Science.gov

Sample records for modified carbon fibers

  1. Nanocomposite fibers and film containing polyolefin and surface-modified carbon nanotubes

    SciTech Connect

    Chu,Benjamin; Hsiao, Benjamin S.

    2010-01-26

    Methods for modifying carbon nanotubes with organic compounds are disclosed. The modified carbon nanotubes have enhanced compatibility with polyolefins. Nanocomposites of the organo-modified carbon nanotubes and polyolefins can be used to produce both fibers and films having enhanced mechanical and electrical properties, especially the elongation-to-break ratio and the toughness of the fibers and/or films.

  2. Deposition of carbon nanotubes onto aramid fibers using as-received and chemically modified fibers

    NASA Astrophysics Data System (ADS)

    Rodríguez-Uicab, O.; Avilés, F.; Gonzalez-Chi, P. I.; Canché-Escamilla, G.; Duarte-Aranda, S.; Yazdani-Pedram, M.; Toro, P.; Gamboa, F.; Mazo, M. A.; Nistal, A.; Rubio, J.

    2016-11-01

    Multiwall carbon nanotubes (MWCNTs) oxidized by an acid treatment were deposited on the surface of as-received commercial aramid fibers containing a surface coating ("sizing"), and fibers modified by either a chlorosulfonic treatment or a mixture of nitric and sulfuric acids. The surface of the aramid fiber activated by the chemical treatments presents increasing density of CO, COOH and OH functional groups. However, these chemical treatments reduced the tensile mechanical properties of the fibers, especially when the nitric and sulfuric acid mixture was used. Characterization of the MWCNTs deposited on the fiber surface was conducted by scanning electron microscopy, Raman spectroscopy mapping and X-ray photoelectron spectroscopy. These characterizations showed higher areal concentration and more homogeneous distribution of MWCNTs over the aramid fibers for as-received fibers and for those modified with chlorosulfonic acid, suggesting the existence of interaction between the oxidized MWCNTs and the fiber coating. The electrical resistance of the MWCNT-modified aramid yarns comprising ∼1000 individual fibers was in the order of MΩ/cm, which renders multifunctional properties.

  3. Nanowire modified carbon fibers for enhanced electrical energy storage

    NASA Astrophysics Data System (ADS)

    Shuvo, Mohammad Arif Ishtiaque; (Bill) Tseng, Tzu-Liang; Ashiqur Rahaman Khan, Md.; Karim, Hasanul; Morton, Philip; Delfin, Diego; Lin, Yirong

    2013-09-01

    The study of electrochemical super-capacitors has become one of the most attractive topics in both academia and industry as energy storage devices because of their high power density, long life cycles, and high charge/discharge efficiency. Recently, there has been increasing interest in the development of multifunctional structural energy storage devices such as structural super-capacitors for applications in aerospace, automobiles, and portable electronics. These multifunctional structural super-capacitors provide structures combining energy storage and load bearing functionalities, leading to material systems with reduced volume and/or weight. Due to their superior materials properties, carbon fiber composites have been widely used in structural applications for aerospace and automotive industries. Besides, carbon fiber has good electrical conductivity which will provide lower equivalent series resistance; therefore, it can be an excellent candidate for structural energy storage applications. Hence, this paper is focused on performing a pilot study for using nanowire/carbon fiber hybrids as building materials for structural energy storage materials; aiming at enhancing the charge/discharge rate and energy density. This hybrid material combines the high specific surface area of carbon fiber and pseudo-capacitive effect of metal oxide nanowires, which were grown hydrothermally in an aligned fashion on carbon fibers. The aligned nanowire array could provide a higher specific surface area that leads to high electrode-electrolyte contact area thus fast ion diffusion rates. Scanning Electron Microscopy and X-Ray Diffraction measurements are used for the initial characterization of this nanowire/carbon fiber hybrid material system. Electrochemical testing is performed using a potentio-galvanostat. The results show that gold sputtered nanowire carbon fiber hybrid provides 65.9% higher energy density than bare carbon fiber cloth as super-capacitor.

  4. Effects of Graphene Oxide Modified Sizing Agents on Interfacial Properties of Carbon Fibers/Epoxy Composites.

    PubMed

    Zhang, Qingbo; Jiang, Dawei; Liu, Li; Huang, Yudong; Long, Jun; Wu, Guangshun; Wu, Zijian; Umar, Ahmad; Guo, Jiang; Zhang, Xi; Guo, Zhanhu

    2015-12-01

    A kind of graphene oxide (GO) modified sizing agent was used to improve the interfacial properties of carbon fibers/epoxy composites. The surface topography of carbon fibers was investigated by scanning electron microscopy (SEM). The surface compositions of carbon fibers were determined by X-ray photoelectron spectroscopy (XPS) and the interfacial properties of composites were studied by interlaminar shear strength (ILSS). The results show that the existence of GO increases the content of reactive functional groups on carbon fiber surface. Thus it enhances the interfacial properties of carbon fibers/epoxy composites. When GO loading in sizing agents is 1 wt%, the ILSS value of composite reaches to 96.2 MPa, which is increased by 27.2% while comparing with unsized carbon fiber composites. Furthermore, the ILSS of composites after aging is also increased significantly with GO modified sizing agents.

  5. Interfacial microstructure and properties of carbon fiber composites modified with graphene oxide.

    PubMed

    Zhang, Xiaoqing; Fan, Xinyu; Yan, Chun; Li, Hongzhou; Zhu, Yingdan; Li, Xiaotuo; Yu, Liping

    2012-03-01

    The performance of carbon fiber-reinforced composites is dependent to a great extent on the properties of fiber-matrix interface. To improve the interfacial properties in carbon fiber/epoxy composites, we directly introduced graphene oxide (GO) sheets dispersed in the fiber sizing onto the surface of individual carbon fibers. The applied graphite oxide, which could be exfoliated to single-layer GO sheets, was verified by atomic force microscope (AFM). The surface topography of modified carbon fibers and the distribution of GO sheets in the interfacial region of carbon fibers were detected by scanning electron microscopy (SEM). The interfacial properties between carbon fiber and matrix were investigated by microbond test and three-point short beam shear test. The tensile properties of unidirectional (UD) composites were investigated in accordance with ASTM standards. The results of the tests reveal an improved interfacial and tensile properties in GO-modified carbon fiber composites. Furthermore, significant enhancement of interfacial shear strength (IFSS), interlaminar shear strength (ILSS), and tensile properties was achieved in the composites when only 5 wt % of GO sheets introduced in the fiber sizing. This means that an alternative method for improving the interfacial and tensile properties of carbon fiber composites by controlling the fiber-matrix interface was developed. Such multiscale reinforced composites show great potential with their improved mechanical performance to be likely applied in the aerospace and automotive industries.

  6. Optimization of interfacial properties of carbon fiber/epoxy composites via a modified polyacrylate emulsion sizing

    NASA Astrophysics Data System (ADS)

    Yuan, Xiaomin; Zhu, Bo; Cai, Xun; Liu, Jianjun; Qiao, Kun; Yu, Junwei

    2017-04-01

    The adhesion behavior of epoxy resin to carbon fibers has always been a challenge, on account of the inertness of carbon fibers and the lack of reactive functional groups. In this work, a modified polyacrylate sizing agent was prepared to modify the interface between the carbon fiber and the epoxy matrix. The surface characteristics of carbon fibers were investigated to determine chemical composition, morphology, wettability, interfacial phase analysis and interfacial adhesion. Sized carbon fibers featured improved wettability and a slightly decreased surface roughness due to the coverage of a smooth sizing layer, compared with the unsized ones. Moreover, the content of surface activated carbon atoms increased from 12.65% to 24.70% and the interlaminar shear strength (ILSS) of carbon fiber/epoxy composites raised by 14.2%, indicating a significant improvement of chemical activity and mechanical property. SEM images of the fractured surface of composites further proved that a gradient interfacial structure with increased thicknesses was formed due to the transition role of the sizing. Based on these results, a sizing mechanism consisting of chemical interaction bonding and physical force absorption was proposed, which provides an efficient and feasible method to solve the poor adhesion between carbon fiber and epoxy matrix.

  7. A molecule-imprinted polyaniline membrane modified on carbon fiber for detection of glycine.

    PubMed

    Zeng, Hongjuan; Wang, Deshun; Yu, Junsheng

    2014-01-01

    A layer of L-glycine-molecule-imprinted polyaniline (LMIP-PANI) polymer film has been modified on a carbon fiber electrode for the determination of L-glycine standard samples and L-glycine in cerebrospinal fluid of wistar mice. It has been found that a linear relationship exists between current and concentration for the glycine standard samples in the range of 0-12 μM by using the LMIP-PANI-modified carbon fiber electrode as a sensor. However, there is no any relationship between current and concentration for the carbon fiber electrode modified with no-glycine-molecule-imprinted polyaniline (NIP-PANI). The MIP-PANI- and NIP-PANI-modified carbon fiber films have been characterized by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and electrochemistry methods. The investigation shows that the MIP-PANI-imprinted carbon fiber electrode will have a potential application in in-situ monitoring neurotransmitter due to its easy fabrication, low cost, bio-compatibility and flexibility.

  8. Detection of Hydrogen Spillover in Palladium-Modified Activated Carbon Fibers During Hydrogen Adsorption

    SciTech Connect

    Contescu, Cristian I; Brown, Craig; Liu, Yun; Bhat, Vinay V; Gallego, Nidia C

    2009-01-01

    Palladium-modified activated carbon fibers (Pd-ACF) are being evaluated for adsorptive hydrogen storage at near-ambient conditions because of their enhanced hydrogen uptake in comparison to Pd-free activated carbon fibers (ACF). The net uptake enhancement (at room temperature and 20 bar) is in excess of the amount corresponding to formation of Pd hydride, and is usually attributed to hydrogen spillover. In this paper, inelastic neutron scattering was used to demonstrate the formation of new C-H bonds in Pd-containing activated carbon fibers after exposure to hydrogen at 20 oC and 1.6 MPa, at the expense of physisorbed H2. This finding is a post-factum proof of the atomic nature of H species formed in presence of a Pd catalyst, and of their subsequent spillover and binding to the carbon support. Chemisorption of hydrogen may explain the reduction in hydrogen uptake from first to second adsorption cycle.

  9. Hemocompatibility assessment of carbonic anhydrase modified hollow fiber membranes for artificial lungs.

    PubMed

    Oh, Heung-Il; Ye, Sang-Ho; Johnson, Carl A; Woolley, Joshua R; Federspiel, William J; Wagner, William R

    2010-05-01

    Hollow fiber membrane (HFM)-based artificial lungs can require a large blood-contacting membrane surface area to provide adequate gas exchange. However, such a large surface area presents significant challenges to hemocompatibility. One method to improve carbon dioxide (CO(2)) transfer efficiency might be to immobilize carbonic anhydrase (CA) onto the surface of conventional HFMs. By catalyzing the dehydration of bicarbonate in blood, CA has been shown to facilitate diffusion of CO(2) toward the fiber membranes. This study evaluated the impact of surface modifying a commercially available microporous HFM-based artificial lung on fiber blood biocompatibility. A commercial poly(propylene) Celgard HFM surface was coated with a siloxane, grafted with amine groups, and then attached with CA which has been shown to facilitate diffusion of CO(2) toward the fiber membranes. Results following acute ovine blood contact indicated no significant reduction in platelet deposition or activation with the siloxane coating or the siloxane coating with grafted amines relative to base HFMs. However, HFMs with attached CA showed a significant reduction in both platelet deposition and activation compared with all other fiber types. These findings, along with the improved CO(2) transfer observed in CA modified fibers, suggest that its incorporation into HFM design may potentiate the design of a smaller, more biocompatible HFM-based artificial lung.

  10. Enhanced performance of electrospun carbon fibers modified with carbon nanotubes: promising electrodes for enzymatic biofuel cells.

    PubMed

    Engel, A Both; Cherifi, A; Tingry, S; Cornu, D; Peigney, A; Laurent, Ch

    2013-06-21

    New nanostructured electrodes, promising for the production of clean and renewable energy in biofuel cells, were developed with success. For this purpose, carbon nanofibers were produced by the electrospinning of polyacrylonitrile solution followed by convenient thermal treatments (stabilization followed by carbonization at 1000, 1200 and 1400° C), and carbon nanotubes were adsorbed on the surfaces of the fibers by a dipping method. The morphology of the developed electrodes was characterized by several techniques (SEM, Raman spectroscopy, electrical conductivity measurement). The electrochemical properties were evaluated through cyclic voltammetry, where the influence of the carbonization temperature of the fibers and the beneficial contribution of the carbon nanotubes were observed through the reversibility and size of the redox peaks of K3Fe(CN)6 versus Ag/AgCl. Subsequently, redox enzymes were immobilized on the electrodes and the electroreduction of oxygen to water was realized as a test of their efficiency as biocathodes. Due to the fibrous and porous structure of these new electrodes, and to the fact that carbon nanotubes may have the ability to promote electron transfer reactions of redox biomolecules, the new electrodes developed were capable of producing higher current densities than an electrode composed only of electrospun carbon fibers.

  11. Enhanced performance of electrospun carbon fibers modified with carbon nanotubes: promising electrodes for enzymatic biofuel cells

    NASA Astrophysics Data System (ADS)

    Both Engel, A.; Cherifi, A.; Tingry, S.; Cornu, D.; Peigney, A.; Laurent, Ch

    2013-06-01

    New nanostructured electrodes, promising for the production of clean and renewable energy in biofuel cells, were developed with success. For this purpose, carbon nanofibers were produced by the electrospinning of polyacrylonitrile solution followed by convenient thermal treatments (stabilization followed by carbonization at 1000, 1200 and 1400° C), and carbon nanotubes were adsorbed on the surfaces of the fibers by a dipping method. The morphology of the developed electrodes was characterized by several techniques (SEM, Raman spectroscopy, electrical conductivity measurement). The electrochemical properties were evaluated through cyclic voltammetry, where the influence of the carbonization temperature of the fibers and the beneficial contribution of the carbon nanotubes were observed through the reversibility and size of the redox peaks of K3Fe(CN)6 versus Ag/AgCl. Subsequently, redox enzymes were immobilized on the electrodes and the electroreduction of oxygen to water was realized as a test of their efficiency as biocathodes. Due to the fibrous and porous structure of these new electrodes, and to the fact that carbon nanotubes may have the ability to promote electron transfer reactions of redox biomolecules, the new electrodes developed were capable of producing higher current densities than an electrode composed only of electrospun carbon fibers.

  12. Lightning Damage of Carbon Fiber/Epoxy Laminates with Interlayers Modified by Nickel-Coated Multi-Walled Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Dong, Qi; Wan, Guoshun; Xu, Yongzheng; Guo, Yunli; Du, Tianxiang; Yi, Xiaosu; Jia, Yuxi

    2017-02-01

    The numerical model of carbon fiber reinforced polymer (CFRP) laminates with electrically modified interlayers subjected to lightning strike is constructed through finite element simulation, in which both intra-laminar and inter-laminar lightning damages are considered by means of coupled electrical-thermal-pyrolytic analysis method. Then the lightning damage extents including the damage volume and maximum damage depth are investigated. The results reveal that the simulated lightning damages could be qualitatively compared to the experimental counterparts of CFRP laminates with interlayers modified by nickel-coated multi-walled carbon nanotubes (Ni-MWCNTs). With higher electrical conductivity of modified interlayer and more amount of modified interlayers, both damage volume and maximum damage depth are reduced. This work provides an effective guidance to the anti-lightning optimization of CFRP laminates.

  13. Improvement of fatigue life and prevention of internal crack initiation of chopped carbon fiber reinforced plastics modified with micro glass fibers

    NASA Astrophysics Data System (ADS)

    Fujitani, Ryohei; Okubo, Kazuya; Fujii, Toru

    2016-04-01

    The purpose of this study is to improve fatigue properties of chopped carbon fiber reinforced plastics fabricated by SMC (Sheet Molding Compound) method and to clarify the mechanism for improvement. To enhance the properties, micro glass fibers with 500nm in diameter were added directly into vinyl ester resin with 0.3wt% contents. The chopped carbon fiber reinforced plastics were fabricated and cured at room temperature for 1hour under 1MPa and then at 60degree-C for 3hours. After curing, the fabricated plate was cut into the dimension of specimen. Tensile and bending strength and fatigue life of chopped carbon fiber reinforced plastics were investigated by tensile and three point bending test and cyclic tension-tension test, respectively. The behavior of strain concentration around the tips of carbon fiber were discussed with model specimen on the observations with DIC (Digital Image Correlation) method and polarizing microscope under tensile loading, in which one chopped carbon fiber was embedded into the matrix. In conclusion, when toughened vinyl ester resin modified with micro glass fibers was used as matrix, tensile and bending strength and fatigue life of chopped carbon fiber reinforced plastics were increased 56.6%, 49.8% and 14 to 23 times compared with those of unmodified specimens. It should be explained that static and dynamic properties of chopped carbon fiber reinforced plastics were improved by that crack initiation and propagation were prevented according to the prevention of the locally increasing of strain around the tip of carbon fiber, when vinyl ester resin modified with micro glass fibers was used as matrix.

  14. Modified carbon fibers to improve composite properties. [sizing fibers for reduced electrical conductivity and adhesion during combustion

    NASA Technical Reports Server (NTRS)

    Shepler, R. E.

    1979-01-01

    Thin coatings, 5 to 10 wt. percent, were applied to PAN-based carbon fibers. These coatings were intended to make the carbon fibers less electrically conductive or to cause fibers to stick together when a carbon fiber/epoxy composite burned. The effectiveness of the coatings in these regards was evaluated in burn tests with a test rig designed to simulate burning, impact and wind conditions which might release carbon fibers. The effect of the coatings on fiber and composite properties and handling was also investigated. Attempts at sizing carbon fibers with silicon dioxide, silicon carbide and boron nitride meet with varying degrees of success; however, none of these materials provided an electrically nonconductive coating. Coatings intended to stick carbon fibers together after a composite burned were sodium silicate, silica gel, ethyl silicate, boric acid and ammonium borate. Of these, only the sodium silicate and silica gel provided any sticking together of fibers. The amount of sticking was insufficient to achieve the desired objectives.

  15. A silk derived carbon fiber mat modified with Au@Pt urchilike nanoparticles: A new platform as electrochemical microbial biosensor.

    PubMed

    Deng, Liu; Guo, Shaojun; Zhou, Ming; Liu, Ling; Liu, Chang; Dong, Shaojun

    2010-06-15

    We present here a facile and efficient route to prepare silk derived carbon mat modified with Au@Pt urchilike nanoparticles (Au@Pt NPs) and develop an Escherichia coli (E. coli)-based electrochemical sensor using this material. Silk is a natural protein fiber, and it is abundant with kinds of functionalities which are important in the development of the derived material. The S-derived carbon fiber mat have amino, pyridine and carbonyl functional groups, these natural existent functionalities allow the Au@Pt NPs to self-assemble on the carbon fiber surface and provide a biocompatible microenvironment for bacteria. The Au@Pt NPs modified S-derived carbon fiber is sensitive to detect the E. coli activities with a low detection limit, where glucose is used as a prelimiltary substrate to evaluate them. The performance of Au@Pt/carbon fiber mat based biosensor is much better than that of commercial carbon paper based biosensor. The high sensitivity of this biosensor stems from the unique electrocatalytic properties of Au@Pt urchilike NPs and quinone groups presented in S-derived carbon fiber. This biosensor is also tested for detection of organophosphate pesticides, fenamiphos. The relative inhibition of E. coli activity is linear with -log[fenamiphos] at the concentration range from 0.5mg/L to 36.6 mg/L with lowest observable effect concentration (LOEC) of 0.09 mg/L. The Au@Pt NPs modified S-derived carbon fiber mat possesses high conductivity, biocompatibility and high electrocatalytic activity and be can used as advanced electrode materials for microbial biosensor improvement. The microbial biosensor based on this material shows potential applications in environmental monitoring.

  16. Glucose nanosensors based on redox polymer/glucose oxidase modified carbon fiber nanoelectrodes.

    PubMed

    Fei, Junjie; Wu, Kangbing; Wang, Fang; Hu, Shengshui

    2005-02-28

    This paper describes glucose nanosensors based on the co-electrodeposition of a poly(vinylimidazole) complex of [Os(bpy)(2)Cl](+/2+) and glucose oxidase (GOD) on a low-noise carbon fiber nanoelectrodes (CFNE). The SEM image shows that the osmium redox polymer/enzyme composite film is uniform. The film modified CFNE exhibits the classical features of a kinetically fast redox couple bound to the electrode surface. A strong and stable electrocatalytic current is observed in the presence of glucose. Under the optimal experimental conditions, the nanosensor offers a highly sensitive and rapid response to glucose at an operating potential of 0.22V. A wide linear dynamic rang of 0.01-15mM range was achieved with a detection limit of 0.004mM. Compared with the conventional gold electrode, the nanosensor possessed higher sensitivity and longer stability. Successful attempts were made in real time monitoring rabbit blood glucose levels.

  17. Electrochemical determination of arsenic in natural waters using carbon fiber ultra-microelectrodes modified with gold nanoparticles.

    PubMed

    Carrera, Patricio; Espinoza-Montero, Patricio J; Fernández, Lenys; Romero, Hugo; Alvarado, José

    2017-05-01

    We have developed an anodic stripping voltammetry method that employs carbon fiber ultra-microelectrodes modified with gold nanoparticles to determine arsenic in natural waters. Gold nanoparticles were potentiostatically deposited on carbon fiber ultra-microelectrodes at -0.90V (vs SCE) for a time of 15s, to form the carbon fiber ultra-microelectrodes modified with gold nanoparticles. Cyclic voltammetry, electrochemical impedance spectroscopy and scanning electron microscopy coupled to an X-ray microanalysis system were used to check and confirm the presence of gold nanoparticles on the carbon fiber ultra-microelectrodes. Arsenic detection parameters such as deposition potential and deposition time were optimized allowing a detection range between 5 to 60µgL(-1). The developed modified electrodes allowed rapid As determination with improved analytical characteristics including better repeatability, higher selectivity, lower detection limit (0.9μgL(-1)) and higher sensitivity (0.0176nAμgL(-1)) as compared to the standard carbon electrodes. The analytical capability of the optimized method was demonstrated by determination of arsenic in certified reference materials (trace elements in water (NIST SRM 1643d)) and by comparison of results with those obtained by hydride generation atomic absorption spectrometry (HG-AAS) in the determination of the analyte in tap and well waters.

  18. Novel graphene flowers modified carbon fibers for simultaneous determination of ascorbic acid, dopamine and uric acid.

    PubMed

    Du, Jiao; Yue, Ruirui; Ren, Fangfang; Yao, Zhangquan; Jiang, Fengxing; Yang, Ping; Du, Yukou

    2014-03-15

    A novel and sensitive carbon fiber electrode (CFE) modified by graphene flowers was prepared and used to simultaneously determine ascorbic acid (AA), dopamine (DA) and uric acid (UA). SEM images showed that beautiful and layer-petal graphene flowers homogeneously bloomed on the surface of CFE. Moreover, sharp and obvious oxidation peaks were found at the obtained electrode when compared with CFE and glassy carbon electrode (GCE) for the oxidation of AA, DA and UA. Also, the linear calibration plots for AA, DA and UA were observed, respectively, in the ranges of 45.4-1489.23 μM, 0.7-45.21 μM and 3.78-183.87 μM in the individual detection of each component. By simultaneously changing the concentrations of AA, DA and UA, their oxidation peaks appeared at -0.05 V, 0.16 V and 2.6 V, and the good linear responses ranges were 73.52-2305.53 μM, 1.36-125.69 μM and 3.98-371.49 μM, respectively. In addition, the obtained electrode showed satisfactory results when applied to the determination of AA, DA and UA in urine and serum samples.

  19. Role of surface chemistry in modified ACF (activated carbon fiber)-catalyzed peroxymonosulfate oxidation

    NASA Astrophysics Data System (ADS)

    Yang, Shiying; Li, Lei; Xiao, Tuo; Zheng, Di; Zhang, Yitao

    2016-10-01

    A commercial activated carbon fiber (ACF-0) was modified by three different methods: nitration treatment (ACF-N), heat treatment (ACF-H) and heat treatment after nitration (ACF-NH), and the effects of textural and chemical properties on the ability of the metal-free ACF-catalyzed peroxymonosulfate (PMS) oxidation of Reactive Black 5 (RB5), an azo dye being difficultly adsorbed onto ACF, in aqueous solution were investigated in this work. Surface density of functional groups, surface area changes, surface morphology and the chemical state inside ACF samples were characterized by Boehm titration, N2 adsorption, scanning electron microscopy in couple with energy dispersive spectroscopy (SEM-EDS) and X-ray photoelectron spectroscopy (XPS), respectively. XPS spectra deconvolution was applied to figure out the importance of surface nitrogen-containing function groups. We found that π-π, pyridine and amine have promoting effect on the catalytic oxidation while the -NO2 has inhibitory effect on the ACF/PMS systems for RB5 destroy. Sustainability and renewability of the typical ACF-NH for catalytic oxidation of RB5 were also discussed in detail. Information about our conclusions are useful to control and improve the performance of ACF-catalyzed PMS oxidation for organic pollutants in wastewater treatment.

  20. Fabrication and characterization of amine terminated poly(arylene ether sulfone) modified epoxy-carbon fiber composites

    NASA Technical Reports Server (NTRS)

    Cecere, James A.; Senger, James S.; Mcgrath, James E.; Steiner, Paul A.; Wong, Raymond S.

    1987-01-01

    Multifunctional epoxy resin networks were chemically modified with thermoplastic amine terminated poly(arylene ether sulfones) of controlled molecular weights. This system was then examined as both neat resin and as a matrix resin for carbon fiber composites. The neat resin displayed a significant increase in both fracture toughness and energy release rate values. This was attributed to the altered morphology, which could be varied from particles of polysulfone in an epoxy matrix to that of a quasi-continuous polysulfone phase.

  1. Manganese-modified activated carbon fiber (Mn-ACF): Novel efficient adsorbent for Arsenic

    NASA Astrophysics Data System (ADS)

    Sun, Zhumei; Yu, Yichang; Pang, Shiyu; Du, Dongyun

    2013-11-01

    In this paper, a novel adsorbent, manganese-modified activated carbon fiber (Mn-ACF), was prepared and used for removal of As(V) from aqueous solution. The adsorbent was characterized by scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). Adsorption of As(V) onto the as-prepared adsorbent from aqueous solutions was investigated and discussed. The adsorption kinetic data were modeled using the pseudo-first-order and pseudo-second order, respectively. The experimental results indicate that the pseudo-second-order kinetic equation can better describe the adsorption kinetics. Furthermore, adsorption equilibrium data of As(V) on the as-prepared adsorbent were analyzed by Langmuir and Freundlich models, which suggested that the Langmuir model provides a better correlation of the experimental data. The adsorption capacities (qmax) of As(V) on Mn-ACF at various temperatures, determined using the Langmuir equation, are 23.77, 33.23 and 36.53 mg g-1 at 303, 313 and 323 K, respectively. To the best of our knowledge, this adsorption capacity for As(V) is much larger than those reported in literatures (7.50-16.58 mg g-1). Notably, the qmax increases with increasing temperature, suggesting that adsorption of As(V) on Mn-ACF surface is an endothermic process, which is further confirmed by the calculated thermodynamic parameters including free energy, enthalpy, and entropy of adsorption process. The effect of experimental parameters such as pH and dosage of adsorbent on adsorption of As(V) were also studied. The present work will be useful in purification of groundwater.

  2. Friction and wear of rare earths modified carbon fibers filled PTFE composite under dry sliding condition

    NASA Astrophysics Data System (ADS)

    Qian-qian, Shangguan; Xian-hua, Cheng

    2007-09-01

    Carbon fibers (CF) were surface treated with air-oxidation and rare earths (RE), respectively. The friction and wear properties of polytetrafluoroethylene (PTFE) composites filled with differently surface treated carbon fibers, sliding against GCr15 steel under dry sliding condition, were investigated on a block-on-ring M-2000 tribometer. Experimental results revealed that RE treatment largely reduced the friction and wear of CF reinforced PTFE (CF/PTFE) composites. The RE treated composite exhibited the lowest friction and wear under dry sliding. Scanning electron microscopy (SEM) investigation of worn surfaces and transfer films of CF/PTFE composites showed that RE treated CF/PTFE composites had the smoothest worn surface under given load and sliding speed, and a continuous and uniform transfer film formed on the counterface. X-ray photoelectron spectroscopy (XPS) study of carbon fiber surface showed that the oxygen concentration was obviously increased after RE treatment, and more carboxyl groups were introduced onto CF surfaces after RE treatment. The increase in the amount of oxygen-containing groups increased the interfacial adhesion between CF and PTFE matrix, and accordingly increased the tribological properties of the composite.

  3. Application of β-cyclodextrin-modified, carbon nanotube-reinforced hollow fiber to solid-phase microextraction of plant hormones.

    PubMed

    Song, Xin-Yue; Ha, Wei; Chen, Juan; Shi, Yan-Ping

    2014-12-29

    A new, efficient, and environmental friendly solid-phase microextraction (SPME) medium based on β-cyclodextrin (β-CD)-modified carbon nanotubes (CNTs) and a hollow fiber (HF) was prepared. Functionalized β-CD was covalently linked to the surface of the carboxylic CNTs and then the obtained nanocomposite was immobilized into the wall pores of HFs under ultrasonic-assisted effect. The scanning electron microscope was used to inspect surface characteristics of fibers, demonstrating the presence of nanocomposites in their wall pores. The reinforced HF was employed in SPME, and its extraction performance was evaluated by analyzing 1-naphthaleneacetic acid (NAA) and 2-naphthoxyacetic acid (2-NOA) in vegetables. Without any tedious clean-up procedure, analytes were extracted from the sample to the adsorbent and organic solvent immobilized in HFs and then desorbed in acetonitrile prior to chromatographic analysis. Under the optimized extraction conditions, the method provided 275- and 283-fold enrichment factors of NAA and 2-NOA, low limits of detection and quantification (at an ngg(-1) level), satisfactory spiked recoveries, good inter-fiber repeatability, and batch-to-batch reproducibility. The selectivity of the developed fiber was investigated to three structurally similar compounds and two reference compounds with recognition coefficients up to 3.18. The obtained results indicate that the newly developed fiber is a feasible, selective, green, and cost-effective microextraction medium and could be successfully applied for extraction and determination of naphthalene-derived plant hormones in complex matrices.

  4. Carbon-fiber technology

    NASA Technical Reports Server (NTRS)

    Hansen, C. F.; Parker, J. A.

    1980-01-01

    The state of the art of PAN based carbon fiber manufacture and the science of fiber behavior is surveyed. A review is given of the stabilization by oxidation and the subsequent carbonization of fibers, of the apparent structure of fibers deduced from scanning electron microscopy, from X-ray scattering, and from similarities with soft carbons, and of the known relations between fiber properties and heat treatment temperature. A simplified model is invoked to explain the electrical properties of fibers and recent quantum chemical calculations on atomic clusters are used to elucidate some aspects of fiber conductivity. Some effects of intercalation and oxidative modification of finished fibers are summarized.

  5. Liquid composite molding-processing and characterization of fiber-reinforced composites modified with carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Zeiler, R.; Khalid, U.; Kuttner, C.; Kothmann, M.; Dijkstra, D. J.; Fery, A.; Altstädt, V.

    2014-05-01

    The increasing demand in fiber-reinforced plastics (FRPs) necessitates economic processing of high quality, like the vacuum-assisted resin transfer molding (VARTM) process. FRPs exhibit excellent in-plane properties but weaknesses in off-plane direction. The addition of nanofillers into the resinous matrix phase embodies a promising approach due to benefits of the nano-scaled size of the filler, especially its high surface and interface areas. Carbon nanotubes (CNTs) are preferable candidates for resin modification in regard of their excellent mechanical properties and high aspect ratios. However, especially the high aspect ratios give rise to withholding or filtering by fibrous fabrics during the impregnation process, i.e. length dependent withholding of tubes (short tubes pass through the fabric, while long tubes are restrained) and a decrease in the local CNT content in the laminate along the flow path can occur. In this study, hybrid composites containing endless glass fiber reinforcement and surface functionalized CNTs dispersed in the matrix phase were produced by VARTM. New methodologies for the quantification of the filtering of CNTs were developed and applied to test laminates. As a first step, a method to analyze the CNT length distribution before and after injection was established for thermosetting composites to characterize length dependent withholding of nanotubes. The used glass fiber fabric showed no perceptible length dependent retaining of CNTs. Afterward, the resulting test laminates were examined by Raman spectroscopy and compared to reference samples of known CNT content. This Raman based technique was developed further to assess the quality of the impregnation process and to quantitatively follow the local CNT content along the injection flow in cured composites. A local decline in CNT content of approx. 20% was observed. These methodologies allow for the quality control of the filler content and size-distribution in CNT based hybrid

  6. Te/Pt nanonetwork modified carbon fiber microelectrodes for methanol oxidation.

    PubMed

    Tsai, Hsiang-Yu; Shih, Zih-Yu; Lin, Zong-Hong; Chang, Huan-Tsung

    2013-05-17

    Te/Pt nanonetwork-decorated carbon fiber microelectrodes (CFMEs) have been fabricated and employed as anodic catalysts in a direct methanol fuel cell (DMFC). Te nanowires were prepared from tellurite ions (TeO3(2-)) through a seed-mediated growth process and were deposited onto CFMEs to form three-dimensional Te nanonetworks. The Te nanonetworks then acted as a framework and reducing agent to reduce PtCl6(2-) ions to form Te/Pt through a galvanic replacement reaction, leading to the formation of Te/PtCFMEs. By controlling the reaction time, the amount of Pt and morphology of Te/Pt nanonetworks were controlled, leading to various degrees of electrocatalytic activity. The Te/PtCFMEs provide a high electrochemical active surface area (129.2 m(2) g(-1)), good catalytic activity (1.2 A mg(-1)), high current density (20.0 mA cm(-2)), long durability, and tolerance toward the poisoning species for methanol oxidation in 0.5 M sulfuric acid containing 1 M methanol. We have further demonstrated an enhanced current density by separately using 3 and 5 Te/PtCFMEs. Our results show that the low-cost, stable, and effective Te/PtCFMEs have great potential in the fabrication of cost-effective fuel cells.

  7. Te/Pt nanonetwork modified carbon fiber microelectrodes for methanol oxidation

    NASA Astrophysics Data System (ADS)

    Tsai, Hsiang-Yu; Shih, Zih-Yu; Lin, Zong-Hong; Chang, Huan-Tsung

    2013-05-01

    Te/Pt nanonetwork-decorated carbon fiber microelectrodes (CFMEs) have been fabricated and employed as anodic catalysts in a direct methanol fuel cell (DMFC). Te nanowires were prepared from tellurite ions (TeO32-) through a seed-mediated growth process and were deposited onto CFMEs to form three-dimensional Te nanonetworks. The Te nanonetworks then acted as a framework and reducing agent to reduce PtCl62- ions to form Te/Pt through a galvanic replacement reaction, leading to the formation of Te/PtCFMEs. By controlling the reaction time, the amount of Pt and morphology of Te/Pt nanonetworks were controlled, leading to various degrees of electrocatalytic activity. The Te/PtCFMEs provide a high electrochemical active surface area (129.2 m2 g-1), good catalytic activity (1.2 A mg-1), high current density (20.0 mA cm-2), long durability, and tolerance toward the poisoning species for methanol oxidation in 0.5 M sulfuric acid containing 1 M methanol. We have further demonstrated an enhanced current density by separately using 3 and 5 Te/PtCFMEs. Our results show that the low-cost, stable, and effective Te/PtCFMEs have great potential in the fabrication of cost-effective fuel cells.

  8. Xanthine microsensor based on polypyrrole molecularly imprinted film modified carbon fiber microelectrodes.

    PubMed

    Liu, Bin; Wang, Xiao-Li; Lian, Hui-Ting; Sun, Xiang-Ying

    2013-09-15

    A molecularly imprinted polymers (MIPs) microsensor was presented as a carbon fiber microelectrode (CFME) coating for specifically recognizing xanthine (Xan). The polymeric film was obtained based on the imprinted procedure of electropolymerization of pyrrole in the presence of the template molecule Xan by cyclic voltammetry, and template was removed by magnetic stirring. Under the optimum conditions, a satisfactory molecularly binding selectivity of Xan was obtained from the MIPs microsensor with an imprinting factor (IF) of 6.63 and a linear response to concentration in certain ranges. The ranges are from 4.0 × 10⁻⁶ to 6.0 × 10⁻⁵ M and from 8.0 × 10⁻⁵ to 2.0 × 10⁻³ M with a detection limit of 2.5 × 10⁻⁷ M. Meanwhile, good stability (relative standard deviation [RSD] = 3.2%, n = 10) and reproducibility (RSD = 2.0%, n = 10) were observed, and recoveries ranging from 96.9 to 102.5% were calculated when applied to Xan determination in real blood serum samples.

  9. Influence of Dispersion in Composites of Chopped PAN-Based Carbon Fiber Modified by Dodecyl Ether Carboxylate

    NASA Astrophysics Data System (ADS)

    Wu, B.; Zheng, G.; Liu, Y. J.; Sun, Y.; Wang, L.

    2016-03-01

    In this article, dodecyl ether carboxylate (AECNa) was prepared by dodecanol polyoxyethylene, sodium chloroacetate, and sodium hydroxide and employed as a treatment agent for PAN-based carbon fiber (CF) surface. The results show that the optimum adsorption amount of AECNa modifying CF was determined to be 4.0 mg/g. In addition, the equivalent variation regularity is obtained the CF surface charge properties and its dispersion behavior. The optimal dispersion effect of the short CFs in epoxy matrix is achieved when the surface charges reach the maximum by quantitative measurement using Faraday cup; the surface morphology and wettability are improved depending on the field emission scanning electron microscopy, Thermogravimetry, x-ray photoelectron spectroscopy, and monofilament contact angle testing. Furthermore, the flexural strength and modulus of the treated CF composite were proven to advance by flexural tests.

  10. In vivo brain glucose measurements: differential normal pulse voltammetry with enzyme-modified carbon fiber microelectrodes.

    PubMed

    Netchiporouk, L I; Shram, N F; Jaffrezic-Renault, N; Martelet, C; Cespuglio, R

    1996-12-15

    The enzyme glucose oxidase was immobilized on the surface of carbon fiber microelectrodes (CFMEs) either by cross-linking in glutaraldehyde vapor or by enzyme entrapment in electropolymerized films of m-phenylenediamine or resorcinol. The cross-linked enzymatic layer was, in the given conditions, covered with an additional membrane of Nafion or cellulose acetate. The prepared glucose sensors were tested using differential normal pulse voltammetry (DNPV, in which the scan comprises successive double pulses ("prepulse and pulse"), the prepulses are of increasing amplitude, and the current measured is the differential of the current existing between each prepulse and pulse). With properly chosen DNPV parameters, the response to glucose presented a peak at a potential of about 1 V versus an Ag/AgC1-reference, owing to the oxidation of enzymatically produced hydrogen peroxide. The calibration curves obtained (peak height/glucose concentration) were linear from 0.3-0.5 up to 1.5-6.5 mM and showed a sensitivity ranging from 1.4 up to 34.5 mA M-1 cm-2, depending on the sensor type. The DNPV response to glucose exhibited an essential insensitivity toward easily oxidizable interfering substances such as ascorbic acid and acetaminophen present at physiological concentrations. Peptides, the interfering species typical of the cerebral medium, were effectively retained by the above additional membranes. Concentration values of glucose in plasma and cerebrospinal fluid, determined in vitro from the DNPV peak height, agreed well with those measured by standard procedures. In the anesthetized rat, extracellular brain concentration of glucose was also monitored during administration of either insulin or glucagon. Under such pharmacological conditions, the changes observed in the peak height were in perfect agreement with the known effects induced by both substances.

  11. Activated carbon fiber felt and polymer fiber as biofilm carrier in a modified University of Cape Town process for sewage treatment.

    PubMed

    Zhou, Dongkai

    2013-01-01

    Biofilms on fiber-based carriers have attracted much concern in wastewater treatment processes recently. In this study: (1) a novel sandwich structure fiber-based biofilm carrier was produced, which consisted of an inner core composed of polyacrylonitrile-based activated carbon fiber felt (PAN-ACFF) and an outer coat made of polyester reticular cloth with polypropylene fiber loops; (2) the novel carrier was filled in a step-feeding pilot-scale modified University of Cape Town process (MUCT) for sewage treatment; the MUCT contained a series of pre-anoxic/anaerobic/anoxic-1/anoxic-2/oxic tanks, wherein nitrification liquor was recycled to the anoxic-2 tank and an extra liquor return from the anoxic-1 to the pre-anoxic tank was set up; and (3) the removal efficiencies of chemical oxygen demand (COD), total nitrogen (TN) and total phosphorus (TP) were continuously tested for two periods as operational parameters alternated. The optimum values were collected in Period II, when the influent loads were 2,100.6 ± 120.3 gCOD/(d m(3)), 205.5 ± 20.4 gTN/(d m(3)), 39.9 ± 3.9 gTP/(d m(3)), the removal percentages were 93.1 ± 1.1% of COD, 39.4 ± 3.5% of TN, and 84.6 ± 3.4% of TP. For COD, NH4(+)-N, and TP, the specific removal loads of filler were 291.5 ± 18.2, 22.9 ± 3.1, 4.8 ± 0.5 (g d)/kg.

  12. Determination of Dopamine in the Presence of Ascorbic Acid by Nafion and Single-Walled Carbon Nanotube Film Modified on Carbon Fiber Microelectrode

    PubMed Central

    Jeong, Haesang; Jeon, Seungwon

    2008-01-01

    Carbon fiber microelectrode (CFME) modified by Nafion and single-walled carbon nanotubes (SWNTs) was studied by voltammetric methods in phosphate buffer saline (PBS) solution at pH 7.4. The Nafion-SWNTs/CFME modified microelectrode exhibited strongly enhanced voltammetric sensitivity and selectivity towards dopamine (DA) determination in the presence of ascorbic acid (AA). Nafion-SWNTs film accelerated the electron transfer reaction of DA, but Nafion film as a negatively charged polymer restrained the electrochemical response of AA. Voltammetric techniques separated the anodic peaks of DA and AA, and the interference from AA was effectively excluded from DA determination. Linear calibration plots were obtained in the DA concentration range of 10 nM - 10 μM and the detection limit of the anodic current was determined to be 5 nM at a signal-to-noise ratio of 3. The study results demonstrate that DA can be determined without any interference from AA at the modified microelectrode, thereby increasing the sensitivity, selectivity, and reproducibility and stability. PMID:27873906

  13. Nanotailored Carbon Fibers

    DTIC Science & Technology

    2009-06-07

    Chae, Han Gi, Ph.D. Nano Engineered Materials Corporation 2349 Lake Forest Trail Lawrenceville, GA 30043 Air Force Office of Scientific...0065, AF08‐T028  Nanotailored Carbon Fibers  Nano  Engineered Materials Corp    Nanotailored Carbon Fibers (STTR Phase I final technical report...14   FA9550‐08‐C‐0065, AF08‐T028  Nanotailored Carbon Fibers  Nano

  14. Airborne Fiber Size Characterization in Exposure Estimation: Evaluation of a Modified Transmission Electron Microcopy Protocol for Asbestos and Potential Use for Carbon Nanotubes and Nanofibers

    PubMed Central

    Dement, John M.; Kuempel, Eileen D.; Zumwalde, Ralph D.; Ristich, Anna M.; Fernback, Joseph E.; Smith, Randall J.

    2015-01-01

    Background Airborne fiber size has been shown to be an important factor relative to adverse lung effects of asbestos and suggested in animal studies of carbon nanotubes and nanofibers (CNT/CNF). Materials and Methods The International Standards Organization (ISO) transmission electron microscopy (TEM) method for asbestos was modified to increase the statistical precision of fiber size determinations, improve efficiency, and reduce analysis costs. Comparisons of the fiber size distributions and exposure indices by laboratory and counting method were performed. Results No significant differences in size distributions by the ISO and modified ISO methods were observed. Small but statistically-significant inter-lab differences in the proportion of fibers in some size bins were found, but these differences had little impact on the summary exposure indices. The modified ISO method produced slightly more precise estimates of the long fiber fraction (>15 μm). Conclusions The modified ISO method may be useful for estimating size-specific structure exposures, including CNT/CNF, for risk assessment research. PMID:25675894

  15. Carbon Fiber Risk Analysis. [conference

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The scope and status of the effort to assess the risks associated with the accidental release of carbon/graphite fibers from civil aircraft is presented. Vulnerability of electrical and electronic equipment to carbon fibers, dispersal of carbon fibers, effectiveness of filtering systems, impact of fiber induced failures, and risk methodology are among the topics covered.

  16. Carbonized asphaltene-based carbon-carbon fiber composites

    DOEpatents

    Bohnert, George; Lula, James; Bowen, III, Daniel E.

    2016-12-27

    A method of making a carbon binder-reinforced carbon fiber composite is provided using carbonized asphaltenes as the carbon binder. Combinations of carbon fiber and asphaltenes are also provided, along with the resulting composites and articles of manufacture.

  17. Electrochemical oxidation of cysteine at a film gold modified carbon fiber microelectrode its application in a flow-through voltammetric sensor.

    PubMed

    Wang, Lai-Hao; Huang, Wen-Shiuan

    2012-01-01

    A flow-electrolytical cell containing a strand of micro Au modified carbon fiber electrodes (CFE) has been designedand characterized for use in a voltammatric detector for detecting cysteine using high-performance liquid chromatography. Cysteine is more efficiently electrochemical oxidized on a Au /CFE than a bare gold and carbon fiber electrode. The possible reaction mechanism of the oxidation process is described from the relations to scan rate, peak potentials and currents. For the pulse mode, and measurements with suitable experimental parameters, a linear concentration from 0.5 to 5.0 mg·L(-1) was found. The limit of quantification for cysteine was below 60 ng·mL(-1).

  18. Boron nitride converted carbon fiber

    SciTech Connect

    Rousseas, Michael; Mickelson, William; Zettl, Alexander K.

    2016-04-05

    This disclosure provides systems, methods, and apparatus related to boron nitride converted carbon fiber. In one aspect, a method may include the operations of providing boron oxide and carbon fiber, heating the boron oxide to melt the boron oxide and heating the carbon fiber, mixing a nitrogen-containing gas with boron oxide vapor from molten boron oxide, and converting at least a portion of the carbon fiber to boron nitride.

  19. Carbon Fiber Composites

    NASA Technical Reports Server (NTRS)

    1997-01-01

    HyComp(R), Inc. development a line of high temperature carbon fiber composite products to solve wear problems in the harsh environment of steel and aluminum mills. WearComp(R), self-lubricating composite wear liners and bushings, combines carbon graphite fibers with a polyimide binder. The binder, in conjunction with the fibers, provides the slippery surface, one that demands no lubrication, yet wears at a very slow rate. WearComp(R) typically lasts six to ten times longer than aluminum bronze. Unlike bronze, WearComp polishes the same surface and imparts a self-lube film for years of service. It is designed for continuous operation at temperatures of 550 degrees Fahrenheit and can operate under high compressive loads.

  20. In vivo monitoring of oxidative burst on aloe under salinity stress using hemoglobin and single-walled carbon nanotubes modified carbon fiber ultramicroelectrode.

    PubMed

    Ren, Qiong-Qiong; Yuan, Xiao-Jun; Huang, Xiao-Rong; Wen, Wei; Zhao, Yuan-Di; Chen, Wei

    2013-12-15

    Single-walled carbon nanotubes (SWCNTs) and hemoglobin (Hb) modified carbon fiber ultramicroelectrode (CFUME) were employed to construct a direct electron transfer based in vivo H2O2 sensor. At the low working potential of -0.1 V, Hb/SWCNTs/CFUME showed a dynamic range up to 0.405 mM with a low detection limit of 4 μM (S/N=3) and a high sensitivity of 1.07 log(A) log(M)(-1) cm(-2). The apparent Michaelis-Menten constant (Km, app) was estimated to be as low as 1.35 mM. Due to the extremely small dimension and low working potential, Hb/SWCNTs/CFUME could give directly amperometric in vivo monitoring of H2O2 in aloe leaves with salt stress for 19.5h without the requirement of complex data processing and extra surface coatings to avoid interferences. The sharp increase of H2O2 level in aloe leaves with salt stress was clearly observed using Hb/SWCNTs/CFUME from 12.5 h, while in the aloe without salt stress, H2O2 level remained stable in the whole measurement. For further confirming the in vivo response of Hb/SWCNTs/CFUME, catalase (CAT) was injected into the spot adjacent to the sensor and caused rapid current decrease, which suggests the scavenging of H2O2. These results indicate that Hb/SWCNTs/CFUME can be a powerful tool for in vivo investigation of ROS.

  1. Method of carbonizing polyacrylonitrile fibers

    NASA Technical Reports Server (NTRS)

    Cagliostro, D. E.; Lerner, N. R. (Inventor)

    1983-01-01

    This invention relates to a method of carbonizing polyacrylonitrile fibers by exposing the fibers at an elevated temperature to an oxidizing atmosphere; then exposing the oxidized fibers to an atmosphere of an inert gas such as nitrogen containing a carbonaceous material such as acetylene. The fibers are preferably treated with an organic compound, for example benzoic acid, before the exposure to an oxidizing atmosphere. The invention also relates to the resulting fibers. The treated fibers have enhanced tensile strength.

  2. Method for the preparation of carbon fiber from polyolefin fiber precursor, and carbon fibers made thereby

    DOEpatents

    Naskar, Amit Kumar; Hunt, Marcus Andrew; Saito, Tomonori

    2015-08-04

    Methods for the preparation of carbon fiber from polyolefin fiber precursor, wherein the polyolefin fiber precursor is partially sulfonated and then carbonized to produce carbon fiber. Methods for producing hollow carbon fibers, wherein the hollow core is circular- or complex-shaped, are also described. Methods for producing carbon fibers possessing a circular- or complex-shaped outer surface, which may be solid or hollow, are also described.

  3. Stronger Carbon Fibers for Reinforced Plastics

    NASA Technical Reports Server (NTRS)

    Cagliostro, D. E.; Lerner, N. R.

    1983-01-01

    Process makes fibers 70 percent stronger at lower carbonization temperature. Stronger carbon fibers result from benzoic acid pretreatment and addition of acetylene to nitrogen carbonizing atmosphere. New process also makes carbon fibers of higher electrical resistance -- an important safety consideration.

  4. Intercalation of Lithium in Pitch-Based Graphitized Carbon Fibers Chemically Modified by Fluorine: Soft Carbon With or Without an Oxide Surface

    NASA Technical Reports Server (NTRS)

    Hung, Ching-Chen; Prisko, Aniko

    1999-01-01

    The effects of carbon structure and surface oxygen on the carbon's performance as the anode in lithium-ion battery were studied. Two carbon materials were used for the electrochemical tests: soft carbon made from defluorination of graphite fluoride, and the carbon precursor from which the graphite fluoride was made. In this research the precursor was graphitized carbon fiber P-100. It was first fluorinated to form CF(0.68), then defluorinated slowly at 350 to 450 C in bromoform, and finally heated in 1000 C nitrogen before exposed to room temperature air, producing disordered soft carbon having basic surface oxides. This process caused very little carbon loss. The electrochemical test involved cycles of lithium intercalation and deintercalation using C/saturated LiI-50/50 (vol %) EC and DMC/Li half cell. The cycling test had four major results. (1) The presence of a basic oxide surface may prevent solvent from entering the carbon structure and therefore prolong the carbon's cycle life for lithium intercalation-deintercalation. (2) The disordered soft carbon can store lithium through two different mechanisms. One of them is lithium intercalation. which gives the disordered carbon an electrochemical behavior similar to its more ordered graphitic precursor. The other is unknown in its chemistry, but is responsible for the high-N,oltage portion (less than 0.3V) of the charge-discharge curve. (3) Under certain conditions, the disordered carbon can store more lithium than its precursor. (4) These sample and its precursor can intercalate at 200 mA/g. and deintercalate at a rate of 2000 mA/g without significant capacity loss.

  5. Carbon Fiber Biocompatibility for Implants

    PubMed Central

    Petersen, Richard

    2016-01-01

    Carbon fibers have multiple potential advantages in developing high-strength biomaterials with a density close to bone for better stress transfer and electrical properties that enhance tissue formation. As a breakthrough example in biomaterials, a 1.5 mm diameter bisphenol-epoxy/carbon-fiber-reinforced composite rod was compared for two weeks in a rat tibia model with a similar 1.5 mm diameter titanium-6-4 alloy screw manufactured to retain bone implants. Results showed that carbon-fiber-reinforced composite stimulated osseointegration inside the tibia bone marrow measured as percent bone area (PBA) to a great extent when compared to the titanium-6-4 alloy at statistically significant levels. PBA increased significantly with the carbon-fiber composite over the titanium-6-4 alloy for distances from the implant surfaces of 0.1 mm at 77.7% vs. 19.3% (p < 10−8) and 0.8 mm at 41.6% vs. 19.5% (p < 10−4), respectively. The review focuses on carbon fiber properties that increased PBA for enhanced implant osseointegration. Carbon fibers acting as polymer coated electrically conducting micro-biocircuits appear to provide a biocompatible semi-antioxidant property to remove damaging electron free radicals from the surrounding implant surface. Further, carbon fibers by removing excess electrons produced from the cellular mitochondrial electron transport chain during periods of hypoxia perhaps stimulate bone cell recruitment by free-radical chemotactic influences. In addition, well-studied bioorganic cell actin carbon fiber growth would appear to interface in close contact with the carbon-fiber-reinforced composite implant. Resulting subsequent actin carbon fiber/implant carbon fiber contacts then could help in discharging the electron biological overloads through electrochemical gradients to lower negative charges and lower concentration. PMID:26966555

  6. Carbon Fiber Biocompatibility for Implants.

    PubMed

    Petersen, Richard

    Carbon fibers have multiple potential advantages in developing high-strength biomaterials with a density close to bone for better stress transfer and electrical properties that enhance tissue formation. As a breakthrough example in biomaterials, a 1.5 mm diameter bisphenol-epoxy/carbon-fiber-reinforced composite rod was compared for two weeks in a rat tibia model with a similar 1.5 mm diameter titanium-6-4 alloy screw manufactured to retain bone implants. Results showed that carbon-fiber-reinforced composite stimulated osseointegration inside the tibia bone marrow measured as percent bone area (PBA) to a great extent when compared to the titanium-6-4 alloy at statistically significant levels. PBA increased significantly with the carbon-fiber composite over the titanium-6-4 alloy for distances from the implant surfaces of 0.1 mm at 77.7% vs. 19.3% (p < 10(-8)) and 0.8 mm at 41.6% vs. 19.5% (p < 10(-4)), respectively. The review focuses on carbon fiber properties that increased PBA for enhanced implant osseointegration. Carbon fibers acting as polymer coated electrically conducting micro-biocircuits appear to provide a biocompatible semi-antioxidant property to remove damaging electron free radicals from the surrounding implant surface. Further, carbon fibers by removing excess electrons produced from the cellular mitochondrial electron transport chain during periods of hypoxia perhaps stimulate bone cell recruitment by free-radical chemotactic influences. In addition, well-studied bioorganic cell actin carbon fiber growth would appear to interface in close contact with the carbon-fiber-reinforced composite implant. Resulting subsequent actin carbon fiber/implant carbon fiber contacts then could help in discharging the electron biological overloads through electrochemical gradients to lower negative charges and lower concentration.

  7. Electrochemical detection of nitrate in PM2.5 with a copper-modified carbon fiber micro-disk electrode.

    PubMed

    Yu, Liangyun; Zhang, Qi; Xu, Qin; Jin, Dangqin; Jin, Gendi; Li, Kexin; Hu, Xiaoya

    2015-10-01

    The accurate measurement of nitrate in PM2.5 is essential for a complete understanding of the effects of aerosols on human health, the impact of aerosols on the radiative balance of the earth and the role of aerosols in visibility problems. In this paper, we present a novel, quick, easy, cheap and eco-friendly electroanalytical procedure for the determination of nitrate in PM2.5 samples using a carbon-fiber micro-disk electrode (CFMDE) coupled with square-wave voltammetry (SWV). Under optimal experimental conditions the nitrate SWV response increases linearly with nitrate concentration over a range of 0.003-2.0 mmol L(-1), and the detection limit is 1.10 μmol L(-1) (S/N=3). Nitrate contents in daily PM2.5 of Yangzhou in China were detected successfully by employing this novel method, and the results were compared well with those obtained by using ion chromatography. Then, we detected nitrate in two-hour PM2.5 filter samples via the standard addition method, and the concentrations were applied in an analysis of the daily change of nitrate contained in PM2.5 of Yangzhou. The research in this work indicates that the electrochemical method opens a new opportunity for fast, portable, and sensitive analysis of components in PM2.5.

  8. Property and Shape Modulation of Carbon Fibers Using Lasers.

    PubMed

    Blaker, Jonny J; Anthony, David B; Tang, Guang; Shamsuddin, Siti-Ros; Kalinka, Gerhard; Weinrich, Malte; Abdolvand, Amin; Shaffer, Milo S P; Bismarck, Alexander

    2016-06-29

    An exciting challenge is to create unduloid-reinforcing fibers with tailored dimensions to produce synthetic composites with improved toughness and increased ductility. Continuous carbon fibers, the state-of-the-art reinforcement for structural composites, were modified via controlled laser irradiation to result in expanded outwardly tapered regions, as well as fibers with Q-tip (cotton-bud) end shapes. A pulsed laser treatment was used to introduce damage at the single carbon fiber level, creating expanded regions at predetermined points along the lengths of continuous carbon fibers, while maintaining much of their stiffness. The range of produced shapes was quantified and correlated to single fiber tensile properties. Mapped Raman spectroscopy was used to elucidate the local compositional and structural changes. Irradiation conditions were adjusted to create a swollen weakened region, such that fiber failure occurred in the laser treated region producing two fiber ends with outwardly tapered ends. Loading the tapered fibers allows for viscoelastic energy dissipation during fiber pull-out by enhanced friction as the fibers plough through a matrix. In these tapered fibers, diameters were locally increased up to 53%, forming outward taper angles of up to 1.8°. The tensile strength and strain to failure of the modified fibers were significantly reduced, by 75% and 55%, respectively, ensuring localization of the break in the expanded region; however, the fiber stiffness was only reduced by 17%. Using harsher irradiation conditions, carbon fibers were completely cut, resulting in cotton-bud fiber end shapes. Single fiber pull-out tests performed using these fibers revealed a 6.75-fold increase in work of pull-out compared to pristine carbon fibers. Controlled laser irradiation is a route to modify the shape of continuous carbon fibers along their lengths, as well as to cut them into controlled lengths leaving tapered or cotton-bud shapes.

  9. Quality of chemically modified hemp fibers.

    PubMed

    Kostic, Mirjana; Pejic, Biljana; Skundric, Petar

    2008-01-01

    Hemp fibers are very interesting natural material for textile and technical applications now. Applying hemp fibers to the apparel sector requires improved quality fibers. In this paper, hemp fibers were modified with sodium hydroxide solutions (5% and 18% w/v), at room and boiling temperature, for different periods of time, and both under tension and slack, in order to partially extract noncellulosic substances, and separate the fiber bundles. The quality of hemp fibers was characterised by determining their chemical composition, fineness, mechanical and sorption properties. The modified hemp fibers were finer, with lower content of lignin, increased flexibility, and in some cases tensile properties were improved. An original method for evaluation of tensile properties of hemp fibers was developed.

  10. Carbon Fiber from Biomass

    SciTech Connect

    Milbrandt, Anelia; Booth, Samuel

    2016-09-01

    Carbon fiber (CF), known also as graphite fiber, is a lightweight, strong, and flexible material used in both structural (load-bearing) and non-structural applications (e.g., thermal insulation). The high cost of precursors (the starting material used to make CF, which comes predominately from fossil sources) and manufacturing have kept CF a niche market with applications limited mostly to high-performance structural materials (e.g., aerospace). Alternative precursors to reduce CF cost and dependence on fossil sources have been investigated over the years, including biomass-derived precursors such as rayon, lignin, glycerol, and lignocellulosic sugars. The purpose of this study is to provide a comprehensive overview of CF precursors from biomass and their market potential. We examine the potential CF production from these precursors, the state of technology and applications, and the production cost (when data are available). We discuss their advantages and limitations. We also discuss the physical properties of biomass-based CF, and we compare them to those of polyacrylonitrile (PAN)-based CF. We also discuss manufacturing and end-product considerations for bio-based CF, as well as considerations for plant siting and biomass feedstock logistics, feedstock competition, and risk mitigation strategies. The main contribution of this study is that it provides detailed technical and market information about each bio-based CF precursor in one document while other studies focus on one precursor at a time or a particular topic (e.g., processing). Thus, this publication allows for a comprehensive view of the CF potential from all biomass sources and serves as a reference for both novice and experienced professionals interested in CF production from alternative sources.

  11. Coating Carbon Fibers With Platinum

    NASA Technical Reports Server (NTRS)

    Effinger, Michael R.; Duncan, Peter; Coupland, Duncan; Rigali, Mark J.

    2007-01-01

    A process for coating carbon fibers with platinum has been developed. The process may also be adaptable to coating carbon fibers with other noble and refractory metals, including rhenium and iridium. The coated carbon fibers would be used as ingredients of matrix/fiber composite materials that would resist oxidation at high temperatures. The metal coats would contribute to oxidation resistance by keeping atmospheric oxygen away from fibers when cracks form in the matrices. Other processes that have been used to coat carbon fibers with metals have significant disadvantages: Metal-vapor deposition processes yield coats that are nonuniform along both the lengths and the circumferences of the fibers. The electrical resistivities of carbon fibers are too high to be compatible with electrolytic processes. Metal/organic vapor deposition entails the use of expensive starting materials, it may be necessary to use a furnace, and the starting materials and/or materials generated in the process may be hazardous. The present process does not have these disadvantages. It yields uniform, nonporous coats and is relatively inexpensive. The process can be summarized as one of pretreatment followed by electroless deposition. The process consists of the following steps: The surfaces of the fiber are activated by deposition of palladium crystallites from a solution. The surface-activated fibers are immersed in a solution that contains platinum. A reducing agent is used to supply electrons to effect a chemical reduction in situ. The chemical reduction displaces the platinum from the solution. The displaced platinum becomes deposited on the fibers. Each platinum atom that has been deposited acts as a catalytic site for the deposition of another platinum atom. Hence, the deposition process can also be characterized as autocatalytic. The thickness of the deposited metal can be tailored via the duration of immersion and the chemical activity of the solution.

  12. Carbon fibers from aromatic hydrocarbons

    SciTech Connect

    Mochida, Isao; Yoon, S.H.; Korai, Yozo; Kanno, Koichi; Sakai, Yukio; Komatsu, Makoto

    1995-02-01

    Carbon filter is widely used as a lightweight and high-strength material for composite structures. Its uses are expected to expand in the next century. Currently the best precursor for making these fibers is polyacrylonitrile (PAN). This is a relatively expensive feedstock. Carbon fibers also have been made starting with so-called mesophase pitch fractions derived from low-cost hydrocarbons such as petroleum residuum. But these fibers suffer from low mechanical strength. In the past few years, significant advances have been made in understanding the mechanism of formation of mesophase pitch, which may lead to improved performance for carbon fibers and other specialty carbons. This article introduces such advances, based principally on the authors` recent results.

