength not influenced by impurities is estimated for the steels. The 100,000 hours-fundamental creep rupture strength of the 347HTB steel is lower than that of 304HTB and 316HTB at 873 K and 923 K (600 °C and 650 °C) because the slope of stress vs time to rupture curves is steeper in the 347HTB than in the 304HTB and 316HTB. The 100,000 hours-fundamental creep rupture strength of the 321HTB exhibits large variation depending on grain size.
Gilbert, Jeremy L; Mehta, Manav; Pinder, Bryan
2009-01-01
Modular tapers continue to be used in a wide variety of orthopedic implants. In this study, stainless steel (ASTM F-1568) femoral hip stems combined with Co-Cr-Mo alloy heads (SS/CoCr) were tested in an in vitro fretting corrosion test set-up to assess the propensity for mechanically assisted corrosion. Three different aspects of the modular design were evaluated in this study: (1) material combination compared to CoCr/CoCr, (2) wet versus dry assembly for SS/CoCr couples, and (3) 0- and 6-mm head offset for SS/CoCr couples. Fretting corrosion tests over a range of cyclic loads up to 3300 N were performed, and continuous cyclic loading at 3300 N for 1 M cycles were performed on each group (n = 5). Fretting micromotion was measured as a function of cyclic load on select couples to detect the nature and extent of motion present. The results showed that SS/CoCr couples were more susceptible to fretting corrosion than CoCr/CoCr couples, that dry assembly does not prevent fretting corrosion from taking place but raises the onset load, and that 6-mm offset heads had higher visual evidence of fretting damage but showed mixed statistical results in terms of onset loads and OCP shifts and currents compared to the 0-mm offset samples. Current and voltage excursions over 1 million cycles tended to diminish towards their unloaded control levels but did not fully recover until cyclic loading ceased. Micromotion measurements indicated fretting motions in the range of 10-25 microm where 0-mm heads tended to piston on the trunion, while 6 mm heads tended to rock. (c) 2008 Wiley Periodicals, Inc.
Shape effect of ultrafine-grained structure on static fracture toughness in low-alloy steel.
Inoue, Tadanobu; Kimura, Yuuji; Ochiai, Shojiro
2012-06-01
A 0.4C-2Si-1Cr-1Mo steel with an ultrafine elongated grain (UFEG) structure and an ultrafine equiaxed grain (UFG) structure was fabricated by multipass caliber rolling at 773 K and subsequent annealing at 973 K. A static three-point bending test was conducted at ambient temperature and at 77 K. The strength-toughness balance of the developed steels was markedly better than that of conventionally quenched and tempered steel with a martensitic structure. In particular, the static fracture toughness of the UFEG steel, having a yield strength of 1.86 GPa at ambient temperature, was improved by more than 40 times compared with conventional steel having a yield strength of 1.51 GPa. Furthermore, even at 77 K, the fracture toughness of the UFEG steel was about eight times higher than that of the conventional and UFG steels, despite the high strength of the UFEG steel (2.26 GPa). The UFG steel exhibited brittle fracture behavior at 77 K, as did the conventional steel, and no dimple structure was observed on the fracture surface. Therefore, it is difficult to improve the low-temperature toughness of the UFG steel by grain refinement only. The shape of crystal grains plays an important role in delamination toughening, as do their refinement and orientation.
Shape effect of ultrafine-grained structure on static fracture toughness in low-alloy steel
Inoue, Tadanobu; Kimura, Yuuji; Ochiai, Shojiro
2012-01-01
A 0.4C-2Si-1Cr-1Mo steel with an ultrafine elongated grain (UFEG) structure and an ultrafine equiaxed grain (UFG) structure was fabricated by multipass caliber rolling at 773 K and subsequent annealing at 973 K. A static three-point bending test was conducted at ambient temperature and at 77 K. The strength–toughness balance of the developed steels was markedly better than that of conventionally quenched and tempered steel with a martensitic structure. In particular, the static fracture toughness of the UFEG steel, having a yield strength of 1.86 GPa at ambient temperature, was improved by more than 40 times compared with conventional steel having a yield strength of 1.51 GPa. Furthermore, even at 77 K, the fracture toughness of the UFEG steel was about eight times higher than that of the conventional and UFG steels, despite the high strength of the UFEG steel (2.26 GPa). The UFG steel exhibited brittle fracture behavior at 77 K, as did the conventional steel, and no dimple structure was observed on the fracture surface. Therefore, it is difficult to improve the low-temperature toughness of the UFG steel by grain refinement only. The shape of crystal grains plays an important role in delamination toughening, as do their refinement and orientation. PMID:27877493
NASA Astrophysics Data System (ADS)
Mazey, D. J.; Hanks, W.; Lurcook, O. K.
1990-09-01
Five martensitic, nominally 9 and 11% Cr-W-V-Mn-Ta stainless steels which have been developed as low-activation alloys for fusion-reactor structural applications have been irradiated with 52 MeV Cr 6+ ions to 20 dpa at 475°C in the Harwell Variable Energy Cyclotron (VEC). Four of the alloys contained additions of 0.1 wt% Ta and these had been shown in prior tests to have mechanical properties comparable with the conventional FV 448 alloy. Examinations by TEM showed that irradiation-induced precipitates were present on a fine-scale in all of the alloys. These comprised Cr-rich lath-like defects in the 9Cr, Ta-free alloy; small Cr-rich particles in the 9Cr-3W-0.1Ta alloy and Cr-rich planar precipitates in the remaining alloys. Little or no irradiation-induced cavitation was observed. The other important irradiation-induced response was in the dislocation structure in the Ta-containing alloys which comprised an extensive rafted array of elongated a <100> type dislocation loops having major axes aligned in <100> directions. A significant fraction of the presumed a <100> loops contained stacking-fault fringes and analysis suggested that these were Cr 2N or Fe 4N nitride phase which it is known can form on {001} habit planes. Such nitrides are observed frequently under thermal-annealing conditions in ferritic steels, but less frequently under irradiation. Their formation in relation to the void swelling resistance of ferritic-martensitic alloys is discussed.
Analysis of features of stainless steels in dissimilar welded joints in chloride inducted corrosion
NASA Astrophysics Data System (ADS)
Topolska, S.; Łabanowski, J.
2017-08-01
Stainless steels of femtic-austenitic microstructure that means the duplex Cr-Ni-Mo steels, in comparison with austenitic steel includes less expensive nickel and has much better mechanical properties with good formability and corrosion resistance, even in environments containing chloride ions. Similar share of high chromium ferrite and austenite, which is characterized by high ductility, determines that the duplex steels have good crack resistance at temperatures up to approximately -40°C. The steels containing approximately 22% Cr, 5% Ni, 3% Mo and 0.2% N crystallizes as a solid solution δ, partially transforming from the temperature of about 1200°C to 850°C into the phase α. The stable structure of considered steels, at temperatures above 850°C, is ferrite, and at lower temperatures the mixture of phase γ+α +σ. The two-phase structure α+γ the duplex steel obtains after hyperquenching at the temperature of stability of the mixture of α+γ phases, and the share of the phases depends on the hyper quenching attributes. Hyperquenching in water, with a temperature close to 1200°C, ensures the instance in the microstructure of the steel a large share of ferrite and a small share of the high chromium austenite. This causes the increase of strength properties and reducing the plasticity of the steel and its resistance ability to cracking and corrosion. Slower cooling from the mentioned temperature, for example in the air, enables the partial transformation of the a phase into the γ one (α → γ) and increasing the share of austenite in the steel structure. It leads to improvement of plasticity properties. In the paper are presented the results of investigations of heteronymous welded joints of duplex steel and austenitic one. The results include the relation between the chemical composition of steels and their weldability.
NASA Astrophysics Data System (ADS)
Mola, Javad; Ullrich, Christiane; Kuang, Buxiao; Rahimi, Reza; Huang, Qiuliang; Rafaja, David; Ritzenhoff, Roman
2017-03-01
The high-temperature austenite phase of a high-interstitial Mn- and Ni-free stainless steel was stabilized at room temperature by the full dissolution of precipitates after solution annealing at 1523 K (1250 °C). The austenitic steel was subsequently tensile-tested in the temperature range of 298 K to 503 K (25 °C to 230 °C). Tensile elongation progressively enhanced at higher tensile test temperatures and reached 79 pct at 503 K (230 °C). The enhancement at higher temperatures of tensile ductility was attributed to the increased mechanical stability of austenite and the delayed formation of deformation-induced martensite. Microstructural examinations after tensile deformation at 433 K (160 °C) and 503 K (230 °C) revealed the presence of a high density of planar glide features, most noticeably deformation twins. Furthermore, the deformation twin to deformation-induced martensite transformation was observed at these temperatures. The results confirm that the high tensile ductility of conventional Fe -Cr-Ni and Fe-Cr-Ni-Mn austenitic stainless steels may be similarly reproduced in Ni- and Mn-free high-interstitial stainless steels solution annealed at sufficiently high temperatures. The tensile ductility of the alloy was found to deteriorate with decarburization and denitriding processes during heat treatment which contributed to the formation of martensite in an outermost rim of tensile specimens.
High-Power Diode Laser-Treated 13Cr4Ni Stainless Steel for Hydro Turbines
NASA Astrophysics Data System (ADS)
Mann, B. S.
2014-06-01
The cast martensitic chromium nickel stainless steels such as 13Cr4Ni, 16Cr5Ni, and 17Cr4Ni PH have found wide application in hydro turbines. These steels have adequate corrosion resistance with good mechanical properties because of chromium content of more than 12%. The 13Cr4Ni stainless steel is most widely used among these steels; however, lacks silt, cavitation, and water impingement erosion resistances (SER, CER, and WIER). This article deals with characterizing 13Cr4Ni stainless steel for silt, cavitation, and water impingement erosion; and studying its improved SER, CER, and WIER behavior after high-power diode laser (HPDL) surface treatment. The WIER and CER have improved significantly after laser treatment, whereas there is a marginal improvement in SER. The main reason for improved WIER and CER is due to its increased surface hardness and formation of fine-grained microstructure after HPDL surface treatment. CER and WIER of HPDL-treated 13Cr4Ni stainless steel samples have been evaluated as per ASTM G32-2003 and ASTM G73-1978, respectively; and these were correlated with microstructure and mechanical properties such as ultimate tensile strength, modified ultimate resilience, and microhardness. The erosion damage mechanism, compared on the basis of scanning electron micrographs and mechanical properties, is discussed and reported in this article.
NASA Astrophysics Data System (ADS)
Cho, H. S.; Kimura, A.
2007-08-01
The effects of alloying elements, such as Cr and Al, on corrosion resistance in super critical pressurized water (SCPW) have been investigated to develop corrosion resistant oxide-dispersion-strengthened (ODS) steels. Corrosion tests were performed in a SCPW (783 K, 25 MPa) environment. Weight gain was measured after exposure to the SCPW, and then oxide layers were analyzed by low angle X-ray diffraction and SEM microscopy. The weight gains of all high-Cr ODS steels are smaller than an austenitic stainless steel (SUS316L). More uniform and thinner oxidation layers were observed on the ODS steels after corrosion compared to those on 9Cr martensitic steel and SUS316L.
NASA Astrophysics Data System (ADS)
Dou, Peng; Kimura, Akihiko; Kasada, Ryuta; Okuda, Takanari; Inoue, Masaki; Ukai, Shigeharu; Ohnuki, Somei; Fujisawa, Toshiharu; Abe, Fujio; Jiang, Shan; Yang, Zhigang
2017-03-01
The nanoparticles in an Al-alloyed high-Cr oxide dispersion strengthened (ODS) ferritic steel with Hf addition, i.e., SOC-16 (Fe-15Cr-2W-0.1Ti-4Al-0.62Hf-0.35Y2O3), have been examined by transmission electron microscopy (TEM) and high resolution transmission electron microscopy (HRTEM). Relative to an Al-alloyed high-Cr ODS ferritic steel without Hf addition, i.e., SOC-9 (Fe-15.5Cr-2W-0.1Ti-4Al-0.35Y2O3), the dispersion morphology and coherency of the oxide nanoparticles in SOC-16 were significantly improved. Almost all the small nanoparticles (diameter <10 nm) in SOC-16 were found to be consistent with cubic Y2Hf2O7 oxides with the anion-deficient fluorite structure and coherent with the bcc steel matrix. The larger particles (diameter >10 nm) were also mainly identified as cubic Y2Hf2O7 oxides with the anion-deficient fluorite structure. The results presented here are compared with those of SOC-9 with a brief discussion of the underlying mechanisms of the unusual thermal and irradiation stabilities of the oxides as well as the superior strength, excellent irradiation tolerance and extraordinary corrosion resistance of SOC-16.
Manufacturing Methods and Technology Project Summary Reports.
1980-12-01
deposition of chrome-copper (Cr- Cu ), dry-film photoresist application, photolithographic masking, spray etching, die bonding, ultrasonic...4) cold roll forging. Of these, the cold roll forging process is the most widely used for the pro- duction of steel and low alloy blades. It provides... sprayed Mo- Al -Ni both provide relatively good wear resistance, see Figure 1. The powder -flame sprayed aluminum bronze did not perform as well. 147 -S t. I
Ultra-high temperature tensile properties of ODS steel claddings under severe accident conditions
NASA Astrophysics Data System (ADS)
Yano, Y.; Tanno, T.; Oka, H.; Ohtsuka, S.; Inoue, T.; Kato, S.; Furukawa, T.; Uwaba, T.; Kaito, T.; Ukai, S.; Oono, N.; Kimura, A.; Hayashi, S.; Torimaru, T.
2017-04-01
Ultra-high temperature ring tensile tests were performed to investigate the tensile behavior of oxide dispersion strengthened (ODS) steel claddings and wrapper materials under severe accident conditions with temperatures ranging from room temperature to 1400 °C which is close to the melting point of core materials. The experimental results showed that the tensile strength of 9Cr-ODS steel claddings was highest in the core materials at ultra-high temperatures of 900-1200 °C, but there was significant degradation in the tensile strength of 9Cr-ODS steel claddings above 1200 °C. This degradation was attributed to grain boundary sliding deformation with γ/δ transformation, which is associated with reduced ductility. By contrast, the tensile strength of recrystallized 12Cr-ODS and FeCrAl-ODS steel claddings retained its high value above 1200 °C, unlike the other tested materials.
Kubota, Natsumi; Segawa, Yasutomo; Itami, Kenichiro
2015-01-28
The synthesis, structure, photophysical properties, and reactivity of cycloparaphenylenes (CPPs) coordinated to group 6 transition metal fragments are described. The η(6)-coordination of [9]CPP or [12]CPP with M(CO)6 (M = Cr, Mo, W) afforded the corresponding [n]CPP-M(CO)3 complexes (n = 9, 12; M = Cr, Mo, W). In the (1)H NMR spectra of these complexes, characteristic upfield-shifted singlet signals corresponding to the four hydrogen atoms attached to the coordinated C6H4 ring of the CPPs were observed at 5.4-5.9 ppm. The complex [9]CPP-Cr(CO)3 could be successfully isolated in spite of its instability. X-ray crystallographic analysis and computational studies of [9]CPP-Cr(CO)3 revealed that chromium-CPP coordination occurs at the convex surface of [9]CPP both in the solid state and in solution. TD-DFT calculations suggested that the emerging high-wavenumber absorption peak upon coordination of [9]CPP to Cr(CO)3 should be assigned to a weak HOMO-LUMO transition. Moreover, by using the complex [9]CPP-Cr(CO)3, a rapid and highly monoselective CPP functionalization has been achieved. The established one-pot method, consisting of complexation, deprotonation, nucleophilic substitution, and decomplexation steps, yielded silyl-, boryl-, and methoxycarbonyl-substituted CPPs in up to 93% yield relative to reacted starting material.
[Study on high temperature oxidation of Ni-Cr ceramic alloys. Effects of Cr and Mo].
Mizutani, M
1990-03-01
The effects of Cr and Mo addition to Ni-Cr alloys on high temperature oxidation were investigated. The alloys were prepared with the composition of Cr ranging from 5 to 40 wt%. Also 2, 4 and 9 wt% of Mo was added to both Ni-5% Cr and Ni-20% Cr binary alloys. The alloys were heated at 800 degrees C, 900 degrees C and 1000 degrees C for 15 minutes in air, and the weight change after heat treatment was measured by electric automatic balance. The weight change during heating was measured by thermogravimetric measurement (TG). The products after heat treatment were characterized by X-ray diffraction and scanning electron microscopy (SEM). The results are summarized as follows: The Ni-Cr binary alloys were classified into three types of Cr ranging from 5 to 20 wt%, Cr 25% and Cr from 30 wt% to 40 wt% according to the weight gains with oxidation. In the case of the more than 25 wt% Cr content of the Ni-Cr binary alloys, the weight gain was extremely low and the heating temperature effects on the weight change were also small. X-ray diffraction study showed that NiO, NiCr2O4 and Cr2O3 formed on the surface of the Ni-Cr binary alloys whose composition of Cr ranged from 5 to 25 wt%, whereas NiO and NiCr2O4 rarely formed on the Ni-Cr binary alloys whose composition of Cr ranged from 30 to 40 wt%. This suggests that the formation of Cr2O3 prevents the formation of NiO on the alloy with a high Cr content. The weight gain of the Ni-Cr-Mo ternary alloys was smaller than that of the Ni-Cr binary alloys without Mo, and the temperature effects on the weight gain of the Ni-Cr-Mo ternary alloys were different for each Cr content. However, the effect of the amounts of Mo was small. NiO, NiCr2O4, Cr2O3 and MoO2 were identified by X-ray diffraction on the surface of the Ni-Cr-Mo ternary alloys. According to the SEM observation, it seems that NiO was formed at the outermost layer, both NiCr2O4 and Cr2O3 at the inside layer, and MoO2 at the innermost layer. The formation of both NiO and Cr2O3 on the Ni-Cr-Mo ternary alloys was restrained compared with that of the Ni-Cr binary alloys. However, the adhesion of oxides to the Ni-Cr-Mo ternary alloys was lower than that of the Ni-Cr binary alloys.
