Sample records for modified core junctions

  1. Gamma thermometer based reactor core liquid level detector

    DOEpatents

    Burns, Thomas J.

    1983-01-01

    A system is provided which employs a modified gamma thermometer for determining the liquid coolant level within a nuclear reactor core. The gamma thermometer which normally is employed to monitor local core heat generation rate (reactor power), is modified by thermocouple junctions and leads to obtain an unambiguous indication of the presence or absence of coolant liquid at the gamma thermometer location. A signal processor generates a signal based on the thermometer surface heat transfer coefficient by comparing the signals from the thermocouples at the thermometer location. The generated signal is a direct indication of loss of coolant due to the change in surface heat transfer when coolant liquid drops below the thermometer location. The loss of coolant indication is independent of reactor power at the thermometer location. Further, the same thermometer may still be used for the normal power monitoring function.

  2. A Cul-3-BTB ubiquitylation pathway regulates junctional levels and asymmetry of core planar polarity proteins

    PubMed Central

    Strutt, Helen; Searle, Elizabeth; Thomas-MacArthur, Victoria; Brookfield, Rosalind; Strutt, David

    2013-01-01

    The asymmetric localisation of core planar polarity proteins at apicolateral junctions is required to specify cell polarity in the plane of epithelia. This asymmetric distribution of the core proteins is proposed to require amplification of an initial asymmetry by feedback loops. In addition, generation of asymmetry appears to require the regulation of core protein levels, but the importance of such regulation and the underlying mechanisms is unknown. Here we show that ubiquitylation acts through more than one mechanism to control core protein levels in Drosophila, and that without this regulation cellular asymmetry is compromised. Levels of Dishevelled at junctions are regulated by a Cullin-3-Diablo/Kelch ubiquitin ligase complex, the activity of which is most likely controlled by neddylation. Furthermore, activity of the deubiquitylating enzyme Fat facets is required to maintain Flamingo levels at junctions. Notably, ubiquitylation does not alter the total cellular levels of Dishevelled or Flamingo, but only that of the junctional population. When junctional core protein levels are either increased or decreased by disruption of the ubiquitylation machinery, their asymmetric localisation is reduced and this leads to disruption of planar polarity at the tissue level. Loss of asymmetry by altered core protein levels can be explained by reference to feedback models for amplification of asymmetry. PMID:23487316

  3. Study of Charge Transport in Vertically Aligned Nitride Nanowire Based Core Shell P-I-N Junctions

    DTIC Science & Technology

    2016-07-01

    Vertically- Aligned Nitride Nanowire Based Core Shell P-I-N Junctions Distribution Statement A. Approved for public release; distribution is...Study of Charge Transport in Vertically- Aligned Nitride Nanowire Based Core Shell P-I-N Junctions Grant Number: HDTRA1-14-1-0003 Principal...Investigator: Abhishek Motayed University of Maryland DISTRIBUTION A: Public Release Study of Charge Transport in Vertically-Aligned Nitride Nanowire

  4. Direct analysis of Holliday junction resolving enzyme in a DNA origami nanostructure.

    PubMed

    Suzuki, Yuki; Endo, Masayuki; Cañas, Cristina; Ayora, Silvia; Alonso, Juan C; Sugiyama, Hiroshi; Takeyasu, Kunio

    2014-06-01

    Holliday junction (HJ) resolution is a fundamental step for completion of homologous recombination. HJ resolving enzymes (resolvases) distort the junction structure upon binding and prior cleavage, raising the possibility that the reactivity of the enzyme can be affected by a particular geometry and topology at the junction. Here, we employed a DNA origami nano-scaffold in which each arm of a HJ was tethered through the base-pair hybridization, allowing us to make the junction core either flexible or inflexible by adjusting the length of the DNA arms. Both flexible and inflexible junctions bound to Bacillus subtilis RecU HJ resolvase, while only the flexible junction was efficiently resolved into two duplexes by this enzyme. This result indicates the importance of the structural malleability of the junction core for the reaction to proceed. Moreover, cleavage preferences of RecU-mediated reaction were addressed by analyzing morphology of the reaction products. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  5. Electrostatics of Nanowire Radial p-n Heterojunctions

    NASA Astrophysics Data System (ADS)

    Borblik, Vitalii

    2018-04-01

    The electrostatics of a nanowire radial heterostructure p-n junction is considered theoretically. It is shown that when the radius of the core-shell interface decreases, depletion width of the core increases, but depletion width of the shell, on the contrary, decreases. This is the consequence of cylindrical symmetry of the structure. Thereby, the relative contribution from the constituent materials into performance characteristics of the devices, which use a heterostructure p-n junction, changes substantially. Values of the depletion widths in the heterostructure p-n junction prove to be intermediate between those in radial homostructure p-n junctions made of the constituent materials at the same doping levels. An analogous situation takes place for a barrier capacitance of the radial heterostructure p-n junction.

  6. Effect of the shell material and confinement type on the conversion efficiency of core/shell quantum dot nanocrystal solar cells

    NASA Astrophysics Data System (ADS)

    Sahin, Mehmet

    2018-05-01

    In this study, the effects of the shell material and confinement type on the conversion efficiency of core/shell quantum dot nanocrystal (QDNC) solar cells have been investigated in detail. For this purpose, the conventional, i.e. original, detailed balance model, developed by Shockley and Queisser to calculate an upper limit for the conversion efficiency of silicon p–n junction solar cells, is modified in a simple and effective way to calculate the conversion efficiency of core/shell QDNC solar cells. Since the existing model relies on the gap energy () of the solar cell, it does not make an estimation about the effect of QDNC materials on the efficiency of the solar cells, and gives the same efficiency values for several QDNC solar cells with the same . The proposed modification, however, estimates a conversion efficiency in relation to the material properties and also the confinement type of the QDNCs. The results of the modified model show that, in contrast to the original one, the conversion efficiencies of different QDNC solar cells, even if they have the same , become different depending upon the confinement type and shell material of the core/shell QDNCs, and this is crucial in the design and fabrication of the new generation solar cells to predict the confinement type and also appropriate QDNC materials for better efficiency.

  7. Entropy-Driven Folding of an RNA Helical Junction: An Isothermal Titration Calorimetric Analysis of the Hammerhead Ribozyme†

    PubMed Central

    Mikulecky, Peter J.; Takach, Jennifer C.; Feig, Andrew L.

    2008-01-01

    Helical junctions are extremely common motifs in naturally occurring RNAs, but little is known about the thermodynamics that drive their folding. Studies of junction folding face several challenges: non-two-state folding behavior, superposition of secondary and tertiary structural energetics, and drastically opposing enthalpic and entropic contributions to folding. Here we describe a thermodynamic dissection of the folding of the hammerhead ribozyme, a three-way RNA helical junction, by using isothermal titration calorimetry of bimolecular RNA constructs. By using this method, we show that tertiary folding of the hammerhead core occurs with a highly unfavorable enthalpy change, and is therefore entropically driven. Furthermore, the enthalpies and heat capacities of core folding are the same whether supported by monovalent or divalent ions. These properties appear to be general to the core sequence of bimolecular hammerhead constructs. We present a model for the ion-induced folding of the hammerhead core that is similar to those advanced for the folding of much larger RNAs, involving ion-induced collapse to a structured, non-native state accompanied by rearrangement of core residues to produce the native fold. In agreement with previous enzymological and structural studies, our thermodynamic data suggest that the hammerhead structure is stabilized in vitro predominantly by diffusely bound ions. Our approach addresses several significant challenges that accompany the study of junction folding, and should prove useful in defining the thermodynamic determinants of stability in these important RNA motifs. PMID:15134461

  8. Effect of the shell material and confinement type on the conversion efficiency of core/shell quantum dot nanocrystal solar cells.

    PubMed

    Sahin, Mehmet

    2018-05-23

    In this study, the effects of the shell material and confinement type on the conversion efficiency of core/shell quantum dot nanocrystal (QDNC) solar cells have been investigated in detail. For this purpose, the conventional, i.e. original, detailed balance model, developed by Shockley and Queisser to calculate an upper limit for the conversion efficiency of silicon p-n junction solar cells, is modified in a simple and effective way to calculate the conversion efficiency of core/shell QDNC solar cells. Since the existing model relies on the gap energy ([Formula: see text]) of the solar cell, it does not make an estimation about the effect of QDNC materials on the efficiency of the solar cells, and gives the same efficiency values for several QDNC solar cells with the same [Formula: see text]. The proposed modification, however, estimates a conversion efficiency in relation to the material properties and also the confinement type of the QDNCs. The results of the modified model show that, in contrast to the original one, the conversion efficiencies of different QDNC solar cells, even if they have the same [Formula: see text], become different depending upon the confinement type and shell material of the core/shell QDNCs, and this is crucial in the design and fabrication of the new generation solar cells to predict the confinement type and also appropriate QDNC materials for better efficiency.

  9. The gap junction channel protein connexin 43 is covalently modified and regulated by SUMOylation.

    PubMed

    Kjenseth, Ane; Fykerud, Tone A; Sirnes, Solveig; Bruun, Jarle; Yohannes, Zeremariam; Kolberg, Matthias; Omori, Yasufumi; Rivedal, Edgar; Leithe, Edward

    2012-05-04

    SUMOylation is a posttranslational modification in which a member of the small ubiquitin-like modifier (SUMO) family of proteins is conjugated to lysine residues in specific target proteins. Most known SUMOylation target proteins are located in the nucleus, but there is increasing evidence that SUMO may also be a key determinant of many extranuclear processes. Gap junctions consist of arrays of intercellular channels that provide direct transfer of ions and small molecules between adjacent cells. Gap junction channels are formed by integral membrane proteins called connexins, of which the best-studied isoform is connexin 43 (Cx43). Here we show that Cx43 is posttranslationally modified by SUMOylation. The data suggest that the SUMO system regulates the Cx43 protein level and the level of functional Cx43 gap junctions at the plasma membrane. Cx43 was found to be modified by SUMO-1, -2, and -3. Evidence is provided that the membrane-proximal lysines at positions 144 and 237, located in the Cx43 intracellular loop and C-terminal tail, respectively, act as SUMO conjugation sites. Mutations of lysine 144 or lysine 237 resulted in reduced Cx43 SUMOylation and reduced Cx43 protein and gap junction levels. Altogether, these data identify Cx43 as a SUMOylation target protein and represent the first evidence that gap junctions are regulated by the SUMO system.

  10. Triptycene: A Nucleic Acid Three-Way Junction Binder Scaffold

    NASA Astrophysics Data System (ADS)

    Yoon, Ina

    Nucleic acids play a critical role in many biological processes such as gene regulation and replication. The development of small molecules that modulate nucleic acids with sequence or structure specificity would provide new strategies for regulating disease states at the nucleic acid level. However, this remains challenging mainly because of the nonspecific interactions between nucleic acids and small molecules. Three-way junctions are critical structural elements of nucleic acids. They are present in many important targets such as trinucleotide repeat junctions related to Huntington's disease, a temperature sensor sigma32 in E. coli, Dengue virus, and HIV. Triptycene-derived small molecules have been shown to bind to nucleic acid three-way junctions, resulting from their shape complementary. To develop a better understanding of designing molecules for targeting different junctions, a rapid screening of triptycene-based small molecules is needed. We envisioned that the installation of a linker at C9 position of the bicyclic core would allow for a rapid solid phase diversification. To achieve this aim, we synthesized 9-substituted triptycene scaffolds by using two different synthetic routes. The first synthetic route installed the linker from the amidation reaction between carboxylic acid at C9 position of the triptycene and an amine linker, beta-alanine ethyl ester. This new 9-substituted triptycene scaffold was then attached to a 2-chlorotrityl chloride resin for solid-phase diversification. This enabled a rapid diversification and an easy purification of mono-, di-, and tri-peptide triptycene derivatives. The binding affinities of these compounds were investigated towards a (CAG)˙(CTG) trinucleotide repeat junction. In the modified second synthetic route, we utilized a combined Heck coupling/benzyne Diels-Alder strategy. This improved synthetic strategy reduced the number of steps and total reaction times, increased the overall yield, improved solubilities of intermediates, and provided a new regioisomer that was not observed in the previous synthesis. Through this investigation, we discovered new high-affinity lead compounds towards a d(CAG)·(CTG) trinucleotide repeat junction. In addition, we turned our attention to sigma 32 mRNA, which contains a RNA three-way junction in E. coli. We demonstrated that triptycene-based small molecules can modulate the heat shock response in E. coli..

  11. Enhancement of UV photodetector properties of ZnO nanorods/PEDOT:PSS Schottky junction by NGQD sensitization along with conductivity improvement of PEDOT:PSS by DMSO additive

    NASA Astrophysics Data System (ADS)

    Dhar, Saurab; Majumder, Tanmoy; Chakraborty, Pinak; Mondal, Suvra Prakash

    2018-04-01

    Schottky junction ultraviolet (UV) photodetector was fabricated by spin coating a hole conducting polymer, poly 3,4-ethylenedioxythiophene: polystyrene sulfonate (PEDOT:PSS) on hydrothermally grown zinc oxide (ZnO) nanorod arrays. The UV detector performance was significantly improved two step process. Firstly, ZnO nanorods were modified by sensitizing N doped grapheme quantum dots (NGQDs) for better photoresponce behavior. Afterwards, the junction properties as well as photoresponse was enhanced by modifying electrical conductivity of PEDOT:PSS layer with organic solvent (DMSO). Our NGQD decorated ZnO NRs/DMSO-PEDOT:PSS Schottky junction device demonstrated superior external quantum efficiency (EQE ˜ 90063 %) and responsivity (Rλ˜247 A/W) at 340 nm wavelength and -1V external bias. The response and recovery times of the final photodetector device was very fast compared to GQD as well as NGQD modified and pristine ZnO nanorod based detectors.

  12. An AlGaN Core-Shell Tunnel Junction Nanowire Light-Emitting Diode Operating in the Ultraviolet-C Band.

    PubMed

    Sadaf, S M; Zhao, S; Wu, Y; Ra, Y-H; Liu, X; Vanka, S; Mi, Z

    2017-02-08

    To date, semiconductor light emitting diodes (LEDs) operating in the deep ultraviolet (UV) spectral range exhibit very low efficiency due to the presence of large densities of defects and extremely inefficient p-type conduction of conventional AlGaN quantum well heterostructures. We have demonstrated that such critical issues can be potentially addressed by using nearly defect-free AlGaN tunnel junction core-shell nanowire heterostructures. The core-shell nanowire arrays exhibit high photoluminescence efficiency (∼80%) in the UV-C band at room temperature. With the incorporation of an epitaxial Al tunnel junction, the p-(Al)GaN contact-free nanowire deep UV LEDs showed nearly one order of magnitude reduction in the device resistance, compared to the conventional nanowire p-i-n device. The unpackaged Al tunnel junction deep UV LEDs exhibit an output power >8 mW and a peak external quantum efficiency ∼0.4%, which are nearly one to two orders of magnitude higher than previously reported AlGaN nanowire devices. Detailed studies further suggest that the maximum achievable efficiency is limited by electron overflow and poor light extraction efficiency due to the TM polarized emission.

  13. Electroelastic fields in artificially created vortex cores in epitaxial BiFeO 3 thin films

    DOE PAGES

    Winchester, Ben; Wisinger, Nina Balke; Cheng, X. X.; ...

    2015-08-03

    Here we employ phase-field modeling to explore the elastic properties of artificially created 1-D domain walls in (001) p-oriented BiFeO 3 thin films, composed of a junction of the four polarization variants, all with the same out-of-plane polarization. It was found that these junctions exhibit peculiarly high electroelastic fields induced by the neighboring ferroelastic/ferroelectric domains. The vortex core exhibits a volume expansion, while the anti-vortex core is more compressive. We also discuss possible ways to control the electroelastic field, such as varying material constant and applying transverse electric field.

  14. Sonochemical Synthesis of a Zinc Oxide Core-Shell Nanorod Radial p-n Homojunction Ultraviolet Photodetector.

    PubMed

    Vabbina, Phani Kiran; Sinha, Raju; Ahmadivand, Arash; Karabiyik, Mustafa; Gerislioglu, Burak; Awadallah, Osama; Pala, Nezih

    2017-06-14

    We report for the first time on the growth of a homogeneous radial p-n junction in the ZnO core-shell configuration with a p-doped ZnO nanoshell structure grown around a high-quality unintentionally n-doped ZnO nanorod using sonochemistry. The simultaneous decomposition of phosphorous (P), zinc (Zn), and oxygen (O) from their respective precursors during sonication allows for the successful incorporation of P atoms into the ZnO lattice. The as-formed p-n junction shows a rectifying current-voltage characteristic that is consistent with a p-n junction with a threshold voltage of 1.3 V and an ideality factor of 33. The concentration of doping was estimated to be N A = 6.7 × 10 17 cm -3 on the p side from the capacitance-voltage measurements. The fabricated radial p-n junction demonstrated a record optical responsivity of 9.64 A/W and a noise equivalent power of 0.573 pW/√Hz under ultraviolet illumination, which is the highest for ZnO p-n junction devices.

  15. MYONEURAL JUNCTIONS OF TWO ULTRASTRUCTURALLY DISTINCT TYPES IN EARTHWORM BODY WALL MUSCLE

    PubMed Central

    Rosenbluth, Jack

    1972-01-01

    The longitudinal muscle of the earthworm body wall is innervated by nerve bundles containing axons of two types which form two corresponding types of myoneural junction with the muscle fibers Type I junctions resemble cholinergic neuromuscular junctions of vertebrate skeletal muscle and are characterized by three features: (a) The nerve terminals contain large numbers of spherical, clear, ∼500 A vesicles plus a small number of larger dense-cored vesicles (b) The junctional gap is relatively wide (∼900 A), and it contains a basement membrane-like material, (c) The postjunctional membrane, although not folded, displays prominent specializations on both its external and internal surfaces The cytoplasmic surface is covered by a dense matrix ∼200 A thick which appears to be the site of insertion of fine obliquely oriented cytoplasmic filaments The external surface exhibits rows of projections ∼200 A long whose bases consist of hexagonally arrayed granules seated in the outer dense layer of the plasma membrane The concentration of these hexagonally disposed elements corresponds to the estimated concentration of both receptor sites and acetylcholinesterase sites at cholinergic junctions elsewhere. Type II junctions resemble the adrenergic junctions in vertebrate smooth muscle and exhibit the following structural characteristics: (a) The nerve fibers contain predominantly dense-cored vesicles ∼1000 A in diameter (b) The junctional gap is relatively narrow (∼150 A) and contains no basement membrane-like material, (c) Postjunctional membrane specialization is minimal. It is proposed that the structural differences between the two types of myoneural junction reflect differences in the respective transmitters and corresponding differences in the mechanisms of transmitter action and/or inactivation. PMID:5044759

  16. Analysis and evalaution in the production process and equipment area of the low-cost solar array project. [including modifying gaseous diffusion and using ion implantation

    NASA Technical Reports Server (NTRS)

    Goldman, H.; Wolf, M.

    1979-01-01

    The manufacturing methods for photovoltaic solar energy utilization are assessed. Economic and technical data on the current front junction formation processes of gaseous diffusion and ion implantation are presented. Future proposals, including modifying gaseous diffusion and using ion implantation, to decrease the cost of junction formation are studied. Technology developments in current processes and an economic evaluation of the processes are included.

  17. Room-temperature current blockade in atomically defined single-cluster junctions

    NASA Astrophysics Data System (ADS)

    Lovat, Giacomo; Choi, Bonnie; Paley, Daniel W.; Steigerwald, Michael L.; Venkataraman, Latha; Roy, Xavier

    2017-11-01

    Fabricating nanoscopic devices capable of manipulating and processing single units of charge is an essential step towards creating functional devices where quantum effects dominate transport characteristics. The archetypal single-electron transistor comprises a small conducting or semiconducting island separated from two metallic reservoirs by insulating barriers. By enabling the transfer of a well-defined number of charge carriers between the island and the reservoirs, such a device may enable discrete single-electron operations. Here, we describe a single-molecule junction comprising a redox-active, atomically precise cobalt chalcogenide cluster wired between two nanoscopic electrodes. We observe current blockade at room temperature in thousands of single-cluster junctions. Below a threshold voltage, charge transfer across the junction is suppressed. The device is turned on when the temporary occupation of the core states by a transiting carrier is energetically enabled, resulting in a sequential tunnelling process and an increase in current by a factor of ∼600. We perform in situ and ex situ cyclic voltammetry as well as density functional theory calculations to unveil a two-step process mediated by an orbital localized on the core of the cluster in which charge carriers reside before tunnelling to the collector reservoir. As the bias window of the junction is opened wide enough to include one of the cluster frontier orbitals, the current blockade is lifted and charge carriers can tunnel sequentially across the junction.

  18. Intein-modified enzymes, their production and industrial applications

    DOEpatents

    Apgar, James; Lessard, Philip; Raab, Michael R.; Shen, Binzhang; Lazar, Gabor; de la Vega, Humberto

    2016-10-11

    A method of predicting an intein insertion site in a protein that will lead to a switching phenotype is provided. The method includes identifying a plurality of C/T/S sites within the protein; selecting from the plurality of C/T/S/ sites those that are ranked 0.75 or higher by a support vector machine, within ten angstroms of the active site of the protein, and at or near a loop-.beta.-sheet junction or a loop-.alpha.-helix junction. A method of controlling protein activity and hosts including proteins with controlled activity are also provided. Also, intein modified proteins and plants containing intein modified proteins are provided.

  19. Unveiling the composite structures of emissive consolidated p-i-n junction nanocells for white light emission.

    PubMed

    Lee, Kyu Seung; Shim, Jaeho; Lee, Hyunbok; Yim, Sang-Youp; Angadi, Basavaraj; Lim, Byungkwon; Son, Dong Ick

    2018-06-08

    Hybrid organic-Red-Green-Blue (RGB) color quantum dots were incorporated into consolidated p(polymer)-i(RGB quantum dots)-n(small molecules) junction structures to fabricate a single active layer for a light emitting diode device for white electroluminescence. The semiconductor RGB quantum dots, as an intrinsic material, were electrostatically bonded between functional groups of the p-type polymer organic material core surface and the n-type small molecular organic material shell surface. The ZnCdSe/ZnS and CdSe/ZnS quantum dots distributed uniformly and isotropically surrounding the polymer core which in turn was surrounded by small molecular organic materials. In the present study, we have identified the mechanisms of chemical synthesis and interactions of the p-i-n junction nanocell structure through modeling studies by DFT calculations. We have also investigated optical, structural and electrical properties along with the carrier transport mechanism of the light emitting diodes which have a single active layer of consolidated p-i-n junction nanocells for white electroluminescence.

  20. Behavior of a chemically doped graphene junction

    NASA Astrophysics Data System (ADS)

    Farmer, Damon B.; Lin, Yu-Ming; Afzali-Ardakani, Ali; Avouris, Phaedon

    2009-05-01

    Polyethylene imine and diazonium salts are used as complementary molecular dopants to engineer a doping profile in a graphene transistor. Electronic transport in this device reveals the presence of two distinct resistance maxima, alluding to neutrality point separation and subsequent formation of a spatially abrupt junction. Carrier mobility in this device is not significantly affected by molecular doping or junction formation, and carrier transmission is found to scale inversely with the effective channel length of the device. Chemical dilutions are used to modify the dopant concentration and, in effect, alter the properties of the junction.

  1. Modified pressure loss model for T-junctions of engine exhaust manifold

    NASA Astrophysics Data System (ADS)

    Wang, Wenhui; Lu, Xiaolu; Cui, Yi; Deng, Kangyao

    2014-11-01

    The T-junction model of engine exhaust manifolds significantly influences the simulation precision of the pressure wave and mass flow rate in the intake and exhaust manifolds of diesel engines. Current studies have focused on constant pressure models, constant static pressure models and pressure loss models. However, low model precision is a common disadvantage when simulating engine exhaust manifolds, particularly for turbocharged systems. To study the performance of junction flow, a cold wind tunnel experiment with high velocities at the junction of a diesel exhaust manifold is performed, and the variation in the pressure loss in the T-junction under different flow conditions is obtained. Despite the trend of the calculated total pressure loss coefficient, which is obtained by using the original pressure loss model and is the same as that obtained from the experimental results, large differences exist between the calculated and experimental values. Furthermore, the deviation becomes larger as the flow velocity increases. By improving the Vazsonyi formula considering the flow velocity and introducing the distribution function, a modified pressure loss model is established, which is suitable for a higher velocity range. Then, the new model is adopted to solve one-dimensional, unsteady flow in a D6114 turbocharged diesel engine. The calculated values are compared with the measured data, and the result shows that the simulation accuracy of the pressure wave before the turbine is improved by 4.3% with the modified pressure loss model because gas compressibility is considered when the flow velocities are high. The research results provide valuable information for further junction flow research, particularly the correction of the boundary condition in one-dimensional simulation models.

  2. Radial tunnel diodes based on InP/InGaAs core-shell nanowires

    NASA Astrophysics Data System (ADS)

    Tizno, Ofogh; Ganjipour, Bahram; Heurlin, Magnus; Thelander, Claes; Borgström, Magnus T.; Samuelson, Lars

    2017-03-01

    We report on the fabrication and characterization of radial tunnel diodes based on InP(n+)/InGaAs(p+) core-shell nanowires, where the effect of Zn-dopant precursor flow on the electrical properties of the devices is evaluated. Selective and local etching of the InGaAs shell is employed to access the nanowire core in the contact process. Devices with an n+-p doping profile show normal diode rectification, whereas n+-p+ junctions exhibit typical tunnel diode characteristics with peak-to-valley current ratios up to 14 at room temperature and 100 at 4.2 K. A maximum peak current density of 28 A/cm2 and a reverse current density of 7.3 kA/cm2 at VSD = -0.5 V are extracted at room temperature after normalization with the effective junction area.

  3. Enhanced conductivity of tunnel junctions employing semimetallic nanoparticles through variation in growth temperature and deposition

    NASA Astrophysics Data System (ADS)

    Nair, Hari P.; Crook, Adam M.; Bank, Seth R.

    2010-05-01

    We report ErAs nanoparticle-enhanced tunnel junctions grown on GaAs with low specific resistances (<2×10-4 Ω cm-2), approximately tenfold lower than previous reports. A reduction in specific resistance was achieved by modifying the ErAs nanoparticle morphology through the molecular beam epitaxial growth conditions, particularly lower growth temperatures. A further investigation of the variation in tunnel junction resistance with the amount of ErAs deposited and growth temperature shows that nanoparticle surface coverage may not be the only factor determining tunnel junction resistance.

  4. Photoresponse in graphene induced by defect engineering

    NASA Astrophysics Data System (ADS)

    Du, Ruxia; Wang, Wenhui; Du, Jianxin; Guo, Xitao; Liu, Er; Bing, Dan; Bai, Jing

    2016-11-01

    We present a photoresponse study on a lateral defect/pristine graphene junction device fabricated by a simple plasma irradiation method. The junction between pristine graphene and plasma-modified graphene was created by controlling the location of Ar+ plasma treatment. We found that a distinct photocurrent was generated at the junction by photocurrent line scanning measurements, and further analysis reveals that the photo-thermoelectric (PTE) effect, instead of the photovoltaic (PV) effect, dominates the photocurrent generation at the interface. Additionally, the obtained results suggest that tuning the defect density could be effective in modulating the optoelectronic performance of junctions in our device.

  5. Perispeckles are major assembly sites for the exon junction core complex

    PubMed Central

    Daguenet, Elisabeth; Baguet, Aurélie; Degot, Sébastien; Schmidt, Ute; Alpy, Fabien; Wendling, Corinne; Spiegelhalter, Coralie; Kessler, Pascal; Rio, Marie-Christine; Le Hir, Hervé; Bertrand, Edouard; Tomasetto, Catherine

    2012-01-01

    The exon junction complex (EJC) is loaded onto mRNAs as a consequence of splicing and regulates multiple posttranscriptional events. MLN51, Magoh, Y14, and eIF4A3 form a highly stable EJC core, but where this tetrameric complex is assembled in the cell remains unclear. Here we show that EJC factors are enriched in domains that we term perispeckles and are visible as doughnuts around nuclear speckles. Fluorescence resonance energy transfer analyses and EJC assembly mutants show that perispeckles do not store free subunits, but instead are enriched for assembled cores. At the ultrastructural level, perispeckles are distinct from interchromatin granule clusters that may function as storage sites for splicing factors and intermingle with perichromatin fibrils, where nascent RNAs and active RNA Pol II are present. These results support a model in which perispeckles are major assembly sites for the tetrameric EJC core. This subnuclear territory thus represents an intermediate region important for mRNA maturation, between transcription sites and splicing factor reservoirs and assembly sites. PMID:22419818

  6. Magnetic fingerprint of individual Fe4 molecular magnets under compression by a scanning tunnelling microscope

    NASA Astrophysics Data System (ADS)

    Burgess, Jacob A. J.; Malavolti, Luigi; Lanzilotto, Valeria; Mannini, Matteo; Yan, Shichao; Ninova, Silviya; Totti, Federico; Rolf-Pissarczyk, Steffen; Cornia, Andrea; Sessoli, Roberta; Loth, Sebastian

    2015-09-01

    Single-molecule magnets (SMMs) present a promising avenue to develop spintronic technologies. Addressing individual molecules with electrical leads in SMM-based spintronic devices remains a ubiquitous challenge: interactions with metallic electrodes can drastically modify the SMM's properties by charge transfer or through changes in the molecular structure. Here, we probe electrical transport through individual Fe4 SMMs using a scanning tunnelling microscope at 0.5 K. Correlation of topographic and spectroscopic information permits identification of the spin excitation fingerprint of intact Fe4 molecules. Building from this, we find that the exchange coupling strength within the molecule's magnetic core is significantly enhanced. First-principles calculations support the conclusion that this is the result of confinement of the molecule in the two-contact junction formed by the microscope tip and the sample surface.

  7. Proteomic analysis of laser capture microscopy purified myotendinous junction regions from muscle sections

    PubMed Central

    2014-01-01

    The myotendinous junction is a specialized structure of the muscle fibre enriched in mechanosensing complexes, including costameric proteins and core elements of the z-disc. Here, laser capture microdissection was applied to purify membrane regions from the myotendinous junctions of mouse skeletal muscles, which were then processed for proteomic analysis. Sarcolemma sections from the longitudinal axis of the muscle fibre were used as control for the specificity of the junctional preparation. Gene ontology term analysis of the combined lists indicated a statistically significant enrichment in membrane-associated proteins. The myotendinous junction preparation contained previously uncharacterized proteins, a number of z-disc costameric ligands (e.g., actinins, capZ, αB cristallin, filamin C, cypher, calsarcin, desmin, FHL1, telethonin, nebulin, titin and an enigma-like protein) and other proposed players of sarcomeric stretch sensing and signalling, such as myotilin and the three myomesin homologs. A subset were confirmed by immunofluorescence analysis as enriched at the myotendinous junction, suggesting that laser capture microdissection from muscle sections is a valid approach to identify novel myotendinous junction players potentially involved in mechanotransduction pathways. PMID:25071420

  8. Nanoscale patterning controls inorganic-membrane interface structure

    NASA Astrophysics Data System (ADS)

    Almquist, Benjamin D.; Verma, Piyush; Cai, Wei; Melosh, Nicholas A.

    2011-02-01

    The ability to non-destructively integrate inorganic structures into or through biological membranes is essential to realizing full bio-inorganic integration, including arrayed on-chip patch-clamps, drug delivery, and biosensors. Here we explore the role of nanoscale patterning on the strength of biomembrane-inorganic interfaces. AFM measurements show that inorganic probes functionalized with hydrophobic bands with thicknesses complimentary to the hydrophobic lipid bilayer core exhibit strong attachment in the bilayer. As hydrophobic band thickness increases to 2-3 times the bilayer core the interfacial strength decreases, comparable to homogeneously hydrophobic probes. Analytical calculations and molecular dynamics simulations predict a transition between a `fused' interface and a `T-junction' that matches the experimental results, showing lipid disorder and defect formation for thicker bands. These results show that matching biological length scales leads to more intimate bio-inorganic junctions, enabling rational design of non-destructive membrane interfaces.The ability to non-destructively integrate inorganic structures into or through biological membranes is essential to realizing full bio-inorganic integration, including arrayed on-chip patch-clamps, drug delivery, and biosensors. Here we explore the role of nanoscale patterning on the strength of biomembrane-inorganic interfaces. AFM measurements show that inorganic probes functionalized with hydrophobic bands with thicknesses complimentary to the hydrophobic lipid bilayer core exhibit strong attachment in the bilayer. As hydrophobic band thickness increases to 2-3 times the bilayer core the interfacial strength decreases, comparable to homogeneously hydrophobic probes. Analytical calculations and molecular dynamics simulations predict a transition between a `fused' interface and a `T-junction' that matches the experimental results, showing lipid disorder and defect formation for thicker bands. These results show that matching biological length scales leads to more intimate bio-inorganic junctions, enabling rational design of non-destructive membrane interfaces. Electronic supplementary information (ESI) available: Breakthrough rate as a function of force plots for 5 nm, 10 nm and ∞-probes.. See DOI: 10.1039/c0nr00486c

  9. Effect of Impurities on the Josephson Current through Helical Metals: Exploiting a Neutrino Paradigm.

    PubMed

    Ghaemi, Pouyan; Nair, V P

    2016-01-22

    In this Letter we study the effect of time-reversal symmetric impurities on the Josephson supercurrent through two-dimensional helical metals such as on a topological insulator surface state. We show that, contrary to the usual superconducting-normal metal-superconducting junctions, the suppression of the supercurrent in the superconducting-helical metal-superconducting junction is mainly due to fluctuations of impurities in the junctions. Our results, which are a condensed matter realization of a part of the Mikheyev-Smirnov-Wolfenstein effect for neutrinos, show that the relationship between normal state conductance and the critical current of Josephson junctions is significantly modified for Josephson junctions on the surface of topological insulators. We also study the temperature dependence of the supercurrent and present a two fluid model which can explain some of the recent experimental results in Josephson junctions on the edge of topological insulators.

  10. Effect of Impurities on the Josephson Current through Helical Metals: Exploiting a Neutrino Paradigm

    NASA Astrophysics Data System (ADS)

    Ghaemi, Pouyan; Nair, V. P.

    2016-01-01

    In this Letter we study the effect of time-reversal symmetric impurities on the Josephson supercurrent through two-dimensional helical metals such as on a topological insulator surface state. We show that, contrary to the usual superconducting-normal metal-superconducting junctions, the suppression of the supercurrent in the superconducting-helical metal-superconducting junction is mainly due to fluctuations of impurities in the junctions. Our results, which are a condensed matter realization of a part of the Mikheyev-Smirnov-Wolfenstein effect for neutrinos, show that the relationship between normal state conductance and the critical current of Josephson junctions is significantly modified for Josephson junctions on the surface of topological insulators. We also study the temperature dependence of the supercurrent and present a two fluid model which can explain some of the recent experimental results in Josephson junctions on the edge of topological insulators.