  13. Carbon Fiber Risk Analysis: Conclusions

    NASA Technical Reports Server (NTRS)

    Huston, R. J.

    1979-01-01

    It was concluded that preliminary estimates indicate that the public risk due to accidental release of carbon fiber from air transport aircraft is small. It was also concluded that further work is required to increase confidence in these estimates.

  14. The Future of Modified Fibers

    SciTech Connect

    Edwards, J. V.; Goheen, Steven C.; Buschle-Diller, Gisela

    2006-06-30

    The future of fiber technology for medical and specialty applications depends largely on the future needs of our civilization. It has been said that unmet needs drive the funding that sparks ideas. In this regard recent emphasis on United States homeland security has encouraged new bio-fiber research, resulting in the development of anti-bacterial fibers for producing clothing and filters to eliminate pathogens and enzyme-linked fibers to facilitate decontamination of nerve toxins from human skin [1]. Magnetic fibers may also have future security applications including fiber-based detectors for individual and material recognition. Interest in smart and interactive textiles is increasing with a projected average annual growth rate of 36% by 2009 [2]. More specific markets including medical textiles and enzymes will grow even more rapidly. Among the medical textiles are interactive wound dressings, implantable grafts, smart hygienic materials, and dialysis tubing. Some of the medical and specialty fibers inclusive of these types of product areas are discussed in this book. A recent review of the surface modification of fibers as therapeutic and diagnostic systems relevant to some of these new product areas has been published by Gupta [3]. In his review he examined current technology for medical textile structures [3] with a focus on woven medical textile materials.

  15. Piezoresistive effect in carbon nanotube fibers.

    PubMed

    Lekawa-Raus, Agnieszka; Koziol, Krzysztof K K; Windle, Alan H

    2014-11-25

    The complex structure of the macroscopic assemblies of carbon nanotubes and variable intrinsic piezoresistivity of nanotubes themselves lead to highly interesting piezoresistive performance of this new type of conductive material. Here, we present an in-depth study of the piezoresistive effect in carbon nanotube fibers, i.e., yarnlike assemblies made purely of aligned carbon nanotubes, which are expected to find applications as electrical and electronic materials. The resistivity changes of carbon nanotube fibers were measured on initial loading, through the elastic/plastic transition, on cyclic loading and on stress relaxation. The various regimes of stress/strain behavior were modeled using a standard linear solid model, which was modified with an additional element in series to account for the observed creep behavior. On the basis of the experimental and modeling results, the origin of piezoresistivity is discussed. An additional effect on the resistivity was found as the fiber was held under load which led to observations of the effect of humidity and the associated water adsorption level on the resistivity. We show that the equilibrium uptake of moisture leads to the decrease in gauge factor of the fiber decrease, i.e., the reduction in the sensitivity of fiber resistivity to loading.

  16. Nanotailored Carbon Fibers

    DTIC Science & Technology

    2012-04-27

    precursor fiber and also utilize bi- component spinning along with gel spinning, to obtain small diameter fibers. Various processing parameters during...shape of the fiber. In this regard, we have also conducted single component gel spinning using different gelation bath temperatures (100% methanol). SEM...domestic dishwashing detergent, Palmolive antibacterial , 3 wt% detergent and 97% water) for about a week and retested. *** For 5th trial, tungsten

  17. Preparation of nitrogen-doped cotton stalk microporous activated carbon fiber electrodes with different surface area from hexamethylenetetramine-modified cotton stalk for electrochemical degradation of methylene blue

    NASA Astrophysics Data System (ADS)

    Li, Kunquan; Rong, Zhang; Li, Ye; Li, Cheng; Zheng, Zheng

    Cotton-stalk activated carbon fibers (CSCFs) with controllable micropore area and nitrogen content were prepared as an efficient electrode from hexamethylenetetramine-modified cotton stalk by steam/ammonia activation. The influence of microporous area, nitrogen content, voltage and initial concentration on the electrical degradation efficiency of methylene blue (MB) was evaluated by using CSCFs as anode. Results showed that the CSCF electrodes exhibited excellent MB electrochemical degradation ability including decolorization and COD removal. Increasing micropore surface area and nitrogen content of CSCF anode leaded to a corresponding increase in MB removal. The prepared CSCF-800-15-N, which has highest N content but lowest microporous area, attained the best degradation effect with 97% MB decolorization ratio for 5 mg/L MB at 12 V in 4 h, implying the doped nitrogen played a prominent role in improving the electrochemical degradation ability. The electrical degradation reaction was well described by first-order kinetics model. Overall, the aforesaid findings suggested that the nitrogen-doped CSCFs were potential electrode materials, and their electrical degradation abilities could be effectively enhanced by controlling the nitrogen content and micropore surface area.

  18. Enzyme-modified carbon-fiber microelectrode for the quantification of dynamic fluctuations of nonelectroactive analytes using fast-scan cyclic voltammetry.

    PubMed

    Lugo-Morales, Leyda Z; Loziuk, Philip L; Corder, Amanda K; Toups, J Vincent; Roberts, James G; McCaffrey, Katherine A; Sombers, Leslie A

    2013-09-17

    Neurotransmission occurs on a millisecond time scale, but conventional methods for monitoring nonelectroactive neurochemicals are limited by slow sampling rates. Despite a significant global market, a sensor capable of measuring the dynamics of rapidly fluctuating, nonelectroactive molecules at a single recording site with high sensitivity, electrochemical selectivity, and a subsecond response time is still lacking. To address this need, we have enabled the real-time detection of dynamic glucose fluctuations in live brain tissue using background-subtracted, fast-scan cyclic voltammetry. The novel microbiosensor consists of a simple carbon fiber surface modified with an electrodeposited chitosan hydrogel encapsulating glucose oxidase. The selectivity afforded by voltammetry enables quantitative and qualitative measurements of enzymatically generated H2O2 without the need for additional strategies to eliminate interfering agents. The microbiosensors possess a sensitivity and limit of detection for glucose of 19.4 ± 0.2 nA mM(-1) and 13.1 ± 0.7 μM, respectively. They are stable, even under deviations from physiological normoxic conditions, and show minimal interference from endogenous electroactive substances. Using this approach, we have quantitatively and selectively monitored pharmacologically evoked glucose fluctuations with unprecedented chemical and spatial resolution. Furthermore, this novel biosensing strategy is widely applicable to the immobilization of any H2O2 producing enzyme, enabling rapid monitoring of many nonelectroactive enzyme substrates.

  19. Applications of a copper microparticle-modified carbon fiber microdisk array electrode for the simultaneous determination of aminoglycoside antibiotics by capillary electrophoresis.

    PubMed

    Yang, W C; Yu, A M; Chen, H Y

    2001-01-05

    A copper microparticle-modified carbon fiber microdisk array electrode was fabricated and employed in capillary electrophoresis for the simultaneous determination of the five aminoglycoside antibiotics (AGs) including netilmicin, tobramycin, lincomycin, kanamycin and amikacin. The array electrode exhibited high catalytic activity for AGs, good reproducibility and stability. Under the optimum separation conditions (separation voltage of 6.2 kV, electrophoretic medium of 125 mM NaOH), the five AGs above were baseline separated within 20 min. At a working electrode potential of 0.7 V (versus saturated calomel electrode), the calibration curves were linear over two orders of magnitude of concentration, and the detection limits (SIN=3) were below 2 microM except for lincomycin (6.7 microM). The developed method was successfully employed for the simultaneous determination of the five AGs studied in pharmaceutical injections. The feasibility of this method for the simultaneous determination of lincomycin, kanamycin and amikacin in urine sample was also demonstrated.

  20. Fabrication of nano-Fe3O4 3D structure on carbon fibers as a microwave absorber and EMI shielding composite by modified EPD method

    NASA Astrophysics Data System (ADS)

    Gholampoor, Mahdi; Movassagh-Alanagh, Farid; Salimkhani, Hamed

    2017-02-01

    Recently, electromagnetic interference (EMI) shielding materials have absorbed a lot of attention due to a growing need for application in the area of electronic and wireless devices. In this study, a carbon-based EMI shielding composite was fabricated by electrophoretic deposition of Fe3O4 nano-particles on carbon fibers (CFs) as a 3D structure incorporated with an epoxy resin. Co-precipitation method was employed to synthesize Fe3O4 nano-particles. This as-synthesized Fe3O4 nano-powder was then successfully deposited on CFs using a modified multi-step electrophoretic deposition (EPD) method. The results of structural studies showed that the Fe3O4 nano-particles (25 nm) were successfully and uniformly deposited on CFs. The measured magnetic properties of as-synthesized Fe3O4 nano-powder and nano-Fe3O4/CFs composite showed that the saturation magnetization of bare Fe3O4 was decreased from Ms = 72.3 emu/g to Ms = 33.1 emu/g for nano-Fe3O4/CFs composite and also corecivity of Fe3O4 was increased from Hc = 4.9 Oe to Hc = 168 Oe for composite. The results of microwave absorption tests revealed that the reflection loss (RL) of an epoxy-based nano-Fe3O4/CFs composite are significantly influenced by layer thickness. The maximum RL value of -10.21 dB at 10.12 GHz with an effective absorption bandwidth about 2 GHz was obtained for the sample with the thickness of 2 mm. It also exhibited an EMI shielding performance of -23 dB for whole the frequency range of 8.2-12.4 GHz.

  1. Spectroscopic characterization of genetically modified flax fibers

    NASA Astrophysics Data System (ADS)

    Dymińska, L.; Gągor, A.; Hanuza, J.; Kulma, A.; Preisner, M.; Żuk, M.; Szatkowski, M.; Szopa, J.

    2014-09-01

    The principal goal of this paper is an analysis of flax fiber composition. Natural and genetically modified flax fibers derived from transgenic flax have been analyzed. Development of genetic engineering enables to improve the quality of fibers. Three transgenic plant lines with different modifications were generated based on fibrous flax plants as the origin. These are plants with: silenced cinnamyl alcohol dehydrogenase (CAD) gene; overexpression of polygalacturonase (PGI); and expression of three genes construct containing β-ketothiolase (phb A), acetoacetyl-CoA reductase (phb B), and poly-3-hydroxybutyric acid synthase (phb C). Flax fibers have been studied by FT-IR spectroscopy. The integral intensities of the IR bands have been used for estimation of the chemical content of the normal and transgenic flaxes. The spectroscopic data were compared to those obtained from chemical analysis of flax fibers. X-ray studies have been used to characterize the changes of the crystalline structure of the flax cellulose fibers.

  2. Interfacial adhesion of carbon fibers

    NASA Technical Reports Server (NTRS)

    Bascom, Willard D.

    1987-01-01

    Relative adhesion strengths between AS4, AS1, and XAS carbon fibers and thermoplastic polymers were determined using the embedded single filament test. Polymers studied included polycarbonate, polyphenylene oxide, polyetherimide, polysulfone, polyphenylene oxide blends with polystyrene, and polycarbonate blends with a polycarbonate polysiloxane block copolymer. Fiber surface treatments and sizings improved adhesion somewhat, but adhesion remained well below levels obtained with epoxy matrices. An explanation for the differences between the Hercules and Grafil fibers was sought using X ray photon spectroscopy, wetting, scanning electron microscopy and thermal desorption analysis.

  3. Plasma polymerized thin coating as a protective layer of carbon nanotubes grafted on carbon fibers

    NASA Astrophysics Data System (ADS)

    Einig, A.; Rumeau, P.; Desrousseaux, S.; Magga, Y.; Bai, J. B.

    2013-04-01

    Nanoparticles addition is widely studied to improve properties of carbon fiber reinforced composites. Here, hybrid carbon fiber results from grafting of carbon nanotubes (CNT) by Chemical Vapor Deposition (CVD) on the carbon fiber for mechanical reinforcement and conductive properties. Both tows and woven fabrics made of the hybrid fibers are added to the matrix for composite processing. However handling hybrid fibers may induce unwilling health risk due to eventual CNT release and a protective layer is required. A thin coating layer is deposited homogeneously by low pressure plasma polymerization of an organic monomer without modifying the morphology and the organization of grafted CNTs. The polymeric layer effect on the electrical behavior of hybrid fiber is assessed by conductivity measurements. Its influence on the mechanical properties is also studied regarding the interface adhesion between fiber and matrix. The protective role of layer is demonstrated by means of friction constraints applied to the hybrid fiber.

  4. Thermoplastic coating of carbon fibers

    NASA Technical Reports Server (NTRS)

    Edie, D. D.; Lickfield, G. C.; Allen, L. E.; Mccollum, J. R.

    1989-01-01

    A continuous powder coating system was developed for coating carbon fiber with LaRC-TPI (Langley Research Center-Thermoplastic Polyimide), a high-temperature thermoplastic polymide invented by NASA-Langley. The coating line developed used a pneumatic fiber spreader to separate the individual fibers. The polymer was applied within a recirculating powder coating chamber then melted using a combination of direct electrical resistance and convective heating to make it adhere to the fiber tow. The tension and speed of the line were controlled with a dancer arm and an electrically driven fiber wind-up and wind-off. The effects of heating during the coating process on the flexibility of the prepreg produced were investigated. The uniformity with which the fiber tow could be coated with polymer also was examined. Composite specimens were fabricated from the prepreg and tested to determine optimum process conditions. The study showed that a very uniform and flexible prepeg with up to 50 percent by volume polymer could be produced with this powder coating system. The coating line minimized powder loss and produced prepeg in lengths of up to 300 m. The fiber spreading was found to have a major effect on the coating uniformity and flexibility. Though test results showed low composite tensile strengths, analysis of fracture surfaces under scanning electron microscope indicated that fiber/matrix adhesion was adequate.

  5. Assessment of Carbon Fiber Electrical Effects

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The risks associated with the use of carbon fiber composites in civil aircraft are discussed along with the need for protection of civil aircraft equipment from fire-released carbon fibers. The size and number of carbon fibers released in civil aircraft crash fires, the downwind dissemination of the fibers, their penetration into buildings and equipment, and the vulnerability of electrical/electronic equipment to damage by the fibers are assessed.

  6. Carbon fiber study

    NASA Technical Reports Server (NTRS)

    1977-01-01

    A coordinated Federal Government action plan for dealing with the potential problems arising from the increasing use of graphite fiber reinforced composite materials in both military and civilian applications is presented. The required dissemination of declassified information and an outline of government actions to minimize the social and economic consequences of proliferated composite materials applications were included.

  7. Application of carbon nanotubes modified with a Keggin polyoxometalate as a new sorbent for the hollow-fiber micro-solid-phase extraction of trace naproxen in hair samples with fluorescence spectrophotometry using factorial experimental design.

    PubMed

    Naddaf, Ezzat; Ebrahimi, Mahmoud; Es'haghi, Zarrin; Bamoharram, Fatemeh Farrash

    2015-07-01

    A sensitive technique to determinate naproxen in hair samples was developed using hollow-fiber micro-solid-phase combined with fluorescence spectrophotometry. The incorporation of multi-walled carbon nanotubes modified with a Keggin polyoxometalate into a silica matrix prepared by the sol-gel method was reported. In this research, the Keggin carbon nanotubes /silica composite was used in the pores and lumen of a hollow fiber as the hollow-fiber micro-solid-phase extraction device. The device was used for the microextraction of the analyte from hair and water samples under the optimized conditions. An orthogonal array experimental design with an OA24 (4(6) ) matrix was employed to optimize the conditions. The effect of six factors influencing the extraction efficiency was investigated: pH, salt, volume of donor and desorption phase, extraction and desorption time. The effect of each factor was estimated using individual contributions as response functions in the screening process. Analysis of variance was employed for estimating the main significant factors and their contributions in the extraction. Calibration curve plot displayed linearity over a range of 0.2-10 ng/mL with detection limits of 0.072 and 0.08 ng/mL for hair and aqueous samples, respectively. The relative recoveries in the hair and aqueous matrices ranged from 103-95%. The relative standard deviation for fiber-to-fiber repeatability was 3.9%.

  8. Thermoplastic-carbon fiber hybrid yarn

    NASA Technical Reports Server (NTRS)

    Ketterer, M. E.

    1984-01-01

    Efforts were directed to develop processing methods to make carbon fiber/thermoplastic fiber preforms that are easy to handle and drapeable, and to consolidate them into low void content laminates. The objectives were attained with the development of the hybrid yarn concept; whereby, thermoplastic fiber can be intimately intermixed with carbon fiber into a hybrid yarn. This was demonstrated with the intermixing of Celion 3000 with a Celanese liquid crystal polymer fiber, polybutylene terepthalate fiber, or polyetheretherketone fiber. The intermixing of the thermoplastic matrix fiber and the reinforcing carbon fiber gives a preform that can be easily fabricated into laminates with low void content. Mechanical properties of the laminates were not optimized; however, initial results indicated properties typical of a thermoplastic/carbon fiber composites prepared by more conventional methods.

  9. Mesophase pitches, carbon fiber precursors, and carbonized fibers

    SciTech Connect

    Sumner, M.B.; Hettinger, M.P.

    1993-08-24

    A process is described for the production of a stabilized carbon fiber which process comprises: forming a film having a thickness in the range of about 0.025 mm (0.001 in) to about 2.5 mm (0.1 in), of a catalytic pitch; maintaining said film at a temperature in the range of about 327 C to about 427 C and a pressure in the range of about 20 microns of mercury to about 1 atm for a time that is sufficient to produce a heavy isotropic pitch having a softening point in the range of about 127 C to about 288 C, a coking value in the range of about 55 wt % to about 95 wt %, and a maximum mesophase content of 5 vol %; agitating said heavy isotropic pitch while passing an inert gas through said heavy isotropic pitch at a rate of up to about 30 SCFH/1b at a temperature in the range of about 327 C to about 454 C for a time that is sufficient to provide a mesophase pitch having a vol. % of mesophase of at least 60; converting said mesophase pitch into green fibers; and stabilizing for a minimum time ranging from about 14 to about 288 minutes said green fibers with an oxidizing agent while heating said green fibers to a starting temperature of about 41 C to 221 C that is below the glass transition temperature of the mesophase pitch, and thereafter increasing the temperature of said green fiber at a rate of between about 1 C/min and 6 C/min to a final temperature in the range of about 282 C to 343 C to provide a stabilized carbon fiber.

  10. Silicone modified resins for graphite fiber laminates

    NASA Technical Reports Server (NTRS)

    Frost, L. W.; Bower, G. M.

    1979-01-01

    The development of silicon modified resins for graphite fiber laminates which will prevent the dispersal of graphite fibers when the composites are burned is discussed. Eighty-five silicone modified resins were synthesized and evaluated including unsaturated polyesters, thermosetting methacrylates, epoxies, polyimides, and phenolics. Neat resins were judged in terms of Si content, homogeneity, hardness, Char formation, and thermal stability. Char formation was estimated by thermogravimetry to 1,000 C in air and in N2. Thermal stability was evaluated by isothermal weight loss measurements for 200 hrs in air at three temperatures. Four silicone modified epoxies were selected for evaluation in unidirectional filament wound graphite laminates. Neat samples of these resins had 1,000 C char residues of 25 to 50%. The highest flexural values measured for the laminates were a strength of 140 kpsi and a modulus of 10 Mpsi. The highest interlaminar shear strength was 5.3 kpsi.

  11. Properties of carbon fibers with various coatings

    NASA Technical Reports Server (NTRS)

    Seegel, V.; Mcmahon, P.

    1983-01-01

    It is shown that all high modulus carbon fibers are durable with respect to thermal oxidation in air. Among the more widely used and economical materials with low modulus, Celion displays particularly good oxidative durability at high temperatures. This contrast to other materials is due to the low content of Natrium and Kalium in Celion carbon fibers. It is also noted that improved characteristics are attained in Celion carbon fiber/polyimide systems when fibers are used with high temperature resistant polyimide coatings.

  12. Carbon nanotube fiber spun from wetted ribbon

    DOEpatents

    Zhu, Yuntian T; Arendt, Paul; Zhang, Xiefei; Li, Qingwen; Fu, Lei; Zheng, Lianxi

    2014-04-29

    A fiber of carbon nanotubes was prepared by a wet-spinning method involving drawing carbon nanotubes away from a substantially aligned, supported array of carbon nanotubes to form a ribbon, wetting the ribbon with a liquid, and spinning a fiber from the wetted ribbon. The liquid can be a polymer solution and after forming the fiber, the polymer can be cured. The resulting fiber has a higher tensile strength and higher conductivity compared to dry-spun fibers and to wet-spun fibers prepared by other methods.

  13. Carbon fibers from SRC pitch

    DOEpatents

    Greskovich, Eugene J.; Givens, Edwin N.

    1981-01-01

    This invention relates to an improved method of manufacturing carbon fibers from a coal derived pitch. The improvement resides in the use of a solvent refined coal which has been hydrotreated and subjected to solvent extraction whereby the hetero atom content in the resulting product is less than 4.0% by weight and the softening point is between about 100.degree.-250.degree. F.

  14. A novel carbon fiber based porous carbon monolith

    SciTech Connect

    Burchell, T.D.; Klett, J.W.; Weaver, C.E.

    1995-06-01

    A novel porous carbon material based on carbon fibers has been developed. The material, when activated, develops a significant micro- or mesopore volume dependent upon the carbon fiber type utilized (isotropic pitch or polyacrylonitrile). The materials will find applications in the field of fluid separations or as a catalyst support. Here, the manufacture and characterization of our porous carbon monoliths are described. A novel adsorbent carbon composite material has been developed comprising carbon fibers and a binder. The material, called carbon fiber composite molecular sieve (CFCMS), was developed through a joint research program between Oak Ridge National Laboratory (ORNL) and the University of Kentucky, Center for Applied Energy Research (UKCAER).

  15. Storing Fluorine In Graphitelike Carbon Fibers

    NASA Technical Reports Server (NTRS)

    Hung, Ching-Cheh

    1995-01-01

    Fluorine stored in graphite or graphitelike carbon fibers for later release and/or use in chemical reactions. Storage in carbon fibers eliminates difficulty and risk of using high-pressure tanks and pipes to hold corrosive gas. Storage in carbon fibers makes fluorine more readily accessible than does storage as constituent of metal fluoride. Carbon fibers heated to release stored fluorine, which draws away to vessel where reacts with material to be fluorinated, possibly at temperature other than release temperature. Alternatively, material to be fluorinated mixed or otherwise placed in contact with fibers and entire mass heated to or beyond release temperature.

  16. Interfacial Studies of Sized Carbon Fiber

    SciTech Connect

    Shahrul, S. N.; Hartini, M. N.; Hilmi, E. A.; Nizam, A.

    2010-03-11

    This study was performed to investigate the influence of sizing treatment on carbon fiber in respect of interfacial adhesion in composite materials, Epolam registered 2025. Fortafil unsized carbon fiber was used to performed the experiment. The fiber was commercially surface treated and it was a polyacrylonitrile based carbon fiber with 3000 filament per strand. Epicure registered 3370 was used as basic sizing chemical and dissolved in two types of solvent, ethanol and acetone for the comparison purpose. The single pull out test has been used to determine the influence of sizing on carbon fiber. The morphology of carbon fiber was observed by atomic force microscopy (AFM) and scanning electron microscopy (SEM). The apparent interfacial strength IFSS values determined by pull out test for the Epicure registered 3370/ethanol sized carbon fiber pointed to a good interfacial behaviour compared to the Epicure registered 3370/acetone sized carbon fiber. The Epicure registered 3370/ethanol sizing agent was found to be effective in promoting adhesion because of the chemical reactions between the sizing and Epolam registered 2025 during the curing process. From this work, it showed that sized carbon fiber using Epicure registered 3370 with addition of ethanol give higher mechanical properties of carbon fiber in terms of shear strength and also provided a good adhesion between fiber and matrix compared to the sizing chemical that contain acetone as a solvent.

  17. Carbon fiber manufacturing via plasma technology

    DOEpatents

    Paulauskas, Felix L.; Yarborough, Kenneth D.; Meek, Thomas T.

    2002-01-01

    The disclosed invention introduces a novel method of manufacturing carbon and/or graphite fibers that avoids the high costs associated with conventional carbonization processes. The method of the present invention avoids these costs by utilizing plasma technology in connection with electromagnetic radiation to produce carbon and/or graphite fibers from fully or partially stabilized carbon fiber precursors. In general, the stabilized or partially stabilized carbon fiber precursors are placed under slight tension, in an oxygen-free atmosphere, and carbonized using a plasma and electromagnetic radiation having a power input which is increased as the fibers become more carbonized and progress towards a final carbon or graphite product. In an additional step, the final carbon or graphite product may be surface treated with an oxygen-plasma treatment to enhance adhesion to matrix materials.

  18. A novel carbon fiber based porous carbon monolith

    SciTech Connect

    Burchell, T.D.; Klett, J.W.; Weaver, C.E.

    1995-07-01

    A novel porous carbon material based on carbon fibers has been developed. The material, when activated, develops a significant micro- or mesopore volume dependent upon the carbon fiber type utilized (isotropic pitch or polyacrylonitrile). The materials will find applications in the field of fluid separations or as a catalyst support. Here, the manufacture and characterization of our porous carbon monoliths are described.

  19. High voltage spark carbon fiber detection system

    NASA Technical Reports Server (NTRS)

    Yang, L. C.

    1980-01-01

    The pulse discharge technique was used to determine the length and density of carbon fibers released from fiber composite materials during a fire or aircraft accident. Specifications are given for the system which uses the ability of a carbon fiber to initiate spark discharge across a high voltage biased grid to achieve accurate counting and sizing of fibers. The design of the system was optimized, and prototype hardware proved satisfactory in laboratory and field tests.

  20. [Modification of activated carbon fiber for electro-Fenton degradation of phenol].

    PubMed

    Ma, Nan; Tian, Yao-Jin; Yang, Guang-Ping; Xie, Xin-Yuan

    2014-07-01

    Microwave-modified activated carbon fiber (ACF-1), nitric acid-modified activated carbon fiber (ACF-2), phosphoric acid-modified activated carbon fiber (ACF-3) and ammonia-modified activated carbon fiber (ACF-4) were successfully fabricated. The electro-Fenton catalytic activities of modified activated carbon fiber were evaluated using phenol as a model pollutant. H2O2 formation, COD removal efficiency and phenol removal efficiency were investigated compared with the unmodified activated carbon fiber (ACF-0). Results indicated that ACF-1 showed the best adsorption and electrocatalytic activity. Modification was in favor of the formation of H2O2. The performance of different systems on phenol degradation and COD removal were ACF-1 > ACF-3 > ACF-4 > ACF-2 > ACF-0 and ACF-1 > ACF-4 > ACF-3 > ACF-2 > ACF-0, respectively, which confirmed that electrocatalytic activities of modified activated carbon fiber were better than the unmodified. In addition, phenol intermediates were not the same while using different modified activated carbon fibers.

  1. Patterned functional carbon fibers from polyethylene

    SciTech Connect

    Hunt, Marcus A; Saito, Tomonori; Brown, Rebecca H; Kumbhar, Amar S; Naskar, Amit K

    2012-01-01

    Patterned, continuous carbon fibers with controlled surface geometry were produced from a novel melt-processible carbon precursor. This portends the use of a unique technique to produce such technologically innovative fibers in large volume for important applications. The novelties of this technique include ease of designing and fabricating fibers with customized surface contour, the ability to manipulate filament diameter from submicron scale to a couple of orders of magnitude larger scale, and the amenable porosity gradient across the carbon wall by diffusion controlled functionalization of precursor. The geometry of fiber cross-section was tailored by using bicomponent melt-spinning with shaped dies and controlling the melt-processing of the precursor polymer. Circular, trilobal, gear-shaped hollow fibers, and solid star-shaped carbon fibers of 0.5 - 20 um diameters, either in self-assembled bundle form, or non-bonded loose filament form, were produced by carbonizing functionalized-polyethylene fibers. Prior to carbonization, melt-spun fibers were converted to a char-forming mass by optimizing the sulfonation on polyethylene macromolecules. The fibers exhibited distinctly ordered carbon morphologies at the outside skin compared to the inner surface or fiber core. Such order in carbon microstructure can be further tuned by altering processing parameters. Partially sulfonated polyethylene-derived hollow carbon fibers exhibit 2-10 fold surface area (50-500 m2/g) compared to the solid fibers (10-25 m2/g) with pore sizes closer to the inside diameter of the filaments larger than the sizes on the outer layer. These specially functionalized carbon fibers hold promise for extraordinary performance improvements when used, for example, as composite reinforcements, catalyst support media, membranes for gas separation, CO2 sorbents, and active electrodes and current collectors for energy storage applications.

  2. Carbon nanotube fiber terahertz polarizer

    NASA Astrophysics Data System (ADS)

    Zubair, Ahmed; Tsentalovich, Dmitri E.; Young, Colin C.; Heimbeck, Martin S.; Everitt, Henry O.; Pasquali, Matteo; Kono, Junichiro

    2016-04-01

    Conventional, commercially available terahertz (THz) polarizers are made of uniformly and precisely spaced metallic wires. They are fragile and expensive, with performance characteristics highly reliant on wire diameters and spacings. Here, we report a simple and highly error-tolerant method for fabricating a freestanding THz polarizer with nearly ideal performance, reliant on the intrinsically one-dimensional character of conduction electrons in well-aligned carbon nanotubes (CNTs). The polarizer was constructed on a mechanical frame over which we manually wound acid-doped CNT fibers with ultrahigh electrical conductivity. We demonstrated that the polarizer has an extinction ratio of ˜-30 dB with a low insertion loss (<0.5 dB) throughout a frequency range of 0.2-1.1 THz. In addition, we used a THz ellipsometer to measure the Müller matrix of the CNT-fiber polarizer and found comparable attenuation to a commercial metallic wire-grid polarizer. Furthermore, based on the classical theory of light transmission through an array of metallic wires, we demonstrated the most striking difference between the CNT-fiber and metallic wire-grid polarizers: the latter fails to work in the zero-spacing limit, where it acts as a simple mirror, while the former continues to work as an excellent polarizer even in that limit due to the one-dimensional conductivity of individual CNTs.

  3. Manufacturing of Nanocomposite Carbon Fibers and Composite Cylinders

    NASA Technical Reports Server (NTRS)

    Tan, Seng; Zhou, Jian-guo

    2013-01-01

    Pitch-based nanocomposite carbon fibers were prepared with various percentages of carbon nanofibers (CNFs), and the fibers were used for manufacturing composite structures. Experimental results show that these nanocomposite carbon fibers exhibit improved structural and electrical conductivity properties as compared to unreinforced carbon fibers. Composite panels fabricated from these nanocomposite carbon fibers and an epoxy system also show the same properties transformed from the fibers. Single-fiber testing per ASTM C1557 standard indicates that the nanocomposite carbon fiber has a tensile modulus of 110% higher, and a tensile strength 17.7% times higher, than the conventional carbon fiber manufactured from pitch. Also, the electrical resistance of the carbon fiber carbonized at 900 C was reduced from 4.8 to 2.2 ohm/cm. The manufacturing of the nanocomposite carbon fiber was based on an extrusion, non-solvent process. The precursor fibers were then carbonized and graphitized. The resultant fibers are continuous.

  4. Photoconductivity of activated carbon fibers

    SciTech Connect

    Kuriyama, K.; Dresselhaus, M.S. )

    1990-08-01

    The photoconductivity is measured on a high-surface-area disordered carbon material, namely activated carbon fibers, to investigate their electronic properties. Measurements of decay time, recombination kinetics and temperature dependence of the photoconductivity generally reflect the electronic properties of a material. The material studied in this paper is a highly disordered carbon derived from a phenolic precursor, having a huge specific surface area of 1000--2000m{sup 2}/g. Our preliminary thermopower measurements suggest that this carbon material is a p-type semiconductor with an amorphous-like microstructure. The intrinsic electrical conductivity, on the order of 20S/cm at room temperature, increases with increasing temperature in the range 30--290K. In contrast with the intrinsic conductivity, the photoconductivity in vacuum decreases with increasing temperature. The recombination kinetics changes from a monomolecular process at room temperature to a biomolecular process at low temperatures. The observed decay time of the photoconductivity is {approx equal}0.3sec. The magnitude of the photoconductive signal was reduced by a factor of ten when the sample was exposed to air. The intrinsic carrier density and the activation energy for conduction are estimated to be {approx equal}10{sup 21}/cm{sup 3} and {approx equal}20meV, respectively. The majority of the induced photocarriers and of the intrinsic carriers are trapped, resulting in the long decay time of the photoconductivity and the positive temperature dependence of the conductivity. 54 refs., 11 figs., 3 tabs.

  5. Photoconductivity of Activated Carbon Fibers

    DOE R&D Accomplishments Database

    Kuriyama, K.; Dresselhaus, M. S.

    1990-08-01

    The photoconductivity is measured on a high-surface-area disordered carbon material, namely activated carbon fibers, to investigate their electronic properties. Measurements of decay time, recombination kinetics and temperature dependence of the photoconductivity generally reflect the electronic properties of a material. The material studied in this paper is a highly disordered carbon derived from a phenolic precursor, having a huge specific surface area of 1000--2000m{sup 2}/g. Our preliminary thermopower measurements suggest that this carbon material is a p-type semiconductor with an amorphous-like microstructure. The intrinsic electrical conductivity, on the order of 20S/cm at room temperature, increases with increasing temperature in the range 30--290K. In contrast with the intrinsic conductivity, the photoconductivity in vacuum decreases with increasing temperature. The recombination kinetics changes from a monomolecular process at room temperature to a biomolecular process at low temperatures. The observed decay time of the photoconductivity is {approx equal}0.3sec. The magnitude of the photoconductive signal was reduced by a factor of ten when the sample was exposed to air. The intrinsic carrier density and the activation energy for conduction are estimated to be {approx equal}10{sup 21}/cm{sup 3} and {approx equal}20meV, respectively. The majority of the induced photocarriers and of the intrinsic carriers are trapped, resulting in the long decay time of the photoconductivity and the positive temperature dependence of the conductivity.

  6. The transport properties of activated carbon fibers

    SciTech Connect

    di Vittorio, S.L. . Dept. of Materials Science and Engineering); Dresselhaus, M.S. . Dept. of Electrical Engineering and Computer Science Massachusetts Inst. of Tech., Cambridge, MA . Dept. of Physics); Endo, M. . Dept. of Electrical Engineering); Issi, J-P.; Piraux, L.

    1990-07-01

    The transport properties of activated isotropic pitch-based carbon fibers with surface area 1000 m{sup 2}/g have been investigated. We report preliminary results on the electrical conductivity, the magnetoresistance, the thermal conductivity and the thermopower of these fibers as a function of temperature. Comparisons are made to transport properties of other disordered carbons. 19 refs., 4 figs.

  7. Solvent recovery improved with activated carbon fibers

    SciTech Connect

    Not Available

    1982-11-01

    A non-woven net of activated carbon fibers as absorbing media, representing a major advancement in vapor recovery technology, is presented. The carbon fiber exhibits mass transfer coefficients for adsorption description of up to 100 times that of conventional systems.

  8. Patterned functional carbon fibers from polyethylene.

    PubMed

    Hunt, Marcus A; Saito, Tomonori; Brown, Rebecca H; Kumbhar, Amar S; Naskar, Amit K

    2012-05-08

    Carbon fibers having unique morphologies, from hollow circular to gear-shaped, are produced from a novel melt-processable precursor and method. The resulting carbon fiber exhibits microstructural and topological properties that are dependent on processing conditions, rendering them highly amenable to myriad applications.

  9. Newer Carbon Fibers and Their Properties

    NASA Technical Reports Server (NTRS)

    Bacon, R.

    1984-01-01

    The newer carbon fibers that are either on the market or coming in the near future are described. The structure of carbon fibers is discussed along with the relationship between structure and physical property. Finally, how different types of structure are designed by control of process parameters is described.

  10. The Transport Properties of Activated Carbon Fibers

    DOE R&D Accomplishments Database

    di Vittorio, S. L.; Dresselhaus, M. S.; Endo, M.; Issi, J-P.; Piraux, L.

    1990-07-01

    The transport properties of activated isotropic pitch-based carbon fibers with surface area 1000 m{sup 2}/g have been investigated. We report preliminary results on the electrical conductivity, the magnetoresistance, the thermal conductivity and the thermopower of these fibers as a function of temperature. Comparisons are made to transport properties of other disordered carbons.

  11. The Effect of the Size of Carbon Fibers on the Physicomechanical Properties of Fluvis Composites

    NASA Astrophysics Data System (ADS)

    Shelestova, V. A.; Serafimovich, V. V.; Grakovich, P. N.

    2002-03-01

    The effect of the size of carbon fibers on the thermophysical and strength characteristics of a Fluvis antifrictional composite, which is based on PTFE and modified Viscum fibers, is studied. It is found that, at a carbon-fiber length of about 100 m, a jump in the coefficient of linear thermal expansion occurs in all temperature ranges. An increase in the fiber length leads to a decrease in the density, resistivity, and compression strength of the composite.

  12. Chemically modified carbonic anhydrases useful in carbon capture systems

    DOEpatents

    Novick, Scott J; Alvizo, Oscar

    2013-10-29

    The present disclosure relates to chemically modified carbonic anhydrase polypeptides and soluble compositions, homogenous liquid formulations comprising them. The chemically modified carbonic anhydrase polypeptides have improved properties relative to the same carbonic anhydrase polypeptide that is not chemically modified including the improved properties of increased activity and/or stability in the presence of amine compounds, ammonia, or carbonate ion. The present disclosure also provides methods of preparing the chemically modified polypeptides and methods of using the chemically modified polypeptides for accelerating the absorption of carbon dioxide from a gas stream into a solution as well as for the release of the absorbed carbon dioxide for further treatment and/or sequestering.

  13. Chemically modified carbonic anhydrases useful in carbon capture systems

    DOEpatents

    Novick, Scott; Alvizo, Oscar

    2013-01-15

    The present disclosure relates to chemically modified carbonic anhydrase polypeptides and soluble compositions, homogenous liquid formulations comprising them. The chemically modified carbonic anhydrase polypeptides have improved properties relative to the same carbonic anhydrase polypeptide that is not chemically modified including the improved properties of increased activity and/or stability in the presence of amine compounds, ammonia, or carbonate ion. The present disclosure also provides methods of preparing the chemically modified polypeptides and methods of using the chemically modified polypeptides for accelerating the absorption of carbon dioxide from a gas stream into a solution as well as for the release of the absorbed carbon dioxide for further treatment and/or sequestering.

  14. Characterization of electrospun lignin based carbon fibers

    NASA Astrophysics Data System (ADS)

    Poursorkhabi, Vida; Mohanty, Amar; Misra, Manjusri

    2015-05-01

    The production of lignin fibers has been studied in order to replace the need for petroleum based precursors for carbon fiber production. In addition to its positive environmental effects, it also benefits the economics of the industries which cannot take advantage of carbon fiber properties because of their high price. A large amount of lignin is annually produced as the byproduct of paper and growing cellulosic ethanol industry. Therefore, finding high value applications for this low cost, highly available material is getting more attention. Lignin is a biopolymer making about 15 - 30 % of the plant cell walls and has a high carbon yield upon carbonization. However, its processing is challenging due to its low molecular weight and also variations based on its origin and the method of separation from cellulose. In this study, alkali solutions of organosolv lignin with less than 1 wt/v% of poly (ethylene oxide) and two types of lignin (hardwood and softwood) were electrospun followed by carbonization. Different heating programs for carbonization were tested. The carbonized fibers had a smooth surface with an average diameter of less than 5 µm and the diameter could be controlled by the carbonization process and lignin type. Scanning electron microscopy (SEM) was used to study morphology of the fibers before and after carbonization. Thermal conductivity of a sample with amorphous carbon was 2.31 W/m.K. The electrospun lignin carbon fibers potentially have a large range of application such as in energy storage devices and water or gas purification systems.

  15. Carbon fiber behavior in an enclosed volume

    NASA Technical Reports Server (NTRS)

    Harvey, M. C.

    1979-01-01

    Tests were performed to evaluate the behavior of single carbon fibers existing in an enclosed space such as a room of a building. Three general phenomena were explored: the concentration decay rate of a fiber-charged room, the degree of uniform mixing of fibers within a room, and the effects of fibers being redisseminated off deposition surfaces within a room. The results were required in understanding the ratio of total indoor fiber exposure to total outdoor fiber exposure, a quantity essential to risk analysis. Results indicate that decay rate is predictable within acceptable limits and that homogeneous mixing can always be assumed. Some factors of redissemination are identified and effects discussed.

  16. Surface analyses of carbon fibers produced from polyacrylonitrile fibers at low carbonization temperatures

    NASA Technical Reports Server (NTRS)

    Cagliostro, D. E.

    1983-01-01

    A process for producing carbon fibers from polyacrylonitrile at low carbonization temperatures was studied. The bulk and surface properties of fibers obtained after reaction with benzoic acid, air and carbonizing in nitrogen or a dilute acetylene atmosphere are discussed. All fiber products had different surface and internal compositions. Samples produced at temperatures up to 950 C and carbonized in nitrogen contained substantial quantities of nitrogen and oxygen at the surface. During carbonization, the surface nitrogen converted into two new forms, possibly nitrile and an azo or a new carbon-nitrogen bond. Samples carbonized in acetylene contained a carbon-rich surface stable to oxidation.

  17. Wettability of a Single Carbon Fiber.

    PubMed

    Qiu, Si; Fuentes, Carlos A; Zhang, Dongxing; Van Vuure, Aart Willem; Seveno, David

    2016-09-27

    Wettability as determined from contact angle measurements is a suitable parameter for characterizing the physical bonding of a polymer matrix and reinforcing fibers, but it is very challenging to measure the capillary force exerted by a probe liquid on a fiber accurately for very fine fibers such as single carbon fibers. Herein, we propose an innovative method for measuring dynamic contact angles with a tensiometer, considering both the intrinsic variability of the carbon fiber diameter and the extremely small amplitude of the capillary forces, allowing the measurement of reliable dynamic contact angles over a large range of contact line velocities. The analysis of the contact angle dynamics by the molecular-kinetic theory permits us to check the relevancy of the measured contact angles and to obtain the static contact angle value, improving the prospect of employing tensiometry to better understand the wetting behavior of carbon fibers.

  18. Heat Treated Carbon Fiber Material Selection Database

    NASA Technical Reports Server (NTRS)

    Effinger, M.; Patel, B.; Koenig, J.

    2008-01-01

    Carbon fibers are used in a variety high temperature applications and materials. However, one limiting factor in their transition into additional applications is an understanding of their functional properties during component processing and function. The requirements on the fibers are governed by the nature of the materials and the environments in which they will be used. The current carbon fiber vendor literature is geared toward the polymeric composite industry and not the ceramic composite industry. Thus, selection of carbon fibers is difficult, since their properties change as a function of heat treatment, processing or component operational temperature, which ever is greatest. To enable proper decisions to be made, a program was established wherein multiple fibers were selected and heat treated at different temperatures. The fibers were then examined for their physical and mechanical properties which are reported herein.

  19. Method of Manufacturing Carbon Fiber Reinforced Carbon Composite Valves

    NASA Technical Reports Server (NTRS)

    Rivers, H. Kevin (Inventor); Ransone, Philip O. (Inventor); Northam, G. Burton (Inventor)

    1998-01-01

    A method for forming a carbon composite valve for internal combustion engines is discussed. The process includes the steps of braiding carbon fiber into a rope thereby forming a cylindrically shaped valve stem portion and continuing to braid said fiber while introducing into the braiding carbon fiber rope a carbon matrix plug having an outer surface in a net shape of a valve head thereby forming a valve head portion. The said carbon matrix plug acting as a mandrel over which said carbon fiber rope is braided, said carbon fiber rope and carbon matrix plug forming a valve head portion suitable for mating with a valve seat; cutting said braided carbon valve stem portion at one end to form a valve tip and cutting said braided carbon fiber after said valve head portion to form a valve face and thus provide a composite valve preform; and densifying said preform by embedding the braided carbon in a matrix of carbon to convert said valve stem portion to a valve stem and said valve head portion to a valve head thereby providing said composite valve.

  20. FIBER ORIENTATION IN INJECTION MOLDED LONG CARBON FIBER THERMOPLASTIC COMPOSITES

    SciTech Connect

    Wang, Jin; Nguyen, Ba Nghiep; Mathur, Raj N.; Sharma, Bhisham; Sangid, Michael D.; Costa, Franco; Jin, Xiaoshi; Tucker III, Charles L.; Fifield, Leonard S.

    2015-03-23

    A set of edge-gated and center-gated plaques were injection molded with long carbon fiber-reinforced thermoplastic composites, and the fiber orientation was measured at different locations of the plaques. Autodesk Simulation Moldflow Insight (ASMI) software was used to simulate the injection molding of these plaques and to predict the fiber orientation, using the anisotropic rotary diffusion and the reduced strain closure models. The phenomenological parameters of the orientation models were carefully identified by fitting to the measured orientation data. The fiber orientation predictions show very good agreement with the experimental data.

  1. Evaluation of the flexural strength of carbon fiber-, quartz fiber-, and glass fiber-based posts.

    PubMed

    Galhano, Graziela Avila; Valandro, Luiz Felipe; de Melo, Renata Marques; Scotti, Roberto; Bottino, Marco Antonio

    2005-03-01

    This study investigated the flexural strength of eight fiber posts (one carbon fiber, one carbon/quartz fiber, one opaque quartz fiber, two translucent quartz fiber, and three glass fiber posts). Eighty fiber posts were used and divided into eight groups (n = 10): G1: C-POST (Bisco); G2: AESTHETI-POST (Bisco); G3: AESTHETI-PLUS (Bisco); G4: LIGHT-POST (Bisco); G5: D.T. LIGHT-POST (Bisco); G6: PARAPOST WHITE (Coltene); G7: FIBERKOR (Pentron); G8: REFORPOST (Angelus). All of the samples were tested using the three-point bending test. The averages obtained were submitted to the ANOVA and to Tukey's test (p < 0.05). The mean values (MPa) of the groups AESTHETI-POST-carbon/quartz fiber post (Bisco) and AESTHETI-PLUS-quartz fiber post (Bisco) were statistically similar and higher than the mean values of the other groups. The mean values of the groups C-POST-carbon fiber post (Bisco), LIGHT-POST-translucent quartz fiber post (Bisco), D.T. LIGHT-POST-double tapered translucent quartz fiber post (Bisco), PARAPOST WHITE-glass fiber post (Coltene) and FIBREKOR--glass fiber post (Pentron) were similar and higher than the group REFORPOST-glass fiber post (Angelus).

  2. High electrical resistivity carbon/graphite fibers

    NASA Technical Reports Server (NTRS)

    Vogel, F. L.; Forsman, W. C.

    1980-01-01

    Carbon/graphite fibers were chemically oxidized in the liquid phase to fibers of graphite oxide. Resistivity increases as high as 10,000 times were obtained, the oxidized fiber decomposed on exposure to atmosphere. A factor of 1,000 remained as a stable increment. The largest change observed was 1,000,000 times. Best results were obtained on the most highly graphitized fibers. Electrochemical oxidation yielded a lower increase--about 10 times, but provided a controllable method of synthesis and insight to the mechanism of reaction. Tensile tests indicated that the strength of the fiber on oxidation was decreased by no more than 25 percent.

  3. Apparatus and method for carbon fiber surface treatment

    DOEpatents

    Paulauskas, Felix L [Knoxville, TN; Sherman, Daniel M [Knoxville, TN

    2012-07-24

    An apparatus and method for enhancing the surface energy and/or surface chemistry of carbon fibers involves exposing the fibers to direct or indirect contact with atmospheric pressure plasma generated using a background gas containing at least some oxygen or other reactive species. The fiber may be exposed directly to the plasma, provided that the plasma is nonfilamentary, or the fiber may be exposed indirectly through contact with gases exhausting from a plasma discharge maintained in a separate volume. In either case, the process is carried out at or near atmospheric pressure, thereby eliminating the need for vacuum equipment. The process may be further modified by moistening the fibers with selected oxygen-containing liquids before exposure to the plasma.

  4. Apparatus and method for carbon fiber surface treatment

    DOEpatents

    Paulauskas, Felix L; Sherman, Daniel M

    2014-06-03

    An apparatus and method for enhancing the surface energy and/or surface chemistry of carbon fibers involves exposing the fibers to direct or indirect contact with atmospheric pressure plasma generated using a background gas containing at least some oxygen or other reactive species. The fiber may be exposed directly to the plasma, provided that the plasma is nonfilamentary, or the fiber may be exposed indirectly through contact with gases exhausting from a plasma discharge maintained in a separate volume. In either case, the process is carried out at or near atmospheric pressure, thereby eliminating the need for vacuum equipment. The process may be further modified by moistening the fibers with selected oxygen-containing liquids before exposure to the plasma.

  5. Large-scale carbon fiber tests

    NASA Technical Reports Server (NTRS)

    Pride, R. A.

    1980-01-01

    A realistic release of carbon fibers was established by burning a minimum of 45 kg of carbon fiber composite aircraft structural components in each of five large scale, outdoor aviation jet fuel fire tests. This release was quantified by several independent assessments with various instruments developed specifically for these tests. The most likely values for the mass of single carbon fibers released ranged from 0.2 percent of the initial mass of carbon fiber for the source tests (zero wind velocity) to a maximum of 0.6 percent of the initial carbon fiber mass for dissemination tests (5 to 6 m/s wind velocity). Mean fiber lengths for fibers greater than 1 mm in length ranged from 2.5 to 3.5 mm. Mean diameters ranged from 3.6 to 5.3 micrometers which was indicative of significant oxidation. Footprints of downwind dissemination of the fire released fibers were measured to 19.1 km from the fire.

  6. Carbon fiber content measurement in composite

    NASA Astrophysics Data System (ADS)

    Wang, Qiushi

    Carbon fiber reinforced polymers (CFRPs) have been widely used in various structural applications in industries such as aerospace and automotive because of their high specific stiffness and specific strength. Their mechanical properties are strongly influenced by the carbon fiber content in the composites. Measurement of the carbon fiber content in CFRPs is essential for product quality control and process optimization. In this work, a novel carbonization-in-nitrogen method (CIN) is developed to characterize the fiber content in carbon fiber reinforced thermoset and thermoplastic composites. In this method, a carbon fiber composite sample is carbonized in a nitrogen environment at elevated temperatures, alongside a neat resin sample. The carbon fibers are protected from oxidization while the resin (the neat resin and the resin matrix in the composite sample) is carbonized under the nitrogen environment. The residue of the carbonized neat resin sample is used to calibrate the resin carbonization rate and calculate the amount of the resin matrix in the composite sample. The new method has been validated on several thermoset and thermoplastic resin systems and found to yield an accurate measurement of fiber content in carbon fiber polymer composites. In order to further understand the thermal degradation behavior of the high temperature thermoplastic polymer during the carbonization process, the mechanism and the kinetic model of thermal degradation behavior of carbon fiber reinforced poly (phenylene sulfide) (CPPS) are studied using thermogravimetry analysis (TGA). The CPPS is subjected to TGA in an air and nitrogen atmosphere at heating rates from 5 to 40°C min--1. The TGA curves obtained in air are different from those in nitrogen. This demonstrates that weight loss occurs in a single stage in nitrogen but in two stages in air. To elucidate this difference, thermal decomposition kinetics is analyzed by applying the Kissinger, Flynn-Wall-Ozawa, Coat-Redfern and

  7. The structure and properties of the carbon non-wovens modified with bioactive nanoceramics for medical applications.

    PubMed

    Fraczek-Szczypta, A; Rabiej, S; Szparaga, G; Pabjanczyk-Wlazlo, E; Krol, P; Brzezinska, M; Blazewicz, S; Bogun, M

    2015-06-01

    The paper presents the results of the manufacture of carbon fibers (CF) from polyacrylonitrile fiber precursor containing bioactive ceramic nanoparticles. In order to modify the precursor fibers two types of bio-glasses and wollastonite in the form of nanoparticles were used. The processing variables of the thermal conversion of polyacrylonitrile (PAN) precursor fibers into carbon fibers were determined using the FTIR method. The carbonization process of oxidized PAN fibers was carried out up to 1000°C. The carbon fibers were characterized by a low ordered crystalline structure. The bioactivity tests of carbon fibers modified with a ceramic nanocomponent carried out in the artificial serum (SBF) revealed the apatite precipitation on the fibers' surfaces.

  8. Risk analysis approach. [of carbon fiber release

    NASA Technical Reports Server (NTRS)

    Huston, R. J.

    1979-01-01

    The assessment of the carbon fiber hazard is outlined. Program objectives, requirements of the risk analysis, and elements associated with the physical phenomena of the accidental release are described.

  9. Carbon fiber composite molecular sieves

    SciTech Connect

    Burchell, T.D.; Rogers, M.R.; Williams, A.M.

    1996-06-01

    The removal of CO{sub 2} is of significance in several energy applications. The combustion of fossil fuels, such as coal or natural gas, releases large volumes of CO{sub 2} to the environment. Several options exist to reduce CO{sub 2} emissions, including substitution of nuclear power for fossil fuels, increasing the efficiency of fossil plants and capturing the CO{sub 2} prior to emission to the environment. All of these techniques have the attractive feature of limiting the amount of CO{sub 2} emitted to the atmosphere, but each has economic, technical, or societal limitations. In the production of natural gas, the feed stream from the well frequently contains contaminants and diluents which must be removed before the gas can enter the pipeline distribution system. Notable amongst these diluent gasses is CO{sub 2}, which has no calorific value. Currently, the pipeline specification calls for <2 mol % CO{sub 2} in the gas. Gas separation is thus a relevant technology in the field of energy production. A novel separation system based on a parametric swing process has been developed that utilizes the unique combination of properties exhibited by our carbon fiber composite molecular sieve (CFCMS).

  10. Characterization of electrospun lignin based carbon fibers

    SciTech Connect

    Poursorkhabi, Vida; Mohanty, Amar; Misra, Manjusri

    2015-05-22

    The production of lignin fibers has been studied in order to replace the need for petroleum based precursors for carbon fiber production. In addition to its positive environmental effects, it also benefits the economics of the industries which cannot take advantage of carbon fiber properties because of their high price. A large amount of lignin is annually produced as the byproduct of paper and growing cellulosic ethanol industry. Therefore, finding high value applications for this low cost, highly available material is getting more attention. Lignin is a biopolymer making about 15 – 30 % of the plant cell walls and has a high carbon yield upon carbonization. However, its processing is challenging due to its low molecular weight and also variations based on its origin and the method of separation from cellulose. In this study, alkali solutions of organosolv lignin with less than 1 wt/v% of poly (ethylene oxide) and two types of lignin (hardwood and softwood) were electrospun followed by carbonization. Different heating programs for carbonization were tested. The carbonized fibers had a smooth surface with an average diameter of less than 5 µm and the diameter could be controlled by the carbonization process and lignin type. Scanning electron microscopy (SEM) was used to study morphology of the fibers before and after carbonization. Thermal conductivity of a sample with amorphous carbon was 2.31 W/m.K. The electrospun lignin carbon fibers potentially have a large range of application such as in energy storage devices and water or gas purification systems.

  11. Effects of carbon fibers on consumer products

    NASA Technical Reports Server (NTRS)

    Wise, R. A.; Lovett, C. D.

    1980-01-01

    The potential effects of carbon fibers on consumer products such as dishwashers, microwave ovens, and smoke detectors were investigated. The investigation was divided into two categories to determine the potential faults and hazards that could occur if fibers should enter the electrical circuits of the selected appliances. The categories were a fault analysis and a hazard analysis. Hazards considered were fire, flood, physical harm, explosion, and electrical shock. Electrical shock was found to be a possible occurrence related to carbon fibers. Faults were considered to be any effect on the performance of an appliance which would result in complaint or require service action.

  12. High Performance Multifunctional Carbon Nanotube Fibers

    NASA Astrophysics Data System (ADS)

    Dalton, Alan; Collins, Steve; Munoz, Edgar; Razal, Joselito; Ebron, Von; Ferraris, John; Baughman, Ray

    2003-03-01

    Exploiting the extraordinary properties of carbon nanotubes has remained somewhat elusive due to the inability to process the as produced insoluble soot into functional macroscopic assemblies. To this end we have developed a simple but effective method to produce continuous, homogeneous fibers containing carbon nanotubes having as-spun mechanical properties that compare very favorably to recognized synthetic and natural "super fibers" such as Kevlar and spider silk. By using novel spinning apparatus, spinning solutions, and spinning coagulants, we have spun nanotube fibers having record lengths, record tensile strengths, and having an energy-to-break (toughness) higher than any material that we have found. As an example of the potential multi-functionalities of our fibers, we have fabricated fiber supercapacitors, which we weave into textiles.

  13. Thermophysical ESEM Characterization of Carbon Fibers

    NASA Technical Reports Server (NTRS)

    Sue, Jiwoong; Ochoa, Ozden O.; Effinger, Michael R.; Munafo, Paul M. (Technical Monitor)

    2002-01-01

    Coefficients of thermal expansion (CTE) of carbon fibers create residual stresses in aggressive manufacturing and service environments. In this effort, environmental scanning electron microscope (ESEM) is used for in situ observations of a carbon fiber cross-section up to 1000 C in order to evaluate the much neglected transverse CTE. The perimeter of fiber cross-section is calculated with the Scion image processing program from images that were taken at every 100 C increments. CTE values are calculated by linear regression of the strain data based on the perimeter changes. Furthermore, through SEM, WDS and TEM observations, we are in the process of bringing an interactive rationale between CTE, crystallinity and surface roughness of carbon fibers.

  14. Compression Testing of Carbon Fibers

    DTIC Science & Technology

    1989-11-01

    ksi (2205 MPa) (17:217). The cross section texture of pitch fibers will vary depending on the spinning process. Some fibers exhibit a radial texture...while others exhibit onion skin or random textures. Radial TeAture Onion-Skin iexture Ranom Texiure Figure 3 Textures of Pitch Fibers Reprinted From (17...18 JUL 89 iST Fiber (tension to compresion ) 300 200 -00 200 T- ]-- r -F _ -1 OOE-02 -2 0OE-] ,nnE r -6 OOE-03 2 20E -0 1, ME 02 STRAIN Figure 50

  15. Carbon nanotube nanocomposite-modified paper electrodes for supercapacitor applications

    NASA Astrophysics Data System (ADS)

    Korivi, Naga S.; Vangari, Manisha; Jiang, Li

    2017-02-01

    This paper describes the evaluation of carbon paper electrodes for supercapacitor applications. The electrodes are based on carbon micro-fiber paper modified with active material consisting of layers of silver nano-particulate ink and a nanocomposite of multi-walled carbon nanotubes and silver nano-particulate ink. The electrodes were characterized microscopically and electrically. Current-voltage studies revealed a consistent Ohmic behavior of the electrode when modified with different nanostructured active material. Among the active materials incorporated into the electrode, a nanocomposite of carbon nanotubes and silver nano-particulate ink significantly improved capacitance. The paper electrodes can be used for lightweight and ultrathin supercapacitors and other portable energy applications.

  16. Simulations of carbon fiber composite delamination tests

    SciTech Connect

    Kay, G

    2007-10-25

    Simulations of mode I interlaminar fracture toughness tests of a carbon-reinforced composite material (BMS 8-212) were conducted with LSDYNA. The fracture toughness tests were performed by U.C. Berkeley. The simulations were performed to investigate the validity and practicality of employing decohesive elements to represent interlaminar bond failures that are prevalent in carbon-fiber composite structure penetration events. The simulations employed a decohesive element formulation that was verified on a simple two element model before being employed to perform the full model simulations. Care was required during the simulations to ensure that the explicit time integration of LSDYNA duplicate the near steady-state testing conditions. In general, this study validated the use of employing decohesive elements to represent the interlaminar bond failures seen in carbon-fiber composite structures, but the practicality of employing the elements to represent the bond failures seen in carbon-fiber composite structures during penetration events was not established.

  17. Carbon fiber production at low temperatures from polyacrylonitrile

    NASA Technical Reports Server (NTRS)

    Cagliostro, D. E.

    1980-01-01

    Recent safety considerations have sought to lower the electrical conductivity of carbon fibers. Carbon fibers produced from polyacrylonitrile at low carbonization temperatures (600-900 C) possess low electrical conductivity but do not possess adequate strength. Low-temperature processes are described which improve fiber strength but do not increase electrical conductivity substantially. The processes result in a carbon fiber with nearly twice the tensile strength compared to the old process. Process development and its effect on fiber properties are reported.

  18. Synthesis of carbon fibers and activated carbon fibers from coal liquids

    SciTech Connect

    Fei, Y.Q.; Derbyshire, F.; Jagtoyen, M.; Kimber, G.

    1994-12-31

    The production and application of low-cost, general purpose carbon fibers and activated fibers are emerging technologies with exciting potential, although at present their cost is too high to find widespread use. Production and R and D have been limited and to data, only a small range of precursors has been studied: petroleum pitches, coal extracts and coal tar pitches. Both processing costs and the properties of the fiber products are dependent on the nature of the starting material. Commercial precursors have been limited to the pitches produced from high temperature pyrolysis or cracking processes and are similar in composition and molecular structure. Suitable coal-based precursors can be produced with a wide range of composition, and at moderate cost, by methods such as low temperature carbonization, solvent extraction, hydropyrolysis and mild coal liquefaction. It is of interest to investigate the synthesis of carbon fibers and activated carbon fibers from precursors of different origins to elucidate the influence of precursor materials on fiber formation and processing, and their structure and properties. It is also of practical importance to understand the relationships between the type of starting materials (for example, coals) and the processing methods, and the properties of fiber precursors that can be produced from them. In the present study, the authors describe the synthesis of carbon fibers and activated carbon fibers from the products of the first stage of coal liquefaction.

  19. XPS study of PBO fiber surface modified by incorporation of hydroxyl polar groups in main chains

    NASA Astrophysics Data System (ADS)

    Zhang, Tao; Hu, Dayong; Jin, Junhong; Yang, Shenglin; Li, Guang; Jiang, Jianming

    2010-01-01

    Dihydroxy poly(p-phenylene benzobisoxazole) (DHPBO), a modified poly(p-phenylene benzoxazole) (PBO) polymer containing double hydroxyl groups in polymer chains, was synthesized by copolymerization of 4,6-diamino resorcinol dihydrochloride (DAR), purified terephthalic acid (TA) and 2,5-dihydroxyterephthalic acid (DHTA). DHPBO fibers were prepared by dry-jet wet-spinning method. The effects of hydroxyl polar groups on the surface elemental compositions of PBO fiber were investigated by X-ray photoelectron spectroscopy (XPS). The results show that the ratio of oxygen/carbon on the surface of DHPBO fibers is higher than that on the surface of PBO fibers, which indicates the content of polar groups on the surface of DHPBO fiber increase compared with PBO fiber.

  20. Large diameter carbon-boron fiber

    NASA Technical Reports Server (NTRS)

    Veltri, R. D.; Jacob, B. A.; Galasso, F. S.

    1975-01-01

    Investigations concerned with a development of large-diameter carbon fibers are considered, taking into account the employment of vapor deposition techniques. In the experiments a carbon monofilament substrate is used together with reacting gases which consist of combinations of hydrogen, methane, and boron trichloride. It is found that the described approach can be used to obtain a large-diameter carbon filament containing boron. The filament has reasonable strength and modulus properties.