Serrated Flow Behavior of Aisi 316l Austenitic Stainless Steel for Nuclear Reactors
NASA Astrophysics Data System (ADS)
Li, Qingshan; Shen, Yinzhong; Han, Pengcheng
2017-10-01
AISI 316L austenitic stainless steel is a candidate material for Generation IV reactors. In order to investigate the influence of temperature on serrated flow behavior, tensile tests were performed at temperatures ranging from 300 to 700 °C at an initial strain rate of 2×10-4 s-1. Another group of tensile tests were carried out at strain rates ranging from 1×10-4 to 1×10-2 s-1 at 600 °C to examine the influence of strain rates on serrated flow behavior. The steel exhibited serrated flow, suggesting the occurrence of dynamic strain ageing at 450-650°C. No plateau of yield stresses of the steel was observed at an initial strain rate of 2×10-4 s-1. The effective activation energy for serrated flow occurrence was calculated to be about 254.72 kJ/mol-1. Cr, Mn, Ni and Mo solute atoms are expected to be responsible for dynamic strain ageing at high temperatures of 450-650 °C in the steel.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shen, Yinzhong, E-mail: shenyz@sjtu.edu.cn
Thermomechanical treatment (TMT) can effectively improve the mechanical properties of high-Cr ferritic/martensitic (F/M) steels, which has been mainly attributed to a dense dispersion of nano-sized precipitates. Precipitate phases in high-Cr F/M steels produced by TMT require further investigations. Precipitates in commercial F/M steel P92 produced by a TMT process, warm-rolled at 650 °C plus tempered at 650 °C for 1 h, were investigated by transmission electron microscopy. Nano-sized precipitates with a high number density in the steel after the TMT were found to be Cr-rich M{sub 2}(C,N) carbonitride, rather than MX or M{sub 23}C{sub 6} phase. The M{sub 2}(C,N) carbonitridemore » has a hexagonal lattice with the lattice parameters about a/c = 0.299/0.463 nm. These M{sub 2}(C,N) carbonitrides with a typical composition of (Cr{sub 0.85}V{sub 0.06}Fe{sub 0.06}Mo{sub 0.03}){sub 2}(C,N) have an average diameter smaller than 30 nm, and mainly distribute on dislocations and at the boundaries of equiaxed ferrite grains in the TMT steel. The TMT process inhibits the precipitation of M{sub 23}C{sub 6} and M{sub 5}C{sub 2} phases. Enhanced creep properties of the P92 steel after the TMT, as reported previously, were considered to be mainly attributed to plenty of nano-sized Cr-rich M{sub 2}(C,N) carbonitrides produced by the TMT rather than to MX and M{sub 23}C{sub 6} precipitates. - Graphical abstract: TEM micrographs of precipitates on extraction carbon replicas prepared from ferritic/martensitic (F/M) steel P92. (a) After conventional heat treatment, normalized at 1050 °C for 30 min plus tempered at 765 °C for 1 h. (b) After a thermomechanical treatment (TMT), warm-rolled at 650 °C plus tempered at 650 °C for 1 h. Nano-sized precipitates with a high number density in the steel produced by the TMT were found to be Cr-rich M{sub 2}(C,N) carbonitride, rather than MX or M{sub 23}C{sub 6} phase. The TMT process inhibits the precipitation of M{sub 23}C{sub 6} and M{sub 5}C{sub 2} phases. Enhanced creep properties of the steel by the TMT are mainly attributed to plenty of nano-sized Cr-rich M{sub 2}(C,N) carbonitrides, rather than to MX and M{sub 23}C{sub 6} precipitates. It is suggested that plenty of nano-sized Cr-rich M{sub 2}(C,N) carbonitrides produced by the TMT are more helpful to improve the creep properties of the steel than M{sub 23}C{sub 6} plus MX precipitates obtained by the conventional heat treatment. - Highlights: •Carbon replicas were used for precisely identifying nano-sized phases in steel produced by TMT. •Densely nano-sized precipitates in P92 steel after TMT were found to be Cr-rich M{sub 2}(C,N) phase. •Fine precipitates produced by TMT can be M{sub 2}X phase instead of MX and/or M{sub 23}C{sub 6} phase. •Enhanced creep properties of P92 steel by TMT is attributed to fine M{sub 2}X, rather than to MX and M{sub 23}C{sub 6}. •TMT involving a tempering at 650 °C inhibits the formation of M{sub 23}C{sub 6}/M{sub 5}C{sub 2} phases in high-Cr steels.« less
Direct in vivo inflammatory cell-induced corrosion of CoCrMo alloy orthopedic implant surfaces.
Gilbert, Jeremy L; Sivan, Shiril; Liu, Yangping; Kocagöz, Sevi B; Arnholt, Christina M; Kurtz, Steven M
2015-01-01
Cobalt-chromium-molybdenum (CoCrMo) alloy, used for over five decades in orthopedic implants, may corrode and release wear debris into the body during use. These degradation products may stimulate immune and inflammatory responses in vivo. We report here on evidence of direct inflammatory cell-induced corrosion of human implanted and retrieved CoCrMo implant surfaces. Corrosion morphology on CoCrMo implant surfaces, in unique and characteristic patterns, and the presence of cellular remnants and biological materials intimately entwined with the corrosion indicates direct cellular attack under the cell membrane region of adhered and/or migrating inflammatory cells. Evidence supports a Fenton-like reaction mechanism driving corrosion in which reactive oxygen species are the major driver of corrosion. Using in vitro tests, large increases in corrosion susceptibility of CoCrMo were seen (40-100 fold) when immersed in phosphate buffered saline solutions modified with hydrogen peroxide and hydrochloric acid to represent the chemistry under inflammatory cells. This discovery raises significant new questions about the clinical consequences of such corrosion interactions, the role of patient inflammatory reactions, and the detailed mechanisms at play. © 2014 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Gregori, A.; Nilsson, J.-O.
2002-04-01
The microstructural stability at temperatures above 700 °C of weld metal of type 29Cr-8Ni-2Mo-0.39N and weld metal of type 25Cr-10Ni-4Mo-0.28N has been compared. Multipass welding was employed using the gas tungsten arc welding technique with a shielding gas of Ar+2 pct N2. The quantitative assessment of the intermetallic phase was performed using automatic image analysis in the light optical microscope (LOM). Detailed microanalysis was also performed using scanning and transmission electron microscopy. A computer program developed by the authors was used to calculate a continuous cooling-temperature (CCT) diagram on the basis of the experimentally determined time-temperature-transformation (TTT) diagram. Thermodynamic calculations for estimating phase stabilities and for interpreting experimental observations were performed. It was found that weld metal of type 29Cr-8Ni-2Mo-0.39N was microstructurally more stable than weld metal of type 25Cr-10Ni-4Mo-0.28N. A lower molybdenum concentration and a higher nitrogen concentration in the former alloy could explain the higher stability with respect to the intermetallic phase. The higher nitrogen concentration also provides a rationale for the higher stability against the formation of secondary austenite in weld metal of type 29Cr-8Ni-2Mo-0.39N. This effect, which is associated with a lower thermodynamic driving force for precipitation of secondary austenite during multipass welding, can be explained by nitrogen-enhanced primary austenite formation.
Influence of Laser Shock Texturing on W9 Steel Surface Friction Property
NASA Astrophysics Data System (ADS)
Fan, Yujie; Cui, Pengfei; Zhou, Jianzhong; Dai, Yibin; Guo, Erbin; Tang, Deye
2017-09-01
To improve surface friction property of high speed steel, micro-dent arrays on W9Mo3Cr4V surface were produced by laser shock processing. Friction test was conducted on smooth surface and texturing surface and effect of surface texturing density on friction property was studied. The results show that, under the same condition, friction coefficient of textured surface is lower than smooth surface with dent area density less than 6%, wear mass loss, width and depth of wear scar are smaller; Wear resistance of the surface is the best and the friction coefficient is the smallest when dent area density is 2.2%; Friction coefficient, wear mass loss, width and depth of wear scar increase correspondingly as density of dent area increases when dent area density is more than 2.2%. Abrasive wear and adhesive wear, oxidative wear appear in the wear process. Reasonable control of geometric parameters of surface texturing induced by laser shock processing is helpful to improve friction performance.
(High temperature flaw assessment procedure)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ruggles, M.B.
1990-06-01
The Electric Power Research Institute (EPRI), the Japanese Central Research Institute of Electric Power Industry (CRIEPI), and the British Nuclear Electric (NE) are conducting joint studies in the field of liquid metal reactor development. The traveler is currently responsible for the EPRI/CRIEPI/NE High-Temperature Flaw Assessment Procedure activities at the Oak Ridge National Laboratory (ORNL). The traveler participated, on behalf of EPRI, in the EPRI/CRIEPI/NE specialist working session, the purpose of which was to produce the interim High-Temperature Flaw Assessment guide. The traveler also led discussions on the High-Temperature Flaw Assessment Procedure Phase 2 program plan, and on the plan formore » a new joint EPRI/CRIEPI/NE study in Inelastic Behavior and Failure Criteria for Modified 9Cr--1Mo Steel. The traveler visited Profs. K. Ikegami, Y. Asada, N. Ohno, T. Inoue, and K. Kaneko at the Tokyo Institute of Technology, the University of Tokyo, Nagoya University, Kyoto University, and Science University of Tokyo, respectively to hold discussions on research advances in the areas of high-temperature fracture mechanics, inelastic material behavior, and constitutive modeling. In addition, the traveler visited Kajima Corp. and Ohbayashi Corp. Technical Research Institute to collect information on research in the area of fiber reinforced concrete.« less
Using CCT Diagrams to Optimize the Composition of an As-Rolled Dual-Phase Steel
NASA Astrophysics Data System (ADS)
Coldren, A. Phillip; Eldis, George T.
1980-03-01
A continuous-cooling transformation (CCT) diagram study was conducted for the purpose of optimizing the composition of a Mn-Si-Cr-Mo as-rolled dual-phase (ARDP) steel. The individual effects of chromium, molybdenum, and silicon on the allowable cooling rates were determined. On the basis of the CCT diagram study and other available information, an optimum composition was selected. Data from recent mill trials at three steel companies, involving steels with compositions in or near the newly recommended range, are presented and compared with earlier mill trial data. The comparison shows that the optimized composition is highly effective in making the steel's properties more uniform and reproducible in the as-rolled condition.
Semisolid forming of S48C steel grade
NASA Astrophysics Data System (ADS)
Plata, Gorka; Lozares, Jokin; Azpilgain, Zigor; Hurtado, Iñaki; Loizaga, Iñigo; Idoyaga, Zuriñe
2017-10-01
Steel production and component manufacturing industries have to face the challenge of globalization, trying to overcome the economic pressure to remain competitive. Moreover, the lightweighting trend of the latter years implies an even higher challenge to maintain the steel use. Therefore, advanced manufacturing processes will be the cornerstone. In this field, Semisolid forming (SSF) has demonstrated the capability of obtaining complex geometries and saving raw material and energy. Despite it is complicated the SSF of sound components, in Mondragon Unibertsitatea it has been successfully demonstrated the capability of producing strong enough automotive components with 42CrMo4 steel grade. In this work, we demonstrate the capability of SSF S48C steel grade with great mechanical properties.
Environmental impacts of asphalt mixes with electric arc furnace steel slag.
Milačič, Radmila; Zuliani, Tea; Oblak, Tina; Mladenovič, Ana; Ančar, Janez Šč
2011-01-01
Electric arc furnace (EAF) steel slag can be used as an alternative high-quality material in road construction. Although asphalts with slag aggregates have been recognized as environmentally acceptable, there is a lack of data concerning the potential leaching of toxic Cr(VI) due to the highly alkaline media of EAF slag. Leaching of selected water extractable metals from slag indicated elevated concentrations of total chromium and Cr(VI). To estimate the environmental impacts of asphalt mixes with slag, leachability tests based on diffusion were performed using pure water and salt water as leaching agents. Compact and ground asphalt composites with natural aggregates, and asphalt composites in which the natural aggregates were completely replaced by slag were prepared. The concentrations of total chromium and Cr(VI) were determined in leachates over a time period of 6 mo. After 1 and 6 mo, the concentrations of some other metals were also determined in the leachates. The results indicated that chromium in leachates from asphalt composites with the addition of slag was present almost solely in its hexavalent form. However, the concentrations were very low (below 25 μg L) and did not represent an environmental burden. The leaching of other metals from asphalt composites with the addition of slag was negligible. Therefore, the investigated EAF slag can be considered as environmentally safe substitute for natural aggregates in asphalt mixes. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
NASA Astrophysics Data System (ADS)
Shi, Jin-jie; Ming, Jing; Liu, Xin
2017-10-01
In this study, two types of reinforcing steels (conventional low-carbon steel and a novel duplex alloy steel with Cr and Mo) were exposed to chloride-contaminated extract solutions (ordinary Portland cement (OPC) extract and alkali-activated slag (AAS) extract) to investigate their pitting corrosion resistance. The results confirm that the pitting corrosion resistance of the alloy steel is much higher than that of the low-carbon steel in both extract solutions with various NaCl concentrations. Moreover, for each type of steel, the AAS extract contributes to a higher pitting corrosion resistance compared with the OPC extract in the presence of chloride ions, likely because of the formation of flocculent precipitates on the steel surface.
Landgraeber, Stefan; Samelko, Lauryn; McAllister, Kyron; Putz, Sebastian; Jacobs, Joshua.J.; Hallab, Nadim James
2018-01-01
Background: The rate of revision for some designs of total hip replacements due to idiopathic aseptic loosening has been reported as higher for women. However, whether this is environmental or inherently sex-related is not clear. Objective: Can particle induced osteolysis be sex dependent? And if so, is this dependent on the type of implant debris (e.g. metal vs polymer)? The objective of this study was to test for material dependent inflammatory osteolysis that may be linked to sex using CoCrMo and implant grade conventional polyethylene (UHMWPE), using an in vivo murine calvaria model. Methods: Healthy 12 week old female and male C57BL/6J mice were treated with UHMWPE (1.0um ECD) or CoCrMo particles (0.9um ECD) or received sham surgery. Bone resorption was assessed by micro-computed tomography, histology and histomorphometry on day 12 post challenge. Results: Female mice that received CoCrMo particles showed significantly more inflammatory osteolysis and bone destruction compared to the females who received UHMWPE implant debris. Moreover, females challenged with CoCrMo particles exhibited 120% more inflammatory bone loss compared to males (p<0.01) challenged with CoCrMo implant debris (but this was not the case for UHMWPE particles). Conclusion: We demonstrated sex-specific differences in the amount of osteolysis resulting from CoCrMo particle challenge. This suggests osteo-immune responses to metal debris are preferentially higher in female compared to male mice, and supports the contention that there may be inherent sex related susceptibility to some types of implant debris. PMID:29785221
NASA Astrophysics Data System (ADS)
Zhao, Xiaoli; Li, Chuanwei; Han, Lizhan; Gu, Jianfeng
2018-06-01
Dilatometry is a useful technique to obtain experimental data concerning transformation. In this paper, a dilation conversional model was established to calculate carbides fraction in AISI H13 hot-work tool steel based on the measured length changes. After carbides precipitation, the alloy contents in the matrix changed. In the usual models, the content of carbon atoms after precipitation is considered as the only element that affects the lattice constant and the content of the alloy elements such as Cr, Mo, Mn, V are often ignored. In the model introduced in this paper, the alloying elements (Cr, Mo, Mn, V) changes caused by carbides precipitation are incorporated. The carbides were identified using scanning electron microscope and transmission electron microscope. The relationship between lattice constant of carbides and temperature are measured by high-temperature X-ray diffraction. The results indicate that the carbides observed in all specimens cooled at different rates are V-rich MC and Cr-rich M23C6, and most of them are V-rich MC, only very few are Cr-rich M23C6. The model including the effects of substitutional alloying elements shows a good improvement on carbides fraction predictions. In addition, lower cooling rate advances the carbides precipitation for AISI H13 specimens. The results between experiments and mathematical model agree well.
NASA Astrophysics Data System (ADS)
Longhurst, G. R.; Anderl, R. A.; Struttmann, D. A.
1986-11-01
Implantation-driven permeation experiments have been conducted on samples of the ferritic steel HT-9, the austenitic Primary Candidate Alloy (PCA) and the vanadium alloy V-15Cr-5Ti using D 3+ ions under conditions that simulate charge-exchange neutral loading on a fusion reactor first wall. The steels all exhibited an initially intense permeation "spike" followed by an exponential decrease to low steady-state values. That spike was not evident in the V-15Cr-5Ti experiments. Steady-state permeation was highest in the vanadium alloy and lowest in the austenitic steel. Though permeation rates in the HT-9 were lower than those in V-15Cr-5Ti, permeation transients were much faster in HT-9 than in other materials tested. Sputtering of the steel surface resulted in enhanced reemission, whereas in the vanadium tests, recombination and diffusivity both appeared to diminish as the deuterium concentration rose. We conclude that for conditions comparable to those of these experiments, tritium retention and permeation loss in first wall structures made of steels will be less than in structures made of V-15Cr-5Ti.
NASA Astrophysics Data System (ADS)
Rybin, V. V.; Kursevich, I. P.; Lapin, A. N.
1998-10-01
Effects of neutron irradiation to fluence of 2.0 × 10 24 n/m 2 ( E > 0.5 MeV) in temperature range 70-300°C on mechanical properties and structure of the experimental reduced-activation ferritic 0.1%C-(2.5-12)%Cr-(1-2)%W-(0.2-0.7)%V alloys were investigated. The steels were studied in different initial structural conditions obtained by changing the modes of heat treatments. Effect of neutron irradiation estimated by a shift in ductile-brittle transition temperature (ΔDBTT) and reduction of upper shelf energy (ΔUSE) highly depends on both irradiation condition and steel chemical composition and structure. For the steel with optimum chemical composition (9Cr-1.5WV) after irradiation to 2 × 10 24 n/m 2 ( E ⩾ 0.5 MeV) at 280°C the ΔDBTT does not exceed 25°C. The shift in DBTT increased from 35°C to 110°C for the 8Cr-1.5WV steel at a decrease in irradiation temperature from 300°C to 70°C. The CCT diagrams are presented for several reduced-activated steels.
Study on underclad cracking in nuclear reactor vessel steels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Horiya, T.; Takeda, T.; Yamato, K.
1985-02-01
Susceptibility to underclad cracking in nuclear reactor vessel steels, such as SA533 Grade B Class 1 and SA508 Class 2, was studied in detail. A convenient simulation test method using simulated HAZ specimens of small size has been developed for quantitative evaluation of susceptibility to underclad cracks. The method can predict precisely the cracking behavior in weldments of steels with relative low crack susceptibility. The effect of chemical compositions on susceptibility to the cracking was examined systematically using the developed simulation test method and the following index was obtained from the test results: U = 20(V) + 7(C) + 4(Mo)more » + (Cr) + (Cu) - 0.5(Mn) + 1.5 log(X) X = Al . . . Al/2N less than or equal to 1 X = 2N . . . Al/2N > 1 It was confirmed that the new index (U) is useful for the prediction of crack susceptibility of the nuclear vessel steels; i.e., no crack initiation is detected in weldments in the roller bend test for steels having U value below 0.90.« less
Replacement of Chromium Electroplating on Gas Turbine Engine Components Using Thermal Spray Coatings
2005-07-20
Composition, Wgt % Powder Composition, Wgt % Powder WC/17Co Diamalloy 2005 WC/17Co Metco 73F-NS-1 Cr3C2-20 (Ni,Cr) Amdry 5260/Diam 3007 Co-28 Mo - 8 Cr-2...Si** Metco 66F-NS Co-28 Mo -17 Cr-3 Si* Diamalloy 3001 Co-28 Mo - 8 Cr-2 Si** Diamalloy 3002 * Tribaloy 800 ** Tribaloy 400 20 4.4. Coating...Work WC/17Co Diamalloy 2005 Yes -- Cr3C2-20 (Ni,Cr) Amdry 5260/Diam 3007 -- Yes Co-28 Mo -17 Cr-3 Si* Diamalloy 3001 -- Yes Co-28 Mo - 8 Cr-2 Si
Consideration of the oxide particle-dislocation interaction in 9Cr-ODS steel
NASA Astrophysics Data System (ADS)
Ijiri, Yuta; Oono, N.; Ukai, S.; Yu, Hao; Ohtsuka, S.; Abe, Y.; Matsukawa, Y.