  11. Gap junction plasticity as a mechanism to regulate network-wide oscillations

    PubMed Central

    Nicola, Wilten; Clopath, Claudia

    2018-01-01

    Cortical oscillations are thought to be involved in many cognitive functions and processes. Several mechanisms have been proposed to regulate oscillations. One prominent but understudied mechanism is gap junction coupling. Gap junctions are ubiquitous in cortex between GABAergic interneurons. Moreover, recent experiments indicate their strength can be modified in an activity-dependent manner, similar to chemical synapses. We hypothesized that activity-dependent gap junction plasticity acts as a mechanism to regulate oscillations in the cortex. We developed a computational model of gap junction plasticity in a recurrent cortical network based on recent experimental findings. We showed that gap junction plasticity can serve as a homeostatic mechanism for oscillations by maintaining a tight balance between two network states: asynchronous irregular activity and synchronized oscillations. This homeostatic mechanism allows for robust communication between neuronal assemblies through two different mechanisms: transient oscillations and frequency modulation. This implies a direct functional role for gap junction plasticity in information transmission in cortex. PMID:29529034

  12. 28. MODIFIED CHAIN SAW FOR CUTTING ROCK CORES; BRUNTON COMPASS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    28. MODIFIED CHAIN SAW FOR CUTTING ROCK CORES; BRUNTON COMPASS STAND FOR DETERMINING CORE'S FIELD ORIENTATION; INSECTICIDE DISPENSER MODIFIED TO LUBRICATE CORE DRILLING PROCESS. - U.S. Geological Survey, Rock Magnetics Laboratory, 345 Middlefield Road, Menlo Park, San Mateo County, CA

  13. Selective interface transparency in graphene nanoribbon based molecular junctions.

    PubMed

    Dou, K P; Kaun, C C; Zhang, R Q

    2018-03-08

    A clear understanding of electrode-molecule interfaces is a prerequisite for the rational engineering of future generations of nanodevices that will rely on single-molecule coupling between components. With a model system, we reveal a peculiar dependence on interfaces in all graphene nanoribbon-based carbon molecular junctions. The effect can be classified into two types depending on the intrinsic feature of the embedded core graphene nanoflake (GNF). For metallic GNFs with |N A - N B | = 1, good/poor contact transparency occurs when the core device aligns with the center/edge of the electrode. The situation is reversed when a semiconducting GNF is the device, where N A = N B . These results may shed light on the design of real connecting components in graphene-based nanocircuits.

  14. Large thermoelectric efficiency of doped polythiophene junction: A density functional study

    NASA Astrophysics Data System (ADS)

    Golsanamlou, Zahra; Bagheri Tagani, Meysam; Rahimpour Soleimani, Hamid

    2018-06-01

    The thermoelectric properties of polythiophene (PT) coupled to the Au (111) electrodes are studied based on density functional theory with nonequilibrium Green function formalism. Specially, the effect of Li and Cl adsorbents on the thermoelectric efficiency of the PT junction is investigated in different concentrations of the dopants for two lengths of the PT. Results show that the presence of dopants can bring the structural changes in the oligomer and modify the arrangement of the molecular levels leading to the dramatic changes in the transmission spectra of the junction. Therefore, the large enhancement in thermopower and consequently figure of merit is obtained by dopants which makes the doped PT junction as a beneficial thermoelectric device.

  15. Inelastic electron tunneling spectroscopy of difurylethene-based photochromic single-molecule junctions

    PubMed Central

    Sysoiev, Dmytro; Huhn, Thomas; Pauly, Fabian

    2017-01-01

    Diarylethene-derived molecules alter their electronic structure upon transformation between the open and closed forms of the diarylethene core, when exposed to ultraviolet (UV) or visible light. This transformation results in a significant variation of electrical conductance and vibrational properties of corresponding molecular junctions. We report here a combined experimental and theoretical analysis of charge transport through diarylethene-derived single-molecule devices, which are created using the mechanically controlled break-junction technique. Inelastic electron tunneling (IET) spectroscopy measurements performed at 4.2 K are compared with first-principles calculations in the two distinct forms of diarylethenes connected to gold electrodes. The combined approach clearly demonstrates that the IET spectra of single-molecule junctions show specific vibrational features that can be used to identify different isomeric molecular states by transport experiments. PMID:29259875

  16. Spatial inhomogeneous barrier heights at graphene/semiconductor Schottky junctions

    NASA Astrophysics Data System (ADS)

    Tomer, Dushyant

    Graphene, a semimetal with linear energy dispersion, forms Schottky junction when interfaced with a semiconductor. This dissertation presents temperature dependent current-voltage and scanning tunneling microscopy/spectroscopy (STM/S) measurements performed on graphene Schottky junctions formed with both three and two dimensional semiconductors. To fabricate Schottky junctions, we transfer chemical vapor deposited monolayer graphene onto Si- and C-face SiC, Si, GaAs and MoS2 semiconducting substrates using polymer assisted chemical method. We observe three main type of intrinsic spatial inhomogeneities, graphene ripples, ridges and semiconductor steps in STM imaging that can exist at graphene/semiconductor junctions. Tunneling spectroscopy measurements reveal fluctuations in graphene Dirac point position, which is directly related to the Schottky barrier height. We find a direct correlation of Dirac point variation with the topographic undulations of graphene ripples at the graphene/SiC junction. However, no such correlation is established at graphene/Si and Graphene/GaAs junctions and Dirac point variations are attributed to surface states and trapped charges at the interface. In addition to graphene ripples and ridges, we also observe atomic scale moire patterns at graphene/MoS2 junction due to van der Waals interaction at the interface. Periodic topographic modulations due to moire pattern do not lead to local variation in graphene Dirac point, indicating that moire pattern does not contribute to fluctuations in electronic properties of the heterojunction. We perform temperature dependent current-voltage measurements to investigate the impact of topographic inhomogeneities on electrical properties of the Schottky junctions. We observe temperature dependence in junction parameters, such as Schottky barrier height and ideality factor, for all types of Schottky junctions in forward bias measurements. Standard thermionic emission theory which assumes a perfect smooth interface fails to explain such behavior, hence, we apply a modified emission theory with Gaussian distribution of Schottky barrier heights. The modified theory, applicable to inhomogeneous interfaces, explains the temperature dependent behavior of our Schottky junctions and gives a temperature independent mean barrier height. We attribute the inhomogeneous barrier height to the presence of graphene ripples and ridges in case of SiC and MoS2 while surface states and trapped charges at the interface is dominating in Si and GaAs. Additionally, we observe bias dependent current and barrier height in reverse bias regime also for all Schottky junctions. To explain such behavior, we consider two types of reverse bias conduction mechanisms; Poole-Frenkel and Schottky emission. We find that Poole-Frenkel emission explains the characteristics of graphene/SiC junctions very well. However, both the mechanism fails to interpret the behavior of graphene/Si and graphene/GaAs Schottky junctions. These findings provide insight into the fundamental physics at the interface of graphene/semiconductor junctions.

  17. Detection and modeling of leakage current in AlGaN-based deep ultraviolet light-emitting diodes

    DOE PAGES

    Moseley, Michael William; Allerman, Andrew A.; Crawford, Mary H.; ...

    2015-03-01

    Current-voltage (IV) characteristics of two AlGaN-based deep ultraviolet (DUV) light-emitting diodes (LEDs) with differing densities of open-core threading dislocations (nanopipes) are analyzed. A three-diode circuit is simulated to emulate the IV characteristics of the DUV-LEDs, but is only able to accurately model the lower leakage current, lower nanopipe density DUV-LED. It was found that current leakage through the nanopipes in these structures is rectifying, despite nanopipes being previously established as inherently n-type. Using defect-sensitive etching, the nanopipes are revealed to terminate within the p-type GaN capping layer of the DUV-LEDs. The circuit model is modified to account for another p-nmore » junction between the n-type nanopipes and the p-type GaN, and an excellent fit to the IV characteristics of the leaky DUV-LED is achieved.« less

  18. The effects of ion gun beam voltage on the electrical characteristics of NbCN/PbBi edge junctions

    NASA Technical Reports Server (NTRS)

    Lichtenberger, A. W.; Feldman, M. J.; Mattauch, R. J.; Cukauskas, E. J.

    1989-01-01

    The authors have succeeded in fabricating high-quality submicron NbCN edge junctions using a technique which is commonly used to make Nb edge junctions. A modified commercial ion gun was used to cut an edge in SiO2/NbCN films partially covered with photoresist. An insulating barrier was then formed on the exposed edge by reactive ion beam oxidation, and a counterelectrode of PbBi was deposited. The electrical quality of the resulting junctions was found to be strongly influenced by the ion beam acceleration voltages used to cut the edge and to oxidize it. For low ion beam voltages, the junction quality parameter was as high as Vm = 55 mV (measured at 3 mV), but higher ion beam voltages yielded strikingly poorer quality junctions. In light of the small coherence length of NbN, the dependence of the electrical characteristics on ion beam voltage is presumably due to mechanical damage of the NbCN surface. In contrast, for similar ion beam voltages, no such dependence was found for Nb edge junctions.

  19. Performance analysis of nanodisk and core/shell/shell-nanowire type III-Nitride heterojunction solar cell for efficient energy harvesting

    NASA Astrophysics Data System (ADS)

    Routray, S. R.; Lenka, T. R.

    2017-11-01

    Now-a-days III-Nitride nanowires with axial (nanodisk) and radial (core/shell/shell-nanowire) junctions are two unique and potential methods for solar energy harvesting adopted by worldwide researchers. In this paper, polarization behavior of GaN/InGaN/GaN junction and its effect on carrier dynamics of nanodisk and CSS-nanowire type solar cells are intensively studied and compared with its planar counterpart by numerical simulations using commercially available Victory TCAD. It is observed that CSS-NW with hexagonal geometrical shapes are robust to detrimental impact of polarization charges and could be good enough to accelerate carrier collection efficiency as compared to nanodisk and planar solar cells. This numerical study provides an innovative aspect of fundamental device physics with respect to polarization charges in CSS-NW and nanodisk type junction towards photovoltaic applications. The internal quantum efficiencies (IQE) are also discussed to evaluate carrier collection mechanisms and recombination losses in each type of junctions of solar cell. Finally, it is interesting to observe a maximum conversion efficiency of 6.46% with 91.6% fill factor from n-GaN/i-In0.1Ga0.9N/p-GaN CSS-nanowire solar cell with an optimized thickness of 180 nm InGaN layer under one Sun AM1.5 illumination.

  20. Majorana splitting from critical currents in Josephson junctions

    NASA Astrophysics Data System (ADS)

    Cayao, Jorge; San-Jose, Pablo; Black-Schaffer, Annica M.; Aguado, Ramón; Prada, Elsa

    2017-11-01

    A semiconducting nanowire with strong Rashba spin-orbit coupling and coupled to a superconductor can be tuned by an external Zeeman field into a topological phase with Majorana zero modes. Here we theoretically investigate how this exotic topological superconductor phase manifests in Josephson junctions based on such proximitized nanowires. In particular, we focus on critical currents in the short junction limit (LN≪ξ , where LN is the junction length and ξ is the superconducting coherence length) and show that they contain important information about nontrivial topology and Majoranas. This includes signatures of the gap inversion at the topological transition and a unique oscillatory pattern that originates from Majorana interference. Interestingly, this pattern can be modified by tuning the transmission across the junction, thus providing complementary evidence of Majoranas and their energy splittings beyond standard tunnel spectroscopy experiments, while offering further tunability by virtue of the Josephson effect.

  1. Magnetically-driven colossal supercurrent enhancement in InAs nanowire Josephson junctions

    PubMed Central

    Tiira, J.; Strambini, E.; Amado, M.; Roddaro, S.; San-Jose, P.; Aguado, R.; Bergeret, F. S.; Ercolani, D.; Sorba, L.; Giazotto, F.

    2017-01-01

    The Josephson effect is a fundamental quantum phenomenon where a dissipationless supercurrent is introduced in a weak link between two superconducting electrodes by Andreev reflections. The physical details and topology of the junction drastically modify the properties of the supercurrent and a strong enhancement of the critical supercurrent is expected to occur when the topology of the junction allows an emergence of Majorana bound states. Here we report charge transport measurements in mesoscopic Josephson junctions formed by InAs nanowires and Ti/Al superconducting leads. Our main observation is a colossal enhancement of the critical supercurrent induced by an external magnetic field applied perpendicular to the substrate. This striking and anomalous supercurrent enhancement cannot be described by any known conventional phenomenon of Josephson junctions. We consider these results in the context of topological superconductivity, and show that the observed critical supercurrent enhancement is compatible with a magnetic field-induced topological transition. PMID:28401951

  2. Improving Single-Carbon-Nanotube-Electrode Contacts Using Molecular Electronics.

    PubMed

    Krittayavathananon, Atiweena; Ngamchuea, Kamonwad; Li, Xiuting; Batchelor-McAuley, Christopher; Kätelhön, Enno; Chaisiwamongkhol, Korbua; Sawangphruk, Montree; Compton, Richard G

    2017-08-17

    We report the use of an electroactive species, acetaminophen, to modify the electrical connection between a carbon nanotube (CNT) and an electrode. By applying a potential across two electrodes, some of the CNTs in solution occasionally contact the electrified interface and bridge between two electrodes. By observing a single CNT contact between two microbands of an interdigitated Au electrode in the presence and absence of acetaminophen, the role of the molecular species at the electronic junction is revealed. As compared with the pure CNT, the current magnitude of the acetaminophen-modified CNTs significantly increases with the applied potentials, indicating that the molecule species improves the junction properties probably via redox shuttling.

  3. An UPF3-based nonsense-mediated decay in Paramecium.

    PubMed

    Contreras, Julia; Begley, Victoria; Macias, Sandra; Villalobo, Eduardo

    2014-12-01

    Nonsense-mediated decay recognises mRNAs containing premature termination codons. One of its components, UPF3, is a molecular link bridging through its binding to the exon junction complex nonsense-mediated decay and splicing. In protists UPF3 has not been identified yet. We report that Paramecium tetraurelia bears an UPF3 gene and that it has a role in nonsense-mediated decay. Interestingly, the identified UPF3 has not conserved the essential amino acids required to bind the exon junction complex. Though, our data indicates that this ciliate bears genes coding for core proteins of the exon junction complex. Copyright © 2014 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  4. A high efficiency dual-junction solar cell implemented as a nanowire array.

    PubMed

    Yu, Shuqing; Witzigmann, Bernd

    2013-01-14

    In this work, we present an innovative design of a dual-junction nanowire array solar cell. Using a dual-diameter nanowire structure, the solar spectrum is separated and absorbed in the core wire and the shell wire with respect to the wavelength. This solar cell provides high optical absorptivity over the entire spectrum due to an electromagnetic concentration effect. Microscopic simulations were performed in a three-dimensional setup, and the optical properties of the structure were evaluated by solving Maxwell's equations. The Shockley-Queisser method was employed to calculate the current-voltage relationship of the dual-junction structure. Proper design of the geometrical and material parameters leads to an efficiency of 39.1%.

  5. Measurement of net nitrogen and phosphorus mineralization in wetland soils using a modification of the resin-core technique

    USGS Publications Warehouse

    Noe, Gregory B.

    2011-01-01

    A modification of the resin-core method was developed and tested for measuring in situ soil N and P net mineralization rates in wetland soils where temporal variation in bidirectional vertical water movement and saturation can complicate measurement. The modified design includes three mixed-bed ion-exchange resin bags located above and three resin bags located below soil incubating inside a core tube. The two inner resin bags adjacent to the soil capture NH4+, NO3-, and soluble reactive phosphorus (SRP) transported out of the soil during incubation; the two outer resin bags remove inorganic nutrients transported into the modified resin core; and the two middle resin bags serve as quality-control checks on the function of the inner and outer resin bags. Modified resin cores were incubated monthly for a year along the hydrogeomorphic gradient through a floodplain wetland. Only small amounts of NH4+, NO3-, and SRP were found in the two middle resin bags, indicating that the modified resin-core design was effective. Soil moisture and pH inside the modified resin cores typically tracked changes in the surrounding soil abiotic environment. In contrast, use of the closed polyethylene bag method provided substantially different net P and N mineralization rates than modified resin cores and did not track changes in soil moisture or pH. Net ammonification, nitrifi cation, N mineralization, and P mineralization rates measured using modified resin cores varied through space and time associated with hydrologic, geomorphic, and climatic gradients in the floodplain wetland. The modified resin-core technique successfully characterized spatiotemporal variation of net mineralization fluxes in situ and is a viable technique for assessing soil nutrient availability and developing ecosystem budgets.

  6. Publications - SR 59 | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    Peninsula; Alaska, State of; Antimony; Arsenic; Arsenopyrite; Barite; Base Metals; Big Delta; Bismuth Materials; Copper; Core Drilling; Council; Crushed Gravel; Crushed Rock; Delta Junction; Diamond Drilling

  7. Models for the Binary Complex of Bacteriophage T4 Gp59 Helicase Loading Protein. GP32 Single-Stranded DNA-Binding Protein and Ternary Complex with Pseudo-Y Junction DNA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hinerman, Jennifer M.; Dignam, J. David; Mueser, Timothy C.

    2012-04-05

    The bacteriophage T4 gp59 helicase assembly protein (gp59) is required for loading of gp41 replicative helicase onto DNA protected by gp32 single-stranded DNA-binding protein. The gp59 protein recognizes branched DNA structures found at replication and recombination sites. Binding of gp32 protein (full-length and deletion constructs) to gp59 protein measured by isothermal titration calorimetry demonstrates that the gp32 protein C-terminal A-domain is essential for protein-protein interaction in the absence of DNA. Sedimentation velocity experiments with gp59 protein and gp32ΔB protein (an N-terminal B-domain deletion) show that these proteins are monomers but form a 1:1 complex with a dissociation constant comparable withmore » that determined by isothermal titration calorimetry. Small angle x-ray scattering (SAXS) studies indicate that the gp59 protein is a prolate monomer, consistent with the crystal structure and hydrodynamic properties determined from sedimentation velocity experiments. SAXS experiments also demonstrate that gp32ΔB protein is a prolate monomer with an elongated A-domain protruding from the core. Moreover, fitting structures of gp59 protein and the gp32 core into the SAXS-derived molecular envelope supports a model for the gp59 protein-gp32ΔB protein complex. Our earlier work demonstrated that gp59 protein attracts full-length gp32 protein to pseudo-Y junctions. A model of the gp59 protein-DNA complex, modified to accommodate new SAXS data for the binary complex together with mutational analysis of gp59 protein, is presented in the accompanying article (Dolezal, D., Jones, C. E., Lai, X., Brister, J. R., Mueser, T. C., Nossal, N. G., and Hinton, D. M. (2012) J. Biol. Chem. 287, 18596–18607).« less

  8. Role of out-of-plane dielectric thickness in the electrostatic simulation of atomically thin lateral junctions

    NASA Astrophysics Data System (ADS)

    Nipane, Ankur; Zhang, Yefei; Teherani, James T.

    2018-06-01

    Two-dimensional materials enable novel electronic and optoelectronic devices due to their unique properties. Device modeling plays a fundamental role in developing these novel devices by providing insights into the underlying physics. In this work, we present the dramatic impact of the simulated out-of-plane dielectric thickness on the electrostatics of lateral junctions formed from atomically thin materials. We show that unlike bulk junctions, the boundary conditions on the edges of the simulation region significantly affect the electrostatics of two-dimensional (2D) lateral junctions by modifying the out-of-plane electric field. We also present an intuitive understanding of the Neumann boundary conditions imposed on the boundaries of the simulation region. The Neumann boundary conditions alter the intended simulation by generating reflections of the device across the boundaries. Finally, we derive a minimal dielectric thickness for a symmetrically doped 2D lateral p-n junction, above which the out-of-plane simulation region boundaries minimally affect the simulated electric field, electrostatic potential, and depletion width of the junction.

  9. Catalyst-free fabrication of novel ZnO/CuO core-Shell nanowires heterojunction: Controlled growth, structural and optoelectronic properties

    NASA Astrophysics Data System (ADS)

    Khan, Muhammad Arif; Wahab, Yussof; Muhammad, Rosnita; Tahir, Muhammad; Sakrani, Samsudi

    2018-03-01

    Development of controlled growth and vertically aligned ZnO/CuO core-shell heterojunction nanowires (NWs) with large area by a catalyst free vapor deposition and oxidation approach has been investigated. Structural characterization reveals successful fabrication of a core ZnO nanowire having single crystalline hexagonal wurtzite structure along [002] direction and CuO nanostructure shell with thickness (8-10 nm) having polycrystalline monoclinic structure. The optical property analysis suggests that the reflectance spectrum of ZnO/CuO heterostructure nanowires is decreased by 18% in the visible range, which correspondingly shows high absorption in this region as compared to pristine ZnO nanowires. The current-voltage (I-V) characteristics of core-shell heterojunction nanowires measured by conductive atomic force microscopy (C-AFM) shows excellent rectifying behavior, which indicates the characteristics of a good p-n junction. The high-resolution transmission electron microscopy (HRTEM) has confirmed the sharp junction interface between the core-shell heterojunction nanowire arrays. The valence band offset and conduction band offset at ZnO/CuO heterointerfaces are measured to be 2.4 ± 0.05 and 0.23 ± 0.005 eV respectively, using X-ray photoelectron spectroscopy (XPS) and a type-II band alignment structure is found. The results of this study contribute to the development of new advanced device heterostructures for solar energy conversion and optoelectronics applications.

  10. Geodynamical simulation of the RRF triple junction

    NASA Astrophysics Data System (ADS)

    Wang, Z.; Wei, D.; Liu, M.; Shi, Y.; Wang, S.

    2017-12-01

    Triple junction is the point at which three plate boundaries meet. Three plates at the triple junction form a complex geological tectonics, which is a natural laboratory to study the interactions of plates. This work studies a special triple junction, the oceanic transform fault intersects the collinear ridges with different-spreading rates, which is free of influence of ridge-transform faults and nearby hotspots. First, we build 3-D numerical model of this triple junction used to calculate the stead-state velocity and temperature fields resulting from advective and conductive heat transfer. We discuss in detail the influence of the velocity and temperature fields of the triple junction from viscosity, spreading rate of the ridge. The two sides of the oceanic transform fault are different sensitivities to the two factors. And, the influence of the velocity mainly occurs within 200km of the triple junction. Then, we modify the model by adding a ridge-transform fault to above model and directly use the velocity structure of the Macquarie triple junction. The simulation results show that the temperature at both sides of the oceanic transform fault decreases gradually from the triple junction, but the temperature difference between the two sides is a constant about 200°. And, there is little effect of upwelling velocity away from the triple junction 100km. The model results are compared with observational data. The heat flux and thermal topography along the oceanic transform fault of this model are consistent with the observed data of the Macquarie triple junction. The earthquakes are strike slip distributed along the oceanic transform fault. Their depths are also consistent with the zone of maximum shear stress. This work can help us to understand the interactions of plates of triple junctions and help us with the foundation for the future study of triple junctions.

  11. Endoplasmic reticulum-plasma membrane junctions: structure, function and dynamics.

    PubMed

    Okeke, Emmanuel; Dingsdale, Hayley; Parker, Tony; Voronina, Svetlana; Tepikin, Alexei V

    2016-06-01

    Endoplasmic reticulum (ER)-plasma membrane (PM) junctions are contact sites between the ER and the PM; the distance between the two organelles in the junctions is below 40 nm and the membranes are connected by protein tethers. A number of molecular tools and technical approaches have been recently developed to visualise, modify and characterise properties of ER-PM junctions. The junctions serve as the platforms for lipid exchange between the organelles and for cell signalling, notably Ca(2+) and cAMP signalling. Vice versa, signalling events regulate the development and properties of the junctions. Two Ca(2+) -dependent mechanisms of de novo formation of ER-PM junctions have been recently described and characterised. The junction-forming proteins and lipids are currently the focus of vigorous investigation. Junctions can be relatively short-lived and simple structures, forming and dissolving on the time scale of a few minutes. However, complex, sophisticated and multifunctional ER-PM junctions, capable of attracting numerous protein residents and other cellular organelles, have been described in some cell types. The road from simplicity to complexity, i.e. the transformation from simple 'nascent' ER-PM junctions to advanced stable multiorganellar complexes, is likely to become an attractive research avenue for current and future junctologists. Another area of considerable research interest is the downstream cellular processes that can be activated by specific local signalling events in the ER-PM junctions. Studies of the cell physiology and indeed pathophysiology of ER-PM junctions have already produced some surprising discoveries, likely to expand with advances in our understanding of these remarkable organellar contact sites. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.

  12. Genetic mapping of 15 human X chromosomal forensic short tandem repeat (STR) loci by means of multi-core parallelization.

    PubMed

    Diegoli, Toni Marie; Rohde, Heinrich; Borowski, Stefan; Krawczak, Michael; Coble, Michael D; Nothnagel, Michael

    2016-11-01

    Typing of X chromosomal short tandem repeat (X STR) markers has become a standard element of human forensic genetic analysis. Joint consideration of many X STR markers at a time increases their discriminatory power but, owing to physical linkage, requires inter-marker recombination rates to be accurately known. We estimated the recombination rates between 15 well established X STR markers using genotype data from 158 families (1041 individuals) and following a previously proposed likelihood-based approach that allows for single-step mutations. To meet the computational requirements of this family-based type of analysis, we modified a previous implementation so as to allow multi-core parallelization on a high-performance computing system. While we obtained recombination rate estimates larger than zero for all but one pair of adjacent markers within the four previously proposed linkage groups, none of the three X STR pairs defining the junctions of these groups yielded a recombination rate estimate of 0.50. Corroborating previous studies, our results therefore argue against a simple model of independent X chromosomal linkage groups. Moreover, the refined recombination fraction estimates obtained in our study will facilitate the appropriate joint consideration of all 15 investigated markers in forensic analysis. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  13. Flexible Photodiodes Based on Nitride Core/Shell p–n Junction Nanowires

    PubMed Central

    2016-01-01

    A flexible nitride p-n photodiode is demonstrated. The device consists of a composite nanowire/polymer membrane transferred onto a flexible substrate. The active element for light sensing is a vertical array of core/shell p–n junction nanowires containing InGaN/GaN quantum wells grown by MOVPE. Electron/hole generation and transport in core/shell nanowires are modeled within nonequilibrium Green function formalism showing a good agreement with experimental results. Fully flexible transparent contacts based on a silver nanowire network are used for device fabrication, which allows bending the detector to a few millimeter curvature radius without damage. The detector shows a photoresponse at wavelengths shorter than 430 nm with a peak responsivity of 0.096 A/W at 370 nm under zero bias. The operation speed for a 0.3 × 0.3 cm2 detector patch was tested between 4 Hz and 2 kHz. The −3 dB cutoff was found to be ∼35 Hz, which is faster than the operation speed for typical photoconductive detectors and which is compatible with UV monitoring applications. PMID:27615556

  14. Ultraselective electrochemiluminescence biosensor based on locked nucleic acid modified toehold-mediated strand displacement reaction and junction-probe.

    PubMed

    Zhang, Xi; Zhang, Jing; Wu, Dongzhi; Liu, Zhijing; Cai, Shuxian; Chen, Mei; Zhao, Yanping; Li, Chunyan; Yang, Huanghao; Chen, Jinghua

    2014-12-07

    Locked nucleic acid (LNA) is applied in toehold-mediated strand displacement reaction (TMSDR) to develop a junction-probe electrochemiluminescence (ECL) biosensor for single-nucleotide polymorphism (SNP) detection in the BRCA1 gene related to breast cancer. More than 65-fold signal difference can be observed with perfectly matched target sequence to single-base mismatched sequence under the same conditions, indicating good selectivity of the ECL biosensor.

  15. Atomic-Scale Control of Electron Transport through Single Molecules

    NASA Astrophysics Data System (ADS)

    Wang, Y. F.; Kröger, J.; Berndt, R.; Vázquez, H.; Brandbyge, M.; Paulsson, M.

    2010-04-01

    Tin-phthalocyanine molecules adsorbed on Ag(111) were contacted with the tip of a cryogenic scanning tunneling microscope. Orders-of-magnitude variations of the single-molecule junction conductance were achieved by controllably dehydrogenating the molecule and by modifying the atomic structure of the surface electrode. Nonequilibrium Green’s function calculations reproduce the trend of the conductance and visualize the current flow through the junction, which is guided through molecule-electrode chemical bonds.

  16. The use of modified scaling factors in the design of high-power, non-linear, transmitting rod-core antennas

    NASA Astrophysics Data System (ADS)

    Jordan, Jared Williams; Dvorak, Steven L.; Sternberg, Ben K.

    2010-10-01

    In this paper, we develop a technique for designing high-power, non-linear, transmitting rod-core antennas by using simple modified scale factors rather than running labor-intensive numerical models. By using modified scale factors, a designer can predict changes in magnetic moment, inductance, core series loss resistance, etc. We define modified scale factors as the case when all physical dimensions of the rod antenna are scaled by p, except for the cross-sectional area of the individual wires or strips that are used to construct the core. This allows one to make measurements on a scaled-down version of the rod antenna using the same core material that will be used in the final antenna design. The modified scale factors were derived from prolate spheroidal analytical expressions for a finite-length rod antenna and were verified with experimental results. The modified scaling factors can only be used if the magnetic flux densities within the two scaled cores are the same. With the magnetic flux density constant, the two scaled cores will operate with the same complex permeability, thus changing the non-linear problem to a quasi-linear problem. We also demonstrate that by holding the number of turns times the drive current constant, while changing the number of turns, the inductance and core series loss resistance change by the number of turns squared. Experimental measurements were made on rod cores made from varying diameters of black oxide, low carbon steel wires and different widths of Metglas foil. Furthermore, we demonstrate that the modified scale factors work even in the presence of eddy currents within the core material.

  17. Characterization of Electrostatic Potential and Trapped Charge in Semiconductor Nanostructures using Off-Axis Electron Holography

    NASA Astrophysics Data System (ADS)

    Gan, Zhaofeng

    Off-axis electron holography (EH) has been used to characterize electrostatic potential, active dopant concentrations and charge distribution in semiconductor nanostructures, including ZnO nanowires (NWs) and thin films, ZnTe thin films, Si NWs with axial p-n junctions, Si-Ge axial heterojunction NWs, and Ge/Li xGe core/shell NW. The mean inner potential (MIP) and inelastic mean free path (IMFP) of ZnO NWs have been measured to be 15.3V+/-0.2V and 55+/-3nm, respectively, for 200keV electrons. These values were then used to characterize the thickness of a ZnO nano-sheet and gave consistent values. The MIP and IMFP for ZnTe thin films were measured to be 13.7+/-0.6V and 46+/-2nm, respectively, for 200keV electrons. A thin film expected to have a p-n junction was studied, but no signal due to the junction was observed. The importance of dynamical effects was systematically studied using Bloch wave simulations. The built-in potentials in Si NWs across the doped p-n junction and the Schottky junction due to Au catalyst were measured to be 1.0+/-0.3V and 0.5+/-0.3V, respectively. Simulations indicated that the dopant concentrations were ~1019cm-3 for donors and ~1017 cm-3 for acceptors. The effects of positively charged Au catalyst, a possible n+-n --p junction transition region and possible surface charge, were also systematically studied using simulations. Si-Ge heterojunction NWs were studied. Dopant concentrations were extracted by atom probe tomography. The built-in potential offset was measured to be 0.4+/-0.2V, with the Ge side lower. Comparisons with simulations indicated that Ga present in the Si region was only partially activated. In situ EH biasing experiments combined with simulations indicated the B dopant in Ge was mostly activated but not the P dopant in Si. I-V characteristic curves were measured and explained using simulations. The Ge/LixGe core/shell structure was studied during lithiation. The MIP for LixGe decreased with time due to increased Li content. A model was proposed to explain the lower measured Ge potential, and the trapped electron density in Ge core was calculated to be 3x1018 electrons/cm3. The Li amount during lithiation was also calculated using MIP and volume ratio, indicating that it was lower than the fully lithiated phase.

  18. Modified Y-TZP Core Design Improves All-ceramic Crown Reliability

    PubMed Central

    Silva, N.R.F.A.; Bonfante, E.A.; Rafferty, B.T.; Zavanelli, R.A.; Rekow, E.D.; Thompson, V.P.; Coelho, P.G.

    2011-01-01

    This study tested the hypothesis that all-ceramic core-veneer system crown reliability is improved by modification of the core design. We modeled a tooth preparation by reducing the height of proximal walls by 1.5 mm and the occlusal surface by 2.0 mm. The CAD-based tooth preparation was replicated and positioned in a dental articulator for core and veneer fabrication. Standard (0.5 mm uniform thickness) and modified (2.5 mm height lingual and proximal cervical areas) core designs were produced, followed by the application of veneer porcelain for a total thickness of 1.5 mm. The crowns were cemented to 30-day-aged composite dies and were either single-load-to-failure or step-stress-accelerated fatigue-tested. Use of level probability plots showed significantly higher reliability for the modified core design group. The fatigue fracture modes were veneer chipping not exposing the core for the standard group, and exposing the veneer core interface for the modified group. PMID:21057036

  19. The prevalence of increased proximal junctional flexion following posterior instrumentation and arthrodesis for adolescent idiopathic scoliosis.

    PubMed

    Hollenbeck, S Matt; Glattes, R Christopher; Asher, Marc A; Lai, Sue Min; Burton, Douglas C

    2008-07-01

    Retrospective case series. To determine the prevalence of proximal junctional sagittal plane flexion increase after posterior instrumentation and arthrodesis. Increased flexion proximal to the junction of the instrumented and fused spinal region with the adjacent mobile spine seems to be a relatively recent observation, may be increasing, and is occasionally problematic. The proximal junctional sagittal angulation 2 motion segments above the upper end instrumentation levels was measured on lateral standing preoperative and follow-up radiographs. One hundred seventy-four of 208 consecutive patients (84%) at an average radiograph follow-up of 4.9 +/- 2.73 years had increased proximal junctional flexion in 9.2%. The preoperative junctional measurements were normal for both normal and increased flexion groups. At follow-up, proximal junctional flexion had increased significantly more in the increased flexion group (2.1 degrees vs. 14.1 degrees , P < 0.0001). None of the possible risk factors studied, including demographic comparisons, Lenke classification (including lumbar and sagittal modifiers), end-instrumented vertebrae, end vertebra anchor configurations, surgical sequence, additional anterior surgery, rib osteotomies, and instrumentation length, were significantly associated with increased proximal junctional flexion at follow-up. Lenke 6 curves were at marginal risk of increased proximal junctional flexion (P = 0.0108). There were no differences between the groups in total Scoliosis Research Society-22r scores at an average follow-up of 8.0 +/- 3.74 years. No patient had additional surgery related to increased proximal junctional flexion. The prevalence of increased proximal junctional flexion was 9.2%. No significant risk factors were identified. Total Scoliosis Research Society-22r scores were similar for groups with normal and increased proximal junctional flexion at follow-up.

  20. Lithography-Free Fabrication of Core-Shell GaAs Nanowire Tunnel Diodes.

    PubMed

    Darbandi, A; Kavanagh, K L; Watkins, S P

    2015-08-12

    GaAs core-shell p-n junction tunnel diodes were demonstrated by combining vapor-liquid-solid growth with gallium oxide deposition by atomic layer deposition for electrical isolation. The characterization of an ensemble of core-shell structures was enabled by the use of a tungsten probe in a scanning electron microscope without the need for lithographic processing. Radial tunneling transport was observed, exhibiting negative differential resistance behavior with peak-to-valley current ratios of up to 3.1. Peak current densities of up to 2.1 kA/cm(2) point the way to applications in core-shell photovoltaics and tunnel field effect transistors.

  1. Optic Atrophy 1 Is Epistatic to the Core MICOS Component MIC60 in Mitochondrial Cristae Shape Control.

    PubMed

    Glytsou, Christina; Calvo, Enrique; Cogliati, Sara; Mehrotra, Arpit; Anastasia, Irene; Rigoni, Giovanni; Raimondi, Andrea; Shintani, Norihito; Loureiro, Marta; Vazquez, Jesùs; Pellegrini, Luca; Enriquez, Jose Antonio; Scorrano, Luca; Soriano, Maria Eugenia

    2016-12-13

    The mitochondrial contact site and cristae organizing system (MICOS) and Optic atrophy 1 (OPA1) control cristae shape, thus affecting mitochondrial function and apoptosis. Whether and how they physically and functionally interact is unclear. Here, we provide evidence that OPA1 is epistatic to MICOS in the regulation of cristae shape. Proteomic analysis identifies multiple MICOS components in native OPA1-containing high molecular weight complexes disrupted during cristae remodeling. MIC60, a core MICOS protein, physically interacts with OPA1, and together, they control cristae junction number and stability, OPA1 being epistatic to MIC60. OPA1 defines cristae width and junction diameter independently of MIC60. Our combination of proteomics, biochemistry, genetics, and electron tomography provides a unifying model for mammalian cristae biogenesis by OPA1 and MICOS. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  2. Fabrication of NiS modified CdS nanorod p-n junction photocatalysts with enhanced visible-light photocatalytic H2-production activity.

