Science.gov

Sample records for modified bcs theory

  1. Bcs-Bec Crossover Without Appeal to Scattering Length Theory

    NASA Astrophysics Data System (ADS)

    Malik, G. P.

    2014-01-01

    BCS-BEC (an acronym formed from Bardeen, Cooper, Schrieffer and Bose-Einstein condensation) crossover physics has customarily been addressed in the framework of the scattering length theory (SLT), which requires regularization/renormalization of equations involving infinities. This paper gives a frame by frame picture, as it were, of the crossover scenario without appealing to SLT. While we believe that the intuitive approach followed here will make the subject accessible to a wider readership, we also show that it sheds light on a feature that has not been under the purview of the customary approach: the role of the hole-hole scatterings vis-à-vis the electron-electron scatterings as one goes from the BCS to the BEC end. More importantly, we show that there are critical values of the concentration (n)and the interaction parameter (λ) at which the condensation of Cooper pairs takes place; this is a finding in contrast with the view that such pairs are automatically condensed.

  2. Elaboration of the alpha-model derived from the BCS theory of superconductivity

    SciTech Connect

    Johnston, David C.

    2013-10-14

    The single-band α-model of superconductivity (Padamsee et al 1973 J. Low Temp. Phys. 12 387) is a popular model that was adapted from the single-band Bardeen–Cooper–Schrieffer (BCS) theory of superconductivity mainly to allow fits to electronic heat capacity versus temperature T data that deviate from the BCS prediction. The model assumes that the normalized superconducting order parameter Δ(T)/Δ(0) and therefore the normalized London penetration depth λL(T)/λL(0) are the same as in BCS theory, calculated using the BCS value αBCS ≈ 1.764 of α ≡ Δ(0)/kBTc, where kB is The single-band α-model of superconductivity (Padamsee et al 1973 J. Low Temp. Phys. 12 387) is a popular model that was adapted from the single-band Bardeen–Cooper–Schrieffer (BCS) theory of superconductivity mainly to allow fits to electronic heat capacity versus temperature T data that deviate from the BCS prediction. The model assumes that the normalized superconducting order parameter Δ(T)/Δ(0) and therefore the normalized London penetration depth λL(T)/λL(0) are the same as in BCS theory, calculated using the BCS value αBCS ≈ 1.764 of α ≡ Δ(0)/kBTc, where kB is Boltzmann's constant and Tc is the superconducting transition temperature. On the other hand, to calculate the electronic free energy, entropy, heat capacity and thermodynamic critical field versus T, the α-model takes α to be an adjustable parameter. Here we write the BCS equations and limiting behaviors for the superconducting state thermodynamic properties explicitly in terms of α, as needed for calculations within the α-model, and present plots of the results versus T and α that are compared with the respective BCS predictions. Mechanisms such as gap anisotropy and strong coupling that can cause deviations of the thermodynamics from the BCS predictions, especially the heat capacity jump at Tc, are considered. Extensions of the α-model that have appeared in the literature, such as the two-band model

  3. Elaboration of the α-model derived from the BCS theory of superconductivity

    NASA Astrophysics Data System (ADS)

    Johnston, David C.

    2013-11-01

    The single-band α-model of superconductivity (Padamsee et al 1973 J. Low Temp. Phys. 12 387) is a popular model that was adapted from the single-band Bardeen-Cooper-Schrieffer (BCS) theory of superconductivity mainly to allow fits to electronic heat capacity versus temperature T data that deviate from the BCS prediction. The model assumes that the normalized superconducting order parameter Δ(T)/Δ(0) and therefore the normalized London penetration depth λL(T)/λL(0) are the same as in BCS theory, calculated using the BCS value αBCS ≈ 1.764 of α ≡ Δ(0)/kBTc, where kB is Boltzmann’s constant and Tc is the superconducting transition temperature. On the other hand, to calculate the electronic free energy, entropy, heat capacity and thermodynamic critical field versus T, the α-model takes α to be an adjustable parameter. Here we write the BCS equations and limiting behaviors for the superconducting state thermodynamic properties explicitly in terms of α, as needed for calculations within the α-model, and present plots of the results versus T and α that are compared with the respective BCS predictions. Mechanisms such as gap anisotropy and strong coupling that can cause deviations of the thermodynamics from the BCS predictions, especially the heat capacity jump at Tc, are considered. Extensions of the α-model that have appeared in the literature, such as the two-band model, are also discussed. Tables of values of Δ(T)/Δ(0), the normalized London parameter Λ(T)/Λ(0) and λL(T)/λL(0) calculated from the BCS theory using α = αBCS are provided, which are the same in the α-model by assumption. Tables of values of the entropy, heat capacity and thermodynamic critical field versus T for seven values of α, including αBCS, are also presented.

  4. Confirmation of BCS Theory and Its Impact on Applications Past and Future

    NASA Astrophysics Data System (ADS)

    Beasley, Malcolm

    2011-03-01

    The experimental confirmation of BCS theory established it as the correct microscopic theory of superconductivity. It also led to applications of superconductivity distinct from those based on the Josephson effect and the magnetic properties of superconductors. The most prominent of these are SIS mixers for astronomy and high-Q filters for the cellular phone industry. In this talk we trace these historical developments and consider where today's more novel (beyond simple BCS) superconductors might be useful looking forward.

  5. A modified physiological BCS for prediction of intestinal absorption in drug discovery.

    PubMed

    Zaki, Noha M; Artursson, Per; Bergström, Christel A S

    2010-10-01

    In this study, the influence of physiologically relevant media on the compound position in a biopharmaceutical classification system (BCS) which resembled the intestinal absorption was investigated. Both solubility and permeability limited compounds (n = 22) were included to analyze the importance of each of these on the final absorption. Solubility was determined in three different dissolution media, phosphate buffer pH 6.5 (PhB 6.5), fasted state simulated intestinal fluid (FaSSIF), and fed state simulated intestinal fluid (FeSSIF) at 37 °C, and permeability values were determined using the 2/4/A1 cell line. The solubility data and membrane permeability values were used for sorting the compounds into a BCS modified to reflect the fasted and fed state. Three of the seven compounds sorted as BCS II in PhB 6.5 (high permeability, low solubility) changed their position to BCS I when dissolved in FaSSIF and/or FeSSIF (high permeability, high solubility). These were low dosed (20 mg or less) lipophilic molecules displaying solvation limited solubility. In contrast, compounds having solid-state limited solubility had a minor increase in solubility when dissolved in FaSSIF and/or FeSSIF. Although further studies are needed to enable general cutoff values, our study indicates that low dosed BCS Class II compounds which have solubility normally restricted by poor solvation may behave as BCS Class I compounds in vivo. The large series of compounds investigated herein reveals the importance of investigating solubility and dissolution under physiologically relevant conditions in all stages of the drug discovery process to push suitable compounds forward, to select proper formulations, and to reduce the risk of food effects.

  6. Modified Fermi sphere, pairing gap, and critical temperature for the BCS-BEC crossover

    SciTech Connect

    Floerchinger, S.; Wetterich, C.; Scherer, M. M.

    2010-06-15

    We investigate the phase diagram of two-component fermions in the BCS-BEC (Bose-Einstein condensate) crossover. Using functional renormalization-group equations we calculate the effect of quantum fluctuations on the fermionic self-energy parametrized by a wave-function renormalization, an effective Fermi radius, and the gap. This allows us to follow the modifications of the Fermi surface and the dispersion relation for fermionic excitations throughout the whole crossover region. We also determine the critical temperature of the second-order phase transition to superfluidity. Our results are in agreement with BCS theory including Gorkov's correction for a small negative scattering length a and with an interacting Bose gas for a small positive a. At the unitarity point the result for the gap at zero temperature agrees well with quantum Monte Carlo simulations, while the critical temperature differs.

  7. Dynamical description of the fission process using the TD-BCS theory

    SciTech Connect

    Scamps, Guillaume; Simenel, Cédric; Lacroix, Denis

    2015-10-15

    The description of fission remains a challenge for nuclear microscopic theories. The time-dependent Hartree-Fock approach with BCS pairing is applied to study the last stage of the fission process. A good agreement is found for the one-body observables: the total kinetic energy and the average mass asymmetry. The non-physical dependence of two-body observables with the initial shape is discussed.

  8. Self consistent theories of superfluid density and collective modes in BCS-BEC

    NASA Astrophysics Data System (ADS)

    Boyack, Rufus; Anderson, Brandon; Wu, Chien-Te; Levin, Kathryn

    Establishing fully self consistent and sum rule compatible response functions in strongly correlated Fermi superfluids has been a historically challenging subject. In this talk, we present recent progress pertaining to response functions in many-body Fermi systems. We note that even in strict BCS theory, the textbook derivation of density and current response functions in the gradient expansion breaks certain conservation laws such as the compressibility sum rule. To include additional contributions that preserve all expected conservation laws, we show how to exploit Ward identities within two different t-matrix schemes. In this way we address the density-density response (including collective modes) and the superfluid density. Finally, we characterize approximations made in the literature where some consistency requirements have been dropped.

  9. Pairing Beyond BCS

    NASA Astrophysics Data System (ADS)

    Volya, Alexander; Zelevinsky, Vladimir

    2013-01-01

    We concentrate on the specifics of the nuclear pairing problem from the standpoint of the BCS approach. We consider the properties of nuclear pairing which usually are not discussed in standard texts: how good is the BCS theory in nuclear context compared to the exact large-scale diagonalization, whether it can be improved by the particle number conservation, how to mark the phase transition regions in a mesoscopic system like a nucleus, how may effective many-body forces influence the formation and structure of the pairing condensate, what effect the decay instability has on the paired nuclear structure, etc.

  10. Conventional BCS, unconventional BCS, and non-BCS hidden dineutron phases in neutron matter

    NASA Astrophysics Data System (ADS)

    Khodel, V. A.; Clark, J. W.; Shaginyan, V. R.; Zverev, M. V.

    2014-09-01

    The nature of pairing correlations in neutron matter is re-examined. Working within the conventional approximation in which the nn pairing interaction is provided by a realistic bare nn potential fitted to scattering data, it is demonstrated that the standard BCS theory fails in regions of neutron number density, where the pairing constant λ, depending crucially on density, has a non-BCS negative sign. We are led to propose a non-BCS scenario for pairing phenomena in neutron matter that involves the formation of a hidden dineutron state. In low-density neutron matter, where the pairing constant has the standard BCS sign, two phases organized by pairing correlations are possible and compete energetically: a conventional BCS phase and a dineutron phase. In dense neutron matter, where λ changes sign, only the dineutron phase survives and exists until the critical density for termination of pairing correlations is reached at approximately twice the neutron density in heavy atomic nuclei.

  11. Giant Anharmonicity and Theory of Surprising BCS Superconductivity in MgB2 at 40 K

    NASA Astrophysics Data System (ADS)

    Yildirim, Taner

    2002-03-01

    The recent surprise discovery of superconductivity in MgB2 at 40 K has stimulated a great deal of research on this intercalated grahite-like system. Sparked by this discovery, we set out to unlock the structural secrets and, in particular, to reveal the origin of the high Tc in MgB_2; an electron-phonon or other exotic mechanism? To answer this fundamental question, we calculated T_c, its pressure dependence for uni- and biaxial compressions, and the isotope effect from the electronic band structure and lattice dynamics of MgB2 using density functional theory[1-2]. The calculated phonon density of states (DOS) are in excellent agreement with the inelastic neutron scattering measurements. We find that the in-plane boron phonons near the zone-center are very anharmonic and strongly coupled to the planar B sigma bands near the Fermi level. The boron mass and pressure dependence of this mode is found to be the key to quantitatively explaining the observed high T_c, the total isotope effect, and the pressure dependence of T_c. We propose that a stringent test on the hole and phonon based theories of the superconductivity in MgB2 would be a measurement of the biaxial ab-compression dependence of T_c. In collobration with Oguz Gulseren, NIST and UPENN [1] T. Yildirim et. al., Phys. Rev. Lett. 87, 037001 (2001). [2] For details, see http://www.ncnr.nist.gov/staff/taner/mgb2

  12. The application of the fractional exclusion statistics to the BCS theory-A redefinition of the quasiparticle energies

    NASA Astrophysics Data System (ADS)

    Anghel, Dragoş-Victor; Nemnes, George Alexandru

    2016-09-01

    The effective energy of a superconductor Eeff(T) at temperature T is defined as the difference between the total energy at temperature T and the total energy at 0 K. We call the energy of the condensate, Ec, the difference between Eeff and the sum of the quasiparticle energies Eqp. Ec, Eqp, as well as the BCS quasiparticle energy ɛ are positive and depend on the gap energy Δ, which, in turn, depends on the populations of the quasiparticle states (equivalently, they depend on T). So, from the energetic point of view, the superconductor is a Fermi liquid of interacting quasiparticles. We show that the choice of quasiparticles is not unique, but there is an infinite range of possibilities. Some of these possibilities have been explored in the context of the fractional exclusion statistics (FES), which is a general method of describing interacting particle systems as ideal gases. We apply FES here and transform the Fermi liquid of BCS excitations into an ideal gas by redefining the quasiparticle energies. The new FES quasiparticles exhibit the same energy gap as the BCS quasiparticles, but a different DOS, which is finite at any quasiparticle energy. We also discuss the effect of the remnant electron-electron interaction (electron-electron interaction beyond the BCS pairing model) and show that this can stabilize the BCS condensate, increasing the critical temperature.

  13. Unusual isotope effects on the pseudogap in high-Tc cuprate superconductors as support for the BCS-like pairing theory of large polarons above Tc

    NASA Astrophysics Data System (ADS)

    Dzhumanov, S.; Baimatov, P. J.; Djumanov, Sh. S.

    2015-06-01

    The BCS-like pairing theory is extended to the intermediate coupling regime and to the cases of exotic cuprate superconductors with large and small Fermi surfaces, so as to describe the pairing correlations above Tc , the opening of a pseudogap (PG) at a mean-field temperature T∗ >Tc and the unusual isotope effects on the PG in these materials within the large polaron model and two different BCS-like approaches. We argue that unconventional electron-phonon interactions are responsible for the polaron formation and the separation between temperatures T∗ (the onset of precursor Cooper pairing) and Tc (the onset of the superconducting transition) in exotic cuprate superconductors. Using the extended BCS-like approaches, we calculate the PG formation temperature T∗ , isotope shifts ΔT∗ , oxygen and copper isotope exponents and show that isotope effects on the PG basically depend on strengths of Coulomb and electron-phonon interactions, doping levels and dielectric constants of the cuprates. The new BCS-like pairing theory of polaronic carriers predicts the existence of small and sizable positive oxygen isotope effect and very large negative oxygen and copper isotope effects on the PG in the cuprates with large Fermi surfaces. The calculated results for T∗ , isotope shifts and exponents are compared with experimental data on various cuprate superconductors. For all the considered cases, a good quantitative agreement was found between theory and experimental data. We also predict the existence of small and sizable negative isotope effects on T∗ in deeply underdoped cuprates with small Fermi surfaces. Further, we find that the isotope effects on T∗ (=Tc) in heavily overdoped cuprates just like in some metals are relatively small positive or become even negative.

  14. Modified Release and Improved Stability of Unstable BCS II Drug by Using Cyclodextrin Complex as Carrier To Remotely Load Drug into Niosomes.

    PubMed

    Chi, Liandi; Wu, Delin; Li, Zhuo; Zhang, Minmin; Liu, Hongchun; Wang, Caifen; Gui, Shuangying; Geng, Meiyu; Li, Haiyan; Zhang, Jiwen

    2016-01-01

    In answering to the challenge of enzymatic unstability of Biopharmaceutics Classification System (BCS) class II drugs, an effective remote loading strategy was developed to successfully incorporate the drug-cyclodextrin (CD) complex into niosomes to modify the release and stability of a drug candidate, pseudolaric acid B (PAB). Judged by binding constants, and combined solubilization effects of pH and CD complexation on PAB at different pH, the complex internalization driven by a transmembrane pH gradient (from 2.0 to 7.4) and the dynamic shifting of PAB-CD complexation equilibrium at this gradient were introduced. The transfer of PAB-CD complex into the internal aqueous phase of niosomes at 60 °C was primarily verified by synchrotron radiation Fourier transform infrared spectroscopy. The remote loading samples behaved as retarded release at pH 5.8, 6.8, and 7.4, for which the stability of PAB in rat plasma was significantly enhanced (about 8.1-fold), in comparison with niosomes prepared by the passive and lipid bilayer loading of PAB. The drug-carrier interaction based release modeling was further fitted, and the convection rate constant (ks) and free energy difference between free and bound states (ΔG) indicated the strongest PAB-carrier interactions in remote loading niosomes. The remote loading strategy also reduced the CD-cholesterol interaction and provided better physical stability of the system. In conclusion, the remote loading of drug-CD complex into niosomes provides advantages to modify the release and enhance the stability of unstable BCS class II drug. PMID:26569615

  15. Nambu-Jona-Lasinio model description of weakly interacting Bose condensate and BEC-BCS crossover in dense QCD-like theories

    SciTech Connect

    He Lianyi

    2010-11-01

    QCD-like theories possess a positively definite fermion determinant at finite baryon chemical potential {mu}{sub B} and the lattice simulation can be successfully performed. While the chiral perturbation theories are sufficient to describe the Bose condensate at low density, to describe the crossover from Bose-Einstein condensation (BEC) to BCS superfluidity at moderate density we should use some fermionic effective model of QCD, such as the Nambu-Jona-Lasinio model. In this paper, using two-color two-flavor QCD as an example, we examine how the Nambu-Jona-Lasinio model describes the weakly interacting Bose condensate at low density and the BEC-BCS crossover at moderate density. Near the quantum phase transition point {mu}{sub B}=m{sub {pi}} (m{sub {pi}} is the mass of pion/diquark multiplet), the Ginzburg-Landau free energy at the mean-field level can be reduced to the Gross-Pitaevskii free energy describing a weakly repulsive Bose condensate with a diquark-diquark scattering length identical to that predicted by the chiral perturbation theories. The Goldstone mode recovers the Bogoliubov excitation in weakly interacting Bose condensates. The results of in-medium chiral and diquark condensates predicted by chiral perturbation theories are analytically recovered. The BEC-BCS crossover and meson Mott transition at moderate baryon chemical potential as well as the beyond-mean-field corrections are studied. Part of our results can also be applied to real QCD at finite baryon or isospin chemical potential.

  16. Dynamic density and spin responses of a superfluid Fermi gas in the BCS-BEC crossover: Path integral formulation and pair fluctuation theory

    NASA Astrophysics Data System (ADS)

    He, Lianyi

    2016-10-01

    We present a standard field theoretical derivation of the dynamic density and spin linear response functions of a dilute superfluid Fermi gas in the BCS-BEC crossover in both three and two dimensions. The derivation of the response functions is based on the elegant functional path integral approach which allows us to calculate the density-density and spin-spin correlation functions by introducing the external sources for the density and the spin density. Since the generating functional cannot be evaluated exactly, we consider two gapless approximations which ensure a gapless collective mode (Goldstone mode) in the superfluid state: the BCS-Leggett mean-field theory and the Gaussian-pair-fluctuation (GPF) theory. In the mean-field theory, our results of the response functions agree with the known results from the random phase approximation. We further consider the pair fluctuation effects and establish a theoretical framework for the dynamic responses within the GPF theory. We show that the GPF response theory naturally recovers three kinds of famous diagrammatic contributions: the Self-Energy contribution, the Aslamazov-Lakin contribution, and the Maki-Thompson contribution. We also show that unlike the equilibrium state, in evaluating the response functions, the linear (first-order) terms in the external sources as well as the induced order parameter perturbations should be treated carefully. In the superfluid state, there is an additional order parameter contribution which ensures that in the static and long wavelength limit, the density response function recovers the result of the compressibility (compressibility sum rule). We expect that the f-sum rule is manifested by the full number equation which includes the contribution from the Gaussian pair fluctuations. The dynamic density and spin response functions in the normal phase (above the superfluid critical temperature) are also derived within the Nozières-Schmitt-Rink (NSR) theory.

  17. Modified Sigmund sputtering theory: isotopic puzzle

    NASA Astrophysics Data System (ADS)

    Zhang, Z. L.; Zhang, L.

    2005-05-01

    The theory of anisotropic sputtering proposed by Zhang [Z.L. Zhang, Phys. Rev. B 71 026101 (2005).] and [Z.L. Zhang and L. Zhang, Radiat. Eff. Defects Solids 159(5) 301 (2004).] has been generalized to sputtering of isotopic mixtures. The present theory (modified Sigmund theory) has been shown to fit numerous simulations and experimental measurements, including energy and angular distribution of sputtered atoms. In particular, the theory has successfully solved the isotope puzzle of sputtering induced by low energy and heavy ion bombardment.

  18. Thermodynamic properties of modified gravity theories

    NASA Astrophysics Data System (ADS)

    Bamba, Kazuharu

    2016-06-01

    We review thermodynamic properties of modified gravity theories, such as F(R) gravity and f(T) gravity, where R is the scalar curvature and T is the torsion scalar in teleparallelism. In particular, we explore the equivalence between the equations of motion for modified gravity theories and the Clausius relation in thermodynamics. In addition, thermodynamics of the cosmological apparent horizon is investigated in f(T) gravity. We show both equilibrium and nonequilibrium descriptions of thermodynamics. It is demonstrated that the second law of thermodynamics in the universe can be met, when the temperature of the outside of the apparent horizon is equivalent to that of the inside of it.

  19. Modified Interior Distance Functions (Theory and Methods)

    NASA Technical Reports Server (NTRS)

    Polyak, Roman A.

    1995-01-01

    In this paper we introduced and developed the theory of Modified Interior Distance Functions (MIDF's). The MIDF is a Classical Lagrangian (CL) for a constrained optimization problem which is equivalent to the initial one and can be obtained from the latter by monotone transformation both the objective function and constraints. In contrast to the Interior Distance Functions (IDF's), which played a fundamental role in Interior Point Methods (IPM's), the MIDF's are defined on an extended feasible set and along with center, have two extra tools, which control the computational process: the barrier parameter and the vector of Lagrange multipliers. The extra tools allow to attach to the MEDF's very important properties of Augmented Lagrangeans. One can consider the MIDFs as Interior Augmented Lagrangeans. It makes MIDF's similar in spirit to Modified Barrier Functions (MBF's), although there is a fundamental difference between them both in theory and methods. Based on MIDF's theory, Modified Center Methods (MCM's) have been developed and analyzed. The MCM's find an unconstrained minimizer in primal space and update the Lagrange multipliers, while both the center and the barrier parameter can be fixed or updated at each step. The MCM's convergence was investigated, and their rate of convergence was estimated. The extension of the feasible set and the special role of the Lagrange multipliers allow to develop MCM's, which produce, in case of nondegenerate constrained optimization, a primal and dual sequences that converge to the primal-dual solutions with linear rate, even when both the center and the barrier parameter are fixed. Moreover, every Lagrange multipliers update shrinks the distance to the primal dual solution by a factor 0 less than gamma less than 1 which can be made as small as one wants by choosing a fixed interior point as a 'center' and a fixed but large enough barrier parameter. The numericai realization of MCM leads to the Newton MCM (NMCM). The

  20. The BCS-BEC Crossover

    NASA Astrophysics Data System (ADS)

    Parish, Meera M.

    2015-09-01

    This chapter presents the crossover from the Bardeen-Cooper-Schrieffer (BCS) state of weakly correlated pairs of fermions to the Bose-Einstein condensation (BEC) of diatomic molecules in the atomic Fermi gas. Our aim is to provide a pedagogical review of the BCS-BEC crossover, with an emphasis on the basic concepts, particularly those that are not generally known or are difficult to find in the literature. We shall not attempt to give an exhaustive survey of current research in the limited space here; where possible, we will direct the reader to more extensive reviews.

  1. Equilibrium thermodynamics in modified gravitational theories

    NASA Astrophysics Data System (ADS)

    Bamba, Kazuharu; Geng, Chao-Qiang; Tsujikawa, Shinji

    2010-04-01

    We show that it is possible to obtain a picture of equilibrium thermodynamics on the apparent horizon in the expanding cosmological background for a wide class of modified gravity theories with the Lagrangian density f(R,ϕ,X), where R is the Ricci scalar and X is the kinetic energy of a scalar field ϕ. This comes from a suitable definition of an energy-momentum tensor of the “dark” component that respects to a local energy conservation in the Jordan frame. In this framework the horizon entropy S corresponding to equilibrium thermodynamics is equal to a quarter of the horizon area A in units of gravitational constant G, as in Einstein gravity. For a flat cosmological background with a decreasing Hubble parameter, S globally increases with time, as it happens for viable f(R) inflation and dark energy models. We also show that the equilibrium description in terms of the horizon entropy S is convenient because it takes into account the contribution of both the horizon entropy S' in non-equilibrium thermodynamics and an entropy production term.

  2. Flow equations for the BCS-BEC crossover

    SciTech Connect

    Diehl, S.; Gies, H.; Pawlowski, J. M.; Wetterich, C.

    2007-08-15

    The functional renormalization group is used for the BCS-BEC crossover in gases of ultracold fermionic atoms. In a simple truncation, we see how universality and an effective theory with composite bosonic diatom states emerge. We obtain a unified picture of the whole phase diagram. The flow reflects different effective physics at different scales. In the BEC limit as well as near the critical temperature, it describes an interacting bosonic theory.

  3. Modified Einstein and Finsler like theories on tangent Lorentz bundles

    NASA Astrophysics Data System (ADS)

    Stavrinos, Panayiotis; Vacaru, Olivia; Vacaru, Sergiu I.

    2014-10-01

    In this paper, we study modifications of general relativity, GR, with nonlinear dispersion relations which can be geometrized on tangent Lorentz bundles. Such modified gravity theories, MGTs, can be modeled by gravitational Lagrange density functionals f(R, T, F) with generalized/modified scalar curvature R, trace of matter field tensors T and modified Finsler like generating function F. In particular, there are defined extensions of GR with extra dimensional "velocity/momentum" coordinates. For four-dimensional models, we prove that it is possible to decouple and integrate in very general forms the gravitational fields for f(R, T, F)-modified gravity using nonholonomic 2 + 2 splitting and nonholonomic Finsler like variables F. We study the modified motion and Newtonian limits of massive test particles on nonlinear geodesics approximated with effective extra forces orthogonal to the four-velocity. We compute the constraints on the magnitude of extra-accelerations and analyze perihelion effects and possible cosmological implications of such theories. We also derive the extended Raychaudhuri equation in the framework of a tangent Lorentz bundle. Finally, we speculate on effective modeling of modified theories by generic off-diagonal configurations in Einstein and/or MGTs and Finsler gravity. We provide some examples for modified stationary (black) ellipsoid configurations and locally anisotropic solitonic backgrounds.

  4. Modified contour-improved perturbation theory

    SciTech Connect

    Cvetic, Gorazd; Loewe, Marcelo; Martinez, Cristian; Valenzuela, Cristian

    2010-11-01

    The semihadronic tau decay width allows a clean extraction of the strong coupling constant at low energies. We present a modification of the standard ''contour-improved'' method based on a derivative expansion of the Adler function. The new approach has some advantages compared to contour-improved perturbation theory. The renormalization scale dependence is weaker by more than a factor of 2 and the last term of the expansion is reduced by about 10%, while the renormalization scheme dependence remains approximately equal. The extracted QCD coupling at the tau mass scale is by 2% lower than the contour-improved value. We find {alpha}{sub s}(M{sub Z}{sup 2})=0.1211{+-}0.0010.

  5. Density perturbations in general modified gravitational theories

    SciTech Connect

    De Felice, Antonio; Tsujikawa, Shinji; Mukohyama, Shinji

    2010-07-15

    We derive the equations of linear cosmological perturbations for the general Lagrangian density f(R,{phi},X)/2+L{sub c}, where R is a Ricci scalar, {phi} is a scalar field, and X=-{partial_derivative}{sup {mu}{phi}{partial_derivative}}{sub {mu}{phi}/}2 is a field kinetic energy. We take into account a nonlinear self-interaction term L{sub c}={xi}({phi}) {open_square}{phi}({partial_derivative}{sup {mu}{phi}{partial_derivative}}{sub {mu}{phi}}) recently studied in the context of ''Galileon'' cosmology, which keeps the field equations at second order. Taking into account a scalar-field mass explicitly, the equations of matter density perturbations and gravitational potentials are obtained under a quasistatic approximation on subhorizon scales. We also derive conditions for the avoidance of ghosts and Laplacian instabilities associated with propagation speeds. Our analysis includes most of modified gravity models of dark energy proposed in literature; and thus it is convenient to test the viability of such models from both theoretical and observational points of view.

  6. Remarks on simple modified perturbation theory

    NASA Astrophysics Data System (ADS)

    Shirkov, D. V.

    2015-03-01

    The goal is to devise a pQCD modification that should be regular in the low energy region and could serve practically for the data analysis below 1 GeV up to the infra-red limit. The recently observed "blow-up" of the 4-loop pQCD series for the Bjorken sum rule form-factor around Q ≲ 1 GeV and partial resolving of the issue with the help of the Analytic Perturbation Theory (APT) until Q ˜ 0.6 GeV provided the impetus for this attempt. The " massive pQCD" under construction has two grounds. The first is pQCD with only one parameter added, an effective " glueball mass" m ρ ≲ M glb ≲ 1 GeV, serving as an infrared regulator. Roughly, we introduce it by changing the ultra-violet ln Q 2 for a massive log, ln( Q 2 + M {/glb 2}) regular in the low energy region and finite in the infra-red limit. The second stems from the ghost-free APT comprising non-power perturbative expansion that makes it compatible with linear integral transformations.

  7. Constraining modified gravitational theories by weak lensing with Euclid

    SciTech Connect

    Martinelli, Matteo; Calabrese, Erminia; De Bernardis, Francesco; Melchiorri, Alessandro; Pagano, Luca; Scaramella, Roberto

    2011-01-15

    Future proposed satellite missions such as Euclid can offer the opportunity to test general relativity on cosmic scales through mapping of the galaxy weak-lensing signal. In this paper we forecast the ability of these experiments to constrain modified gravity scenarios such as those predicted by scalar-tensor and f(R) theories. We find that Euclid will improve constraints expected from the Planck satellite on these modified theories of gravity by 2 orders of magnitude. We discuss parameter degeneracies and the possible biases introduced by modifications to gravity.

  8. Galactic space-times in modified theories of gravity

    NASA Astrophysics Data System (ADS)

    Dey, Dipanjan; Bhattacharya, Kaushik; Sarkar, Tapobrata

    2015-09-01

    We study Bertrand space-times (BSTs), which have been proposed as viable models of space-times seeded by galactic dark matter, in modified theories of gravity. We first critically examine the issue of galactic rotation curves in general relativity, and establish the usefulness of BSTs to fit experimental data in this context. We then study BSTs in metric f( R) gravity and in Brans-Dicke theories. For the former, the nature of the Newtonian potential is established, and we also compute the effective equation of state and show that it can provide good fits to some recent experimental results. For the latter, we calculate the Brans-Dicke scalar analytically in some limits and numerically in general, and find interesting constraints on the parameters of the theory. Our results provide evidence for the physical nature of BSTs in modified theories of gravity.

  9. Structure of the number-projected BCS wave function

    NASA Astrophysics Data System (ADS)

    Dukelsky, J.; Pittel, S.; Esebbag, C.

    2016-03-01

    We study the structure of the number-projected BCS (PBCS) wave function in the particle-hole basis, displaying its similarities with coupled clusters theory (CCT). The analysis of PBCS together with several modifications suggested by the CCT wave function is carried out for the exactly solvable Richardson model involving a pure pairing Hamiltonian acting in a space of equally spaced, doubly degenerate levels. We point out the limitations of PBCS to describe the nonsuperconducting regime and suggest possible avenues for improvement.

  10. From BCS to Hts and Rts

    NASA Astrophysics Data System (ADS)

    Chu, C. W.

    2008-12-01

    Great progress has been made in high temperature superconductivity (HTS) science, material and technology in the 20 years since its discovery. The next grand challenge will be room temperature superconductivity (RTS). Room temperature superconductivity, if achieved, can change the world both scientifically and technologically. Unfortunately, it has long been considered by some to belong to the domain of science fiction and to occur only "at an astronomical temperature and at an astronomical distance". With the advent of HTS in 1987, the outlook for RTS has become much brighter. Currently, there appears to be no reason, either theoretical or experimental, why room temperature superconductivity should be impossible. BCS theory has provided the basic framework for the occurrence and understanding of superconductivity, but, since its inception, it has failed to show where and how to find superconductivity at higher temperatures. To date, empiricism remains the most effective way to discover superconductors with high transition temperatures. In this paper based on the talk given at the Professor Yang's 85th birthday celebration on October 31, 2007 in Singapore, I shall summarize the search for superconductors of higher Tc prior to and after the discovery of HTS, list the common features of HTS and describe some approaches toward RTS that we are currently pursuing.

  11. Microscopic and macroscopic behaviors of Palatini modified gravity theories

    SciTech Connect

    Li Baojiu; Mota, David F.; Shaw, Douglas J.

    2008-09-15

    We show that, within modified gravity, the nonlinear nature of the field equations implies that the usual naieve averaging procedure (replacing the microscopic energy-momentum by its cosmological average) is invalid. We discuss then how the averaging should be performed correctly and show that, as a consequence, at the classical level the physical masses and geodesics of particles, cosmology, and astrophysics in Palatini modified gravity theories are all indistinguishable from the results of general relativity plus a cosmological constant. Palatini gravity is, however, a different theory from general relativity and predicts different internal structures of particles from the latter. On the other hand, and in contrast to classical particles, the electromagnetic field permeates in the space, and hence a different averaging procedure should be applied here. We show that, in general, Palatini gravity theories would then affect the propagation of photons, thus changing the behavior of a Universe dominated by radiation. Finally, Palatini theories also predict alterations to particle physics laws. For example, they can lead to sensitive corrections to the hydrogen energy levels, the measurements of which could be used to place very strong constraints on the properties of viable Palatini gravity theories.

  12. Induced interaction in a Fermi gas with a BEC-BCS crossover

    SciTech Connect

    Yu Zengqiang; Huang Kun; Yin Lan

    2009-05-15

    We study the effect of the induced interaction on the superfluid transition temperature of a Fermi gas with a Bose-Einstein condensation-Bardeen-Cooper-Schrieffer (BEC-BCS) crossover. The Gorkov-Melik-Barkhudarov theory about the induced interaction is extended from the BCS side to the entire crossover and the pairing fluctuation is treated in the approach by Nozieres and Schmitt-Rink. At unitarity, the induced interaction reduces the transition temperature by about 20%. In the BCS limit, the transition temperature is reduced by a factor of about 2.22, as found by Gorkov and Melik-Barkhudarov. Our result shows that the effect of the induced interaction is important both on the BCS side and in the unitary region.

  13. Wormhole geometries in f(R) modified theories of gravity

    SciTech Connect

    Lobo, Francisco S. N.; Oliveira, Miguel A.

    2009-11-15

    In this work, we construct traversable wormhole geometries in the context of f(R) modified theories of gravity. We impose that the matter threading the wormhole satisfies the energy conditions, so that it is the effective stress-energy tensor containing higher order curvature derivatives that is responsible for the null energy condition violation. Thus, the higher order curvature terms, interpreted as a gravitational fluid, sustain these nonstandard wormhole geometries, fundamentally different from their counterparts in general relativity. In particular, by considering specific shape functions and several equations of state, exact solutions for f(R) are found.

  14. Dark energy or modified gravity? An effective field theory approach

    SciTech Connect

    Bloomfield, Jolyon; Flanagan, Éanna É.; Park, Minjoon; Watson, Scott E-mail: eef3@cornell.edu E-mail: gswatson@syr.edu

    2013-08-01

    We take an Effective Field Theory (EFT) approach to unifying existing proposals for the origin of cosmic acceleration and its connection to cosmological observations. Building on earlier work where EFT methods were used with observations to constrain the background evolution, we extend this program to the level of the EFT of the cosmological perturbations — following the example from the EFT of Inflation. Within this framework, we construct the general theory around an assumed background which will typically be chosen to mimic ΛCDM, and identify the parameters of interest for constraining dark energy and modified gravity models with observations. We discuss the similarities to the EFT of Inflation, but we also identify a number of subtleties including the relationship between the scalar perturbations and the Goldstone boson of the spontaneously broken time translations. We present formulae that relate the parameters of the fundamental Lagrangian to the speed of sound, anisotropic shear stress, effective Newtonian constant, and Caldwell's varpi parameter, emphasizing the connection to observations. It is anticipated that this framework will be of use in constraining individual models, as well as for placing model-independent constraints on dark energy and modified gravity model building.

  15. Nonlinear growth in modified gravity theories of dark energy

    SciTech Connect

    Laszlo, Istvan; Bean, Rachel

    2008-01-15

    Theoretical differences in the growth of structure offer the possibility that we might distinguish between modified gravity theories of dark energy and {lambda}CDM. A significant impediment to applying current and prospective large scale galaxy and weak lensing surveys to this problem is that, while the mildly nonlinear regime is important, there is a lack of numerical simulations of nonlinear growth in modified gravity theories. A major question exists as to whether existing analytical fits, created using simulations of standard gravity, can be confidently applied. In this paper we address this, presenting results of N-body simulations of a variety of models where gravity is altered including the Dvali, Gabadadze, and Porrati model. We consider modifications that alter the Poisson equation and also consider the presence of anisotropic shear stress that alters how particles respond to the gravitational potential gradient. We establish how well analytical fits of the matter power spectrum by Peacock and Dodds and Smith et al. are able to predict the nonlinear growth found in the simulations from z=50 up to today, and also consider implications for the weak lensing convergence power spectrum. We find that the analytical fits provide good agreement with the simulations, being within 1{sigma} of the simulation results for cases with and without anisotropic stress and for scale-dependent and independent modifications of the Poisson equation. No strong preference for either analytical fit is found.

  16. Gravitational Cherenkov losses in theories based on modified Newtonian dynamics.

    PubMed

    Milgrom, Mordehai

    2011-03-18

    Survival of high-energy cosmic rays (HECRs) against gravitational Cherenkov losses is shown not to cast strong constraints on modified Newtonian dynamics (MOND) theories that are compatible with general relativity (GR): theories that coincide with GR for accelerations ≫a(0) (a(0) is the MOND constant). The energy-loss rate, E, is many orders smaller than those derived in the literature for theories with no extra scale. Modification to GR, which underlies E, enters only beyond the MOND radius of the particle: r(M)=(Gp/ca(0))(1/2). The spectral cutoff, entering E quadratically, is thus r(M)(-1), not k(dB)=p/ℏ. Thus, E is smaller than published rates, which use k(dB), by a factor ∼(r(M)k(dB))(2)≈10(39)(cp/3×10(11)  Gev)(3). Losses are important only beyond D(loss)≈qℓ(M), where q is a dimensionless factor, and ℓ(M)=c(2)/a(0) is the MOND length, which is ≈2π times the Hubble distance. PMID:21469855

  17. Perturbations of single-field inflation in modified gravity theory

    NASA Astrophysics Data System (ADS)

    Qiu, Taotao; Xia, Jun-Qing

    2015-05-01

    In this paper, we study the case of single field inflation within the framework of modified gravity theory where the gravity part has an arbitrary form f (R). Via a conformal transformation, this case can be transformed into its Einstein frame where it looks like a two-field inflation model. However, due to the existence of the isocurvature modes in such a multi-degree-of-freedom (m.d.o.f.) system, the (curvature) perturbations are not equivalent in two frames, so despite of its convenience, it is illegal to treat the perturbations in its Einstein frame as the "real" ones as we always do for pure f (R) theory or single field with nonminimal coupling. Here by pulling the results of curvature perturbations back into its original Jordan frame, we show explicitly the power spectrum and spectral index of the perturbations in the Jordan frame, as well as how it differs from the Einstein frame. We also fit our results with the newest Planck data. Since there is large parameter space in these models, we show that it is easy to fit the data very well.

  18. Galaxy clustering in 3D and modified gravity theories

    NASA Astrophysics Data System (ADS)

    Munshi, D.; Pratten, G.; Valageas, P.; Coles, P.; Brax, P.

    2016-02-01

    We study Modified Gravity (MG) theories by modelling the redshifted matter power spectrum in a spherical Fourier-Bessel basis. We use a fully non-linear description of the real-space matter power spectrum and include the lowest order redshift-space correction (Kaiser effect), taking into account some additional non-linear contributions. Ignoring relativistic corrections, which are not expected to play an important role for a shallow survey, we analyse two different MG scenarios, namely the generalized Dilaton scalar-tensor theories and the f (R) models in the large curvature regime. We compute the 3D power spectrum C^s_{ℓ}(k_1,k_2) for various such MG theories with and without redshift-space distortions, assuming precise knowledge of background cosmological parameters. Using an all-sky spectroscopic survey with Gaussian selection function \\varphi (r)∝ exp (-{r^2/r^2_0}), r_0=150h^{-1} Mpc, and number density of galaxies bar{N} =10^{-4}Mpc^{-3}, we use a χ2 analysis, and find that the lower order (ℓ ≤ 25) multipoles of C^s_ℓ (k,k^' }) (with radial modes restricted to k < 0.2 h Mpc-1) can constraint the parameter f_{R_0} at a level of 2 × 10-5(3 × 10-5) with 3σ confidence for n = 1(2). Combining constraints from higher ℓ > 25 modes can further reduce the error bars and thus in principle make cosmological gravity constraints competitive with Solar system tests. However this will require an accurate modelling of non-linear redshift-space distortions. Using a tomographic β(a)-m(a) parametrization we also derive constraints on specific parameters describing the Dilaton models of MG.

  19. Resonant electronic Raman scattering: A BCS-like system

    NASA Astrophysics Data System (ADS)

    Rodrigues, Leonarde N.; Arantes, A.; Schüller, C.; Bell, M. J. V.; Anjos, V.

    2016-05-01

    In this paper we investigate the resonant intersubband Raman scattering of two-dimensional electron systems in GaAs-AlGaAs single quantum wells. Self-consistent calculations of the polarized and depolarized Raman cross sections show that the appearance of excitations at the unrenormalized single-particle energy are related to three factors: the extreme resonance regime, the existence of degeneracy in intersubband excitations of the electron gas, and, finally, degeneracy in the interactions between pairs of excitations. It is demonstrated that the physics that governs the problem is similar to the one that gives rise to the formation of the superconducting state in the BCS theory of normal metals. Comparison between experiment and theory shows an excellent agreement.

  20. A modified large number theory with constant G

    NASA Astrophysics Data System (ADS)

    Recami, Erasmo

    1983-03-01

    The inspiring “numerology” uncovered by Dirac, Eddington, Weyl, et al. can be explained and derived when it is slightly modified so to connect the “gravitational world” (cosmos) with the “strong world” (hadron), rather than with the electromagnetic one. The aim of this note is to show the following. In the present approach to the “Large Number Theory,” cosmos and hadrons are considered to be (finite) similar systems, so that the ratio{{bar R} / {{bar R} {bar r}} of the cosmos typical lengthbar R to the hadron typical lengthbar r is constant in time (for instance, if both cosmos and hadrons undergo an expansion/contraction cycle—according to the “cyclical bigbang” hypothesis—thenbar R andbar r can be chosen to be the maximum radii, or the average radii). As a consequence, then gravitational constant G results to be independent of time. The present note is based on work done in collaboration with P. Caldirola, G. D. Maccarrone, and M. Pavšič.

  1. A modified Lorentz theory as a test theory of special relativity

    NASA Technical Reports Server (NTRS)

    Chang, T.; Torr, D. G.; Gagnon, D. R.

    1988-01-01

    Attention has been given recently to a modified Lorentz theory (MLT) that is based on the generalized Galilean transformation. Some explicit formulas within the framework of MLT, dealing with the one-way velocity of light, slow-clock transport, and the Doppler effect are derived. A number of typical experiments are analyzed on this basis. Results indicate that the empirical equivalence between MLT and special relativity is still maintained to second order terms. The results of previous works that predict that the MLT might be distinguished from special relativity at the third order by Doppler centrifuge tests capable of a fractional frequency detection threshold of 10 to the -15th are confirmed.

  2. Quantum fluctuations in the BCS-BEC crossover of two-dimensional Fermi gases

    DOE PAGES

    He, Lianyi; Lu, Haifeng; Cao, Gaoqing; Hu, Hui; Liu, Xia -Ji

    2015-08-14

    We present a theoretical study of the ground state of the BCS-BEC crossover in dilute two-dimensional Fermi gases. While the mean-field theory provides a simple and analytical equation of state, the pressure is equal to that of a noninteracting Fermi gas in the entire BCS-BEC crossover, which is not consistent with the features of a weakly interacting Bose condensate in the BEC limit and a weakly interacting Fermi liquid in the BCS limit. The inadequacy of the two-dimensional mean-field theory indicates that the quantum fluctuations are much more pronounced than those in three dimensions. In this work, we show thatmore » the inclusion of the Gaussian quantum fluctuations naturally recovers the above features in both the BEC and the BCS limits. In the BEC limit, the missing logarithmic dependence on the boson chemical potential is recovered by the quantum fluctuations. Near the quantum phase transition from the vacuum to the BEC phase, we compare our equation of state with the known grand canonical equation of state of two-dimensional Bose gases and determine the ratio of the composite boson scattering length aB to the fermion scattering length a2D. We find aB ≃ 0.56a2D, in good agreement with the exact four-body calculation. As a result, we compare our equation of state in the BCS-BEC crossover with recent results from the quantum Monte Carlo simulations and the experimental measurements and find good agreements.« less

  3. Quantum fluctuations in the BCS-BEC crossover of two-dimensional Fermi gases

    SciTech Connect

    He, Lianyi; Lu, Haifeng; Cao, Gaoqing; Hu, Hui; Liu, Xia -Ji

    2015-08-14

    We present a theoretical study of the ground state of the BCS-BEC crossover in dilute two-dimensional Fermi gases. While the mean-field theory provides a simple and analytical equation of state, the pressure is equal to that of a noninteracting Fermi gas in the entire BCS-BEC crossover, which is not consistent with the features of a weakly interacting Bose condensate in the BEC limit and a weakly interacting Fermi liquid in the BCS limit. The inadequacy of the two-dimensional mean-field theory indicates that the quantum fluctuations are much more pronounced than those in three dimensions. In this work, we show that the inclusion of the Gaussian quantum fluctuations naturally recovers the above features in both the BEC and the BCS limits. In the BEC limit, the missing logarithmic dependence on the boson chemical potential is recovered by the quantum fluctuations. Near the quantum phase transition from the vacuum to the BEC phase, we compare our equation of state with the known grand canonical equation of state of two-dimensional Bose gases and determine the ratio of the composite boson scattering length aB to the fermion scattering length a2D. We find aB ≃ 0.56a2D, in good agreement with the exact four-body calculation. As a result, we compare our equation of state in the BCS-BEC crossover with recent results from the quantum Monte Carlo simulations and the experimental measurements and find good agreements.

  4. Relativistic description of BCS-BEC crossover in nuclear matter

    NASA Astrophysics Data System (ADS)

    Sun, Bao Yuan; Toki, Hiroshi; Meng, Jie

    2010-01-01

    We study theoretically the di-neutron spatial correlations and the crossover from superfluidity of neutron Cooper pairs in the S10 pairing channel to Bose-Einstein condensation (BEC) of di-neutron pairs for both symmetric and neutron matter in the microscopic relativistic pairing theory. We take the bare nucleon-nucleon interaction Bonn-B in the particle-particle channel and the effective interaction PK1 of the relativistic mean-field approach in the particle-hole channel. It is found that the spatial structure of neutron Cooper pair wave function evolves continuously from BCS-type to BEC-type as density decreases. We see a strong concentration of the probability density revealed for the neutron pairs in the fairly small relative distance around 1.5 fm and the neutron Fermi momentum kFn ∈ [ 0.6 , 1.0 ] fm-1. However, from the effective chemical potential and the quasiparticle excitation spectrum, there is no evidence for the appearance of a true BEC state of neutron pairs at any density. The most BEC-like state may appear at kFn ∼ 0.2 fm-1 by examining the density correlation function. From the coherence length and the probability distribution of neutron Cooper pairs as well as the ratio between the neutron pairing gap and the kinetic energy at the Fermi surface, some features of the BCS-BEC crossover are seen in the density regions, 0.05 fm-1

  5. Competition between BCS-pairing and “moth-eaten effect” in BEC-BCS crossover

    NASA Astrophysics Data System (ADS)

    Zhu, Guojun; Combescot, Monique

    2012-01-01

    We study the change in condensation energy from a single pair of fermionic atoms to a large number of pairs interacting via the reduced BCS potential. We find that the energy-saving due to correlations decreases when the pair number increases because the number of empty states available for pairing gets smaller ("moth-eaten effect"). However, this decrease dominates the 3D kinetic energy increase of the same amount of noninteracting atoms only when the pair number is a sizable fraction of the number of states available for pairing. As a result, in BEC-BCS crossover of 3D systems, the condensation energy per pair first increases and then decreases with pair number while in 2D, it always is controlled by the "moth-eaten effect" and thus simply decreases.

  6. Creation of wormholes by quantum tunnelling in modified gravity theories

    NASA Astrophysics Data System (ADS)

    Battarra, Lorenzo; Lavrelashvili, George; Lehners, Jean-Luc

    2014-12-01

    We study the process of quantum tunnelling in scalar-tensor theories in which the scalar field is nonminimally coupled to gravity. In these theories gravitational instantons can deviate substantially from sphericity and can in fact develop a neck—a feature prohibited in theories with minimal coupling. Such instantons with necks lead to the materialization of bubble geometries containing a wormhole region. We clarify the relationship of neck geometries to violations of the null energy condition, and also derive a bound on the size of the neck relative to that of the instanton.

  7. Modified Enskog kinetic theory for strongly coupled plasmas.

    PubMed

    Baalrud, Scott D; Daligault, Jérôme

    2015-06-01

    Concepts underlying the Enskog kinetic theory of hard-spheres are applied to include short-range correlation effects in a model for transport coefficients of strongly coupled plasmas. The approach is based on an extension of the effective potential transport theory [S. D. Baalrud and J. Daligault, Phys. Rev. Lett. 110, 235001 (2013)] to include an exclusion radius surrounding individual charged particles that is associated with Coulomb repulsion. This is obtained by analogy with the finite size of hard spheres in Enskog's theory. Predictions for the self-diffusion and shear viscosity coefficients of the one-component plasma are tested against molecular dynamics simulations. The theory is found to accurately capture the kinetic contributions to the transport coefficients, but not the potential contributions that arise at very strong coupling (Γ≳30). Considerations related to a first-principles generalization of Enskog's kinetic equation to continuous potentials are also discussed.

  8. Going beyond the BCS level in the superfluid path integral: A consistent treatment of electrodynamics and thermodynamics

    NASA Astrophysics Data System (ADS)

    Anderson, Brandon M.; Boyack, Rufus; Wu, Chien-Te; Levin, K.

    2016-05-01

    In this Rapid Communication we derive the full gauge-invariant electromagnetic response beyond the BCS level using the fermionic superfluid path integral. In the process we identify and redress a failure to satisfy the compressibility sum rule; this shortcoming is associated with the conventional path-integral formulation of BCS-level electrodynamics. The approach in this paper builds on an alternative saddle point scheme. At the mean field level, this leads to the well known gauge-invariant electrodynamics of BCS theory and to the satisfaction of the compressibility sum rule. Moreover, this scheme can be readily extended to address arbitrary higher order fluctuation theories (for example, at the Gaussian level.) At any level this approach will lead to a gauge invariant and compressibility sum rule consistent treatment of electrodynamics and thermodynamics.

  9. A modified Lax-Phillips scattering theory for quantum mechanics

    NASA Astrophysics Data System (ADS)

    Strauss, Y.

    2015-07-01

    The Lax-Phillips scattering theory is an appealing abstract framework for the analysis of scattering resonances. Quantum mechanical adaptations of the theory have been proposed. However, since these quantum adaptations essentially retain the original structure of the theory, assuming the existence of incoming and outgoing subspaces for the evolution and requiring the spectrum of the generator of evolution to be unbounded from below, their range of applications is rather limited. In this paper, it is shown that if we replace the assumption regarding the existence of incoming and outgoing subspaces by the assumption of the existence of Lyapunov operators for the quantum evolution (the existence of which has been proved for certain classes of quantum mechanical scattering problems), then it is possible to construct a structure analogous to the Lax-Phillips structure for scattering problems for which the spectrum of the generator of evolution is bounded from below.

  10. A modified Lax-Phillips scattering theory for quantum mechanics

    SciTech Connect

    Strauss, Y.

    2015-07-15

    The Lax-Phillips scattering theory is an appealing abstract framework for the analysis of scattering resonances. Quantum mechanical adaptations of the theory have been proposed. However, since these quantum adaptations essentially retain the original structure of the theory, assuming the existence of incoming and outgoing subspaces for the evolution and requiring the spectrum of the generator of evolution to be unbounded from below, their range of applications is rather limited. In this paper, it is shown that if we replace the assumption regarding the existence of incoming and outgoing subspaces by the assumption of the existence of Lyapunov operators for the quantum evolution (the existence of which has been proved for certain classes of quantum mechanical scattering problems), then it is possible to construct a structure analogous to the Lax-Phillips structure for scattering problems for which the spectrum of the generator of evolution is bounded from below.

  11. Comparison of the Modified Biot-Gassmann Theory and the Kuster-Toksoz Theory in Predicting Elastic Velocities of Sediments

    USGS Publications Warehouse

    Lee, Myung W.

    2008-01-01

    Elastic velocities of water-saturated sandstones depend primarily on porosity, effective pressure, and the degree of consolidation. If the dry-frame moduli are known, from either measurements or theoretical calculations, the effect of pore water on velocities can be modeled using the Gassmann theory. Kuster and Toksoz developed a theory based on wave-scattering theory for a variety of inclusion shapes, which provides a means for calculating dry- or wet-frame moduli. In the Kuster-Toksoz theory, elastic wave velocities through different sediments can be predicted by using different aspect ratios of the sediment's pore space. Elastic velocities increase as the pore aspect ratio increases (larger pore aspect ratio describes a more spherical pore). On the basis of the velocity ratio, which is assumed to be a function of (1-0)n, and the Biot-Gassmann theory, Lee developed a semi-empirical equation for predicting elastic velocities, which is referred to as the modified Biot-Gassmann theory of Lee. In this formulation, the exponent n, which depends on the effective pressure and the degree of consolidation, controls elastic velocities; as n increases, elastic velocities decrease. Computationally, the role of exponent n in the modified Biot-Gassmann theory by Lee is similar to the role of pore aspect ratios in the Kuster-Toksoz theory. For consolidated sediments, either theory predicts accurate velocities. However, for unconsolidated sediments, the modified Biot-Gassmann theory by Lee performs better than the Kuster-Toksoz theory, particularly in predicting S-wave velocities.

  12. Research on a Modified Framework of Implicit Personality Theories

    ERIC Educational Resources Information Center

    Ziegler, Albert; Stoeger, Heidrun

    2010-01-01

    There is ample evidence that labeled gifted students exhibit maladaptive behavior patterns. According to Carol Dweck those students who subscribe to a fixed view of their abilities are particularly at risk. In this contribution we extended Dweck's framework and distinguished two aspects of the implicit theory of one's own abilities. We…

  13. Making School Reform Work: A "Mineralogical" Theory of School Modifiability. Fastback 467.

    ERIC Educational Resources Information Center

    Sternberg, Robert J.

    This booklet proposes a different approach to understanding schools, school change, and why attempts at change run into so many difficulties. The text is divided into six parts. It examines issues in school reform and restructuring and offers what is called a Mineralogical Theory of school modifiability. This theory posits that there are eight…

  14. Halo velocity profiles in screened modified gravity theories

    NASA Astrophysics Data System (ADS)

    Gronke, M.; Llinares, C.; Mota, D. F.; Winther, H. A.

    2015-05-01

    Screened modified gravity predicts potentially large signatures in the peculiar velocity field that makes it an interesting probe to test gravity on cosmological scales. We investigate the signatures induced by the Symmetron and a Chameleon f(R) model in the peculiar velocity field using N-body simulations. By studying fifth force and halo velocity profiles, we identify three general categories of effects found in screened modified gravity models: a fully screened regime where we recover Λ cold dark matter to high precision, an unscreened regime where the fifth force is in full operation, and, a partially screened regime where screening occurs in the inner part of a halo, but the fifth force is active at larger radii. These three regimes can be pointed out very clearly by analysing the deviation in the maximum cluster velocity. Observationally, the partially screened regime is of particular interest since an uniform increase of the gravitational force - as present in the unscreened regime - is degenerate with the (dynamical) halo mass estimate, and, thus, hard to detect.

  15. Microscopic Theory of Modified Spontaneous Emission in a Dielectric

    NASA Astrophysics Data System (ADS)

    Berman, P. R.; Milonni, P. W.

    2004-02-01

    The modification of the radiative decay rate of a source atom embedded in a uniform, isotropic dielectric is calculated to first order in the density of the dielectric atoms using a microscopic approach. In contrast to the recent results of Crenshaw and Bowden [

    Phys. Rev. Lett. 85, 1851 (2000)
    ], the decay rate is found to be consistent with macroscopic theories based on quantization of the field in the dielectric.

  16. A New First-Principles Calculation of Field-Dependent RF Surface Impedance of BCS Superconductor

    SciTech Connect

    Xiao, Binping; Reece, Charles E.

    2014-02-01

    There is a need to understand the intrinsic limit of radiofrequency (RF) surface impedance that determines the performance of superconducting RF cavities in particle accelerators. Here we present a field-dependent derivation of Mattis-Bardeen theory of the RF surface impedance of BCS superconductors based on the shifted density of states resulting from coherently moving Cooper pairs. Our theoretical prediction of the effective BCS RF surface resistance (Rs) of niobium as a function of peak surface magnetic field amplitude agrees well with recently reported record low loss resonant cavity measurements from JLab and FNAL with carefully, yet differently, prepared niobium material. The surprising reduction in resistance with increasing field is explained to be an intrinsic effect.

  17. Inflationary gravitational waves in the effective field theory of modified gravity

    NASA Astrophysics Data System (ADS)

    De Felice, Antonio; Tsujikawa, Shinji

    2015-05-01

    In the approach of the effective field theory of modified gravity, we derive the second-order action and the equation of motion for tensor perturbations on the flat isotropic cosmological background. This analysis accommodates a wide range of gravitational theories including Horndeski theories, its generalization, and the theories with spatial derivatives higher than second order (e.g., Hořava-Lifshitz gravity). We obtain the inflationary power spectrum of tensor modes by taking into account corrections induced by higher-order spatial derivatives and slow-roll corrections to the de Sitter background. We also show that the leading-order spectrum in concrete modified gravitational theories can be mapped on to that in General Relativity under a disformal transformation. Our general formula will be useful to constrain inflationary models from the future precise measurement of the B-mode polarization in the cosmic microwave background.

  18. Feshbach resonances and BCS-BEC crossover in optical lattices

    NASA Astrophysics Data System (ADS)

    Shen, Zhaochuan; Radzihovsky, Leo; Gurarie, Victor

    2012-02-01

    In this talk we study Feshbach resonances of fermionic atoms placed in a periodic potential. We investigate the criteria when such a system can be described by a Hubbard model with variable interaction strength in case of broad resonance, or by a tight binding model of atoms and molecules with can convert into each other on sites of the lattice in case of narrow resonances. Assuming the applicability of these models, we first study the BCS-BEC crossover for broad resonance. We find that while below half filling the system undergoes the conventional crossover from a BCS superconductor to a Bose condensate of molecules, above half filling the nature of the BEC phase changes to that of a condensate of molecules made of holes. Switching our attention to the case of narrow resonance, we find that the crossover takes the system from a BCS to hole-BEC regime, than back to BCS, and finally to a conventional BEC of atomic molecules. In the latter crossover, we find that the size of Cooper pairs/molecules changes non-monotonously, being larger in the BCS and smaller in the BEC regimes. Finally, at a unity filling we find a quantum phase transition from a band insulator to a BCS-BEC superfluid replacing the crossover.

  19. Modified Kepler's law, escape speed, and two-body problem in modified Newtonian dynamics-like theories

    SciTech Connect

    Zhao Hongsheng; Li Baojiu; Bienayme, Olivier

    2010-11-15

    We derive a simple analytical expression for the two-body force in a subclass of modified Newtonian dynamics (MOND) theories and make testable predictions in the modification to the two-body orbital period, shape, precession rate, escape speed, etc. We demonstrate the applications of the modified Kepler's law in the timing of satellite orbits around the Milky Way, and checking the feasibility of MOND in the orbit of the large Magellanic cloud, the M31 galaxy, and the merging bullet clusters. MOND appears to be consistent with satellite orbits although with a tight margin. Our results on two-bodies are also generalized to restricted three-body, many-body problems, rings, and shells.

  20. Modified Kepler's law, escape speed, and two-body problem in modified Newtonian dynamics-like theories

    NASA Astrophysics Data System (ADS)

    Zhao, Hongsheng; Li, Baojiu; Bienaymé, Olivier

    2010-11-01

    We derive a simple analytical expression for the two-body force in a subclass of modified Newtonian dynamics (MOND) theories and make testable predictions in the modification to the two-body orbital period, shape, precession rate, escape speed, etc. We demonstrate the applications of the modified Kepler’s law in the timing of satellite orbits around the Milky Way, and checking the feasibility of MOND in the orbit of the large Magellanic cloud, the M31 galaxy, and the merging bullet clusters. MOND appears to be consistent with satellite orbits although with a tight margin. Our results on two-bodies are also generalized to restricted three-body, many-body problems, rings, and shells.