  1. Development of novel carbon fiber produced from waste fiber by carbonization.

    PubMed

    Kawasaki, Naohito; Tominaga, Hisato; Ogata, Fumihiko; Inoue, Kenji; Kankawa, Moe

    2012-01-01

    The volume of waste fiber has increased rapidly in recent years, and this trend is expected to continue. In this study, therefore, we attempted to convert waste fiber to carbonaceous materials by carbonization and investigated the basic properties of the resulting carbonized fibers. The results demonstrated that pores tend to form and specific surface areas change substantially, depending on the carbonization conditions. The carbonization conditions resulting in the largest specific surface areas included a temperature increase and retention times of 2 h. Carbonization temperatures resulting in the maximum values of 1000°C were 900-1000°C for wool and 1000°C for both polyester and cotton. In particular, the specific surface area of cotton after carbonization at 1000°C was 1253 m²/g, and scanning electron microscopy (SEM) micrographs showed that cotton retained its fibrous form after carbonization. Thus, it is possible to inexpensively convert waste fibers to carbonaceous material by carbonization. The results indicate that for cotton fiber in particular, the practical application of this process to the production of low-cost fibrous activated carbon would be possible, since cotton fiber retains its fibrous form under carbonization.

  2. FIBER LENGTH DISTRIBUTION MEASUREMENT FOR LONG GLASS AND CARBON FIBER REINFORCED INJECTION MOLDED THERMOPLASTICS

    SciTech Connect

    Kunc, Vlastimil; Frame, Barbara J; Nguyen, Ba N.; TuckerIII, Charles L.; Velez-Garcia, Gregorio

    2007-01-01

    Procedures for fiber length distribution (FLD) measurement of long fiber reinforced injection molded thermoplastics were refined for glass and carbon fibers. Techniques for sample selection, fiber separation, digitization and length measurement for both fiber types are described in detail. Quantitative FLD results are provided for glass and carbon reinforced polypropylene samples molded with a nominal original fiber length of 12.7 mm (1/2 in.) using equipment optimized for molding short fiber reinforced thermoplastics.

  3. Thermoplastic coated carbon fibers for textile preforms

    NASA Technical Reports Server (NTRS)

    Allen, L. E.; Edie, D. D.; Lickfield, G. C.; Mccollum, J. R.

    1988-01-01

    A continuous process for producing prepreg from carbon fiber and thermoplastic matrix is described. After the tow has been spread using a pneumatic device, the process utilizes a fluidized bed to apply thermoplastic powder to the bundle. Finally, direct electrical heating of the coated fiber tow melts the polymer on the individual fibers, creating a uniform and extremely flexible prepreg. The efficiency of the process was evaluated during initial trials in which a thermoplastic polyimide, LaRC-TPI, was applied to T-300, 3K (3000 filament) carbon fiber tow. The physical properties of unidirectional composite specimens fabricated from this prepreg were measured, and the matrix uniformity and void content of the samples was determined. The results of these evaluations are detailed and discussed.

  4. Novel method for carbon nanofilament growth on carbon fibers

    SciTech Connect

    Phillips, Johathan; Luhrs, Claudia; Terani, Mehran; Al - Haik, Marwan; Garcia, Daniel; Taha, Mahmoud R

    2009-01-01

    Fiber reinforced structural composites such as fiber reinforced polymers (FRPs) have proven to be key materials for blast mitigation due to their enhanced mechanical performance. However, there is a need to further increase total energy absorption of the composites in order to retain structural integrity in high energy environments, for example, blast events. Research has shown that composite failure in high energy environments can be traced to their relatively low shear strength attributed to the limited bond strength between the matrix and the fibers. One area of focus for improving the strength of composite materials has been to create 'multi-scale' composites. The most common approach to date is to introduce carbon nanotubes into a more traditional composite consisting of epoxy with embedded micron scale fibers. The inclusion of carbon nanotubes (CNT) clearly toughens different matrices. Depositing CNT in brittle matrix increases stiffness by orders of magnitude. Currently, this approach to create multiscale composites is limited due to the difficulty of dispersing significant amounts of nanotubes. It has repeatedly been reported that phase separation occurs above relatively low weight percent loading (ca. 3%) due to the strong van der Waals forces between CNTs compared with that between CNT and polymer. Hence, the nanotubes tend to segregate and form inclusions. One means to prevent nanotube or nanofilament agglomeration is to anchor one end of the nanostructure, thereby creating a stable multi-phase structure. This is most easily done by literally growing the CNTs directly on micron scale fibers. Recently, CNT were grown on carbon fibers, both polyacrylonitrile- (PAN-) and pitch-based, by hot filament chemical vapor deposition (HFCVD) using H2 and CH4 as precursors. Nickel clusters were electrodeposited on the fiber surfaces to catalyze the growth and uniform CNT coatings were obtained on both the PAN- and pitch-based carbon fibers. Multiwalled CNTs with

  5. Effect of Hybrid Surface Modifications on Tensile Properties of Polyacrylonitrile- and Pitch-Based Carbon Fibers

    NASA Astrophysics Data System (ADS)

    Naito, Kimiyoshi

    2016-05-01

    Recent interest has emerged in techniques that modify the surfaces of carbon fibers, such as carbon nanotube (CNT) grafting or polymer coating. Hybridization of these surface modifications has the potential to generate highly tunable, high-performance materials. In this study, the mechanical properties of surface-modified polyacrylonitrile (PAN)-based and pitch-based carbon fibers were investigated. Single-filament tensile tests were performed for fibers modified by CNT grafting, dipped polyimide coating, high-temperature vapor deposition polymerized polyimide coating, grafting-dipping hybridization, and grafting-vapor deposition hybridization. The Weibull statistical distributions of the tensile strengths of the surface-modified PAN- and pitch-based carbon fibers were examined. All surface modifications, especially hybrid modifications, improved the tensile strengths and Weibull moduli of the carbon fibers. The results exhibited a linear relationship between the Weibull modulus and average tensile strength on a log-log scale for all surface-modified PAN- and pitch-based carbon fibers.

  6. Prestressed Carbon Fiber Composite Overwrapped Gun Tube

    DTIC Science & Technology

    2008-10-15

    DD-MM-YYYY) 15-10-2008 2. REPORT TYPE FINAL 3. DATES COVERED (From - To) 4. TITLE AND SUBTITLE PRESTRESSED CARBON FIBER COMPOSITE...mismatch between the steel substrate and the composite jacket causing a gap, and the lack of favorable prestress in the jacket. Dealing with these...eliminated, and a favorable prestress has been achieved. A 120mm barrel has been manufactured using this process with IM7 fibers in a PEEK matrix and

  7. Fatigue damage evaluation of plain woven carbon fiber reinforced plastic (CFRP) modified with MFC (micro-fibrillated cellulose) by thermo-elastic damage analysis (TDA)

    NASA Astrophysics Data System (ADS)

    Aoyama, Ryohei; Okubo, Kazuya; Fujii, Toru

    2013-04-01

    The aim of this study is to investigate characteristics of fatigue damage of CFRP modified with MFC by TDA under tensile cyclic loading. In this paper, fatigue life of CFRP modified with MFC was investigated under cyclic loading. Characteristics of fatigue damage of CFRP modified with MFC were evaluated by thermo-elastic damage analysis. Maximum improvement in fatigue life was also obtained under cyclic loading when epoxy matrix was enhanced with 0.3wt% of MFC as well as under static loading. Result of TDA showed same tendency as the result of fatigue test, and the result of TDA well expressed the fatigue damage behavior of plain woven CFRP plate. Eventually, TDA was effective for clear understanding the degree of fatigue damage progression of CFRP modified with MFC.

  8. CARBON FIBER COMPOSITES IN HIGH VOLUME

    SciTech Connect

    Warren, Charles David; Das, Sujit; Jeon, Dr. Saeil

    2014-01-01

    Vehicle lightweighting represents one of several design approaches that automotive and heavy truck manufacturers are currently evaluating to improve fuel economy, lower emissions, and improve freight efficiency (tons-miles per gallon of fuel). With changes in fuel efficiency and environmental regulations in the area of transportation, the next decade will likely see considerable vehicle lightweighting throughout the ground transportation industry. Greater use of carbon fiber composites and light metals is a key component of that strategy. This paper examines the competition between candidate materials for lightweighting of heavy vehicles and passenger cars. A 53-component, 25 % mass reduction, body-in-white cost analysis is presented for each material class, highlighting the potential cost penalty for each kilogram of mass reduction and then comparing the various material options. Lastly, as the cost of carbon fiber is a major component of the elevated cost of carbon fiber composites, a brief look at the factors that influence that cost is presented.

  9. Hybrid solar cell on a carbon fiber

    NASA Astrophysics Data System (ADS)

    Grynko, Dmytro A.; Fedoryak, Alexander N.; Smertenko, Petro S.; Dimitriev, Oleg P.; Ogurtsov, Nikolay A.; Pud, Alexander A.

    2016-05-01

    In this work, a method to assemble nanoscale hybrid solar cells in the form of a brush of radially oriented CdS nanowire crystals around a single carbon fiber is demonstrated for the first time. A solar cell was assembled on a carbon fiber with a diameter of ~5-10 μm which served as a core electrode; inorganic CdS nanowire crystals and organic dye or polymer layers were successively deposited on the carbon fiber as active components resulting in a core-shell photovoltaic structure. Polymer, dye-sensitized, and inverted solar cells have been prepared and compared with their analogues made on the flat indium-tin oxide electrode.

  10. Coating for gasifiable carbon-graphite fibers

    NASA Technical Reports Server (NTRS)

    Harper-Tervet, Jan (Inventor); Dowler, Warren L. (Inventor); Yen, Shiao-Ping S. (Inventor); Mueller, William A. (Inventor)

    1982-01-01

    A thin, uniform, firmly adherent coating of metal gasification catalyst is applied to a carbon-graphite fiber by first coating the fiber with a film-forming polymer containing functional moieties capable of reaction with the catalytic metal ions. Multivalent metal cations such as calcium cross-link the polymer such as a polyacrylic acid to insolubilize the film by forming catalytic metal macro-salt links between adjacent polymer chains. The coated fibers are used as reinforcement for resin composites and will gasify upon combustion without evolving conductive airborne fragments.

  11. Carbon Fiber Reinforced Carbon Composite Valve for an Internal Combustion Engine

    NASA Technical Reports Server (NTRS)

    Rivers, H. Kevin (Inventor); Ransone, Philip O. (Inventor); Northam, G. Burton (Inventor)

    1999-01-01

    A carbon fiber reinforced carbon composite valve for internal combustion engines and the like formed of continuous carbon fibers throughout the valve's stem and head is disclosed. The valve includes braided carbon fiber material over axially aligned unidirectional carbon fibers forming a valve stem; the braided and unidirectional carbon fibers being broomed out at one end of the valve stem forming the shape of the valve head; the valve-shaped structure being densified and rigidized with a matrix of carbon containing discontinuous carbon fibers: and the finished valve being treated to resist oxidation. Also disclosed is a carbon matrix plug containing continuous and discontinuous carbon fibers and forming a net-shape valve head acting as a mandrel over which the unidirectional and braided carbon fibers are formed according to textile processes. Also disclosed are various preform valves and processes for making finished and preform carbon fiber reinforced carbon composite valves.

  12. Optically modified fiber tips penetrate only when "dirty"

    NASA Astrophysics Data System (ADS)

    Verdaasdonck, Rudolf M.; Jansen, E. Duco; Holstege, F. C.; Borst, Cornelius

    1990-07-01

    Optically modified fiber tips are under investigation ox already in use clinically for the recanalization of totallyocciuded arteries. It has not been determined to what extent their mechanism of action is optical, thermal and mechanical. We studied a 2.2 mm diameter, rounded Sapphire Contact Probe (SLT, MTR 1.5) and a 1.5 mm diameter ball-shaped fiber (ACS) coupled to a continuous wave Nd-YAG laser using 1 second pulses. The probes were positioned perpendicular to homogeneous porcine fatty tissue samples in plasma using preset axial forces. Penetration depth per pulse and temperature of the collar of the probes were measured in relation to the force. Starting with new, clean probes no tissue penetration was achieved using forces up to the equivalent of 105 gr and powers up to 25 W for 10 s. On purpose, the probes where exposed to high powers in plasma until a coagulum was formed on the tip. After cleaning, a ring of carbonized particles deposited on the surface of the probe bordered the exit window of the beam on the tip. The power absorbed by the probes increased from 5 to 32 %. Tissue penetration with 'dirty' probes was force dependent. For sapphire contact probes it was 1.2 - 2.9 mm/pulse (1 mm diameter spot, 15 W, 1 s) in the force range of 23 - 105 gr. For the ball shaped fibers it was 2.7 10 mm/pulse (0.4 mm diameter spot, 10 W, 1 s) in force range of 23 - 35 gr. The optically modified fiber tips studied did not penetrate tissue by absorption of the Nd-YAG beam by the tissue only. Tissue penetration started when part of the laser beam was absorbed by pollution on the surface of the probe creating a 'hot tip'. Tissue penetration was force dependent due to the smaller diameter of the ablative beam in comparison to the diameter of the probe. Thus, the recanalization mechanism of both probes is partly mechanical.

  13. Carbon-Fiber Brush Heat Exchangers

    NASA Technical Reports Server (NTRS)

    Knowles, Timothy R.

    2004-01-01

    Velvetlike and brushlike pads of carbon fibers have been proposed for use as mechanically compliant, highly thermally conductive interfaces for transferring heat. A pad of this type would be formed by attaching short carbon fibers to either or both of two objects that one desires to place in thermal contact with each other. The purpose of using a thermal-contact pad of this or any other type is to reduce the thermal resistance of an interface between a heat source and a heat sink.

  14. CTE Measurements of Carbon Fibers in ESEM

    NASA Technical Reports Server (NTRS)

    Effinger, Michael; Ochoa, Ozden; Munafo, Paul M. (Technical Monitor)

    2001-01-01

    The strong appeal of carbon fiber reinforced ceramic matrix and carbon-carbon composites arises from their promising high temperature performance within laboratory-simulated nozzle, leading edge and combustor environments. The main drawback in these systems are two fold; namely oxidation affinity and CTE mismatch. To date the emphasis has been on axial CTE mismatch with the push on estimating (component) laminate level data. However, in heterogeneous and anisotropic systems, all failure mechanisms are at micro or nano scales. This paper will report plans and progress on single carbon fibers efforts in order to develop its temperature dependent, anisotropic thermophysical and thermomechanical properties using combination of x-ray spectroscopy and environmental scanning electron microscopy to capture circumferential expansion from 20-900 C in within the SEM chamber. Surface roughness measurements were also determined. Crystallinity was also determined by the quality of the electron diffraction (ED) patterns.

  15. Treatment of Lignin Precursors to Improve their Suitability for Carbon Fibers: A Literature Review

    SciTech Connect

    Paul, Ryan; Naskar, Amit; Gallego, Nidia; Dai, Xuliang; Hausner, Andrew

    2015-04-17

    Lignin has been investigated as a carbon fiber precursor since the 1960s. Although there have been a number of reports of successful lignin-based carbon fiber production at the lab scale, lignin-based carbon fibers are not currently commercially available. This review will highlight some of the known challenges, and also the reported methods for purifying and modifying lignin to improve it as a precursor. Lignin can come from different sources (e.g. hardwood, softwood, grasses) and extraction methods (e.g. organosolv, kraft), meaning that lignin can be found with a diversity of purity and structure. The implication of these conditions on lignin as carbon fiber precursor is not comprehensively known, especially as the lignin landscape is evolving. The work presented in this review will help guide the direction of a project between GrafTech and ORNL to develop lignin carbon fiber technology, as part of a cooperative agreement with the DOE Advanced Manufacturing Office.

  16. Designing the Structure of Carbon Fibers for Optimal Mechanical Properties

    SciTech Connect

    Ozcan, Soydan; Vautard, Frederic; Naskar, Amit K

    2014-01-01

    Carbon fiber manufacturing follows generic processing steps: formation of thermoplastic fibers, stabilization, and carbonization. The final structures and end properties of the carbon fiber can differ significantly depending on the precursor chemistry and the associated processing sciences. Polyacrylonitrile (PAN) and mesophase pitch are the predominant precursors used in the production of carbon fibers. PAN-based carbon fibers consist of nanocrystalline graphitic domains typically 1.5 5 nm in size surrounded by amorphous carbon; in contrast, pitch-based carbon fibers are 10 50 nm crystallites with the graphitic (002) planes mostly aligned parallel to the fiber axis. It has been seen that the skin core structure of PAN-based carbon fibers plays a significant role in their mechanical properties. Designing a more homogenous carbon fiber microstructure by controlling the starting polymer and process parameters results in a different set of tensile strengths and elastic moduli. In this study the microstructural defect distribution (0.1 200 nm), measured by small-angle X-ray scattering, was shown to be directly related to the tensile strength of the carbon fibers. Here the formation of carbon structures from various polymer precursors is reviewed. Such a comprehensive understanding offers the opportunity to design carbon fiber microstructures with improved properties and to ultimately create new types of carbon fibers from alternative precursors at reduced cost.

  17. Metal fiber - carbon electrodes for oxygen reduction

    NASA Astrophysics Data System (ADS)

    Smith, Robert Fendlay

    An investigation was carried out to determine activities for oxygen reduction and current efficiencies to hydrogen peroxide of commercially available nickel fibers, carbon fibers, and carbon powders. The activities and current efficiencies were determined by conducting Rotating Ring Disk Electrode Experiments (RRDE) on porous electrodes that utilize an interlocking network of metal fibers with carbon fibers and/or powders. Experimentation was also done using PTFE - carbon powder and PTFE - nickel fiber paste electrodes to remove any porosity and symbiotic effects of the nickel - carbon electrodes. Results of the traditional flat plate PTFE electrodes were compared to the porous electrodes to verify the proposed mathematical viability of porous electrode RRDE. RRDE experiments showed that the most active carbons for oxygen reduction have a surface area to volume ratio of 1000 m2/g, and current rent efficiency to hydrogen peroxide was increased as the average pore size increased. A mathematical model and half-cell polarization experiments were used to characterize and optimize oxygen reduction in gas diffusion electrodes consisting of carbon fibers and/or powders entrapped in a sinter-locked network of nickel microfibers. Important electrode physical parameters, such as nickel fiber loading (0.005 to 0.01 g/cm2) , nickel fiber diameter (2 to 12 mum), void volume (73 to 96%), distance of the active layer from the gas supply (0 to 0.005 cm), and addition of a peroxide decomposition catalyst (0 to 0.004 g/cm2) were systematically varied to determine their effects on electrode performance. Experimentally determined total currents and current efficiencies to hydrogen peroxide were compared to calculated values for model verification. Other important parameters, including intra-electrode oxygen and hydrogen peroxide concentrations, overpotentials, and reaction rates, were simulated to help optimize the electrode. Fabricated metal fiber-carbon electrodes were compared to a

  18. Carbon Fibers from Chicken Feather Keratin

    NASA Astrophysics Data System (ADS)

    Miller, Melissa E.; Wool, Richard

    2006-03-01

    As the availability of synthetic and fossil-fuel based resources is becoming limited, bio-based materials offer an environmentally friendly alternative. Chicken feathers remain a huge agricultural waste. The feathers are comprised of approximately 97% keratin, but are currently used only to enrich animal feed. However, this usage is becoming a problem with the spread of diseases such as Bovine Spongiform Encephalopathy, commonly called ``Mad Cow Disease.'' The hollow, microcrystalline, oriented keratin feather fibers offer a novel, low cost approach to producing carbon fibers through controlled pyrolysis. Carbonized feather fibers (CFF) were prepared by first heating to 225 ^oC (below the melting point)in N2 for 26 hours to crosslink and stabilize the fiber structure; then carbonization occurred by increasing the temperature to 450 ^oC for two more hours. The resulting CFF were hollow, stiff and strong and had an affine 80% weight loss, which is near the theoretical value for the C-content of keratin. Initial studies showed that a composite with the CFF and an epoxidized soybean oil (AESO) gave an improved fiber modulus ECFF of order 13.5--66.1 GPa. With continued research, the goals are to increase the stiffness of the feathers to 100 GPa, while increasing the strength in the range of 5-10 GPa.

  19. Risk Assessment of Carbon Fiber Composite in Surface Transportation

    NASA Technical Reports Server (NTRS)

    Hathaway, W. T.; Hergenrother, K. M.

    1980-01-01

    The vulnerability of surface transportation to airborne carbon fibers and the national risk associated with the potential use of carbon fibers in the surface transportation system were evaluated. Results show airborne carbon fibers may cause failure rates in surface transportation of less than one per year by 1995. The national risk resulting from the use of carbon fibers in the surface transportation system is discussed.

  20. Global Carbon Fiber Composites Supply Chain Competitiveness Analysis

    SciTech Connect

    Das, Sujit; Warren, Josh; West, Devin; Schexnayder, Susan M.

    2016-05-01

    This analysis identifies key opportunities in the carbon fiber supply chain where resources and investments can help advance the clean energy economy. The report focuses on four application areas — wind energy, aerospace, automotive, and pressure vessels — that top the list of industries using carbon fiber and carbon fiber reinforced polymers. For each of the four application areas, the report addresses the supply and demand trends within that sector, supply chain, and costs of carbon fiber and components.

  1. [Fusion implants of carbon fiber reinforced plastic].

    PubMed

    Früh, H J; Liebetrau, A; Bertagnoli, R

    2002-05-01

    Carbon fiber reinforced plastics (CFRP) are used in the medical field when high mechanical strength, innovative design, and radiolucency (see spinal fusion implants) are needed. During the manufacturing process of the material CFRP carbon fibers are embedded into a resin matrix. This resin material could be thermoset (e.g., epoxy resin EPN/DDS) or thermoplastic (e.g., PEAK). CFRP is biocompatible, radiolucent, and has higher mechanical capabilities compared to other implant materials. This publication demonstrates the manufacturing process of fusion implants made of a thermoset matrix system using a fiber winding process. The material has been used clinically since 1994 for fusion implants of the cervical and lumbar spine. The results of the fusion systems CORNERSTONE-SR C (cervical) and UNION (lumbar) showed no implant-related complications. New implant systems made of this CFRP material are under investigation and are presented.

  2. Risk methodology overview. [for carbon fiber release

    NASA Technical Reports Server (NTRS)

    Credeur, K. R.

    1979-01-01

    Some considerations of risk estimation, how risk is measured, and how risk analysis decisions are made are discussed. Specific problems of carbon fiber release are discussed by reviewing the objective, describing the main elements, and giving an example of the risk logic and outputs.

  3. Overview of the carbon fiber problem

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Carbon fibers (CF) composite structures are being utilized more as alternatives to metals in both civilian and military applications. They are valued for their light weight and high strength as well as for their ease of designing structures with specific shapes and sizes. However, a problem may exist due to the high conductivity of CF. CF are manufactured from a precursor material which is subjected to great stress and heat treatment causing a change in the physical and electrical properties. The fibers are bound together by a matrix of epoxy. In the event of fire (aircraft accident) the epoxy would burn away releasing these fibers into the atmosphere. When these fibers come in contact with electronic equipment, they might cause damage to by settling on electrical junctions. An overview is given of the objectives for a study, and the approach and methodology developed for determination of risk profiles.

  4. Superconductive niobium films coating carbon nanotube fibers

    NASA Astrophysics Data System (ADS)

    Salvato, M.; Lucci, M.; Ottaviani, I.; Cirillo, M.; Behabtu, N.; Young, C. C.; Pasquali, M.; Vecchione, A.; Fittipaldi, R.; Corato, V.

    2014-11-01

    Superconducting niobium (Nb) has been successfully obtained by sputter deposition on carbon nanotube fibers. The transport properties of the niobium coating the fibers are compared to those of niobium thin films deposited on oxidized Si substrates during the same deposition run. For niobium films with thicknesses above 300 nm, the niobium coating the fibers and the thin films show similar normal state and superconducting properties with critical current density, measured at T = 4.2 K, of the order of 105 A cm-2. Thinner niobium layers coating the fibers also show the onset of the superconducting transition in the resistivity versus temperature dependence, but zero resistance is not observed down to T = 1 K. We evidence by scanning electron microscopy (SEM) and current-voltage measurements that the granular structure of the samples is the main reason for the lack of true global superconductivity for thicknesses below 300 nm.

  5. Microwave axial dielectric properties of carbon fiber

    PubMed Central

    Hong, Wen; Xiao, Peng; Luo, Heng; Li, Zhuan

    2015-01-01

    Randomly distributed carbon fibers (CFs) reinforced epoxy resin composites are prepared by the pouring method, the dielectric properties of CF composites with different fiber content and length have been performed in the frequency range from 8.2 to 12.4 GHz. The complex permittivity of the composite increases with the fiber length, which is attributed to the decrease of depolarization field, and increases with the volume fraction, which is attributed to the increase of polarization. A formula, based on the theory of Reynolds-Hugh, is proposed to calculate the effective permittivity of CF composites, and validated by the experiments. The proposed formula is further applied to derive the axial permittivity of CF and analyze the effect of fiber length on the axial permittivity. PMID:26477579

  6. Modified fiber Bragg grating pulse pressure sensor

    NASA Astrophysics Data System (ADS)

    Kaczmarek, Tomasz; Kaczmarek, Zdzisław

    2007-04-01

    A new fiber optic, pulse pressure sensor with a Bragg grating, in the structure of which the operating principle of the Hopkinson bar is applied, is presented in the paper. The delivery of the measured pressure to the sensor is realized by means of a measuring head with truncated cone, made of silica glass and fusion-spliced to the grating's fiber. The optical and the electronic setup of the sensor is given. The sensor was employed to measure pulse pressure generated by an electric discharge in water. The obtained measurement results and the conclusions arising from them are presented.

  7. Multifunctional Carbon Nanotube Fiber Composites

    DTIC Science & Technology

    2007-11-02

    coagulant. The second process (patent pending) is novel in that it directly results polymer-free nanotube fibers without using a super acid spinning...chemical and electrochemical stability, hydrophobicity and viscosity . The generic structure, chemical name and abbreviations for the most common ions...modification procedure involved the electrochemical infiltration of small amounts of the polypyrrole/p-toluene sulphonate (PPy/PTS) conducting polymer

  8. The effect of fiber architecture on the mechanical properties of carbon/carbon fiber composites

    SciTech Connect

    Neumeister, J.; Jansson, S.; Leckie, F.

    1996-02-01

    The mechanical performance of carbon-fiber matrix composites with different fiber architectures is investigated for various loading modes. All the composites were fabricated from nominally equal constituents and identical consolidation processes, leaving as the only variables, the variations caused by the different fiber weave structures. The fiber architecture drastically affects both composite strength and deformation characteristics. Some systems are almost linear up to a final brittle failure while others exhibit a pronounced non-linearity prior to failure. It is found that the composite tensile strength is dictated by both fiber volume and fraction and weave architecture. The weaving can have a beneficial effect in spite of introducing new fiber flaws and stress concentrations, because it causes the composite to be less flaw sensitive. These features are addressed analytically by considering the statistical aspects of the fiber strength and the formation of critical defects.

  9. Experimental and analytical studies for the NASA carbon fiber risk assessment

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Various experimental and analytical studies performed for the NASA carbon fiber risk assessment program are described with emphasis on carbon fiber characteristics, sensitivity of electrical equipment and components to shorting or arcing by carbon fibers, attenuation effect of carbon fibers on aircraft landing aids, impact of carbon fibers on industrial facilities. A simple method of estimating damage from airborne carbon fibers is presented.

  10. Carbon Fiber Foam Composites and Methods for Making the Same

    NASA Technical Reports Server (NTRS)

    Leseman, Zayd Chad (Inventor); Atwater, Mark Andrew (Inventor); Phillips, Jonathan (Inventor)

    2014-01-01

    Exemplary embodiments provide methods and apparatus of forming fibrous carbon foams (FCFs). In one embodiment, FCFs can be formed by flowing a fuel rich gas mixture over a catalytic material and components to be encapsulated in a mold to form composite carbon fibers, each composite carbon fiber having a carbon phase grown to encapsulate the component in situ. The composite carbon fibers can be intertwined with one another to form FCFs having a geometry according to the mold.

  11. Process modifications for improved carbon fiber composites: Alleviation of the electrical hazards problem

    NASA Technical Reports Server (NTRS)

    Ramohalli, K.

    1980-01-01

    Attempts to alleviate carbon-fiber-composite electrical hazards during airplane crash fires through fiber gasification are described. Thermogravimetric and differential scanning calorimetric experiments found several catalysts that caused fibers to combust when composites were exposed to test fires. Composites were tested in the 'Burn-Bang' apparatus and in high voltage electrical detection grid apparatus. In a standard three minute burn test modified composites released no fibers, while state-of-the-art composites released several hundred fiber fragments. Expected service life with and without catalytic modification was studied and electron microscopy and X-ray microanalysis furnished physical appearance and chemical composition data. An acrylic acid polymer fiber coating was developed that wet the carbon fiber surface uniformly with the catalyst, providing a marked contrast with the uneven coats obtained by solution-dipping.

  12. Modified Activated Carbon Perchlorate Sorbents

    DTIC Science & Technology

    2007-01-25

    nitrosodimethylamine precursors in municipal wastewater treatment plants. Environ. Sci. Technol., 2004. 38: p. 1445-1454. 15. Shmidt, V., K. Rybakov...Engineering and Management, 1994. 141: p. 12. 33. Walker, G. and L. Weatherley, Biological Activated Carbon Treatment of Industrial Wastewater in... Treatment with Ammonia (NAC), Urea-formaldehyde Resin (UAC), and Hydrogen (HAC). Data are Indicated by the Symbol and Least Squares Fit of the Langmuir

  13. Contraction/elongation behavior of cation-modified polyacrylonitrile fibers

    NASA Astrophysics Data System (ADS)

    Kim, Kwang J.; Caligiuri, Jerusha; Choe, Kiyoug; Shahinpoor, Mohsen

    2003-07-01

    In this paper, the authors present the contraction/elongation behavior of cation-modified Polyacrylonitrile (PAN) fibers, which identifies the fibers to be effectively used as biomimetic actuators and artifical muscles. The research was intiated by realizing that the contraction/elongation behavior of PAN is governed by the diffusional processes of ions/solvents interaction. The PAN fibers were suitably annealed, cross-linked and hydrolyzed to become "active". The cation-modified process was performed using KOH, NaOH, and LiOH, respectively, for the boiling and alkaline-soaking mediums. It was found that the PAN fibers, regardless of whether being activated in KOH, NaOH, or LiOH, increased from their initial length after being activated and soaked in distilled water. Lengths then decreased after the fibers were soaked in the bases. Fibers treated with LiOH had the largest increase in length following immersion in distilled water. Fibers soaked in any of the three mediums generally had the same decrease in length following immersion in the alkaline solutions, as also occurred following immersion in HCl. Especially noticeable with the fibers treated with LiOH was that greater displacement in the lengths occurred using the 2 N solutions. It is our general notion that the Osmotic pressure of free ions plays an import role on the properties of PAN. However, the observation that Li+ treated PAN fibers exhibit the largest contraction/expansion capability compared to Na+ or K+ treated PANs, can raise another important issue, i.e. "hydration". Realizing that the Osmotic pressure of electrolyte systems in weakly dependent upon the types of ions, it is highly likely that the "hydration" phenomena of free ions within the PAN network plays a key role on its deformation properties. It should be noted that PAN fibers have the capability of changing their effective longitudinal strain more than 100% and have comparable strength to human muscle.

  14. Carbon fiber composite molecular sieves

    SciTech Connect

    Burchell, T.D.; Rogers, M.R.

    1997-12-01

    Monolithic adsorbents based on isotropic pitch fibers have been developed jointly by ORNL and the University of Kentucky, Center for Applied Energy Research. The monoliths are attractive for gas separation and storage applications because of their unique combination of physical properties and microporous structure. Currently at ORNL the monoliths are produced in billets that are 10 cm in diameter and 25 cm in length. The monolithic adsorbent material is being considered for guard bed applications on a natural gas (NG) powered device. In order for the material to be successful in this application, one must attain a uniform activation to modest micropore volumes throughout the large monoliths currently being produced. Here the authors report the results of a study directed toward attaining uniform activation in these billets.

  15. Silicone modified resins for graphite fiber laminates

    NASA Technical Reports Server (NTRS)

    Frost, L. W.; Bower, G. M.

    1980-01-01

    Six silicone modified resins were selected for evaluation in unidirectional filament wound graphite laminates. Neat samples of these resins had 1,000 C char residues of 6-63%. The highest flexural values measured for the laminates were a strength of 1,220 MPa and a modulus of 105 GPa. The highest interlaminar shear strength was 72 MPa.

  16. MNASA as a Test for Carbon Fiber Thermal Barrier Development

    NASA Technical Reports Server (NTRS)

    Bauer, Paul; McCool, Alex (Technical Monitor)

    2001-01-01

    A carbon fiber rope thermal barrier is being evaluated as a replacement for the conventional room temperature vulcanizing (RTV) thermal barrier that is currently used to protect o-rings in Reusable Solid Rocket Motor (RSRM) nozzle joints. Performance requirements include its ability to cool any incoming, hot propellant gases that fill and pressurize the nozzle joints, filter slag and particulates, and to perform adequately in various joint assembly conditions as well as dynamic flight motion. Modified National Aeronautics and Space Administration (MNASA) motors, with their inherent and unique ability to replicate select RSRM internal environment features, were an integral step in the development path leading to full scale RSRM static test demonstration of the carbon fiber rope (CFR) joint concept. These 1/4 scale RSRM motors serve to bridge the gap between the other classes of subscale test motors (extremely small and moderate duration, or small scale and short duration) and the critical asset RSRM static test motors. A series of MNASA tests have been used to demonstrate carbon fiber rope performance and have provided rationale for implementation into a full-scale static motor and flight qualification.

  17. Activated carbon fibers and engineered forms from renewable resources

    DOEpatents

    Baker, Frederick S.

    2010-06-01

    A method of producing activated carbon fibers (ACFs) includes the steps of providing a natural carbonaceous precursor fiber material, blending the carbonaceous precursor material with a chemical activation agent to form chemical agent-impregnated precursor fibers, spinning the chemical agent-impregnated precursor material into fibers, and thermally treating the chemical agent-impregnated precursor fibers. The carbonaceous precursor material is both carbonized and activated to form ACFs in a single step. The method produces ACFs exclusive of a step to isolate an intermediate carbon fiber.

  18. Activated carbon fibers and engineered forms from renewable resources

    DOEpatents

    Baker, Frederick S

    2013-02-19

    A method of producing activated carbon fibers (ACFs) includes the steps of providing a natural carbonaceous precursor fiber material, blending the carbonaceous precursor material with a chemical activation agent to form chemical agent-impregnated precursor fibers, spinning the chemical agent-impregnated precursor material into fibers, and thermally treating the chemical agent-impregnated precursor fibers. The carbonaceous precursor material is both carbonized and activated to form ACFs in a single step. The method produces ACFs exclusive of a step to isolate an intermediate carbon fiber.

  19. Carbon nanotube and graphene nanoribbon-coated conductive Kevlar fibers.

    PubMed

    Xiang, Changsheng; Lu, Wei; Zhu, Yu; Sun, Zhengzong; Yan, Zheng; Hwang, Chi-Chau; Tour, James M

    2012-01-01

    Conductive carbon material-coated Kevlar fibers were fabricated through layer-by-layer spray coating. Polyurethane was used as the interlayer between the Kevlar fiber and carbon materials to bind the carbon materials to the Kevlar fiber. Strongly adhering single-walled carbon nanotube coatings yielded a durable conductivity of 65 S/cm without significant mechanical degradation. In addition, the properties remained stable after bending or water washing cycles. The coated fibers were analyzed using scanning electron microcopy and a knot test. The as-produced fiber had a knot efficiency of 23%, which is more than four times higher than that of carbon fibers. The spray-coating of graphene nanoribbons onto Kevlar fibers was also investigated. These flexible coated-Kevlar fibers have the potential to be used for conductive wires in wearable electronics and battery-heated armors.

  20. Production of superconductor/carbon bicomponent fibers

    NASA Technical Reports Server (NTRS)

    Wise, S. A.; Fain, C. C.; Leigh, H. D.

    1991-01-01

    Certain materials are unable to be drawn or spun into fiber form due to their improper melting characteristics or brittleness. However, fibrous samples of such materials are often necessary for the fabrication of intricate shapes and composites. In response to this problem, a unique process, referred to as the piggyback process, was developed to prepare fibrous samples of a variety of nonspinnable ceramics. In this technique, specially produced C shaped carbon fibers serve as micromolds to hold the desired materials prior to sintering. Depending on the sintering atmosphere used, bicomponent or single component fibers result. While much has been shown worldwide concerning the YBa2Cu3O(7-x) superconductor, fabrication into unique forms has proven quite difficult. However, a variety of intricate shapes are necessary for rapid commercialization of the superconducting materials. The potential for producing fibrous samples of the YBa2Cu3O(7-x) compound by the piggyback process is being studied. Various organic and acrylic materials were studied to determine suspending ability, reactivity with the YBa2Cu3O(7-x) compound during long term storage, and burn out characteristics. While many questions were answered with respect to the interfacial reactions between YBa2Cu3O(7-x) and carbon, much work is still necessary to improve the quality of the sintered material if the fibers produced are to be incorporated into useful composite or cables.

  1. Mechanical Properties of Heat-treated Carbon Fibers

    NASA Technical Reports Server (NTRS)

    Effinger, Michael R.; Patel, Bhavesh; Koenig, John; Cuneo, Jaques; Neveux, Michael G.; Demos, Chrystoph G.

    2004-01-01

    Carbon fibers are selected for ceramic matrix composites (CMC) are based on their as-fabricated properties or on "that is what we have always done" technical culture while citing cost and availability when there are others with similar cost and availability. However, the information is not available for proper selection of carbon fibers since heat-treated properties are not known for the fibers on the market currently. Heat-treating changes the fiber's properties. Therefore, an effort was undertaken to establish fiber properties on 19 different types of fibers from six different manufactures for both PAN and pitch fibers. Heat-treating has been done at three different temperatures.

  2. Electrochemical capacitors utilizing low surface area carbon fiber

    SciTech Connect

    Lipka, S.M.

    1997-12-01

    The performance of electrochemical capacitors containing different commercial carbon fibers is reviewed. High specific capacitances (ca. 300 F/g) are obtained with low surface area carbon fiber (<1 m2/g) using a proprietary activation process. Capacitance is primarily achieved through pseudocapacitance resulting from surface functional groups. The performance of these devices is dependent on the type of carbon fiber, its carbon content, aspect ratio and microstructure. These devices can achieve high cycle life (ca. 100k) without significant loss in capacitance.

  3. Binder for Carbon-Fiber Coating

    NASA Technical Reports Server (NTRS)

    Dowler, W. L.; Ramohalli, K. N.; Yen, S. P. S.; Mueller, W. A.; Harper, J.

    1984-01-01

    Insoluble, even coating formed by soaking in polyacrylic acid. Carbon fiber material prepared by soaking in solution of 20 percent polyacrylic acid in water. Material blotted and dried at 120 degrees C for at least 2 hours. Dried material reacted with boiling aqueous solution of calcium acetate. Treated material removed from boiling solution, blotted, dried at 120 degrees C, washed with distilled water, and dried again.

  4. Influence of locational states of submicron fibers added into matrix on mechanical properties of plain-woven Carbon Fiber Composite

    NASA Astrophysics Data System (ADS)

    Kumamoto, Soichiro; Okubo, Kazuya; Fujii, Toru

    2016-01-01

    The aim of this study was to show the influence of locational states of submicron fibers added into epoxy matrix on mechanical properties of modified plane-woven carbon fiber reinforced plastic (CFRP). To change the locational states of submicron fibers, two kinds of fabrication processes were applied in preparing specimen by hand lay-up method. Submicron fibers were simply added into epoxy resin with ethanol after they were stirred by a dispersion process using homogenizer to be located far from the interface between reinforcement and matrix. In contrast, submicron fibers were attached onto the carbon fibers by injecting from a spray nozzle accompanying with ethanol to be located near the interface, after they were tentatively contained in ethanol. The plain-woven CFRP plates were fabricated by hand lay-up method and cured at 80 degree-C for 1 hour and then at 150 degree-C for 3 hours. After curing, the plain-woven CFRP plates were cut into the dimension of specimen. Tensile shear strength and Mode-II fracture toughness of CFRP were determined by tensile lap-shear test and End-notched flexure(ENF) test, respectively. When submicron fibers were located far from the interface between carbon fibers and epoxy resin, tensile shear strength and Mode-II fracture toughness of CFRP were improved 30% and 18% compared with those of unmodified case. The improvement ratio in modified case was rather low (about few percentages) in the case where submicron fibers were located near the interface. The result suggested that crack propagation should be prevented when submicron fibers were existed far from the interface due to the effective stress state around the crack tip.

  5. Capacitive Measurement Of Coating Thickness On Carbon Fibers

    NASA Technical Reports Server (NTRS)

    Eftekhari, Abe; Chapman, John J.

    1994-01-01

    Technique for gauging coating thickness during prepreg processing of carbon fibers developed. Technique based on measurement of capacitance of cylindrical condenser through which bundle of prepregged fibers passed axially. Empirical results indicate capacitance linearly related to thickness of polymer coat on fibers in bundle. Capacitive transducer used successfully to measure thickness of polymer coats on several test bundles of fibers under static conditions.

  6. Waste polyvinylchloride derived pitch as a precursor to develop carbon fibers and activated carbon fibers.

    PubMed

    Qiao, W M; Yoon, S H; Mochida, I; Yang, J H

    2007-01-01

    Polyvinylchloride (PVC) was successfully recycled through the solvent extraction from waste pipe with an extraction yield of ca. 86%. The extracted PVC was pyrolyzed by a two-stage process (260 and 410 degrees C) to obtain free-chlorine PVC based pitch through an effective removal of chlorine from PVC during the heat-treatment. As-prepared pitch (softening point: 220 degrees C) was spun, stabilized, carbonized into carbon fibers (CFs), and further activated into activated carbon fibers (ACFs) in a flow of CO2. As-prepared CFs show comparable mechanical properties to commercial CFs, whose maximum tensile strength and modulus are 862 MPa and 62 GPa, respectively. The resultant ACFs exhibit a high surface area of 1200 m2/g, narrow pore size distribution and a low oxygen content of 3%. The study provides an effective insight to recycle PVC from waste PVC and develop a carbon precursor for high performance carbon materials such as CFs and ACFs.

  7. MnO2-modified hierarchical graphene fiber electrochemical supercapacitor

    NASA Astrophysics Data System (ADS)

    Chen, Qing; Meng, Yuning; Hu, Chuangang; Zhao, Yang; Shao, Huibo; Chen, Nan; Qu, Liangti

    2014-02-01

    A novel hybrid fiber that MnO2 modified graphene sheets on graphene fiber has been fabricated by direct deposition of MnO2 onto graphene network surrounding graphene fiber (MnO2/G/GF). In this hierarchical structure, the graphene fiber with a sheath of 3D graphene network is coated with MnO2 nanoflowers. The 3D graphene on graphene fibers (G/GF) serves as highly conductive backbones with high surface area for deposition of nanostructured MnO2, which provide the high accessibility of electrolytic ions for shorten diffusion paths. An all-solid-state flexible supercapacitor based on a MnO2/G/GF hybrid fiber structure has been developed on the basis of the intrinsic mechanical flexibility of GF and the unique hierarchical structure. By combination of electric double layer capacitance of graphene network with the pseudocapacitance of MnO2 nanostructures, the all-solid-state fiber supercapacitor shows the much enhanced electrochemical capacitive behaviors with robust tolerance to mechanical deformation, promising for being woven into a textile for wearable electronics.

  8. Oxygen Reactivity of a Carbon Fiber Composite

    SciTech Connect

    Marshall, Theron Devol; Pawelko, Robert James; Anderl, Robert Andrew; Smolik, Galen Richard

    2002-09-01

    Carbon Fiber Composites (CFCs) are often suggested as armor material for the first wall of a fusion plasma chamber due to carbon's low atomic number, high thermal conductivity, and high melting point. However, carbon is chemically reactive in air and will react with ingress air during a Loss of Vacuum Accident and release tritium fuel that has been retained in the carbon. Tritium mobilization and carbon monoxide generation via CFC oxidation are both safety concerns. This paper discusses chemical reactivity experiments that were performed using the state-of-the-art 3-dimensional NB31 CFC produced by SNECMA and a laminar reaction gas of Ar–21 vol% O2. Oxidation reaction rates were measured for CFC temperatures of 525, 600, 700, 800, 900, and 1000 °C and a 100 standard cubic centimeters per minute (sccm) Ar–O2 flow rate. Experiments were also performed at CFC temperatures of 700 and 1000 °C and a 1000 sccm Ar–O2 flow rate. Mass spectral analyses of the exhaust reaction gas suggested that carbon monoxide was the primary reaction at the CFC surface and carbon dioxide was readily produced in the exiting reaction gas. The measured reaction rates compare well with the literature and were used to produce a CFC oxidation curve that is recommended for use in fusion safety analyses.

  9. Electronic equipment vulnerability to fire released carbon fibers

    NASA Technical Reports Server (NTRS)

    Pride, R. A.; Mchatton, A. D.; Musselman, K. A.

    1980-01-01

    The vulnerability of electronic equipment to damage by carbon fibers released from burning aircraft type structural composite materials was investigated. Tests were conducted on commercially available stereo power amplifiers which showed that the equipment was damaged by fire released carbon fibers but not by the composite resin residue, soot and products of combustion of the fuel associated with burning the carbon fiber composites. Results indicate that the failure rates of the equipment exposed to the fire released fiber were consistent with predictions based on tests using virgin fibers.

  10. Designed amyloid fibers as materials for selective carbon dioxide capture.

    PubMed

    Li, Dan; Furukawa, Hiroyasu; Deng, Hexiang; Liu, Cong; Yaghi, Omar M; Eisenberg, David S

    2014-01-07

    New materials capable of binding carbon dioxide are essential for addressing climate change. Here, we demonstrate that amyloids, self-assembling protein fibers, are effective for selective carbon dioxide capture. Solid-state NMR proves that amyloid fibers containing alkylamine groups reversibly bind carbon dioxide via carbamate formation. Thermodynamic and kinetic capture-and-release tests show the carbamate formation rate is fast enough to capture carbon dioxide by dynamic separation, undiminished by the presence of water, in both a natural amyloid and designed amyloids having increased carbon dioxide capacity. Heating to 100 °C regenerates the material. These results demonstrate the potential of amyloid fibers for environmental carbon dioxide capture.

  11. Application of Conductive Carbon Nanotube Fibers and Composites: Gas Sensor

    DTIC Science & Technology

    2013-05-01

    Application of Conductive Carbon Nanotube Fibers and Composites: Gas Sensor by Padraig G. Moloney and Enrique V. Barrera ARL-CR-0714 May...2013 Application of Conductive Carbon Nanotube Fibers and Composites: Gas Sensor Padraig G. Moloney and Enrique V. Barrera Dept. of...From - To) June 2011 to April 2012 4. TITLE AND SUBTITLE Application of Conductive Carbon Nanotube Fibers and Composites: Gas Sensor 5a

  12. [Improving fiber adhesion by surface oxidation in carbon fiber reinforced bone cement].

    PubMed

    Hopf, T; Büttner, S; Brill, W

    1989-01-01

    The mechanical superiority of carbon fiber reinforced PMMA containing additional apatite was shown previously. For further improvement these carbon fibers were now submitted to a superficial oxidation treatment by HNO3. A closer contact between the carbon fibers and PMMA and even trabeculae-like adhesions were detected by Scanning Electron Microscopy. The fatigue strength of the carbon fiber reinforced bone cement could be increased at 17% by this oxidation treatment. This increase, however, is less than that observed in the case of other fiber reinforced composites. Most likely this is caused by the pronounced polymerisation contraction of PMMA. Further improvement of the adhesion of the fibers to cement may be achieved by different oxidation techniques, further extraction of foreign substances or graft polymerization of the carbon fibers by PMMA or other polymers.

  13. Production of superconductor/carbon bicomponent fibers

    NASA Technical Reports Server (NTRS)

    Wise, S. A.; Fain, C. C.; Leigh, H. D.; Sherrill, M.

    1990-01-01

    Certain materials are unable to be drawn or spun into fiber form due to their improper melting characteristics or brittleness. However, fibrous samples of such materials are often necessary for the fabrication of intricate shapes and composites. In response to this problem, a unique process, referred to as the piggyback process, was developed to prepare fibrous samples of a variety of nonspinnable ceramics. In this technique, specially produced C-shaped carbon fibers serve as micromolds to hold the desired materials prior to sintering. Depending on the sintering atmosphere used, bicomponent or single component fibers result. While much has been demonstrated worldwide concerning the YBa2Cu3O(7-x) superconductor, fabrication into unique forms has proven quite difficult. However, a variety of intricate shapes are necessary for rapid commercialization of the superconducting materials. The potential for producing fibrous samples of the YBa2Cu3O(7-x) compound by the piggyback process is being investigated. Various organic and acrylic materials were investigated to determine suspending ability, reactivity with the YBa2Cu3O(7-x) compound during long term storage, and burn out characteristics. While many questions were answered with respect to the interfacial reactions between YBa2Cu3O(7-x) and carbon, much work is still necessary to improve the quality of the sintered material if the fibers produced are to be incorporated into useful composites or cables. Additional research is necessary to evaluate quality of the barrier layer during long soakings at the peak temperature; adjust the firing schedule to avoid microcracking and improve densification; and increase the solids loading in the superconductive suspension to decrease porosity.

  14. Voltammetric detection of biological molecules using chopped carbon fiber.

    PubMed

    Sugawara, Kazuharu; Yugami, Asako; Kojima, Akira

    2010-01-01

    Voltammetric detection of biological molecules was carried out using chopped carbon fibers produced from carbon fiber reinforced plastics that are biocompatible and inexpensive. Because chopped carbon fibers normally are covered with a sizing agent, they are difficult to use as an electrode. However, when the surface of a chopped carbon fiber was treated with ethanol and hydrochloric acid, it became conductive. To evaluate the functioning of chopped carbon fibers, voltammetric measurements of [Fe(CN)(6)](3-) were carried out. Redoxes of FAD, ascorbic acid and NADH as biomolecules were recorded using cyclic voltammetry. The sizing agents used to bundle the fibers were epoxy, polyamide and polyurethane resins. The peak currents were the greatest when using the chopped carbon fibers that were created with epoxy resins. When the electrode response of the chopped carbon fibers was compared with that of a glassy carbon electrode, the peak currents and the reversibility of the electrode reaction were sufficient. Therefore, the chopped carbon fibers will be useful as disposable electrodes for the sensing of biomolecules.

  15. Polarization dependence of laser interaction with carbon fibers and CFRP.

    PubMed

    Freitag, Christian; Weber, Rudolf; Graf, Thomas

    2014-01-27

    A key factor for laser materials processing is the absorptivity of the material at the laser wavelength, which determines the fraction of the laser energy that is coupled into the material. Based on the Fresnel equations, a theoretical model is used to determine the absorptivity for carbon fiber fabrics and carbon fiber reinforced plastics (CFRP). The surface of each carbon fiber is considered as multiple layers of concentric cylinders of graphite. With this the optical properties of carbon fibers and their composites can be estimated from the well-known optical properties of graphite.

  16. The application of carbon fiber resistancein monitoring of curing

    NASA Astrophysics Data System (ADS)

    Sun, X. Y.; Zhang, B. M.; Zong, Yang

    2009-07-01

    Thermal residual stress in resin matrix composite due to the different coefficient of thermal expansion (CTE). The CTE of carbon fiber is lower than resin matrix. Based on mechanics, rising temperature will induce tensile stress, cooling down will induce compress in fiber. There exists expanding and shrinkage during curing process of epoxy. In single fiber composite system, they play different roles, present with tensile and compress stress on fiber. This paper deals with the relationship of the carbon fiber resistance with strain and temperature. The effect of expanding and shrinkage on residual stress is got by the fiber resistant measurement. Resistance variety curve of the experiment shows the chemical process during resin solidification. The shear stress between fiber and matrix existing during temperature load can also measured by the same method. The carbon fiber's resistant can be used as sensor to monitor and control the curing process. This is a simple and effective method to research the curing process.

  17. On the nature of interface of carbon nanotube coated carbon fibers with different polymers

    NASA Astrophysics Data System (ADS)

    Singh Bedi, Harpreet; Padhee, Srikant S.; Agnihotri, Prabhat K.

    2016-07-01

    Experimental investigations are carried out to analyse the wetting behaviour of carbon nanotube (CNT) coated carbon fiber to determine their suitability to process carbon nanotube coated carbon fiber/polymer multiscale composites for structural applications. To overcome the problem of agglomeration, CNTs are grown directly on the surface of carbon fibers as well as fabric using thermal chemical vapour deposition (CVD) technique. The term multiscale is used because different reinforcement mechanisms operate at the scale of long fibers and CNTs which are of few micrometers in length. The load carrying capacity of these multiscale composites critically depends on the efficiency and extent of load transfer from low strength matrix to high strength fiber which in turn depends on the interfacial strength between CNT coated carbon fiber and polymer matrix. A systematic analysis of wetting behaviour of CNT coated carbon fiber with epoxy and polyester matrix is carried out in this study. It is shown that CNT coated carbon fibers as well as fabric show better wettability with epoxy matrix as compared to polyester matrix. This results in stronger interface of CNT coated carbon fiber with epoxy as compared to polyester in multiscale composite system. A similar observation is made in nanoindentation testing of single fiber multiscale composites processed with epoxy and polyester matrix. In addition, it is observed that wettability, interfacial strength and average properties of CNT coated carbon fiber/polymer composites are a function of CNT density on the surface of carbon fibers.

  18. Radiation effects on carbon fiber reinforced thermoplastics

    SciTech Connect

    Sasuga, Tsuneo; Udagawa, Akira; Seguchi, Tadao

    1993-12-31

    Polyether-ether-ketone (PEEK) and a newly developed thermoplastic polyimide ``new-TPI`` were applied to carbon fiber reinforced plastic (CFRP) as a matrix resin. PEEK and new-TPI showed excellent resistance over 50 MGy to electron irradiation and the crosslinking proceeded predominantly by irradiation. The changes in mechanical properties induced by electron irradiation of the CFRP with the two resins were examined at various temperatures. The flexural strength and modulus measured at {minus}196 and 25{degree}C were scarcely affected up to 120 MGy and both the values measured at high temperature were increased with dose.

  19. Thermal oxidation induced degradation of carbon fiber reinforced composites and carbon nanotube sheet enhanced fiber/matrix interface for high temperature aerospace structural applications

    NASA Astrophysics Data System (ADS)

    Haque, Mohammad Hamidul

    Recent increase in the use of carbon fiber reinforced polymer matrix composite, especially for high temperature applications in aerospace primary and secondary structures along with wind energy and automotive industries, have generated new challenges to predict its failure mechanisms and service life. This dissertation reports the experimental study of a unidirectional carbon fiber reinforced bismaleimide (BMI) composites (CFRC), an excellent candidate for high temperature aerospace components, undergoing thermal oxidation at 260 °C in air for over 3000 hours. The key focus of the work is to investigate the mechanical properties of the carbon fiber BMI composite subjected to thermal aging in three key aspects - first, studying its bulk flexural properties (in macro scale), second, characterizing the crack propagation along the fiber direction, representing the interfacial bonding strength between fiber and matrix (in micro scale), and third, introducing nano-structured materials to modify the interface (in nano scale) between the carbon fiber and BMI resin and mechanical characterization to study its influence on mitigating the aging effect. Under the first category, weight loss and flexural properties have been monitored as the oxidation propagates through the fiber/matrix interface. Dynamic mechanical analysis and micro-computed tomography analysis have been performed to analyze the aging effects. In the second category, the long-term effects of thermal oxidation on the delamination (between the composite plies) and debonding (between fiber and matrix) type fracture toughness have been characterized by preparing two distinct types of double cantilever beam specimens. Digital image correlation has been used to determine the deformation field and strain distribution around the crack propagation path. Finally the resin system and the fiber/matrix interface have been modified using nanomaterials to mitigate the degradations caused by oxidation. Nanoclay modified

  20. LOW COST PRODUCTION OF CARBON FIBERS FROM LIGNIN MATERIALS

    SciTech Connect

    Gallego, Nidia C; Baker, Darren A; Baker, Frederick S

    2009-01-01

    The DOE Vehicle Technologies-funded work at ORNL is directed to the development of processes for the low cost production of carbon fibers. The objective of the project is to develop more energy-efficient, cost-effective processes for production of carbon fibers for use in composite materials for vehicles, which would substantially reduce vehicle weight, increase vehicle fuel economy, and result in lower CO2 emissions. Carbon fibers have the potential for substantial weight saving in vehicles because of their remarkable high strength, high modulus, and low density. However, carbon fibers are currently too expensive for large scale automotive use, which necessitates a large reduction in the cost of commercial grade fiber from about $20/lb to $5-7/lb. Lignin, a renewable resource material, has significant potential as a precursor material for low cost carbon fiber production. In this paper we report on progress to demonstrate the melt-spinning of precursor fibers from various lignin sources, the subsequent processing of the lignin precursor fibers into carbon fibers, and carbon fiber properties.

  1. Carbon fibers from electrospun polymeric phenolic resin precursors

    NASA Astrophysics Data System (ADS)

    Gee, Diane L.

    This dissertation presents a technique for producing carbon fibers of nano- to micro-sized dimension by utilizing a non-conventional fiber spinning approach with refractory polymers, followed by post-processing steps, to create new carbon materials with distinctive chemical/physical property characteristics. Phenolic resins, novolak and resole, are selected for this study because of their low cost, marketability, environmental friendliness, and high char yield upon pyrolysis. The new carbon fibers are at least an order of magnitude smaller than their conventionally processed counterpart, and possess significant advantages. Phenolic resin fibers, consisting of a blend of novolak and resole, are generated via electrospinning and are subsequently cured and pyrolyzed at temperatures from 800°C to 2000°C to form carbon fibers having diameters of ˜1 mum. Fiber analysis by scanning electron microscopy confirms that the morphology generated during the electrospinning processing is retained throughout the curing and carbonization processes. X-ray diffraction suggests the presence of highly graphitized carbon, which is further validated by high-resolution transmission electron microscopy (HRTEM) analysis. There is evidence of crystalline graphite, which may have nucleated on aligned sheets presence on the fiber surface. The physical characteristics of electrospun fibers are contrary to those exhibited by pyrolyzed phenolic resins, which fall into the classification of non-graphitizing. It is likely that the thin electrospun fibers offer a template that encourages ordering not usually seen in thicker fibers or bulk samples of carbonized phenolic resins.

  2. Photothermal effects of immunologically modified carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Griswold, Ryan T.; Henderson, Brock; Goddard, Jessica; Tan, Yongqiang; Hode, Tomas; Liu, Hong; Nordquist, Robert E.; Chen, Wei R.

    2013-02-01

    Carbon nanotubes have a great potential in the biomedical applications. To use carbon nanotubes in the treatment of cancer, we synthesized an immunologically modified single-walled carbon nanotube (SWNT) using a novel immunomodifier, glycated chitosan (GC), as an effective surfactant for SWNT. This new composition SWNT-GC was stable due to the strong non-covalent binding between SWNT and GC. The structure of SWNT-GC is presented in this report. The photothermal effect of SWNT-GC was investigated under irradiation of a near-infrared laser. SWNT-GC retained the optical properties of SWNT and the immunological properties of GC. Specifically, the SWNT-GC could selectively absorb a 980-nm light and induce desirable thermal effects in tissue culture and in animals. It could also induce tumor cell destruction, controlled by the laser settings and the doses of SWNT and GC. Laser+SWNT-GC treatment could also induce strong expression of heat shock proteins on the surface of tumor cells. This immunologically modified carbon nanotube could be used for selective photothermal interactions in noninvasive tumor treatment.

  3. Experimental Behavior of Carbon Fiber Reinforced Isolators

    SciTech Connect

    Russo, Gaetano; Pauletta, Margherita; Cortesia, Andrea; Dal Bianco, Alberto

    2008-07-08

    This paper describes an investigation on the experimental behavior of innovative elastomeric isolators reinforced by carbon fiber fabrics. These fabrics are very much lighter than steel plates used in conventional isolators and able to transfer to the adjacent elastomer layers tangential stresses adequate to oppose the transversal deformation of rubber under vertical loads. The isolators are not bonded to the sub- and super-structure (elimination of the steel end-plates), hence their weight and cost are reduced. The experimental investigation is carried out on small-scale isolator prototypes reinforced by quadridirectional carbon fiber fabrics. The isolators are subjected to the following qualification tests prescribed by the Italian Code 'Ordinanza 3274' for steel reinforced isolators: 1) 'Static assessment of the compression stiffness'; 2) 'Static assessment of the shear modulus G'; 3) 'Dynamic assessment of the dynamic shear modulus G{sub din} and of the damping coefficient {xi}; 4) 'Assessment of the G{sub din}-{gamma} and {xi}-{gamma} diagrams by means of dynamic tests'; 5) 'Assessment of creep characteristics'; 6) 'Evaluation of the capacity of sustaining at least 10 cycles'. As a result of the tests, the isolators survived large shear strains, comparable to those expected for conventional isolators.

  4. Liquid crystal polyester-carbon fiber composites

    NASA Technical Reports Server (NTRS)

    Chung, T. S.

    1984-01-01

    Liquid crystal polymers (LCP) have been developed as a thermoplastic matrix for high performance composites. A successful melt impregnation method has been developed which results in the production of continuous carbon fiber (CF) reinforced LCP prepreg tape. Subsequent layup and molding of prepreg into laminates has yielded composites of good quality. Tensile and flexural properties of LCP/CF composites are comparable to those of epoxy/CF composites. The LCP/CF composites have better impact resistance than the latter, although epoxy/CF composites possess superior compression and shear strength. The LCP/CF composites have good property retention until 200 F (67 % of room temperature value). Above 200 F, mechanical properties decrease significantly. Experimental results indicate that the poor compression and shear strength may be due to the poor interfacial adhesion between the matrix and carbon fiber as adequate toughness of the LCP matrix. Low mechanical property retention at high temperatures may be attributable to the low beta-transition temperature (around 80 C) of the LCP matrix material.

  5. Multifunctional Carbon Fiber Ionization Mass Spectrometry.

    PubMed

    Wu, Meng-Xi; Wang, Hao-Yang; Zhang, Jun-Ting; Guo, Yin-Long

    2016-10-04

    A carbon fiber ionization (CFI) technique was developed for the mass spectrometric analysis of various organic compounds with different polarities. The design of the CFI technique was based on the good compatibility and dispersion of samples and solutions in different solvents on carbon fiber. As a fast, convenient, and versatile ionization method, CFI-MS is especially efficient for analyzing many low/nonpolar organic compounds, such as polycyclic aromatic hydrocarbons, long-chain aliphatic aldehydes, sensitive steroids, terpenoids, and organometallic compounds. Some of these compounds may not be well-analyzed by electrospray ionization or electron ionization mass spectrometry. On the basis of our experimental results, the major ion formation mechanism of CFI-MS was suggested to involve desorption in a steam-distillation-like process, and then, ionization occurred mainly via corona discharge under high voltage. CFI-MS could not only work alone but also be coupled with separation techniques. It works well when coupled with supercritical fluid chromatography (SFC) as well as in the analysis of exhaled human air. The high flexibility and versatility of CFI-MS has extended its applications in many areas, such as fast chemical screening, clinical testing, and forensic analysis.