    PubMed

    Zhang, Jun; Qiao, Shi Zhang; Qi, Lifang; Yu, Jiaguo

    2013-08-07

    Production of hydrogen from photocatalytic water splitting has become an attractive research area due to the possibility of converting solar energy into green chemical energy. In this study, novel NiS nanoparticle (NP) modified CdS nanorod (NR) p-n junction photocatalysts were prepared by a simple two-step hydrothermal method. Even without the Pt co-catalyst, the as-prepared NiS NP-CdS NR samples exhibited enhanced visible-light photocatalytic activity and good stability for H2-production. The optimal NiS loading content was determined to be 5 mol%, and the corresponding H2-production rate reached 1131 μmol h(-1) g(-1), which is even higher than that of the optimized Pt-CdS NRs. It is believed that the assembly of p-type NiS NPs on the surface of n-type CdS NRs could form a large number of p-n junctions, which could effectively reduce the recombination rates of electrons and holes, thus greatly enhancing the photocatalytic activity. This work not only shows a possibility for the utilization of low cost NiS nanoparticles as a substitute for noble metals (such as Pt) in the photocatalytic H2-production but also provides a new insight into the design and fabrication of other new p-n junction photocatalysts for enhancing H2-production activity.

  3. Neuronal gap junctions play a role in the secondary neuronal death following controlled cortical impact.

    PubMed

    Belousov, Andrei B; Wang, Yongfu; Song, Ji-Hoon; Denisova, Janna V; Berman, Nancy E; Fontes, Joseph D

    2012-08-22

    In the mammalian CNS, excessive release of glutamate and overactivation of glutamate receptors are responsible for the secondary (delayed) neuronal death following neuronal injury, including ischemia, traumatic brain injury (TBI) and epilepsy. Recent studies in mice showed a critical role for neuronal gap junctions in NMDA receptor-mediated excitotoxicity and ischemia-mediated neuronal death. Here, using controlled cortical impact (CCI) in adult mice, as a model of TBI, and Fluoro-Jade B staining for analysis of neuronal death, we set to determine whether neuronal gap junctions play a role in the CCI-mediated secondary neuronal death. We report that 24h post-CCI, substantial neuronal death is detected in a number of brain regions outside the injury core, including the striatum. The striatal neuronal death is reduced both in wild-type mice by systemic administration of mefloquine (a relatively selective blocker of neuronal gap junctions) and in knockout mice lacking connexin 36 (neuronal gap junction protein). It is also reduced by inactivation of group II metabotropic glutamate receptors (with LY341495) which, as reported previously, control the rapid increase in neuronal gap junction coupling following different types of neuronal injury. The results suggest that neuronal gap junctions play a critical role in the CCI-induced secondary neuronal death. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  4. Metallic nanoshells with semiconductor cores: optical characteristics modified by core medium properties.

    PubMed

    Bardhan, Rizia; Grady, Nathaniel K; Ali, Tamer; Halas, Naomi J

    2010-10-26

    It is well-known that the geometry of a nanoshell controls the resonance frequencies of its plasmon modes; however, the properties of the core material also strongly influence its optical properties. Here we report the synthesis of Au nanoshells with semiconductor cores of cuprous oxide and examine their optical characteristics. This material system allows us to systematically examine the role of core material on nanoshell optical properties, comparing Cu(2)O core nanoshells (ε(c) ∼ 7) to lower core dielectric constant SiO(2) core nanoshells (ε(c) = 2) and higher dielectric constant mixed valency iron oxide nanoshells (ε(c) = 12). Increasing the core dielectric constant increases nanoparticle absorption efficiency, reduces plasmon line width, and modifies plasmon energies. Modifying the core medium provides an additional means of tailoring both the near- and far-field optical properties in this unique nanoparticle system.

  5. Experimental testing and modeling analysis of solute mixing at water distribution pipe junctions.

    PubMed

    Shao, Yu; Jeffrey Yang, Y; Jiang, Lijie; Yu, Tingchao; Shen, Cheng

    2014-06-01

    Flow dynamics at a pipe junction controls particle trajectories, solute mixing and concentrations in downstream pipes. The effect can lead to different outcomes of water quality modeling and, hence, drinking water management in a distribution network. Here we have investigated solute mixing behavior in pipe junctions of five hydraulic types, for which flow distribution factors and analytical equations for network modeling are proposed. First, based on experiments, the degree of mixing at a cross is found to be a function of flow momentum ratio that defines a junction flow distribution pattern and the degree of departure from complete mixing. Corresponding analytical solutions are also validated using computational-fluid-dynamics (CFD) simulations. Second, the analytical mixing model is further extended to double-Tee junctions. Correspondingly the flow distribution factor is modified to account for hydraulic departure from a cross configuration. For a double-Tee(A) junction, CFD simulations show that the solute mixing depends on flow momentum ratio and connection pipe length, whereas the mixing at double-Tee(B) is well represented by two independent single-Tee junctions with a potential water stagnation zone in between. Notably, double-Tee junctions differ significantly from a cross in solute mixing and transport. However, it is noted that these pipe connections are widely, but incorrectly, simplified as cross junctions of assumed complete solute mixing in network skeletonization and water quality modeling. For the studied pipe junction types, analytical solutions are proposed to characterize the incomplete mixing and hence may allow better water quality simulation in a distribution network. Published by Elsevier Ltd.

  6. Cellular Organization and Cytoskeletal Regulation of the Hippo Signaling Network

    PubMed Central

    Sun, Shuguo; Irvine, Kenneth D.

    2016-01-01

    The Hippo signaling network integrates diverse upstream signals to control cell fate decisions and regulate organ growth. Recent studies have provided new insights into the cellular organization of Hippo signaling, its relationship to cell-cell junctions, and how the cytoskeleton modulates Hippo signaling. Cell-cell junctions serve as platforms for Hippo signaling by localizing scaffolding proteins that interact with core components of the pathway. Interactions of Hippo pathway components with cell-cell junctions and the cytoskeleton also suggest potential mechanisms for the regulation of the pathway by cell contact and cell polarity. As our understanding of the complexity of Hippo signaling increases, a future challenge will be to understand how the diverse inputs into the pathway are integrated, and to define their respective contributions in vivo. PMID:27268910

  7. VASP, zyxin and TES are tension-dependent members of Focal Adherens Junctions independent of the α-catenin-vinculin module.

    PubMed

    Oldenburg, Joppe; van der Krogt, Gerard; Twiss, Floor; Bongaarts, Annika; Habani, Yasmin; Slotman, Johan A; Houtsmuller, Adriaan; Huveneers, Stephan; de Rooij, Johan

    2015-11-27

    Mechanical forces are integrated at cadherin-based adhesion complexes to regulate morphology and strength of cell-cell junctions and organization of associated F-actin. A central mechanosensor at the cadherin complex is α-catenin, whose stretching recruits vinculin to regulate adhesion strength. The identity of the F-actin regulating signals that are also activated by mechanical forces at cadherin-based junctions has remained elusive. Here we identify the actin-regulators VASP, zyxin and TES as members of punctate, tensile cadherin-based junctions called Focal Adherens Junctions (FAJ) and show that they display mechanosensitive recruitment similar to that of vinculin. However, this recruitment is not altered by destroying or over-activating the α-catenin/vinculin module. Structured Illumination Microscopy (SIM) indicates that these tension sensitive proteins concentrate at locations within FAJs that are distinct from the core cadherin complex proteins. Furthermore, localization studies using mutated versions of VASP and zyxin indicate that these two proteins require binding to each other in order to localize to the FAJs. We conclude that there are multiple force sensitive modules present at the FAJ that are activated at distinct locations along the cadherin-F-actin axis and regulate specific aspects of junction dynamics.

  8. VASP, zyxin and TES are tension-dependent members of Focal Adherens Junctions independent of the α-catenin-vinculin module

    PubMed Central

    Oldenburg, Joppe; van der Krogt, Gerard; Twiss, Floor; Bongaarts, Annika; Habani, Yasmin; Slotman, Johan A.; Houtsmuller, Adriaan; Huveneers, Stephan; de Rooij, Johan

    2015-01-01

    Mechanical forces are integrated at cadherin-based adhesion complexes to regulate morphology and strength of cell-cell junctions and organization of associated F-actin. A central mechanosensor at the cadherin complex is α-catenin, whose stretching recruits vinculin to regulate adhesion strength. The identity of the F-actin regulating signals that are also activated by mechanical forces at cadherin-based junctions has remained elusive. Here we identify the actin-regulators VASP, zyxin and TES as members of punctate, tensile cadherin-based junctions called Focal Adherens Junctions (FAJ) and show that they display mechanosensitive recruitment similar to that of vinculin. However, this recruitment is not altered by destroying or over-activating the α-catenin/vinculin module. Structured Illumination Microscopy (SIM) indicates that these tension sensitive proteins concentrate at locations within FAJs that are distinct from the core cadherin complex proteins. Furthermore, localization studies using mutated versions of VASP and zyxin indicate that these two proteins require binding to each other in order to localize to the FAJs. We conclude that there are multiple force sensitive modules present at the FAJ that are activated at distinct locations along the cadherin-F-actin axis and regulate specific aspects of junction dynamics. PMID:26611125

  9. Effect of d-wave pairing symmetry in transport properties of silicene-based superconductor junction

    NASA Astrophysics Data System (ADS)

    Vosoughi-nia, S.; Rashedi, G.; hajati, Y.

    2018-06-01

    We theoretically study the tunneling conductance of a normal/d-wave superconductor silicene junction using Blonder-Tinkham-Klapwijk (BTK) formalism. We discuss how the conductance spectra are affected by changing the chemical potential (μN) in the normal silicene region. It is obtained that the amplitude of the spin/valley-dependent Andreev reflection (AR) and charge conductance (G) of the junction can be strongly modulated by the orientation angle of superconductive gap (β) and perpendicular electric field (Ez). We demonstrate that the charge conductance exhibits an oscillatory behavior as a function of β by a period of π/2. Remarkably, variation of μN strongly modifies the amplitude of the oscillations and periodically there are transport gaps in the G - β oscillations for a range of μN. These findings suggest that one may experimentally tune the transport properties of the junction through changing β, Ez and μN.

  10. Dispersion mechanisms of a tidal river junction in the Sacramento–San Joaquin Delta, California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gleichauf, Karla T.; Wolfram, Philip J.; Monsen, Nancy E.

    In branching channel networks, such as in the Sacramento–San Joaquin River Delta, junction flow dynamics contribute to dispersion of ecologically important entities such as fish, pollutants, nutrients, salt, sediment, and phytoplankton. Flow transport through a junction largely arises from velocity phasing in the form of divergent flow between junction channels for a portion of the tidal cycle. Field observations in the Georgiana Slough junction, which is composed of the North and South Mokelumne rivers, Georgiana Slough, and the Mokelumne River, show that flow phasing differences between these rivers arise from operational, riverine, and tidal forcing. A combination of Acoustic Dopplermore » Current Profile (ADCP) boat transecting and moored ADCPs over a spring–neap tidal cycle (May to June 2012) monitored the variability of spatial and temporal velocity, respectively. Two complementary drifter studies enabled assessment of local transport through the junction to identify small-scale intrajunction dynamics. We supplemented field results with numerical simulations using the SUNTANS model to demonstrate the importance of phasing offsets for junction transport and dispersion. Different phasing of inflows to the junction resulted in scalar patchiness that is characteristic of MacVean and Stacey’s (2011) advective tidal trapping. Furthermore, we observed small-scale junction flow features including a recirculation zone and shear layer, which play an important role in intra-junction mixing over time scales shorter than the tidal cycle (i.e., super-tidal time scales). Thus, the study period spanned open- and closed-gate operations at the Delta Cross Channel. Synthesis of field observations and modeling efforts suggest that management operations related to the Delta Cross Channel can strongly affect transport in the Delta by modifying the relative contributions of tidal and riverine flows, thereby changing the junction flow phasing.« less

  11. Dispersion mechanisms of a tidal river junction in the Sacramento–San Joaquin Delta, California

    DOE PAGES

    Gleichauf, Karla T.; Wolfram, Philip J.; Monsen, Nancy E.; ...

    2014-12-17

    In branching channel networks, such as in the Sacramento–San Joaquin River Delta, junction flow dynamics contribute to dispersion of ecologically important entities such as fish, pollutants, nutrients, salt, sediment, and phytoplankton. Flow transport through a junction largely arises from velocity phasing in the form of divergent flow between junction channels for a portion of the tidal cycle. Field observations in the Georgiana Slough junction, which is composed of the North and South Mokelumne rivers, Georgiana Slough, and the Mokelumne River, show that flow phasing differences between these rivers arise from operational, riverine, and tidal forcing. A combination of Acoustic Dopplermore » Current Profile (ADCP) boat transecting and moored ADCPs over a spring–neap tidal cycle (May to June 2012) monitored the variability of spatial and temporal velocity, respectively. Two complementary drifter studies enabled assessment of local transport through the junction to identify small-scale intrajunction dynamics. We supplemented field results with numerical simulations using the SUNTANS model to demonstrate the importance of phasing offsets for junction transport and dispersion. Different phasing of inflows to the junction resulted in scalar patchiness that is characteristic of MacVean and Stacey’s (2011) advective tidal trapping. Furthermore, we observed small-scale junction flow features including a recirculation zone and shear layer, which play an important role in intra-junction mixing over time scales shorter than the tidal cycle (i.e., super-tidal time scales). Thus, the study period spanned open- and closed-gate operations at the Delta Cross Channel. Synthesis of field observations and modeling efforts suggest that management operations related to the Delta Cross Channel can strongly affect transport in the Delta by modifying the relative contributions of tidal and riverine flows, thereby changing the junction flow phasing.« less

  12. Effects of Intercellular Junction Protein Expression on Intracellular Ice Formation in Mouse Insulinoma Cells

    PubMed Central

    Higgins, Adam Z.; Karlsson, Jens O.M.

    2013-01-01

    The development of cryopreservation procedures for tissues has proven to be difficult in part because cells within tissue are more susceptible to intracellular ice formation (IIF) than are isolated cells. In particular, previous studies suggest that cell-cell interactions increase the likelihood of IIF by enabling propagation of ice between neighboring cells, a process thought to be mediated by gap junction channels. In this study, we investigated the effects of cell-cell interactions on IIF using three genetically modified strains of the mouse insulinoma cell line MIN6, each of which expressed key intercellular junction proteins (connexin-36, E-cadherin, and occludin) at different levels. High-speed video cryomicroscopy was used to visualize the freezing process in pairs of adherent cells, revealing that the initial IIF event in a given cell pair was correlated with a hitherto unrecognized precursor phenomenon: penetration of extracellular ice into paracellular spaces at the cell-cell interface. Such paracellular ice penetration occurred in the majority of cell pairs observed, and typically preceded and colocalized with the IIF initiation events. Paracellular ice penetration was generally not observed at temperatures >−5.65°C, which is consistent with a penetration mechanism via defects in tight-junction barriers at the cell-cell interface. Although the maximum temperature of paracellular penetration was similar for all four cell strains, genetically modified cells exhibited a significantly higher frequency of ice penetration and a higher mean IIF temperature than did wild-type cells. A four-state Markov chain model was used to quantify the rate constants of the paracellular ice penetration process, the penetration-associated IIF initiation process, and the intercellular ice propagation process. In the initial stages of freezing (>−15°C), junction protein expression appeared to only have a modest effect on the kinetics of propagative IIF, and even cell strains lacking the gap junction protein connexin-36 exhibited nonnegligible ice propagation rates. PMID:24209845

  13. Pictures of Processes: Automated Graph Rewriting for Monoidal Categories and Applications to Quantum Computing

    NASA Astrophysics Data System (ADS)

    Kumar, Bhupendra

    Light assisted or driven fuel generation by carbon dioxide and proton reduction can be achieved by a p-type semiconductor/liquid junction. There are four different types of schemes which are typically used for carbon dioxide and proton reduction for fuel generation applications. In these systems, the semiconductor can serve the dual role of a catalyst and a light absorber. Specific electrocatalysts (heterogeneous and homogeneous) can be driven by p-type semiconductor where it works only as light absorber in order to achieve better selectivity and faster rates of catalysis. The p-type semiconductor/molecular catalyst junction is primarily explored in this dissertation for CO2 and proton photoelectrochemical reduction. A general principle for the operation of p-type semiconductor/molecular junctions is proposed and validated for several molecular catalysts in contact with p-Si photocathode. It is also shown that the light assisted homogeneous and heterogeneous catalysis can coexist. This principle is extended to achieve direct conversion of CO 2 to methanol on Platinum nanoparticles decorated p-Si in aqueous medium through pyridine/pyridinium system for CO2 reduction. An open circuit voltage higher than 600 mV is achieved for p-Si/Re(bipy-tBu)(CO) 3Cl [where bipy-tBu = 4,4'- tert-butyl-2,2'-bipyridine] (Re-catalyst) junction. The photoelectrochemical conversion of CO2 to CO using a p-Si/Re-catalyst junction is obtained at 100 % Faradaic efficiency. The homogeneous catalytic current density for CO2 by p-Si/Re-catalyst junction under illumination scales linearly with illumination intensity (both polychromatic and monochromatic). This indicates that the homogeneous catalysis is light driven for the p-Si/Re-catalyst junction system up to light intensities approaching one sun. The photoelectrochemical reduction of other active members of Re(bipyridyl)(CO)3Cl molecular catalyst family is also observed on illuminated p-Si photocathode. Effects of surface modification and nanowire morphology of the p-Si photocathode on the homogeneous catalytic reduction of CO2 by using p-Si/Re-catalyst junction are also described in this dissertation. For phenyl ethyl modified p-Si photocathode, the rate of homogeneous catalysis for CO2 reduction by Re-catalyst is three times greater than glassy carbon electrode and six times greater than the hexyl modified and the hydrogen terminated p-Si photocathodes. When hexyl modified p-Si nanowires are used as photocathode, the homogeneous catalytic current density increased by a factor of two compared to planar p-Si (both freshly etched and hexyl modified) photocathode. A successful light assisted generation of syngas (H2:CO = 2:1) from CO2 and water is achieved by using p-Si/Re-catalyst. In this system, water is reduced heterogeneously on p-Si surface and CO2 is reduced homogeneously by Re-catalyst. The same principle is extended to the homogeneous proton reduction by using p-Si/[FeFe] complex junction where [FeFe] complex [Fe2(micro-bdt)(CO) 6] (bdt = benzene-1,2-dithiolate)] is a proton reduction molecular catalyst. A short circuit quantum efficiency of 79 % with 100 % Faradaic efficiency and 600 mV open circuit are achieved by using p-Si/[FeFe] complex for proton reduction with 300 mM perchloric acid as a proton source. Cobalt difluororyl-diglyoximate (Co-catalyst) is a proton reduction catalyst with only 200 mV of overpotential for the hydrogen evolution reaction (HRE). The Co-catalyst is photoelectrochemically reduced with a photovoltage of 470 mV on illuminated p-Si photocathode. For p-Si photocathodes, the overpotential for proton reduction is over 1 V. In principle, p-Si/Co-catalyst junction can reduce proton to hydrogen homogeneously at underpotential. In a concluding effort, a wireless monolithic dual face single photoelectrode (multi junction photovoltaic cell which can generate a voltage higher 1.7 V) based photochemical cell is proposed for direct conversion of solar energy into liquid fuel. In this device, the two faces of the multijunction photoelectrode are serve as an anode and a cathode for water oxidation and fuel generation, respectively, and are separated by proton exchange membrane.

  14. Intranuclear binding in space and time of exon junction complex and NXF1 to premRNPs/mRNPs in vivo

    PubMed Central

    Björk, Petra; Persson, Jan-Olov

    2015-01-01

    Eukaryotic gene expression requires the ordered association of numerous factors with precursor messenger RNAs (premRNAs)/messenger RNAs (mRNAs) to achieve efficiency and regulation. Here, we use the Balbiani ring (BR) genes to demonstrate the temporal and spatial association of the exon junction complex (EJC) core with gene-specific endogenous premRNAs and mRNAs. The EJC core components bind cotranscriptionally to BR premRNAs during or very rapidly after splicing. The EJC core does not recruit the nonsense-mediated decay mediaters UPF2 and UPF3 until the BR messenger RNA protein complexes (mRNPs) enter the interchromatin. Even though several known adapters for the export factor NXF1 become part of BR mRNPs already at the gene, NXF1 binds to BR mRNPs only in the interchromatin. In steady state, a subset of the BR mRNPs in the interchromatin binds NXF1, UPF2, and UPF3. This binding appears to occur stochastically, and the efficiency approximately equals synthesis and export of the BR mRNPs. Our data provide unique in vivo information on how export competent eukaryotic mRNPs are formed. PMID:26459599

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paulauskas, Tadas; Buurma, Christopher; Colegrove, Eric

    Dislocation cores have long dominated the electronic and optical behaviors of semiconductor devices and detailed atomic characterization is required to further explore their effects. Miniaturization of semiconductor devices to nanometre scale also puts emphasis on a material's mechanical properties to withstand failure due to processing or operational stresses. Sessile junctions of dislocations provide barriers to propagation of mobile dislocations and may lead to work-hardening. The sessile Lomer–Cottrell and Hirth lock dislocations, two stable lowest elastic energy stair-rods, are studied in this paper. More specifically, using atomic resolution high-angle annular dark-field imaging and atomic-column-resolved X-ray spectrum imaging in an aberration-corrected scanningmore » transmission electron microscope, dislocation core structures are examined in zinc-blende CdTe. A procedure is outlined for atomic scale analysis of dislocation junctions which allows determination of their identity with specially tailored Burgers circuits and also formation mechanisms of the polar core structures based on Thompson's tetrahedron adapted to reactions of polar dislocations as they appear in CdTe and other zinc-blende solids. Strain fields associated with the dislocations calculatedviageometric phase analysis are found to be diffuse and free of `hot spots' that reflect compact structures and low elastic energy of the pure-edge stair-rods.« less

  16. Linker Dependent Bond Rupture Force Measurements in Single-Molecule Junctions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frei M.; Hybertsen M.; Aradhya S.V.

    We use a modified conducting atomic force microscope to simultaneously probe the conductance of a single-molecule junction and the force required to rupture the junction formed by alkanes terminated with four different chemical link groups which vary in binding strength and mechanism to the gold electrodes. Molecular junctions with amine, methylsulfide, and diphenylphosphine terminated molecules show clear conductance signatures and rupture at a force that is significantly smaller than the measured 1.4 nN force required to rupture the single-atomic gold contact. In contrast, measurements with a thiol terminated alkane which can bind covalently to the gold electrode show conductance andmore » force features unlike those of the other molecules studied. Specifically, the strong Au-S bond can cause structural rearrangements in the electrodes, which are accompanied by substantial conductance changes. Despite the strong Au-S bond and the evidence for disruption of the Au structure, the experiments show that on average these junctions also rupture at a smaller force than that measured for pristine single-atom gold contacts.« less

  17. Cellular Organization and Cytoskeletal Regulation of the Hippo Signaling Network.

    PubMed

    Sun, Shuguo; Irvine, Kenneth D

    2016-09-01

    The Hippo signaling network integrates diverse upstream signals to control cell fate decisions and regulate organ growth. Recent studies have provided new insights into the cellular organization of Hippo signaling, its relationship to cell-cell junctions, and how the cytoskeleton modulates Hippo signaling. Cell-cell junctions serve as platforms for Hippo signaling by localizing scaffolding proteins that interact with core components of the pathway. Interactions of Hippo pathway components with cell-cell junctions and the cytoskeleton also suggest potential mechanisms for the regulation of the pathway by cell contact and cell polarity. As our understanding of the complexity of Hippo signaling increases, a future challenge will be to understand how the diverse inputs into the pathway are integrated and to define their respective contributions in vivo. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Effects of Explosions in Underground Magazines

    DTIC Science & Technology

    1989-10-01

    Kayenta sandstone near Grand Junction, CO. Core samples indicated a relatively uniform rock with thin, horizontal, irregularly spaced, clay seams (Swift...Mechanical Properties of a Kayenta Sandstone from the Mixed Company Site," DNA 3683F, July 1975, Physics International Company, San Leandro, CA. 33

  19. Wireline-rotary air coring of the Bandelier Tuff, Los Alamos, New Mexico

    USGS Publications Warehouse

    Teasdale, W.E.; Pemberton, R.R.

    1984-01-01

    This paper describes experiments using wireline-rotary air-coring techniques conducted in the Bandelier Tuff using a modified standard wireline core-barrel system. The modified equipment was used to collect uncontaminated cores of unconsolidated ash and indurated tuff at Los Alamos, New Mexico. Core recovery obtained from the 210-foot deep test hole was about 92 percent. A standard HQ-size, triple-tube wireline core barrel (designed for the passage of liquid drilling fluids) was modified for air coring as follows: (1) Air passages were milled in the latch body part of the head assembly; (2) the inside dimension of the outer core barrel tube was machined and honed to provide greater clearance between the inner and outer barrels; (3) oversized reaming devices were added to the outer core barrel and the coring bit to allow more clearance for air and cuttings return; (4) the eight discharge ports in the coring bit were enlarged. To control airborne-dust pollution, a dust-and-cuttings discharge subassembly, designed and built by project personnel, was used. (USGS)

  20. Role of cleavage at the core-E1 junction of hepatitis C virus polyprotein in viral morphogenesis.

    PubMed

    Pène, Véronique; Lemasson, Matthieu; Harper, Francis; Pierron, Gérard; Rosenberg, Arielle R

    2017-01-01

    In hepatitis C virus (HCV) polyprotein sequence, core protein terminates with E1 envelope signal peptide. Cleavage by signal peptidase (SP) separates E1 from the complete form of core protein, anchored in the endoplasmic reticulum (ER) membrane by the signal peptide. Subsequent cleavage of the signal peptide by signal-peptide peptidase (SPP) releases the mature form of core protein, which preferentially relocates to lipid droplets. Both of these cleavages are required for the HCV infectious cycle, supporting the idea that HCV assembly begins at the surface of lipid droplets, yet SPP-catalyzed cleavage is dispensable for initiation of budding in the ER. Here we have addressed at what step(s) of the HCV infectious cycle SP-catalyzed cleavage at the core-E1 junction is required. Taking advantage of the sole system that has allowed visualization of HCV budding events in the ER lumen of mammalian cells, we showed that, unexpectedly, mutations abolishing this cleavage did not prevent but instead tended to promote the initiation of viral budding. Moreover, even though no viral particles were released from Huh-7 cells transfected with a full-length HCV genome bearing these mutations, intracellular viral particles containing core protein protected by a membrane envelope were formed. These were visualized by electron microscopy as capsid-containing particles with a diameter of about 70 nm and 40 nm before and after delipidation, respectively, comparable to intracellular wild-type particle precursors except that they were non-infectious. Thus, our results show that SP-catalyzed cleavage is dispensable for HCV budding per se, but is required for the viral particles to acquire their infectivity and secretion. These data support the idea that HCV assembly occurs in concert with budding at the ER membrane. Furthermore, capsid-containing particles did not accumulate in the absence of SP-catalyzed cleavage, suggesting the quality of newly formed viral particles is controlled before secretion.

  1. Role of cleavage at the core-E1 junction of hepatitis C virus polyprotein in viral morphogenesis

    PubMed Central

    Pène, Véronique; Lemasson, Matthieu; Harper, Francis; Pierron, Gérard; Rosenberg, Arielle R.

    2017-01-01

    In hepatitis C virus (HCV) polyprotein sequence, core protein terminates with E1 envelope signal peptide. Cleavage by signal peptidase (SP) separates E1 from the complete form of core protein, anchored in the endoplasmic reticulum (ER) membrane by the signal peptide. Subsequent cleavage of the signal peptide by signal-peptide peptidase (SPP) releases the mature form of core protein, which preferentially relocates to lipid droplets. Both of these cleavages are required for the HCV infectious cycle, supporting the idea that HCV assembly begins at the surface of lipid droplets, yet SPP-catalyzed cleavage is dispensable for initiation of budding in the ER. Here we have addressed at what step(s) of the HCV infectious cycle SP-catalyzed cleavage at the core-E1 junction is required. Taking advantage of the sole system that has allowed visualization of HCV budding events in the ER lumen of mammalian cells, we showed that, unexpectedly, mutations abolishing this cleavage did not prevent but instead tended to promote the initiation of viral budding. Moreover, even though no viral particles were released from Huh-7 cells transfected with a full-length HCV genome bearing these mutations, intracellular viral particles containing core protein protected by a membrane envelope were formed. These were visualized by electron microscopy as capsid-containing particles with a diameter of about 70 nm and 40 nm before and after delipidation, respectively, comparable to intracellular wild-type particle precursors except that they were non-infectious. Thus, our results show that SP-catalyzed cleavage is dispensable for HCV budding per se, but is required for the viral particles to acquire their infectivity and secretion. These data support the idea that HCV assembly occurs in concert with budding at the ER membrane. Furthermore, capsid-containing particles did not accumulate in the absence of SP-catalyzed cleavage, suggesting the quality of newly formed viral particles is controlled before secretion. PMID:28437468

  2. Efficient wireless power charging of electric vehicle by modifying the magnetic characteristics of the medium

    NASA Astrophysics Data System (ADS)

    Mahmud, Mohammad Hazzaz

    There is a developing enthusiasm for electric vehicle (EV) innovations as a result of their lessened fuel utilization and greenhouse emission especially through wireless power transfer (WPT) due to the convenience and continuous charging. Numerous research initiatives target on wireless power transfer (WPT) system in the attempt to improve the transportation for last few decades. But several problems like less efficiency, high frequency, long distance energy transfer etc. were always been occupied by the wireless power transfer system. Two ideas have been developed in this research to resolve the two main problems of WPT for electric vehicles which are low efficiency due to large distance between the two coils and slow charging time. As the first phase of study, a proper model, including the coils and cores were required. The selected model was a finite element (FE) modeling. Another part of this study was to create a modified cement that will act as a semi-conductive material for covering the transmitting antenna area. A high frequency wide band gap switch will be used for transferring high amount of power in a very short time. More over this research also proves that, if cores could be added with the transmitter coil and receiver coil then the output efficiency dramatically increased comparing with without core model of transmitter and receiver. The wireless charging is not restricted to parking lot, since it's planned to be embedded into parking space concrete or roadway concrete or asphalt. Therefore, it can also be installed at junctions (behind red lights), stop signs or any spot that the vehicle might stop for several moments. This technology will become more feasible, if the charging time decreases. Therefore, a new model of for wireless power transfer has been proposed in this study which has shown significant improvement. Another motive of this study was to improve the conductivity and permeability in such a way that the medium that is on the top of the transmitting antenna can transfer the power efficiently to the receiving antenna. The best efficiency of 83% was achieved by using this model and the medium.

  3. The Formation, Transport Properties and Microstructure of 45 Degrees (001) Tilt Grain Boundaries in Yttrium BARIUM(2) COPPER(3) OXYGEN(7-X) Thin Films

    NASA Astrophysics Data System (ADS)

    Vuchic, Boris Vukan

    1995-01-01

    Most high angle grain boundaries in high-T _{c} superconductors exhibit weak link behavior. The Josephson-like properties of these grain boundaries can be used for many device applications such as superconducting quantum interference devices (SQUIDs). The structure-property relationship of different types of 45 ^circ (001) YBa_2 Cu_3O_{7-x} thin film grain boundary junctions are examined to study their weak link nature. A technique, termed sputter-induced epitaxy, is developed to form 45^circ (001) tilt grain boundaries in YBa_2Cu _3O_{7-x} thin films on (100) MgO substrates. A low voltage ion bombardment pre-growth substrate treatment is used to modify the epitaxial orientation relationship between the thin film and the substrate in selected regions. By modifying the orientation of the thin film, grain boundary junctions can be placed in any configuration on the substrate. A variety of pre-growth sputtering conditions in conjunction with atomic force microscopy and Rutherford backscatter spectrometry are used to determine the role of the ions in modifying the substrate surface. Sputter-induced epitaxy is extended to a multilayer MgO/LaAlO_3 substrate, allowing integration of the sputter -induced epitaxy junctions into multilayer structures. The low temperature transport properties of the sputter-induced epitaxy junctions and a set of bi-epitaxial grain boundaries are studied. Individual grain boundaries are isolated and characterized for resistance vs. temperature, current vs. voltage as a function of temperature and magnetic field behavior. Resistive and superconducting grain boundaries are compared. Microstructural analysis is performed using scanning electron microscopy, transmission electron microscopy and high resolution electron microscopy (HREM). Marked differences are observed in the microstructure of resistive and superconducting grain boundaries. HREM studies suggest the importance of the local atomic scale structure of the grain boundary in transport properties. A phenomenological grain boundary model is proposed to describe the structure -property relationship of the boundaries.

  4. Controlling the thermoelectric effect by mechanical manipulation of the electron's quantum phase in atomic junctions.

    PubMed

    Aiba, Akira; Demir, Firuz; Kaneko, Satoshi; Fujii, Shintaro; Nishino, Tomoaki; Tsukagoshi, Kazuhito; Saffarzadeh, Alireza; Kirczenow, George; Kiguchi, Manabu

    2017-08-11

    The thermoelectric voltage developed across an atomic metal junction (i.e., a nanostructure in which one or a few atoms connect two metal electrodes) in response to a temperature difference between the electrodes, results from the quantum interference of electrons that pass through the junction multiple times after being scattered by the surrounding defects. Here we report successfully tuning this quantum interference and thus controlling the magnitude and sign of the thermoelectric voltage by applying a mechanical force that deforms the junction. The observed switching of the thermoelectric voltage is reversible and can be cycled many times. Our ab initio and semi-empirical calculations elucidate the detailed mechanism by which the quantum interference is tuned. We show that the applied strain alters the quantum phases of electrons passing through the narrowest part of the junction and hence modifies the electronic quantum interference in the device. Tuning the quantum interference causes the energies of electronic transport resonances to shift, which affects the thermoelectric voltage. These experimental and theoretical studies reveal that Au atomic junctions can be made to exhibit both positive and negative thermoelectric voltages on demand, and demonstrate the importance and tunability of the quantum interference effect in the atomic-scale metal nanostructures.

  5. Morphological adaptation and protein modulation of myotendinous junction following moderate aerobic training.

    PubMed

    Curzi, Davide; Baldassarri, Valentina; De Matteis, Rita; Salamanna, Francesca; Bolotta, Alessandra; Frizziero, Antonio; Fini, Milena; Marini, Marina; Falcieri, Elisabetta

    2015-04-01

    Myotendinous junction is the muscle-tendon interface through which the contractile force can be transferred from myofibrils to the tendon extracellular matrix. At the ultrastructural level, aerobic training can modify the distal myotendinous junction of rat gastrocnemius, increasing the contact area between tissues. The aim of this work is to investigate the correlation between morphological changes and protein modulation of the myotendinous junction following moderate training. For this reason, talin, vinculin and type IV collagen amount and spatial distribution were investigated by immunohistochemistry and confocal microscopy. The images were then digitally analyzed by evaluating fluorescence intensity. Morphometric analysis revealed a significant increased thickening of muscle basal lamina in the trained group (53.1 ± 0.4 nm) with respect to the control group (43.9 ± 0.3 nm), and morphological observation showed the presence of an electron-dense area in the exercised muscles, close to the myotendinous junction. Protein concentrations appeared significantly increased in the trained group (talin +22.2%; vinculin +22.8% and type IV collagen +11.8%) with respect to the control group. Therefore, our findings suggest that moderate aerobic training induces/causes morphological changes at the myotendinous junction, correlated to the synthesis of structural proteins of the muscular basal lamina and of the cytoskeleton.