2017-05-01
The interaction between oxide particles and dislocations in a 9Cr-ODS ferritic steel is investigated by both static and in situ TEM observation under dynamic straining conditions and room temperature. The measured obstacle strength (?) of the oxide particles was no greater than 0.80 and the average was 0.63. The dislocation loops around some coarsened particles were also observed. The calculated obstacle strength by a stress formula of the Orowan interaction is nearly equaled to the average experimental value. Not only cross-slip system but also the Orowan interaction should be considered as the main interaction mechanism between oxide particles and dislocation in 9CrODS ferritic steel.
NASA Astrophysics Data System (ADS)
Găluşcă, D. G.; Perju, M. C.; Nejneru, C.; Burduhos Nergiş, D. D.; Lăzărescu, I. E.
2018-06-01
The modification of surface properties by duplex treatments, involving the overlapping of two surface treatment techniques, has been established as an intelligent solution to create new applications for the substrate metallic material. There are driveline components operating under very tough wear and corrosion conditions, with high temperature and humidity variations. Such components are usually made of high Cr and Ni stainless steel and for the hardening of surfaces it is recommended a thermo chemical treatment. Since stainless steels, especially austenitic stainless steels, are difficult to nitride, experimental studies focus on increasing the depth of the nitride layer and surface hardness. Achieving the goal involves changing active layer chemical composition by introducing aluminum in the surface layer. In order to find a solution, a new surface treatment technique is produced by combining aluminum thin films by MO-CVD in a fluidized bed using a triisobutylaluminum precursor with a thermo chemical nitriding treatment.
NASA Astrophysics Data System (ADS)
Byun, T. S.; Farrell, K.; Lee, E. H.; Mansur, L. K.; Maloy, S. A.; James, M. R.; Johnson, W. R.
2002-05-01
This report presents the tensile properties of EC316LN austenitic stainless steel and 9Cr-2WVTa ferritic/martensitic steel after 800 MeV proton and spallation neutron irradiation to doses in the range 0.54-2.53 dpa at 30-100 °C. Tensile testing was performed at room temperature (20 °C) and 164 °C. The EC316LN stainless steel maintained notable strain-hardening capability after irradiation, while the 9Cr-2WVTa ferritic/martensitic steel posted negative hardening in the engineering stress-strain curves. In the EC316LN stainless steel, increasing the test temperature from 20 to 164 °C decreased the strength by 13-18% and the ductility by 8-36%. The effect of test temperature for the 9Cr-2WVTa ferritic/martensitic steel was less significant than for the EC316LN stainless steel. In addition, strain-hardening behaviors were analyzed for EC316LN and 316L stainless steels. The strain-hardening rate of the 316 stainless steels was largely dependent on test temperature. A calculation using reduction of area measurements and stress-strain data predicted positive strain hardening during plastic instability.
NASA Astrophysics Data System (ADS)
Luo, Quanshun; Kitchen, Matthew; Patel, Vinay; Filleul, Martin; Owens, Dave
We introduce a new strengthening heat treatment of a Ni-Cr-Mo-V alloyed spring steel by partial isothermal salt-bath and subsequent air-cooling and tempering. Detailed isothermal treatments were made at temperatures below or above the Ms point (230°C). The salt bath time was controlled between 10 and 80 minutes. Through the new treatment, the candidate steel developed ultrahigh tensile strength 2,100 MPa, yield strength 1,800 MPa, elongation 8-10 %, hardness 580-710 HV, and V-notch Charpy toughness 10-12 J. Optical and electron microscopic observations and X-ray diffraction revealed multi-phase microstructures of bainitic/martensitic ferrites, fine carbide precipitates and retained austenite. Carbon partitioning during the bainitic/martensitic transformation was investigated for its remarkable influence on the strengthening mechanism.
NASA Astrophysics Data System (ADS)
Zhou, Gang
A continuous occurrence of catastrophic failures, leaks and cracks of the Cr-Mo steam piping has created widespread utility concern for the integrity and serviceability of the seam-welded piping systems in power plants across USA. Cr-Mo steels are the materials widely used for elevated temperature service in fossil-fired generating stations. A large percentage of the power plant units with the Cr-Mo seam-welded steam piping have been in operation for a long duration such that the critical components of the units have been employed beyond the design life (30 or 40 years). This percentage will increase even more significantly in the near future. There is a strong desire to extend and thus there is a need to assess the remaining life of these units. Thus, understanding of the metallurgical causes for the failures and damage in the Cr-Mo seam-welded piping plays a major role in estimating possible life-extension and decision making on whether to operate, repair or replace. In this study, an optical metallographic method and a Cryo-Crack fractographic method have been developed for characterization and quantification of the damage in seam-welded steam piping. More than 500 metallographic assessments, from more than 25 power plants, have been accomplished using the optical metallographic method, and more than 200 fractographic specimens from 10 power plants have been evaluated using the "Cryo-Crack" fractographic technique. For comparison, "virgin" SA welds were fabricated using the Mohave welding procedure with re-N&T Mohave base metal with both "acid" and "basic" fluxes. The damage mechanism, damage distribution pattern, damage classification, correlation of the damage with the microstructural features of these SA welds and the impurity segregation patterns have been determined. A physical model for cavitation (leading to failure) in Cr-Mo SA weld metals and evaluation methodologies for high energy piping are proposed.
A U-bearing composite waste form for electrochemical processing wastes
NASA Astrophysics Data System (ADS)
Chen, X.; Ebert, W. L.; Indacochea, J. E.
2018-04-01
Metallic/ceramic composite waste forms are being developed to immobilize combined metallic and oxide waste streams generated during electrochemical recycling of used nuclear fuel. Composites were made for corrosion testing by reacting HT9 steel to represent fuel cladding, Zr and Mo to simulate metallic fuel waste, and a mixture of ZrO2, Nd2O3, and UO2 to represent oxide wastes. More than half of the added UO2 was reduced to metal and formed Fe-Zr-U intermetallics and most of the remaining UO2 and all of the Nd2O3 reacted to form zirconates. Fe-Cr-Mo intermetallics were also formed. Microstructure characterization of the intermetallic and ceramic phases that were generated and tests conducted to evaluate their corrosion behaviors indicate composite waste forms can accommodate both metallic and oxidized waste streams in durable host phases.
A U-bearing composite waste form for electrochemical processing wastes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, X.; Ebert, W. L.; Indacochea, J. E.
Metallic/ceramic composite waste forms are being developed to immobilize combined metallic and oxide waste streams generated during electrochemical recycling of used nuclear fuel. Composites were made for corrosion testing by reacting HT9 steel to represent fuel cladding, Zr and Mo to simulate metallic fuel waste, and a mixture of ZrO2, Nd2O3, and UO2 to represent oxide wastes. More than half of the added UO2 was reduced to metal and formed Fe-Zr-U intermetallics and most of the remaining UO2 and all of the Nd2O3 reacted to form zirconates. Fe-Cr-Mo intermetallics were also formed. Microstructure characterization of the intermetallic and ceramic phasesmore » that were generated and tests conducted to evaluate their corrosion behaviors indicate composite waste forms can accommodate both metallic and oxidized waste streams in durable host phases. (c) 2018 Elsevier B.V. All rights reserved.« less
John, Kevin D.; Miskowski, Vincent M.; Vance, Michael A.; Dallinger, Richard F.; Wang, Louis C.; Geib, Steven J.; Hopkins, Michael D.
1998-12-28
The nature of the skeletal vibrational modes of complexes of the type M(2)(C&tbd1;CR)(4)(PMe(3))(4) (M = Mo, W; R = H, Me, Bu(t)(), SiMe(3)) has been deduced. Metrical data from X-ray crystallographic studies of Mo(2)(C&tbd1;CR)(4)(PMe(3))(4) (R = Me, Bu(t)(), SiMe(3)) and W(2)(C&tbd1;CMe)(4)(PMe(3))(4) reveal that the core bond distances and angles are within normal ranges and do not differ in a statistically significant way as a function of the alkynyl substituent, indicating that their associated force constants should be similarly invariant among these compounds. The crystal structures of Mo(2)(C&tbd1;CSiMe(3))(4)(PMe(3))(4) and Mo(2)(C&tbd1;CBu(t)())(4)(PMe(3))(4) are complicated by 3-fold disorder of the Mo(2) unit within apparently ordered ligand arrays. Resonance-Raman spectra ((1)(delta-->delta) excitation, THF solution) of Mo(2)(C&tbd1;CSiMe(3))(4)(PMe(3))(4) and its isotopomers (PMe(3)-d(9), C&tbd1;CSiMe(3)-d(9), (13)C&tbd1;(13)CSiMe(3)) exhibit resonance-enhanced bands due to a(1)-symmetry fundamentals (nu(a) = 362, nu(b) = 397, nu(c) = 254 cm(-)(1) for the natural-abundance complex) and their overtones and combinations. The frequencies and relative intensities of the fundamentals are highly sensitive to isotopic substitution of the C&tbd1;CSiMe(3) ligands, but are insensitive to deuteration of the PMe(3) ligands. Nonresonance-Raman spectra (FT-Raman, 1064 nm excitation, crystalline samples) for the Mo(2)(C&tbd1;CSiMe(3))(4)(PMe(3))(4) compounds and for Mo(2)(C&tbd1;CR)(4)(PMe(3))(4) (R = H, D, Me, Bu(t)(), SiMe(3)) and W(2)(C&tbd1;CMe)(4)(PMe(3))(4) exhibit nu(a), nu(b), and nu(c) and numerous bands due to alkynyl- and phosphine-localized modes, the latter of which are assigned by comparisons to FT-Raman spectra of Mo(2)X(4)L(4) (X = Cl, Br, I; L = PMe(3), PMe(3)-d(9))(4) and Mo(2)Cl(4)(AsMe(3))(4). Valence force-field normal-coordinate calculations on the model compound Mo(2)(C&tbd1;CH)(4)P(4), using core force constants transferred from a calculation on Mo(2)Cl(4)P(4), show that nu(a), nu(b), and nu(c) arise from modes of strongly mixed nu(Mo(2)), nu(MoC), and lambda(MoCC) character. The relative intensities of the resonance-Raman bands due to nu(a), nu(b), and nu(c) reflect, at least in part, their nu(M(2)) character. In contrast, the force field shows that mixing of nu(M(2)) and nu(C&tbd1;C) is negligible. The three-mode mixing is expected to be a general feature for quadruply bonded complexes with unsaturated ligands.
Hallab, NJ; Caicedo, M; McAllister, K; Skipor, A; Amstutz, H; Jacobs, JJ
2012-01-01
Some tissues from metal-on-metal (MoM) hip arthroplasty revisions have shown evidence of adaptive-immune reactivity (i.e., excessive peri-implant lymphocyte infiltration/activation). We hypothesized that, prior to symptoms, some people with MoM hip arthroplasty will develop quantifiable metal-induced lymphocyte reactivity responses related to peripheral metal ion levels. We tested 3 cohorts (Group-1: n=21 prospective longitudinal MoM hip arthroplasty; Group-2: n=17 retrospective MoM hip arthroplasty; and Group-3: n=20 controls without implants). We compared implant position, metal-ion release, and immuno-reactivity. MoM cohorts had elevated (p<0.01) amounts of serum Co and Cr compared to controls as early as 3 mos post-op (Group-1:1.2ppb-Co, 1.5ppb-Cr; Group-2: 3.4ppb-Co,, 5.4ppb-Cr; Group-3: 0.01ppb-Co, 0.1ppb-Cr). However, only after 1 to 4 yrs post-op did 56% of Group-1 develop metal-reactivity (vs. 5%pre-op, metal-LTT, SI>2), compared with 76% of Group-2 and 15% of Group-3 controls (patch testing was a poor diagnostic indicator with only 1/21 Group-1 positive). Higher cup-abduction angles (50° vs. 40°) in Group-1 were associated with higher serum Cr (p<0.07). However, sub-optimal cup-anteversion angles (9° vs. 20°) had higher serum Co (p<0.08). Serum Cr and Co were significantly elevated in reactive vs. non-reactive Group-1 participants (p<0.04). CD4+CD69+ T-helper lymphocytes (but not CD8+) and IL-1β, IL-12 and IL-6 cytokines were all significantly elevated in metal-reactive vs. non-reactive Group-1 participants. Our results showed that lymphocyte reactivity to metals can develop within the first 1 to 4 years after MoM arthroplasty in asymptomatic patients and lags increases in metal ion levels. This increased metal reactivity was more prevalent in those individuals with extreme cup angles and higher amounts of circulating metal. PMID:22941579
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tosten, M.H.; Morgan, M.J.
1998-01-01
This study examined the effects of microstructure on the ambient temperature embrittlement from hydrogen isotopes and decay helium in 21Cr-6Ni-9Mn stainless steel. Hydrogen and tritium-exposed 21Cr-6Ni-9Mn stainless steel tensile samples were pulled to failure and then characterized by transmission electron microscopy (TEM) and optical microscopy. This study determined that ductility differences between annealed and high-energy-rate-forged (HERF) stainless steel containing tritium and its decay product, helium, could be related to differences in the helium bubble microstructures. The HERF microstructures were more resistant to tritium-induced embrittlement than annealed microstructures because the high number density of helium bubbles on dislocations trap tritium withinmore » the matrix and away from the grain boundaries.« less
NASA Astrophysics Data System (ADS)
Chunyan, Yu; Linhai, Tian; Yinghui, Wei; Shebin, Wang; Tianbao, Li; Bingshe, Xu
2009-01-01
CrAlN coatings were deposited on silicon and AISI H13 steel substrates using a modified ion beam enhanced magnetron sputtering system. The effect of substrate negative bias voltages on the impact property of the CrAlN coatings was studied. The X-ray diffraction (XRD) data show that all CrAlN coatings were crystallized in the cubic NaCl B1 structure, with the (1 1 1), (2 0 0) (2 2 0) and (2 2 2) diffraction peaks observed. Two-dimensional surface morphologies of CrAlN coatings were investigated by atomic force microscope (AFM). The results show that with increasing substrate bias voltage the coatings became more compact and denser, and the microhardness and fracture toughness of the coatings increased correspondingly. In the dynamic impact resistance tests, the CrAlN coatings displayed better impact resistance with the increase of bias voltage, due to the reduced emergence and propagation of the cracks in coatings with a very dense structure and the increase of hardness and fracture toughness in coatings.
P/M Processing of Rare Earth Modified High Strength Steels.
1980-12-01
AA094 165 TRW INC CLEVELAND OH MATERIALS TECHNOLOGY F 6 P/N PROCESSING OF RARE EARTH MODIFIED HIGH STRENGTH STEELS DEC So A A SHEXM(ER NOOŕT76-C...LEVEL’ (7 PIM PROCESSING OF RARE EARTH MODIFIED HIGH STRENGTH STEELS By A. A. SHEINKER 00 TECHNICAL REPORT Prepared for Office of Naval Research...Processing of Rare Earth Modified High 1 Technical -’ 3t eC"Strength Steels * 1dc4,093Se~ 9PEFRIGOGNZTONAEADADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK
NASA Astrophysics Data System (ADS)
Barr, Christopher M.; Felfer, Peter J.; Cole, James I.; Taheri, Mitra L.
2018-06-01
Radiation induced segregation in austenitic Fe-Ni-Cr stainless steels is a key detrimental microstructural modification experienced in the current generation of light water reactors. In particular, Cr depletion at grain boundaries can be a significant factor in irradiation-assisted stress corrosion cracking. Therefore, having a complete knowledge and mechanistic understanding of radiation induced segregation at high dose and after a long thermal history is desired for continued sustainability of existing reactors. Here, we examine a 12% cold worked AISI 316 stainless steel hexagonal duct exposed in the lower dose, outer blanket region of the EBR-II reactor, by using advanced characterization and analysis techniques including atom probe tomography and analytical scanning transmission electron microscopy. Contrary to existing literature, we observe an oscillatory w-shape Cr and M-shape Ni concentration profile at 31 dpa. The presence and characterization through advanced atom probe tomography analysis of the w-shape Cr RIS profile is discussed in the context of the localized GB plane interfacial excess of the other major and minor alloying elements. The key finding of a co-segregation phenomena coupling Cr, Mo, and C is discussed in the context of the existing solute segregation literature under irradiation with emphasis on improved spatial and chemical resolution of atom probe tomography.
Wade, Casey R; Dincă, Mircea
2012-07-14
The synthesis, activation, and heats of CO(2) adsorption for the known members of the M(3)(BTC)(2) (HKUST-1) isostructural series (M = Cr, Fe, Ni, Zn, Ni, Cu, Mo) were investigated to gain insight into the impact of CO(2)-metal interactions for CO(2) storage/separation applications. With the use of modified syntheses and activation procedures, improved BET surface areas were obtained for M = Ni, Mo, and Ru. The zero-coverage isosteric heats of CO(2) adsorption were measured for the Cu, Cr, Ni, Mo, and Ru analogues and gave values consistent with those reported for MOFs containing coordinatively unsaturated metal sites, but lower than for amine functionalized materials. Notably, the Ni and Ru congeners exhibited the highest CO(2) affinities in the studied series. These behaviors were attributed to the presence of residual guest molecules in the case of Ni(3)(BTC)(2)(Me(2)NH)(2)(H(2)O) and the increased charge of the dimetal secondary building unit in [Ru(3)(BTC)(2)][BTC](0.5).