  6. Carbon nanowalls grown by microwave plasma enhanced chemical vapor deposition during the carbonization of polyacrylonitrile fibers

    SciTech Connect

    Li Jiangling; Su Shi; Kundrat, Vojtech; Abbot, Andrew M.; Ye, Haitao; Zhou Lei; Mushtaq, Fajer; Ouyang Defang; James, David; Roberts, Darren

    2013-01-14

    We used microwave plasma enhanced chemical vapor deposition (MPECVD) to carbonize an electrospun polyacrylonitrile (PAN) precursor to form carbon fibers. Scanning electron microscopy, Raman spectroscopy, and Fourier transform infrared spectroscopy were used to characterize the fibers at different evolution stages. It was found that MPECVD-carbonized PAN fibers do not exhibit any significant change in the fiber diameter, whilst conventionally carbonized PAN fibers show a 33% reduction in the fiber diameter. An additional coating of carbon nanowalls (CNWs) was formed on the surface of the carbonized PAN fibers during the MPECVD process without the assistance of any metallic catalysts. The result presented here may have a potential to develop a novel, economical, and straightforward approach towards the mass production of carbon fibrous materials containing CNWs.

  7. Dissemination, resuspension, and filtration of carbon fibers. [aircraft fires

    NASA Technical Reports Server (NTRS)

    Elber, W.

    1980-01-01

    Carbon fiber transport was studied using mathematical models established for other pollution problems. It was demonstrated that resuspension is not a major factor contributing to the risk. Filtration and fragmentation tests revealed that fiber fragmentation shifts the fiber spectrum to shorter mean lengths in high velocity air handling systems.

  8. Characterization and Oxidation Behavior of Rayon-Derived Carbon Fibers

    NASA Technical Reports Server (NTRS)

    Jacobson, Nathan; Hull, David

    2010-01-01

    Rayon-derived fibers are the central constituent of reinforced carbon/ carbon (RCC) composites. Optical, scanning electron, and transmission electron microscopy were used to characterize the as-fabricated fibers and the fibers after oxidation. Oxidation rates were measured with weight loss techniques in air and oxygen. The as-received fibers are approximately 10 micron in diameter and characterized by grooves or crenulations around the edges. Below 800 C, in the reaction-controlled region, preferential attack began in the crenulations and appeared to occur down fissures in the fibers.

  9. Multifunctional Hybrid Carbon Nanotube/Carbon Fiber Polymer Composites

    NASA Technical Reports Server (NTRS)

    Kang, Jin Ho; Cano, Roberto J.; Ratcliffe, James G.; Luong, Hoa; Grimsley, Brian W.; Siochi, Emilie J.

    2016-01-01

    For aircraft primary structures, carbon fiber reinforced polymer (CFRP) composites possess many advantages over conventional aluminum alloys due to their light weight, higher strengthand stiffness-to-weight ratio, and low life-cycle maintenance costs. However, the relatively low electrical and thermal conductivities of CFRP composites fail to provide structural safety in certain operational conditions such as lightning strikes. Despite several attempts to solve these issues with the addition of carbon nanotubes (CNT) into polymer matrices, and/or by interleaving CNT sheets between conventional carbon fiber (CF) composite layers, there are still interfacial problems that exist between CNTs (or CF) and the resin. In this study, hybrid CNT/CF polymer composites were fabricated by interleaving layers of CNT sheets with Hexcel® IM7/8852 prepreg. Resin concentrations from 1 wt% to 50 wt% were used to infuse the CNT sheets prior to composite fabrication. The interlaminar properties of the resulting hybrid composites were characterized by mode I and II fracture toughness testing (double cantilever beam and end-notched flexure test). Fractographical analysis was performed to study the effect of resin concentration. In addition, multi-directional physical properties like thermal conductivity of the orthotropic hybrid polymer composite were evaluated. Interleaving CNT sheets significantly improved the in-plane (axial and perpendicular direction of CF alignment) thermal conductivity of the hybrid composite laminates by 50 - 400%.

  10. Thermal Properties of Hybrid Carbon Nanotube/Carbon Fiber Polymer

    NASA Technical Reports Server (NTRS)

    Kang, Jin Ho; Cano, Roberto J.; Luong, Hoa; Ratcliffe, James G.; Grimsley, Brian W.; Siochi, Emilie J.

    2016-01-01

    Carbon fiber reinforced polymer (CFRP) composites possess many advantages for aircraft structures over conventional aluminum alloys: light weight, higher strength- and stiffness-to-weight ratio, and low life-cycle maintenance costs. However, the relatively low thermal and electrical conductivities of CFRP composites are deficient in providing structural safety under certain operational conditions such as lightning strikes. One possible solution to these issues is to interleave carbon nanotube (CNT) sheets between conventional carbon fiber (CF) composite layers. However, the thermal and electrical properties of the orthotropic hybrid CNT/CF composites have not been fully understood. In this study, hybrid CNT/CF polymer composites were fabricated by interleaving layers of CNT sheets with Hexcel (Registered Trademark) IM7/8852 prepreg. The CNT sheets were infused with a 5% solution of a compatible epoxy resin prior to composite fabrication. Orthotropic thermal and electrical conductivities of the hybrid polymer composites were evaluated. The interleaved CNT sheets improved the in-plane thermal conductivity of the hybrid composite laminates by about 400% and the electrical conductivity by about 3 orders of magnitude.

  11. Process for the manufacture of carbon or graphite fibers

    NASA Technical Reports Server (NTRS)

    Overhoff, D.; Winkler, E.; Mueller, D.

    1979-01-01

    Carbon or graphite fibers are manufactured by heating polyacrylonitrile fiber materials in various solutions and gases. They are characterized in that the materials are heated to temperatures from 150 to 300 C in a solution containing one or more acids from the group of carbonic acids, sulfonic acids, and/or phenols. The original molecular orientation of the fibers is preserved by the cyclization that occurs before interlacing, which gives very strong and stiff carbon or graphite fibers without additional high temperature stretching treatments.

  12. The potential for damage from the accidental release of conductive carbon fibers from burning composites

    NASA Technical Reports Server (NTRS)

    Bell, V. L.

    1980-01-01

    The potential damage to electrical equipment caused by the release of carbon fibers from burning commercial airliners is assessed in terms of annual expected costs and maximum losses at low probabilities of occurrence. A materials research program to provide alternate or modified composite materials for aircraft structures is reviewed.

  13. Carbon Fiber Reinforced Glass Matrix Composites for Space Based Applications.

    DTIC Science & Technology

    1987-08-31

    Nardone , "Carbon Fiber Reinforced Glass Matrix Composites for Space Based Applications", Office of Naval Research Contract N00014-85-C-0332, Report R86... Nardone and K M. Prewo, "Tensile Performance of Carbon Fiber Reinforced Glass", J. Mater. Sci. accepted for publication, 1987. 27. R. F. Cooper and K

  14. Carbon-fiber low-voltage electron guns

    SciTech Connect

    Drori, R.; Jerby, E.

    1995-12-31

    Carbon-fiber cathodes am used in cold electron-guns in our laboratory. They operate in low-voltage (< 10 kV) free-electron maser and cyclotron-resonance maser experiments. The paper presents I-V characteristics of various carbon-fiber electron-guns and show results of the corresponding maser experiments.

  15. Preliminary experimental study of a carbon fiber array cathode

    NASA Astrophysics Data System (ADS)

    Li, An-kun; Fan, Yu-wei

    2016-08-01

    The preliminary experimental results of a carbon fiber array cathode for the magnetically insulated transmission line oscillator (MILO) operations are reported. When the diode voltage and diode current were 480 kV and 44 kA, respectively, high-power microwaves with a peak power of about 3 GW and a pulse duration of about 60 ns were obtained in a MILO device with the carbon fiber array cathode. The preliminary experimental results show that the shot-to-shot reproducibility of the diode current and the microwave power is stable until 700 shots. No obvious damage or deterioration can be observed in the carbon fiber surface morphology after 700 shots. Moreover, the cathode performance has no observable deterioration after 700 shots. In conclusion, the maintain-free lifetime of the carbon fiber array cathode is more than 700 shots. In this way, this carbon fiber array cathode offers a potential replacement for the existing velvet cathode.

  16. Improved Composites Using Crosslinked, Surface-Modified Carbon Nanotube Materials

    NASA Technical Reports Server (NTRS)

    Baker, James Stewart

    2014-01-01

    Individual carbon nanotubes (CNTs) exhibit exceptional tensile strength and stiffness; however, these properties have not translated well to the macroscopic scale. Premature failure of bulk CNT materials under tensile loading occurs due to the relatively weak frictional forces between adjacent CNTs, leading to poor load transfer through the material. When used in polymer matrix composites (PMCs), the weak nanotube-matrix interaction leads to the CNTs providing less than optimal reinforcement.Our group is examining the use of covalent crosslinking and surface modification as a means to improve the tensile properties of PMCs containing carbon nanotubes. Sheet material comprised of unaligned multi-walled carbon nanotubes (MWCNT) was used as a drop-in replacement for carbon fiber in the composites. A variety of post-processing methods have been examined for covalently crosslinking the CNTs to overcome the weak inter-nanotube shear interactions, resulting in improved tensile strength and modulus for the bulk sheet material. Residual functional groups from the crosslinking chemistry may have the added benefit of improving the nanotube-matrix interaction. Composites prepared using these crosslinked, surface-modified nanotube sheet materials exhibit superior tensile properties to composites using the as received CNT sheet material.

  17. Graphitized-carbon fiber/carbon char fuel

    SciTech Connect

    Cooper, John F.

    2007-08-28

    A method for recovery of intact graphitic fibers from fiber/polymer composites is described. The method comprises first pyrolyzing the graphite fiber/polymer composite mixture and then separating the graphite fibers by molten salt electrochemical oxidation.

  18. Interaction of Surface Modified Carbon Nanotubes with Supercritical Carbon Dioxide

    NASA Astrophysics Data System (ADS)

    Baysal, Nihat; Unsal, Banu; Ozisik, Rahmi

    2006-03-01

    The properties of carbon nanotube (CNT)-polymer nanocomposites are far below than those calculated, mainly due to poor dispersion or interface quality. This is particularly difficult for single walled carbon nanotubes (SWNTs) as they tend to form bundles or ropes that are difficult to exfoliate. Supercritical fluid (SCF) assisted processing is one of the methods that can be used to exfoliate/disperse CNTs along with modifiying the interface of the CNTs. Molecular dynamics simulations were performed to understand how the surface modifiers behave near SWNT surface with and without the presence of SCF molecules. It is also important to understand the diffusivity of SCF molecules between SWNT bundles and the effect of surface modifiers on diffusion. Octane and n-perflourooctane molecules were used as surface modifiers with varying tethering density and carbon dioxide (CO2) was chosen as the SCF. Results showed that the system with highest number of n-perfluorooctanes presented the highest degree of success in separating the SWNTs in the presence of CO2.

  19. Graphene nanoribbons as an advanced precursor for making carbon fiber.

    PubMed

    Xiang, Changsheng; Behabtu, Natnael; Liu, Yaodong; Chae, Han Gi; Young, Colin C; Genorio, Bostjan; Tsentalovich, Dmitri E; Zhang, Chenguang; Kosynkin, Dmitry V; Lomeda, Jay R; Hwang, Chih-Chau; Kumar, Satish; Pasquali, Matteo; Tour, James M

    2013-02-26

    Graphene oxide nanoribbons (GONRs) and chemically reduced graphene nanoribbons (crGNRs) were dispersed at high concentrations in chlorosulfonic acid to form anisotropic liquid crystal phases. The liquid crystal solutions were spun directly into hundreds of meters of continuous macroscopic fibers. The relationship of fiber morphology to coagulation bath conditions was studied. The effects of colloid concentration, annealing temperature, spinning air gap, and pretension during annealing on the fibers' performance were also investigated. Heat treatment of the as-spun GONR fibers at 1500 °C produced thermally reduced graphene nanoribbon (trGNR) fibers with a tensile strength of 378 MPa, Young's modulus of 36.2 GPa, and electrical conductivity of 285 S/cm, which is considerably higher than that in other reported graphene-derived fibers. This better trGNR fiber performance was due to the air gap spinning and annealing with pretension that produced higher molecular alignment within the fibers, as determined by X-ray diffraction and scanning electron microscopy. The specific modulus of trGNR fibers is higher than that of the commercial general purpose carbon fibers and commonly used metals such as Al, Cu, and steel. The properties of trGNR fibers can be further improved by optimizing the spinning conditions with higher draw ratio, annealing conditions with higher pretensions, and using longer flake GONRs. This technique is a new high-carbon-yield approach to make the next generation carbon fibers based on solution-based liquid crystal phase spinning.

  20. Surface characterization of LDEF carbon fiber/polymer matrix composites

    NASA Technical Reports Server (NTRS)

    Grammer, Holly L.; Wightman, James P.; Young, Philip R.; Slemp, Wayne S.

    1995-01-01

    XPS (x-ray photoelectron spectroscopy) and SEM (scanning electron microscopy) analysis of both carbon fiber/epoxy matrix and carbon fiber/polysulfone matrix composites revealed significant changes in the surface composition as a result of exposure to low-earth orbit. The carbon 1s curve fit XPS analysis in conjunction with the SEM photomicrographs revealed significant erosion of the polymer matrix resins by atomic oxygen to expose the carbon fibers of the composite samples. This erosion effect on the composites was seen after 10 months in orbit and was even more obvious after 69 months.

  1. A novel surface modification of carbon fiber for high-performance thermoplastic polyurethane composites

    NASA Astrophysics Data System (ADS)

    Zhang, Yuanyuan; Zhang, Yizhen; Liu, Yuan; Wang, Xinling; Yang, Bin

    2016-09-01

    Properties of carbon fiber (CF) reinforced composites depend largely on the interfacial bonding strength between fiber and the matrix. In the present work, CF was grafted by 4,4‧-diphenylmethane diisocyanate (MDI) molecules after electrochemical oxidation treatment. The existence of functional groups introduced to the fiber surface and the changes of surface roughness were confirmed by FTIR, AFM, XPS, SEM and Raman spectroscopy. To evaluate the possible applications of this surface modification of carbon fiber, we examined the mechanical properties as well as the friction and wear performance of pristine CF and MDI-CF reinforced thermoplastic polyurethane (TPU) composites with 5-30 wt.% fiber contents, and found that the mechanical properties of TPU composites were all significantly improved. It is remarkable that when fiber content was 30 wt.%, the tensile strength of TPU/MDI-CF was increased by 99.3%, which was greater than TPU/CF (53.2%), and the friction loss of TPU/MDI-CF was decreased by 49.09%. The results of DMA and SEM analysis indicated the positive effects of MDI modification on the interfacial bonding between fibers and matrix. We believed that this simple and effective method could be used to the development of surface modified carbon fiber for high-performance TPU.

  2. Carbyne fiber synthesis within evaporating metallic liquid carbon

    DOE PAGES

    Cannella, Christopher B.; Goldman, Nir

    2015-07-09

    Carbyne (e.g., linear chains of sp-bonded carbon) has been the subject of intense research focus due to its presence in astrophysical bodies, as well as its potential for use as a nanoelectronic device and superhard material. In this work, we discuss the formation of carbyne fiber bundles over a nanosecond time scale in laser pulse melting studies, using a previously determined density functional tight binding model for carbon coupled with a new correction for the dispersion energy. We determine our dispersion energy model by optimizing a modified Lennard-Jones potential to an experimentally determined equation of state for graphite, yielding excellentmore » results for the bulk modulus and density under ambient conditions. We then simulate previous experiments by heating graphite to high temperature, followed by expanding the ensuing liquid phase to low density. Our results indicate that the initial, hot liquid phase mainly consists of sp2-bonded carbon atoms, which form a system of sp-bonded strands bound together via dispersion interactions upon achieving low density and temperature. Lastly, the high computational efficiency of our approach allows for direct comparison with experiments that span a wide range of thermodynamic conditions and can help determine parameters for synthesis of carbon-based materials with potentially exotic properties.« less

  3. Carbyne fiber synthesis within evaporating metallic liquid carbon

    SciTech Connect

    Cannella, Christopher B.; Goldman, Nir

    2015-07-09

    Carbyne (e.g., linear chains of sp-bonded carbon) has been the subject of intense research focus due to its presence in astrophysical bodies, as well as its potential for use as a nanoelectronic device and superhard material. In this work, we discuss the formation of carbyne fiber bundles over a nanosecond time scale in laser pulse melting studies, using a previously determined density functional tight binding model for carbon coupled with a new correction for the dispersion energy. We determine our dispersion energy model by optimizing a modified Lennard-Jones potential to an experimentally determined equation of state for graphite, yielding excellent results for the bulk modulus and density under ambient conditions. We then simulate previous experiments by heating graphite to high temperature, followed by expanding the ensuing liquid phase to low density. Our results indicate that the initial, hot liquid phase mainly consists of sp2-bonded carbon atoms, which form a system of sp-bonded strands bound together via dispersion interactions upon achieving low density and temperature. Lastly, the high computational efficiency of our approach allows for direct comparison with experiments that span a wide range of thermodynamic conditions and can help determine parameters for synthesis of carbon-based materials with potentially exotic properties.

  4. Microstructural evolution of carbon nanotube fibers: deformation and strength mechanism.

    PubMed

    Liu, Xia; Lu, Weibang; Ayala, Orlando M; Wang, Lian-Ping; Karlsson, Anette M; Yang, Qingsheng; Chou, Tsu-Wei

    2013-03-07

    A comprehensive investigation of the mechanical behavior and microstructural evolution of carbon nanotube (CNT) continuous fibers under twisting and tension is conducted using coarse-grained molecular dynamics simulations. The tensile strength of CNT fibers with random CNT stacking is found to be higher than that of fibers with regular CNT stacking. The factor dominating the mechanical response of CNT fibers is identified as individual CNT stretching. A simplified twisted CNT fiber model is studied to illustrate the structural evolution mechanisms of CNT fibers under tension. Moreover, it is demonstrated that CNT fibers can be reinforced by enhancing intertube interactions. This study would be helpful not only in the general understanding of the nano- and micro-scale factors affecting CNT fibers' mechanical behavior, but also in the optimal design of CNT fibers' architecture and performance.

  5. A single carbon fiber microelectrode with branching carbon nanotubes for bioelectrochemical processes.

    PubMed

    Zhao, Xueyan; Lu, Xin; Tze, William T Y; Wang, Ping

    2010-06-15

    Carbon fiber electrodes are greatly promising for microelectronic applications including high performance biosensors, miniaturized transmitters, and energy storage and generation devices. For biosensor applications, one drawback of using carbon fiber microelectrodes, especially single fiber electrodes, is the weak electronic signals, a consequence of low surface area of fibers, which ultimately limit the sensitivity of the sensors. In this paper, we report a novel single fiber microelectrode with branched carbon nanotubes for enhanced sensing performance. The fiber microelectrode was prepared from carbonization of cellulose fibers. Upon introduction of carbon nanotubes, the carbon fibers exhibited a significant increase in the specific surface area from <10 to 36.4 m(2)/g (determined by the BET method). A single fiber electrode with such a hierarchical structure was examined for redox reactions of coenzyme NAD(H) which is useful to mediate the assays and transformations of a broad range of biochemicals. Experimental results showed that carbon nanotubes enhanced the redox reactions on surfaces of the electrode by reducing the oxidation potential of NAD(H) from 0.8 to 0.55 V. The single carbon fiber with branched nanotubes was also examined for the detection of glycerol, and the results showed linear responding signals in a concentration range of 40-250 microM. These results are comparable to the properties of fossil-based carbon materials, and thus our cellulose-based carbon electrodes provide a potentially sustainable alternative in bioelectrochemical applications.

  6. Carbon nanotube reinforced polyacrylonitrile and poly(etherketone) fibers

    NASA Astrophysics Data System (ADS)

    Jain, Rahul

    The graphitic nature, continuous structure, and high mechanical properties of carbon nanotubes (CNTs) make them good candidate for reinforcing polymer fiber. The different types of CNTs including single-wall carbon nanotubes (SWNTs), few-wall carbon nanotubes (FWNTs), and multi-wall carbon nanotubes (MWNTs), and carbon nanofibers (CNFs) differ in terms of their diameter and number of graphitic walls. The desire has been to increase the concentration of CNTs as much as possible to make next generation multi-functional materials. The work in this thesis is mainly focused on MWNT and CNF reinforced polyacrylonitrile (PAN) composite fibers, and SWNT, FWNT, and MWNT reinforced poly(etherketone) (PEK) composite fibers. To the best of our knowledge, this is the first study to report the spinning of 20% MWNT or 30% CNF reinforced polymer fiber spun using conventional fiber spinning. Also, this is the first study to report the PEK/CNT composite fibers. The fibers were characterized for their thermal, tensile, mechanical, and dynamic mechanical properties. The fiber structure and morphology was studied using WAXD and SEM. The effect of two-stage heat drawing, sonication time for CNF dispersion, fiber drying temperature, and molecular weight of PAN was also studied. Other challenges associated with processing high concentrations of solutions for making composite fibers have been identified and reported. The effect of CNT diameter and concentration on fiber spinnability and electrical conductivity of composite fiber have also been studied. This work suggests that CNT diameter controls the maximum possible concentration of CNTs in a composite fiber. The results show that by properly choosing the type of CNT, length of CNTs, dispersion of CNTs, fiber spinning method, fiber draw ratio, and type of polymer, one can get electrically conducting fibers with wide range of conductivities for different applications. The PEK based control and composite fibers possess high thermal

  7. RADIATION EFFECTS ON EPOXY CARBON FIBER COMPOSITE

    SciTech Connect

    Hoffman, E

    2008-05-30

    Carbon fiber-reinforced bisphenol-A epoxy matrix composite was evaluated for gamma radiation resistance. The composite was exposed to total gamma doses of 50, 100, and 200 Mrad. Irradiated and baseline samples were tested for tensile strength, hardness and evaluated using FTIR (Fourier transform infrared) spectroscopy and DSC (differential scanning calorimetry) for structural changes. Scanning electron microscopy was used to evaluate microstructural behavior. Mechanical testing of the composite bars revealed no apparent change in modulus, strain to failure, or fracture strength after exposures. However, testing of only the epoxy matrix revealed changes in hardness, thermal properties, and FTIR results with increasing gamma irradiation. The results suggest the epoxy within the composite can be affected by exposure to gamma irradiation.

  8. Carbon fiber electrode for redox flow battery

    SciTech Connect

    Inoue, M.; Tsuzuki, Y.; Iizuka, Y.; Shimada, M.

    1987-03-01

    Advanced secondary batteries have been developed as electrical energy storage systems for use in electrical utility load-levelling and stand-alone photovoltaic installations. Among them, the redox flow system based on aqueous iron and chromium redox couple is one of the most advanced. An important key to its feasibility is electrode fabrication. Woven and non-woven fabrics of carbon fibers have been used as thin but three dimensional electrodes of the redox flow system in view of their electric conductivity, chemical stability, and economy. One of the electrochemical problems of iron-chromium redox battery related to the electrode is the slow reaction rate of reduction and oxidation of chromium complex ion. As the electron transfer rate of chromium complex ion is lower than that of iron ion, the voltaic efficiency of the battery tends to decrease.

  9. Graphene quantum dots derived from carbon fibers.

    PubMed

    Peng, Juan; Gao, Wei; Gupta, Bipin Kumar; Liu, Zheng; Romero-Aburto, Rebeca; Ge, Liehui; Song, Li; Alemany, Lawrence B; Zhan, Xiaobo; Gao, Guanhui; Vithayathil, Sajna Antony; Kaipparettu, Benny Abraham; Marti, Angel A; Hayashi, Takuya; Zhu, Jun-Jie; Ajayan, Pulickel M

    2012-02-08

    Graphene quantum dots (GQDs), which are edge-bound nanometer-size graphene pieces, have fascinating optical and electronic properties. These have been synthesized either by nanolithography or from starting materials such as graphene oxide (GO) by the chemical breakdown of their extended planar structure, both of which are multistep tedious processes. Here, we report that during the acid treatment and chemical exfoliation of traditional pitch-based carbon fibers, that are both cheap and commercially available, the stacked graphitic submicrometer domains of the fibers are easily broken down, leading to the creation of GQDs with different size distribution in scalable amounts. The as-produced GQDs, in the size range of 1-4 nm, show two-dimensional morphology, most of which present zigzag edge structure, and are 1-3 atomic layers thick. The photoluminescence of the GQDs can be tailored through varying the size of the GQDs by changing process parameters. Due to the luminescence stability, nanosecond lifetime, biocompatibility, low toxicity, and high water solubility, these GQDs are demonstrated to be excellent probes for high contrast bioimaging and biosensing applications.

  10. Controlled chemical stabilization of polyvinyl precursor fiber, and high strength carbon fiber produced therefrom

    DOEpatents

    Naskar, Amit K.

    2016-12-27

    Method for the preparation of carbon fiber, which comprises: (i) immersing functionalized polyvinyl precursor fiber into a liquid solution having a boiling point of at least 60.degree. C.; (ii) heating the liquid solution to a first temperature of at least 25.degree. C. at which the functionalized precursor fiber engages in an elimination-addition equilibrium while a tension of at least 0.1 MPa is applied to the fiber; (iii) gradually raising the first temperature to a final temperature that is at least 20.degree. C. above the first temperature and up to the boiling point of the liquid solution for sufficient time to convert the functionalized precursor fiber to a pre-carbonized fiber; and (iv) subjecting the pre-carbonized fiber produced according to step (iii) to high temperature carbonization conditions to produce the final carbon fiber. Articles and devices containing the fibers, including woven and non-woven mats or paper forms of the fibers, are also described.

  11. Carbon nanotubes on carbon fibers: Synthesis, structures and properties

    NASA Astrophysics Data System (ADS)

    Zhang, Qiuhong

    The interface between carbon fibers (CFs) and the resin matrix in traditional high performance composites is characterized by a large discontinuity in mechanical, electrical, and thermal properties which can cause inefficient energy transfer. Due to the exceptional properties of carbon nanotubes (CNTs), their growth at the surface of carbon fibers is a promising approach to controlling interfacial interactions and achieving the enhanced bulk properties. However, the reactive conditions used to grow carbon nanotubes also have the potential to introduce defects that can degrade the mechanical properties of the carbon fiber (CF) substrate. In this study, using thermal chemical vapor deposition (CVD) method, high density multi-wall carbon nanotubes have been successfully synthesized directly on PAN-based CF surface without significantly compromising tensile properties. The influence of CVD growth conditions on the single CF tensile properties and carbon nanotube (CNT) morphology was investigated. The experimental results revealed that under high temperature growth conditions, the tensile strength of CF was greatly decreased at the beginning of CNT growth process with the largest decrease observed for sized CFs. However, the tensile strength of unsized CFs with CNT was approximately the same as the initial CF at lower growth temperature. The interfacial shear strength of CNT coated CF (CNT/CF) in epoxy was studied by means of the single-fiber fragmentation test. Results of the test indicate an improvement in interfacial shear strength with the addition of a CNT coating. This improvement can most likely be attributed to an increase in the interphase yield strength as well as an improvement in interfacial adhesion due to the presence of the nanotubes. CNT/CF also offers promise as stress and strain sensors in CF reinforced composite materials. This study investigates fundamental mechanical and electrical properties of CNT/CF using nanoindentation method by designed

  12. Synthesis of isotropic carbon fibers from coal extracts

    SciTech Connect

    Kimber, G.M.; Vego, A.; Rantell, T.D.; Fowler, C.; Johnson, A.; Derbyshire, F.J.

    1996-12-31

    General Purpose Carbon Fibers (GPCF) are produced commercially from isotropic petroleum and coal-tar pitch precursors. Their lower cost makes them more attractive than high performance PAN (polyacrylonitrile) based or mesophase pitch-based fibers for applications where ultra-high strength or stiffness is not required. In recent years there has also been a growing interest in the use of activated carbon fibers in environmental and gas separation applications. Potentially low cost fiber precursors could be produced from coals by solvent extraction. Such extracts can be obtained in much higher yields than coal tar pitch (e.g., >50 wt.% versus <5 wt.% of coal). There is also the opportunity to widely vary the coal extract properties by control of reaction conditions (e.g., coal rank, type of solvent, reactant gas, heat treatment temperature and time) and thus alter the conditions required for fiber synthesis and the properties of the carbonized and activated fiber products.

  13. Aligning carbon fibers in micro-extruded composite ink

    NASA Astrophysics Data System (ADS)

    Mahajan, Chaitanya G.

    Direct write processes include a wide range of additive manufacturing techniques with the ability to fabricate structures directly onto planar and non-planar surfaces. Most additive manufacturing techniques use unreinforced polymers to produce parts. By adding carbon fiber as a reinforcing material, properties such as mechanical strength, electrical conductivity, and thermal conductivity can be enhanced. Carbon fibers can be long and continuous, or short and discontinuous. The strength of carbon fiber composite parts is greatly increased when the fibers are preferentially aligned. This research focuses on increasing the strength of additively manufactured parts reinforced using discontinuous carbon fibers that have been aligned during the micro extrusion process. A design of experiments (DOE) approach was used to identify significant process parameters affecting fiber alignment. Factors such as the length of carbon fibers, nozzle diameter, fiber loading fraction, air pressure, translational speed and standoff distance were considered. A two dimensional Fast Fourier Transform (2D FFT) was used to quantify the degree of fiber alignment in the extruded composite inks. ImageJ software supported by an oval profile plugin was used with micrographs of printed samples to obtain the carbon fiber alignment values. The optimal value for the factors was derived by identifying the significant main and interaction effects. Based on the results of the DOE, tensile test samples were printed with fibers aligned parallel and perpendicular to the tensile axis. A standard test method for tensile properties of plastic revealed that the extruded parts with fibers aligned along the tensile axis were better in tensile strength and modulus.

  14. Strong, conductive carbon nanotube fibers as efficient hole collectors

    PubMed Central

    2012-01-01

    We present the photovoltaic properties of heterojunctions made from single-walled carbon nanotube (SWNT) fibers and n-type silicon wafers. The use of the opaque SWNT fiber allows photo-generated holes to transport along the axis direction of the fiber. The heterojunction solar cells show conversion efficiencies of up to 3.1% (actual) and 10.6% (nominal) at AM1.5 condition. In addition, the use of strong, environmentally benign carbon nanotube fibers provides excellent structural stability of the photovoltaic devices. PMID:22340519

  15. Activated Carbon Fibers For Gas Storage

    SciTech Connect

    Burchell, Timothy D; Contescu, Cristian I; Gallego, Nidia C

    2017-01-01

    The advantages of Activated Carbon Fibers (ACF) over Granular Activated Carbon (GAC) are reviewed and their relationship to ACF structure and texture are discussed. These advantages make ACF very attractive for gas storage applications. Both adsorbed natural gas (ANG) and hydrogen gas adsorption performance are discussed. The predicted and actual structure and performance of lignin-derived ACF is reviewed. The manufacture and performance of ACF derived monolith for potential automotive natural gas (NG) storage applications is reported Future trends for ACF for gas storage are considered to be positive. The recent improvements in NG extraction coupled with the widespread availability of NG wells means a relatively inexpensive and abundant NG supply in the foreseeable future. This has rekindled interest in NG powered vehicles. The advantages and benefit of ANG compared to compressed NG offer the promise of accelerated use of ANG as a commuter vehicle fuel. It is to be hoped the current cost hurdle of ACF can be overcome opening ANG applications that take advantage of the favorable properties of ACF versus GAC. Lastly, suggestions are made regarding the direction of future work.

  16. [Carbon fiber-reinforced plastics as implant materials].

    PubMed

    Bader, R; Steinhauser, E; Rechl, H; Siebels, W; Mittelmeier, W; Gradinger, R

    2003-01-01

    Carbon fiber-reinforced plastics have been used clinically as an implant material for different applications for over 20 years.A review of technical basics of the composite materials (carbon fibers and matrix systems), fields of application,advantages (e.g., postoperative visualization without distortion in computed and magnetic resonance tomography), and disadvantages with use as an implant material is given. The question of the biocompatibility of carbon fiber-reinforced plastics is discussed on the basis of experimental and clinical studies. Selected implant systems made of carbon composite materials for treatments in orthopedic surgery such as joint replacement, tumor surgery, and spinal operations are presented and assessed. Present applications for carbon fiber reinforced plastics are seen in the field of spinal surgery, both as cages for interbody fusion and vertebral body replacement.

  17. Activated carbon fiber composite material and method of making

    DOEpatents

    Burchell, Timothy D.; Weaver, Charles E.; Chilcoat, Bill R.; Derbyshire, Frank; Jagtoyen, Marit

    2000-01-01

    An activated carbon fiber composite for separation and purification, or catalytic processing of fluids is described. The activated composite comprises carbon fibers rigidly bonded to form an open, permeable, rigid monolith capable of being formed to near-net-shape. Separation and purification of gases are effected by means of a controlled pore structure that is developed in the carbon fibers contained in the composite. The open, permeable structure allows the free flow of gases through the monolith accompanied by high rates of adsorption. By modification of the pore structure and bulk density the composite can be rendered suitable for applications such as gas storage, catalysis, and liquid phase processing.

  18. Activated carbon fiber composite material and method of making

    DOEpatents

    Burchell, Timothy D.; Weaver, Charles E.; Chilcoat, Bill R.; Derbyshire, Frank; Jagtoyen, Marit

    2001-01-01

    An activated carbon fiber composite for separation and purification, or catalytic processing of fluids is described. The activated composite comprises carbon fibers rigidly bonded to form an open, permeable, rigid monolith capable of being formed to near-net-shape. Separation and purification of gases are effected by means of a controlled pore structure that is developed in the carbon fibers contained in the composite. The open, permeable structure allows the free flow of gases through the monolith accompanied by high rates of adsorption. By modification of the pore structure and bulk density the composite can be rendered suitable for applications such as gas storage, catalysis, and liquid phase processing.

  19. Comparison of carbon fiber and stainless steel root canal posts.

    PubMed

    Purton, D G; Payne, J A

    1996-02-01

    This in vitro study compared physical properties of root canal posts made of carbon fiber-reinforced epoxy resin with those of stainless steel posts. Three-point bending tests were used to derive the transverse modulus of elasticity of the posts. Resin composite cores on the posts were subjected to tensile forces to test the bonds between the cores and posts. Carbon fiber posts appeared to have adequate rigidity for their designed purpose. The bond strength of the resin composite cores to the carbon fiber posts was significantly less than that to the stainless steel posts.

  20. Global Carbon Fiber Composites. Supply Chain Competitiveness Analysis

    SciTech Connect

    Das, Sujit; Warren, Joshua A.; West, Devin; Schexnayder, Susan M.

    2016-05-01

    The objective of this study is to identify key opportunities in the carbon fiber (CF) supply chain where resources and investments can help advance the clean energy economy. The report focuses on four application areas—wind energy, aerospace, automotive, and pressure vessels—that top the list of industries using CF and carbon fiber reinforced polymers (CFRP) and are particularly relevant to the mission of U.S. Department of Energy’s Office of Energy Efficiency and Renewable Energy (DOE EERE). For each of the four application areas, the report addresses the supply and demand trends within that sector, supply chain, and costs of carbon fiber and components.

  1. Carbon fiber production using high pressure treatment of a precursor material

    SciTech Connect

    Lewis, I.C.; Moore, A.W.

    1983-09-06

    A process for producing a carbon fiber includes the steps of heat treating a selected precursor material under high pressure, thereafter solvent extracting the treated precursor material to obtain mesophase pitch, spinning the mesophase pitch into at least one pitch fiber, thermosetting the pitch fiber, and carbonizing the pitch fiber to obtain the carbon fiber.

  2. Oxidation of Carbon Fibers in Water Vapor Studied

    NASA Technical Reports Server (NTRS)

    Opila, Elizabeth J.

    2003-01-01

    T-300 carbon fibers (BP Amoco Chemicals, Greenville, SC) are a common reinforcement for silicon carbide composite materials, and carbon-fiber-reinforced silicon carbide composites (C/SiC) are proposed for use in space propulsion applications. It has been shown that the time to failure for C/SiC in stressed oxidation tests is directly correlated with the fiber oxidation rate (ref. 1). To date, most of the testing of these fibers and composites has been conducted in oxygen or air environments; however, many components for space propulsion, such as turbopumps, combustors, and thrusters, are expected to operate in hydrogen and water vapor (H2/H2O) environments with very low oxygen contents. The oxidation rate of carbon fibers in conditions representative of space propulsion environments is, therefore, critical for predicting component lifetimes for real applications. This report describes experimental results that demonstrate that, under some conditions, lower oxidation rates of carbon fibers are observed in water vapor and H2/H2O environments than are found in oxygen or air. At the NASA Glenn Research Center, the weight loss of the fibers was studied as a function of water pressure, temperature, and gas velocity. The rate of carbon fiber oxidation was determined, and the reaction mechanism was identified.

  3. The Tensile Behavior of High-Strength Carbon Fibers.

    PubMed

    Langston, Tye

    2016-08-01

    Carbon fibers exhibit exceptional properties such as high stiffness and specific strength, making them excellent reinforcements for composite materials. However, it is difficult to directly measure their tensile properties and estimates are often obtained by tensioning fiber bundles or composites. While these macro scale tests are informative for composite design, their results differ from that of direct testing of individual fibers. Furthermore, carbon filament strength also depends on other variables, including the test length, actual fiber diameter, and material flaw distribution. Single fiber tensile testing was performed on high-strength carbon fibers to determine the load and strain at failure. Scanning electron microscopy was also conducted to evaluate the fiber surface morphology and precisely measure each fiber's diameter. Fiber strength was found to depend on the test gage length and in an effort to better understand the overall expected performance of these fibers at various lengths, statistical weak link scaling was performed. In addition, the true Young's modulus was also determined by taking the system compliance into account. It was found that all properties (tensile strength, strain to failure, and Young's modulus) matched very well with the manufacturers' reported values at 20 mm gage lengths, but deviated significantly at other lengths.

  4. An investigation of carbon fiber/polyphenylene sulfide adhesion

    SciTech Connect

    Fisher, G.S.; Drzal, L.T.

    1996-12-31

    The level of adhesion between reinforcing fibers and a thermoplastic matrix can have a strong effect on composite mechanical properties. In composites of polyphenylene sulfide (PPS) with carbon fibers, Phillips Petroleum Company has reported an increase in transverse tensile strength from 30 MPa to 74 MPa and an increase in transverse flexural strength from 44 to 141 MPa when extrusion grade PPS resin is replaced with a composite grade resin. Since transverse composite properties are particularly sensitive to adhesion, it was suspected that improved fiber/matrix adhesion could be responsible for the improved mechanical properties. Several factors can affect the adhesion between carbon fibers and a semicrystalline thermoplastic such as PPS. These factors include fiber surface structure and chemistry, adsorption of matrix onto fibers, chemical bonding between fiber and matrix, and morphology of the matrix near the fibers. The objectives of this study were to determine the interfacial shear strengths of several types of carbon fibers with both grades of PPS and to determine which factors affect fiber/matrix adhesion. This will allow the authors to determine whether the differences in composite mechanical properties can be correlated to different levels of adhesion and to identify the key factor(s) that lead to any differences in adhesion.

  5. Ice melting properties of steel fiber modified asphalt mixtures with induction heating

    NASA Astrophysics Data System (ADS)

    Fang, Hao; Sun, Yihan; Liu, Quantao; Li, Bin; Wu, Shaopeng; Tang, Jin

    2017-03-01

    In this paper, the ice melting performance of asphalt concrete with steel fibers was studied. Steel fiber modified asphalt mixtures were prepared, five different fiber amount of steel fiber modified asphalt mixtures were mixed to study their induction heating rate. The samples covered with different thickness of ice were heated with induction heating to study their ice melting efficency. It was proved that the induction heating of steel fiber modified asphalt mixtures could significantly improve their ice melting efficency compared with the natural condition. And it was found that the thickness of the ice had little influence on the induction heating rate of the asphalt concrete.

  6. Polyethylenimine Carbon Nanotube Fiber Electrodes for Enhanced Detection of Neurotransmitters

    PubMed Central

    2015-01-01

    Carbon nanotube (CNT)-based microelectrodes have been investigated as alternatives to carbon-fiber microelectrodes for the detection of neurotransmitters because they are sensitive, exhibit fast electron transfer kinetics, and are more resistant to surface fouling. Wet spinning CNTs into fibers using a coagulating polymer produces a thin, uniform fiber that can be fabricated into an electrode. CNT fibers formed in poly(vinyl alcohol) (PVA) have been used as microelectrodes to detect dopamine, serotonin, and hydrogen peroxide. In this study, we characterize microelectrodes with CNT fibers made in polyethylenimine (PEI), which have much higher conductivity than PVA-CNT fibers. PEI-CNT fibers have lower overpotentials and higher sensitivities than PVA-CNT fiber microelectrodes, with a limit of detection of 5 nM for dopamine. The currents for dopamine were adsorption controlled at PEI-CNT fiber microelectrodes, independent of scan repetition frequency, and stable for over 10 h. PEI-CNT fiber microelectrodes were resistant to surface fouling by serotonin and the metabolite interferant 5-hydroxyindoleacetic acid (5-HIAA). No change in sensitivity was observed for detection of serotonin after 30 flow injection experiments or after 2 h in 5-HIAA for PEI-CNT electrodes. The antifouling properties were maintained in brain slices when serotonin was exogenously applied multiple times or after bathing the slice in 5-HIAA. Thus, PEI-CNT fiber electrodes could be useful for the in vivo monitoring of neurochemicals. PMID:25117550

  7. Method for fabricating light weight carbon-bonded carbon fiber composites

    DOEpatents

    Wrenn, G.E. Jr.; Abbatiello, L.A.; Lewis, J. Jr.

    1987-06-17

    The invention is directed to the fabrication of ultralight carbon- bonded carbon fiber composites of densities in the range of about 0. 04 to 0.10 grams per cubic centimeter. The composites are fabricated by forming an aqueous slurry of carbonaceous fibers which include carbonized fibers and 0-50 weight percent fugitive fibers and a particulate thermosetting resin precursor. The slurry is brought into contact with a perforated mandrel and the water is drained from the slurry through the perforations at a controlled flow rate of about 0. 03 to 0.30 liters per minutes per square inch of a mandrel surface. The deposited billet of fibers and resin precursor is heated to cure the resin precursor to bind the fibers together, removed from the mandrel, and then the resin and fugitive fibers, if any, are carbonized.

  8. Method for fabricating light weight carbon-bonded carbon fiber composites

    SciTech Connect

    Wrenn, Jr., George E.; Abbatiello, Leonard A.; Lewis, Jr., John

    1989-01-01

    Ultralight carbon-bonded carbon fiber composites of densities in the range of about 0.04 to 0.10 grams per cubic centimeter are fabricated by forming an aqueous slurry of carbonaceous fibers which include carbonized fibers and 0-50 weight percent fugitive fibers and a particulate thermosetting resin precursor. The slurry is brought into contact with a perforated mandrel and the water is drained from the slurry through the perforations at a controlled flow rate of about 0.03 to 0.30 liters per minutes per square inch of mandrel surface. The deposited billet of fibers and resin precursor is heated to cure the resin precursor to bind the fibers together, removed from the mandrel, and then the resin and fugitive fibers, if any, are carbonized.

  9. Strong, light, multifunctional fibers of carbon nanotubes with ultrahigh conductivity.

    PubMed

    Behabtu, Natnael; Young, Colin C; Tsentalovich, Dmitri E; Kleinerman, Olga; Wang, Xuan; Ma, Anson W K; Bengio, E Amram; ter Waarbeek, Ron F; de Jong, Jorrit J; Hoogerwerf, Ron E; Fairchild, Steven B; Ferguson, John B; Maruyama, Benji; Kono, Junichiro; Talmon, Yeshayahu; Cohen, Yachin; Otto, Marcin J; Pasquali, Matteo

    2013-01-11

    Broader applications of carbon nanotubes to real-world problems have largely gone unfulfilled because of difficult material synthesis and laborious processing. We report high-performance multifunctional carbon nanotube (CNT) fibers that combine the specific strength, stiffness, and thermal conductivity of carbon fibers with the specific electrical conductivity of metals. These fibers consist of bulk-grown CNTs and are produced by high-throughput wet spinning, the same process used to produce high-performance industrial fibers. These scalable CNT fibers are positioned for high-value applications, such as aerospace electronics and field emission, and can evolve into engineered materials with broad long-term impact, from consumer electronics to long-range power transmission.

  10. Potential release of fibers from burning carbon composites. [aircraft fires

    NASA Technical Reports Server (NTRS)

    Bell, V. L.

    1980-01-01

    A comprehensive experimental carbon fiber source program was conducted to determine the potential for the release of conductive carbon fibers from burning composites. Laboratory testing determined the relative importance of several parameters influencing the amounts of single fibers released, while large-scale aviation jet fuel pool fires provided realistic confirmation of the laboratory data. The dimensions and size distributions of fire-released carbon fibers were determined, not only for those of concern in an electrical sense, but also for those of potential interest from a health and environmental standpoint. Fire plume and chemistry studies were performed with large pool fires to provide an experimental input into an analytical modelling of simulated aircraft crash fires. A study of a high voltage spark system resulted in a promising device for the detection, counting, and sizing of electrically conductive fibers, for both active and passive modes of operation.

  11. Autonomic healing of carbon fiber/epoxy interfaces.

    PubMed

    Jones, Amanda R; Cintora, Alicia; White, Scott R; Sottos, Nancy R

    2014-05-14

    A maximum of 91% recovery of interfacial shear strength (IFSS) is achieved for carbon fiber/epoxy interfaces functionalized with capsules containing reactive epoxy resin and ethyl phenyl acetate (EPA). We find a binder is necessary to improve the retention of capsules on the carbon fiber surface. Two different methods for applying the binder to the carbon fiber surface are investigated. Healing efficiency is assessed by recovery of IFSS of a single functionalized fiber embedded in a microdroplet of epoxy. Debonding of the fiber/matrix interface ruptures the capsules, releasing resin and EPA solvent into the crack plane. The solvent swells the matrix, initiating transport of residual amine functionality from the matrix for further curing with the epoxy resin delivered to the crack plane. The two binder protocols produce comparable results, both yielding higher recovery of IFSS than samples prepared without a binder.

  12. Recent Progress in Producing Lignin-Based Carbon Fibers for Functional Applications

    SciTech Connect

    Paul, Ryan; Burwell, Deanna; Dai, Xuliang; Naskar, Amit; Gallego, Nidia; Akato, Kokouvi

    2015-10-29

    Lignin, a biopolymer, has been investigated as a renewable and low-cost carbon fiber precursor since the 1960s. Although successful lab-scale production of lignin-based carbon fibers has been reported, there are currently not any commercial producers. This paper will highlight some of the known challenges with converting lignin-based precursors into carbon fiber, and the reported methods for purifying and modifying lignin to improve it as a precursor. Several of the challenges with lignin are related to its diversity in chemical structure and purity, depending on its biomass source (e.g. hardwood, softwood, grasses) and extraction method (e.g. organosolv, kraft). In order to make progress in this field, GrafTech and Oak Ridge National Laboratory are collaborating to develop lignin-based carbon fiber technology and to demonstrate it in functional applications, as part of a cooperative agreement with the DOE Advanced Manufacturing Office. The progress made to date with producing lignin-based carbon fiber for functional applications, as well as developing and qualifying a supply chain and value proposition, are also highlighted.

  13. Designed amyloid fibers as materials for selective carbon dioxide capture

    PubMed Central

    Li, Dan; Furukawa, Hiroyasu; Deng, Hexiang; Liu, Cong; Yaghi, Omar M.; Eisenberg, David S.

    2014-01-01

    New materials capable of binding carbon dioxide are essential for addressing climate change. Here, we demonstrate that amyloids, self-assembling protein fibers, are effective for selective carbon dioxide capture. Solid-state NMR proves that amyloid fibers containing alkylamine groups reversibly bind carbon dioxide via carbamate formation. Thermodynamic and kinetic capture-and-release tests show the carbamate formation rate is fast enough to capture carbon dioxide by dynamic separation, undiminished by the presence of water, in both a natural amyloid and designed amyloids having increased carbon dioxide capacity. Heating to 100 °C regenerates the material. These results demonstrate the potential of amyloid fibers for environmental carbon dioxide capture. PMID:24367077

  14. Mechanical analysis of three dimensional woven carbon fiber-reinforced composites using fiber-based continuum model

    NASA Astrophysics Data System (ADS)

    Ahn, Hyunchul; An, Yongsan; Yu, Woong-Ryeol

    2016-10-01

    A new numerical method for analyzing the mechanical behavior of three-dimensional (3D) woven carbon fiber-reinforced composites was developed by considering changes in the fiber orientation and calculating the stress increments due to incremental deformations. The model consisted of four steps, starting update of the yarn orientation based on incremental deformation gradient. The stiffness matrix was then computed using the updated yarn orientation. Next, partial damage and propagation were incorporated into the stress calculation using modified ply discount method. The failure conditions were obtained by testing the unidirectional composites and formulated using Puck's criterion. This numerical model was finally implemented into commercial finite element software, ABAQUS, as a user material subroutine. As for experiment, 3D woven composite samples was manufactured using laboratory built-in system and characterized, the results of which were compared with simulated results, demonstrating that the current numerical model can properly predict the mechanical behavior of 3D fiber-reinforced composites.

  15. The surface properties of carbon fibers and their adhesion to organic polymers

    NASA Technical Reports Server (NTRS)

    Bascom, W. D.; Drzal, L. T.

    1987-01-01

    The state of knowledge of the surface properties of carbon fibers is reviewed, with emphasis on fiber/matrix adhesion in carbon fiber reinforced plastics. Subjects treated include carbon fiber structure and chemistry, techniques for the study of the fiber surface, polymer/fiber bond strength and its measurement, variations in polymer properties in the interphase, and the influence of fiber matrix adhesion on composite mechanical properties. Critical issues are summarized and search recommendations are made.

  16. Carbon Fiber Reinforced Glass Matrix Composites for Satellite Applications

    DTIC Science & Technology

    1992-06-01

    graphite basal planes. On the other hand, a high elastic modulus fiber derived from a mesophase pitch precursor, such as P-100, has a radial...and B. V. Perov. Elsevier Science Publishers B. V., Amsterdam, 1985. 2. B. Rand, "Carbon Fibres from Mesophase Pitch " pp. 495-575 in ibid.. 3. W. K...HMU fiber and the other reinforced with pitch -based fiber (P- 100 or FT700), will be described and compared with respect to various features of the

  17. Indium phosphide nanowires integrated directly on carbon fibers

    NASA Astrophysics Data System (ADS)

    Lohn, Andrew J.; Longson, Timothy J.; Kobayashi, Nobuhiko P.

    2011-10-01

    We have demonstrated the growth of a group III-V semiconductor binary alloy, indium phosphide (InP), directly on carbon fibers thereby enabling a union of semiconductor and structural materials. Carbon fibers were prepared by electrospinning solutions of polyacrilonitrile (PAN) and dimethylformamide (DMF) followed by carbonization at 750 °C in inert atmosphere. Gold nanoparticles dispersed on the fibers catalyzed nanowire growth by metal organic chemical vapor deposition. X-ray diffraction suggests that the nanowires appear to be epitaxially grown along the (110) direction. Geometrical parameters have been determined by scanning electron microscopy and transmission electron microscopy and elemental analysis has been carried out using energy dispersive spectroscopy. The nanowires grown from carbon fibers are composed of an amorphous shell and crystalline core which alternates at high spatial frequency.mountai

  18. A carbon fiber exposure test facility and instrumentation

    NASA Technical Reports Server (NTRS)

    Newcomb, A. L., Jr.

    1980-01-01

    A facility to evaluate the risk associated with the exposure of electrical and electronic equipment to airborne carbon/graphite fibers was constructed. A wide variety of instrumentation is described and illustrated.

  19. Global Carbon Fiber Composites Supply Chain Competitiveness Analysis

    SciTech Connect

    Das, Sujit; Warren, Josh; West, Devin; Schexnayder, Susan M.

    2016-05-01

    This study identifies key opportunities in the carbon fiber supply chain where the United States Department of Energy's Office of Energy Efficiency and Renewable Energy resources and investments can help the United States achieve or maintain a competitive advantage. The report focuses on four application areas--wind energy, aerospace, automotive, and pressure vessels--that top the list of industries using carbon fiber and carbon fiber reinforced polymers and are also particularly relevant to EERE's mission. For each of the four application areas, the report addresses the supply and demand trends within that sector, supply chain, and costs of carbon fiber and components, all contributing to a competitiveness assessment that addresses the United States' role in future industry growth. This report was prepared by researchers at Oak Ridge National Laboratory and the University of Tennessee for the Clean Energy Manufacturing Analysis Center.

  20. The Importance of Carbon Fiber to Polymer Additive Manufacturing

    SciTech Connect

    Love, Lonnie J; Kunc, Vlastimil; Rios, Orlando; Duty, Chad E; Post, Brian K; Blue, Craig A

    2014-01-01

    Additive manufacturing holds tremendous promise in terms of revolutionizing manufacturing. However, fundamental hurdles limit mass adoption of the technology. First, production rates are extremely low. Second, the physical size of parts is generally small, less than a cubic foot. Third, while there is much excitement about metal additive manufacturing, the major growth area is in polymer additive manufacturing systems. Unfortunately, the mechanical properties of the polymer parts are poor, limiting the potential for direct part replacement. To address this issue, we describe three benefits of blending carbon fiber with polymer additive manufacturing. First, development of carbon fiber reinforced polymers for additive manufacturing achieves specific strengths approaching aerospace quality aluminum. Second, carbon fiber radically changes the behavior of the material during deposition, enabling large scale, out-of-the-oven, high deposition rate manufacturing. Finally, carbon fiber technology and additive manufacturing complement each other. Merging the two manufacturing processes enables the construction of complex components that would not be possible otherwise.

  1. Assessment of risk to Boeing commerical transport aircraft from carbon fibers. [fiber release from graphite/epxoy materials

    NASA Technical Reports Server (NTRS)

    Clarke, C. A.; Brown, E. L.

    1980-01-01

    The possible effects of free carbon fibers on aircraft avionic equipment operation, removal costs, and safety were investigated. Possible carbon fiber flow paths, flow rates, and transfer functions into the Boeing 707, 727, 737, 747 aircraft and potentially vulnerable equipment were identified. Probabilities of equipment removal and probabilities of aircraft exposure to carbon fiber were derived.

  2. Carbon-fiber composite molecular sieves for gas separation

    SciTech Connect

    Jagtoyen, M.; Derbyshire, F.; Kimber, G.; Fei, Y.Q.

    1995-08-01

    The progress of research in the development of novel, rigid, monolithic adsorbent carbon fiber composites is described. Carbon fiber composites are produced at ORNL and activated at the CAER using steam or CO{sub 2} under different conditions, with the aims of producing a uniform degree of activation through the material, and of closely controlling pore structure and adsorptive properties The principal focus of the work to date has been to produce materials with narrow porosity for use in gas separations.

  3. Chronic in vivo stability assessment of carbon fiber microelectrode arrays

    NASA Astrophysics Data System (ADS)

    Patel, Paras R.; Zhang, Huanan; Robbins, Matthew T.; Nofar, Justin B.; Marshall, Shaun P.; Kobylarek, Michael J.; Kozai, Takashi D. Y.; Kotov, Nicholas A.; Chestek, Cynthia A.

    2016-12-01

    Objective. Individual carbon fiber microelectrodes can record unit activity in both acute and semi-chronic (∼1 month) implants. Additionally, new methods have been developed to insert a 16 channel array of carbon fiber microelectrodes. Before assessing the in vivo long-term viability of these arrays, accelerated soak tests were carried out to determine the most stable site coating material. Next, a multi-animal, multi-month, chronic implantation study was carried out with carbon fiber microelectrode arrays and silicon electrodes. Approach. Carbon fibers were first functionalized with one of two different formulations of PEDOT and subjected to accelerated aging in a heated water bath. After determining the best PEDOT formula to use, carbon fiber arrays were chronically implanted in rat motor cortex. Some rodents were also implanted with a single silicon electrode, while others received both. At the end of the study a subset of animals were perfused and the brain tissue sliced. Tissue sections were stained for astrocytes, microglia, and neurons. The local reactive responses were assessed using qualitative and quantitative methods. Main results. Electrophysiology recordings showed the carbon fibers detecting unit activity for at least 3 months with average amplitudes of ∼200 μV. Histology analysis showed the carbon fiber arrays with a minimal to non-existent glial scarring response with no adverse effects on neuronal density. Silicon electrodes showed large glial scarring that impacted neuronal counts. Significance. This study has validated the use of carbon fiber microelectrode arrays as a chronic neural recording technology. These electrodes have demonstrated the ability to detect single units with high amplitude over 3 months, and show the potential to record for even longer periods. In addition, the minimal reactive response should hold stable indefinitely, as any response by the immune system may reach a steady state after 12 weeks.

  4. Carbon Fiber Reinforced Carbon Composites Rotary Valves for Internal Combustion Engines

    NASA Technical Reports Server (NTRS)

    Northam, G. Burton (Inventor); Ransone, Philip O. (Inventor); Rivers, H. Kevin (Inventor)

    1999-01-01

    Carbon fiber reinforced carbon composite rotary, sleeve, and disc valves for internal combustion engines and the like are disclosed. The valves are formed from knitted or braided or warp-locked carbon fiber shapes. Also disclosed are valves fabricated from woven carbon fibers and from molded carbon matrix material. The valves of the present invention with their very low coefficient of thermal expansion and excellent thermal and self-lubrication properties, do not present the sealing and lubrication problems that have prevented rotary, sleeve, and disc valves from operating efficiently and reliably in the past. Also disclosed are a sealing tang to further improve sealing capabilities and anti-oxidation treatments.

  5. Carbon Fiber Reinforced Carbon Composite Rotary Valve for an Internal Combustion Engine

    NASA Technical Reports Server (NTRS)

    Northam, G.Burton (Inventor); Ransone, Philip O. (Inventor); Rivers, H. Kevin (Inventor)

    2000-01-01

    Carbon fiber reinforced carbon composite rotary sleeve, and disc valves for internal combustion engines and the like are disclosed. The valves are formed from knitted or braided or wrap-locked carbon fiber shapes. Also disclosed are valves fabricated from woven carbon fibers and from molded carbon matrix material. The valves of the present invention with their very low coefficient of thermal expansion and excellent thermal and self-lubrication properties do not present the sealing and lubrication problems that have prevented rotary sleeve and disc valves from operating efficiently and reliably in the past. Also disclosed are a sealing tang to further improve sealing capabilities and anti-oxidation treatments.

  6. Tensile Properties of Polyimide Composites Incorporating Carbon Nanotubes-Grafted and Polyimide-Coated Carbon Fibers

    NASA Astrophysics Data System (ADS)

    Naito, Kimiyoshi

    2014-09-01

    The tensile properties and fracture behavior of polyimide composite bundles incorporating carbon nanotubes-grafted (CNT-grafted) and polyimide-coated (PI-coated) high-tensile-strength polyacrylonitrile (PAN)-based (T1000GB), and high-modulus pitch-based (K13D) carbon fibers were investigated. The CNT were grown on the surface of the carbon fibers by chemical vapor deposition. The pyromellitic dianhydride/4,4'-oxydianiline PI nanolayer coating was deposited on the surface of the carbon fiber by high-temperature vapor deposition polymerization. The results clearly demonstrate that CNT grafting and PI coating were effective for improving the Weibull modulus of T1000GB PAN-based and K13D pitch-based carbon fiber bundle composites. In addition, the average tensile strength of the PI-coated T1000GB carbon fiber bundle composites was also higher than that of the as-received carbon fiber bundle composites, while the average tensile strength of the CNT-grafted T1000GB, K13D, and the PI-coated K13D carbon fiber bundle composites was similar to that of the as-received carbon fiber bundle composites.

  7. Development of Commodity Grade, Lower Cost Carbon Fiber - Commercial Applications

    SciTech Connect

    Warren, Charles David; Paulauskas, Felix L; Baker, Frederick S; Eberle, Cliff; Naskar, Amit K

    2009-01-01

    In pursuit of the goal to produce ultra-lightweight fuel efficient vehicles, there has been great excitement during the last few years about the potential for using carbon fiber reinforced composites in high volume applications. Currently, the greatest hurdle that inhibits wider implementation of carbon fiber composites in transportation is the high cost of the fiber when compared to other candidate materials. As part of the United States Department of Energy s FreedomCAR initiative, significant research is being conducted to develop lower cost, high volume technologies for producing carbon fiber. This paper will highlight the on-going research in this area. Through Department of Energy (DOE) sponsorship, Oak Ridge National Laboratory (ORNL) and its partners have been working with the US Automotive Composites Consortium (ACC) to develop technologies that would enable the production of carbon fiber at 5-7 dollars per pound. Achievement of this cost goal would allow the introduction of carbon fiber based composites into a greater number of applications for future vehicles. The approach has necessitated the development of both alternative precursors and more efficient production methods. Alternative precursors under investigation include textile grade polyacrylonitrile (PAN) fibers and fibers from lignin-based feedstocks. Previously, as part of the research program, Hexcel Corporation developed the science necessary to allow textile grade PAN to be used as a precursor rather than typical carbon fiber grade precursors. Efforts are also underway to develop carbon fiber precursors from lignin-based feedstocks. ORNL and its partners are working on this effort with domestic pulp and paper producers. In terms of alternative production methods, ORNL has developed a microwave-based carbonization unit that can process pre-oxidized fiber at over 200 inches per minute. ORNL has also developed a new method of high speed oxidation and a new method for precursor stabilization

  8. Carbon fiber enhanced bioelectricity generation in soil microbial fuel cells.

    PubMed

    Li, Xiaojing; Wang, Xin; Zhao, Qian; Wan, Lili; Li, Yongtao; Zhou, Qixing

    2016-11-15

    The soil microbial fuel cell (MFC) is a promising biotechnology for the bioelectricity recovery as well as the remediation of organics contaminated soil. However, the electricity production and the remediation efficiency of soil MFC are seriously limited by the tremendous internal resistance of soil. Conductive carbon fiber was mixed with petroleum hydrocarbons contaminated soil and significantly enhanced the performance of soil MFC. The maximum current density, the maximum power density and the accumulated charge output of MFC mixed carbon fiber (MC) were 10, 22 and 16 times as high as those of closed circuit control due to the carbon fiber productively assisted the anode to collect the electron. The internal resistance of MC reduced by 58%, 83% of which owed to the charge transfer resistance, resulting in a high efficiency of electron transfer from soil to anode. The degradation rates of total petroleum hydrocarbons enhanced by 100% and 329% compared to closed and opened circuit controls without the carbon fiber respectively. The effective range of remediation and the bioelectricity recovery was extended from 6 to 20cm with the same area of air-cathode. The mixed carbon fiber apparently enhanced the bioelectricity generation and the remediation efficiency of soil MFC by means of promoting the electron transfer rate from soil to anode. The use of conductively functional materials (e.g. carbon fiber) is very meaningful for the remediation and bioelectricity recovery in the bioelectrochemical remediation.