  6. Exploitation of Geographic Information Systems for Vehicular Destination Prediction

    DTIC Science & Technology

    2009-03-01

    What is more, this ap- proach would enable strong correlation between contextual fuzzy sets and “ crisp ” non-fuzzy modifiers such as “in the parkway...in the building”, and “on the high- way”. Moreover, the union, junction, and disjoint junction of two or more “fuzzy” or “ crisp ” regions could yield...the last is “ crisp ”: • A = near(Road X) = .6 • B = near(Building Y ) = .8 • C = in(Suburb Z) = True The area defined by D = A ∩ B ∩ C would yield the

  7. The Exon Junction Complex and Srp54 Contribute to Hedgehog Signaling via ci RNA Splicing in Drosophila melanogaster.

    PubMed

    Garcia-Garcia, Elisa; Little, Jamie C; Kalderon, Daniel

    2017-08-01

    Hedgehog (Hh) regulates the Cubitus interruptus (Ci) transcription factor in Drosophila melanogaster by activating full-length Ci-155 and blocking processing to the Ci-75 repressor. However, the interplay between the regulation of Ci-155 levels and activity, as well as processing-independent mechanisms that affect Ci-155 levels, have not been explored extensively. Here, we identified Mago Nashi (Mago) and Y14 core Exon Junction Complex (EJC) proteins, as well as the Srp54 splicing factor, as modifiers of Hh pathway activity under sensitized conditions. Mago inhibition reduced Hh pathway activity by altering the splicing pattern of ci to reduce Ci-155 levels. Srp54 inhibition also affected pathway activity by reducing ci RNA levels but additionally altered Ci-155 levels and activity independently of ci splicing. Further tests using ci transgenes and ci mutations confirmed evidence from studying the effects of Mago and Srp54 that relatively small changes in the level of Ci-155 primary translation product alter Hh pathway activity under a variety of sensitized conditions. We additionally used ci transgenes lacking intron sequences or the presumed translation initiation codon for an alternatively spliced ci RNA to provide further evidence that Mago acts principally by modulating the levels of the major ci RNA encoding Ci-155, and to show that ci introns are necessary to support the production of sufficient Ci-155 for robust Hh signaling and may also be important mediators of regulatory inputs. Copyright © 2017 by the Genetics Society of America.

  8. Topological Phases in Graphene Nanoribbons: Junction States, Spin Centers, and Quantum Spin Chains

    NASA Astrophysics Data System (ADS)

    Cao, Ting; Zhao, Fangzhou; Louie, Steven G.

    2017-08-01

    We show that semiconducting graphene nanoribbons (GNRs) of different width, edge, and end termination (synthesizable from molecular precursors with atomic precision) belong to different electronic topological classes. The topological phase of GNRs is protected by spatial symmetries and dictated by the terminating unit cell. We have derived explicit formulas for their topological invariants and shown that localized junction states developed between two GNRs of distinct topology may be tuned by lateral junction geometry. The topology of a GNR can be further modified by dopants, such as a periodic array of boron atoms. In a superlattice consisting of segments of doped and pristine GNRs, the junction states are stable spin centers, forming a Heisenberg antiferromagnetic spin 1 /2 chain with tunable exchange interaction. The discoveries here not only are of scientific interest for studies of quasi-one-dimensional systems, but also open a new path for design principles of future GNR-based devices through their topological characters.

  9. Topological Phases in Graphene Nanoribbons: Junction States, Spin Centers, and Quantum Spin Chains.

    PubMed

    Cao, Ting; Zhao, Fangzhou; Louie, Steven G

    2017-08-18

    We show that semiconducting graphene nanoribbons (GNRs) of different width, edge, and end termination (synthesizable from molecular precursors with atomic precision) belong to different electronic topological classes. The topological phase of GNRs is protected by spatial symmetries and dictated by the terminating unit cell. We have derived explicit formulas for their topological invariants and shown that localized junction states developed between two GNRs of distinct topology may be tuned by lateral junction geometry. The topology of a GNR can be further modified by dopants, such as a periodic array of boron atoms. In a superlattice consisting of segments of doped and pristine GNRs, the junction states are stable spin centers, forming a Heisenberg antiferromagnetic spin 1/2 chain with tunable exchange interaction. The discoveries here not only are of scientific interest for studies of quasi-one-dimensional systems, but also open a new path for design principles of future GNR-based devices through their topological characters.

  10. Pair-breaking mechanisms in superconductor—normal-metal—superconductor junctions

    NASA Astrophysics Data System (ADS)

    Yang, H. C.; Finnemore, D. K.

    1984-08-01

    The critical current density Jc has been measured for superconductor—normal-metal—superconductor (S-N-S) junctions over a wide range of temperature and composition in order to determine the depairing effects of magnetic impurities. Junctions, which are in a sandwich geometry with the N layer typically 600 nm thick, show well-defined diffraction patterns indicating that the junctions are of high quality. Below 4.2 K, the temperature dependence of Jc is found to follow a modified bridge theory based on the work of Makeev et al.

    (Fiz. Nizk. Temp. 6, 429 (1980) [Sov. J. Low Temp. Phys. 6, 203 (1980)])
    . In this range, the coherence length and order parameter in the superconductor are essentially independent of temperature, and so it is reasonable that the bridge and sandwich geometry results are similar. As the temperature approaches the transition temperature (TcS) of the superconductor, Jc was found to be proportional to (1-T/TcS)2 as predicted by de Gennes.

  11. Fluid displacement during droplet formation at microfluidic flow-focusing junctions.

    PubMed

    Huang, Haishui; He, Xiaoming

    2015-11-07

    Microdroplets and microcapsules have been widely produced using microfluidic flow-focusing junctions for biomedical and chemical applications. However, the multiphase microfluidic flow at the flow-focusing junction has not been well investigated. In this study, the displacement of two (core and shell) aqueous fluids that disperse into droplets altogether in a carrier oil emulsion was investigated both numerically and experimentally. It was found that extensive displacement of the two aqueous fluids within the droplet during its formation could occur as a result of the shear effect of the carrier fluid and the capillary effect of interfacial tension. We further identified that the two mechanisms of fluid displacement can be evaluated by two dimensionless parameters. The quantitative relationship between the degree of fluid displacement and these two dimensionless parameters was determined experimentally. Finally, we demonstrated that the degree of fluid displacement could be controlled to generate hydrogel microparticles of different morphologies using planar or nonplanar flow-focusing junctions. These findings should provide useful guidance to the microfluidic production of microscale droplets or capsules for various biomedical and chemical applications.

  12. Direct determination of minority carrier diffusion lengths at axial GaAs nanowire p-n junctions.

    PubMed

    Gutsche, Christoph; Niepelt, Raphael; Gnauck, Martin; Lysov, Andrey; Prost, Werner; Ronning, Carsten; Tegude, Franz-Josef

    2012-03-14

    Axial GaAs nanowire p-n diodes, possibly one of the core elements of future nanowire solar cells and light emitters, were grown via the Au-assisted vapor-liquid-solid mode, contacted by electron beam lithography, and investigated using electron beam induced current measurements. The minority carrier diffusion lengths and dynamics of both, electrons and holes, were determined directly at the vicinity of the p-n junction. The generated photocurrent shows an exponential decay on both sides of the junction and the extracted diffusion lengths are about 1 order of magnitude lower compared to bulk material due to surface recombination. Moreover, the observed strong diameter-dependence is well in line with the surface-to-volume ratio of semiconductor nanowires. Estimating the surface recombination velocities clearly indicates a nonabrupt p-n junction, which is in essential agreement with the model of delayed dopant incorporation in the Au-assisted vapor-liquid-solid mechanism. Surface passivation using ammonium sulfide effectively reduces the surface recombination and thus leads to higher minority carrier diffusion lengths. © 2012 American Chemical Society

  13. Controlling the rectification properties of molecular junctions through molecule–electrode coupling

    DOE PAGES

    Koepf, Matthieu; Koenigsmann, Christopher; Ding, Wendu; ...

    2016-08-17

    The development of molecular components functioning as switches, rectifiers or amplifiers is a great challenge in molecular electronics. A desirable property of such components is functional robustness, meaning that the intrinsic functionality of components must be preserved regardless of the strategy used to integrate them into the final assemblies. Here, this issue is investigated for molecular diodes based on N-phenylbenzamide (NPBA) backbones. The transport properties of molecular junctions derived from NPBA are characterized while varying the nature of the functional groups interfacing the backbone and the gold electrodes required for break-junction measurements. Furthermore, combining experimental and theoretical methods, it ismore » shown that at low bias (<0.85 V) transport is determined by the same frontier molecular orbital originating from the NPBA core, regardless of the anchoring group employed. The magnitude of rectification, however, is strongly dependent on the strength of the electronic coupling at the gold–NPBA interface and on the spatial distribution of the local density of states of the dominant transport channel of the molecular junction.« less

  14. Controlling the rectification properties of molecular junctions through molecule–electrode coupling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koepf, Matthieu; Koenigsmann, Christopher; Ding, Wendu

    The development of molecular components functioning as switches, rectifiers or amplifiers is a great challenge in molecular electronics. A desirable property of such components is functional robustness, meaning that the intrinsic functionality of components must be preserved regardless of the strategy used to integrate them into the final assemblies. Here, this issue is investigated for molecular diodes based on N-phenylbenzamide (NPBA) backbones. The transport properties of molecular junctions derived from NPBA are characterized while varying the nature of the functional groups interfacing the backbone and the gold electrodes required for break-junction measurements. Furthermore, combining experimental and theoretical methods, it ismore » shown that at low bias (<0.85 V) transport is determined by the same frontier molecular orbital originating from the NPBA core, regardless of the anchoring group employed. The magnitude of rectification, however, is strongly dependent on the strength of the electronic coupling at the gold–NPBA interface and on the spatial distribution of the local density of states of the dominant transport channel of the molecular junction.« less

  15. Entrainment, retention, and transport of freely swimming fish in junction gaps between commercial barges operating on the Illinois Waterway

    USGS Publications Warehouse

    Davis, Jeremiah J.; Jackson, P. Ryan; Engel, Frank; LeRoy, Jessica Z.; Neeley, Rebecca N.; Finney, Samuel T.; Murphy, Elizabeth A.

    2016-01-01

    Large Electric Dispersal Barriers were constructed in the Chicago Sanitary and Ship Canal (CSSC) to prevent the transfer of invasive fish species between the Mississippi River Basin and the Great Lakes Basin while simultaneously allowing the passage of commercial barge traffic. We investigated the potential for entrainment, retention, and transport of freely swimming fish within large gaps (> 50 m3) created at junction points between barges. Modified mark and capture trials were employed to assess fish entrainment, retention, and transport by barge tows. A multi-beam sonar system enabled estimation of fish abundance within barge junction gaps. Barges were also instrumented with acoustic Doppler velocity meters to map the velocity distribution in the water surrounding the barge and in the gap formed at the junction of two barges. Results indicate that the water inside the gap can move upstream with a barge tow at speeds near the barge tow travel speed. Water within 1 m to the side of the barge junction gaps was observed to move upstream with the barge tow. Observed transverse and vertical water velocities suggest pathways by which fish may potentially be entrained into barge junction gaps. Results of mark and capture trials provide direct evidence that small fish can become entrained by barges, retained within junction gaps, and transported over distances of at least 15.5 km. Fish entrained within the barge junction gap were retained in that space as the barge tow transited through locks and the Electric Dispersal Barriers, which would be expected to impede fish movement upstream.

  16. Rectified tunneling current response of bio-functionalized metal-bridge-metal junctions.

    PubMed

    Liu, Yaqing; Offenhäusser, Andreas; Mayer, Dirk

    2010-01-15

    Biomolecular bridged nanostructures allow direct electrical addressing of electroactive biomolecules, which is of interest for the development of bioelectronic and biosensing hybrid junctions. In the present paper, the electroactive biomolecule microperoxidase-11 (MP-11) was integrated into metal-bridge-metal (MBM) junctions assembled from a scanning tunneling microscope (STM) setup. Before immobilization of MP-11, the Au working electrode was first modified by a self-assembled monolayer of 1-undecanethiol (UDT). A symmetric and potential independent response of current-bias voltage (I(t)/V(b)) was observed for the Au (substrate)/UDT/Au (tip) junction. However, the I(t)/V(b) characteristics became potential dependent and asymmetrical after binding of MP-11 between the electrodes of the junction. The rectification ratio of the asymmetric current response varies with gate electrode modulation. A resonant tunneling process between metal electrode and MP-11 enhances the tunneling current and is responsible for the observed rectification. Our investigations demonstrated that functional building blocks of proteins can be reassembled into new conceptual devices with operation modes deviating from their native function, which could prove highly useful in the design of future biosensors and bioelectronic devices. Copyright 2009 Elsevier B.V. All rights reserved.

  17. To What Extent is Primate Second Molar Enamel Occlusal Morphology Shaped by the Enamel-Dentine Junction?

    PubMed Central

    Gilissen, Emmanuel; Thiery, Ghislain

    2015-01-01

    The form of two hard tissues of the mammalian tooth, dentine and enamel, is the result of a combination of the phylogenetic inheritance of dental traits and the adaptive selection of these traits during evolution. Recent decades have been significant in unveiling developmental processes controlling tooth morphogenesis, dental variation and the origination of dental novelties. The enamel-dentine junction constitutes a precursor for the morphology of the outer enamel surface through growth of the enamel cap which may go along with the addition of original features. The relative contribution of these two tooth components to morphological variation and their respective response to natural selection is a major issue in paleoanthropology. This study will determine how much enamel morphology relies on the form of the enamel-dentine junction. The outer occlusal enamel surface and the enamel-dentine junction surface of 76 primate second upper molars are represented by polygonal meshes and investigated using tridimensional topometrical analysis. Quantitative criteria (elevation, inclination, orientation, curvature and occlusal patch count) are introduced to show that the enamel-dentine junction significantly constrains the topographical properties of the outer enamel surface. Our results show a significant correlation for elevation, orientation, inclination, curvature and occlusal complexity between the outer enamel surface and the enamel dentine junction for all studied primate taxa with the exception of four modern humans for curvature (p<0.05). Moreover, we show that, for all selected topometrical parameters apart from occlusal patch count, the recorded correlations significantly decrease along with enamel thickening in our sample. While preserving tooth integrity by providing resistance to wear and fractures, the variation of enamel thickness may modify the curvature present at the occlusal enamel surface in relation to enamel-dentine junction, potentially modifying dental functionalities such as blunt versus sharp dental tools. In terms of natural selection, there is a balance between increasing tooth resistance and maintaining efficient dental tools. In this sense the enamel cap acts as a functional buffer for the molar occlusal pattern. In primates, results suggest a primary emergence of dental novelties on the enamel-dentine junction and a secondary transposition of these novelties with no or minor modifications of dental functionalities by the enamel cap. Whereas enamel crenations have been reported by previous studies, our analysis do not support the presence of enamel tubercles without dentine relief nuclei. As is, the enamel cap is, at most, a secondary source of morphological novelty. PMID:26406597

  18. Renewable Decyl-alcohol Templated Synthesis of Si-Cu Core-Shell Nanocomposite

    NASA Astrophysics Data System (ADS)

    Salim, M. A.; >H Misran, S. Z.; Shah, N. N. H.; Razak, N. A. A.; >A Manap,

    2013-06-01

    Monodispersed silica spheres with particles size of ca. 450 nm were successfully synthesized using a modified Stöber method. The synthesized monodispersed silica spheres were successfully coated with copper using modified sol-gel method employing nonsurfactant surface modifiers and catalyst. A renewable palm oil based decyl-alcohol (C10) as nonsurfactant surface modifiers and catalyst were used to modify the silica surfaces prior to coating with copper. The X-ray diffraction patterns of Si-Cu core-shell exhibited a broad peak corresponding to amorphous silica networks and monoclinic CuO phase. It was found that samples modified in the presence of 1 ml catalyst exhibited homogeneous deposition. The surface area of core materials (SiO2) was at ca. 7.04 m2/g and Si-Cu core-shell was at ca. 8.21 m2/g. The band gap of samples prepared with and without catalyst was calculated to be ca. 2.45 eV and ca. 3.90 eV respectively based on the UV-vis absorption spectrum of the product.

  19. Monitoring gap junctional communication in astrocytes from acute adult mouse brain slices using the gap-FRAP technique.

    PubMed

    Yi, Chenju; Teillon, Jérémy; Koulakoff, Annette; Berry, Hugues; Giaume, Christian

    2018-06-01

    Intercellular communication through gap junction channels plays a key role in cellular homeostasis and in synchronizing physiological functions, a feature that is modified in number of pathological situations. In the brain, astrocytes are the cell population that expresses the highest amount of gap junction proteins, named connexins. Several techniques have been used to assess the level of gap junctional communication in astrocytes, but so far they remain very difficult to apply in adult brain tissue. Here, using specific loading of astrocytes with sulforhodamine 101, we adapted the gap-FRAP (Fluorescence Recovery After Photobleaching) to acute hippocampal slices from 9 month-old adult mice. We show that gap junctional communication monitored in astrocytes with this technique was inhibited either by pharmacological treatment with a gap junctional blocker or in mice lacking the two main astroglial connexins, while a partial inhibition was measured when only one connexin was knocked-out. We validate this approach using a mathematical model of sulforhodamine 101 diffusion in an elementary astroglial network and a quantitative analysis of the exponential fits to the fluorescence recovery curves. Consequently, we consider that the adaptation of the gap-FRAP technique to acute brain slices from adult mice provides an easy going and valuable approach that allows overpassing this age-dependent obstacle and will facilitate the investigation of gap junctional communication in adult healthy or pathological brain. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Strings with a confining core in a quark-gluon plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Layek, Biswanath; Mishra, Ananta P.; Srivastava, Ajit M.

    2005-04-01

    We consider the intersection of N different interfaces interpolating between different Z{sub N} vacua of an SU(N) gauge theory using the Polyakov loop order parameter. Topological arguments show that at such a stringlike junction, the order parameter should vanish, implying that the core of this string (i.e. the junction region of all the interfaces) is in the confining phase. Using the effective potential for the Polyakov loop proposed by Pisarski for QCD, we use numerical minimization technique and estimate the energy per unit length of the core of this string to be about 2.7 GeV/fm at a temperature about twicemore » the critical temperature. For the parameters used, the interface tension is obtained to be about 7 GeV/fm{sup 2}. Lattice simulation of pure gauge theories should be able to investigate properties of these strings. For QCD with quarks, it has been discussed in the literature that this Z{sub N} symmetry may still be meaningful, with quark contributions leading to explicit breaking of this Z{sub N} symmetry. With this interpretation, such quark-gluon plasma strings may play important role in the evolution of the quark-gluon plasma phase and in the dynamics of quark-hadron transition.« less

  1. Prediction of static friction coefficient in rough contacts based on the junction growth theory

    NASA Astrophysics Data System (ADS)

    Spinu, S.; Cerlinca, D.

    2017-08-01

    The classic approach to the slip-stick contact is based on the framework advanced by Mindlin, in which localized slip occurs on the contact area when the local shear traction exceeds the product between the local pressure and the static friction coefficient. This assumption may be too conservative in the case of high tractions arising at the asperities tips in the contact of rough surfaces, because the shear traction may be allowed to exceed the shear strength of the softer material. Consequently, the classic frictional contact model is modified in this paper so that gross sliding occurs when the junctions formed between all contacting asperities are independently sheared. In this framework, when the contact tractions, normal and shear, exceed the hardness of the softer material on the entire contact area, the material of the asperities yields and the junction growth process ends in all contact regions, leading to gross sliding inception. This friction mechanism is implemented in a previously proposed numerical model for the Cattaneo-Mindlin slip-stick contact problem, which is modified to accommodate the junction growth theory. The frictionless normal contact problem is solved first, then the tangential force is gradually increased, until gross sliding inception. The contact problems in the normal and in the tangential direction are successively solved, until one is stabilized in relation to the other. The maximum tangential force leading to a non-vanishing stick area is the static friction force that can be sustained by the rough contact. The static friction coefficient is eventually derived as the ratio between the latter friction force and the normal force.

  2. Acoustics and Trust of Separate-Flow Exhaust Nozzles With Mixing Devices for High-Bypass-Ratio Engines

    NASA Technical Reports Server (NTRS)

    Saiyed, Naseem H.; Mikkelsen, Kevin L.; Bridges, James E.

    2000-01-01

    The NASA Glenn Research Center recently completed an experimental study to reduce the jet noise from modern turbofan engines. The study concentrated on exhaust nozzle designs for high-bypass-ratio engines. These designs modified the core and fan nozzles individually and simultaneously. Several designs provided an ideal jet noise reduction of over 2.5 EPNdB for the effective perceived noise level (EPNL) metric. Noise data, after correcting for takeoff thrust losses, indicated over a 2.0-EPNdB reduction for nine designs. Individually modifying the fan nozzle did not provide attractive EPNL reductions. Designs in which only the core nozzle was modified provided greater EPNL reductions. Designs in which core and fan nozzles were modified simultaneously provided the greatest EPNL reduction. The best nozzle design had a 2.7-EPNdB reduction (corrected for takeoff thrust loss) with a 0.06-point cruise thrust loss. This design simultaneously employed chevrons on the core and fan nozzles. In comparison with chevrons, tabs appeared to be an inefficient method for reducing jet noise. Data trends indicate that the sum of the thrust losses from individually modifying core and fan nozzles did not generally equal the thrust loss from modifying them simultaneously. Flow blockage from tabs did not scale directly with cruise thrust loss and the interaction between fan flow and the core nozzle seemed to strongly affect noise and cruise performance. Finally, the nozzle configuration candidates for full-scale engine demonstrations are identified.

  3. Magnetization processes in core/shell exchange-spring structures.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, J. S.

    2015-03-27

    The magnetization reversal processes in cylindrical and spherical soft core/hard shell exchange-spring structures are investigated via the analytical nucleation theory, and are verified with numerical micromagnetic simulations. At small core sizes, the nucleation of magnetic reversal proceeds via the modified bulging mode, where the transverse component of the magnetization is only semi-coherent in direction and the nucleation field contains a contribution from self-demagnetization. For large core sizes, the modified curling mode, where the magnetization configuration is vortex-like, is favored at nucleation. The preference for the modified curling mode is beneficial in that the fluxclosure allows cylindrical and spherical core/shell exchange-springmore » elements to be densely packed into bulk permanent magnets without affecting the nucleation field, thereby offering the potential for high energy product.« less

  4. Identification of Core Competencies for an Undergraduate Food Safety Curriculum Using a Modified Delphi Approach

    ERIC Educational Resources Information Center

    Johnston, Lynette M.; Wiedmann, Martin; Orta-Ramirez, Alicia; Oliver, Haley F.; Nightingale, Kendra K.; Moore, Christina M.; Stevenson, Clinton D.; Jaykus, Lee-Ann

    2014-01-01

    Identification of core competencies for undergraduates in food safety is critical to assure courses and curricula are appropriate in maintaining a well-qualified food safety workforce. The purpose of this study was to identify and refine core competencies relevant to postsecondary food safety education using a modified Delphi method. Twenty-nine…

  5. Septate Junction Proteins Play Essential Roles in Morphogenesis Throughout Embryonic Development in Drosophila

    PubMed Central

    Hall, Sonia; Ward, Robert E.

    2016-01-01

    The septate junction (SJ) is the occluding junction found in the ectodermal epithelia of invertebrate organisms, and is essential to maintain chemically distinct compartments in epithelial organs, to provide the blood–brain barrier in the nervous system, and to provide an important line of defense against invading pathogens. More than 20 genes have been identified to function in the establishment or maintenance of SJs in Drosophila melanogaster. Numerous studies have demonstrated the cell biological function of these proteins in establishing the occluding junction, whereas very few studies have examined further developmental roles for them. Here we examined embryos with mutations in nine different core SJ genes and found that all nine result in defects in embryonic development as early as germ band retraction, with the most penetrant defect observed in head involution. SJ genes are also required for cell shape changes and cell rearrangements that drive the elongation of the salivary gland during midembryogenesis. Interestingly, these developmental events occur at a time prior to the formation of the occluding junction, when SJ proteins localize along the lateral membrane and have not yet coalesced into the region of the SJ. Together, these observations reveal an underappreciated role for a large group of SJ genes in essential developmental events during embryogenesis, and suggest that the function of these proteins in facilitating cell shape changes and rearrangements is independent of their role in the occluding junction. PMID:27261004

  6. Phase dynamics of single long Josephson junction in MgB2 superconductor

    NASA Astrophysics Data System (ADS)

    Chimouriya, Shanker Pd.; Ghimire, Bal Ram; Kim, Ju H.

    2018-05-01

    A system of perturbed sine Gordon equations is derived to a superconductor-insulator-superconductor (SIS) long Joseph-son junction as an extension of the Ambegaokar-Baratoff relation, following the long route of path integral formalism. A computer simulation is performed by discretizing the equations using finite difference approximation and applied to the MgB2 superconductor with SiO2 as the junction material. The solution of unperturbed sG equation is taken as the initial profile for the simulation and observed how the perturbation terms play the role to modify it. It is found initial profile deformed as time goes on. The variation of total Josephson current has also been observed. It is found that, the perturbation terms play the role for phase frustration. The phase frustration achieves quicker for high tunneling current.

  7. Electronically Transparent Au-N Bonds for Molecular Junctions.

    PubMed

    Zang, Yaping; Pinkard, Andrew; Liu, Zhen-Fei; Neaton, Jeffrey B; Steigerwald, Michael L; Roy, Xavier; Venkataraman, Latha

    2017-10-25

    We report a series of single-molecule transport measurements carried out in an ionic environment with oligophenylenediamine wires. These molecules exhibit three discrete conducting states accessed by electrochemically modifying the contacts. Transport in these junctions is defined by the oligophenylene backbone, but the conductance is increased by factors of ∼20 and ∼400 when compared to traditional dative junctions. We propose that the higher-conducting states arise from in situ electrochemical conversion of the dative Au←N bond into a new type of Au-N contact. Density functional theory-based transport calculations establish that the new contacts dramatically increase the electronic coupling of the oligophenylene backbone to the Au electrodes, consistent with experimental transport data. The resulting contact resistance is the lowest reported to date; more generally, our work demonstrates a facile method for creating electronically transparent metal-organic interfaces.

  8. Core/shell structured Zn/ZnO nanoparticles synthesized by gaseous laser ablation with enhanced photocatalysis efficiency

    NASA Astrophysics Data System (ADS)

    Song, Lu; Wang, Yafei; Ma, Jing; Zhang, Qinghua; Shen, Zhijian

    2018-06-01

    Zinc oxide (ZnO) is a competitive candidate in semiconductor photocatalysts, only if the efficiency could be fully optimized especially by tailored nanostructures. Here we report a kind of core/shell structured Zn/ZnO nanoparticles with enhanced photocatalysis efficiency, which were synthesized by a highly-productive gaseous laser ablation method. The nanodroplets generated by laser ablation would be reduced to zinc in the protective atmosphere, and further be oxidized at surface to form a specific core/shell structured Zn/ZnO nanoparticles within seconds. Thanks to the formation of this Zn-ZnO Schottky junction, the photocatalysis degradation efficiency of such core/shell Zn/ZnO nanostructure is significantly improved owing to the enhanced visible light absorption and inhibited carrier recombination by introducing the metallic zinc.

  9. Magnetic nanostructures.

    PubMed

    Bennemann, K

    2010-06-23

    Characteristic results of magnetism in small particles, thin films and tunnel junctions are presented. As a consequence of the reduced atomic coordination in small clusters and thin films the electronic states and density of states are modified. Thus, magnetic moments and magnetization are affected. Generally, in clusters and thin films magnetic anisotropy plays a special role. In tunnel junctions the interplay of magnetism, spin currents and superconductivity are of particular interest. In ring-like mesoscopic systems Aharonov-Bohm-induced currents are studied. Results are given for single transition metal clusters, cluster ensembles, thin films, mesoscopic structures and tunnel systems. © 2010 IOP Publishing Ltd

  10. Ideal solar cell equation in the presence of photon recycling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lan, Dongchen, E-mail: d.lan@unsw.edu.au; Green, Martin A., E-mail: m.green@unsw.edu.au

    Previous derivations of the ideal solar cell equation based on Shockley's p-n junction diode theory implicitly assume negligible effects of photon recycling. This paper derives the equation in the presence of photon recycling that modifies the values of dark saturation and light-generated currents, using an approach applicable to arbitrary three-dimensional geometries with arbitrary doping profile and variable band gap. The work also corrects an error in previous work and proves the validity of the reciprocity theorem for charge collection in such a more general case with the previously neglected junction depletion region included.

  11. Transition from slab to slabless: Results from the 1993 Mendocino triple junction seismic experiment

    USGS Publications Warehouse

    Beaudoin, B.C.; Godfrey, N.J.; Klemperer, S.L.; Lendl, C.; Trehu, A.M.; Henstock, T.J.; Levander, A.; Holl, J.E.; Meltzer, A.S.; Luetgert, J.H.; Mooney, W.D.

    1996-01-01

    Three seismic refraction-reflection profiles, part of the Mendocino triple junction seismic experiment, allow us to compare and contrast crust and upper mantle of the North American margin before and after it is modified by passage of the Mendocino triple junction. Upper crustal velocity models reveal an asymmetric Great Valley basin overlying Sierran or ophiolitic rocks at the latitude of Fort Bragg, California, and overlying Sierran or Klamath rocks near Redding, California. In addition, the upper crustal velocity structure indicates that Franciscan rocks underlie the Klamath terrane east of Eureka, California. The Franciscan complex is, on average, laterally homogeneous and is thickest in the triple junction region. North of the triple junction, the Gorda slab can be traced 150 km inboard from the Cascadia subduction zone. South of the triple junction, strong precritical reflections indicate partial melt and/or metamorphic fluids at the base of the crust or in the upper mantle. Breaks in these reflections are correlated with the Maacama and Bartlett Springs faults, suggesting that these faults extend at least to the mantle. We interpret our data to indicate tectonic thickening of the Franciscan complex in response to passage of the Mendocino triple junction and an associated thinning of these rocks south of the triple junction due to assimilation into melt triggered by upwelling asthenosphere. The region of thickened Franciscan complex overlies a zone of increased scattering, intrinsic attenuation, or both, resulting from mechanical mixing of lithologies and/or partial melt beneath the onshore projection of the Mendocino fracture zone. Our data reveal that we have crossed the southern edge of the Gorda slab and that this edge and/or the overlying North American crust may have fragmented because of the change in stress presented by the edge.

  12. Mitochondrial filaments and clusters as intracellular power-transmitting cables.

    PubMed

    Skulachev, V P

    2001-01-01

    Mitochondria exist in two interconverting forms; as small isolated particles, and as extended filaments, networks or clusters connected with intermitochondrial junctions. Extended mitochondria can represent electrically united systems, which can facilitate energy delivery from the cell periphery to the cell core and organize antioxidant defence of the cell interior when O2 is consumed by mitochondrial clusters near the the outer cell membrane, and protonic potential is transmitted to the cell core mitochondria to form ATP. As to small mitochondria, they might represent a transportable form of these organelles.

  13. GaAs core--shell nanowires for photovoltaic applications.

    PubMed

    Czaban, Josef A; Thompson, David A; LaPierre, Ray R

    2009-01-01

    We report the use of Te as an n-type dopant in GaAs core-shell p-n junction nanowires for use in photovoltaic devices. Te produced significant change in the morphology of GaAs nanowires grown by the vapor-liquid-solid process in a molecular beam epitaxy system. The increase in radial growth of nanowires due to the surfactant effect of Te had a significant impact on the operating characteristics of photovoltaic devices. A decrease in solar cell efficiency occurred when the Te-doped GaAs growth duration was increased.

  14. MicroRNA Intercellular Transfer and Bioelectrical Regulation of Model Multicellular Ensembles by the Gap Junction Connectivity.

    PubMed

    Cervera, Javier; Meseguer, Salvador; Mafe, Salvador

    2017-08-17

    We have studied theoretically the microRNA (miRNA) intercellular transfer through voltage-gated gap junctions in terms of a biophysically grounded system of coupled differential equations. Instead of modeling a specific system, we use a general approach describing the interplay between the genetic mechanisms and the single-cell electric potentials. The dynamics of the multicellular ensemble are simulated under different conditions including spatially inhomogeneous transcription rates and local intercellular transfer of miRNAs. These processes result in spatiotemporal changes of miRNA, mRNA, and ion channel protein concentrations that eventually modify the bioelectrical states of small multicellular domains because of the ensemble average nature of the electrical potential. The simulations allow a qualitative understanding of the context-dependent nature of the effects observed when specific signaling molecules are transferred through gap junctions. The results suggest that an efficient miRNA intercellular transfer could permit the spatiotemporal control of small cellular domains by the conversion of single-cell genetic and bioelectric states into multicellular states regulated by the gap junction interconnectivity.

  15. Schottky Barrier Height Tuning via the Dopant Segregation Technique through Low-Temperature Microwave Annealing.

    PubMed

    Fu, Chaochao; Zhou, Xiangbiao; Wang, Yan; Xu, Peng; Xu, Ming; Wu, Dongping; Luo, Jun; Zhao, Chao; Zhang, Shi-Li

    2016-04-27

    The Schottky junction source/drain structure has great potential to replace the traditional p/n junction source/drain structure of the future ultra-scaled metal-oxide-semiconductor field effect transistors (MOSFETs), as it can form ultimately shallow junctions. However, the effective Schottky barrier height (SBH) of the Schottky junction needs to be tuned to be lower than 100 meV in order to obtain a high driving current. In this paper, microwave annealing is employed to modify the effective SBH of NiSi on Si via boron or arsenic dopant segregation. The barrier height decreased from 0.4-0.7 eV to 0.2-0.1 eV for both conduction polarities by annealing below 400 °C. Compared with the required temperature in traditional rapid thermal annealing, the temperature demanded in microwave annealing is ~60 °C lower, and the mechanisms of this observation are briefly discussed. Microwave annealing is hence of high interest to future semiconductor processing owing to its unique capability of forming the metal/semiconductor contact at a remarkably lower temperature.

  16. Schottky Barrier Height Tuning via the Dopant Segregation Technique through Low-Temperature Microwave Annealing

    PubMed Central

    Fu, Chaochao; Zhou, Xiangbiao; Wang, Yan; Xu, Peng; Xu, Ming; Wu, Dongping; Luo, Jun; Zhao, Chao; Zhang, Shi-Li

    2016-01-01

    The Schottky junction source/drain structure has great potential to replace the traditional p/n junction source/drain structure of the future ultra-scaled metal-oxide-semiconductor field effect transistors (MOSFETs), as it can form ultimately shallow junctions. However, the effective Schottky barrier height (SBH) of the Schottky junction needs to be tuned to be lower than 100 meV in order to obtain a high driving current. In this paper, microwave annealing is employed to modify the effective SBH of NiSi on Si via boron or arsenic dopant segregation. The barrier height decreased from 0.4–0.7 eV to 0.2–0.1 eV for both conduction polarities by annealing below 400 °C. Compared with the required temperature in traditional rapid thermal annealing, the temperature demanded in microwave annealing is ~60 °C lower, and the mechanisms of this observation are briefly discussed. Microwave annealing is hence of high interest to future semiconductor processing owing to its unique capability of forming the metal/semiconductor contact at a remarkably lower temperature. PMID:28773440

  17. Semi-automatic delineation of the spino-laminar junction curve on lateral x-ray radiographs of the cervical spine

    NASA Astrophysics Data System (ADS)

    Narang, Benjamin; Phillips, Michael; Knapp, Karen; Appelboam, Andy; Reuben, Adam; Slabaugh, Greg

    2015-03-01

    Assessment of the cervical spine using x-ray radiography is an important task when providing emergency room care to trauma patients suspected of a cervical spine injury. In routine clinical practice, a physician will inspect the alignment of the cervical spine vertebrae by mentally tracing three alignment curves along the anterior and posterior sides of the cervical vertebral bodies, as well as one along the spinolaminar junction. In this paper, we propose an algorithm to semi-automatically delineate the spinolaminar junction curve, given a single reference point and the corners of each vertebral body. From the reference point, our method extracts a region of interest, and performs template matching using normalized cross-correlation to find matching regions along the spinolaminar junction. Matching points are then fit to a third order spline, producing an interpolating curve. Experimental results demonstrate promising results, on average producing a modified Hausdorff distance of 1.8 mm, validated on a dataset consisting of 29 patients including those with degenerative change, retrolisthesis, and fracture.