NASA Astrophysics Data System (ADS)
Samadian, Pedram; Parsa, Mohammad Habibi; Ahmadabadi, M. Nili; Mirzadeh, Hamed
2014-10-01
Knowledge about the transformation temperatures is crucial in processing of steels especially in thermomechanical processes because microstructures and mechanical properties after processing are closely related to the extent and type of transformations. The experimental determination of critical temperatures is costly, and therefore, it is preferred to predict them by mathematical methods. In the current work, new thermodynamically based models were developed for computing the Ae3 and Acm temperatures in the equilibrium cooling conditions when austenite is deformed at elevated temperatures. The main advantage of the proposed models is their capability to predict the temperatures of austenite equilibrium transformations in steels with total alloying elements (Mn + Si + Ni + Cr + Mo + Cu) less than 5 wt.% and Si less than 1 wt.% under the deformation conditions just by using the chemical potential of constituents, without the need for determining the total Gibbs free energy of steel which requires many experiments and computations.
Isothermal and thermal-mechanical fatigue of VVER-440 reactor pressure vessel steels
NASA Astrophysics Data System (ADS)
Fekete, Balazs; Trampus, Peter
2015-09-01
The fatigue life of the structural materials 15Ch2MFA (CrMoV-alloyed ferritic steel) and 08Ch18N10T (CrNi-alloyed austenitic steel) of VVER-440 reactor pressure vessel under completely reserved total strain controlled low cycle fatigue tests were investigated. An advanced test facility was developed for GLEEBLE-3800 physical simulator which was able to perform thermomechanical fatigue experiments under in-service conditions of VVER nuclear reactors. The low cycle fatigue results were evaluated with the plastic strain based Coffin-Manson law, and plastic strain energy based model as well. It was shown that both methods are able to predict the fatigue life of reactor pressure vessel steels accurately. Interrupted fatigue tests were also carried out to investigate the kinetic of the fatigue evolution of the materials. On these samples microstructural evaluation by TEM was performed. The investigated low cycle fatigue behavior can provide reference for remaining life assessment and lifetime extension analysis.
Current status and recent research achievements in ferritic/martensitic steels
NASA Astrophysics Data System (ADS)
Tavassoli, A.-A. F.; Diegele, E.; Lindau, R.; Luzginova, N.; Tanigawa, H.
2014-12-01
When the austenitic stainless steel 316L(N) was selected for ITER, it was well known that it would not be suitable for DEMO and fusion reactors due to its irradiation swelling at high doses. A parallel programme to ITER collaboration already had been put in place, under an IEA fusion materials implementing agreement for the development of a low activation ferritic/martensitic steel, known for their excellent high dose irradiation swelling resistance. After extensive screening tests on different compositions of Fe-Cr alloys, the chromium range was narrowed to 7-9% and the first RAFM was industrially produced in Japan (F82H: Fe-8%Cr-2%W-TaV). All IEA partners tested this steel and contributed to its maturity. In parallel several other RAFM steels were produced in other countries. From those experiences and also for improving neutron efficiency and corrosion resistance, European Union opted for a higher chromium lower tungsten grade, Fe-9%Cr-1%W-TaV steel (Eurofer), and in 1997 ordered the first industrial heats. Other industrial heats have been produced since and characterised in different states, including irradiated up to 80 dpa. China, India, Russia, Korea and US have also produced their grades of RAFM steels, contributing to overall maturity of these steels. This paper reviews the work done on RAFM steels by the fusion materials community over the past 30 years, in particular on the Eurofer steel and its design code qualification for RCC-MRx.
NASA Astrophysics Data System (ADS)
Matrosov, M. Yu; Martynov, P. G.; Goroshko, T. V.; Zvereva, M. I.; Mitrofanov, A. V.; Barabash, K. Yu
2017-12-01
The results of the study of influence of heat treatment modes on microstructure, size and shape of grains, mechanical properties of high-strength flat products from low-alloyed C-Mn-Cr-Si-Mo steel microalloyed by boron are presented. Heat treatment modes, which provide a combination of high impact viscosity at negative temperatures and guaranteed hardness, are determined.
Heat treatment giving a stable high temperature micro-structure in cast austenitic stainless steel
Anton, Donald L.; Lemkey, Franklin D.
1988-01-01
A novel micro-structure developed in a cast austenitic stainless steel alloy and a heat treatment thereof are disclosed. The alloy is based on a multicomponent Fe-Cr-Mn-Mo-Si-Nb-C system consisting of an austenitic iron solid solution (.gamma.) matrix reinforced by finely dispersed carbide phases and a heat treatment to produce the micro-structure. The heat treatment includes a prebraze heat treatment followed by a three stage braze cycle heat treatment.
NASA Astrophysics Data System (ADS)
Zhou, Xiaosheng; Ma, Zongqing; Yu, Liming; Huang, Yuan; Li, Huijun; Liu, Yongchang
2018-06-01
With Al addition, dual-phase oxide dispersion strengthened (ODS) steels consisting of martensite and ferrite are fabricated by spark plasma sintering. It is found that Al addition has a negligible effect on martensite lath size, while the amount and size of ferrite grains are related to the Al content. M23C6 (M = Fe, Cr) carbides have been identified within the ferrite grains or along ferrite boundaries. With increasing Al concentration, more fine Y-Al-O oxide nanoparticles are formed. Upon annealing treatment, homogeneous and refined distribution of ferrite grains is obtained, which may involve the particle-stimulated nucleation of recrystallization caused by the large sized M23C6. As Al is increased from 0.05 to 0.1 wt%, the tensile strength of the annealed steel is decreased, as well as its ductility. For the annealed 9Cr-ODS steel containing 0.1 wt% Al, in tensile loading the large sized M23C6 along ferrite boundaries would facilitate the cracking along boundaries between the hard annealed ferrite and soft annealed martensite, producing the mixed fracture of dimple and intergranular fracture.
Improved fracture toughness corrosion-resistant bearing material
NASA Technical Reports Server (NTRS)
Bamberger, E. N.; Nahm, A. H.
1986-01-01
A development program was performed to establish whether a corrosion-resistant bearing material, such as a 14Cr steel, could be modified to allow carburization, thereby providing the excellent fracture toughness characteristics feasible with this process. The alloy selected for investigation was AMS 5749. Several modifications were made including the addition of a small amount of nickel for austenite stabilization. While some promising results were achieved, the primary objective of an acceptable combination of case hardness and microstructure was not attained. Because the high chromium content presents a serious problem in achieving a viable carburizing cycle, a number of experimental steels having lower chromium contents (8 to 12%) were produced in laboratory quantities and evaluated. The results were basically the same as those initially obtained with the modified AMS 5749. Corrosion tests were performed on AMS 5749, AISI M50, and 52100 bearing steels as well as some of the lower chromium steels. These tests showed that a reduced chromium level (10 to 12%) provided essentially the same corrosion protection as the 14Cr steels.
Morphology and Performance of 5Cr5MoV Casting Die Steel in the Process of Surfacing
NASA Astrophysics Data System (ADS)
Song, Yulai; Kong, Xiangrui; Yang, Pengcong; Fu, Hongde; Wang, Xuezhu
2017-12-01
To investigate the microstructures and mechanical properties of the deposited metal on surface of die steel, two layer of weld-seam were prepared on the surface of 5Cr5MoV die steel by arc surfacing. The surface microstructures and microhardness were characterized by scanning electron microscopy, energy dispersive spectrometer and Vickers microhardness tester, respectively. The effect of load on the abrasion resistance and wear mechanism of the base metal and surfacing metal was studied by pin-on-disk tribometer. The results showed that martensite and retained austenite exist in weld-seam, both of them grow up in the form of dendrites and equiaxed grains and microhardness reach 774.2HV. The microstructures of the quenching zone mainly consist of martensite and retained austenite, while tempered martensite is the dominant phase in partial quenching zone. The abrasion resistance of the surfacing metal is superior to the base metal based on the results of wear test. The wear rates of surfacing metal and base metal raise with the increase of load. The wear rates of base metal raise extremely when the load reach 210N. Both of two kinds of materials have the similar wear mechanism, namely, abrasive wear at low load, oxidative wear and adhesive wear at high load.
NASA Astrophysics Data System (ADS)
Kalin, B.; Penyaz, M.; Ivannikov, A.; Sevryukov, O.; Bachurina, D.; Fedotov, I.; Voennov, A.; Abramov, E.
2018-01-01
Recently, the use rapidly quenched boron-containing nickel filler metals for high temperature brazing corrosion resistance steels different classes is perspective. The use of these alloys leads to the formation of a complex heterogeneous structure in the diffusion zone that contains separations of intermediate phases such as silicides and borides. This structure negatively affects the strength characteristics of the joint, especially under dynamic loads and in corrosive environment. The use of non-boron filler metals based on the Ni-Si-Be system is proposed to eliminate this structure in the brazed seam. Widely used austenitic 12Cr18Ni10Ti and ferrite-martensitic 16Cr12MoSiWNiVNb reactor steels were selected for research and brazing was carried out. The mechanical characteristics of brazed joints were determined using uniaxial tensile and impact toughness tests, and fractography was investigated by electron microscopy.
1980-09-19
ratio, irradiation, materials Germany Kraftwerk Union Materials, temperature, Erlangen, Germany load ratio, frequency, electro- chemical potential Italy...H. Munster, "Frequenzeinfluss auf das Risswachstumsverhalten des Stahles 22NiMoCr37", KWU/R 413/8/80, Kraftwerk Union, Erlangen (1980). 76. D. F
1945-06-29
10.555Ni Alloy 22 Sigma and Ferrite In 22.3#r:7.7*Ni Alloy 23 Ferrite Mosaic In 22.3#r:7.7#Ni Alloy 24 Precipitated Carbides In 21.2*Cr:8.7*Ni... ferritic steels and heat resistant cast irons are widely applied. Where plasticity is essential,steels must be used. The irons exhibit some...ductility above 900°F, but they are seldom able to survive sudden thermal or mechanical stresses that exceed their elastic strength. Ferritic steels, of
NASA Astrophysics Data System (ADS)
Petchsang, S.; Phung-on, I.; Poopat, B.
2016-12-01
Accelerated creep rupture tests were performed on T22/T91 dissimilar metal joints to determine the fracture location and rupture time of different weldments. Four configurations of deposited filler metal were tested using gas tungsten arc welding to estimate the service life for Cr-Mo steel dissimilar joints at elevated temperatures in power plants. Results indicated that failure in all configurations occurred in the tempered original microstructure and tempered austenite transformation products (martensite or bainite structure) as type IV cracking at the intercritical area of the heat-affected zone (ICHAZ) for both T22 and T91 sides rather than as a consequence of the different filler metals. Creep damage occurred with the formation of precipitations and microvoids. The correlation between applied stress and the Larson-Miller parameter (PLM) was determined to predict the service life of each material configuration. Calculated time-to-failure based on the PLM and test results for both temperature and applied stress parameters gave a reasonable fit. The dissimilar joints exhibited lower creep rupture compared to the base material indicating creep degradation of the weldment.
Optimization of hybrid laser arc welding of 42CrMo steel to suppress pore formation
NASA Astrophysics Data System (ADS)
Zhang, Yan; Chen, Genyu; Mao, Shuai; Zhou, Cong; Chen, Fei
2017-06-01
The hybrid laser arc welding (HLAW) of 42CrMo quenched and tempered steel was conducted. The effect of the processing parameters, such as the relative positions of the laser and the arc, the shielding gas flow rate, the defocusing distance, the laser power, the wire feed rate and the welding speed, on the pore formation was analyzed, the morphological characteristics of the pores were analyzed using scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). The results showed that the majority of the pores were invasive. The pores formed at the leading a laser (LA) welding process were fewer than those at the leading a arc (AL) welding process. Increasing the shielding gas flow rate could also facilitate the reduction of pores. The laser power and the welding speed were two key process parameters to reduce the pores. The flow of the molten pool, the weld cooling rate and the pore escaping rate as a result of different parameters could all affect pore formation. An ideal pore-free weld was obtained for the optimal welding process parameters.
Sun, Jianbo; Sun, Chong; Lin, Xueqiang; Cheng, Xiangkun; Liu, Huifeng
2016-01-01
The novel Cr-containing low alloy steels have exhibited good corrosion resistance in CO2 environment, mainly owing to the formation of Cr-enriched corrosion film. In order to evaluate whether it is applicable to the CO2 and H2S coexistence conditions, the corrosion behavior of low-chromium steels in CO2-H2S environment with high pressure and high temperature was investigated using weight loss measurement and surface characterization. The results showed that P110 steel suffered localized corrosion and both 3Cr-P110 and 5Cr-P110 steels exhibited general corrosion. However, the corrosion rate of 5Cr-P110 was the highest among them. The corrosion process of the steels was simultaneously governed by CO2 and H2S. The outer scales on the three steels mainly consisted of FeS1−x crystals, whereas the inner scales on Cr-containing steels comprised of amorphous FeS1−x, Cr(OH)3 and FeCO3, in contrast with the amorphous FeS1−x and FeCO3 mixture film of P110 steel. The more chromium the steel contains, the more chromium compounds the corrosion products contain. The addition of chromium in steels increases the uniformity of the Cr-enriched corrosion scales, eliminates the localized corrosion, but cannot decrease the general corrosion rates. The formation of FeS1−x may interfere with Cr-enriched corrosion scales and lowering the corrosion performance of 3Cr-P110 and 5Cr-P110 steels. PMID:28773328
Corrosion behavior of ODS steels with several chromium contents in hot nitric acid solutions
NASA Astrophysics Data System (ADS)
Tanno, Takashi; Takeuchi, Masayuki; Ohtsuka, Satoshi; Kaito, Takeji
2017-10-01
Oxide dispersion strengthened (ODS) steel cladding tubes have been developed for fast reactors. Tempered martensitic ODS steels with 9 and 11 wt% of chromium (9Cr-, 11Cr-ODS steel) are the candidate material in research being carried out at JAEA. In this work, fundamental immersion tests and electrochemical tests of 9 to 12Cr-ODS steels were systematically conducted in various nitric acid solutions at 95 °C. The corrosion rate decreased exponentially with effective solute chromium concentration (Creff) and nitric acid concentration. Addition of vanadium (V) and ruthenium (Ru) also decreased the corrosion rate. The combination of low Creff and dilute nitric acid could not avoid the active mass dissolution during active domain at the beginning of immersion, and the corrosion rate was high. Higher Creff decreased the partial anodic current during the active domain and assisted the passivation of the surface of the steel. Concentrated nitric acid and addition of Ru and V increased partial cathodic current and shifted the corrosion potential to noble side. These effects should have prevented the active mass dissolution and decreased the corrosion rate.
NASA Astrophysics Data System (ADS)
Bonse, J.; Koter, R.; Hartelt, M.; Spaltmann, D.; Pentzien, S.; Höhm, S.; Rosenfeld, A.; Krüger, J.
2015-05-01
Laser-induced periodic surface structures (LIPSS, ripples) were processed on steel (X30CrMoN15-1) and titanium (Ti) surfaces by irradiation in air with linear polarized femtosecond laser pulses with a pulse duration of 30 fs at 790 nm wavelength. For the processing of large LIPSS covered surface areas (5 mm × 5 mm), the laser fluence and the spatial spot overlap were optimized in a sample-scanning geometry. The laser-processed surfaces were characterized by optical microscopy (OM), white light interference microscopy (WLIM) and scanning electron microscopy (SEM). Spatial LIPSS periods between 450 and 600 nm were determined. The nanostructured surface regions were tribologically tested under reciprocal sliding conditions against a 10-mm diameter ball of hardened 100Cr6 steel. Paraffin oil and engine oil were used as lubricants for 1000 sliding cycles at 1 Hz with a normal load of 1.0 N. The corresponding wear tracks were analyzed by OM and SEM. In particular cases, the laser-generated nanostructures endured the tribological treatment. Simultaneously, a significant reduction of the friction coefficient and the wear was observed in the laser-irradiated (LIPSS-covered) areas when compared to the non-irradiated surface. The experiments reveal the potential benefit of laser surface structuring for tribological applications.
Iron-Based Amorphous Metals: High-Performance Corrosion-Resistant Material Development
NASA Astrophysics Data System (ADS)
Farmer, Joseph; Choi, Jor-Shan; Saw, Cheng; Haslam, Jeffrey; Day, Dan; Hailey, Phillip; Lian, Tiangan; Rebak, Raul; Perepezko, John; Payer, Joe; Branagan, Daniel; Beardsley, Brad; D'Amato, Andy; Aprigliano, Lou
2009-06-01
An overview of the High-Performance Corrosion-Resistant Materials (HPCRM) Program, which was cosponsored by the Defense Advanced Research Projects Agency (DARPA) Defense Sciences Office (DSO) and the U.S. Department of Energy (DOE) Office of Civilian and Radioactive Waste Management (OCRWM), is discussed. Programmatic investigations have included a broad range of topics: alloy design and composition, materials synthesis, thermal stability, corrosion resistance, environmental cracking, mechanical properties, damage tolerance, radiation effects, and important potential applications. Amorphous alloys identified as SAM2X5 (Fe49.7Cr17.7Mn1.9Mo7.4W1.6B15.2C3.8Si2.4) and SAM1651 (Fe48Mo14Cr15Y2C15B6) have been produced as meltspun ribbons (MSRs), dropcast ingots, and thermal-spray coatings. Chromium (Cr), molybdenum (Mo), and tungsten (W) additions provided corrosion resistance, while boron (B) enabled glass formation. Earlier electrochemical studies of MSRs and ingots of these amorphous alloys demonstrated outstanding passive film stability. More recently, thermal-spray coatings of these amorphous alloys have been made and subjected to long-term salt-fog and immersion tests; good corrosion resistance has been observed during salt-fog testing. Corrosion rates were measured in situ with linear polarization, while the open-circuit corrosion potentials (OCPs) were simultaneously monitored; reasonably good performance was observed. The sensitivity of these measurements to electrolyte composition and temperature was determined. The high boron content of this particular amorphous metal makes this amorphous alloy an effective neutron absorber and suitable for criticality-control applications. In general, the corrosion resistance of such iron-based amorphous metals is maintained at operating temperatures up to the glass transition temperature. These materials are much harder than conventional stainless steel and Ni-based materials, and are proving to have excellent wear properties, sufficient to warrant their use in earth excavation, drilling, and tunnel-boring applications. Large areas have been successfully coated with these materials, with thicknesses of approximately 1 cm. The observed corrosion resistance may enable applications of importance in industries such as oil and gas production, refining, nuclear power generation, shipping, etc.