  1. Modified Coulomb-Dipole Theory for 2e Photoionization

    NASA Technical Reports Server (NTRS)

    2004-01-01

    In the light of recent experiment on 2e photoionization of Li near threshold, we have considered a modification of the Coulomb-dipole theory, retaining the basic assumption that the threshold is dominated by asymmetric events in phase space [implies r(sub 1), k(sub 1)) greater than or equal to 2(r(sub 2), k(sub )]. In this region [in a collinear model, 2/r(sub 12) approached + 2/(r(sub 1)+r(sub 2)] the interaction reduces to V(rIsub 1) is greater than or equal to 2r(sub 2) is identically equal to [(-Z/r(sub 2)-(A-1)/r(sub 1)] + [(-2r(sub 2)/r(sub 1 exp 2)] is identically equal to V(sub c)+[V(sub d)]. For two electron emission Z = 2, thus both electrons see a Coulomb potential (V(sub c)) asymptotically, albeit each seeing a different charge. The residual potential (V(sub d)) is dipole in character. Writing the total psi = psi (sub c) + psi(sub d) = delta psi, and noting that. (T+V(sub c)-E)psy(sub c) = 0 and (T+V(sub c))psi(sub d) = 0 can be solved exactly, we find, substituting psi into the complete Schrod. Eq., that delta psi = -(H-E)(exp -1)(V(sub d) psi(sub 0)+V(sub c psi (sub 1). Using the fact that the absolute value of V(sub c) is much more than the absolute value of V(sub d) in almost all of configuration space, we can replace H by H(sub 0) in 9H-E)(exp -1) to obtain an improved approximation psi (improved) = psi(sub c) + psi(sub d) -(H(sub 0)-E)(exp -1) (V(sub c) psi (sub 0) + V(sub c) psi(sub 1). Here's the Green's function (H(sub 0)-E)(exp -1), can be exhibited explicitly, but the last term in psi (improved) is small, compared to the first two terms. Inserting them into the transition matrix element, which one handles in the usual way, we obtain in the limit E approaches 0, the threshold law: Q(E) alpha E + M(E)E(exp 5/4) + higher order (Eq. 1a). The modulation function, M(E), is a well-defined (but very non-trivial integral, but it is expected to be well approximated by a sinusoidal function containing a dipole phase term (M(E) = c sin[alpha log (E

  2. Using modified theories to study the vibrations of thin-walled composite cylindrical shells

    NASA Astrophysics Data System (ADS)

    Kubala, Martin

    1992-06-01

    First-order modified theories are applied to the vibration analysis of thin-walled layered cylindrical shells in the case where one of the layers is an orthotropic composite material. Equilibrium equations are obtained by using the adjoint transformation of the strain-displacement operator in Hilbert space L2. The variability of the results is found to increase with the material heterogeneity.

  3. Exploring the Role of Diagnosis in the Modified Labeling Theory of Mental Illness

    ERIC Educational Resources Information Center

    Kroska, Amy; Harkness, Sarah K.

    2008-01-01

    According to the modified labeling theory of mental illness, when an individual is diagnosed with a mental illness, cultural ideas associated with the mentally ill become personally relevant and foster negative self-feelings. We explore the way that psychiatric diagnosis shapes this process. Specifically, we examine if and how psychiatric…

  4. Superconductivity in an electron band just above the Fermi level: possible route to BCS-BEC superconductivity.

    PubMed

    Okazaki, K; Ito, Y; Ota, Y; Kotani, Y; Shimojima, T; Kiss, T; Watanabe, S; Chen, C-T; Niitaka, S; Hanaguri, T; Takagi, H; Chainani, A; Shin, S

    2014-02-28

    Conventional superconductivity follows Bardeen-Cooper-Schrieffer(BCS) theory of electrons-pairing in momentum-space, while superfluidity is the Bose-Einstein condensation(BEC) of atoms paired in real-space. These properties of solid metals and ultra-cold gases, respectively, are connected by the BCS-BEC crossover. Here we investigate the band dispersions in FeTe(0.6)Se(0.4)(Tc = 14.5 K ~ 1.2 meV) in an accessible range below and above the Fermi level(EF) using ultra-high resolution laser angle-resolved photoemission spectroscopy. We uncover an electron band lying just 0.7 meV (~8 K) above EF at the Γ-point, which shows a sharp superconducting coherence peak with gap formation below Tc. The estimated superconducting gap Δ and Fermi energy [Symbol: see text]F indicate composite superconductivity in an iron-based superconductor, consisting of strong-coupling BEC in the electron band and weak-coupling BCS-like superconductivity in the hole band. The study identifies the possible route to BCS-BEC superconductivity.

  5. Lensing-induced morphology changes in CMB temperature maps in modified gravity theories

    NASA Astrophysics Data System (ADS)

    Munshi, D.; Hu, B.; Matsubara, T.; Coles, P.; Heavens, A.

    2016-04-01

    Lensing of the Cosmic Microwave Background (CMB) changes the morphology of pattern of temperature fluctuations, so topological descriptors such as Minkowski Functionals can probe the gravity model responsible for the lensing. We show how the recently introduced two-to-two and three-to-one kurt-spectra (and their associated correlation functions), which depend on the power spectrum of the lensing potential, can be used to probe modified gravity theories such as f(R) theories of gravity and quintessence models. We also investigate models based on effective field theory, which include the constant-Ω model, and low-energy Hořava theories. Estimates of the cumulative signal-to-noise for detection of lensing-induced morphology changes, reaches Script O(103) for the future planned CMB polarization mission COrE+. Assuming foreground removal is possible to lmax=3000, we show that many modified gravity theories can be rejected with a high level of significance, making this technique comparable in power to galaxy weak lensing or redshift surveys. These topological estimators are also useful in distinguishing lensing from other scattering secondaries at the level of the four-point function or trispectrum. Examples include the kinetic Sunyaev-Zel'dovich (kSZ) effect which shares, with lensing, a lack of spectral distortion. We also discuss the complication of foreground contamination from unsubtracted point sources.

  6. Uniform diffracted fields from a perfectly conducting cylindrical reflector with modified theory of physical optics.

    PubMed

    Yalçın, Uğur; Sarnık, Mücahit

    2013-01-01

    The uniform diffracted fields are calculated on PEC cylindrical reflector by Modified Theory of Physical Optics (MTPO). It is aimed to convert the noncontinuous solution to a continuous solution by finding a uniform equation which does not contain any expression converging to 0 in the denominator part. Three axioms of MTPO theory are used to construct the integral equations for the perfectly electrically conducting surface application. The "edge-point" technique is used to find the diffracted field, and uniform solution is to be found via "detour parameter(s)." Finally, the obtained results are to be compared with the nonuniform ones, numerically. PMID:23766679

  7. Constraining Modified Theories of Gravity with Gravitational-Wave Stochastic Backgrounds

    NASA Astrophysics Data System (ADS)

    Maselli, Andrea; Marassi, Stefania; Ferrari, Valeria; Kokkotas, Kostas; Schneider, Raffaella

    2016-08-01

    The direct discovery of gravitational waves has finally opened a new observational window on our Universe, suggesting that the population of coalescing binary black holes is larger than previously expected. These sources produce an unresolved background of gravitational waves, potentially observable by ground-based interferometers. In this Letter we investigate how modified theories of gravity, modeled using the parametrized post-Einsteinian formalism, affect the expected signal, and analyze the detectability of the resulting stochastic background by current and future ground-based interferometers. We find the constraints that Advanced LIGO would be able to set on modified theories, showing that they may significantly improve the current bounds obtained from astrophysical observations of binary pulsars.

  8. Constraining Modified Theories of Gravity with Gravitational-Wave Stochastic Backgrounds.

    PubMed

    Maselli, Andrea; Marassi, Stefania; Ferrari, Valeria; Kokkotas, Kostas; Schneider, Raffaella

    2016-08-26

    The direct discovery of gravitational waves has finally opened a new observational window on our Universe, suggesting that the population of coalescing binary black holes is larger than previously expected. These sources produce an unresolved background of gravitational waves, potentially observable by ground-based interferometers. In this Letter we investigate how modified theories of gravity, modeled using the parametrized post-Einsteinian formalism, affect the expected signal, and analyze the detectability of the resulting stochastic background by current and future ground-based interferometers. We find the constraints that Advanced LIGO would be able to set on modified theories, showing that they may significantly improve the current bounds obtained from astrophysical observations of binary pulsars. PMID:27610838

  9. Constraining Modified Theories of Gravity with Gravitational-Wave Stochastic Backgrounds.

    PubMed

    Maselli, Andrea; Marassi, Stefania; Ferrari, Valeria; Kokkotas, Kostas; Schneider, Raffaella

    2016-08-26

    The direct discovery of gravitational waves has finally opened a new observational window on our Universe, suggesting that the population of coalescing binary black holes is larger than previously expected. These sources produce an unresolved background of gravitational waves, potentially observable by ground-based interferometers. In this Letter we investigate how modified theories of gravity, modeled using the parametrized post-Einsteinian formalism, affect the expected signal, and analyze the detectability of the resulting stochastic background by current and future ground-based interferometers. We find the constraints that Advanced LIGO would be able to set on modified theories, showing that they may significantly improve the current bounds obtained from astrophysical observations of binary pulsars.

  10. Quantum quench phase diagrams of an s -wave BCS-BEC condensate

    NASA Astrophysics Data System (ADS)

    Yuzbashyan, E. A.; Dzero, M.; Gurarie, V.; Foster, M. S.

    2015-03-01

    We study the dynamic response of an s -wave BCS-BEC (atomic-molecular) condensate to detuning quenches within the two-channel model beyond the weak-coupling BCS limit. At long times after the quench, the condensate ends up in one of three main asymptotic states (nonequilibrium phases), which are qualitatively similar to those in other fermionic condensates defined by a global complex order parameter. In phase I the amplitude of the order parameter vanishes as a power law, in phase II it goes to a nonzero constant, and in phase III it oscillates persistently. We construct exact quench phase diagrams that predict the asymptotic state (including the many-body wave function) depending on the initial and final detunings and on the Feshbach resonance width. Outside of the weak-coupling regime, both the mechanism and the time dependence of the relaxation of the amplitude of the order parameter in phases I and II are modified. Also, quenches from arbitrarily weak initial to sufficiently strong final coupling do not produce persistent oscillations in contrast to the behavior in the BCS regime. The most remarkable feature of coherent condensate dynamics in various fermion superfluids is an effective reduction in the number of dynamic degrees of freedom as the evolution time goes to infinity. As a result, the long-time dynamics can be fully described in terms of just a few new collective dynamical variables governed by the same Hamiltonian only with "renormalized" parameters. Combining this feature with the integrability of the underlying (e.g., the two-channel) model, we develop and consistently present a general method that explicitly obtains the exact asymptotic state of the system.

  11. BCS condensate as a special case of the Bose-Einstein condensate

    NASA Astrophysics Data System (ADS)

    Batle, J.; Casas, M.; Fortes, M.; Solís, M. A.; de Llano, M.; Salazar, A.; Valladares, A. A.; Rojo, O.

    2001-03-01

    Rather general separable interfermionic interactions with sufficient attraction to bind fermions into (bosonic) Cooper pairs (CPs) give [1], in 2D or 3D, a center-of-mass-momentum(CMM)-dependent CP binding energy that is quadratic for any coupling strictly only in the limit of zero Fermi energy, i.e., when the Fermi sea disappears and one is in vacuum. Otherwise, this "dispersion relation" is linear to good approximation---and perfectly so in weak to moderate coupling. Moreover, the CPs break up beyond a certain CMM which vanishes in the zero coupling limit. As a result, the condensate of BCS theory (which generally neglects nonzero CMM CPs) appears to be a special case of the Bose-Einstein condensate of a boson-fermion binary mixture. Chemical and thermal equilibrium in the mixture gives rise [2] to a boson number which is strongly coupling- and temperature-dependent, and generally leads to transition temperatures substantially greater than those predicted by BCS theory. [1] S.K. Adhikari et al., Physica C (in press) and Phys. Rev. B 62 (2000) 8671; M. Casas et al., Physica C 295 (1998) 93; M. Casas et al., Phys. Letters A 245 (1998) 55. [2] M. Casas et al., http://xxx.lanl.gov/abs/cond-mat/0003499.

  12. BCS-BEC crossover physics in FeSe bulk superconductor

    NASA Astrophysics Data System (ADS)

    Shibauchi, Takasada

    The physics of the crossover between weak-coupling Bardeen-Cooper-Schrieffer (BCS) and strong-coupling Bose-Einstein-condensate (BEC) limits gives a unified framework of quantum bound (superfluid) states of interacting fermions. This crossover has been studied in the ultracold atomic systems, but is extremely difficult to be realized for electrons in solids. Through the superfluid response, transport, thermoelectric response, and quantum oscillations, we demonstrate that the Fermi energy of the bulk superconductor FeSe is extremely small, with the ratio of the gap to Fermi energy is of the order of unity, which qualifies FeSe to be deep inside the BCS-BEC crossover regime. Thus FeSe appears to be a key material to solve the longstanding issue in the crossover physics; the presence of preformed Cooper pairs giving rise to a pseudogap above the superconducting transition temperature Tc. We report experimental signatures of preformed Cooper pairing well above Tc = 8 . 5 K in clean single crystals of FeSe. Our torque magnetometry reveals distinct diamagnetic signal below T* ~ 20 K indicating that the superconducting fluctuations above the transition temperature are strongly enhanced from the standard Gaussian theory. The transport and thermoelectric coefficients also exhibit distinct anomalies at ~T* , signaling a possible pseudogap formation. The multiband nature with the electron-hole compensation in FeSe may highlight a fundamentally new aspect of the BCS-BEC crossover physics In collaboration with S. Kasahara, T. Yamashita, Y. Matsuda (Kyoto), Y. Mizukami (Tokyo), T. Wolf, F. Hardy, C. Meingast, H. v. Löhneysen (KIT), M. D. Watson, A. I. Coldea (Oxford), T. Terashima (NIMS), W. Knafo (Toulouse), T. Hanaguri (Riken).

  13. Pairing in bulk nuclear matter beyond BCS

    SciTech Connect

    Ding, D.; Dickhoff, W. H.; Dussan, H.; Witte, S. J.; Rios, A.; Polls, A.

    2014-10-15

    The influence of short-range correlations on the spectral distribution of neutrons is incorporated in the solution of the gap equation for the {sup 3}P{sub 2}−{sup 3}F{sub 2} coupled channel in pure neutron matter. This effect is studied for different realistic interactions including one based on chiral perturbation theory. The gap in this channel vanishes at all relevant densities due to the treatment of these correlations. We also consider the effect of long-range correlations by including polarization terms in addition to the bare interaction which allow the neutrons to exchange density and spin fluctuations governed by the strength of Landau parameters allowed to have reasonable values consistent with the available literature. Preliminary results indicate that reasonable values of these parameters do not generate a gap in the {sup 3}P{sub 2}−{sup 3}F{sub 2} coupled channel either for all three realistic interactions although the pairing interaction becomes slightly more attractive.

  14. Prediction of positive food effect: Bioavailability enhancement of BCS class II drugs.

    PubMed

    Raman, Siddarth; Polli, James E

    2016-06-15

    High-throughput screening methods have increased the number of poorly water-soluble, highly permeable drug candidates. Many of these candidates have increased bioavailability when administered with food (i.e., exhibit a positive food effect). Food is known to impact drug bioavailability through a variety of mechanisms, including drug solubilization and prolonged gastric residence time. In vitro dissolution media that aim to mimic in vivo gastrointestinal (GI) conditions have been developed to lessen the need for fed human bioequivalence studies. The objective of this work was to develop an in vitro lipolysis model to predict positive food effect of three BCS Class II drugs (i.e., danazol, amiodarone and ivermectin) in previously developed lipolysis media. This in vitro lipolysis model was comparatively benchmarked against FeSSIF and FaSSIF media that were modified for an in vitro lipolysis approach, as FeSSIF and FaSSIF are widely used in in vitro dissolution studies. The in vitro lipolysis model accurately predicted the in vivo positive food effect for three model BCS class II drugs. The in vitro lipolysis model has potential use as a screening test of drug candidates in early development to assess positive food effect.

  15. Chern-Simons modified gravity as a torsion theory and its interaction with fermions

    SciTech Connect

    Alexander, Stephon; Yunes, Nicolas

    2008-06-15

    We study the tetrad formulation of Chern-Simons (CS) modified gravity, which adds a Pontryagin term to the Einstein-Hilbert action with a spacetime-dependent coupling field. We first verify that CS modified gravity leads to a theory with torsion, where this tensor is given by an antisymmetric product of the Riemann tensor and derivatives of the CS coupling. We then calculate the torsion in the far field of a weakly gravitating source within the parameterized post-Newtonian formalism, and specialize the result to Earth. We find that CS torsion vanishes only if the coupling vanishes, thus generically leading to a modification of gyroscopic precession, irrespective of the coupling choice. Perhaps most interestingly, we couple fermions to CS modified gravity via the standard Dirac action and find that these further correct the torsion tensor. Such a correction leads to two new results: (i) a generic enhancement of CS modified gravity by the Dirac equation and axial fermion currents; (ii) a new two-fermion interaction, mediated by an axial current and the CS correction. We conclude with a discussion of the consequences of these results in particle detectors and realistic astrophysical systems.

  16. Isospin Dependent Pairing Interactions and BCS-BEC crossover

    SciTech Connect

    Sagawa, H.; Margueron, J.; Hagino, K.

    2008-11-11

    We propose new types of density dependent contact pairing interaction which reproduce the pairing gaps in symmetric and neutron matters obtained by a microscopic treatment based on the realistic nucleon-nucleon interaction. The BCS-BEC crossover of neutrons pairs in symmetric and asymmetric nuclear matters is studied by using these contact interactions. It is shown that the bare and screened pairing interactions lead to different features of the BCS-BEC crossover in symmetric nuclear matter. We perform Hartree-Fock-Bogoliubov (HFB) calculations for semi-magic Calcium, Nickel, Tin and Lead isotopes and N = 20, 28, 50 and 82 isotones using these density-dependent pairing interactions. Our calculations well account for the experimental data for the neutron number dependence of binding energy, two neutrons separation energy, and odd-even mass staggering of these isotopes. Especially the interaction IS+IV Bare without the medium polarization effect gives satisfactory results for all the isotopes.

  17. Particle-hole fluctuations in BCS-BEC crossover

    SciTech Connect

    Floerchinger, S.; Scherer, M.; Wetterich, C.; Diehl, S.

    2008-11-01

    The effect of particle-hole fluctuations for the BCS-BEC crossover is investigated by use of functional renormalization. We compute the Gorkov effect and the critical temperature for the whole range in the scattering length a. On the BCS side for small negative a we recover the Gorkov approximation, while on the BEC side of small positive a the particle-hole fluctuations play no important role, and we find a system of interacting bosons. In the unitarity limit of infinite scattering length our quantitative estimate yields T{sub c}/T{sub F}=0.264. We also investigate the crossover from broad to narrow Feshbach resonances - for the latter we obtain T{sub c}/T{sub F}=0.204 for a{sup -1}=0. A key ingredient for our treatment is the computation of the momentum dependent four-fermion vertex and its bosonization in terms of an effective bound-state exchange.

  18. Continuum discretised BCS approach for weakly bound nuclei

    NASA Astrophysics Data System (ADS)

    Lay, J. A.; Alonso, C. E.; Fortunato, L.; Vitturi, A.

    2016-08-01

    The Bardeen-Cooper-Schrieffer (BCS) formalism is extended by including the single-particle continuum in order to analyse the evolution of pairing in an isotopic chain from stability up to the drip-line. We propose a continuum discretised generalised BCS based on single-particle pseudostates (PS). These PS are generated from the diagonalisation of the single-particle Hamiltonian within a transformed harmonic oscillator basis. The consistency of the results versus the size of the basis is studied. The method is applied to neutron rich oxygen and carbon isotopes and compared with similar previous works and available experimental data. We make use of the flexibility of the proposed model in order to study the evolution of the occupation of the low-energy continuum when the system becomes weakly bound. We find an increasing influence of the non-resonant continuum as long as the Fermi level approaches the neutron separation threshold.

  19. Projected BCS-Tamm-Dancoff approximation with blocking effect

    NASA Astrophysics Data System (ADS)

    Dias, H.; Krmpotić, F.

    1982-05-01

    The blocking effect is introduced through a canonical transformation in the projected BCS-Tamm-Dancoff approximation. It is suggested that the blocking effect may play an important role in the description of the low-lying states in odd-mass nuclei. Present address: Departamento de Física, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 1900 La Plata, Argentina. Member of Carrera de Investigador Científico, CONICET, Argentina. Sponsored by Financiadora de Estudos e Projetos (FINEP), Brasil.

  20. Effect of the particle-hole channel on BCS-Bose-Einstein condensation crossover in atomic Fermi gases.

    PubMed

    Chen, Qijin

    2016-01-01

    BCS-Bose-Einstein condensation (BEC) crossover is effected by increasing pairing strength between fermions from weak to strong in the particle-particle channel, and has attracted a lot of attention since the experimental realization of quantum degenerate atomic Fermi gases. Here we study the effect of the (often dropped) particle-hole channel on the zero T gap Δ(0), superfluid transition temperature Tc, the pseudogap at Tc, and the mean-field ratio 2Δ(0)/, from BCS through BEC regimes, using a pairing fluctuation theory which includes self-consistently the contributions of finite-momentum pairs and features a pseudogap in single particle excitation spectrum. Summing over the infinite particle-hole ladder diagrams, we find a complex dynamical structure for the particle-hole susceptibility χph, and conclude that neglecting the self-energy feedback causes a serious over-estimate of χph. While our result in the BCS limit agrees with Gor'kov et al., the particle-hole channel effect becomes more complex and pronounced in the crossover regime, where χph is reduced by both a smaller Fermi surface and a big (pseudo)gap. Deep in the BEC regime, the particle-hole channel contributions drop to zero. We predict a density dependence of the magnetic field at the Feshbach resonance, which can be used to quantify χph and test different theories.

  1. Modified radiative transfer theory for a two-layer random medium

    NASA Technical Reports Server (NTRS)

    Zuniga, M. A.; Kong, J. A.

    1980-01-01

    Modified radiative transfer (MRT) equations appropriate for electromagnetic wave propagation in bounded random media are derived from the Bethe-Salpeter equation with the ladder approximation and the Dyson equation with the nonlinear approximation. The MRT equations are then solved with the first-order renormalization approximation to obtain analytical results for the backscattering cross sections of a two-layer random medium with arbitrary three-dimensional correlation functions. The coherent effects of the MRT theory are illustrated and comparisons are made with backscattering cross sections obtained with the first Born approximation to the wave equation.

  2. Modified Theories of Gravity with Nonminimal Coupling and the Faint Young Sun Paradox

    NASA Astrophysics Data System (ADS)

    Iorio, Lorenzo

    2016-01-01

    A certain general class of modified gravitational theories with nonminimal coupling predicts a "pressure"-type, non-geodesic acceleration for a non-rotating, massive test particle. The resulting orbital perturbations for a two-body system consist of secular rates of change of all the standard orbital elements. The resulting variation of the mutual distance yields a physical mechanism which has the potential capability to explain, in principle, the Faint Young Sun Paradox in terms of a recession of the Earth from the Sun during the Archean.

  3. The black hole merger event GW150914 within a modified theory of general relativity

    NASA Astrophysics Data System (ADS)

    Hess, P. O.

    2016-11-01

    In 2016 February the first observation of gravitational waves were reported. The source of this event, denoted as GW150914, was identified as the merger of two black holes with about 30 solar masses each, at a distance of approximately 400 Mpc. These data were deduced using the theory of general relativity. Since 2009 a modified theory was proposed which adds near massive objects phenomenologically the contribution of a dark energy, whose origin are vacuum fluctuations. The dark energy accumulates towards smaller distances, reducing effectively the gravitational constant. In this contribution we show that as a consequence the deduces chirping mass and the luminosity distance are larger. This result suggests that the black hole merger corresponds to two massive black holes near the centre of primordial galaxies at large luminosity distance, i.e. large redshifts.

  4. Modified Uncertainty Theory and Parents’ Perspectives about Equivocal Diagnostic Results for Cystic Fibrosis

    PubMed Central

    Tluczek, Audrey; McKechnie, Anne Chevalier; Lynam, Patrice A.

    2010-01-01

    A grounded, dimensional analysis described the experiences of five couples whose infants had equivocal diagnostic test results following positive genetic newborn screens for cystic fibrosis. We analyzed interview data collected at two times during each infant’s first year. Uncertainty emerged as the central thematic dimension. Results showed that parents passed through a series of stages similar to the process described by Mishel’s Uncertainty in Illness Theory (UIT), thus extending the application of the theory to circumstances in which the very presence of an illness is uncertain. Findings informed a modified version of the UIT comprised of five domains: stimuli frame, degree of uncertainty, opportunity-danger continuum, affective responses, and coping. This model incorporated Morse’s conception of suffering. Three contextual domains influenced parents’ experiences at various junctures along the uncertainty trajectory: individual characteristics, structure providers, and time. We discussed implications of the model for future research and clinical practice relative to genetic testing. PMID:20065305

  5. Superfluidity and BCS-BEC crossover of ultracold atomic Fermi gases in mixed dimensions

    NASA Astrophysics Data System (ADS)

    Zhang, Leifeng; Chen, Qijin

    Atomic Fermi gases have been under active investigation in the past decade. Here we study the superfluid and pairing phenomena of a two-component ultracold atomic Fermi gas in the presence of mixed dimensionality, in which one component is confined on a 1D optical lattice whereas the other is free in the 3D continuum. We assume a short-range pairing interaction and determine the superfluid transition temperature Tc and the phase diagram for the entire BCS-BEC crossover, using a pairing fluctuation theory which includes self-consistently the contributions of finite momentum pairs. We find that, as the lattice depth increases and the lattice spacing decreases, the behavior of Tc becomes very similar to that of a population imbalance Fermi gas in a simple 3D continuum. There is no superfluidity even at T = 0 below certain threshold of pairing strength in the BCS regime. Nonmonotonic Tc behavior and intermediate temperature superfluidity emerge, and for deep enough lattice, the Tc curve will split into two parts. Implications for experiment will be discussed. References: 1. Q.J. Chen, Ioan Kosztin, B. Janko, and K. Levin, Phys. Rev. B 59, 7083 (1999). 2. Chih-Chun Chien, Qijin Chen, Yan He, and K. Levin, Phys. Rev. Lett. 97, 090402(2006). Work supported by NSF of China and the National Basic Research Program of China.

  6. The biopharmaceutics classification system (BCS): class III drugs - better candidates for BA/BE waiver?

    PubMed

    Blume, H H; Schug, B S

    1999-12-01

    Current guidelines (CPMP Note for Guidance in Europe and FDA Guidance for Industry in the USA) consider a waiver of bioavailability/bioequivalence studies for immediate release dosage forms of highly soluble, highly permeable drug substances (Class I according to the BCS). In this paper, a waiver of BA/BE studies is being proposed also for Class III compounds (high solubility and low permeability) in fast dissolving products without excipients which may modify gastro-intestinal transit or membrane permeation. This type of drug substance may be an even better candidate for a waiver as, in this case, bioavailability will not so much depend on the formulation characteristics, as on drug substance properties (e.g. permeability).

  7. Specific heat and effects of pairing fluctuations in the BCS-BEC-crossover regime of an ultracold Fermi gas

    NASA Astrophysics Data System (ADS)

    van Wyk, Pieter; Tajima, Hiroyuki; Hanai, Ryo; Ohashi, Yoji

    2016-01-01

    We investigate the specific heat at constant volume CV in the Bardeen-Cooper-Schrieffer-Bose-Einstein-condensate (BCS-BEC)-crossover regime of an ultracold Fermi gas above the superfluid phase transition temperature Tc. Within the framework of the strong-coupling theory developed by Nozières and Schmitt-Rink, we show that this thermodynamic quantity is sensitive to the stability of preformed Cooper pairs. That is, while CV(T ≳Tc) in the unitary regime is remarkably enhanced by metastable preformed Cooper pairs or pairing fluctuations, it is well described by that of an ideal Bose gas of long-lived stable molecules in the strong-coupling BEC regime. Using these results, we identify the region where the system may be viewed as an almost ideal Bose gas of stable pairs, as well as the pseudogap regime where the system is dominated by metastable preformed Cooper pairs, in the phase diagram of an ultracold Fermi gas with respect to the strength of a pairing interaction and the temperature. We also show that the calculated specific heat agrees with the recent experiment on a 6Li unitary Fermi gas. Since the formation of preformed Cooper pairs is a crucial key in the BCS-BEC-crossover phenomenon, our results would be helpful in considering how fluctuating preformed Cooper pairs appear in a Fermi gas to eventually become stable as one passes through the BCS-BEC-crossover region.

  8. Sound modes at the BCS-BEC crossover

    SciTech Connect

    Heiselberg, H.

    2006-01-15

    First and second sound speeds are calculated for a uniform superfluid gas of Fermi atoms as a function of temperature, density, and interaction strength. The second sound speed is of particular interest as it is a clear signal of a superfluid component and it determines the critical temperature. The sound modes and their dependence on density, scattering length, and temperature are calculated in the BCS, molecular Bose-Einstein condensate (BEC), and unitarity limits and a smooth crossover is extrapolated. It is found that first and second sounds undergo avoided crossing on the BEC side due to mixing. Consequently, they are detectable at crossover both as density and thermal waves in traps.

  9. Cosmological BCS mechanism and the big bang singularity

    SciTech Connect

    Alexander, Stephon; Biswas, Tirthabir

    2009-07-15

    We provide a novel mechanism that resolves the big bang singularity present in Friedman-Lemaitre-Robertson-Walker space-times without the need for ghost fields. Building on the fact that a four-fermion interaction arises in general relativity when fermions are covariantly coupled, we show that at early times the decrease in scale factor enhances the correlation between pairs of fermions. This enhancement leads to a BCS-like condensation of the fermions and opens a gap dynamically driving the Hubble parameter H to zero and results in a nonsingular bounce, at least in some special cases.

  10. High temperature superconductivity in sulfur hydride under ultrahigh pressure: A complex superconducting phase beyond conventional BCS

    NASA Astrophysics Data System (ADS)

    Bussmann-Holder, Annette; Köhler, Jürgen; Whangbo, M.-H.; Bianconi, Antonio; Simon, Arndt

    2016-05-01

    The recent report of superconductivity under high pressure at the record transition temperature of Tc =203 K in pressurized H2S has been identified as conventional in view of the observation of an isotope effect upon deuteration. Here it is demonstrated that conventional theories of superconductivity in the sense of BCS or Eliashberg formalisms cannot account for the pressure dependence of the isotope coefficient. The only way out of the dilemma is a multi-band approach of superconductivity where already small interband coupling suffices to achieve the high values of Tc together with the anomalous pressure dependent isotope coefficient. In addition, it is shown that anharmonicity of the hydrogen bonds vanishes under pressure whereas anharmonic phonon modes related to sulfur are still active.

  11. A Rapid Distortion Theory modified turbulence spectra for semi-analytical airfoil noise prediction

    NASA Astrophysics Data System (ADS)

    Santana, Leandro D.; Christophe, Julien; Schram, Christophe; Desmet, Wim

    2016-11-01

    This paper proposes an implementation of the Rapid Distortion Theory, for the prediction of the noise resulting from the interaction of an airfoil with incoming turbulence. In the framework of the semi-analytical modeling strategy known as Amiet's theory, this interaction mechanism is treated in a linearized form where the airfoil thickness, camber and angle of attack are assumed negligible, leading to a frozen turbulence description of the incident gust. Important semi-analytical developments have been proposed in the literature to improve the modeling of the gust-airfoil interaction accounting for parallel and skewed gusts, non-rectangular linearized airfoil shapes or blade tip effects. This work is rather focused on the investigation of the distortion of turbulence that occurs in the vicinity of the airfoil leading edge, compared with Rapid Distortion Theory, where main results are briefly reminded in this paper. The main contribution of this work is a detailed experimental investigation of the evolution of turbulent quantities relevant to noise production, performed in the close vicinity of the airfoil leading edge subjected to grid turbulence, by means of stereoscopic Particle Image Velocimetry measurements. The results indicate that the distortion effects are concentrated in a narrow region close to the stagnation point of the leading edge, with dimension of the order of its radius of curvature. Additionally, it is shown that the turbulence intensity grows significantly as the flow approaches the airfoil leading-edge. Based on those results, a modified turbulence spectrum is proposed to describe the incoming turbulence in Amiet's theory. The sound predictions show a significantly better match with acoustic measurements than using the original turbulence model.

  12. Covariant anomaly and Hawking radiation from the modified black hole in the rainbow gravity theory

    NASA Astrophysics Data System (ADS)

    Peng, Jun-Jin; Wu, Shuang-Qing

    2008-12-01

    Recently, Banerjee and Kulkarni (R. Banerjee, S. Kulkarni, arXiv: 0707. 2449 [hep-th]) suggested that it is conceptually clean and economical to use only the covariant anomaly to derive Hawking radiation from a black hole. Based upon this simplified formalism, we apply the covariant anomaly cancellation method to investigate Hawking radiation from a modified Schwarzschild black hole in the theory of rainbow gravity. Hawking temperature of the gravity’s rainbow black hole is derived from the energy-momentum flux by requiring it to cancel the covariant gravitational anomaly at the horizon. We stress that this temperature is exactly the same as that calculated by the method of cancelling the consistent anomaly.

  13. Applicability of modified effective-range theory to positron-atom and positron-molecule scattering

    SciTech Connect

    Idziaszek, Zbigniew; Karwasz, Grzegorz

    2006-06-15

    We analyze low-energy scattering of positrons on Ar atoms and N{sub 2} molecules using the modified effective-range theory (MERT) developed by O'Malley, et al. [J. Math. Phys. 2, 491 (1961)]. We use the formulation of MERT based on exact solutions of the Schroedinger equation with polarization potential rather than low-energy expansions of phase shifts into momentum series. We show that MERT describes the experimental data well, provided that effective-range expansion is performed both for s- and p-wave scattering, which dominate in the considered regime of positron energies (0.4-2 eV). We estimate the values of the s-wave scattering length and the effective range for e{sup +}-Ar and e{sup +}-N{sub 2} collisions.

  14. Binary Mixture of Perfect Fluid and Dark Energy in Modified Theory of Gravity

    NASA Astrophysics Data System (ADS)

    Shaikh, A. Y.

    2016-07-01

    A self consistent system of Plane Symmetric gravitational field and a binary mixture of perfect fluid and dark energy in a modified theory of gravity are considered. The gravitational field plays crucial role in the formation of soliton-like solutions, i.e., solutions with limited total energy, spin, and charge. The perfect fluid is taken to be the one obeying the usual equation of state, i.e., p = γρ with γ∈ [0, 1] whereas, the dark energy is considered to be either the quintessence like equation of state or Chaplygin gas. The exact solutions to the corresponding field equations are obtained for power-law and exponential volumetric expansion. The geometrical and physical parameters for both the models are studied.

  15. Modified statistical dynamical diffraction theory: analysis of model SiGe heterostructures.

    PubMed

    Shreeman, P K; Dunn, K A; Novak, S W; Matyi, R J

    2013-08-01

    A modified version of the statistical dynamical diffraction theory (mSDDT) permits full-pattern fitting of high-resolution X-ray diffraction scans from thin-film systems across the entire range from fully dynamic to fully kinematic scattering. The mSDDT analysis has been applied to a set of model SiGe/Si thin-film samples in order to define the capabilities of this approach. For defect-free materials that diffract at the dynamic limit, mSDDT analyses return structural information that is consistent with commercial dynamical diffraction simulation software. As defect levels increase and the diffraction characteristics shift towards the kinematic limit, the mSDDT provides new insights into the structural characteristics of these materials. PMID:24046498

  16. Density functional theory calculations of phenol-modified monolayer silicon nanosheets

    NASA Astrophysics Data System (ADS)

    Spencer, Michelle J. S.; Morishita, Tetsuya; Bassett, Michael R.

    2013-12-01

    Silicon nanosheets are one of most exciting recent discoveries, being a two-dimensional form of silicon that is only nanometers thick, with large lateral dimensions. A single atomic layer silicon nanosheet is known as silicene and can be grown with different surface terminations. It has been shown previously that organo-modified silicene can be synthesised with phenyl groups covalently bonded to both sides of the nanosheet, with hydrogen atoms terminating the undercoordinated silicon atoms. In this work, we use density functional theory calculations and ab initio molecular dynamics simulations to determine the effect of hydroxyl (OH) group substitutions on the phenyl-modified silicene. Different positions of the OH groups on the phenyl rings were modelled including ortho-, meta- and para- substituted positions. We found that the meta-substituted position was favoured, followed by the para- then ortho- substituted positions. Our ab initio MD simulations showed that the phenol groups will freely rotate on the nanosheet, aligning so as to form hydrogen bonds between adjacent phenol groups. The unique properties of this material could be useful for future electronic device applications.

  17. Modeling gravity-driven fingering in rough-walled fractures using modified percolation theory

    SciTech Connect

    Glass, R.J.

    1992-12-31

    Pore scale invasion percolation theory is modified for imbibition of.wetting fluids into fractures. The effects of gravity, local aperture field geometry, and local in-plane air/water interfacial curvatureare included in the calculation of aperture filling potential which controls wetted structure growth within the fracture. The inclusion of gravity yields fingers oriented in the direction of the gravitational gradient. These fingers widen and tend to meander and branch more as the gravitational gradient decreases. In-plane interfacial curvature also greatly affects the wetted structure in both horizontal and nonhorizontal fractures causing the formation of macroscopic wetting fronts. The modified percolation model is used to simulate imbibition into an analogue rough-walled fracture where both fingering and horizontal imbibition experiments were previously conducted. Comparison of numerical and experimental results showed reasonably good agreement. This process oriented physical and numerical modeling is-a necessary step toward including gravity-driven fingering in models of flow and transport through unsaturated, fractured rock.

  18. Particle-hole duality, integrability, and Russian doll BCS model

    NASA Astrophysics Data System (ADS)

    Bork, L. V.; Pogosov, W. V.

    2015-08-01

    We address a generalized Richardson model (Russian doll BCS model), which is characterized by the breaking of time-reversal symmetry. This model is known to be exactly solvable and integrable. We point out that the Russian doll BCS model, on the level of Hamiltonian, is also particle-hole symmetric. This implies that the same state can be expressed both in the particle and hole representations with two different sets of Bethe roots. We then derive exact relations between Bethe roots in the two representations, which can hardly be obtained staying on the level of Bethe equations. In a quasi-classical limit, similar identities for usual Richardson model, known from literature, are recovered from our results. We also show that these relations for Richardson roots take a remarkably simple form at half-filling and for a symmetric with respect to the middle of the interaction band distribution of one-body energy levels, since, in this special case, the rapidities in the particle and hole representations up to the translation satisfy the same system of equations.

  19. Testing the flexibility of the modified receptive field (MRF) theory: evidence from an unspaced orthography (Thai).

    PubMed

    Winskel, Heather; Perea, Manuel; Peart, Emma

    2014-07-01

    In the current study, we tested the generality of the modified receptive field (MRF) theory (Tydgat & Grainger, 2009) with English native speakers (Experiment 1) and Thai native speakers (Experiment 2). Thai has a distinctive alphabetic orthography with visually complex letters (ฝ ฟ or ผ พ) and nonlinear characteristics and lacks interword spaces. We used a two-alternative forced choice (2AFC) procedure to measure identification accuracy for all positions in a string of five characters, which consisted of Roman script letters, Thai letters, or symbols. For the English speakers, we found a similar pattern of results as in previous studies (i.e., a dissociation between letters and symbols). In contrast, for the Thai participants, we found that the pattern for Thai letters, Roman letters and symbols displayed a remarkably similar linear trend. Thus, while we observed qualified support for the MRF theory, in that we found an advantage for initial position, this effect also applied to symbols (i.e., our data revealed a language-specific effect). We propose that this pattern for letters and symbols in Thai has developed as a specialized adaptive mechanism for reading in this visually complex and crowded nonlinear script without interword spaces. PMID:24818534

  20. Renormalization group scale-setting from the action—a road to modified gravity theories

    NASA Astrophysics Data System (ADS)

    Domazet, Silvije; Štefančić, Hrvoje

    2012-12-01

    The renormalization group (RG) corrected gravitational action in Einstein-Hilbert and other truncations is considered. The running scale of the RG is treated as a scalar field at the level of the action and determined in a scale-setting procedure recently introduced by Koch and Ramirez for the Einstein-Hilbert truncation. The scale-setting procedure is elaborated for other truncations of the gravitational action and applied to several phenomenologically interesting cases. It is shown how the logarithmic dependence of the Newton's coupling on the RG scale leads to exponentially suppressed effective cosmological constant and how the scale-setting in particular RG-corrected gravitational theories yields the effective f(R) modified gravity theories with negative powers of the Ricci scalar R. The scale-setting at the level of the action at the non-Gaussian fixed point in Einstein-Hilbert and more general truncations is shown to lead to universal effective action quadratic in the Ricci tensor.

  1. Testing the flexibility of the modified receptive field (MRF) theory: evidence from an unspaced orthography (Thai).

    PubMed

    Winskel, Heather; Perea, Manuel; Peart, Emma

    2014-07-01

    In the current study, we tested the generality of the modified receptive field (MRF) theory (Tydgat & Grainger, 2009) with English native speakers (Experiment 1) and Thai native speakers (Experiment 2). Thai has a distinctive alphabetic orthography with visually complex letters (ฝ ฟ or ผ พ) and nonlinear characteristics and lacks interword spaces. We used a two-alternative forced choice (2AFC) procedure to measure identification accuracy for all positions in a string of five characters, which consisted of Roman script letters, Thai letters, or symbols. For the English speakers, we found a similar pattern of results as in previous studies (i.e., a dissociation between letters and symbols). In contrast, for the Thai participants, we found that the pattern for Thai letters, Roman letters and symbols displayed a remarkably similar linear trend. Thus, while we observed qualified support for the MRF theory, in that we found an advantage for initial position, this effect also applied to symbols (i.e., our data revealed a language-specific effect). We propose that this pattern for letters and symbols in Thai has developed as a specialized adaptive mechanism for reading in this visually complex and crowded nonlinear script without interword spaces.

  2. Performance assessment of several equations of state and second virial coefficients in modified Enskog theory: Results for transport properties

    NASA Astrophysics Data System (ADS)

    Kiani, M.; Alavianmehr, M. M.; Otoofat, M.; Mohsenipour, A. A.; Ghatee, A.

    2015-11-01

    In this work, we identify a simple method for predicting transport properties of fluids over wide ranges of temperatures and pressure. In this respect, the capability of several equations of state (EOS) and second virial coefficient correlations to predict transport properties of fluids including carbon dioxide, methane and argon using modified Enskog theory (MET) is investigated. The transport properties in question are viscosity and thermal conductivity. The results indicate that the SRK EOS employed in the modified Enskog theory outperforms other equations of state. The average absolute deviation was found to be 12.2 and 18.5% for, respectively, the calculated thermal conductivity and viscosity using the MET.

  3. More is Different:. 50 Years of Nuclear BCS

    NASA Astrophysics Data System (ADS)

    Broglia, R. A.

    2013-01-01

    At the basis of BCS theory, and associated symmetry breaking phenomena in gauge space, one finds Cooper pair binding. A major question in the nuclear case concerning this issue, regards the relative role played by the bare nucleon-nucleon force and by the interaction induced by the exchange of vibrations between members of Cooper pairs. The exotic nucleus 113Li8 in which two neutrons forming an extended halo, bind weakly to the 9Li core, provides an excellent testing ground to try to shed light on this issue. Theory finds that, in this case, the exchange of collective vibrations associated with the core and with the halo fields, provides an important fraction of the glue binding the pair. Inverse kinematics and active detector based experiments, combined with a quantitative description (based on absolute differential cross sections) of single Cooper pair tunneling, the specific probe of pairing in nuclei, which forces the virtual phonon into a real final state, have tested these predictions with positive results. The extension of structure and reaction studies to open shell (superfluid) nuclei (Sn-isotopes), displaying a strong alignment of quasispin in gauge space, and associated domain wall, as testified by pairing rotational bands excited in terms of single Cooper pair tunneling, provides an overall description of the data within experimental errors. This is also true in connection with pairing vibrations as observed in closed shell nuclei. Many of the concepts which are at the basis of the development associated with a quantitative treatment of the variety of phenomena associated with the spontaneous breaking of gauge symmetry in nuclei have been instrumental in connection with novel studies of soft matter, namely of protein evolution and protein folding. Although the route to these subjects and associated development does not necessarily imply the nuclear physics connection, such a connection has proven qualitatively and quantitatively inspiring. In particular

  4. Chiral symmetry breaking beyond BCS and theorem on the width of scalars

    SciTech Connect

    Bicudo, P.

    2008-08-31

    We review chiral symmetry breaking at the BCS level, in the framework of chiral invariant quark models and in the Schwinger-Dyson formalism. We revisit the {pi} mass problem beyond the BCS level. We show a theorem on the masses, on the widths and on the qq-bar content of the scalar mesons {sigma} and f{sub 0}.

  5. The efficacy of a modified Theory of Reasoned Action to explain gambling behavior in college students.

    PubMed

    Thrasher, Robert G; Andrew, Damon P S; Mahony, Daniel F

    2011-09-01

    Recently, Thrasher et al. (College Student Affairs Journal 27(1): 57-75, 2007) explored the efficacy of the Theory of Reasoned Action (TRA; Ajzen and Fishbein, Attitudes, personality, and behavior, 1980) in explaining gambling behavior of college students. However, their study found the TRA only predicted small amounts of variance in gambling intentions. Heeding their call to enhance the efficacy of the TRA through the addition of explanatory variables to the model, the present study incorporated gambling motivations and locus of control as moderating variables within the TRA to test the potential of a modified TRA in explaining gambling behavior of college students. A total of 345 students at a major metropolitan research university in the Midwest volunteered to participate in the study. A series of hierarchical linear regressions indicated intrinsic motivation to accomplish (p = .002) significantly moderated the relationship between gambling attitudes and gambling intentions. Further, internal locus of control (p < .001), chance locus of control (p < .001), and powerful others locus of control (p < .001) also significantly moderated the relationship between gambling attitudes and gambling intentions. The significant impact of the moderating variables on the relationship between gambling attitudes and intentions suggests intrinsic motivation and locus of control can alter the impact of the relationship between gambling attitudes and gambling intentions.

  6. Cosmological tests of modified gravity: Constraints on F (R ) theories from the galaxy clustering ratio

    NASA Astrophysics Data System (ADS)

    Bel, Julien; Brax, Philippe; Marinoni, Christian; Valageas, Patrick

    2015-05-01

    The clustering ratio η , a large-scale structure observable originally designed to constrain the shape of the power spectrum of matter density fluctuations, is shown to provide a sensitive probe of the nature of gravity in the cosmological regime. We apply this analysis to F (R ) theories of gravity using the luminous red galaxy sample extracted from the spectroscopic Sloan Digital Sky Survey (SDSS) data release 7 and 10 catalogs. We find that general relativity (GR), complemented with a Friedmann-Robertson-Walker (FRW) cosmological model with parameters fixed by the Planck satellite, describes extremely well the clustering of galaxies up to z ˜0.6 . On large cosmic scales, the absolute amplitude of deviations from GR, |fR 0|, is constrained to be smaller than 4.6 ×1 0-5 at the 95% confidence level. This bound makes cosmological probes of gravity almost competitive with the sensitivity of Solar System tests, although still one 1 order of magnitude less effective than astrophysical tests. We also extrapolate our results to future large surveys like Euclid and show that the astrophysical bound will certainly remain out of reach for such a class of modified-gravity models that only differ from Λ CDM at low redshifts.

  7. An aeroelastic analysis of a flexible flapping wing using modified strip theory

    NASA Astrophysics Data System (ADS)

    Kim, Dae-Kwan; Lee, Jun-Seong; Lee, Jin-Young; Han, Jae-Hung

    2008-03-01

    The present study proposed a coupling method for the fluid-structural interaction analysis of a flexible flapping wing. An efficient numerical aerodynamic model was suggested, which was based on the modified strip theory and further improved to take into account a high relative angle of attack and dynamic stall effects induced by pitching and plunging motions. The aerodynamic model was verified with experimental data of rigid wings. A reduced structural model of a rectangular flapping wing was also established by using flexible multibody dynamics and a modal approach technique, so as to consider large flapping motions and local elastic deformations. Then, the aeroelastic analysis method was developed by coupling these aerodynamic and structural modules. To measure the aerodynamic forces of the rectangular flapping wing, static and dynamic tests were performed in a low speed wind-tunnel for various flapping pitch angles, flapping frequencies and the airspeeds. Finally, the aerodynamic forces predicted by the aeroelastic analysis method showed good agreement with the experimental data of the rectangular flapping wing.

  8. BCS MPI: N new approach i the system software design for large-scale parallel computers

    SciTech Connect

    Fernández, J. C.; Petrini, F.; Frachtenberg, E.

    2003-01-01

    Buffered Co-Scheduled (BCS) MPI proposes a new approach to design the communication libraries for large-scale parallel machines. The emphasis of BCS MPI is on the global coordination of a large number of processes rather than in the traditional optimization of the local performance of a pair of communicating processes. BCS MPI delays the interprocessor communication in order to schedule globally the communication pattern and it is designed on top of a minimal set of collective communication primitives. In this paper we describe a prototype implementation of BCS MDI and its Communication protocols. The experimental results, executed on a set of scientific applications representative of the ASCI workload, show that BCS MPI is only marginally slower than the production-level MPI, but much simpler to implement, debug and analyze.

  9. BCS MPI: a new approach in the software design for large-scale parallel computers

    SciTech Connect

    Peinador, J. F.; Petrini, F.

    2003-01-01

    BCS MPI proposes a new approach to design the communication libraries for large scale parallel machines. The emphasis of BCS MPI is on the global coordination of the potentially large number of processes and in the reduction of the non determinism rather than in the traditional optimization of the local performance of a pair of communicating processes. BCS MPI delays the interprocessor communication in order to schedule globally the communication pattern and it is designed on top of a minimal set of collective communication primitives. In this paper we describe a prototype implementation of BCS MPI and its communication protocols. The experimental results, executed on a set of scientific applications representative of the ASCI workload, show that BCS MPI is only marginally slower than the production-level MPI, but much simpler to implement, debug and analyze.

  10. BCS Biowaivers: Similarities and Differences Among EMA, FDA, and WHO Requirements.

    PubMed

    Davit, Barbara M; Kanfer, Isadore; Tsang, Yu Chung; Cardot, Jean-Michel

    2016-05-01

    The Biopharmaceutics Classification System (BCS), based on aqueous solubility and intestinal permeability, has enjoyed wide use since 1995 as a mechanism for waiving in vivo bioavailability and bioequivalence studies. In 2000, the US-FDA was the first regulatory agency to publish guidance for industry describing how to meet criteria for requesting a waiver of in vivo bioavailability and bioequivalence studies for highly soluble, highly permeable (BCS Class I) drugs. Subsequently, the World Health Organization (WHO) and European Medicines Agency (EMA) published guidelines recommending how to obtain BCS biowaivers for BCS Class III drugs (high solubility, low permeability), in addition to Class I drugs. In 2015, the US-FDA became better harmonized with the EMA and WHO following publication of two guidances for industry outlining criteria for obtaining BCS biowaivers for both Class I and Class III drugs. A detailed review and comparison of the BCS Class I and Class III criteria currently recommended by the US-FDA, EMA, and WHO revealed good convergence of the three agencies with respect to BCS biowaiver criteria. The comparison also suggested that, by applying the most conservative of the three jurisdictional approaches, it should be possible for a sponsor to design the same set of BCS biowaiver studies in preparing a submission for worldwide filing to satisfy US, European, and emerging market regulators. It is hoped that the availability of BCS Class I and Class III biowaivers in multiple jurisdictions will encourage more sponsors to request waivers of in vivo bioavailability/bioequivalence testing using the BCS approach.

  11. Sensitivity analysis of rectangular atomic force microscope cantilevers immersed in liquids based on the modified couple stress theory.

    PubMed

    Lee, Haw-Long; Chang, Win-Jin

    2016-01-01

    The modified couple stress theory is adopted to study the sensitivity of a rectangular atomic force microscope (AFM) cantilever immersed in acetone, water, carbon tetrachloride (CCl4), and 1-butanol. The theory contains a material length scale parameter and considers the size effect in the analysis. However, this parameter is difficult to obtain via experimental measurements. In this study, a conjugate gradient method for the parameter estimation of the frequency equation is presented. The optimal method provides a quantitative approach for estimating the material length scale parameter based on the modified couple stress theory. The results show that the material length scale parameter of the AFM cantilever immersed in acetone, CCl4, water, and 1-butanol is 0, 25, 116.3, and 471 nm, respectively. In addition, the vibration sensitivities of the AFM cantilever immersed in these liquids are investigated. The results are useful for the design of AFM cantilevers immersed in liquids.

  12. Transition and Damping of Collective Modes in a Trapped Fermi Gas between BCS and Unitary Limits near the Phase Transition

    PubMed Central

    Dong, Hang; Zhang, Wenyuan; Zhou, Li; Ma, Yongli

    2015-01-01

    We investigate the transition and damping of low-energy collective modes in a trapped unitary Fermi gas by solving the Boltzmann-Vlasov kinetic equation in a scaled form, which is combined with both the T-matrix fluctuation theory in normal phase and the mean-field theory in order phase. In order to connect the microscopic and kinetic descriptions of many-body Feshbach scattering, we adopt a phenomenological two-fluid physical approach, and derive the coupling constants in the order phase. By solving the Boltzmann-Vlasov steady-state equation in a variational form, we calculate two viscous relaxation rates with the collision probabilities of fermion’s scattering including fermions in the normal fluid and fermion pairs in the superfluid. Additionally, by considering the pairing and depairing of fermions, we get results of the frequency and damping of collective modes versus temperature and s-wave scattering length. Our theoretical results are in a remarkable agreement with the experimental data, particularly for the sharp transition between collisionless and hydrodynamic behaviour and strong damping between BCS and unitary limits near the phase transition. The sharp transition originates from the maximum of viscous relaxation rate caused by fermion-fermion pair collision at the phase transition point when the fermion depair, while the strong damping due to the fast varying of the frequency of collective modes from BCS limit to unitary limit. PMID:26522094

  13. A Preliminary ZEUS Lightning Location Error Analysis Using a Modified Retrieval Theory

    NASA Technical Reports Server (NTRS)

    Elander, Valjean; Koshak, William; Phanord, Dieudonne

    2004-01-01

    The ZEUS long-range VLF arrival time difference lightning detection network now covers both Europe and Africa, and there are plans for further expansion into the western hemisphere. In order to fully optimize and assess ZEUS lightning location retrieval errors and to determine the best placement of future receivers expected to be added to the network, a software package is being developed jointly between the NASA Marshall Space Flight Center (MSFC) and the University of Nevada Las Vegas (UNLV). The software package, called the ZEUS Error Analysis for Lightning (ZEAL), will be used to obtain global scale lightning location retrieval error maps using both a Monte Carlo approach and chi-squared curvature matrix theory. At the core of ZEAL will be an implementation of an Iterative Oblate (IO) lightning location retrieval method recently developed at MSFC. The IO method will be appropriately modified to account for variable wave propagation speed, and the new retrieval results will be compared with the current ZEUS retrieval algorithm to assess potential improvements. In this preliminary ZEAL work effort, we defined 5000 source locations evenly distributed across the Earth. We then used the existing (as well as potential future ZEUS sites) to simulate arrival time data between source and ZEUS site. A total of 100 sources were considered at each of the 5000 locations, and timing errors were selected from a normal distribution having a mean of 0 seconds and a standard deviation of 20 microseconds. This simulated "noisy" dataset was analyzed using the IO algorithm to estimate source locations. The exact locations were compared with the retrieved locations, and the results are summarized via several color-coded "error maps."

  14. Vector-tensor nature of Bekenstein's relativistic theory of modified gravity

    NASA Astrophysics Data System (ADS)

    Zlosnik, T. G.; Ferreira, P. G.; Starkman, Glenn D.

    2006-08-01

    Bekenstein’s theory of relativistic gravity is conventionally written as a bimetric theory. The two metrics are related by a disformal transformation defined by a dynamical vector field and a scalar field. In this paper we show that the theory can be rewritten as vector-tensor theory akin to Einstein-Aether theories with noncanonical kinetic terms. We discuss some of the implications of this equivalence.

  15. Vector-tensor nature of Bekenstein's relativistic theory of modified gravity

    SciTech Connect

    Zlosnik, T. G.; Ferreira, P. G.; Starkman, Glenn D.

    2006-08-15

    Bekenstein's theory of relativistic gravity is conventionally written as a bimetric theory. The two metrics are related by a disformal transformation defined by a dynamical vector field and a scalar field. In this paper we show that the theory can be rewritten as vector-tensor theory akin to Einstein-Aether theories with noncanonical kinetic terms. We discuss some of the implications of this equivalence.

  16. Experimental verification of the modified spring-mass theory of fiber Bragg grating accelerometers using transverse forces.

    PubMed

    Li, Kuo; Chan, Tommy H T; Yau, Man Hong; Thambiratnam, David P; Tam, Hwa Yaw

    2014-02-20

    A fiber Bragg grating (FBG) accelerometer using transverse forces is more sensitive than one using axial forces with the same mass of the inertial object, because a barely stretched FBG fixed at its two ends is much more sensitive to transverse forces than axial ones. The spring-mass theory, with the assumption that the axial force changes little during the vibration, cannot accurately predict its sensitivity and resonant frequency in the gravitational direction because the assumption does not hold due to the fact that the FBG is barely prestretched. It was modified but still required experimental verification due to the limitations in the original experiments, such as the (1) friction between the inertial object and shell; (2) errors involved in estimating the time-domain records; (3) limited data; and (4) large interval ~5  Hz between the tested frequencies in the frequency-response experiments. The experiments presented here have verified the modified theory by overcoming those limitations. On the frequency responses, it is observed that the optimal condition for simultaneously achieving high sensitivity and resonant frequency is at the infinitesimal prestretch. On the sensitivity at the same frequency, the experimental sensitivities of the FBG accelerometer with a 5.71 gram inertial object at 6 Hz (1.29, 1.19, 0.88, 0.64, and 0.31  nm/g at the 0.03, 0.69, 1.41, 1.93, and 3.16 nm prestretches, respectively) agree with the static sensitivities predicted (1.25, 1.14, 0.83, 0.61, and 0.29  nm/g, correspondingly). On the resonant frequency, (1) its assumption that the resonant frequencies in the forced and free vibrations are similar is experimentally verified; (2) its dependence on the distance between the FBG's fixed ends is examined, showing it to be independent; (3) the predictions of the spring-mass theory and modified theory are compared with the experimental results, showing that the modified theory predicts more accurately. The modified theory

  17. An investigation of stress wave propagation in a shear deformable nanobeam based on modified couple stress theory

    NASA Astrophysics Data System (ADS)

    Akbarzadeh Khorshidi, Majid; Shariati, Mahmoud

    2016-04-01

    This paper presents a new investigation for propagation of stress wave in a nanobeam based on modified couple stress theory. Using Euler-Bernoulli beam theory, Timoshenko beam theory, and Reddy beam theory, the effect of shear deformation is investigated. This nonclassical model contains a material length scale parameter to capture the size effect and the Poisson effect is incorporated in the current model. Governing equations of motion are obtained by Hamilton's principle and solved explicitly. This solution leads to obtain two phase velocities for shear deformable beams in different directions. Effects of shear deformation, material length scale parameter, and Poisson's ratio on the behavior of these phase velocities are investigated and discussed. The results also show a dual behavior for phase velocities against Poisson's ratio.

  18. Josephson relation for the superfluid density in the BCS-BEC crossover

    SciTech Connect

    Taylor, Edward

    2008-04-01

    The Josephson relation for the superfluid density is derived for a Fermi superfluid in the BCS-BEC crossover. This identity extends the original Josephson relation for Bose superfluids. It gives a simple exact relation between the superfluid density {rho}{sub s} and the broken-symmetry Cooper pair order parameter {delta}{sub 0} in terms of the infrared limit of the pair fluctuation propagator. The same expression holds through the entire BCS-BEC crossover, describing the superfluid density of a weak-coupling BCS superfluid as well as the superfluid density of a Bose condensate of dimer molecules.

  19. Consequences of the absence of Birkhoff's theorem in modified-gravity theories: The Dvali-Gabadaze-Porrati model

    SciTech Connect

    Dai Dechang; Maor, Irit; Starkman, Glenn

    2008-03-15

    We consider the consequences of the absence of Birkhoff's theorem in theories of modified gravity. As an example, we calculate the gravitational force on a test particle due to a spherical mass shell in the Dvali-Gabadadze-Porrati model. We show that unlike in general relativity, the force depends on the mass distribution. In particular, the gravitational force within a spherical mass shell depends on the geometric structure of the bulk, and is likely nonzero.

  20. The FDA should eliminate the ambiguities in the current BCS biowaiver guidance and make public the drugs for which BCS biowaivers have been granted.

    PubMed

    Benet, L Z; Larregieu, C A

    2010-09-01

    Although US Food and Drug Administration (FDA)-approved Biopharmaceutics Classification System (BCS) class 1 drugs are designated as high-permeability drugs, in fact, the criterion utilized is high extent of absorption. This ambiguity should be eliminated, and the FDA criterion should explicitly be stated as > or =90% absorption based on absolute bioavailability or mass balance. Maintaining confidentiality regarding the drugs for which the FDA has approved BCS waivers of in vivo bioequivalence studies is not good public policy and should be reversed.

  1. Reentrant BCS-BEC crossover and a superfluid-insulator transition in optical lattices.

    PubMed

    Shen, Zhaochuan; Radzihovsky, L; Gurarie, V

    2012-12-14

    We study the thermodynamics of a two-species Feshbach-resonant atomic Fermi gas in a periodic potential, focusing in a deep optical potential where a tight binding model is applicable. We show that for a more than half-filled band the gas exhibits a reentrant crossover with decreased detuning (increased attractive interaction), from a paired BCS superfluid to a Bose-Einstein condensate (BEC) of molecules of holes, back to the BCS superfluid, and finally to a conventional BEC of diatomic molecules. This behavior is associated with the nonmonotonic dependence of the chemical potential on detuning and the concomitant Cooper-pair or molecular size, larger in the BCS and smaller in the BEC regimes. For a single filled band we find a quantum phase transition from a band insulator to a BCS-BEC superfluid, and map out the corresponding phase diagram. PMID:23368340

  2. Reentrant BCS-BEC Crossover and a Superfluid-Insulator Transition in Optical Lattices

    NASA Astrophysics Data System (ADS)

    Shen, Zhaochuan; Radzihovsky, L.; Gurarie, V.

    2012-12-01

    We study the thermodynamics of a two-species Feshbach-resonant atomic Fermi gas in a periodic potential, focusing in a deep optical potential where a tight binding model is applicable. We show that for a more than half-filled band the gas exhibits a reentrant crossover with decreased detuning (increased attractive interaction), from a paired BCS superfluid to a Bose-Einstein condensate (BEC) of molecules of holes, back to the BCS superfluid, and finally to a conventional BEC of diatomic molecules. This behavior is associated with the nonmonotonic dependence of the chemical potential on detuning and the concomitant Cooper-pair or molecular size, larger in the BCS and smaller in the BEC regimes. For a single filled band we find a quantum phase transition from a band insulator to a BCS-BEC superfluid, and map out the corresponding phase diagram.

  3. Fission Quadrupole Mass Parameters in HF+BCS and HFB Methods

    SciTech Connect

    Baran, A.; Sheikh, J. A.; Staszczak, A.; Nazarewicz, Witold

    2009-01-01

    The self-consistent Hartree-Fock+BCS and Hartree-Fock-Bogoliubov methods are compared at large nuclear deformations. The calculations are carried out for the fission pathway and quadrupole mass parameter of ^{252}Fm.