  9. Characterization of MWCNT/Nanoclay Binary Nanoparticles Modified Composites and Fatigue Performance Evaluation of Nanoclay Modified Fiber Reinforced Composites

    DTIC Science & Technology

    2014-04-21

    modified with binary nanoparticles consist of multi-walled carbon nanotubes (MWCNTs) and nanoclays together. First, epoxy SC-15 resin was reinforced...modified with binary nanoparticles consist of multi-walled carbon nanotubes (MWCNTs) and nanoclays together. First, epoxy SC-15 resin was reinforced with...7 2.2.1 Carbon Nanotube

  10. Transforming Pristine Carbon Fiber Tows into High Performance Solid-State Fiber Supercapacitors.

    PubMed

    Yu, Dingshan; Zhai, Shengli; Jiang, Wenchao; Goh, Kunli; Wei, Li; Chen, Xudong; Jiang, Rongrong; Chen, Yuan

    2015-09-02

    A facile activation strategy can transform pristine carbon fiber tows into high-performance fiber electrodes with a specific capacitance of 14.2 F cm(-3) . The knottable fiber supercapacitor shows an energy density of 0.35 mW h cm(-3) , an ultrahigh power density of 3000 mW cm(-3) , and a remarkable capacitance retention of 68%, when the scan rate increases from 10 to 1000 mV s(-1) .

  11. Rapid oxidation/stabilization technique for carbon foams, carbon fibers and C/C composites

    DOEpatents

    Tan, Seng; Tan, Cher-Dip

    2004-05-11

    An enhanced method for the post processing, i.e. oxidation or stabilization, of carbon materials including, but not limited to, carbon foams, carbon fibers, dense carbon-carbon composites, carbon/ceramic and carbon/metal composites, which method requires relatively very short and more effective such processing steps. The introduction of an "oxygen spill over catalyst" into the carbon precursor by blending with the carbon starting material or exposure of the carbon precursor to such a material supplies required oxygen at the atomic level and permits oxidation/stabilization of carbon materials in a fraction of the time and with a fraction of the energy normally required to accomplish such carbon processing steps. Carbon based foams, solids, composites and fiber products made utilizing this method are also described.

  12. Advances in electrospun carbon fiber-based electrochemical sensing platforms for bioanalytical applications.

    PubMed

    Mao, Xianwen; Tian, Wenda; Hatton, T Alan; Rutledge, Gregory C

    2016-02-01

    Electrochemical sensing is an efficient and inexpensive method for detection of a range of chemicals of biological, clinical, and environmental interest. Carbon materials-based electrodes are commonly employed for the development of electrochemical sensors because of their low cost, biocompatibility, and facile electron transfer kinetics. Electrospun carbon fibers (ECFs), prepared by electrospinning of a polymeric precursor and subsequent thermal treatment, have emerged as promising carbon systems for biosensing applications since the electrochemical properties of these carbon fibers can be easily modified by processing conditions and post-treatment. This review addresses recent progress in the use of ECFs for sensor fabrication and analyte detection. We focus on the modification strategies of ECFs and identification of the key components that impart the bioelectroanalytical activities, and point out the future challenges that must be addressed in order to advance the fundamental understanding of the ECF electrochemistry and to realize the practical applications of ECF-based sensing devices.

  13. [Immobilization of catalase on Fe (III) modified collagen fiber].

    PubMed

    Chen, Shuang; Song, Na; Liao, Xuepin; Shi, Bi

    2011-07-01

    Fe (III) modified collagen fibers were used to immobilize catalase through the cross-linking of glutaraldehyde. The loading amount of catalase on the supporting matrix was 16.7 mg/g, and 35% enzymatic activity was remained. A series of experiments were conducted on free and immobilized catalase in order to investigate their optimal pH and temperature, and the thermal, storage and operation stability. Results suggest that the free and immobilized catalase prefer similar pH and temperature condition, which were pH 7.0 and 25 degrees C. It should be noted that the thermal stability of catalase was considerably improved after immobilization owing to the fact that the enzyme kept 30% of relative activity after incubation at 75 degrees C for 5 h. On the contrary, the free catalase was completely inactive. As for the storage stability, the immobilized catalase kept 88% of relative activity after stored at room temperature for 12 days while the free one was completely inactive under the same conditions. Moreover, the immobilized catalase preserved 57% of relative activity after being reused 26 times, exhibiting excellent operation stability. Consequently, this investigation suggests that collagen fiber can be used as excellent supporting matrix for the immobilization of catalase, and it is potential to be used for the immobilization of similar enzymes.

  14. Carbon fiber reinforced thermoplastic composites for future automotive applications

    NASA Astrophysics Data System (ADS)

    Friedrich, K.

    2016-05-01

    After a brief introduction to polymer composite properties and markets, the state of the art activities in the field of manufacturing of advanced composites for automotive applications are elucidated. These include (a) long fiber reinforced thermoplastics (LFT) for secondary automotive components, and (b) continuous carbon fiber reinforced thermosetting composites for car body applications. It is followed by future possibilities of carbon fiber reinforced thermoplastic composites for e.g. (i) crash elements, (ii) racing car seats, and (iii) production and recycling of automotive fenders.

  15. Influence of carbon nanotubes coatings onto carbon fiber by oxidative treatments combined with electrophoretic deposition on interfacial properties of carbon fiber composite

    NASA Astrophysics Data System (ADS)

    Deng, Chao; Jiang, Jianjun; Liu, Fa; Fang, Liangchao; Wang, Junbiao; Li, Dejia; Wu, Jianjun

    2015-12-01

    To improve the interfacial performance of carbon fiber (CF) and epoxy resin, carbon nanotubes (CNTs) coatings were utilized to achieve this purpose through coating onto CF by the treatment with hydrogen peroxide and concentrated nitric acid combined with electrophoretic deposition (EPD) process. The influence of electrophoretically deposited CNTs coatings on the surface properties of CFs were investigated by Fourier transform infrared spectrometer, atomic force microscopy, scanning electron microscopy and dynamic contact angle analysis. The results indicated that the deposition of carbon nanotubes introduced some polar groups to carbon fiber surfaces, enhanced surface roughness and changed surface morphologies of carbon fibers. Surface wettability of carbon fibers may be significantly improved by increasing surface free energy of the fibers due to the deposition of CNTs. The thickness and density of the coatings increases with the introduction of pretreatment of the CF during the EPD process. Short beam shear test was performed to examine the effect of carbon fiber functionalization on mechanical properties of the carbon fiber/epoxy resin composites. The interfacial adhesion of CNTs/CF reinforced epoxy composites showed obvious enhancement of interlaminar shear strength by 60.2% and scanning electron microscope photographs showed that the failure mode of composites was changed after the carbon fibers were coated with CNTs.

  16. Mechanical properties of carbon fiber composites for environmental applications

    SciTech Connect

    Andrews, R.; Grulke, E.

    1996-10-01

    Activated carbon fiber composites show great promise as fixed-bed catalytic reactors for use in environmental applications such as flue gas clean-up and ground water decontamination. A novel manufacturing process produces low density composites from chopped carbon fibers and binders. These composites have high permeability, can be activated to have high surface area, and have many potential environmental applications. This paper reports the mechanical and flow properties of these low density composites. Three point flexural strength tests were used to measure composite yield strength and flexural moduli. Composites containing over 10 pph binder had an adequate yield strength of about 200 psi at activations up to 40% weight loss. The composites were anisotropic, having along-fiber to cross-fiber yield strength ratios between 1.2 and 2.0. The friction factor for flow through the composites can be correlated using the fiber Reynolds number, and is affected by the composite bulk density.

  17. Mesophase Behavior in Carbon Fiber Bundles.

    DTIC Science & Technology

    1982-06-01

    Mesophase Coal-tar pitch Mesophase bloating Composite fabrication Mesophase wetting Ccmposite micrography Petroleum pitch 20. Atl RACT (Continue on reve...fiber in petroleum pitch were pyrolyzed under three conditions of constraint. The results confirm a recent report that the mesophase transformation...proceeds differently within a fiber bundle than in bulk pitch . In the early stages of transformation, both pitch and mesophase wet the fiber, and the

  18. Multiscale carbon nanotube-carbon fiber reinforcement for advanced epoxy composites.

    PubMed

    Bekyarova, E; Thostenson, E T; Yu, A; Kim, H; Gao, J; Tang, J; Hahn, H T; Chou, T-W; Itkis, M E; Haddon, R C

    2007-03-27

    We report an approach to the development of advanced structural composites based on engineered multiscale carbon nanotube-carbon fiber reinforcement. Electrophoresis was utilized for the selective deposition of multi- and single-walled carbon nanotubes (CNTs) on woven carbon fabric. The CNT-coated carbon fabric panels were subsequently infiltrated with epoxy resin using vacuum-assisted resin transfer molding (VARTM) to fabricate multiscale hybrid composites in which the nanotubes were completely integrated into the fiber bundles and reinforced the matrix-rich regions. The carbon nanotube/carbon fabric/epoxy composites showed approximately 30% enhancement of the interlaminar shear strength as compared to that of carbon fiber/epoxy composites without carbon nanotubes and demonstrate significantly improved out-of-plane electrical conductivity.

  19. Electrospinning of Continuous Carbon Naonofiber-Filled Composite Fibers

    NASA Astrophysics Data System (ADS)

    Aboutalebi, Seyed Hamed; Gholamvand, Zahra; Keyanpour-Rad, Mansoor

    In order to translate the superior properties of carbon nanofibers (CNFs) to macro-scale structures, an electrospinning route capable of placing CNFs into a continuous nano-scale composite fibril is introduced. In this work, composite fibers were produced by electrospinning solution of polyacrylonitrile (PAN) with carbon nanofibers dispersed in dimethylformamide (DMF), which is an effective solvent for carbon nanofibers. Atomic force microscopy (AFM) and scanning electron microscopy (SEM) demonstrated rough and globular surfaces on the CNF containing fibers. Raman spectra confirmed the presence of CNFs in the polymer fibers prepared employing the electrospinning method. Raman observation served as the direct evidence of successful filling of PAN fibers with CNFs and complemented the results obtained by SEM and AFM studies.

  20. SURFACE MORPHOLOGY OF CARBON FIBER POLYMER COMPOSITES AFTER LASER STRUCTURING

    SciTech Connect

    Sabau, Adrian S; Chen, Jian; Jones, Jonaaron F.; Alexandra, Hackett; Jellison Jr, Gerald Earle; Daniel, Claus; Warren, Charles David; Rehkopf, Jackie D.

    2015-01-01

    The increasing use of Carbon Fiber Polymer Composite (CFPC) as a lightweight material in automotive and aerospace industries requires the control of surface morphology. In this study, the composites surface was prepared by ablating the resin in the top fiber layer of the composite using an Nd:YAG laser. The CFPC specimens with T700S carbon fiber and Prepreg - T83 resin (epoxy) were supplied by Plasan Carbon Composites, Inc. as 4 ply thick, 0/90o plaques. The effect of laser fluence, scanning speed, and wavelength was investigated to remove resin without an excessive damage of the fibers. In addition, resin ablation due to the power variation created by a laser interference technique is presented. Optical property measurements, optical micrographs, 3D imaging, and high-resolution optical profiler images were used to study the effect of the laser processing on the surface morphology.

  1. Adsorption Properties of Lignin-derived Activated Carbon Fibers (LACF)

    SciTech Connect

    Contescu, Cristian I.; Gallego, Nidia C.; Thibaud-Erkey, Catherine; Karra, Reddy

    2016-04-01

    The object of this CRADA project between Oak Ridge National Laboratory (ORNL) and United Technologies Research Center (UTRC) is the characterization of lignin-derived activated carbon fibers (LACF) and determination of their adsorption properties for volatile organic compounds (VOC). Carbon fibers from lignin raw materials were manufactured at Oak Ridge National Laboratory (ORNL) using the technology previously developed at ORNL. These fibers were physically activated at ORNL using various activation conditions, and their surface area and pore-size distribution were characterized by gas adsorption. Based on these properties, ORNL did down-select five differently activated LACF materials that were delivered to UTRC for measurement of VOC adsorption properties. UTRC used standard techniques based on breakthrough curves to measure and determine the adsorption properties of indoor air pollutants (IAP) - namely formaldehyde and carbon dioxide - and to verify the extent of saturated fiber regenerability by thermal treatments. The results are summarized as follows: (1) ORNL demonstrated that physical activation of lignin-derived carbon fibers can be tailored to obtain LACF with surface areas and pore size distributions matching the properties of activated carbon fibers obtained from more expensive, fossil-fuel precursors; (2) UTRC investigated the LACF potential for use in air cleaning applications currently pursued by UTRC, such as building ventilation, and demonstrated their regenerability for CO2 and formaldehyde, (3) Both partners agree that LACF have potential for possible use in air cleaning applications.

  2. Enhancement of the in-plane shear properties of carbon fiber composites containing carbon nanotube mats

    NASA Astrophysics Data System (ADS)

    Kim, Hansang

    2015-01-01

    The in-plane shear property of carbon fiber laminates is one of the most important structural features of aerospace and marine structures. Fiber-matrix debonding caused by in-plane shear loading is the major failure mode of carbon fiber composites because of the stress concentration at the interfaces. In this study, carbon nanotube mats (CNT mat) were incorporated in two different types of carbon fiber composites. For the case of woven fabric composites, mechanical interlocking between the CNTs and the carbon fibers increased resistance to shear failure. However, not much improvement was observed for the prepreg composites as a result of incorporation of the CNT mats. The reinforcement mechanism of the CNT mat layer was investigated by a fractographic study using scanning electron microscopy. In addition, the CNT mat was functionalized by three different methods and the effectiveness of the functionalization methods was determined and the most appropriate functionalization method for the CNT mat was air oxidation.

  3. Effect of plasma surface treatment of recycled carbon fiber on carbon fiber-reinforced plastics (CFRP) interfacial properties

    NASA Astrophysics Data System (ADS)

    Lee, Hooseok; Ohsawa, Isamu; Takahashi, Jun

    2015-02-01

    We studied the effects of plasma surface treatment of recycled carbon fiber on adhesion of the fiber to polymers after various treatment times. Conventional surface treatment methods have been attempted for recycled carbon fiber, but most require very long processing times, which may increase cost. Hence, in this study, plasma processing was performed for 0.5 s or less. Surface functionalization was quantified by X-ray photoelectron spectroscopy. O/C increased from approximately 11% to 25%. The micro-droplet test of adhesion properties and the mechanical properties of CFRP were also investigated.

  4. Carbon nanotube fibers spun from a sizing material

    NASA Astrophysics Data System (ADS)

    Meng, Fancheng; Lu, Weibang; Li, Qingwen; Claes, Michaël; Kchit, Nadir; Chou, Tsu-Wei

    2014-12-01

    Carbon nanotube (CNT) fibers with large pores of hundreds of nanometers in diameter are synthesized from a commercially available sizing material. The pore size can be well controlled by varying the processing conditions including fiber drying temperature and shrinkage ratio. With the use of small amount H2SO4 (1 wt. %), low-concentration (1 wt. %) polyvinyl alcohol (PVA) bath coagulated porous fibers are flexible, with both high mechanical strength and electrical conductivity. Ethylene glycol/methanol mixture bath is also used to fabricate PVA-free porous CNT fibers. The porous fiber demonstrates good performance in foreign components accessing and accommodating, which may facilitate more CNT fiber practical applications, such as absorbents and supercapacitors.

  5. High Interlaminar Shear Strength Enhancement of Carbon Fiber/Epoxy Composite through Fiber- and Matrix-Anchored Carbon Nanotube Networks.

    PubMed

    Wang, Yilei; Raman Pillai, Suresh Kumar; Che, Jianfei; Chan-Park, Mary B

    2017-03-15

    To improve the interlaminar shear strength (ILSS) of carbon fiber reinforced epoxy composite, networks of multiwalled carbon nanotubes (MWNTs) were grown on micron-sized carbon fibers and single-walled carbon nanotubes (SWNTs) were dispersed into the epoxy matrix so that these two types of carbon nanotubes entangle at the carbon fiber (CF)/epoxy matrix interface. The MWNTs on the CF fiber (CF-MWNTs) were grown by chemical vapor deposition (CVD), while the single-walled carbon nanotubes (SWNTs) were finely dispersed in the epoxy matrix precursor with the aid of a dispersing agent polyimide-graft-bisphenol A diglyceryl acrylate (PI-BDA) copolymer. Using vacuum assisted resin transfer molding, the SWNT-laden epoxy matrix precursor was forced into intimate contact with the "hairy" surface of the CF-MWNT fiber. The tube density and the average tube length of the MWNT layer on CF was controlled by the CVD growth time. The ILSS of the CF-MWNT/epoxy resin composite was examined using the short beam shear test. With addition of MWNTs onto the CF surface as well as SWNTs into the epoxy matrix, the ILSS of CF/epoxy resin composite was 47.59 ± 2.26 MPa, which represented a ∼103% increase compared with the composite made with pristine CF and pristine epoxy matrix (without any SWNT filler). FESEM established that the enhanced composite did not fail at the CF/epoxy matrix interface.

  6. [Raman spectra of carbon fibers during electrochemical treatment].

    PubMed

    Zhang, Min; Zhu, Bo; Wang, Cheng-guo; Wei, Han-xing

    2010-01-01

    Laser Raman spectroscopy was employed to characterize the microstructure variations of polyacrylonitrile-based carbon fibers during electrochemical treatment, and the characteristics of first-order Raman spectra of carbon fibers with different treatment time were investigated in the present paper. The results indicate that the Raman spectra of the carbon fibers can be fitted into four bands, named as D (or D1) band, G band, D2 band and D3 band, respectively. The Raman parameters to characterize surface microstructure variations of carbon fibers mainly include R(I(D2)) / I(G), area ratio of D band and G band), I(D2) / I(G) (area ratio of D2 band and G band), I(D3) / I(G) (area ratio of D3 band and G band), and I(D(S))/ I(G) (area ratio of all the disordered structure and G band). The peak separation between D band and G band becomes large after electrochemical treatment. R increases, which indicates that the surface disordered degree of carbon fibers increases. I(D3) / I(G) increases, which is caused by organic molecules, fragments or functional groups; decreases which is caused by the break of the aliphatic structures. With increasing treatment time, I(D(S)) / I(G) increases continuously, and the change trend of l(D(S)) / I(G) is consistent with that of R value, which can be used to comprehensively explain the variation of the surface structure of carbon fibers. So, the variety rules of the structure of carbon fibers can be investigated by laser Raman spectroscopy during electrochemical treatment.

  7. Processing, characterization and modeling of carbon nanofiber modified carbon/carbon composites

    NASA Astrophysics Data System (ADS)

    Samalot Rivera, Francis J.

    Carbon/Carbon (C/C) composites are used in high temperature applications because they exhibit excellent thermomechanical properties. There are several challenges associated with the processing of C/C composites that include long cycle times, formation of closed porosity within fabric woven architecture and carbonization induced cracks that can lead to reduction of mechanical properties. This work addresses various innovative approaches to reduce processing uncertainties and thereby improve thermomechanical properties of C/C by using vapor grown carbon nanofibers (VGCNFs) in conjunction with carbon fabric and precursor phenolic matrix. The different aspects of the proposed research contribute to understanding of the translation of VGCNFs properties in a C/C composite. The specific objectives of the research are; (a) To understand the mechanical properties and microstructural features of phenolic resin precursor with and without modification with VGCNFs; (b) To develop innovative processing concepts that incorporate VGCNFs by spraying them on carbon fabric and/or adding VGCNFs to the phenolic resin precursor; and characterizing the process induced thermal and mechanical properties; and (c) To develop a finite element model to evaluate the thermal stresses developed in the carbonization of carbon/phenolic with and without VGCNFs. Addition of VGCNFs to phenolic resin enhanced the thermal and physical properties in terms of flexure and interlaminar properties, storage modulus and glass transition temperature and lowered the coefficient of thermal expansion. The approaches of spraying VGCNFs on the fabric surface and mixing VGCNFs with the phenolic resin was found to be effective in enhancing mechanical and thermal properties of the resulting C/C composites. Fiber bridging, improved carbon yield and minimization of carbonization-induced damage were the benefits of incorporating VGCNFs in C/C composites. Carbonization induced matrix cracking predicted by the finite

  8. Surface and interfacial properties of carbon fibers

    NASA Technical Reports Server (NTRS)

    Bascom, Willard D.

    1991-01-01

    The adhesion strength of AS4 fibers to thermoplastic polymers was determined. The specific polymers were polycarbonate, polyphenylene oxide, polyetherimide, polyphenylene oxide blends with polystyrene, and polycarbonate blends with a polycarbonate-polysiloxan copolymer. Data are also included for polysulfone. It was recognized at the outset that an absolute measure of the fiber matrix adhesion would be difficult. However, it is feasible to determine the fiber bond strengths to the thermoplastics relative to the bond strengths of the same fibers to epoxy polymers. It was anticipated, and in fact realized, that the adhesion of AS4 to the thermoplastic polymers was relatively low. Therefore, further objectives of the study were to identify means of increasing fiber/matrix adhesion and to try to determine why the adhesion of AS4 to thermoplastics is significantly less than to epoxy polymers.

  9. Low Speed Carbon Deposition Process for Hermetic Optical Fibers

    SciTech Connect

    ABRAMCZYK,JAROSLAW; ARTHUR,SARA E. TALLANT,DAVID R.; HIKANSSON,ADAM S.; LINDHOLM,ERIC A.; LO,JIE

    1999-09-29

    For optical fibers used in adverse environments, a carbon coating is frequently deposited on the fiber surface to prevent water and hydrogen ingression that lead respectively to strength degradation through fatigue and hydrogen-induced attenuation. The deposition of a hermetic carbon coating onto an optical fiber during the draw process holds a particular challenge when thermally-cured specialty coatings are subsequently applied because of the slower drawing rate. In this paper, we report on our efforts to improve the low-speed carbon deposition process by altering the composition and concentration of hydrocarbon precursor gases. The resulting carbon layers have been analyzed for electrical resistance, Raman spectra, coating thickness, and surface roughness, then compared to strength data and dynamic fatigue behavior.

  10. Electrical Energy Generation via Reversible Chemical Doping on Carbon Nanotube Fibers.

    PubMed

    Liu, Albert Tianxiang; Kunai, Yuichiro; Liu, Pingwei; Kaplan, Amir; Cottrill, Anton L; Smith-Dell, Jamila S; Strano, Michael S

    2016-11-01

    Chemically modified carbon nanotube fibers enable unique power sources driven entirely by a chemical potential gradient. Electrical current (11.9 μA mg(-1) ) and potential (525 mV) are reversibly produced by localized acetonitrile doping under ambient conditions. An inverse length-scaling of the maximum power as L(-1.03) that creates specific powers as large as 30.0 kW kg(-1) highlights the potential for microscale energy generation.

  11. UV-cured adhesives for carbon fiber composite applications

    NASA Astrophysics Data System (ADS)

    Lu, Hsiao-Chun

    Carbon fiber composite materials are increasingly used in automobile, marine, and aerospace industries due to their unique properties, including high strength, high stiffness and low weight. However, due to their brittle characteristic, these structures are prone to physical damage, such as a bird strike or impact damage. Once the structure is damaged, it is important to have fast and reliable temporary repair until the permanent repair or replacement can take place. In this dissertation, UV-based adhesives were used to provide a bonding strength for temporary repair. Adhesively bonded patch repair is an efficient and effective method for temporary repair. In this study, precured patches (hard patches) and dry fabric patches with laminating resins (soft patches) were performed. UV-based epoxy adhesives were applied to both patch repair systems. For precured patch repair, the bonding strengths were investigated under different surface treatments for bonding area and different adhesives thicknesses. The shear stresses of different UV exposure times and curing times were tested. Besides, the large patch repair was investigated as well. For soft patch repair, the hand wet lay-up was applied due to high viscosity of UV resins. A modified single lap shear testing (ASTM D5868) was applied to determine the shear stress. The large patches used fiber glass instead of carbon fiber to prove the possibility of repair with UV epoxy resin by hand wet lay-up process. The hand lay-up procedure was applied and assisted by vacuum pressure to eliminate the air bubbles and consolidate the patches. To enhance the bonding strength and effective soft patch repair, vacuum assisted resin transferring molding (VaRTM) is the better option. However, only low viscosity resins can be operated by VaRTM. Hence, new UV-based adhesives were formulated. The new UV-based adhesives included photoinitiator (PI), epoxy and different solvents. Solvents were used to compound the photoinitiator into epoxy

  12. Effects of fiber, matrix, and interphase on carbon fiber composite compression strength

    NASA Technical Reports Server (NTRS)

    Nairn, John A.; Harper, Sheila I.; Bascom, Willard D.

    1994-01-01

    The major goal of this project was to obtain basic information on compression failure properties of carbon fiber composites. To do this, we investigated fiber effects, matrix effects, and fiber/matrix interface effects. Using each of nine fiber types, we prepared embedded single-fiber specimens, single-ply specimens, and full laminates. From the single-fiber specimens, in addition to the standard fragmentation test analysis, we were able to use the low crack density data to provide information about the distribution of fiber flaws. The single-ply specimens provided evidence of a correlation between the size of kink band zones and the quality of the interface. Results of the laminate compression experiments mostly agreed with the results from single-ply experiments, although the ultimate compression strengths of laminates were higher. Generally, these experiments showed a strong effect of interfacial properties. Matrix effects were examined using laminates subjected to precracking under mixed-mode loading conditions. A large effect of precracking conditions on the mode 1 toughness of the laminates was found. In order to control the properties of the fiber/matrix interface, we prepared composites of carbon fiber and polycarbonate and subjected these to annealing. The changes in interfacial properties directly correlated with changes in compression strength.

  13. Effect of boron on carbon-fiber microstructure and reactivity

    SciTech Connect

    Jones, L.E.

    1987-01-01

    A mesophase pitch P55 and a PAN T-300 carbon filter were substitutionally doped with boron at concentration levels ranging from 4 x 10/sup -5/ to 0.05 B/C atom ratio. Boron enhanced graphitization in these fibers at concentrations greater than 2 x 10/sup -4/ B/C. Below this concentration level, the microstructure of the pitch P55 fiber was unaffected. High concentrations of boron were found to modulate the (001) diffraction profiles in both fibers. This indicated the presence of two separate graphite fractions in the same fiber (one fraction was much more turbostratic than the other). The presence of boron was also found to increase the L/sub c/ and decrease the L/sub a/ dimensions of the more graphitic fractions of the fiber structure. The decrease in the L/sub a/ is the result of an increase in tilt boundaries along the a direction, parallel to the fiber axis. The presence of boron inhibits fiber gasification. The cause of gasification inhibition at high boron concentrations is related to changes in the fiber microstructure; however, there is a pronounced effect of specific-site blockage by an oxide of boron that develops on the surface during gasification. At relatively low boron concentrations, decrease in the reactivity of the fiber was correlated to changes in fiber electronic structure which, in turn, influences the chemistry of the active surface sites.

  14. Flexible Fiber-Shaped Supercapacitor Based on Nickel-Cobalt Double Hydroxide and Pen Ink Electrodes on Metallized Carbon Fiber.

    PubMed

    Gao, Libo; Surjadi, James Utama; Cao, Ke; Zhang, Hongti; Li, Peifeng; Xu, Shang; Jiang, Chenchen; Song, Jian; Sun, Dong; Lu, Yang

    2017-02-15

    Flexible fiber-shaped supercapacitors (FSSCs) are recently of extensive interest for portable and wearable electronic gadgets. Yet the lack of industrial-scale flexible fibers with high conductivity and capacitance and low cost greatly limits its practical engineering applications. To this end, we here present pristine twisted carbon fibers (CFs) coated with a thin metallic layer via electroless deposition route, which exhibits exceptional conductivity with ∼300% enhancement and superior mechanical strength (∼1.8 GPa). Subsequently, the commercially available conductive pen ink modified high conductive composite fibers, on which uniformly covered ultrathin nickel-cobalt double hydroxides (Ni-Co DHs) were introduced to fabricate flexible FSSCs. The synthesized functionalized hierarchical flexible fibers exhibit high specific capacitance up to 1.39 F·cm(-2) in KOH aqueous electrolyte. The asymmetric solid-state FSSCs show maximum specific capacitance of 28.67 mF·cm(-2) and energy density of 9.57 μWh·cm(-2) at corresponding power density as high as 492.17 μW·cm(-2) in PVA/KOH gel electrolyte, with demonstrated high flexibility during stretching, demonstrating their potential in flexible electronic devices and wearable energy systems.

  15. Use of Carbon Fiber Composite Molecular Sieves for Air Separation

    SciTech Connect

    Baker, Frederick S; Contescu, Cristian I; Gallego, Nidia C; Burchell, Timothy D

    2005-09-01

    A novel adsorbent material, 'carbon fiber composite molecular sieve' (CFCMS), has been developed by the Oak Ridge National Laboratory. Its features include high surface area, large pore volume, and a rigid, permeable carbon structure that exhibits significant electrical conductivity. The unique combination of high adsorptive capacity, permeability, good mechanical properties, and electrical conductivity represents an enabling technology for the development of novel gas separation and purification systems. In this context, it is proposed that a fast-cycle air separation process that exploits a kinetic separation of oxygen and nitrogen should be possible using a CFCMS material coupled with electrical swing adsorption (ESA). The adsorption of O{sub 2}, N{sub 2}, and CO{sub 2} on activated carbon fibers was investigated using static and dynamic techniques. Molecular sieving effects in the activated carbon fiber were highlighted by the adsorption of CO{sub 2}, a more sensitive probe molecule for the presence of microporosity in adsorbents. The kinetic studies revealed that O2 was more rapidly adsorbed on the carbon fiber than N{sub 2}, and with higher uptake under equilibrium conditions, providing the fiber contained a high proportion of very narrow micropores. The work indicated that CFCMS is capable of separating O{sub 2} and N{sub 2} from air on the basis of the different diffusion rates of the two molecules in the micropore network of the activated carbon fibers comprising the composite material. In response to recent enquires from several potential users of CFCMS materials, attention has been given to the development of a viable continuous process for the commercial production of CFCMS material. As part of this effort, work was implemented on characterizing the performance of lignin-based activated carbon fiber, a potentially lower cost fiber than the pitch-based fibers used for CFCMS production to date. Similarly, to address engineering issues, measurements were

  16. Processes for preparing carbon fibers using gaseous sulfur trioxide

    SciTech Connect

    Barton, Bryan E.; Lysenko, Zenon; Bernius, Mark T.; Hukkanen, Eric J.

    2016-01-05

    Disclosed herein are processes for preparing carbonized polymers, such as carbon fibers, comprising: sulfonating a polymer with a sulfonating agent that comprises SO.sub.3 gas to form a sulfonated polymer; treating the sulfonated polymer with a heated solvent, wherein the temperature of said solvent is at least 95.degree. C.; and carbonizing the resulting product by heating it to a temperature of 500-3000.degree. C.

  17. The dynamic response of carbon fiber-filled polymer composites

    NASA Astrophysics Data System (ADS)

    Dattelbaum, D. M.; Gustavsen, R. L.; Sheffield, S. A.; Stahl, D. B.; Scharff, R. J.; Rigg, P. A.; Furmanski, J.; Orler, E. B.; Patterson, B.; Coe, J. D.

    2012-08-01

    The dynamic (shock) responses of two carbon fiber-filled polymer composites have been quantified using gas gun-driven plate impact experimentation. The first composite is a filament-wound, highly unidirectional carbon fiber-filled epoxy with a high degree of porosity. The second composite is a chopped carbon fiber- and graphite-filled phenolic resin with little-to-no porosity. Hugoniot data are presented for the carbon fiber-epoxy (CE) composite to 18.6 GPa in the through-thickness direction, in which the shock propagates normal to the fibers. The data are best represented by a linear Rankine-Hugoniot fit: Us = 2.87 + 1.17 ×up(ρ0 = 1.536g/cm3). The shock wave structures were found to be highly heterogeneous, both due to the anisotropic nature of the fiber-epoxy microstructure, and the high degree of void volume. Plate impact experiments were also performed on a carbon fiber-filled phenolic (CP) composite to much higher shock input pressures, exceeding the reactants-to-products transition common to polymers. The CP was found to be stiffer than the filament-wound CE in the unreacted Hugoniot regime, and transformed to products near the shock-driven reaction threshold on the principal Hugoniot previously shown for the phenolic binder itself. [19] On-going research is focused on interrogating the direction-dependent dyanamic response and dynamic failure strength (spall) for the CE composite in the TT and 0∘ (fiber) directions.

  18. Characterization of low thermal conductivity PAN-based carbon fibers

    NASA Technical Reports Server (NTRS)

    Katzman, Howard A.; Adams, P. M.; Le, T. D.; Hemminger, Carl S.

    1992-01-01

    The microstructure and surface chemistry of eight low thermal conductivity (LTC) PAN-based carbon fibers were determined and compared with PAN-based fibers heat treated to higher temperatures. Based on wide-angle x ray diffraction, the LTC PAN fibers all appear to have a similar turbostratic structure with large 002 d-spacings, small crystallite sizes, and moderate preferred orientation. Limited small-angle x ray scattering (SAXS) results indicate that, with the exception of LTC fibers made by BASF, the LTC fibers do not have well developed pores. Transmission electron microscopy shows that the texture of the two LTC PAN-based fibers studied (Amoco T350/23X and /25X) consists of multiple sets of parallel, wavy, bent layers that interweave with each other forming a complex three dimensional network oriented randomly around the fiber axis. X ray photoelectron spectroscopy (XPS) analysis finds correlations between heat treated temperatures and the surface composition chemistry of the carbon fiber samples.

  19. Copper modified carbon molecular sieves for selective oxygen removal

    NASA Technical Reports Server (NTRS)

    Sharma, Pramod K. (Inventor); Seshan, Panchalam K. (Inventor)

    1992-01-01

    Carbon molecular sieves modified by the incorporation of finely divided elemental copper useful for the selective sorption of oxygen at elevated temperatures. The carbon molecular sieves can be regenerated by reduction with hydrogen. The copper modified carbon molecular sieves are prepared by pyrolysis of a mixture of a copper-containing material and polyfunctional alcohol to form a sorbent precursor. The sorbent precursors are then heated and reduced to produce copper modified carbon molecular sieves. The copper modified carbon molecular sieves are useful for sorption of all concentrations of oxygen at temperatures up to about 200.degree. C. They are also useful for removal of trace amount of oxygen from gases at temperatures up to about 600.degree. C.

  20. Copper nanowire coated carbon fibers as efficient substrates for detecting designer drugs using SERS.

    PubMed

    Halouzka, Vladimir; Halouzkova, Barbora; Jirovsky, David; Hemzal, Dusan; Ondra, Peter; Siranidi, Eirini; Kontos, Athanassios G; Falaras, Polycarpos; Hrbac, Jan

    2017-04-01

    Miniature Surface Enhanced Raman Scattering (SERS) sensors were fabricated by coating the carbon fiber microelectrodes with copper nanowires. The coating procedure, based on anodizing the copper wire in ultrapure water followed by cathodic deposition of the anode-derived material onto carbon fiber electrodes, provides a "clean" copper nanowire network. The developed miniature (10µm in diameter and 2mm in length) and nanoscopically rough SERS substrates are applicable in drug sensing, as shown by the detection and resolving of a range of seized designer drugs in trace amounts (microliter volumes of 10(-10)-10(-12)M solutions). The copper nanowire modified carbon microfiber substrates could also find further applications in biomedical and environmental sensing.

  1. Surface Properties and Catalytic Performance of Activated Carbon Fibers Supported TiO2 Photocatalyst

    NASA Astrophysics Data System (ADS)

    Yang, Huifen; Fu, Pingfeng

    Activated carbon fibers supported TiO2 photocatalyst (TiO2/ACF) in felt-form was successfully prepared with a dip-coating process using organic silicon modified acrylate copolymer as a binder followed by calcination at 500°C in a stream of Ar gas. The photocatalyst was characterized by SEM, XRD, XPS, FTIR, and BET surface area. Most of carbon fibers were coated with uniformly distributed TiO2 clusters of nearly 100 nm. The loaded TiO2 layer was particulate for the organic binder in the compact film was carbonized. According to XPS and FTIR analysis, amorphous silica in carbon grains was synthesized after carbonizing organic silicon groups, and the Ti-O-Si bond was formed between the interface of loaded TiO2 and silica. Additionally, the space between adjacent carbon fibers still remained unfilled after TiO2 coating, into which both UV light and polluted solutions could penetrate to form a three-dimensional environment for photocatalytic reactions. While loaded TiO2 amount increased to 456 mg TiO2/1 g ACF, the TiO2/ACF catalyst showed its highest photocatalytic activity, and this activity only dropped about 10% after 12 successive runs, exhibiting its high fixing stability of coated TiO2.

  2. Study and modification of the reactivity of carbon fibers

    NASA Technical Reports Server (NTRS)

    Walker, P. L., Jr.; Ismail, I. M.; Mahajan, O. P.; Eapen, T. A.

    1980-01-01

    The reactivity to air of polyactylonitrile-based carbon fiber cloth was enhanced by the addition of metals to the cloth. The cloth was oxidized in 54 wt% nitric acid in order to increase the surface area of the cloth and to add carbonyl groups to the surface. Metal addition was then achieved by soaking the cloth in metal acetate solution to effect exchange between the metal carbon and hydrogen on the carbonyl groups. The addition of potassium, sodium, calcium and barium enhanced fiber cloth reactivity to air at 573 K. Extended studies using potassium addition showed that success in enhancing fiber cloth reactivity to air depends on: extent of cloth oxidation in nitric acid, time of exchange in potassium acetate solution and the thoroughness of removing metal acetate from the fiber pore structure following exchange. Cloth reactivity increases essentially linearly with increase in potassium addition via exchange.

  3. Carbon fiber composites for cryogenic filament-wound vessels

    NASA Technical Reports Server (NTRS)

    Larsen, J. V.; Simon, R. A.

    1972-01-01

    Advanced unidirectional and bidirectional carbon fiber/epoxy resin composites were evaluated for physical and mechanical properties over a cryogenic to room temperature range for potential application to cryogenic vessels. The results showed that Courtaulds HTS carbon fiber was the superior fiber in terms of cryogenic strength properties in epoxy composites. Of the resin systems tested in ring composites, CTBN/ERLB 4617 exhibited the highest composite strengths at cryogenic temperatures, but very low interlaminar shear strengths at room temperature. Tests of unidirectional and bidirectional composite bars showed that the Epon 828/Empol 1040 resin was better at all test temperatures. Neither fatigue cycling nor thermal shock had a significant effect on composite strengths or moduli. Thermal expansion measurements gave negative values in the fiber direction and positive values in the transverse direction of the composites.

  4. Mechanical properties of carbon fiber composites for environmental applications

    SciTech Connect

    Andrews, R.; Grulke, E.; Kimber, G.

    1996-12-31

    Activated carbon fiber composites show great promise as fixed-bed catalytic reactors for use in environmental applications such as flue gas clean-up and ground water decontamination. A novel manufacturing process produces low density composites from chopped carbon fibers and binders. These composites have high permeability, can be activated to have high surface area, and have many potential environmental applications. This paper reports the mechanical and flow properties of these low density composites. Three point flexural strength tests were used to measure composite yield strength and flexural moduli. Composites containing over 10 pph binder had an adequate yield strength of about 200 psi at activations up to 40% weight loss. The composites were anisotropic, having along-fiber to cross-fiber yield strength ratios between 1.2 and 2.0. The pressure drop of air through the composites correlated with the gas velocity, and showed a dependence on sample density.

  5. CTMP-based cellulose fibers modified with core-shell latex for reinforcing biocomposites.

    PubMed

    Pan, Yuanfeng; Xiao, Huining; Zhao, Yi; Wang, Zhuang

    2013-06-05

    The toughening of cellulose fiber reinforced polypropylene (PP) was performed via adsorbing the cationic latex with core-shell structure onto chemithermomechanical pulp (CTMP) fibers as reinforcements, which is a novel approach for rendering the surface of cellulose fibers elastomeric. The mechanical, morphological and thermal properties of the resulting biocomposites, containing 40% (wt) of the modified fibers, were investigated. The results showed that with the increasing of the latex dosage up to 2% (wt on dry CTMP fibers), the impact, tensile and flexural strengths of the modified CTMP/PP biocomposites were significantly increased. The toughening mechanism was discussed based on the retarding of crack propagation and the promoting of crystallization of PP matrix (as revealed by DSC characterization). The overall performance of the biocomposite demonstrated that cationic latex-modified CTMP fiber is very effective in reinforcing thermoplastic-based biocomposites along with the synergetic effect on enhancing crystallinity of polymer matrix.

  6. Transcrystallization at the surface of graphene-modified chitosan fibers

    NASA Astrophysics Data System (ADS)

    Liu, Mingxian; He, Rui; Yang, Jing; Zhao, Wei; Zhou, Changren

    2016-07-01

    Incompatibility between hydrophilic chitosan (CS) fiber and hydrophobic polymer matrices leads to unsatisfactory properties of the composites. The crystallization of polymer on the fiber surface is a promising way to increase interfacial interactions. Here, we coated CS fiber surfaces with graphene oxide via electrostatic self-assembly to improve interfacial interactions between the polymer and the CS fiber. Structures of the CS fiber before and after graphene coating were characterized by various methods. The formation of a polypropylene (PP) transcrystalline (TC) layer on the CS fiber surface was investigated. It is suggested that at low crystallization temperatures the fiber induced TC phase forms faster than at high temperature. There exist α and β crystal of PP in the TC phase formation process as demonstrated by x-ray diffraction. The polarized light optical microscope results demonstrate that graphene coated CS fiber can also enhance the TC phase nucleation ability of poly(l-lactide).

  7. Electronic properties of carbon fibers intercalated with copper chloride

    NASA Technical Reports Server (NTRS)

    Oshima, H.; Natarajan, V.; Woollam, J. A.; Yavrouian, A.; Haugland, E. J.; Tsuzuku, T.

    1984-01-01

    Copper chloride intercalated pitch-based carbon fibers are found to have electrical resistivities as low as 12.9 micro-ohm-cm, and are air- and thermally-stable at and above room temperature. This is therefore a good candidate system for conductor application. In addition, Shubnikov-deHaas quantum oscillatory effects were found, and electronic properties of the intercalated fiber are studied using magnetic fields to 20 tesla.

  8. Fiber optic ultrasound transducers with carbon/PDMS composite coatings

    NASA Astrophysics Data System (ADS)

    Mosse, Charles A.; Colchester, Richard J.; Bhachu, Davinder S.; Zhang, Edward Z.; Papakonstantinou, Ioannis; Desjardins, Adrien E.

    2014-03-01

    Novel ultrasound transducers were created with a composite of carbon nanotubes (CNTs) and polydimethylsiloxane (PDMS) that was dip coated onto the end faces of optical fibers. The CNTs were functionalized with oleylamine to allow for their dissolution in xylene, a solvent of PDMS. Ultrasound pulses were generated by illuminating the composite coating with pulsed laser light. At distances of 2 to 16 mm from the end faces, ultrasound pressures ranged from 0.81 to 0.07 MPa and from 0.27 to 0.03 MPa with 105 and 200 μm core fibers, respectively. Using an optical fiber hydrophone positioned adjacent to the coated 200 µm core optical fiber, ultrasound reflectance measurements were obtained from the outer surface of a sheep heart ventricle. The results of this study suggest that ultrasound transducers that comprise optical fibers with CNT-PDMS composite coatings may be suitable for miniature medical imaging probes.

  9. Novel Carbon Nanotube/Cellulose Composite Fibers As Multifunctional Materials.

    PubMed

    Qi, Haisong; Schulz, Björn; Vad, Thomas; Liu, Jianwen; Mäder, Edith; Seide, Gunnar; Gries, Thomas

    2015-10-14

    Electroconductive fibers composed of cellulose and carbon nanotubes (CNTs) were spun using aqueous alkaline/urea solution. The microstructure and physical properties of the resulting fibers were investigated by scanning electron microscopy, Raman microscopy, wide-angle X-ray diffraction, tensile tests, and electrical resistance measurements. We found that these flexible composite fibers have sufficient mechanical properties and good electrical conductivity, with volume resistivities in the range of about 230-1 Ohm cm for 2-8 wt % CNT loading. The multifunctional sensing behavior of these fibers to tensile strain, temperature, environmental humidity, and liquid water was investigated comprehensively. The results show that these novel CNT/cellulose composite fibers have impressive multifunctional sensing abilities and are promising to be used as wearable electronics and for the design of various smart materials.

  10. Fabrication optimisation of carbon fiber electrode with Taguchi method.

    PubMed

    Cheng, Ching-Ching; Young, Ming-Shing; Chuang, Chang-Lin; Chang, Ching-Chang

    2003-07-01

    In this study, we describe an optimised procedure for fabricating carbon fiber electrodes using Taguchi quality engineering method (TQEM). The preliminary results show a S/N ratio improvement from 22 to 30 db (decibel). The optimised parameter was tested by using a glass micropipette (0.3 mm outer/2.5 mm inner length of carbon fiber) dipped into PBS solution under 2.9 V triangle-wave electrochemical processing for 15 s, followed by coating treatment of micropipette on 2.6 V DC for 45 s in 5% Nafion solution. It is thus shown that Taguchi process optimisation can improve cost, manufacture time and quality of carbon fiber electrodes.

  11. Puncture-Healing Thermoplastic Resin Carbon-Fiber-Reinforced Composites

    NASA Technical Reports Server (NTRS)

    Gordon, Keith L. (Inventor); Siochi, Emilie J. (Inventor); Grimsley, Brian W. (Inventor); Cano, Roberto J. (Inventor); Czabaj, Michael W. (Inventor)

    2015-01-01

    A composite comprising a combination of a self-healing polymer matrix and a carbon fiber reinforcement is described. In one embodiment, the matrix is a polybutadiene graft copolymer matrix, such as polybutadiene graft copolymer comprising poly(butadiene)-graft-poly(methyl acrylate-co-acrylonitrile). A method of fabricating the composite is also described, comprising the steps of manufacturing a pre-impregnated unidirectional carbon fiber preform by wetting a plurality of carbon fibers with a solution, the solution comprising a self-healing polymer and a solvent, and curing the preform. A method of repairing a structure made from the composite of the invention is described. A novel prepreg material used to manufacture the composite of the invention is described.

  12. Effect of Carbon Nanotubes Upon Emissions From Cutting and Sanding Carbon Fiber-Epoxy Composites

    PubMed Central

    Heitbrink, William A.; Lo, Li-Ming

    2015-01-01

    Carbon nanotubes (CNTs) are being incorporated into structural composites to enhance material strength. During fabrication or repair activities, machining nanocomposites may release CNTs into the workplace air. An experimental study was conducted to evaluate the emissions generated by cutting and sanding on three types of epoxy-composite panels: Panel A containing graphite fibers, Panel B containing graphite fibers and carbon-based mat, and Panel C containing graphite fibers, carbon-based mat, and multi-walled CNTs. Aerosol sampling was conducted with direct-reading instruments, and filter samples were collected for measuring elemental carbon (EC) and fiber concentrations. Our study results showed that cutting Panel C with a band saw did not generate detectable emissions of fibers inspected by transmission electron microscopy but did increase the particle mass, number, and EC emission concentrations by 20% to 80% compared to Panels A and B. Sanding operation performed on two Panel C resulted in fiber emission rates of 1.9×108 and 2.8×106 fibers per second (f/s), while no free aerosol fibers were detected from sanding Panels A and B containing no CNTs. These free CNT fibers may be a health concern. However, the analysis of particle and EC concentrations from these same samples cannot clearly indicate the presence of CNTs, because extraneous aerosol generation from machining the composite epoxy material increased the mass concentrations of the EC. PMID:26478716

  13. High-strength carbon nanotube/carbon composite fibers via chemical vapor infiltration.

    PubMed

    Lee, Jaegeun; Kim, Teawon; Jung, Yeonsu; Jung, Kihoon; Park, Junbeom; Lee, Dong-Myeong; Jeong, Hyeon Su; Hwang, Jun Yeon; Park, Chong Rae; Lee, Kun-Hong; Kim, Seung Min

    2016-12-07

    In this study, we have developed an efficient and scalable method for improving the mechanical properties of carbon nanotube (CNT) fibers. The mechanical properties of as-synthesized CNT fibers are primarily limited by their porous structures and the weak bonding between adjacent CNTs. These result in inefficient load transfer, leading to low tensile strength and modulus. In order to overcome these limitations, we have adopted chemical vapor infiltration (CVI) to efficiently fill the internal voids of the CNT fibers with carbon species which are thermally decomposed from gas phase hydrocarbon. Through the optimization of the processing time, temperature, and gas flow velocity, we have confirmed that carbon species formed by the thermal decomposition of acetylene (C2H2) gas successfully infiltrated into porous CNT fibers and densified them at relatively low temperatures (650-750 °C). As a result, after CVI processing of the as-synthesized CNT fibers under optimum conditions, the tensile strength and modulus increased from 0.6 GPa to 1.7 GPa and from 25 GPa to 127 GPa, respectively. The CVI technique, combined with the direct spinning of CNT fibers, can open up a route to the fast and scalable fabrication of high performance CNT/C composite fibers. In addition, the CVI technique is a platform technology that can be easily adapted into other nano-carbon based yarn-like fibers such as graphene fibers.

  14. Effect of Carbon Nanotubes Upon Emissions From Cutting and Sanding Carbon Fiber-Epoxy Composites.

    PubMed

    Heitbrink, William A; Lo, Li-Ming

    2015-08-01

    Carbon nanotubes (CNTs) are being incorporated into structural composites to enhance material strength. During fabrication or repair activities, machining nanocomposites may release CNTs into the workplace air. An experimental study was conducted to evaluate the emissions generated by cutting and sanding on three types of epoxy-composite panels: Panel A containing graphite fibers, Panel B containing graphite fibers and carbon-based mat, and Panel C containing graphite fibers, carbon-based mat, and multi-walled CNTs. Aerosol sampling was conducted with direct-reading instruments, and filter samples were collected for measuring elemental carbon (EC) and fiber concentrations. Our study results showed that cutting Panel C with a band saw did not generate detectable emissions of fibers inspected by transmission electron microscopy but did increase the particle mass, number, and EC emission concentrations by 20% to 80% compared to Panels A and B. Sanding operation performed on two Panel C resulted in fiber emission rates of 1.9×10(8) and 2.8×10(6) fibers per second (f/s), while no free aerosol fibers were detected from sanding Panels A and B containing no CNTs. These free CNT fibers may be a health concern. However, the analysis of particle and EC concentrations from these same samples cannot clearly indicate the presence of CNTs, because extraneous aerosol generation from machining the composite epoxy material increased the mass concentrations of the EC.

  15. Effect of carbon nanotubes upon emissions from cutting and sanding carbon fiber-epoxy composites

    NASA Astrophysics Data System (ADS)

    Heitbrink, William A.; Lo, Li-Ming

    2015-08-01

    Carbon nanotubes (CNTs) are being incorporated into structural composites to enhance material strength. During fabrication or repair activities, machining nanocomposites may release CNTs into the workplace air. An experimental study was conducted to evaluate the emissions generated by cutting and sanding on three types of epoxy-composite panels: Panel A containing graphite fibers, Panel B containing graphite fibers and carbon-based mat, and Panel C containing graphite fibers, carbon-based mat, and multi-walled CNTs. Aerosol sampling was conducted with direct-reading instruments, and filter samples were collected for measuring elemental carbon (EC) and fiber concentrations. Our study results showed that cutting Panel C with a band saw did not generate detectable emissions of fibers inspected by transmission electron microscopy but did increase the particle mass, number, and EC emission concentrations by 20-80 % compared to Panels A and B. Sanding operation performed on two Panel C resulted in fiber emission rates of 1.9 × 108 and 2.8 × 106 fibers per second (f/s), while no free aerosol fibers were detected from sanding Panels A and B containing no CNTs. These free CNT fibers may be a health concern. However, the analysis of particle and EC concentrations from these same samples cannot clearly indicate the presence of CNTs, because extraneous aerosol generation from machining the composite epoxy material increased the mass concentrations of the EC.

  16. Collector surface for a microwave tube comprising a carbon-bonded carbon-fiber composite

    DOEpatents

    Lauf, R.J.; McMillan, A.D.; Johnson, A.C.; Moorhead, A.J.

    1998-07-28

    In a microwave tube, an improved collector surface coating comprises a porous carbon composite material, preferably a carbon-bonded carbon fiber composite having a bulk density less than about 2 g/cc. Installation of the coating is readily adaptable as part of the tube manufacturing process. 4 figs.

  17. Collector surface for a microwave tube comprising a carbon-bonded carbon-fiber composite

    DOEpatents

    Lauf, Robert J.; McMillan, April D.; Johnson, Arvid C.; Moorhead, Arthur J.

    1998-01-01

    In a microwave tube, an improved collector surface coating comprises a porous carbon composite material, preferably a carbon-bonded carbon fiber composite having a bulk density less than about 2 g/cc. Installation of the coating is readily adaptable as part of the tube manufacturing process.

  18. Carbon-Nanotube Fibers for Wearable Devices and Smart Textiles.

    PubMed

    Di, Jiangtao; Zhang, Xiaohua; Yong, Zhenzhong; Zhang, Yongyi; Li, Da; Li, Ru; Li, Qingwen

    2016-12-01

    Carbon-nanotube (CNT) fibers integrate such properties as high mechanical strength, extraordinary structural flexibility, high thermal and electrical conductivities, novel corrosion and oxidation resistivities, and high surface area, which makes them a very promising candidate for next-generation smart textiles and wearable devices. A brief review of the preparation of CNT fibers and recently developed CNT-fiber-based flexible and functional devices, which include artificial muscles, electrochemical double-layer capacitors, lithium-ion batteries, solar cells, and memristors, is presented.

  19. Dark pulse generation in fiber lasers incorporating carbon nanotubes.

    PubMed

    Liu, H H; Chow, K K

    2014-12-01

    We demonstrate the generation of dark pulses from carbon nanotube (CNT) incorporated erbium-doped fiber ring lasers with net anomalous dispersion. A side-polished fiber coated with CNT layer by optically-driven deposition method is embedded into the laser in order to enhance the birefringence and nonlinearity of the laser cavity. The dual-wavelength domain-wall dark pulses are obtained from the developed CNT-incorporated fiber laser at a relatively low pump threshold of 50.6 mW. Dark pulses repeated at the fifth-order harmonic of the fundamental cavity frequency are observed by adjusting the intra-cavity polarization state.

  20. Nano-yarn carbon nanotube fiber based enzymatic glucose biosensor

    NASA Astrophysics Data System (ADS)

    Zhu, Zhigang; Song, Wenhui; Burugapalli, Krishna; Moussy, Francis; Li, Ya-Li; Zhong, Xiao-Hua

    2010-04-01

    A novel brush-like electrode based on carbon nanotube (CNT) nano-yarn fiber has been designed for electrochemical biosensor applications and its efficacy as an enzymatic glucose biosensor demonstrated. The CNT nano-yarn fiber was spun directly from a chemical-vapor-deposition (CVD) gas flow reaction using a mixture of ethanol and acetone as the carbon source and an iron nano-catalyst. The fiber, 28 µm in diameter, was made of bundles of double walled CNTs (DWNTs) concentrically compacted into multiple layers forming a nano-porous network structure. Cyclic voltammetry study revealed a superior electrocatalytic activity for CNT fiber compared to the traditional Pt-Ir coil electrode. The electrode end tip of the CNT fiber was freeze-fractured to obtain a unique brush-like nano-structure resembling a scale-down electrical 'flex', where glucose oxidase (GOx) enzyme was immobilized using glutaraldehyde crosslinking in the presence of bovine serum albumin (BSA). An outer epoxy-polyurethane (EPU) layer was used as semi-permeable membrane. The sensor function was tested against a standard reference electrode. The sensitivities, linear detection range and linearity for detecting glucose for the miniature CNT fiber electrode were better than that reported for a Pt-Ir coil electrode. Thermal annealing of the CNT fiber at 250 °C for 30 min prior to fabrication of the sensor resulted in a 7.5 fold increase in glucose sensitivity. The as-spun CNT fiber based glucose biosensor was shown to be stable for up to 70 days. In addition, gold coating of the electrode connecting end of the CNT fiber resulted in extending the glucose detection limit to 25 µM. To conclude, superior efficiency of CNT fiber for glucose biosensing was demonstrated compared to a traditional Pt-Ir sensor.

  1. Nano-yarn carbon nanotube fiber based enzymatic glucose biosensor.

    PubMed

    Zhu, Zhigang; Song, Wenhui; Burugapalli, Krishna; Moussy, Francis; Li, Ya-Li; Zhong, Xiao-Hua

    2010-04-23

    A novel brush-like electrode based on carbon nanotube (CNT) nano-yarn fiber has been designed for electrochemical biosensor applications and its efficacy as an enzymatic glucose biosensor demonstrated. The CNT nano-yarn fiber was spun directly from a chemical-vapor-deposition (CVD) gas flow reaction using a mixture of ethanol and acetone as the carbon source and an iron nano-catalyst. The fiber, 28 microm in diameter, was made of bundles of double walled CNTs (DWNTs) concentrically compacted into multiple layers forming a nano-porous network structure. Cyclic voltammetry study revealed a superior electrocatalytic activity for CNT fiber compared to the traditional Pt-Ir coil electrode. The electrode end tip of the CNT fiber was freeze-fractured to obtain a unique brush-like nano-structure resembling a scale-down electrical 'flex', where glucose oxidase (GOx) enzyme was immobilized using glutaraldehyde crosslinking in the presence of bovine serum albumin (BSA). An outer epoxy-polyurethane (EPU) layer was used as semi-permeable membrane. The sensor function was tested against a standard reference electrode. The sensitivities, linear detection range and linearity for detecting glucose for the miniature CNT fiber electrode were better than that reported for a Pt-Ir coil electrode. Thermal annealing of the CNT fiber at 250 degrees C for 30 min prior to fabrication of the sensor resulted in a 7.5 fold increase in glucose sensitivity. The as-spun CNT fiber based glucose biosensor was shown to be stable for up to 70 days. In addition, gold coating of the electrode connecting end of the CNT fiber resulted in extending the glucose detection limit to 25 microM. To conclude, superior efficiency of CNT fiber for glucose biosensing was demonstrated compared to a traditional Pt-Ir sensor.

  2. Enhanced Sulfur Removal of Coal Via Carbon Fiber Production

    SciTech Connect

    Alesha Patterson; David Grffith; Delbert Buffinger; Edward Asikele; Herbert Smitherman; Osagie Evbuoma

    1997-05-30

    The characterization of highly graphitic vapor-grown carbon fiber (VGCF) produced by the floating catalyst method was determined to evaluate the effect of processing changes on the VGCF properties. Properties examined were bulk density, bulk resistivity of compressed fiber bundles, UV absorption of acetone extractables, graphitic index, pH value, and ASTM dibutyl phthalate absorption number. The data show the properties do not vary significantly from three different reactor tubes used to produce the fibers. Of the properties examined, only graphitic index, density and UV absorption of acetone extractables appear to be independent of sampling handling. Resistivity is directly correlated to the pressure exerted to from the fiber pellet due to the layering of the fiber bundles. The pH of fiber samples suspended in water does not vary significantly. The dibutyl phthalate absorption number is strongly affected by the compression of the material. Thus, only the graphitic index, the UV absorption of acetone extractables, and the apparent density will be used to aid in process quality control and to determine the process conditions required to produce carbon fiber with properties optimized for specific conditions using high sulfur coal dust.

  3. Carbon fiber composite characterization in adverse thermal environments.

    SciTech Connect

    Gomez-Vasquez, Sylvia; Brown, Alexander L.; Hubbard, Joshua A.; Ramirez, Ciro J.; Dodd, Amanda B.

    2011-05-01

    The behavior of carbon fiber aircraft composites was studied in adverse thermal environments. The effects of resin composition and fiber orientation were measured in two test configurations: 102 by 127 millimeter (mm) test coupons were irradiated at approximately 22.5 kW/m{sup 2} to measure thermal response, and 102 by 254 mm test coupons were irradiated at approximately 30.7 kW/m{sup 2} to characterize piloted flame spread in the vertically upward direction. Carbon-fiber composite materials with epoxy and bismaleimide resins, and uni-directional and woven fiber orientations, were tested. Bismaleimide samples produced less smoke, and were more resistant to flame spread, as expected for high temperature thermoset resins with characteristically lower heat release rates. All materials lost approximately 20-25% of their mass regardless of resin type, fiber orientation, or test configuration. Woven fiber composites displayed localized smoke jetting whereas uni-directional composites developed cracks parallel to the fibers from which smoke and flames emanated. Swelling and delamination were observed with volumetric expansion on the order of 100% to 200%. The purpose of this work was to provide validation data for SNL's foundational thermal and combustion modeling capabilities.

  4. Process for preparing tapes from thermoplastic polymers and carbon fibers

    NASA Technical Reports Server (NTRS)

    Chung, Tai-Shung (Inventor); Furst, Howard (Inventor); Gurion, Zev (Inventor); McMahon, Paul E. (Inventor); Orwoll, Richard D. (Inventor); Palangio, Daniel (Inventor)

    1986-01-01

    The instant invention involves a process for use in preparing tapes or rovings, which are formed from a thermoplastic material used to impregnate longitudinally extended bundles of carbon fibers. The process involves the steps of (a) gas spreading a tow of carbon fibers; (b) feeding the spread tow into a crosshead die; (c) impregnating the tow in the die with a thermoplastic polymer; (d) withdrawing the impregnated tow from the die; and (e) gas cooling the impregnated tow with a jet of air. The crosshead die useful in the instant invention includes a horizontally extended, carbon fiber bundle inlet channel, means for providing melted polymer under pressure to the die, means for dividing the polymeric material flowing into the die into an upper flow channel and a lower flow channel disposed above and below the moving carbon fiber bundle, means for applying the thermoplastic material from both the upper and lower channels to the fiber bundle, and means for withdrawing the resulting tape from the die.

  5. Interlaminar and ductile characteristics of carbon fibers-reinforced plastics produced by nanoscaled electroless nickel plating on carbon fiber surfaces.

    PubMed

    Park, Soo-Jin; Jang, Yu-Sin; Rhee, Kyong-Yop

    2002-01-15

    In this work, a new method based on nanoscaled Ni-P alloy coating on carbon fiber surfaces is proposed for the improvement of interfacial properties between fibers and epoxy matrix in a composite system. Fiber surfaces and the mechanical interfacial properties of composites were characterized by atomic absorption spectrophotometer (AAS), scanning electron microscopy (SEM), X-ray photoelectron spectrometry (XPS), interlaminar shear strength (ILSS), and impact strength. Experimental results showed that the O(1s)/C(1s) ratio or Ni and P amounts had been increased as the electroless nickel plating proceeded; the ILSS had also been slightly improved. The impact properties were significantly improved in the presence of Ni-P alloy on carbon fiber surfaces, increasing the ductility of the composites. This was probably due to the effect of substituted Ni-P alloy, leading to an increase of the resistance to the deformation and the crack initiation of the epoxy system.

  6. Compression Molding of CFRTP Used with Carbon Fiber Extracted from CFRP Waste

    NASA Astrophysics Data System (ADS)

    Kimura, Teruo; Ino, Haruhiro; Nishida, Yuichi; Aoyama, Naoki; Shibata, Katsuji

    This study investigated a compression molding method of carbon fiber reinforced thermoplastics (CFRTP) made of carbon fiber extracted from CFRP waste. The short carbon fibers were mixed with polyester fibers using a papermaking method to make the preform sheet of compression molding. The waste obtained from a textile water jet loom was used as a matrix material. The setting speed of each fiber during the papermaking process was regulated by using a dispersing agent to obtain the good dispersion of each fiber. Laminated preform sheets combined with polyester fibers and carbon fibers were compressed with heating at 300°C and then the polyester fiber was melted as a matrix material. It was cleared from the experimental results that the mechanical properties of molded CFRTP largely depends on both the fiber dispersion and the content of carbon fiber in the preform.