Irradiation response of delta ferrite in as-cast and thermally aged cast stainless steel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Zhangbo; Lo, Wei-Yang; Chen, Yiren
To enable the life extension of Light Water Reactors (LWRs) beyond 60 years, it is critical to gain adequate knowledge for making conclusive predictions to assure the integrity of duplex stainless steel reactor components, e.g. primary pressure boundary and reactor vessel internal. Microstructural changes in the ferrite of thermally aged, neutron irradiated only, and neutron irradiated after being thermally aged cast austenitic stainless steels (CASS) were investigated using atom probe tomography. The thermal aging was performed at 400 °C for 10,000 h and the irradiation was conducted in the Halden reactor at ~315 °C to 0.08 dpa (5.6 × 10more » 19 n/cm 2 E > 1 MeV). Low dose neutron irradiation at a dose rate of 5 × 10 -9 dpa/s was found to induce spinod,al decomposition in the ferrite of as-cast microstructure, and further to enhance the spinodal decomposition in the thermally aged cast alloys. Regarding the G-phase precipitates, the neutron irradiation dramatically increases the precipitate size, and alters the composition of the precipitates with increased, Mn, Ni, Si and Mo and reduced Fe and Cr contents. Lastly, The results have shown that low dose neutron irradiation can further accelerate the degradation of ferrite in a duplex stainless steel at the LWR relevant condition.« less
Irradiation response of delta ferrite in as-cast and thermally aged cast stainless steel
Li, Zhangbo; Lo, Wei-Yang; Chen, Yiren; ...
2015-08-08
To enable the life extension of Light Water Reactors (LWRs) beyond 60 years, it is critical to gain adequate knowledge for making conclusive predictions to assure the integrity of duplex stainless steel reactor components, e.g. primary pressure boundary and reactor vessel internal. Microstructural changes in the ferrite of thermally aged, neutron irradiated only, and neutron irradiated after being thermally aged cast austenitic stainless steels (CASS) were investigated using atom probe tomography. The thermal aging was performed at 400 °C for 10,000 h and the irradiation was conducted in the Halden reactor at ~315 °C to 0.08 dpa (5.6 × 10more » 19 n/cm 2 E > 1 MeV). Low dose neutron irradiation at a dose rate of 5 × 10 -9 dpa/s was found to induce spinod,al decomposition in the ferrite of as-cast microstructure, and further to enhance the spinodal decomposition in the thermally aged cast alloys. Regarding the G-phase precipitates, the neutron irradiation dramatically increases the precipitate size, and alters the composition of the precipitates with increased, Mn, Ni, Si and Mo and reduced Fe and Cr contents. Lastly, The results have shown that low dose neutron irradiation can further accelerate the degradation of ferrite in a duplex stainless steel at the LWR relevant condition.« less
Development of a Database of Thermochemical Parameters for Use with the SOLGASMIX Computer Program
1988-07-01
TITANIUM CHLORIDE (TICL4) CL4Wl(CR) TUNGSTEN CHLORIDE (WCL4) CL4Wl(G) TUNGSTEN CHLORIDE (WCL4) CL4ZR1(CR) ZIRCONIUM CHLORIDE ( ZRCL4 ) CL4ZR1(G) ZIRCONIUM...CHLORIDE ( ZRCL4 ) % % % CL5MO1(CR) MOLYBDENUM CHLORIDE (MOCL5) CL5MO1(CR,L) MOLYBDENUM CHLORIDE (MOCL5) CL5MO1(G) MOLYBDENUM CHLORIDE (MOCL5) CL5MOI(L
NASA Astrophysics Data System (ADS)
Zhang, Zhiqiang; Jing, Hongyang; Xu, Lianyong; Han, Yongdian; Zhao, Lei; Zhang, Jianli
2017-02-01
The influences of microstructure and elemental partitioning on pitting corrosion resistance of duplex stainless steel joints welded by gas tungsten arc welding (GTAW) and flux-cored arc welding (FCAW) with different shielding gas compositions were studied by optical microscopy, electron backscatter diffraction, scanning electron microscopy, transmission electron microscopy, energy dispersive spectroscopy, electron probe microanalysis, and potentiostatic and potentiodynamic polarization methods The adding 2% N2 in shielding gas facilitated primary austenite formation in GTAW weld metal (WM) and suppressed Cr2N precipitation in GTAW weld root. In the HAZ, the banded microstructure disappeared while the coarse ferrite grains maintained same orientation as the banded ferrite in the BM. In the WM, the ferrite had one single orientation throughout a grain, whereas several families of austenite appeared. The austenite both in BM and WM enriched in Ni and nitro`gen, while Cr and Mo were concentrated in the ferrite and thus no element showed clear dendritic distribution in the WM (ER2209 and E2209T1). In addition, the secondary austenite had higher Ni content but lower Cr and Mo content than the primary austenite. The N2-supplemented shielding gas promoted nitrogen solid-solution in the primary and secondary austenite. Furthermore, the secondary austenite had relatively lower pitting resistance equivalent number (PREN) than the ferrite and primary austenite, thereby resulting in its preferential corrosion. The Cr2N precipitation led to relatively poor resistance to pitting corrosion in three HAZs and pure Ar shielding GTAW weld root. The N2-supplemented shielding gas improved pitting corrosion resistance of GTAW joint by increasing PREN of secondary austenite and suppressing Cr2N precipitation. In addition, the FCAW WM had much poorer resistance to pitting corrosion than the GTAW WM due to many O-Ti-Si-Mn inclusions. In the BM, since the austenite with lower PREN compared to the ferrite, the pitting corrosion occurred at the ferrite and austenite interface or within the austenite.
NASA Astrophysics Data System (ADS)
Krasin, V. P.; Soyustova, S. I.
2018-03-01
The solubility of Fe, Cr, Ni, V, Mn and Mo in sodium-potassium melt has been calculated using the mathematical framework of pseudo-regular solution model. The calculation results are compared with available published experimental data on mass transfer of components of austenitic stainless steel in sodium-potassium loop under non-isothermal conditions. It is shown that the parameters of pair interaction of oxygen with transition metal can be used to predict the corrosion behavior of structural materials in sodium-potassium melt in the presence of oxygen impurity. The results of calculation of threshold concentration of oxygen of ternary oxide formation of sodium with transitional metals (Fe, Cr, Ni, V, Mn, Mo) are given in conditions when pure solid metal comes in contact with sodium-potassium melt.
NASA Astrophysics Data System (ADS)
Noli, Fotini; Pichon, Luc; Öztürk, Orhan
2018-04-01
Plasma-based nitriding and/or oxidizing treatments were applied to CoCrMo alloy to improve its surface mechanical properties and corrosion resistance for biomedical applications. Three treatments were performed. A set of CoCrMo samples has been subjected to nitriding at moderate temperatures ( 400 °C). A second set of CoCrMo samples was oxidized at 395 °C in pure O2. The last set of CoCrMo samples was nitrided and subsequently oxidized under the experimental conditions of previous sets (double treatment). The microstructure and morphology of the layers formed on the CoCrMo alloy were investigated by X-ray diffraction, Atomic Force Microscopy, and Scanning Electron Microscopy. In addition, nitrogen and oxygen profiles were determined by Glow Discharge Optical Emission Spectroscopy, Rutherford Backscattering Spectroscopy, Energy-Dispersive X-ray, and Nuclear Reaction Analysis. Significant improvement of the Vickers hardness of the CoCrMo samples after plasma nitriding was observed due to the supersaturated nitrogen solution and the formation of an expanded FCC γ N phase and CrN precipitates. In the case of the oxidized samples, Vickers hardness improvement was minimal. The corrosion behavior of the samples was investigated in simulated body fluid (0.9 pct NaCl solution at 37 °C) using electrochemical techniques (potentiodynamic polarization and cyclic voltammetry). The concentration of metal ions released from the CoCrMo surfaces was determined by Instrumental Neutron Activation Analysis. The experimental results clearly indicate that the CoCrMo surface subjected to the double surface treatment consisting in plasma nitriding and plasma oxidizing exhibited lower deterioration and better resistance to corrosion compared to the nitrided, oxidized, and untreated samples. This enhancement is believed to be due to the formation of a thicker and more stable layer.
Influence of nitrogen as grain refiner in low carbon and microalloyed steels
NASA Astrophysics Data System (ADS)
Hasan, B. M.; Sathyamurthy, P.
2018-02-01
Microalloyed steel is replacing using of low alloy steel in automotive industry. Microalloying elements like vanadium, niobium and titanium are used to enhance the steel property. The current work is focused on using nitrogen as a strengthening element in existing steel grade. Nitrogen in free form acts as solid solution strengthener and in combined form as precipitates acts as grain refiner for enhancing strength. The problem of grain coarsening at high temperature in case carburizing steel was avoided by increasing nitrogen level from 60ppm to 200ppm. Grain size of ASTM no 10 is obtained at carburizing temperature of 950 °C by increasing nitrogen content from grain size no 6 with lower nitrogen. Mostly crankshaft is made from Cr-Mo alloyed steel. At JSW, nitrogen in the level of 130-200ppm is added to medium carbon steel to meet property requirement for crankshaft application
Open-Cellular Co-Base and Ni-Base Superalloys Fabricated by Electron Beam Melting
Murr, Lawrence; Li, Shujun; Tian, Yuxing; Amato, Krista; Martinez, Edwin; Medina, Frank
2011-01-01
Reticulated mesh samples of Co-29Cr-6Mo alloy and Ni-21Cr-9Mo-4Nb alloy (625) and stochastic foam samples of Co-29Cr-6Mo alloy fabricated by electron beam melting were characterized by optical metallography, and the dynamic stiffness (Young’s modulus) was measured by resonant frequency analysis. The relative stiffness (E/Es) versus relative density (ρ/ρs) plotted on a log-log basis resulted in a fitted straight line with a slope n ≅ 2, consistent with that for ideal open cellular materials. PMID:28879949
NASA Astrophysics Data System (ADS)
Wang, Lingqian; Zhou, Jiansong; Xin, Benbin; Yu, Youjun; Ren, Shufang; Li, Zhen
2017-08-01
Ag-MoO3 contained NiCrAlY based composite coating was successfully prepared on GH4169 stainless steel substrate by high energy ball milling and laser cladding. The microstructure and phase transformation were investigated by scanning electron microscopy (SEM) equipped with energy dispersive spectroscopy (EDS) and X-ray diffraction spectrum (XRD). The tribological behavior and mechanism from room temperature to 800 °C were investigated. Results showed that MoO3 in the composite powders transformed to Mo2C reinforcement under the high energy density of laser, and a series of opposite transformation occurred during friction process. The coating showed the lowest friction coefficient and low wear rate at 600 °C and 800 °C due to the generation of Ag2MoO4 during tribo-chemical reactions and the formation of lubrication glaze on the worn surface. Ag made effective lubrication when the temperature rose up to 200 °C. The coating displayed a relatively high friction coefficient (about 0.51) at 400 °C, because though MoO3 (oxidation products of Mo2C) and Ag2MoO4 were detected on the worn surface, they could not realize effective lubrication at this temperature. Abrasive wear, adhesive wear and plastic deformation contributed to the increased friction and wear.
NASA Astrophysics Data System (ADS)
Yin, Cun-hong; Liang, Yi-long; Jiang, Yun; Yang, Ming; Long, Shao-lei
2017-11-01
The microstructures of 20CrNi2Mo steel underneath the contact surface were examined after dry sliding. Scanning Electronic Microscopy (SEM), Transmission Electron Microscopy (TEM), Electron Backscattered Diffraction (EBSD) and an ultra-micro-hardness tester were used to characterize the worn surface and dry sliding wear-induced layer. Martensite laths were ultra-refined due to cumulative strains and a large strain gradient that occurred during cyclic loading in wear near the surface. The microstructure evolution in dominant abrasive wear differs from that in adhesive wear. In dominant abrasive wear, only bent martensite laths with high-density deformation dislocations were observed. In contrast, in dominant adhesive wear, gradient structures were formed along the depth from the wear surface. Cross-sectional TEM foils were prepared in a focused ion beam (FIB) to observe the gradient structures in a dry sliding wear-induced layer at depths of approximately 1-5 μm and 5-20 μm. The gradient structures contained nano-laminated structures with an average thickness of 30-50 nm and bent martensite laths. We found that the original martensite laths coordinated with the strain energy and provided origin boundaries for the formation of gradient structures. Geometrically necessary boundaries (GNBs) and isolated dislocation boundaries (IDBs) play important roles in forming the nano-laminated structures.
Kurdziel, Michael D; Salisbury, Meagan; Kaplan, Lige; Maerz, Tristan; Baker, Kevin C
2017-07-01
The production of wear debris particulate remains a concern due to its association with implant failure through complex biologic interactions. In the setting of unicompartmental knee arthroplasty (UKA), damage and wear of the components may introduce debris particulate into the adjacent, otherwise, healthy compartment. The purpose of this study was to investigate the in vitro effect of polymeric and metallic wear debris particles on cell proliferation, extracellular matrix regulation, and phagocytosis index of normal human articular chondrocytes (nHACs). In culture, nHACs were exposed to both cobalt-chromium-molybdenum (CoCrMo) and polymethyl-methacrylate (PMMA) wear debris particulate for 3 and 10 days. At 3 days, no significant difference in cell proliferation was found between control cells and cells exposed to both CoCrMo or PMMA particles. However, cell proliferation was significantly decreased for CoCrMo exposed nHACs at both 6 (P < 0.001) and 10 days (P < 0.001) and PMMA at 10 days (P < 0.001). Target gene expression displayed both a time- and material-dependent response to CoCrMo and PMMA particles. Significant differences in COL10A1, ACAN, VCAN, IL-1β, TNF-α, MMP3, ADAMTS1, CASP3, and CASP9 regulation were found between CoCrMo and PMMA exposed nHACs at day 3 with gene regulation returning to near baseline at 10 days. Results from our study indicate a role of wear debris induced cartilage degeneration after exposure to polymeric and metallic wear debris particulate, suggesting an additional pathway of cartilage breakdown, potentially manifesting in traditional clinical symptoms.
The cause of welding cracks in aircraft steels
NASA Technical Reports Server (NTRS)
Muller, J
1940-01-01
The discussion in this article refers to gas welding of thin-walled parts of up to about 3 mm thickness. It was proven that by restricting the sulphur, carbon, and phosphorous content, and by electric-furnace production of the steel, it was possible in a short time to remove this defect. Weld hardness - i.e., martensite formation and hardness of the overheated zone - has no connection with the tendency to weld-crack development. Si, Cr, Mo, or V content has no appreciable effect, while increased manganese content tends to reduce the crack susceptibility.
Noroozifar, M; Khorasani-Motlagh, M; Gorgij, M N; Naderpour, H R
2008-07-15
The demand for effective adsorbents is to increase in response to the widespread recognition of the deleterious health effects of Cr(VI)-oxyanions exposure through drinking water. In this study, Cr(VI)-oxyanions uptake from aqueous solutions by a new bolaform N,N,N,N',N',N'-hexamethyl-1,9-nonanediammonium dibromide reagent-modified natural zeolitic materials from Zahedan, Iran, was investigated using batch technique. Spectrophotometry method was used for Cr determination. The Cr(VI)-solution concentration varied between 2 and 104 mg L(-1). It was shown that the Cr(VI) uptake strongly depended on pH. The maximum removal of Cr(VI) occurred in acidic media at pH<1.5. The amounts of Cr(VI) adsorbed increased with increase in dose of both adsorbents and their contact time. Based on results an adsorption mechanism has been suggested. The adsorption data for modified zeolite using the amine was consistent with Langmuir isotherm equation and the equilibrium data was analyzed using the Langmuir isotherm.
Electrochemical Corrosion Behavior of Spray-Formed Boron-Modified Supermartensitic Stainless Steel
NASA Astrophysics Data System (ADS)
Zepon, Guilherme; Nogueira, Ricardo P.; Kiminami, Claudio S.; Botta, Walter J.; Bolfarini, Claudemiro
2017-04-01
Spray-formed boron-modified supermartensitic stainless steel (SMSS) grades are alloys developed to withstand severe wear conditions. The addition of boron to the conventional chemical composition of SMSS, combined with the solidification features promoted by the spray forming process, leads to a microstructure composed of low carbon martensitic matrix reinforced by an eutectic network of M2B-type borides, which considerably increases the wear resistance of the stainless steel. Although the presence of borides in the microstructure has a very beneficial effect on the wear properties of the alloy, their effect on the corrosion resistance of the stainless steel was not comprehensively evaluated. The present work presents a study of the effect of boron addition on the corrosion resistance of the spray-formed boron-modified SMSS grades by means of electrochemical techniques. The borides fraction seems to have some influence on the repassivation kinetics of the spray-formed boron-modified SMSS. It was shown that the Cr content of the martensitic matrix is the microstructural feature deciding the corrosion resistance of this sort of alloys. Therefore, if the Cr content in the alloy is increased to around 14 wt pct to compensate for the boron consumed by the borides formation, the corrosion resistance of the alloy is kept at the same level of the alloy without boron addition.
Hidroxyapatite Coating on CoCrMo Alloy Titanium Nitride Coated Using Biomimetic Method
NASA Astrophysics Data System (ADS)
Charlena; Sukaryo, S. G.; Fajar, M.
2016-11-01
Bone implants is a way to cure broken bones which is being developed. The implants can be made of metals, ceramics and polymers. Metallic materials commonly used are titanium (Ti), stainless steel, and metal alloys. This study used Co-based alloys, i.e. CoCrMo coated with titanium nitride (TiN) which was then coated on hidroxyapatite (HAp). The HAp coating on the surface of CoCrMo alloy was done by biomimetic methods, first by soaking the metal alloys in simulated body fluid (SBF) solution for 18, 24, and 36 hours. The immersion in the SBF solution produced white coat on the surface of the metal alloy. The layers formed were analyzed by scanning electron microscope (SEM) and characterized by x-ray diffractometer (XRD). Based on the SEM results of 36 hours treatment, the morphology of apatite crystal formed fine grains. According to XRD result, there were HAp peaks at angles 2θ 31.86, 32.25, dan 39.48. However, there were also CaCO3 peaks at angles 2θ 29.46, 36.04, and 46.79. It indicated the pure HAp is not yet formed.
Analysis of the thermal expansivity near the tricritical point in dilute chromium alloys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yurtseven, H., E-mail: hamit@metu.edu.tr; Tari, Ö., E-mail: ozlemilgin@arel.edu.tr
Chromium (Cr) undergoes a first order Neel transition as an antiferromagnetic material. When V, Mo and Mn atoms are substituted in the Cr lattice, a weak first order Neel transition in pure Cr changes toward a second order transition and a possible tricritical point in CrV occurs close to 0.2 at %V, as observed experimentally from the measurements of the thermal expansivity at various temperatures. In this study, we analyze the experimental data for the thermal expansivity from the literature as a function of temperature using the power - law formula for Cr alloys (Cr - 0.1V, 0.2V, 0.5V andmore » Cr - 0.1Mn, Cr - 0.2Mo, 0.3Mo, 0.4Mo). Our results are interpreted near the tricritical point in dilute chromium alloys.« less
Influence of hydrogen on the corrosion behavior of stainless steels in lithium
NASA Astrophysics Data System (ADS)
Shulga, A. V.