  18. High performance as-grown and annealed high band gap tunnel junctions: Te behavior at the interface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bedair, S. M., E-mail: bedair@ncsu.edu; Harmon, Jeffrey L.; Carlin, C. Zachary

    2016-05-16

    The performance of n{sup +}-InGaP(Te)/p{sup +}-AlGaAs(C) high band gap tunnel junctions (TJ) is critical for achieving high efficiency in multijunction photovoltaics. Several limitations for as grown and annealed TJ can be attributed to the Te doping of InGaP and its behavior at the junction interface. Te atoms in InGaP tend to get attached at step edges, resulting in a Te memory effect. In this work, we use the peak tunneling current (J{sub pk}) in this TJ as a diagnostic tool to study the behavior of the Te dopant at the TJ interface. Additionally, we used our understanding of Te behaviormore » at the interface, guided by device modeling, to modify the Te source shut-off procedure and the growth rate. These modifications lead to a record performance for both the as-grown (2000 A/cm{sup 2}) and annealed (1000 A/cm{sup 2}) high band gap tunnel junction.« less

  19. K-Band Latching Switches

    NASA Technical Reports Server (NTRS)

    Piotrowski, W. S.; Raue, J. E.

    1984-01-01

    Design, development, and tests are described for two single-pole-double-throw latching waveguide ferrite switches: a K-band switch in WR-42 waveguide and a Ka-band switch in WR-28 waveguide. Both switches have structurally simple junctions, mechanically interlocked without the use of bonding materials; they are impervious to the effects of thermal, shock, and vibration stresses. Ferrite material for the Ka-band switch with a proper combination of magnetic and dielectric properties was available and resulted in excellent low loss, wideband performance. The high power handling requirement of the K-band switch limited the choice of ferrite to nickel-zinc compositions with adequate magnetic properties, but with too low relative dielectric constant. The relative dielectric constant determines the junction dimensions for given frequency responses. In this case the too low value unavoidably leads to a larger than optimum junction volume, increasing the insertion loss and restricting the operating bandwidth. Efforts to overcome the materials-related difficulties through the design of a composite junction with increased effective dielectric properties efforts to modify the relative dielectric constant of nickel-zinc ferrite are examined.

  20. Periacetabular osteotomy and combined femoral head-neck junction osteochondroplasty: a minimum two-year follow-up cohort study.

    PubMed

    Nassif, Nader A; Schoenecker, Perry L; Thorsness, Robert; Clohisy, John C

    2012-11-07

    Proximal femoral deformities and overcorrection of the acetabulum both can result in secondary femoroacetabular impingement and suboptimal clinical results after periacetabular osteotomy. The purpose of the present study was to determine the rate of complications, the need for reoperations, radiographic correction, and hip function among patients who underwent periacetabular osteotomy and combined femoral head-neck osteochondroplasty as compared with those who underwent periacetabular osteotomy alone. Patients who underwent periacetabular osteotomy with or without osteochondroplasty of the femoral head-neck junction were evaluated retrospectively after a minimum duration of follow-up of two years. We compared the two groups with regard to the modified Harris hip score, radiographic correction, complications, and reoperations. Forty patients (forty hips) who underwent periacetabular osteotomy in conjunction with a femoral head-neck osteochondroplasty were compared with forty-eight patients (forty-eight hips) who underwent an isolated periacetabular osteotomy. Patients were evaluated after a mean duration of follow-up of 3.4 years (range, 2.0 to 9.7 years). Preoperatively, the modified Harris hip score (and standard deviation) was 64.3 ± 13.2 for the study group and 63.2 ± 13.4 for the comparison group. At the time of the latest follow-up, the modified Harris hip score was not significantly different between the study group and the comparison group (p = 0.17). Patients demonstrated equivalent preoperative deformities and postoperative acetabular radiographic parameters. There was a significant decrease in the alpha angle and improvement in head-neck offset in the study group. There was one reoperation for secondary impingement and/or labral pathology in the study group, compared with four reoperations in the comparison group. There were no adhesions requiring surgery, femoral neck fractures, instances of osteonecrosis, or increases in heterotopic ossification in the study group. Femoral head-neck junction osteochondroplasty performed concurrently with a periacetabular osteotomy for the treatment of symptomatic acetabular dysplasia and associated femoral head-neck junction deformities is not associated with an increased complication rate. This combined procedure provides effective correction of associated femoral head-neck deformities and produces similar early functional outcomes when compared with isolated periacetabular osteotomy. Therapeutic Level III.

  1. A NEUTRONIC REACTOR

    DOEpatents

    Luebke, E.A.; Vandenberg, L.B.

    1959-09-01

    A nuclear reactor for producing thermoelectric power is described. The reactor core comprises a series of thermoelectric assemblies, each assembly including fissionable fuel as an active element to form a hot junction and a thermocouple. The assemblies are disposed parallel to each other to form spaces and means are included for Introducing an electrically conductive coolant between the assemblies to form cold junctions of the thermocouples. An electromotive force is developed across the entire series of the thermoelectric assemblies due to fission heat generated in the fuel causing a current to flow perpendicular to the flow of coolant and is distributed to a load outside of the reactor by means of bus bars electrically connected to the outermost thermoelectric assembly.

  2. Achievement of high diode sensitivity via spin torque-induced resonant expulsion in vortex magnetic tunnel junction

    NASA Astrophysics Data System (ADS)

    Tsunegi, Sumito; Taniguchi, Tomohiro; Yakushiji, Kay; Fukushima, Akio; Yuasa, Shinji; Kubota, Hitoshi

    2018-05-01

    We investigated the spin-torque diode effect in a magnetic tunnel junction with FeB free layer. Vortex-core expulsion was observed near the boundary between vortex and uniform states. A high diode voltage of 24 mV was obtained with alternative input power of 0.3 µW, corresponding to huge diode sensitivity of 80,000 mV/mW. In the expulsion region, a broad peak in the high frequency region was observed, which is attributed to the weak excitation of uniform magnetization by thermal noise. The high diode sensitivity is of great importance for device applications such as telecommunications, radar detectors, and high-speed magnetic-field sensors.

  3. Electrical transport and structural characterization of epitaxial monolayer MoS2 /n- and p-doped GaN vertical lattice-matched heterojunctions

    NASA Astrophysics Data System (ADS)

    Ruzmetov, D.; O'Regan, T.; Zhang, K.; Herzing, A.; Mazzoni, A.; Chin, M.; Huang, S.; Zhang, Z.; Burke, R.; Neupane, M.; Birdwell, Ag; Shah, P.; Crowne, F.; Kolmakov, A.; Leroy, B.; Robinson, J.; Davydov, A.; Ivanov, T.

    We investigate vertical semiconductor junctions consisting of monolayer MoS2 that is epitaxially grown on n- and p-doped GaN crystals. Such a junction represents a building block for 2D/3D vertical semiconductor heterostructures. Epitaxial, lattice-matched growth of MoS2 on GaN is important to ensure high quality interfaces that are crucial for the efficient vertical transport. The MoS2/GaN junctions were characterized with cross-sectional and planar scanning transmission electron microscopy (STEM), scanning tunneling microscopy, and atomic force microscopy. The MoS2/GaN lattice mismatch is measured to be near 1% using STEM. The electrical transport in the out-of-plane direction across the MoS2/GaN junctions was measured using conductive atomic force microscopy and mechanical nano-probes inside a scanning electron microscope. Nano-disc metal contacts to MoS2 were fabricated by e-beam lithography and evaporation. The current-voltage curves of the vertical MoS2/GaN junctions exhibit rectification with opposite polarities for n-doped and p-doped GaN. The metal contact determines the general features of the current-voltage curves, and the MoS2 monolayer modifies the electrical transport across the contact/GaN interface.

  4. Simulation of the Mars Surface Solar Spectra for Optimized Performance of Triple-Junction Solar Cells

    NASA Technical Reports Server (NTRS)

    Edmondson, Kenneth M.; Joslin, David E.; Fetzer, Chris M.; King, RIchard R.; Karam, Nasser H.; Mardesich, Nick; Stella, Paul M.; Rapp, Donald; Mueller, Robert

    2007-01-01

    The unparalleled success of the Mars Exploration Rovers (MER) powered by GaInP/GaAs/Ge triple-junction solar cells has demonstrated a lifetime for the rovers that exceeded the baseline mission duration by more than a factor of five. This provides confidence in future longer-term solar powered missions on the surface of Mars. However, the solar cells used on the rovers are not optimized for the Mars surface solar spectrum, which is attenuated at shorter wavelengths due to scattering by the dusty atmosphere. The difference between the Mars surface spectrum and the AM0 spectrum increases with solar zenith angle and optical depth. The recent results of a program between JPL and Spectrolab to optimize GaInP/GaAs/Ge solar cells for Mars are presented. Initial characterization focuses on the solar spectrum at 60-degrees zenith angle at an optical depth of 0.5. The 60-degree spectrum is reduced to 1/6 of the AM0 intensity and is further reduced in the blue portion of the spectrum. JPL has modeled the Mars surface solar spectra, modified an X-25 solar simulator, and completed testing of Mars-optimized solar cells previously developed by Spectrolab with the modified X-25 solar simulator. Spectrolab has focused on the optimization of the higher efficiency Ultra Triple-Junction (UTJ) solar cell for Mars. The attenuated blue portion of the spectrum requires the modification of the top sub-cell in the GaInP/GaAs/Ge solar cell for improved current balancing in the triple-junction cell. Initial characterization confirms the predicted increase in power and current matched operation for the Mars surface 60-degree zenith angle solar spectrum.

  5. Crimpy enables discrimination of presynaptic and postsynaptic pools of a BMP at the Drosophila neuromuscular junction.

    PubMed

    James, Rebecca E; Hoover, Kendall M; Bulgari, Dinara; McLaughlin, Colleen N; Wilson, Christopher G; Wharton, Kristi A; Levitan, Edwin S; Broihier, Heather T

    2014-12-08

    Distinct pools of the bone morphogenetic protein (BMP) Glass bottom boat (Gbb) control structure and function of the Drosophila neuromuscular junction. Specifically, motoneuron-derived Gbb regulates baseline neurotransmitter release, whereas muscle-derived Gbb regulates neuromuscular junction growth. Yet how cells differentiate between these ligand pools is not known. Here we present evidence that the neuronal Gbb-binding protein Crimpy (Cmpy) permits discrimination of pre- and postsynaptic ligand by serving sequential functions in Gbb signaling. Cmpy first delivers Gbb to dense core vesicles (DCVs) for activity-dependent release from presynaptic terminals. In the absence of Cmpy, Gbb is no longer associated with DCVs and is not released by activity. Electrophysiological analyses demonstrate that Cmpy promotes Gbb's proneurotransmission function. Surprisingly, the Cmpy ectodomain is itself released upon DCV exocytosis, arguing that Cmpy serves a second function in BMP signaling. In addition to trafficking Gbb to DCVs, we propose that Gbb/Cmpy corelease from presynaptic terminals defines a neuronal protransmission signal. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. The role of Snell's law for a magnonic majority gate.

    PubMed

    Kanazawa, Naoki; Goto, Taichi; Sekiguchi, Koji; Granovsky, Alexander B; Ross, Caroline A; Takagi, Hiroyuki; Nakamura, Yuichi; Uchida, Hironaga; Inoue, Mitsuteru

    2017-08-11

    In the fifty years since the postulation of Moore's Law, the increasing energy consumption in silicon electronics has motivated research into emerging devices. An attractive research direction is processing information via the phase of spin waves within magnonic-logic circuits, which function without charge transport and the accompanying heat generation. The functional completeness of magnonic logic circuits based on the majority function was recently proved. However, the performance of such logic circuits was rather poor due to the difficulty of controlling spin waves in the input junction of the waveguides. Here, we show how Snell's law describes the propagation of spin waves in the junction of a Ψ-shaped magnonic majority gate composed of yttrium iron garnet with a partially metallized surface. Based on the analysis, we propose a magnonic counterpart of a core-cladding waveguide to control the wave propagation in the junction. This study has therefore experimentally demonstrated a fundamental building block of a magnonic logic circuit.

  7. The extracellular matrix component laminin promotes gap junction formation in the rat anterior pituitary gland.

    PubMed

    Horiguchi, Kotaro; Kouki, Tom; Fujiwara, Ken; Kikuchi, Motoshi; Yashiro, Takashi

    2011-03-01

    Folliculo-stellate (FS) cells in the anterior pituitary gland are believed to have multifunctional properties. FS cells connect to each other not only by mechanical means, but also by gap junctional cell-to-cell communication. Using transgenic rats that express green fluorescent protein (GFP) specifically in FS cells in the anterior pituitary gland (S100b-GFP rats), we recently revealed that FS cells in primary culture markedly change their shape, and form numerous interconnections with neighboring FS cells in the presence of laminin, an extracellular matrix (ECM) component of the basement membrane. Morphological and functional changes in cells are believed to be partly modified by matricrine signaling, by which ECM components function as cellular signals. In the present study, we examined whether gap junction formation between FS cells is affected by matricrine cues. A cell sorter was used to isolate FS cells from male S100b-GFP rat anterior pituitary for primary culture. We observed that mRNA and protein levels of connexin 43 in gap junction channels were clearly higher in the presence of laminin. In addition, we confirmed the formation of gap junctions between FS cells in primary culture by electron microscopy. Interestingly, we also observed that FS cells in the presence of laminin displayed well-developed rough endoplasmic reticulum and Golgi apparatus. Our findings suggest that, in anterior pituitary gland, FS cells may facilitate functional roles such as gap junctional cell-to-cell communication by matricrine signaling.

  8. Programmability of nanowire networks

    NASA Astrophysics Data System (ADS)

    Bellew, A. T.; Bell, A. P.; McCarthy, E. K.; Fairfield, J. A.; Boland, J. J.

    2014-07-01

    Electrical connectivity in networks of nanoscale junctions must be better understood if nanowire devices are to be scaled up from single wires to functional material systems. We show that the natural connectivity behaviour found in random nanowire networks presents a new paradigm for creating multi-functional, programmable materials. In devices made from networks of Ni/NiO core-shell nanowires at different length scales, we discover the emergence of distinct behavioural regimes when networks are electrically stressed. We show that a small network, with few nanowire-nanowire junctions, acts as a unipolar resistive switch, demonstrating very high ON/OFF current ratios (>105). However, large networks of nanowires distribute an applied bias across a large number of junctions, and thus respond not by switching but instead by evolving connectivity. We demonstrate that these emergent properties lead to fault-tolerant materials whose resistance may be tuned, and which are capable of adaptively reconfiguring under stress. By combining these two behavioural regimes, we demonstrate that the same nanowire network may be programmed to act both as a metallic interconnect, and a resistive switch device with high ON/OFF ratio. These results enable the fabrication of programmable, multi-functional materials from random nanowire networks.Electrical connectivity in networks of nanoscale junctions must be better understood if nanowire devices are to be scaled up from single wires to functional material systems. We show that the natural connectivity behaviour found in random nanowire networks presents a new paradigm for creating multi-functional, programmable materials. In devices made from networks of Ni/NiO core-shell nanowires at different length scales, we discover the emergence of distinct behavioural regimes when networks are electrically stressed. We show that a small network, with few nanowire-nanowire junctions, acts as a unipolar resistive switch, demonstrating very high ON/OFF current ratios (>105). However, large networks of nanowires distribute an applied bias across a large number of junctions, and thus respond not by switching but instead by evolving connectivity. We demonstrate that these emergent properties lead to fault-tolerant materials whose resistance may be tuned, and which are capable of adaptively reconfiguring under stress. By combining these two behavioural regimes, we demonstrate that the same nanowire network may be programmed to act both as a metallic interconnect, and a resistive switch device with high ON/OFF ratio. These results enable the fabrication of programmable, multi-functional materials from random nanowire networks. Electronic supplementary information (ESI) available: Nanowire statistics (length, diameter statistics, and oxide thickness) are provided. Forming curves for single junctions and networks. Passive voltage contrast image demonstrating selectivity of conductive pathways in 100 μm network. See DOI: 10.1039/c4nr02338b

  9. HGF Gene Modification in Mesenchymal Stem Cells Reduces Radiation-Induced Intestinal Injury by Modulating Immunity.

    PubMed

    Wang, Hua; Sun, Rui-Ting; Li, Yang; Yang, Yue-Feng; Xiao, Feng-Jun; Zhang, Yi-Kun; Wang, Shao-Xia; Sun, Hui-Yan; Zhang, Qun-Wei; Wu, Chu-Tse; Wang, Li-Sheng

    2015-01-01

    Effective therapeutic strategies to address intestinal complications after radiation exposure are currently lacking. Mesenchymal stem cells (MSCs), which display the ability to repair the injured intestine, have been considered as delivery vehicles for repair genes. In this study, we evaluated the therapeutic effect of hepatocyte growth factor (HGF)-gene-modified MSCs on radiation-induced intestinal injury (RIII). Female 6- to 8-week-old mice were radiated locally at the abdomen with a single 13-Gy dose of radiation and then treated with saline control, Ad-HGF or Ad-Null-modified MSCs therapy. The transient engraftment of human MSCs was detected via real-time PCR and immunostaining. The therapeutic effects of non- and HGF-modified MSCs were evaluated via FACS to determine the lymphocyte immunophenotypes; via ELISA to measure cytokine expression; via immunostaining to determine tight junction protein expression; via PCNA staining to examine intestinal epithelial cell proliferation; and via TUNEL staining to detect intestinal epithelial cell apoptosis. The histopathological recovery of the radiation-injured intestine was significantly enhanced following non- or HGF-modified MSCs treatment. Importantly, the radiation-induced immunophenotypic disorders of the mesenteric lymph nodes and Peyer's patches were attenuated in both MSCs-treated groups. Treatment with HGF-modified MSCs reduced the expression and secretion of inflammatory cytokines, including tumor necrosis factor alpha (TNF-α) and interferon-gamma (IFN-γ), increased the expression of the anti-inflammatory cytokine IL-10 and the tight junction protein ZO-1, and promoted the proliferation and reduced the apoptosis of intestinal epithelial cells. Treatment of RIII with HGF-gene-modified MSCs reduces local inflammation and promotes the recovery of small intestinal histopathology in a mouse model. These findings might provide an effective therapeutic strategy for RIII.

  10. Rat Nucleus Accumbens Core Astrocytes Modulate Reward and the Motivation to Self-Administer Ethanol after Abstinence

    PubMed Central

    Bull, Cecilia; Freitas, Kelen CC; Zou, Shiping; Poland, Ryan S; Syed, Wahab A; Urban, Daniel J; Minter, Sabrina C; Shelton, Keith L; Hauser, Kurt F; Negus, S Stevens; Knapp, Pamela E; Bowers, M Scott

    2014-01-01

    Our understanding of the active role that astrocytes play in modulating neuronal function and behavior is rapidly expanding, but little is known about the role that astrocytes may play in drug-seeking behavior for commonly abused substances. Given that the nucleus accumbens is critically involved in substance abuse and motivation, we sought to determine whether nucleus accumbens astrocytes influence the motivation to self-administer ethanol following abstinence. We found that the packing density of astrocytes that were expressing glial fibrillary acidic protein increased in the nucleus accumbens core (NAcore) during abstinence from EtOH self-administration. No change was observed in the nucleus accumbens shell. This increased NAcore astrocyte density positively correlated with the motivation for ethanol. Astrocytes can communicate with one another and influence neuronal activity through gap-junction hemichannels. Because of this, the effect of blocking gap-junction hemichannels on the motivation for ethanol was examined. The motivation to self-administer ethanol after 3 weeks abstinence was increased following microinjection of gap-junction hemichannel blockers into the NAcore at doses that block both neuronal and astrocytic channels. In contrast, no effect was observed following microinjection of doses that are not thought to block astrocytic channels or following microinjection of either dose into the nucleus accumbens shell. Additionally, the motivation for sucrose after 3 weeks abstinence was unaffected by NAcore gap-junction hemichannel blockers. Next, Designer Receptors Exclusively Activated by Designer Drugs (DREADDs) were selectively expressed in NAcore astrocytes to test the effect of astrocyte stimulation. DREADD activation increased cytosolic calcium in primary astrocytes, facilitated responding for rewarding brain stimulation, and reduced the motivation for ethanol after 3 weeks abstinence. This is the first work to modulate drug-seeking behavior with astrocyte-specific DREADDs. Taken together, our findings demonstrate that NAcore astrocytes can shape the motivation to self-administer ethanol; suggesting that the development of ligands which selectively stimulate astrocytes may be a successful strategy to abate ethanol-seeking behavior. PMID:24903651

  11. Rat nucleus accumbens core astrocytes modulate reward and the motivation to self-administer ethanol after abstinence.

    PubMed

    Bull, Cecilia; Freitas, Kelen C C; Zou, Shiping; Poland, Ryan S; Syed, Wahab A; Urban, Daniel J; Minter, Sabrina C; Shelton, Keith L; Hauser, Kurt F; Negus, S Stevens; Knapp, Pamela E; Bowers, M Scott

    2014-11-01

    Our understanding of the active role that astrocytes play in modulating neuronal function and behavior is rapidly expanding, but little is known about the role that astrocytes may play in drug-seeking behavior for commonly abused substances. Given that the nucleus accumbens is critically involved in substance abuse and motivation, we sought to determine whether nucleus accumbens astrocytes influence the motivation to self-administer ethanol following abstinence. We found that the packing density of astrocytes that were expressing glial fibrillary acidic protein increased in the nucleus accumbens core (NAcore) during abstinence from EtOH self-administration. No change was observed in the nucleus accumbens shell. This increased NAcore astrocyte density positively correlated with the motivation for ethanol. Astrocytes can communicate with one another and influence neuronal activity through gap-junction hemichannels. Because of this, the effect of blocking gap-junction hemichannels on the motivation for ethanol was examined. The motivation to self-administer ethanol after 3 weeks abstinence was increased following microinjection of gap-junction hemichannel blockers into the NAcore at doses that block both neuronal and astrocytic channels. In contrast, no effect was observed following microinjection of doses that are not thought to block astrocytic channels or following microinjection of either dose into the nucleus accumbens shell. Additionally, the motivation for sucrose after 3 weeks abstinence was unaffected by NAcore gap-junction hemichannel blockers. Next, Designer Receptors Exclusively Activated by Designer Drugs (DREADDs) were selectively expressed in NAcore astrocytes to test the effect of astrocyte stimulation. DREADD activation increased cytosolic calcium in primary astrocytes, facilitated responding for rewarding brain stimulation, and reduced the motivation for ethanol after 3 weeks abstinence. This is the first work to modulate drug-seeking behavior with astrocyte-specific DREADDs. Taken together, our findings demonstrate that NAcore astrocytes can shape the motivation to self-administer ethanol; suggesting that the development of ligands which selectively stimulate astrocytes may be a successful strategy to abate ethanol-seeking behavior.

  12. Modeling single molecule junction mechanics as a probe of interface bonding

    NASA Astrophysics Data System (ADS)

    Hybertsen, Mark S.

    2017-03-01

    Using the atomic force microscope based break junction approach, applicable to metal point contacts and single molecule junctions, measurements can be repeated thousands of times resulting in rich data sets characterizing the properties of an ensemble of nanoscale junction structures. This paper focuses on the relationship between the measured force extension characteristics including bond rupture and the properties of the interface bonds in the junction. A set of exemplary model junction structures has been analyzed using density functional theory based calculations to simulate the adiabatic potential surface that governs the junction elongation. The junction structures include representative molecules that bond to the electrodes through amine, methylsulfide, and pyridine links. The force extension characteristics are shown to be most effectively analyzed in a scaled form with maximum sustainable force and the distance between the force zero and force maximum as scale factors. Widely used, two parameter models for chemical bond potential energy versus bond length are found to be nearly identical in scaled form. Furthermore, they fit well to the present calculations of N-Au and S-Au donor-acceptor bonds, provided no other degrees of freedom are allowed to relax. Examination of the reduced problem of a single interface, but including relaxation of atoms proximal to the interface bond, shows that a single-bond potential form renormalized by an effective harmonic potential in series fits well to the calculated results. This allows relatively accurate extraction of the interface bond energy. Analysis of full junction models shows cooperative effects that go beyond the mechanical series inclusion of the second bond in the junction, the spectator bond that does not rupture. Calculations for a series of diaminoalkanes as a function of molecule length indicate that the most important cooperative effect is due to the interactions between the dipoles induced by the donor-acceptor bond formation at the junction interfaces. The force extension characteristic of longer molecules such as diaminooctane, where the dipole interaction effects drop to a negligible level, accurately fit to the renormalized single-bond potential form. The results suggest that measured force extension characteristics for single molecule junctions could be analyzed with a modified potential form that accounts for the energy stored in deformable mechanical components in series.

  13. Modeling single molecule junction mechanics as a probe of interface bonding

    DOE PAGES

    Hybertsen, Mark S.

    2017-03-07

    Using the atomic force microscope based break junction approach, applicable to metal point contacts and single molecule junctions, measurements can be repeated thousands of times resulting in rich data sets characterizing the properties of an ensemble of nanoscale junction structures. This paper focuses on the relationship between the measured force extension characteristics including bond rupture and the properties of the interface bonds in the junction. We analyzed a set of exemplary model junction structures using density functional theory based calculations to simulate the adiabatic potential surface that governs the junction elongation. The junction structures include representative molecules that bond tomore » the electrodes through amine, methylsulfide, and pyridine links. The force extension characteristics are shown to be most effectively analyzed in a scaled form with maximum sustainable force and the distance between the force zero and force maximum as scale factors. Widely used, two parameter models for chemical bond potential energy versus bond length are found to be nearly identical in scaled form. Furthermore, they fit well to the present calculations of N–Au and S–Au donor-acceptor bonds, provided no other degrees of freedom are allowed to relax. Examination of the reduced problem of a single interface, but including relaxation of atoms proximal to the interface bond, shows that a single-bond potential form renormalized by an effective harmonic potential in series fits well to the calculated results. This, then, allows relatively accurate extraction of the interface bond energy. Analysis of full junction models shows cooperative effects that go beyond the mechanical series inclusion of the second bond in the junction, the spectator bond that does not rupture. Calculations for a series of diaminoalkanes as a function of molecule length indicate that the most important cooperative effect is due to the interactions between the dipoles induced by the donor-acceptor bond formation at the junction interfaces. The force extension characteristic of longer molecules such as diaminooctane, where the dipole interaction effects drop to a negligible level, accurately fit to the renormalized single-bond potential form. Our results suggest that measured force extension characteristics for single molecule junctions could be analyzed with a modified potential form that accounts for the energy stored in deformable mechanical components in series.« less

  14. Modeling single molecule junction mechanics as a probe of interface bonding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hybertsen, Mark S.

    Using the atomic force microscope based break junction approach, applicable to metal point contacts and single molecule junctions, measurements can be repeated thousands of times resulting in rich data sets characterizing the properties of an ensemble of nanoscale junction structures. This paper focuses on the relationship between the measured force extension characteristics including bond rupture and the properties of the interface bonds in the junction. We analyzed a set of exemplary model junction structures using density functional theory based calculations to simulate the adiabatic potential surface that governs the junction elongation. The junction structures include representative molecules that bond tomore » the electrodes through amine, methylsulfide, and pyridine links. The force extension characteristics are shown to be most effectively analyzed in a scaled form with maximum sustainable force and the distance between the force zero and force maximum as scale factors. Widely used, two parameter models for chemical bond potential energy versus bond length are found to be nearly identical in scaled form. Furthermore, they fit well to the present calculations of N–Au and S–Au donor-acceptor bonds, provided no other degrees of freedom are allowed to relax. Examination of the reduced problem of a single interface, but including relaxation of atoms proximal to the interface bond, shows that a single-bond potential form renormalized by an effective harmonic potential in series fits well to the calculated results. This, then, allows relatively accurate extraction of the interface bond energy. Analysis of full junction models shows cooperative effects that go beyond the mechanical series inclusion of the second bond in the junction, the spectator bond that does not rupture. Calculations for a series of diaminoalkanes as a function of molecule length indicate that the most important cooperative effect is due to the interactions between the dipoles induced by the donor-acceptor bond formation at the junction interfaces. The force extension characteristic of longer molecules such as diaminooctane, where the dipole interaction effects drop to a negligible level, accurately fit to the renormalized single-bond potential form. Our results suggest that measured force extension characteristics for single molecule junctions could be analyzed with a modified potential form that accounts for the energy stored in deformable mechanical components in series.« less

  15. Cooling system for a nuclear reactor

    DOEpatents

    Amtmann, Hans H.

    1982-01-01

    A cooling system for a gas-cooled nuclear reactor is disclosed which includes at least one primary cooling loop adapted to pass coolant gas from the reactor core and an associated steam generator through a duct system having a main circulator therein, and at least one auxiliary cooling loop having communication with the reactor core and adapted to selectively pass coolant gas through an auxiliary heat exchanger and circulator. The main and auxiliary circulators are installed in a common vertical cavity in the reactor vessel, and a common return duct communicates with the reactor core and intersects the common cavity at a junction at which is located a flow diverter valve operative to effect coolant flow through either the primary or auxiliary cooling loops.

  16. Cadmium disorganises the scaffolding of gap and tight junction proteins in the hepatic cell line WIF B9.

    PubMed

    Boucherie, Sylviane; Decaens, Catherine; Verbavatz, Jean-Marc; Grosse, Brigitte; Erard, Marie; Merola, Fabienne; Cassio, Doris; Combettes, Laurent

    2013-12-01

    Hepatocytes, which perform the main functions of the liver, are particularly vulnerable to toxic agents such as cadmium, an environmental pollutant. To identify the molecular targets for cadmium in hepatocytes, we have studied the effects of CdCl2 on the hybrid cell line WIF-B9 that exhibits stable structural and functional hepatocytic polarity. We showed that the toxicity of CdCl2 (1 µM, 24 h) resulted in a reduction in direct intercellular communication (via gap junctions) and in an increase in paracellular permeability (decrease in the sealing of tight junctions). These effects were not related to changes in the expression of the key proteins involved, Cx32 and claudin 2, the first being constitutive of gap junctions and the second of tight junctions in this cell line. Using immunofluorescence experiments, we observed a change in the location of Cx32 and claudin 2: these two proteins were less often found in the tight junction network that closes the bile canaliculi (BC). In control cells, 'Proximity Ligation Assay' (PLA Duolink®) has confirmed in situ that molecules of claudin 2 and Cx32 are very close to each other at the BC (probably less than 16 nm). This was no longer the case after treatment with CdCl2 . Localisation of occludin and Cx32 relative to each other was not modified by CdCl2 , but CdCl2 increased the PLA signal between molecules of JAM-A and Cx32. Finally, examination of freeze-fracture replicas obtained from cultures treated with CdCl2 showed the disruption of the network of tight junctions and the depletion or the disintegration of the junctional plaques associated with tight junctions. This study demonstrates in situ the changes induced by cadmium on the organisation of cell-cell junctions and points out the importance of the association Cx32/claudin 2 for the maintenance of normal hepatocyte functions. © 2013 Société Française des Microscopies and Société de Biologie Cellulaire de France. Published by John Wiley & Sons Ltd.

  17. Fission control system for nuclear reactor

    DOEpatents

    Conley, G.H.; Estes, G.P.

    Control system for nuclear reactor comprises a first set of reactivity modifying rods fixed in a reactor core with their upper ends stepped in height across the core, and a second set of reactivity modifying rods movable vertically within the reactor core and having their lower ends stepped to correspond with the stepped arrangement of the first set of rods, pairs of the rods of the first and second sets being in coaxial alignment.

  18. Target-regulated proximity hybridization with three-way DNA junction for in situ enhanced electronic detection of marine biotoxin based on isothermal cycling signal amplification strategy.

    PubMed

    Liu, Bingqian; Chen, Jinfeng; Wei, Qiaohua; Zhang, Bing; Zhang, Lan; Tang, Dianping

    2015-07-15

    A new signal amplification strategy based on target-regulated DNA proximity hybridization (TRPH) reaction accompanying formation of three-way DNA junction was designed for electronic detection of Microcystin-LR (MC-LR used in this case), coupling with junction-induced isothermal cycling signal amplification. Initially, a sandwiched-type immunoreaction was carried out in a low-cost PCR tube between anti-MC-LR mAb1 antibody-labeled DNA1 (mAb1-DNA1) and anti-MC-LR mAb2-labeled DNA2 (mAb2-DNA2) in the presence of target to form a three-way DNA junction. Then, the junction could undergo an unbiased strand displacement reaction on an h-like DNA nanostructure-modified electrode (labeled with methylene blue redox tag on the short DNA strand), thereby resulting in the dissociation of methylene blue-labeled signal DNA from the electrode. The newly formed double-stranded DNA could be cleaved again by exonuclease III, and the released three-way DNA junction retriggered the strand-displacement reaction with h-like DNA nanostructures for junction recycling. During the strand-displacement reaction, numerous methylene blue-labeled DNA strands were far away from the electrode, thus decreasing the detectable electrochemical signal within the applied potentials. Under optimal conditions, the TRPH-based immunosensing system exhibited good electrochemical responses for detecting target MC-LR at a concentration as low as 1.0ngkg(-1) (1.0ppt). Additionally, the precision, reproducibility, specificity and method accuracy were also investigated with acceptable results. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Consensus development of core competencies in intensive and critical care medicine training in China.

    PubMed

    Hu, Xiaoyun; Xi, Xiuming; Ma, Penglin; Qiu, Haibo; Yu, Kaijiang; Tang, Yaoqing; Qian, Chuanyun; Fang, Qiang; Wang, Yushan; Yu, Xiangyou; Xu, Yuan; Du, Bin

    2016-10-16

    The aim of this study is to develop consensus on core competencies required for postgraduate training in intensive care medicine. We used a combination of a modified Delphi method and a nominal group technique to create and modify the list of core competencies to ensure maximum consensus. Ideas were generated modified from Competency Based Training in Intensive Care Medicine in Europe collaboration (CoBaTrICE) core competencies. An online survey invited healthcare professionals, educators, and trainees to rate and comment on these competencies. The output from the online survey was edited and then reviewed by a nominal group of 13 intensive care professionals to identify each competence for importance. The resulting list was then recirculated in the nominal group for iterative rating. The online survey yielded a list of 199 competencies for nominal group reviewing. After five rounds of rating, 129 competencies entered the final set defined as core competencies. We have generated a set of core competencies using a consensus technique which can serve as an indicator for training program development.

  20. 75 FR 44155 - Final Flood Elevation Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-28

    ... Communities affected elevation feet above ground [caret] Elevation in meters (MSL) Modified Coffee County... meter. ADDRESSES City of Elba Maps are available for inspection at 200 Buford Street, Elba, AL 36323.... Approximately 1,400 feet +7776 upstream of West Grimes Creek Road. Junction Creek At Pleasant Drive in Durango...

  1. Fabrication and Gas-Sensing Properties of Ni-Silicide/Si Nanowires.

    PubMed

    Hsu, Hsun-Feng; Chen, Chun-An; Liu, Shang-Wu; Tang, Chun-Kai

    2017-12-01

    Ni-silicide/Si nanowires were fabricated by atomic force microscope nano-oxidation on silicon-on-insulator substrates, selective wet etching, and reactive deposition epitaxy. Ni-silicide nanocrystal-modified Si nanowire and Ni-silicide/Si heterostructure multi-stacked nanowire were formed by low- and high-coverage depositions of Ni, respectively. The Ni-silicide/Si Schottky junction and Ni-silicide region were attributed high- and low-resistance parts of nanowire, respectively, causing the resistance of the Ni-silicide nanocrystal-modified Si nanowire and the Ni-silicide/Si heterostructure multi-stacked nanowire to be a little higher and much lower than that of Si nanowire. An O 2 sensing device was formed from a nanowire that was mounted on Pt electrodes. When the nanowires exposed to O 2 , the increase in current in the Ni-silicide/Si heterostructure multi-stacked nanowire was much larger than that in the other nanowires. The Ni-silicide nanocrystal-modified Si nanowire device had the highest sensitivity. The phenomenon can be explained by the formation of a Schottky junction at the Ni-silicide/Si interface in these two types of Ni-Silicide/Si nanowire and the formation of a hole channel at the silicon nanowire/native oxide interface after exposing the nanowires to O 2 .