  4. Magnetic excitations and spin-gap phenomenon in the BCS-BEC crossover regime of an ultracold Fermi gas

    NASA Astrophysics Data System (ADS)

    Tajima, Hiroyuki; Kashimura, Takashi; Hanai, Ryo; Watanabe, Ryota; Ohashi, Yoji

    2014-03-01

    We investigate the uniform spin susceptibility χ and strong-coupling corrections in the BCS-BEC crossover regime of an ultracold Fermi gas. Within the framework of an extended T-matrix theory,[2] we show that χ exhibits non-monotonic temperature dependence in the normal state, and is suppressed near the superfluid phase transition temperature Tc. This spin-gap phenomenon is found to be deeply related to the pseudogap phenomenon appearing in the single-particle density of states. To characterize this magnetic phenomenon, we introduce the spin-gap temperature Ts as the temperature at which χ takes a maximum value. Determining Ts in the entire BCS-BEC crossover region, we identify the spin-gap regime in the phase diagram of a Fermi gas with respect to the temperature and the strength of a pairing interaction. Since the spin-gap is crucial key phenomenon in high-Tc cuprates, our results would be useful for the study of this many-body phenomenon using ultracold Fermi gases, as well as in observing the pseudogap phenomenon through the spin-gap phenomenon. H. T. was supported by the Research Grant of Keio Leading-edge Laboratory of Science & Technology.

  5. Modifier interaction and mixed-alkali effect in bond constraint theory applied to ternary alkali metaphosphate glasses

    NASA Astrophysics Data System (ADS)

    Poletto Rodrigues, Bruno; Deubener, Joachim; Wondraczek, Lothar

    2016-05-01

    Introducing an interaction parameter γ, we implement modifier interaction and the mixed-alkali effect into bond constraint theory, and apply this extension for simplistic property prediction on ternary phosphate glasses. The severity of the mixed alkali effect results from the interplay of two simultaneous contributions: Bond constraints on the modifier species soften or stiffen with decreasing or increasing γ, respectively. When the modifier size is not too dissimilar the decrease in γ reflects that the alkali ions can easily migrate between different sites, forcing the network to continuously re-accommodate for any subsequent distortions. With increasing size difference, migration becomes increasingly difficult without considerable network deformation. This holds even for smaller ions, where the sluggish dynamics of the larger constituent result in blocking of the fast ion movement, leading to the subsequent increase in γ. Beyond a certain size difference in the modifier pair, a value of γ exceeding unity may indicate the presence of steric hindrance due to the large surrounding modifiers impeding the phosphate network to re-accommodate deformation.

  6. A PARAMETRIC STUDY OF BCS RF SURFACE IMPEDANCE WITH MAGNETIC FIELD USING THE XIAO CODE

    SciTech Connect

    Reece, Charles E.; Xiao, Binping

    2013-09-01

    A recent new analysis of field-dependent BCS rf surface impedance based on moving Cooper pairs has been presented.[1] Using this analysis coded in Mathematica TM, survey calculations have been completed which examine the sensitivities of this surface impedance to variation of the BCS material parameters and temperature. The results present a refined description of the "best theoretical" performance available to potential applications with corresponding materials.

  7. Size-Dependent Resonant Frequency and Flexural Sensitivity of Atomic Force Microscope Microcantilevers Based on the Modified Strain Gradient Theory

    NASA Astrophysics Data System (ADS)

    Ansari, R.; Pourashraf, T.; Gholami, R.; Sahmani, S.; Ashrafi, M. A.

    2015-04-01

    In the present study, the resonant frequency and flexural sensitivity of atomic force microscope (AFM) microcantilevers are predicted incorporating size effects. To this end, the modified strain gradient elasticity theory is applied to the classical Euler-Bernoulli beam theory to develop a non-classical beam model which has the capability to capture size-dependent behavior of microcantilevers. On the basis of Hamilton's principle, the size-dependent analytical expressions corresponding to the frequency response and sensitivity of AFM cantilevers are derived. It is observed that by increasing the contact stiffness, the resonant frequencies of AFM cantilevers firstly increase and then tend to remain constant at an especial value. Moreover, the resonant frequencies of AFM cantilevers obtained via the developed non-classical model is higher than those of the classical beam theory, especially for the values of beam thickness close to the internal material length scale parameter.

  8. Inhomogeneous BCS-BEC crossover for trapped cold atoms in optical lattices

    NASA Astrophysics Data System (ADS)

    Amaricci, A.; Privitera, A.; Capone, M.

    2014-05-01

    The BCS-BEC (Bose-Einstein condensation) crossover in a lattice is a powerful paradigm that describes how a superconductor deviates from the Bardeen-Cooper-Schrieffer physics as the attractive interaction increases. Optical lattices loaded with binary mixtures of cold atoms allow one to access this phenomenon experimentally in a clean and controlled way. We show that, however, the possibility to study this phenomenon in actual cold-atoms experiments is limited by the effect of the trapping potential. Real-space dynamical mean-field theory calculations show indeed that interactions and the confining potential conspire to pack the fermions in the center of the trap, which approaches a band insulator when the attraction becomes sizeable. Interestingly, the energy gap is spatially more homogeneous than the superfluid condensate order parameter. We show how this physics reflects in several observables, and we propose an alternative strategy to disentangle the effect of the harmonic potential and measure the intrinsic properties resulting from the interaction strength.

  9. Spin noise and magnetic screening of impurities in a BCS superconductor

    NASA Astrophysics Data System (ADS)

    Le Dall, Matthias; da Silva, Luis G. G. V. Dias; de Sousa, Rogério

    The coupling of a localized impurity to a BCS superconductor (SC) leads to the formation of impurity Cooper-pairs via the proximity effect, generating two bound states within the SC energy gap, the so-called Yu-Rusinov-Shiba (YSR) states. They are similar to the Andreev Bound States that originate from Andreev reflection, e.g. when the impurity is hosted in a Josephson junction, and are known to produce sharp sub-gap resonances in charge noise [de Sousa et al., PRB 2009], providing a natural explanation for the observation of microresonators in superconducting devices [Simmonds et al., PRL 2004]. Here we present a theory for the spin noise generated by magnetic impurities in a SC, and discuss the impact of the Shiba states on models of flux noise in superconducting qubits. We use a combination of analytical methods and the numerical renormalization group technique to calculate the spin noise of an Anderson impurity in a SC, unveiling the competition between the proximity effect and Kondo correlations. Both mechanisms produce magnetic screening and a corresponding reduction in spin noise, giving rise to new insights on the kinds of impurities that are responsible for the observed 1 /fα flux noise in superconducting circuits. This research is supported by NSERC CRD/478366-2015.

  10. Modified Brans-Dicke theory with space-time anisotropic parameters

    SciTech Connect

    Moon, Taeyoon; Oh, Phillial E-mail: ploh@skku.edu

    2014-03-01

    We consider the ADM formalism of the Brans-Dicke theory and propose a space-time anisotropic extension of the theory by introducing five free parameters. We find that the resulting theory reveals many interesting aspects which are not present in the original BD theory. We first discuss the ghost instability and strong coupling problems which are present in the gravity theory without the full diffeomorphism symmetry and show that they can be avoided in a region of the parameter space. We also perform the post-Newtonian approximation and show that the constraint of the Brans-Dicke parameter ω{sub BD} being large to be consistent with the solar system observations could be evaded in the extended theory. We also discuss that accelerating Universe can be achieved without the need of the potential for the Brans-Dicke scalar.

  11. A Modified Hansen's Theory as Applied to the Motion of Artificial Satellites

    NASA Technical Reports Server (NTRS)

    Musen, Peter

    1960-01-01

    This report presents a theory of oblateness perturbations of the orbits of artificial satellites based on Hansen's theory, with modification for adaptation to fast machine computation. The theory permits the easy inclusion of any gravitational terms and is suitable for the deduction of geo-physical and geodetic data from orbit observations on artificial satellites. The computations can be carried out to any desired order compatible with the accuracy of the geodetic parameters.

  12. Considerations for a Pediatric Biopharmaceutics Classification System (BCS): application to five drugs.

    PubMed

    Gandhi, Shivani V; Rodriguez, William; Khan, Mansoor; Polli, James E

    2014-06-01

    It has been advocated that biopharmaceutic risk assessment should be conducted early in pediatric product development and synchronized with the adult product development program. However, we are unaware of efforts to classify drugs into a Biopharmaceutics Classification System (BCS) framework for pediatric patients. The objective was to classify five drugs into a potential BCS. These five drugs were selected since both oral and intravenous pharmacokinetic data were available for each drug, and covered the four BCS classes in adults. Literature searches for each drug were conducted using Medline and applied to classify drugs with respect to solubility and permeability in pediatric subpopulations. Four pediatric subpopulations were considered: neonates, infants, children, and adolescents. Regarding solubility, dose numbers were calculated using a volume for each subpopulation based on body surface area (BSA) relative to 250 ml for a 1.73 m(2) adult. Dose numbers spanned a range of values, depending upon the pediatric dose formula and subpopulation. Regarding permeability, pharmacokinetic literature data required assumptions and decisions about data collection. Using a devised pediatric BCS framework, there was agreement in adult and pediatric BCS class for two drugs, azithromycin (class 3) and ciprofloxacin (class 4). There was discordance for the three drugs that have high adult permeability since all pediatric permeabilities were low: dolasetron (class 3 in pediatric), ketoprofen (class 4 in pediatric), and voriconazole (class 4 in pediatric). A main contribution of this work is the identification of critical factors required for a pediatric BCS.

  13. The complexity of intestinal permeability: Assigning the correct BCS classification through careful data interpretation.

    PubMed

    Zur, Moran; Hanson, Allison S; Dahan, Arik

    2014-09-30

    While the solubility parameter is fairly straightforward when assigning BCS classification, the intestinal permeability (Peff) is more complex than generally recognized. In this paper we emphasize this complexity through the analysis of codeine, a commonly used antitussive/analgesic drug. Codeine was previously classified as a low-permeability compound, based on its lower LogP compared to metoprolol, a marker for the low-high permeability class boundary. In contrast, high fraction of dose absorbed (Fabs) was reported for codeine, which challenges the generally recognized Peff-Fabs correlation. The purpose of this study was to clarify this ambiguity through elucidation of codeine's BCS solubility/permeability class membership. Codeine's BCS solubility class was determined, and its intestinal permeability throughout the small intestine was investigated, both in vitro and in vivo in rats. Codeine was found to be unequivocally a high-solubility compound. All in vitro studies indicated that codeine's permeability is higher than metoprolol's. In vivo studies in rats showed similar permeability for both drugs throughout the entire small-intestine. In conclusion, codeine was found to be a BCS Class I compound. No Peff-Fabs discrepancy is involved in its absorption; rather, it reflects the risk of assigning BCS classification based on merely limited physicochemical characteristics. A thorough investigation using multiple experimental methods is prudent before assigning a BCS classification, to avoid misjudgment in various settings, e.g., drug discovery, formulation design, drug development and regulation.

  14. Ethical Decision Making in Academic Dishonesty with Application of Modified Theory of Planned Behavior: A Review

    ERIC Educational Resources Information Center

    Meng, Chan Ling; Othman, Jamilah; D'Silva, Jeffrey Lawrence; Omar, Zoharah

    2014-01-01

    This conceptual paper studies the application of the Theory of Planned Behavior (TBP) in academic dishonesty with the mediating variable of ethical ideologies. The study reviews literature on the Theory of Planned Behavior and past studies pertaining to academic dishonesty. The paper analyses the relationship of the variables of TPB on academic…

  15. Modifying Status Relations in Israel Youth: An Application of Expectation States Theory.

    ERIC Educational Resources Information Center

    Cohen, Elizabeth G.; Sharan, Shlomo

    Group participation by Israeli youth is examined in light of the Theory of Status Characteristics and Expectation States. This theory maintains that social and/or group status influences expectations of competence and triggers self-fulfilling prophecies of performance. An experiment designed to prevent unwanted dominance of high status…

  16. The Modified Delphi Method to Analyze the Application of Instructional Design Theory to Online Graduate Education

    ERIC Educational Resources Information Center

    Zeedick, Danielle Marie

    2010-01-01

    During the past several decades, the field of instructional design theory has experienced changes in what is mostly applied to traditional, on-ground education. While instructional design theory has been (and still is being) discussed, constructed, and deconstructed, there has been no agreement among prominent instructional design theory…

  17. Nonlinear evolution of the matter power spectrum in modified theories of gravity

    SciTech Connect

    Koyama, Kazuya; Taruya, Atsushi; Hiramatsu, Takashi

    2009-06-15

    We present a formalism to calculate the nonlinear matter power spectrum in modified gravity models that explain the late-time acceleration of the Universe without dark energy. Any successful modified gravity models should contain a mechanism to recover general relativity (GR) on small scales in order to avoid the stringent constrains on deviations from GR at solar system scales. Based on our formalism, the quasi-nonlinear power spectrum in the Dvali-Gabadadze-Porratti braneworld models and f(R) gravity models are derived by taking into account the mechanism to recover GR properly. We also extrapolate our predictions to fully nonlinear scales using the parametrized post-Friedmann framework. In the Dvali-Gabadadze-Porratti and f(R) gravity models, the predicted nonlinear power spectrum is shown to reproduce N-body results. We find that the mechanism to recover GR suppresses the difference between the modified gravity models and dark energy models with the same expansion history, but the difference remains large at the weakly nonlinear regime in these models. Our formalism is applicable to a wide variety of modified gravity models and it is ready to use once consistent models for modified gravity are developed.

  18. Free vibration analysis of embedded magneto-electro-thermo-elastic cylindrical nanoshell based on the modified couple stress theory

    NASA Astrophysics Data System (ADS)

    Ghadiri, Majid; Safarpour, Hamed

    2016-09-01

    In this paper, size-dependent effect of an embedded magneto-electro-elastic (MEE) nanoshell subjected to thermo-electro-magnetic loadings on free vibration behavior is investigated. Also, the surrounding elastic medium has been considered as the model of Winkler characterized by the spring. The size-dependent MEE nanoshell is investigated on the basis of the modified couple stress theory. Taking attention to the first-order shear deformation theory (FSDT), the modeled nanoshell and its equations of motion are derived using principle of minimum potential energy. The accuracy of the presented model is validated with some cases in the literature. Finally, using the Navier-type method, an analytical solution of governing equations for vibration behavior of simply supported MEE cylindrical nanoshell under combined loadings is presented and the effects of material length scale parameter, temperature changes, external electric potential, external magnetic potential, circumferential wave numbers, constant of spring, shear correction factor and length-to-radius ratio of the nanoshell on natural frequency are identified. Since there has been no research about size-dependent analysis MEE cylindrical nanoshell under combined loadings based on FSDT, numerical results are presented to be served as benchmarks for future analysis of MEE nanoshells using the modified couple stress theory.

  19. Modifying Health Behavior for Liver Fluke and Cholangiocarcinoma Prevention with the Health Belief Model and Social Support Theory.

    PubMed

    Padchasuwan, Natnapa; Kaewpitoon, Soraya J; Rujirakul, Ratana; Wakkuwattapong, Parichart; Norkaew, Jun; Kujapun, Jirawoot; Ponphimai, Sukanya; Chavenkun, Wasugree; Kompor, Pontip; Kaewpitoon, Natthawut

    2016-01-01

    The liver fluke Opisthorchis viverrini is a serious health problem in Thailand. Infection is associated with cholangiocarcinoma (CCA), endemic among human populations in northeast and north Thailand where raw fish containing fluke metacercariae are frequently consumed. Recently, Thailand public health authorities have been organized to reduce morbidity and mortality particularly in the northeast through O. viverrini and CCA screening projects. Health modfication is one of activities included in this campaign, but systemic guidelines of modifying and developing health behavior for liver flukes and CCA prevention in communities towards health belief and social support theory are still various and unclear. Here we review the guidelines for modifying and developing health behavior among populations in rural communities to strengthen understanding regarding perceived susceptibility, severity, benefits, and barriers to liver fluke and CCA prevention. This model may be useful for public health of cancers and related organizations to further health behavior change in endemic areas. PMID:27644606

  20. Modified theory of secondary electron emission from spherical particles and its effect on dust charging in complex plasma

    SciTech Connect

    Misra, Shikha; Mishra, S. K.; Sodha, M. S.

    2013-01-15

    The authors have modified Chow's theory of secondary electron emission (SEE) to take account of the fact that the path length of a primary electron in a spherical particle varies between zero to the diameter or x{sub m} the penetration depth depending on the distance of the path from the centre of the particle. Further by including this modified expression for SEE efficiency, the charging kinetics of spherical grains in a Maxwellian plasma has been developed; it is based on charge balance over dust particles and number balance of electrons and ionic species. It is seen that this effect is more pronounced for smaller particles and higher plasma temperatures. Desirable experimental work has also been discussed.

  1. Constraints on modified gravity from Planck 2015: when the health of your theory makes the difference

    NASA Astrophysics Data System (ADS)

    Salvatelli, Valentina; Piazza, Federico; Marinoni, Christian

    2016-09-01

    We use the effective field theory of dark energy (EFT of DE) formalism to constrain dark energy models belonging to the Horndeski class with the recent Planck 2015 CMB data. The space of theories is spanned by a certain number of parameters determining the linear cosmological perturbations, while the expansion history is set to that of a standard ΛCDM model. We always demand that the theories be free of fatal instabilities. Additionally, we consider two optional conditions, namely that scalar and tensor perturbations propagate with subliminal speed. Such criteria severely restrict the allowed parameter space and are thus very effective in shaping the posteriors. As a result, we confirm that no theory performs better than ΛCDM when CMB data alone are analysed. Indeed, the healthy dark energy models considered here are not able to reproduce those phenomenological behaviours of the effective Newton constant and gravitational slip parameters that, according to previous studies, best fit the data.

  2. Examination of the Korean Modified Checklist of Autism in Toddlers: Item Response Theory

    ERIC Educational Resources Information Center

    Seung, HyeKyeung; Ji, Juye; Kim, Soo-Jin; Sung, Inkyung; Youn, Young-Ah; Hong, Gyunghun; Lee, Hyeonjin; Lee, Young Hwan; Lee, Hyunsuk; Youm, Hyun Kyung

    2015-01-01

    The study examined the clinical utility and psychometric properties of the Korean Modified Checklist of Autism in Toddlers (K-M-CHAT)-2. A sample of 2300 parents of 16- to 36-month-old children was recruited across South Korea. A phone interview was utilized to follow up with participants who initially screened positive for autism spectrum…

  3. Apo- and Cellopentaose-bound Structures of the Bacterial Cellulose Synthase Subunit BcsZ

    SciTech Connect

    Mazur, Olga; Zimmer, Jochen

    2012-10-25

    Cellulose, a very abundant extracellular polysaccharide, is synthesized in a finely tuned process that involves the activity of glycosyl-transferases and hydrolases. The cellulose microfibril consists of bundles of linear {beta}-1,4-glucan chains that are synthesized inside the cell; however, the mechanism by which these polymers traverse the cell membrane is currently unknown. In Gram-negative bacteria, the cellulose synthase complex forms a trans-envelope complex consisting of at least four subunits. Although three of these subunits account for the synthesis and translocation of the polysaccharide, the fourth subunit, BcsZ, is a periplasmic protein with endo-{beta}-1,4-glucanase activity. BcsZ belongs to family eight of glycosyl-hydrolases, and its activity is required for optimal synthesis and membrane translocation of cellulose. In this study we report two crystal structures of BcsZ from Escherichia coli. One structure shows the wild-type enzyme in its apo form, and the second structure is for a catalytically inactive mutant of BcsZ in complex with the substrate cellopentaose. The structures demonstrate that BcsZ adopts an ({alpha}/{alpha}){sub 6}-barrel fold and that it binds four glucan moieties of cellopentaose via highly conserved residues exclusively on the nonreducing side of its catalytic center. Thus, the BcsZ-cellopentaose structure most likely represents a posthydrolysis state in which the newly formed nonreducing end has already left the substrate binding pocket while the enzyme remains attached to the truncated polysaccharide chain. We further show that BcsZ efficiently degrades {beta}-1,4-glucans in in vitro cellulase assays with carboxymethyl-cellulose as substrate.

  4. Gene cuisine or Frankenfood? The theory of reasoned action as an audience segmentation strategy for messages about genetically modified foods.

    PubMed

    Silk, Kami J; Weiner, Judith; Parrott, Roxanne L

    2005-12-01

    Genetically modified (GM) foods are currently a controversial topic about which the lay public in the United States knows little. Formative research has demonstrated that the lay public is uncertain and concerned about GM foods. This study (N = 858) extends focus group research by using the Theory of Reasoned Action (TRA) to examine attitudes and subjective norms related to GM foods as a theoretical strategy for audience segmentation. A hierarchical cluster analysis revealed four unique audiences based on their attitude and subjective norm toward GM foods (ambivalent-biotech, antibiotech, biotech-normer, and biotech individual). Results are discussed in terms of the theoretical and practical significance for audience segmentation.

  5. Modified spin-wave theory and spin-liquid behavior of cold bosons on an inhomogeneous triangular lattice

    NASA Astrophysics Data System (ADS)

    Celi, Alessio; Grass, Tobias; Ferris, Andrew J.; Padhi, Bikash; Raventós, David; Simonet, Juliette; Sengstock, Klaus; Lewenstein, Maciej

    2016-08-01

    Ultracold bosons in a triangular lattice are a promising candidate for observing quantum spin liquid behavior. Here we investigate, for such system, the role of a harmonic trap giving rise to an inhomogeneous density. We construct a modified spin-wave theory for arbitrary filling and predict the breakdown of order for certain values of the lattice anisotropy. These regimes, identified with the spin liquid phases, are found to be quite robust upon changes in the filling factor. This result is backed by an exact diagonalization study on a small lattice.

  6. Size-dependent characteristics of electrostatically actuated fluid-conveying carbon nanotubes based on modified couple stress theory.

    PubMed

    Fakhrabadi, Mir Masoud Seyyed; Rastgoo, Abbas; Ahmadian, Mohammad Taghi

    2013-01-01

    The paper presents the effects of fluid flow on the static and dynamic properties of carbon nanotubes that convey a viscous fluid. The mathematical model is based on the modified couple stress theory. The effects of various fluid parameters and boundary conditions on the pull-in voltages are investigated in detail. The applicability of the proposed system as nanovalves or nanosensors in nanoscale fluidic systems is elaborated. The results confirm that the nanoscale system studied in this paper can be properly applied for these purposes.

  7. Superfluid transition temperature across the BCS-BEC crossover induced by a synthetic non-Abelian gauge field

    NASA Astrophysics Data System (ADS)

    Vyasanakere, Jayanth P.; Shenoy, Vijay B.

    2013-03-01

    A non-Abelian gauge field that induces a spin-orbit coupling on the motion of fermions engenders a BCS-BEC crossover even for weakly attracting fermions. The transition temperature at large spin-orbit coupling is known to be determined by the mass of the emergent boson - the rashbon. We obtain the transition temperature of the system as a function of the spin-orbit coupling by constructing and studying a Gaussian fluctuation (Nozieres-Schmitt-Rink) theory. These results will help guide the upcoming experiments on spin-orbit coupled fermions. In addition, this work suggests a route to enhance the transition temperature of a weakly attracting fermionic system by tuning the spin-orbit coupling. Work supported by CSIR, DST, DAE India

  8. Initial conditions for cosmological N-body simulations of the scalar sector of theories of Newtonian, Relativistic and Modified Gravity

    SciTech Connect

    Valkenburg, Wessel; Hu, Bin E-mail: hu@lorentz.leidenuniv.nl

    2015-09-01

    We present a description for setting initial particle displacements and field values for simulations of arbitrary metric theories of gravity, for perfect and imperfect fluids with arbitrary characteristics. We extend the Zel'dovich Approximation to nontrivial theories of gravity, and show how scale dependence implies curved particle paths, even in the entirely linear regime of perturbations. For a viable choice of Effective Field Theory of Modified Gravity, initial conditions set at high redshifts are affected at the level of up to 5% at Mpc scales, which exemplifies the importance of going beyond Λ-Cold Dark Matter initial conditions for modifications of gravity outside of the quasi-static approximation. In addition, we show initial conditions for a simulation where a scalar modification of gravity is modelled in a Lagrangian particle-like description. Our description paves the way for simulations and mock galaxy catalogs under theories of gravity beyond the standard model, crucial for progress towards precision tests of gravity and cosmology.

  9. Modifying Heathcare System Alcohol Interventions for the High-Risk Drinking Environment: Theory in Practice

    ERIC Educational Resources Information Center

    Croff, Julie M.; Clapp, John D.

    2015-01-01

    Screening, Brief Intervention, and Referral to Treatment (SBIRT) is a model program in the medical context, but it may be missing a large portion of the population with low access to healthcare services. Young adults have the lowest rates of insurance, low healthcare service utilization, and high rates of substance use. Theory driven Screening and…

  10. Experimental studies of sputtering on zirconium analyzed using modified Roosandaal Sanders theory. Doctoral thesis

    SciTech Connect

    Schomber, P.R.

    1995-03-01

    An ion optics system utilizing a wein filter velocity selector has been modeled and characterized for use as an ion source for an instrument to measure high resolution angular distributions of sputtered neutral atoms. Laser induced fluorescence detection techniques are used to measure ground state and first excited state sputtering angular distributions on a polycrystalline zirconium foil using argon and nitrogen sputter gases. The incident ion beam impact angle has been varied from 15 deg to 75 deg as measured from surface normal and the wein filter velocity selector has been used to select N2+ and N+ ion beams from the nitrogen ion beam. The experimental data gathered are compared to Roosandaal Sanders analytical sputtering theory along with data on xenon and neon. Roosandaal Sanders theory reproduces the near surface normal sputtering behavior but rapidly breaks down as the incident ion beam impact angle moves toward the surface. Modifications to the Roosandaal Sanders equation to introduce adjustable fitting parameters and non-linear least squares fitting of the experimental data to these parameters has been accomplished. The results are discussed relating the fitting parameters to physical constants based in Roosandaal Sanders Theory. Discrepancies in the theory are addressed with extensive discussion on ion surface interaction.

  11. Development and application of an analysis of axisymmetric body effects on helicopter rotor aerodynamics using modified slender body theory

    NASA Technical Reports Server (NTRS)

    Yamauchi, G.; Johnson, W.

    1984-01-01

    A computationally efficient body analysis designed to couple with a comprehensive helicopter analysis is developed in order to calculate the body-induced aerodynamic effects on rotor performance and loads. A modified slender body theory is used as the body model. With the objective of demonstrating the accuracy, efficiency, and application of the method, the analysis at this stage is restricted to axisymmetric bodies at zero angle of attack. By comparing with results from an exact analysis for simple body shapes, it is found that the modified slender body theory provides an accurate potential flow solution for moderately thick bodies, with only a 10%-20% increase in computational effort over that of an isolated rotor analysis. The computational ease of this method provides a means for routine assessment of body-induced effects on a rotor. Results are given for several configurations that typify those being used in the Ames 40- by 80-Foot Wind Tunnel and in the rotor-body aerodynamic interference tests being conducted at Ames. A rotor-hybrid airship configuration is also analyzed.

  12. Gutzwiller variational theory for the Hubbard model with attractive interaction.

    PubMed

    Bünemann, Jörg; Gebhard, Florian; Radnóczi, Katalin; Fazekas, Patrik

    2005-06-29

    We investigate the electronic and superconducting properties of a negative-U Hubbard model. For this purpose we evaluate a recently introduced variational theory based on Gutzwiller-correlated BCS wavefunctions. We find significant differences between our approach and standard BCS theory, especially for the superconducting gap. For small values of |U|, we derive analytical expressions for the order parameter and the superconducting gap which we compare to exact results from perturbation theory.

  13. BCS1, a novel gene required for the expression of functional Rieske iron-sulfur protein in Saccharomyces cerevisiae.

    PubMed Central

    Nobrega, F G; Nobrega, M P; Tzagoloff, A

    1992-01-01

    Respiratory deficient pet mutants of Saccharomyces cerevisiae assigned to complementation group G2 define a new gene, named BCS1, whose product is shown to be necessary for the expression of functional ubiquinol-cytochrome c reductase (bc1) complex. Immunological assays indicate a gross reduction in the Rieske iron-sulfur subunit in bcs1 mutants, while other subunits of the ubiquinol-cytochrome c reductase complex are present at concentrations comparable to the wild type. Transformation of bcs1 mutants with the iron-sulfur protein gene on a multicopy plasmid led to elevated mitochondrial concentrations of Rieske protein, but did not correct the enzymatic defect, indicating that BCS1 is involved either in forming the active site iron-sulfur cluster or providing a chaperone-like function in assembling the Rieske protein with the other subunits of the complex. Both postulated functions are consistent with the localization of BCS1 in mitochondria. To facilitate further studies on this novel protein, BCS1 was cloned by transformation of a bcs1 mutant and its structure determined. The primary structure of the encoded BCS1 protein bears similarity to a group of proteins that have been implicated in intracellular protein sorting, membrane fusion and regulation of transcription. The region of BCS1 homologous to this diverse group of proteins is approximately 200 amino acids long and includes several signature sequences commonly found in ATPases and nucleotide binding proteins. Images PMID:1327750

  14. Modified radiative transfer theory for a two-layer anisotropic random medium

    NASA Technical Reports Server (NTRS)

    Lee, J. K.; Kong, J. A.

    1988-01-01

    The modified radiative transfer (MRT) equations which describe propagation and scattering of the electromagnetic field intensity in a layered anisotropic random medium are derived from the Bethe-Salpeter equation with the ladder approximation and the Dyson equation with the nonlinear approximation. The extinction matrices and scattering phase matrices for both mean and incoherent field intensities are obtained. Backscattering enhancement is observed due to the spatial coherent effect between upward and downward propagating waves. It also occurs for the half-space case, because of coupling between ordinary and extraordinary waves. The depolarization effect is predicted in the first-order renormalization approximation to the MRT equation.

  15. Modified Biot-Gassmann theory for calculating elastic velocities for unconsolidated and consolidated sediments

    USGS Publications Warehouse

    Lee, M.W.

    2002-01-01

    The classical Biot-Gassmann theory (BGT) generally overestimates shear-wave velocities of water-saturated sediments. To overcome this problem, a new theory is developed based on BGT and on the velocity ratio as a function of G(1 - ??)n, where ?? is porosity and n and G are constants. Based on laboratory data measured at ultrasonic frequencies, parameters for the new formulation are derived. This new theory is extended to include the effect of differential pressure and consolidation on the velocity ratio by making n a function of differential pressure and the rate of porosity reduction with respect to differential pressure. A scale G is introduced to compensate for discrepancies between measured and predicted velocities, mainly caused by the presence of clay in the matrix. As differential pressure increases and the rate of porosity reduction with respect to differential pressure decreases, the exponent n decreases and elastic velocities increase. Because velocity dispersion is not considered, this new formula is optimum for analyzing velocities measured at ultrasonic frequencies or for sediments having low dispersion characteristics such as clean sandstone with high permeability and lack of grain-scale local flow. The new formula is applied to predict velocities from porosity or from porosity and P-wave velocity and is in good agreement with laboratory and well log data. ?? 2004 Kluwer Academic Publishers. Printed in the Netherlands.

  16. Momentum Distribution and Condensate Fraction of a Fermion Gas in the BCS-BEC Crossover

    SciTech Connect

    Astrakharchik, G.E.; Boronat, J.; Casulleras, J.; Giorgini, S.

    2005-12-02

    By using the diffusion Monte Carlo method we calculate the one- and two-body density matrix of an interacting Fermi gas at T=0 in the BCS to Bose-Einstein condensate (BEC) crossover. Results for the momentum distribution of the atoms, as obtained from the Fourier transform of the one-body density matrix, are reported as a function of the interaction strength. Off-diagonal long-range order in the system is investigated through the asymptotic behavior of the two-body density matrix. The condensate fraction of pairs is calculated in the unitary limit and on both sides of the BCS-BEC crossover.

  17. A remark on the theory of measuring thermal diffusivity by the modified Angstrom's method. [in lunar samples

    NASA Technical Reports Server (NTRS)

    Horai, K.-I.

    1981-01-01

    A theory of the measurement of the thermal diffusivity of a sample by the modified Angstrom method is developed for the case in which radiative heat loss from the end surface of the sample is not negligible, and applied to measurements performed on lunar samples. Formulas allowing sample thermal diffusivity to be determined from the amplitude decay and phase lag of a temperature wave traveling through the sample are derived for a flat disk sample for which only heat loss from the end surface is important, and a sample of finite diameter and length for which heat loss through the end and side surfaces must be considered. It is noted that in the case of a flat disk, measurements at a single angular frequency of the temperature wave are sufficient, while the sample of finite diameter and length requires measurements at two discrete angular frequencies. Comparison of the values of the thermal diffusivities of two lunar samples of dimensions approximately 1 x 1 x 2 cm derived by the present methods and by the Angstrom theory for a finite bar reveals them to differ by not more than 5%, and indicates that more refined data are required as the measurement theory becomes more complicated.

  18. Nonlinear theory of intense laser-plasma interactions modified by vacuum polarization effects

    SciTech Connect

    Chen, Wenbo; Bu, Zhigang; Li, Hehe; Luo, Yuee; Ji, Peiyong

    2013-07-15

    The classical nonlinear theory of laser-plasma interactions is corrected by taking account of the vacuum polarization effects. A set of wave equations are obtained by using the Heisenberg-Euler Lagrangian density and the derivative correction with the first-order quantum electrodynamic effects. A model more suitable to formulate the interactions of ultra-strong lasers and high-energy-density plasmas is developed. In the result, some environments in which the effects of vacuum polarization will be enhanced are discussed.

  19. Wormholes in viable modified theories of gravity and weak energy condition

    NASA Astrophysics Data System (ADS)

    Pavlovic, Petar; Sossich, Marko

    2015-03-01

    In this work wormholes in viable gravity models are analyzed. We are interested in exact solutions for stress-energy tensor components depending on different shape and redshift functions. Several solutions of gravitational equations for different models are examined. The solutions found imply no need for exotic material, while this need is implied in the standard general theory of relativity. A simple expression for weak energy condition (WEC) violation near the throat is derived and analyzed. High curvature regime is also discussed, as well as the question of the highest possible values of the Ricci scalar for which the WEC is not violated near the throat, and corresponding functions are calculated for several models. The approach here differs from the one that has been common since no additional assumptions to simplify the equations have been made, and the functions in models are not considered to be arbitrary functions, but rather a feature of the theory that has to be evaluated on the basis of consistency with observations for the Solar System and cosmological evolution. Therefore in this work we show that the existence of wormholes without exotic matter is not only possible in simple arbitrary models, but also in models that are in accordance with empirical data.

  20. Benchmark of a modified iterated perturbation theory approach on the fcc lattice at strong coupling

    NASA Astrophysics Data System (ADS)

    Arsenault, Louis-François; Sémon, Patrick; Tremblay, A.-M. S.

    2012-08-01

    The dynamical mean-field theory approach to the Hubbard model requires a method to solve the problem of a quantum impurity in a bath of noninteracting electrons. Iterated perturbation theory (IPT) has proven its effectiveness as a solver in many cases of interest. Based on general principles and on comparisons with an essentially exact continuous-time quantum Monte Carlo (CTQMC) solver, here we show that the standard implementation of IPT fails away from half-filling when the interaction strength is much larger than the bandwidth. We propose a slight modification to the IPT algorithm that replaces one of the equations by the requirement that double occupancy calculated with IPT gives the correct value. We call this method IPT-D. We recover the Fermi liquid ground state away from half-filling. The Fermi liquid parameters, density of states, chemical potential, energy, and specific heat on the fcc lattice are calculated with both IPT-D and CTQMC as benchmark examples. We also calculated the resistivity and the optical conductivity within IPT-D. Particle-hole asymmetry persists even at coupling twice the bandwidth. A generalization to the multiorbital case is suggested. Several algorithms that speed up the calculations are described in appendixes.

  1. Electronic and optical properties of pure and modified diamondoids studied by many-body perturbation theory and time-dependent density functional theory.

    PubMed

    Demján, Tamás; Vörös, Márton; Palummo, Maurizia; Gali, Adam

    2014-08-14

    Diamondoids are small diamond nanoparticles (NPs) that are built up from diamond cages. Unlike usual semiconductor NPs, their atomic structure is exactly known, thus they are ideal test-beds for benchmarking quantum chemical calculations. Their usage in spintronics and bioimaging applications requires a detailed knowledge of their electronic structure and optical properties. In this paper, we apply density functional theory (DFT) based methods to understand the electronic and optical properties of a few selected pure and modified diamondoids for which accurate experimental data exist. In particular, we use many-body perturbation theory methods, in the G0W0 and G0W0+BSE approximations, and time-dependent DFT in the adiabatic local density approximation. We find large quasiparticle gap corrections that can exceed thrice the DFT gap. The electron-hole binding energy can be as large as 4 eV but it is considerably smaller than the GW corrections and thus G0W0+BSE optical gaps are about 50% larger than the Kohn-Sham (KS) DFT gaps. We find significant differences between KS time-dependent DFT and GW+BSE optical spectra on the selected diamondoids. The calculated G0W0 quasiparticle levels agree well with the corresponding experimental vertical ionization energies. We show that nuclei dynamics in the ionization process can be significant and its contribution may reach about 0.5 eV in the adiabatic ionization energies. PMID:25134572

  2. Pharmacokinetic simulations to explore dissolution criteria of BCS I and III biowaivers with and without MDR-1 efflux transporter.

    PubMed

    Kortejärvi, H; Malkki, J; Shawahna, R; Scherrmann, J-M; Urtti, A; Yliperttula, M

    2014-09-30

    In this study, a pharmacokinetic simulation model was used to explore the dissolution acceptance criteria for BCS I and III biowaivers and to examine the risk of MDR-1 efflux transporter on bioequivalence of substrates. The compartmental absorption and transit (CAT) model with one- or two systemic compartments was used. The parameter values used in the simulations were based on the pharmacokinetics of existing 70 BCS I and III drugs. Based on the simulations BCS I drug products with Tmax of >0.9 h, both dissolution criteria "very rapid" and "rapid and similar" were acceptable. For rapidly absorbed and distributed BCS I drug products with Tmax of 0.6-0.9 h, the dissolution criterion "very rapid" is preferred. If Tmax is less than 0.6 h there is a risk of bioinequivalence for the BCS I drug products regardless of the dissolution criteria. Based on the simulations, all BCS III drug products were good biowaiver candidates with both dissolution criteria. Almost all the BCS III drug products (>89%) and many BCS I products (9-57%) showed risks of bioinequivalence, if an excipient in either product inhibits MDR1-efflux transport of the drug. To eliminate these risks excipients with prior use in bioequivalent products should be used for MDR-1 efflux substrates.

  3. Separability of a modified Dirac equation in a five-dimensional rotating, charged black hole in string theory

    SciTech Connect

    Wu Shuangqing

    2009-08-15

    The aim of this paper is to investigate the separability of a spin-1/2 spinor field in a five-dimensional rotating, charged black hole constructed by Cvetic and Youm in string theory, in the case when three U(1) charges are set equal. This black hole solution represents a natural generalization of the famous four-dimensional Kerr-Newman solution to five dimensions with the inclusion of a Chern-Simons term to the Maxwell equation. It is shown that the usual Dirac equation cannot be separated by variables in this general spacetime with two independent angular momenta. However if one supplements an additional counterterm into the usual Dirac operator, then the modified Dirac equation for the spin-1/2 spinor particles is separable in this rotating, charged Einstein-Maxwell-Chern-Simons black hole background geometry. A first-order symmetry operator that commutes with the modified Dirac operator has exactly the same form as that previously found in the uncharged Myers-Perry black hole case. It is expressed in terms of a rank-three totally antisymmetric tensor and its covariant derivative. This tensor obeys a generalized Killing-Yano equation and its square is a second-order symmetric Staeckel-Killing tensor admitted by the five-dimensional rotating, charged black hole spacetime.

  4. NQRS Data for C24H20BCs (Subst. No. 1575)

    NASA Astrophysics Data System (ADS)

    Chihara, H.; Nakamura, N.

    This document is part of Subvolume B 'Substances Containing C10H16 … Zn' of Volume 48 'Nuclear Quadrupole Resonance Spectroscopy Data' of Landolt-Börnstein - Group III 'Condensed Matter'. It contains an extract of Section '3.2 Data tables' of the Chapter '3 Nuclear quadrupole resonance data' providing the NQRS data for C24H20BCs (Subst. No. 1575)

  5. Development and Validation of the Calling and Vocation Questionnaire (CVQ) and Brief Calling Scale (BCS)

    ERIC Educational Resources Information Center

    Dik, Bryan J.; Eldridge, Brandy M.; Steger, Michael F.; Duffy, Ryan D.

    2012-01-01

    Research on work as a calling is limited by measurement concerns. In response, the authors introduce the multidimensional Calling and Vocation Questionnaire (CVQ) and the Brief Calling scale (BCS), instruments assessing presence of, and search for, a calling. Study 1 describes CVQ development using exploratory and confirmatory factor analysis…

  6. BCS-BEC crossover and phase structure of relativistic systems: A variational approach

    SciTech Connect

    Chatterjee, Bhaswar; Mishra, Hiranmaya; Mishra, Amruta

    2009-01-01

    We investigate here the BCS-BEC crossover in relativistic systems using a variational construct for the ground state and the minimization of the thermodynamic potential. This is first studied in a four-fermion point interaction model and with a BCS type ansatz for the ground state with fermion pairs. It is shown that the antiparticle degrees of freedom play an important role in the BCS-BEC crossover physics, even when the ratio of Fermi momentum to the mass of the fermion is small. We also consider the phase structure for the case of fermion pairing with imbalanced populations. Within the ansatz, thermodynamically stable gapless modes for both fermions and antifermions are seen for strong coupling in the Bose-Einstein condensation (BEC) regime. We further investigate the effect of fluctuations of the condensate field by treating it as a dynamical field and generalize the BCS ansatz to include quanta of the condensate field also in a boson-fermion model with quartic self-interaction of the condensate field. It is seen that the critical temperature decreases with inclusion of fluctuations.

  7. An Ontological Model of Behaviour Theory to Generate Personalized Action Plans to Modify Behaviours.

    PubMed

    Baig, Wasif; Abidi, Samina; Abidi, Syed Sibte Raza

    2016-01-01

    Behavior change approaches aim to assist patients in achieving self-efficacy in managing their condition. Social cognitive theory (SCT) stipulates self-efficacy as a central element to behavior change and provides constructs to achieve self-efficacy guided by person-specific action plans. In our work, to administer behaviour change in patient with chronic conditions, our approach entails the computerization of SCT-based self-efficacy constructs in order to generate personalized action plans that are suitable to an individual's current care scenario. We have taken a knowledge management approach, whereby we have computerized the SCT-based self-efficacy constructs in terms of a high-level SCT knowledge model that can be operationalized to generate personalized behaviour change action plans. We have collected and computerized behavior change content targeting healthy living and physical activity. Semantic web technologies have been used to develop the SCT knowledge model, represented in terms of an ontology and SWRL rules. The ontological SCT model can inferred to generate personalized self-management action plans for a given patient profile. We present formative evaluation of the clinical correctness and relevance of the generated personalized action plans for a range of test patient profiles. PMID:27577412

  8. An Ontological Model of Behaviour Theory to Generate Personalized Action Plans to Modify Behaviours.

    PubMed

    Baig, Wasif; Abidi, Samina; Abidi, Syed Sibte Raza

    2016-01-01

    Behavior change approaches aim to assist patients in achieving self-efficacy in managing their condition. Social cognitive theory (SCT) stipulates self-efficacy as a central element to behavior change and provides constructs to achieve self-efficacy guided by person-specific action plans. In our work, to administer behaviour change in patient with chronic conditions, our approach entails the computerization of SCT-based self-efficacy constructs in order to generate personalized action plans that are suitable to an individual's current care scenario. We have taken a knowledge management approach, whereby we have computerized the SCT-based self-efficacy constructs in terms of a high-level SCT knowledge model that can be operationalized to generate personalized behaviour change action plans. We have collected and computerized behavior change content targeting healthy living and physical activity. Semantic web technologies have been used to develop the SCT knowledge model, represented in terms of an ontology and SWRL rules. The ontological SCT model can inferred to generate personalized self-management action plans for a given patient profile. We present formative evaluation of the clinical correctness and relevance of the generated personalized action plans for a range of test patient profiles.

  9. Flow-induced vibration and instability of embedded double-walled carbon nanotubes based on a modified couple stress theory

    NASA Astrophysics Data System (ADS)

    Ke, Liao-Liang; Wang, Yue-Sheng

    2011-03-01

    Vibration and instability of fluid-conveying double-walled carbon nanotubes (DWNTs) are investigated in this paper based on the modified couple stress theory and the Timoshenko beam theory. The microstructure-dependent Timoshenko beam model, which contains a material length scale parameter and can take the size effect into account, is employed. The Poisson's ratio effect is also included in this model. The surrounding elastic medium is described as the Winkler model characterized by the spring. The higher-order governing equations and boundary conditions are derived by using Hamilton's principle. The differential quadrature (DQ) method is employed to discretize the governing equations, which are then solved to obtain the resonant frequencies of fluid-conveying DWNTs with different boundary conditions. A detailed parametric study is conducted to study the influences of length scale parameter, Poisson's ratio, spring constant, aspect ratio of the DWNTs, velocity of the fluid and end supports on the vibration and flow-induced instability of DWNTs. Results show that the imaginary component of the frequency and the critical flow velocity of the fluid-conveying DWNTs increase with increase in the length scale parameter.

  10. Electronic and optical properties of pure and modified diamondoids studied by many-body perturbation theory and time-dependent density functional theory

    SciTech Connect

    Demján, Tamás; Vörös, Márton; Palummo, Maurizia; Gali, Adam

    2014-08-14

    Diamondoids are small diamond nanoparticles (NPs) that are built up from diamond cages. Unlike usual semiconductor NPs, their atomic structure is exactly known, thus they are ideal test-beds for benchmarking quantum chemical calculations. Their usage in spintronics and bioimaging applications requires a detailed knowledge of their electronic structure and optical properties. In this paper, we apply density functional theory (DFT) based methods to understand the electronic and optical properties of a few selected pure and modified diamondoids for which accurate experimental data exist. In particular, we use many-body perturbation theory methods, in the G{sub 0}W{sub 0} and G{sub 0}W{sub 0}+BSE approximations, and time-dependent DFT in the adiabatic local density approximation. We find large quasiparticle gap corrections that can exceed thrice the DFT gap. The electron-hole binding energy can be as large as 4 eV but it is considerably smaller than the GW corrections and thus G{sub 0}W{sub 0}+BSE optical gaps are about 50% larger than the Kohn-Sham (KS) DFT gaps. We find significant differences between KS time-dependent DFT and GW+BSE optical spectra on the selected diamondoids. The calculated G{sub 0}W{sub 0} quasiparticle levels agree well with the corresponding experimental vertical ionization energies. We show that nuclei dynamics in the ionization process can be significant and its contribution may reach about 0.5 eV in the adiabatic ionization energies.

  11. Fracture prediction using modified mohr coulomb theory for non-linear strain paths using AA3104-H19

    NASA Astrophysics Data System (ADS)

    Dick, Robert; Yoon, Jeong Whan

    2016-08-01

    Experiment results from uniaxial tensile tests, bi-axial bulge tests, and disk compression tests for a beverage can AA3104-H19 material are presented. The results from the experimental tests are used to determine material coefficients for both Yld2000 and Yld2004 models. Finite element simulations are developed to study the influence of materials model on the predicted earing profile. It is shown that only the YLD2004 model is capable of accurately predicting the earing profile as the YLD2000 model only predicts 4 ears. Excellent agreement with the experimental data for earing is achieved using the AA3104-H19 material data and the Yld2004 constitutive model. Mechanical tests are also conducted on the AA3104-H19 to generate fracture data under different stress triaxiality conditions. Tensile tests are performed on specimens with a central hole and notched specimens. Torsion of a double bridge specimen is conducted to generate points near pure shear conditions. The Nakajima test is utilized to produce points in bi-axial tension. The data from the experiments is used to develop the fracture locus in the principal strain space. Mapping from principal strain space to stress triaxiality space, principal stress space, and polar effective plastic strain space is accomplished using a generalized mapping technique. Finite element modeling is used to validate the Modified Mohr-Coulomb (MMC) fracture model in the polar space. Models of a hole expansion during cup drawing and a cup draw/reverse redraw/expand forming sequence demonstrate the robustness of the modified PEPS fracture theory for the condition with nonlinear forming paths and accurately predicts the onset of failure. The proposed methods can be widely used for predicting failure for the examples which undergo nonlinear strain path including rigid-packaging and automotive forming.

  12. Nursing care process for releasing psychiatric inpatients from long-term seclusion in Japan: modified grounded theory approach.

    PubMed

    Nagayama, Yutaka; Hasegawa, Masami

    2014-09-01

    Based on a modified grounded theory approach, in this study, we sought to elucidate the nursing care process used to guide psychiatric inpatients in long-term seclusion towards release from seclusion. Participant observations and interviews were conducted with a total of 18 nurses from three long-term psychiatric wards at two institutions from September 2011 to November 2012, to collect data on the nursing care they provided for psychiatric patients in long-term seclusion. Consequently, four categories and 15 concepts were extracted. The nurses viewed "a mature therapeutic environment that utilizes flexible apportionment of care" as the foundation (i.e. the core category) in guiding psychiatric inpatients towards release from long-term seclusion. The results revealed a care structure in which nurses in such a treatment environment provided care by flexible apportionment of three types of care: care aimed at avoiding mental and physical exhaustion, standardized care that does not confer a disadvantage to patients, and immediately responding to prevent problematic behaviors.

  13. Vibration analysis of rotating functionally graded Timoshenko microbeam based on modified couple stress theory under different temperature distributions

    NASA Astrophysics Data System (ADS)

    Ghadiri, Majid; Shafiei, Navvab

    2016-04-01

    In this study, thermal vibration of rotary functionally graded Timoshenko microbeam has been analyzed based on modified couple stress theory considering temperature change in four types of temperature distribution on thermal environment. Material properties of FG microbeam are supposed to be temperature dependent and vary continuously along the thickness according to the power-law form. The axial forces are also included in the model as the thermal and true spatial variation due to the rotation. Governing equations and boundary conditions have been derived by employing Hamiltonian's principle. The differential quadrature method is employed to solve the governing equations for cantilever and propped cantilever boundary conditions. Validations are done by comparing available literatures and obtained results which indicate accuracy of applied method. Results represent effects of temperature changes, different boundary conditions, nondimensional angular velocity, length scale parameter, different boundary conditions, FG index and beam thickness on fundamental, second and third nondimensional frequencies. Results determine critical values of temperature changes and other essential parameters which can be applicable to design micromachines like micromotor and microturbine.

  14. Vibration analysis of a rotating functionally graded tapered microbeam based on the modified couple stress theory by DQEM

    NASA Astrophysics Data System (ADS)

    Ghadiri, Majid; Shafiei, Navvab; Alireza Mousavi, S.

    2016-09-01

    Due to having difficulty in solving governing nonlinear differential equations of a non-uniform microbeam, a few numbers of authors have studied such fields. In the present study, for the first time, the size-dependent vibration behavior of a rotating functionally graded (FG) tapered microbeam based on the modified couple stress theory is investigated using differential quadrature element method (DQEM). It is assumed that physical and mechanical properties of the FG microbeam are varying along the thickness that will be defined as a power law equation. The governing equations are determined using Hamilton's principle, and DQEM is presented to obtain the results for cantilever and propped cantilever boundary conditions. The accuracy and validity of the results are shown in several numerical examples. In order to display the influence of size on the first two natural frequencies and consequently changing of some important microbeam parameters such as material length scale, rate of cross section, angular velocity and gradient index of the FG material, several diagrams and tables are represented. The results of this article can be used in designing and optimizing elastic and rotary-type micro-electro-mechanical systems like micro-motors and micro-robots including rotating parts.

  15. Vibration of bioliquid-filled microtubules embedded in cytoplasm including surface effects using modified couple stress theory.

    PubMed

    Ghorbanpour Arani, A; Abdollahian, M; Jalaei, M H

    2015-02-21

    This paper aims to investigate vibrational behavior of bioliquid-filled microtubules (MTs) embedded in cytoplasm considering surface effects. The interactions between the MT, considered as an orthotropic beam within the framework of Euler-Bernoulli beam (EBB) and Timoshenko beam (TB) models, and its surrounding elastic media are simulated by Pasternak foundation model. The modified couple stress theory (MCST) is applied so as to consider the small scale effects while motion equations are derived using energy method and Hamilto's principle for both EBB and TB models. Finally, an analytical method is employed to obtain the frequency of a bioliquid-filled MT, and therefore frequency-response curves are plotted to investigate the influences of small scale parameter, mass density of bioliquid, surface layer and surrounding elastic medium graphically. The results indicate that bioliquid and surface layers play a key role on the frequency of MTs and that the frequency of MTs is decreased with increasing of the mass density of the bioliquid. Vibration analysis of MTs is being considered as a vital problem since MTs look like the nervous system of the biological cells and transmit vibrational signals. It should be noted that the results of this work are hoped to be of use in advanced medical applications especially in the forthcoming use of MTs in transporters for bio-nanosensors.

  16. [Concept extraction of graduate research by modified grounded theory approach and creating of rubric oriented to performance evaluation].

    PubMed

    Yasuhara, Tomohisa; Sone, Tomomichi; Kohno, Takeyuki; Ogita, Kiyokazu

    2015-01-01

      A revised core curriculum model for pharmaceutical education, developed on the basis of the principles of outcome-based education, will be introduced in 2015. Inevitably, appropriate assessments of students' academic achievements will be required. Although evaluations of the cognitive domain can be carried out by paper tests, evaluation methods for the attitude domain and problem-solving abilities need to be established. From the viewpoint of quality assurance for graduates, pharmaceutical education reforms have become vital to evaluation as well as learning strategies. To evaluate student academic achievements on problem-solving abilities, authentic assessment is required. Authentic assessment is the evaluation that mimics the context tried in work and life. Specifically, direct evaluation of performances, demonstration or the learners' own work with integrated variety knowledge and skills, is required. To clarify the process of graduate research, we obtained qualitative data through focus group interviews with six teachers and analyzed the data using the modified grounded theory approach. Based on the results, we clarify the performance students should show in graduate research and create a rubric for evaluation of performance in graduate research. PMID:25743905

  17. Applying the theory of planned behaviour to multiple sclerosis patients’ decisions on disease modifying therapy – questionnaire concept and validation

    PubMed Central

    2012-01-01

    Background Patients making important medical decisions need to evaluate complex information in the light of their own beliefs, attitudes and priorities. The process can be considered in terms of the theory of planned behaviour. Decision support technologies aim at helping patients making informed treatment choices. Instruments assessing informed choices need to include risk knowledge, attitude (towards therapy) and actual uptake. However, mechanisms by which decision support achieves its goals are poorly understood. Our aim was therefore to develop and validate an instrument modeling the process of multiple sclerosis (MS) patients’ decision making about whether to undergo disease modifying (immuno-)therapies (DMT). Methods We constructed a 30-item patient administered questionnaire to access the elaboration of decisions about DMT in MS according to the theory of planned behaviour. MS-patients’ belief composites regarding immunotherapy were classified according to the domains “attitude”, “subjective social norm” and “control beliefs” and within each domain to either “expectations” or “values” yielding 6 sub-domains. A randomized controlled trial (n = 192) evaluating an evidence based educational intervention tested the instrument’s predictive power regarding intention to use immunotherapy and its sensitivity to the intervention. Results The psychometric properties of the questionnaire were satisfactory (mean item difficulty 62, mean SD 0.9, range 0–3). Responses explain up to 68% of the variability in the intention to use DMT was explained by up to 68% in the total sample. Four weeks after an educational intervention, predictive power was higher in the intervention (IG) compared to the control group (CG) (intention estimate: CG 56% / IG 69%, p = .179; three domains CG 56% / IG 74%, p = .047; six sub-domains CG 64% / IG 78%, p = .073). The IG held more critical beliefs towards immunotherapy (p = .002) and were less

  18. BEC-BCS crossover in "magnetized" Feshbach-resonantly paired superfluids.

    PubMed

    Sheehy, Daniel E; Radzihovsky, Leo

    2006-02-17

    We map out the detuning-magnetization phase diagram for a magnetized (unequal number of atoms in two pairing hyperfine states) gas of fermionic atoms interacting via an s-wave Feshbach resonance (FR). The phase diagram is dominated by the coexistence of a magnetized normal gas and a singlet-paired superfluid with the latter exhibiting a BCS-Bose Einstein condensate crossover with reduced FR detuning. On the BCS side of strongly overlapping Cooper pairs, a sliver of finite-momentum paired Fulde-Ferrell-Larkin-Ovchinnikov magnetized phase intervenes between the phase-separated and normal states. In contrast, for large negative detuning a uniform, polarized superfluid, that is, a coherent mixture of singlet Bose-Einstein-condensed molecules and fully magnetized single-species Fermi sea, is a stable ground state. PMID:16605966

  19. BEC-BCS Crossover in ``Magnetized'' Feshbach-Resonantly Paired Superfluids

    NASA Astrophysics Data System (ADS)

    Sheehy, Daniel E.; Radzihovsky, Leo

    2006-02-01

    We map out the detuning-magnetization phase diagram for a magnetized (unequal number of atoms in two pairing hyperfine states) gas of fermionic atoms interacting via an s-wave Feshbach resonance (FR). The phase diagram is dominated by the coexistence of a magnetized normal gas and a singlet-paired superfluid with the latter exhibiting a BCS-Bose Einstein condensate crossover with reduced FR detuning. On the BCS side of strongly overlapping Cooper pairs, a sliver of finite-momentum paired Fulde-Ferrell-Larkin-Ovchinnikov magnetized phase intervenes between the phase-separated and normal states. In contrast, for large negative detuning a uniform, polarized superfluid, that is, a coherent mixture of singlet Bose-Einstein-condensed molecules and fully magnetized single-species Fermi sea, is a stable ground state.

  20. Motion of a solitonic vortex in the BEC-BCS crossover.

    PubMed

    Ku, Mark J H; Ji, Wenjie; Mukherjee, Biswaroop; Guardado-Sanchez, Elmer; Cheuk, Lawrence W; Yefsah, Tarik; Zwierlein, Martin W

    2014-08-01

    We observe a long-lived solitary wave in a superfluid Fermi gas of (6)Li atoms after phase imprinting. Tomographic imaging reveals the excitation to be a solitonic vortex, oriented transverse to the long axis of the cigar-shaped atom cloud. The precessional motion of the vortex is directly observed, and its period is measured as a function of the chemical potential in the BEC-BCS crossover. The long period and the correspondingly large ratio of the inertial to the bare mass of the vortex are in good agreement with estimates based on superfluid hydrodynamics that we derive here using the known equation of state in the BEC-BCS crossover.

  1. Critical velocity for superfluid flow across the BEC-BCS crossover.

    PubMed

    Miller, D E; Chin, J K; Stan, C A; Liu, Y; Setiawan, W; Sanner, C; Ketterle, W

    2007-08-17

    Critical velocities have been observed in an ultracold superfluid Fermi gas throughout the BEC-BCS crossover. A pronounced peak of the critical velocity at unitarity demonstrates that superfluidity is most robust for resonant atomic interactions. Critical velocities were determined from the abrupt onset of dissipation when the velocity of a moving one-dimensional optical lattice was varied. The dependence of the critical velocity on lattice depth and on the inhomogeneous density profile was studied.

  2. BCS-BEC crossover induced by a synthetic non-Abelian gauge field

    NASA Astrophysics Data System (ADS)

    Vyasanakere, Jayantha P.; Zhang, Shizhong; Shenoy, Vijay B.

    2011-07-01

    We investigate the ground state of interacting spin-(1)/(2) fermions in three dimensions at a finite density (ρ˜kF3) in the presence of a uniform non-Abelian gauge field. The gauge-field configuration (GFC) described by a vector λ≡(λx,λy,λz), whose magnitude λ determines the gauge coupling strength, generates a generalized Rashba spin-orbit interaction. For a weak attractive interaction in the singlet channel described by a small negative scattering length (kF|as|≲1), the ground state in the absence of the gauge field (λ=0) is a BCS (Bardeen-Cooper-Schrieffer) superfluid with large overlapping pairs. With increasing gauge-coupling strength, a non-Abelian gauge field engenders a crossover of this BCS ground state to a BEC (Bose-Einstein condensate) of bosons even with a weak attractive interaction that fails to produce a two-body bound state in free vacuum (λ=0). For large gauge couplings (λ/kF≫1), the BEC attained is a condensate of bosons whose properties are solely determined by the Rashba gauge field (and not by the scattering length so long as it is nonzero)—we call these bosons “rashbons.” In the absence of interactions (as=0-), the shape of the Fermi surface of the system undergoes a topological transition at a critical gauge coupling λT. For high-symmetry GFCs we show that the crossover from the BCS superfluid to the rashbon BEC occurs in the regime of λ near λT. In the context of cold atomic systems, these results make an interesting suggestion of obtaining BCS-BEC crossover through a route other than tuning the interaction between the fermions.

  3. Pairing theory of high Tc and low Tc superconductors

    NASA Astrophysics Data System (ADS)

    Sang, Boo Nam

    1994-09-01

    New solutions for Tc, the order parameter, and the density of states are obtained, based on the fact that pairs are formed within the pairing interaction range, TD (Debye), via the BCS pairing theory (not the BCS results). They are valiid for all ify = {T D}/{πT c}, and are applicable to low Tc (LTC) and high Tc (HTS) superconductors. The order parameter variation with y is shown to account for all features of HTS. A new density of states via the zero order parameter outside the pairing interaction range is found to account for low energy states observed in HTS. For large y (LTS), the BCS results are reproduced.

  4. Spin-polarized neutron matter: Critical unpairing and BCS-BEC precursor

    NASA Astrophysics Data System (ADS)

    Stein, Martin; Sedrakian, Armen; Huang, Xu-Guang; Clark, John W.

    2016-01-01

    We obtain the critical magnetic field required for complete destruction of S -wave pairing in neutron matter, thereby setting limits on the pairing and superfluidity of neutrons in the crust and outer core of magnetars. We find that for fields B ≥1017 G the neutron fluid is nonsuperfluid—if weaker spin 1 superfluidity does not intervene—a result with profound consequences for the thermal, rotational, and oscillatory behavior of magnetars. Because the dineutron is not bound in vacuum, cold dilute neutron matter cannot exhibit a proper BCS-BEC crossover. Nevertheless, owing to the strongly resonant behavior of the n n interaction at low densities, neutron matter shows a precursor of the BEC state, as manifested in Cooper-pair correlation lengths being comparable to the interparticle distance. We make a systematic quantitative study of this type of BCS-BEC crossover in the presence of neutron fluid spin polarization induced by an ultrastrong magnetic field. We evaluate the Cooper-pair wave function, quasiparticle occupation numbers, and quasiparticle spectra for densities and temperatures spanning the BCS-BEC crossover region. The phase diagram of spin-polarized neutron matter is constructed and explored at different polarizations.