2008-02-01
Corrosion behavior of several stainless steels in lithium and lithium with 0.05%H has been examined. Corrosion tests were performed under static conditions at 600 and 700 °C in the austenitic stainless steel of the type AISI 304 containers. Intensive formation of σ-phase of the composition Fe 50Cr 43Mo 3Ni 4 on the surface of austenitic stainless steels of the type AISI 316 at 700 °C for 1000 h was established as a result of isothermal mass transfer. Addition of 0.05%H in the form of LiH to lithium resulted in an increase in the quantity of the σ-phase. After corrosion tests of ferritic/martensitic steel in lithium at 700 °C for 1000 h the formation of the γ-phase was observed. In Li + 0.05%H besides the γ-phase was also formed the σ-phase. The features of decarburization of investigated stainless steels were examined using the direct method of activation autoradiography on carbon. Addition of 0.05%H in lithium significantly decreased the carbon content in the decarburization zone of austenitic stainless steel Fe-18Cr-15Ni-0.15C-0.23B without a noticeable change in the thickness of the decarburization zone. Decarburization of ferritic/martensitic stainless steel was less than of austenitic stainless steel using the same corrosion tests.
Structural, magnetic and transport properties of Pb{sub 2}Cr{sub 1+x}Mo{sub 1−x}O{sub 6} (−1≤x≤1/3)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, H.F.; School of Mathematics and Physics, University of Science and Technology, Beijing 100083; Cao, L.P.
Pb{sub 2}Cr{sub 1+x}Mo{sub 1-x}O{sub 6} (−1≤x≤1/3) samples were synthesized via a high pressure and high temperature route. X-ray diffraction results suggest the samples crystallize in a disordered double perovskite structure (Pm-3m). X-ray photoemission spectroscopy results confirm the presence of Mo{sup 4+} for x=−1 and Mo{sup 6+} for x=1/3. The measured magnetic and electrical properties exhibit systematic change with increasing x. - Highlights: • A series of Pb{sub 2}Cr{sub 1+x}Mo{sub 1−x}O{sub 6} samples were synthesized under high pressure. • Magnetic and electrical properties of the series samples were investigated. • Valence states of Cr and Mo were determined through the analysesmore » of XRD and XPS results. • Ground state of PbMoO{sub 3} were determined through the transport study and first-principles calculations.« less
Xu, Haisheng; Li, Lili; Liu, Bin; Xue, Ganglin; Hu, Huaiming; Fu, Feng; Wang, Jiwu
2009-11-02
Two new dinuclear sandwich-type heteropolymolybdates based on the mulitidendate inorganic fragment [AsMo(7)O(27)] and Cr(III) and Fe(III) ions, namely, the homometallic sandwich polyoxometalate (POM) (NH(4))(12)[Fe(2)(AsMo(7)O(27))(2)] x 12 H(2)O (1) and the first example of the "symmetrical" heterometallic Cr(III)-Fe(III) sandwich POM, (NH(4))(12)[FeCr(AsMo(7)O(27))(2)] x 13 H(2)O (2), were simultaneously synthesized in high yield. Their magnetic properties are thoroughly investigated together with the homometallic sandwich POM (NH(4))(12)[Cr(2)(AsMo(7)O(27))(2)] x 11 H(2)O (3). The chi(M)T values for compounds 1-3 at 300 K correspond well to the calculated spin-only values for Fe(III) (S = 5/2) and Cr(III) (S = 3/2) with g(Fe) = g(Cr) = 2. Upon cooling, the chi(M)T values decline monotonously and reach 0.14, 1.00, and 0.11 cm(3) K mol(-1) at 2.0 K for 1, 2, and 3, respectively, indicating a significant antiferromagnetic exchange between the magnetic centers with J = -2.09, -4.09, and -6.26 cm(-1), respectively, for 1, 2, and 3. The magnetic results clearly establish that compound 2 is formed by bimetallic Cr(III)-Fe(III) units and not by a mixture of the two antiferromagnetically coupled homometallic species. Their thermal properties are also characterized.
Structure and properties of corrosion and wear resistant Cr-Mn-N steels
NASA Astrophysics Data System (ADS)
Lenel, U. R.; Knott, B. R.
1987-06-01
Steels containing about 12 pct Cr, 10 pct Mn, and 0.2 pct N have been shown to have an unstable austenitic microstructure and have good ductility, extreme work hardening, high fracture strength, excellent toughness, good wear resistance, and moderate corrosion resistance. A series of alloys containing 9.5 to 12.8 pct Cr, 5.0 to 10.4 pct Mn, 0.16 to 0.32 pct N, 0.05 pct C, and residual elements typical of stainless steels was investigated by microstructural examination and mechanical, abrasion, and corrosion testing. Microstructures ranged from martensite to unstable austenite. The unstable austenitic steels transformed to α martensite on deformation and displayed very high work hardening, exceeding that of Hadfield’s manganese steels. Fracture strengths similar to high carbon martensitic stainless steels were obtained while ductility and toughness values were high, similar to austenitic stainless steels. Resistance to abrasive wear exceeded that of commercial abrasion resistant steels and other stainless steels. Corrosion resistance was similar to that of other 12 pct Cr steels. Properties were not much affected by minor compositional variations or rolled-in nitrogen porosity. In 12 pct Cr-10 pct Mn alloys, ingot porosity was avoided when nitrogen levels were below 0.19 pet, and austenitic microstructures were obtained when nitrogen levels exceeded 0.14 pct.
Lanthana-bearing nanostructured ferritic steels via spark plasma sintering
NASA Astrophysics Data System (ADS)
Pasebani, Somayeh; Charit, Indrajit; Wu, Yaqiao; Burns, Jatuporn; Allahar, Kerry N.; Butt, Darryl P.; Cole, James I.; Alsagabi, Sultan F.
2016-03-01
A lanthana-containing nanostructured ferritic steel (NFS) was processed via mechanical alloying (MA) of Fe-14Cr-1Ti-0.3Mo-0.5La2O3 (wt.%) and consolidated via spark plasma sintering (SPS). In order to study the consolidation behavior via SPS, sintering temperature and dwell time were correlated with microstructure, density, microhardness and shear yield strength of the sintered specimens. A bimodal grain size distribution including both micron-sized and nano-sized grains was observed in the microstructure of specimens sintered at 850, 950 and1050 °C for 45 min. Significant densification occurred at temperatures greater than 950 °C with a relative density higher than 98%. A variety of nanoparticles, some enriched in Fe and Cr oxides and copious nanoparticles smaller than 10 nm with faceted morphology and enriched in La and Ti oxides were observed. After SPS at 950 °C, the number density of Cr-Ti-La-O-enriched nanoclusters with an average radius of 1.5 nm was estimated to be 1.2 × 1024 m-3. The La + Ti:O ratio was close to 1 after SPS at 950 and 1050 °C; however, the number density of nanoclusters decreased at 1050 °C. With SPS above 950 °C, the density improved but the microhardness and shear yield strength decreased due to partial coarsening of the grains and nanoparticles.
Sykora, Richard E; McDaniel, Steven M; Wells, Daniel M; Albrecht-Schmitt, Thomas E
2002-10-07
The reactions of the molecular transition metal iodates A[CrO(3)(IO(3))] (A = K, Rb, Cs) with UO(3) under mild hydrothermal conditions provide access to four new, one-dimensional, uranyl chromatoiodates, Rb[UO(2)(CrO(4))(IO(3))(H(2)O)] (1) and A(2)[UO(2)(CrO(4))(IO(3))(2)] (A = K (2), Rb (3), Cs (4)). Under basic conditions, MoO(3), UO(3), and KIO(4) can be reacted to form K(2)[UO(2)(MoO(4))(IO(3))(2)] (5), which is isostructural with 2 and 3. The structure of 1 consists of one-dimensional[UO(2)(CrO(4))(IO(3))(H(2)O)](-) ribbons that contain uranyl moieties bound by bridging chromate and iodate anions as well as a terminal water molecule to create [UO(7)] pentagonal bipyramidal environments around the U(VI) centers. These ribbons are separated from one another by Rb(+) cations. When the iodate content is increased in the hydrothermal reactions, the terminal water molecule is replaced by a monodentate iodate anion to yield 2-4. These ribbons can be further modified by replacing tetrahedral chromate anions with MoO(4)(2)(-) anions to yield isostructural, one-dimensional [UO(2)(MoO(4))(IO(3))(2)](2)(-) ribbons. Crystallographic data: 1, triclinic, space group P(-)1, a = 7.3133(5) A, b = 8.0561(6) A, c = 8.4870(6) A, alpha = 88.740(1) degrees, beta = 87.075(1) degrees, gamma = 71.672(1) degrees, Z = 2; 2, monoclinic, space group P2(1)/c, a = 11.1337(5) A, b = 7.2884(4) A, c = 15.5661(7) A, beta = 107.977(1) degrees, Z = 4; 3, monoclinic, space group P2(1)/c, a = 11.3463(6) A, b = 7.3263(4) A, c = 15.9332(8) A, beta = 108.173(1) degrees, Z = 4; 4, monoclinic, space group P2(1)/n, a = 7.3929(5) A, b = 8.1346(6) A, c = 22.126(2) A, beta = 90.647(1) degrees, Z = 4; 5, monoclinic, space group P2(1)/c, a = 11.3717(6) A, b = 7.2903(4) A, c = 15.7122(8) A, beta = 108.167(1) degrees, Z = 4.
Microstructure and Charpy impact properties of 12 14Cr oxide dispersion-strengthened ferritic steels
NASA Astrophysics Data System (ADS)
Oksiuta, Z.; Baluc, N.
2008-02-01
This paper describes the microstructure and Charpy impact properties of 12-14 Cr ODS ferritic steels fabricated by mechanical alloying of pure Fe, Cr, W, Ti and Y 2O 3 powders in a Retsch ball mill in argon atmosphere, followed by hot isostatic pressing at 1100 °C under 200 MPa for 4 h and heat treatment at 850 °C for 1 h. Weak Charpy impact properties were obtained in the case of both types of as-hipped materials. In the case of 14Cr materials, the weak Charpy properties appeared related to a bimodal grain size distribution and a heterogeneous dislocation density between the coarse and fine grains. No changes in microstructure were evidenced after heat treatment at 850 °C. Significant improvement in the transition temperature and upper shelf energy of 12Cr materials was obtained by heat treatment at 850 °C for 1 h, which was attributed to the formation of smaller grains, homogenous in size and containing fewer dislocations, with respect to the as-hipped microstructure. This modified microstructure results in a good compromise between strength and Charpy impact properties.
Najmeddin, Ali; Keshavarzi, Behnam; Moore, Farid; Lahijanzadeh, Ahmadreza
2017-10-28
This study investigates the occurrence and spatial distribution of potentially toxic elements (PTEs) (Hg, Cd, Cu, Mo, Pb, Zn, Ni, Co, Cr, Al, Fe, Mn, V and Sb) in 67 road dust samples collected from urban industrial areas in Ahvaz megacity, southwest of Iran. Geochemical methods, multivariate statistics, geostatistics and health risk assessment model were adopted to study the spatial pollution pattern and to identify the priority pollutants, regions of concern and sources of the studied PTEs. Also, receptor positive matrix factorization model was employed to assess pollution sources. Compared to the local background, the median enrichment factor values revealed the following order: Sb > Pb > Hg > Zn > Cu > V > Fe > Mo > Cd > Mn > Cr ≈ Co ≈ Al ≈ Ni. Statistical results show that a significant difference exists between concentrations of Mo, Cu, Pb, Zn, Fe, Sb, V and Hg in different regions (univariate analysis, Kruskal-Wallis test p < 0.05), indicating the existence of highly contaminated spots. Integrated source identification coupled with positive matrix factorization model revealed that traffic-related emissions (43.5%) and steel industries (26.4%) were first two sources of PTEs in road dust, followed by natural sources (22.6%) and pipe and oil processing companies (7.5%). The arithmetic mean of pollution load index (PLI) values for high traffic sector (1.92) is greater than industrial (1.80) and residential areas (1.25). Also, the results show that ecological risk values for Hg and Pb in 41.8 and 9% of total dust samples are higher than 80, indicating their considerable or higher potential ecological risk. The health risk assessment model showed that ingestion of dust particles contributed more than 83% of the overall non-carcinogenic risk. For both residential and industrial scenarios, Hg and Pb had the highest risk values, whereas Mo has the lowest value.
The Effects of Post-Sintering Treatments on Microstructure and Mechanical Properties of Mn-Mo Steel
NASA Astrophysics Data System (ADS)
Fiał, Ch.
2017-12-01
The effect of heat treatment on density, hardness, microstructure and tensile properties of Fe-0.85Mo-1.3Mn-0.6C sintered steel were investigated. Pre-alloyed Astaloy 85Mo, ferromanganese and UF4 graphite powders were mixed for 60 minutes in a Turbula mixer and then pressed in single-action die at 660MPa to produce green compacts (according to PN EN ISO 2740).The compacts were sintered in a specially designed semi-closed container at 1120 or 1250°C for 60 minutes in N2. The chemical composition of the sintering atmosphere was modified by adding getter and/or activator into the container. Two different types of heat treatment in nitrogen were carried out: sinteraustempering at 525°C for 60 minutes; and sinterhardening with additional tempering at 200°C for 60 minutes. The slightly better combination of strength and plasticity of steel for both sintering temperatures were achieved after sinterhardening+tempering variant. Average values of 0.2% offset yield stress, ultimate tensile strength and elongation after sintering in 1250°C, were 415MPa, 700MPa, and 2.0%, respectively.
Direct In Vivo Inflammatory Cell-Induced Corrosion of CoCrMo Alloy Orthopedic Implant Surfaces
Gilbert, Jeremy L.; Sivan, Shiril; Liu, Yangping; Kocagöz, Sevi; Arnholt, Christina; Kurtz, Steven M.
2014-01-01
Cobalt-chromium-molybdenum alloy, used for over four decades in orthopedic implants, may corrode and release wear debris into the body during use. These degradation products may stimulate immune and inflammatory responses in vivo. We report here on evidence of direct inflammatory cell-induced corrosion of human implanted and retrieved CoCrMo implant surfaces. Corrosion morphology on CoCrMo implant surfaces, in unique and characteristic patterns, and the presence of cellular remnants and biological materials intimately entwined with the corrosion indicates direct cellular attack under the cell membrane region of adhered and/or migrating inflammatory cells. Evidence supports a Fenton-like reaction mechanism driving corrosion in which reactive oxygen species are the major driver of corrosion. Using in vitro tests, large increases in corrosion susceptibility of CoCrMo were seen (40 to 100 fold) when immersed in phosphate buffered saline solutions modified with hydrogen peroxide and HCl to represent the chemistry under inflammatory cells. This discovery raises significant new questions about the clinical consequences of such corrosion interactions, the role of patient inflammatory reactions, and the detailed mechanisms at play. PMID:24619511
NASA Astrophysics Data System (ADS)
Han, Ying; Zhang, Wei; Sun, Shicheng; Chen, Hua; Ran, Xu
2017-08-01
Duplex stainless steel composites with various weight fractions of TiC particles are prepared by spark plasma sintering. Ferritic 434L and austenitic 316L stainless steel powders are premixed in a 50:50 weight ratio and added with 3-9 wt.% TiC. The compacts are sintered in the solid state under vacuum conditions at 1223 K for 5 min. The effects of TiC content on the microstructure, hardness, and corrosion resistance of duplex stainless steel composites fabricated by powder metallurgy are evaluated. The results indicate that the TiC particulates as reinforcements can be distributed homogeneously in the steel matrix. Densification of sintered composites decreases with increasing TiC content. M23C6 carbide precipitates along grain boundary, and its neighboring Cr-Mo-depleted region is formed in the sintered microstructure, which can be eliminated subsequently with appropriate heat treatment. With the addition of TiC, the hardness of duplex stainless steel fabricated by powder metallurgy can be markedly enhanced despite increased porosity in the composites. However, TiC particles increase the corrosion rate and degrade the passivation capability, particularly for the composite with TiC content higher than 6 wt.%. Weakened metallurgical bonding in the composite with high TiC content provides the preferred sites for pitting nucleation and/or dissolution.
Comparison of Fatigue Properties and Fatigue Crack Growth Rates of Various Implantable Metals
Okazaki, Yoshimitsu
2012-01-01
The fatigue strength, effects of a notch on the fatigue strength, and fatigue crack growth rate of Ti-15Zr-4Nb-4Ta alloy were compared with those of other implantable metals. Zr, Nb, and Ta are important alloying elements for Ti alloys for attaining superior long-term corrosion resistance and biocompatibility. The highly biocompatible Ti-15Zr-4Nb-4Ta alloy exhibited an excellent balance between strength and ductility. Its notched tensile strength was much higher than that of a smooth specimen. The strength of 20% cold-worked commercially pure (C.P.) grade 4 Ti was close to that of Ti alloy. The tension-to-tension fatigue strength of an annealed Ti-15Zr-4Nb-4Ta rod at 107 cycles was approximately 740 MPa. The fatigue strength of this alloy was much improved by aging treatment after solution treatment. The fatigue strengths of C.P. grade 4 Ti and stainless steel were markedly improved by 20% cold working. The fatigue strength of Co-Cr-Mo alloy was markedly increased by hot forging. The notch fatigue strengths of 20% cold-worked C.P. grade 4 Ti, and annealed and aged Ti-15Zr-4Nb-4Ta, and annealed Ti-6Al-4V alloys were less than those of the smooth specimens. The fatigue crack growth rate of Ti-15Zr-4Nb-4Ta was the same as that of Ti-6Al-4V. The fatigue crack growth rate in 0.9% NaCl was the same as that in air. Stainless steel and Co-Cr-Mo-Ni-Fe alloy had a larger stress-intensity factor range (ΔK) than Ti alloy.
Low-cost, high-strength Fe--Ni--Cr alloys for high temperature exhaust valve application
Muralidharan, Govindarajan
2017-09-05
An Fe--Ni--Cr alloy is composed essentially of, in terms of wt. %: 2.4 to 3.7 Al, up to 1.05 Co, 14.8 to 15.9 Cr, 25 to 36 Fe, up to 1.2 Hf, up to 4 Mn, up to 0.6 Mo, up to 2.2 Nb, up to 1.05 Ta, 1.9 to 3.6 Ti, up to 0.08 W, up to 0.03 Zr, 0.18 to 0.27 C, up to 0.0015 N, balance Ni, wherein, in terms of atomic percent: 8.5.ltoreq.Al+Ti+Zr+Hf+Ta.ltoreq.11.5, 0.53.ltoreq.Al/(Al+Ti+Zr+Hf+Ta).ltoreq.0.65, and 0.16.ltoreq.Cr/(Fe+Ni+Cr+Mn).ltoreq.0.21, the alloy being essentially free of Cu, Si, and V.