  2. Electrical detection of the biological interaction of a charged peptide via gallium arsenide junction-field-effect transistors

    PubMed Central

    Lee, Kangho; Nair, Pradeep R.; Alam, Muhammad A.; Janes, David B.; Wampler, Heeyeon P.; Zemlyanov, Dmitry Y.; Ivanisevic, Albena

    2008-01-01

    GaAs junction-field-effect transistors (JFETs) are utilized to achieve label-free detection of biological interaction between a probe transactivating transcriptional activator (TAT) peptide and the target trans-activation-responsive (TAR) RNA. The TAT peptide is a short sequence derived from the human immunodeficiency virus-type 1 TAT protein. The GaAs JFETs are modified with a mixed adlayer of 1-octadecanethiol (ODT) and TAT peptide, with the ODT passivating the GaAs surface from polar ions in physiological solutions and the TAT peptide providing selective binding sites for TAR RNA. The devices modified with the mixed adlayer exhibit a negative pinch-off voltage (VP) shift, which is attributed to the fixed positive charges from the arginine-rich regions in the TAT peptide. Immersing the modified devices into a TAR RNA solution results in a large positive VP shift (>1 V) and a steeper subthreshold slope (∼80 mV∕decade), whereas “dummy” RNA induced a small positive VP shift (∼0.3 V) without a significant change in subthreshold slopes (∼330 mV∕decade). The observed modulation of device characteristics is analyzed with analytical modeling and two-dimensional numerical device simulations to investigate the electronic interactions between the GaAs JFETs and biological molecules. PMID:19484151

  3. Mammalian target of rapamycin complex (mTOR) pathway modulates blood-testis barrier (BTB) function through F-actin organization and gap junction

    PubMed Central

    Li, Nan; Cheng, C. Yan

    2016-01-01

    mTOR (mammalian target of rapamycin) is one of the most important signaling molecules in mammalian cells which regulates an array of cellular events, ranging from cell metabolism to cell proliferation. Based on the association of mTOR with the core component proteins, such as Raptor or Rictor, mTOR can become the mTORC1 (mammalian target of rapamycin complex 1) or mTORC2, respectively. Studies have shown that during the epithelial cycle of spermatogenesis, mTORC1 promotes remodeling and restructuring of the blood-testis barrier (BTB) in vitro and in vivo, making the Sertoli cell tight junction (TJ)-permeability barrier “leaky”; whereas mTORC2 promotes BTB integrity, making the Sertoli cell TJ-barrier “tighter”. These contrasting effects, coupled with the spatiotemporal expression of the core signaling proteins at the BTB that confer the respective functions of mTORC1 vs. mTORC2 thus provide a unique mechanism to modulate BTB dynamics, allowing or disallowing the transport of biomolecules and also preleptotene spermatocytes across the immunological barrier. More importantly, studies have shown that these changes to BTB dynamics conferred by mTORC1 and mTORC2 are mediated by changes in the organization of the actin microfilament networks at the BTB, and involve gap junction (GJ) intercellular communication. Since GJ has recently been shown to be crucial to reboot spermatogenesis and meiosis following toxicant-induced aspermatogenesis, these findings thus provide new insightful information regarding the integration of mTOR and GJ to regulate spermatogenesis. PMID:26957088

  4. On-Chip generation of polymer microcapsules through droplet coalescence

    NASA Astrophysics Data System (ADS)

    Eqbal, Md Danish; Gundabala, Venkat; Gundabala lab Team

    Alginate microbeads and microcapsules have numerous applications in drug delivery, tissue engineering and other biomedical areas due to their unique properties. Microcapsules with liquid core are of particular interest in the area of cell encapsulation. Various methods such as coacervation, emulsification, micro-nozzle, etc. exist for the generation of microbeads and microcapsules. However, these methods have several drawbacks like coagulation, non-uniformity, and polydispersity. In this work we present a method for complete on chip generation of alginate microcapsules (single core as well as double core) through the use of droplet merging technique. For this purpose, a combined Coflow and T-junction configuration is implemented in a hybrid glass-PDMS (Polydimethylsiloxane) microfluidic device. Efficient generation is achieved through precise matching of the generation rates of the coalescing drops. Through this approach, microcapsules with intact single and double (liquid) cores surrounded by alginate shell have been successfully generated and characterized.

  5. Intrinsic islet heterogeneity and gap junction coupling determine spatiotemporal Ca²⁺ wave dynamics.

    PubMed

    Benninger, Richard K P; Hutchens, Troy; Head, W Steven; McCaughey, Michael J; Zhang, Min; Le Marchand, Sylvain J; Satin, Leslie S; Piston, David W

    2014-12-02

    Insulin is released from the islets of Langerhans in discrete pulses that are linked to synchronized oscillations of intracellular free calcium ([Ca(2+)]i). Associated with each synchronized oscillation is a propagating calcium wave mediated by Connexin36 (Cx36) gap junctions. A computational islet model predicted that waves emerge due to heterogeneity in β-cell function throughout the islet. To test this, we applied defined patterns of glucose stimulation across the islet using a microfluidic device and measured how these perturbations affect calcium wave propagation. We further investigated how gap junction coupling regulates spatiotemporal [Ca(2+)]i dynamics in the face of heterogeneous glucose stimulation. Calcium waves were found to originate in regions of the islet having elevated excitability, and this heterogeneity is an intrinsic property of islet β-cells. The extent of [Ca(2+)]i elevation across the islet in the presence of heterogeneity is gap-junction dependent, which reveals a glucose dependence of gap junction coupling. To better describe these observations, we had to modify the computational islet model to consider the electrochemical gradient between neighboring β-cells. These results reveal how the spatiotemporal [Ca(2+)]i dynamics of the islet depend on β-cell heterogeneity and cell-cell coupling, and are important for understanding the regulation of coordinated insulin release across the islet. Copyright © 2014 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  6. Fabrication of reproducible, integration-compatible hybrid molecular/si electronics.

    PubMed

    Yu, Xi; Lovrinčić, Robert; Kraynis, Olga; Man, Gabriel; Ely, Tal; Zohar, Arava; Toledano, Tal; Cahen, David; Vilan, Ayelet

    2014-12-29

    Reproducible molecular junctions can be integrated within standard CMOS technology. Metal-molecule-semiconductor junctions are fabricated by direct Si-C binding of hexadecane or methyl-styrene onto oxide-free H-Si(111) surfaces, with the lateral size of the junctions defined by an etched SiO2 well and with evaporated Pb as the top contact. The current density, J, is highly reproducible with a standard deviation in log(J) of 0.2 over a junction diameter change from 3 to 100 μm. Reproducibility over such a large range indicates that transport is truly across the molecules and does not result from artifacts like edge effects or defects in the molecular monolayer. Device fabrication is tested for two n-Si doping levels. With highly doped Si, transport is dominated by tunneling and reveals sharp conductance onsets at room temperature. Using the temperature dependence of current across medium-doped n-Si, the molecular tunneling barrier can be separated from the Si-Schottky one, which is a 0.47 eV, in agreement with the molecular-modified surface dipole and quite different from the bare Si-H junction. This indicates that Pb evaporation does not cause significant chemical changes to the molecules. The ability to manufacture reliable devices constitutes important progress toward possible future hybrid Si-based molecular electronics. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Forward-bias diode parameters, electronic noise, and photoresponse of graphene/silicon Schottky junctions with an interfacial native oxide layer

    NASA Astrophysics Data System (ADS)

    An, Yanbin; Behnam, Ashkan; Pop, Eric; Bosman, Gijs; Ural, Ant

    2015-09-01

    Metal-semiconductor Schottky junction devices composed of chemical vapor deposition grown monolayer graphene on p-type silicon substrates are fabricated and characterized. Important diode parameters, such as the Schottky barrier height, ideality factor, and series resistance, are extracted from forward bias current-voltage characteristics using a previously established method modified to take into account the interfacial native oxide layer present at the graphene/silicon junction. It is found that the ideality factor can be substantially increased by the presence of the interfacial oxide layer. Furthermore, low frequency noise of graphene/silicon Schottky junctions under both forward and reverse bias is characterized. The noise is found to be 1/f dominated and the shot noise contribution is found to be negligible. The dependence of the 1/f noise on the forward and reverse current is also investigated. Finally, the photoresponse of graphene/silicon Schottky junctions is studied. The devices exhibit a peak responsivity of around 0.13 A/W and an external quantum efficiency higher than 25%. From the photoresponse and noise measurements, the bandwidth is extracted to be ˜1 kHz and the normalized detectivity is calculated to be 1.2 ×109 cm Hz1/2 W-1. These results provide important insights for the future integration of graphene with silicon device technology.

  8. Planar Cell Polarity Pathway Regulates Nephrin Endocytosis in Developing Podocytes

    PubMed Central

    Babayeva, Sima; Rocque, Brittany; Aoudjit, Lamine; Zilber, Yulia; Li, Jane; Baldwin, Cindy; Kawachi, Hiroshi; Takano, Tomoko; Torban, Elena

    2013-01-01

    The noncanonical Wnt/planar cell polarity (PCP) pathway controls a variety of cell behaviors such as polarized protrusive cell activity, directional cell movement, and oriented cell division and is crucial for the normal development of many tissues. Mutations in the PCP genes cause malformation in multiple organs. Recently, the PCP pathway was shown to control endocytosis of PCP and non-PCP proteins necessary for cell shape remodeling and formation of specific junctional protein complexes. During formation of the renal glomerulus, the glomerular capillary becomes enveloped by highly specialized epithelial cells, podocytes, that display unique architecture and are connected via specialized cell-cell junctions (slit diaphragms) that restrict passage of protein into the urine; podocyte differentiation requires active remodeling of cytoskeleton and junctional protein complexes. We report here that in cultured human podocytes, activation of the PCP pathway significantly stimulates endocytosis of the core slit diaphragm protein, nephrin, via a clathrin/β-arrestin-dependent endocytic route. In contrast, depletion of the PCP protein Vangl2 leads to an increase of nephrin at the cell surface; loss of Vangl2 functions in Looptail mice results in disturbed glomerular maturation. We propose that the PCP pathway contributes to podocyte development by regulating nephrin turnover during junctional remodeling as the cells differentiate. PMID:23824190

  9. The Septate Junction Protein Caspr is Required for Structural Support and Retention of KCNQ4 at Calyceal Synapses of Vestibular Hair Cells

    PubMed Central

    Sousa, Aurea D.; Andrade, Leonardo R.; Salles, Felipe T.; Pillai, Anilkumar M.; Buttermore, Elizabeth; Bhat, Manzoor A.; Kachar, Bechara

    2009-01-01

    The afferent innervation contacting the type I hair cells of the vestibular sensory epithelia form distinct calyceal synapses. The apposed pre- and post-synaptic membranes at this large area of synaptic contact are kept at a remarkably regular distance. Here, we show by freeze-fracture electron microscopy that a patterned alignment of proteins at the calyceal membrane resembles a type of intercellular junction that is rare in vertebrates, the septate junction (SJ). We found that a core molecular component of SJs, Caspr, colocalizes with the K+ channel KCNQ4 at the post-synaptic membranes of these calyceal synapses. Immunolabeling and ultrastructural analyses of Caspr knockout mice reveal that, in the absence of Caspr, the separation between the membranes of the hair cells and the afferent neurons is conspicuously irregular and often increased by an order of magnitude. In these mutants, KCNQ4 fails to cluster at the post-synaptic membrane and appears diffused along the entire calyceal membrane. Our results indicate that a septate-like junction provides structural support to calyceal synaptic contact with the vestibular hair cell, and that Caspr is required for the recruitment or retention of KCNQ4 at these synapses. PMID:19279247

  10. Orientation-dependent fiber-optic accelerometer based on grating inscription over fiber cladding.

    PubMed

    Rong, Qiangzhou; Qiao, Xueguang; Guo, Tuan; Bao, Weijia; Su, Dan; Yang, Hangzhou

    2014-12-01

    An orientation-sensitive fiber-optic accelerometer based on grating inscription over fiber cladding has been demonstrated. The sensor probe comprises a compact structure in which a short section of thin-core fiber (TCF) stub containing a "cladding" fiber Bragg grating (FBG) is spliced to another single-mode fiber (SMF) without any lateral offset. A femtosecond laser side-illumination technique was utilized to ensure that the grating inscription remains close to the core-cladding interface of the TCF. The core mode and the cladding mode of the TCF are coupled at the core-mismatch junction, and two well-defined resonances in reflection appear from the downstream FBG, in which the cladding resonance exhibits a strong polarization and bending dependence due to the asymmetrical distribution of the cladding FBG along the fiber cross section. Strong orientation dependence of the vibration (acceleration) measurement has been achieved by power detection of the cladding resonance. Meanwhile, the unwanted power fluctuations and temperature perturbations can be referenced out by monitoring the fundamental core resonance.

  11. Internal Electric Field Modulation in Molecular Electronic Devices by Atmosphere and Mobile Ions.

    PubMed

    Chandra Mondal, Prakash; Tefashe, Ushula M; McCreery, Richard L

    2018-06-13

    The internal potential profile and electric field are major factors controlling the electronic behavior of molecular electronic junctions consisting of ∼1-10 nm thick layers of molecules oriented in parallel between conducting contacts. The potential profile is assumed linear in the simplest cases, but can be affected by internal dipoles, charge polarization, and electronic coupling between the contacts and the molecular layer. Electrochemical processes in solutions or the solid state are entirely dependent on modification of the electric field by electrolyte ions, which screen the electrodes and form the ionic double layers that are fundamental to electrode kinetics and widespread applications. The current report investigates the effects of mobile ions on nominally solid-state molecular junctions containing aromatic molecules covalently bonded between flat, conducting carbon surfaces, focusing on changes in device conductance when ions are introduced into an otherwise conventional junction design. Small changes in conductance were observed when a polar molecule, acetonitrile, was present in the junction, and a large decrease of conductance was observed when both acetonitrile (ACN) and lithium ions (Li + ) were present. Transient experiments revealed that conductance changes occur on a microsecond-millisecond time scale, and are accompanied by significant alteration of device impedance and temperature dependence. A single molecular junction containing lithium benzoate could be reversibly transformed from symmetric current-voltage behavior to a rectifier by repetitive bias scans. The results are consistent with field-induced reorientation of acetonitrile molecules and Li + ion motion, which screen the electrodes and modify the internal potential profile and provide a potentially useful means to dynamically alter junction electronic behavior.

  12. Regulation of gap junction channels and hemichannels by phosphorylation and redox changes: a revision.

    PubMed

    Pogoda, Kristin; Kameritsch, Petra; Retamal, Mauricio A; Vega, José L

    2016-05-24

    Post-translational modifications of connexins play an important role in the regulation of gap junction and hemichannel permeability. The prerequisite for the formation of functional gap junction channels is the assembly of connexin proteins into hemichannels and their insertion into the membrane. Hemichannels can affect cellular processes by enabling the passage of signaling molecules between the intracellular and extracellular space. For the intercellular communication hemichannels from one cell have to dock to its counterparts on the opposing membrane of an adjacent cell to allow the transmission of signals via gap junctions from one cell to the other. The controlled opening of hemichannels and gating properties of complete gap junctions can be regulated via post-translational modifications of connexins. Not only channel gating, but also connexin trafficking and assembly into hemichannels can be affected by post-translational changes. Recent investigations have shown that connexins can be modified by phosphorylation/dephosphorylation, redox-related changes including effects of nitric oxide (NO), hydrogen sulfide (H2S) or carbon monoxide (CO), acetylation, methylation or ubiquitination. Most of the connexin isoforms are known to be phosphorylated, e.g. Cx43, one of the most studied connexin at all, has 21 reported phosphorylation sites. In this review, we provide an overview about the current knowledge and relevant research of responsible kinases, connexin phosphorylation sites and reported effects on gap junction and hemichannel regulation. Regarding the effects of oxidants we discuss the role of NO in different cell types and tissues and recent studies about modifications of connexins by CO and H2S.

  13. Atypical Neural Activity in Males but Not Females with Autism Spectrum Disorder

    ERIC Educational Resources Information Center

    Kirkovski, Melissa; Enticott, Peter G.; Hughes, Matthew E.; Rossell, Susan L.; Fitzgerald, Paul B.

    2016-01-01

    The medial prefrontal cortex (mPFC) and the right temporo-parietal junction (rTPj) are highly involved in social understanding, a core area of impairment in autism spectrum disorder (ASD). We used fMRI to investigate sex differences in the neural correlates of social understanding in 27 high-functioning adults with ASD and 23 matched controls.…

  14. Bayesian analysis of the kinetics of quantal transmitter secretion at the neuromuscular junction.

    PubMed

    Saveliev, Anatoly; Khuzakhmetova, Venera; Samigullin, Dmitry; Skorinkin, Andrey; Kovyazina, Irina; Nikolsky, Eugeny; Bukharaeva, Ellya

    2015-10-01

    The timing of transmitter release from nerve endings is considered nowadays as one of the factors determining the plasticity and efficacy of synaptic transmission. In the neuromuscular junction, the moments of release of individual acetylcholine quanta are related to the synaptic delays of uniquantal endplate currents recorded under conditions of lowered extracellular calcium. Using Bayesian modelling, we performed a statistical analysis of synaptic delays in mouse neuromuscular junction with different patterns of rhythmic nerve stimulation and when the entry of calcium ions into the nerve terminal was modified. We have obtained a statistical model of the release timing which is represented as the summation of two independent statistical distributions. The first of these is the exponentially modified Gaussian distribution. The mixture of normal and exponential components in this distribution can be interpreted as a two-stage mechanism of early and late periods of phasic synchronous secretion. The parameters of this distribution depend on both the stimulation frequency of the motor nerve and the calcium ions' entry conditions. The second distribution was modelled as quasi-uniform, with parameters independent of nerve stimulation frequency and calcium entry. Two different probability density functions for the distribution of synaptic delays suggest at least two independent processes controlling the time course of secretion, one of them potentially involving two stages. The relative contribution of these processes to the total number of mediator quanta released depends differently on the motor nerve stimulation pattern and on calcium ion entry into nerve endings.

  15. Mucoadhesive properties of low molecular weight chitosan- or glycol chitosan- and corresponding thiomer-coated poly(isobutylcyanoacrylate) core-shell nanoparticles.

    PubMed

    Palazzo, Claudio; Trapani, Giuseppe; Ponchel, Gilles; Trapani, Adriana; Vauthier, Christine

    2017-08-01

    The aim of the present work was to evaluate the mucoadhesive properties of poly(isobutyl cyanoacrylate) (PIBCA) nanoparticles (NPs) coated with Low Molecular Weight (LMW) chitosan (CS)- and glycol chitosan (GCS)-based thiomers as well as with the corresponding LMW unmodified polysaccharides. For this purpose, all the CS- and GCS-based thiomers were prepared under simple and mild conditions starting from the LMW unmodified polymers CS and GCS. The resulting NPs were of spherical shape with diameters ranging from 400 to 600nm and 187 to 309nm, for CS- and GCS-based NPs, respectively. The mucoadhesive characteristics of these core shell NPs were studied in Ussing chambers measuring the percentage of NPs stuck on the mucosal of fresh intestinal tissue after 2h of incubation. Moreover, incubation of nanoparticle formulations with the intestinal tissue induced changes in transmucosal electrical resistance which were measured to gain information into the opening of tight junctions and to control the integrity of the mucosa. Thus, it was found that PIBCA NPs coated with the GCS-Glutathione conjugate (GCGPIBCA NPs) possessed the most favorable mucoadhesive performances. Moreover, both GCGPIBCA- and GCS-N-acetyl-cysteine (GCNPIBCA)-core-shell NPs might induced an enlargement of the epithelial cell tight junctions. In conclusion, coating of PIBCA NPs with GCS-based thiomers may be useful for improving the mucoadhesive and permeation properties of these nanocarriers. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Core neurological examination items for neurology clerks: A modified Delphi study with a grass-roots approach

    PubMed Central

    Liu, Chi-Hung; Hsu, Li-Ling; Hsiao, Cheng-Ting; Hsieh, Suh-Ing; Chang, Chun-Wei; Huang, Elaine Shinwei; Chang, Yeu-Jhy

    2018-01-01

    Background With the evolution of treatments for neurological diseases, the contents of core neurological examinations (NEs) for medical students may need to be modified. We aimed to establish a consensus on the core NE items for neurology clerks and compare viewpoints between different groups of panelists. Methods First, a pilot group proposed the core contents of NEs for neurology clerks. The proposed core NE items were then subject to a modified web-based Delphi process using the online software “SurveyMonkey”. A total of 30 panelists from different backgrounds (tutors or learners, neurologists or non-neurologists, community hospitals or medical centers, and different academic positions) participated in the modified Delphi process. Each panelist was asked to agree or disagree on the inclusion of each item using a 9-point Likert scale and was encouraged to provide feedback. We also compared viewpoints between different groups of panelists using the Mann-Whitney U test. Results Eighty-three items were used for the first round of the Delphi process. Of them, 18 without consensus of being a core NE item for the neurology clerks in the first round and another 14 items suggested by the panelists were further discussed in the second round. Finally, 75 items with different grades were included in the recommended NE items for neurology clerks. Conclusions Our findings provide a reference regarding the core NE items for milestone development for neurology clerkships. We hope that prioritizing the NE items in this order can help medical students to learn NE more efficiently. PMID:29771997

  17. Modulation of Tight Junction Structure and Function by Kinases and Phosphatases Targeting Occludin

    PubMed Central

    Dörfel, Max Johannes; Huber, Otmar

    2012-01-01

    Tight junctions (TJs) typically represent the most apical contacts in epithelial and endothelial cell layers where they play an essential role in the separation of extracellular or luminal spaces from underlying tissues in the body. Depending on the protein composition, TJs define the barrier characteristics and in addition maintain cell polarity. Two major families of integral membrane proteins form the typical TJ strand network, the tight junction-associated MARVEL protein (TAMP) family members occludin, tricellulin, and MarvelD3 as well as a specific set of claudins. Occludin was the first identified member of these tetraspanins and is now widely accepted as a regulator of TJ assembly and function. Therefore, occludin itself has to be tightly regulated. Phosphorylation of occludin appears to be of central importance in this context. Here we want to summarize current knowledge on the kinases and phosphatases directly modifying occludin, and their role in the regulation of TJ structure, function, and dynamics. PMID:22315516

  18. Mice Lacking the Giant Protocadherin mFAT1 Exhibit Renal Slit Junction Abnormalities and a Partially Penetrant Cyclopia and Anophthalmia Phenotype

    PubMed Central

    Ciani, Lorenza; Patel, Anjla; Allen, Nicholas D.; ffrench-Constant, Charles

    2003-01-01

    While roles in adhesion and morphogenesis have been documented for classical cadherins, the nonclassical cadherins are much less well understood. Here we have examined the functions of the giant protocadherin FAT by generating a transgenic mouse lacking mFAT1. These mice exhibit perinatal lethality, most probably caused by loss of the renal glomerular slit junctions and fusion of glomerular epithelial cell processes (podocytes). In addition, some mFAT1−/− mice show defects in forebrain development (holoprosencephaly) and failure of eye development (anophthalmia). In contrast to Drosophila, where FAT acts as a tumor suppressor gene, we found no evidence for abnormalities of proliferation in two tissues (skin and central nervous system [CNS]) containing stem and precursor cell populations and in which FAT is expressed strongly. Our results confirm a necessary role for FAT1 in the modified adhesion junctions of the renal glomerular epithelial cell and reveal hitherto unsuspected roles for FAT1 in CNS development. PMID:12724416

  19. Modified laser-annealing process for improving the quality of electrical P-N junctions and devices

    DOEpatents

    Wood, Richard F.; Young, Rosa T.

    1984-01-01

    The invention is a process for producing improved electrical-junction devices. The invention is applicable, for example, to a process in which a light-sensitive electrical-junction device is produced by (1) providing a body of crystalline semiconductor material having a doped surface layer, (2) irradiating the layer with at least one laser pulse to effect melting of the layer, (3) permitting recrystallization of the melted layer, and (4) providing the resulting body with electrical contacts. In accordance with the invention, the fill-factor and open-circuit-voltage parameters of the device are increased by conducting the irradiation with the substrate as a whole at a selected elevated temperature, the temperature being selected to effect a reduction in the rate of the recrystallization but insufficient to effect substantial migration of impurities within the body. In the case of doped silicon substrates, the substrate may be heated to a temperature in the range of from about 200.degree. C. to 500.degree. C.

  20. The Coulomb based magneto-electric coupling in multiferroic tunnel junctions and granular multiferroics

    NASA Astrophysics Data System (ADS)

    Udalov, O. G.; Beloborodov, I. S.

    2018-05-01

    We study magneto-electric effect in two systems: i) multiferroic tunnel junction (MFTJ) - magnetic tunnel junction with ferroelectric barrier and ii) granular multiferroic (GMF) in which ferromagnetic (FM) metallic grains embedded into ferroelectric matrix. We show that the Coulomb interaction influences the magnetic state of the system in several ways: i) through the spin-dependent part of the Coulomb interaction; ii) due to the Coulomb blockade effect suppressing electron hopping and therefore reducing magnetic coupling; and iii) through image forces and polarization screening that modify the barrier for electrons in MFTJ and GMF. We show that in the absence of spin-orbit or strain-mediated coupling magneto-electric effect appears in GMF and MFTJ. The Coulomb interaction depends on the dielectric properties of the system. For GMF it depends on the dielectric constant of FE matrix and for MFTJ on the dielectric constant of the FE barrier. Applying external electric field one can tune the dielectric constant and the Coulomb interaction. Thus, one can control magnetic state with electric field.

  1. Modifying current-voltage characteristics of a single molecule junction by isotope substitution: OHOD dimer on Cu(110)

    NASA Astrophysics Data System (ADS)

    Okuyama, H.; Shiotari, A.; Kumagai, T.; Hatta, S.; Aruga, T.; Ootsuka, Y.; Paulsson, M.; Ueba, H.

    2012-05-01

    Vibrationally induced configurational change and nonlinear current-voltage (I-V) characteristics are investigated within the scanning tunneling microscope (STM) junction, including hydroxyl dimers on a Cu(110) surface. H-bonded hydroxyl dimers composed of OH and/or OD have a unique inclined geometry that can be switched back and forth by vibrational excitations via the inelastic electron tunneling process of the STM. The relative occupation change between the high- and low-conductance states as a function of bias voltage critically depends on the isotopic compositions, and thus the I-V characteristics can be modified to exhibit negative differential resistance by H/D substitution. The experimental results of the occupation change and I-V curves are nicely reproduced using a recently proposed analytical model combined with comprehensive density functional calculations for the input parameters (vibrational modes and their emission rates by tunneling electrons, conductance, and relative occupation change of high- and low-conductance states), and they underlines the different roles played by the free and shared O-H(D) stretch modes of the hydroxyl dimers on a Cu(110) surface.

  2. Supercontinuum generation through DNA-filled hollow core fiber for broadband absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Cho, Youngho; Park, Byeongho; Oh, Juyeong; Seo, Min Ah; Lee, Kwanil; Kim, Chulki; Lee, Taikjin; Woo, Deok Ha; Lee, Seok; Kim, Hyung Min; Lee, Hyuk Jae; Oh, Kyunghwan; Yeom, Dong-Il; Park, Sung Ha; Kim, Jae Hun

    2015-07-01

    In this study, we successfully generated the large bandwidth of supercontinuum spectra through hollow fibers filled with DNA. Also, by observing that spectra bandwidth was the widest in the order of the hollow core fiber filled with DNA modified by copper ion, the hollow core fiber with only DNA, and the bulk hollow core fiber, we demonstrated that DNA material modified with copper ions can further enhance the spectral bandwidth of supercontinuum. As a result, we anticipate that the SCG as a broadband light source can be used in analytical methods to demonstrate a wide range of biological and environmental questions.

  3. A compatible exon-exon junction database for the identification of exon skipping events using tandem mass spectrum data.

    PubMed

    Mo, Fan; Hong, Xu; Gao, Feng; Du, Lin; Wang, Jun; Omenn, Gilbert S; Lin, Biaoyang

    2008-12-16

    Alternative splicing is an important gene regulation mechanism. It is estimated that about 74% of multi-exon human genes have alternative splicing. High throughput tandem (MS/MS) mass spectrometry provides valuable information for rapidly identifying potentially novel alternatively-spliced protein products from experimental datasets. However, the ability to identify alternative splicing events through tandem mass spectrometry depends on the database against which the spectra are searched. We wrote scripts in perl, Bioperl, mysql and Ensembl API and built a theoretical exon-exon junction protein database to account for all possible combinations of exons for a gene while keeping the frame of translation (i.e., keeping only in-phase exon-exon combinations) from the Ensembl Core Database. Using our liver cancer MS/MS dataset, we identified a total of 488 non-redundant peptides that represent putative exon skipping events. Our exon-exon junction database provides the scientific community with an efficient means to identify novel alternatively spliced (exon skipping) protein isoforms using mass spectrometry data. This database will be useful in annotating genome structures using rapidly accumulating proteomics data.

  4. Strained silicon based complementary tunnel-FETs: Steep slope switches for energy efficient electronics

    NASA Astrophysics Data System (ADS)

    Knoll, L.; Richter, S.; Nichau, A.; Trellenkamp, S.; Schäfer, A.; Wirths, S.; Blaeser, S.; Buca, D.; Bourdelle, K. K.; Zhao, Q.-T.; Mantl, S.

    2014-08-01

    Electrical characteristics of silicon nanowire tunnel field effect transistors (TFETs) are presented and benchmarked versus other concepts. Particular emphasis is placed on the band to band tunneling (BTBT) junctions, the functional core of the device. Dopant segregation from ion implanted ultrathin silicide contacts is proved as a viable method to achieve steep tunneling junctions. This reduces defect generation by direct implantation into the junction and thus minimizes the risk of trap assisted tunneling. The method is applied to strained silicon, specifically to nanowire array transistors, enabling the realization of n-type and p-type TFETs with fairly high currents and complementary TFET inverters with sharp transitions and good static gain, even at very low drain voltages of VDD = 0.2 V. These achievements suggest a considerable potential of TFETs for ultralow power applications. Gate-all-around Si nanowire array p-type TFETs have been fabricated to demonstrate the impact of electrostatic control on the device performance. A high on-current of 78 μA/μm at VD = VG = 1.1 V is obtained.

  5. GaAs/AlGaAs core multishell nanowire-based light-emitting diodes on Si.

    PubMed

    Tomioka, Katsuhiro; Motohisa, Junichi; Hara, Shinjiroh; Hiruma, Kenji; Fukui, Takashi

    2010-05-12

    We report on integration of GaAs nanowire-based light-emitting-diodes (NW-LEDs) on Si substrate by selective-area metalorganic vapor phase epitaxy. The vertically aligned GaAs/AlGaAs core-multishell nanowires with radial p-n junction and NW-LED array were directly fabricated on Si. The threshold current for electroluminescence (EL) was 0.5 mA (current density was approximately 0.4 A/cm(2)), and the EL intensity superlinearly increased with increasing current injections indicating superluminescence behavior. The technology described in this letter could help open new possibilities for monolithic- and on-chip integration of III-V NWs on Si.

  6. Fracture Resistance of Endodontically Treated Teeth Restored with Biodentine, Resin Modified GIC and Hybrid Composite Resin as a Core Material.

    PubMed

    Subash, Dayalan; Shoba, Krishnamma; Aman, Shibu; Bharkavi, Srinivasan Kumar Indu; Nimmi, Vijayan; Abhilash, Radhakrishnan

    2017-09-01

    The restoration of a severely damaged tooth usually needs a post and core as a part of treatment procedure to provide a corono - radicular stabilization. Biodentine is a class of dental material which possess high mechanical properties with excellent biocompatibility and bioactive behaviour. The sealing ability coupled with optimum physical properties could make Biodentine an excellent option as a core material. The aim of the study was to determine the fracture resistance of Biodentine as a core material in comparison with resin modified glass ionomer and composite resin. Freshly extracted 30 human permanent maxillary central incisors were selected. After endodontic treatment followed by post space preparation and luting of Glass fibre post (Reforpost, Angelus), the samples were divided in to three groups based on the type of core material. The core build-up used in Group I was Biodentine (Septodont, France), Group II was Resin-Modified Glass Ionomer Cement (GC, Japan) and Group III was Hybrid Composite Resin (TeEconom plus, Ivoclar vivadent). The specimens were subjected to fracture toughness using Universal testing machine (1474, Zwick/Roell, Germany) and results were compared using One-way analysis of variance with Tukey's Post hoc test. The results showed that there was significant difference between groups in terms of fracture load. Also, composite resin exhibited highest mean fracture load (1039.9 N), whereas teeth restored with Biodentine demonstrated the lowest mean fracture load (176.66 N). Resin modified glass ionomer exhibited intermediate fracture load (612.07 N). The primary mode of failure in Group I and Group II was favourable (100%) while unfavourable fracture was seen in Group III (30%). Biodentine, does not satisfy the requirements to be used as an ideal core material. The uses of RMGIC's as a core build-up material should be limited to non-stress bearing areas. Composite resin is still the best core build-up material owing to its high fracture resistance and bonding to tooth.

  7. Design of a low cost spinneret assembly for coaxial electrospinning

    NASA Astrophysics Data System (ADS)

    Raheja, Anant; Chandra, T. S.; Natarajan, T. S.

    2015-06-01

    Coaxial electrospinning makes use of a concentric arrangement of spinneret orifices for synthesis of core-shell polymer nanofibers. Most laboratories purchase the spinneret from commercial manufacturers at a significant expense, or design it indigenously to save costs but compromise on manufacturing precision. Therefore, the present work suggests the use of a relatively lower priced McIntyre cannula needle, conventionally used for ophthalmic surgeries, as a coaxial spinneret for electrospinning. The McIntyre cannula needle was modified to synthesize hollow fibers of nylon 6, which acted as sheath with hydrogen peroxide as core during electrospinning. In addition, encapsulation of bioactives, viz., red blood cells, bacterial cells, and lysozyme (enzyme protein) was attempted, using their aqueous suspensions as core, with polycaprolactone solution as sheath. Resulting fibers had an integral core-shell structure with the bioactives encapsulated in the core. This indicated that the modified McIntyre cannula functions suitably as a spinneret for coaxial electrospinning. Thus, apart from being a clinical device, the modified McIntyre cannula needle provides an economic alternative to conventional coaxial spinneret assemblies.

  8. Semiconducting ZnSnN{sub 2} thin films for Si/ZnSnN{sub 2} p-n junctions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qin, Ruifeng; Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, and Key Laboratory of Additive Manufacturing Materials of Zhejiang Province, Ningbo 315201; Cao, Hongtao

    ZnSnN{sub 2} is regarded as a promising photovoltaic absorber candidate due to earth-abundance, non-toxicity, and high absorption coefficient. However, it is still a great challenge to synthesize ZnSnN{sub 2} films with a low electron concentration, in order to promote the applications of ZnSnN{sub 2} as the core active layer in optoelectronic devices. In this work, polycrystalline and high resistance ZnSnN{sub 2} films were fabricated by magnetron sputtering technique, then semiconducting films were achieved after post-annealing, and finally Si/ZnSnN{sub 2} p-n junctions were constructed. The electron concentration and Hall mobility were enhanced from 2.77 × 10{sup 17} to 6.78 × 10{sup 17 }cm{sup −3} and frommore » 0.37 to 2.07 cm{sup 2} V{sup −1} s{sup −1}, corresponding to the annealing temperature from 200 to 350 °C. After annealing at 300 °C, the p-n junction exhibited the optimum rectifying characteristics, with a forward-to-reverse ratio over 10{sup 3}. The achievement of this ZnSnN{sub 2}-based p-n junction makes an opening step forward to realize the practical application of the ZnSnN{sub 2} material. In addition, the nonideal behaviors of the p-n junctions under both positive and negative voltages are discussed, in hope of suggesting some ideas to further improve the rectifying characteristics.« less

  9. [Finite element analysis of the maxillary central incisor with traditional and modified crown lengthening surgery and post-core restoration in management of crown-root fracture].