  5. BCS-BEC crossover and nodal-points contribution in p-wave resonance superfluids

    NASA Astrophysics Data System (ADS)

    Kagan, M. Yu.; Efremov, D. V.

    2009-08-01

    We solve the Leggett equations for BCS-BEC crossover of the resonance p-wave superfluid. We calculate sound velocity, specific heat and the normal density for the BCS domain (μ>0), the BEC domain (μ<0), and for the interesting interpolation point (μ=0) in the 100%-polarized A1 phase in 3D. We are especially interested in the quasiparticle contribution coming from the zeros of the superfluid gap in the A1 phase. We discuss the spectrum of orbital waves and the superfluid hydrodynamics at temperature T →0. In this context we elucidate the difficult problem of the chiral anomaly and mass-current nonconcervation appearing in the BCS domain. We present the different approaches taken to solve this problem. To clarify this problem experimentally we propose an experiment for measurement of the anomalous current in the superfluid A1 phase in the presence of aerogel for He3 and in the presence of Josephson tunneling structures for ultracold gases in magnetic traps.

  6. BCS, Nambu-Jona-Lasinio, and Han-Nambu: A sketch of Nambu's works in 1960-1965

    NASA Astrophysics Data System (ADS)

    Fujikawa, Kazuo

    2016-06-01

    The years 1960-1965 were a remarkable period for Yoichiro Nambu. Starting with a reformulation of BCS theory with emphasis on gauge invariance, he recognized the realization of spontaneous chiral symmetry breaking in particle physics as evidenced by the Goldberger-Treiman relation. A concrete model of Nambu and Jona-Lasinio illustrated the essence of the Nambu-Goldstone theorem and the idea of soft pions. After the proposal of the quark model by Gell-Mann, he together with Han constructed an alternative model of integrally charged quarks with possible non-Abelian gluons. All these remarkable works were performed during the years 1960-1965. Here I briefly review those works following the original papers of Nambu chronologically, together with a brief introduction to a formulation of Noether's theorem and the Ward-Takahashi identities using path integrals. This article is mostly based on a lecture given at the Nambu Memorial Symposium held at Osaka City University in September 2015, where Nambu started his professional career.

  7. Calculation of composition distribution of ultrafine ion-H2O-H2SO4 clusters using a modified binary ion nucleation theory

    NASA Technical Reports Server (NTRS)

    Singh, J. J.; Smith, A. S.; Chan, L. Y.; Yue, G. K.

    1982-01-01

    Thomson's ion nucleation theory was modified to include the effects of curvature dependence of the microscopic surface tension of field dependent, nonlinear, dielectric properties of the liquid; and of sulfuric acid hydrate formation in binary mixtures of water and sulfuric acid vapors. The modified theory leads to a broadening of the ion cluster spectrum, and shifts it towards larger numbers of H2O and H2SO4 molecules. Whether there is more shifting towards larger numbers of H2O or H2SO4 molecules depends on the relative humidity and relative acidity of the mixture. Usually, a broadening of the spectrum is accompanied by a lowering of the mean cluster intensity. For fixed values of relative humidity and relative acidity, a similar broadening pattern is observed when the temperature is lowered. These features of the modified theory illustrate that a trace of sulfuric acid can facilitate the formation of ultrafine, stable, prenucleation ion clusters as well as the growth of the prenucleation ion clusters towards the critical saddle point conditions, even with low values of relative humidity and relative acidity.

  8. Modified Statistical Dynamical Diffraction Theory: A Novel Metrological Analysis Method for Partially Relaxed and Defective Carbon-doped Silicon and Silicon Germanium Heterostructures

    NASA Astrophysics Data System (ADS)

    Shreeman, Paul K.

    The statistical dynamical diffraction theory, which has been initially developed by late Kato remained in obscurity for many years due to intense and difficult mathematical treatment that proved to be quite challenging to implement and apply. With assistance of many authors in past (including Bushuev, Pavlov, Pungeov, and among the others), it became possible to implement this unique x-ray diffraction theory that combines the kinematical (ideally imperfect) and dynamical (the characteristically perfect diffraction) into a single system of equations controlled by two factors determined by long range order and correlation function within the structure. The first stage is completed by the publication (Shreeman and Matyi, J. Appl. Cryst., 43, 550 (2010)) demonstrating the functionality of this theory with new modifications hence called modified statistical dynamical diffraction theory (mSDDT). The foundation of the theory is also incorporated into this dissertation, and the next stage of testing the model against several ion-implanted SiGe materials has been published: (Shreeman and Matyi, physica status solidi (a)208(11), 2533-2538, 2011). The dissertation with all the previous results summarized, dives into comprehensive analysis of HRXRD analyses complete with several different types of reflections (symmetrical, asymmetrical and skewed geometry). The dynamical results (with almost no defects) are compared with well-known commercial software. The defective materials, to which commercially available modeling software falls short, is then characterized and discussed in depth. The results will exemplify the power of the novel approach in the modified statistical dynamical diffraction theory: Ability to detect and measure defective structures qualitatively and quantitatively. The analysis will be compared alongside with TEM data analysis for verification and confirmation. The application of this theory will accelerate the ability to quickly characterize the relaxed

  9. Finite-temperature collective dynamics of a Fermi gas in the BEC-BCS crossover.

    PubMed

    Wright, M J; Riedl, S; Altmeyer, A; Kohstall, C; Guajardo, E R Sánchez; Denschlag, J Hecker; Grimm, R

    2007-10-12

    We report on experimental studies on the collective behavior of a strongly interacting Fermi gas with tunable interactions and variable temperature. A scissors mode excitation in an elliptical trap is used to characterize the dynamics of the quantum gas in terms of hydrodynamic or near-collisionless behavior. We obtain a crossover phase diagram for collisional properties, showing a large region where a nonsuperfluid strongly interacting gas shows hydrodynamic behavior. In a narrow interaction regime on the BCS side of the crossover, we find a novel temperature-dependent damping peak, suggesting a relation to the superfluid phase transition. PMID:17995145

  10. Importance of the single-particle continuum in BCS pairing with a pseudostate basis

    NASA Astrophysics Data System (ADS)

    Lay, J. A.; Alonso, C. E.; Fortunato, L.; Vitturi, A.

    2016-05-01

    In a recent work [arXiv:1510.03185] the use of the Transformed Harmonic Oscillator (THO) basis for the discretization of the singleparticle continuum into a Generalized Bardeen-Cooper-Schrieffer (BCS) formalism was proposed for the description of weakly bound nuclei. We make use of the flexibility of this formalism to study the evolution of the pairing when the nucleus becomes more and more weakly bound. Specifically we focus on the evolution of the occupation of the different partial waves in 22O when the Fermi level approaches zero.

  11. Soil arsenic contamination in the Cape Region, B.C.S., Mexico.

    PubMed

    Naranjo-Pulido, A; Romero-Schmidt, H; Mendez-Rodriguez, L; Acosta-Vargas, B; Ortega-Rubio, A

    2002-10-01

    We evaluated the content of arsenic in soils of an abandoned mining zone in the Cape Region, B.C.S. During June to August 1997, we were in the field sampling these soils. The concentration of arsenic was determined using the Chapman and Parket techniques. The results were statistically analyzed by ANOVA tests. Our results indicate that all the soils sampled in the region exceed the environmental limit (2 mg/K) established by Galvan and Corey (1987). According to the data found the more probable cause of this soil arsenic contamination is the rainy runoff.

  12. Exact Solution for a Trapped Fermi Gas with Population Imbalance and BCS Pairing

    SciTech Connect

    Ying Zujian; Cuoco, Mario; Noce, Canio; Zhou Huanqiang

    2008-04-11

    The problem of a two-component Fermi gas in a harmonic trap, with an imbalanced population and a pairing interaction of zero total momentum, is mapped onto the exactly solvable reduced BCS model. For a one-dimensional trap, the complete ground state diagram is determined with various topological features in ground state energy spectra. In addition to the conventional two-shell density profile of a paired core and polarized outer wings, a three-shell structure as well as a double-peak superfluid distribution are unveiled.

  13. BCS-BEC crossover in two dimensions: A quantum Monte Carlo study

    SciTech Connect

    Bertaina, G.

    2012-09-26

    We investigate the crossover from Bardeen-Cooper-Schrieffer (BCS) superfluidity to Bose-Einstein condensation (BEC) in a two-dimensional Fermi gas at T= 0 using the fixed-node diffusion Monte Carlo method. We calculate the equation of state and the gap parameter as a function of the interaction strength, observing large deviations compared to mean-field predictions. In the BEC regime our results show the important role of dimer-dimer and atom-dimer interaction effects that are completely neglected in the mean-field picture. We also consider the highly polarized gas and the competition between a polaronic and a molecular picture.

  14. Comparison of Deconvolution-Based and Absorption Modeling IVIVC for Extended Release Formulations of a BCS III Drug Development Candidate.

    PubMed

    Kesisoglou, Filippos; Xia, Binfeng; Agrawal, Nancy G B

    2015-11-01

    In vitro-in vivo correlations (IVIVC) are predictive mathematical models describing the relationship between dissolution and plasma concentration for a given drug compound. The traditional deconvolution/convolution-based approach is the most common methodology to establish a level A IVIVC that provides point to point relationship between the in vitro dissolution and the in vivo input rate. The increasing application of absorption physiologically based pharmacokinetic model (PBPK) has provided an alternative IVIVC approach. The current work established and compared two IVIVC models, via the traditional deconvolution/convolution method and via absorption PBPK modeling, for two types of modified release (MR) formulations (matrix and multi-particulate tablets) of MK-0941, a BCS III drug development candidate. Three batches with distinct release rates were studied for each formulation technology. A two-stage linear regression model was used for the deconvolution/convolution approach while optimization of the absorption scaling factors (a model parameter that relates permeability and input rate) in Gastroplus(TM) Advanced Compartmental Absorption and Transit model was used for the absorption PBPK approach. For both types of IVIVC models established, and for either the matrix or the multiparticulate formulations, the average absolute prediction errors for AUC and C max were below 10% and 15%, respectively. Both the traditional deconvolution/convolution-based and the absorption/PBPK-based level A IVIVC model adequately described the compound pharmacokinetics to guide future formulation development. This case study highlights the potential utility of absorption PBPK model to complement the traditional IVIVC approaches for MR products.

  15. Modified first-order Horava-Lifshitz gravity: Hamiltonian analysis of the general theory and accelerating FRW cosmology in a power-law F(R) model

    SciTech Connect

    Carloni, Sante; Chaichian, Masud; Tureanu, Anca; Nojiri, Shin'ichi; Odintsov, Sergei D.; Oksanen, Markku

    2010-09-15

    We propose the most general modified first-order Horava-Lifshitz gravity, whose action does not contain time derivatives higher than the second order. The Hamiltonian structure of this theory is studied in all the details in the case of the spatially-flat Friedmann-Robertson-Walker (FRW) space-time, demonstrating many of the features of the general theory. It is shown that, with some plausible assumptions, including the projectability of the lapse function, this model is consistent. As a large class of such theories, the modified Horava-Lifshitz F(R) gravity is introduced. The study of its ultraviolet properties shows that its z=3 version seems to be renormalizable in the same way as the original Horava-Lifshitz proposal. The Hamiltonian analysis of the modified Horava-Lifshitz F(R) gravity shows that it is in general a consistent theory. The F(R) gravity action is also studied in the fixed-gauge form, where the appearance of a scalar field is particularly illustrative. Then the spatially-flat FRW cosmology for this F(R) gravity is investigated. It is shown that a special choice of parameters for this theory leads to the same equations of motion as in the case of traditional F(R) gravity. Nevertheless, the cosmological structure of the modified Horava-Lifshitz F(R) gravity turns out to be much richer than for its traditional counterpart. The emergence of multiple de Sitter solutions indicates the possibility of unification of early-time inflation with late-time acceleration within the same model. Power-law F(R) theories are also investigated in detail. It is analytically shown that they have a quite rich cosmological structure: early-/late-time cosmic acceleration of quintessence, as well as of phantom types. Also it is demonstrated that all the four known types of finite-time future singularities may occur in the power-law Horava-Lifshitz F(R) gravity. Finally, a covariant proposal for (renormalizable) F(R) gravity within the Horava-Lifshitz spirit is presented.

  16. Effects of brewers` condensed solubles (BCS) on the production of ethanol from low-grade starch materials

    SciTech Connect

    Choi, C.H.; Chung, D.S.; Seib, P.A.

    1995-02-01

    Yeast fermentation was performed on grain and bakery byproducts with and without adding the same volume of brewers` condensed solubles (BCS). Starch material in the grain and bakery byproducts effectively was converted to fermentable sugars with conversion ratios of 93-97% by successive treatments of samples with bacterial {alpha}-amylase and fungal glucoamylase. The yeast fermentation of these enzyme-digested byproducts alone showed that ethanol concentrations of 16.4-42.7 mL/100 g dry solid in the broth were achieved with fermentation efficiencies of 87-96%. Addition of BCS to the grain byproducts increased ethanol concentration by 10-86% by increasing the potential glucose content of the broth. The rates of fermentation measured by CO{sub 2} gas production demonstrated that BCS addition to bakery byproducts reduced the fermentation time from 62-72 h to 34-35 h. In bakery byproducts that were low in amino nitrogen, exhaustion of nitrogenous compounds in substrates was found to be a limiting factor for yeast growth. Because BCS is a rich source of nitrogen, adding BCS to these substrates markedly increased the fermentation rate. 15 refs., 4 figs., 3 tabs.

  17. A Turn-On Resonance Raman Scattering (BCS/Cu+) Sensor for Quantitative Determination of Proteins.

    PubMed

    Chen, Lei; Xue, Xiangxin; Jiang, Dayu; Yang, Jin; Zhao, Bing; Han, Xiao Xia; Mee Jung, Young

    2016-02-01

    In this study, a new method for the quantitative evaluation of proteins is developed using competitive resonance Raman spectroscopy. A chelation reaction between bathocuproine disulfonate (BCS) and Cu(+) which is reduced by proteins in an alkaline environment, is utilized to create a BCS-Cu(+) complex that has strong resonance Raman activity. As a result, the method presented here enables protein detection over a much wider concentration range than conventional methods. Furthermore, the resonance Raman-based method can provide an improved lower limit of detection (500 pg/mL) compared to that obtained by colorimetric and ultraviolet- (UV-) based methods. Additionally, protein-to-protein variation can be determined using a standard curve created from known concentrations of bovine serum albumin (BSA), and excellent protein recovery is observed. More importantly, the proposed method was employing to the real sample (fetal bovine serum [FBS]). Based on the calibration curve from this method, it is extremely accurate for the determination of total protein concentrations in FBS. Results of this study demonstrate that the proposed method provides a novel and highly sensitive protocol for reagent-based protein assays.

  18. Propagation of sound and supersonic bright solitons in superfluid Fermi gases in BCS-BEC crossover

    SciTech Connect

    Wen Wen; Shen Shunqing; Huang Guoxiang

    2010-01-01

    We investigate the linear and nonlinear sound propagations in a cigar-shaped superfluid Fermi gas with a large particle number. We first solve analytically the eigenvalue problem of linear collective excitations and provide explicit expressions of all eigenvalues and eigenfunctions, which are valid for all superfluid regimes in the Bardeen-Cooper-Schrieffer-Bose-Einstein condensation (BCS-BEC) crossover. The linear sound speed obtained agrees well with that of a recent experimental measurement. We then consider a weak nonlinear excitation and show that the time evolution of the excitation obeys a Korteweg de Vries equation. Different from the result obtained in quasi-one-dimensional case studied previously, where subsonic dark solitons are obtained via the balance between quantum pressure and nonlinear effect, we demonstrate that bright solitons with supersonic propagating velocity can be generated in the present three-dimensional system through the balance between a waveguidelike dispersion and the interparticle interaction. The supersonic bright solitons obtained display different physical properties in different superfluid regimes and hence can be used to characterize superfluid features of the BCS-BEC crossover.

  19. Experimental Sensing and Density Functional Theory Study of H2S and SOF2 Adsorption on Au‐Modified Graphene

    PubMed Central

    Yu, Lei; Wu, Xiaoqing; Hu, Weihua

    2015-01-01

    A gas sensor is used to detect SF6 decomposed gases, which are related to insulation faults, to accurately assess the insulated status of electrical equipment. Graphene films (GrF) modified with Au nanoparticles are used as an adsorbent for the detection of H2S and SOF2, which are two characteristic products of SF6 decomposed gases. Sensing experiments are conducted at room temperature. Results demonstrate that Au‐modified GrF yields opposite responses to the tested gases and is thus considered a promising material for developing H2S‐ and SOF2‐selective sensors. The first‐principles approach is applied to simulate the interaction between the gases and Au‐modified GrF systems and to interpret experimental data. The observed opposite resistance responses can be attributed to the charge‐transfer differences related to the interfacial interaction between the gases and systems. The density of states and Mulliken population analysis results confirm the apparent charge transfer in Au‐modified GrF chemisorption, whereas the van der Waals effect dominates the pristine graphene adsorption systems. Calculation results can also explicate the significant SOF2 responses on Au‐modified GrF. This work is important in graphene modulation and device design for selective detection. PMID:27722075

  20. BCS-BEC crossover in atomic Fermi gases with a narrow resonance

    SciTech Connect

    Jensen, L. M.; Nilsen, H. M.; Watanabe, Gentaro

    2006-10-15

    We determine the effects on the BCS-BEC crossover of the energy dependence of the effective two-body interaction, which at low energies is determined by the effective range. To describe interactions with an effective range of either sign, we consider a single-channel model with a two-body interaction having an attractive square well and a repulsive square barrier. We investigate the two-body scattering properties of the model, and then solve the Eagles-Leggett equations for the zero temperature crossover, determining the momentum dependent gap and the chemical potential self-consistently. From this we investigate the dependence of the crossover on the effective range of the interaction.

  1. Nucleation of spontaneous vortices in trapped Fermi gases undergoing a BCS-BEC crossover.

    SciTech Connect

    Glatz, A.; Roberts, H.; Aranson, I. S.; Levin, K.

    2011-01-01

    We study the spontaneous formation of vortices during the superfluid condensation in a trapped fermionic gas subjected to a rapid thermal quench via evaporative cooling. Our work is based on the numerical solution of the time-dependent crossover Ginzburg-Landau equation coupled to the heat diffusion equation. We quantify the evolution of condensate density and vortex length as a function of a crossover phase parameter from BCS to BEC. The more interesting phenomena occur somewhat nearer to the BEC regime and should be experimentally observable; during the propagation of the cold front, the increase in condensate density leads to the formation of supercurrents toward the center of the condensate as well as possible condensate volume oscillations.

  2. Dissociation of Cooper pairs in the BCS Limit using an Oscillating Magnetic Field

    NASA Astrophysics Data System (ADS)

    Mohapatra, Abhishek; Smith, D. Hudson; Braaten, Eric

    2016-05-01

    In a gas of ultracold fermionic atoms with two spin states, the scattering length can be controlled by using a Feschbach resonance. In the BCS limit, the interaction between a pair of atoms is weakly attractive and supports the formation of Cooper pairs. An oscillating magnetic field with frequency near the pairing gap can dissociate Cooper pairs into pairs of atoms. We calculate the transition rate for the dissociation process using a recently developed formalism that takes into account many-body effects through a transition matrix element of the contact operator. Our results can be used to make the first direct measurement of the pairing gap. Supported by NSF and the Simons Foundation.

  3. Evolution from BCS to Berezinskii-Kosterlitz-Thouless Superfluidity in One-Dimensional Optical Lattices

    NASA Astrophysics Data System (ADS)

    Iskin, M.; de Melo, C. A. R. Sá

    2009-10-01

    We analyze the finite temperature phase diagram of fermion mixtures in one-dimensional optical lattices as a function of interaction strength. At low temperatures, the system evolves from an anisotropic three-dimensional Bardeen-Cooper-Schrieffer (BCS) superfluid to an effectively two-dimensional Berezinskii-Kosterlitz-Thouless (BKT) superfluid as the interaction strength increases. We calculate the critical temperature as a function of interaction strength, and identify the region where the dimensional crossover occurs for a specified optical lattice potential. Finally, we show that the dominant vortex excitations near the critical temperature evolve from multiplane elliptical vortex loops in the three-dimensional regime to planar vortex-antivortex pairs in the two-dimensional regime, and we propose a detection scheme for these excitations.

  4. Rise and fall of shape resonances in thin films of BCS superconductors

    NASA Astrophysics Data System (ADS)

    Valentinis, D.; van der Marel, D.; Berthod, C.

    2016-08-01

    The confinement of a superconductor in a thin film changes its Fermi-level density of states and is expected to change its critical temperature Tc. Previous calculations have reported large discontinuities of Tc when the chemical potential coincides with a subband edge. By solving the BCS gap equation exactly, we show that such discontinuities are artifacts and that Tc is a continuous function of the film thickness. We also find that Tc is reduced in thin films compared with the bulk if the confinement potential is lower than a critical value, while for stronger confinement Tc increases with decreasing film thickness, reaches a maximum, and eventually drops to zero. Our numerical results are supported by several exact solutions. We finally interpret experimental data for ultrathin lead thin films in terms of a thickness-dependent effective mass.

  5. Renormalization of the BCS-BEC crossover by order-parameter fluctuations

    SciTech Connect

    Bartosch, Lorenz; Kopietz, Peter; Ferraz, Alvaro

    2009-09-01

    We use the functional renormalization group approach with partial bosonization in the particle-particle channel to study the effect of order parameter fluctuations on the BCS-Bose-Einstein condensate (BEC) crossover of superfluid fermions in three dimensions. Our approach is based on a new truncation of the vertex expansion where the renormalization group flow of bosonic two-point functions is closed by means of Dyson-Schwinger equations and the superfluid order parameter is related to the single-particle gap via a Ward identity. We explicitly calculate the chemical potential, the single-particle gap, and the superfluid order parameter at the unitary point and compare our results with experiments and previous calculations.

  6. Relativistic BCS-BEC crossover in a boson-fermion model

    SciTech Connect

    Deng Jian; Wang Qun; Schmitt, Andreas

    2007-08-01

    We investigate the crossover from Bardeen-Cooper-Schrieffer (BCS) pairing to a Bose-Einstein condensate (BEC) in a relativistic superfluid within a boson-fermion model. The model includes, besides the fermions, separate bosonic degrees of freedom, accounting for the bosonic nature of the Cooper pairs. The crossover is realized by tuning the difference between the boson mass and boson chemical potential as a free parameter. The model yields populations of condensed and uncondensed bosons as well as gapped and ungapped fermions throughout the crossover region for arbitrary temperatures. Moreover, we observe the appearance of antiparticles for sufficiently large values of the crossover parameter. As an application, we study pairing of fermions with imbalanced populations. The model can potentially be applied to color superconductivity in dense quark matter at strong couplings.

  7. History of Soil Survey and Evolution of the Brazilian Soil Classification System - SiBCS

    NASA Astrophysics Data System (ADS)

    Cunha dos Anjos, Lúcia Helena; Csekö Nolasco de Carvalho, Claudia; Homem Antunes, Mauro Antonio; Muggler, Cristine Carole

    2014-05-01

    national soil classification was presented by Marcelo Camargo (Embrapa Soils) and Jacob Bennema (FAO adviser). When Soil Taxonomy was first published in 1975, a field workshop was held in Brazil, and the system was not accepted by the country scientists; one main reason was the usage of climate as a main attribute for suborders. In 1978, the first national soil field correlation meeting was held with the goal of developing the national system, giving origin to the Brazilian Soil Classification System (SiBCS). In 1980, a working group was created by Embrapa Soils and other institutes resulting in four approximations of the system. In 1999, the first edition of the SiBCS was released, followed by a second edition in 2006 and the third in 2013. The SiBCS is a hierarchic system, based on morphogenetic soil attributes, with six categorical levels: order, suborder, great group, subgroup, family, and series. It has 13 soil orders, and it is structured as a key down to subgroup level. Many soil attributes are based on concepts adopted by the Soil Taxonomy (United States) and by the World Reference Base for Soil Resources (WRB - FAO). The development of the SiBCS is supervised by a national executive committee, and information is available at http://www.cnps.embrapa.br/sibcs (in Portuguese).

  8. Purely in silico BCS classification: science based quality standards for the world's drugs.

    PubMed

    Dahan, Arik; Wolk, Omri; Kim, Young Hoon; Ramachandran, Chandrasekharan; Crippen, Gordon M; Takagi, Toshihide; Bermejo, Marival; Amidon, Gordon L

    2013-11-01

    BCS classification is a vital tool in the development of both generic and innovative drug products. The purpose of this work was to provisionally classify the world's top selling oral drugs according to the BCS, using in silico methods. Three different in silico methods were examined: the well-established group contribution (CLogP) and atom contribution (ALogP) methods, and a new method based solely on the molecular formula and element contribution (KLogP). Metoprolol was used as the benchmark for the low/high permeability class boundary. Solubility was estimated in silico using a thermodynamic equation that relies on the partition coefficient and melting point. The validity of each method was affirmed by comparison to reference data and literature. We then used each method to provisionally classify the orally administered, IR drug products found in the WHO Model list of Essential Medicines, and the top-selling oral drug products in the United States (US), Great Britain (GB), Spain (ES), Israel (IL), Japan (JP), and South Korea (KR). A combined list of 363 drugs was compiled from the various lists, and 257 drugs were classified using the different in silico permeability methods and literature solubility data, as well as BDDCS classification. Lastly, we calculated the solubility values for 185 drugs from the combined set using in silico approach. Permeability classification with the different in silico methods was correct for 69-72.4% of the 29 reference drugs with known human jejunal permeability, and for 84.6-92.9% of the 14 FDA reference drugs in the set. The correlations (r(2)) between experimental log P values of 154 drugs and their CLogP, ALogP and KLogP were 0.97, 0.82 and 0.71, respectively. The different in silico permeability methods produced comparable results: 30-34% of the US, GB, ES and IL top selling drugs were class 1, 27-36.4% were class 2, 22-25.5% were class 3, and 5.46-14% were class 4 drugs, while ∼8% could not be classified. The WHO list

  9. Drug carrier systems for solubility enhancement of BCS class II drugs: a critical review.

    PubMed

    Kumar, Sumit; Bhargava, Deepak; Thakkar, Arti; Arora, Saahil

    2013-01-01

    Poor aqueous solubility impedes a drug's bioavailability and challenges its pharmaceutical development. Pharmaceutical development of drugs with poor water solubility requires the establishment of a suitable formulation layout among various techniques. Various approaches have been investigated extensively to improve the aqueous solubility and poor dissolution rate of BCS class II and IV drugs. In this literature review, novel formulation options, particularly for class II drugs designed for applications such as micronization, self-emulsification, cyclodextrin complexation, co-crystallisation, super critical fluid technology, solubilisation by change in pH, salt formation, co-solvents, melt granulation, and solid dispersion, liposomal/niosomal formulations, are discussed in detail to introduce biopharmaceutical challenges and recent approaches to facilitate more efficient drug formulation and development. PMID:23614647

  10. The fundamental variables of the biopharmaceutics classification system (BCS): a commentary.

    PubMed

    van de Waterbeemd, H

    1998-12-01

    Based on in vitro solubility and in vivo permeability drugs can be divided into four groups: class 1 (high permeability, high solubility, HP:HS), class 2 (high permeability, low solubility, HP:LS), class 3 (low permeability, high solubility, LP:HS), and class 4 (low permeability, low solubility, LP:LS) (Amidon et al., 1995; Amidon, G.L., Lennernas, H., Shah, V.P., Olson, J.R., 1995. Pharm. Res. 12, 413-420). The high permeability boundary has been suggested to be 70% (Walter et al., 1996; Walter, E., Janich, S., Roessler, B.J., Hilfinger, J.H., Amidon, G., 1996. J. Pharm. Sci. 85, 1070-1076) or 90% (Hussain et al., 1997; Hussain, A.S., Kaus, L.C., Lesko, L.J., Williams, R.L., 1997. Eur. J. Pharm. Sci. 5 (Suppl. 2), S43-S44), and more recently was compromised by the FDA to 80% human intestinal absorption (Hussain, A.S., 1998. Information presented at the BCS and in vitro-in vivo correlations workshop. Frankfurt/M., Germany, March 1998). The biopharmaceutics classification system (BCS) is now being considered by the FDA to develop new regulatory guidance for bioequivalence studies (Hussain, 1998; Lesko, 1997; Lesko, L.J., 1997. Eur. J. Pharm. Sci. 5 (Suppl. 2), S42). Both properties, solubility and permeability, are being considered as fundamental to define the rate and extent of absorption of the active ingredient of a drug product. However, since both these properties are dependent ones, it may be questioned whether these are indeed sufficiently 'fundamental' or should be further unravelled.

  11. Investigation of BCS gap equation of (d+id) hole doped cuprates

    NASA Astrophysics Data System (ADS)

    Goswami, Partha

    2012-12-01

    We consider a (d + i d) cuprate superconductor and model the functional dependence of the pairing interactions V(k,k') = (Vx2-y2(k,k')+Vxy(k,k')) required for d+id ordering in the pseudo-gap(PG) phase by a function of the form Vtrial = [(Vx2-y2 (kF, kF) + Vxy(kF,kF)) F(phi,phi')], where Vx2-y2(k,k') = V1 (cos kxa-coskya) (cos k'xa-cosk'ya), Vxy(k, k') = V2sin(kxa) sin(kya) sin(k'xa) sin(k'ya), V1 and V2 (V1 > V2) are the coupling strengths, kF is the Fermi momentum, phi = arc(tan(ky/kx)), and (kx,ky) belong to the first Brillouin zone (BZ). We further assume that an attractive interaction -|U1| (cos kxa-coskya) (cos k'xa-cosk'ya), where U1 is a model parameter, is responsible for d-wave superconductivity(DSC).Within the BCS framework, for V2 ll V1, we show that the resultant zero-temperature gap Δ0(0) is an increasing function of g(kF). (~ ((D /2) (|U1| +V1)) where the quantity D is the density of energy states).; the solutions are possible if |U1|≈V1. The exercise underscores the fact that the unconventional superconductivity in the hole-doped cuprates may definitely be described within the BCS framework.

  12. Provisional in-silico biopharmaceutics classification (BCS) to guide oral drug product development.

    PubMed

    Wolk, Omri; Agbaria, Riad; Dahan, Arik

    2014-01-01

    The main objective of this work was to investigate in-silico predictions of physicochemical properties, in order to guide oral drug development by provisional biopharmaceutics classification system (BCS). Four in-silico methods were used to estimate LogP: group contribution (CLogP) using two different software programs, atom contribution (ALogP), and element contribution (KLogP). The correlations (r(2)) of CLogP, ALogP and KLogP versus measured LogP data were 0.97, 0.82, and 0.71, respectively. The classification of drugs with reported intestinal permeability in humans was correct for 64.3%-72.4% of the 29 drugs on the dataset, and for 81.82%-90.91% of the 22 drugs that are passively absorbed using the different in-silico algorithms. Similar permeability classification was obtained with the various in-silico methods. The in-silico calculations, along with experimental melting points, were then incorporated into a thermodynamic equation for solubility estimations that largely matched the reference solubility values. It was revealed that the effect of melting point on the solubility is minor compared to the partition coefficient, and an average melting point (162.7 °C) could replace the experimental values, with similar results. The in-silico methods classified 20.76% (± 3.07%) as Class 1, 41.51% (± 3.32%) as Class 2, 30.49% (± 4.47%) as Class 3, and 6.27% (± 4.39%) as Class 4. In conclusion, in-silico methods can be used for BCS classification of drugs in early development, from merely their molecular formula and without foreknowledge of their chemical structure, which will allow for the improved selection, engineering, and developability of candidates. These in-silico methods could enhance success rates, reduce costs, and accelerate oral drug products development.

  13. Quantifying the Chasm: Exploring the Impact of the BCS on Total Football Revenues for Division One Football Programs from 2002-2012

    ERIC Educational Resources Information Center

    Caro, Cary A.

    2014-01-01

    The Bowl Championship Series served as a collection of bowl games that were designed to crown the national champion in Division One football. The BCS created two classifications of institutions in Division football, those that were granted automatic access (AQ) to the post-season games, and those that were not (non-AQ). The BCS also generated…

  14. Free vibration and biaxial buckling analysis of magneto-electro-elastic microplate resting on visco-Pasternak substrate via modified strain gradient theory

    NASA Astrophysics Data System (ADS)

    Jamalpoor, A.; Ahmadi-Savadkoohi, A.; Hosseini-Hashemi, Sh

    2016-10-01

    This paper deals with the theoretical analysis of free vibration and biaxial buckling of magneto-electro-elastic (MEE) microplate resting on Kelvin-Voigt visco-Pasternak foundation and subjected to initial external electric and magnetic potentials, using modified strain gradient theory (MSGT). Kirchhoff plate model and Hamilton’s principle are employed to extract the governing equations of motion. Governing equations were analytically solved to obtain clear closed-form expression for complex natural frequencies and buckling loads using Navier’s approach. Numerical results are presented to reveal variations of natural frequency and buckling load ratio of MEE microplate against different amounts of the length scale parameter, initial external electric and magnetic potentials, aspect ratio, damping and transverse and shear stiffness parameters of the visco-Pasternak foundation, length to thickness ratio, microplate thickness and higher modes. Numerical results of this study illustrate that by increasing thickness-to-material length scale parameter ratio, both natural frequency and buckling load ratio predicted by MSGT and modified couple stress theory are reduced because the non-dimensional length scale parameter tends to decrease the stiffness of structures and make them more flexible. In addition, results show that initial external electric and initial external magnetic potentials have no considerable influence on the buckling load ratio and frequency of MEE microplate as the microplate thickness increases.

  15. Superbounce and loop quantum ekpyrotic cosmologies from modified gravity: F(R) , F(G) and F(T) theories

    NASA Astrophysics Data System (ADS)

    Odintsov, S. D.; Oikonomou, V. K.; Saridakis, Emmanuel N.

    2015-12-01

    We investigate the realization of two bouncing paradigms, namely of the superbounce and the loop quantum cosmological ekpyrosis, in the framework of various modified gravities. In particular, we focus on the F(R) , F(G) and F(T) gravities, and we reconstruct their specific subclasses which lead to such universe evolutions. These subclasses constitute from power laws, polynomials, or hypergeometric ansatzes, which can be approximated by power laws. The qualitative similarity of the different effective gravities which realize the above two bouncing cosmologies, indicates that a universality might be lying behind the bounce. Finally, performing a linear perturbation analysis, we show that the obtained solutions are conditionally or fully stable.

  16. Proposed experimental test of the theory of hole superconductivity

    NASA Astrophysics Data System (ADS)

    Hirsch, J. E.

    2016-06-01

    The theory of hole superconductivity predicts that in the reversible transition between normal and superconducting phases in the presence of a magnetic field there is charge flow in direction perpendicular to the normal-superconductor phase boundary. In contrast, the conventional BCS-London theory of superconductivity predicts no such charge flow. Here we discuss an experiment to test these predictions.

  17. A Density Functional Theory Examination of the Local Conformational Energetics of Normal and Epigenetically Modified Duplex DNA

    NASA Astrophysics Data System (ADS)

    Yusufaly, Tahir; Olson, Wilma

    2013-03-01

    We report density functional theory calculations of various local regions of duplex DNA, including hydrogen bonded base pairs, stacked nearest-neighbor bases, and sugar-phosphate backbones. Special attention is given to the methylation of 5-cytosine, an epigenetic modification believed to play a key role in eukaryotic gene regulation. Energetically stable molecular conformations are identified and their elastic properties analyzed. Our results are compared with previous ab initio studies and high-resolution crystalline structural data.

  18. Evolution of the Universe within the framework of the modified Jordan-Brans-Dicke theory: The role of the cosmological scalar

    NASA Astrophysics Data System (ADS)

    Chubaryan, Edvard; Avagyan, Roland; Harutunyan, Gohar; Kotanjyan, Anna

    2016-07-01

    Early and late stages of the cosmological expansion are considered on the base of the modified Jordan-Brans-Dicke (JBD) theory, under the assumption φ(y)=αH ^{n} (H is the Hubble constant, n is a parameter equal to four in the inflationary stage and one or two at late stages of the Universe evolution). At late stages, dynamical pattern is obtained with uniformly accelerated expansion for different values of σ (σ is the coupling constant between the gravitational and scalar fields). It is remarkable that for the limiting allowed value of α=9/(2σ) and for large σ, this variant of the theory is equivalent to the de Sitter model in the framework of the Einstein theory in the presence of a scalar field φ(y)=αH ^{2}. Therefore, the quasi exponential growth of the scale factor in the limiting case becomes purely exponential. Note that in the previously considered models the behavior of α was a power law. We also consider the inflationary regime with φ(y)=αH ^{4}. It is shown that in this case a model with slow rolling can be constructed.

  19. Theory of phonon-modified spontaneous emission and photoluminescence intensity from quantum dots coupled to structured photonic reservoirs

    NASA Astrophysics Data System (ADS)

    Roy Choudhury, Kaushik; Hughes, S.

    2015-08-01

    We present a general theory for calculating the spontaneous emission (SE) rate and the photoluminescence intensity of a quantum dot (QD) exciton coupled to an arbitrary structured photonic reservoir and a bath of acoustic phonons. We describe a polaron master equation (ME) approach which includes phonon interaction nonperturbatively and assume a weak coupling with the photon reservoir which is valid in the Purcell coupling regime. As examples of structured photonic reservoirs, we choose the cases of a Lorentzian cavity and a slow-light coupled-cavity waveguide. In analogy with a simple atom, the SE rate of a QD is expected to be proportional to the local density of photon states (LDOS) of the structured reservoir at the resonant frequency of a QD exciton. However, using a polaron ME theory, we show how the phonon-dressed SE rate of a QD is determined by a broad bandwidth of the photonic LDOS, in violation of the well known Fermi's golden rule. This broadband frequency dependence results in rich spontaneous emission enhancement and suppression, manifesting in significant changes in the Purcell factor and photoluminescence intensity as a function of frequency.

  20. Modified Iterated perturbation theory in the strong coupling regime and its application to the 3d FCC lattice

    NASA Astrophysics Data System (ADS)

    Arsenault, Louis-François; Sémon, Patrick; Shastry, B. Sriram; Tremblay, A.-M. S.

    2012-02-01

    The Dynamical Mean-Field theory(DMFT) approach to the Hubbard model requires a method to solve the problem of a quantum impurity in a bath of non-interacting electrons. Iterated Perturbation Theory(IPT)[1] has proven its effectiveness as a solver in many cases of interest. Based on general principles and on comparisons with an essentially exact Continuous-Time Quantum Monte Carlo (CTQMC)[2], here we show that the standard implementation of IPT fails when the interaction is much larger than the bandwidth. We propose a slight modification to the IPT algorithm by requiring that double occupancy calculated with IPT gives the correct value. We call this method IPT-D. We show how this approximate impurity solver compares with respect to CTQMC. We consider a face centered cubic lattice(FCC) in 3d for different physical properties. We also use IPT-D to study the thermopower using two recently proposed approximations[3]S^* and SKelvin that do not require analytical continuation and show how thermopower is essentially the entropy per particle in the incoherent regime but not in the coherent one.[1]H.Kajueter et al. Phys. Rev. Lett. 77, 131(1996)[2]P. Werner, et al. Phys. Rev. Lett. 97, 076405(2006)[3]B.S. Sriram Shastry Rep. Prog. Phys. 72 016501(2009)

  1. Vortex line of spin-orbit coupled Fermi superfluid through BCS to BEC Crossover

    NASA Astrophysics Data System (ADS)

    Yao, Juan; Zhang, Shizhong

    Superfluid Fermi gases with spin-orbit interaction provides a unique opportunity to investigate possible effects of strong interaction in a topological superfluid. It has been suggested that with addition of Rashba-type spin-orbit coupling, a two-component Fermi gas with strong s-wave interaction can become a topological superfluid with zero-energy bound state at the core of the vortex. In this talk, I discuss the evolution of vortex structure in a spin-orbit coupled Fermi gas through the BCS-BEC crossover within Bogoliubov-de Genne formalism. We find that the largest critical current occurs in the BEC side of the resonance, in contradiction to the usual crossover without spin-orbit coupling where it occurs at unitarity. Furthermore, we discuss the core structure of the vortex by calculating the spin and density distribution around the vortex. Department of Physics and Centre of Theoretical and Computational Physics, The University of Hong Kong, Hong Kong, China.

  2. BEC BCS crossover, phase transitions and phase separation in polarized resonantly-paired superfluids

    NASA Astrophysics Data System (ADS)

    Sheehy, Daniel E.; Radzihovsky, Leo

    2007-08-01

    We study resonantly-paired s-wave superfluidity in a degenerate gas of two species (hyperfine states labeled by ↑, ↓) of fermionic atoms when the numbers N↑ and N↓ of the two species are unequal, i.e., the system is "polarized." We find that the continuous crossover from the Bose-Einstein condensate (BEC) limit of tightly-bound diatomic molecules to the Bardeen-Cooper-Schrieffer (BCS) limit of weakly correlated Cooper pairs, studied extensively at equal populations, is interrupted by a variety of distinct phenomena under an imposed population difference Δ N ≡ N↑ - N↓. Our findings are summarized by a "polarization" (Δ N) versus Feshbach-resonance detuning ( δ) zero-temperature phase diagram, which exhibits regions of phase separation, a periodic FFLO superfluid, a polarized normal Fermi gas and a polarized molecular superfluid consisting of a molecular condensate and a fully polarized Fermi gas. We describe numerous experimental signatures of such phases and the transitions between them, in particular focusing on their spatial structure in the inhomogeneous environment of an atomic trap.

  3. Trends in Energy Management Technology: BCS Integration Technologies - Open Communications Networking

    SciTech Connect

    Webster, Tom

    2002-09-18

    Our overall purpose in writing this series of articles is to provide Federal energy managers some basic informational tools to assist their decision making process relative to energy management systems design, specification, procurement, and energy savings potential. Since Federal buildings rely on energy management systems more than their commercial counterparts, it is important for energy practitioners to have a high level of knowledge and understanding of these complex systems. This is the second article in a series and will focus on building control system (BCS) networking fundamentals and an assessment of current approaches to open communications protocols. This is important because networking is a complex subject and the networks form the basic infrastructure for energy management functions and for integrating a wide variety of OEM equipment into a complete EMCIS. The first article [1] covered enabling technologies for emerging energy management systems. Future topics will concentrate on more practical aspects including applications software, product offerings, networking strategies, and case studies of actual installations. Please refer to the first article for a more complete overview of the purpose and background for this series.

  4. Ion pairing with bile salts modulates intestinal permeability and contributes to food-drug interaction of BCS class III compound trospium chloride.

    PubMed

    Heinen, Christian A; Reuss, Stefan; Amidon, Gordon L; Langguth, Peter

    2013-11-01

    In the current study the involvement of ion pair formation between bile salts and trospium chloride (TC), a positively charged Biopharmaceutical Classification System (BCS) class III substance, showing a decrease in bioavailability upon coadministration with food (negative food effect) was investigated. Isothermal titration calorimetry provided evidence of a reaction between TC and bile acids. An effect of ion pair formation on the apparent partition coefficient (APC) was examined using (3)H-trospium. The addition of bovine bile and bile extract porcine led to a significant increase of the APC. In vitro permeability studies of trospium were performed across Caco-2-monolayers and excised segments of rat jejunum in a modified Ussing chamber. The addition of bile acids led to an increase of trospium permeation across Caco-2-monolayers and rat excised segments by approximately a factor of 1.5. The addition of glycochenodeoxycholate (GCDC) was less effective than taurodeoxycholate (TDOC). In the presence of an olive oil emulsion, a complete extinction of the permeation increasing effects of bile salts was observed. Thus, although there are more bile acids in the intestine in the fed state compared to the fasted state, these are not able to form ion pairs with trospium in fed state, because they are involved in the emulsification of dietary fats. In conclusion, the formation of ion pairs between trospium and bile acids can partially explain its negative food effect. Our results are presumably transferable to other organic cations showing a negative food effect.

  5. Frequency shift and mode coupling of the collective modes of superfluid Fermi gases in the BCS-BEC crossover

    SciTech Connect

    Zhou Yu; Wen Wen; Huang Guoxiang

    2008-03-01

    We investigate the dynamical behavior of large-amplitude collective modes in a superfluid Fermi gas in the crossover from Bardeen-Cooper-Schrieffer (BCS) superfluid to Bose-Einstein condensate (BEC) based on a hydrodynamic approach. We first solve the superfluid hydrodynamic equations that describe the time evolution of fermionic condensates in the BCS-BEC crossover and calculate explicitly the frequency shifts of the collective modes induced by nonlinear effects using the Lindstedt-Poincare method. The result shows that the frequency shifts display different features in different superfluid regimes. We then study the second-harmonic generation of the collective modes under a phase-matching condition, which can be fulfilled by choosing appropriate parameters of the system. The analytical results obtained are checked by numerical simulations and good agreement is found.

  6. Mechanistic investigation of food effect on disintegration and dissolution of BCS class III compound solid formulations: the importance of viscosity.

    PubMed

    Radwan, Asma; Amidon, Gordon L; Langguth, Peter

    2012-10-01

    A negative food effect, i.e. a decrease in bioavailability upon the co-administration of compounds together with food, has been attributed particularly with high solubility/low permeability compounds (BCS class III). Different mechanisms have been proposed including intestinal dilution leading to a lower concentration gradient across the intestinal wall as well as binding of the active pharmaceutical ingredient to food components in the intestine and thereby decreasing the fraction of the dose available for absorption. These mechanisms refer primarily to the compound and not to the dosage form. An increase in viscosity of the dissolution fluid will in particular affect the absorption of BCS type III compounds with preferential absorption in the upper small intestine if the API release is delayed from the dosage form. The present study demonstrated that the increase in viscosity of the dissolution medium, following ingestion of a solid meal, may drastically reduce disintegration and dissolution. For that purpose the viscosity of the standard FDA meal was determined and simulated by solutions of HPMC in buffer. As model formulations, three commercially available tablets containing trospium chloride, a BCS class III m-cholinoreceptor antagonist was used. Trospium chloride drug products have been described to undergo a negative food effect of more than 80% following ingestion with food. The tablets showed prolonged disintegration times and reduced dissolution rates in viscous media, which could be attributed to changes in the liquid penetration rates. The effect was particularly significant for film-coated tablets relative to uncoated dosage forms. The results show the necessity of considering media viscosity when designing in vitro models of drug release for BCS type III drug formulations.

  7. Control of expression by the cellulose synthase (bcsA) promoter region from Acetobacter xylinum BPR 2001.

    PubMed

    Nakai, T; Moriya, A; Tonouchi, N; Tsuchida, T; Yoshinaga, F; Horinouchi, S; Sone, Y; Mori, H; Sakai, F; Hayashi, T

    1998-06-15

    The 5' upstream region (about 3.1kb) of the cellulose synthase operon (bcs operon) has been isolated by cloning from Acetobacter xylinum strain BPR 2001. The expression level of the upstream region was determined using sucrose synthase cDNA as a reporter gene in the shuttle vector pSA19. The expression occurred with the 1.1-kb upstream sequence from the ATG start codon of the bcs operon but not with the 241-bp upstream sequence in A. xylinum, although neither the 1.1-kb nor the 241-bp upstream sequence caused any expression as a promoter in Escherichia coli. The level of expression with the 1. 1-kb upstream sequence in A. aceti was 75% of that in A. xylinum. These results suggest that the upstream region functions as a specific promoter for the Acetobacter genus. The expression was reduced by the introduction of the 241-bp upstream region between the lac promoter and the reporter gene in E. coli and was not detected in A. xylinum. This suggests that the short upstream region composed of 241bp contains the site(s) which causes a negative regulation on the transcription for bcs operon. The production of recombinant protein with the ribosome-binding site (RBS) of A. xylinum obtained from the bcs operon, was reduced to about half in E. coli, and that with the site of the lac promoter was also reduced to about half in A. xylinum. This shows that a species-specific predominance occurs during interaction between mRNA and 16S rRNA in the RBS between A. xylinum and E. coli. PMID:9630539

  8. Regional-dependent intestinal permeability and BCS classification: elucidation of pH-related complexity in rats using pseudoephedrine.

    PubMed

    Fairstein, Moran; Swissa, Rotem; Dahan, Arik

    2013-04-01

    Based on its lower Log P value relative to metoprolol, a marker for the low/high-permeability (P(eff)) class boundary, pseudoephedrine was provisionally classified as BCS low-permeability compound. On the other hand, following oral administration, pseudoephedrine fraction dose absorbed (F(abs)) and systemic bioavailability approaches 100%. This represents a challenge to the generally recognized P(eff)-F(abs) correlation. The purpose of this study was to elucidate the underlying mechanisms behind the confusion in pseudoephedrine's BCS classification. Pseudoephedrine's BCS solubility class was determined, and its physicochemical properties and intestinal permeability were thoroughly investigated, both in vitro and in vivo in rats, considering the complexity of the whole of the small intestine. Pseudoephedrine was found to be unequivocally a high-solubility compound. All of the permeability studies revealed similar phenomenon; at any given intestinal segment/pH, the permeability of metoprolol was higher than that of pseudoephedrine, however, as the intestinal region becomes progressively distal, and the pH gradually increases, pseudoephedrine's permeability rises above that of metoprolol in the former segment. This unique permeability pattern likely explains pseudoephedrine's complete absorption. In conclusion, pseudoephedrine is a BCS Class I compound; no discrepancy between P(eff) and F(abs) is involved in its absorption. Rather, it reflects the complexity behind P(eff) when considering the whole of the intestine. We propose to allow high-permeability classification to drugs with P(eff) that matches/exceeds the low/high class benchmark anywhere throughout the intestinal tract and not restricted necessarily to the jejunum.

  9. Cancellation of the N -composite-boson correlation energy under a BCS-like potential: A dimensionality-dependent effect

    NASA Astrophysics Data System (ADS)

    Shiau, Shiue-Yuan; Combescot, Monique; Chang, Yia-Chung

    2016-09-01

    We use Richardson-Gaudin exact equations to derive the ground-state energy of N composite bosons (cobosons) interacting via a potential which acts between fermion pairs having zero center-of-mass momentum, that is, a potential similar to the reduced BCS potential used in conventional superconductivity. Through a density expansion, we show that while for two-dimensional (2D) systems, the N -coboson correlation energy undergoes a surprising cancellation which leaves the interaction part with an N (N -1 ) dependence only, such a cancellation does not exist in 1D, 3D, or 4D systems (which correspond to 2D parabolic traps) nor when the cobosons interact via a similar short-range potential but between pairs having an arbitrary center-of-mass momentum. This shows that the previously found cancellation which exists for the Cooper-pair correlation energy results not only from the very peculiar form of the reduced BCS potential, but also from a quite mysterious dimensionality effect, the density of states for Cooper pairs feeling the BCS potential being essentially constant, as for 2D systems.

  10. Research in the theory of condensed matter and elementary particles. (Progress report)

    SciTech Connect

    Not Available

    1985-01-01

    The proposed research is concerned with problems occupying the common ground between quantum field theory and statistical mechanics. The topics under investigation include: superconformal field theory in two dimensions, its relationship to two dimensional critical phenomena and its applications in string theory; the covariant formulation of the superstring theory; formation of large-scale structures and spatial chaos in dynamical systems; fermion-boson mass relations in BCS type theories; and properties of quantum field theories defined over galois fields. 37 refs.

  11. pH-Dependent solubility and permeability criteria for provisional biopharmaceutics classification (BCS and BDDCS) in early drug discovery.

    PubMed

    Varma, Manthena V; Gardner, Iain; Steyn, Stefanus J; Nkansah, Paul; Rotter, Charles J; Whitney-Pickett, Carrie; Zhang, Hui; Di, Li; Cram, Michael; Fenner, Katherine S; El-Kattan, Ayman F

    2012-05-01

    The Biopharmaceutics Classification System (BCS) is a scientific framework that provides a basis for predicting the oral absorption of drugs. These concepts have been extended in the Biopharmaceutics Drug Disposition Classification System (BDDCS) to explain the potential mechanism of drug clearance and understand the effects of uptake and efflux transporters on absorption, distribution, metabolism, and elimination. The objective of present work is to establish criteria for provisional biopharmaceutics classification using pH-dependent passive permeability and aqueous solubility data generated from high throughput screening methodologies in drug discovery settings. The apparent permeability across monolayers of clonal cell line of Madin-Darby canine kidney cells, selected for low endogenous efflux transporter expression, was measured for a set of 105 drugs, with known BCS and BDDCS class. The permeability at apical pH 6.5 for acidic drugs and at pH 7.4 for nonacidic drugs showed a good correlation with the fraction absorbed in human (Fa). Receiver operating characteristic (ROC) curve analysis was utilized to define the permeability class boundary. At permeability ≥ 5 × 10(-6) cm/s, the accuracy of predicting Fa of ≥ 0.90 was 87%. Also, this cutoff showed more than 80% sensitivity and specificity in predicting the literature permeability classes (BCS), and the metabolism classes (BDDCS). The equilibrium solubility of a subset of 49 drugs was measured in pH 1.2 medium, pH 6.5 phosphate buffer, and in FaSSIF medium (pH 6.5). Although dose was not considered, good concordance of the measured solubility with BCS and BDDCS solubility class was achieved, when solubility at pH 1.2 was used for acidic compounds and FaSSIF solubility was used for basic, neutral, and zwitterionic compounds. Using a cutoff of 200 μg/mL, the data set suggested a 93% sensitivity and 86% specificity in predicting both the BCS and BDDCS solubility classes. In conclusion, this study identified

  12. Applying Biopharmaceutical Classification System (BCS) Criteria to Predict Oral Absorption of Drugs in Dogs: Challenges and Pitfalls.

    PubMed

    Papich, Mark G; Martinez, Marilyn N

    2015-07-01

    The Biopharmaceutical Classification System (BCS) has been a prognostic tool for assessing the potential effects of formulation on the human drug oral bioavailability. When used in conjunction with in vitro dissolution tests, the BCS can support the prediction of in vivo product performance and the development of mechanistic models that support formulation assessments through the generation of "what if" scenarios. To date, the applicability of existing human BCS criteria has not been evaluated in dogs, thereby limiting its use in canine drug development. Therefore, we examined 50 drugs for which absolute bioavailability (F) was available both in dogs and humans. The drugs were also evaluated for any potential association between solubility (calculated from the dose number, Do) or lipophilicity (LogP) and F in dogs. In humans, solubility is determined in 250 mL of fluid. However, the appropriate volume for classifying drug solubility in dogs has not been established. In this analysis, the estimated volume of a water flush administered to fasted dogs (6 mL) and a volume of 250 mL scaled to a Beagle dog (35 mL) were examined. In addition, in humans, a Do value greater than 1.0 is used to define a compound as highly soluble and a LogP value greater than 1.72 as high permeability. These same criteria were applied for defining highly soluble and highly permeable in dogs. Whether using 35 or 6 mL to determine Do, the canine solubility classification remained unchanged for all but seven compounds. There were no clear associations between a drug's F in dogs and humans or between the canine value of F and either its human BCS classification, its LogP value, or the canine Do estimate. There was a tendency for those drugs with canine values of F equal to or greater than 80% to have LogP values equal to or greater than 1.0. Exceptions to this observation tended to be those compounds known to be absorbed via mechanisms other than passive diffusion (e.g., via transporters or

  13. In silico prediction of drug dissolution and absorption with variation in intestinal pH for BCS class II weak acid drugs: ibuprofen and ketoprofen.

    PubMed

    Tsume, Yasuhiro; Langguth, Peter; Garcia-Arieta, Alfredo; Amidon, Gordon L

    2012-10-01

    The FDA Biopharmaceutical Classification System guidance allows waivers for in vivo bioavailability and bioequivalence studies for immediate-release solid oral dosage forms only for BCS class I. Extensions of the in vivo biowaiver for a number of drugs in BCS class III and BCS class II have been proposed, in particular, BCS class II weak acids. However, a discrepancy between the in vivo BE results and in vitro dissolution results for BCS class II acids was recently observed. The objectives of this study were to determine the oral absorption of BCS class II weak acids via simulation software and to determine if the in vitro dissolution test with various dissolution media could be sufficient for in vitro bioequivalence studies of ibuprofen and ketoprofen as models of carboxylic acid drugs. The oral absorption of these BCS class II acids from the gastrointestinal tract was predicted by GastroPlus™. Ibuprofen did not satisfy the bioequivalence criteria at lower settings of intestinal pH of 6.0. Further the experimental dissolution of ibuprofen tablets in a low concentration phosphate buffer at pH 6.0 (the average buffer capacity 2.2 mmol l (-1) /pH) was dramatically reduced compared with the dissolution in SIF (the average buffer capacity 12.6 mmol l (-1) /pH). Thus these predictions for the oral absorption of BCS class II acids indicate that the absorption patterns depend largely on the intestinal pH and buffer strength and must be considered carefully for a bioequivalence test. Simulation software may be a very useful tool to aid the selection of dissolution media that may be useful in setting an in vitro bioequivalence dissolution standard.

  14. Optimizing solubility and permeability of a biopharmaceutics classification system (BCS) class 4 antibiotic drug using lipophilic fragments disturbing the crystal lattice.

    PubMed

    Tehler, Ulrika; Fagerberg, Jonas H; Svensson, Richard; Larhed, Mats; Artursson, Per; Bergström, Christel A S

    2013-03-28

    Esterification was used to simultaneously increase solubility and permeability of ciprofloxacin, a biopharmaceutics classification system (BCS) class 4 drug (low solubility/low permeability) with solid-state limited solubility. Molecular flexibility was increased to disturb the crystal lattice, lower the melting point, and thereby improve the solubility, whereas lipophilicity was increased to enhance the intestinal permeability. These structural changes resulted in BCS class 1 analogues (high solubility/high permeability) emphasizing that simple medicinal chemistry may improve both these properties.

  15. Solution-state polymer assemblies influence BCS class II drug dissolution and supersaturation maintenance.

    PubMed

    Dalsin, Molly C; Tale, Swapnil; Reineke, Theresa M

    2014-02-10

    Spray dried dispersions (SDDs), solid dispersions of polymer excipients and active pharmaceuticals, are important to the field of oral drug delivery for improving active stability, bioavailability, and efficacy. Herein, we examine the influence of solution-state polymer assemblies on amorphous spray-dried dispersion (SDD) performance with two BCS II model drugs, phenytoin and probucol. These drugs were spray dried with 4 model polymer excipients consisting of poly(ethylene-alt-propylene) (PEP), N,N,-dimethylacrylamide (DMA), or 2-methacrylamido glucopyranose (MAG): amphiphilic diblock ter- and copolymers, PEP-P(DMA-grad-MAG) and PEP-PDMA, and their respective hydrophilic analogues, P(DMA-grad-MAG) and PDMA. Selective and nonselective solvents for the hydrophilic block of the diblock ter- and copolymers were used to induce or repress solution-state assemblies prior to spray drying. Prespray dried solution-state assemblies of these four polymers were probed with dynamic light scattering (DLS) and showed differences in solution assembly size and structure (free polymer versus aggregates versus micelles). Solid-state structures of spray dried dispersions (SDDs) showed a single glass transition event implying a homogeneous mixture of drug/polymer. Crystallization temperatures and enthalpies indicated that the drugs interact mostly with the DMA-containing portions of the polymers. Scanning electron microscopy was used to determine SDD particle size and morphology for the various polymer-drug pairings. In vitro dissolution tests showed excellent performance for one system, spray-dried PEP-PDMA micelles with probucol. Dissolution structures were investigated through DLS to determine drug-polymer aggregates that lead to enhanced SDD performance. Forced aggregation of the polymer into regular micelle structures was found to be a critical factor to increase the dissolution rate and supersaturation maintenance of SDDs, and may be an attractive platform to exploit in excipient

  16. Effect of BCS pairing on entrainment in neutron superfluid current in neutron star crust

    NASA Astrophysics Data System (ADS)

    Carter, Brandon; Chamel, Nicolas; Haensel, Pawel

    2005-09-01

    The relative current density n of “conduction” neutrons in a neutron star crust beyond the neutron drip threshold can be expected to be related to the corresponding particle momentum covector p by a linear relation of the form n=Kp in terms of a physically well-defined mobility tensor K. This result is describable as an “entrainment” whose effect—wherever the crust lattice is isotropic—will simply be to change the ordinary neutron mass m to a “macroscopic” effective mass m such that in terms of the relevant number density n of unconfined neutrons we shall have K=(n/m)γ. In a preceding work based on a independent particle treatment beyond the Wigner Seitz approximation, using Bloch type boundary conditions to obtain the distribution of energy E and associated group velocity vki=∂E/∂ℏk as a function of wave vector k, it was shown that the mobility tensor would be proportional to a phase space volume integral K∝∫dkvkivkjδ{E-μ}, where μ is the Fermi energy. Using the approach due to Bogoliubov, it is shown here that the effect of BCS pairing with a superfluid energy gap Δ and corresponding quasiparticle energy function €=E+ΔF2 will just be to replace the Dirac distributional integrand by the smoother distribution in the formula K∝∫dkvkivkjΔF2/€k3. It is also shown how the pairing condensation gives rise to superfluidity in the technical sense of providing (meta) stability against resistive perturbations for a current that is not too strong (its momentum p must be small enough to give 2|pvki|<€k2/|E-μ| for all modes). It is concluded that the prediction of a very large effective mass enhancement in the middle layers of the star crust will not be significantly effected by the pairing mechanism.

  17. Modified Linear Theory Aircraft Design Tools and Sonic Boom Minimization Strategy Applied to Signature Freezing via F-function Lobe Balancing

    NASA Astrophysics Data System (ADS)

    Jung, Timothy Paul

    Commercial supersonic travel has strong business potential; however, in order for the Federal Aviation Administration to lift its ban on supersonic flight overland, designers must reduce aircraft sonic boom strength to an acceptable level. An efficient methodology and associated tools for designing aircraft for minimized sonic booms are presented. The computer-based preliminary design tool, RapidF, based on modified linear theory, enables quick assessment of an aircraft's sonic boom with run times less than 30 seconds on a desktop computer. A unique feature of RapidF is that it tracks where on the aircraft each segment of the of the sonic boom came from, enabling precise modifications, speeding the design process. Sonic booms from RapidF are compared to flight test data, showing that it is capability of predicting a sonic boom duration, overpressure, and interior shock locations. After the preliminary design is complete, scaled flight tests should be conducted to validate the low boom design. When conducting such tests, it is insufficient to just scale the length; thus, equations to scale the weight and propagation distance are derived. Using RapidF, a conceptual supersonic business jet design is presented that uses F-function lobe balancing to create a frozen sonic boom using lifting surfaces. The leading shock is reduced from 1.4 to 0.83 psf, and the trailing shock from 1.2 to 0.87 psf, 41% and 28% reductions respectfully. By changing the incidence angle of the surfaces, different sonic boom shapes can be created, and allowing the lobes to be re-balanced for new flight conditions. Computational fluid dynamics is conducted to validate the sonic boom predictions. Off-design analysis is presented that varies weight, altitude, Mach number, and propagation angle, demonstrating that lobe-balance is robust. Finally, the Perceived Level of Loudness metric is analyzed, resulting in a modified design that incorporates other boom minimization techniques to further reduce

  18. A reference-modified density functional theory: An application to solvation free-energy calculations for a Lennard-Jones solution.