NASA Astrophysics Data System (ADS)
Tripathy, Haraprasanna; Hajra, Raj Narayan; Sudha, C.; Raju, S.; Saibaba, Saroja
2018-04-01
The Young's modulus (E) and Shear modulus (G) of an indigenously developed 18Cr-9Ni-0.1C-2.95 Cu-0.58Nb (wt %) austenitic stainless steel has been evaluated in the temperature range 298 K to 1273 K (25 °C to 1000 °C), using Impulse excitation technique (IET). The Bulk modulus (K) and the poison's ratio have been estimated from the measured values of E and G. It is observed that the elastic constants (E, G and K) are found to decrease in a nonlinear fashion with increase in temperature. The Cu precipitation is found to influence the elastic moduli of the steel in the cooling cycle. The observed elastic moduli are fitted to 3rd order polynomial equations in order to describe the temperature dependence of E, G, K moduli in the temperature range 298-1273 K (25 °C to 1000 °C). The room temperature values of E,G and K moduli is found to be 207, 82 and 145 GPa respectively for the present steel.
Water Droplet Erosion Behavior of High-Power Diode Laser Treated 17Cr4Ni PH Stainless Steel
NASA Astrophysics Data System (ADS)
Mann, B. S.
2014-05-01
This article deals with water droplet erosion (WDE) behavior of high-power diode laser (HPDL) treated 17Cr4Ni PH stainless steel. After HPDL treatment, the water droplet erosion resistance (WDER) of 17Cr4Ni PH stainless steel has not improved. The main reason is the surface hardness, which has not improved after HPDL treatment though the microstructure has become much finer. On the other hand, precipitation hardening of the alloy at 490°C for 3 h has resulted in improved WDER more than twice. This is because of its increased microhardness and improved modified ultimate resilience (MUR), and formation of fine grained microstructure. The WDER has been correlated with MUR, a single mechanical property, based upon microhardness, ultimate tensile strength, and Young's modulus. WDERs of HPDL treated, untreated, and precipitation hardened 17Cr4Ni PH stainless steel samples were determined using a WDE test facility as per ASTM G73-1978. The WDE damage mechanism, compared on the basis of MUR and scanning electron micrographs, is discussed and reported in this article.
The irradiation hardening of Ni-Mo-Cr and Ni-W-Cr alloy under Xe26+ ion irradiation
NASA Astrophysics Data System (ADS)
Chen, Huaican; Hai, Yang; Liu, Renduo; Jiang, Li; Ye, Xiang-xi; Li, Jianjian; Xue, Wandong; Wang, Wanxia; Tang, Ming; Yan, Long; Yin, Wen; Zhou, Xingtai
2018-04-01
The irradiation hardening of Ni-Mo-Cr and Ni-W-Cr alloy was investigated. 7 MeV Xe26+ ion irradiation was performed at room temperature and 650 °C with peak damage dose from 0.05 to 10 dpa. With the increase of damage dose, the hardness of Ni-Mo-Cr and Ni-W-Cr alloy increases, and reaches saturation at damage dose ≥1 dpa. Moreover, the damage dose dependence of hardness in both alloys can be described by the Makin and Minter's equation, where the effective critical volume of obstacles can be used to represent irradiation hardening resistance of the alloys. Our results also show that Ni-W-Cr alloy has better irradiation hardening resistance than Ni-Mo-Cr alloy. This is ascribed to the fact that the W, instead of Mo in the alloy, can suppress the formation of defects under ion irradiation.
Quantitative in vivo biocompatibility of new ultralow-nickel cobalt-chromium-molybdenum alloys.
Sonofuchi, Kazuaki; Hagiwara, Yoshihiro; Koizumi, Yuichiro; Chiba, Akihiko; Kawano, Mitsuko; Nakayama, Masafumi; Ogasawara, Kouetsu; Yabe, Yutaka; Itoi, Eiji
2016-09-01
Nickel (Ni) eluted from metallic biomaterials is widely accepted as a major cause of allergies and inflammation. To improve the safety of cobalt-chromium-molybdenum (Co-Cr-Mo) alloy implants, new ultralow-Ni Co-Cr-Mo alloys with and without zirconium (Zr) have been developed, with Ni contents of less than 0.01%. In the present study, we investigated the biocompatibility of these new alloys in vivo by subcutaneously implanting pure Ni, conventional Co-Cr-Mo, ultralow-Ni Co-Cr-Mo, and ultralow-Ni Co-Cr-Mo with Zr wires into the dorsal sides of mice. After 3 and 7 days, tissues around the wire were excised, and inflammation; the expression of IL-1β, IL-6, and TNF-α; and Ni, Co, Cr, and Mo ion release were analyzed using histological analyses, qRT-PCR, and inductively coupled plasma mass spectrometry (ICP-MS), respectively. Significantly larger amounts of Ni eluted from pure Ni wires than from the other wires, and the degree of inflammation depended on the amount of eluted Ni. Although no significant differences in inflammatory reactions were identified among new alloys and conventional Co-Cr-Mo alloys in histological and qRT-PCR analyses, ICP-MS analysis revealed that Ni ion elution from ultralow-Ni Co-Cr-Mo alloys with and without Zr was significantly lower than from conventional Co-Cr-Mo alloys. Our study, suggests that the present ultralow-Ni Co-Cr-Mo alloys with and without Zr have greater safety and utility than conventional Co-Cr-Mo alloys. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:1505-1513, 2016. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.
Alloy Effects on the Gas Nitriding Process
NASA Astrophysics Data System (ADS)
Yang, M.; Sisson, R. D.
2014-12-01
Alloy elements, such as Al, Cr, V, and Mo, have been used to improve the nitriding performance of steels. In the present work, plain carbon steel AISI 1045 and alloy steel AISI 4140 were selected to compare the nitriding effects of the alloying elements in AISI 4140. Fundamental analysis is carried out by using the "Lehrer-like" diagrams (alloy specific Lehrer diagram and nitriding potential versus nitrogen concentration diagram) and the compound layer growth model to simulate the gas nitriding process. With this method, the fundamental understanding for the alloy effect based on the thermodynamics and kinetics becomes possible. This new method paves the way for the development of new alloy for nitriding.
Caries Management Strategies for Primary Molars
Santamaria, R.M.; Innes, N.P.T.; Machiulskiene, V.; Evans, D.J.P.; Splieth, C.H.
2014-01-01
Minimal invasive approaches to managing caries, such as partial caries removal techniques, are showing increasing evidence of improved outcomes over the conventional complete caries removal. There is also increasing interest in techniques where no caries is removed. We present the 1-yr results of clinical efficacy for 3 caries management options for occlusoproximal cavitated lesions in primary molars: conventional restorations (CR; complete caries removal and compomer restoration), Hall technique (HT; no caries removal, sealing in with stainless steel crowns), and nonrestorative caries treatment (NRCT; no caries removal, opening up the cavity, teaching brushing and fluoride application). In sum, 169 children (3-8 yr old; mean, 5.56 ± 1.45 yr) were enrolled in this secondary care–based, 3-arm, parallel-group, randomized clinical trial. Treatments were carried out by specialist pediatric dentists or postgraduate trainees. One lesion per child received CR, HT, or NRCT. Outcome measures were clinical failure rates, grouped as minor failure (restoration loss/need for replacement, reversible pulpitis, caries progression, etc.) and major failure (irreversible pulpitis, abscess, etc.). There were 148 children (87.6%) with a minimum follow-up of 11 mo (mean, 12.23 ± 0.98 mo). Twenty teeth were recorded as having at least 1 minor failure: NRCT, n = 8 (5%); CR, n = 11 (7%); HT, n = 1 (1%) (p = .002, 95% CI = 0.001 to 0.003). Only the comparison between NRCT and CR showed no significant difference (p = .79, 95% CI = 0.78 to 0.80). Nine (6%) experienced at least 1 major failure: NRCT, n = 4 (2%); CR, n = 5 (3%); HT, n = 0 (0%) (p = .002, 95% CI = 0.001 to 0.003). Individual comparison of NRCT and CR showed no statistically significant difference in major failures (p = .75, 95% CI = 0.73 to 0.76). Success and failure rates were not significantly affected by pediatric dentists’ level of experience (p = .13, 95% CI = 0.12 to 0.14). The HT was significantly more successful clinically than NRCT and CR after 1 yr, while pairwise analyses showed comparable results for treatment success between NRCT and CR (ClinicalTrials.gov NCT01797458). PMID:25216660
Metallurgical Analysis of Ball Bearing Seized During Operation
NASA Astrophysics Data System (ADS)
Jha, Abhay K.; Swathi Kiranmayee, M.; Ramesh Narayanan, P.; Sreekumar, K.; Sinha, P. P.
2012-06-01
440C stainless steel of martensitic grade is being extensively used for bearing application because of its high wear and corrosion resistance. This alloy steel with 1 wt.% C along with 17 wt.% Cr, 1 wt.% Mn and up to 0.75 wt.% Mo has a number of primary carbides, which provide high hardness and good wear resistance. Owing to its unique performance characteristic, this steel finds a number of applications in space program. One such application is bearing used in booster pump assembly of propulsion system. During one of the ground tests of propulsion system, booster pump bearing seized operation after performing its partial intended function. The bearing was removed from the assembly and cut open. The ball and outer caging were analyzed using metallographic techniques and compared with another bearing taken from the fresh stock. Study indicated that ball as well as outer caging experienced exposure to high temperature and resulted in phase transformation. This article highlights the details of investigations carried out.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morgan, M.J.; Tosten, M.H
1994-10-01
J-integral fracture mechanics techniques and electron microscopy observations were used to investigate the effects of tritium and its radioactive decay product, {sup 3}He, on Types 316L, 304L and 21Cr-6Ni-9Mn stainless steels. Tritium-exposed-and-aged steels had lower fracture-toughness values and shallower sloped crack-growth-resistance curves than unexposed steels. Both fracture-toughness parameters decreased with increasing concentrations of {sup 3}He. The fracture-toughness reductions were accompanied by a change in fracture mode from microvoid-nucleation-and-growth processes in control samples to grain-and-twin-boundary fracture in tritium-charged-and-aged samples. Type 316L stainless steel had the highest fracture-toughness values and Type 21Cr-6Ni-9Mn had the lowest. Samples containing {sup 3}He but degassed ofmore » tritium had fracture toughness properties that were similar to uncharged samples. The results indicate that helium bubbles enhance the embrittlement effects of hydrogen by affecting the deformation properties and by increasing localized hydrogen concentrations through trapping effects.« less
NASA Astrophysics Data System (ADS)
Koscheev, Vladimir; Manturov, Gennady; Pronyaev, Vladimir; Rozhikhin, Evgeny; Semenov, Mikhail; Tsibulya, Anatoly
2017-09-01
Several k∞ experiments were performed on the KBR critical facility at the Institute of Physics and Power Engineering (IPPE), Obninsk, Russia during the 1970s and 80s for study of neutron absorption properties of Cr, Mn, Fe, Ni, Zr, and Mo. Calculations of these benchmarks with almost any modern evaluated nuclear data libraries demonstrate bad agreement with the experiment. Neutron capture cross sections of the odd isotopes of Cr, Mn, Fe, and Ni in the ROSFOND-2010 library have been reevaluated and another evaluation of the Zr nuclear data has been adopted. Use of the modified nuclear data for Cr, Mn, Fe, Ni, and Zr leads to significant improvement of the C/E ratio for the KBR assemblies. Also a significant improvement in agreement between calculated and evaluated values for benchmarks with Fe reflectors was observed. C/E results obtained with the modified ROSFOND library for complex benchmark models that are highly sensitive to the cross sections of structural materials are no worse than results obtained with other major evaluated data libraries. Possible improvement in results by decreasing the capture cross section for Zr and Mo at the energies above 1 keV is indicated.
Thomsen, M; Schneider, U; Breusch, S J; Hansmann, J; Freund, M
2001-08-01
The authors evaluated the significance of different metal alloys used in orthopaedic surgery in producing artefacts during magnetic resonance imaging. Several MRI sequences were tested and magnetic effects evaluated. Twelve discs made of different metal alloys from three manufacturers were examined. These discs were placed in a plastic box with a defined position in ultrasound gel. Then a sensitive, standard T1 weighted gradient echo sequence (TE: 4.1 ms; TR 9.4) was carried out in a coronal plane (Matrix 128/256). A Phillips Easy Vision workstation was used for image analysis. The largest area of artefact formation, including the surface size of the disc, was calculated using a special software program. In order to minimise the measurement error all discs were measured 10 times and the average value was determined. Then eight different sequences were run and measured in the same way. In a second series, all discs were placed separately on metric paper and subjected to the magnetic field of the MRI in order to detect possible motion secondary to the magnetic field applied. The different titanium alloys showed average distortion areas of from 245 mm2 (Ti6Al4V) to 349 mm2 (Ti5Al2.5Fe). Cobalt chrome alloys yielded differences of between 600 mm2 and 651 mm2 and iron alloys of between 902 mm2 (316L or Fe18Cr10NiMo) and 950 mm2 (Fe22Cr10Ni4Mn2MoNb) on average for the standard T1 weighted gradient echo. The artefact areas were dependent on the different sequences performed. For steel, (Fe18Cr10NiMo) areas of from 411 mm2 (T1TSE) to 2027 mm2 (EPI/3D/SPIR) were measured. All sequences studied produced different artefact pictures. None of the materials tested showed changes in position secondary to ferromagnetism. The size of signal distortion by MRI depends on the alloy making up the implanted material and the sequences used. The smallest artefacts occurred with the turbo-spin-echo sequences (TSE). The alloys tested in our study seem to carry no risk for patients of ferromagnetically induced secondary loosening caused by MRI scanning.
Underclad cracking of pressure vessel steels for light-water reactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lopez, H.F.
1987-06-01
Although fracture mechanics analyses have shown that underclad cracks have no detrimental effect on the integrity of thick walled pressure vessels (40 year service), in order to avoid unexpected failures the US Nuclear Regulatory Commission has issued Regulatory Guide 1.43 which sets limits on the extent of fissures permitted and describes acceptable means of controlling the weld cladding processes. Cavitation and intergranular fissuring in SA508-2 and 22NiMoCr37 steels can occur in the presence or absence of intergranular particles. The observations of intergranular fissuring and cavitation in those HAZ free from overlapping effects are attributed to grain boundary segregation. Other probablemore » void nucleation sites are the grain boundary-lath interface intersections which facilitate the formation of grain boundary discontinuities.« less
Controlling Hydrogen Embrittlement in Ultra-High Strength Steels
2006-06-01
this tempering temperature, (5) finely distributed, partly coherent M2C (where M = 75 at.% Cr, 13 Fe and 12 Mo) in martensite , averaging 2 nm...states in a complex precipitation hardened martensitic microstructure and is susceptible to severe hydrogen embrittlement (HE) at threshold stress...repartitions to interstitial sites proximate to the highly stressed crack tip and, subsequently, may retrap at martensitic lath interfaces to produce substantial
Microstructure control for high strength 9Cr ferritic-martensitic steels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tan, Lizhen; Hoelzer, David T; Busby, Jeremy T
2012-01-01
Ferritic-martensitic (F-M) steels with 9 wt.%Cr are important structural materials for use in advanced nuclear reactors. Alloying composition adjustment, guided by computational thermodynamics, and thermomechanical treatment (TMT) were employed to develop high strength 9Cr F-M steels. Samples of four heats with controlled compositions were subjected to normalization and tempering (N&T) and TMT, respectively. Their mechanical properties were assessed by Vickers hardness and tensile testing. Ta-alloying showed significant strengthening effect. The TMT samples showed strength superior to the N&T samples with similar ductility. All the samples showed greater strength than NF616, which was either comparable to or greater than the literaturemore » data of the PM2000 oxide-dispersion-strengthened (ODS) steel at temperatures up to 650 C without noticeable reduction in ductility. A variety of microstructural analyses together with computational thermodynamics provided rational interpretations on the strength enhancement. Creep tests are being initiated because the increased yield strength of the TMT samples is not able to deduce their long-term creep behavior.« less
Atomic diffusion in laser surface modified AISI H13 steel
NASA Astrophysics Data System (ADS)
Aqida, S. N.; Brabazon, D.; Naher, S.
2013-07-01
This paper presents a laser surface modification process of AISI H13 steel using 0.09 and 0.4 mm of laser spot sizes with an aim to increase surface hardness and investigate elements diffusion in laser modified surface. A Rofin DC-015 diffusion-cooled CO2 slab laser was used to process AISI H13 steel samples. Samples of 10 mm diameter were sectioned to 100 mm length in order to process a predefined circumferential area. The parameters selected for examination were laser peak power, pulse repetition frequency (PRF), and overlap percentage. The hardness properties were tested at 981 mN force. Metallographic study and energy dispersive X-ray spectroscopy (EDXS) were performed to observe presence of elements and their distribution in the sample surface. Maximum hardness achieved in the modified surface was 1017 HV0.1. Change of elements composition in the modified layer region was detected in the laser modified samples. Diffusion possibly occurred for C, Cr, Cu, Ni, and S elements. The potential found for increase in surface hardness represents an important method to sustain tooling life. The EDXS findings signify understanding of processing parameters effect on the modified surface composition.
Simoes, Thiago A; Bryant, Michael G; Brown, Andy P; Milne, Steven J; Ryan, Mary; Neville, Anne; Brydson, Rik
2016-11-01
We have characterized CoCrMo, Metal-on-Metal (MoM) implant, wear debris particles and their dissolution following cycling in a hip simulator, and have related the results to the tribocorrosion of synthetic wear debris produced by milling CoCrMo powders in solutions representative of environments in the human body. Importantly, we have employed a modified ICP-MS sample preparation procedure to measure the release of ions from CoCrMo alloys during wear simulation in different media; this involved use of nano-porous ultrafilters which allowed complete separation of particles from free ions and complexes in solution. As a result, we present a new perspective on the release of metal ions and formation of metal complexes from CoCrMo implants. The new methodology enables the mass balance of ions relative to complexes and particles during tribocorrosion in hip simulators to be determined. A much higher release of molybdenum ions relative to cobalt and chromium has been measured. The molybdenum dissolution was enhanced by the presence of bovine serum albumin (BSA), possibly due to the formation of metal-protein complexes. Overall, we believe that the results could have significant implications for the analysis and interpretation of metal ion levels in fluids extracted from hip arthroplasty patients; we suggest that metal levels, including molybdenum, be analysed in these fluids using the protocol described here. We have developed an important new protocol for the analysis of metal ion levels in fluids extracted from hip implant patients and also hip simulators. Using this procedure, we present a new perspective on the release of metal ions from CoCrMo alloy implants, revealing significantly lower levels of metal ion release during tribocorrosion in hip simulators than previously thought, combined with the release of much higher percentages of molybdenum ions relative to cobalt and chromium. This work is of relevance, both from the perspective of the fundamental science and study of metal-protein interactions, enabling understanding of the ongoing problem associated with the biotribocorrosion and the link to inflammation associated with Metal-on-Metal (MoM) hip implants made from CoCrMo alloys. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kotova, Irina Yu.; Buryat State University, Smolin St. 24a, Ulan-Ude 670000, Buryat Republic; Solodovnikov, Sergey F.