  7. The fabrication of artifacts out of glassy carbon and carbon-fiber-reinforced carbon for biomedical applications.

    PubMed

    Jenkins, G M; Grigson, C J

    1979-05-01

    Polymeric carbons are produced by the carbonization of a wide range of organic polymeric systems. We have concentrated on the fabrication of two types of polymeric carbons, glassy carbon and carbon-fiber-reinforced carbon (CFRC), both involving phenolic resin precursors. We describe herein the technology which enables us to make dental implants and heart valves out of glassy carbon. We also show how carbon-fiber-reinforced carbon can be made in the form of rods and plates for orthopedic use and molded before firing to produce complex, rigid, individually sculptured shapes suitable for maxillofacial bone replacement. The mechanical properties will be discussed in relation to the structure of these various forms of polymeric carbon. The main purpose of the work is to show that the technology of polymeric-carbon manufacture is essentially simple and the manufacturing process is readily carried out in laboratories which have already been equipped to fabricate standard dental prostheses.

  8. The PAU camera carbon fiber cryostat and filter interchange system

    NASA Astrophysics Data System (ADS)

    Lopez, Luis; Padilla, Cristóbal; Cardiel-Sas, Laia; Ballester, Otger; Grañena, Ferràn; Majà, Ester; Castander, Francisco J.

    2016-08-01

    This paper describes the engineering and mechanical considerations in the design and construction of a carbon fiber containment vessel for a photometric camera. The camera is intended for installation on the 4 m William Herschel Telescope, located in Palma, Spain. The scientific objective of the camera system is to measure red-shifts of a large sample of galaxies using the photometric technique. The paper is broken down into sections, divided by the principal engineering challenges of the project; the carbon fiber vacuum vessel, the cooling systems and the precision movement systems.

  9. Review and developments of dissemination models for airborne carbon fibers

    NASA Technical Reports Server (NTRS)

    Elber, W.

    1980-01-01

    Dissemination prediction models were reviewed to determine their applicability to a risk assessment for airborne carbon fibers. The review showed that the Gaussian prediction models using partial reflection at the ground agreed very closely with a more elaborate diffusion analysis developed for the study. For distances beyond 10,000 m the Gaussian models predicted a slower fall-off in exposure levels than the diffusion models. This resulting level of conservatism was preferred for the carbon fiber risk assessment. The results also showed that the perfect vertical-mixing models developed herein agreed very closely with the diffusion analysis for all except the most stable atmospheric conditions.

  10. Carbon Fiber Reinforced Ceramic Composites for Propulsion Applications

    NASA Technical Reports Server (NTRS)

    Shivakumar, Kunigal; Argade, Shyam

    2003-01-01

    This report presents a critical review of the processing techniques for fabricating continuous fiber-reinforced CMCs for possible applications at elevated temperatures. Some of the issues affecting durability of the composite materials such as fiber coatings and cracking of the matrix because of shrinkage in PIP-process are also examined. An assessment of the potential inexpensive processes is also provided. Finally three potential routes of manufacturing C/SiC composites using a technology that NC A&T developed for carbon/carbon composites are outlined. Challenges that will be encountered are also listed.

  11. Real time sensing of structural glass fiber reinforced composites by using embedded PVA - carbon nanotube fibers

    NASA Astrophysics Data System (ADS)

    Alexopoulos, N.; Poulin, P.; Bartholome, C.; Marioli-Riga, Z.

    2010-06-01

    Polyvinyl alcohol - carbon nanotube (PVA-CNT) fibers had been embedded to glass fiber reinforced polymers (GFRP) for the structural health monitoring of the composite material. The addition of the conductive PVA-CNT fiber to the nonconductive GFRP material aimed to enhance its sensing ability by means of the electrical resistance measurement method. The test specimen’s response to mechanical load and the in situ PVA-CNT fiber’s electrical resistance measurements were correlated for sensing and damage monitoring purposes. The embedded PVA-CNT fiber worked as a sensor in GFRP coupons in tensile loadings. Sensing ability of the PVA-CNT fibers was also demonstrated on an integral composite structure. PVA-CNT fiber near the fracture area of the structure recorded very high values when essential damage occurred to the structure. A finite element model of the same structure was developed to predict axial strains at locations of the integral composite structure where the fibers were embedded. The predicted FEA strains were correlated with the experimental measurements from the PVA-CNT fibers. Calculated and experimental values were in good agreement, thus enabling PVA-CNT fibers to be used as strain sensors.

  12. Multiwalled carbon nanotube (MWCNT) reinforced cellulose fibers by electrospinning.

    PubMed

    Lu, Ping; Hsieh, You-Lo

    2010-08-01

    Multiwalled carbon nanotubes (MWCNTs) were successfully incorporated in ultrafine cellulose fibers by electrospinning MWCNT-loaded cellulose acetate (CA) solutions, followed by deacetylation of CA to cellulose (cell). The mean fiber diameter reduced from 321 nm of the as-spun fibers to 257 and 228 nm of those with 0.11 and 0.55 wt % MWCNTs, respectively, and became more uniform. Hydrolysis of CA to cell further reduced the mean fiber sizes by another 8-16%. The MWCNTs were observed to be well-aligned along the fiber axes. The MWCNT/cell composite fibers had increased specific surface, from 4.27 m(2)/g to 5.07 and 7.69 m(2)/g at 0.11 and 0.55 wt % MWCNTs, respectively, and much improved water wettability. The mechanical properties of the fibers were also greatly enhanced with increased MWCNT loading levels. The fact that MWCNTs were observed in only about a third of the fibers at a very low 0.55 wt % loading suggests significantly higher tensile strength may be achieved by a further increase in MWCNT loadings.

  13. Carbon-fiber composite molecular sieves for gas separation

    SciTech Connect

    Jagtoyen, M.; Derbyshire, F.

    1996-08-01

    This report describes continuing work on the activation and characterization of formed carbon fiber composites. The composites are produced at the Oak Ridge National Laboratory (ORNL) and activated at the Center for Applied Energy Research (CAER) using steam, CO{sub 2}, or O{sub 2} at different conditions of temperature and time, and with different furnace configurations. The general aims of the project are to produce uniformly activated samples with controlled pore structures for specialist applications such as gas separation and water treatment. In previous work the authors reported that composites produced from isotropic pitch fibers weighing up to 25g can be uniformly activated through the appropriate choice of reaction conditions and furnace configurations. They have now succeeded in uniformly activating composites of dimensions up to 12 x 7 x 6 cm, or up to about 166 gram - a scale-up factor of about six. Part of the work has involved the installation of a new furnace that can accommodate larger composites. Efforts were made to achieve uniform activation in both steam and CO{sub 2}. The authors have also succeeded in producing materials with very uniform and narrow pore size distributions by using a novel method involving low temperature oxygen chemisorption in combination with heat treatment in N{sub 2} at high temperatures. Work has also started on the activation of PAN based carbon fibers and fiber composites with the aim of producing composites with wide pore structures for use as catalyst supports. So far activation of the PAN fiber composites supplied by ORNL has been difficult which is attributed to the low reactivity of the PAN fibers. As a result, studies are now being made of the activation of the PAN fibers to investigate the optimum carbonization and activation conditions for PAN based fibers.

  14. Multilayer Fiber Interfaces for Improved Environmental Resistance and Slip in Carbon Fiber Reinforced Composites

    NASA Technical Reports Server (NTRS)

    Babcock, Jason R.; Ramachandran, Gautham; Williams, Brian E.; Effinger, Michael R.

    2004-01-01

    Ultraviolet-enhanced chemical vapor deposition (UVCVD) has been developed to lower the required substrate temperature thereby allowing for the application of metal oxide-based coatings to carbon and ceramic fibers without causing significant fiber damage. An effort to expand this capability to other ceramic phases chosen to maximize oxidation protection in the likely event of matrix cracking and minimize possible reaction between the coating and fiber during long-term high temperature use will be presented along with studies aimed at the demonstration of these and other benefits for the next-generation interface coating systems being developed herein.

  15. Rapid Fabrication of Carbide Matrix/Carbon Fiber Composites

    NASA Technical Reports Server (NTRS)

    Williams, Brian E.; Bernander, Robert E.

    2007-01-01

    Composites of zirconium carbide matrix material reinforced with carbon fibers can be fabricated relatively rapidly in a process that includes a melt infiltration step. Heretofore, these and other ceramic matrix composites have been made in a chemical vapor infiltration (CVI) process that takes months. The finished products of the CVI process are highly porous and cannot withstand temperatures above 3,000 F (approx.1,600 C). In contrast, the melt-infiltration-based process takes only a few days, and the composite products are more nearly fully dense and have withstood temperatures as high as 4,350 F (approx.2,400 C) in a highly oxidizing thrust chamber environment. Moreover, because the melt- infiltration-based process takes much less time, the finished products are expected to cost much less. Fabrication begins with the preparation of a carbon fiber preform that, typically, is of the size and shape of a part to be fabricated. By use of low-temperature ultraviolet-enhanced chemical vapor deposition, the carbon fibers in the preform are coated with one or more interfacial material(s), which could include oxides. The interfacial material helps to protect the fibers against chemical attack during the remainder of the fabrication process and against oxidation during subsequent use; it also enables slippage between the fibers and the matrix material, thereby helping to deflect cracks and distribute loads. Once the fibers have been coated with the interfacial material, the fiber preform is further infiltrated with a controlled amount of additional carbon, which serves as a reactant for the formation of the carbide matrix material. The next step is melt infiltration. The preform is exposed to molten zirconium, which wicks into the preform, drawn by capillary action. The molten metal fills most of the interstices of the preform and reacts with the added carbon to form the zirconium carbide matrix material. The zirconium does not react with the underlying fibers because they

  16. Adhesion between thermoplastic polymer particles and carbon and glass fibers

    SciTech Connect

    Colton, J.S.

    1996-12-31

    High performance composites consist of polymer matrices reinforced with continuous fibers. Polymer powders can be coated and fused onto the fibers by various techniques to produce these composites. One such technique consists of spreading the fibers with an air banding jet, and then running the fibers through a fluidized bed of the powder. The fluidizing air is typically charged, imparting a charge to the powder particles. The fibers are grounded which leads to an attraction between the particles and the fibers. The particle-coated fibers then go through a tunnel oven, sintering the particles onto the fibers, leaving a flexible {open_quotes}tow-preg{close_quotes} which can then be processed into a preform for manufacture into a final part. To develop an initial understanding of the powder coating process, the adhesion of uncharged particles and fibers was studied. Contact mechanics predicts that the adhesion force between uncharged particles depends on the mutual (or equivalent) radius of curvature between the contacting objects, as well as their surface energies. For the materials of interest, the Derjaguin approximation is appropriate and is applied. PEEK (poly ether ether ketone) and PET (poly ethylene terephthalate) particles, cryogenically ground to nominal diameters of 10 to 100 {mu}m were brought into contact with themselves, with E-glass fibers (nominal diameter of 20 {mu}m), carbon fibers (nominal diameter of 8 {mu}m), and glass microscope slides using an AFM. Adhesion forces were measured and compared to predictions using Derjaguin`s approximation. SEM micrographs were used to determine the scale of the radii of curvature of contacting sites.

  17. The effect of bromination of carbon fibers on the coefficient of thermal expansion of graphite fiber-epoxy composites

    NASA Technical Reports Server (NTRS)

    Jaworske, D. A.; Maciag, C.

    1987-01-01

    To examine the effect of bromination of carbon fibers on the coefficient of thermal expansion (CTE) of carbon fiber epoxy composites, several pristine and brominated carbon fiber-epoxy composite samples were subjected to thermomechanical analysis. The CTE's of these samples were measured in the uniaxial and transverse directions. The CTE was dominated by the fibers in the uniaxial direction, while it was dominated by the matrix in the transverse directions. Bromination had no effect on the CTE of any of the composites. In addition, the CTE of fiber tow was measured in the absence of a polymer matrix, using an extension probe. The results from this technique were inconclusive.

  18. Polarization insensitive all-fiber mode-lockers functioned by carbon nanotubes deposited onto tapered fibers

    NASA Astrophysics Data System (ADS)

    Song, Yong-Won; Morimune, Keiyo; Set, Sze Y.; Yamashita, Shinji

    2007-01-01

    The authors demonstrate a nonblocked all-fiber mode locker operated by the interaction of carbon nanotubes with the evanescent field of propagating light in a tapered fiber. Symmetric cross section of the device with the randomly oriented nanotubes guarantees the polarization insensitive operation of the pulse formation. In order to minimize the scattering, the carbon nanotubes are deposited within a designed area around the tapered waist. The demonstrated passively pulsed laser has the repetition rate of 7.3MHz and the pulse width of 829fs.

  19. Cellulosic carbon fibers with branching carbon nanotubes for enhanced electrochemical activities for bioprocessing applications.

    PubMed

    Zhao, Xueyan; Lu, Xin; Tze, William Tai Yin; Kim, Jungbae; Wang, Ping

    2013-09-25

    Renewable biobased carbon fibers are promising materials for large-scale electrochemical applications including chemical processing, energy storage, and biofuel cells. Their performance is, however, often limited by low activity. Herein we report that branching carbon nanotubes can enhance the activity of carbonized cellulosic fibers, such that the oxidation potential of NAD(H) was reduced to 0.55 V from 0.9 V when applied for bioprocessing. Coordinating with enzyme catalysts, such hierarchical carbon materials effectively facilitated the biotransformation of glycerol, with the total turnover number of NAD(H) over 3500 within 5 h of reaction.

  20. Biodegradable polyester-based eco-composites containing hemp fibers modified with macrocyclic oligomers

    NASA Astrophysics Data System (ADS)

    Conzatti, Lucia; Utzeri, Roberto; Hodge, Philip; Stagnaro, Paola

    2016-05-01

    An original compatibilizing pathway for hemp fibers/poly(1,4-butylene adipate-co-terephtalate) (PBAT) eco-composites was explored exploiting the capability of macrocyclic oligomers (MCOs), obtained by cyclodepolymerization (CDP) of PBAT at high dilution, of being re-converted into linear chains by entropically-driven ring-opening polymerization (ED-ROP) that occurs simply heating the MCOS in the bulk. CDP reaction of PBAT was carried out varying solvent, catalyst and reaction time. Selected MCOs were used to adjust the conditions of the ED-ROP reaction. The best experimental conditions were then adopted to modify hemp fibers. Eco-composites based on PBAT and hemp fibers as obtained or modified with PBAT macrocyclics or oligomers were prepared by different process strategies. The best fiber-PBAT compatibility was observed when the fibers were modified with PBAT oligomers before incorporation in the polyester matrix.

  1. Mechanical characterization of commercially made carbon-fiber-reinforced polymethylmethacrylate.

    PubMed

    Saha, S; Pal, S

    1986-01-01

    Acrylic bone cement is significantly weaker and of lower modulus of elasticity than compact bone. It is also weaker in tension than in compression. This limits its use in orthopedics to areas where tensile stresses were minimum. Many authors have shown that addition of small percentages of fiber reinforcement by hand mixing improved the mechanical properties significantly but with variable results. In this investigation we have examined the mechanical properties of machine-mixed, commercially available carbon-fiber-reinforced bone cement. Appropriate samples of normal low-viscosity cement and carbon-fiber-reinforced cement were prepared and tested mechanically. Carbon fiber increased the tensile strength and modulus by 30% and 35.8% respectively. The compression strength and modulus, however, increased by only 10.7%. Similarly, bending and shear strengths improved by 29.5% and 18.5%, respectively. Diametral compression strength, which is an indirect measure of tensile strength, however, showed only 6.2% improvement. The maximum temperature rise during polymerization was also reduced significantly by the fiber reinforcement.

  2. Efficiency of Laser Cutting of Carbon Fiber Textiles

    NASA Astrophysics Data System (ADS)

    Fuchs, Alexander N.; Zaeh, Michael F.

    Laser cutting of carbon fiber textiles has various advantages over conventional processes like ultrasonic knife cutting: It is wear free, no fibers are left uncut in the kerf, it is able to cut complex contours, and the cut edge is clearly defined. To ensure a complete cut under variable conditions, e.g. the thickness of the material, line energy has to be applied at a higher level than theoretically necessary to account for those variations. This energy is transilluminated through the kerf. In addition, not all laser energy is absorbed by the fibers but reflected and transmitted within the space between the fibers. Experiments were carried out to measure the percentage of laser power transilluminated through multi-layered carbon fiber textiles during laser cutting with maximum speed. To do so, blocks of poly(methyl methacrylate) (PMMA) were placed underneath the samples and the mass of the sublimed material was measured. Depending on the angle of the fiber, between 9% and 40% of the laser power was transilluminated.

  3. Ultrathin fiber poly-3-hydroxybutyrate, modified by silicon carbide nanoparticles

    NASA Astrophysics Data System (ADS)

    Olkhov, A. A.; Krutikova, A. A.; Goldshtrakh, M. A.; Staroverova, O. V.; Iordanskii, A. L.; Ischenko, A. A.

    2016-11-01

    The article presents the results of studies the composite fibrous material based on poly-3-hydroxybutyrate (PHB) and nano-size silicon carbide obtained by the electrospinning method. Size distribution of the silicon carbide nanoparticles in the fiber was estimated by X-ray diffraction technique. It is shown that immobilization of the SiC nanoparticles to the PHB fibers contributes to obtaining essentially smaller diameter of fibers, high physical-mechanical characteristics and increasing resistance to degradation in comparison with the fibers of PHB.

  4. Innovative fiber coating systems based on organic modified ceramics

    NASA Astrophysics Data System (ADS)

    Schuster, Kay; Kobelke, Jens; Rose, Klaus; Helbig, Manfred; Zoheidi, Mohammad; Heinze, Alexander

    2010-02-01

    We describe the application of inorganic organic hybrid materials (ORMOCERs) as optical fiber coatings for use in Fiber Bragg Grating sensors and high power transmission fibers. The materials are UV curable, enable a single layer thickness of about 50 μm and show high a high peak temperature stability >300 °C. Regarding the fiber protection the coatings have been investigated using tensile strength measurements before and after temperature load. Best coatings maintain the high tensile strength of 68 N (125 μm fiber) with a Weibull parameter of 182 after a temperature cycling up to 300 °C. For the first time a low refractive index ORMOCER will be presented showing a numerical aperture of 0.47 at a wavelength of 1000 nm on a pure silica fiber. This corresponds to a refractive index of 1.37. The fiber possesses a fiber loss of 18 dB/km at a wavelength of 1000 nm. The fibers have been coated using a gravity as well as pressure technology. The latter possesses extremely minimized die equipment and is therefore well applicable for small coating amounts. The so called dead volume within the coating die is about 1 ml. The overall dead volume is only influenced by the supply pipe and can be reduced down to 5 ml.

  5. Treated carbon fibers with improved performance for electrochemical and chemical applications

    DOEpatents

    Chu, X.; Kinoshita, Kimio

    1999-02-23

    A treated mesophase carbon fiber is disclosed having a high density of exposed edges on the fiber surface, and a method is described for making such a treated fiber. A carbon electrode is also described which is constructed from such treated mesophase carbon fibers. The resulting electrode, formed from such treated flexible carbon fibers, is characterized by a high density of active sites formed from such exposed edges, low corrosion, and good mechanical strength, and may be fabricated into various shapes. The treated mesophase carbon fibers of the invention are formed by first loading the surface of the mesophase carbon fiber with catalytic metal particles to form catalytic etch sites on a hard carbon shell of the fiber. The carbon fiber is then subject to an etch step wherein portions of the hard carbon shell or skin are selectively removed adjacent the catalytic metal particles adhering to the carbon shell. This exposes the underlying radial edges of the graphite-like layers within the carbon shell of the mesophase carbon fiber, which exposed radial edges then act as active sites of a carbon electrode subsequently formed from the treated mesophase carbon fibers. 14 figs.

  6. Treated carbon fibers with improved performance for electrochemical and chemical applications

    DOEpatents

    Chu, Xi; Kinoshita, Kimio

    1999-01-01

    A treated mesophase carbon fiber is disclosed having a high density of exposed edges on the fiber surface, and a method of making such a treated fiber. A carbon electrode is also described which is constructed from such treated mesophase carbon fibers. The resulting electrode, formed from such treated flexible carbon fibers, is characterized by a high density of active sites formed from such exposed edges, low corrosion, and good mechanical strength, and may be fabricated into various shapes. The treated mesophase carbon fibers of the invention are formed by first loading the surface of the mesophase carbon fiber with catalytic metal particles to form catalytic etch sites on a hard carbon shell of the fiber. The carbon fiber is then subject to an etch step wherein portions of the hard carbon shell or skin are selectively removed adjacent the catalytic metal particles adhering to the carbon shell. This exposes the underlying radial edges of the graphite-like layers within the carbon shell of the mesophase carbon fiber, which exposed radial edges then act as active sites of a carbon electrode subsequently formed from the treated mesophase carbon fibers.

  7. Simultaneous Measurements of Thermal Properties of Individual Carbon Fibers

    NASA Astrophysics Data System (ADS)

    Wang, Jianli; Song, Bai; Zhang, Xing; Song, Yang; Wu, Gangping

    2011-05-01

    Combining the steady-state and quasi-steady-state T type probes, the longitudinal thermal conductivity and thermal effusivity of individual mesophase pitch-based carbon fiber heat treated at 2800 °C and 1000 °C have been measured from 100 K to 300 K. The present method allows simultaneous measurements of thermal properties using the same instrument, by simply changing the applied direct current to alternating current. The specific heat is found to decrease with increasing heat-treatment temperature and to approach the value of graphite. The highly graphitized carbon fiber has a maximum thermal conductivity of 410 W · m-1 · K-1 at about 250 K, and its thermal diffusivity decreases with increasing temperature. Comparatively, the thermal conductivity of the fiber heat treated at 1000 °C is much smaller, with the peak shifting to high temperature due to a large defect density, and its thermal diffusivity is nearly temperature independent.

  8. Fabrication of polytetrafluoroethylene/carbon fiber composites using radiation crosslinking

    NASA Astrophysics Data System (ADS)

    Oshima, Akihiro; Udagawa, Akira; Tanaka, Shigeru

    2001-07-01

    A fabrication method for fiber-reinforced plastic (FRP) composites based on carbon fibers and polytetrafluoroethylene (PTFE) which was crosslinked by electron beam (EB) irradiation under specific conditions was studied. Though the fabricated composite showed high mechanical properties compared with a ready-made PTFE composite (non-crosslinked PTFE with 5˜20 wt% filler), mechanical properties of laminated panels were a bit poor compared with those of usual FRP. It was found that the toughness of the PTFE matrix is poor in the composite. On the other hand, the one-ply sheet of carbon fibers and crosslinked PTFE composite showed good mechanical properties for sheet-shape materials. The wettability of the obtained crosslinked PTFE composite is hardly changed by crosslinking and reinforcement.

  9. Laser Treatment, Bonding Potential Road to Success for Carbon Fiber

    SciTech Connect

    Sabau, Adrian

    2016-05-19

    Joining carbon fiber composites and aluminum for lightweight cars and other multi-material high-end products could become less expensive and the joints more robust because of a new method that harnesses a laser’s power and precision.

  10. Clean Energy Manufacturing Analysis Center. 2015 Research Highlights -- Carbon Fiber

    SciTech Connect

    Das, Sujit

    2016-03-01

    CEMAC has conducted four major studies on the manufacturing of clean energy technologies. Three of these focused on the end product: solar photovoltaic modules, wind turbines, and automotive lithium-ion batteries. The fourth area focused on a key material for manufacturing clean energy technologies, carbon fiber.

  11. Aspen SUCROSE TRANSPORTER3 allocates carbon into wood fibers.

    PubMed

    Mahboubi, Amir; Ratke, Christine; Gorzsás, András; Kumar, Manoj; Mellerowicz, Ewa J; Niittylä, Totte

    2013-12-01

    Wood formation in trees requires carbon import from the photosynthetic tissues. In several tree species, including Populus species, the majority of this carbon is derived from sucrose (Suc) transported in the phloem. The mechanism of radial Suc transport from phloem to developing wood is not well understood. We investigated the role of active Suc transport during secondary cell wall formation in hybrid aspen (Populus tremula × Populus tremuloides). We show that RNA interference-mediated reduction of PttSUT3 (for Suc/H(+) symporter) during secondary cell wall formation in developing wood caused thinner wood fiber walls accompanied by a reduction in cellulose and an increase in lignin. Suc content in the phloem and developing wood was not significantly changed. However, after (13)CO2 assimilation, the SUT3RNAi lines contained more (13)C than the wild type in the Suc-containing extract of developing wood. Hence, Suc was transported into developing wood, but the Suc-derived carbon was not efficiently incorporated to wood fiber walls. A yellow fluorescent protein:PttSUT3 fusion localized to plasma membrane, suggesting that reduced Suc import into developing wood fibers was the cause of the observed cell wall phenotype. The results show the importance of active Suc transport for wood formation in a symplasmically phloem-loading tree species and identify PttSUT3 as a principal transporter for carbon delivery into secondary cell wall-forming wood fibers.

  12. Amperometric Carbon Fiber Nitrite Microsensor for In Situ Biofilm Monitoring

    EPA Science Inventory

    A highly selective needle type solid state amperometric nitrite microsensor based on direct nitrite oxidation on carbon fiber was developed using a simplified fabrication method. The microsensor’s tip diameter was approximately 7 µm, providing a high spatial resolution of at lea...

  13. Development of carbon fiber-based piezoresistive linear sensing technique

    NASA Astrophysics Data System (ADS)

    Yang, Caiqian; Wu, Zhishen; Huang, Huang

    2009-03-01

    In this paper, the development of carbon fiber-based piezoresistive linear sensing technique and its application in civil engineering structures is studied and summarized. The sensing mechanism is based on the electrical conductivity and piezoresistivity of different types of carbon fibers. Firstly, the influences of values of signal currents and temperature on the sensing properties are studied to decide the suitable sensing current. Then, the linear temperature and strain sensing feasibility of different types of carbon fibers is addressed and discussed. Finally, the application of this kind of sensors is studied in monitoring the health of reinforced concrete (RC) and prestressed concrete (PC) structures. A good linearity of fractional change in electrical resistance (ER) (ΔR/R0)-strain and &DeltaR/R0-temperature is demonstrated. The &DeltaR/R0-strain and &DeltaR/R0-temperature curves of CFRP/HCFRP sensors can be well fitted with a line with a correlation coefficient larger than 0.978. All these reveal that carbon fibers reinforced polymer (CFRP) can be used as both piezoresistive linear strain and temperature sensors.

  14. Nonrespirability of Carbon Fibers in Rats from Repeated Inhalation Exposure

    DTIC Science & Technology

    1990-09-01

    They thank Erica R. Riley, Physics Division, CRDEC, for her SEM analysis of the generated material and Dr. Lucas Brennecke, Pathology Associates, for... Ballantyne , B., and Clary, J.J., "Subchronic Inhalation Toxicology of Carbon Fibers," J., Vol. 28, pp 373-376 (1986). 15. Guide for th,’ Care and Use

  15. Mechanical strength of additive manufactured carbon fiber reinforced polyetheretherketone

    NASA Astrophysics Data System (ADS)

    Chumaevskii, A. V.; Tarasov, S. Yu.; Filippov, A. V.; Kolubaev, E. A.; Rubtsov, V. E.; Eliseev, A. A.

    2016-11-01

    Mechanical properties of both pure and chopped carbon fiber reinforced polyetheretherketone samples have been carried out. It was shown that the reinforcement resulted in increasing the elasticity modulus, compression and tensile ultimate strength by a factor of 3.5, 2.9 and 2.8, respectively. The fracture surfaces have been examined using both optical and scanning electron microscopy.

  16. Nitric oxide determination by amperometric carbon fiber microelectrode.

    PubMed

    Katrlík, Jaroslav; Zálesáková, Pavlína

    2002-05-15

    Nitric oxide (NO) amperometric microsensor was prepared by the modification of bare carbon fiber electrode by Nafion and cellulose acetate (CA). Detection limit, response time, reproducibility and influence of some possible interferences (nitrite, nitrate, arginine) were tested and evaluated. This sensor was used for in vitro determination of NO release from fresh porcine aorta induced by calcium ionophore A23187 (CI).

  17. Laser Treatment, Bonding Potential Road to Success for Carbon Fiber

    ScienceCinema

    Sabau, Adrian

    2016-07-12

    Joining carbon fiber composites and aluminum for lightweight cars and other multi-material high-end products could become less expensive and the joints more robust because of a new method that harnesses a laser’s power and precision.

  18. Diamagnetic studies on as-processed carbon fibers

    NASA Technical Reports Server (NTRS)

    Scott, C. B.; Fischbach, D. B.

    1976-01-01

    The Faraday method has been used to measure the diamagnetic susceptibilities of small bundles of aligned carbon fibers of different types at room temperature. It was found that the tensor trace susceptibility of the fibers varies systematically over the range 0.8-20 (in units of -10 to the -6th emu/g) as a function of precursor type and processing history. The susceptibility increases, in general, with increasing nominal treatment temperature and hot stretching, and with increasing tensile elastic modulus. The anisotropy ratio of fibers increases approximately linearly with tensile elastic modulus for all fibers from about 1 for a modulus of about 70 GN/sq m to about 22 for a modulus of 700 GN/sq m in air, and is quantitatively consistent with the layer-plane orientation textures determined by X-ray diffraction when appropriate values of the crystallite principal susceptibilities are used.

  19. Electromechanical behavior of carbon nanotube fibers under transverse compression

    NASA Astrophysics Data System (ADS)

    Li, Yuanyuan; Lu, Weibang; Sockalingam, Subramani; Gu, Bohong; Sun, Baozhong; Gillespie, John W.; Chou, Tsu-Wei

    2017-03-01

    Although in most cases carbon nanotube (CNT) fibers experience axial stretch or compression, they can also be subjected to transverse compression, for example, under impact loading. In this paper, the electromechanical properties of both aerogel-spun and dry-spun CNT fibers under quasi-static transverse compressive loading are investigated for the first time. Transverse compression shows a nonlinear and inelastic behavior. The compressive modulus/strength of the aerogel-spun and dry-spun CNT fibers are about 0.21 GPa/0.796 GPa and 1.73 GPa/1.036 GPa, respectively. The electrical resistance goes through three stages during transverse compressive loading/unloading: initially it decreases, then it increases during the loading, and finally it decreases upon unloading. This study extends our knowledge of the overall properties of CNT fibers, and will be helpful in promoting their engineering applications.

  20. Approach to the assessment of the hazard. [fire released carbon fiber electrical effects

    NASA Technical Reports Server (NTRS)

    Huston, R. J.

    1980-01-01

    An overview of the carbon fiber hazard assessment is presented. The potential risk to the civil sector associated with the accidental release of carbon fibers from aircraft having composite structures was assessed along with the need for protection of civil aircraft from carbon fibers.

  1. 21 CFR 878.3500 - Polytetrafluoroethylene with carbon fibers composite implant material.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Polytetrafluoroethylene with carbon fibers... Prosthetic Devices § 878.3500 Polytetrafluoroethylene with carbon fibers composite implant material. (a) Identification. A polytetrafluoroethylene with carbon fibers composite implant material is a porous...

  2. 21 CFR 878.3500 - Polytetrafluoroethylene with carbon fibers composite implant material.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Polytetrafluoroethylene with carbon fibers... Prosthetic Devices § 878.3500 Polytetrafluoroethylene with carbon fibers composite implant material. (a) Identification. A polytetrafluoroethylene with carbon fibers composite implant material is a porous...

  3. 21 CFR 878.3500 - Polytetrafluoroethylene with carbon fibers composite implant material.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Polytetrafluoroethylene with carbon fibers... Prosthetic Devices § 878.3500 Polytetrafluoroethylene with carbon fibers composite implant material. (a) Identification. A polytetrafluoroethylene with carbon fibers composite implant material is a porous...

  4. Development and Characterization of Healable Carbon Fiber Composites with a Reversibly Cross Linked Polymer

    SciTech Connect

    Ghezzo, Fabrizia; Smith, David R.; Starr, Tatiana N.; Perram, Timothy; Starr, Anthony F.; Darlington, Thomas K.; Baldwin, Richard K.; Oldenburg, Steven J.

    2010-10-18

    Carbon fiber reinforced polymer (CFRP) laminates with remendable cross-linked polymeric matrices were fabricated using a modified resin transfer mold (RTM) technique. The healable composite resin, bis-maleimide tetrafuran (2MEP4F), was synthesized by mixing two monomers, furan (4F) and maleimide (2MEP), at elevated temperatures. The fast kinetic rate of the reaction of polymer constituents requires a fast injection of the healable resin into the carbon fiber preform. The polymer viscosity as a function of time and temperature was experimentally quantified in order to optimize the fabrication of the composite material and to guarantee a uniform flow of the resin through the reinforcement. The method was validated by characterizing the thermo-mechanical properties of the polymerized 2MEP4F. Additionally, the thermo-mechanical properties of the remendable CFRP material were studied.

  5. Preparation of array of long carbon nanotubes and fibers therefrom

    SciTech Connect

    Arendt, Paul N.; DePaula, Ramond F.; Zhu, Yuntian T.; Usov, Igor O.

    2015-11-19

    An array of carbon nanotubes is prepared by exposing a catalyst structure to a carbon nanotube precursor. Embodiment catalyst structures include one or more trenches, channels, or a combination of trenches and channels. A system for preparing the array includes a heated surface for heating the catalyst structure and a cooling portion that cools gas above the catalyst structure. The system heats the catalyst structure so that the interaction between the precursor and the catalyst structure results in the formation of an array of carbon nanotubes on the catalyst structure, and cools the gas near the catalyst structure and also cools any carbon nanotubes that form on the catalyst structure to prevent or at least minimize the formation of amorphous carbon. Arrays thus formed may be used for spinning fibers of carbon nanotubes.

  6. Characterization of porous carbon fibers and related materials

    SciTech Connect

    Fuller, E.L. Jr.

    1996-07-15

    This program was geared to support the Fossil Energy Material Sciences Program with respect to several areas of interest in efficient production and utilization of energy. Carbon molecular sieves have great potential for economically purifying gases; i.e. removal of carbon dioxide from natural gas without having to resort to cryogenic techniques. Microporous carbons can be tailored to serve as adsorbents for natural gas in on-board storage in automotive applications, avoiding high pressures and heavy storage tanks. This program is a laboratory study to evaluate production methodologies and activation processes to produce porous carbons for specific applications. The Carbon Materials Technology Group of Oak Ridge National Laboratory (ORNL) is engaged in developmental programs to produce activated carbon fibers (ACF) for applications in fixed beds and/or flowing reactors engineering applications.

  7. Monitoring Damage Propagation in Glass Fiber Composites Using Carbon Nanofibers.

    PubMed

    Al-Sabagh, Ahmed; Taha, Eman; Kandil, Usama; Nasr, Gamal-Abdelnaser; Reda Taha, Mahmoud

    2016-09-10

    In this work, we report the potential use of novel carbon nanofibers (CNFs), dispersed during fabrication of glass fiber composites to monitor damage propagation under static loading. The use of CNFs enables a transformation of the typically non-conductive glass fiber composites into new fiber composites with appreciable electrical conductivity. The percolation limit of CNFs/epoxy nanocomposites was first quantified. The electromechanical responses of glass fiber composites fabricated using CNFs/epoxy nanocomposite were examined under static tension loads. The experimental observations showed a nonlinear change of electrical conductivity of glass fiber composites incorporating CNFs versus the stress level under static load. Microstructural investigations proved the ability of CNFs to alter the polymer matrix and to produce a new polymer nanocomposite with a connected nanofiber network with improved electrical properties and different mechanical properties compared with the neat epoxy. It is concluded that incorporating CNFs during fabrication of glass fiber composites can provide an innovative means of self-sensing that will allow damage propagation to be monitored in glass fiber composites.

  8. Monitoring Damage Propagation in Glass Fiber Composites Using Carbon Nanofibers

    PubMed Central

    Al-Sabagh, Ahmed; Taha, Eman; Kandil, Usama; Nasr, Gamal-Abdelnaser; Reda Taha, Mahmoud

    2016-01-01

    In this work, we report the potential use of novel carbon nanofibers (CNFs), dispersed during fabrication of glass fiber composites to monitor damage propagation under static loading. The use of CNFs enables a transformation of the typically non-conductive glass fiber composites into new fiber composites with appreciable electrical conductivity. The percolation limit of CNFs/epoxy nanocomposites was first quantified. The electromechanical responses of glass fiber composites fabricated using CNFs/epoxy nanocomposite were examined under static tension loads. The experimental observations showed a nonlinear change of electrical conductivity of glass fiber composites incorporating CNFs versus the stress level under static load. Microstructural investigations proved the ability of CNFs to alter the polymer matrix and to produce a new polymer nanocomposite with a connected nanofiber network with improved electrical properties and different mechanical properties compared with the neat epoxy. It is concluded that incorporating CNFs during fabrication of glass fiber composites can provide an innovative means of self-sensing that will allow damage propagation to be monitored in glass fiber composites. PMID:28335298

  9. Polymer Coating of Carbon Nanotube Fibers for Electric Microcables

    PubMed Central

    Alvarez, Noe T.; Ochmann, Timothy; Kienzle, Nicholas; Ruff, Brad; Haase, Mark R.; Hopkins, Tracy; Pixley, Sarah; Mast, David; Schulz, Mark J.; Shanov, Vesselin

    2014-01-01

    Carbon nanotubes (CNTs) are considered the most promising candidates to replace Cu and Al in a large number of electrical, mechanical and thermal applications. Although most CNT industrial applications require macro and micro size CNT fiber assemblies, several techniques to make conducting CNT fibers, threads, yarns and ropes have been reported to this day, and improvement of their electrical and mechanical conductivity continues. Some electrical applications of these CNT conducting fibers require an insulating layer for electrical insulation and protection against mechanical tearing. Ideally, a flexible insulator such as hydrogenated nitrile butadiene rubber (HNBR) on the CNT fiber can allow fabrication of CNT coils that can be assembled into lightweight, corrosion resistant electrical motors and transformers. HNBR is a largely used commercial polymer that unlike other cable-coating polymers such as polyvinyl chloride (PVC), it provides unique continuous and uniform coating on the CNT fibers. The polymer coated/insulated CNT fibers have a 26.54 μm average diameter—which is approximately four times the diameter of a red blood cell—is produced by a simple dip-coating process. Our results confirm that HNBR in solution creates a few microns uniform insulation and mechanical protection over a CNT fiber that is used as the electrically conducting core. PMID:28344254

  10. [Adsorption of perfluorooctanesulfonate (PFOS) onto modified activated carbons].

    PubMed

    Tong, Xi-Zhen; Shi, Bao-You; Xie, Yue; Wang, Dong-Sheng

    2012-09-01

    Modified coal and coconut shell based powdered activated carbons (PACs) were prepared by FeCl3 and medium power microwave treatment, respectively. Batch experiments were carried out to evaluate the characteristics of adsorption equilibrium and kinetics of perfluorooctanesulfonate (PFOS) onto original and modified PACs. Based on pore structure and surface functional groups characterization, the adsorption behaviors of modified and original PACs were compared. The competitive adsorption of humic acid (HA) and PFOS on original and modified coconut shell PACs were also investigated. Results showed that both Fe3+ and medium power microwave treatments changed the pore structure and surface functional groups of coal and coconut shell PACs, but the changing effects were different. The adsorption of PFOS on two modified coconut shell-based PACs was significantly improved. While the adsorption of modified coal-based activated carbons declined. The adsorption kinetics of PFOS onto original and modified coconut shell-based activated carbons were the same, and the time of reaching adsorption equilibrium was about 6 hours. In the presence of HA, the adsorption of PFOS by modified PAC was reduced but still higher than that of the original.

  11. The Structure and Properties of Carbon Fiber Based Adsorbent Monoliths

    SciTech Connect

    Burchell, T.; Judkins, R.R.; Rogers, M.R.; Shaw, W.S.

    1998-11-06

    Carbon fiber monoliths manufactured by a novel slurry molding process from isotropic pitch-derived fibers are being developed at ORNL for gas separation and storage applications [1]. Low density (p = 0.2 - 0,3 g/cm3) monoliths have been successfully demonstrated to have an acceptable pressure drop for gas separation applications and are currently being developed for C02/CH4 separations, whereas monoliths with densities in the range p = 0.4 - 0.6 g/cm3 have been "shown to have natural gas storage capacities of >100 VIV at 500 psi pressure and room temperature. Thermal conductivity, as a function of temperature, was measured using the LASER flash, thermal- pulse method. Another approach to minimizing the temperature gradients that develop in a storage bed is to increase the thermal conductivity of the adsorbent carbon. To this end, we have developed hybrid monoliths that contain small fractions of mesophase pitch- derived carbon fibers. Our hybrid monoliths exhibit thermal conductivities in the range 0.2-0.9 W/m.K depending on the blend and density of the monolith. In comparison, a packed bed of granular carbon at comparable density would have a thermal conductivity of approximately 0.1 W/m.K [ 1 ]. The thermal conductivities of several of the hybrid The improved thermal conductivity of our monoliths is attributed to the bonding between the fibers and the incorporation of high thermal conductivity, mesophase pitch-derived carbon fibers. These features are visible in the SEM micrograph in Fig. 4.

  12. Evaluation of micron size carbon fibers released from burning graphite composites

    NASA Technical Reports Server (NTRS)

    Sussholz, B.

    1980-01-01

    Quantitative estimates were developed of micron carbon fibers released during the burning of graphite composites. Evidence was found of fibrillated particles which were the predominant source of the micron fiber data obtained from large pool fire tests. The fibrillation phenomena were attributed to fiber oxidation effects caused by the fire environment. Analysis of propane burn test records indicated that wind sources can cause considerable carbon fiber oxidation. Criteria estimates were determined for the number of micron carbon fibers released during an aircraft accident. An extreme case analysis indicated that the upper limit of the micron carbon fiber concentration level was only about half the permissible asbestos ceiling concentration level.

  13. Laser Processing of Carbon Fiber Reinforced Plastics - Release of Carbon Fiber Segments During Short-pulsed Laser Processing of CFRP

    NASA Astrophysics Data System (ADS)

    Walter, Juergen; Brodesser, Alexander; Hustedt, Michael; Bluemel, Sven; Jaeschke, Peter; Kaierle, Stefan

    Cutting and ablation using short-pulsed laser radiation are promising technologies to produce or repair CFRP components with outstanding mechanical properties e.g. for automotive and aircraft industry. Using sophisticated laser processing strategies and avoiding excessive heating of the workpiece, a high processing quality can be achieved. However, the interaction of laser radiation and composite material causes a notable release of hazardous substances from the process zone, amongst others carbon fiber segments or fibrous particles. In this work, amounts and geometries of the released fiber segments are analyzed and discussed in terms of their hazardous potential. Moreover, it is investigated to what extent gaseous organic process emissions are adsorbed at the fiber segments, similar to an adsorption of volatile organic compounds at activated carbon, which is typically used as filter material.

  14. Three-dimensional helical carbon materials: Microcoiled carbon fibers, carbon nanocoils, carbon nanotubes: Synthesis, properties and applications

    NASA Astrophysics Data System (ADS)

    Xie, Jining

    Materials with a 3D-helical/spiral-structure in micron size have recently aroused a great deal of interests because of their helical morphology and unique properties. However, materials with a 3D helical structure are not commonly observed among industrially available materials. Researchers have been trying to synthesize various micro- and nano-sized 3D helical materials and are exploring the mechanisms, nature, and properties of these materials. Yet a systematic study on 3D helical carbon materials in micro- and nano-size has been missing. This research work is intended as a first step to fill this gap. Among various 3D helical materials, carbon element has stimulated great interests. Micro coiled carbon fibers, carbon nanocoils, and carbon nanotubes are major types of 3D helical carbon materials ranging from micron to nano size. Synthesis of these 3D helical carbon materials by a catalytic chemical vapor deposition method is presented in this thesis. It involves a pyrolysis of hydrocarbon gas (e.g. acetylene) over transition metals, such as Ni, Fe, and Co, at high reaction temperature (500--1000°C). Besides the conventional thermal filament chemical vapor deposition method, a novel microwave chemical vapor deposition (MWCVD) method has been developed to synthesize micro- and nano-sized 3D helical carbon materials economically. The faster heating and cooling processes associated with microwave CVD have potential for large-scale production in the near future. Compared with previously reported microwave plasma enhanced chemical vapor deposition (MWPECVD) method, this method does not require high vacuum and much higher deposition rate is another major advantage. It has been found in this work that microwave plays an important role on coil morphology formation for micro coiled carbon fibers and carbon nanocoils. The large temperature gradient around the catalytic particles could be the reason. Different reaction factors have been checked to optimize the deposition

  15. Mechanical properties of continuously spun fibers of carbon nanotubes.

    PubMed

    Motta, Marcelo; Li, Ya-Li; Kinloch, Ian; Windle, Alan

    2005-08-01

    We report on the mechanical properties of fibers consisting of pure carbon nanotube fibers directly spun from an aerogel formed during synthesis by chemical vapor deposition. The continuous withdrawal of product from the gas phase imparts a high commercial potential to the process, either for the production of particularly strong fibers or for the economic production of bulk quantities of carbon nanotubes. Tensile tests were performed on fibers produced from the dissociation of three different hydrocarbons, namely, ethanol, ethylene glycol, and hexane, with a range of iron (catalyst) concentrations. The conditions were chosen to lie within the range known to enable satisfactory continuous spinning, the iron concentration being varied within this range. Increasing proportions of single wall nanotubes were found as the iron concentration was decreased, conditions which also produced fibers of best strength and stiffness. The maximum tensile strength obtained was 1.46 GPa (equivalent to 0.70 N/tex assuming a density of 2.1 g/cm(3)). The experiments indicate that significant improvements in the mechanical properties can be accomplished by optimizing the process conditions.

  16. Carbonization with Misfusion: Fundamental Limits of Carbon-Fiber Strength Revisited.

    PubMed

    Gupta, Nitant; Artyukhov, Vasilii I; Penev, Evgeni S; Yakobson, Boris I

    2016-12-01

    D-loops, a new type of structural defect in carbon fibers, are presented, which have highly detrimental effect on their mechanical properties and can define a new fundamental upper limit to their strength. These defects form exclusively during polyacrylonitrile carbonization, act as stress concentrators in the graphitic basal plane, and cannot be removed by local annealing.

  17. Activated Carbon Modified with Copper for Adsorption of Propanethiol

    PubMed Central

    Moreno-Piraján, Juan Carlos; Tirano, Joaquín; Salamanca, Brisa; Giraldo, Liliana

    2010-01-01

    Activated carbons were characterized texturally and chemically before and after treatment, using surface area determination in the BET model, Boehm titration, TPR, DRX and immersion calorimetry. The adsorption capacity and the kinetics of sulphur compound removal were determined by gas chromatography. It was established that the propanethiol retention capacity is dependent on the number of oxygenated groups generated on the activated carbon surface and that activated carbon modified with CuO at 0.25 M shows the highest retention of propanethiol. Additionally is proposed a mechanism of decomposition of propenothiol with carbon-copper system. PMID:20479992

  18. Interfacial Microstructure and Enhanced Mechanical Properties of Carbon Fiber Composites Caused by Growing Generation 1-4 Dendritic Poly(amidoamine) on a Fiber Surface.

    PubMed

    Gao, Bo; Zhang, Ruliang; Gao, Fucheng; He, Maoshuai; Wang, Chengguo; Liu, Lei; Zhao, Lifen; Cui, Hongzhi

    2016-08-23

    In an attempt to improve the mechanical properties of carbon fiber composites, propagation of poly(amidoamine) (PAMAM) dendrimers by in situ polymerization on a carbon fiber surface was performed. During polymerization processes, PAMAM was grafted on carbon fiber by repeated Michael addition and amidation reactions. The changes in surface microstructure and the chemical composition of carbon fibers before and after modification were investigated by atomic force microscopy, X-ray photoelectron spectroscopy, and Raman spectroscopy. All the results indicated that PAMAM was successfully grown on the carbon fiber surface. Such propagation could significantly increase the surface roughness and introduce sufficient polar groups onto the carbon fiber surface, enhancing the surface wettability of carbon fiber. The fractured surface of carbon fiber-reinforced composites showed a great enhancement of interfacial adhesion. Compared with those of desized fiber composites, the interlaminar shear strength and interfacial shear strength of PAMAM/fiber-reinforced composites showed increases of 55.49 and 110.94%, respectively.

  19. Life Cycle Assessment of Carbon Fiber-Reinforced Polymer Composites

    SciTech Connect

    Das, Sujit

    2011-01-01

    Carbon fiber-reinforced polymer matrix composites is gaining momentum with the pressure to lightweight vehicles, however energy-intensity and cost remain some of the major barriers before this material could be used in large-scale automotive applications. A representative automotive part, i.e., a 30.8 kg steel floor pan having a 17% weight reduction potential with stringent cash performance requirements has been considered for the life cycle energy and emissions analysis based on the latest developments occurring in the precursor type (conventional textile-based PAN vs. renewable-based lignin), part manufacturing (conventional SMC vs. P4) and fiber recycling technologies. Carbon fiber production is estimated to be about 14 times more energy-intensive than conventional steel production, however life cycle primary energy use is estimated to be quite similar to the conventional part, i.e., 18,500 MJ/part, especially when considering the uncertainty in LCI data that exists from using numerous sources in the literature. Lignin P4 technology offers the most life cycle energy and CO2 emissions benefits compared to a conventional stamped steel technology. With a 20% reduction in energy use in the lignin conversion to carbon fiber and free availability of lignin as a by-product of ethanol and wood production, a 30% reduction in life cycle energy use could be obtained. A similar level of life cycle energy savings could also be obtained with a higher part weight reduction potential of 43%.

  20. A phase-stabilized carbon nanotube fiber laser frequency comb.

    PubMed

    Lim, Jinkang; Knabe, Kevin; Tillman, Karl A; Neely, William; Wang, Yishan; Amezcua-Correa, Rodrigo; Couny, François; Light, Philip S; Benabid, Fetah; Knight, Jonathan C; Corwin, Kristan L; Nicholson, Jeffrey W; Washburn, Brian R

    2009-08-03

    A frequency comb generated by a 167 MHz repetition frequency erbium-doped fiber ring laser using a carbon nanotube saturable absorber is phase-stabilized for the first time. Measurements of the in-loop phase noise show an integrated phase error on the carrier envelope offset frequency of 0.35 radians. The carbon nanotube fiber laser comb is compared with a CW laser near 1533 nm stabilized to the nu(1) + nu(3) overtone transition in an acetylene-filled kagome photonic crystal fiber reference, while the CW laser is simultaneously compared to another frequency comb based on a Cr:Forsterite laser. These measurements demonstrate that the stability of a GPS-disciplined Rb clock is transferred to the comb, resulting in an upper limit on the locked comb's frequency instability of 1.2 x 10(-11) in 1 s, and a relative instability of <3 x 10(-12) in 1 s. The carbon nanotube laser frequency comb offers much promise as a robust and inexpensive all-fiber frequency comb with potential for scaling to higher repetition frequencies.

  1. THERMAL INSULATION FROM LIGNIN-DERIVED CARBON FIBERS

    SciTech Connect

    Albers, Tracy; Chen, Chong; Eberle, Cliff; Webb, Daniel C

    2014-01-01

    Oak Ridge National Laboratory (ORNL) and GrafTech International Holdings Inc. (GrafTech) have collaborated to develop and demonstrate the performance of high temperature thermal insulation prototypes made from lignin-based carbon fibers (LBCF). This was the first reported production of LBCF or resulting products at scale > 1 kg. The results will potentially lead to the first commercial application of LBCF. The goal of the commercial application is to replace expensive, foreign-sourced isotropic pitch carbon fibers with lower cost carbon fibers made from a domestically sourced, bio-derived (renewable) feedstock. LBCF can help resolve supply chain vulnerability and reduce the production cost for high temperature thermal insulation as well as create US jobs. The performance of the LBCF prototypes was measured and found to be comparable to that of the current commercial product. During production of the insulation prototypes, the project team demonstrated lignin compounding/pelletization, fiber production, heat treatment, and compositing at scales far surpassing those previously demonstrated in LBCF R&D or production.

  2. Carbon fiber plume sampling for large scale fire tests at Dugway Proving Ground. [fiber release during aircraft fires

    NASA Technical Reports Server (NTRS)

    Chovit, A. R.; Lieberman, P.; Freeman, D. E.; Beggs, W. C.; Millavec, W. A.

    1980-01-01

    Carbon fiber sampling instruments were developed: passive collectors made of sticky bridal veil mesh, and active instruments using a light emitting diode (LED) source. These instruments measured the number or number rate of carbon fibers released from carbon/graphite composite material when the material was burned in a 10.7 m (35 ft) dia JP-4 pool fire for approximately 20 minutes. The instruments were placed in an array suspended from a 305 m by 305 m (1000 ft by 1000 ft) Jacob's Ladder net held vertically aloft by balloons and oriented crosswind approximately 140 meters downwind of the pool fire. Three tests were conducted during which released carbon fiber data were acquired. These data were reduced and analyzed to obtain the characteristics of the released fibers including their spatial and size distributions and estimates of the number and total mass of fibers released. The results of the data analyses showed that 2.5 to 3.5 x 10 to the 8th power single carbon fibers were released during the 20 minute burn of 30 to 50 kg mass of initial, unburned carbon fiber material. The mass released as single carbon fibers was estimated to be between 0.1 and 0.2% of the initial, unburned fiber mass.

  3. Magnetic alignment of mesophase pitch-based carbon fibers

    NASA Astrophysics Data System (ADS)

    Matthews, M. J.; Dresselhaus, M. S.; Dresselhaus, G.; Endo, M.; Nishimura, Y.; Hiraoka, T.; Tamaki, N.

    1996-07-01

    Mesophase pitch-based carbon fibers (MPCFs) have recently been developed for use as high performance anode materials in Li ion secondary batteries, having a microscopic as well as macroscopic structure especially suitable for Li storage. Because of the highly anisotropic diamagnetic moment observed between 50 and 310 K in pristine milled MPCF segments, they can easily be oriented parallel to an applied magnetic field, as observed by scanning electron microscopy. A simple model is proposed to explain both the observed alignment of undoped fibers and the suppression of alignment in B-doped MPCFs for relatively small applied magnetic fields, because of their smaller diamagnetic moment.

  4. Modeling the Role of Bulk and Surface Characteristics of Carbon Fiber on Thermal Conductance across the Carbon-Fiber/Matrix Interface.

    PubMed

    Varshney, Vikas; Roy, Ajit K; Baur, Jeffery W

    2015-12-09

    The rapid heating of carbon-fiber-reinforced polymer matrix composites leads to complex thermophysical interactions which not only are dependent on the thermal properties of the constituents and microstructure but are also dependent on the thermal transport between the fiber and resin interfaces. Using atomistic molecular dynamics simulations, the thermal conductance across the interface between a carbon-fiber near-surface region and bismaleimide monomer matrix is calculated as a function of the interface and bulk features of the carbon fiber. The surface of the carbon fiber is modeled as sheets of graphitic carbon with (a) varying degrees of surface functionality, (b) varying defect concentrations in the surface-carbon model (pure graphitic vs partially graphitic), (c) varying orientation of graphitic carbon at the interface, (d) varying interface saturation (dangling vs saturated bonds), (e) varying degrees of surface roughness, and (f) incorporating high conductive fillers (carbon nanotubes) at the interface. After combining separately equilibrated matrix system and different surface-carbon models, thermal energy exchange is investigated in terms of interface thermal conductance across the carbon fiber and the matrix. It is observed that modifications in the studied parameters (a-f) often lead to significant modulation of thermal conductance across the interface and, thus, showcases the role of interface tailoring and surface-carbon morphology toward thermal energy exchange. More importantly, the results provide key bounds and a realistic degree of variation to the interface thermal conductance values at fiber/matrix interfaces as a function of different surface-carbon features.

  5. Coaxial fiber supercapacitor using all-carbon material electrodes.

    PubMed

    Le, Viet Thong; Kim, Heetae; Ghosh, Arunabha; Kim, Jaesu; Chang, Jian; Vu, Quoc An; Pham, Duy Tho; Lee, Ju-Hyuck; Kim, Sang-Woo; Lee, Young Hee

    2013-07-23

    We report a coaxial fiber supercapacitor, which consists of carbon microfiber bundles coated with multiwalled carbon nanotubes as a core electrode and carbon nanofiber paper as an outer electrode. The ratio of electrode volumes was determined by a half-cell test of each electrode. The capacitance reached 6.3 mF cm(-1) (86.8 mF cm(-2)) at a core electrode diameter of 230 μm and the measured energy density was 0.7 μWh cm(-1) (9.8 μWh cm(-2)) at a power density of 13.7 μW cm(-1) (189.4 μW cm(-2)), which were much higher than the previous reports. The change in the cyclic voltammetry characteristics was negligible at 180° bending, with excellent cycling performance. The high capacitance, high energy density, and power density of the coaxial fiber supercapacitor are attributed to not only high effective surface area due to its coaxial structure and bundle of the core electrode, but also all-carbon materials electrodes which have high conductivity. Our coaxial fiber supercapacitor can promote the development of textile electronics in near future.

  6. Fundamental Study of Compressive Strength Development in PAN-Based Carbon Fibers

    DTIC Science & Technology

    1992-03-20

    number) Evolution of mechanical properties in the conversion of two precursor polymeric fibers to carbon fibers has been studied. The focus has been on...of morphology and compressive properties in the formation of carbon fibers from polyacrylonitrile (PAN)-based precursor polymers constitutes the major...carbon fibers. The motivation here has been to explore not only the evolutionary aspects in the conversion of current commercial precursors , but also

  7. High performance carbon fibers from very high molecular weight polyacrylonitrile precursors

    SciTech Connect

    Morris, E. Ashley; Weisenberger, Matthew C.; Abdallah, Mohamed G.; Vautard, Frederic; Grappe, Hippolyte A.; Ozcan, Soydan; Paulauskas, Felix L.; Eberle, Cliff; Jackson, David C.; Mecham, Sue J.; Naskar, Amit K.

    2016-02-02

    In this study, carbon fibers are unique reinforcing agents for lightweight composite materials due to their outstanding mechanical properties and low density. Current technologies are capable of producing carbon fibers with 90-95% of the modulus of perfect graphite (~1025 GPa). However, these same carbon fibers possess less than 10% of the theoretical carbon fiber strength, estimated to be about 100 GPa.[1] Indeed, attempts to increase carbon fiber rigidity results in lower breaking strength. To develop advanced carbon fibers with both very high strength and modulus demands a new manufacturing methodology. Here, we report a method of manufacturing high strength, very high modulus carbon fibers from a very high molecular weight (VHMW) polyacrylonitrile (PAN) precursor without the use of nanomaterial additives such as nucleating or structure-templating agents, as have been used by others.[2,3

  8. High performance carbon fibers from very high molecular weight polyacrylonitrile precursors

    DOE PAGES

    Morris, E. Ashley; Weisenberger, Matthew C.; Abdallah, Mohamed G.; ...

    2016-02-02

    In this study, carbon fibers are unique reinforcing agents for lightweight composite materials due to their outstanding mechanical properties and low density. Current technologies are capable of producing carbon fibers with 90-95% of the modulus of perfect graphite (~1025 GPa). However, these same carbon fibers possess less than 10% of the theoretical carbon fiber strength, estimated to be about 100 GPa.[1] Indeed, attempts to increase carbon fiber rigidity results in lower breaking strength. To develop advanced carbon fibers with both very high strength and modulus demands a new manufacturing methodology. Here, we report a method of manufacturing high strength, verymore » high modulus carbon fibers from a very high molecular weight (VHMW) polyacrylonitrile (PAN) precursor without the use of nanomaterial additives such as nucleating or structure-templating agents, as have been used by others.[2,3]« less

  9. Carbon Fibers for Electrically Heated System

    DTIC Science & Technology

    1975-05-01

    evaluated by several techniques. Samples of the yarn and fabric were enclosed in clean polyethylene bags which were subsequently heat-seaied and tumbled in...a home clothes dryer without heat. The result- of this test on PVA-sized polyacrylonitrile and rayon precursor yarn and PAN and rayon based fabrics...fabrics which were treated with PVA showed little or no accumulation of carbon/graphite dust within the sealed bag after an hour of tumbling , Fabrics

  10. X-ray-cured carbon-fiber composites for vehicle use

    NASA Astrophysics Data System (ADS)

    Herer, Arnold; Galloway, Richard A.; Cleland, Marshall R.; Berejka, Anthony J.; Montoney, Daniel; Dispenza, Dan; Driscoll, Mark

    2009-07-01

    Carbon-fiber-reinforced composites were cured in molds using X-rays derived from a high-energy, high-current electron beam. X-rays could penetrate the mold walls as well as the fiber reinforcements and polymerize a matrix system. Matrix materials made from modified epoxy-acrylates were tailored to suitably low viscosity so that fiber wetting and adhesion could be attained. Techniques similar to vacuum-assisted resin transfer molding (VARTM) and conventional vacuum bagging of wet lay-ups were used. Inexpensive reinforced polyester molds were used to fabricate vehicle fenders. Moderately low-dose X-ray exposure was sufficient to attain functional properties, such as resistance to heat distortion at temperatures as high as 180 °C. The matrix system contained an impact additive which imparted toughness to the cured articles. "Class A" high gloss surfaces were achieved. Thermo-analytical techniques were used on small-sized samples of X-ray-cured matrix materials to facilitate selection of a system for use in making prototypes of vehicle components. X-rays-penetrated metal pieces that were placed within layers of carbon-fiber twill, which were cured and bonded into a structure that could be mechanically attached without concern over fracturing the composite. X-ray curing is a low temperature process that eliminates residual internal stresses which are imparted by conventional thermo-chemical curing processes.

  11. Carbon or boron modified titanium silicide

    DOEpatents

    Thom, Andrew J.; Akinc, Mufit

    1996-12-03

    A titanium silicide material based on Ti.sub.5 Si.sub.3 intermetallic compound exhibits substantially improved oxidative stability at elevated temperatures. In particular, carbon is added to a Ti.sub.5 Si.sub.3 base material in an amount (e.g. about 0.3 to about 3.6 weight % C) effective to impart substantially improved oxidative stability at elevated temperatures, such as about 1000.degree. C. Boron is added to a Ti.sub.5 Si.sub.3 base material in an amount (e.g. about 0.3 to about 3.3 weight % B) to this same end.

  12. Carbon or boron modified titanium silicide

    DOEpatents

    Thom, A.J.; Akinc, M.

    1998-07-14

    A titanium silicide material based on Ti{sub 5}Si{sub 3} intermetallic compound exhibits substantially improved oxidative stability at elevated temperatures. In particular, carbon is added to a Ti{sub 5}Si{sub 3} base material in an amount (e.g. about 0.3 to about 3.6 weight % C) effective to impart substantially improved oxidative stability at elevated temperatures, such as about 1000 C. Boron is added to a Ti{sub 5}Si{sub 3} base material in an amount (e.g. about 0.3 to about 3.3 weight % B) to this same end. 3 figs.