    PubMed

    Sumi, Tomonari; Maruyama, Yutaka; Mitsutake, Ayori; Koga, Kenichiro

    2016-06-14

    In the conventional classical density functional theory (DFT) for simple fluids, an ideal gas is usually chosen as the reference system because there is a one-to-one correspondence between the external field and the density distribution function, and the exact intrinsic free-energy functional is available for the ideal gas. In this case, the second-order density functional Taylor series expansion of the excess intrinsic free-energy functional provides the hypernetted-chain (HNC) approximation. Recently, it has been shown that the HNC approximation significantly overestimates the solvation free energy (SFE) for an infinitely dilute Lennard-Jones (LJ) solution, especially when the solute particles are several times larger than the solvent particles [T. Miyata and J. Thapa, Chem. Phys. Lett. 604, 122 (2014)]. In the present study, we propose a reference-modified density functional theory as a systematic approach to improve the SFE functional as well as the pair distribution functions. The second-order density functional Taylor series expansion for the excess part of the intrinsic free-energy functional in which a hard-sphere fluid is introduced as the reference system instead of an ideal gas is applied to the LJ pure and infinitely dilute solution systems and is proved to remarkably improve the drawbacks of the HNC approximation. Furthermore, the third-order density functional expansion approximation in which a factorization approximation is applied to the triplet direct correlation function is examined for the LJ systems. We also show that the third-order contribution can yield further refinements for both the pair distribution function and the excess chemical potential for the pure LJ liquids.

  19. A reference-modified density functional theory: An application to solvation free-energy calculations for a Lennard-Jones solution

    NASA Astrophysics Data System (ADS)

    Sumi, Tomonari; Maruyama, Yutaka; Mitsutake, Ayori; Koga, Kenichiro

    2016-06-01

    In the conventional classical density functional theory (DFT) for simple fluids, an ideal gas is usually chosen as the reference system because there is a one-to-one correspondence between the external field and the density distribution function, and the exact intrinsic free-energy functional is available for the ideal gas. In this case, the second-order density functional Taylor series expansion of the excess intrinsic free-energy functional provides the hypernetted-chain (HNC) approximation. Recently, it has been shown that the HNC approximation significantly overestimates the solvation free energy (SFE) for an infinitely dilute Lennard-Jones (LJ) solution, especially when the solute particles are several times larger than the solvent particles [T. Miyata and J. Thapa, Chem. Phys. Lett. 604, 122 (2014)]. In the present study, we propose a reference-modified density functional theory as a systematic approach to improve the SFE functional as well as the pair distribution functions. The second-order density functional Taylor series expansion for the excess part of the intrinsic free-energy functional in which a hard-sphere fluid is introduced as the reference system instead of an ideal gas is applied to the LJ pure and infinitely dilute solution systems and is proved to remarkably improve the drawbacks of the HNC approximation. Furthermore, the third-order density functional expansion approximation in which a factorization approximation is applied to the triplet direct correlation function is examined for the LJ systems. We also show that the third-order contribution can yield further refinements for both the pair distribution function and the excess chemical potential for the pure LJ liquids.

  20. A reference-modified density functional theory: An application to solvation free-energy calculations for a Lennard-Jones solution.

    PubMed

    Sumi, Tomonari; Maruyama, Yutaka; Mitsutake, Ayori; Koga, Kenichiro

    2016-06-14

    In the conventional classical density functional theory (DFT) for simple fluids, an ideal gas is usually chosen as the reference system because there is a one-to-one correspondence between the external field and the density distribution function, and the exact intrinsic free-energy functional is available for the ideal gas. In this case, the second-order density functional Taylor series expansion of the excess intrinsic free-energy functional provides the hypernetted-chain (HNC) approximation. Recently, it has been shown that the HNC approximation significantly overestimates the solvation free energy (SFE) for an infinitely dilute Lennard-Jones (LJ) solution, especially when the solute particles are several times larger than the solvent particles [T. Miyata and J. Thapa, Chem. Phys. Lett. 604, 122 (2014)]. In the present study, we propose a reference-modified density functional theory as a systematic approach to improve the SFE functional as well as the pair distribution functions. The second-order density functional Taylor series expansion for the excess part of the intrinsic free-energy functional in which a hard-sphere fluid is introduced as the reference system instead of an ideal gas is applied to the LJ pure and infinitely dilute solution systems and is proved to remarkably improve the drawbacks of the HNC approximation. Furthermore, the third-order density functional expansion approximation in which a factorization approximation is applied to the triplet direct correlation function is examined for the LJ systems. We also show that the third-order contribution can yield further refinements for both the pair distribution function and the excess chemical potential for the pure LJ liquids. PMID:27305993

  1. Two-dimensional attractive Fermi gases' excitations and radio-frequency spectra across the BEC/BCS crossover

    NASA Astrophysics Data System (ADS)

    Hazzard, Kaden

    2012-06-01

    We calculate the radio-frequency spectra of two-dimensional attractive Fermi gases, including final state interactions, motivated by recent measurements by the groups of Koehl, Thomas, and Zwierlein. The calculation includes coherent excitations generated by the radio-frequency probe on top of the mean field solution. We find that although the gap is identical to the two particle theory, spectral shapes are modified both by many-body effects and by final state interactions. We compare these shapes to experimental measurements.

  2. Investigating the dimension of time: findings from a modified grounded theory study about clients' experiences and descriptions of temporality or time within music therapy.

    PubMed

    Daveson, Barbara; O'Callaghan, Clare

    2011-01-01

    Many references to time or temporality are located within music therapy literature, however little research has been completed regarding this phenomenon. Findings from a modified grounded theory study about clients' experiences and descriptions of time within the context of music therapy are presented here. The study was informed by the constructivist-interpretive paradigm and a grounded-descriptive statement finding resulted. A 2-staged research methodology was used, comprising a deductive-inductive content analysis of information from the public domain, followed by data-mining of information from a minimum of 160 clients and analysis of data from at least 43 of these 160 clients. Information regarding memory experiences, the duration of music therapy effects, recall and retrieval, and experiences of time are identified. Implications for practice are emphasized, in particular the following is stressed (a) the importance of time orientation and temporal connectedness in relation to identity development, (b) temporal strategies within music experience to assist integration, recall, and retrieval of information, and (c) the importance of and the elements involved in time modification. New explanations for music therapy phenomena are shared, and areas for research highlighted. Benefits of using time dynamically to aid therapeutic process are proposed, and it is concluded that temporal experience within the context of music therapy is important in relation to both practice and research.

  3. First principles phase transition, elastic properties and electronic structure calculations for cadmium telluride under induced pressure: density functional theory, LDA, GGA and modified Becke-Johnson potential

    NASA Astrophysics Data System (ADS)

    Kabita, Kh; Maibam, Jameson; Indrajit Sharma, B.; Brojen Singh, R. K.; Thapa, R. K.

    2016-01-01

    We report first principles phase transition, elastic properties and electronic structure for cadmium telluride (CdTe) under induced pressure in the light of density functional theory using the local density approximation (LDA), generalised gradient approximation (GGA) and modified Becke-Johnson (mBJ) potential. The structural phase transition of CdTe from a zinc blende (ZB) to a rock salt (RS) structure within the LDA calculation is 2.2 GPa while that within GGA is found to be at 4 GPa pressure with a volume collapse of 20.9%. The elastic constants and parameters (Zener anisotropy factor, Shear modulus, Poisson’s ratio, Young’s modulus, Kleinmann parameter and Debye’s temperature) of CdTe at different pressures of both the phases have been calculated. The band diagram of the CdTe ZB structure shows a direct band gap of 1.46 eV as predicted by mBJ calculation which gives better results in close agreement with experimental results as compared to LDA and GGA. An increase in the band gap of the CdTe ZB phase is predicted under induced pressure while the metallic nature is retained in the CdTe RS phase.

  4. Present status of the theory of the high-Tc cuprates

    NASA Astrophysics Data System (ADS)

    Anderson, P. W.

    2006-04-01

    The Gutzwiller-projected mean-field theory, also called plain vanilla or renormalized mean-field theory, is explained, and its successes and possible extensions in describing the phenomenology of the cuprate superconductors are discussed. Throughout, we emphasize that while this is a Hartree-Fock-based BCS theory, it embodies fundamental differences from conventional perturbative many-body theory which may be characterized by calling it a theory of the doped Mott insulator.

  5. Comparative Study on the Immobilization of Lipase on Chitosan Gels Modified by Different Hydrophobic Groups

    NASA Astrophysics Data System (ADS)

    Deng, Hong-Tao; Lin, Yan; Wang, Juan-Juan; Liu, Zhong-Yang; Ma, Miao; Zheng, Fei

    The hydrophobic surface modification of chitosan gels (CS) was carried out using the amidating reaction of amido groups on a gel surface with propionic acid, stearic acid, and benzoic acid, respectively, activated by 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide hydrochloride (EDC) and N-hydroxysuccinimide (NHS). Lipase from Candida rugosa was immobilized by adsorption on the nascent CS, propionyl-modified gels (PCS), stearyl-modified gels (SCS), and benzoyl-modified gels (BCS), respectively. The adsorption capacity and activity of immobilized lipase were investigated. It was found that the surface modification improved the adsorption capacity of lipase, and the activity retention of immobilized lipase increased from 52.34% for CS to 57.17%, 78.26% and 69.22%, respectively, for PCS, SCS, and BCS.

  6. Increasing chlamydia screening tests in general practice: a modified Zelen prospective Cluster Randomised Controlled Trial evaluating a complex intervention based on the Theory of Planned Behaviour

    PubMed Central

    McNulty, Cliodna A M; Hogan, Angela H; Ricketts, Ellie J; Wallace, Louise; Oliver, Isabel; Campbell, Rona; Kalwij, Sebastian; O'Connell, Elaine; Charlett, Andre

    2014-01-01

    Objective To determine if a structured complex intervention increases opportunistic chlamydia screening testing of patients aged 15–24 years attending English general practitioner (GP) practices. Methods A prospective, Cluster Randomised Controlled Trial with a modified Zelen design involving 160 practices in South West England in 2010. The intervention was based on the Theory of Planned Behaviour (TPB). It comprised of practice-based education with up to two additional contacts to increase the importance of screening to GP staff and their confidence to offer tests through skill development (including videos). Practical resources (targets, posters, invitation cards, computer reminders, newsletters including feedback) aimed to actively influence social cognitions of staff, increasing their testing intention. Results Data from 76 intervention and 81 control practices were analysed. In intervention practices, chlamydia screening test rates were 2.43/100 15–24-year-olds registered preintervention, 4.34 during intervention and 3.46 postintervention; controls testing rates were 2.61/100 registered patients prior intervention, 3.0 during intervention and 2.82 postintervention. During the intervention period, testing in intervention practices was 1.76 times as great (CI 1.24 to 2.48) as controls; this persisted for 9 months postintervention (1.57 times as great, CI 1.27 to 2.30). Chlamydia infections detected increased in intervention practices from 2.1/1000 registered 15–24-year-olds prior intervention to 2.5 during the intervention compared with 2.0 and 2.3/1000 in controls (Estimated Rate Ratio intervention versus controls 1.4 (CI 1.01 to 1.93). Conclusions This complex intervention doubled chlamydia screening tests in fully engaged practices. The modified Zelen design gave realistic measures of practice full engagement (63%) and efficacy of this educational intervention in general practice; it should be used more often. Trial registration The trial was

  7. Field-induced superconducting phase of FeSe in the BCS-BEC cross-over.

    PubMed

    Kasahara, Shigeru; Watashige, Tatsuya; Hanaguri, Tetsuo; Kohsaka, Yuhki; Yamashita, Takuya; Shimoyama, Yusuke; Mizukami, Yuta; Endo, Ryota; Ikeda, Hiroaki; Aoyama, Kazushi; Terashima, Taichi; Uji, Shinya; Wolf, Thomas; von Löhneysen, Hilbert; Shibauchi, Takasada; Matsuda, Yuji

    2014-11-18

    Fermi systems in the cross-over regime between weakly coupled Bardeen-Cooper-Schrieffer (BCS) and strongly coupled Bose-Einstein-condensate (BEC) limits are among the most fascinating objects to study the behavior of an assembly of strongly interacting particles. The physics of this cross-over has been of considerable interest both in the fields of condensed matter and ultracold atoms. One of the most challenging issues in this regime is the effect of large spin imbalance on a Fermi system under magnetic fields. Although several exotic physical properties have been predicted theoretically, the experimental realization of such an unusual superconducting state has not been achieved so far. Here we show that pure single crystals of superconducting FeSe offer the possibility to enter the previously unexplored realm where the three energies, Fermi energy εF, superconducting gap Δ, and Zeeman energy, become comparable. Through the superfluid response, transport, thermoelectric response, and spectroscopic-imaging scanning tunneling microscopy, we demonstrate that εF of FeSe is extremely small, with the ratio Δ/εF ~ 1(~0.3) in the electron (hole) band. Moreover, thermal-conductivity measurements give evidence of a distinct phase line below the upper critical field, where the Zeeman energy becomes comparable to εF and Δ. The observation of this field-induced phase provides insights into previously poorly understood aspects of the highly spin-polarized Fermi liquid in the BCS-BEC cross-over regime. PMID:25378706

  8. Field-induced superconducting phase of FeSe in the BCS-BEC cross-over

    PubMed Central

    Kasahara, Shigeru; Watashige, Tatsuya; Hanaguri, Tetsuo; Kohsaka, Yuhki; Yamashita, Takuya; Shimoyama, Yusuke; Mizukami, Yuta; Endo, Ryota; Ikeda, Hiroaki; Aoyama, Kazushi; Terashima, Taichi; Uji, Shinya; Wolf, Thomas; von Löhneysen, Hilbert; Shibauchi, Takasada; Matsuda, Yuji

    2014-01-01

    Fermi systems in the cross-over regime between weakly coupled Bardeen–Cooper–Schrieffer (BCS) and strongly coupled Bose–Einstein-condensate (BEC) limits are among the most fascinating objects to study the behavior of an assembly of strongly interacting particles. The physics of this cross-over has been of considerable interest both in the fields of condensed matter and ultracold atoms. One of the most challenging issues in this regime is the effect of large spin imbalance on a Fermi system under magnetic fields. Although several exotic physical properties have been predicted theoretically, the experimental realization of such an unusual superconducting state has not been achieved so far. Here we show that pure single crystals of superconducting FeSe offer the possibility to enter the previously unexplored realm where the three energies, Fermi energy εF, superconducting gap Δ, and Zeeman energy, become comparable. Through the superfluid response, transport, thermoelectric response, and spectroscopic-imaging scanning tunneling microscopy, we demonstrate that εF of FeSe is extremely small, with the ratio Δ/εF∼1(∼0.3) in the electron (hole) band. Moreover, thermal-conductivity measurements give evidence of a distinct phase line below the upper critical field, where the Zeeman energy becomes comparable to εF and Δ. The observation of this field-induced phase provides insights into previously poorly understood aspects of the highly spin-polarized Fermi liquid in the BCS-BEC cross-over regime. PMID:25378706

  9. Strong-coupling corrections to spin susceptibility in the BCS-BEC-crossover regime of a superfluid Fermi gas

    NASA Astrophysics Data System (ADS)

    Tajima, Hiroyuki; Hanai, Ryo; Ohashi, Yoji

    2016-01-01

    We theoretically investigate the uniform spin susceptibility χ in the superfluid phase of an ultracold Fermi gas in the region of the Bardeen-Cooper-Schrieffer-Bose-Einstein-condensate (BCS-BEC) crossover. In our previous paper [H. Tajima et al., Phys. Rev. A 89, 033617 (2014), 10.1103/PhysRevA.89.033617], including pairing fluctuations within an extended T -matrix approximation (ETMA), we showed that strong pairing fluctuations cause the so-called spin-gap phenomenon, where χ is anomalously suppressed even in the normal state near the superfluid phase transition temperature Tc. In this paper, we extend this work to the superfluid phase below Tc, to clarify how this many-body phenomenon is affected by the superfluid order. From the comparison of the ETMA χ with the Yosida function describing the spin susceptibility in a weak-coupling BCS superfluid, we identify the region where pairing fluctuations crucially affect this magnetic quantity below Tc in the phase diagram with respect to the strength of a pairing interaction and the temperature. This spin-gap regime is found to be consistent with the previous pseudogap regime determined from the pseudogapped density of states. We also compare our results with a recent experiment on a 6Li Fermi gas. Since the spin susceptibility is sensitive to the formation of spin-singlet preformed pairs, our results would be useful for the study of pseudogap physics in an ultracold Fermi gas on the viewpoint of the spin degrees of freedom.

  10. Quantitative prediction of formulation-specific food effects and their population variability from in vitro data with the physiologically-based ADAM model: a case study using the BCS/BDDCS Class II drug nifedipine.

    PubMed

    Patel, Nikunjkumar; Polak, Sebastian; Jamei, Masoud; Rostami-Hodjegan, Amin; Turner, David B

    2014-06-16

    Quantitative prediction of food effects (FE) upon drug pharmacokinetics, including population variability, in advance of human trials may help with trial design by optimising the number of subjects and sampling times when a clinical study is warranted or by negating the need for conduct of clinical studies. Classification and rule-based systems such as the BCS and BDDCS and statistical QSARs are widely used to anticipate the nature of FE in early drug development. However, their qualitative rather than quantitative nature makes them less appropriate for assessing the magnitude of FE. Moreover, these approaches are based upon drug properties alone and are not appropriate for estimating potential formulation-specific FE on modified or controlled release products. In contrast, physiologically-based mechanistic models can consider the scope and interplay of a range of physiological changes after food intake and, in combination with appropriate in vitro drug- and formulation-specific data, can make quantitative predictions of formulation-specific FE including the inter-individual variability of such effects. Herein the Advanced Dissolution, Absorption and Metabolism (ADAM) model is applied to the prediction of formulation-specific FE for BCS/BDDCS Class II drug and CYP3A4 substrate nifedipine using as far as possible only in vitro data. Predicted plasma concentration profiles of all three studied formulations under fasted and fed states are within 2-fold of clinically observed profiles. The % prediction error (%PE) in fed-to-fasted ratio of Cmax and AUC were less than 5% for all formulations except for the Cmax of Nifedicron (%PE=-29.6%). This successful case study should help to improve confidence in the use of mechanistic physiologically-based models coupled with in vitro data for the anticipation of FE in advance of in vivo studies. However, it is acknowledged that further studies with drugs/formulations exhibiting a wide range of properties are required to further

  11. The BCS-Bogoliubov and the su(2)-Algebraic Approach to the Pairing Model in Many-Fermion System --- The Quasiparticle in the Conservation of the Fermion Number ---

    NASA Astrophysics Data System (ADS)

    Tsue, Y.; Providência, C.; Providência, J. d.; Yamamura, M.

    2012-10-01

    The relation between two approaches to the su(2)-algebraic many-fermion model is discussed: (1) the BCS-Bogoliubov approach in terms of the use of the quasiparticles representing all the degrees of freedom except those related to the Cooper-pairs and (2) the conventional algebraic approach in terms of the use of the minimum weight states, from which the Cooper-pairs are excluded. In order to arrive at the goal, the idea of the quasiparticles is brought up in the conservation of the fermion number. Under the c-number replacement for the three su(2)-generators, the quasiparticles suggested in this paper are reduced to those in the BCS-Bogoliubov approach. It is also shown that the two approaches are equivalent through the c-number replacement. Further, a certain modification of the BCS-Bogoliubov approach is discussed.

  12. Power-law-like correlation between condensation energy and superconducting transition temperatures in iron pnictide/chalcogenide superconductors: Beyond the BCS understanding

    NASA Astrophysics Data System (ADS)

    Xing, Jie; Li, Sheng; Zeng, Bin; Mu, Gang; Shen, Bing; Schneeloch, J.; Zhong, R. D.; Liu, T. S.; Gu, G. D.; Wen, Hai-Hu

    2014-04-01

    Superconducting condensation energy U0int has been determined by integrating the electronic entropy in various iron pnictide/chalcogenide superconducting systems. It is found that U0int∝Tcn with n =3-4, which is in sharp contrast to the simple BCS prediction U0BCS=1/2NFΔs2, with NF the quasiparticle density of states at the Fermi energy and Δs the superconducting gap. A similar correlation holds if we compute the condensation energy through U0cal=3γneffΔs2/4π2kB2, with γneff the effective normal state electronic specific heat coefficient. This indicates a general relationship γneff∝Tcm with m =1-2, which is not predicted by the BCS scheme. A picture based on quantum criticality is proposed to explain this phenomenon.

  13. Power-law-like correlation between condensation energy and superconducting transition temperatures in iron pnictide/chalcogenide superconductors: Beyond the BCS understanding

    NASA Astrophysics Data System (ADS)

    Xing, Jie; Li, Sheng; Zeng, Bin; Mu, Gang; Shen, Bing; Schneeloch, J.; Zhong, R. D.; Liu, T. S.; Gu, G. D.; Wen, Hai-Hu

    2015-03-01

    Superconducting condensation energy U0int has been determined by integrating the electronic entropy in various iron pnictide/chalcogenide superconducting systems. It is found that U0int ~Tcn with n = 3 to 4, which is in sharp contrast to the simple BCS prediction U0BCS = 1 / 2NFΔs2 , with NF the quasiparticle density of states at the Fermi energy and Δs the superconducting gap. A similar correlation holds if we compute the condensation energy through U0cal = 3γneff Δs2 / 4π2kB2 , with γneff the effective normal state electronic specific heat coefficient. This indicates a general relationship γneff ~Tcm with m = 1 to 2, which is not predicted by the BCS scheme. A picture based on quantum criticality is proposed to explain this phenomenon.

  14. Auger electron spectroscopy and x-ray photoelectron spectroscopy of the biocorrosion of copper by Gum Arabic, BCS and Pseudomonas atlantica exopolymer

    SciTech Connect

    Jolley, J.G.; Geesey, G.G.; Hankins, M.R.; Wright, R.B.; Wichlacz, P.L.

    1987-01-01

    Thin films (3.4 nm) of copper on germanium substrates were exposed to 10% Gum Arabic aqueous solution, 1% BCS (aqueous and simulated sea water solutions) and 0.5% Pseudomonas atlantica exopolymer (aqueous and simulated sea water solutions). Pre- and post-exposure characterization were done by Auger electron spectroscopy and x-ray photoelectron spectroscopy. Ancillary graphite furnace atomic absorption spectroscopy was used to monitor the removal process of the copper thin film from the germanium substrate. Results indicate that the copper was oxidized by the Gum Arabic and BCS, and some was removed from the Cu/Ge interface by all three polymers and incorporated into the polymer matrix. Thus biocorrosion of copper was exhibited by the Gum Arabic, BCS and Pseudomonas atlantica exopolymer. 14 refs., 4 figs., 3 tabs.

  15. Speed of Sound of a Spin-Balanced Fermi Gas with s- and d-Wave Pairings Across the BCS-BEC Evolution

    NASA Astrophysics Data System (ADS)

    Koinov, Zlatko; Mendoza, Rafael

    2016-09-01

    The authors of a recent paper (Phys Rev A 87:013613, 2013) argued that in fermionic systems with d-wave pairing the speed of sound is nonanalytic across the BCS-BEC crossover at the point where the chemical potential vanishes, regardless of the specific details of the interaction potential. On the contrary, the numerical results reported here suggest that the speed of sound across the BCS-BEC evolution of atomic Fermi gases with s- and d-wave pairings in two-dimensional square lattices is a smooth analytic function at the vanishing chemical potential.

  16. Quantum Monte Carlo Study of the Ground-State Properties of a Fermi Gas in the BCS-BEC Crossover

    SciTech Connect

    Giorgini, S.; Astrakharchik, G. E.; Boronat, J.; Casulleras, J.

    2006-11-07

    The ground-state properties of a two-component Fermi gas with attractive short-range interactions are calculated using the fixed-node diffusion Monte Carlo method. The interaction strength is varied over a wide range by tuning the value of the s-wave scattering length of the two-body potential. We calculate the ground-state energy per particle and we characterize the equation of state of the system. Off-diagonal long-range order is investigated through the asymptotic behavior of the two-body density matrix. The condensate fraction of pairs is calculated in the unitary limit and on both sides of the BCS-BEC crossover.

  17. The suitability of an in situ perfusion model for permeability determinations: utility for BCS class I biowaiver requests.

    PubMed

    Kim, Jae-Seung; Mitchell, Stefanie; Kijek, Paul; Tsume, Yasuhiro; Hilfinger, John; Amidon, Gordon L

    2006-01-01

    The FDA has published recommendations for sponsors who wish to request a waiver of in vivo bioavailability (BA) or bioequivalence (BE) studies for immediate release (IR) solid oral dosage forms based on the Biopharmaceutics Classification System (BCS). Biowaivers can be requested for IR formulations in which the active ingredient is shown to be a BCS class I drug: that is, a drug showing high permeability and high solubility over a pH range of 1-7.5. For permeability determinations, a variety of experimental methods can be used, such as the rat in situ single pass perfusion or Caco-2 cell culture models, once the suitability of the particular method is established. Following the recommended procedure for assessing the suitability of permeability determinations, we determined the permeability of 20 test drugs using the in situ single pass perfusion model in rats. The test compounds were coperfused through jejunal intestinal segments with an internal permeability reference standard (metoprolol) over a 90 min time period. Sample analysis was performed by HPLC, and the ratio of the effective permeability, Peff (cm/s), of test compound to that of metoprolol was determined. To address the question of test drug permeabilities that approach that of the internal standard, we propose that a statistical analysis such as the "0.8-1.25 rule" used for in vivo or in vitro bioequivalence studies provide guidance for permeability classification using the in situ single pass perfusion model. We developed a method using the 90% confidence interval of the permeability ratio of the test to internal reference standard in order to differentiate between high and low permeability compounds. This analysis allowed for the proper permeability classification of all of the test compounds and suggests a robust means for assessing drug permeability classification.

  18. Biowaiver extension potential and IVIVC for BCS Class II drugs by formulation design: Case study for cyclosporine self-microemulsifying formulation.

    PubMed

    Yang, Su-Geun

    2010-11-01

    The objective of this work was to suggest the biowaiver potential of biopharmaceutical classification system (BCS) Class II drugs in self-microemulsifying drug delivery systems (SMEDDS) which are known to increase the solubility, dissolution and oral absorption of water-insoluble drugs. Cyclosporine was selected as a representative BCS Class II drug. New generic candidate of cyclosporine SMEDDS (test) was applied for the study with brand SMEDDS (reference I) and cyclosporine self-emulsifying drug delivery systems (SEDDS, reference II). Solubility and dissolution of cyclosporine from SMEDDS were critically enhanced, which were the similar behaviors with BCS class I drug. The test showed the identical dissolution rate and the equivalent bioavailability (0.34, 0.42 and 0.68 of p values for AUC₀(→)₂₄(h), C(max) and T(max), respectively) with the reference I. Based on the results, level A in vitro-in vivo correlation (IVIVC) was established from these two SMEDDS formulations. This study serves as a good example for speculating the biowaiver extension potential of BCS Class II drugs specifically in solubilizing formulation such as SMEDDS.

  19. Exact treatment of pairing correlations in Yb isotopes with covariant density functional theory

    NASA Astrophysics Data System (ADS)

    Liu, Lang; Zhao, Peng-Wei

    2014-07-01

    The effects of pairing correlation in Yb isotopes are investigated by covariant density functional theory with pairing correlations and blocking effects treated exactly by a shell model like approach (SLAP). Experimental one- and two-neutron separation energies are reproduced quite well. The traditional BCS calculations always give larger pairing energies than those given by SLAP calculations, particularly for the nuclei near the proton and neutron drip lines. This may be caused because many of the single particle orbits above the Fermi surface are involved in the BCS calculations, but many of them are excluded in the SLAP calculations.

  20. Modified cyanobacteria

    DOEpatents

    Vermaas, Willem F J.

    2014-06-17

    Disclosed is a modified photoautotrophic bacterium comprising genes of interest that are modified in terms of their expression and/or coding region sequence, wherein modification of the genes of interest increases production of a desired product in the bacterium relative to the amount of the desired product production in a photoautotrophic bacterium that is not modified with respect to the genes of interest.

  1. The timing of oestrus, the preovulatory LH surge and ovulation in Blanca Andaluza goats synchronised by intravaginal progestagen sponge treatment is modified by season but not by body condition score.

    PubMed

    Zarazaga, L A; Gatica, M C; Gallego-Calvo, L; Celi, I; Guzmán, J L

    2014-05-01

    The aim of this study was to determine whether a seasonal pattern of reproductive events is followed after synchronisation by intravaginal progestagen sponge treatment in female Blanca Andaluza goats, and whether the timing of these events is affected by body condition score (BCS). During seasonal anoestrus (March), and again during the breeding season (November), the same 32 does were distributed into four subgroups according to their BCS: ≤2.25, =2.50, =2.75, and ≥3.00 (n=8 in all cases). They were then synchronised using a commercial intravaginal sponge treatment. Every 4h over the 72h following sponge removal, oestrous activity, the LH concentration and each doe's number of follicles were followed by transrectal ultrasonography. The does synchronised during seasonal anoestrus produced more follicles than those synchronised during the breeding season (P<0.01). The time elapsed between sponge removal and the onset of oestrus, the LH surge and time of ovulation, was also shorter in these does (P<0.001). The BCS only modified the number of follicles present in the ovary just before ovulation; this number was significantly lower in the =2.50 BCS subgroup than in the other subgroups (P<0.05). The present results show that the time to ovulation, and all events around it, are modified by the season in which Blanca Andaluza does are synchronised, but not by BCS.

  2. Modifying Achievement Test Items: A Theory-Guided and Data-Based Approach for Better Measurement of What Students with Disabilities Know

    ERIC Educational Resources Information Center

    Kettler, Ryan J.; Elliott, Stephen N.; Beddow, Peter A.

    2009-01-01

    Federal regulations allow up to 2% of the student population of a state to achieve proficiency for adequate yearly progress by taking an alternate assessment based on modified academic achievement standards (AA-MAS). Such tests are likely to be easier, but as long as a test is considered a valid measure of grade level content, it is allowable as…

  3. Hole pairing from attraction of opposite-chirality spin vortices: Non-BCS superconductivity in underdoped cuprates

    NASA Astrophysics Data System (ADS)

    Marchetti, P. A.; Ye, F.; Su, Z. B.; Yu, L.

    2011-12-01

    Within a gauge approach to the t-J model, we propose a non-BCS mechanism of superconductivity (SC) for underdoped cuprates. We implement the no-double-occupancy constraint with a (semionic) slave-particle formalism. The dopant in the t-J model description generates a vortexlike quantum distortion of the antiferromagnetic (AF) background centered on the empty sites, with opposite chirality for cores on the two Néel sublattices. Empty sites are described in terms of spinless fermionic holons and the long-range attraction between spin vortices on two opposite Néel sublattices serves as the holon pairing force, leading eventually to SC. The spin fluctuations are described by bosonic spinons with a gap generated by scattering on spin vortices. Due to the no-double occupation constraint, there is a gauge attraction between holon and spinon, binding them into a physical hole. Through gauge interaction the spin-vortex attraction induces the formation of spin-singlet [resonance valence bond (RVB)] spin pairs by lowering the spinon gap, due to the appearance of spin-vortex dipoles. Lowering the temperature, the proposed approach anticipates two crossover temperatures as precursors of the SC transition: at the higher crossover a finite density of incoherent holon pairs are formed, leading to reduction of the hole spectral weight, while at the lower crossover a finite density of incoherent spinon RVB pairs is also formed, giving rise to a gas of incoherent preformed hole pairs with magnetic vortices appearing in the plasma phase, supporting a Nernst signal. Finally, at an even lower temperature the hole pairs become coherent, the magnetic vortices become dilute, and SC appears beyond a critical doping. The proposed SC mechanism is not of the BCS type, because it involves a gain in kinetic energy, due to the lowering of the spinon gap, and it is “almost” of the classical three-dimensional XY type. Since both the spinon gap describing short-range antiferromagnetism order

  4. Polymer strip films as a robust, surfactant-free platform for delivery of BCS Class II drug nanoparticles.

    PubMed

    Krull, Scott M; Susarla, Ramana; Afolabi, Afolawemi; Li, Meng; Ying, Ye; Iqbal, Zafar; Bilgili, Ecevit; Davé, Rajesh N

    2015-07-15

    The robustness of the polymer strip film platform to successfully deliver a variety of BCS Class II drug nanoparticles without the need for surfactant while retaining positive characteristics such as nanoparticle redispersibility and fast dissolution is demonstrated. Fenofibrate (FNB), griseofulvin (GF), naproxen (NPX), phenylbutazone (PB), and azodicarbonamide (AZD) were considered as model poorly water-soluble drugs. Their aqueous nanosuspensions, produced via wet stirred media milling, were mixed with hydroxypropyl methylcellulose solution containing glycerin as plasticizer, followed by casting and drying to form films. For the purpose of comparison, sodium dodecyl sulfate (SDS) was used as surfactant, but was found to be unnecessary for achieving fast dissolution (t80 between 18 and 28 min) for all five drugs. Interestingly, SDS was required for the full recovery of nanoparticles for PB, yet lack of it did not impact the dissolution. Interactions between drug and polymer were investigated with FTIR spectroscopy whereas drug crystallinity within the film was investigated via Raman spectroscopy. Films for all drugs, even for very small samples, exhibited excellent content uniformity (RSD <4%) regardless of use of surfactant. Overall, these results demonstrate the novelty and robustness of the polymer strip film platform for fast release of poorly water-soluble drugs without requiring any surfactants.

  5. From BCS to Vortices: A 40 Year Personal Journey through Superconductivity from Basic Research to Power Applications

    NASA Astrophysics Data System (ADS)

    Grant, Paul M.

    2011-03-01

    A century has passed since the discovery of superconductivity in Leiden followed 75 years later by the Great Leap Forward in Zuerich. This talk will chronicle the author's trajectory through the science and technology of superconductivity first taking off with his IBM career in fundamental research on organic and layered copper oxide perovskite superconductors to a final landing at EPRI to explore applications of the latter to the electric power industry. Although many fundamental mysteries remain with respect to the copper and iron compounds, especially regarding the BCS pairing mechanism, nonetheless a significant number of successful demonstrations of cables, rotating machinery, storage and power conditioning equipment employing both low-and high- T superconducting materials have been undertaken worldwide since the decade of the 1960s to the present. However, massive application to the power industry has yet to take place or be inserted into utility long-range planning. Although there will certainly be a relatively small number of opportunistic deployments in those situations where superconductivity has a compelling advantage over conventional technology, its time will more likely await a future revolution in energy and electricity infrastructure such as a symbiosis of nuclear and hydrogen with superconductivity. Perhaps the distant future will even deliver the dream of a room temperature superconductor. ``20th Anniversary of the Woodstock of Physics,'' APS March Meeting 2007, Denver, CO.

  6. BCS-BEC crossover and thermodynamics in asymmetric nuclear matter with pairings in isospin I=0 and I=1 channels

    SciTech Connect

    Mao Shijun; Zhuang Pengfei; Huang Xuguang

    2009-03-15

    The Bardeen/Cooper/Schrieffer-Bose-Einstein condensation (BCS-BEC) crossover and phase diagram for asymmetric nuclear superfluid with pairings in isospin I=0 and I=1 channels are investigated at the mean-field level by using a density-dependent nucleon-nucleon potential. Induced by the in-medium nucleon mass and density-dependent coupling constants, neutron-proton Cooper pairs could be in BEC state at sufficiently low density, but there is no chance for the BEC formation of neutron-neutron and proton-proton pairs at any density and asymmetry. We calculate the phase diagram in asymmetry-temperature plane for weakly interacting nuclear superfluid and find that including the I=1 channel changes significantly the phase structure at low temperature. There appears a new phase with both I=0 and I=1 pairings at low temperature and low asymmetry, and the gapless state in any phase with I=1 pairing is washed out and all excited nucleons are fully gapped.

  7. Finite vortex numbers and symmetric vortex structures in a rotating trapped Fermi gas in the BCS-BEC crossover

    NASA Astrophysics Data System (ADS)

    Song, T. L.; Ma, Y. L.

    2011-08-01

    The ground state of a three-dimensional (3D) rotating trapped superfluid Fermi gas in the BCS-BEC crossover is mapped to finite N v -body vortex states by a simple ansatz. The total vortex energy is measured from the ground-state energy of the system in the absence of the vortices. The vortex state is stable since the vortex potential and rotation energies are attractive while the vortex kinetic energy and interaction between vortices are repulsive. By combining the analytical and numerical works for the minimal vortex energy, the 2D configurations of N v vortices are studied by taking into account of the finite size effects both on xy-plane and on z-direction. The calculated vortex numbers as a function of the interaction strength are appropriate to the renew experimental results by Zwierlein in [ High-temperature superfluidity in a ultracold Fermi gas, Ph.D. thesis, Massachusetts Institute of Technology, 2006]. The numerical results show that there exist two types of vortex structures: the trap center is occupied and unoccupied by a vortex, even in the case of N v < 10 with regular polygon and in the case of N v ≥ 10 with finite triangle lattice. The rotation frequency dependent vortex numbers with different interaction strengths are also discussed.

  8. Implicit Personality Theories on the Modifiability and Stability of the Action Repertoire as a Meaningful Framework for Individual Motivation: A Cross-Cultural Study

    ERIC Educational Resources Information Center

    Ziegler, Albert; Fidelman, Marina; Reutlinger, Marold; Vialle, Wilma; Stoeger, Heidrun

    2010-01-01

    The attainment of exceptional accomplishments requires extremely long periods of time. It has yet to be explained, though, how individuals find the motivation for such protracted learning. Carol Dweck proposed that an incremental theory of an individual's abilities is an important factor in this process since it would account for the optimism…

  9. Structure and functioning of a multidisciplinary 'Heart Team' for patients with coronary artery disease: rationale and recommendations from a joint BCS/BCIS/SCTS working group.

    PubMed

    Luckraz, Heyman; Norell, Michael; Buch, Mamta; James, Rachael; Cooper, Graham

    2015-10-01

    The decision-making process in the management of patients with ischaemic heart disease has historically been the responsibility of the cardiologist and encompasses medical management, percutaneous coronary intervention (PCI) or coronary artery bypass surgery (CABG). Currently, there is significant geographical variability in the PCI:CABG ratio. There are now emerging recommendations that this decision-making process should be carried out through a multidisciplinary approach, namely the Heart Team. This work was carried out on behalf of The British Cardiovascular Society (BCS), Society for Cardiothoracic Surgery in Great Britain and Ireland (SCTS) and British Cardiovascular Intervention Society (BCIS). This manuscript sets out the principles for the functioning of the Heart Team. This work has been approved by the Executive Committees of BCS/BCIS/SCTS.

  10. Superconductivity theory applied to the periodic table of the elements

    NASA Technical Reports Server (NTRS)

    Elifritz, Thomas Lee

    1995-01-01

    The modern theory of superconductivity, based upon the BCS to Bose-Einstein transition is applied to the periodic table of the elements, in order to isolate the essential features of of high temperature superconductivity and to predict its occurrence with the periodic table. It is predicted that Sodium-Ammonia, Sodium Zinc Phosphide and Bismuth (I) Iodide are promising materials for experimental explorations of high temperature superconductivity.

  11. Superconductivity theory applied to the periodic table of the elements

    SciTech Connect

    Elifritz, T.L.

    1994-12-31

    The modern theory of superconductivity, based upon the BCS to Bose-Einstein transition, is applied to the periodic table of the elements, in order to isolate the essential features of high temperature superconductivity and to predict its occurrence within the periodic table. It is predicted that Sodium-Ammonia, Sodium Zinc Phosphide and Bismuth (I) Iodide are promising materials for experimental explorations of high temperature superconductivity.

  12. Investigating the Discriminatory Power of BCS-Biowaiver in Vitro Methodology to Detect Bioavailability Differences between Immediate Release Products Containing a Class I Drug.

    PubMed

    Colón-Useche, Sarin; González-Álvarez, Isabel; Mangas-Sanjuan, Victor; González-Álvarez, Marta; Pastoriza, Pilar; Molina-Martínez, Irene; Bermejo, Marival; García-Arieta, Alfredo

    2015-09-01

    The purpose of this work is to investigate the discriminatory power of the Biopharmaceutics Classification System (BCS)-biowaiver in vitro methodology, i.e., to investigate if a BCS-biowaiver approach would have detected the Cmax differences observed between two zolpidem tablets and to identify the cause of the in vivo difference. Several dissolution conditions were tested with three zolpidem formulations: the reference (Stilnox), a bioequivalent formulation (BE), and a nonbioequivalent formulation (N-BE). Zolpidem is highly soluble at pH 1.2, 4.5, and 6.8. Its permeability in Caco-2 cells is higher than that of metoprolol and its transport mechanism is passive diffusion. None of the excipients (alone or in combination) showed any effect on permeability. All formulations dissolved more than 85% in 15 min in the paddle apparatus at 50 rpm in all dissolution media. However, at 30 rpm the nonbioequivalent formulation exhibited a slower dissolution rate. A slower gastric emptying rate was also observed in rats for the nonbioequivalent formulation. A slower disintegration and dissolution or a delay in gastric emptying might explain the Cmax infra-bioavailability for a highly permeable drug with short half-life. The BCS-biowaiver approach would have declared bioequivalence, although the in vivo study was not conclusive but detected a 14% mean difference in Cmax that precluded the bioequivalence demonstration. Nonetheless, these findings suggest that a slower dissolution rate is more discriminatory and that rotation speeds higher than 50 rpm should not be used in BCS-biowaivers, even if a coning effect occurs.

  13. A Robust Algorithm for Optimisation and Customisation of Fractal Dimensions of Time Series Modified by Nonlinearly Scaling Their Time Derivatives: Mathematical Theory and Practical Applications

    PubMed Central

    2013-01-01

    Standard methods for computing the fractal dimensions of time series are usually tested with continuous nowhere differentiable functions, but not benchmarked with actual signals. Therefore they can produce opposite results in extreme signals. These methods also use different scaling methods, that is, different amplitude multipliers, which makes it difficult to compare fractal dimensions obtained from different methods. The purpose of this research was to develop an optimisation method that computes the fractal dimension of a normalised (dimensionless) and modified time series signal with a robust algorithm and a running average method, and that maximises the difference between two fractal dimensions, for example, a minimum and a maximum one. The signal is modified by transforming its amplitude by a multiplier, which has a non-linear effect on the signal's time derivative. The optimisation method identifies the optimal multiplier of the normalised amplitude for targeted decision making based on fractal dimensions. The optimisation method provides an additional filter effect and makes the fractal dimensions less noisy. The method is exemplified by, and explained with, different signals, such as human movement, EEG, and acoustic signals. PMID:24151522

  14. A robust algorithm for optimisation and customisation of fractal dimensions of time series modified by nonlinearly scaling their time derivatives: mathematical theory and practical applications.

    PubMed

    Fuss, Franz Konstantin

    2013-01-01

    Standard methods for computing the fractal dimensions of time series are usually tested with continuous nowhere differentiable functions, but not benchmarked with actual signals. Therefore they can produce opposite results in extreme signals. These methods also use different scaling methods, that is, different amplitude multipliers, which makes it difficult to compare fractal dimensions obtained from different methods. The purpose of this research was to develop an optimisation method that computes the fractal dimension of a normalised (dimensionless) and modified time series signal with a robust algorithm and a running average method, and that maximises the difference between two fractal dimensions, for example, a minimum and a maximum one. The signal is modified by transforming its amplitude by a multiplier, which has a non-linear effect on the signal's time derivative. The optimisation method identifies the optimal multiplier of the normalised amplitude for targeted decision making based on fractal dimensions. The optimisation method provides an additional filter effect and makes the fractal dimensions less noisy. The method is exemplified by, and explained with, different signals, such as human movement, EEG, and acoustic signals. PMID:24151522

  15. Optimized conditions for MDCK permeability and turbidimetric solubility studies using compounds representative of BCS classes I-IV.

    PubMed

    Taub, Mitchell E; Kristensen, Lisbeth; Frokjaer, Sven

    2002-05-01

    The solubility enhancing effects of various excipients, including their compatibility with in vitro permeability (P(app)) systems, was investigated using drugs representative of Biopharmaceutics Classification System (BCS) classes I-IV. Turbidimetric solubility determination using nephelometry and transport experiments using MDCK Strain I cell monolayers were employed. The highest usable concentration of each excipient [dimethyl sulfoxide (DMSO), ethanol, hydroxypropyl-beta-cyclodextrin (HPCD), and sodium taurocholate] was determined by monitoring apical (AP) to basolateral (BL) [14C]mannitol apparent permeability (P(app)) and the transepithelial electrical resistance (TEER) in transport experiments done at pH 6.0 and 7.4. The excipients were used in conjunction with compounds demonstrating relatively low aqueous solubility (amphotericin B, danazol, mefenamic acid, and phenytoin) in order to obtain a drug concentration >50 microM in the donor compartment. The addition of at least one of the selected excipients enhanced the solubility of the inherently poorly soluble compounds to >50 microM as determined via turbidimetric evaluation at pH 6.0 and 7.4. Ethanol and DMSO were found to be generally disruptive to the MDCK monolayer and were not nearly as useful as HPCD and sodium taurocholate. Sodium taurocholate (5 mM) was compatible with MDCK monolayers under all conditions investigated. Additionally, a novel in vitro system aimed at more accurately simulating in vivo conditions, i.e., a pH gradient (6.0 AP/7.4 BL), sodium taurocholate (5 mM, AP), and bovine serum albumin (0.25%, BL), was shown to generate more reliable P(app) values for compounds that are poorly soluble and/or highly protein bound.

  16. The stability and electronic properties of Pt-modified Cu(1 1 0) and Cu(1 1 1) in the absence/presence of small molecules: a density-functional theory modeling

    NASA Astrophysics Data System (ADS)

    Cui, Xiao-Hong; Duan, Xiang-Mei

    2016-03-01

    Pt-Cu bimetallic alloys, as a key component in many heterogeneous catalysts, have the potential to be used in a range of industrially important reactions. The stability of platinum-modified Cu(1 1 0) and Cu(1 1 1) surfaces in the absence/presence of CO, NO and O has been investigated based on density-functional theory. We find that Pt alloyed in the second layer of the Cu (1 1 0) surface, rather than in the bulk, is the most favorable configuration. To relieve the strain, platinum tends to stay in the surface layer of close-packed Cu(1 1 1). Adsorbates can affect the stability of Pt-modified surfaces. Upon the adsorption of CO and NO, Pt segregation to the (1 1 0) surface becomes favorable, while on oxygen adsorption, no segregation occurs. Platinum only prefers to segregate on the Cu (1 1 1) surface when it is exposed to carbon monoxide, it tends to locate in the second layer for the other two adsorbates. Combining the position of d-band center, the d-bandwidth, and the separation between the bonding and antibonding states of the adsorbates, we interpret the results and correlate the relationship between the electronic properties of the substrate and the adsorption energy of the adsorbates, which could shed light on the prediction of bimetallic structures with desirable chemical properties.

  17. CO2 Flux from a Subtropical Mangrove Ecosystem in Magdalena Bay BCS, Mexico Josediego Uribe, Walter C. Oechel

    NASA Astrophysics Data System (ADS)

    Uribe, J.; Oechel, W. C.

    2012-12-01

    Mangrove forests are among the most productive ecosystems within the tropical and subtropical coastlines of the world. There is currently limited research on mangrove carbon sequestration potentials but with ongoing climate change and rising atmospheric carbon dioxide (CO2) levels, an understanding of carbon exchange in mangroves forests and the environmental controls influencing fluxes is extremely important for understanding their role in the global carbon cycle and their potential as stores of CO2. In this study, CO2 flux was evaluated for a subtropical mangrove ecosystem in the arid region of Magdalena Bay BCS, Mexico. Measurements were taken using an eddy covariance system above the canopy during January 8 to the 30, and currently from June 21 to August 28, in 2012. The mangrove forest is located (N25° 15'75", W112° 04'79") near the town of Puerto Lopez Mateos, Mexico. During this time period environmental variables such as Net Radiation, photosynthetically active radiation (PAR), air temperature, humidity, ground heat flux, soil temperature and tidal height were measured together with the CO2 flux in order to determine the environmental influence on the fluxes. Preliminary results showed a clear diurnal pattern in CO2 flux that showed high sinks when light availability was high. During January, the winter dry season environmental conditions remained relatively cool with an average air temperature of 17 oC and consistently cloudless days. During this period CO2 flux was -1.3 μmol C m-2s-1, which means that for the month of January, there was a net uptake of carbon by the mangrove ecosystem. For the summer period the development of the data collection for a longer term as well as further correlation analysis with environmental data is currently underway, however expectations are that seasonal variations of CO2 flux can be seen due to longer and more intense periods of solar irradiance as well as the effect of high temperature (+30° C) days. Indirect effects

  18. Severe renal tubulopathy in a newborn due to BCS1L gene mutation: effects of different treatment modalities on the clinical course.

    PubMed

    Ezgu, Fatih; Senaca, Sara; Gunduz, Mehmet; Tumer, Leyla; Hasanoglu, Alev; Tiras, Ulku; Unsal, Rukiye; Bakkaloglu, Sevcan A

    2013-10-10

    Very early onset Toni-Debré-Fanconi Syndrome, a disorder of proximal renal tubules of the kidney which results in the increased urinary excretion of glucose, amino acids, uric acid, phosphate and bicarbonate, could be the manifestation of various inborn errors. Defects of oxidative phosphorylation are a heterogeneous group of disorders with various clinical presentations. Recently, patients with early liver failure, renal tubulopathy and encephalopathy due to the mutations in the BCS1L gene coding for a structural protein in mitochondrial complex III have been described. Ten-day-old female newborn was referred to our clinic because of intractable acidosis. Physical examination revealed severe hypotonia, and hepatomegaly. The laboratory examinations revealed lactic acidosis, increased blood alanine, alanine aminotransferase and aspartate aminotransferase levels, generalized aminoaciduria and glucosuria. The tubular reabsorption of phosphate was reduced. Because of multisystem involvement, mitochondrial disease was suspected and the mutational analysis of the BCS1L gene revealed homozygous P99L mutation. As the patient was unresponsive to bicarbonate replacement, oral dichloroacetate and peritoneal dialysis, continuous high dose intravenous sodium bicarbonate therapy with a dose up to 1.25 mEq/kg/h was started. The patient got on well until the age of 9 months when she died of sepsis. It was stressed that high dose intravenous continuous sodium bicarbonate therapy could be an alternative treatment option in patients with severe acidosis and renal tubulopathy resistant to dichloroacetate and peritoneal dialysis. Patients with BCS1L mutations should be considered in the differential diagnosis of severe tubulopathy in the newborn period.

  19. Isolation of a solventogenic Clostridium sp. strain: fermentation of glycerol to n-butanol, analysis of the bcs operon region and its potential regulatory elements.

    PubMed

    Panitz, J C; Zverlov, V V; Pham, V T T; Stürzl, S; Schieder, D; Schwarz, W H

    2014-02-01

    A new solventogenic bacterium, strain GT6, was isolated from standing water sediment. 16S-rRNA gene analysis revealed that GT6 belongs to the heterogeneous Clostridium tetanomorphum group of bacteria exhibiting 99% sequence identity with C. tetanomorphum 4474(T). GT6 can utilize a wide range of carbohydrate substrates including glucose, fructose, maltose, xylose and glycerol to produce mainly n-butanol without any acetone. Additional products of GT6 metabolism were ethanol, butyric acid, acetic acid, and trace amounts of 1,3-propanediol. Medium and substrate composition, and culture conditions such as pH and temperature influenced product formation. The major fermentation product from glycerol was n-butanol with a final concentration of up to 11.5 g/L. 3% (v/v) glycerol lead to a total solvent concentration of 14 g/L within 72 h. Growth was not inhibited by glycerol concentrations as high as 15% (v/v). The solventogenesis genes crt, bcd, etfA/B and hbd composing the bcs (butyryl-CoA synthesis) operon of C. tetanomorphum GT6 were sequenced. They occur in a genomic arrangement identical to those in other solventogenic clostridia. Furthermore, the sequence of a potential regulator gene highly similar to that of the NADH-sensing Rex family of regulatory genes was found upstream of the bcs operon. Potential binding sites for Rex have been identified in the promoter region of the bcs operon of solvent producing clostridia as well as upstream of other genes involved in NADH oxidation. This indicates a fundamental role of Rex in the regulation of fermentation products in anaerobic, and especially in solventogenic bacteria.

  20. Modified two-fluid model of conductivity for superconducting surface resistance calculation. Master's thesis

    SciTech Connect

    Linden, D.S.

    1993-05-01

    The traditional two-fluid model of superconducting conductivity was modified to make it accurate, while remaining fast, for designing and simulating microwave devices. The modification reflects the BCS coherence effects in the conductivity of a superconductor, and is incorporated through the ratio of normal to superconducting electrons. This modified ratio is a simple analytical expression which depends on frequency, temperature and material parameters. This modified two-fluid model allows accurate and rapid calculation of the microwave surface impedance of a superconductor in the clean and dirty limits and in the weak- and strong-coupled regimes. The model compares well with surface resistance data for Nb and provides insight into Nb3Sn and Y1Ba2Cu3O(7-delta). Numerical calculations with the modified two-fluid model are an order of magnitude faster than the quasi-classical program by Zimmermann (1), and two to five orders of magnitude faster than Halbritter's BCS program (2) for surface resistance.

  1. Gain of a New Exon by a Lineage-Specific Alu Element-Integration Event in the BCS1L Gene during Primate Evolution

    PubMed Central

    Park, Sang-Je; Kim, Young-Hyun; Lee, Sang-Rae; Choe, Se-Hee; Kim, Myung-Jin; Kim, Sun-Uk; Kim, Ji-Su; Sim, Bo-Woong; Song, Bong-Seok; Jeong, Kang-Jin; Jin, Yeung-Bae; Lee, Youngjeon; Park, Young-Ho; Park, Young Il; Huh, Jae-Won; Chang, Kyu-Tae

    2015-01-01

    BCS1L gene encodes mitochondrial protein and is a member of conserved AAA protein family. This gene is involved in the incorporation of Rieske FeS and Qcr10p into complex III of respiratory chain. In our previous study, AluYRa2-derived alternative transcript in rhesus monkey genome was identified. However, this transcript has not been reported in human genome. In present study, we conducted evolutionary analysis of AluYRa2-exonized transcript with various primate genomic DNAs and cDNAs from humans, rhesus monkeys, and crab-eating monkeys. Remarkably, our results show that AluYRa2 element has only been integrated into genomes of Macaca species. This Macaca lineage-specific integration of AluYRa2 element led to exonization event in the first intron region of BCS1L gene by producing a conserved 3′ splice site. Intriguingly, in rhesus and crab-eating monkeys, more diverse transcript variants by alternative splicing (AS) events, including exon skipping and different 5′ splice sites from humans, were identified. Alignment of amino acid sequences revealed that AluYRa2-exonized transcript has short N-terminal peptides. Therefore, AS events play a major role in the generation of various transcripts and proteins during primate evolution. In particular, lineage-specific integration of Alu elements and species-specific Alu-derived exonization events could be important sources of gene diversification in primates. PMID:26537194

  2. Gauge-invariant theories of linear response for strongly correlated superconductors

    NASA Astrophysics Data System (ADS)

    Boyack, Rufus; Anderson, Brandon M.; Wu, Chien-Te; Levin, K.

    2016-09-01

    We present a diagrammatic theory for determining consistent electromagnetic response functions in strongly correlated fermionic superfluids. While a gauge-invariant electromagnetic response is well understood at the BCS level, a treatment of correlations beyond BCS theory requires extending this theoretical formalism. The challenge in such systems is to maintain gauge invariance, while simultaneously incorporating additional self-energy terms arising from strong correlation effects. Central to our approach is the application of the Ward-Takahashi identity, which introduces collective mode contributions in the response functions and guarantees that the f -sum rule is satisfied. We outline a powerful method, which determines these collective modes in the presence of correlation effects and in a manner compatible with gauge invariance. Since this method is based on fundamental aspects of quantum field theory, the underlying principles are broadly applicable to strongly correlated superfluids. As an illustration of the technique, we apply it to a simple class of theoretical models that contain a frequency-independent order parameter. These models include BCS-BEC crossover theories of the ultracold Fermi gases, along with models specifically associated with the high-Tc cuprates. Finally, as an alternative approach, we contrast with the path integral formalism. Here, the calculation of gauge-invariant response appears more straightforward. However, the collective modes introduced are those of strict BCS theory, without any modification from additional correlations. As the path integral simultaneously addresses electrodynamics and thermodynamics, we emphasize that it should be subjected to a consistency test beyond gauge invariance, namely that of the compressibility sum rule. We show how this sum rule fails in the conventional path integral approach.

  3. Fundamental Constraints on Linear Response Theories of Fermi Superfluids above and Below Tc

    NASA Astrophysics Data System (ADS)

    Guo, Hao; Chien, Chih-Chun; He, Yan; Levin, K.

    2013-06-01

    We present fundamental constraints required for a consistent linear response theory of fermionic superfluids and address temperatures both above and below the transition temperature Tc. We emphasize two independent constraints, one associated with gauge invariance (and the related Ward identity) and another associated with the compressibility sum rule, both of which are satisfied in strict BCS theory. However, we point out that it is the rare many body theory which satisfies both of these. Indeed, well studied quantum Hall systems and random-phase approximations to the electron gas are found to have difficulties with meeting these constraints. We summarize two distinct theoretical approaches which are, however, demonstrably compatible with gauge invariance and the compressibility sum rule. The first of these involves an extension of BCS theory to a mean field description of the BCS-Bose Einstein condensation crossover. The second is the simplest Nozieres Schmitt-Rink (NSR) treatment of pairing correlations in the normal state. As a point of comparison we focus on the compressibility κ of each and contrast the predictions above Tc. We note here that despite the compliance with sum rules, this NSR based scheme leads to an unphysical divergence in κ at the transition. Because of the delicacy of the various consistency requirements, the results of this paper suggest that avoiding this divergence may repair one problem while at the same time introducing others.

  4. Collective Inertia and Fission Barriers Within the Skyrme-Hartree-Fock Theory

    SciTech Connect

    Baran, A.; Staszczak, A.; Dobaczewski, J.; Nazarewicz, Witold

    2007-01-01

    Spontaneous fission barriers, quadrupole inertia tensor, and zero-point quadrupole correlation energy are calculated for 252,256,258Fm in the framework of the self-consistent Skyrme-Hartree-Fock+BCS theory. Two ways of computing collective inertia are employed: the Gaussian Overlap Approximation to the Generator Coordinate Method and cranking ansatz. The Skyrme results are compared with those of the Gogny-Hartree-Fock-Bogoliubov model.

  5. The XMM-BCS galaxy cluster survey: I. The X-ray selected cluster catalog from the initial 6 deg$^2$

    SciTech Connect

    Suhada, R.; Song, J.; Bohringer, H.; Mohr, J.J.; Chon, G.; Finoguenov, A.; Fassbender, R.; Desai, S.; Armstrong, R.; Zenteno, A.; Barkhouse, W.A.; /North Dakota U. /Paris, Inst. Astrophys.

    2011-11-01

    The XMM-Newton - Blanco Cosmology Survey project (XMM-BCS) is a coordinated X-ray, optical and mid-infrared cluster survey in a field also covered by Sunyaev-Zel dovich effect (SZE) surveys by the South Pole Telescope and the Atacama Cosmology Telescope. The aim of the project is to study the cluster population in a 14 deg{sup 2} field (center: {alpha} {approx} 23:29:18.4, {delta} {approx} -54:40:33.6). The uniform multi-wavelength coverage will also allow us for the first time to comprehensively compare the selection function of the different cluster detection approaches in a single test field and perform a cross-calibration of cluster scaling relations. In this work, we present a catalog of 46 X-ray selected clusters from the initial 6 deg{sup 2} survey core.We describe the XMM-BCS source detection pipeline and derive physical properties of the clusters. We provide photometric redshift estimates derived from the BCS imaging data and spectroscopic redshift measurements for a low redshift subset of the clusters. The photometric redshift estimates are found to be unbiased and in good agreement with the spectroscopic values. Our multi-wavelength approach gives us a comprehensive look at the cluster and group population up to redshifts z {approx} 1. The median redshift of the sample is 0.47 and the median mass M{sub 500} {approx} 1 x 10{sup 14} M{sub {circle_dot}} ({approx} 2 keV). From the sample, we derive the cluster log N - log S using an approximation to the survey selection function and find it in good agreement with previous studies. We compare optical mass estimates from the Southern Cosmology Survey available for part of our cluster sample with our estimates derived from the X-ray luminosity. Weak lensing masses available for a subset of the cluster sample are in agreement with our estimates. Optical masses based on cluster richness and total optical luminosity are found to be significantly higher than the X-ray values. The present results illustrate the

  6. Modified entropic force

    SciTech Connect

    Gao Changjun

    2010-04-15

    The theory of statistical thermodynamics tells us the equipartition law of energy does not hold in the limit of very low temperatures. It is found the Debye model is very successful in explaining the experimental results for most of the solid objects. Motivated by this fact, we modify the entropic force formula which is proposed very recently. Since the Unruh temperature is proportional to the strength of the gravitational field, so the modified entropic force formula is an extension of the Newtonian gravity to the weak field. On the contrary, general relativity extends Newtonian gravity to the strong field case. Corresponding to Debye temperature, there exists a Debye acceleration g{sub D}. It is found the Debye acceleration is g{sub D}=10{sup -15} N kg{sup -1}. This acceleration is very much smaller than the gravitational acceleration 10{sup -4} N kg{sup -1} which is felt by Neptune and the gravitational acceleration 10{sup -10} N kg{sup -1} felt by the Sun. Therefore, the modified entropic force can be very well approximated by the Newtonian gravity in the Solar System and in the Galaxy. With this Debye acceleration, we find the current cosmic speeding up can be explained without invoking any kind of dark energy.