    PubMed

    Zhen, M; Wei, Y P; Hu, W J; Rong, Q G; Zhang, H

    2016-06-01

    To construct three-dimensional finite element models with modified crown lengthening surgery and post-core restoration in management of various crown-root fracture types, to investigate the intensity and distribution of stressin models mentioned above, and to compare and analyze the indications of traditional and modified crown lengthening surgeries from the mechanic point of view. Nine three-dimensional finite element models with modified crown lengthening surgery and post-core restoration were established and analyzed by micro-CT scanning technique, dental impression scanner, Mimics 10.0, Geomagic studio 9.0 and ANSYS 14.0 software. The von Mises stress of dentin, periodontal ligament, alveolar bone, post and core, as well as the periodontal ligament area and threshold limit value were calculated and compared with the findings of traditional crown lengthening models which had been published earlierby our research group. The von Mises stress intensity of modified crown lengthening models were: dentin>post>core>alveolar bone>periodontal ligament. The maximum von Mises stress of dentin(44.37-80.58 MPa)distributed in lingual central shoulder. The periodontal ligament area of the modified crown lengthening surgery was reduced by 6% to 28%, under the same crown-root fracture conditions, the periodontal ligament area of modified crown lengthening models was larger than that of the traditional crown lengthening models. In modified crown lengthening surgery models, the von Mises stress of periodontal ligament of B3L1m, B3L2m, B3L3m models exceeded their limit values, however, the von Mises stress of periodontal ligament of the B2L2c, B2L3c, B3L1c, B3L2c, B3L3c models exceeded their limit values in traditional crown lengthening surgery models. The modified crown lengthening surgery conserves more periodontal supporting tissues, which facilitates the long-term survival of teeth. The indication of modified crown lengthening surgery is wider than traditional method. The maxillary central incisors with labial fracture at gingival margin level and with palatal fracture at or below the alveolar crest level are not the indication of the crown lengthening surgery.

  10. Current-voltage characteristics of single-molecule diarylethene junctions measured with adjustable gold electrodes in solution.

    PubMed

    Briechle, Bernd M; Kim, Youngsang; Ehrenreich, Philipp; Erbe, Artur; Sysoiev, Dmytro; Huhn, Thomas; Groth, Ulrich; Scheer, Elke

    2012-01-01

    We report on an experimental analysis of the charge transport through sulfur-free photochromic molecular junctions. The conductance of individual molecules contacted with gold electrodes and the current-voltage characteristics of these junctions are measured in a mechanically controlled break-junction system at room temperature and in liquid environment. We compare the transport properties of a series of molecules, labeled TSC, MN, and 4Py, with the same switching core but varying side-arms and end-groups designed for providing the mechanical and electrical contact to the gold electrodes. We perform a detailed analysis of the transport properties of TSC in its open and closed states. We find rather broad distributions of conductance values in both states. The analysis, based on the assumption that the current is carried by a single dominating molecular orbital, reveals distinct differences between both states. We discuss the appearance of diode-like behavior for the particular species 4Py that features end-groups, which preferentially couple to the metal electrode by physisorption. We show that the energetic position of the molecular orbital varies as a function of the transmission. Finally, we show for the species MN that the use of two cyano end-groups on each side considerably enhances the coupling strength compared to the typical behavior of a single cyano group.

  11. Precise Maps of RNA Polymerase Reveal How Promoters Direct Initiation and Pausing

    PubMed Central

    Kwak, Hojoong; Fuda, Nicholas J.; Core, Leighton J.; Lis, John T.

    2014-01-01

    Transcription regulation occurs frequently through promoter-associated pausing of RNA polymerase II (Pol II). We developed a Precision nuclear Run-On and sequencing assay (PRO-seq) to map the genome-wide distribution of transcriptionally-engaged Pol II at base-pair resolution. Pol II accumulates immediately downstream of promoters, at intron-exon junctions that are efficiently used for splicing, and over 3' poly-adenylation sites. Focused analyses of promoters reveal that pausing is not fixed relative to initiation sites nor is it specified directly by the position of a particular core promoter element or the first nucleosome. Core promoter elements function beyond initiation, and when optimally positioned they act collectively to dictate the position and strength of pausing. We test this ‘Complex Interaction’ model with insertional mutagenesis of the Drosophila Hsp70 core promoter. PMID:23430654

  12. Magnetic vortex based transistor operations.

    PubMed

    Kumar, D; Barman, S; Barman, A

    2014-02-17

    Transistors constitute the backbone of modern day electronics. Since their advent, researchers have been seeking ways to make smaller and more efficient transistors. Here, we demonstrate a sustained amplification of magnetic vortex core gyration in coupled two and three vortices by controlling their relative core polarities. This amplification is mediated by a cascade of antivortex solitons travelling through the dynamic stray field. We further demonstrated that the amplification can be controlled by switching the polarity of the middle vortex in a three vortex sequence and the gain can be controlled by the input signal amplitude. An attempt to show fan-out operation yielded gain for one of the symmetrically placed branches which can be reversed by switching the core polarity of all the vortices in the network. The above observations promote the magnetic vortices as suitable candidates to work as stable bipolar junction transistors (BJT).

  13. Magnetic Vortex Based Transistor Operations

    NASA Astrophysics Data System (ADS)

    Kumar, D.; Barman, S.; Barman, A.

    2014-02-01

    Transistors constitute the backbone of modern day electronics. Since their advent, researchers have been seeking ways to make smaller and more efficient transistors. Here, we demonstrate a sustained amplification of magnetic vortex core gyration in coupled two and three vortices by controlling their relative core polarities. This amplification is mediated by a cascade of antivortex solitons travelling through the dynamic stray field. We further demonstrated that the amplification can be controlled by switching the polarity of the middle vortex in a three vortex sequence and the gain can be controlled by the input signal amplitude. An attempt to show fan-out operation yielded gain for one of the symmetrically placed branches which can be reversed by switching the core polarity of all the vortices in the network. The above observations promote the magnetic vortices as suitable candidates to work as stable bipolar junction transistors (BJT).

  14. Controlled finite momentum pairing and spatially varying order parameter in proximitized HgTe quantum wells

    NASA Astrophysics Data System (ADS)

    Hart, Sean; Ren, Hechen; Kosowsky, Michael; Ben-Shach, Gilad; Leubner, Philipp; Bruene, Christoph; Buhmann, Hartmut; Molenkamp, Laurens; Halperin, Bertrand; Yacoby, Amir

    Conventional s-wave superconductivity arises from singlet pairing of electrons with opposite Fermi momenta, forming Cooper pairs with zero net momentum. Recent studies have focused on coupling s-wave superconductors to systems with an unusual configuration of electronic spin and momentum at the Fermi surface, where the nature of the paired state can be modified and the system may even undergo a topological phase transition. Here we present measurements on Josephson junctions based on HgTe quantum wells coupled to aluminum or niobium superconductors, and subject to a magnetic field in the plane of the quantum well. We observe that the in-plane magnetic field modulates the Fraunhofer interference pattern, and that this modulation depends both on electron density and on the direction of the in-plane field with respect to the junction. However, the orientation of the junction with respect to the underlying crystal lattice does not impact the measurements. These findings suggest that spin-orbit coupling plays a role in the observed behavior, and that measurements of Josephson junctions in the presence of an in-plane field can elucidate the Fermi surface properties of the weak link material. NSF DMR-1206016; STC Center for Integrated Quantum Materials under NSF Grant No. DMR-1231319; NSF GRFP under Grant DGE1144152, Microsoft Corporation Project Q.

  15. Dynamics of Defects and Dopants in Complex Systems: Si and Oxide Surfaces and Interfaces

    NASA Astrophysics Data System (ADS)

    Kirichenko, Taras; Yu, Decai; Banarjee, Sanjay; Hwang, Gyeong

    2004-10-01

    Fabrication of forthcoming nanometer scale electronic devices faces many difficulties including formation of extremely shallow and highly doped junctions. At present, ultra-low-energy ion implantation followed by high-temperature thermal annealing is most widely used to fabricate such ultra-shallow junctions. In the process, a great challenge lies in achieving precise control of redistribution and electrical activation of dopant impurities. Native defects (such as vacancies and interstitials) generated during implantation are known to be mainly responsible for the TED and also influence significantly the electrical activation/deactivation. Defect-dopant dynamics is rather well understood in crystalline Si and SiO2. However, little is known about their diffusion and annihilation (or precipitation) at the surfaces and interfaces, despite its growing importance in determining junction profiles as device dimensions get smaller. In this talk, we will present our density functional theory calculation results on the atomic and electronic structure and dynamical behavior of native defects and dopant-defect complexes in disordered/strained Si and oxide systems, such as i) clean and absorbent-modified Si(100) surface and subsurface layers, ii) amorphous-crystalline Si interfaces and iii) amorphous SiO2/Si interfaces. The fundamental understanding and data is essential in developing a comprehensive kinetic model for junction formation, which would contribute greatly in improving current process technologies.

  16. Frame junction vibration transmission with a modified frame deformation model.

    PubMed

    Moore, J A

    1990-12-01

    A previous paper dealt with vibration transmission through junctions of connected frame members where the allowed frame deformations included bending, torsion, and longitudinal motions [J.A. Moore, J. Acoust. Soc. Am. 88, 2766-2776 (1990)]. In helicopter and aircraft structures the skin panels can constitute a high impedance connection along the length of the frames that effectively prohibits in-plane motion at the elevation of the skin panels. This has the effect of coupling in-plane bending and torsional motions within the frame. This paper discusses the transmission behavior through frame junctions that accounts for the in-plane constraint in idealized form by assuming that the attached skin panels completely prohibit inplane motion in the frames. Also, transverse shear deformation is accounted for in describing the relatively deep web frame constructions common in aircraft structures. Longitudinal motion in the frames is not included in the model. Transmission coefficient predictions again show the importance of out-of-plane bending deformation to the transmission of vibratory energy in an aircraft structure. Comparisons are shown with measured vibration transmission data along the framing in the overhead of a helicopter airframe, with good agreement. The frame junction description has been implemented within a general purpose statistical energy analysis (SEA) computer code in modeling the entire airframe structure including skin panels.

  17. Scaling for quantum tunneling current in nano- and subnano-scale plasmonic junctions.

    PubMed

    Zhang, Peng

    2015-05-19

    When two conductors are separated by a sufficiently thin insulator, electrical current can flow between them by quantum tunneling. This paper presents a self-consistent model of tunneling current in a nano- and subnano-meter metal-insulator-metal plasmonic junction, by including the effects of space charge and exchange correlation potential. It is found that the J-V curve of the junction may be divided into three regimes: direct tunneling, field emission, and space-charge-limited regime. In general, the space charge inside the insulator reduces current transfer across the junction, whereas the exchange-correlation potential promotes current transfer. It is shown that these effects may modify the current density by orders of magnitude from the widely used Simmons' formula, which is only accurate for a limited parameter space (insulator thickness > 1 nm and barrier height > 3 eV) in the direct tunneling regime. The proposed self-consistent model may provide a more accurate evaluation of the tunneling current in the other regimes. The effects of anode emission and material properties (i.e. work function of the electrodes, electron affinity and permittivity of the insulator) are examined in detail in various regimes. Our simple model and the general scaling for tunneling current may provide insights to new regimes of quantum plasmonics.

  18. Scaling for quantum tunneling current in nano- and subnano-scale plasmonic junctions

    PubMed Central

    Zhang, Peng

    2015-01-01

    When two conductors are separated by a sufficiently thin insulator, electrical current can flow between them by quantum tunneling. This paper presents a self-consistent model of tunneling current in a nano- and subnano-meter metal-insulator-metal plasmonic junction, by including the effects of space charge and exchange correlation potential. It is found that the J-V curve of the junction may be divided into three regimes: direct tunneling, field emission, and space-charge-limited regime. In general, the space charge inside the insulator reduces current transfer across the junction, whereas the exchange-correlation potential promotes current transfer. It is shown that these effects may modify the current density by orders of magnitude from the widely used Simmons’ formula, which is only accurate for a limited parameter space (insulator thickness > 1 nm and barrier height > 3 eV) in the direct tunneling regime. The proposed self-consistent model may provide a more accurate evaluation of the tunneling current in the other regimes. The effects of anode emission and material properties (i.e. work function of the electrodes, electron affinity and permittivity of the insulator) are examined in detail in various regimes. Our simple model and the general scaling for tunneling current may provide insights to new regimes of quantum plasmonics. PMID:25988951

  19. Observation of two distinct pairs fluctuation lifetimes and supercurrents in the pseudogap regime of cuprate junctions

    NASA Astrophysics Data System (ADS)

    Koren, Gad; Lee, Patrick A.

    2016-11-01

    Pairs fluctuation supercurrents and inverse lifetimes in the pseudogap regime are reported. These were measured on epitaxial c-axis junctions of the cuprates, with a PrBa2Cu3O7-δ barrier sandwiched in between two YBa2Cu3O7-δ or doped YBa2Cu3Oy electrodes, with or without magnetic fields parallel to the a-b planes. All junctions had a Tc(high) ≈85 -90 K and a Tc(low) ≈50 -55 K electrodes, allowing us to study pairs fluctuation supercurrents and inverse lifetimes in between these two temperatures. In junctions with a pseudogap electrode under zero field, an excess current due to pair fluctuations was observed which persisted at temperatures above Tc(low) , in the pseudogap regime, and up to about Tc(high) . No such excess current was observed in junctions without an electrode with a pseudogap. The measured conductance spectra at temperatures above Tc(low) were fitted using a modified fluctuations model by Scalapino [Phys. Rev. Lett. 24, 1052 (1970), 10.1103/PhysRevLett.24.1052] of a junction with a serial resistance. We found that in the pseudogap regime, the conductance vs voltage consists of a narrow peak sitting on top of a very broad peak. This yielded two distinct pairs fluctuation lifetimes in the pseudogap electrode which differ by an order of magnitude up to about Tc(high) . Under in-plane fields, these two lifetime values remain separated in two distinct groups, which varied with increasing field moderately. We also found that detection of Amperian pairing [Phys. Rev. X 4, 031017 (2014), 10.1103/PhysRevX.4.031017] in our cuprate junctions is not feasible, due to Josephson vortices penetration into the superconducting electrodes which drove the necessary field above the depairing field.

  20. Application of CaCu3Ti4O12 based quadruple perovskites as a promising candidate for optoelectronic devices

    NASA Astrophysics Data System (ADS)

    Pal, Kamalesh; Jana, Rajkumar; Dey, Arka; Ray, Partha P.; Seikh, Md Motin; Gayen, Arup

    2018-05-01

    We report the synthesis of nanosized (40-50 nm) CaCu3-xMnxTi4-xMnxO12 (x = 0, 0.5 and 1) quadruple perovskite (QP) semiconductor via a modified combustion method for use as Schottky barrier diode (SBD) at the Al/QP junction. The fabricated SBD is analysed on the basis of thermionic emission theory to observe its quality and some important diode parameters. For insight analysis of charge transport mechanism through metal-semiconductor junction, theory of space charge limited currents is applied and discussed in the light of parameters like carrier concentration, mobility-lifetime product and diffusion length. The Mn-doped exhibit better device performance compared to parent material.

  1. Novel Organically Modified Core-Shell Clay for Epoxy Composites-"SOBM Filler 1".

    PubMed

    Iheaturu, Nnamdi Chibuike; Madufor, Innocent Chimezie

    2014-01-01

    Preparation of a novel organically modified clay from spent oil base drilling mud (SOBM) that could serve as core-shell clay filler for polymers is herein reported. Due to the hydrophilic nature of clay, its compatibility with polymer matrix was made possible through modification of the surface of the core clay sample with 3-aminopropyltriethoxysilane (3-APTES) compound prior to its use. Fourier transform infrared (FT-IR) spectroscopy was used to characterize clay surface modification. Electron dispersive X-ray diffraction (EDX) and scanning electron microscopy (SEM) were used to expose filler chemical composition and morphology, while electrophoresis measurement was used to examine level of filler dispersion. Results show an agglomerated core clay powder after high temperature treatment, while EDX analysis shows that the organically modified clay is composed of chemical inhomogeneities, wherein elemental compositions in weight percent vary from one point to the other in a probe of two points. Micrographs of the 3-APTES coupled SOBM core-shell clay filler clearly show cloudy appearance, while FT-IR indicates 25% and 5% increases in fundamental vibrations band at 1014 cm(-1) and 1435 cm(-1), respectively. Furthermore, 3-APTES coupled core-shell clay was used to prepare epoxy composites and tested for mechanical properties.

  2. Novel Organically Modified Core-Shell Clay for Epoxy Composites—“SOBM Filler 1”

    PubMed Central

    Iheaturu, Nnamdi Chibuike; Madufor, Innocent Chimezie

    2014-01-01

    Preparation of a novel organically modified clay from spent oil base drilling mud (SOBM) that could serve as core-shell clay filler for polymers is herein reported. Due to the hydrophilic nature of clay, its compatibility with polymer matrix was made possible through modification of the surface of the core clay sample with 3-aminopropyltriethoxysilane (3-APTES) compound prior to its use. Fourier transform infrared (FT-IR) spectroscopy was used to characterize clay surface modification. Electron dispersive X-ray diffraction (EDX) and scanning electron microscopy (SEM) were used to expose filler chemical composition and morphology, while electrophoresis measurement was used to examine level of filler dispersion. Results show an agglomerated core clay powder after high temperature treatment, while EDX analysis shows that the organically modified clay is composed of chemical inhomogeneities, wherein elemental compositions in weight percent vary from one point to the other in a probe of two points. Micrographs of the 3-APTES coupled SOBM core-shell clay filler clearly show cloudy appearance, while FT-IR indicates 25% and 5% increases in fundamental vibrations band at 1014 cm−1 and 1435 cm−1, respectively. Furthermore, 3-APTES coupled core-shell clay was used to prepare epoxy composites and tested for mechanical properties. PMID:27355022

  3. Structural correlates of affinity in fetal versus adult endplate nicotinic receptors

    NASA Astrophysics Data System (ADS)

    Nayak, Tapan Kumar; Chakraborty, Srirupa; Zheng, Wenjun; Auerbach, Anthony

    2016-04-01

    Adult-type nicotinic acetylcholine receptors (AChRs) mediate signalling at mature neuromuscular junctions and fetal-type AChRs are necessary for proper synapse development. Each AChR has two neurotransmitter binding sites located at the interface of a principal and a complementary subunit. Although all agonist binding sites have the same core of five aromatic amino acids, the fetal site has ~30-fold higher affinity for the neurotransmitter ACh. Here we use molecular dynamics simulations of adult versus fetal homology models to identify complementary-subunit residues near the core that influence affinity, and use single-channel electrophysiology to corroborate the results. Four residues in combination determine adult versus fetal affinity. Simulations suggest that at lower-affinity sites, one of these unsettles the core directly and the others (in loop E) increase backbone flexibility to unlock a key, complementary tryptophan from the core. Swapping only four amino acids is necessary and sufficient to exchange function between adult and fetal AChRs.

  4. The modified glasgow prognostic score is an independent prognostic indicator in neoadjuvantly treated adenocarcinoma of the esophagogastric junction

    PubMed Central

    Jomrich, Gerd; Hollenstein, Marlene; John, Maximilian; Baierl, Andreas; Paireder, Matthias; Kristo, Ivan; Ilhan-Mutlu, Aysegül; Asari, Reza; Preusser, Matthias; Schoppmann, Sebastian F.

    2018-01-01

    The modified Glasgow Prognostic Score (mGPS) combines the indicators of decreased plasma albumin and elevated CRP. In a number of malignancies, elevated mGPS is associated with poor survival. Aim of this study was to investigate the prognostic role of mGPS in patients with neoadjuvantly treated adenocarcinomas of the esophagogastric junction 256 patients from a prospective database undergoing surgical resection after neoadjuvant treatment between 2003 and 2014 were evaluated. mGPS was scored as 0, 1, or 2 based on CRP (>1.0 mg/dl) and albumin (<35 g/L) from blood samples taken prior (preNT-mGPS) and after (postNT-mGPS) neoadjuvant therapy. Scores were correlated with clinicopathological patients’ characteristics. From 155 Patients, sufficient data was available. Median follow-up was 63.8 months (33.3–89.5 months). In univariate analysis, Cox proportional hazard model shows significant shorter patients OS (p = 0.04) and DFS (p = 0.02) for increased postNT-mGPS, preNT-hypoalbuminemia (OS: p = 0.003; DFS: p = 0.002) and post-NT-CRP (OS: p = 0.03; DFS: p = 0.04). Elevated postNT-mGPS and preNT-hypoalbuminemia remained significant prognostic factors in multivariate analysis for OS (p = 0.02; p = 0.005,) and DFS (p = 0.02, p = 0.004) with tumor differentiation and tumor staging as significant covariates. PostNT-mGPS and preNT-hypoalbuminemia are independent prognostic indicators in patients with neoadjuvantly treated adenocarcinomas of the esophagogastric junction and significantly associated with diminished OS and DFS. PMID:29467943

  5. A SERS-active sensor based on heterogeneous gold nanostar core-silver nanoparticle satellite assemblies for ultrasensitive detection of aflatoxinB1

    NASA Astrophysics Data System (ADS)

    Li, Aike; Tang, Lijuan; Song, Dan; Song, Shanshan; Ma, Wei; Xu, Liguang; Kuang, Hua; Wu, Xiaoling; Liu, Liqiang; Chen, Xin; Xu, Chuanlai

    2016-01-01

    A surface-enhanced Raman scattering (SERS) sensor based on gold nanostar (Au NS) core-silver nanoparticle (Ag NP) satellites was fabricated for the first time to detect aflatoxinB1 (AFB1). We constructed the SERS sensor using AFB1 aptamer (DNA1)-modified Ag satellites and a complementary sequence (DNA2)-modified Au NS core. The Raman label (ATP) was modified on the surface of Ag satellites. The SERS signal was enhanced when the satellite NP was attached to the Au core NS. The AFB1 aptamer on the surface of Ag satellites would bind to the targets when AFB1 was present in the system, Ag satellites were then removed and the SERS signal decreased. This SERS sensor showed superior specificity for AFB1 and the linear detection range was from 1 to 1000 pg mL-1 with the limit of detection (LOD) of 0.48 pg mL-1. The excellent recovery experiment using peanut milk demonstrated that the sensor could be applied in food and environmental detection.A surface-enhanced Raman scattering (SERS) sensor based on gold nanostar (Au NS) core-silver nanoparticle (Ag NP) satellites was fabricated for the first time to detect aflatoxinB1 (AFB1). We constructed the SERS sensor using AFB1 aptamer (DNA1)-modified Ag satellites and a complementary sequence (DNA2)-modified Au NS core. The Raman label (ATP) was modified on the surface of Ag satellites. The SERS signal was enhanced when the satellite NP was attached to the Au core NS. The AFB1 aptamer on the surface of Ag satellites would bind to the targets when AFB1 was present in the system, Ag satellites were then removed and the SERS signal decreased. This SERS sensor showed superior specificity for AFB1 and the linear detection range was from 1 to 1000 pg mL-1 with the limit of detection (LOD) of 0.48 pg mL-1. The excellent recovery experiment using peanut milk demonstrated that the sensor could be applied in food and environmental detection. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr08372a

  6. Rethinking turbidite paleoseismology along the Cascadia subduction zone

    USGS Publications Warehouse

    Atwater, Brian F.; Carson, Bobb; Griggs, Gary B.; Johnson, H. Paul; Salmi, Marie

    2014-01-01

    A stratigraphic synthesis of dozens of deep-sea cores, most of them overlooked in recent decades, provides new insights into deep-sea turbidites as guides to earthquake and tsunami hazards along the Cascadia subduction zone, which extends 1100 km along the Pacific coast of North America. The synthesis shows greater variability in Holocene stratigraphy and facies off the Washington coast than was recognized a quarter century ago in a confluence test for seismic triggering of sediment gravity flows. That test compared counts of Holocene turbidites upstream and downstream of a deep-sea channel junction. Similarity in the turbidite counts among seven core sites provided evidence that turbidity currents from different submarine canyons usually reached the junction around the same time, as expected of widespread seismic triggering. The fuller synthesis, however, shows distinct differences between tributaries, and these differences suggest sediment routing for which the confluence test was not designed. The synthesis also bears on recent estimates of Cascadia earthquake magnitudes and recurrence intervals. The magnitude estimates hinge on stratigraphic correlations that discount variability in turbidite facies. The recurrence estimates require turbidites to represent megathrust earthquakes more dependably than they do along a flow path where turbidite frequency appears limited less by seismic shaking than by sediment supply. These concerns underscore the complexity of extracting earthquake history from deep-sea turbidites at Cascadia.

  7. Characterizing Facesheet/Core Disbonding in Honeycomb Core Sandwich Structure

    NASA Technical Reports Server (NTRS)

    Rinker, Martin; Ratcliffe, James G.; Adams, Daniel O.; Krueger, Ronald

    2013-01-01

    Results are presented from an experimental investigation into facesheet core disbonding in carbon fiber reinforced plastic/Nomex honeycomb sandwich structures using a Single Cantilever Beam test. Specimens with three, six and twelve-ply facesheets were tested. Specimens with different honeycomb cores consisting of four different cell sizes were also tested, in addition to specimens with three different widths. Three different data reduction methods were employed for computing apparent fracture toughness values from the test data, namely an area method, a compliance calibration technique and a modified beam theory method. The compliance calibration and modified beam theory approaches yielded comparable apparent fracture toughness values, which were generally lower than those computed using the area method. Disbonding in the three-ply facesheet specimens took place at the facesheet/core interface and yielded the lowest apparent fracture toughness values. Disbonding in the six and twelve-ply facesheet specimens took place within the core, near to the facesheet/core interface. Specimen width was not found to have a significant effect on apparent fracture toughness. The amount of scatter in the apparent fracture toughness data was found to increase with honeycomb core cell size.

  8. Effect of Damage on Strength and Durability

    DTIC Science & Technology

    2010-05-01

    sheets and different core materials. The HRP core has a phenolic resin matrix, the NP core has nylon modified phenolic base resin matrix and TPC core...core are 25% to 65% higher than those of NP or TPC cores. The phenolic resin of the HRP makes core stiff and brittle, resulting in cracking on impact...characteristics of graphite laminates can be improved by inserting glass or Kevlar fibers to form a hybrid laminate system. However, since glass and

  9. Design and characterization of the first peptidomimetic molecule that prevents acidification-induced closure of cardiac gap junctions

    PubMed Central

    Verma, Vandana; Larsen, Bjarne Due; Coombs, Wanda; Lin, Xianming; Sarrou, Eliana; Taffet, Steven M.; Delmar, Mario

    2010-01-01

    Background Gap junctions are potential targets for pharmacological intervention. We have previously developed a series of peptide sequences that prevent closure of Cx43 channels, bind to cardiac Cx43 and prevent acidification-induced uncoupling of cardiac gap junctions. Objective We aimed to identify and validate the minimum core active structure in peptides containing an RR-N/Q-Y motif. Based on that information, we sought to generate a peptidomimetic molecule that acts on the chemical regulation of Cx43 channels. Methods Experiments were based on a combination of biochemical, spectroscopic and electrophysiological techniques, as well as molecular modeling of active pharmacophores with Cx43 activity. Results Molecular modeling analysis indicated that the functional elements of the side chains in the motif RRXY form a triangular structure. Experimental data revealed that compounds containing such a structure bind to Cx43 and prevent Cx43 chemical gating. These results provided us with the first platform for drug design targeted to the carboxyl terminal of Cx43. Using that platform, we designed and validated a peptidomimetic compound (ZP2519; molecular weight 619 Da) that prevented octanol-induced uncoupling of Cx43 channels, and pH gating of cardiac gap junctions. Conclusion Structure-based drug design can be applied to the development of pharmacophores that act directly on Cx43. Small molecules containing these pharmacophores can serve as tools to determine the role of gap junction regulation in the control of cardiac rhythm. Future studies will determine whether these compounds can function as pharmacological agents for the treatment of a selected subset of cardiac arrhythmias. PMID:20601149

  10. Novel on-demand droplet generation for selective fluid sample extraction

    PubMed Central

    Lin, Robert; Fisher, Jeffery S.; Simon, Melinda G.; Lee, Abraham P.

    2012-01-01

    A novel microfluidic device enabling selective generation of droplets and encapsulation of targets is presented. Unlike conventional methods, the presented mechanism generates droplets with unique selectivity by utilizing a K-junction design. The K-junction is a modified version of the classic T-junction with an added leg that serves as the exit channel for waste. The dispersed phase fluid enters from one diagonal of the K and exits the other diagonal while the continuous phase travels in the straight leg of the K. The intersection forms an interface that allows the dispersed phase to be controllably injected through actuation of an elastomer membrane located above the inlet channel near the interface. We have characterized two critical components in controlling the droplet size—membrane actuation pressure and timing as well as identified the region of fluid in which the droplet will be formed. This scheme will have applications in fluid sampling processes and selective encapsulation of materials. Selective encapsulation of a single cell from the dispersed phase fluid is demonstrated as an example of functionality of this design. PMID:22655015

  11. Remodeling the zonula adherens in response to tension and the role of afadin in this response

    PubMed Central

    Acharya, Bipul R.; Peyret, Grégoire; Fardin, Marc-Antoine; Mège, René-Marc; Ladoux, Benoit; Yap, Alpha S.; Fanning, Alan S.

    2016-01-01

    Morphogenesis requires dynamic coordination between cell–cell adhesion and the cytoskeleton to allow cells to change shape and move without losing tissue integrity. We used genetic tools and superresolution microscopy in a simple model epithelial cell line to define how the molecular architecture of cell–cell zonula adherens (ZA) is modified in response to elevated contractility, and how these cells maintain tissue integrity. We previously found that depleting zonula occludens 1 (ZO-1) family proteins in MDCK cells induces a highly organized contractile actomyosin array at the ZA. We find that ZO knockdown elevates contractility via a Shroom3/Rho-associated, coiled-coil containing protein kinase (ROCK) pathway. Our data suggest that each bicellular border is an independent contractile unit, with actin cables anchored end-on to cadherin complexes at tricellular junctions. Cells respond to elevated contractility by increasing junctional afadin. Although ZO/afadin knockdown did not prevent contractile array assembly, it dramatically altered cell shape and barrier function in response to elevated contractility. We propose that afadin acts as a robust protein scaffold that maintains ZA architecture at tricellular junctions. PMID:27114502

  12. Role of solvent environments in single molecule conductance used insulator-modified mechanically controlled break junctions

    NASA Astrophysics Data System (ADS)

    Muthusubramanian, Nandini; Maity, Chandan; Galan Garcia, Elena; Eelkema, Rienk; Grozema, Ferdinand; van der Zant, Herre; Kavli Institute of Nanoscience Collaboration; Department of Chemical Engineering Collaboration

    We present a method for studying the effects of polar solvents on charge transport through organic/biological single molecules by developing solvent-compatible mechanically controlled break junctions of gold coated with a thin layer of aluminium oxide using plasma enhanced atomic layer deposition (ALD). The optimal oxide thickness was experimentally determined to be 15 nm deposited at ALD operating temperature of 300°C which yielded atomically sharp electrodes and reproducible single-barrier tunnelling behaviour across a wide conductance range between 1 G0 and 10-7 G0. The insulator protected MCBJ devices were found to be effective in various solvents such as deionized water, phosphate buffered saline, methanol, acetonitrile and dichlorobenzene. The yield of molecular junctions using such insulated electrodes was tested by developing a chemical protocol for synthesizing an amphipathic form of oligo-phenylene ethynylene (OPE3-PEO) with thioacetate anchoring groups. This work has further applications in studying effects of solvation, dipole orientation and other thermodynamic interactions on charge transport. Eu Marie Curie Initial Training Network (ITN). MOLECULAR-SCALE ELECTRONICS: ``MOLESCO'' Project Number 606728.

  13. Fretting and Corrosion in Modular Shoulder Arthroplasty: A Retrieval Analysis

    PubMed Central

    Panzram, Benjamin

    2016-01-01

    Tribocorrosion in taper junctions of retrieved anatomic shoulder arthroplasty implants was evaluated. A comparison of the tribocorrosion between cobalt-chromium and titanium alloy stems was conducted and the observations were correlated with the individual's clinical data. Adverse effects caused by metal debris and subsequent elevated serum metal ion levels are frequently reported in total hip arthroplasty. In total shoulder arthroplasty, to date only a small number of retrieval analyses are available and even fewer address the issue of tribocorrosion at the taper junctions. A total of 36 retrieved hemiarthroplasties and total shoulder arthroplasties were assessed using the modified Goldberg score. The prevalence of fretting and corrosion was confirmed in this cohort. Titanium stems seem to be more susceptible to damage caused by tribocorrosion than cobalt-chromium stems. Furthermore, stemless designs offered less tribocorrosion at the taper junction than stemmed designs. A weak correlation between time to revision and increased levels of tribocorrosion was seen. Whether or not tribocorrosion can lead to adverse clinical reactions and causes failure of shoulder arthroplasties remains to be examined. PMID:27433471

  14. Stabilized soliton self-frequency shift and 0.1- PHz sideband generation in a photonic-crystal fiber with an air-hole-modified core.

    PubMed

    Liu, Bo-Wen; Hu, Ming-Lie; Fang, Xiao-Hui; Li, Yan-Feng; Chai, Lu; Wang, Ching-Yue; Tong, Weijun; Luo, Jie; Voronin, Aleksandr A; Zheltikov, Aleksei M

    2008-09-15

    Fiber dispersion and nonlinearity management strategy based on a modification of a photonic-crystal fiber (PCF) core with an air hole is shown to facilitate optimization of PCF components for a stable soliton frequency shift and subpetahertz sideband generation through four-wave mixing. Spectral recoil of an optical soliton by a red-shifted dispersive wave, generated through a soliton instability induced by high-order fiber dispersion, is shown to stabilize the soliton self-frequency shift in a highly nonlinear PCF with an air-hole-modified core relative to pump power variations. A fiber with a 2.3-microm-diameter core modified with a 0.9-microm-diameter air hole is used to demonstrate a robust soliton self-frequency shift of unamplified 50-fs Ti: sapphire laser pulses to a central wavelength of about 960 nm, which remains insensitive to variations in the pump pulse energy within the range from 60 to at least 100 pJ. In this regime of frequency shifting, intense high- and low-frequency branches of dispersive wave radiation are simultaneously observed in the spectrum of PCF output. An air-hole-modified-core PCF with appropriate dispersion and nonlinearity parameters is shown to provide efficient four-wave mixing, giving rise to Stokes and anti-Stokes sidebands whose frequency shift relative to the pump wavelength falls within the subpetahertz range, thus offering an attractive source for nonlinear Raman microspectroscopy.

  15. Dislocation Structure and Mobility in hcp He 4

    DOE PAGES

    Landinez Borda, Edgar Josue; Cai, Wei; de Koning, Maurice

    2016-07-20

    We assess the core structure and mobility of the screw and edge basal-plane dislocations in hcp 4He using path-integral Monte Carlo simulations. Our findings provide key insights into recent interpretations of giant plasticity and mass flow junction experiments. First, both dislocations are dissociated into nonsuperfluid Shockley partial dislocations separated by ribbons of stacking fault, suggesting that they are unlikely to act as one-dimensional channels that may display Lüttinger-liquid-like behavior. Second, the centroid positions of the partial cores are found to fluctuate substantially, even in the absence of applied shear stresses. This implies that the lattice resistance to motion of themore » partial dislocations is negligible, consistent with the recent experimental observations of giant plasticity. Our results indicate that both the structure of the partial cores and the zero-point fluctuations play a role in this extreme mobility.« less

  16. Spin-torque resonant expulsion of the vortex core for an efficient radiofrequency detection scheme.

    PubMed

    Jenkins, A S; Lebrun, R; Grimaldi, E; Tsunegi, S; Bortolotti, P; Kubota, H; Yakushiji, K; Fukushima, A; de Loubens, G; Klein, O; Yuasa, S; Cros, V

    2016-04-01

    It has been proposed that high-frequency detectors based on the so-called spin-torque diode effect in spin transfer oscillators could eventually replace conventional Schottky diodes due to their nanoscale size, frequency tunability and large output sensitivity. Although a promising candidate for information and communications technology applications, the output voltage generated from this effect has still to be improved and, more pertinently, reduces drastically with decreasing radiofrequency (RF) current. Here we present a scheme for a new type of spintronics-based high-frequency detector based on the expulsion of the vortex core in a magnetic tunnel junction (MTJ). The resonant expulsion of the core leads to a large and sharp change in resistance associated with the difference in magnetoresistance between the vortex ground state and the final C-state configuration. Interestingly, this reversible effect is independent of the incoming RF current amplitude, offering a fast real-time RF threshold detector.