  13. Carbon or boron modified titanium silicide

    DOEpatents

    Thom, Andrew J.; Akinc, Mufit

    1997-12-02

    A titanium silicide material based on Ti.sub.5 Si.sub.3 intermetallic compound exhibits substantially improved oxidative stability at elevated temperatures. In particular, carbon is added to a Ti.sub.5 Si.sub.3 base material in an amount (e.g. about 0.3 to about 3.6 weight % C) effective to impart substantially improved oxidative stability at elevated temperatures, such as about 1000.degree. C. Boron is added to a Ti.sub.5 Si.sub.3 base material in an amount (e.g. about 0.3 to about 3.3 weight % B) to this same end.

  14. Carbon or boron modified titanium silicide

    DOEpatents

    Thom, A.J.; Akinc, M.

    1997-12-02

    A titanium silicide material based on Ti{sub 5}Si{sub 3} intermetallic compound exhibits substantially improved oxidative stability at elevated temperatures. In particular, carbon is added to a Ti{sub 5}Si{sub 3} base material in an amount (e.g. about 0.3 to about 3.6 weight % C) effective to impart substantially improved oxidative stability at elevated temperatures, such as about 1000 C. Boron is added to a Ti{sub 5}Si{sub 3} base material in an amount (e.g. about 0.3 to about 3.3 weight % B) to this same end. 3 figs.

  15. Carbon or boron modified titanium silicide

    DOEpatents

    Thom, A.J.; Akinc, M.

    1996-12-03

    A titanium silicide material based on Ti{sub 5}Si{sub 3} intermetallic compound exhibits substantially improved oxidative stability at elevated temperatures. In particular, carbon is added to a Ti{sub 5}Si{sub 3} base material in an amount (e.g. about 0.3 to about 3.6 weight % C) effective to impart substantially improved oxidative stability at elevated temperatures, such as about 1000 C. Boron is added to a Ti{sub 5}Si{sub 3} base material in an amount (e.g. about 0.3 to about 3.3 weight % B) to this same end. 3 figs.

  16. Carbon or boron modified titanium silicide

    DOEpatents

    Thom, Andrew J.; Akinc, Mufit

    1998-07-14

    A titanium silicide material based on Ti.sub.5 Si.sub.3 intermetallic compound exhibits substantially improved oxidative stability at elevated temperatures. In particular, carbon is added to a Ti.sub.5 Si.sub.3 base material in an amount (e.g. about 0.3 to about 3.6 weight % C) effective to impart substantially improved oxidative stability at elevated temperatures, such as about 1000.degree. C. Boron is added to a Ti.sub.5 Si.sub.3 base material in an amount (e.g. about 0.3 to about 3.3 weight % B) to this same end.

  17. Stretchable Fiber Supercapacitors with High Volumetric Performance Based on Buckled MnO2 /Oxidized Carbon Nanotube Fiber Electrodes.

    PubMed

    Li, Mingyang; Zu, Mei; Yu, Jinshan; Cheng, Haifeng; Li, Qingwen

    2017-03-01

    A stretchable fiber supercapacitor (SC) based on buckled MnO2 /oxidized carbon nanotube (CNT) fiber electrode is fabricated by a simple prestraining-then-buckling method. The prepared stretchable fiber SC has a specific volumetric capacitance up to 409.4 F cm(-3) , which is 33 times that of the pristine CNT fiber based SC, and shows the outstanding stability and repeatability in performance as a stretchable SC.

  18. Modifying the Mechanical Properties of Silk Fiber by Genetically Disrupting the Ionic Environment for Silk Formation.

    PubMed

    Wang, Xin; Zhao, Ping; Li, Yi; Yi, Qiying; Ma, Sanyuan; Xie, Kang; Chen, Huifang; Xia, Qingyou

    2015-10-12

    Silks are widely used biomaterials, but there are still weaknesses in their mechanical properties. Here we report a method for improving the silk fiber mechanical properties by genetic disruption of the ionic environment for silk fiber formation. An anterior silk gland (ASG) specific promoter was identified and used for overexpressing ion-transporting protein in the ASG of silkworm. After isolation of the transgenic silkworms, we found that the metal ion content, conformation and mechanical properties of transgenic silk fibers changed accordingly. Notably, overexpressing endoplasmic reticulum Ca2+-ATPase in ASG decreased the calcium content of silks. As a consequence, silk fibers had more α-helix and β-sheet conformations, and their tenacity and extension increased significantly. These findings represent the in vivo demonstration of a correlation between metal ion content in the spinning duct and the mechanical properties of silk fibers, thus providing a novel method for modifying silk fiber properties.

  19. Conductive hydrophobic hybrid textiles modified with carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Kowalczyk, D.; Brzeziński, S.; Makowski, T.; Fortuniak, W.

    2015-12-01

    The paper presents the results of modifying and testing modern hybrid polyester-cotton woven fabrics with deposited multi-wall carbon nanotubes and imparted hydrophobicity. The effect of the carbon nanotubes deposited on these fabrics on their conductive properties and hydrophobicity has been assessed. The electro-conductive and hydrophobic composite fabrics obtained in this way, being light, elastic and resistant to mechanical effects, make it possible to be widely used in various industrial fields.

  20. Carbon Fiber Reinforced Ceramic Composites for Propulsion Applications

    NASA Technical Reports Server (NTRS)

    Freedman, Marc (Technical Monitor); Shivakumar, Kunigal N.

    2003-01-01

    Fiber reinforced ceramic composites are materials of choice for gas turbine engines because of their high thermal efficiency, thrust/weight ratio, and operating temperatures. However, the successful introduction of ceramic composites to hot structures is limited because of excessive cost of manufacturing, reproducibility, nonuniformity, and reliability. Intense research is going on around the world to address some of these issues. The proposed effort is to develop a comprehensive status report of the technology on processing, testing, failure mechanics, and environmental durability of carbon fiber reinforced ceramic composites through extensive literature study, vendor and end-user survey, visits to facilities doing this type of work, and interviews. Then develop a cooperative research plan between NASA GRC and NCA&T (Center for Composite Materials Research) for processing, testing, environmental protection, and evaluation of fiber reinforced ceramic composites.

  1. Nanocomposites of carbon nanotube fibers prepared by polymer crystallization.

    PubMed

    Zhang, Shanju; Lin, Wei; Wong, Ching-Ping; Bucknall, David G; Kumar, Satish

    2010-06-01

    Nanocomposites of carbon nanotube fibers have been prepared using controlled polymer crystallization confined in nanotube aerogel fibers. The polyethylene nanocomposites have been investigated by means of polarized optical microscopy (POM), scanning electron microscopy (SEM) and wide-angle X-ray diffraction (WAXD). The individual nanotubes are periodically decorated with polyethylene nanocrystals, forming aligned hybrid shish-kebab nanostructures. After melting and recrystallization, transcrystalline lamellae connecting the adjacent aligned nanotubes develop. Microstructural analysis shows that the nanotubes can nucleate the growth of both orthorhombic and monoclinic crystals of polyethylene in the quiescent state. The tensile strength, modulus, and axial electrical conductivity of these polyethylene/CNT composite fibers are as high as 600 MPa, 60 GPa, and 5000 S/m, respectively.

  2. [A study on alpha-tricalcium phosphate bone cement carbon fiber-reinforced].

    PubMed

    Wu, Wenjin; Yang, Weizhong; Zhou, Dali; Ma, Jiang; Xiao, Bin

    2006-06-01

    In order to improve the mechanical properties of alpha-tricalcium phosphate (alpha-TCP), we prepared surface-modified carbon fibers (CF) reinforced alpha-TCP composite bone cement. Bone cement was soaked in Ringer's body solution to test its capacity of fast formation of hydroxyapatite crystals and self-solidification. Scan electronic microscope (SEM) observation and compressive strength measurement were taken to analyze the mechanical properties and the micro- morphological structure of CF reinforced alpha-TCP bone cement. The results showed that the bone cement was transferred into hydroxyapatite plates after being soaked in Ringer's simulated body fluid for 5 days. Suitable amount of carbon fibers could well spread in and bond with the matrix of the bone cement. The mechanical properties of the bone cement have been improved by CF reinforcing; the compressive strength reaches 46.7 MPa when the amount of carbon fibers is 0.5% in weight percent, which is 22% higher than that of the non-reinforced alpha-TCP bone cement.

  3. Pre-treatment of multi-walled carbon nanotubes for polyetherimide mixed matrix hollow fiber membranes.

    PubMed

    Goh, P S; Ng, B C; Ismail, A F; Aziz, M; Hayashi, Y

    2012-11-15

    Mixed matrix hollow fibers composed of multi-walled carbon nanotubes (MWCNTs) and polyetherimide (PEI) were fabricated. Pre-treatment of MWCNTs was carried out prior to the incorporation into the polymer matrix using a simple and feasible two stages approach that involved dry air oxidation and surfactant dispersion. The characterizations of the surface treated MWCNTs using TEM and Raman spectroscopy have evidenced the effectiveness of dry air oxidation in eliminating undesired amorphous carbon and metal catalyst while surfactant dispersion using Triton X100 has suppressed the agglomeration of MWCNTs. The resultant mixed matrix hollow fibers were applied for O(2)/N(2) pure gas separation. Interestingly, it was found that removal of disordered amorphous carbons and metal particles has allowed the hollow structures to be more accessible for the fast and smooth transport of gas molecules, hence resulted in noticeable improvement in the gas separation properties. The composite hollow fibers embedded with the surface modified MWCNTs showed increase in permeability as much as 60% while maintaining the selectivity of the O(2)/N(2) gas pair. This study highlights the necessity to establish an appropriate pre-treatment approach for MWCNTs in order to fully utilize the beneficial transport properties of this material in mixed matrix polymer nanocomposite for gas separation.

  4. Enhanced microbial decolorization of methyl red with oxidized carbon fiber as redox mediator.

    PubMed

    Emilia Rios-Del Toro, E; Celis, Lourdes B; Cervantes, Francisco J; Rangel-Mendez, J Rene

    2013-09-15

    The anaerobic degradation of azo dyes under anaerobic conditions is possible but at a slow rate. Redox mediators (quinones, activated carbon) are used to improve the reduction rate. The aim of this work was to use activated carbon fiber (ACF) as a redox mediator for the anaerobic reduction of the azo dye methyl red. ACF was chemically modified with 8M HNO₃ to increase its redox-mediating capacity and used in chemical and anaerobic biological batch assays for the reduction of methyl red. ACF increased its redox-mediating capacity up to 3-fold in chemical assays; in biological assays ACF increased the reduction rate up to 8-fold compared to controls without ACF. However, since the ACF served as support for biomass, a biofilm formed on the fiber significantly reduced its redox-mediating capacity; substrate consumption suggested that the electron transport from ACF to methyl red was the rate-limiting step in the process. These results are the first evidence of the role of ACF as a redox mediator in the reductive decolorization of methyl red, in addition to the effect of biofilm attached to ACF on methyl red reduction. Due to the versatile characteristics of ACF and its redox-mediating capacity, carbon fibers could be used in biological wastewater treatment systems to accelerate the reductive transformation of pollutants commonly found in industrial effluents.

  5. System to continuously produce carbon fiber via microwave assisted plasma processing

    DOEpatents

    White, Terry L [Knoxville, TN; Paulauskas, Felix L [Knoxville, TN; Bigelow, Timothy S [Knoxville, TN

    2010-11-02

    A system to continuously produce fully carbonized or graphitized carbon fibers using microwave-assisted plasma (MAP) processing comprises an elongated chamber in which a microwave plasma is excited in a selected gas atmosphere. Fiber is drawn continuously through the chamber, entering and exiting through openings designed to minimize in-leakage of air. There is a gradient of microwave power within the chamber with generally higher power near where the fiber exits and lower power near where the fiber enters. Polyacrylonitrile (PAN), pitch, or any other suitable organic/polymeric precursor fibers can be used as a feedstock for the inventive system. Oxidized or partially oxidized PAN or pitch or other polymeric fiber precursors are run continuously through a MAP reactor in an inert, non-oxidizing atmosphere to heat the fibers, drive off the unwanted elements such as oxygen, nitrogen, and hydrogen, and produce carbon or graphite fibers faster than conventionally produced carbon fibers.

  6. Dry synthesis of lithium intercalated graphite powders and carbon fibers

    SciTech Connect

    Sacci, Robert L; Adamczyk, Leslie A; Veith, Gabriel M; Dudney, Nancy J

    2014-01-01

    Herein we describe the direct synthesis of lithium intercalated graphite by heating under vacuum or ball milling under pressurized Ar(g). Both methods allow for stoichometric control of Li-C ratio in batter-grade graphites and carbon fibers prior formation of a solid electrolyte interphase. The products' surface chemistries, as probed by XPS, suggest that LiC6 are extremely reactive with trace amounts of moisture or oxygen. The open circuit potential and SEM data show that the reactivity of the lithiated battery-grade graphite and the carbon fiber can be related to the density of edge/defect sites on the surfaces. Preliminary results of spontaneous SEI formation on Li-graphite in electrolyte are also given.

  7. Vapor grown carbon fiber for space thermal management systems

    NASA Technical Reports Server (NTRS)

    Lake, Max L.; Hickok, J. Kyle; Brito, Karren K.; Begg, Lester L.

    1990-01-01

    Research that uses a novel, highly graphitic, vapor grown carbon fiber (VGCF) to fabricate composites for thermal management applications is described. These VGCF/Carbon composites have shown a specific thermal conductivity with values of twenty-to-ten times that of copper in the 500-900 K temperature range needed for waste heat management. It is concluded that development of this high specific thermal conductivity composite for thermal radiator panels will provide the foundation for a reevaluation of space power designs heretofore limited by the mass of waste heat dissipation systems. Further, it is suggested that through optimization of fiber handling and composite processing, thermal conductivities exceeding 1000 W/m-K (at 300 K) are achievable in composites reinforced with VGCF.

  8. Activation and micropore structure of carbon-fiber composites

    SciTech Connect

    Jagtoyen, M.; Derbyshire, F.; Kimber, G.

    1997-12-01

    Rigid, high surface area activated carbon fiber composites have been produced with high permeabilities for environmental applications in gas and water purification. The project involves a collaboration between the Oak Ridge National Laboratory (ORNL) and the Center for Applied Energy Research (CAER), University of Kentucky. The main focus of recent work has been to find a satisfactory means to uniformly activate large samples of carbon fiber composites to produce controlled pore structures. Processes have been developed using activation in steam and CO{sub 2}, and a less conventional method involving oxygen chemisorption and subsequent heat treatment. Another objective has been to explore applications for the activated composites in environmental applications related to fossil energy production.

  9. The development of high precision carbon fiber composite mirror

    NASA Astrophysics Data System (ADS)

    Xu, Liang; Ding, Jiao-teng; Wang, Yong-jie; Xie, Yong-jie; Ma, Zhen; Fan, Xue-wu

    2016-10-01

    Due to low density, high stiffness, low thermal expansion coefficient, duplicate molding, etc., carbon fiber reinforced polymer (CFRP) is one of the potential materials of the optical mirror. The process developed for Φ300mm high precision CFRP mirror described in this paper. A placement tool used to improve laying accuracy up to ± 0.1°.A special reinforced cell structure designed to increase rigidity and thermal stability. Optical replication process adopted for surface modification of the carbon fiber composite mirror blank. Finally, surface accuracy RMS of Φ300mm CFRP mirror is 0.22μm, surface roughness Ra is about 2nm, and the thermal stability can achieve 13nm /°C from the test result. The research content is of some reference value in the infrared as well as visible light applications.

  10. BASIC PROPERTIES OF REFERENCE CROSSPLY CARBON-FIBER COMPOSITE

    SciTech Connect

    Corum, J.M.

    2001-01-11

    This report provides basic in-air property data and correlations-tensile, compressive, shear, tensile fatigue, and tensile creep-for a reference carbon-fiber composite being characterized as a part of the Durability of Carbon-Fiber Composites Project at Oak Ridge National Laboratory. The overall goal of the project, which is sponsored by the Department of Energy's Office of Advanced Automotive Materials and is closely coordinated with the Advanced Composites Consortium, is to develop durability-based design guidance for polymeric composites for automotive structural applications. The composite addressed here is a {+-}45{degree} crossply consisting of continuous Thornel T300 fibers in a Baydur 420 IMR urethane matrix. Basic tensile, compressive, and shear properties are tabulated for the temperature range from {minus}40 to 120 C. Fatigue response at room-temperature and 120 C are presented, and creep and creep rupture at room temperature only are reported. In all cases, two fiber orientations--0/90{degree} and {+-}45{degree}--relative to the specimen axes are addressed. The properties and correlations presented are interim in nature. They are intended as a baseline for planning a full durability test program on this reference composite.

  11. The performance of integrated active fiber composites in carbon fiber laminates

    NASA Astrophysics Data System (ADS)

    Melnykowycz, M.; Brunner, A. J.

    2011-07-01

    Piezoelectric elements integrated into fiber-reinforced polymer-matrix laminates can provide various functions in the resulting adaptive or smart composite. Active fiber composites (AFC) composed of lead zirconate titanate (PZT) fibers can be used as a component in a smart material system, and can be easily integrated into woven composites. However, the impact of integration on the device and its functionality has not been fully investigated. The current work focuses on the integration and performance of AFC integrated into carbon-fiber-reinforced plastic (CFRP) laminates, focusing on the strain sensor performance of the AFC-CFRP laminate under tensile loading conditions. AFC were integrated into cross-ply CFRP laminates using simple insertion and interlacing of the CFRP plies, with the AFC always placed in the 90° ply cutout area. Test specimens were strained to different strain levels and then cycled with a 0.01% strain amplitude, and the resulting signal from the AFC was monitored. Acoustic emission monitoring was performed during tensile testing to provide insight to the failure characteristics of the PZT fibers. The results were compared to those from past studies on AFC integration; the strain signal of AFC integrated into CFRP was much lower than that for AFC integrated into woven glass fiber laminates. However, the profiles of the degradations of the AFC signal resulting from the strain were nearly identical, showing that the PZT fibers fragmented in a similar manner for a given global strain. The sensor performance recovered upon unloading, which is attributed to the closure of cracks between PZT fiber fragments.

  12. Surface modifications of nylon/carbon fiber composite for improving joint adhesion

    SciTech Connect

    Wu, R.; Liao, S.L.; Tong, T.S.; Young, J.T.

    1996-12-31

    Various methods were used to modify the nylon/carbon fiber composite surfaces, including grit blasting, flame and plasma pretreatments. The surfaces of nylon composites after pretreatments were characterized by contact angle measurements, scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS). XPS results show that several functional groups were formed after plasma and flame pretreatments. The scanning electron microscope (SEM) photographs suggest that the blasting pretreatment increased the surface roughness of nylon composites. All these surface pretreatments dramatically increased the lap shear strength if proper operation conditions were used. The reasons for the increase of lap shear strength were explained.

  13. Carbon dioxide gas sensor derived from a 547-hole microstructured polymer optical fiber preform.

    PubMed

    Wang, Jian; Wang, Lili

    2010-10-01

    In this Letter, we report a carbon dioxide gas sensor having 547 pieces of thin-film modified capillaries, which are derived from a microstructured polymer optical fiber preform. Compared with the conventional absorption-based sensor, the monolithic polymer capillary waveguide arrays have better sensitivity, because the huge sensing surfaces, composed of 547 pieces of dye-indicator-doped porous ethyl cellulose layers, interact directly with the gas molecules. As far as we know, a gas sensor based on multichannel capillary waveguide arrays has not been reported before.

  14. Films, Buckypapers and Fibers from Clay, Chitosan and Carbon Nanotubes

    PubMed Central

    Higgins, Thomas M.; Warren, Holly; Panhuis, Marc in het

    2011-01-01

    The mechanical and electrical characteristics of films, buckypapers and fiber materials from combinations of clay, carbon nanotubes (CNTs) and chitosan are described. The rheological time-dependent characteristics of clay are maintained in clay–carbon nanotube–chitosan composite dispersions. It is demonstrated that the addition of chitosan improves their mechanical characteristics, but decreases electrical conductivity by three-orders of magnitude compared to clay–CNT materials. We show that the electrical response upon exposure to humid atmosphere is influenced by clay-chitosan interactions, i.e., the resistance of clay–CNT materials decreases, whereas that of clay–CNT–chitosan increases.

  15. Acute Inhalation of Explosively Disseminated Carbon Fibers in Rats

    DTIC Science & Technology

    1994-05-01

    test), rodent bone marrow micronucleus assay, and the chromosome aberrations assay in Chinese hamster ovary (CHO) cells. 2.10 Data Analysis Plan...Pathology Associates. 3.6 Mutagenicitv Assays. Extracts of the exploded carbon fibers were tested in the Ames, Mouse Micronucleus, and the CHO Chromosome ...the last decade, the analysis of micronuclei (HN) has gained increased popularity as an alternative to classical chromosomal aberration analysis for

  16. 120mm Prestressed Carbon Fiber/Thermoplastic Overwrapped Gun Tubes

    DTIC Science & Technology

    2008-10-01

    YYYY) 30-10-2008 2. REPORT TYPE FINAL 3. DATES COVERED (From - To) 4. TITLE AND SUBTITLE 120mm Prestressed Carbon Fiber/Thermoplastic...successfully test fired. The first barrel was not prestressed and was reported on previously. This paper will focus on the other three barrels. The... prestress in the jacket. Dealing with these issues greatly complicated the manufacturing process to the point where mass-producing the barrels would

  17. Production of graphene oxide from pitch-based carbon fiber.

    PubMed

    Lee, Miyeon; Lee, Jihoon; Park, Sung Young; Min, Byunggak; Kim, Bongsoo; In, Insik

    2015-07-09

    Pitch-based graphene oxide (p-GO) whose compositional/structural features are comparable to those of graphene oxide (GO) was firstly produced by chemical exfoliation of pitch-based carbon fiber rather than natural graphite. Incorporation of p-GO as nanofillers into poly(methyl methacrylate) (PMMA) as a matrix polymer resulted in excellent mechanical reinforcement. p-GO/PMMA nanocomposite (1 wt.-% p-GO) demonstrated 800% higher modulus of toughness of neat PMMA.

  18. Carbon Fiber TOW Angle Determination Using Microwave Reflectometry

    NASA Technical Reports Server (NTRS)

    Wilson, William C.; Moore, Jason P.; Juarez, Peter D.

    2016-01-01

    NASA's Advanced Composites Project is investigating technologies that increase automated remote inspection of aircraft composite structures. Therefore, microwave Frequency Domain Reflectometry (FDR) is being investigated as a method of enabling rapid remote inspection of angular orientation of the tow using microwave radiation. This work will present preliminary data demonstrating that frequency shifts in the reflection spectrum of a carbon fiber tow sample are indicative of the angle of the tow with respect to an interrogating antenna's linear polarized output.

  19. Production of graphene oxide from pitch-based carbon fiber

    NASA Astrophysics Data System (ADS)

    Lee, Miyeon; Lee, Jihoon; Park, Sung Young; Min, Byunggak; Kim, Bongsoo; in, Insik

    2015-07-01

    Pitch-based graphene oxide (p-GO) whose compositional/structural features are comparable to those of graphene oxide (GO) was firstly produced by chemical exfoliation of pitch-based carbon fiber rather than natural graphite. Incorporation of p-GO as nanofillers into poly(methyl methacrylate) (PMMA) as a matrix polymer resulted in excellent mechanical reinforcement. p-GO/PMMA nanocomposite (1 wt.-% p-GO) demonstrated 800% higher modulus of toughness of neat PMMA.

  20. Carbon fiber composite molecular sieve electrically regenerable air filter media

    DOEpatents

    Wilson, Kirk A.; Burchell, Timothy D.; Judkins, Roddie R.

    1998-01-01

    An electrically regenerable gas filter system includes a carbon fiber composite molecular sieve (CFCMS) filter medium. After a separate medium-efficiency pre-filter removes particulate from the supply airstream, the CFCMS filter sorbs gaseous air pollutants before the air is recirculated to the space. When saturated, the CFCMS media is regenerated utilizing a low-voltage current that is caused to pass through the filter medium.

  1. Carbon fiber composite molecular sieve electrically regenerable air filter media

    DOEpatents

    Wilson, K.A.; Burchell, T.D.; Judkins, R.R.

    1998-10-27

    An electrically regenerable gas filter system includes a carbon fiber composite molecular sieve (CFCMS) filter medium. After a separate medium-efficiency pre-filter removes particulate from the supply air stream, the CFCMS filter sorbs gaseous air pollutants before the air is recirculated to the space. When saturated, the CFCMS media is regenerated utilizing a low-voltage current that is caused to pass through the filter medium. 3 figs.

  2. Production of graphene oxide from pitch-based carbon fiber

    PubMed Central

    Lee, Miyeon; Lee, Jihoon; Park, Sung Young; Min, Byunggak; Kim, Bongsoo; In, Insik

    2015-01-01

    Pitch-based graphene oxide (p-GO) whose compositional/structural features are comparable to those of graphene oxide (GO) was firstly produced by chemical exfoliation of pitch-based carbon fiber rather than natural graphite. Incorporation of p-GO as nanofillers into poly(methyl methacrylate) (PMMA) as a matrix polymer resulted in excellent mechanical reinforcement. p-GO/PMMA nanocomposite (1 wt.-% p-GO) demonstrated 800% higher modulus of toughness of neat PMMA. PMID:26156067

  3. Effects of precursor thermal aging and fiber arrangement on the properties of carbon/carbon (C/C) composites

    SciTech Connect

    Ma, C.C.M.; Chang, W.C.; Tai, N.H.

    1993-12-31

    Carbon/carbon composites fabricated by the pyrolysis of high strength carbon fiber fabrics reinforced phenolic resin were investigated. A liquid impregnation process has been used to fabricate composite precursor for 2-D carbon/carbon composite and an unique pultrusion process also used to fabricate the 1-D carbon/carbon composite precursor. Effects of thermal aging of the precursor on flexural strength of the resulted carbon/carbon composites are studied. Results shows that suitable thermal aging improves the flexural properties of carbon/carbon composites in this study. And based on the SEM examination and flexural tests, they show that the 2-D plain woven fiber arrangement results the significant degradation of the carbon fiber and the decreasing of composites flexural properties.

  4. Method of making carbon fiber-carbon matrix reinforced ceramic composites

    NASA Technical Reports Server (NTRS)

    Williams, Brian (Inventor); Benander, Robert (Inventor)

    2007-01-01

    A method of making a carbon fiber-carbon matrix reinforced ceramic composite wherein the result is a carbon fiber-carbon matrix reinforcement is embedded within a ceramic matrix. The ceramic matrix does not penetrate into the carbon fiber-carbon matrix reinforcement to any significant degree. The carbide matrix is a formed in situ solid carbide of at least one metal having a melting point above about 1850 degrees centigrade. At least when the composite is intended to operate between approximately 1500 and 2000 degrees centigrade for extended periods of time the solid carbide with the embedded reinforcement is formed first by reaction infiltration. Molten silicon is then diffused into the carbide. The molten silicon diffuses preferentially into the carbide matrix but not to any significant degree into the carbon-carbon reinforcement. Where the composite is intended to operate between approximately 2000 and 2700 degrees centigrade for extended periods of time such diffusion of molten silicon into the carbide is optional and generally preferred, but not essential.

  5. Modified carbon nanotubes and methods of forming carbon nanotubes

    DOEpatents

    Heintz, Amy M.; Risser, Steven; Elhard, Joel D.; Moore, Bryon P.; Liu, Tao; Vijayendran, Bhima R.

    2016-06-14

    In this invention, processes which can be used to achieve stable doped carbon nanotubes are disclosed. Preferred CNT structures and morphologies for achieving maximum doping effects are also described. Dopant formulations and methods for achieving doping of a broad distribution of tube types are also described.

  6. Formation of aromatic thermoplastic and carbon-fiber prepreg by electrochemical processes

    SciTech Connect

    Li Hong.

    1991-01-01

    A new technique was developed and demonstrated for combining carbon fibers with aromatic thermoplastic matrices to form a high-quality towpreg. The developed technique utilizes an in-situ electrochemical process (Electrochemical polymerization - ECP) to create the entire polymer matrix surrounding the fiber array by direct polymerization of monomer. Poly-paraxylylene (PPX) and derivatives are successfully polymerized in-situ on carbon fiber surfaces through ECP. A PPX/carbon-fiber towpreg with 40 vol % of matrix is achieved in a fairly short reaction time with a high polymer-coating efficiency. Vapor deposition polymerization (VDP) was also studied. PPX and carbon-fiber towpreg were made successfully by this process. A comparison between ECP and VDP was conducted. A study on electrochemical oxidation (ECO) of carbon fibers was also performed. The ECO treatment may be suitable for carbon fibers incorporated in composites with high-temperature curing resins and thermoplastic matrices.

  7. Gel Spun PAN/CNT Based Carbon Fibers with Honey-Comb Cross-Section

    DTIC Science & Technology

    2013-11-13

    stabilization of precursor fibers. Methods used to manufacture hollow carbon fibers include co-axial electrospinning and post treatment [14], bi...GPa and 249 GPa, respectively. Lee et al. [21], reported manufacture of hollow carbon fibers from PAN based precursors using electrospinning . Styrene

  8. Pitch-based short carbon fiber. Final report

    SciTech Connect

    Lin, S.S.

    1991-12-01

    Short carbon fiber manufactured from coal tar pitch by Osaka Gas Co. is examined by chemical composition analysis, X-ray powder diffraction, optical microscope, and electron spectroscopic techniques. The present analytical results are compared with the data obtainable from other sources. Owing to the low cost of the short fiber, it is recommended that the fiber could be used for a wide variety of reinforcement applications such as, cement/concrete mixtures, polymer composites, and high temperature materials. Processing includes the mechanical separation of mesophase microbeads of three to 30 micron diameters from crude coal tar during three heat treatment stages. The mesophases obtained are then subjected to solvent extraction, hydrogenation, and polymerization to yield isotropic and anisotropic pitches suitable for melt spinning. The short fiber is fabricated from isotropic pitch by the rotary gas jet method, and the process yields a higher quality fiber as compared to other melt spinning methods. The most important feature is that this process is highly cost effective.

  9. Carbon felt and carbon fiber - A techno-economic assessment of felt electrodes for redox flow battery applications

    NASA Astrophysics Data System (ADS)

    Minke, Christine; Kunz, Ulrich; Turek, Thomas

    2017-02-01

    Carbon felt electrodes belong to the key components of redox flow batteries. The purpose of this techno-economic assessment is to uncover the production costs of PAN- and rayon-based carbon felt electrodes. Raw material costs, energy demand and the impact of processability of fiber and felt are considered. This innovative, interdisciplinary approach combines deep insights into technical, ecologic and economic aspects of carbon felt and carbon fiber production. Main results of the calculation model are mass balances, cumulative energy demands (CED) and the production costs of conventional and biogenic carbon felts supplemented by market assessments considering textile and carbon fibers.

  10. Fiber-modified polyurethane foam for ballistic protection

    NASA Technical Reports Server (NTRS)

    Fish, R. H.; Parker, J. A.; Rosser, R. W.

    1975-01-01

    Closed-cell, semirigid, fiber-loaded, self-extinguishing polyurethane foam material fills voids around fuel cells in aircraft. Material prevents leakage of fuel and spreading of fire in case of ballistic incendiary impact. It also protects fuel cell in case of exterior fire.

  11. Radiation-curable carbon fiber prepreg composites

    SciTech Connect

    Saunders, C.B.; Dickson, L.W.; Singh, A.; Carmichael, A.A.; Lopata, V.J.

    1988-12-01

    A radiation-curable prepreg designed to meet the specifications set by a major aircraft company is described. The resin, consisting of a mixture of an epoxy diacrylate, polybutadiene diacrylate, and a multifunctional monomer, was used to impregnate a plain weave carbon fabric by a solvent process. The cured polymer, produced by irradiation in air to a dose of 40 kGy, is amorphous, with a gel fraction of 85 percent. The linear thermal expansion coefficient of the polymer was found to be 0.00017 m/m deg C from 25 to 150 C; it was not affected by varying the applied irradiation dose from 30 to 50 kGy. 14 references.

  12. Studies of the Surface Treatment and Sizing of Carbon Fiber Surfaces on the Mechanical Properties of Composites Containing Carbon Fibers

    NASA Technical Reports Server (NTRS)

    Sherwood, Peter M. A.; Lease, Kevin B.; Locke, James E.; Tomblin, John S.; Wang, Youqi

    1996-01-01

    Carbon fiber reinforced composites are materials where carbon fibers are used to reinforce a matrix to produce a light and strong material with important applications in the aerospace industry. There are many aspects of the preparation of these materials that would benefit from a study which combines the research of groups involved in the production, testing and analysis of these materials, and studies of the basic surface chemistry involved. This final reports presents the results of a project that has developed a collaboration between groups in all three of the major research universities in the State of Kansas, and promises to lead to a collaborative program that covers the major aspects of composite development and application. Sherwood has provided initial fiber surface treatment and sizing together with fiber and composite surface analysis; Lease, Tomblin and Wang have worked together toward the goal of preparing pre-preg and fabrication of laminated panels; Locke has developed computational models to evaluate the effect of surface treatment (and chemistry) on mechanical properties; Lease, Tomblin and Wang have worked together to perform all necessary mechanical testing. The research has been focused on materials that would benefit the High Speed Civil Transport (HSCT) program. The group has visited Dr. Howard Maars and his colleagues at NASA Langley, and has focused their studies on the NASA requirements discussed in this meeting. An important development, requested by NASA scientists, has been the acquisition and study of K3B as a matrix material for the composites. The project has led to the successful acquisition and surface analysis of K3B, together with the successful deposition of this material onto surface oxidized carbon fibers. Mechanical testing, modelling and the construction of composite preparation equipment has been achieved during the grant period.

  13. Oilfield produced water treatment with surface-modified fiber ball media filtration.

    PubMed

    Yang, Y; Zhang, X; Wang, Z

    2002-01-01

    In order to explore the PET fiber's potential as a filter medium to treat the water produced from oil production, modification technology was adopted to modify the fiber surface. After modification, the PET fiber surface was grafted by the -COOH, =NH and -OH groups. Therefore, the property of the modified fiber changed from oleophilic to hydrophilic, which makes the fiber easy to backwash. Water produced from atypical oil field in the north of China was treated on site with filter filled with this new fiber medium. The results are compared with the results from a filter filled with currently popular walnut medium, where the experiment conditions are the same as that of the fiber filter. When the velocity is lower than 15 m/h, the effluent from fiber filter can control the oil concentration < 2.4 mg/l, SS < 2.0 mg/l, and D50 < 2 microm, which meets the requirements for waterflood (water injection) into the ground. But the walnut medium filter can only control the oil concentration < 5 mg/l, TSS < 2.0 mg/l, and failed to control the d50 < 2 microm, which is the crucial deficiency of the walnut medium. The fiber medium still shows a great ability to control particles even with higher filtration velocity and worse influent. With a filtration velocity of 20 m/h and 36.4 microm d50 of influent, the d50 of the fiber filter effluent is 3.302 microm, but that of walnut filter is 10.74 microm. The reason for this is due to the compressibiliy of the fiber medium while the walnut median is incompressible. Recommendations for future studies on pilot-scale experiments to improve backwash and to determine operational parameters are presented.

  14. Model for the Effect of Fiber Bridging on the Fracture Resistance of Reinforced-Carbon-Carbon

    NASA Technical Reports Server (NTRS)

    Chan, Kwai S.; Lee, Yi-Der; Hudak, Stephen J., Jr.

    2009-01-01

    A micromechanical methodology has been developed for analyzing fiber bridging and resistance-curve behavior in reinforced-carbon-carbon (RCC) panels with a three-dimensional (3D) composite architecture and a silicon carbide (SiC) surface coating. The methodology involves treating fiber bridging traction on the crack surfaces in terms of a weight function approach and a bridging law that relates the bridging stress to the crack opening displacement. A procedure has been developed to deduce material constants in the bridging law from the linear portion of the K-resistance curve. This report contains information on the application of procedures and outcomes.

  15. Comparison of ORNL Low Cost Carbon Fiber with Commercially Available Industrial Grade Carbon Fiber in Pultrusion Samples

    SciTech Connect

    Norris, Jr, Robert E.; McCay, Jeff A.; Jackson, Connie D.

    2016-02-01

    Composite Applications Group LLC in collaboration with Heil Trailer International partnered in a project to design and develop solutions for light weighting of aluminum dry bulk tank trailers. The project approach was to utilize pultruded composite sections in place of aluminum components to reduce weight thereby saving energy through more efficient transport. Low cost carbon fiber was evaluated as a potential cost saving option that could enhance weight savings at reduced cost versus current commercial material.

  16. Development and Use of a Modified Pulse Electrospinning Setup for Producing Short Fibers

    NASA Astrophysics Data System (ADS)

    Aliyev, Y. T.; Dabynov, B. M.; Bodykov, D. U.; Musabekov, U. S.; Mansurov, Z. A.

    2016-01-01

    A brief literature review is given of studies concerning the method of standard electrospinning, which is used for producing long nanofibers. Experimental setups — the first version and the new, modified pulse electrospinning setup — are described. The results of works on producing short fibers using pulse electrospinning are reported in the present article. Data on short fibers produced experimentally from such polymers as polymethyl methacrylate and cellulose acetate are presented.

  17. Multiscale Analysis of Delamination of Carbon Fiber-Epoxy Laminates with Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Riddick, Jaret C.; Frankland, SJV; Gates, TS

    2006-01-01

    A multi-scale analysis is presented to parametrically describe the Mode I delamination of a carbon fiber/epoxy laminate. In the midplane of the laminate, carbon nanotubes are included for the purposes of selectively enhancing the fracture toughness of the laminate. To analyze carbon fiber epoxy carbon nanotube laminate, the multi-scale methodology presented here links a series of parameterizations taken at various length scales ranging from the atomistic through the micromechanical to the structural level. At the atomistic scale molecular dynamics simulations are performed in conjunction with an equivalent continuum approach to develop constitutive properties for representative volume elements of the molecular structure of components of the laminate. The molecular-level constitutive results are then used in the Mori-Tanaka micromechanics to develop bulk properties for the epoxy-carbon nanotube matrix system. In order to demonstrate a possible application of this multi-scale methodology, a double cantilever beam specimen is modeled. An existing analysis is employed which uses discrete springs to model the fiber bridging affect during delamination propagation. In the absence of empirical data or a damage mechanics model describing the effect of CNTs on fracture toughness, several tractions laws are postulated, linking CNT volume fraction to fiber bridging in a DCB specimen. Results from this demonstration are presented in terms of DCB specimen load-displacement responses.

  18. Hardware authentication using transmission spectra modified optical fiber.

    SciTech Connect

    Grubbs, Robert K.; Romero, Juan A.

    2010-09-01

    The ability to authenticate the source and integrity of data is critical to the monitoring and inspection of special nuclear materials, including hardware related to weapons production. Current methods rely on electronic encryption/authentication codes housed in monitoring devices. This always invites the question of implementation and protection of authentication information in an electronic component necessitating EMI shielding, possibly an on board power source to maintain the information in memory. By using atomic layer deposition techniques (ALD) on photonic band gap (PBG) optical fibers we will explore the potential to randomly manipulate the output spectrum and intensity of an input light source. This randomization could produce unique signatures authenticating devices with the potential to authenticate data. An external light source projected through the fiber with a spectrometer at the exit would 'read' the unique signature. No internal power or computational resources would be required.

  19. Process Optimization of Bismaleimide (BMI) Resin Infused Carbon Fiber Composite

    NASA Technical Reports Server (NTRS)

    Ehrlich, Joshua W.; Tate, LaNetra C.; Cox, Sarah B.; Taylor, Brian J.; Wright, M. Clara; Faughnan, Patrick D.; Batterson, Lawrence M.; Caraccio, Anne J.; Sampson, Jeffery W.

    2013-01-01

    Engineers today are presented with the opportunity to design and build the next generation of space vehicles out of the lightest, strongest, and most durable materials available. Composites offer excellent structural characteristics and outstanding reliability in many forms that will be utilized in future aerospace applications including the Commercial Crew and Cargo Program and the Orion space capsule. NASA's Composites for Exploration (CoEx) project researches the various methods of manufacturing composite materials of different fiber characteristics while using proven infusion methods of different resin compositions. Development and testing on these different material combinations will provide engineers the opportunity to produce optimal material compounds for multidisciplinary applications. Through the CoEx project, engineers pursue the opportunity to research and develop repair patch procedures for damaged spacecraft. Working in conjunction with Raptor Resins Inc., NASA engineers are utilizing high flow liquid infusion molding practices to manufacture high-temperature composite parts comprised of intermediate modulus 7 (IM7) carbon fiber material. IM7 is a continuous, high-tensile strength composite with outstanding structural qualities such as high shear strength, tensile strength and modulus as well as excellent corrosion, creep, and fatigue resistance. IM7 carbon fiber, combined with existing thermoset and thermoplastic resin systems, can provide improvements in material strength reinforcement and deformation-resistant properties for high-temperature applications. Void analysis of the different layups of the IM7 material discovered the largest total void composition within the [ +45 , 90 , 90 , -45 ] composite panel. Tensile and compressional testing proved the highest mechanical strength was found in the [0 4] layup. This paper further investigates the infusion procedure of a low-cost/high-performance BMI resin into an IM7 carbon fiber material and the

  20. Optical fiber amplifiers based on PbS/CdS QDs modified by polymers.

    PubMed

    Sun, Xiaolan; Xie, Libin; Zhou, Wei; Pang, Fufei; Wang, Tingyun; Kost, Alan R; An, Zesheng

    2013-04-08

    Optical fiber amplifiers based on PbS/CdS semiconductor quantum dots (QDs) modified by an amphiphilic polymer were demonstrated. Well-defined QDs and an amphiphilic copolymer were first prepared and the amphiphilic copolymer was then used to disperse the QDs into silica sol to allow uniform and reproducible incorporation of QDs into the silica coating of the optical fibers. QD-doped silica sol was deposited on the fusion tapered fiber coupler via dip-coating. A 1550 nm semiconductor light emitting diode as the signal source and a 980 nm laser diode as the pump source were injected into the fiber coupler simultaneously. Through evanescent wave excitation, a signal gain as high as 8 dB was obtained within the wavelength range between 1450 and 1650 nm. In addition, the optical fiber amplifiers based on PbS/CdS QDs showed enhanced thermal stability when compared to amplifiers based on PbS QDs.

  1. Growth of carbon nanotube field emitters on single strand carbon fiber: a linear electron source

    NASA Astrophysics Data System (ADS)

    Kim, Ha Jin; Jong Bae, Min; Kim, Yong C.; Cho, Eun S.; Sohn, Y. C.; Kim, D. Y.; Lee, S. E.; Kang, H. S.; Han, In T.; Kim, Young H.; Patole, Shashikant P.; Yoo, Ji Beom

    2011-03-01

    The multi-stage effect has been revisited through growing carbon nanotube field emitters on single strand carbon fiber with a thickness of 11 µm. A prepared linear electron source exhibits a turn-on field as low as 0.4 V µm - 1 and an extremely high field enhancement factor of 19 300, when compared with those results from reference nanotube emitters grown on flat silicone wafer; 3.0 V µm - 1 and 2500, respectively. In addition, we introduce a novel method to grow nanotubes uniformly around the circumference of carbon fibers by using direct resistive heating on the continuously feeding carbon threads. These results open up not only a new path for synthesizing nanocomposites, but also offer an excellent linear electron source for special applications such as backlight units for liquid crystal displays and multi-array x-ray sources.

  2. Thermal conductivity, electrical conductivity and specific heat of copper-carbon fiber composite

    NASA Technical Reports Server (NTRS)

    Kuniya, Keiichi; Arakawa, Hideo; Kanai, Tsuneyuki; Chiba, Akio

    1988-01-01

    A new material of copper/carbon fiber composite is developed which retains the properties of copper, i.e., its excellent electrical and thermal conductivity, and the property of carbon, i.e., a small thermal expansion coefficient. These properties of the composite are adjustable within a certain range by changing the volume and/or the orientation of the carbon fibers. The effects of carbon fiber volume and arrangement changes on the thermal and electrical conductivity, and specific heat of the composite are studied. Results obtained are as follows: the thermal and electrical conductivity of the composite decrease as the volume of the carbon fiber increases, and were influenced by the fiber orientation. The results are predictable from a careful application of the rule of mixtures for composites. The specific heat of the composite was dependent, not on fiber orientation, but on fiber volume. In the thermal fatigue tests, no degradation in the electrical conductivity of this composite was observed.

  3. Cellulose fibers modified with nano-sized antimicrobial polymer latex for pathogen deactivation.

    PubMed

    Pan, Yuanfeng; Xiao, Huining; Cai, Pingxiong; Colpitts, Meaghan

    2016-01-01

    Antimicrobial cellulose fibers and paper products are of great importance for various applications. In this work, novel core-shell antimicrobial latexes based on hydrophobic acrylate monomers and antimicrobial macromonomer (GPHGH) were successfully prepared via a seeded semi-continuous emulsion copolymerization in the presence of a cationic surfactant. The surface properties as well as size of latex were tailored by varying the amount of GPHGH incorporated during the copolymerization. The resulting cationic nano-sized latexes showed the strong adsorption and formed monolayer on the surfaces of bleached sulfite fibers, thus rendering the cellulose fibers antimicrobial. An excellent antimicrobial activity (>99.99% inhibition) of modified fiber toward Escherichia coli was achieved at 0.3wt% of latex dosage (on dry fibers). Results of transmission electron microscopy (TEM) observation confirmed that the particles obtained indeed possessed a desired core-shell structure. The latexes themselves exhibited high antimicrobial activities against E. coli with the minimum inhibitory concentration (MIC) as low as 6.25ppm (similar to that of pure guanidine-based polymer). Moreover, the mechanical strength of the hand-sheets made from latex-modified cellulose fibers was also improved due to the filming of the latex on fiber surfaces.

  4. Impact absorption properties of carbon fiber reinforced bucky sponges.

    PubMed

    Thevamaran, Ramathasan; Saini, Deepika; Karakaya, Mehmet; Zhu, Jingyi; Podila, Ramakrishna; Rao, Apparao; Daraio, Chiara

    2017-03-24

    We describe the super compressible and highly recoverable response of bucky sponges as they are struck by a heavy flat-punch striker. The bucky sponges studied here are structurally stable, self-assembled mixtures of multiwalled carbon nanotubes (MWCNTs) and carbon fibers (CFs). We engineered the microstructure of the sponges by controlling their porosity using different CF contents. Their mechanical properties and energy dissipation characteristics during impact loading are presented as a function of their composition. The inclusion of CFs improves the impact force damping by up to 50% and the specific damping capacity by up to 7% compared to bucky sponges without CFs. The sponges also exhibit significantly better stress mitigation characteristics compared to vertically aligned carbon nanotube foams of similar densities. We show that delamination on the MWCNT-CF interfaces occurs during unloading, and arises from the heterogeneous fibrous microstructure of the bucky sponges.

  5. Bonded carbon or ceramic fiber composite filter vent for radioactive waste

    SciTech Connect

    Brassell, Gilbert W.; Brugger, Ronald P.

    1985-02-19

    Carbon bonded carbon fiber composites as well as ceramic or carbon bonded ceramic fiber composites are very useful as filters which can separate particulate matter from gas streams entraining the same. These filters have particular application to the filtering of radioactive particles, e.g., they can act as vents for containers of radioactive waste material.

  6. A preliminary study on the dynamic-mechanical behaviour of compression moulded polypropylene/carbon fiber composites interfacially modified by a succinic anhydride grafted atactic polypropylene from polymer wastes

    NASA Astrophysics Data System (ADS)

    García-Martínez, Jesús María; Areso, Susana; Collar, Emilia P.

    2016-05-01

    Present communication is devoted to the study of the effect of a novel interfacial agent in polypropylene/carbon fibre composites. The interfacial agent used is a succinic anhydride grafted atactic polypropylene containing both succinic bridges and side grafts (aPP-SASA) and with 5.6% (5.6.10-4g/mol) of grafting content obtained at the GIP labs. The study considers the study dynamic-mechanical behaviour with temperature at a frequency of 1 hz to ascertain the differences in the interfacial activity. The samples were compression molded in order to isolate as far as possible the effect of the solely aPP-SASA in absence of those synergetic effects due to the preferential orientation of the fibres.

  7. Multi-scale Rule-of-Mixtures Model of Carbon Nanotube/Carbon Fiber/Epoxy Lamina

    NASA Technical Reports Server (NTRS)

    Frankland, Sarah-Jane V.; Roddick, Jaret C.; Gates, Thomas S.

    2005-01-01

    A unidirectional carbon fiber/epoxy lamina in which the carbon fibers are coated with single-walled carbon nanotubes is modeled with a multi-scale method, the atomistically informed rule-of-mixtures. This multi-scale model is designed to include the effect of the carbon nanotubes on the constitutive properties of the lamina. It included concepts from the molecular dynamics/equivalent continuum methods, micromechanics, and the strength of materials. Within the model both the nanotube volume fraction and nanotube distribution were varied. It was found that for a lamina with 60% carbon fiber volume fraction, the Young's modulus in the fiber direction varied with changes in the nanotube distribution, from 138.8 to 140 GPa with nanotube volume fractions ranging from 0.0001 to 0.0125. The presence of nanotube near the surface of the carbon fiber is therefore expected to have a small, but positive, effect on the constitutive properties of the lamina.

  8. Characterization of Porous Carbon Fibers and Related Materials

    SciTech Connect

    Fuller, E.L., Jr.

    1993-01-01

    A one-year subcontract sponsored by the Carbon Materials Technology Group of the Oak Ridge National Laboratory (ORNL) with the Department of Geological Sciences, University Of Tennessee, has been completed. A volumetric sorption system has been upgraded, in cooperation with commercial vendor, to allow the acquisition of data relevant to the program for the production of activated carbon molecular fiber sieves (ACFMS). The equipment and experimental techniques have been developed to determine the pore structure and porosity of reference materials and materials produced at ORNL as part of the development of methods for the activation of carbon fibers by various etching agents. Commercial activated coconut shell charcoal (ACSC) has been studied to verify instrument performance and to develop methodology for deducing cause and effects in the activation processes and to better understand the industrial processes (gas separation, natural gas storage, etc.). Operating personnel have been trained, standard operating procedures have been established, and quality assurance procedures have been developed and put in place. Carbon dioxide and methane sorption have been measured over a temperature range 0 to 200 C for both ACFMS and ACSC and similarities and differences related to the respective structures and mechanisms of interaction with the sorbed components. Nitrogen sorption (at 77 K) has been used to evaluate ''surface area'' and ''porosity'' for comparison with the large data base that exists for other activated carbons and related materials. The preliminary data base reveals that techniques and theories currently used to evaluate activated carbons may be somewhat erroneous and misleading. Alternate thermochemical and structural analyses have been developed that show promise in providing useful information related both to the activation process and to industrial applications of interest in the efficient and economical utilization of fossil fuels in a manner that is

  9. Adhesion of preceramic inorganic polymer coatings to carbon fibers

    SciTech Connect

    Chaudhry, T.M.; Drzal, L.T.; Ho, H.; Laine, R.

    1996-12-31

    To determine whether the preceramic inorganic polymer coating can provide not only the thermal oxidative protection during both processing and use in metal matrix composites or ceramic matrix composites but also the appropriate composite properties, it is desirable to know how and at what point in the thermal processing cycle the coating-carbon fiber interface undergoes changes that affect the interfacial adhesion and failure mode. Also, it is important to identify the locus of interfacial failure i.e. between fiber and coating or between coating and matrix. This work is directed at determining the interfacial changes and the locus of failure in order to optimize both the coating chemistry and the conversion process. The characteristics of the benchmark interface coating material, silicon oxycarbide, SiO{sub x}C{sub y} or black glass have been studied. SiO{sub x}C{sub y} was chosen because (1) SiO{sub x}C{sub y} is amorphous, (2) it is possible to prepare very well-defined materials, where the chemistry and the evolution of the material with time and temperature are known in detail, and (3) SiO{sub x}C{sub y} is a matrix material used in commercial composites. It has been shown that these coatings are effective in increasing the oxidation resistance of the carbon fibers themselves.

  10. Carbon fiber study. A compilation of an intergovernmental committee study

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Carbon fibers have opened a wealth of new structural engineering and consumer product opportunities. The potential benefits are higher strength, and lighter weight military and commercial products, which portend energy savings and increases safety. Unfortunately, these benefits are not realized without risk. Inadvertent fiber release, during manufacture or by destruction of the resin binder in fire, is the major hazard associated with composites. The carbon (or graphite) fibers are finer than human hair and if released into the air, they can be easily transported by winds or currents. In contact with electrical devices, they can create resistive loading, short circuits, and arcing, resulting in stoppages or destruction. Their health impact is not fully known and requires careful research and analysis before any firm conclusions can be reached; however, based upon current available information, they are primarily an irritant to the eyes and skin, like fiberglass, rather than carcinogenic or destructive to lung tissue. Major manufacturers are aware of the unique problems associated with these materials and have successfully applied controls to avoid the inplant problems.

  11. Transport properties of ribbon-shaped carbon fibers: Property-structure relationship

    NASA Astrophysics Data System (ADS)

    Gallego, Nidia Constanza

    Mesophase pitch-based carbon fibers are an ideal material for applications in which high rates of heat dissipation and low mass are required. Unfortunately, the high cost of current commercial high thermal conductivity mesophase pitch-based carbon fibers has limited their use in high volume applications. Understanding how the structure develops during the fiber formation process and how this structure relates to the final fiber properties is the way to optimizing the fiber properties while reducing the processing costs. Ribbon-shaped fibers have been developed at Clemson University and are being evaluated as a low-cost high thermal conductivity alternative fiber to traditional round-shaped fibers. However, the characterization of the thermal transport properties of carbon fibers is a difficult and time-consuming process. The objectives of this study were to evaluate the transport (both thermal and electronic) properties of ribbon-shaped fibers produced from an AR mesophase at different processing conditions, to characterize the structure of these fibers, to study their structure-property relationships, and to develop a model capable of estimating the thermal conductivity of carbon fibers based upon their structural parameters. For this purpose, several sets of ribbon fibers were produced from an AR mesophase at different spinning temperatures and shear rates and heat treated at a final temperature of 2400°C. The electrical resistivities, magnetoresistances and thermal conductivities of these fibers were measured and the structural parameters were determined with x-ray techniques. Two approaches (a short-fiber composite, and a periodic composite) were utilized to model the relationship between the structure of the fiber and its thermal conductivity. The results of this study confirmed that ribbon-shaped fibers develop excellent transport properties at lower graphitization temperatures than those used commercially for round-shaped fibers. Additionally, for the first

  12. Electromagnetic Wave Shieding Effectiveness of Carbon Fiber Sheet Coated Ferrite Film by Microwave-Hydrothermal Process

    NASA Astrophysics Data System (ADS)

    Murakami, Ri Ichi; Yamamoto, Hidetoshi; Kim, Chan Kong; Yim, Cheol Mun; Kim, Yun Hae

    The developments of electromagnetic wave shielding materials are strongly required because the malfunction of electronic equipment, mobile phone and wireless LAN avoids. In this study, it was investigated that the electromagnetic shielding effectiveness of carbon fiber sheets were enhanced by the ferrite which was coated by the microwave hydrothermal process. For coated carbon fiber sheet, the effects of ferrite and lamination of carbon fiber textile on the electromagnetic wave shielding effectiveness were discussed. In the range of frequency (100 1 GHz), the electromagnetic wave shielding effectiveness was measured by using TEM-Cell. The electromagnetic wave shielding effectiveness was greater for the coated carbon fiber sheets than for the uncoated carbon fiber sheets. When the insulation film was located between two carbon fiber sheets, the electromagnetic wave shielding effectiveness increased.

  13. Sorption of copper by chemically modified aspen wood fibers.

    PubMed

    Huang, Liyuan; Ou, Zhaoyang; Boving, Thomas B; Tyson, Julian; Xing, Baoshan

    2009-08-01

    Sorption of copper (Cu(2+)) by untreated and treated (bleaching and hydrolysis) aspen wood fibers, cellulose and lignin was examined to understand the Cu(2+) sorption behavior by these natural sorbents. All sorbents were characterized by solid-state (13)C NMR and FTIR. Bleaching broke up aromatic structures and increased hydrophilicity of the fibers, whereas hydrolysis decreased carbohydrate content, producing a more hydrophobic structure. Copper sorption was a function of pH; the percentage of Cu(2+) sorption steadily increased from pH 1.5 to 4.5 with a maximum sorption amount at around pH 5.5 for all the materials. All isotherms fitted well to the Langmuir equation. Bleached sample (BL) had a highest sorption capacity, followed by untreated (UTR), cellulose (CEL), and hydrolyzed (HHY), while lignin (LIG) had little Cu(2+) sorption under the studied conditions. The results suggested that carboxyl (-COOH) and hydroxyl (-CHOH) in carbohydrates are mainly responsible for Cu(2+) sorption, and that ion exchange may be a main sorption mechanism for the studied sorbents. Additionally, the sorption capacity for Cu(2+) on all sorbents decreased with the increase of the initial concentrations of Ca(2+), Na(+) or Al(3+). Copper sorption decreased rapidly at low initial concentrations of Ca(2+), Na(+) or Al(3+). However, the decline of Cu(2+) sorption slowed down when initial Na(+) and Ca(2+) concentration was higher than 0.05M or initial Al(3+) concentration was greater than 0.005M, indicating that specific adsorption may be taking place. Therefore, the majority of sorbed Cu(2+) to aspen wood fibers could be through ion exchange (especially, for UTR, BL and CEL), while a faction of sorbed Cu(2+) via inner-sphere complex (or specific adsorption).

  14. [Raman spectra of PAN-based carbon fibers during surface treatment].

    PubMed

    Cao, Wei-wei; Zhu, Bo; Jing, Min; Wang, Cheng-guo

    2008-12-01

    Laser Raman spectroscopy was employed to characterize the microstructure changes of PAN based carbon fibers among different surface treatments, and the characteristics of first-order Raman spectra of carbon fibers during surface treatment were investigated in the present paper. The results show that the variety of carbon fibers' phase structures can be represented by Raman spectroscopy parameters, such as the Raman frequency shifts of main D and G bands, FWHMs and additive bands' area ratios at the positions of different Raman frequency shifts. During different surface treatment, some changes in the first-order Raman spectroscopy parameters of PAN based carbon fibers were observed, the Raman frequency shifts of D and G bands moved toward higher wavenumber, and the values of R(I(D)/I(G)) also improved, which can be used to measure the graphite crystallite size of carbon fiber. It is suggested that the graphite microstructure of carbon fibers is decomposed during surface treatment, the crystallite size is reduced, and the activity of the graphite crystallite boundary is improved. Moreover, the full-widths at half maximum (FWHM) of D and G bands both decrease, which can give information on the order of graphite microstructure and the quantity of defects in carbon fibers, and the relative bands' areas of A and D" bands also decrease, which can be attributed to the structure of amorphous carbon or some kinds of organic functional groups in carbon fibers. These differences among the spectra demonstrate that the structure of amorphous carbon in carbon fibers is easier to oxidize or decompose than multilayer graphite structure, so the relative proportion of amorphous carbon decreases during surface treatment. The conclusions obtained by Raman spectra are basically in agreement with the improvement of apparent crystallization degrees of carbon fibers during surface treatment, which were calculated by X-ray diffraction method. So the variety rules of carbon fibers' phase

  15. Tailoring micro-mesoporosity in activated carbon fibers to enhance SO₂ catalytic oxidation.

    PubMed

    Diez, Noel; Alvarez, Patricia; Granda, Marcos; Blanco, Clara; Gryglewicz, Grażyna; Wróbel-Iwaniec, Iwona; Sliwak, Agata; Machnikowski, Jacek; Menendez, Rosa

    2014-08-15

    Enhanced SO2 adsorption of activated carbon fibers is obtained by tailoring a specific micro-mesoporous structure in the fibers. This architecture is obtained via metal catalytic activation of the fibers with a novel precursor, cobalt naphthenate, which contrary to other precursors, also enhances spinnability and carbon fiber yield. In the SO2 oxidation, it is demonstrated that the combination of micropores and large mesopores is the main factor for an enhanced catalytic activity which is superior to that observed in other similar microporous activated carbon fibers. This provides an alternative way for the development of a new generation of catalytic material.

  16. A small-scale test for fiber release from carbon composites. [pyrolysis and impact

    NASA Technical Reports Server (NTRS)

    Gilwee, W. J., Jr.; Fish, R. H.

    1980-01-01

    A test method was developed to determine relative fiber loss from pyrolyzed composites with different resins and fiber construction. Eleven composites consisting of woven and unwoven carbon fiber reinforcement and different resins were subjected to the burn and impact test device. The composites made with undirectional tape had higher fiber loss than those with woven fabric. Also, the fiber loss was inversely proportional to the char yield of the resin.

  17. Poly (acrylonitrile - co -1-vinylimidazole): A New Melt Processable Carbon Fiber Precursor

    DTIC Science & Technology

    2011-01-01

    REPORT Poly (acrylonitrile – co -1-vinylimidazole): A new melt processable carbon fiber precursor 14. ABSTRACT 16. SECURITY CLASSIFICATION OF...Research Triangle Park, NC 27709-2211 15. SUBJECT TERMS Carbon fiber precursor, Thermal cross-linking, Melt processable Wesley P. Hoffman, Dennis W...Z39.18 - Poly (acrylonitrile – co -1-vinylimidazole): A new melt processable carbon fiber precursor Report Title ABSTRACT Acrylonitrile/1-vinylimidazole

  18. The crystallization of tough thermoplastic resins in the presence of carbon fibers

    NASA Technical Reports Server (NTRS)

    Theil, M. H.

    1986-01-01

    The crystallization kinetics of the thermoplastic resins poly(phenylene sulfide) (PPS) and poly(aryl-ether-ether-ketone) (PEEK) in the presence and in the abscence of carbon fibers was studied. How carbon fiber surfaces in composites affect the crystallization of tough thermoplastic polymers that may serve as matrix resins were determined. The crystallization kinetics of such substances can provide useful information about the crystallization mechanisms and, thus, indicate if the presence of carbon fibers cause any changes in such mechanisms.

  19. Hierarchical Carbon Fibers with ZnO Nanowires for Volatile Sensing in Composite Curing (Postprint)

    DTIC Science & Technology

    2014-07-01

    AFRL-RX-WP-JA-2014-0171 HIERARCHICAL CARBON FIBERS WITH ZnO NANOWIRES FOR VOLATILE SENSING IN COMPOSITE CURING (POSTPRINT) Gregory...REPORT TYPE Interim 3. DATES COVERED (From – To) 16 April 2012 – 02 June 2014 4. TITLE AND SUBTITLE HIERARCHICAL CARBON FIBERS WITH ZnO NANOWIRES ...needed to demonstrate the use of Zinc Oxide (ZnO) nanowire coated carbon fibers as a volatile sensor. ZnO nanowires are demonstrated to function as

  20. Single Pd atoms in activated carbon fibers and their contribution to hydrogen storage

    SciTech Connect

    Contescu, Cristian I; van Benthem, Klaus; Li, Sa; Bonifacio, Cecile S; Pennycook, Stephen J; Jena, Puru; Gallego, Nidia C

    2011-01-01

    Palladium-modified activated carbon fibers (Pd-ACF) were synthesized by meltspinning, carbonization and activation of an isotropic pitch carbon precursor premixed with an organometallic Pd compound. The hydrogen uptake at 25 oC and 20 bar on Pd- ACF exceeded the expected capacity based solely on Pd hydride formation and hydrogen physisorption on the microporous carbon support. Aberration-corrected scanning transmission electron microscopy (STEM) with sub- ngstrom spatial resolution provided unambiguous identification of isolated Pd atoms occurring in the carbon matrix that coexist with larger Pd particles. First principles calculations revealed that each single Pd atom can form Kubas-type complexes by binding up to three H2 molecules in the pressure range of adsorption measurements. Based on Pd atom concentration determined from STEM images, the contribution of various mechanisms to the excess hydrogen uptake measured experimentally was evaluated. With consideration of Kubas binding as a viable mechanism (along with hydride formation and physisorption to carbon support) the role of hydrogen spillover in this system may be smaller than previously thought.