  7. A new gene required for cellulose production and a gene encoding cellulolytic activity in Acetobacter xylinum are colocalized with the bcs operon.

    PubMed Central

    Standal, R; Iversen, T G; Coucheron, D H; Fjaervik, E; Blatny, J M; Valla, S

    1994-01-01

    Recently, it was shown that a cellulose-negative mutant (Cel1) of Acetobacter xylinum ATCC 23769 carried an insertion of an indigenous transposable element (IS1031A) about 500 bp upstream of the bcs operon, required for cellulose synthesis. Here we show that Cel1 can be complemented by wild-type DNA covering the insertion point. Nucleotide sequencing of this region revealed the presence of two open reading frames, ORF1 and ORF2. ORF2, which is disrupted by the IS1031A insertion in Cel1, potentially encodes the complementing function. ORF1 encodes a protein (CMCax) with significant homology to previously described endoglucanases. A cloned DNA fragment containing ORF1 expressed a carboxymethyl cellulose-hydrolyzing activity in Escherichia coli. In A. xylinum, CMCax is secreted into the culture growth medium. The CMCax mature protein consists of 322 amino acids and has a molecular mass of 35.6 kDa. Images PMID:8300521

  8. Identification of specific phonon contributions in BCS-type superconductivity of boride-carbide crystals with a layer-like structure

    NASA Astrophysics Data System (ADS)

    Uzunok, H. Y.; Tütüncü, H. M.; Özer, S.; Ugˇur, Ş.; Srivastava, G. P.

    2015-03-01

    We report on an ab initio study of the BCS-type superconductivity in the intermetallic borocarbides YPd2B2C, YPt2B2C and LaPt2B2C with a layer-like structure. The largest contribution to the electron-phonon coupling constant λ is identified to come from transverse acoustic phonons at a zone-edge, arising from the atomic vibrations in the boron-transition metal layer. A detailed examination of the atomic geometry in the boron-transition metal layer, the electron-phonon coupling constant λ, and the logarithmically averaged phonon frequency ωln helps explain the relatively higher superconducting temperature Tc of YPd2B2C (20.6 K) compared to that of YPt2B2C (11.3 K) and LaPt2B2C (10.40 K).

  9. Characteristics of a new enantioselective thermostable dipeptidase from Brevibacillus borstelensis BCS-1 and its application to synthesis of a D-amino-acid-containing dipeptide.

    PubMed

    Baek, Dae Heoun; Song, Jae Jun; Kwon, Seok-Joon; Park, Chung; Jung, Chang-Min; Sung, Moon-Hee

    2004-03-01

    A new thermostable dipeptidase gene was cloned from the thermophile Brevibacillus borstelensis BCS-1 by genetic complementation of the D-Glu auxotroph Escherichia coli WM335 on a plate containing D-Ala-D-Glu. Nucleotide sequence analysis revealed that the gene included an open reading frame coding for a 307-amino-acid sequence with an M(r) of 35,000. The deduced amino acid sequence of the dipeptidase exhibited 52% similarity with the dipeptidase from Listeria monocytogenes. The enzyme was purified to homogeneity from recombinant E. coli WM335 harboring the dipeptidase gene from B. borstelensis BCS-1. Investigation of the enantioselectivity (E) to the P(1) and P(1)' site of Ala-Ala revealed that the ratio of the specificity constant (k(cat)/K(m)) for L-enantioselectivity to the P(1) site of Ala-Ala was 23.4 +/- 2.2 [E = (k(cat)/K(m))(L,D)/(k(cat)/K(m))(D,D)], while the D-enantioselectivity to the P(1)' site of Ala-Ala was 16.4 +/- 0.5 [E = (k(cat)/K(m))(L,D)/(k(cat)/K(m))(L,L)] at 55 degrees C. The enzyme was stable up to 55 degrees C, and the optimal pH and temperature were 8.5 and 65 degrees C, respectively. The enzyme was able to hydrolyze L-Asp-D-Ala, L-Asp-D-AlaOMe, Z-D-Ala-D-AlaOBzl, and Z-L-Asp-D-AlaOBzl, yet it could not hydrolyze D-Ala-L-Asp, D-Ala-L-Ala, D-AlaNH(2), and L-AlaNH(2.) The enzyme also exhibited beta-lactamase activity similar to that of a human renal dipeptidase. The dipeptidase successfully synthesized the precursor of the dipeptide sweetener Z-L-Asp-D-AlaOBzl.

  10. Biowaiver extension potential to BCS Class III high solubility-low permeability drugs: bridging evidence for metformin immediate-release tablet.

    PubMed

    Cheng, Ching-Ling; Yu, Lawrence X; Lee, Hwei-Ling; Yang, Chyun-Yu; Lue, Chang-Sha; Chou, Chen-Hsi

    2004-07-01

    The biopharmaceutics classification system (BCS) allows biowaiver for rapid dissolving immediate-release (IR) products of Class I drugs (high solubility and high permeability). The possibility of extending biowaivers to Class III high solubility and low permeability drugs is currently under scrutiny. In vivo bioequivalence data of different formulations of Class III drugs would support such an extension. The objective of this work was to demonstrate the bioequivalence of two marketed IR tablet products of a Class III drug, metformin hydrochloride, that are rapidly dissolving and have similar in vitro dissolution profiles. The effect of race on the systemic exposure of metformin was also explored. A randomized, open-label, two-period crossover study was conducted in 12 healthy Chinese male volunteers. Each subject received a single-dose of 500 mg of each product after an overnight fasting. The plasma concentrations of metformin were followed for 24 h. No significant formulation effect was found for the bioequivalence metrics: areas under concentration-time curve (AUC0-t, AUC0-infinity) and maximal concentration (Cmax). The 90% confidence intervals for the ratio of means were found within the acceptance range of 80-125% for the log-transformed data. Based on these results, it was concluded that the two IR products are bioequivalent. The pharmacokinetic parameters of metformin in Chinese for both products were similar and were in good agreement with those reported for metformin IR tablets in other ethnic populations. This study serves as an example for supporting biowaiver for BCS Class III drugs.

  11. Band-gap engineering of La1‑x Nd x AlO3 (x = 0, 0.25, 0.50, 0.75, 1) perovskite using density functional theory: A modified Becke Johnson potential study

    NASA Astrophysics Data System (ADS)

    Sandeep; D, P. Rai; A, Shankar; M, P. Ghimire; Anup Pradhan, Sakhya; T, P. Sinha; R, Khenata; S, Bin Omran; R, K. Thapa

    2016-06-01

    The structural, electronic, and magnetic properties of the Nd-doped Rare earth aluminate, La1‑x Nd x AlO3 (x = 0% to 100%) alloys are studied using the full potential linearized augmented plane wave (FP-LAPW) method within the density functional theory. The effects of the Nd substitution in LaAlO3 are studied using the supercell calculations. The computed electronic structure with the modified Becke–Johnson (mBJ) potential based approximation indicates that the La1‑x Nd x AlO3 alloys may possess half-metallic (HM) behaviors when doped with Nd of a finite density of states at the Fermi level (E F). The direct and indirect band gaps are studied each as a function of x which is the concentration of Nd-doped LaAlO3. The calculated magnetic moments in the La1‑x Nd x AlO3 alloys are found to arise mainly from the Nd-4f state. A probable half-metallic nature is suggested for each of these systems with supportive integral magnetic moments and highly spin-polarized electronic structures in these doped systems at E F. The observed decrease of the band gap with the increase in the concentration of Nd doping in LaAlO3 is a suitable technique for harnessing useful spintronic and magnetic devices. Project supported by the DST-SERB, Dy (Grant No. SERB/3586/2013-14), the UGCBSR, FRPS (Grant No. F.30-52/2014), the UGC (New Delhi, India) Inspire Fellowship DST (India), and the Deanship of Scientific Research at King Saud University (Grant No. RPG-VPP-088). M P Ghimire thanks the Alexander von Humboldt Foundation, Germany for the financial support.

  12. Band-gap engineering of La1-x Nd x AlO3 (x = 0, 0.25, 0.50, 0.75, 1) perovskite using density functional theory: A modified Becke Johnson potential study

    NASA Astrophysics Data System (ADS)

    Sandeep; D, P. Rai; A, Shankar; M, P. Ghimire; Anup Pradhan, Sakhya; T, P. Sinha; R, Khenata; S, Bin Omran; R, K. Thapa

    2016-06-01

    The structural, electronic, and magnetic properties of the Nd-doped Rare earth aluminate, La1-x Nd x AlO3 (x = 0% to 100%) alloys are studied using the full potential linearized augmented plane wave (FP-LAPW) method within the density functional theory. The effects of the Nd substitution in LaAlO3 are studied using the supercell calculations. The computed electronic structure with the modified Becke-Johnson (mBJ) potential based approximation indicates that the La1-x Nd x AlO3 alloys may possess half-metallic (HM) behaviors when doped with Nd of a finite density of states at the Fermi level (E F). The direct and indirect band gaps are studied each as a function of x which is the concentration of Nd-doped LaAlO3. The calculated magnetic moments in the La1-x Nd x AlO3 alloys are found to arise mainly from the Nd-4f state. A probable half-metallic nature is suggested for each of these systems with supportive integral magnetic moments and highly spin-polarized electronic structures in these doped systems at E F. The observed decrease of the band gap with the increase in the concentration of Nd doping in LaAlO3 is a suitable technique for harnessing useful spintronic and magnetic devices. Project supported by the DST-SERB, Dy (Grant No. SERB/3586/2013-14), the UGCBSR, FRPS (Grant No. F.30-52/2014), the UGC (New Delhi, India) Inspire Fellowship DST (India), and the Deanship of Scientific Research at King Saud University (Grant No. RPG-VPP-088). M P Ghimire thanks the Alexander von Humboldt Foundation, Germany for the financial support.

  13. Variation of photoluminescence features in Pr{sup 3+} doped lithium-fluoro-borate glass by changing different modifier oxides (MgO, CaO, CdO and PbO)-Judd-Ofelt theory application

    SciTech Connect

    Balakrishna, A.; Rajesh, D.; Babu, S.; Ratnakaram, Y. C.

    2015-06-24

    Pr{sup 3+} (1.0 mol%) doped different modifier oxide based six lithium-fluoro-borate glasses with chemical composition of 49Li{sub 2}B{sub 4}O{sub 7}-20BaF{sub 2}-10NaF-20MO (where M= Mg, Ca, Cd and Pb), 49Li{sub 2}B{sub 4}O{sub 7}-20BaF{sub 2}-10NaF-10MgO-10CaO and 49Li{sub 2}B{sub 4}O{sub 7}-20BaF{sub 2}-10NaF-10CdO-10PbO were prepared by conventional melt quenching technique. Judd-Ofelt theory has been applied for evaluating the Judd-Ofelt intensity parameters for Pr{sup 3+} ion in these glass compositions and are in turn to used to predict radiative properties such as radiative transition probabilities (A{sub T}), branching ratios (β) and stimulated emission cross-section (σ{sub P}). Stimulated emission cross-section (σ{sub p}) of prominent emission transitions, {sup 3}P{sub 0}→{sup 3}H{sub 4} and {sup 1}D{sub 2}→{sup 3}H{sub 4} of Pr{sup 3+} ion in all lithium-fluoro-borate glasses were calculated. Among all the emission transitions, {sup 3}P{sub 0}→{sup 3}H{sub 4} posseses higher branching ratio and stimulated emission cross-section in Mg-Ca glass, which leads to the best laser excitation at 487 nm wavelength.

  14. Contact Stress of Modified Curvilinear Gears

    NASA Astrophysics Data System (ADS)

    Chen, Yi-Cheng; Gu, Ming-Lune

    2010-10-01

    The contact characteristics of a modified curvilinear gear set were investigated based on finite element analysis in this study. Firstly, the mathematical model of the modified curvilinear gears was developed based on the theory of gearing. Then a solid model of a modified curvilinear gear set was built by utilizing computer-aided design software. Finite element analysis enabled us to investigate the contact stress of a contact teeth pair. The variation and distribution of the contact stresses and bending stresses are also studied under different gear design parameters. Finally, illustrative examples were presented to demonstrate the contact characteristics of the modified curvilinear gears.

  15. Modified gravity inside astrophysical bodies

    SciTech Connect

    Saito, Ryo; Langlois, David; Yamauchi, Daisuke; Mizuno, Shuntaro; Gleyzes, Jérôme E-mail: yamauchi@resceu.s.u-tokyo.ac.jp E-mail: jerome.gleyzes@cea.fr

    2015-06-01

    Many theories of modified gravity, including the well studied Horndeski models, are characterized by a screening mechanism that ensures that standard gravity is recovered near astrophysical bodies. In a recently introduced class of gravitational theories that goes beyond Horndeski, it has been found that new derivative interactions lead to a partial breaking of the Vainshtein screening mechanism inside any gravitational source, although not outside. We study the impact of this new type of deviation from standard gravity on the density profile of a spherically symmetric matter distribution, in the nonrelativistic limit. For simplicity, we consider a polytropic equation of state and derive the modifications to the standard Lane-Emden equations. We also show the existence of a universal upper bound on the amplitude of this type of modified gravity, independently of the details of the equation of state.

  16. QGP and Modified Jet Fragmentation

    SciTech Connect

    Wang, Xin-Nian

    2005-04-18

    Recent progresses in the study of jet modification in hotmedium and their consequences in high-energy heavy-ion collisions are reviewed. In particular, I will discuss energy loss for propagating heavy quarks and the resulting modified fragmentation function. Medium modification of the parton fragmentation function due to quark recombination are formulated within finite temperature field theory and their implication on the search for deconfined quark-gluon plasma is also discussed.

  17. Adaptation of the theory of superconductivity to the behavior of oxides

    NASA Astrophysics Data System (ADS)

    Teller, Edward

    1989-07-01

    An adaptation of the conventional theory to high temperature superconductors is proposed. Excitation of electrons from below the Fermi surface to above the Fermi surface (according to Bardeen, Copper and Schrieffer) is replaced by excitation from a filled energy band into an empty one. The energy bands are constructed from 2-D Bloch functions in neighboring layers of the oxide lattices. Strong coupling with lattice displacements is due to the removal of the topmost electrons from the O(2-) ions in the perovskite planes. The main methods of the BCS theory are retained. The formation and observability of a super-lattice is discussed.

  18. Eliashberg Theory and the High T(c) Oxides.

    NASA Astrophysics Data System (ADS)

    Marsiglio, Frank

    The Eliashberg theory of superconductivity has been very successful in accounting for properties of conventional materials. The price for this success has been a lack of understanding of exactly what features of the input parameters affect the superconducting properties in significant ways. The first part of this thesis is concerned with the identification of an important parameter in the study of thermodynamic, critical magnetic field, and electromagnetic properties of a superconductor. The Bardeen-Cooper-Schreiffer (BCS) theory of superconductivity produces laws of corresponding states, i.e., various properties are predicted to have universal values. We have studied the deviation from BCS theory due to retardation effects, which are embodied in Eliashberg theory. These deviations, or corrections to BCS, can be well understood and characterized by a single simple parameter, T_{c}/omega _{rm ln}, to be defined later. Attention has been focussed on reproducing numerical (theoretical) results, since for most conventional superconducting materials, experiment agrees with theory at the 10% level. The second half of the thesis has been largely motivated by the recent discoveries of the high-T _{c} oxide materials. We have applied Eliashberg theory almost entirely in an inverse manner. That is, with little knowledge of the microscopic parameters for these new materials, we have investigated the relationships between various macroscopically observable properties, based on model spectra. The model spectra have been of three general types, the conventional category, spectra based on a combined phonon-exciton mechanism, and thirdly those based on relatively low frequency exchange bosons. We have called this latter category the very strong coupling regime. It was hoped that measured properties could uniquely specify the type of spectrum responsible for the superconductivity in the high-T_ {c} oxides. At this point in time this goal has not really been achieved. Too many

  19. Chern-Simons Modified Gravity

    NASA Astrophysics Data System (ADS)

    Efstratiou, P.

    2013-09-01

    This presentation will be based on my, undergraduate, thesis at Aristotle University of Thessoliniki with the same subject, supervised by Professor Demetrios Papadopoulos. I will first present the general mathematical formulation of the Chern-Simons (CS) modified gravity, which is split in a dynamical and a non-dynamical context, and the different physical theories which suggest this modification. Then proceed by examing the possibility that the CS theory shares solutions with General Relativity in both contexts. In the non-dynamical context I will present a new, undocumented solution as well as all the other possible solutions found to date. I will conclude by arguing that General Relativity and CS Theory share any solutions in the dynamical context.

  20. Geometry of modified Newtonian dynamics

    NASA Astrophysics Data System (ADS)

    Skordis, Constantinos; Zlosnik, Tom

    2012-02-01

    Modified Newtonian dynamics is an empirical modification to Poisson’s equation which has had success in accounting for the “gravitational field” Φ in a variety of astrophysical systems. The field Φ may be interpreted in terms of the weak-field limit of a variety of spacetime geometries. Here we consider three of these geometries in a more comprehensive manner and look at the effect on timelike and null geodesics. In particular we consider the aquadratic Lagrangian (AQUAL) theory, tensor-vector-scalar (TeVeS) theory and generalized Einstein-aether theory. We uncover a number of novel features, some of which are specific to the theory considered while others are generic. In the case of AQUAL and TeVeS theories, the spacetime exhibits an excess (AQUAL) or deficit TeVeS solid angle akin to the case of a Barriola-Vilenkin global monopole. In the case of generalized Einstein-aether, a disformal symmetry of the action emerges in the limit of ∇→Φ→0. Finally, in all theories studied, massive particles can never reach spatial infinity while photons can do so only after experiencing infinite redshift.

  1. An improved prediction of the human in vivo intestinal permeability and BCS class of drugs using the in vitro permeability ratio obtained for rat intestine using an Ussing chamber system.

    PubMed

    Li, Hong; Jin, Hyo-Eon; Shim, Won-Sik; Shim, Chang-Koo

    2013-10-01

    The Biopharmaceutics Classification System (BCS) was developed to facilitate estimation of the in vivo pharmacokinetic performance of drugs from human intestinal permeability and solubility. However, the measurement of human in vivo intestinal permeability, unlike that of solubility, is problematic and inefficient. Thus, rat in vitro intestinal permeability results obtained via the Ussing chamber technique are often used instead. However, these data could be unreliable due to difficulty in maintaining the viability of the dissected intestinal membrane in the Ussing chamber. Therefore, a more efficient method to obtain a reliable in vitro permeability is mandatory. Here, we propose a new approach by introducing a novel factor called the permeability ratio (PR). Basically, PR is a rat in vitro intestinal permeability obtained from the Ussing chamber, which is then corrected by the permeability of lucifer yellow, a paracellular permeability marker. To prove the validity of the method, 12 model drugs representing different BCS classes were tested, and the correlation with human in vivo intestinal permeability was high. More importantly, the new method perfectly classified all 12 model drugs. The results indicate that PR is a reliable factor with high correlation to human in vivo intestinal permeability, which can further be used to accurately predict the BCS classification.

  2. Observational tests of modified gravity

    SciTech Connect

    Jain, Bhuvnesh; Zhang Pengjie

    2008-09-15

    Modifications of general relativity provide an alternative explanation to dark energy for the observed acceleration of the Universe. Modified gravity theories have richer observational consequences for large-scale structures than conventional dark energy models, in that different observables are not described by a single growth factor even in the linear regime. We examine the relationships between perturbations in the metric potentials, density and velocity fields, and discuss strategies for measuring them using gravitational lensing, galaxy cluster abundances, galaxy clustering/dynamics, and the integrated Sachs-Wolfe effect. We show how a broad class of gravity theories can be tested by combining these probes. A robust way to interpret observations is by constraining two key functions: the ratio of the two metric potentials, and the ratio of the gravitational 'constant' in the Poisson equation to Newton's constant. We also discuss quasilinear effects that carry signatures of gravity, such as through induced three-point correlations. Clustering of dark energy can mimic features of modified gravity theories and thus confuse the search for distinct signatures of such theories. It can produce pressure perturbations and anisotropic stresses, which break the equality between the two metric potentials even in general relativity. With these two extra degrees of freedom, can a clustered dark energy model mimic modified gravity models in all observational tests? We show with specific examples that observational constraints on both the metric potentials and density perturbations can in principle distinguish modifications of gravity from dark energy models. We compare our result with other recent studies that have slightly different assumptions (and apparently contradictory conclusions)

  3. Cosmological tests of modified gravity.

    PubMed

    Koyama, Kazuya

    2016-04-01

    We review recent progress in the construction of modified gravity models as alternatives to dark energy as well as the development of cosmological tests of gravity. Einstein's theory of general relativity (GR) has been tested accurately within the local universe i.e. the Solar System, but this leaves the possibility open that it is not a good description of gravity at the largest scales in the Universe. This being said, the standard model of cosmology assumes GR on all scales. In 1998, astronomers made the surprising discovery that the expansion of the Universe is accelerating, not slowing down. This late-time acceleration of the Universe has become the most challenging problem in theoretical physics. Within the framework of GR, the acceleration would originate from an unknown dark energy. Alternatively, it could be that there is no dark energy and GR itself is in error on cosmological scales. In this review, we first give an overview of recent developments in modified gravity theories including f(R) gravity, braneworld gravity, Horndeski theory and massive/bigravity theory. We then focus on common properties these models share, such as screening mechanisms they use to evade the stringent Solar System tests. Once armed with a theoretical knowledge of modified gravity models, we move on to discuss how we can test modifications of gravity on cosmological scales. We present tests of gravity using linear cosmological perturbations and review the latest constraints on deviations from the standard [Formula: see text]CDM model. Since screening mechanisms leave distinct signatures in the non-linear structure formation, we also review novel astrophysical tests of gravity using clusters, dwarf galaxies and stars. The last decade has seen a number of new constraints placed on gravity from astrophysical to cosmological scales. Thanks to on-going and future surveys, cosmological tests of gravity will enjoy another, possibly even more, exciting ten years. PMID:27007681

  4. Cosmological tests of modified gravity.

    PubMed

    Koyama, Kazuya

    2016-04-01

    We review recent progress in the construction of modified gravity models as alternatives to dark energy as well as the development of cosmological tests of gravity. Einstein's theory of general relativity (GR) has been tested accurately within the local universe i.e. the Solar System, but this leaves the possibility open that it is not a good description of gravity at the largest scales in the Universe. This being said, the standard model of cosmology assumes GR on all scales. In 1998, astronomers made the surprising discovery that the expansion of the Universe is accelerating, not slowing down. This late-time acceleration of the Universe has become the most challenging problem in theoretical physics. Within the framework of GR, the acceleration would originate from an unknown dark energy. Alternatively, it could be that there is no dark energy and GR itself is in error on cosmological scales. In this review, we first give an overview of recent developments in modified gravity theories including f(R) gravity, braneworld gravity, Horndeski theory and massive/bigravity theory. We then focus on common properties these models share, such as screening mechanisms they use to evade the stringent Solar System tests. Once armed with a theoretical knowledge of modified gravity models, we move on to discuss how we can test modifications of gravity on cosmological scales. We present tests of gravity using linear cosmological perturbations and review the latest constraints on deviations from the standard [Formula: see text]CDM model. Since screening mechanisms leave distinct signatures in the non-linear structure formation, we also review novel astrophysical tests of gravity using clusters, dwarf galaxies and stars. The last decade has seen a number of new constraints placed on gravity from astrophysical to cosmological scales. Thanks to on-going and future surveys, cosmological tests of gravity will enjoy another, possibly even more, exciting ten years.

  5. Cosmological tests of modified gravity

    NASA Astrophysics Data System (ADS)

    Koyama, Kazuya

    2016-04-01

    We review recent progress in the construction of modified gravity models as alternatives to dark energy as well as the development of cosmological tests of gravity. Einstein’s theory of general relativity (GR) has been tested accurately within the local universe i.e. the Solar System, but this leaves the possibility open that it is not a good description of gravity at the largest scales in the Universe. This being said, the standard model of cosmology assumes GR on all scales. In 1998, astronomers made the surprising discovery that the expansion of the Universe is accelerating, not slowing down. This late-time acceleration of the Universe has become the most challenging problem in theoretical physics. Within the framework of GR, the acceleration would originate from an unknown dark energy. Alternatively, it could be that there is no dark energy and GR itself is in error on cosmological scales. In this review, we first give an overview of recent developments in modified gravity theories including f(R) gravity, braneworld gravity, Horndeski theory and massive/bigravity theory. We then focus on common properties these models share, such as screening mechanisms they use to evade the stringent Solar System tests. Once armed with a theoretical knowledge of modified gravity models, we move on to discuss how we can test modifications of gravity on cosmological scales. We present tests of gravity using linear cosmological perturbations and review the latest constraints on deviations from the standard Λ CDM model. Since screening mechanisms leave distinct signatures in the non-linear structure formation, we also review novel astrophysical tests of gravity using clusters, dwarf galaxies and stars. The last decade has seen a number of new constraints placed on gravity from astrophysical to cosmological scales. Thanks to on-going and future surveys, cosmological tests of gravity will enjoy another, possibly even more, exciting ten years.

  6. Finite temperature theory of spin-orbit coupled fermions in three dimensions in the presence of external Zeeman fields and tunable s-wave interactions

    NASA Astrophysics Data System (ADS)

    Powell, Philip; Baym, Gordon; Sa de Melo, Carlos

    We develop a finite temperature theory of ultracold three-dimensional Fermi gases in the presence of artificial spin-orbit coupling, Zeeman fields, and tunable s-wave interactions. With the inclusion of quadratic fluctuations, we compute both the critical temperature for superfluidity and the population of bound and unbound fermions throughout the evolution from the Bardeen-Cooper-Schrieffer (BCS) to Bose-Einstein condensate (BEC) regimes. In particular, we show that in the BEC regime, spin-orbit coupling is capable of increasing the critical temperature relative to the no-field case, by inducing a triplet component to the superfluid order parameter, while decreasing the many-body effective mass. We also derive the time-dependent Ginzburg-Landau equation to sixth-order in the superfluid order parameter, and obtain explicit expressions for the coefficients of the effective theory valid across the entire evolution from BCS to BEC superfluidity.

  7. Comparison of the Permeability of Metoprolol and Labetalol in Rat, Mouse and Caco-2 Cells: Use as a Reference Standard for BCS Classification

    PubMed Central

    Incecayir, Tuba; Tsume, Yasuhiro; Amidon, Gordon L.

    2013-01-01

    The purpose of this study was to investigate labetalol as a potential high permeability reference standard for the application of Biopharmaceutics Classification Systems (BCS). Permeabilities of labetalol and metoprolol were investigated in animal intestinal perfusion models and Caco-2 cell monolayers. After isolating specific intestinal segments, in situ single-pass intestinal perfusions (SPIP) were performed in rats and mice. The effective permeabilities (Peff) of labetalol and metoprolol, an FDA standard for the low/high Peff class boundary, were investigated in two different segments of rat intestine (proximal jejunum and distal ileum), and in the proximal jejunum of mouse. No significant difference was found between Peff of metoprolol and labetalol in the jejunum and ileum of rat (0.33±0.11 ×10−4 vs. 0.38±0.06 ×10−4 and 0.57±0.17 ×10−4 vs. 0.64±0.30 ×10−4 cm/s, respectively) and in the jejunum of mouse (0.55±0.05 ×10−4 vs. 0.59±0.13 ×10−4 cm/s). However, Peff of metoprolol and labetalol were 1.7 and 1.6 times higher in the jejunum of mouse, compared to the jejunum of rat, respectively. Metoprolol and labetalol showed segmental dependent permeability through the rat intestine, with increased Peff in the distal ileum in comparison to the proximal jejunum. Most significantly, Peff of labetalol was found to be concentration dependent. Decreasing concentrations of labetalol in the perfusate resulted in decreased Peff compared to Peff of metoprolol. The intestinal epithelial permeability of labetalol was lower than that of metoprolol in Caco-2 cells at both apical pH 6.5 and 7.5 (5.96±1.96 ×10−6 vs. 9.44±3.44 ×10−6 and 15.9±2.2 ×10−6 vs. 23.2±7.1 ×10−6 cm/s, respectively). Labetalol exhibited higher permeability in basolateral to apical (BL-AP) compared to AP-BL direction in Caco-2 cells at 0.1 times the highest dose strength (HDS) (46.7±6.5 ×10−6 vs. 14.2±1.5 ×10−6 cm/s). The P-gp inhibitor, verapamil significantly

  8. Sodium alginate as a potential carrier in solid dispersion formulations to enhance dissolution rate and apparent water solubility of BCS II drugs.

    PubMed

    Borba, Paola Aline Amarante; Pinotti, Marihá; de Campos, Carlos Eduardo Maduro; Pezzini, Bianca Ramos; Stulzer, Hellen Karine

    2016-02-10

    The solid dispersion technique is the most effective method for improving the dissolution rate of poorly water-soluble drugs, however it depends on a suitable carrier selection. The work explored the use of the biopolymer sodium alginate (SA) as a potential carrier in solid dispersions (SD). The data demonstrated that SA was able to improve the biopharmaceutical properties of the BCS II drug telmisartan (TEL) of low solubility even using relative small drug:polymer ratio. A solid state grinding process was used to prepare the solid dispersions (SD) during 45 min. The SD were prepared in different proportions of drug and carrier of 1:1, 1:3, 1:5, 1:7 and 1:9 (mass/mass). DSC, XRPD, FTIR and Raman confirmed the presence of molecular interactions between TEL and the carrier. FTIR supports the presence of hydrogen bonds between TEL and the carrier. SD_1:5, SD_1:7 and SD_1:9 enhanced the dissolution rate of the drug releasing more than 80% of the drug in just 30 min (83%, 84% and 87%). The the t-test results demonstrated equal dissolution efficiency values for SD_1:7 and Micardis(®), however the similarity (f2) and difference (f1) fit factors showed that the SD and Micardis(®) are statistically different. The physical stability studies demonstrated that SD using sodium alginate as a carrier remained unchanged during the period of 90 days at room temperature, showing that the sodium alginate acts as a good anti plasticizer agent, preventing the drug recrystallization. PMID:26686139

  9. pH-Dependent Solubility and Dissolution Behavior of Carvedilol--Case Example of a Weakly Basic BCS Class II Drug.

    PubMed

    Hamed, Rania; Awadallah, Areeg; Sunoqrot, Suhair; Tarawneh, Ola; Nazzal, Sami; AlBaraghthi, Tamadur; Al Sayyad, Jihan; Abbas, Aiman

    2016-04-01

    The objective of this study was to investigate the pH-dependent solubility and dissolution of weakly basic Biopharmaceutical Classification Systems (BCS) class II drugs, characterized by low solubility and high permeability, using carvedilol, a weak base with a pK a value of 7.8, as a model drug. A series of solubility and in vitro dissolution studies was carried out using media that simulate the gastric and intestinal fluids and cover the physiological pH range of the GI from 1.2 to 7.8. The effect of ionic strength, buffer capacity, and buffer species of the dissolution media on the solubility and dissolution behavior of carvedilol was also investigated. The study revealed that carvedilol exhibited a typical weak base pH-dependent solubility profile with a high solubility at low pH (545.1-2591.4 μg/mL within the pH range 1.2-5.0) and low solubility at high pH (5.8-51.9 μg/mL within the pH range 6.5-7.8). The dissolution behavior of carvedilol was consistent with the solubility results, where carvedilol release was complete (95.8-98.2% released within 60 min) in media simulating the gastric fluid (pH 1.2-5.0) and relatively low (15.9-86.2% released within 240 min) in media simulating the intestinal fluid (pH 6.5-7.8). It was found that the buffer species of the dissolution media may influence the solubility and consequently the percentage of carvedilol released by forming carvedilol salts of varying solubilities. Carvedilol solubility and dissolution decreased with increasing ionic strength, while lowering the buffer capacity resulted in a decrease in carvedilol solubility and dissolution rate.

  10. Sodium alginate as a potential carrier in solid dispersion formulations to enhance dissolution rate and apparent water solubility of BCS II drugs.

    PubMed

    Borba, Paola Aline Amarante; Pinotti, Marihá; de Campos, Carlos Eduardo Maduro; Pezzini, Bianca Ramos; Stulzer, Hellen Karine

    2016-02-10

    The solid dispersion technique is the most effective method for improving the dissolution rate of poorly water-soluble drugs, however it depends on a suitable carrier selection. The work explored the use of the biopolymer sodium alginate (SA) as a potential carrier in solid dispersions (SD). The data demonstrated that SA was able to improve the biopharmaceutical properties of the BCS II drug telmisartan (TEL) of low solubility even using relative small drug:polymer ratio. A solid state grinding process was used to prepare the solid dispersions (SD) during 45 min. The SD were prepared in different proportions of drug and carrier of 1:1, 1:3, 1:5, 1:7 and 1:9 (mass/mass). DSC, XRPD, FTIR and Raman confirmed the presence of molecular interactions between TEL and the carrier. FTIR supports the presence of hydrogen bonds between TEL and the carrier. SD_1:5, SD_1:7 and SD_1:9 enhanced the dissolution rate of the drug releasing more than 80% of the drug in just 30 min (83%, 84% and 87%). The the t-test results demonstrated equal dissolution efficiency values for SD_1:7 and Micardis(®), however the similarity (f2) and difference (f1) fit factors showed that the SD and Micardis(®) are statistically different. The physical stability studies demonstrated that SD using sodium alginate as a carrier remained unchanged during the period of 90 days at room temperature, showing that the sodium alginate acts as a good anti plasticizer agent, preventing the drug recrystallization.

  11. Multi-Component Ginzburg-Landau Theory: Microscopic Derivation and Examples

    NASA Astrophysics Data System (ADS)

    Frank, Rupert L.; Lemm, Marius

    2016-09-01

    This paper consists of three parts. In part I, we microscopically derive Ginzburg--Landau (GL) theory from BCS theory for translation-invariant systems in which multiple types of superconductivity may coexist. Our motivation are unconventional superconductors. We allow the ground state of the effective gap operator $K_{T_c}+V$ to be $n$-fold degenerate and the resulting GL theory then couples $n$ order parameters. In part II, we study examples of multi-component GL theories which arise from an isotropic BCS theory. We study the cases of (a) pure $d$-wave order parameters and (b) mixed $(s+d)$-wave order parameters, in two and three dimensions. In part III, we present explicit choices of spherically symmetric interactions $V$ which produce the examples in part II. In fact, we find interactions $V$ which produce ground state sectors of $K_{T_c}+V$ of arbitrary angular momentum, for open sets of of parameter values. This is in stark contrast with Schr\\"odinger operators $-\

  12. Improved equivalent source theory.

    PubMed

    Umul, Yusuf Z

    2009-08-01

    The equivalent source theorem, which is an important technique in the study of radiation and scattering by apertures, is improved by using the two axioms of the modified theory of physical optics. The method is applied to the problem of radiation of electromagnetic waves by a parallel plate waveguide. The results are investigated numerically.

  13. Pairing phase transition and thermodynamical quantities in 148,149Sm

    NASA Astrophysics Data System (ADS)

    Razavi, R.; Behkami, A. N.; Dehghani, V.

    2014-10-01

    The nuclear level densities and entropies in 148,149Sm have been calculated in the framework of the superconducting theory that includes modified nuclear pairing gap. For modified pairing gap parameter the smooth transition from the BCS to the Fermi type distributions is used. By applying modified pairing gap, the extracted S-shaped heat capacity as a function of nuclear temperature exhibits a physical and smoother behavior instead of the singular behavior predicted by the BCS equations at critical temperature.

  14. Energy conditions in modified gravity

    NASA Astrophysics Data System (ADS)

    Capozziello, Salvatore; Lobo, Francisco S. N.; Mimoso, José P.

    2014-03-01

    We consider generalized energy conditions in modified theories of gravity by taking into account the further degrees of freedom related to scalar fields and curvature invariants. The latter are usually recast as generalized geometrical fluids that have different meanings with respect to the standard matter fluids generally adopted as sources of the field equations. More specifically, in modified gravity the curvature terms are grouped in a tensor H and a coupling g(Ψi) that can be reorganized in effective Einstein field equations, as corrections to the energy-momentum tensor of matter. The formal validity of such inequalities does not assure some basic requirements such as the attractive nature of gravity, so that the energy conditions have to be considered in a wider sense.

  15. Matrix Models, Monopoles and Modified Moduli

    NASA Astrophysics Data System (ADS)

    Erlich, Joshua; Hong, Sungho; Unsal, Mithat

    2004-09-01

    Motivated by the Dijkgraaf-Vafa correspondence, we consider the matrix model duals of Script N = 1 supersymmetric SU(Nc) gauge theories with Nf flavors. We demonstrate via the matrix model solutions a relation between vacua of theories with different numbers of colors and flavors. This relation is due to an Script N = 2 nonrenormalization theorem which is inherited by these Script N = 1 theories. Specializing to the case Nf = Nc, the simplest theory containing baryons, we demonstrate that the explicit matrix model predictions for the locations on the Coulomb branch at which monopoles condense are consistent with the quantum modified constraints on the moduli in the theory. The matrix model solutions include the case that baryons obtain vacuum expectation values. In specific cases we check explicitly that these results are also consistent with the factorization of corresponding Seiberg-Witten curves. Certain results are easily understood in terms of M5-brane constructions of these gauge theories.

  16. Nonhomogeneous Cooling, Entropic Gravity and MOND Theory

    NASA Astrophysics Data System (ADS)

    Neto, Jorge Ananias

    2011-11-01

    In this paper, by using the holographic principle, a modified equipartition theorem where we assume that below a critical temperature the energy is not equally divided on all bits, and the Unruh temperature, we derive MOND theory and a modified Friedmann equation compatible with MOND theory. Furthermore, we rederive a modified Newton's law of gravitation by employing an adequate redefinition of the numbers of bits.

  17. Quantum field theory for condensation of bosons and fermions

    SciTech Connect

    De Souza, Adriano N.; Filho, Victo S.

    2013-03-25

    In this brief review, we describe the formalism of the quantum field theory for the analysis of the condensation phenomenon in bosonic systems, by considering the cases widely verified in laboratory of trapped gases as condensate states, either with attractive or with repulsive two-body interactions. We review the mathematical formulation of the quantum field theory for many particles in the mean-field approximation, by adopting contact interaction potential. We also describe the phenomenon of condensation in the case of fermions or the degenerate Fermi gas, also verified in laboratory in the crossover BEC-BCS limit. We explain that such a phenomenon, equivalent to the bosonic condensation, can only occur if we consider the coupling of particles in pairs behaving like bosons, as occurs in the case of Cooper's pairs in superconductivity.

  18. String Theory and Gauge Theories

    SciTech Connect

    Maldacena, Juan

    2009-02-20

    We will see how gauge theories, in the limit that the number of colors is large, give string theories. We will discuss some examples of particular gauge theories where the corresponding string theory is known precisely, starting with the case of the maximally supersymmetric theory in four dimensions which corresponds to ten dimensional string theory. We will discuss recent developments in this area.

  19. Evaluation of Single Nucleotide Polymorphisms (SNPs) in the p53 Binding Protein 1 (TP53BP1) Gene in Breast Cancer Patients Treated With Breast-Conserving Surgery and Whole-Breast Irradiation (BCS + RT)

    SciTech Connect

    Haffty, Bruce G.; Goyal, Sharad; Kulkarni, Diptee; Green, Camille; Vazquez, Alexi; Schiff, Devora; Moran, Meena S.; Yang Qifeng; Ganesan, Shridar; Hirsfield, Kim M.

    2011-06-01

    Purpose: TP53BP1 is a key component of radiation-induced deoxyribonucleic acid damage repair. The purpose of this study was to evaluate the significance of a known common single nucleotide polymorphism in this gene (rs560191) in patients treated with breast-conserving surgery and whole-breast irradiation (BCS + RT). Methods and Materials: The population consisted of 176 premenopausal women treated with BCS + RT (median follow-up, 12 years). Genomic deoxyribonucleic acid was processed by use of TaqMan assays. Each allele for rs560191 was either C or G, so each patient was therefore classified as CC, CG, or GG. Patients were grouped as GG if they were homozygous for the variant G allele or CC-CG if they carried at least one copy of the common C allele (CC or CG). Results: Of the 176 women, 124 (71%) were CC-CG and 52 (29%) were GG. The mean age was 44 years for GG vs. 38 years for CC-CG (p < 0.001). GG was more common in African-American women than white women (69% vs. 13%, p < 0.001) and more commonly estrogen receptor negative (70% vs. 49%, p = 0.02). There were no significant correlations of rs560191 with other critical variables. Despite the fact that GG patients were older, the 10-year rate of local relapses was higher (22% for GG vs. 12% for CC-CG, p = 0.04). Conclusions: This novel avenue of investigation of polymorphisms in radiation repair/response genes in patients treated with BCS + RT suggests a correlation to local relapse. Additional evaluation is needed to assess the biological and functional significance of these single nucleotide polymorphisms, and larger confirmatory validation studies will be required to determine the clinical implications.

  20. Geographical Theories.

    ERIC Educational Resources Information Center

    Golledge, Reginald G.

    1996-01-01

    Discusses the origin of theories in geography and particularly the development of location theories. Considers the influence of economic theory on agricultural land use, industrial location, and geographic location theories. Explores a set of interrelated activities that show how the marketing process illustrates process theory. (MJP)

  1. Axial symmetry, anti-BRST invariance, and modified anomalies

    NASA Astrophysics Data System (ADS)

    Varshovi, Amir Abbass

    2016-07-01

    It is shown that, anti-BRST symmetry is the quantized counterpart of local axial symmetry in gauge theories. An extended form of descent equations is worked out, which yields a set of modified consistent anomalies.

  2. Hamiltonian formulation of the modified Hasegawa-Mima equation

    NASA Astrophysics Data System (ADS)

    Chandre, C.; Morrison, P. J.; Tassi, E.

    2014-02-01

    We derive the Hamiltonian structure of the modified Hasegawa-Mima equation from the ion fluid equations applying Dirac's theory of constraints. We discuss the Casimirs obtained from the corresponding Poisson structure.

  3. Studying temperature dependence of pairing gap parameter in a nucleus as a small superconducting system

    NASA Astrophysics Data System (ADS)

    Rahmatinejad, A.; Razavi, R.; Kakavand, T.

    2016-07-01

    In this paper, we have taken the effect of small size of nucleus and static fluctuations into account in the Bardeen-Cooper-Schrieffer (BCS) theory of superconductivity calculations of 45Ti nucleus. Thermodynamic quantities of 45Ti have been extracted within the BCS model with the inclusion of the average value of the pairing gap square, extracted by the modified Ginzburg-Landau (MGL) method for small systems. Calculated values of the excitation energy and entropy within the MGL+BCS method improve the extracted results within the usual BCS model and show a smooth behavior around the critical temperature with a very good agreement with the semi-empirical values. The result of using MGL+BCS method for the heat capacity of 45Ti is compared with the corresponding semi-empirical values and the calculated values within the BCS, static path approximation (SPA) and Modified Pairing gap BCS (MPBCS) which is a method that was proposed in our previous publications. Both MGL+BCS and MPBCS avoid the discontinuity of the heat capacity curve, which is observed in the usual BCS method, and lead to an S-shaped curve with a good agreement with the semi-empirical results.

  4. Scientific perspectives on extending the provision for waivers of in vivo bioavailability and bioequivalence studies for drug products containing high solubility-low permeability drugs (BCS-Class 3).

    PubMed

    Stavchansky, Salomon

    2008-06-01

    Recently, there has been increased interest in extending the provision for waivers of in vivo bioavailability and bioequivalence (BA-BE) studies that appeared in the guidance published by the Food and Drug Administration (FDA) (1) to pharmaceutical products containing Class 3 drugs (High solubility-Low Permeability). The extension of the Biopharmaceutics Classification System (BCS) to Class 3 drugs is meritorious because of its impact on public health policy considerations. The rate limiting step in the absorption of Class 3 drugs is the permeability through the intestinal membrane. This commentary will focus its attention on the scientific considerations which need to be examined to assess the risk and the benefit prior to granting a waiver of in vivo bioavailability and/or bioequivalence studies for Class 3 drugs. It will examine the forces affecting the interconnectivity of the neuronal, immunological and hormonal systems in the gastrointestinal tract that may affect its permeability and functionality. It will also challenge the assumption that in vitro dissolution and in vitro permeability studies in tissue cultures in the presence and absence of excipients are good predictors for in vivo dissolution and in vivo permeability which are at the heart of the BCS.

  5. Modified negative-branch confocal unstable resonator.

    PubMed

    Hall, Thomas; Duschek, Frank; Grünewald, Karin M; Handke, Jürgen

    2006-12-01

    A new type of unstable resonator, suitable for a laser with a large medium cross section and a small or median output coupling, is presented. The resonator configuration, a modification of a negative-branch confocal unstable resonator, is numerically investigated. The basis of the theory is the Fresnel-Kirchhoff integral equation, and the calculations describe a passive resonator. With respect to output mirror tilting, the calculations confirm that the modified negative-branch confocal unstable resonator is less sensitive to mirror misalignments than the conventional negative-branch confocal unstable resonator. Furthermore, the modified resonator improves the beam quality in comparison with the conventional unstable resonator. PMID:17119575

  6. Kinetic density functional theory of freezing.

    PubMed

    Baskaran, Arvind; Baskaran, Aparna; Lowengrub, John

    2014-11-01

    A theory of freezing of a dense hard sphere gas is presented. Starting from a revised Enskog theory, hydrodynamic equations that account for non-local variations in the density but local variations in the flow field are derived using a modified Chapman Enskog procedure. These hydrodynamic equations, which retain structural correlations, are shown to be effectively a time dependent density functional theory. The ability of this theory to capture the solid liquid phase transition is established through analysis and numerical simulations.

  7. Modified Mason number for charged paramagnetic colloidal suspensions.

    PubMed

    Du, Di; Hilou, Elaa; Biswal, Sibani Lisa

    2016-06-01

    The dynamics of magnetorheological fluids have typically been described by the Mason number, a governing parameter defined as the ratio between viscous and magnetic forces in the fluid. For most experimental suspensions of magnetic particles, surface forces, such as steric and electrostatic interactions, can significantly influence the dynamics. Here we propose a theory of a modified Mason number that accounts for surface forces and show that this modified Mason number is a function of interparticle distance. We demonstrate that this modified Mason number is accurate in describing the dynamics of a rotating pair of paramagnetic colloids of identical or mismatched sizes in either high or low salt solutions. The modified Mason number is confirmed to be pseudoconstant for particle pairs and particle chains undergoing a stable-metastable transition during rotation. The interparticle distance term can be calculated using theory or can be measured experimentally. This modified Mason number is more applicable to magnetorheological systems where surface forces are not negligible. PMID:27415316

  8. Modified Mason number for charged paramagnetic colloidal suspensions

    NASA Astrophysics Data System (ADS)

    Du, Di; Hilou, Elaa; Biswal, Sibani Lisa

    2016-06-01

    The dynamics of magnetorheological fluids have typically been described by the Mason number, a governing parameter defined as the ratio between viscous and magnetic forces in the fluid. For most experimental suspensions of magnetic particles, surface forces, such as steric and electrostatic interactions, can significantly influence the dynamics. Here we propose a theory of a modified Mason number that accounts for surface forces and show that this modified Mason number is a function of interparticle distance. We demonstrate that this modified Mason number is accurate in describing the dynamics of a rotating pair of paramagnetic colloids of identical or mismatched sizes in either high or low salt solutions. The modified Mason number is confirmed to be pseudoconstant for particle pairs and particle chains undergoing a stable-metastable transition during rotation. The interparticle distance term can be calculated using theory or can be measured experimentally. This modified Mason number is more applicable to magnetorheological systems where surface forces are not negligible.

  9. Modifying Classroom Behavior

    ERIC Educational Resources Information Center

    Heifetz, Louis J.; Farber, Barry A.

    1976-01-01

    An introductory framework for analyzing and modifying classroom behavior...is followed by presentation of illustrative case materials, discussion of philosophical and ethical issues, analysis of pitfalls to be avoided, and consideration of limitations inherent in behavioral approaches. (Author)

  10. Biological response modifiers

    SciTech Connect

    Weller, R.E.

    1988-10-01

    Much of what used to be called immunotherapy is now included in the term biological response modifiers. Biological response modifiers (BRMs) are those agents or approaches that modify the relationship between the tumor and host by modifying the host's biological response to tumor cells with resultant therapeutic effects. Most of the early work with BRMs centered around observations of spontaneous tumor regression and the association of tumor regression with concurrent bacterial infections. The BRM can modify the host response by increasing the host's antitumor responses through augmentation and/or restoration of effector mechanisms or mediators of the host's defense or decrease the deleterious component by the host's reaction, increasing the host's defenses by the administration of natural biologics (or the synthetic derivatives thereof) as effectors or mediators of an antitumor response, augmenting the host's response to modified tumor cells or vaccines, which might stimulate a greater response by the host or increase tumor-cell sensitivity to an existing response, decreasing the transformation and/or increase differentiation (maturation) of tumor cells, or increasing the ability of the host to tolerate damage by cytotoxic modalities of cancer treatment.

  11. Biological response modifiers

    SciTech Connect

    Weller, R.E.

    1991-10-01

    Much of what used to be called immunotherapy is now included in the term biological response modifiers. Biological response modifiers (BRMs) are defined as those agents or approaches that modify the relationship between the tumor and host by modifying the host's biological response to tumor cells with resultant therapeutic effects.'' Most of the early work with BRMs centered around observations of spontaneous tumor regression and the association of tumor regression with concurrent bacterial infections. The BRM can modify the host response in the following ways: Increase the host's antitumor responses through augmentation and/or restoration of effector mechanisms or mediators of the host's defense or decrease the deleterious component by the host's reaction; Increase the host's defenses by the administration of natural biologics (or the synthetic derivatives thereof) as effectors or mediators of an antitumor response; Augment the host's response to modified tumor cells or vaccines, which might stimulate a greater response by the host or increase tumor-cell sensitivity to an existing response; Decrease the transformation and/or increase differentiation (maturation) of tumor cells; or Increase the ability of the host to tolerate damage by cytotoxic modalities of cancer treatment.

  12. Vantage Theory and Linguistic Relativity

    ERIC Educational Resources Information Center

    Allan, Keith

    2010-01-01

    Rob MacLaury's Vantage Theory, VT, models the way in which a cognizer constructs, recalls, uses, and modifies a category in terms of point of view or vantage. Alongside of VT, there is place for the kind of semantic specification found in the lexicon. VT2 [Allan, Keith, 2002. "Vantage theory, VT2, and number." "Language Sciences" 24(5-6), 679-703…

  13. Constraining Modified Gravity with SN 1987A

    NASA Astrophysics Data System (ADS)

    Zukin, Phillip; Bertschinger, Edmund

    2009-05-01

    In the 1950's, Papapetrou found that extended bodies with spin, in general relativity, do not move along geodesics because of a spin-curvature coupling. Using an Eikonal approximation, we reproduce these results for Dirac and Majorana particles. We generalize these results to modified theories of gravity with a non-minimally coupled matter lagrangian and place constraints on the coupling field based on the arrival times of SN 1987A neutrinos.

  14. Packaging Theory.

    ERIC Educational Resources Information Center

    Williams, Jeffrey

    1994-01-01

    Considers the recent flood of anthologies of literary criticism and theory as exemplifications of the confluence of pedagogical concerns, economics of publishing, and other historical factors. Looks specifically at how these anthologies present theory. Cites problems with their formatting theory and proposes alternative ways of organizing theory…

  15. Theoretical priors on modified growth parametrisations

    SciTech Connect

    Song, Yong-Seon; Hollenstein, Lukas; Caldera-Cabral, Gabriela; Koyama, Kazuya E-mail: Lukas.Hollenstein@unige.ch E-mail: Kazuya.Koyama@port.ac.uk

    2010-04-01

    Next generation surveys will observe the large-scale structure of the Universe with unprecedented accuracy. This will enable us to test the relationships between matter over-densities, the curvature perturbation and the Newtonian potential. Any large-distance modification of gravity or exotic nature of dark energy modifies these relationships as compared to those predicted in the standard smooth dark energy model based on General Relativity. In linear theory of structure growth such modifications are often parameterised by virtue of two functions of space and time that enter the relation of the curvature perturbation to, first, the matter over- density, and second, the Newtonian potential. We investigate the predictions for these functions in Brans-Dicke theory, clustering dark energy models and interacting dark energy models. We find that each theory has a distinct path in the parameter space of modified growth. Understanding these theoretical priors on the parameterisations of modified growth is essential to reveal the nature of cosmic acceleration with the help of upcoming observations of structure formation.

  16. Nonderivative modified gravity: a classification

    SciTech Connect

    Comelli, D.; Nesti, F.; Pilo, L. E-mail: fabrizio.nesti@irb.hr

    2014-11-01

    We analyze the theories of gravity modified by a generic nonderivative potential built from the metric, under the minimal requirement of unbroken spatial rotations. Using the canonical analysis, we classify the potentials V according to the number of degrees of freedom (DoF) that propagate at the nonperturbative level. We then compare the nonperturbative results with the perturbative DoF propagating around Minkowski and FRW backgrounds. A generic V implies 6 propagating DoF at the non-perturbative level, with a ghost on Minkowski background. There exist potentials which propagate 5 DoF, as already studied in previous works. Here, no V with unbroken rotational invariance admitting 4 DoF is found. Theories with 3 DoF turn out to be strongly coupled on Minkowski background. Finally, potentials with only the 2 DoF of a massive graviton exist. Their effect on cosmology is simply equivalent to a cosmological constant. Potentials with 2 or 5 DoF and explicit time dependence appear to be a further viable possibility.

  17. Modifying Moral Reasoning.

    ERIC Educational Resources Information Center

    Kaplan, Martin F.

    The application of Information Integration Theory (Anderson, 1981), a general model of social judgment, overcomes shortcomings in the evaluation of moral development by offering a clear distinction between moral values and reasoning. To test the applicability of Anderson's theory to moral development research, two experiments were conducted using…

  18. Grounded theory.

    PubMed

    Harris, Tina

    2015-04-29

    Grounded theory is a popular research approach in health care and the social sciences. This article provides a description of grounded theory methodology and its key components, using examples from published studies to demonstrate practical application. It aims to demystify grounded theory for novice nurse researchers, by explaining what it is, when to use it, why they would want to use it and how to use it. It should enable nurse researchers to decide if grounded theory is an appropriate approach for their research, and to determine the quality of any grounded theory research they read.

  19. Modified blank ammunition injuries.

    PubMed

    Ogunc, Gokhan I; Ozer, M Tahir; Coskun, Kagan; Uzar, Ali Ihsan

    2009-12-15

    Blank firing weapons are designed only for discharging blank ammunition cartridges. Because they are cost-effective, are easily accessible and can be modified to live firearms plus their unclear legal situation in Turkish Law makes them very popular in Turkey. 2004 through 2008, a total of 1115 modified blank weapons were seized in Turkey. Blank firing weapons are easily modified by owners, making them suitable for discharging live firearm ammunition or modified blank ammunitions. Two common methods are used for modification of blank weapons. After the modification, these weapons can discharge the live ammunition. However, due to compositional durability problems with these types of weapons; the main trend is to use the modified blank ammunitions rather than live firearm ammunition fired from modified blank firing weapons. In this study, two types of modified blank weapons and two types of modified blank cartridges were tested on three different target models. Each of the models' shooting side was coated with 1.3+/-2 mm thickness chrome tanned cowhide as a skin simulant. The first model was only coated with skin simulant. The second model was coated with skin simulant and 100% cotton police shirt. The third model was coated with skin simulant and jean denim. After the literature evaluation four high risky anatomic locations (the neck area; the eyes; the thorax area and inguinal area) were pointed out for the steel and lead projectiles are discharged from the modified blank weapons especially in close range (0-50 cm). The target models were designed for these anatomic locations. For the target models six Transparent Ballistic Candle blocks (TCB) were prepared and divided into two test groups. The first group tests were performed with lead projectiles and second group with steel projectile. The shortest penetration depth (lead projectile: 4.358 cm; steel projectile 8.032 cm) was recorded in the skin simulant and jean denim coated block for both groups. In both groups

  20. Modified blank ammunition injuries.

    PubMed

    Ogunc, Gokhan I; Ozer, M Tahir; Coskun, Kagan; Uzar, Ali Ihsan

    2009-12-15

    Blank firing weapons are designed only for discharging blank ammunition cartridges. Because they are cost-effective, are easily accessible and can be modified to live firearms plus their unclear legal situation in Turkish Law makes them very popular in Turkey. 2004 through 2008, a total of 1115 modified blank weapons were seized in Turkey. Blank firing weapons are easily modified by owners, making them suitable for discharging live firearm ammunition or modified blank ammunitions. Two common methods are used for modification of blank weapons. After the modification, these weapons can discharge the live ammunition. However, due to compositional durability problems with these types of weapons; the main trend is to use the modified blank ammunitions rather than live firearm ammunition fired from modified blank firing weapons. In this study, two types of modified blank weapons and two types of modified blank cartridges were tested on three different target models. Each of the models' shooting side was coated with 1.3+/-2 mm thickness chrome tanned cowhide as a skin simulant. The first model was only coated with skin simulant. The second model was coated with skin simulant and 100% cotton police shirt. The third model was coated with skin simulant and jean denim. After the literature evaluation four high risky anatomic locations (the neck area; the eyes; the thorax area and inguinal area) were pointed out for the steel and lead projectiles are discharged from the modified blank weapons especially in close range (0-50 cm). The target models were designed for these anatomic locations. For the target models six Transparent Ballistic Candle blocks (TCB) were prepared and divided into two test groups. The first group tests were performed with lead projectiles and second group with steel projectile. The shortest penetration depth (lead projectile: 4.358 cm; steel projectile 8.032 cm) was recorded in the skin simulant and jean denim coated block for both groups. In both groups

  1. Aminoglycoside Modifying Enzymes

    PubMed Central

    Ramirez, Maria S.; Tolmasky, Marcelo E.

    2010-01-01

    Aminoglycosides have been an essential component of the armamentarium in the treatment of life-threatening infections. Unfortunately, their efficacy has been reduced by the surge and dissemination of resistance. In some cases the levels of resistance reached the point that rendered them virtually useless. Among many known mechanisms of resistance to aminoglycosides, enzymatic modification is the most prevalent in the clinical setting. Aminoglycoside modifying enzymes catalyze the modification at different −OH or −NH2 groups of the 2-deoxystreptamine nucleus or the sugar moieties and can be nucleotidyltranferases, phosphotransferases, or acetyltransferases. The number of aminoglycoside modifying enzymes identified to date as well as the genetic environments where the coding genes are located is impressive and there is virtually no bacteria that is unable to support enzymatic resistance to aminoglycosides. Aside from the development of new aminoglycosides refractory to as many as possible modifying enzymes there are currently two main strategies being pursued to overcome the action of aminoglycoside modifying enzymes. Their successful development would extend the useful life of existing antibiotics that have proven effective in the treatment of infections. These strategies consist of the development of inhibitors of the enzymatic action or of the expression of the modifying enzymes. PMID:20833577

  2. Probability Theory

    NASA Astrophysics Data System (ADS)

    Jaynes, E. T.; Bretthorst, G. Larry

    2003-04-01

    Foreword; Preface; Part I. Principles and Elementary Applications: 1. Plausible reasoning; 2. The quantitative rules; 3. Elementary sampling theory; 4. Elementary hypothesis testing; 5. Queer uses for probability theory; 6. Elementary parameter estimation; 7. The central, Gaussian or normal distribution; 8. Sufficiency, ancillarity, and all that; 9. Repetitive experiments, probability and frequency; 10. Physics of 'random experiments'; Part II. Advanced Applications: 11. Discrete prior probabilities, the entropy principle; 12. Ignorance priors and transformation groups; 13. Decision theory: historical background; 14. Simple applications of decision theory; 15. Paradoxes of probability theory; 16. Orthodox methods: historical background; 17. Principles and pathology of orthodox statistics; 18. The Ap distribution and rule of succession; 19. Physical measurements; 20. Model comparison; 21. Outliers and robustness; 22. Introduction to communication theory; References; Appendix A. Other approaches to probability theory; Appendix B. Mathematical formalities and style; Appendix C. Convolutions and cumulants.

  3. Aerodynamic design via control theory

    NASA Technical Reports Server (NTRS)

    Jameson, Antony

    1988-01-01

    The question of how to modify aerodynamic design in order to improve performance is addressed. Representative examples are given to demonstrate the computational feasibility of using control theory for such a purpose. An introduction and historical survey of the subject is included.

  4. Generalized teleparallel theory

    NASA Astrophysics Data System (ADS)

    Junior, Ednaldo L. B.; Rodrigues, Manuel E.

    2016-07-01

    We construct a theory in which the gravitational interaction is described only by torsion, but that generalizes the teleparallel theory still keeping the invariance of local Lorentz transformations in one particular case. We show that our theory falls, in a certain limit of a real parameter, under f(bar{R}) gravity or, in another limit of the same real parameter, under modified f( T) gravity; on interpolating between these two theories it still can fall under several other theories. We explicitly show the equivalence with f(bar{R}) gravity for the cases of a Friedmann-Lemaître-Robertson-Walker flat metric for diagonal tetrads, and a metric with spherical symmetry for diagonal and non-diagonal tetrads. We study four applications, one in the reconstruction of the de Sitter universe cosmological model, for obtaining a static spherically symmetric solution of de Sitter type for a perfect fluid, for evolution of the state parameter ω _{DE}, and for the thermodynamics of the apparent horizon.

  5. Establishing conservation laws in pair-correlated many-body theories: T-matrix approaches

    NASA Astrophysics Data System (ADS)

    He, Yan; Levin, K.

    2014-01-01

    We address conservation laws associated with current, momentum, and energy and show how they can be satisfied within many body theories which focus on pair correlations. Of interest are two well known T-matrix theories which represent many body theories which incorporate pairing in the normal state. The first of these is associated with the Nozieres Schmitt-Rink theory, while the second involves the T matrix of a BCS-Leggett-like state as identified by Kadanoff and Martin. T-matrix theories begin with an ansatz for the single particle self energy and are to be distinguished from Φ-derivable theories which introduce an ansatz for a particular contribution to the thermodynamical potential. Conservation laws are equivalent to Ward identities which we address in some detail here. Although Φ-derivable theories are often referred to as "conserving theories," a consequence of this work is the demonstration that these two T-matrix approaches similarly can be made to obey all conservation laws. When simplifying approximations are made in Φ-derivable or other theories, one has to take care that the end results are not incompatible with conservation.

  6. Modified Embedded Atom Method

    2012-08-01

    Interatomic force and energy calculation subroutine to be used with the molecular dynamics simulation code LAMMPS (Ref a.). The code evaluated the total energy and atomic forces (energy gradient) according to a cubic spline-based variant (Ref b.) of the Modified Embedded Atom Method (MEAM) with a additional Stillinger-Weber (SW) contribution.