Triple molybdates AgA{sub 3}R(MoO{sub 4}){sub 5} (A=Mg, R=Cr, Fe; A=Mn, R=Al, Cr, Fe, Sc, In) of the NaMg{sub 3}In(MoO{sub 4}){sub 5} type were synthesized and single crystals of AgMg{sub 3}R(MoO{sub 4}){sub 5} (R=Cr, Fe) were grown. In their structures, the MoO{sub 4} tetrahedra, pairs and trimers of edge-shared (Mg, R)O{sub 6} octahedra are connected by common vertices to form a 3D framework. Large framework cavities involve Ag{sup +} cations disordered on three nearby positions with CN=3+1 or 4+1. Alternating (Mg, R)O{sub 6} octahedra and MoO{sub 4} tetrahedra in the framework form quadrangular windows penetrable for Ag{sup +} at elevated temperatures.more » Above 653–673 K, the newly obtained molybdates demonstrate abrupt reduction of the activation energy to 0.4–0.6 eV. At 773 K, AgMg{sub 3}Al(MoO{sub 4}){sub 5} shows electric conductivity 2.5·10{sup −2} S/cm and E{sub a}=0.39 eV compatible with characteristics of the best ionic conductors of the NASICON type. - Graphical abstract: Triple molybdates AgA{sub 3}R(MoO{sub 4}){sub 5} (A=Mg, R=Cr, Fe; A=Mn, R=Al, Cr, Fe, Sc, In) of the NaMg{sub 3}In(MoO{sub 4}){sub 5} type were synthesized, AgMg{sub 3}R(MoO{sub 4}){sub 5} (R=Cr, Fe) were structurally characterized, ion-conductive properties of AgMg{sub 3}Al(MoO{sub 4}){sub 5} were measured. Display Omitted - Highlights: • Triple molybdates AgA{sub 3}R(MoO{sub 4}){sub 5} (A=Mg, R=Cr, Fe; A=Mn, R=Al, Cr, Fe, Sc, In) of the NaMg{sub 3}In(MoO{sub 4}){sub 5} type were synthesized. • Single crystals of AgMg{sub 3}R(MoO{sub 4}){sub 5} (R=Cr, Fe) were grown and their crystal structures were determined. • Disordering Ag{sup +} ions and penetrable framework structures of AgMg{sub 3}R(MoO{sub 4}){sub 5} (R=Cr, Fe) suggest 2D-character of silver-ion mobility. • Measured ion-conductive properties of AgMg{sub 3}Al(MoO{sub 4}){sub 5} are compatible with characteristics of the best ionic conductors of the NASICON type.« less
Supercondutivity at 9K in Mo 5PB 2 with evidence for multiple gaps
McGuire, Michael A.; Parker, David S.
2016-02-09
Superconductivity is observed with critical temperatures near 9 K in the tetragonal compound Mo 5PB 2. This material adopts the Cr 5B 3 structure type common to superconducting Nb 5Si 3–xBx, Mo 5SiB 2, and W 5SiB 2, which have critical temperatures of 5.8–7.8 K. We have synthesized polycrystalline samples of the compound, made measurements of electrical resistivity, magnetic susceptibility, and heat capacity, and performed first-principles electronic structure calculations. The highest T c value (9.2 K) occurs in slightly phosphorus rich samples, with composition near Mo 5P 1.1B 1.9, and the upper critical field H c2 at T = 0more » is estimated to be ≈17 kOe. Together, the measurements and band-structure calculations indicate intermediate coupling (λ=1.0), phonon mediated superconductivity. Here, the temperature dependence of the heat capacity and upper critical field H c2 below T c suggest multiple superconducting gaps may be present.« less
NASA Astrophysics Data System (ADS)
Hua, Yong; Barker, Richard; Neville, Anne
2015-11-01
The general and localized corrosion behaviour of X65 carbon steel and 5Cr low alloy steel were evaluated in a water-saturated supercritical CO2 environment in the presence of varying concentrations of O2. Experiments were performed at a temperature of 35 °C and a pressure of 80 bar to simulate the conditions encountered during CO2 transport and injection. Results indicated that increasing O2 concentration from 0 to 1000 ppm caused a progressive reduction in the general corrosion rate, but served to increase the extent of localized corrosion observed on both materials. Pitting (or localized attack) rates for X65 ranged between 0.9 and 1.7 mm/year, while for 5Cr rose from 0.3 to 1.4 mm/year as O2 concentration was increased from 0 to 1000 ppm. General corrosion rates were over an order of magnitude lower than the pitting rates measured. Increasing O2 content in the presence of X65 and 5Cr suppressed the growth of iron carbonate (FeCO3) on the steel surface and resulted in the formation of a corrosion product consisting mainly of iron oxide (Fe2O3). 5Cr was shown to offer more resistance to pitting corrosion in comparison to X65 steel over the conditions tested. At concentrations of O2 above 500 ppm 5Cr produced general corrosion rates less than 0.04 mm/year, which were half that recorded for X65. The improved corrosion resistance of 5Cr was believed to be at least partially attributed to the formation of a Cr-rich film on the steel surface which was shown using X-ray photoelectron spectroscopy to contain chromium oxide (Cr2O3) and chromium hydroxide (Cr(OH)3). A final series of tests conducted with the addition of 1000 ppm O2 in under-saturated conditions (water content below solubility limit) revealed that no corrosion was observed when the water content was below 1200 ppm for both materials.
Solubility of Nitrogen in Superaustenitic Stainless Steels During Air Induction Melting
NASA Astrophysics Data System (ADS)
Chandrasekar, A.; Anburaj, J.; Narayanan, R.; Balusamy, V.; Mohamed Nazirudeen, S. S.
2013-04-01
The amount of nitrogen contained in super austenitic stainless steels (SASS) influences their properties significantly. The effect of maximum amount of nitrogen in the highly alloyed Cr and Ni SASS containing further additions of Mo and Mn is studied. The calculated nitrogen contents of the experimental alloys are compared with the actual nitrogen contents obtained in the alloys produced using induction melting furnace. The actual nitrogen content of the alloys is always lower than the calculated value, and this discrepancy is due to the presence of positive interaction parameters of Ni, Cu, and Si in the alloy. However, the yield of nitrogen in the liquid SASS is improved significantly with additions of Mn and Mo contents. The construction of multicomponent phase diagrams for SASS is demonstrated using Thermo-Calc software. SASS containing more nitrogen exhibited a very high strength without loss of toughness.
NASA Astrophysics Data System (ADS)
Qin, Fangcheng; Li, Yongtang; Qi, Huiping; Lv, Zhenhua
2016-11-01
The isothermal and non-isothermal multi-pass compression tests of centrifugal casting 42CrMo steel were conducted on a Gleeble-3500 thermal simulation machine. The effects of compression passes and finishing temperatures on deformation behavior and microstructure evolution were investigated. It is found that the microstructure is homogeneous with equiaxed grains, and the flow stress does not show significant change with the increase in passes, while the peak softening coefficient increases first and then decreases during inter-pass. Moreover, the dominant mechanisms of controlled temperature and accumulated static recrystallization for grain refinement and its homogeneous distribution are found after 5 passes deformation. As the finishing temperature increases, the flow stress decreases gradually, but the dynamic recrystallization accelerates and softening effect increases, resulting in the larger grain size and homogeneous microstructure. The microhardness decreases sharply because the sufficient softening occurs in microstructure. When the finishing temperature is 890 °C, the carbide particles are precipitated in the vicinity of the grain boundaries, thus inhibiting the dislocation motion. Thus, the higher finishing temperature (≥970 °C) for centrifugal casting 42CrMo alloy should be avoided in non-isothermal multi-pass deformation, which is beneficial to grain refinement and properties improvement.
Klepper, C. C.; Williams, J. M.; Truhan, J.J.; Qu, J.; Riester, L.; Hazelton, R. C.; Moschella, J.J.; Blau, P.J.; Anderson, J.P.; Popoola, O.O.; Keitz, M.D.
2008-01-01
This paper presents experimental evidence that thin (<∼200 nm) boron coatings, deposited with a (vacuum) cathodic arc technique on pre-polished Co-Cr-Mo surfaces, could potentially extend the life of metal-on-polymer orthopedic devices using cast Co-Cr-Mo alloy for the metal component. The primary tribological test used a linear, reciprocating pin-on-disc arrangement, with pins made of ultra-high molecular weight polyethylene. The disks were cast Co-Cr-Mo samples that were metallographically polished and then coated with boron at a substrate bias of 500 V and at about 100 °C. The wear tests were carried out in a saline solution to simulate the biological environment. The improvements were manifested by the absence of a detectable wear track scar on the coated metal component, while significant polymer transfer film was detected on the uncoated (control) samples tested under the same conditions. The polymer transfer track was characterized with both profilometry and Rutherford Backscattering Spectroscopy. Mechanical characterization of the thin films included nano-indentation, as well as additional pin-on-disk tests with a steel ball to demonstrate adhesion, using ultra-high frequency acoustic microscopy to probe for any void occurrence at the coating-substrate interface. PMID:19340285
Investigation of the corrosion propagation characteristics of new metallic reinforcing bars.
DOT National Transportation Integrated Search
2007-01-01
The threshold chloride concentrations for solid 316LN stainless steel, 316L stainless steel clad, 2101 LDX duplex stainless steel, MMFX-2 (Fe-9%Cr), and carbon steel (ASTM A615) rebars were investigated through laboratory tests in saturated Ca(OH)2 +...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marquis, Emmanuelle; Wirth, Brian; Was, Gary
Ferritic/martensitic (FM) steels such as HT-9, T-91 and NF12 with chromium concentrations in the range of 9-12 at.% Cr and high Cr ferritic steels (oxide dispersion strengthened steels with 12-18% Cr) are receiving increasing attention for advanced nuclear applications, e.g. cladding and duct materials for sodium fast reactors, pressure vessels in Generation IV reactors and first wall structures in fusion reactors, thanks to their advantages over austenitic alloys. Predicting the behavior of these alloys under radiation is an essential step towards the use of these alloys. Several radiation-induced phenomena need to be taken into account, including phase separation, solute clustering,more » and radiation-induced segregation or depletion (RIS) to point defect sinks. RIS at grain boundaries has raised significant interest because of its role in irradiation assisted stress corrosion cracking (IASCC) and corrosion of structural materials. Numerous observations of RIS have been reported on austenitic stainless steels where it is generally found that Cr depletes at grain boundaries, consistently with Cr atoms being oversized in the fcc Fe matrix. While FM and ferritic steels are also subject to RIS at grain boundaries, unlike austenitic steels, the behavior of Cr is less clear with significant scatter and no clear dependency on irradiation condition or alloy type. In addition to the lack of conclusive experimental evidence regarding RIS in F-M alloys, there have been relatively few efforts at modeling RIS behavior in these alloys. The need for predictability of materials behavior and mitigation routes for IASCC requires elucidating the origin of the variable Cr behavior. A systematic detailed high-resolution structural and chemical characterization approach was applied to ion-implanted and neutron-irradiated model Fe-Cr alloys containing from 3 to 18 at.% Cr. Atom probe tomography analyses of the microstructures revealed slight Cr clustering and segregation to dislocations and grain boundaries in the ion-irradiated alloys. More significant segregation was observed in the neutron irradiated alloys. For the more concentrated alloys, irradiation did not affect existing Cr segregation to grain boundaries and segregation to dislocation loops was not observed perhaps due to a change in the dislocation loop structure with increasing Cr concentration. Precipitation of α’ was observed in the neutron irradiated alloys containing over 9 at.% Cr. However ion irradiation appears to suppress the precipitation process. Initial low dose ion irradiation experiments strongly suggest a cascade recoil effect. The systematic analysis of grain boundary orientation on Cr segregation was significantly challenged by carbon contamination during ion irradiation or by existing carbon and therefore carbide formation at grain boundaries (sensitization). The combination of the proposed systematic experimental approach with atomistic modeling of diffusion processes directly addresses the programmatic need for developing and benchmarking predictive models for material degradation taking into account atomistic kinetics parameters« less
Microstructure and Mechanical Property of 12Cr Oxide Dispersion Strengthened Steel
NASA Astrophysics Data System (ADS)
Xu, Haijian; Lu, Zheng; Jia, Chunyan; Gao, Hao; Liu, Chunming
2016-03-01
Nanostructured oxide dispersion strengthened (ODS) steels with nominal compositions (wt%): Fe-12Cr-2W-0.3Ti-0.3Y2O3 were produced by mechanical alloying and hot isostatic pressing. The microstructure was characterized by means of electron microscopy (EBSD, TEM and HRTEM) and the hardness and the tensile properties at different temperatures were measured. The results showed that the ultimate tensile strength of the fabricated 12Cr-ODS steel reached nearly 1,100 MPa at room temperature and maintained around 340 MPa at 700°C. Nano-oxide particles with size ranging from several nm to 30 nm and the number density was 3.6 × 1020/m3 were observed by TEM. Following heat treatment, including normalizing at 1,100°C for 1 h and tempering at 750°C for 2 h, the average grain size was a little decreased. The number of nano-oxide particles increased and the number density was 8.9 × 1020/m3. Specimens showed much higher ductility and there was a slight increase of ultimate tensile strength and Vickers hardness at the same time.
Tan, Lizhen; Snead, Lance Lewis; Katoh, Yutai
2016-05-26
International development of reduced activation ferritic-martensitic (RAFM) steels has focused on 9 wt percentage Cr, which primarily contain M 23C 6 (M = Cr-rich) and small amounts of MX (M = Ta/V, X = C/N) precipitates, not adequate to maintain strength and creep resistance above ~500 °C. To enable applications at higher temperatures for better thermal efficiency of fusion reactors, computational alloy thermodynamics coupled with strength modeling have been employed to explore a new generation RAFM steels. The new alloys are designed to significantly increase the amount of MX nanoprecipitates, which are manufacturable through standard and scalable industrial steelmaking methods.more » Preliminary experimental results of the developed new alloys demonstrated noticeably increased amount of MX, favoring significantly improved strength, creep resistance, and Charpy impact toughness as compared to current RAFM steels. Furthermore, the strength and creep resistance were comparable or approaching to the lower bound of, but impact toughness was noticeably superior to 9–20Cr oxide dispersion-strengthened ferritic alloys.« less
Thermal Spray Coatings for High-Temperature Corrosion Protection in Biomass Co-Fired Boilers
NASA Astrophysics Data System (ADS)
Oksa, M.; Metsäjoki, J.; Kärki, J.
2015-01-01
There are over 1000 biomass boilers and about 500 plants using waste as fuel in Europe, and the numbers are increasing. Many of them encounter serious problems with high-temperature corrosion due to detrimental elements such as chlorides, alkali metals, and heavy metals. By HVOF spraying, it is possible to produce very dense and well-adhered coatings, which can be applied for corrosion protection of heat exchanger surfaces in biomass and waste-to-energy power plant boilers. Four HVOF coatings and one arc sprayed coating were exposed to actual biomass co-fired boiler conditions in superheater area with a probe measurement installation for 5900 h at 550 and 750 °C. The coating materials were Ni-Cr, IN625, Fe-Cr-W-Nb-Mo, and Ni-Cr-Ti. CJS and DJ Hybrid spray guns were used for HVOF spraying to compare the corrosion resistance of Ni-Cr coating structures. Reference materials were ferritic steel T92 and nickel super alloy A263. The circulating fluidized bed boiler burnt a mixture of wood, peat and coal. The coatings showed excellent corrosion resistance at 550 °C compared to the ferritic steel. At higher temperature, NiCr sprayed with CJS had the best corrosion resistance. IN625 was consumed almost completely during the exposure at 750 °C.
NASA Astrophysics Data System (ADS)
Jain, Divya; Seidman, David N.; Barrick, Erin J.; DuPont, John N.
2018-04-01
Newly developed low-carbon 10 wt pct Ni-Mo-Cr-V martensitic steels rely on the Ni-enriched, thermally stable austenite [formed via multistep intercritical Quench-Lamellarization-Tempering ( QLT)-treatment] for their superior mechanical properties, specifically ballistic resistance. Critical to the thermal stability of austenite is its composition, which can be severely affected in the weld heat-affected zones (HAZs) and thus needs investigations. This article represents the first study of the nanoscale redistributions of C, Ni, and Mn in single-pass HAZ microstructures of QLT-treated 10 wt pct Ni steels. Local compositions of Ni-rich regions (representative of austenite compositions) in the HAZs are determined using site-specific 3-D atom-probe tomography (APT). Martensite-start temperatures are then calculated for these compositions, employing the Ghosh-Olson thermodynamic and kinetics approach. These calculations predict that austenite (present at high temperatures) in the HAZs is susceptible to a martensitic transformation upon cooling to room temperature, unlike the austenite in the QLT-treated base-metal. While C in the QLT-treated base-metal is consumed primarily in MC and M2C-type carbide precipitates (M is Mo, Cr, V), its higher concentration in the Ni-rich regions in the HAZs indicates the dissolution of carbide precipitates, particularly M2C carbide precipitates. The role of M2C carbide precipitates and austenite stability is discussed in relation to the increase in microhardness values observed in the HAZs, relative to the QLT-treated base-metal. Insights gained from this research on austenite stability and carbide precipitation in the single-pass HAZ microstructures will assist in designing multiple weld cycles for these novel 10 wt pct Ni steels.
NASA Technical Reports Server (NTRS)
Barrett, C. A.
1984-01-01
A series of cast Ni-base superalloys were systematically varied at selected levels of Co, Cr, Mo, Ta, and Al. The elemental levels varied were Mo, 0 to 4 percent; Cr, 6 to 18 percent; Co, 0 to 20 percent, Ta, 0 to 8 percent; and Al, 3.25 to 6.25 percent. The cyclic oxidation resistance was determined from specific weight change data as a function of time for 1 hr cycles in static air at 1100 C. The significant terms in decreasing order of their importance were Al, Ta, Cr2, Al-Cr, Cr-Co, Co2, Al-Mo, Cr-Mo, Al-Al, and Mo-Ta. The Al term alone accounted for close to 82 percent of the explained variability. The estimating equation showed that the Al level was the most important and should be at its 6.25 wt % maximum value. The Mo and Ta levels should also be at their maximum 4 and 8 wt % respectively. The cobalt composition should be as low as possible, i.e., 0 wt%. The Cr level optimum varies depending on the other 4 levels. The X-ray diffaction results indicate the most protective scales are alumina/aluminate spinel stabilizized with a tri-rutile oxide high in Ta and Mo.