  1. Application of carbon fibers to biomaterials: a new era of nano-level control of carbon fibers after 30-years of development.

    PubMed

    Saito, Naoto; Aoki, Kaoru; Usui, Yuki; Shimizu, Masayuki; Hara, Kazuo; Narita, Nobuyo; Ogihara, Nobuhide; Nakamura, Koichi; Ishigaki, Norio; Kato, Hiroyuki; Haniu, Hisao; Taruta, Seiichi; Kim, Yoong Ahm; Endo, Morinobu

    2011-07-01

    Carbon fibers are state-of-the-art materials with properties that include being light weight, high strength, and chemically stable, and are applied in various fields including aeronautical science and space science. Investigation of applications of carbon fibers to biomaterials was started 30 or more years ago, and various products have been developed. Because the latest technological progress has realized nano-level control of carbon fibers, applications to biomaterials have also progressed to the age of nano-size. Carbon fibers with diameters in the nano-scale (carbon nanofibers) dramatically improve the functions of conventional biomaterials and make the development of new composite materials possible. Carbon nanofibers also open possibilities for new applications in regenerative medicine and cancer treatment. The first three-dimensional constructions with carbon nanofibers have been realized, and it has been found that the materials could be used as excellent scaffolding for bone tissue regeneration. In this critical review, we summarize the history of carbon fiber application to the biomaterials and describe future perspectives in the new age of nano-level control of carbon fibers (122 references).

  2. Carbon fiber reinforced root canal posts. Mechanical and cytotoxic properties.

    PubMed

    Torbjörner, A; Karlsson, S; Syverud, M; Hensten-Pettersen, A

    1996-01-01

    The aim of this study was to compare the mechanical properties of a prefabricated root canal post made of carbon fiber reinforced composites (CFRC) with metal posts and to assess the cytotoxic effects elicited. Flexural modulus and ultimate flexural strength was determined by 3 point loading after CRFC posts had been stored either dry or in water. The bending test was carried out with and without preceding thermocycling of the CFRC posts. The cytotoxicity was evaluated by an agar overlay method after dry and wet storage. The values of flexural modulus and ultimate flexural strength were for dry stored CFRC post 82 +/- 6 GPa and 1154 +/- 65 MPa respectively. The flexural values decreased significantly after water storage and after thermocycling. No cytotoxic effects were observed adjacent to any CFRC post. Although fiber reinforced composites may have the potential to replace metals in many clinical situations, additional research is needed to ensure a satisfying life-span.

  3. Characterization of radar cross section of carbon fiber composite materials

    NASA Astrophysics Data System (ADS)

    Riley, Elliot J.; Lenzing, Erik H.; Narayanan, Ram M.

    2015-05-01

    Carbon fiber composite (CFC) materials have been used for many structural applications for decades. Their electromagnetic properties are also of great interest and are being quantified by recent research. This research explores shielding effectiveness, antenna design, conductivity, reflection, and absorption properties. The work in this paper specifically characterizes the radar cross section (RCS) of CFC structures. Various CFC planar samples were created using a wet layup method and vacuum bagging techniques. These samples were then placed in an anechoic chamber and their RCS values were measured at normal incidence. These measured values were compared to those of aluminum samples made into the same shape as the CFC samples. All of the measurements were made over 7 - 12 GHz frequency range. The RCS of the CFC samples show some interesting results. The fiber direction in the CFC samples had great influence on the RCS. Theories and reasoning for the results are presented and discussed.

  4. Industrial production of enzyme-modified wool fibers for machine-washable bed coverings.

    PubMed

    Lenting, Herman B M; Broekman, Henk; Guebitz, Georg M; Kokol, Vanja; Shen, Jinsong

    2009-10-01

    Enzyme technology is explored on wool fibers to prevent shrinkage and consolidation behavior during washing of woolen bed coverings using normal household machine conditions. Enzyme modification of wool fibers after two different pretreatments has been realized on industrial scale. Enlarged proteolytic enzyme by chemical modification was applied successfully to prevent substantial fiber strength loss. Felt-ball analysis of the fibers as obtained from this industrial process showed substantial improvement in felting resistance. Further processing of these enzyme-modified fibers and finally integration in bed covering quilts have been executed successfully on industrial production lines. The observed fiber losses during processing were in the range of 4.5-6% which is comparable with that of nonmodified fibers. The machine-washability of these produced bed covering quilts was tested in a household washing machine using both wool and normal wash programs applied at different temperatures. It appeared that, contrary to the good washing results in terms of shrinkage and consolidation resistance using the wool program at moderate temperatures, this resistance is marginal when washed with the normal washing program with higher mechanical agitation level or with the wool program at elevated temperature. This result was different from that obtained with woolen fabrics and explained by the less-structured organisation of fibers within a fleece.

  5. Strengthened PAN-based carbon fibers obtained by slow heating rate carbonization

    PubMed Central

    Kim, Min-A; Jang, Dawon; Tejima, Syogo; Cruz-Silva, Rodolfo; Joh, Han-Ik; Kim, Hwan Chul; Lee, Sungho; Endo, Morinobu

    2016-01-01

    Large efforts have been made over the last 40 years to increase the mechanical strength of polyacrylonitrile (PAN)-based carbon fibers (CFs) using a variety of chemical or physical protocols. In this paper, we report a new method to increase CFs mechanical strength using a slow heating rate during the carbonization process. This new approach increases both the carbon sp3 bonding and the number of nitrogen atoms with quaternary bonding in the hexagonal carbon network. Theoretical calculations support a crosslinking model promoted by the interstitial carbon atoms located in the graphitic interlayer spaces. The improvement in mechanical performance by a controlled crosslinking between the carbon hexagonal layers of the PAN based CFs is a new concept that can contribute further in the tailoring of CFs performance based on the understanding of their microstructure down to the atomic scale. PMID:27004752

  6. Strengthened PAN-based carbon fibers obtained by slow heating rate carbonization.

    PubMed

    Kim, Min-A; Jang, Dawon; Tejima, Syogo; Cruz-Silva, Rodolfo; Joh, Han-Ik; Kim, Hwan Chul; Lee, Sungho; Endo, Morinobu

    2016-03-23

    Large efforts have been made over the last 40 years to increase the mechanical strength of polyacrylonitrile (PAN)-based carbon fibers (CFs) using a variety of chemical or physical protocols. In this paper, we report a new method to increase CFs mechanical strength using a slow heating rate during the carbonization process. This new approach increases both the carbon sp(3) bonding and the number of nitrogen atoms with quaternary bonding in the hexagonal carbon network. Theoretical calculations support a crosslinking model promoted by the interstitial carbon atoms located in the graphitic interlayer spaces. The improvement in mechanical performance by a controlled crosslinking between the carbon hexagonal layers of the PAN based CFs is a new concept that can contribute further in the tailoring of CFs performance based on the understanding of their microstructure down to the atomic scale.

  7. Oxidation Behavior of Carbon Fiber-Reinforced Composites

    NASA Technical Reports Server (NTRS)

    Sullivan, Roy M.

    2008-01-01

    OXIMAP is a numerical (FEA-based) solution tool capable of calculating the carbon fiber and fiber coating oxidation patterns within any arbitrarily shaped carbon silicon carbide composite structure as a function of time, temperature, and the environmental oxygen partial pressure. The mathematical formulation is derived from the mechanics of the flow of ideal gases through a chemically reacting, porous solid. The result of the formulation is a set of two coupled, non-linear differential equations written in terms of the oxidant and oxide partial pressures. The differential equations are solved simultaneously to obtain the partial vapor pressures of the oxidant and oxides as a function of the spatial location and time. The local rate of carbon oxidation is determined at each time step using the map of the local oxidant partial vapor pressure along with the Arrhenius rate equation. The non-linear differential equations are cast into matrix equations by applying the Bubnov-Galerkin weighted residual finite element method, allowing for the solution of the differential equations numerically.

  8. Laser cutting of carbon fiber reinforced thermo-plastics (CFRTP) by single-mode fiber laser irradiation

    NASA Astrophysics Data System (ADS)

    Niino, Hiroyuki; Kawaguchi, Yoshizo; Sato, Tadatake; Narazaki, Aiko; Kurosaki, Ryozo; Muramatsu, Mayu; Harada, Yoshihisa; Anzai, Kenji; Aoyama, Mitsuaki; Matsushita, Masafumi; Furukawa, Koichi; Nishino, Michiteru; Fujisaki, Akira; Miyato, Taizo; Kayahara, Takashi

    2014-03-01

    We report on the laser cutting of carbon fiber reinforced thermo-plastics (CFRTP) with a cw IR fiber laser (single-mode fiber laser, average power: 350 W). CFRTP is a high strength composite material with a lightweight, and is increasingly being used various applications. A well-defined cutting of CFRTP which were free of debris and thermal-damages around the grooves, were performed by the laser irradiation with a fast beam galvanometer scanning on a multiple-scanpass method.

  9. Electrochemical performance of Si anode modified with carbonized gelatin binder

    NASA Astrophysics Data System (ADS)

    Jiang, Ying; Mu, Daobin; Chen, Shi; Wu, Borong; Cheng, Kailin; Li, Luyu; Wu, Feng

    2016-09-01

    Gelatin is alternatively adopted as the binder to modify Si anode coupling with its carbonization treatment. The binder can provide good bonding and uniform dispersion of the particles besides its environmental benignancy. Importantly, the carbonized binder containing nitrogen will be advantageous to the electrical conductivity of the electrode. In addition, some spaces are formed in the electrode due to the decomposition and shrinkage of the gelatin binder during heat-treatment, which may facilitate electrolyte penetration and accommodate volume change during cycling. All these merits make contribution to the good electrochemical performance of the modified Si electrode. It exhibits a reversible capacity of 990.3 mA h g-1 after 70 cycles at a current density of 100 mA g-1 and 904 mA h g-1 after 100 cycles at 400 mA g-1.

  10. N-Modified Carbon-Based Materials: Nanoscience for Catalysis.

    PubMed

    Prati, Laura; Chan-Thaw, Carine E; Campisi, Sebastiano; Villa, Alberto

    2016-10-01

    Carbon-based materials constitute a large family of materials characterized by some peculiarities such as resistance to both acidic and basic environments, flexibility of structure, and surface chemical groups. Moreover, they can be deeply modified by simple organic reactions (acid-base or redox) to acquire different properties. In particular, the introduction of N-containing groups, achieved by post-treatments or during preparation of the material, enhances the basic properties. Moreover, it has been revealed that the position and chemical nature of the N-containing groups is important in determining the interaction with metal nanoparticles, and thus, their reactivity. The modified activity was addressed to a different metal dispersion. Moreover, experiments on catalysts, showing the same metal dispersion, demonstrated that the best results were obtained when N was embedded into the carbon structure and not very close to the metal active site.

  11. RADIATION EFFECTS ON EPOXY/CARBON FIBER COMPOSITE

    SciTech Connect

    Hoffman, E; Eric Skidmore, E

    2008-12-12

    The Department of Energy Savannah River Site vitrifies nuclear waste incident to defense programs through its Defense Waste Processing Facility (DWPF). The piping in the DWPF seal pot jumper configuration must withstand the stresses during an unlikely but potential deflagration event, and maintain its safety function for a 20-year service life. Carbon fiber-reinforced epoxy composites (CFR) were proposed for protection and reinforcement of piping during such an event. The proposed CFR materials have been ASME-approved (Section XI, Code Case N-589-1) for post-construction maintenance and is DOT-compliant per 49CFR 192 and 195. The proposed carbon fiber/epoxy composite reinforcement system was originally developed for pipeline rehabilitation and post-construction maintenance in petrochemical, refineries, DOT applications and other industries. The effects of ionizing radiation on polymers and organic materials have been studied for many years. The majority of available data are based on traditional exposures to gamma irradiation at high dose rates ({approx}10,000 Gy/hr) allowing high total dose within reasonable test periods and general comparison of different materials exposed at such conditions. However, studies in recent years have shown that degradation of many polymers are sensitive to dose rate, with more severe degradation often observed at similar or even lower total doses when exposed to lower dose rates. This behavior has been primarily attributed to diffusion-limited oxidation which is minimized during very high dose rate exposures. Most test standards for accelerated aging and nuclear qualification of components acknowledge these limitations. The results of testing to determine the radiation resistance and microstructural effects of gamma irradiation exposure on a bisphenol-A based epoxy matrix composite reinforced with carbon fibers are presented. This work provides a foundation for a more extensive evaluation of dose rate effects on advanced epoxy

  12. Lightning Strike Induced Damage Mechanisms of Carbon Fiber Composites

    NASA Astrophysics Data System (ADS)

    Kawakami, Hirohide

    Composite materials have a wide application in aerospace, automotive, and other transportation industries, because of the superior structural and weight performances. Since carbon fiber reinforced polymer composites possess a much lower electrical conductivity as compared to traditional metallic materials utilized for aircraft structures, serious concern about damage resistance/tolerance against lightning has been rising. Main task of this study is to clarify the lightning damage mechanism of carbon fiber reinforced epoxy polymer composites to help further development of lightning strike protection. The research on lightning damage to carbon fiber reinforced polymer composites is quite challenging, and there has been little study available until now. In order to tackle this issue, building block approach was employed. The research was started with the development of supporting technologies such as a current impulse generator to simulate a lightning strike in a laboratory. Then, fundamental electrical properties and fracture behavior of CFRPs exposed to high and low level current impulse were investigated using simple coupon specimens, followed by extensive parametric investigations in terms of different prepreg materials frequently used in aerospace industry, various stacking sequences, different lightning intensity, and lightning current waveforms. It revealed that the thermal resistance capability of polymer matrix was one of the most influential parameters on lightning damage resistance of CFRPs. Based on the experimental findings, the semi-empirical analysis model for predicting the extent of lightning damage was established. The model was fitted through experimental data to determine empirical parameters and, then, showed a good capability to provide reliable predictions for other test conditions and materials. Finally, structural element level lightning tests were performed to explore more practical situations. Specifically, filled-hole CFRP plates and patch

  13. Defect depth measurement of carbon fiber reinforced polymers by thermography

    NASA Astrophysics Data System (ADS)

    Chen, Terry Y.; Chen, Jian-Lun

    2016-01-01

    Carbon fiber reinforced polymers has been widely used in all kind of the industries. However the internal defects can result in the change of material or mechanical properties, and cause safety problem. In this study, step-heating thermography is employed to measure the time series temperature distribution of composite plate. The principle of heat conduction in a flat plate with defect inside is introduced. A temperature separation criterion to determine the depth of defect inside the specimen is obtained experimentally. Applying this criterion to CFRP specimens with embedded defects, the depth of embedded defect in CFRP can be determined quite well from the time series thermograms obtained experimentally.

  14. Laser ultrasound technology for fault detection on carbon fiber composites

    NASA Astrophysics Data System (ADS)

    Seyrkammer, Robert; Reitinger, Bernhard; Grün, Hubert; Sekelja, Jakov; Burgholzer, Peter

    2014-05-01

    The marching in of carbon fiber reinforced polymers (CFRPs) to mass production in the aeronautic and automotive industry requires reliable quality assurance methods. Laser ultrasound (LUS) is a promising nondestructive testing technique for sample inspection. The benefits compared to conventional ultrasound (US) testing are couplant free measurements and an easy access to complex shapes due to remote optical excitation and detection. Here the potential of LUS is present on composite test panels with relevant testing scenarios for industry. The results are evaluated in comparison to conventional ultrasound used in the aeronautic industry.

  15. An XPS study for mechanisms of arsenate adsorption onto a magnetite-doped activated carbon fiber.

    PubMed

    Zhang, Shujuan; Li, Xiao-yan; Chen, J Paul

    2010-03-01

    The surface and bulk structures of a newly developed carbon-based iron-containing adsorbent for As(V) adsorption were investigated by using X-ray diffraction (XRD), field emission scanning electronic microscopy (FESEM), and X-ray photoelectron spectroscopy (XPS). XRD patterns of the adsorbents indicated that the modified activated carbon fiber (MACF) was a simple mixture of the raw activated carbon fiber (RACF) and magnetite. After modification, a porous film was formed on the surface of the MACF with nano-sized magnetite on it. The As(V) uptake on the MACF was highly pH dependent and was facilitated in acidic solutions. XPS studies demonstrated that the surface oxygen-containing functional groups were involved in the adsorption and that magnetite played a key role in As(V) uptake. The dominance of HAsO(4)(2-) in surface complexes and the pH effect on As(V) uptake demonstrated that the monoprotonated bidentate complexes were dominant on the surface of the MACF. No reduction of As(V) was observed on the surface of the ACFs.

  16. Feeding Single-Walled Carbon Nanotubes or Graphene to Silkworms for Reinforced Silk Fibers.

    PubMed

    Wang, Qi; Wang, Chunya; Zhang, Mingchao; Jian, Muqiang; Zhang, Yingying

    2016-10-12

    Silkworm silk is gaining significant attention from both the textile industry and research society because of its outstanding mechanical properties and lustrous appearance. The possibility of creating tougher silks attracts particular research interest. Carbon nanotubes and graphene are widely studied for their use as reinforcement. In this work, we report mechanically enhanced silk directly collected by feeding Bombyx mori larval silkworms with single-walled carbon nanotubes (SWNTs) and graphene. We found that parts of the fed carbon nanomaterials were incorporated into the as-spun silk fibers, whereas the others went into the excrement of silkworms. Spectroscopy study indicated that nanocarbon additions hindered the conformation transition of silk fibroin from random coil and α-helix to β-sheet, which may contribute to increased elongation at break and toughness modules. We further investigated the pyrolysis of modified silk, and a highly developed graphitic structure with obviously enhanced electrical conductivity was obtained through the introduction of SWNTs and graphene. The successful generation of these SWNT- or graphene-embedded silks by in vivo feeding is expected to open up possibilities for the large-scale production of high-strength silk fibers.

  17. Graphite fiber surface treatment to improve char retention and increase fiber clumping

    NASA Technical Reports Server (NTRS)

    Paul, J. T., Jr.; Weldy, W. E.

    1980-01-01

    Composites containing carbon and graphite fibers can release fibers into the atmosphere during a fire. This release can potentially cause failure in some types of electrical equipment. Reduced fiber dispersion during and after combustion will reduce risks. Epoxidized char forming systems were synthesized which will react with commercially available surface treated carbon fiber. Fibers modified with these char formers retained adhesion in a specific epoxy matrix resin. Small scale combustion testing indicates that using these char former modified fibers in laminates will help to reduce the dispersement of fibers resulting from exposure to fire without sacrificing resin to fiber adhesion.

  18. Synthesis and characterization of selective thiourea modified Hg(II) ion-imprinted cellulosic cotton fibers.

    PubMed

    Monier, M; Kenawy, I M; Hashem, M A

    2014-06-15

    In the present study, Hg(2+) ion-imprinted chelating fibers based on thiourea modified natural cellulosic cotton fibers (Hg-C-TU) were synthesized and characterized using some instrumental techniques such as elemental analysis, scanning electron microscopy (SEM), FTIR, wide angle X-ray and XPS spectroscopy. The modified Hg-C-TU fibers were employed for selective removal of Hg(2+) from aqueous solution. Effect of some essential parameters such as pH, temperature, adsorption times and adsorbate concentration were examined to evaluate the optimum adsorption condition. The adsorption kinetics followed the second-order kinetic model indicating that the chemical adsorption is the rate limiting step. Also, the adsorption isotherm experiments showed the best fit with Langmuir model with maximum adsorption capacities 110.3 and 61.8 mg/g for both Hg-C-TU and NI-C-TU, respectively.

  19. Development and study the performance of PBA cladding modified fiber optic intrinsic biosensor for urea detection

    NASA Astrophysics Data System (ADS)

    Botewad, S. N.; Pahurkar, V. G.; Muley, G. G.

    2016-05-01

    The fabrication and study of a cladding modified fiber optic intrinsic urea biosensor based on evanescent wave absorbance has been presented. The sensor was prepared using cladding modification technique by removing a small portion of cladding of an optical fiber and modifying with an active cladding of porous polyaniline-boric acid (PBA) matrix to immobilize enzyme-urease through cross-linking via glutaraldehyde. The nature of as-synthesized and deposited PBA film on fiber optic sensing element was studied by ultraviolet-visible (UV-vis) spectroscopy and X-ray diffraction (XRD) analysis. The performance of the developed sensor was studied for different urea concentrations in solutions prepared in phosphate buffer.

  20. Charge-discharge characteristics of mesophase-pitch-based carbon fibers for lithium cells

    SciTech Connect

    Imanishi, N.; Kashiwagi, H.; Ichikawa, T.; Takeda, Y.; Yamamoto, O. ); Inagaki, M. )

    1993-02-01

    Mesophase-pitch-based carbon fibers were heat-treated at high temperatures (2,600 or 2,800 C) and examined as anodes for lithium secondary batteries. Four types of carbon fibers were used whose cross-sectional views are: a radial texture with wedge (type A), a radial texture with fine zigzag layers (type B), a double texture (type C), and a concentric texture (type D). Lithium could not be deintercalated after the first lithium intercalation in the type A carbon fiber. The structure of the type A fiber was destroyed during lithium intercalation. The other three types of carbon fibers showed good rechargeability on the first cycle, but demonstrated different behavior after 30 cycles. The highest lithium intercalation and deintercalation capacity was observed for the radially oriented carbon fiber (type B). The x-ray results showed a reversible change in the lattice along the c-axis during the intercalation and deintercalation cycle.

  1. Plasma-grafting polymerization on carbon fibers and its effect on their composite properties

    NASA Astrophysics Data System (ADS)

    Zhang, Huanxia; Li, Wei

    2015-11-01

    Interfacial adhesion between matrix and fibers plays a crucial role in controlling the performance of composites. Carbon fibers have the major constraint of chemical interness and hence have limited adhesion with the matrix. Surface treatment of fibers is the best solution to this problem. In this work, carbon fibers were activated by plasma and grafting polymerization. The grafting ratio of polymerization was obtained by acid-base titration. The chemical and physical changes induced by the treatments on carbon fiber surface was examined using contact angle measurements, X-ray photoelectron spectroscopy (XPS), and Fourier-transform infrared spectroscopy-attenuated total reflectance (FTIR-ATR) technique. The interfacial adhesion of CF/EP (carbon fiber/epoxy) composites were analyzed by a single fiber composite (SFC) for filament fragmentation test. Experimental results show that the grafting rate was not only the function of the plasma-treat time but also the concentration of the grafting polymerization. The oxygen-containing groups (such as Csbnd O, Cdbnd O, and Osbnd Cdbnd O) and the interfacial shear strength (IFSS) of the plasma-grafting carbon fiber increased more significantly than the carbon fiber without plasma treatment grafted with MAH. This demonstrates that the surfaces of the carbon fiber samples are more active, hydrophilic, and rough after plasma-grafting treatments using a DBD operating in ambient argon mixture with oxygen. With DBD (dielectric barrier discharges) operating in ambient argon mixture with oxygen, the more active, hydrophilic, and rough surface was obtained by the plasma-grafting treatments.

  2. Hybrid carbon fiber/carbon nanotube composites for structural damping applications.

    PubMed

    Tehrani, M; Safdari, M; Boroujeni, A Y; Razavi, Z; Case, S W; Dahmen, K; Garmestani, H; Al-Haik, M S

    2013-04-19

    Carbon nanotubes (CNTs) were grown on the surface of carbon fibers utilizing a relatively low temperature synthesis technique; graphitic structures by design (GSD). To probe the effects of the synthesis protocols on the mechanical properties, other samples with surface grown CNTs were prepared using catalytic chemical vapor deposition (CCVD). The woven graphite fabrics were thermally shielded with a thin film of SiO2 and CNTs were grown on top of this film. Raman spectroscopy and electron microscopy revealed the grown species to be multi-walled carbon nanotubes (MWCNTs). The damping performance of the hybrid CNT-carbon fiber-reinforced epoxy composite was examined using dynamic mechanical analysis (DMA). Mechanical testing confirmed that the degradations in the strength and stiffness as a result of the GSD process are far less than those encountered through using the CCVD technique and yet are negligible compared to the reference samples. The DMA results indicated that, despite the minimal degradation in the storage modulus, the loss tangent (damping) for the hybrid composites utilizing GSD-grown MWCNTs improved by 56% compared to the reference samples (based on raw carbon fibers with no surface treatment or surface grown carbon nanotubes) over the frequency range 1-60 Hz. These results indicated that the energy dissipation in the GSD-grown MWCNTs composite can be primarily attributed to the frictional sliding at the nanotube/epoxy interface and to a lesser extent to the stiff thermal shielding SiO2 film on the fiber/matrix interface.

  3. Intrinsic optical fiber sensor for sensing organophosphate nerve agent using the modified cladding approach

    NASA Astrophysics Data System (ADS)

    Bansal, Lalitkumar; El-Sherif, Mahmoud

    2004-03-01

    The concept of modified cladding based sensors represents the largest class of intrinsic fiber optic chemical sensors. In this design, the passive cladding of the optical fiber is replaced by an active coating, called modified cladding. The analyte in this case diffuses into the coating and induces changes in the absorbance, fluorescence, or some other spectroscopic property of the modified cladding, the coating acts as a chemo-chromic transducer and sensing takes place by intensity modulation. This design i.e. of the coating based sensors, has found enormous applicability in the realm of chemical and biochemical sensing which also includes environmental monitoring and detection of chemical warfare agents. In this paper, the development of an intrinsic fiber optic sensor for detection of organophosphate dimethyl-methyl phoshopnate (DMMP) is presented. DMMP is a chemical precursor to the nerve agent sarin. The chemo-chromic transducer material used as a modified coating on the fiber core is NDSA (Naphthalene disulphonic acid) doped polypyrrole. This coating material shows conductivity and absorbance change when exposed to DMMP. The fabrication of the sensor device is a three step process which involves (a) etching a small section of the optical fiber to expose the core, (b) coating the etched section of the optical fiber with the polymer, (c) integration of sensor components and testing. Thin film characterization is done using the UV-Vis spectrophotometer on in-situ coated films of polypyrrole on a glass substrate to check for absorbance change upon exposure to DMMP. The development procedure is presented next and encouraging results are discussed.

  4. Multilayer silver nanoparticles-modified optical fiber tip for high performance SERS remote sensing.

    PubMed

    Andrade, Gustavo F S; Fan, MeiKun; Brolo, Alexandre G

    2010-06-15

    This work presents the construction and optimization of nanoparticles-modified optical fiber tip (NPs-MOFT) devices for remote sensing by surface-enhanced Raman scattering (SERS). Silver nanoparticles (Ag-NPs) were self-assembled on optical fiber tips through a "layer-by-layer" procedure. It is shown that the SERS performance is at optimum when 5 "layers" of 50 nm Ag-NPs were deposited on the optical fiber tip. Using the optimized Ag-NPs-MOFT device, it was possible to detect 200 nM of the R6G dye in remote sensing mode (backscattering through the fiber). It was also possible to detect dye molecules with different structures and charges at the micro-molar concentration level, including anions, cations and neutral species. It can be envisioned that the Ag-NPs-MOFT device reported in this work can be further developed for SERS-based remote biosensing.

  5. Carbon nanoparticle-modified multi-wall carbon nanotubes with fast adsorption kinetics for water treatment.

    PubMed

    Wang, Guan; Ren, Wei; Tan, Hui Ru; Liu, Ye

    2017-02-24

    Carbon nanoparticle-modified multi-wall carbon nanotubes were prepared using a dehydration of carbohydrate compound method. The structural change was characterized by transmission electron microscopy, Raman spectroscopy, and Brunauer, Emmett and Teller measurement. Fast adsorption kinetics was observed for multi-wall carbon nanotubes with modification, as demonstrated by the adsorption of the model compound methylene blue. This work provides a novel facile engineering strategy to equip multi-wall carbon nanotubes with fast adsorption kinetics, which is promising for efficient water purification.

  6. Carbon nanoparticle-modified multi-wall carbon nanotubes with fast adsorption kinetics for water treatment

    NASA Astrophysics Data System (ADS)

    Wang, Guan; Ren, Wei; Tan, Hui Ru; Liu, Ye

    2017-02-01

    Carbon nanoparticle-modified multi-wall carbon nanotubes were prepared using a dehydration of carbohydrate compound method. The structural change was characterized by transmission electron microscopy, Raman spectroscopy, and Brunauer, Emmett and Teller measurement. Fast adsorption kinetics was observed for multi-wall carbon nanotubes with modification, as demonstrated by the adsorption of the model compound methylene blue. This work provides a novel facile engineering strategy to equip multi-wall carbon nanotubes with fast adsorption kinetics, which is promising for efficient water purification.

  7. Microwave radiation absorbers based on corrugated composites with carbon fibers

    NASA Astrophysics Data System (ADS)

    Bychanok, D. S.; Plyushch, A. O.; Gorokhov, G. V.; Bychanok, U. S.; Kuzhir, P. P.; Maksimenko, S. A.

    2016-12-01

    A complex analysis of the dependence of the absorption coefficient of polymer composites with nonmagnetic carbon inclusions on the real and imaginary parts of the complex permittivity, as well as on the material thickness is performed in frequency range 26-37 GHz. The composites containing 0.2 wt % of carbon fibers have been obtained. It has been experimentally found that the corrugation of the composite surface substantially increases the absorbability (from 63 to 92% at a frequency of 30 GHz and a thickness of 4.50 mm) upon a decrease in the sample mass (by 28%). A method has been proposed for calculating the absorptance of corrugated composites in the microwave range.

  8. Bond strength of individual carbon nanotubes grown directly on carbon fibers

    NASA Astrophysics Data System (ADS)

    Kim, Kyoung Ju; Lee, Geunsung; Kim, Sung-Dae; Kim, Seong-Il; Youk, Ji Ho; Lee, Jinyong; Kim, Young-Woon; Yu, Woong-Ryeol

    2016-10-01

    The performance of carbon nanotube (CNT)-based devices strongly depends on the adhesion of CNTs to the substrate on which they were directly grown. We report on the bond strength of CNTs grown on a carbon fiber (T700SC Toray), measured via in situ pulling of individual CNTs inside a transmission electron microscope. The bond strength of an individual CNT, obtained from the measured pulling force and CNT cross-section, was very high (˜200 MPa), 8-10 times higher than that of an adhesion model assuming only van der Waals interactions (25 MPa), presumably due to carbon-carbon interactions between the CNT (its bottom atoms) and the carbon substrate.

  9. Bond strength of individual carbon nanotubes grown directly on carbon fibers.

    PubMed

    Kim, Kyoung Ju; Lee, Geunsung; Kim, Sung-Dae; Kim, Seong-Il; Youk, Ji Ho; Lee, Jinyong; Kim, Young-Woon; Yu, Woong-Ryeol

    2016-10-07

    The performance of carbon nanotube (CNT)-based devices strongly depends on the adhesion of CNTs to the substrate on which they were directly grown. We report on the bond strength of CNTs grown on a carbon fiber (T700SC Toray), measured via in situ pulling of individual CNTs inside a transmission electron microscope. The bond strength of an individual CNT, obtained from the measured pulling force and CNT cross-section, was very high (∼200 MPa), 8-10 times higher than that of an adhesion model assuming only van der Waals interactions (25 MPa), presumably due to carbon-carbon interactions between the CNT (its bottom atoms) and the carbon substrate.

  10. Oxidation Behavior of Carbon Fiber Reinforced Silicon Carbide Composites

    NASA Technical Reports Server (NTRS)

    Valentin, Victor M.

    1995-01-01

    Carbon fiber reinforced Silicon Carbide (C-SiC) composites offer high strength at high temperatures and good oxidation resistance. However, these composites present some matrix microcracks which allow the path of oxygen to the fiber. The aim of this research was to study the effectiveness of a new Silicon Carbide (SiC) coating developed by DUPONT-LANXIDE to enhance the oxidation resistance of C-SiC composites. A thermogravimetric analysis was used to determine the oxidation rate of the samples at different temperatures and pressures. The Dupont coat proved to be a good protection for the SiC matrix at temperatures lower than 1240 C at low and high pressures. On the other hand, at temperatures above 1340 C the Dupont coat did not seem to give good protection to the composite fiber and matrix. Even though some results of the tests have been discussed, because of time restraints, only a small portion of the desired tests could be completed. Therefore, no major conclusions or results about the effectiveness of the coat are available at this time.

  11. A Silver Nanoparticle-Modified Evanescent Field Optical Fiber Sensor for Methylene Blue Detection

    PubMed Central

    Luo, Ji; Yao, Jun; Lu, Yonggang; Ma, Wenying; Zhuang, Xuye

    2013-01-01

    A silver nanoparticle-modified evanescent field optical fiber sensor based on a MEMS microchannel chip has been successfully fabricated. Experimental results show that the sensor response decreases linearly with increasing concentration of analyte. Over a range of methylene blue concentrations from 0 to 0.4 μmol/mL, the sensor response is linear (R = 0.9496). A concentration variation of 0.1 μmol/mL can cause an absorbance change of 0.402 dB. Moreover, the optical responses of the same sensing fiber without decoration and modified with silver nanoparticles have also been compared. It can be observed that the output intensity of the Ag nanoparticle-modified sensor is enhanced and the sensitivity is higher. Meanwhile, the absorbance spectra are found to be more sensitive to concentration changes compared to the spectra of the peak wavelength. PMID:23519353

  12. Fabrication of polyaniline-HCl cladding modified fiber optic intrinsic biosensor for glucose detection

    NASA Astrophysics Data System (ADS)

    Pahurkar, Vikas; Tamgadge, Yuoraj; Muley, Gajanan

    2016-05-01

    In the present study, we have fabricated and studied response of cladding modified fiber optic intrinsic glucose biosensor (FOIGB). The optical fiber was used as a light transforming waveguide and sensing element fabricated over it by applying a thin layer of polymer. The cladding of the sensor was modified with the polyaniline-hydrochloric acid (PANI-HCl) polymer matrix. The PANI-HCl matrix provides an amorphous morphology useful to immobilize glucose oxidase (GOx) biomolecules through cross-linking technique via glutaraldehyde. The present sensor was used to detect the glucose analyte in the solution. In the sensing response study of FOIGB toward glucose, novel modal power distribution (MPD) technique was used. The reaction between GOx and glucose changes the optical properties of prepared FOIGB and hence modify MPD at output as a function of glucose concentration. The nature and surface morphology of PANI-HCl matrix has been studied.

  13. Differences and similarities between carbon nanotubes and asbestos fibers during mesothelial carcinogenesis: shedding light on fiber entry mechanism.

    PubMed

    Nagai, Hirotaka; Toyokuni, Shinya

    2012-08-01

    The emergence of nanotechnology represents an important milestone, as it opens the way to a broad spectrum of applications for nanomaterials in the fields of engineering, industry and medicine. One example of nanomaterials that have the potential for widespread use is carbon nanotubes, which have a tubular structure made of graphene sheets. However, there have been concerns that they may pose a potential health risk due to their similarities to asbestos, namely their high biopersistence and needle-like structure. We recently found that despite these similarities, carbon nanotubes and asbestos differ in certain aspects, such as their mechanism of entry into mesothelial cells. In the study, we showed that non-functionalized, multi-walled carbon nanotubes enter mesothelial cells by directly piercing through the cell membrane in a diameter- and rigidity-dependent manner, whereas asbestos mainly enters these cells through the process of endocytosis, which is independent of fiber diameter. In this review, we discuss the key differences, as well as similarities, between asbestos fibers and carbon nanotubes. We also summarize previous reports regarding the mechanism of carbon nanotube entry into non-phagocytic cells. As the entry of fibers into mesothelial cells is a crucial step in mesothelial carcinogenesis, we believe that a comprehensive study on the differences by which carbon nanotubes and asbestos fibers enter into non-phagocytic cells will provide important clues for the safer manufacture of carbon nanotubes through strict regulation on fiber characteristics, such as diameter, surface properties, length and rigidity.

  14. Processes for preparing carbon fibers using sulfur trioxide in a halogenated solvent

    SciTech Connect

    Patton, Jasson T.; Barton, Bryan E.; Bernius, Mark T.; Chen, Xiaoyun; Hukkanen, Eric J.; Rhoton, Christina A.; Lysenko, Zenon

    2015-12-29

    Disclosed here are processes for preparing carbonized polymers (preferably carbon fibers), comprising sulfonating a polymer with a sulfonating agent that comprises SO.sub.3 dissolved in a solvent to form a sulfonated polymer; treating the sulfonated polymer with a heated solvent, wherein the temperature of the solvent is at least 95.degree. C.; and carbonizing the resulting product by heating it to a temperature of 500-3000.degree. C. Carbon fibers made according to these methods are also disclosed herein.

  15. Dosimetric characteristics of the Siemens IGRT carbon fiber tabletop.

    PubMed

    Spezi, Emiliano; Ferri, Andrea

    2007-01-01

    In this work, the dosimetric characteristics of a new commercial carbon fiber treatment table are investigated. The photon beam attenuation properties of the Siemens image-guided radiation therapy (IGRT) tabletop were studied in detail. Two sets of dosimetric measurements were performed. In the first experiment a polystyrene slab phantom was used: the central axis attenuation and the skin-sparing detriment were investigated. In the second experiment, the off-axis treatment table transmission was investigated using a polystyrene cylindrical phantom. Measurements were taken at the isocenter for a 360 degrees rotation of the radiation beam. Our results show that the photon beam attenuation of the Siemens IGRT carbon fiber tabletop varies from a minimum of 2.1% (central axis) to a maximum of 4.6% (120 degrees and 240 degrees beam incidence). The beam entrance dose increases from 82% to 97% of the dose at the depth of maximum for a clinical 6-MV radiation field. The depth of maximum also decreases by 0.4 cm. Despite the wedge cross section of the table the beam attenuation properties of the IGRT tabletop remain constant along the longitudinal direction. American Association of Medical Dosimetrists.

  16. Dosimetric Characteristics of the Siemens IGRT Carbon Fiber Tabletop

    SciTech Connect

    Spezi, Emiliano; Ferri, Andrea

    2007-01-01

    In this work, the dosimetric characteristics of a new commercial carbon fiber treatment table are investigated. The photon beam attenuation properties of the Siemens image-guided radiation therapy (IGRT) tabletop were studied in detail. Two sets of dosimetric measurements were performed. In the first experiment a polystyrene slab phantom was used: the central axis attenuation and the skin-sparing detriment were investigated. In the second experiment, the off-axis treatment table transmission was investigated using a polystyrene cylindrical phantom. Measurements were taken at the isocenter for a 360 deg. rotation of the radiation beam. Our results show that the photon beam attenuation of the Siemens IGRT carbon fiber tabletop varies from a minimum of 2.1% (central axis) to a maximum of 4.6% (120 deg. and 240 deg. beam incidence). The beam entrance dose increases from 82% to 97% of the dose at the depth of maximum for a clinical 6-MV radiation field. The depth of maximum also decreases by 0.4 cm. Despite the wedge cross section of the table the beam attenuation properties of the IGRT tabletop remain constant along the longitudinal direction. American Association of Medical Dosimetrists.

  17. Oxidation of carbon fiber surfaces for use as reinforcement in high-temperature cementitious material systems

    DOEpatents

    Sugama, Toshifumi

    1990-01-01

    The interfacial bond characteristics between carbon fiber and a cement matrix, in high temperature fiber-reinforced cementitious composite systems, can be improved by the oxidative treatment of the fiber surfaces. Compositions and the process for producing the compositions are disclosed.

  18. Oxidation of carbon fiber surfaces for use as reinforcement in high-temperature cementitious material systems

    DOEpatents

    Sugama, Toshifumi.

    1990-05-22

    The interfacial bond characteristics between carbon fiber and a cement matrix, in high temperature fiber-reinforced cementitious composite systems, can be improved by the oxidative treatment of the fiber surfaces. Compositions and the process for producing the compositions are disclosed. 2 figs.

  19. The transfer of carbon fibers through a commercial aircraft water separator and air cleaner

    NASA Technical Reports Server (NTRS)

    Meyers, J. A.

    1979-01-01

    The fraction of carbon fibers passing through a water separator and an air filter was determined in order to estimate the proportion of fibers outside a closed aircraft that are transmitted to the electronics through the air conditioning system. When both devices were used together and only fibers 3 mm or larger were considered, a transfer function of .001 was obtained.

  20. A comparative study of graphene-coated stainless steel fiber felt and carbon cloth as anodes in MFCs.

    PubMed

    Hou, Junxian; Liu, Zhongliang; Li, Yanxia; Yang, Siqi; Zhou, Yu

    2015-05-01

    This study investigated the stainless steel-based materials and their potential in microbial fuel cells (MFCs) anode application. Herein, AISI 316L stainless steel fiber felts (SSFFs) were used as anodes in MFCs and their performance was compared with the carbon cloth anode MFCs. The experimental results showed that the unmodified carbon cloth (CC) anode had a better performance than the unmodified SSFF anode. However, after coating a thin layer of graphene (GN) on SSFF and CC, the power density of the MFC equipped with the modified SSFF was 2,143 mW m(-2), much higher than that of the graphene-modified CC-MFC which was only 1,018 mW m(-2). The experimental results proved that the use of durable metallic backbones combined with a thin layer of carbon nanoparticles offers exciting opportunities in the advancement of MFC anode design.

  1. Delamination behavior of carbon fiber/epoxy composite laminates with short fiber reinforcement

    SciTech Connect

    Sohn, M.S.; Hu, X.Z. . Dept. of Mechanical and Materials Engineering)

    1994-06-01

    Delamination in laminated materials is one major mode of damage and failure encountered in application. Fracture mechanics is often used to characterize the interlaminar fracture behavior. The interlaminar fracture energies, G[sub I], G[sub II] and G[sub I/II] are the major concerns to characterize the interlaminar toughness of the composite laminates. Typical mode-I fracture is caused by normal tension, and typical mode-II fracture by shear in the direction of crack extension. The objective of the present study is to compare and discuss the mode-I and mode-II interlaminar fracture energies, G[sub I] and G[sub II] of carbon fiber/epoxy composite laminates with and without the reinforcement of short Kevlar fibers (5--7 mm in length) and to identify the microfracture features of the Kevlar fibers under those two delamination modes through SEM observations. Double cantilever beam (DCB) specimens and end notched flexure (ENF) specimens are used for the mode-I and -II delamination experiments.

  2. Ceramic silicon-boron-carbon fibers from organic silicon-boron-polymers

    NASA Technical Reports Server (NTRS)

    Riccitiello, Salvatore R. (Inventor); Hsu, Ming-Ta S. (Inventor); Chen, Timothy S. (Inventor)

    1993-01-01

    Novel high strength ceramic fibers derived from boron, silicon, and carbon organic precursor polymers are discussed. The ceramic fibers are thermally stable up to and beyond 1200 C in air. The method of preparation of the boron-silicon-carbon fibers from a low oxygen content organosilicon boron precursor polymer of the general formula Si(R2)BR(sup 1) includes melt-spinning, crosslinking, and pyrolysis. Specifically, the crosslinked (or cured) precursor organic polymer fibers do not melt or deform during pyrolysis to form the silicon-boron-carbon ceramic fiber. These novel silicon-boron-carbon ceramic fibers are useful in high temperature applications because they retain tensile and other properties up to 1200 C, from 1200 to 1300 C, and in some cases higher than 1300 C.

  3. Effects of carbon/graphite fiber contamination on high voltage electrical insulation

    NASA Technical Reports Server (NTRS)

    Garrity, T.; Eichler, C.

    1980-01-01

    The contamination mechanics and resulting failure modes of high voltage electrical insulation due to carbon/graphite fibers were examined. The high voltage insulation vulnerability to carbon/graphite fiber induced failure was evaluated using a contamination system which consisted of a fiber chopper, dispersal chamber, a contamination chamber, and air ducts and suction blower. Tests were conducted to evaluate the effects of fiber length, weathering, and wetness on the insulator's resistance to carbon/graphite fibers. The ability of nuclear, fossil, and hydro power generating stations to maintain normal power generation when the surrounding environment is contaminated by an accidental carbon fiber release was investigated. The vulnerability assessment included only the power plant generating equipment and its associated controls, instrumentation, and auxiliary and support systems.

  4. Transform-limited pulse generation in normal cavity dispersion erbium doped single-walled carbon nanotubes mode-locked fiber ring laser.

    PubMed

    Chernysheva, M A; Krylov, A A; Ogleznev, A A; Arutyunyan, N R; Pozharov, A S; Obraztsova, E D; Dianov, E M

    2012-10-08

    We demonstrate an erbium doped fiber ring laser mode-locked with a carboxymetylcellulose high-optical quality film with dispersed single-walled carbon nanotubes (SWCNT). The laser with large normal net cavity dispersion generates near bandwidth-limited picosecond inverse modified soliton pulses at 1.56 µm.

  5. Kinetics of CO2 exchange with carbonic anhydrase immobilized on fiber membranes in artificial lungs.

    PubMed

    Arazawa, D T; Kimmel, J D; Federspiel, W J

    2015-06-01

    Artificial lung devices comprised of hollow fiber membranes (HFMs) coated with the enzyme carbonic anhydrase (CA), accelerate removal of carbon dioxide (CO2) from blood for the treatment of acute respiratory failure. While previous work demonstrated CA coatings increase HFM CO2 removal by 115 % in phosphate buffered saline (PBS), testing in blood revealed a 36 % increase compared to unmodified HFMs. In this work, we sought to characterize the CO2 mass transport processes within these biocatalytic devices which impede CA coating efficacy and develop approaches towards improving bioactive HFM efficiency. Aminated HFMs were sequentially reacted with glutaraldehyde (GA), chitosan, GA and afterwards incubated with a CA solution, covalently linking CA to the surface. Bioactive CA-HFMs were potted in model gas exchange devices (0.0119 m(2)) and tested for esterase activity and CO2 removal under various flow rates with PBS, whole blood, and solutions containing individual blood components (plasma albumin, red blood cells or free carbonic anhydrase). Results demonstrated that increasing the immobilized enzyme activity did not significantly impact CO2 removal rate, as the diffusional resistance from the liquid boundary layer is the primary impediment to CO2 transport by both unmodified and bioactive HFMs under clinically relevant conditions. Furthermore, endogenous CA within red blood cells competes with HFM immobilized CA to increase CO2 removal. Based on our findings, we propose a bicarbonate/CO2 disequilibrium hypothesis to describe performance of CA-modified devices in both buffer and blood. Improvement in CO2 removal rates using CA-modified devices in blood may be realized by maximizing bicarbonate/CO2 disequilibrium at the fiber surface via strategies such as blood acidification and active mixing within the device.

  6. Mesophase pitch-based carbon fiber for improved inflammability of CFRP

    SciTech Connect

    Nakagoshi, Akira; Tomonoh, Shigeki; Sakamoto, Yosihiro

    1995-10-01

    Carbon Fiber Reinforced Plastics (CFRP) are extensively used because of their favorable physical properties such as high strength-to-weight ratio and small thermal expansion. However, flammability of CFRP has limited their application especially in the transportation and industrial field. Exposed to flame, CFRP laminates made of PAN-based carbon fibers burst into flame in short time, while CFRP laminates made from mesophase pitch-based carbon fibers don`t burst into flame. This paper describes the experimental results of local heating test by gas burner. When the flame temperature was 1,000 C, a CFRP laminate made from PAN-based carbon fiber burned within 40 sec. Under the same condition, a CFRP laminate made from mesophase pitch-based carbon fiber didn`t burn in 10 min. The matrix resin of both laminates was 250 F curable epoxy resin. This behavior mainly depends upon the thermal conductivity of the carbon fibers. The mesophase pitch-based carbon fibers have high thermal conductivity, so they can diffuse thermal energy and lower laminate surface temperature. On the other hand, PAN-based carbon fibers have low thermal conductivity, so they can`t diffuse thermal energy enough, and the laminates made from them burn easily. Mechanical properties of CFRP during local heating test in comparison with Aluminum plate are also discussed.

  7. Development and Characterization of Carbon-Fiber Microbiosensors for Fast-Scan Cyclic Voltammetry

    NASA Astrophysics Data System (ADS)

    Lugo-Morales, Leyda Zoraida

    Electrochemistry has been shown to be a robust tool in neuroscience. The use of carbon-fiber microelectrodes coupled with background-subtracted fast-scan cyclic voltammetry (FSCV) offers high sensitivity, selectivity, as well as the spatial and temporal resolution necessary for monitoring rapid fluctuations of electroactive molecules in live brain tissue. Dopamine (DA) is a neurotransmitter playing a key role in the regulation of reward and motivated behavior. FSCV has been used to understand DA dynamics and how these underlie discrete aspects of brain function. The methodological aspects of real-time DA detection at carbon-fiber microelectrodes using FSCV in anesthetized and awake animals are presented. Furthermore, the combination of FSCV with other neuroanalytical techniques is also explained. The advantages of FSCV and carbon-fiber microelectrodes can be expanded to the detection of non-electroactive analytes. This broadens the scope of FSCV such that it can be used to investigate how changes in non-electroactive chemicals underlie disease, cognition, and behavior. Carbon-fiber microelectrodes can be modified with an enzyme to monitor non-electroactive molecules, generating an electroactive product (usually hydrogen peroxide, H2O2). The first voltammetric detection of H2O 2 at bare carbon-fiber microelectrodes using FSCV has recently been reported. Thus, an avenue exists to utilize FSCV at enzyme-modified microelectrodes to voltammetrically identify and quantify non-electroactive analytes in real-time. Such an approach will overcome many limitations associated with the traditional amperometric detection scheme, which lacks electrochemical selectivity. Electrodeposition of the biopolymer chitosan with glucose oxidase (GOx) at the carbon surface yields a stable, sensitive, and selective glucose microbiosensor that has been utilized to detect glucose fluctuations in vivo with unprecedented speed. This new method has revealed the first rapid glucose fluctuations in

  8. High-voltage spark carbon-fiber sticky-tape data analyzer

    NASA Technical Reports Server (NTRS)

    Yang, L. C.; Hull, G. G.

    1980-01-01

    An efficient method for detecting carbon fibers collected on a stick tape monitor was developed. The fibers were released from a simulated crash fire situation containing carbon fiber composite material. The method utilized the ability of the fiber to initiate a spark across a set of alternately biased high voltage electrodes to electronically count the number of fiber fragments collected on the tape. It was found that the spark, which contains high energy and is of very short duration, is capable of partially damaging or consuming the fiber fragments. It also creates a mechanical disturbance which ejects the fiber from the grid. Both characteristics were helpful in establishing a single discharge pulse for each fiber segment.

  9. Short pulse fiber lasers mode-locked by carbon nanotubes and graphene

    NASA Astrophysics Data System (ADS)

    Yamashita, Shinji; Martinez, Amos; Xu, Bo

    2014-12-01

    One and two dimensional forms of carbon, carbon nanotubes and graphene, have interesting and useful, not only electronic but also photonic, properties. For fiber lasers, they are very attractive passive mode lockers for ultra-short pulse generation, since they have saturable absorption with inherently fast recovery time (<1 ps). In this paper, we review the photonic properties of graphene and CNT and our recent works on fabrication of fiber devices and applications to ultra-short pulse mode-locked fiber lasers.

  10. 77 FR 75972 - Foreign-Trade Zone 148-Knoxville, Tennessee, Toho Tenax America, Inc., Subzone 148C (Carbon Fiber...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-26

    ... 148C (Carbon Fiber Manufacturing Authority); Extension of Comment Period on New Evidence The comment... preliminary recommendation not to authorize TTA to manufacture carbon fiber for the U.S. market at this...

  11. Application of Lactobacillus immobilized by Activated Carbon Fiber in Fermentation of Lactic Acid in Starch Wastewater

    NASA Astrophysics Data System (ADS)

    Xu, Wei; Wang, Peng; Chi, Guoda; Huang, Chenyong

    2010-11-01

    Activated carbon fibers (ACF) as the carrier of Lactobacillus was introduced into fermenting system, and a method of modifying the surface of ACF by HNO3-Fe (III) was established. Factors that affect ACF carrier's effect on immobilization of Lactobacillus were studied. HCl, H2SO4, HNO3 and FeCl3 solutions were respectively used to modify the surface properties of ACF. The amount of Fe (III) carried on ACF surface was 0.1563 mol/kg after ACF surface was modified by HNO3 for 5 h and then by 0.1 mol/L FeCl3 for 4 h, when the thickness of Lactobacillus on a single silk of carrier reached 40 μm. When ACF modified by HNO3-Fe (III) was applied in the fermentation of lactic acid in starch industry wastewater, the fermentation period reduced by 8 h and the output of L-lactic acid was 65.5 g/L, which was 3.3% more than that fermented without the carrier.

  12. Effects of glass fiber modified with calcium silicate hydrate (C-S-H(I)) reinforced cement

    NASA Astrophysics Data System (ADS)

    Xin, M.; Zhang, L.; Ge, S.; Cheng, X.

    2017-03-01

    In this paper, calcium silicate hydrate (C-S-H(I)) and glass fiber modified with C-S-H(I) (SiF) at ambient temperature were synthesized. SiF and untreated fiber (OF) were incorporated into cement paste. Phase composition of C-S-H(I), SiF and OF was characterized by XRD. The surface morphologies were characterized by SEM. Flexural performance of fiber reinforced cement (FRC) at different curing ages was investigated. Results indicated that both SiF and OF could reinforce cement paste. SiF had a more positive effect on improving the flexural performance of FRC than OF. The strength of SiF reinforced cement was 11.48MPa after 28 days curing when fiber volume was 1.0%, 12.55% higher than that of OF reinforced cement. The flexural strength increased with the addition of fiber volume. However, the large dosage of fiber might cause a decrease in flexural strength of FRC.

  13. A Silicon detector system on carbon fiber support at small radius

    SciTech Connect

    Marvin E. Johnson

    2004-04-28

    The design of a silicon detector for a p{bar p} collider experiment will be described. The detector uses a carbon fiber support structure with sensors positioned at small radius with respect to the beam. A brief overview of the mechanical design is given. The emphasis is on the electrical characteristics of the detector. General principles involved in grounding systems with carbon fiber structures will be covered. The electrical characteristics of the carbon fiber support structure will be presented. Test results imply that carbon fiber must be regarded as a conductor for the frequency region of interest of 10 to 100 MHz. No distinction is found between carbon fiber and copper. Performance results on noise due to pick-up through the low mass fine pitch cables carrying the analogue signals and floating metal is discussed.

  14. Effects of EB irradiation on stress-strain curves for carbon fiber reinforced composite materials

    NASA Astrophysics Data System (ADS)

    Kobayashi, H.; Yamada, K.; Mizutani, A.; Uchida, N.; Tanaka, K.; Nishi, Yoshitake

    2004-02-01

    In order to evaluate influence of electron beam (EB) irradiation on elasticity and stress- strain curve of composite materials reinforced by carbon fiber (CF), carbon fiber reinforced polymer (CFRP) and carbon fiber reinforced graphite (C/C) were treated by EB irradiation of 0.3 MGy. Since the EB strengthening was mainly dominated by the ductility enhancements of carbon fiber and matrix of epoxy resin, EB irradiation enlarged fracture stress and enhanced fracture strain of CFRP. Furthermore, EB irradiation slightly enhanced bending elasticity of CFRP and largely enhanced the initial spring constant related to elasticity of C/C coil. Although the elasticity enhancement of carbon fibers did not largely contribute that of CFRP, that of treated graphite matrix in C/C mainly caused the C/C coil elasticity enhancement by EB irradiation. Such a new treatment is a dream-worthy technology for structural materials to be applied in the fields of future engineering.

  15. Radio-frequency and microwave load comprising a carbon-bonded carbon fiber composite

    DOEpatents

    Lauf, Robert J.; McMillan, April D.; Johnson, Arvid C.; Everleigh, Carl A.; Moorhead, Arthur J.

    1998-01-01

    A billet of low-density carbon-bonded carbon fiber (CBCF) composite is machined into a desired attenuator or load element shape (usually tapering). The CBCF composite is used as a free-standing load element or, preferably, brazed to the copper, brass or aluminum components of coaxial transmission lines or microwave waveguides. A novel braze method was developed for the brazing step. The resulting attenuator and/or load devices are robust, relatively inexpensive, more easily fabricated, and have improved performance over conventional graded-coating loads.

  16. Radio-frequency and microwave load comprising a carbon-bonded carbon fiber composite

    DOEpatents

    Lauf, R.J.; McMillan, A.D.; Johnson, A.C.; Everleigh, C.A.; Moorhead, A.J.

    1998-04-21

    A billet of low-density carbon-bonded carbon fiber (CBCF) composite is machined into a desired attenuator or load element shape (usually tapering). The CBCF composite is used as a free-standing load element or, preferably, brazed to the copper, brass or aluminum components of coaxial transmission lines or microwave waveguides. A novel braze method was developed for the brazing step. The resulting attenuator and/or load devices are robust, relatively inexpensive, more easily fabricated, and have improved performance over conventional graded-coating loads. 9 figs.

  17. Occupational exposure to carbon/coke fibers in plants that produce green or calcined petroleum coke and potential health effects: 1. Fiber characteristics.

    PubMed

    Maxim, L Daniel; Galvin, Jennifer B; Niebo, Ron; Segrave, Alan M; Kampa, Otto A; Utell, Mark J

    2006-01-01

    Carbon/coke fibers are found in bulk samples of calcined petroleum coke. Carbon/coke and other fibers, including calcium silicate, cellulose, gypsum, and iron silicate, have been found in exposure monitoring of workers who make or handle green or calcined petroleum coke. Carbon/coke fibers are not classified or regulated as carcinogens by any agency, and the available literature (summarized in this article) has not reported significant adverse health effects associated with exposure to these fibers or dusts containing these fibers. However, available epidemiological and toxicological studies have limitations that prevent a definitive assessment of carbon/coke fiber toxicity. Therefore, it is prudent to monitor and control workplace concentrations. Analyses by transmission electron microscopy (TEM) indicate that the carbon/coke fibers are amorphous, irregularly shaped, and generally rather short (94% less than 20 microm long). Nearly all carbon/ coke fibers satisfying NIOSH 7400 B counting criteria are detectable by phase-contrast optical microscopy (PCOM), which permits the use of a highly efficient sequential sampling strategy for analysis. Data are presented on the distribution of carbon/coke structure and fiber lengths and diameters. Bootstrap resampling results are presented to determine confidence intervals for structure/fiber length and diameter. Data on time-weighted average concentrations are given in a companion article, but nearly all time-weighted average carbon/coke fiber concentrations were beneath 0.1 fibers per milliliter.

  18. Material characterization of several resin systems for high temperature carbon fiber reinforced composites

    NASA Astrophysics Data System (ADS)

    Yoon, Sung Ho; Oh, Jin Oh; Choi, Dong Hyun; Lee, Sang Woo

    2011-11-01

    Material characterization of several resin systems for high temperature carbon fiber reinforced composites was performed through a series of the tensile test, the dynamic mechanical analysis (DMA) test, and the strand test. The modified tensile specimens and the DMA specimens were used to evaluate the tensile and thermal analysis properties of resin systems. The strand specimens were used to evaluate the tensile properties and load transfer efficiencies of the specimens. Four types of resin systems were considered. One was a conventional resin system currently used for filament wound structures and other three were high temperature resin systems. According to the tensile and DMA test results, the tensile modulus decreases slightly and the tensile strength decreases rapidly until the temperature reaches glass transition temperature. The tensile modulus and tensile strength are almost negligible above glass transition temperature. The tensile modulus obtained from the tensile test is consistent with that from the DMA test at different temperatures. From the strand test results, considering, the load transfer efficiency is found to be around 87 to 90 % of the tensile strength of T800H-12K carbon fibers for all resin systems except the specimen with the Type 2. Finally we found that the Type 4 is the best candidate for high temperature resin system applicable to filament wound structures in the view of the glass transition temperature as well as the tensile properties.

  19. Material characterization of several resin systems for high temperature carbon fiber reinforced composites

    NASA Astrophysics Data System (ADS)

    Yoon, Sung Ho; Oh, Jin Oh; Choi, Dong Hyun; Lee, Sang Woo

    2012-04-01

    Material characterization of several resin systems for high temperature carbon fiber reinforced composites was performed through a series of the tensile test, the dynamic mechanical analysis (DMA) test, and the strand test. The modified tensile specimens and the DMA specimens were used to evaluate the tensile and thermal analysis properties of resin systems. The strand specimens were used to evaluate the tensile properties and load transfer efficiencies of the specimens. Four types of resin systems were considered. One was a conventional resin system currently used for filament wound structures and other three were high temperature resin systems. According to the tensile and DMA test results, the tensile modulus decreases slightly and the tensile strength decreases rapidly until the temperature reaches glass transition temperature. The tensile modulus and tensile strength are almost negligible above glass transition temperature. The tensile modulus obtained from the tensile test is consistent with that from the DMA test at different temperatures. From the strand test results, considering, the load transfer efficiency is found to be around 87 to 90 % of the tensile strength of T800H-12K carbon fibers for all resin systems except the specimen with the Type 2. Finally we found that the Type 4 is the best candidate for high temperature resin system applicable to filament wound structures in the view of the glass transition temperature as well as the tensile properties.

  20. Novel surface modifications of carbon fiber-reinforced polyetheretherketone hip stem in an ovine model.

    PubMed

    Nakahara, Ichiro; Takao, Masaki; Bandoh, Shunichi; Bertollo, Nicky; Walsh, William R; Sugano, Nobuhiko

    2012-01-01

    A carbon fiber-reinforced polymer (CFRP) is theoretically a suitable material for use in an uncemented hip prosthesis considering it can provide isoelastic environment with the surrounding bone, adequate fatigue strength, and a metal-free radiographic evaluation. To date, the selection of polymer material and optimization of both design and surface finish of the prostheses for osseointegration has not been accomplished. This study examined radiographic and histologic results of an uncemented CFRP stem manufactured from carbon fiber-reinforced polyetheretherketone (CFR/PEEK) with a roughened surface and a bioactive treatment in an adult ovine model following a 12-month implantation period. A unilateral hemiarthroplasty of the hip was performed using the CFRP stem or a titanium stem as a control. Four cases with the CFRP stem and five cases with titanium stem were evaluated. Bone on-growth fixation was achieved in two cases with the CFRP stem and in all the cases with the titanium stem. The CFRP cases showed minimal stress shielding while three of five cases with the titanium stem demonstrated typical osteopenia associated with stiff metal stems. Bone on-growth to the uncemented CFRP stem was achieved by using the CFR/PEEK for the material and modifying the surface design and the bioactive surface finish. Bone resorption and osteopenia observed with the Ti stems was not found with the CFRP design.