  7. Graph Theory

    SciTech Connect

    Sanfilippo, Antonio P.

    2005-12-27

    Graph theory is a branch of discrete combinatorial mathematics that studies the properties of graphs. The theory was pioneered by the Swiss mathematician Leonhard Euler in the 18th century, commenced its formal development during the second half of the 19th century, and has witnessed substantial growth during the last seventy years, with applications in areas as diverse as engineering, computer science, physics, sociology, chemistry and biology. Graph theory has also had a strong impact in computational linguistics by providing the foundations for the theory of features structures that has emerged as one of the most widely used frameworks for the representation of grammar formalisms.

  8. Game theory.

    PubMed

    Dufwenberg, Martin

    2011-03-01

    Game theory is a toolkit for examining situations where decision makers influence each other. I discuss the nature of game-theoretic analysis, the history of game theory, why game theory is useful for understanding human psychology, and why game theory has played a key role in the recent explosion of interest in the field of behavioral economics. WIREs Cogni Sci 2011 2 167-173 DOI: 10.1002/wcs.119 For further resources related to this article, please visit the WIREs website.

  9. Confabulation Theory

    NASA Astrophysics Data System (ADS)

    Solari, Soren; Smith, Andrew; Minnett, Rupert; Hecht-Nielsen, Robert

    2008-06-01

    Confabulation Theory [Hecht-Nielsen R. Confabulation theory. Springer-Verlag; 2007] is the first comprehensive theory of human and animal cognition. Here, we briefly describe Confabulation Theory and discuss experimental results that suggest the theory is correct. Simply put, Confabulation Theory proposes that thinking is like moving. In humans, the theory postulates that there are roughly 4000 thalamocortical modules, the “muscles of thought”. Each module performs an internal competition ( confabulation) between its symbols, influenced by inputs delivered via learned axonal associations with symbols in other modules. In each module, this competition is controlled, as in an individual muscle, by a single graded (i.e., analog) thought control signal. The final result of this confabulation process is a single active symbol, the expression of which also results in launching of action commands that trigger and control subsequent movements and/or thought processes. Modules are manipulated in groups under coordinated, event-contingent control, in a similar manner to our 700 muscles. Confabulation Theory hypothesizes that the control of thinking is a direct evolutionary outgrowth of the control of movement. Establishing a complete understanding of Confabulation Theory will require launching and sustaining a massive new phalanx of confabulation neuroscience research.

  10. The Dynamical Theory of X Ray Diffraction

    ERIC Educational Resources Information Center

    Balchin, A. A.; Whitehouse, C. R.

    1974-01-01

    Summarizes the Darwin theory of x-ray diffraction in thin crystals or crystals with a mosaic texture and its modified application to crystals with three-dimensional electrostatic dipoles. Indicates that the dynamical theory is brought into its present relevance by the improvement of single crystal growth techniques. (CC)

  11. Modified Epoxy Composites

    NASA Technical Reports Server (NTRS)

    Gilwee, W. J.

    1984-01-01

    The properties of a rubber-modified experimental epoxy resin and a standard epoxy as composite matrices were studied. In addition, a brominated epoxy resin was used in varying quantities to improve the fire resistance of the composite. The experimental resin was tris-(hydroxyphenyl)methane triglycidyl ether, known as tris epoxy novolac (TEN). The standard epoxy resin used was tetraglycidyl 4,4'-diaminodiphenyl methane (TGDDM). The above resins were modified with carboxyl-terminated butadiene acrylonitrile (CTBN) rubber. It is concluded that: (1) modification of TEN resin with bromine gives better impact resistance than rubber modification alone; (2) 25% rubber addition is necessary to obtain significant improvement in impact resistance; (3) impact resistance increases with bromine content; (4) impact velocity does not significantly affect the energy absorbed by the test sample; (5) Tg did not decline with rubber modification; and (6) TEN resin had better hot/wet properties than TGDDM resin.

  12. Modified Faraday cup

    DOEpatents

    Elmer, John W.; Teruya, Alan T.; O'Brien, Dennis W.

    1996-01-01

    A tomographic technique for measuring the current density distribution in electron beams using electron beam profile data acquired from a modified Faraday cup to create an image of the current density in high and low power beams. The modified Faraday cup includes a narrow slit and is rotated by a stepper motor and can be moved in the x, y and z directions. The beam is swept across the slit perpendicular thereto and controlled by deflection coils, and the slit rotated such that waveforms are taken every few degrees form 0.degree. to 360.degree. and the waveforms are recorded by a digitizing storage oscilloscope. Two-din-tensional and three-dimensional images of the current density distribution in the beam can be reconstructed by computer tomography from this information, providing quantitative information about the beam focus and alignment.

  13. Modified Faraday cup

    DOEpatents

    Elmer, J.W.; Teruya, A.T.; O`Brien, D.W.

    1996-09-10

    A tomographic technique for measuring the current density distribution in electron beams using electron beam profile data acquired from a modified Faraday cup to create an image of the current density in high and low power beams is disclosed. The modified Faraday cup includes a narrow slit and is rotated by a stepper motor and can be moved in the x, y and z directions. The beam is swept across the slit perpendicular thereto and controlled by deflection coils, and the slit rotated such that waveforms are taken every few degrees from 0{degree} to 360{degree} and the waveforms are recorded by a digitizing storage oscilloscope. Two-dimensional and three-dimensional images of the current density distribution in the beam can be reconstructed by computer tomography from this information, providing quantitative information about the beam focus and alignment. 12 figs.

  14. Genetically modified bacteriophages.

    PubMed

    Sagona, Antonia P; Grigonyte, Aurelija M; MacDonald, Paul R; Jaramillo, Alfonso

    2016-04-18

    Phages or bacteriophages, viruses that infect and replicate inside bacteria, are the most abundant microorganisms on earth. The realization that antibiotic resistance poses a substantial risk to the world's health and global economy is revitalizing phage therapy as a potential solution. The increasing ease by which phage genomes can be modified, owing to the influx of new technologies, has led to an expansion of their natural capabilities, and a reduced dependence on phage isolation from environmental sources. This review will discuss the way synthetic biology has accelerated the construction of genetically modified phages and will describe the wide range of their applications. It will further provide insight into the societal and economic benefits that derive from the use of recombinant phages in various sectors, from health to biodetection, biocontrol and the food industry.

  15. Genetically modified bacteriophages.

    PubMed

    Sagona, Antonia P; Grigonyte, Aurelija M; MacDonald, Paul R; Jaramillo, Alfonso

    2016-04-18

    Phages or bacteriophages, viruses that infect and replicate inside bacteria, are the most abundant microorganisms on earth. The realization that antibiotic resistance poses a substantial risk to the world's health and global economy is revitalizing phage therapy as a potential solution. The increasing ease by which phage genomes can be modified, owing to the influx of new technologies, has led to an expansion of their natural capabilities, and a reduced dependence on phage isolation from environmental sources. This review will discuss the way synthetic biology has accelerated the construction of genetically modified phages and will describe the wide range of their applications. It will further provide insight into the societal and economic benefits that derive from the use of recombinant phages in various sectors, from health to biodetection, biocontrol and the food industry. PMID:26906932

  16. Shear Strength Prediction By Modified Plasticity Theory For SFRC Beams

    SciTech Connect

    Colajanni, Piero; Recupero, Antonino; Spinella, Nino

    2008-07-08

    the plastic Crack Sliding Model (CSM) is extended for derivation of a physical model for the prediction of ultimate shear strength of SFRC beams, by assuming that the critical cracks is modeled by a yield lines. To this aim, the CSM is improved in order to take into account the strength increases due to the arch effect for deep beam. Then, the effectiveness factors for the concrete under biaxial stress are calibrated for fibrous concrete. The proposed model, able to provide the shear strength and the position of the critical cracks, is validate by a large set of test results collected in literature.

  17. A modified lifting line theory for wing-propeller interference

    NASA Technical Reports Server (NTRS)

    Prabhu, R. K.; Tiwari, S. N.

    1983-01-01

    An inviscid incompressible model for the interaction of a wing with a single propeller slipstream is presented. The model allows the perturbation quantities to be potential even though the undisturbed flow is rotational. The governing equations for the spanwise lift distribution are derived and a simple method of solving these is indicated. Spanwise lift and induced drag distribution for two cases are computed.

  18. Conformal transformations in modified teleparallel theories of gravity revisited

    NASA Astrophysics Data System (ADS)

    Wright, Matthew

    2016-05-01

    It is well known that one cannot apply a conformal transformation to f (T ) gravity to obtain a minimally coupled scalar field model, and thus no Einstein frame exists for f (T ) gravity. Furthermore nonminimally coupled "teleparallel dark energy models" are not conformally equivalent to f (T ) gravity. However, it can be shown that f (T ) gravity is conformally equivalent to a teleparallel phantom scalar field model with a nonminimal coupling to a boundary term only. In this work, we extend this analysis by considering a recently studied extended class of models, known as f (T ,B ) gravity, where B is a boundary term related to the divergence of a contraction of the torsion tensor. We find that nonminimally coupled "teleparallel dark energy models" are conformally equivalent to either an f (T ,B ) or f (B ) gravity model. Finally conditions on the functional form of f (T ,B ) gravity are derived to allow it to be transformed to particular nonminimally coupled scalar field models.

  19. RNA-modifying enzymes.

    PubMed

    Ferré-D'Amaré, Adrian R

    2003-02-01

    A bewildering number of post-transcriptional modifications are introduced into cellular RNAs by enzymes that are often conserved among archaea, bacteria and eukaryotes. The modifications range from those with well-understood functions, such as tRNA aminoacylation, to widespread but more mysterious ones, such as pseudouridylation. Recent structure determinations have included two types of RNA nucleobase modifying enzyme: pseudouridine synthases and tRNA guanine transglycosylases.

  20. Rashba Spin-Orbit Coupling, Strong Interactions, and the BCS-BEC Crossover in the Ground State of the Two-Dimensional Fermi Gas.

    PubMed

    Shi, Hao; Rosenberg, Peter; Chiesa, Simone; Zhang, Shiwei

    2016-07-22

    The recent experimental realization of spin-orbit coupled Fermi gases provides a unique opportunity to study the interplay between strong interaction and spin-orbit coupling (SOC) in a tunable, disorder-free system. We present here precision ab initio numerical results on the two-dimensional, unpolarized, uniform Fermi gas with attractive interactions and Rashba SOC. Using the auxiliary-field quantum Monte Carlo method and incorporating recent algorithmic advances, we carry out exact calculations on sufficiently large system sizes to provide accurate results systematically as a function of experimental parameters. We obtain the equation of state, the momentum distributions, the pseudospin correlations, and the pair wave functions. Our results help illuminate the rich pairing structure induced by SOC, and provide benchmarks for theory and guidance to future experimental efforts. PMID:27494461

  1. Modified energy-momentum conservation laws and vacuum Cherenkov radiation

    NASA Astrophysics Data System (ADS)

    Carmona, J. M.; Cortés, J. L.; Romeo, B.

    2015-12-01

    We present a general parametrization for the leading order terms in a momentum power expansion of a non-universal Lorentz-violating, but rotational invariant, kinematics and its implications for two-body decay thresholds. The considered framework includes not only modified dispersion relations for particles, but also modified energy-momentum conservation laws, something which goes beyond effective field theory. As a particular and relevant example, bounds on the departures from special relativistic kinematics from the non-observation of vacuum Cherenkov radiation are discussed and compared with those obtained within the effective field theory scenario.

  2. New Theory of Flight

    NASA Astrophysics Data System (ADS)

    Hoffman, Johan; Jansson, Johan; Johnson, Claes

    2016-06-01

    We present a new mathematical theory explaining the fluid mechanics of subsonic flight, which is fundamentally different from the existing boundary layer-circulation theory by Prandtl-Kutta-Zhukovsky formed 100 year ago. The new theory is based on our new resolution of d'Alembert's paradox showing that slightly viscous bluff body flow can be viewed as zero-drag/lift potential flow modified by 3d rotational slip separation arising from a specific separation instability of potential flow, into turbulent flow with nonzero drag/lift. For a wing this separation mechanism maintains the large lift of potential flow generated at the leading edge at the price of small drag, resulting in a lift to drag quotient of size 15-20 for a small propeller plane at cruising speed with Reynolds number {Re≈ 107} and a jumbojet at take-off and landing with {Re≈ 108} , which allows flight at affordable power. The new mathematical theory is supported by computed turbulent solutions of the Navier-Stokes equations with a slip boundary condition as a model of observed small skin friction of a turbulent boundary layer always arising for {Re > 106} , in close accordance with experimental observations over the entire range of angle of attacks including stall using a few millions of mesh points for a full wing-body configuration.

  3. WELLFOCUS PPT: Modifying positive psychotherapy for psychosis.

    PubMed

    Riches, Simon; Schrank, Beate; Rashid, Tayyab; Slade, Mike

    2016-03-01

    Positive psychotherapy (PPT) is an established psychological intervention initially validated with people experiencing symptoms of depression. PPT is a positive psychology intervention, an academic discipline that has developed somewhat separately from psychotherapy and focuses on amplifying well-being rather than ameliorating deficit. The processes targeted in PPT (e.g., strengths, forgiveness, gratitude, savoring) are not emphasized in traditional psychotherapy approaches to psychosis. The goal in modifying PPT is to develop a new clinical approach to helping people experiencing psychosis. An evidence-based theoretical framework was therefore used to modify 14-session standard PPT into a manualized intervention, called WELLFOCUS PPT, which aims to improve well-being for people with psychosis. Informed by a systematic review and qualitative research, modification was undertaken in 4 stages: qualitative study, expert consultation, manualization, and stake-holder review. The resulting WELLFOCUS PPT is a theory-based 11-session manualized group therapy. PMID:25961372

  4. Equivalence Principle tests as probes of Modified Newtonian Dynamics

    NASA Astrophysics Data System (ADS)

    Poyneer, Alex; Pereira, Jonas; Krause, Thomas; Overduin, James

    Modified Newtonian dynamics (MOND) has been proposed as a way to reconcile gravitational theory and observational cosmology without the need for large amounts of unseen dark matter. Instead, a change is postulated to the Newtonian limit of standard theory in the regime of very small accelerations. We consider whether it might be possible to constrain this idea using proposed space tests of the Equivalence Principle (EP). Such tests could be sensitive to accelerations as small as 10- 18 g over 20 orbits.

  5. Surface modified aerogel monoliths

    NASA Technical Reports Server (NTRS)

    Leventis, Nicholas (Inventor); Johnston, James C. (Inventor); Kuczmarski, Maria A. (Inventor); Meador, Mary Ann B. (Inventor)

    2013-01-01

    This invention comprises reinforced aerogel monoliths such as silica aerogels having a polymer coating on its outer geometric surface boundary, and to the method of preparing said aerogel monoliths. The polymer coatings on the aerogel monoliths are derived from polymer precursors selected from the group consisting of isocyanates as a precursor, precursors of epoxies, and precursors of polyimides. The coated aerogel monoliths can be modified further by encapsulating the aerogel with the polymer precursor reinforced with fibers such as carbon or glass fibers to obtain mechanically reinforced composite encapsulated aerogel monoliths.

  6. Confidentiality: a modified value.

    PubMed Central

    Emson, H E

    1988-01-01

    In its original expression as a medical value confidentiality may have been absolute; this concept has become eroded by patient consent, legal actions and change in the climate of public opinion. In particular requirements arising out of legal statutes and common law judgements have greatly modified the confidentiality of the doctor-patient relationship in societies deriving their law from English origins. Despite this, confidentiality remains a value which the physician must strive to preserve. He cannot however do this without considering its effect upon possible innocent third parties. PMID:3392723

  7. Pragmatic Aspects of Scalar Modifiers

    ERIC Educational Resources Information Center

    Sawada, Osamu

    2010-01-01

    This dissertation investigates the pragmatic aspects of scalar modifiers from the standpoint of the interface between semantics and pragmatics, focusing on (i) the (non) parallelism between the truth-conditional scalar modifiers and the non-truth-conditional scalar modifiers, (ii) the compositionality and dimensionality of non-truth-conditional…

  8. Generalized Brans-Dicke theories

    SciTech Connect

    De Felice, Antonio; Tsujikawa, Shinji E-mail: shinji@rs.kagu.tus.ac.jp

    2010-07-01

    In Brans-Dicke theory a non-linear self interaction of a scalar field φ allows a possibility of realizing the late-time cosmic acceleration, while recovering the General Relativistic behavior at early cosmological epochs. We extend this to more general modified gravitational theories in which a de Sitter solution for dark energy exists without using a field potential. We derive a condition for the stability of the de Sitter point and study the background cosmological dynamics of such theories. We also restrict the allowed region of model parameters from the demand for the avoidance of ghosts and instabilities. A peculiar evolution of the field propagation speed allows us to distinguish those theories from the ΛCDM model.

  9. A Nonvolume Preserving Plasticity Theory with Applications to Powder Metallurgy

    NASA Technical Reports Server (NTRS)

    Cassenti, B. N.

    1983-01-01

    A plasticity theory has been developed to predict the mechanical response of powder metals during hot isostatic pressing. The theory parameters were obtained through an experimental program consisting of hydrostatic pressure tests, uniaxial compression and uniaxial tension tests. A nonlinear finite element code was modified to include the theory and the results of themodified code compared favorably to the results from a verification experiment.

  10. Modifying Radiation Damage

    PubMed Central

    Kim, Kwanghee; McBride, William H.

    2011-01-01

    Radiation leaves a fairly characteristic footprint in biological materials, but this is rapidly all but obliterated by the canonical biological responses to the radiation damage. The innate immune recognition systems that sense “danger” through direct radiation damage and through associated collateral damage set in motion a chain of events that, in a tissue compromised by radiation, often unwittingly result in oscillating waves of molecular and cellular responses as tissues attempt to heal. Understanding “nature’s whispers” that inform on these processes will lead to novel forms of intervention targeted more precisely towards modifying them in an appropriate and timely fashion so as to improve the healing process and prevent or mitigate the development of acute and late effects of normal tissue radiation damage, whether it be accidental, as a result of a terrorist incident, or of therapeutic treatment of cancer. Here we attempt to discuss some of the non-free radical scavenging mechanisms that modify radiation responses and comment on where we see them within a conceptual framework of an evolving radiation-induced lesion. PMID:20583981

  11. Cosmology of Modified (but second order) Gravity

    NASA Astrophysics Data System (ADS)

    Koivisto, Tomi S.

    2010-01-01

    This is a brief review of applications of extended gravity theories to cosmology, in particular to the dark energy problem. Generically extensions of gravity action involve higher derivative terms, which can result in ghosts and instabilities. We consider three ways to circumvent this: Chern-Simons terms, first order variational principle and nonlocality. We consider some recent cosmological applications within these three classes of modified gravity models avoiding introduction of extra degrees of freedom. The viable parameter space can be very efficiently bounded by taking into account cosmological constraints from all epochs in addition to bounds from Solar system tests and stability considerations. We make some new remarks concerning so called algebraic scalar-tensor theories, biscalar reformulation of nonlocal actions involving the inverse d'Alembertian, and a possible covariant formulation holographic cosmology with nonperturbative gravity.

  12. Nonisentropic unsteady three dimensional small disturbance potential theory

    NASA Technical Reports Server (NTRS)

    Gibbons, M. D.; Williams, M. H.; Whitlow, W., Jr.

    1986-01-01

    Nonisentropic modifications to the three-dimensional transonic small disturbance (TSD) theory, which allows for more accurate modeling of transonic flow fields, are described. The modified flux equation and entropy corrections are presented; the Engquist-Osher differencing (1980) is added to the solution algorithm in order to eliminate the velocity overshoots upstream of shocks. The modified theory is tested in the XTRAN3S finite difference computer code. Steady flows over a rectangular NACA 0012 wing with an aspect ratio of 12 are calculated and compared to Euler equation solutions; good correlation is observed between the data and the modified TSD theory provides more accurate data, particularly for the lift curve slope. The nonisentropic theory is evaluated on an RAE tailplane model for steady and unsteady flows and the modified theory results agree well with the experimental data.

  13. Effective theories of universal theories

    DOE PAGES

    Wells, James D.; Zhang, Zhengkang

    2016-01-20

    It is well-known but sometimes overlooked that constraints on the oblique parameters (most notably S and T parameters) are generally speaking only applicable to a special class of new physics scenarios known as universal theories. The oblique parameters should not be associated with Wilson coefficients in a particular operator basis in the effective field theory (EFT) framework, unless restrictions have been imposed on the EFT so that it describes universal theories. Here, we work out these restrictions, and present a detailed EFT analysis of universal theories. We find that at the dimension-6 level, universal theories are completely characterized by 16more » parameters. They are conveniently chosen to be: 5 oblique parameters that agree with the commonly-adopted ones, 4 anomalous triple-gauge couplings, 3 rescaling factors for the h3, hff, hV V vertices, 3 parameters for hV V vertices absent in the Standard Model, and 1 four-fermion coupling of order yf2. Furthermore, all these parameters are defined in an unambiguous and basis-independent way, allowing for consistent constraints on the universal theories parameter space from precision electroweak and Higgs data.« less

  14. Modified clay sorbents

    DOEpatents

    Fogler, H. Scott; Srinivasan, Keeran R.

    1990-01-01

    A novel modified clay sorbent and method of treating industrial effluents to remove trace pollutants, such as dioxins, biphenyls, and polyaromatics such as benzo(a)pyrene and pentachlorophenol. The novel clay sorbent has a composite structure in which the interlayer space of an expandable clay, such as smectite, is filled with polyvalent or multivalent inorganic cations which forces weaker surfactant cations to locate on the surface of the clay in such an orientation that the resulting composite is hydrophilic in nature. A specific example is cetylpyridinium-hydroxy aluminum-montmorillonite. In certain embodiments, a non-expanding clay, such as kaolinite, is used and surfactant cations are necessarily located on an external surface of the clay. A specific example is cetylpyridinium-kaolinite.

  15. Chemically modified polypyrrole

    SciTech Connect

    Inagaki, T.; Skotheim, T.A.; Lee, H.S.; Okamoto, Y.; Samuelson, L.; Tripathy, S.

    1988-01-01

    Polypyrrole (PPy) films have been systematically modified with electroactive groups in the ..beta..-position to design electrode materials with specific electrochemical and surface active properties. Electrochemical copolymerization of pyrrole and 3-(6-ferrocenyl,6-hydroxyhexyl)pyrrole (P-6-Fc) yields a ferrocene functionalized polypyrrole with a controlled amount to ferrocene functionalization. And also, copolymers of pyrrole and 3-(4-(2,5- dimethoxyphenyl)butyl)pyrrole (P-MP) can be made by electrochemical polymerization and converted to the copolymers containing pH dependent electroactive hydroquinone moieties. Derivatized pyrroles have also been incorporated into Langmuir-Blodgett film structures. The surface pressure-area isotherms of 3-(13-ferrocenyl,13-hydroxytridecy)pyrrole (P-13-Fc) and the mixed monolayer of P-13-Fc and 3-n-hexadecylpyrrole (HDP) are shown. 17 refs., 4 figs.

  16. [Modified Takeuchi in adults].

    PubMed

    Jaurena, J M; Subirana, M; Montiel, J; Ruyra, X; Blasco, E; Torner, M; Caralps, J M

    1996-02-01

    Anomalous origin of left coronary artery from pulmonary artery is a rare congenital anomaly (0.25-0.46%). Mortality is high in the first months (65%). Paradoxically, some patients reach adulthood because of a net made of collaterals from the right coronary artery. Thus, we classify the entity in two ways of clinical onset: childhood and adulthood. Ideally, the best surgical approach is the arrangement of a double coronary system. The most well-known technique is the one described by Takeuchi, that links the aorta and the left coronary artery by a tunnel through the pulmonary artery, made from a pulmonary artery frontal wall flap (closing the defect with a pericardial patch). We present a case of anomalous origin of the left coronary artery in an adult, treated in our institution using a modified Takeuchi technique.

  17. Modified Composite Materials Workshop

    NASA Technical Reports Server (NTRS)

    Dicus, D. L. (Compiler)

    1978-01-01

    The reduction or elimination of the hazard which results from accidental release of graphite fibers from composite materials was studied at a workshop. At the workshop, groups were organized to consider six topics: epoxy modifications, epoxy replacement, fiber modifications, fiber coatings and new fibers, hybrids, and fiber release testing. Because of the time required to develop a new material and acquire a design data base, most of the workers concluded that a modified composite material would require about four to five years of development and testing before it could be applied to aircraft structures. The hybrid working group considered that some hybrid composites which reduce the risk of accidental fiber release might be put into service over the near term. The fiber release testing working group recommended a coordinated effort to define a suitable laboratory test.

  18. Why genetically modified crops?

    PubMed

    Jones, Jonathan D G

    2011-05-13

    This paper is intended to convey the message of the talk I gave at the Theo Murphy meeting at the Kavli Centre in July 2010. It, like the talk, is polemical, and conveys the exasperation felt by a practitioner of genetically modified (GM) plant science at its widespread misrepresentation. I argue that sustainable intensification of agriculture, using GM as well as other technologies, reduces its environmental impact by reducing pesticide applications and conserving soil carbon by enabling low till methods. Current technologies (primarily insect resistance and herbicide tolerance) have been beneficial. Moreover, the near-term pipeline of new GM methods and traits to enhance our diet, increase crop yields and reduce losses to disease is substantial. It would be perverse to spurn this approach at a time when we need every tool in the toolbox to ensure adequate food production in the short, medium and long term.

  19. Communication Theory.

    ERIC Educational Resources Information Center

    Penland, Patrick R.

    Three papers are presented which delineate the foundation of theory and principles which underlie the research and instructional approach to communications at the Graduate School of Library and Information Science, University of Pittsburgh. Cybernetic principles provide the integration, and validation is based in part on a situation-producing…

  20. Electroweak Theory

    NASA Astrophysics Data System (ADS)

    Paschos, E. A.

    2005-01-01

    The electroweak theory unifies two basic forces of nature: the weak force and electromagnetism. This book is a concise introduction to the structure of the electroweak theory and its applications. It describes the structure and properties of field theories with global and local symmetries, leading to the construction of the standard model. It describes the new particles and processes predicted by the theory, and compares them with experimental results. It also covers neutral currents, the properties of W and Z bosons, the properties of quarks and mesons containing heavy quarks, neutrino oscillations, CP-asymmetries in K, D, and B meson decays, and the search for Higgs particles. Each chapter contains problems, stemming from the long teaching experience of the author, to supplement the text. This will be of great interest to graduate students and researchers in elementary particle physics. Password protected solutions are available to lecturers at www.cambridge.org/9780521860987. Each chapter has an introduction highlighting its contents and giving a historical perspective. Chapters are cross-referenced, interrelating concepts and sections of the book. Contains 49 exercises

  1. Leadership Theories.

    ERIC Educational Resources Information Center

    Sferra, Bobbie A.; Paddock, Susan C.

    This booklet describes various theoretical aspects of leadership, including the proper exercise of authority, effective delegation, goal setting, exercise of control, assignment of responsibility, performance evaluation, and group process facilitation. It begins by describing the evolution of general theories of leadership from historic concepts…

  2. Control Theory.

    ERIC Educational Resources Information Center

    Toso, Robert B.

    2000-01-01

    Inspired by William Glasser's Reality Therapy ideas, Control Theory (CT) is a disciplinary approach that stresses people's ability to control only their own behavior, based on internal motivations to satisfy five basic needs. At one North Dakota high school, CT-trained teachers are the program's best recruiters. (MLH)

  3. Superbounce and loop quantum cosmology ekpyrosis from modified gravity

    NASA Astrophysics Data System (ADS)

    Oikonomou, V. K.

    2015-09-01

    As is known, in modified cosmological theories of gravity many of the cosmologies which could not be generated by standard Einstein gravity, can be consistently described by theories. Using known reconstruction techniques, we investigate which theories can lead to a Hubble parameter describing two types of cosmological bounces, the superbounce model, related to supergravity and non-supersymmetric models of contracting ekpyrosis and also the Loop Quantum Cosmology modified ekpyrotic model. Since our method is an approximate method, we investigate the problem at large and small curvatures. As we evince, both models yield power law reconstructed gravities, with the most interesting new feature being that both lead to accelerating cosmologies, in the large curvature approximation. The mathematical properties of the some Friedmann-Robertson-Walker spacetimes , that describe superbounce-like cosmologies are also pointed out, with regards to the group of curvature collineations.

  4. Gravitational collapse in f(R) theories

    SciTech Connect

    Cembranos, J.A.R.; Cruz-Dombriz, A. de la; Núñez, B. Montes E-mail: alvaro.delacruzdombriz@uct.ac.za

    2012-04-01

    We study the gravitational collapse in modified gravitational theories. In particular, we analyze a general f(R) model with uniformly collapsing cloud of self-gravitating dust particles. This analysis shares analogies with the formation of large-scale structures in the early Universe and with the formation of stars in a molecular cloud experiencing gravitational collapse. In the same way, this investigation can be used as a first approximation to the modification that stellar objects can suffer in these modified theories of gravity. We study concrete examples, and find that the analysis of gravitational collapse is an important tool to constrain models that present late-time cosmological acceleration.

  5. Situational theory of leadership.

    PubMed

    Waller, D J; Smith, S R; Warnock, J T

    1989-11-01

    The situational theory of leadership and the LEAD instruments for determining leadership style are explained, and the application of the situational leadership theory to the process of planning for and implementing organizational change is described. Early studies of leadership style identified two basic leadership styles: the task-oriented autocratic style and the relationship-oriented democratic style. Subsequent research found that most leaders exhibited one of four combinations of task and relationship behaviors. The situational leadership theory holds that the difference between the effectiveness and ineffectiveness of the four leadership styles is the appropriateness of the leader's behavior to the particular situation in which it is used. The task maturity of the individual or group being led must also be accounted for; follower readiness is defined in terms of the capacity to set high but attainable goals, willingness or ability to accept responsibility, and possession of the necessary education or experience for a specific task. A person's leadership style, range, and adaptability can be determined from the LEADSelf and LEADOther questionnaires. By applying the principles of the situational leadership theory and adapting their managerial styles to specific tasks and levels of follower maturity, the authors were successful in implementing 24-hour pharmacokinetic dosing services provided by staff pharmacists with little previous experience in clinical services. The situational leadership model enables a leader to identify a task, set goals, determine the task maturity of the individual or group, select an appropriate leadership style, and modify the style as change occurs. Pharmacy managers can use this model when implementing clinical pharmacy services.

  6. Theory Survey or Survey Theory?

    ERIC Educational Resources Information Center

    Dean, Jodi

    2010-01-01

    Matthew Moore's survey of political theorists in U.S. American colleges and universities is an impressive contribution to political science (Moore 2010). It is the first such survey of political theory as a subfield, the response rate is very high, and the answers to the survey questions provide new information about how political theorists look…

  7. Distinguishing modified gravity models

    SciTech Connect

    Brax, Philippe

    2015-10-01

    Modified gravity models with screening in local environments appear in three different guises: chameleon, K-mouflage and Vainshtein mechanisms. We propose to look for differences between these classes of models by considering cosmological observations at low redshift. In particular, we analyse the redshift dependence of the fine structure constant and the proton to electron mass ratio in each of these scenarios. When the absorption lines belong to unscreened regions of space such as dwarf galaxies, a time variation would be present for chameleons. For both K-mouflage and Vainshtein mechanisms, the cosmological time variation of the scalar field is not suppressed in both unscreened and screened environments, therefore enhancing the variation of constants and their detection prospect. We also consider the time variation of the redshift of distant objects using their spectrocopic velocities. We find that models of the K-mouflage and Vainshtein types have very different spectroscopic velocities as a function of redshift and that their differences with the Λ-CDM template should be within reach of the future ELT-HIRES observations.

  8. The modified Atkins diet.

    PubMed

    Kossoff, Eric H; Dorward, Jennifer L

    2008-11-01

    In 2003, a case series was published describing the benefits of a less restrictive ketogenic diet (KD) started as an outpatient without a fast and without any restrictions on calories, fluids, or protein. This "Modified Atkins Diet" (MAD) restricts carbohydrates to 10 g/day (15 g/day in adults) while encouraging high fat foods. Now 5 years later, there have been eight prospective and retrospective studies published on this alternative dietary therapy, both in children as well as adults. In these reports, 45 (45%) have had 50-90% seizure reduction, and 28 (28%) >90% seizure reduction, which is remarkably similar to the traditional KD. This review will discuss basics and tips to best provide the MAD, evidence for its efficacy, suggestions about the role of ketosis in dietary treatment efficacy, and its side effect profile. Lastly, the possible future benefits of this treatment for new-onset seizures, adults, neurologic conditions other than epilepsy, and developing countries of the world will be discussed.

  9. [Biotechnology using modified microorganisms].

    PubMed

    Deshayes, A F

    1992-11-01

    Few microorganisms, as compare to their high diversity, are used for human needs. They can produce molecules of interest, process fermentation, protect crops, treat wastes or clean environment. Molecular technics and genetic engineering are new tools offer to geneticists which breed microorganisms for years. Using them, it is now possible, theoretically, to introduce any gene in any organism. Some examples are given concerning genetic modifications in yeasts and lactic acid bacteria to optimize agrofood processes and to improve nutritive and flavour characteristics of fermented products like bread, beer, wine, cheese, meat, vegetable juices... In spite of scientific and industrial interest of the new technologies, limiting factors can explain that genetically modified microorganisms are not routinely used in agrofood yet. First, risks assessment on human health and environment are still in debate, but their is a consensus, within the scientific community, to consider that new characteristics of improved microorganisms are more important than the technics used for their construction. Second, regulations turn out to impose constraints susceptible to discourage technological innovations. At least, the public perception about the new technologies appears, actually, as the major factor to limit their development.

  10. Theory of microwave remote sensing

    NASA Technical Reports Server (NTRS)

    Tsang, L.; Kong, J. A.; Shin, R. T.

    1985-01-01

    Active and passive microwave remote sensing of earth terrains is studied. Electromagnetic wave scattering and emission from stratified media and rough surfaces are considered with particular application to the remote sensing of soil moisture. Radiative transfer theory for both the random and discrete scatterer models is examined. Vector radiative transfer equations for nonspherical particles are developed for both active and passive remote sensing. Single and multiple scattering solutions are illustrated with applications to remote sensing problems. Analytical wave theory using the Dyson and Bethe-Salpeter equations is employed to treat scattering by random media. The backscattering enhancement effects, strong permittivity fluctuation theory, and modified radiative transfer equations are addressed. The electromagnetic wave scattering from a dense distribution of discrete scatterers is studied. The effective propagation constants and backscattering coefficients are calculated and illustrated for dense media.

  11. On a modified electrodynamics.

    PubMed

    Reiss, H R

    2012-09-01

    A modification of electrodynamics is proposed, motivated by previously unremarked paradoxes that can occur in the standard formulation. It is shown by specific examples that gauge transformations exist that radically alter the nature of a problem, even while maintaining the values of many measurable quantities. In one example, a system with energy conservation is transformed to a system where energy is not conserved. The second example possesses a ponderomotive potential in one gauge, but this important measurable quantity does not appear in the gauge-transformed system. A resolution of the paradoxes comes from noting that the change in total action arising from the interaction term in the Lagrangian density cannot always be neglected, contrary to the usual assumption. The problem arises from the information lost by employing an adiabatic cutoff of the field. This is not necessary. Its replacement by a requirement that the total action should not change with a gauge transformation amounts to a supplementary condition for gauge invariance that can be employed to preserve the physical character of the problem. It is shown that the adiabatic cutoff procedure can also be eliminated in the construction of quantum transition amplitudes, thus retaining consistency between the way in which asymptotic conditions are applied in electrodynamics and in quantum mechanics. The 'gauge-invariant electrodynamics' of Schwinger is shown to depend on an ansatz equivalent to the condition found here for maintenance of the ponderomotive potential in a gauge transformation. Among the altered viewpoints required by the modified electrodynamics, in addition to the rejection of the adiabatic cutoff, is the recognition that the electric and magnetic fields do not completely determine a physical problem, and that the electromagnetic potentials supply additional information that is required for completeness of electrodynamics.

  12. Nominal Modifiers in Mandarin Chinese.

    ERIC Educational Resources Information Center

    Hou, John Y.

    In the surface structure of Chinese nominal modifiers (quantifiers, determiners, adjectives, measure phrase, relative clause, etc.) may occur either before or after a modified noun. In most of the transformational studies of Chinese syntax (e.g. Cheng 1966; Hashimoto 1966; Mei 1972; Tai 1973; Teng 1974), it has been assumed that such NP's have the…

  13. Genetic modifiers and oligogenic inheritance.

    PubMed

    Kousi, Maria; Katsanis, Nicholas

    2015-06-01

    Despite remarkable progress in the identification of mutations that drive genetic disorders, progress in understanding the effect of genetic background on the penetrance and expressivity of causal alleles has been modest, in part because of the methodological challenges in identifying genetic modifiers. Nonetheless, the progressive discovery of modifier alleles has improved both our interpretative ability and our analytical tools to dissect such phenomena. In this review, we analyze the genetic properties and behaviors of modifiers as derived from studies in patient populations and model organisms and we highlight conceptual and technological tools used to overcome some of the challenges inherent in modifier mapping and cloning. Finally, we discuss how the identification of these modifiers has facilitated the elucidation of biological pathways and holds the potential to improve the clinical predictive value of primary causal mutations and to develop novel drug targets.

  14. Modified gravity in Arnowitt-Deser-Misner formalism

    NASA Astrophysics Data System (ADS)

    Gao, Changjun

    2010-02-01

    Motivated by Hořava-Lifshitz gravity theory, we propose and investigate two kinds of modified gravity theories, the f(R) kind and the K-essence kind, in the Arnowitt-Deser-Misner (ADM) formalism. The f(R) kind includes one ultraviolet (UV) term and one infrared (IR) term together with the Einstein-Hilbert action. We find that these two terms naturally present the ultraviolet and infrared modifications to the Friedmann equation. The UV and IR modifications can avoid the past Big-Bang singularity and the future Big-Rip singularity, respectively. Furthermore, the IR modification can naturally account for the current acceleration of the Universe. The Lagrangian of K-essence kind modified gravity is made up of the three-dimensional Ricci scalar and an arbitrary function of the extrinsic curvature term. We find the cosmic acceleration can also be naturally interpreted without invoking any kind of dark energy. The static, spherically symmetry and vacuum solutions of both theories are Schwarzschild or Schwarzschild-de Sitter solution. Thus these modified gravity theories are viable for solar system tests.

  15. Structural Optimization Using the Newton Modified Barrier Method

    NASA Technical Reports Server (NTRS)

    Khot, N. S.; Polyak, R. A.; Schneur, R.; Berke, L.

    1995-01-01

    The Newton Modified Barrier Method (NMBM) is applied to structural optimization problems with large a number of design variables and constraints. This nonlinear mathematical programming algorithm was based on the Modified Barrier Function (MBF) theory and the Newton method for unconstrained optimization. The distinctive feature of the NMBM method is the rate of convergence that is due to the fact that the design remains in the Newton area after each Lagrange multiplier update. This convergence characteristic is illustrated by application to structural problems with a varying number of design variables and constraints. The results are compared with those obtained by optimality criteria (OC) methods and by the ASTROS program.

  16. Information Theory - The Bridge Connecting Bounded Rational Game Theory and Statistical Physics

    NASA Technical Reports Server (NTRS)

    Wolpert, David H.

    2005-01-01

    A long-running difficulty with conventional game theory has been how to modify it to accommodate the bounded rationality of all red-world players. A recurring issue in statistical physics is how best to approximate joint probability distributions with decoupled (and therefore far more tractable) distributions. This paper shows that the same information theoretic mathematical structure, known as Product Distribution (PD) theory, addresses both issues. In this, PD theory not only provides a principle formulation of bounded rationality and a set of new types of mean field theory in statistical physics; it also shows that those topics are fundamentally one and the same.

  17. Nonisentropic unsteady three dimensional small disturbance potential theory

    NASA Technical Reports Server (NTRS)

    Gibbons, M. D.; Whitlow, W., Jr.; Williams, M. H.

    1986-01-01

    Modifications that allow for more accurate modeling of flow fields when strong shocks are present were made into three dimensional transonic small disturbance (TSD) potential theory. The Engquist-Osher type-dependent differencing was incorporated into the solution algorithm. The modified theory was implemented in the XTRAN3S computer code. Steady flows over a rectangular wing with a constant NACA 0012 airfoil section and an aspect ratio of 12 were calculated for freestream Mach numbers (M) of 0.82, 0.84, and 0.86. The obtained results are compared using the modified and unmodified TSD theories and the results from a three dimensional Euler code are presented. Nonunique solutions in three dimensions are shown to appear for the rectangular wing as aspect ratio increases. Steady and unsteady results are shown for the RAE tailplane model at M = 0.90. Calculations using unmodified theory, modified theory and experimental data are compared.

  18. The Effects of Pre Modified Input, Interactionally Modified Input, and Modified Output on EFL Learners' Comprehension of New Vocabularies

    ERIC Educational Resources Information Center

    Maleki, Zinat; Pazhakh, AbdolReza

    2012-01-01

    The present study was an attempt to investigate the effects of premodified input, interactionally modified input and modified output on 80 EFL learners' comprehension of new words. The subjects were randomly assigned into four groups of pre modified input, interactionally modified input, modified output and unmodified (control) groups. Each group…

  19. Feminist Developmental Theory: Implications for Counseling.

    ERIC Educational Resources Information Center

    Wastell, Colin A.

    1996-01-01

    Discusses the importance of counseling guided by a life-span development model. Emphasizes that one popular theory should be modified by taking into account a broader understanding of life-span development in terms of commonalities and differences in male and female development. Examines implications with borderline personality disorder and…

  20. Modified Nanodiamonds for Detoxification

    NASA Astrophysics Data System (ADS)

    Gibson, Natalie Marie

    essential for interacting with charged molecules, like OTA. Furthermore, the increased ZPs lead to improved colloidal stabilities over a wide range of pH, which is important for their interaction in the GI tract. While the dyes and OTA illustrated primarily electrostatic adsorption mechanisms, neutrally charged AfB1's adsorption was predominantly based upon the aggregate size of the ND substrate. In addition to mycotoxins, fluorescent dyes, including propidium iodide, pyranine and 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid) (ABTS), were initially utilized during methodological development. Fluorescent dye investigations helped assesses the adsorption mechanisms of NDs and demonstrated the significance of electrostatic interactions. Beyond electrostatic adsorption mechanisms, surface functional groups were also responsible for the amount of dye adsorbed, as was also true in OTA adsorption. Therefore, surface characterization was carried out for several ND samples by FTIR, TOF-SIMS and TDMS analysis. Final results of our studies show that our modified NDs perform better than yeast cells walls and other NDs but comparable to activated charcoal in the adsorption of AfB1, and outperform clay minerals in OTA studies. Moreover, it was demonstrated that adsorption can be maintained in a wide range of pH, thereby, increasing the possibility of NDs use in mycotoxins enterosorbent applications.

  1. Studies on chemically modified fibrinogen.

    PubMed

    Kloczewiak, M; Wegrzynowicz, Z; Matthias, F R; Heene, D L; Zajdel, M

    1976-04-30

    Treatment of fibrinogen with maleic acid anhydride renders fibrinogen unclottable depending on the degree of modification of the molecule. According to radioactive studies the release of fibrinopeptides by thrombin or reptilase is undisturbed. The incoagulability is due to inhibition of the polymerization process of fibrinmonomers derived from modified fibronogen, mainly caused by the increase of electronegative charges upon the fibrogen molecule. According to discelectrophoretic analysis modified fibrinogen fails to produce fragments D and E following plasmic digestion, however, may be degraded to high molecular weight products. Modified fibrinogen reveals some similarities to abnormal fibrinogens in congenital dysfibrinogenemia with regard to its functional properties.

  2. Modifiers of the ash properties

    NASA Astrophysics Data System (ADS)

    Peer, Vaclav; Najser, Jan; Pilat, Peter

    2014-08-01

    The aim of this article is to perform an experimental verification of the impact of added substances to limit or prevent sintering of solid fuel ash, which is formed during the thermochemical conversion of fuels. As a modifiers of ash sintering and melting temperature were used halloysite (aluminosilicate) and limestone, which has similar mechanism of action. Both of them act on the principle of a strong chemical adsorption of potassium ions, which largely cause a reduction of ash fusibility. Influence of the modifiers was observed after tests provided at 900, 1000, 1100 and 1200°C. Modifiers were dosed in amounts of 2, 5 and 10 wt.%.

  3. A Nonlinear Theory for Smart Composite Structures

    NASA Technical Reports Server (NTRS)

    Chattopadhyay, Aditi

    2002-01-01

    The paper discusses the following: (1) Development of a completely coupled thermo-piezoelectric-mechanical theory for the analysis of composite shells with segmented and distributed piezoelectric sensor/actuators and shape memory alloys. The higher order displacement theory will be used to capture the transverse shear effects in anisotropic composites. The original theory will be modified to satisfy the stress continuity at ply interfaces. (2) Development of a finite element technique to implement the mathematical model. (3) Investigation of the coupled structures/controls interaction problem to study the complex trade-offs associated with the coupled problem.

  4. Segmental dependent transport of low permeability compounds along the small intestine due to P-glycoprotein: the role of efflux transport in the oral absorption of BCS class III drugs.

    PubMed

    Dahan, Arik; Amidon, Gordon L

    2009-01-01

    The purpose of this study was to investigate the role of P-gp efflux in the in vivo intestinal absorption process of BCS class III P-gp substrates, i.e. high-solubility low-permeability drugs. The in vivo permeability of two H (2)-antagonists, cimetidine and famotidine, was determined by the single-pass intestinal perfusion model in different regions of the rat small intestine, in the presence or absence of the P-gp inhibitor verapamil. The apical to basolateral (AP-BL) and the BL-AP transport of the compounds in the presence or absence of various efflux transporters inhibitors (verapamil, erythromycin, quinidine, MK-571 and fumitremorgin C) was investigated across Caco-2 cell monolayers. P-gp expression levels in the different intestinal segments were confirmed by immunoblotting. Cimetidine and famotidine exhibited segmental dependent permeability through the gut wall, with decreased P(eff) in the distal ileum in comparison to the proximal regions of the intestine. Coperfusion of verapamil with the drugs significantly increased the permeability in the ileum, while no significant change in the jejunal permeability was observed. Both drugs exhibited significantly greater BL-AP than AP-BL Caco-2 permeability, indicative of net mucosal secretion. Concentration dependent decrease of this secretion was obtained by the P-gp inhibitors verapamil, erythromycin and quinidine, while no effect was evident by the MRP2 inhibitor MK-571 and the BCRP inhibitor FTC, indicating that P-gp is the transporter mediates the intestinal efflux of cimetidine and famotidine. P-gp levels throughout the intestine were inversely related to the in vivo permeability of the drugs from the different segments. The data demonstrate that for these high-solubility low-permeability P-gp substrates, P-gp limits in vivo intestinal absorption in the distal segments of the small intestine; however P-gp plays a minimal role in the proximal intestinal segments due to significant lower P-gp expression levels

  5. Modified polymers for gas chromatography

    NASA Technical Reports Server (NTRS)

    Woeller, F. H.; Christensen, W.; Mayer, L.

    1979-01-01

    Polymeric materials are modified to serve as stationary phase in chromatographic columns used for separation of atmospheric gases. Materials simplify and improve separation of atmospheric gases in terms of time, quantity of material needed, and sharpness of separation.

  6. Modified laparoscopic ventral mesh rectopexy.

    PubMed

    Sileri, P; Capuano, I; Franceschilli, L; Giorgi, F; Gaspari, A L

    2014-06-01

    We present a modified laparoscopic ventral mesh rectopexy procedure using biological mesh and bilateral anterior mesh fixation. The rectopexy is anterior with a minimal posterior mobilization. The rectum is symmetrically suspended to the sacral promontory through a mesorectal window.

  7. MS Disease-Modifying Medications

    MedlinePlus

    ... Contents Injectable treatments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Oral treatments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Intravenous infusion treatments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Managing side effects of disease- modifying ... or subcutaneous), oral and intravenous (into the vein) infusion. INJECTABLE TREATMENTS Treatment (chemical name) Manufacturer Avonex ® (interferon ...

  8. Modified acyl-ACP desaturase

    DOEpatents

    Cahoon, Edgar B.; Shanklin, John; Lindgvist, Ylva; Schneider, Gunter

    1998-01-06

    Disclosed is a methods for modifying the chain length and double bond positional specificities of a soluble plant fatty acid desaturase. More specifically, the method involves modifying amino acid contact residues in the substrate binding channel of the soluble fatty acid desaturase which contact the fatty acid. Specifically disclosed is the modification of an acyl-ACP desaturase. Amino acid contact residues which lie within the substrate binding channel are identified, and subsequently replaced with different residues to effect the modification of activity.

  9. Modified Acyl-ACP desaturase

    DOEpatents

    Cahoon, Edgar B.; Shanklin, John; Lindqvist, Ylva; Schneider, Gunter

    1999-03-30

    Disclosed is a method for modifying the chain length and double bond positional specificities of a soluble plant fatty acid desaturase. More specifically, the method involves modifying amino acid contact residues in the substrate binding channel of the soluble fatty acid desaturase which contact the fatty acid. Specifically disclosed is the modification of an acyl-ACP desaturase. Amino acid contact residues which lie within the substrate binding channel are identified, and subsequently replaced with different residues to effect the modification of activity.

  10. Genetically modified probiotics in foods.

    PubMed

    Ahmed, Farid E

    2003-11-01

    Probiotics have many potential therapeutic uses, but have not been universally accepted because of a lack of understanding of their action. Lactic acid bacteria (LAB) have been modified by traditional and genetic engineering methods to produce new varieties. Modern techniques of molecular biology have facilitated the identification of probiotic LAB strains, but only a few LAB have been modified by recombinant-DNA technology because of consumer resistance to their introduction to markets, especially in Europe.

  11. Chern-Simons modified gravity and closed timelike curves

    NASA Astrophysics Data System (ADS)

    Porfírio, P. J.; Fonseca-Neto, J. B.; Nascimento, J. R.; Petrov, A. Yu.; Ricardo, J.; Santos, A. F.

    2016-08-01

    We verify the consistency of the Gödel-type solutions within the four-dimensional Chern-Simons modified gravity with the nondynamical Chern-Simons coefficient for different forms of matter including dust, fluid, scalar field, and electromagnetic field and discuss the related causality issues. We show that, unlike general relativity, a vacuum solution is possible in our theory. Another essentially new result of our theory having no analogue in general relativity consists in the existence of the hyperbolic causal solutions for a physically well-motivated matter.

  12. Distinguishing modified gravity from dark energy

    SciTech Connect

    Bertschinger, Edmund; Zukin, Phillip

    2008-07-15

    The acceleration of the Universe can be explained either through dark energy or through the modification of gravity on large scales. In this paper we investigate modified gravity models and compare their observable predictions with dark energy models. Modifications of general relativity are expected to be scale independent on superhorizon scales and scale dependent on subhorizon scales. For scale-independent modifications, utilizing the conservation of the curvature scalar and a parametrized post-Newtonian formulation of cosmological perturbations, we derive results for large-scale structure growth, weak gravitational lensing, and cosmic microwave background anisotropy. For scale-dependent modifications, inspired by recent f(R) theories we introduce a parametrization for the gravitational coupling G and the post-Newtonian parameter {gamma}. These parametrizations provide a convenient formalism for testing general relativity. However, we find that if dark energy is generalized to include both entropy and shear stress perturbations, and the dynamics of dark energy is unknown a priori, then modified gravity cannot in general be distinguished from dark energy using cosmological linear perturbations.

  13. Modifying gravity: you cannot always get what you want.

    PubMed

    Starkman, Glenn D

    2011-12-28

    The combination of general relativity (GR) and the Standard Model of particle physics disagrees with numerous observations on scales from our Solar System up. In the canonical concordance model of Lambda cold dark matter (ΛCDM) cosmology, many of these contradictions between theory and data are removed or alleviated by the introduction of three completely independent new components of stress energy--the inflaton, dark matter and dark energy. Each of these in its turn is meant to have dominated (or to currently dominate) the dynamics of the Universe. There is, until now, no non-gravitational evidence for any of these dark sectors, nor is there evidence (though there may be motivation) for the required extension of the Standard Model. An alternative is to imagine that it is GR that must be modified to account for some or all of these disagreements. Certain coincidences of scale even suggest that one might expect not to make independent modifications of the theory to replace each of the three dark sectors. Because they must address the most different types of data, attempts to replace dark matter with modified gravity are the most controversial. A phenomenological model (or family of models), modified Newtonian dynamics, has, over the last few years, seen several covariant realizations. We discuss a number of challenges that any model that seeks to replace dark matter with modified gravity must face: the loss of Birkhoff's theorem, and the calculational simplifications it implies; the failure to explain clusters, whether static or interacting, and the consequent need to introduce dark matter of some form, whether hot dark matter neutrinos or dark fields that arise in new sectors of the modified gravity theory; the intrusion of cosmological expansion into the modified force law, which arises precisely because of the coincidence in scale between the centripetal acceleration at which Newtonian gravity fails in galaxies and the cosmic acceleration. We conclude with the

  14. Modifying gravity: you cannot always get what you want.

    PubMed

    Starkman, Glenn D

    2011-12-28

    The combination of general relativity (GR) and the Standard Model of particle physics disagrees with numerous observations on scales from our Solar System up. In the canonical concordance model of Lambda cold dark matter (ΛCDM) cosmology, many of these contradictions between theory and data are removed or alleviated by the introduction of three completely independent new components of stress energy--the inflaton, dark matter and dark energy. Each of these in its turn is meant to have dominated (or to currently dominate) the dynamics of the Universe. There is, until now, no non-gravitational evidence for any of these dark sectors, nor is there evidence (though there may be motivation) for the required extension of the Standard Model. An alternative is to imagine that it is GR that must be modified to account for some or all of these disagreements. Certain coincidences of scale even suggest that one might expect not to make independent modifications of the theory to replace each of the three dark sectors. Because they must address the most different types of data, attempts to replace dark matter with modified gravity are the most controversial. A phenomenological model (or family of models), modified Newtonian dynamics, has, over the last few years, seen several covariant realizations. We discuss a number of challenges that any model that seeks to replace dark matter with modified gravity must face: the loss of Birkhoff's theorem, and the calculational simplifications it implies; the failure to explain clusters, whether static or interacting, and the consequent need to introduce dark matter of some form, whether hot dark matter neutrinos or dark fields that arise in new sectors of the modified gravity theory; the intrusion of cosmological expansion into the modified force law, which arises precisely because of the coincidence in scale between the centripetal acceleration at which Newtonian gravity fails in galaxies and the cosmic acceleration. We conclude with the

  15. Testing modified Newtonian dynamics in the Milky Way

    NASA Astrophysics Data System (ADS)

    Iocco, Fabio; Pato, Miguel; Bertone, Gianfranco

    2015-10-01

    Modified Newtonian dynamics (MOND) is an empirical theory originally proposed to explain the rotation curves of spiral galaxies by modifying the gravitational acceleration, rather than by invoking dark matter. Here, we set constraints on MOND using an up-to-date compilation of kinematic tracers of the Milky Way and a comprehensive collection of morphologies of the baryonic component in the Galaxy. In particular, we find that the so-called "standard" interpolating function cannot explain at the same time the rotation curve of the Milky Way and that of external galaxies for any of the baryonic models studied, while the so-called "simple" interpolating function can for a subset of models. Upcoming astronomical observations will refine our knowledge on the morphology of baryons and will ultimately confirm or rule out the validity of MOND in the Milky Way. We also present constraints on MOND-like theories without making any assumptions on the interpolating function.

  16. Feurstein Cognitive Education Theory and American Indian Education.

    ERIC Educational Resources Information Center

    Emerson, Larry W.

    The Feuerstein Mediated Learning Experience and Cognitive Modifiability theories show promise for American Indian people who, despite much innovation, still search for learning theories which can provide native people with necessary tools for making efficient qualitative and quantitative adaptations to an ever-changing technological, cultural,…

  17. Bimetric theory of gravity from the nonchiral Plebanski action

    SciTech Connect

    Speziale, Simone

    2010-09-15

    We study a modification of the Plebanski action for general relativity, which leads to a modified theory of gravity with 8 degrees of freedom. We show how the action can be recasted as a bimetric theory of gravity, and expanding around a biflat background we identify the 6 extra degrees of freedom with a second, massive graviton and a scalar mode.

  18. Cultural Differences in Equity Theory Predictions of Relational Maintenance Strategies

    ERIC Educational Resources Information Center

    Yum, Young-ok; Canary, Daniel J.

    2009-01-01

    This study examined whether the theoretic role of equity in predicting relational maintenance strategies is modified by participant country and culture. Research on equity theory in relationships has been conducted primarily in the United States and Western Europe. We argue that equity theory predictions regarding relational communication probably…

  19. Massive gravitational waves in Chern-Simons modified gravity

    SciTech Connect

    Myung, Yun Soo; Moon, Taeyoon E-mail: tymoon@inje.ac.kr

    2014-10-01

    We consider the nondynamical Chern-Simons (nCS) modified gravity, which is regarded as a parity-odd theory of massive gravity in four dimensions. We first find polarization modes of gravitational waves for θ=x/μ in nCS modified gravity by using the Newman-Penrose formalism where the null complex tetrad is necessary to specify gravitational waves. We show that in the Newman–Penrose formalism, the number of polarization modes is one in addition to an unspecified Ψ{sub 4}, implying three degrees of freedom for θ=x/μ. This compares with two for a canonical embedding of θ=t/μ. Also, if one introduces the Ricci tensor formalism to describe a massive graviton arising from the nCS modified gravity, one finds one massive mode after making second-order wave equations, which is compared to five found from the parity-even Einstein–Weyl gravity.

  20. Cosmological constraints on the modified entropic force model

    NASA Astrophysics Data System (ADS)

    Wei, Hao

    2010-08-01

    Very recently, Verlinde considered a theory in which space is emergent through a holographic scenario, and proposed that gravity can be explained as an entropic force caused by changes in the information associated with the positions of material bodies. Then, motivated by the Debye model in thermodynamics which is very successful in very low temperatures, Gao modified the entropic force scenario. The modified entropic force (MEF) model is in fact a modified gravity model, and the universe can be accelerated without dark energy. In the present work, we consider the cosmological constraints on the MEF model, and successfully constrain the model parameters to a narrow range. We also discuss many other issues of the MEF model. In particular, we clearly reveal the implicit root to accelerate the universe in the MEF model.

  1. Testing Modified Gravity with Dwarf Spheroidal Galaxies

    NASA Astrophysics Data System (ADS)

    Haghi, Hosein; Amiri, Vahid

    2016-08-01

    The observed velocity dispersion of the classical dwarf spheroidal (dSph) galaxies of the Milky Way (MW) requires the Newtonian stellar mass-to-light (M★/L) ratios in the range of about 10 to more than 100 solar units, that are well outside the acceptable limit predicted by stellar population synthesis (SPS) models. Using Jeans analysis, we calculate the line-of-sight velocity dispersion (σ _ph {los}) of stars in eight MW dSphs in the context of the Modified Gravity (MOG) theory of Moffat, assuming a constant M★/L ratio without invoking the exotic cold dark matter. First, we use the weak field approximation of MOG and assume the two parameters α and μ of the theory to be constant as has already been inferred from fitting to the observed rotational data of the THINGS catalog of galaxies. We find that the derived M★/L ratios for almost all dSphs are too large to be explained by the stellar population values. In order to fit the line-of-sight velocity dispersions of the dSph with reasonable M★/L values we must vary α and μ on a case by case basis. A common pair of values cannot be found for all dSphs. Comparing with the values found from rotation curve fitting, it appears that μ correlates strongly with galaxy luminosity, shedding doubt on it as a universal constant.

  2. STELLAR STRUCTURE AND TESTS OF MODIFIED GRAVITY

    SciTech Connect

    Chang, Philip; Hui, Lam E-mail: lhui@astro.columbia.edu

    2011-05-01

    Theories that attempt to explain cosmic acceleration by modifying gravity typically introduces a long-range scalar force that needs to be screened on small scales. One common screening mechanism is the chameleon, where the scalar force is screened in environments with a sufficiently deep gravitational potential, but acts unimpeded in regions with a shallow gravitational potential. This leads to a variation in the overall gravitational G with environment. We show that such a variation can occur within a star itself, significantly affecting its evolution and structure, provided that the host galaxy is unscreened. The effect is most pronounced for red giants, which would be smaller by a factor of tens of percent and thus hotter by hundreds of Kelvin, depending on the parameters of the underlying scalar-tensor theory. Careful measurements of these stars in suitable environments (nearby dwarf galaxies not associated with groups or clusters) would provide constraints on the chameleon mechanism that are four orders of magnitude better than current large-scale structure limits and two orders of magnitude better than present solar system tests.

  3. Modified Fresnel Laws for Optical Microcavities

    NASA Astrophysics Data System (ADS)

    Gagnon, D.; Painchaud-April, G.; Poirier, J.; Dubé, L. J.

    2010-03-01

    The scattering of waves at a planar interface between two dielectric media is governed by Fresnel laws. The associated Fresnel coefficients exhibit a discontinuity at the critical angle of incidence, χc, resulting in total internal reflection for χ>=χc. However modern microresonators are often so small that corrections to the planar approximation become necessary. For instance, a plane wave incident on a curved interface can escape the optically denser medium even for angles larger than χc. In the spirit of Snyder and Love [1], we have derived smooth reflection and transmission coefficients. Interface curvature is accounted for by only modifying the wavefunction describing propagation in the less optically dense medium. The theory is applied to dielectric cavities and our results compared to those of an independent calculation obtained from a sequential-reflection model [2]. The advantages and limitations of our alternative approach will be discussed at the conference.[4pt] [1] A. W. Snyder and J. D. Love, IEEE Trans. Microwave Theory Tech., 23, 134--141, 1975.[0pt] [2] M. Hentschel and H. Schomerus, Phys. Rev. E., 65, 045603(R), 2002.

  4. HyperFlow Theory Manual

    SciTech Connect

    Felker, F F

    2004-02-23

    This document presents the underlying theory for an unsteady computational model of the transient aerothermodynamics of a deformable vehicle entering an atmosphere at hypersonic speeds. Many unique features of the problem require unusual computational capabilities. The large accelerations associated with the vehicle's flight dynamics results in the body-fixed reference frame being non-inertial, and the governing equations must be modified to include this effect. The vehicle's structural deformations and ablation requires the inclusion of the effects of a moving solid boundary, with a nonuniform mass flux across that boundary. A computational chemistry capability must be included to treat the thermochemical nonequilibrium of the high-temperature gas dynamics, and the reactions between the ablation products and the dissociated air. The theory required to treat these phenomena are described in this report.

  5. Tests of modified gravity with dwarf galaxies

    SciTech Connect

    Jain, Bhuvnesh; VanderPlas, Jake E-mail: vanderplas@astro.washington.edu

    2011-10-01

    In modified gravity theories that seek to explain cosmic acceleration, dwarf galaxies in low density environments can be subject to enhanced forces. The class of scalar-tensor theories, which includes f(R) gravity, predict such a force enhancement (massive galaxies like the Milky Way can evade it through a screening mechanism that protects the interior of the galaxy from this ''fifth'' force). We study observable deviations from GR in the disks of late-type dwarf galaxies moving under gravity. The fifth-force acts on the dark matter and HI gas disk, but not on the stellar disk owing to the self-screening of main sequence stars. We find four distinct observable effects in such disk galaxies: 1. A displacement of the stellar disk from the HI disk. 2. Warping of the stellar disk along the direction of the external force. 3. Enhancement of the rotation curve measured from the HI gas compared to that of the stellar disk. 4. Asymmetry in the rotation curve of the stellar disk. We estimate that the spatial effects can be up to 1 kpc and the rotation velocity effects about 10 km/s in infalling dwarf galaxies. Such deviations are measurable: we expect that with a careful analysis of a sample of nearby dwarf galaxies one can improve astrophysical constraints on gravity theories by over three orders of magnitude, and even solar system constraints by one order of magnitude. Thus effective tests of gravity along the lines suggested by Hui, Nicolis, and Stubbs (2009) and Jain (2011) can be carried out with low-redshift galaxies, though care must be exercised in understanding possible complications from astrophysical effects.

  6. Stability of differentially rotating disks in f( T) theory

    NASA Astrophysics Data System (ADS)

    Li, Shoulong; Wei, Hao

    2016-11-01

    To explain the accelerated expansion of our universe, many dark energy models and modified gravity theories have been proposed so far. It is argued in the literature that they are difficult to be distinguished on the cosmological scales. Therefore, it is well motivated to consider the relevant astrophysical phenomena on (or below) the galactic scales. In this work, we study the stability of self-gravitating differentially rotating galactic disks in f( T) theory, and obtain the local stability criteria in f( T) theory, which are valid for all f( T) theories satisfying f(T=0)=0 and f_T (T=0)not =0, if the adiabatic approximation and the weak field limit are considered. The information of the function f( T) is mainly encoded in the parameter α ≡ 1/f_T(T=0). We find that the local stability criteria in f( T) theory are quite different from the ones in Newtonian gravity, general relativity, and other modified gravity theories such as f( R) theory. We consider that this might be a possible hint to distinguish f( T) theory from general relativity and other modified gravity theories on (or below) the galactic scales.

  7. Autoimmunity and oxidatively modified autoantigens

    PubMed Central

    Kurien, Biji T.; Scofield, R. Hal

    2008-01-01

    Oxidative damage mediated by reactive oxygen species results in the generation of deleterious by-products. The oxidation process itself and the proteins modified by these molecules are important mediators of cell toxicity and disease pathogenesis. Aldehydic products, mainly the 4-hydroxy-2-alkenals, form adducts with proteins and make them highly immunogenic. Proteins modified in this manner have been shown to induce pathogenic antibodies in a variety of diseases including systemic lupus erythematosus (SLE), alcoholic liver disease, diabetes mellitus (DM) and rheumatoid arthritis (RA). 8-oxodeoxyguanine (oxidatively modified DNA) and low density lipoproteins (LDL) occur in SLE, a disease in which premature atherosclerosis is a serious problem. In addition, immunization with 4-hydroxy-2-nonenal (HNE) modified 60 kD Ro autoantigen induces an accelerated epitope spreading in an animal model of SLE. Advanced glycation end product (AGE) pentosidine and AGE modified IgG have been shown to correlate with RA disease activity. Oxidatively modified glutamic acid decarboxylase is important in type 1 DM, while autoantibodies against oxidized LDL are prevalent in Behcet’s disease. The fragmentation of scleroderma specific autoantigens occurs as a result of oxidative modification and is thought to be responsible for the production of autoantibodies through the release of cryptic epitopes. The administration of antioxidants is a viable untried alternative for preventing or ameliorating autoimmune disease, particularly on account of the overwhelming evidence for the involvement of oxidative damage in autoimmunity. However, this should be viewed in the light of disappointing results obtained with the use of antioxidants in cardiovascular disease. PMID:18625446

  8. Modified Acyl-ACP desaturase

    DOEpatents

    Cahoon, E.B.; Shanklin, J.; Lindqvist, Y.; Schneider, G.

    1999-03-30

    Disclosed is a method for modifying the chain length and double bond positional specificities of a soluble plant fatty acid desaturase. More specifically, the method involves modifying amino acid contact residues in the substrate binding channel of the soluble fatty acid desaturase which contact the fatty acid. Specifically disclosed is the modification of an acyl-ACP desaturase. Amino acid contact residues which lie within the substrate binding channel are identified, and subsequently replaced with different residues to effect the modification of activity. 2 figs.

  9. Synthesis of chemically modified DNA.

    PubMed

    Shivalingam, Arun; Brown, Tom

    2016-06-15

    Naturally occurring DNA is encoded by the four nucleobases adenine, cytosine, guanine and thymine. Yet minor chemical modifications to these bases, such as methylation, can significantly alter DNA function, and more drastic changes, such as replacement with unnatural base pairs, could expand its function. In order to realize the full potential of DNA in therapeutic and synthetic biology applications, our ability to 'write' long modified DNA in a controlled manner must be improved. This review highlights methods currently used for the synthesis of moderately long chemically modified nucleic acids (up to 1000 bp), their limitations and areas for future expansion. PMID:27284032

  10. Modified acyl-ACP desaturase

    DOEpatents

    Cahoon, E.B.; Shanklin, J.; Lindgvist, Y.; Schneider, G.

    1998-01-06

    Disclosed is a method for modifying the chain length and double bond positional specificities of a soluble plant fatty acid desaturase. More specifically, the method involves modifying amino acid contact residues in the substrate binding channel of the soluble fatty acid desaturase which contact the fatty acid. Specifically disclosed is the modification of an acyl-ACP desaturase. Amino acid contact residues which lie within the substrate binding channel are identified, and subsequently replaced with different residues to effect the modification of activity. 1 fig.

  11. THE OUTSKIRTS OF GLOBULAR CLUSTERS AS MODIFIED GRAVITY PROBES

    SciTech Connect

    Hernandez, X.; Jimenez, M. A.

    2012-05-01

    In the context of theories of gravity modified to account for the observed dynamics of galactic systems without the need to invoke the existence of dark matter, a prediction often appears regarding low-acceleration systems: wherever a falls below a{sub 0}, one should expect a transition from the classical to the modified gravity regime. This modified gravity regime will be characterized by equilibrium velocities that become independent of distance and that scale with the fourth root of the total baryonic mass, V{sup 4}{proportional_to}M. The two conditions above are the well-known flat rotation curves and Tully-Fisher relations of the galactic regime. Recently, however, a similar phenomenology has been hinted at, at the outskirts of Galactic globular clusters, precisely in the region where a < a{sub 0}. Radial profiles of the projected velocity dispersion have been observed to stop decreasing along Keplerian expectations and to level off at constant values beyond the radii where a < a{sub 0}. We have constructed gravitational equilibrium dynamical models for a number of globular clusters for which the above gravitational anomaly has been reported, using a modified Newtonian force law that yields equilibrium velocities equivalent to modified Newtonian dynamics. We find models having an inner Newtonian region and an outer modified gravity regime, which reproduce all observational constraints, surface brightness profiles, total masses, and line-of-sight velocity dispersion profiles, can be easily constructed. Through the use of detailed single stellar population models tuned individually to each of the globular clusters in question, we derive estimates of the total masses for these systems. Interestingly, we find that the asymptotic values of the velocity dispersion profiles are consistent with scaling with the fourth root of the total masses, as expected under modified gravity scenarios.

  12. Quantum theory of gravity

    SciTech Connect

    Christensen, S.M.

    1984-01-01

    The book of essay entitled Quantum Theory of Gravity, edited by Steven M. Christensen is reviewed. The book contains over thirty papers dealing with the subject of the unification of quantum field theory and general relativity theory. Contributions include discussions of non-Abelian gauge theories, supersymmetry, issues in renormalization and quantization and matters related to the interpretation of theories.

  13. Can background cosmology hold the key for modified gravity tests?

    NASA Astrophysics Data System (ADS)

    Ceron-Hurtado, Juan J.; He, Jian-hua; Li, Baojiu

    2016-09-01

    Modified gravity theories are a popular alternative to dark energy as a possible explanation for the observed accelerating cosmic expansion, and their cosmological tests are currently an active research field. Studies in recent years have been increasingly focused on testing these theories in the nonlinear regime, which is computationally demanding. Here we show that, under certain circumstances, a whole class of theories can be ruled out by using background cosmology alone. This is possible because certain classes of models (i) are fundamentally incapable of producing specific background expansion histories, and (ii) said histories are incompatible with local gravity tests. As an example, we demonstrate that a popular class of models, f (R ) gravity, would not be viable if observations suggest even a slight deviation of the background expansion history from that of the Λ CDM paradigm.

  14. Modifying the sum over topological sectors and constraints on supergravity

    NASA Astrophysics Data System (ADS)

    Seiberg, Nathan

    2010-07-01

    The standard lore about the sum over topological sectors in quantum field theory is that locality and cluster decomposition uniquely determine the sum over such sectors, thus leading to the usual θ-vacua. We show that without changing the local degrees of freedom, a theory can be modified such that the sum over instantons should be restricted; e.g. one should include only instanton numbers which are divisible by some integer p. This conclusion about the configuration space of quantum field theory allows us to carefully reconsider the quantization of parameters in supergravity. In particular, we show that FI-terms and nontrivial Kähler forms are quantized. This analysis also leads to a new derivation of recent results about linearized supergravity.

  15. Modified Newtonian dynamics habitats within the solar system

    SciTech Connect

    Bekenstein, Jacob; Magueijo, Joao

    2006-05-15

    MOdified Newtonian Dynamics (MOND) is an interesting alternative to the presence of dark matter in galaxies. We here examine the possibility that mild or even strong MOND behavior may become evident well inside the solar system, in particular, near saddle points of the total gravitational potential. Whereas in Newtonian theory tidal stresses are finite at saddle points, they are expected to diverge in MOND, and to remain distinctly large inside a sizable oblate ellipsoid around the saddle point. We work out the MOND effects using the nonrelativistic limit of the TeVeS theory, both in the perturbative nearly Newtonian regime and in the deep MOND regime. While strong MOND behavior would be a spectacular 'backyard' vindication of the theory, pinpointing the MOND bubbles in the setting of the realistic solar system may be difficult. Space missions, such as the LISA Pathfinder, equipped with sensitive accelerometers, may be able to explore the larger perturbative region.

  16. Massive General Relativity: Theory and Applications

    NASA Astrophysics Data System (ADS)

    Gabadadze, Gregory

    The Universe, at very large scales, is expanding with acceleration. The fundamental reason for the accelerated expansion is not understood. One way to model such an expansion is to postulate a small cosmological constant in the Einstein equations. However, it could also be that Nature made a different choice: The acceleration could be a first observational evidence of a new scale at which laws of gravity itself are modified, and if so, the acceleration could have a purely gravitational origin. To account for the observed expansion, the new scale should roughly be equal to 1/H0 ~ 10^28 cm -- the present-day value of the Hubble length. Theories that may modify gravity consistently at these scales present a great challenge, and this has been a topic of an active research for the past decade or so. Furthermore, modified gravity models make predictions that could be distinguished from those of more conventional frameworks, e.g., from the scenario with a small cosmological constant. Moreover, the case for modified gravity is strengthened by a long-standing Cosmological Constant Problem (CCP). According to a well- known theorem, the CCP cannot be solved as long as one remains in a conventional framework of General Relativity (GR), or in other theory that reduces to GR at large scales. Contrary to this, theories that truly modify GR at large scales, can evade this theorem, and thus offer a hope for solving the CCP. The Principal Investigator (PI) is proposing to address the cosmic acceleration, and related to it CCP, in the framework of massive extension of GR. Construction of massive GR began as early as in 1939, however, for the last 40 years or so the theory was tabooed by no-go theorems. Only very recently, PI and his collaborators were able to show that there is a class of theories to which the no-go theorems do not apply, and proposed a candidate covariant theory for massive GR, that passes all the initial consistency tests. Moreover, PI with his collaborators found

  17. Generating Curriculum Theory Through Grounded Theory Research.

    ERIC Educational Resources Information Center

    Gehrke, Nathalie J.; Parker, Walter C.

    The purpose of this paper is threefold: to describe grounded theory research strategies, to present a summary of several studies in education that have followed this approach, and to explore the potential uses of the grounded theory techniques in curriculum theory generation. The paper is arranged into six parts. In the first and second parts of…

  18. String Theory and M-Theory

    NASA Astrophysics Data System (ADS)

    Becker, Katrin; Becker, Melanie; Schwarz, John H.

    String theory is one of the most exciting and challenging areas of modern theoretical physics. This book guides the reader from the basics of string theory to recent developments. It introduces the basics of perturbative string theory, world-sheet supersymmetry, space-time supersymmetry, conformal field theory and the heterotic string, before describing modern developments, including D-branes, string dualities and M-theory. It then covers string geometry and flux compactifications, applications to cosmology and particle physics, black holes in string theory and M-theory, and the microscopic origin of black-hole entropy. It concludes with Matrix theory, the AdS/CFT duality and its generalizations. This book is ideal for graduate students and researchers in modern string theory, and will make an excellent textbook for a one-year course on string theory. It contains over 120 exercises with solutions, and over 200 homework problems with solutions available on a password protected website for lecturers at www.cambridge.org/9780521860697. Comprehensive coverage of topics from basics of string theory to recent developments Ideal textbook for a one-year course in string theory Includes over 100 exercises with solutions Contains over 200 homework problems with solutions available to lecturers on-line

  19. Modifying Students' Tastes in Poetry.

    ERIC Educational Resources Information Center

    Erickson, John Edward

    To test whether student tastes in poetry could be modified by a particular method of teaching it, the poetic preferences of 751 eighth grade students were pretested and compared with the poetic choices made by a panel of English educators, 35 student teachers in English, and the students' own English teachers. Consistently, poems selected by any…

  20. A modified chaotic cryptographic method

    NASA Astrophysics Data System (ADS)

    Wong, Wai-kit; Lee, Lap-piu; Wong, Kwok-wo

    2001-08-01

    We propose a modified version of the chaotic cryptographic method based on iterating a logistic map. Simulation results show that the distribution of the ciphertext is flatter and the encryption time is shorter. Moreover, the trade-off between the spread of the distribution of ciphertext and the encryption time can be controlled by a single parameter.

  1. Cosmological hints of modified gravity?

    NASA Astrophysics Data System (ADS)

    Di Valentino, Eleonora; Melchiorri, Alessandro; Silk, Joseph

    2016-01-01

    The recent measurements of cosmic microwave background (CMB) temperature and polarization anisotropies made by the Planck satellite have provided impressive confirmation of the Λ CDM cosmological model. However interesting hints of slight deviations from Λ CDM have been found, including a 95% C.L. preference for a "modified gravity" (MG) structure formation scenario. In this paper we confirm the preference for a modified gravity scenario from Planck 2015 data, find that modified gravity solves the so-called Alens anomaly in the CMB angular spectrum, and constrains the amplitude of matter density fluctuations to σ8=0.81 5-0.048+0.032 , in better agreement with weak lensing constraints. Moreover, we find a lower value for the reionization optical depth of τ =0.059 ±0.020 (to be compared with the value of τ =0.079 ±0.017 obtained in the standard scenario), more consistent with recent optical and UV data. We check the stability of this result by considering possible degeneracies with other parameters, including the neutrino effective number, the running of the spectral index and the amount of primordial helium. The indication for modified gravity is still present at about 95% C.L., and could become more significant if lower values of τ were to be further confirmed by future cosmological and astrophysical data. When the CMB lensing likelihood is included in the analysis the statistical significance for MG simply vanishes, indicating also the possibility of a systematic effect for this MG signal.

  2. Jogging Can Modify Disruptive Behaviors.

    ERIC Educational Resources Information Center

    Allen, Jill I.

    1980-01-01

    Jogging was used to modify disruptive behavior as part of the classroom routine for 12 learning disabled elementary-grade boys. The number of incidents of each of five negative behaviors were reduced by half following the 10-minute jogging routine. (SBH)

  3. Modified immunotherapy for alopecia areata.

    PubMed

    Yoshimasu, Takashi; Furukawa, Fukumi

    2016-07-01

    Squaric acid dibutylester (SADBE) is a commonly used contact sensitizer in immunotherapy for alopecia areata (AA). Severe contact dermatitis is induced by the currently high recommended sensitization dose of 1%-2% SADBE, often decreasing patient compliance. We assessed a modified immunotherapy for AA using SADBE at a starting concentration of 0.01% without sensitization. After one or two weeks of initial 0.01% SADBE application, the concentration of SADBE was increased gradually to 0.025%, 0.05%, 0.1%, 0.25%, 0.5%, 1% and 2% until the patients felt itching or erythema at the AA lesion site. The modified immunotherapy showed a response rate of 69.4% (25/36), equivalent to conventional immunotherapy using SADBE starting at 1%-2% sensitization. Furthermore, we investigated the combination therapy of SADBE and multiple courses of steroid pulses for AA. The response rate for combination therapy was 73.7% (28/38); however, the group receiving combination therapy showed a significant prevalence of severe AA compared with the group receiving modified immunotherapy only. We reviewed the efficacy and safety of modified immunotherapy without initial sensitization and combination therapy with immunotherapy and multiple courses of pulses for AA.

  4. Cognitive Modifiability of Children with Developmental Disabilities: A Multicentre Study Using Feuerstein's Instrumental Enrichment-Basic Program

    ERIC Educational Resources Information Center

    Kozulin, A.; Lebeer, J.; Madella-Noja, A.; Gonzalez, F.; Jeffrey, I.; Rosenthal, N.; Koslowsky, M.

    2010-01-01

    The study aimed at exploring the effectiveness of cognitive intervention with the new "Instrumental Enrichment Basic" program (IE-basic), based on Feuerstein's theory of structural cognitive modifiability that contends that a child's cognitive functioning can be significantly modified through mediated learning intervention. The IE-basic program is…

  5. School Characteristics Inventory: Investigation of a Quantitative Instrument for Measuring the Modifiability of School Contexts for Implementation of Educational Innovations

    ERIC Educational Resources Information Center

    Moon, Tonya R.; Brighton, Catherine M.; Hertberg, Holly L.; Callahan, Carolyn M.; Tomlinson, Carol A.; Esperat, Andrea M.; Miller, Erin M.

    2003-01-01

    In response to the numerous school reform initiatives being implemented, Sternberg proposed a theory of contextual modifiability stating that successful change in a school requires that the school be modifiable. Sternberg developed the School Characteristics Inventory (SCI), a 116-item Likert scale questionnaire, to assess schools'…

  6. Grounded theory, feminist theory, critical theory: toward theoretical triangulation.

    PubMed

    Kushner, Kaysi Eastlick; Morrow, Raymond

    2003-01-01

    Nursing and social science scholars have examined the compatibility between feminist and grounded theory traditions in scientific knowledge generation, concluding that they are complementary, yet not without certain tensions. This line of inquiry is extended to propose a critical feminist grounded theory methodology. The construction of symbolic interactionist, feminist, and critical feminist variants of grounded theory methodology is examined in terms of the presuppositions of each tradition and their interplay as a process of theoretical triangulation.

  7. A cosmological study in massive gravity theory

    SciTech Connect

    Pan, Supriya Chakraborty, Subenoy

    2015-09-15

    A detailed study of the various cosmological aspects in massive gravity theory has been presented in the present work. For the homogeneous and isotropic FLRW model, the deceleration parameter has been evaluated, and, it has been examined whether there is any transition from deceleration to acceleration in recent past, or not. With the proper choice of the free parameters, it has been shown that the massive gravity theory is equivalent to Einstein gravity with a modified Newtonian gravitational constant together with a negative cosmological constant. Also, in this context, it has been examined whether the emergent scenario is possible, or not, in massive gravity theory. Finally, we have done a cosmographic analysis in massive gravity theory.

  8. Foundations for a theory of gravitation theories

    NASA Technical Reports Server (NTRS)

    Thorne, K. S.; Lee, D. L.; Lightman, A. P.

    1972-01-01

    A foundation is laid for future analyses of gravitation theories. This foundation is applicable to any theory formulated in terms of geometric objects defined on a 4-dimensional spacetime manifold. The foundation consists of (1) a glossary of fundamental concepts; (2) a theorem that delineates the overlap between Lagrangian-based theories and metric theories; (3) a conjecture (due to Schiff) that the Weak Equivalence Principle implies the Einstein Equivalence Principle; and (4) a plausibility argument supporting this conjecture for the special case of relativistic, Lagrangian-based theories.

  9. Help-Seeking Decisions of Battered Women: A Test of Learned Helplessness and Two Stress Theories.

    ERIC Educational Resources Information Center

    Wauchope, Barbara A.

    This study tested the learned helplessness theory, stress theory, and a modified stress theory to determine the best model for predicting the probability that a woman would seek help when she experienced severe violence from a male partner. The probability was hypothesized to increase as the stress of the violence experienced increased. Data were…

  10. Antioxidant defense and aging in C. elegans: is the oxidative damage theory of aging wrong?

    PubMed

    Gems, David; Doonan, Ryan

    2009-06-01

    The oxidative damage theory of aging once seemed almost proven. Yet recently the buzzards have been assembling in the blue skies above it. New challenges to the theory from work using nematode worms seem set to bring them down to peck at its bones. But is the theory really dead, or does it just need to be modified? PMID:19411855

  11. Second-order radio frequency kinetic theory revisited: Resolving inconsistency with conventional fluid theory

    SciTech Connect

    Chen, Jiale; Gao, Zhe

    2013-08-15

    The second-order velocity distribution function was calculated from the second-order rf kinetic theory [Jaeger et al., Phys. Plasmas 7, 641 (2000)]. However, the nonresonant ponderomotive force in the radial direction derived from the theory is inconsistent with that from the fluid theory. The inconsistency arises from that the multiple-timescale-separation assumption fails when the second-order Vlasov equation is directly integrated along unperturbed particle orbits. A slowly ramped wave field including an adiabatic turn-on process is applied in the modified kinetic theory in this paper. Since this modification leads only to additional reactive/nonresonant response relevant with the secular resonant response from the previous kinetic theory, the correct nonresonant ponderomotive force can be obtained while all the resonant moments remain unchanged.

  12. Gauge equivalent structure and solitary wave solution for a modified Landau-Lifshitz equation

    NASA Astrophysics Data System (ADS)

    Ma, LiYuan; Zhu, ZuoNong

    2016-11-01

    In this paper, the gauge equivalence between the modified Landau-Lifshitz equation and the perturbed defocusing nonlinear Schrödinger equation is proved from the perspective of geometry of given curvature condition. By using the gauge equivalence and the soliton perturbation theory of defocusing nonlinear Schrödinger equation, the first-order approximate 1-soliton solution to the modified Landau-Lifshitz equation is given.

  13. Alpha particles in effective field theory

    SciTech Connect

    Caniu, C.

    2014-11-11

    Using an effective field theory for alpha (α) particles at non-relativistic energies, we calculate the strong scattering amplitude modified by Coulomb corrections for a system of two αs. For the strong interaction, we consider a momentum-dependent interaction which, in contrast to an energy dependent interaction alone [1], could be more useful in extending the theory to systems with more than two α particles. We will present preliminary results of our EFT calculations for systems with two alpha particles.

  14. Eddington's theory of gravity and its progeny.

    PubMed

    Bañados, Máximo; Ferreira, Pedro G

    2010-07-01

    We resurrect Eddington's proposal for the gravitational action in the presence of a cosmological constant and extend it to include matter fields. We show that the Newton-Poisson equation is modified in the presence of sources and that charged black holes show great similarities with those arising in Born-Infeld electrodynamics coupled to gravity. When we consider homogeneous and isotropic space-times, we find that there is a minimum length (and maximum density) at early times, clearly pointing to an alternative theory of the big bang. We thus argue that the modern formulation of Eddington's theory, Born-Infeld gravity, presents us with a novel, nonsingular description of the Universe.

  15. Density of states in gauge theories.

    PubMed

    Langfeld, Kurt; Lucini, Biagio; Rago, Antonio

    2012-09-14

    The density of states is calculated for the SU(2), SU(3), and a compact U(1) lattice gauge theories using a modified version of the Wang-Landau algorithm. We find that the density of states of the SU(2) gauge theory can be reliably calculated over a range of 120,000 orders of magnitude for lattice sizes as big as 20(4). We demonstrate the potential of the algorithm by reproducing the SU(2) average action, its specific heat, and the critical couplings of the weak first order transition in U(1).

  16. On causality in polymer scalar field theory

    NASA Astrophysics Data System (ADS)

    García-Chung, Angel A.; Morales-Técotl, Hugo A.

    2011-10-01

    The properties of spacetime corresponding to a proposed quantum gravity theory might modify the high energy behavior of quantum fields. Motivated by loop quantum gravity, recently, Hossain et al [1] have considered a polymer field algebra that replaces the standard canonical one in order to calculate the propagator of a real scalar field in flat spacetime. This propagator features Lorentz violations. Motivated by the relation between Lorentz invariance and causality in standard Quantum Field Theory, in this work we investigate the causality behavior of the polymer scalar field.

  17. Perioperative pharmacology: blood coagulation modifiers.

    PubMed

    Hicks, Rodney W; Wanzer, Linda J; Goeckner, Bradlee

    2011-06-01

    Blood coagulation is the process that results in the formation of a blood clot to stop bleeding from a damaged blood vessel. Various pharmacologic agents can affect the coagulation process. The American College of Chest Physicians' evidence-based practice guidelines for perioperative management of antithrombotic therapy provide guidance for anticoagulant or antiplatelet therapy and bridge therapy. Perioperative nurses must understand the pharmacologic principles of the most common blood coagulation modifiers related to perioperative use. The perioperative nurse's responsibilities regarding administration of blood coagulation modifiers include reviewing the patient's pertinent laboratory results (eg, prothrombin time, partial thromboplastin time, international normalized ratio), recognizing the underlying conditions that require blood coagulation therapy, and documenting all pertinent information. Perioperative nurses also should participate in development of detailed storage and retrieval policies related to heparin.

  18. Modified muscle sparing posterolateral thoracotomy.

    PubMed Central

    Ashour, M

    1990-01-01

    A modified posterolateral thoracotomy is described that combines the advantages of complete muscle sparing through a thoracolumbar fascial slide with excellent exposure. The technique is easy to perform. The procedure was associated with relatively little postoperative pain, coughing was effective, and early ambulation was achieved. Experience with this approach in the first 49 patients suggests that it offers an attractive alternative to the standard muscle cutting posterolateral thoracotomy approach for elective procedures. PMID:2281426

  19. A propositional theory of recognition memory.

    PubMed

    Anderson, J R; Bower, G H

    1974-05-01

    This paper modifies the Anderson and Bower (1972) theory of recognition memory for words. A propositional representation is outlined for the contextual information underlying word recognition. Logical arguments are offered for preferring this representation over the undifferentiated associative representation used earlier. The propositional representation is used to interpret effects of verbal context upon recognition memory. The implications of these context effects are considered for two-process models of recall and recognition. PMID:21274765

  20. An analysis of the Belinfante-Swihart theory of gravity

    NASA Technical Reports Server (NTRS)

    Lee, D. L.; Lightman, A. P.

    1972-01-01

    The Belinfante-Swihart (BS) theory is reformulated in a representation in which uncharged matter responds to gravity in the same way as in metric theories. The BS gravitationally modified Maxwell equations are also put into metric form to first order in the deviations of the physical metric from flat space, but not to second order; consequently the theory is nonmetric except in first order. Also shown is that the theory violates the high precision Eotvos-Dicke experiment, but cannot be ruled out by the gravitational precession of gyroscopes.

  1. Theories and Modes

    ERIC Educational Resources Information Center

    Apsche, Jack A.

    2005-01-01

    In his work on the Theory of Modes, Beck (1996) suggested that there were flaws with his cognitive theory. He suggested that though there are shortcomings to his cognitive theory, there were not similar shortcomings to the practice of Cognitive Therapy. The author suggests that if there are shortcomings to cognitive theory the same shortcomings…

  2. Preliminary Analysis of Modified Low-Density Lipoproteins in the Serum of Healthy and Obese Dogs and Cats

    PubMed Central

    Mori, Nobuko; Okada, Yuki; Tsuchida, Naoto; Hatano, Yutaka; Habara, Makoto; Ishikawa, Shingo; Yamamoto, Ichiro; Arai, Toshiro

    2015-01-01

    Oxidized low-density lipoprotein (LDL) is thought to play an important role in the inflammatory response associated with human obesity. The purpose of this preliminary study was to determine oxidized LDL concentrations in healthy dogs and cats, and to evaluate whether obesity affects oxidized LDL concentration, using 39 cats and 19 dogs that had visited two different veterinary clinics in Japan. We hypothesized that oxidized LDL concentrations measured against body condition score (BCS) may have a potential value in evaluating the qualities of accumulated or circulating lipids in obese dogs and cats that do not show signs of metabolic diseases. The mean oxidized LDL value in BCS3 dogs (2.4 ± 0.9 μg/dl) was very similar to that of BCS5 dogs (2.2 ± 0.3 μg/dl). The mean oxidized LDL value of BCS4 dogs was 7.2 ± 10.3 μg/dl and the highest among three groups. BCS4 dogs included two dogs whose oxidized LDL values were higher than the mean oxidized LDL value of healthy humans (11.2 ± 0.3 μg/dl). On the other hand, the mean oxidized LDL value of BCS3 cats was 2.5 ± 0.9 μg/dl, and those of BCS4 and 5 cats were higher than that of BCS3, but there was no significant difference. The BCS4 cat group included one cat with a higher oxidized LDL value, and the BCS5 group also included two cats with oxidized LDL values higher than the mean oxidized LDL value of healthy humans. Interestingly, the oxidized LDL values in two obese dogs and three obese cats were indeed higher than the mean oxidized LDL value of humans with coronary artery disease (20.1 ± 1.1 μg/dl). In conclusion, this preliminary study showed reference ranges of oxidized dogs and cats against BCS. Obesity alone does not appear to have any direct effect on serum oxidized LDL values in healthy dogs and cats. PMID:26664963

  3. Decomposition pathways of C2 oxygenates on Rh-modified tungsten carbide surfaces

    NASA Astrophysics Data System (ADS)

    Kelly, Thomas G.; Ren, Hui; Chen, Jingguang G.

    2015-10-01

    Ethanol decomposition on tungsten monocarbide (WC) and Rh-modified WC was investigated using ultrahigh vacuum (UHV) surface science experiments and density functional theory (DFT) calculations. DFT calculations indicated that the binding energies of ethanol and its decomposition intermediates on WC(0001) were modified by Rh, with Rh/WC(0001) showing similar values to those on Rh(111). Through temperature-programmed desorption (TPD) experiments on polycrystalline WC and Rh-modified WC, it was shown that the selectivity for ethanol decomposition was different on these surfaces. On WC, the C-O bond of ethanol was preferentially broken to produce ethylene; on Rh-modified WC, the C-C bond was broken to produce carbon monoxide and methane. Furthermore, high-resolution electron energy loss spectroscopy (HREELS) was used to determine likely surface intermediates. On Rh-modified WC, ethanol first formed ethoxy through O-H scission, then reacted through an aldehyde intermediate to form the C1 products.

  4. Parametrized post-Friedmann framework for modified gravity

    NASA Astrophysics Data System (ADS)

    Hu, Wayne; Sawicki, Ignacy

    2007-11-01

    We develop a parametrized post-Friedmann (PPF) framework which describes three regimes of modified gravity models that accelerate the expansion without dark energy. On large scales, the evolution of scalar metric and density perturbations must be compatible with the expansion history defined by distance measures. On intermediate scales in the linear regime, they form a scalar-tensor theory with a modified Poisson equation. On small scales in dark matter halos such as our own galaxy, modifications must be suppressed in order to satisfy stringent local tests of general relativity. We describe these regimes with three free functions and two parameters: the relationship between the two metric fluctuations, the large and intermediate scale relationships to density fluctuations, and the two scales of the transitions between the regimes. We also clarify the formal equivalence of modified gravity and generalized dark energy. The PPF description of linear fluctuation in f(R) modified action and the Dvali-Gabadadze-Porrati braneworld models show excellent agreement with explicit calculations. Lacking cosmological simulations of these models, our nonlinear halo-model description remains an ansatz but one that enables well-motivated consistency tests of general relativity. The required suppression of modifications within dark matter halos suggests that the linear and weakly nonlinear regimes are better suited for making a complementary test of general relativity than the deeply nonlinear regime.

  5. Weak lensing by voids in modified lensing potentials

    SciTech Connect

    Barreira, Alexandre; Cautun, Marius; Li, Baojiu; Baugh, Carlton M.; Pascoli, Silvia E-mail: m.c.cautun@durham.ac.uk E-mail: c.m.baugh@durham.ac.uk

    2015-08-01

    We study lensing by voids in Cubic Galileon and Nonlocal gravity cosmologies, which are examples of theories of gravity that modify the lensing potential. We find voids in the dark matter and halo density fields of N-body simulations and compute their lensing signal analytically from the void density profiles, which we show are well fit by a simple analytical formula. In the Cubic Galileon model, the modifications to gravity inside voids are not screened and they approximately double the size of the lensing effects compared to GR. The difference is largely determined by the direct effects of the fifth force on lensing and less so by the modified density profiles. For this model, we also discuss the subtle impact on the force and lensing calculations caused by the screening effects of haloes that exist in and around voids. In the Nonlocal model, the impact of the modified density profiles and the direct modifications to lensing are comparable, but they boost the lensing signal by only ≈ 10%, compared with that of GR. Overall, our results suggest that lensing by voids is a promising tool to test models of gravity that modify lensing.

  6. Quantum Theory is an Information Theory

    NASA Astrophysics Data System (ADS)

    D'Ariano, Giacomo M.; Perinotti, Paolo

    2016-03-01

    In this paper we review the general framework of operational probabilistic theories (OPT), along with the six axioms from which quantum theory can be derived. We argue that the OPT framework along with a relaxed version of five of the axioms, define a general information theory. We close the paper with considerations about the role of the observer in an OPT, and the interpretation of the von Neumann postulate and the Schrödinger-cat paradox.

  7. Modified betatron accelerator studies. Final report

    SciTech Connect

    Hughes, T.P.; Godfrey, B.B.

    1984-12-01

    This final report describes work carried out on the equilibrium and stability properties of circular accelerators. A rigid-disk beam model in which the fields are treated exactly is used to study linear instabilities. This approach has uncovered an important inductive effect which at high toroidal mode numbers leads to either stability or to a hybrid instability. A corresponding effect has been found in electron-layer geometry. The new theory also shows that moving the equilibrium position toward the inner wall can stabilize low mode numbers. With the aid of IVORY code simulation results it is shown that the transverse motion of beam partilces is a key factor in determining beam stability. The upper bound on particle circulation frequency spread is shown to be a function only of the beam major and minor radii. This leads to upper bounds on stable currents in the modified betatron. Numerical results on stability in the stellatron and reversing-solenoidal-lens betatrons are presented. In addition, the sensitivity of equilibrium particle orbits in the stellatron to initial conditions is calculated.

  8. Inter-Rater Reliability of the Modified Ashworth Scale and Modified Modified Ashworth Scale in Assessing Poststroke Elbow Flexor Spasticity

    ERIC Educational Resources Information Center

    Kaya, Taciser; Goksel Karatepe, Altinay; Gunaydin, Rezzan; Koc, Aysegul; Altundal Ercan, Ulku

    2011-01-01

    The Modified Ashworth Scale (MAS) is commonly used in clinical practice for grading spasticity. However, it was modified recently by omitting grade "1+" of the MAS and redefining grade "2". The aim of this study was to investigate the inter-rater reliability of MAS and modified MAS (MMAS) for the assessment of poststroke elbow flexor spasticity.…

  9. Novel test of modified Newtonian dynamics with gas rich galaxies.

    PubMed

    McGaugh, Stacy S

    2011-03-25

    The current cosmological paradigm, the cold dark matter model with a cosmological constant, requires that the mass-energy of the Universe be dominated by invisible components: dark matter and dark energy. An alternative to these dark components is that the law of gravity be modified on the relevant scales. A test of these ideas is provided by the baryonic Tully-Fisher relation (BTFR), an empirical relation between the observed mass of a galaxy and its rotation velocity. Here, I report a test using gas rich galaxies for which both axes of the BTFR can be measured independently of the theories being tested and without the systematic uncertainty in stellar mass that affects the same test with star dominated spirals. The data fall precisely where predicted a priori by the modified Newtonian dynamics. The scatter in the BTFR is attributable entirely to observational uncertainty, consistent with a single effective force law.

  10. Resonant wave-particle interactions modified by intrinsic Alfvenic turbulence

    SciTech Connect

    Wu, C. S.; Lee, K. H.; Wang, C. B.; Wu, D. J.

    2012-08-15

    The concept of wave-particle interactions via resonance is well discussed in plasma physics. This paper shows that intrinsic Alfven waves can qualitatively modify the physics discussed in conventional linear plasma kinetic theories. It turns out that preexisting Alfven waves can affect particle motion along the ambient magnetic field and, moreover, the ensuing force field is periodic in time. As a result, the meaning of the usual Landau and cyclotron resonance conditions becomes questionable. It turns out that this effect leads us to find a new electromagnetic instability. In such a process intrinsic Alfven waves not only modify the unperturbed distribution function but also result in a different type of cyclotron resonance which is affected by the level of turbulence. This instability might enable us to better our understanding of the observed radio emission processes in the solar atmosphere.

  11. Teaching Theory X and Theory Y in Organizational Communication

    ERIC Educational Resources Information Center

    Noland, Carey

    2014-01-01

    The purpose of the activity described here is to integrate McGregor's Theory X and Theory Y into a group application: design a syllabus that embodies either Theory X or Theory Y tenets. Students should be able to differentiate between Theory X and Theory Y, create a syllabus based on Theory X or Theory Y tenets, evaluate the different syllabi…

  12. The GRW Theory and Vagueness in Quantum Mechanics.

    NASA Astrophysics Data System (ADS)

    Lewis, Peter John

    This dissertation is an investigation into the adequacy of the GRW theory of quantum mechanics as a solution to the measurement problem, and a comparison between the GRW theory and the other potential solutions. A new problem, the vagueness problem, is found to afflict a broad class of quantum mechanical theories, including the GRW theory. The standard theory of quantum mechanics and the measurement problem from which it suffers are sketched. The GRW theory of quantum mechanics is explained, along with how it is intended to solve the measurement problem. The major obstacle to the adequacy of the GRW theory in this regard, known as the tails problem, is presented. Two potential lines of response to the tails problem are outlined, namely modifying the GRW dynamics and modifying the interpretation rule connecting the language of the theory to everyday language. The first of these is quickly shown to be unworkable. The second is investigated in some detail. A defense of this line of response in terms of the inherent vagueness of the translation between the language of physical theory and everyday language is presented. However, it is argued that any modified interpretation rule which can adequately respond to the tails problem will violate intuitions concerning counting and the logic of parts and wholes. This is termed the vagueness problem. The extent of the vagueness problem among the other promising solutions to the measurement problem is investigated. It is demonstrated that the modal theories suffer from this problem, but Bohm-type hidden variable theories do not. It is argued that this gives us reason to prefer the hidden variable theories over their competitors. The empirical adequacy of the GRW theory is investigated. It is found that empirical considerations cannot at present decide between the GRW theory and its alternatives, although they may be able to do so eventually. The conclusion drawn is that because of the vagueness problem, the GRW theory and the

  13. Lagrangian description of perfect fluids and modified gravity with an extra force

    SciTech Connect

    Faraoni, Valerio

    2009-12-15

    We revisit the issue of the correct Lagrangian description of a perfect fluid (L{sub 1}=P versus L{sub 2}=-{rho}) in relation with modified gravity theories in which galactic luminous matter couples nonminimally to the Ricci scalar. These Lagrangians are only equivalent when the fluid couples minimally to gravity and not otherwise; in the presence of nonminimal coupling they give rise to two distinct theories with different predictions.

  14. Gene transfer from genetically modified food.

    PubMed

    Gasson, M J

    2000-10-01

    The current debate about the safety of genetically modified food includes some important scientific issues where more scientific data would aid the robustness of safety evaluation. One example is the possibility of gene transfer, especially from genetically modified plant material.

  15. Entity versus incremental theories predict older adults' memory performance.

    PubMed

    Plaks, Jason E; Chasteen, Alison L

    2013-12-01

    The authors examined whether older adults' implicit theories regarding the modifiability of memory in particular (Studies 1 and 3) and abilities in general (Study 2) would predict memory performance. In Study 1, individual differences in older adults' endorsement of the "entity theory" (a belief that one's ability is fixed) or "incremental theory" (a belief that one's ability is malleable) of memory were measured using a version of the Implicit Theories Measure (Dweck, 1999). Memory performance was assessed with a free-recall task. Results indicated that the higher the endorsement of the incremental theory, the better the free recall. In Study 2, older and younger adults' theories were measured using a more general version of the Implicit Theories Measure that focused on the modifiability of abilities in general. Again, for older adults, the higher the incremental endorsement, the better the free recall. Moreover, as predicted, implicit theories did not predict younger adults' memory performance. In Study 3, participants read mock news articles reporting evidence in favor of either the entity or incremental theory. Those in the incremental condition outperformed those in the entity condition on reading span and free-recall tasks. These effects were mediated by pretask worry such that, for those in the entity condition, higher worry was associated with lower performance. Taken together, these studies suggest that variation in entity versus incremental endorsement represents a key predictor of older adults' memory performance. PMID:24128076

  16. Entity versus incremental theories predict older adults' memory performance.

    PubMed

    Plaks, Jason E; Chasteen, Alison L

    2013-12-01

    The authors examined whether older adults' implicit theories regarding the modifiability of memory in particular (Studies 1 and 3) and abilities in general (Study 2) would predict memory performance. In Study 1, individual differences in older adults' endorsement of the "entity theory" (a belief that one's ability is fixed) or "incremental theory" (a belief that one's ability is malleable) of memory were measured using a version of the Implicit Theories Measure (Dweck, 1999). Memory performance was assessed with a free-recall task. Results indicated that the higher the endorsement of the incremental theory, the better the free recall. In Study 2, older and younger adults' theories were measured using a more general version of the Implicit Theories Measure that focused on the modifiability of abilities in general. Again, for older adults, the higher the incremental endorsement, the better the free recall. Moreover, as predicted, implicit theories did not predict younger adults' memory performance. In Study 3, participants read mock news articles reporting evidence in favor of either the entity or incremental theory. Those in the incremental condition outperformed those in the entity condition on reading span and free-recall tasks. These effects were mediated by pretask worry such that, for those in the entity condition, higher worry was associated with lower performance. Taken together, these studies suggest that variation in entity versus incremental endorsement represents a key predictor of older adults' memory performance.

  17. Surface-active agents from the group of polyoxyethylated glycerol esters of fatty acids. Part III. Surface activity and solubilizing properties of the products of oxyethylation of lard (Adeps suillus, F.P. VIII) in the equilibrium system in relation to lipophilic therapeutic agents (class II and III of BCS).

    PubMed

    Nachajski, Michał J; Piotrowska, Jowita B; Kołodziejczyk, Michał K; Lukosek, Marek; Zgoda, Marian M

    2013-01-01

    Research was conducted into the solubilization processes of diclofenac, ibuprofen, ketoprofen and naproxen in equilibrium conditions in the environment of aqueous solutions of oxyethylated lard's fractions (Adeps suillus, Polish Pharmacopoeia VIII). The determined thermodynamic (cmc, deltaGm(0)) and hydrodynamic (R0, R(obs), omega, M(eta)) parameters characterizing the micelle of the solubilizer and the adduct demonstrate that lipophilic therapeutic agents are adsorbed in a palisade structure of the micelle due to a topologically created so-called "lipophilic adsorption pocket". This shows that the hydrophilicity of the micelle and the adsorption layer decreases at the phase boundary, which is confirmed by the calculated values of coefficients A(m) and r x (a). The results obtained indicate the possibility of making use of the class of non-ionic surfactants which are not ksenobiotics for the modification of the profile of solid oral dosage forms with lipophilic therapeutic agents from the II class of Biopharmaceutics Classification System (BCS).

  18. Crystallization modifiers in lipid systems.

    PubMed

    Ribeiro, Ana Paula Badan; Masuchi, Monise Helen; Miyasaki, Eriksen Koji; Domingues, Maria Aliciane Fontenele; Stroppa, Valter Luís Zuliani; de Oliveira, Glazieli Marangoni; Kieckbusch, Theo Guenter

    2015-07-01

    Crystallization of fats is a determinant physical event affecting the structure and properties of fat-based products. The stability of these processed foods is regulated by changes in the physical state of fats and alterations in their crystallization behavior. Problems like polymorphic transitions, oil migration, fat bloom development, slow crystallization and formation of crystalline aggregates stand out. The change of the crystallization behavior of lipid systems has been a strategic issue for the processing of foods, aiming at taylor made products, reducing costs, improving quality, and increasing the applicability and stability of different industrial fats. In this connection, advances in understanding the complex mechanisms that govern fat crystallization led to the development of strategies in order to modulate the conventional processes of fat structuration, based on the use of crystallization modifiers. Different components have been evaluated, such as specific triacyglycerols, partial glycerides (monoacylglycerols and diacylglycerols), free fatty acids, phospholipids and emulsifiers. The knowledge and expertise on the influence of these specific additives or minor lipids on the crystallization behavior of fat systems represents a focus of current interest for the industrial processing of oils and fats. This article presents a comprehensive review on the use of crystallization modifiers in lipid systems, especially for palm oil, cocoa butter and general purpose fats, highlighting: i) the removal, addition or fractionation of minor lipids in fat bases; ii) the use of nucleating agents to modify the crystallization process; iii) control of crystallization in lipid bases by using emulsifiers. The addition of these components into lipid systems is discussed in relation to the phenomena of nucleation, crystal growth, morphology, thermal behavior and polymorphism, with the intention of providing the reader with a complete panorama of the associated mechanisms

  19. Metabolomics of genetically modified crops.

    PubMed

    Simó, Carolina; Ibáñez, Clara; Valdés, Alberto; Cifuentes, Alejandro; García-Cañas, Virginia

    2014-01-01

    Metabolomic-based approaches are increasingly applied to analyse genetically modified organisms (GMOs) making it possible to obtain broader and deeper information on the composition of GMOs compared to that obtained from traditional analytical approaches. The combination in metabolomics of advanced analytical methods and bioinformatics tools provides wide chemical compositional data that contributes to corroborate (or not) the substantial equivalence and occurrence of unintended changes resulting from genetic transformation. This review provides insight into recent progress in metabolomics studies on transgenic crops focusing mainly in papers published in the last decade. PMID:25334064

  20. Ionene modified small polymeric beads

    NASA Technical Reports Server (NTRS)

    Rembaum, Alan (Inventor)

    1977-01-01

    Linear ionene polyquaternary cationic polymeric segments are bonded by means of the Menshutkin reaction (quaternization) to biocompatible, extremely small, porous particles containing halide or tertiary amine sites which are centers for attachment of the segments. The modified beads in the form of emulsions or suspensions offer a large, positively-charged surface area capable of irreversibly binding polyanions such as heparin, DNA, RNA or bile acids to remove them from solution or of reversibly binding monoanions such as penicillin, pesticides, sex attractants and the like for slow release from the suspension.

  1. Modified QKLOOK program, change 1

    NASA Astrophysics Data System (ADS)

    1983-07-01

    Recently, the four QKLOOK programs, in the earlier reports, were extensively modified. The modification were made to increase the usefulness and ease of use of the QKLOOK model. The changes made (1) increase the user's control of the PK/H functions used in QKLOOK, (2) allow the user to select true or incremental vulnerable areas, and (3) brought the programs in line with the FORTRAN 77 standards. All the changes are thoroughly documented. The program VAMERGE, which re-formats the QKLOOK output into a form usable by the ASALT program, has been documented and is also included in this change.

  2. Adhesives from modified soy protein

    DOEpatents

    Sun, Susan; Wang, Donghai; Zhong, Zhikai; Yang, Guang

    2008-08-26

    The, present invention provides useful adhesive compositions having similar adhesive properties to conventional UF and PPF resins. The compositions generally include a protein portion and modifying ingredient portion selected from the group consisting of carboxyl-containing compounds, aldehyde-containing compounds, epoxy group-containing compounds, and mixtures thereof. The composition is preferably prepared at a pH level at or near the isoelectric point of the protein. In other preferred forms, the adhesive composition includes a protein portion and a carboxyl-containing group portion.

  3. Metabolomics of Genetically Modified Crops

    PubMed Central

    Simó, Carolina; Ibáñez, Clara; Valdés, Alberto; Cifuentes, Alejandro; García-Cañas, Virginia

    2014-01-01

    Metabolomic-based approaches are increasingly applied to analyse genetically modified organisms (GMOs) making it possible to obtain broader and deeper information on the composition of GMOs compared to that obtained from traditional analytical approaches. The combination in metabolomics of advanced analytical methods and bioinformatics tools provides wide chemical compositional data that contributes to corroborate (or not) the substantial equivalence and occurrence of unintended changes resulting from genetic transformation. This review provides insight into recent progress in metabolomics studies on transgenic crops focusing mainly in papers published in the last decade. PMID:25334064

  4. Metabolomics of genetically modified crops.

    PubMed

    Simó, Carolina; Ibáñez, Clara; Valdés, Alberto; Cifuentes, Alejandro; García-Cañas, Virginia

    2014-10-20

    Metabolomic-based approaches are increasingly applied to analyse genetically modified organisms (GMOs) making it possible to obtain broader and deeper information on the composition of GMOs compared to that obtained from traditional analytical approaches. The combination in metabolomics of advanced analytical methods and bioinformatics tools provides wide chemical compositional data that contributes to corroborate (or not) the substantial equivalence and occurrence of unintended changes resulting from genetic transformation. This review provides insight into recent progress in metabolomics studies on transgenic crops focusing mainly in papers published in the last decade.

  5. Generalizability Theory and Classical Test Theory

    ERIC Educational Resources Information Center

    Brennan, Robert L.

    2011-01-01

    Broadly conceived, reliability involves quantifying the consistencies and inconsistencies in observed scores. Generalizability theory, or G theory, is particularly well suited to addressing such matters in that it enables an investigator to quantify and distinguish the sources of inconsistencies in observed scores that arise, or could arise, over…

  6. The Modifier Effect and Property Mutability

    ERIC Educational Resources Information Center

    Hampton, James A.; Passanisi, Alessia; Jonsson, Martin L.

    2011-01-01

    The modifier effect is the reduction in perceived likelihood of a generic property sentence, when the head noun is modified. We investigated the prediction that the modifier effect would be stronger for mutable than for central properties, without finding evidence for this predicted interaction over the course of five experiments. However…

  7. Computing model independent perturbations in dark energy and modified gravity

    SciTech Connect

    Battye, Richard A.; Pearson, Jonathan A. E-mail: jonathan.pearson@durham.ac.uk

    2014-03-01

    We present a methodology for computing model independent perturbations in dark energy and modified gravity. This is done from the Lagrangian for perturbations, by showing how field content, symmetries, and physical principles are often sufficient ingredients for closing the set of perturbed fluid equations. The fluid equations close once ''equations of state for perturbations'' are identified: these are linear combinations of fluid and metric perturbations which construct gauge invariant entropy and anisotropic stress perturbations for broad classes of theories. Our main results are the proof of the equation of state for perturbations presented in a previous paper, and the development of the required calculational tools.

  8. Modified gravity in three dimensional metric-affine scenarios

    NASA Astrophysics Data System (ADS)

    Bambi, Cosimo; Ghasemi-Nodehi, M.; Rubiera-Garcia, D.

    2015-08-01

    We consider metric-affine scenarios where a modified gravitational action is sourced by electrovacuum fields in a three dimensional space-time. We first study the case of f (R ) theories, finding deviations near the center as compared to the solutions of general relativity. We then consider Born-Infeld gravity, which has raised a lot of interest in the last few years regarding its applications in astrophysics and cosmology, and show that new features always arise at a finite distance from the center. Several properties of the resulting space-times, in particular in presence of a cosmological constant term, are discussed.

  9. Cluster modified projective synchronization between networks with distinct topologies

    NASA Astrophysics Data System (ADS)

    Vahedi, Shahed; Noorani, Mohd Salmi Md

    2016-02-01

    Cluster modified projective synchronization (CMPS) between two topologically distinct community networks is studied in this paper. Each cluster here has a unique dynamics at least with respect to the parameter sets. Using an adaptive feedback control gain and a matrix scaling factor, we show that CMPS between two community networks can be realized with considering minimum assumptions and imposing just few restrictions on the configuration set. We use Lyapunov stability theory for the proof and employ computer simulation to confirm our result on randomly generated community networks. Simulations also show the possibility of having hybrid synchronization between the two networks.

  10. Causal quantum theory and the collapse locality loophole

    SciTech Connect

    Kent, Adrian

    2005-07-15

    Causal quantum theory is an umbrella term for ordinary quantum theory modified by two hypotheses: state vector reduction is a well-defined process, and strict local causality applies. The first of these holds in some versions of Copenhagen quantum theory and need not necessarily imply practically testable deviations from ordinary quantum theory. The second implies that measurement events which are spacelike separated have no nonlocal correlations. To test this prediction, which sharply differs from standard quantum theory, requires a precise definition of state vector reduction. Formally speaking, any precise version of causal quantum theory defines a local hidden variable theory. However, causal quantum theory is most naturally seen as a variant of standard quantum theory. For that reason it seems a more serious rival to standard quantum theory than local hidden variable models relying on the locality or detector efficiency loopholes. Some plausible versions of causal quantum theory are not refuted by any Bell experiments to date, nor is it evident that they are inconsistent with other experiments. They evade refutation via a neglected loophole in Bell experiments--the collapse locality loophole--which exists because of the possible time lag between a particle entering a measurement device and a collapse taking place. Fairly definitive tests of causal versus standard quantum theory could be made by observing entangled particles separated by {approx_equal}0.1 light seconds.

  11. Equivalency Theory and Distance Education.

    ERIC Educational Resources Information Center

    Simonson, Michael

    1999-01-01

    Discusses distance education and the need for an accepted theory. Highlights include theories of independent study; theory of industrialization of teaching; theory of interaction and communication; and equivalency theory that is based on local control, personalized instruction, and telecommunications. (LRW)

  12. Disengagement theory revisited.

    PubMed

    Markson, E W

    1975-01-01

    Cumming and Henry erected the basic frame for a socio-cultural theory of normal aging in their 1961 book, Growing Old. The basic postulates of this theory are reviewed, and the overall structure of the theory briefly examined. Critical data necessary either to accept or reject disengagement theory are not yet available, although useful information has been gathered since the theory first appeared. Part of the difficulty in amassing "proof" or "disproof" is inherent in the intricate and complex nature of the aging process itself. This orienting paper introduced a set of contributtions by other commentators on disengagement theory.

  13. Investigation of modified asphalt concrete

    NASA Astrophysics Data System (ADS)

    Zimich, Vita

    2016-01-01

    Currently the problem of improving the asphalt quality is very urgent. It is used primarily as topcoats exposed to the greatest relative to the other layers of the road, dynamic load - impact and shear. The number of cars on the road, the speed of their movement, as well as the traffic intensity increase day by day. We have to upgrade motor roads, which entails a huge cost. World experience shows that the issue is urgent not only in Russia, but also in many countries in Europe, USA and Asia. Thus, the subject of research is the resistance of asphalt concrete to water and its influence on the strength of the material at different temperatures, and resistance of pavement to deformation. It is appropriate to search for new modifiers for asphaltic binder and mineral additives for asphalt mix to form in complex the skeleton of the future asphalt concrete, resistant to atmospheric condensation, soil characteristics of the road construction area, as well as the growing road transport load. The important task of the work is searching special modifying additives for bitumen binder and asphalt mixture as a whole, which will improve the quality of highways, increasing the period between repairs. The methods described in the normative-technical documentation were used for the research. The conducted research allowed reducing the frequency of road maintenance for 7 years, increasing it from 17 to 25 years.

  14. Genetic modifiers of Huntington's disease.

    PubMed

    Gusella, James F; MacDonald, Marcy E; Lee, Jong-Min

    2014-09-15

    Huntington's disease (HD) is a devastating neurodegenerative disorder that directly affects more than 1 in 10,000 persons in Western societies but, as a family disorder with a long, costly, debilitating course, it has an indirect impact on a far greater proportion of the population. Although some palliative treatments are used, no effective treatment exists for preventing clinical onset of the disorder or for delaying its inevitable progression toward premature death, approximately 15 years after diagnosis. Huntington's disease involves a movement disorder characterized by chorea, as well as a variety of psychiatric disturbances and intellectual decline, with a gradual loss of independence. A dire need exists for effective HD therapies to alleviate the suffering and costs to the individual, family, and health care system. In past decades, genetics, the study of DNA sequence variation and its consequences, provided the tools to map the HD gene to chromosome 4 and ultimately to identify its mutation as an expanded CAG trinucleotide repeat in the coding sequence of a large protein, dubbed huntingtin. Now, advances in genetic technology offer an unbiased route to the identification of genetic factors that are disease-modifying agents in human patients. Such genetic modifiers are expected to highlight processes capable of altering the course of HD and therefore to provide new, human-validated targets for traditional drug development, with the goal of developing rational treatments to delay or prevent onset of HD clinical signs.

  15. Genetic modifiers of Huntington's disease.

    PubMed

    Gusella, James F; MacDonald, Marcy E; Lee, Jong-Min

    2014-09-15

    Huntington's disease (HD) is a devastating neurodegenerative disorder that directly affects more than 1 in 10,000 persons in Western societies but, as a family disorder with a long, costly, debilitating course, it has an indirect impact on a far greater proportion of the population. Although some palliative treatments are used, no effective treatment exists for preventing clinical onset of the disorder or for delaying its inevitable progression toward premature death, approximately 15 years after diagnosis. Huntington's disease involves a movement disorder characterized by chorea, as well as a variety of psychiatric disturbances and intellectual decline, with a gradual loss of independence. A dire need exists for effective HD therapies to alleviate the suffering and costs to the individual, family, and health care system. In past decades, genetics, the study of DNA sequence variation and its consequences, provided the tools to map the HD gene to chromosome 4 and ultimately to identify its mutation as an expanded CAG trinucleotide repeat in the coding sequence of a large protein, dubbed huntingtin. Now, advances in genetic technology offer an unbiased route to the identification of genetic factors that are disease-modifying agents in human patients. Such genetic modifiers are expected to highlight processes capable of altering the course of HD and therefore to provide new, human-validated targets for traditional drug development, with the goal of developing rational treatments to delay or prevent onset of HD clinical signs. PMID:25154728

  16. Modified Bootstrap Sensitometry In Radiography

    NASA Astrophysics Data System (ADS)

    Bednarek, Daniel R.; Rudin, Stephen

    1981-04-01

    A new modified bootstrap approach to sensitometry is presented which provides H and D curves that show almost exact agreement with those obtained using conventional methods. Two bootstrap techniques are described; both involve a combination of inverse-square and stepped-wedge modulation of the radiation field and provide intensity-scale sensitometric curves as appropriate for medical radiography. H and D curves obtained with these modified techniques are compared with those obtained for screen-film combinations using inverse-square sensitometry as well as with those obtained for direct x-ray film using time-scale sensitometry. The stepped wedge of the Wisconsin X-Ray Test Cassette was used in the bootstrap approach since it provides sufficient exposure latitude to encompass the useful density range of medical x-ray film. This approach makes radiographic sensitometry quick and convenient, allowing accurate characteristic curves to be obtained for any screen-film cassette using standard diagnostic x-ray equipment.

  17. The modified model of radiation risk at radon exposure.

    PubMed

    Zhukovsky, Michael; Demin, Vladimir; Yarmoshenko, Ilia

    2014-07-01

    The combined modified model of risk assessment from an indoor radon exposure is proposed. Multiplicative dependence on fatal lung cancer is used. The model has been developed on the basis of the modern health risk theory and the results of epidemiological studies with the special attention to the results of the European combined study and the WISMUT miners cohort study. The model is presented as an age-specific relative risk coefficient for a single (short-term) exposure. The risk coefficient for an extended exposure can be obtained from this risk coefficient in the accordance with the risk theory. The smoothed dependences of the risk coefficients on time since exposure and attained age and radon progeny concentration are suggested.

  18. Lifshitz field theories, Snyder noncommutative spacetime and momentum-dependent metric

    NASA Astrophysics Data System (ADS)

    Romero, Juan M.; Vergara, J. David

    2015-08-01

    In this paper, we propose three different modified relativistic particles. In the first case, we propose a particle with metrics depending on the momenta and we show that the quantum version of these systems includes different field theories, as Lifshitz field theories. As a second case, we propose a particle that implies a modified symplectic structure and we show that the quantum version of this system gives different noncommutative spacetimes, for example the Snyder spacetime. In the third case, we combine both structures before mentioned, namely noncommutative spacetimes and momentum-dependent metrics. In this last case, we show that anisotropic field theories can be seen as a limit of noncommutative field theory.

  19. Theory of RBE. Technical progress report

    SciTech Connect

    Katz, Robert

    1983-08-01

    Dye films and alanine are being studied for application as dosimetric substances in relation to track theory. The objective is to test track theory with dosimeters whose sensitive target is about one manometer in size. Results with the dye films give good agreement with a slightly modified track theory. Cellular radiosensitivity parameters have been fitted to inactivation data obtained with particles up to neon, in the grain-count regime, and then returning to the basic model of a single on-target detector to calculate the track width regime. A new model has been created for the formation of etchable tracks in plastics. The model is consistent with some published data for CR-39, and suggest this material is another 1-hit detector. (ACR)

  20. Semiclassical atom theory applied to solid-state physics

    NASA Astrophysics Data System (ADS)

    Constantin, Lucian A.; Terentjevs, Aleksandrs; Della Sala, Fabio; Cortona, Pietro; Fabiano, Eduardo

    2016-01-01

    Using the semiclassical neutral atom theory, we extend to fourth order the modified gradient expansion of the exchange energy of density functional theory. This expansion can be applied both to large atoms and solid-state problems. Moreover, we show that it can be employed to construct a simple and nonempirical generalized gradient approximation (GGA) exchange-correlation functional competitive with state-of-the-art GGAs for solids, but also reasonably accurate for large atoms and ordinary chemistry.