  17. Magnetic Vortex Based Transistor Operations

    PubMed Central

    Kumar, D.; Barman, S.; Barman, A.

    2014-01-01

    Transistors constitute the backbone of modern day electronics. Since their advent, researchers have been seeking ways to make smaller and more efficient transistors. Here, we demonstrate a sustained amplification of magnetic vortex core gyration in coupled two and three vortices by controlling their relative core polarities. This amplification is mediated by a cascade of antivortex solitons travelling through the dynamic stray field. We further demonstrated that the amplification can be controlled by switching the polarity of the middle vortex in a three vortex sequence and the gain can be controlled by the input signal amplitude. An attempt to show fan–out operation yielded gain for one of the symmetrically placed branches which can be reversed by switching the core polarity of all the vortices in the network. The above observations promote the magnetic vortices as suitable candidates to work as stable bipolar junction transistors (BJT). PMID:24531235

  18. Quantum interferometer based on GaAs/InAs core/shell nanowires connected to superconducting contacts

    NASA Astrophysics Data System (ADS)

    Haas, F.; Dickheuer, S.; Zellekens, P.; Rieger, T.; Lepsa, M. I.; Lüth, H.; Grützmacher, D.; Schäpers, Th

    2018-06-01

    An interferometer structure was realized based on a GaAs/InAs core/shell nanowire and Nb superconducting electrodes. Two pairs of Nb contacts are attached to the side facets of the nanowire allowing for carrier transport in three different orientations. Owing to the core/shell geometry, the current flows in the tubular conductive InAs shell. In transport measurements with superconducting electrodes directly facing each other, indications of a Josephson supercurrent are found. In contrast for junctions in diagonal and longitudinal configuration a deficiency current is observed, owing to the weaker coupling on longer distances. By applying a magnetic field along the nanowires axis pronounced h/2e flux-periodic oscillations are measured in all three contact configurations. The appearance of these oscillations is explained in terms of interference effects in the Josephson supercurrent and long-range phase-coherent Andreev reflection.

  19. Human serum albumin nanoparticles modified with apolipoprotein A-I cross the blood-brain barrier and enter the rodent brain.

    PubMed

    Zensi, Anja; Begley, David; Pontikis, Charles; Legros, Celine; Mihoreanu, Larisa; Büchel, Claudia; Kreuter, Jörg

    2010-12-01

    Nanoparticles made of human serum albumin (HSA) and modified with apolipoproteins have previously been shown to transport drugs, which normally do not enter the brain, across the blood-brain barrier (BBB). However the precise mechanism by which nanoparticles with different apolipoproteins on their surface can target to the brain, as yet, has not been totally elucidated. In the present study, HSA nanoparticles with covalently bound apolipoprotein A-I (Apo A-I) as a targetor for brain capillary endothelial cells were injected intravenously into SV 129 mice and Wistar rats. The rodents were sacrificed after 15 or 30 min, and their brains were examined by transmission electron microscopy. Apo A-I nanoparticles could be found inside the endothelial cells of brain capillaries as well as within parenchymal brain tissue of both, mice and rats, whereas control particles without Apo A-I on their surface did not cross the BBB during our experiments. The maintenance of tight junction integrity and barrier function during treatment with nanoparticles was demonstrated by perfusion with a fixative containing lanthanum nitrate as an electron dense marker for the permeability of tight junctions.

  20. Imaging charge carriers in potential-induced degradation defects of c-Si solar cells by scanning capacitance microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, C. -S.; Xiao, C.; Moutinho, H. R.

    We report on nm-resolution imaging of charge-carrier distribution around local potential-induced degradation (PID) shunting defects using scanning capacitance microscopy. We imaged on cross sections of heavily field-degraded module areas, cored out and selected by mm-scale photoluminescence imaging. We found localized areas with abnormal carrier behavior induced by the PID defects: the apparent n-type carrier extends vertically into the absorber to ~1-2 um from the cell surface, and laterally in similar lengths; in defect-free areas, the n-type carrier extends ~0.5 um, which is consistent with the junction depth. For comparison, we also investigated areas of the same module exhibiting the leastmore » PID stress, and we found no such heavily damaged junction area. Instead, we found slightly abnormal carrier behavior, where the carrier-type inversion in the absorber did not occur, but the p-type carrier concentration changed slightly in a much smaller lateral length of ~300 nm. These nano-electrical findings may indicate a possible mechanism that the existing extended defects, which may not be significantly harmful to cell performance, can be changed by PID to heavily damaged junction areas.« less

  1. Imaging charge carriers in potential-induced degradation defects of c-Si solar cells by scanning capacitance microscopy

    DOE PAGES

    Jiang, C. -S.; Xiao, C.; Moutinho, H. R.; ...

    2018-02-13

    We report on nm-resolution imaging of charge-carrier distribution around local potential-induced degradation (PID) shunting defects using scanning capacitance microscopy. We imaged on cross sections of heavily field-degraded module areas, cored out and selected by mm-scale photoluminescence imaging. We found localized areas with abnormal carrier behavior induced by the PID defects: the apparent n-type carrier extends vertically into the absorber to ~1-2 um from the cell surface, and laterally in similar lengths; in defect-free areas, the n-type carrier extends ~0.5 um, which is consistent with the junction depth. For comparison, we also investigated areas of the same module exhibiting the leastmore » PID stress, and we found no such heavily damaged junction area. Instead, we found slightly abnormal carrier behavior, where the carrier-type inversion in the absorber did not occur, but the p-type carrier concentration changed slightly in a much smaller lateral length of ~300 nm. These nano-electrical findings may indicate a possible mechanism that the existing extended defects, which may not be significantly harmful to cell performance, can be changed by PID to heavily damaged junction areas.« less

  2. Current-Induced Transistor Sensorics with Electrogenic Cells

    PubMed Central

    Fromherz, Peter

    2016-01-01

    The concepts of transistor recording of electroactive cells are considered, when the response is determined by a current-induced voltage in the electrolyte due to cellular activity. The relationship to traditional transistor recording, with an interface-induced response due to interactions with the open gate oxide, is addressed. For the geometry of a cell-substrate junction, the theory of a planar core-coat conductor is described with a one-compartment approximation. The fast electrical relaxation of the junction and the slow change of ion concentrations are pointed out. On that basis, various recording situations are considered and documented by experiments. For voltage-gated ion channels under voltage clamp, the effects of a changing extracellular ion concentration and the enhancement/depletion of ion conductances in the adherent membrane are addressed. Inhomogeneous ion conductances are crucial for transistor recording of neuronal action potentials. For a propagating action potential, the effects of an axon-substrate junction and the surrounding volume conductor are distinguished. Finally, a receptor-transistor-sensor is described, where the inhomogeneity of a ligand–activated ion conductance is achieved by diffusion of the agonist and inactivation of the conductance. Problems with regard to a development of reliable biosensors are mentioned. PMID:27120627

  3. Differences in quantitative assessment of myocardial scar and gray zone by LGE-CMR imaging using established gray zone protocols.

    PubMed

    Mesubi, Olurotimi; Ego-Osuala, Kelechi; Jeudy, Jean; Purtilo, James; Synowski, Stephen; Abutaleb, Ameer; Niekoop, Michelle; Abdulghani, Mohammed; Asoglu, Ramazan; See, Vincent; Saliaris, Anastasios; Shorofsky, Stephen; Dickfeld, Timm

    2015-02-01

    Late gadolinium enhancement cardiac magnetic resonance (LGE-CMR) imaging is the gold standard for myocardial scar evaluation. Heterogeneous areas of scar ('gray zone'), may serve as arrhythmogenic substrate. Various gray zone protocols have been correlated to clinical outcomes and ventricular tachycardia channels. This study assessed the quantitative differences in gray zone and scar core sizes as defined by previously validated signal intensity (SI) threshold algorithms. High quality LGE-CMR images performed in 41 cardiomyopathy patients [ischemic (33) or non-ischemic (8)] were analyzed using previously validated SI threshold methods [Full Width at Half Maximum (FWHM), n-standard deviation (NSD) and modified-FWHM]. Myocardial scar was defined as scar core and gray zone using SI thresholds based on these methods. Scar core, gray zone and total scar sizes were then computed and compared among these models. The median gray zone mass was 2-3 times larger with FWHM (15 g, IQR: 8-26 g) compared to NSD or modified-FWHM (5 g, IQR: 3-9 g; and 8 g. IQR: 6-12 g respectively, p < 0.001). Conversely, infarct core mass was 2.3 times larger with NSD (30 g, IQR: 17-53 g) versus FWHM and modified-FWHM (13 g, IQR: 7-23 g, p < 0.001). The gray zone extent (percentage of total scar that was gray zone) also varied significantly among the three methods, 51 % (IQR: 42-61 %), 17 % (IQR: 11-21 %) versus 38 % (IQR: 33-43 %) for FWHM, NSD and modified-FWHM respectively (p < 0.001). Considerable variability exists among the current methods for MRI defined gray zone and scar core. Infarct core and total myocardial scar mass also differ using these methods. Further evaluation of the most accurate quantification method is needed.

  4. Event specific qualitative and quantitative polymerase chain reaction detection of genetically modified MON863 maize based on the 5'-transgene integration sequence.

    PubMed

    Yang, Litao; Xu, Songci; Pan, Aihu; Yin, Changsong; Zhang, Kewei; Wang, Zhenying; Zhou, Zhigang; Zhang, Dabing

    2005-11-30

    Because of the genetically modified organisms (GMOs) labeling policies issued in many countries and areas, polymerase chain reaction (PCR) methods were developed for the execution of GMO labeling policies, such as screening, gene specific, construct specific, and event specific PCR detection methods, which have become a mainstay of GMOs detection. The event specific PCR detection method is the primary trend in GMOs detection because of its high specificity based on the flanking sequence of the exogenous integrant. This genetically modified maize, MON863, contains a Cry3Bb1 coding sequence that produces a protein with enhanced insecticidal activity against the coleopteran pest, corn rootworm. In this study, the 5'-integration junction sequence between the host plant DNA and the integrated gene construct of the genetically modified maize MON863 was revealed by means of thermal asymmetric interlaced-PCR, and the specific PCR primers and TaqMan probe were designed based upon the revealed 5'-integration junction sequence; the conventional qualitative PCR and quantitative TaqMan real-time PCR detection methods employing these primers and probes were successfully developed. In conventional qualitative PCR assay, the limit of detection (LOD) was 0.1% for MON863 in 100 ng of maize genomic DNA for one reaction. In the quantitative TaqMan real-time PCR assay, the LOD and the limit of quantification were eight and 80 haploid genome copies, respectively. In addition, three mixed maize samples with known MON863 contents were detected using the established real-time PCR systems, and the ideal results indicated that the established event specific real-time PCR detection systems were reliable, sensitive, and accurate.

  5. Citric acid modified kenaf core fibres for removal of methylene blue from aqueous solution.

    PubMed

    Sajab, Mohd Shaiful; Chia, Chin Hua; Zakaria, Sarani; Jani, Saad Mohd; Ayob, Mohd Khan; Chee, Kah Leong; Khiew, Poi Sim; Chiu, Wee Siong

    2011-08-01

    Chemically modified kenaf core fibres were prepared via esterification in the presence of citric acid (CA). The adsorption kinetics and isotherm studies were carried out under different conditions to examine the adsorption efficiency of CA-treated kenaf core fibres towards methylene blue (MB). The adsorption capacity of the kenaf core fibres increased significantly after the citric acid treatment. The values of the correlation coefficients indicated that the Langmuir isotherm fitted the experimental data better than the Freundlich isotherm. The maximum adsorption capacity of the CA-treated kenaf core fibres was found to be 131.6mg/g at 60°C. Kinetic models, pseudo-first-order, pseudo-second-order and intraparticle diffusion, were employed to describe the adsorption mechanism. The kinetic data were found to fit pseudo-second-order model equation as compared to pseudo-first-order model. The adsorption of MB onto the CA-treated kenaf core fibres was spontaneous and endothermic. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Paving the way to nanoionics: atomic origin of barriers for ionic transport through interfaces.

    PubMed

    Frechero, M A; Rocci, M; Sánchez-Santolino, G; Kumar, Amit; Salafranca, J; Schmidt, Rainer; Díaz-Guillén, M R; Durá, O J; Rivera-Calzada, A; Mishra, R; Jesse, Stephen; Pantelides, S T; Kalinin, Sergei V; Varela, M; Pennycook, S J; Santamaria, J; Leon, C

    2015-12-17

    The blocking of ion transport at interfaces strongly limits the performance of electrochemical nanodevices for energy applications. The barrier is believed to arise from space-charge regions generated by mobile ions by analogy to semiconductor junctions. Here we show that something different is at play by studying ion transport in a bicrystal of yttria (9% mol) stabilized zirconia (YSZ), an emblematic oxide ion conductor. Aberration-corrected scanning transmission electron microscopy (STEM) provides structure and composition at atomic resolution, with the sensitivity to directly reveal the oxygen ion profile. We find that Y segregates to the grain boundary at Zr sites, together with a depletion of oxygen that is confined to a small length scale of around 0.5 nm. Contrary to the main thesis of the space-charge model, there exists no evidence of a long-range O vacancy depletion layer. Combining ion transport measurements across a single grain boundary by nanoscale electrochemical strain microscopy (ESM), broadband dielectric spectroscopy measurements, and density functional calculations, we show that grain-boundary-induced electronic states act as acceptors, resulting in a negatively charged core. Besides the possible effect of the modified chemical bonding, this negative charge gives rise to an additional barrier for ion transport at the grain boundary.

  7. Paving the way to nanoionics: Atomic origin of barriers for ionic transport through interfaces

    DOE PAGES

    Frechero, M. A.; Rocci, M.; Sanchez-Santolino, G.; ...

    2015-12-17

    The blocking of ion transport at interfaces strongly limits the performance of electrochemical nanodevices for energy applications. The barrier is believed to arise from space-charge regions generated by mobile ions by analogy to semiconductor junctions. Here we show that something different is at play by studying ion transport in a bicrystal of yttria (9% mol) stabilized zirconia (YSZ), an emblematic oxide ion conductor. Aberration-corrected scanning transmission electron microscopy (STEM) provides structure and composition at atomic resolution, with the sensitivity to directly reveal the oxygen ion profile. We find that Y segregates to the grain boundary at Zr sites, together withmore » a depletion of oxygen that is confined to a small length scale of around 0.5 nm. Contrary to the main thesis of the space-charge model, there exists no evidence of a long-range O vacancy depletion layer. Combining ion transport measurements across a single grain boundary by nanoscale electrochemical strain microscopy (ESM), broadband dielectric spectroscopy measurements, and density functional calculations, we show that grain-boundary-induced electronic states act as acceptors, resulting in a negatively charged core. In conclusion, besides the possible effect of the modified chemical bonding, this negative charge gives rise to an additional barrier for ion transport at the grain boundary.« less

  8. Physics of grain boundaries in polycrystalline photovoltaic semiconductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, Yanfa, E-mail: yanfa.yan@utoledo.edu; Yin, Wan-Jian; Wu, Yelong

    2015-03-21

    Thin-film solar cells based on polycrystalline Cu(In,Ga)Se{sub 2} (CIGS) and CdTe photovoltaic semiconductors have reached remarkable laboratory efficiencies. It is surprising that these thin-film polycrystalline solar cells can reach such high efficiencies despite containing a high density of grain boundaries (GBs), which would seem likely to be nonradiative recombination centers for photo-generated carriers. In this paper, we review our atomistic theoretical understanding of the physics of grain boundaries in CIGS and CdTe absorbers. We show that intrinsic GBs with dislocation cores exhibit deep gap states in both CIGS and CdTe. However, in each solar cell device, the GBs can bemore » chemically modified to improve their photovoltaic properties. In CIGS cells, GBs are found to be Cu-rich and contain O impurities. Density-functional theory calculations reveal that such chemical changes within GBs can remove most of the unwanted gap states. In CdTe cells, GBs are found to contain a high concentration of Cl atoms. Cl atoms donate electrons, creating n-type GBs between p-type CdTe grains, forming local p-n-p junctions along GBs. This leads to enhanced current collections. Therefore, chemical modification of GBs allows for high efficiency polycrystalline CIGS and CdTe thin-film solar cells.« less

  9. Heparan sulfate proteoglycans regulate autophagy in Drosophila.

    PubMed

    Reynolds-Peterson, Claire E; Zhao, Na; Xu, Jie; Serman, Taryn M; Xu, Jielin; Selleck, Scott B

    2017-08-03

    Heparan sulfate-modified proteoglycans (HSPGs) are important regulators of signaling and molecular recognition at the cell surface and in the extracellular space. Disruption of HSPG core proteins, HS-synthesis, or HS-degradation can have profound effects on growth, patterning, and cell survival. The Drosophila neuromuscular junction provides a tractable model for understanding the activities of HSPGs at a synapse that displays developmental and activity-dependent plasticity. Muscle cell-specific knockdown of HS biosynthesis disrupted the organization of a specialized postsynaptic membrane, the subsynaptic reticulum (SSR), and affected the number and morphology of mitochondria. We provide evidence that these changes result from a dysregulation of macroautophagy (hereafter referred to as autophagy). Cellular and molecular markers of autophagy are all consistent with an increase in the levels of autophagy in the absence of normal HS-chain biosynthesis and modification. HS production is also required for normal levels of autophagy in the fat body, the central energy storage and nutritional sensing organ in Drosophila. Genetic mosaic analysis indicates that HS-dependent regulation of autophagy occurs non-cell autonomously, consistent with HSPGs influencing this cellular process via signaling in the extracellular space. These findings demonstrate that HS biosynthesis has important regulatory effects on autophagy and that autophagy is critical for normal assembly of postsynaptic membrane specializations.

  10. Physics of grain boundaries in polycrystalline photovoltaic semiconductors

    DOE PAGES

    Yan, Yanfa; Yin, Wan-Jian; Wu, Yelong; ...

    2015-03-16

    Thin-film solar cells based on polycrystalline Cu(In,Ga)Se 2 (CIGS) and CdTe photovoltaic semiconductors have reached remarkable laboratory efficiencies. It is surprising that these thin-film polycrystalline solar cells can reach such high efficiencies despite containing a high density of grain boundaries (GBs), which would seem likely to be nonradiative recombination centers for photo-generated carriers. In this study, we review our atomistic theoretical understanding of the physics of grain boundaries in CIGS and CdTe absorbers. We show that intrinsic GBs with dislocation cores exhibit deep gap states in both CIGS and CdTe. Although, in each solar cell device, the GBs can bemore » chemically modified to improve their photovoltaic properties. In CIGS cells, GBs are found to be Cu-rich and contain O impurities. Density-functional theory calculations reveal that such chemical changes within GBs can remove most of the unwanted gap states. In CdTe cells, GBs are found to contain a high concentration of Cl atoms. Cl atoms donate electrons, creating n-type GBs between p-type CdTe grains, forming local p-n-p junctions along GBs. This leads to enhanced current collections. In conclusion, chemical modification of GBs allows for high efficiency polycrystalline CIGS and CdTe thin-film solar cells.« less

  11. Analysis and evaluation in the production process and equipment area of the low-cost solar array project

    NASA Technical Reports Server (NTRS)

    Wolf, M.

    1982-01-01

    It was found that the Solarex metallization design and process selection should be modified to yield substantially higher output of the 10 cm x 10 cm cells, while the Westinghouse design is extremely close to the optimum. In addition, further attention to the Solarex pn junction and base high/low junction formation processes could be beneficial. For the future efficiency improvement, it was found that refinement of the various minority carrier lifetime measurement methods is needed, as well as considerably increased sophistication in the interpretation of the results of these methods. In addition, it was determined that further experimental investigation of the Auger lifetime is needed, to conclusively determine the Auger coefficients for the direct Auger recombination at high majority carrier concentrations.

  12. High-resolution continuous flow analysis setup for water isotopic measurement from ice cores using laser spectroscopy

    NASA Astrophysics Data System (ADS)

    Emanuelsson, B. D.; Baisden, W. T.; Bertler, N. A. N.; Keller, E. D.; Gkinis, V.

    2014-12-01

    Here we present an experimental setup for water stable isotopes (δ18O and δD) continuous flow measurements. It is the first continuous flow laser spectroscopy system that is using Off-Axis Integrated Cavity Output Spectroscopy (OA-ICOS; analyzer manufactured by Los Gatos Research - LGR) in combination with an evaporation unit to continuously analyze sample from an ice core. A Water Vapor Isotopic Standard Source (WVISS) calibration unit, manufactured by LGR, was modified to: (1) increase the temporal resolution by reducing the response time (2) enable measurements on several water standards, and (3) to reduce the influence from memory effects. While this setup was designed for the Continuous Flow Analysis (CFA) of ice cores, it can also continuously analyze other liquid or vapor sources. The modified setup provides a shorter response time (~54 and 18 s for 2013 and 2014 setup, respectively) compared to the original WVISS unit (~62 s), which is an improvement in measurement resolution. Another improvement compared to the original WVISS is that the modified setup has a reduced memory effect. Stability tests comparing the modified WVISS and WVISS setups were performed and Allan deviations (σAllan) were calculated to determine precision at different averaging times. For the 2013 modified setup the precision after integration times of 103 s are 0.060 and 0.070‰ for δ18O and δD, respectively. For the WVISS setup the corresponding σAllan values are 0.030, 0.060 and 0.043‰ for δ18O, δD and δ17O, respectively. For the WVISS setup the precision is 0.035, 0.070 and 0.042‰ after 103 s for δ18O, δD and δ17O, respectively. Both the modified setups and WVISS setup are influenced by instrumental drift with δ18O being more drift sensitive than δD. The σAllan values for δ18O of 0.30 and 0.18‰ for the modified (2013) and WVISS setup, respectively after averaging times of 104 s (2.78 h). The Isotopic Water Analyzer (IWA)-modified WVISS setup used during the 2013 Roosevelt Island Climate Evolution (RICE) ice core processing campaign achieved high precision measurements, in particular for δD, with high temporal resolution for the upper part of the core, where a seasonally resolved isotopic signal is preserved.

  13. Facilities for Passenger Movement to Decongest Underground Stations

    NASA Astrophysics Data System (ADS)

    Gupta, Sumana

    2014-12-01

    Underground rail network partially solves surface congestion problems in busy cities. Presently it is becoming overcrowded causing inconvenience to passengers at interchanges in the city cores especially during peak hours and at junction points. A conceptual model is suggested which can be adopted as an integral part of the under ground system to take care of this problem in particular and for greater sustainability of the entire transit system. The concept is to facilitate the passengers desiring interchange to avoid major junctions, to move between junctions, to reduce time of journey, to reduce detour according the situations through which a route moves. Primarily the model proposes additional connection between chosen stations mechanized with the help of travellators. The approach to decentralize the crowd can have several advantages. Firstly it allows smooth passenger dispersal. It helps in faster movement of passengers to destination. The model may be adopted in various situations with required modifications. This will result in accommodating more trips, comfortable journey and higher sustainability of the mass transit system. The problem and a feasible method of handling it have only been identified in this paper through review of the plans. An in-depth analysis for practical applicability of the proposed model in different stations has not been conducted. Feasibility study is necessary to be conducted before the implementation of the model at specific junctions. The concept proposed in the paper is different from the existing crowd handling methods and it provides a sustainable long term solution

  14. Antiguided fiber ribbon laser

    DOEpatents

    Wilcox, Russel B [El Cerrito, CA; Page, Ralph H [Castro Valley, CA; Beach, Raymond J [Livermore, CA; Feit, Michael D [Livermore, CA; Payne, Stephen A [Castro Valley, CA

    2003-05-27

    The invention is a ribbon of an optical material with a plurality of cores that run along its length. The plurality of cores includes lasing impurity doped cores in an alternating spaced arrangement with index-modifying impurity doped cores. The ribbon comprises an index of refraction that is substantially equal to or greater than the indices of refraction of said array of lasing impurity doped cores. Index-increasing impurity doped cores promote antiguiding and leaky modes which provide more robust single "supermode" operation.

  15. Fabrication and Benchmarking of a Stratix V FPGA with Monolithic Integrated Microfluidic Cooling

    DTIC Science & Technology

    2017-03-01

    run. The output from all cores were monitored through the Altera Signaltap tool in order to detect glitches which occurred in the output...dependence on temperature, and static/ leakage power, which comes from several components, such as subthreshold leakage , gate leakage , and reverse bias 220...junction current. Subthreshold leakage current tends to be the most significant temperature dependent component of the power [6,7] and is given by

  16. Adjustable 3-D structure with enhanced interfaces and junctions towards microwave response using FeCo/C core-shell nanocomposites.

    PubMed

    Li, Daoran; Liang, Xiaohui; Liu, Wei; Ma, Jianna; Zhang, Yanan; Ji, Guangbin; Meng, Wei

    2017-12-01

    In this work, the 3-D honeycomb-like FeCo/C nanocomposites were synthesized through the carbon thermal reduction under an inert atmosphere. The enhanced microwave absorption properties of the composites were mainly attributed to the unique three dimensional structure of the FeCo/C nanocomposites, abundant interfaces and junctions, and the appropriate impedance matching. The Cole-Cole semicircles proved the sufficient dielectric relaxation process. The sample calcinated at 600°C for 4h showed the best microwave absorption properties. A maximum reflection loss of -54.6dB was achieved at 10.8GHz with a thickness of 2.3mm and the frequency bandwidth was as large as 5.3GHz. The results showed that the as-prepared FeCo/C nanocomposite could be a potential candidate for microwave absorption. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Compositions and methods for direct capture of organic materials from process streams

    DOEpatents

    Lin, YuPo J.; Brotzman, Richard W.; Snyder, Seth W.

    2016-08-09

    A particulate magnetic nanostructured solid sorbent (MNSS) material is described herein. The particles of the MNSS comprise a plurality of tethered nanoparticles. The nanoparticles are tethered together by substantially linear hydrocarbon chains, a poly(alkylene oxide) chains, or a combination thereof connecting the nanoparticles in a three-dimensional elastic network with the nanoparticles as junctions of the network having junction functionality of about 2.1 to about 6. The surfaces of at least some of the nanoparticles comprise a polymerized siloxane bearing at least one sorption-aiding substituent selected from a hydrophilic group and a lipophilic group. The plurality of nanoparticles is made up of superparamagnetic nanoparticles or a combination of superparamagnetic and non-magnetic nanoparticles. The individual superparamagnetic nanoparticles comprise a passivating metal oxide coating around a core comprising at least one nanocrystalline metal or alloy having ferromagnetic or ferrimagnetic properties.

  18. Visual gravitational motion and the vestibular system in humans

    PubMed Central

    Lacquaniti, Francesco; Bosco, Gianfranco; Indovina, Iole; La Scaleia, Barbara; Maffei, Vincenzo; Moscatelli, Alessandro; Zago, Myrka

    2013-01-01

    The visual system is poorly sensitive to arbitrary accelerations, but accurately detects the effects of gravity on a target motion. Here we review behavioral and neuroimaging data about the neural mechanisms for dealing with object motion and egomotion under gravity. The results from several experiments show that the visual estimates of a target motion under gravity depend on the combination of a prior of gravity effects with on-line visual signals on target position and velocity. These estimates are affected by vestibular inputs, and are encoded in a visual-vestibular network whose core regions lie within or around the Sylvian fissure, and are represented by the posterior insula/retroinsula/temporo-parietal junction. This network responds both to target motions coherent with gravity and to vestibular caloric stimulation in human fMRI studies. Transient inactivation of the temporo-parietal junction selectively disrupts the interception of targets accelerated by gravity. PMID:24421761

  19. Visual gravitational motion and the vestibular system in humans.

    PubMed

    Lacquaniti, Francesco; Bosco, Gianfranco; Indovina, Iole; La Scaleia, Barbara; Maffei, Vincenzo; Moscatelli, Alessandro; Zago, Myrka

    2013-12-26

    The visual system is poorly sensitive to arbitrary accelerations, but accurately detects the effects of gravity on a target motion. Here we review behavioral and neuroimaging data about the neural mechanisms for dealing with object motion and egomotion under gravity. The results from several experiments show that the visual estimates of a target motion under gravity depend on the combination of a prior of gravity effects with on-line visual signals on target position and velocity. These estimates are affected by vestibular inputs, and are encoded in a visual-vestibular network whose core regions lie within or around the Sylvian fissure, and are represented by the posterior insula/retroinsula/temporo-parietal junction. This network responds both to target motions coherent with gravity and to vestibular caloric stimulation in human fMRI studies. Transient inactivation of the temporo-parietal junction selectively disrupts the interception of targets accelerated by gravity.

  20. Noncovalent Molecular Electronics.

    PubMed

    Gryn'ova, G; Corminboeuf, C

    2018-05-03

    Molecular electronics covers several distinctly different conducting architectures, including organic semiconductors and single-molecule junctions. The noncovalent interactions, abundant in the former, are also often found in the latter, i.e., the dimer junctions. In the present work, we draw the parallel between the two types of noncovalent molecular electronics for a range of π-conjugated heteroaromatic molecules. In silico modeling allows us to distill the factors that arise from the chemical nature of their building blocks and from their mutual arrangement. We find that the same compounds are consistently the worst and the best performers in the two types of electronic assemblies, emphasizing the universal imprint of the underlying chemistry of the molecular cores on their diverse charge transport characteristics. The interplay between molecular and intermolecular factors creates a spectrum of noncovalent conductive architectures, which can be manipulated using the design strategies based upon the established relationships between chemistry and transport.

  1. [On the nervous system of a parasitic cnidarian Polypodium hydriforme].

    PubMed

    Raĭkova, E V

    2013-01-01

    Nerve cells in a parasitic cnidarian Polypodium hydriforme at the parasitic and free-living stages of the life cycle have been localized immunocytochemically using antibodies to FMRF-amide, and their ultrastructure has been described. Ganglion cells form a net under epidermis consisting of bi- and tripolar neurons which cross the mesoglea and usually contact muscle cells and cnidocytes. Fusiform sensory and neurosecretory cells, especially characteristic to sensory tentacles, are interspersed among epidermal cells. All three types of nerve cells have dense cored vesicles about 80-120 nm in diameter. The sensory cells demonstrate a sensory flagellum-like immobile structure. Neurosecretory and sensory cells form septate junctions with epidermal cells. Ganglion cells show gap junctions between them. A centriole encircled by a fragment of nuclear envelope which is a marker of ectodermal lineage cells in Polypodium has been described in the cytoplasm of a sensory cell, thus proving the ectodermal nature of the nervous system.

  2. Evaluation of soft tissue hypertrophy at the retro-odontoid space in patients with Chiari malformation type I on magnetic resonance imaging.

    PubMed

    Hayashi, Yasuhiko; Oishi, Masahiro; Sasagawa, Yasuo; Kita, Daisuke; Kozaka, Kazuto; Nakada, Mitsutoshi

    2018-06-02

    Chiari malformation type I (CM-I) is a well-known hindbrain disorder in which the cerebellar tonsils protrude through the foramen magnum. The soft tissues, including the transverse ligament and the tectorial membrane at the retro-odontoid space, can compress the cervicomedullary junction if they become hypertrophic. Twenty-two symptomatic CM-I patients (aged 5 to 19 years) were treated between 2007 and 2017 at our institute. The retro-odontoid soft tissue was evaluated using T2-weighted magnetic resonance imaging. Anterior-posterior (AP) distances and cranio-caudal (CC) distances of the soft tissue were measured in CM-I patients and 48 normal control children. Modified clivo-axial angles (CAA) were also evaluated as the index of ventral compression of the cervicomedullary junction. Of the 18 patients treated with foramen magnum decompression (FMD), 16 patients improved postoperatively, while the condition of 2 remained unchanged. The AP distances in the CM-I group (6.0 mm) were significantly larger than those in the control group (3.5 mm), whereas there were no apparent differences in the CC distances. Modified CAAs were obviously smaller in the CM-I group (131.5°) than in the control group (146.9°). Moreover, the AP distances were significantly reduced postoperatively (5.5 mm), though the other parameters did not change significantly. The retro-odontoid soft tissue in symptomatic CM-I patients can be hypertrophic enough to compress the cervicomedullary junction ventrally even if there are no combined osseous anomalies. FMD works to reduce the hypertrophic changes significantly, suggesting that downward tonsil movement might participate in hypertrophic soft tissue formation at the retro-odontoid space. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. Alterations of intercellular junctions in peritoneal mesothelial cells from patients undergoing dialysis: effect of retinoic Acid.

    PubMed

    Retana, Carmen; Sanchez, Elsa; Perez-Lopez, Alejandro; Cruz, Armando; Lagunas, Jesus; Cruz, Carmen; Vital, Socorro; Reyes, Jose L

    2015-01-01

    Dialysis patients are classified according to their peritoneal permeability as low transporter (LT, low solute permeability) or high transporter (HT, high solute permeability). Tight junction (TJ) proteins are critical to maintain ions, molecules and water paracellular transport through peritoneum. Exposure to peritoneal dialysis solutions causes damage to TJ in human peritoneal mesothelial cells (HPMCs). We analyzed the quantity, distribution and function of TJ proteins: claudin-1, -2 and -8, ZO-1 and occludin, in HPMC cultures from LT and HT patients. Since all-trans retinoic acid (ATRA) might modify the expression of TJ proteins, we studied its effect on HPMCs. Control HPMCs were isolated from human omentum, while HT or LT cells were obtained from dialysis effluents. Cells were cultured in presence of ATRA 0, 50 or 100 nM. Transepithelial electrical resistance (TER) measurement, immunostaining and Western blot analyses were performed. HT exhibited lower TER than control and LT monolayers. Immunofluorescence for TJ was weak and discontinuous along the cell contour, in LT and HT. Furthermore, claudin-1, occludin and ZO-1 expressions were decreased. In all groups, claudin-2 was localized at nuclei. We observed that ATRA improved TJ distribution and increased TJ expression in HT. This retinoid did not modify claudin-2 and -8 expressions. All-trans retinoic acid decreased TER in HT, but had no effect in LT. Tight junctions were altered in HPMCs from dialyzed patients. The HT monolayer has lower TER than LT, which might be associated with the peritoneal permeability in these patients. ATRA might be a therapeutic alternative to maintain mesothelial integrity, since it improved TJ localization and expression. Copyright © 2015 International Society for Peritoneal Dialysis.

  4. Alterations of Intercellular Junctions in Peritoneal Mesothelial Cells from Patients Undergoing Dialysis: Effect of Retinoic Acid

    PubMed Central

    Retana, Carmen; Sanchez, Elsa; Perez-Lopez, Alejandro; Cruz, Armando; Lagunas, Jesus; Cruz, Carmen; Vital, Socorro; Reyes, Jose L.

    2015-01-01

    ♦ Background: Dialysis patients are classified according to their peritoneal permeability as low transporter (LT, low solute permeability) or high transporter (HT, high solute permeability). Tight junction (TJ) proteins are critical to maintain ions, molecules and water paracellular transport through peritoneum. Exposure to peritoneal dialysis solutions causes damage to TJ in human peritoneal mesothelial cells (HPMCs). We analyzed the quantity, distribution and function of TJ proteins: claudin-1, -2 and -8, ZO-1 and occludin, in HPMC cultures from LT and HT patients. Since all-trans retinoic acid (ATRA) might modify the expression of TJ proteins, we studied its effect on HPMCs. ♦ Methods: Control HPMCs were isolated from human omentum, while HT or LT cells were obtained from dialysis effluents. Cells were cultured in presence of ATRA 0, 50 or 100 nM. Transepithelial electrical resistance (TER) measurement, immunostaining and Western blot analyses were performed. ♦ Results: HT exhibited lower TER than control and LT monolayers. Immunofluorescence for TJ was weak and discontinuous along the cell contour, in LT and HT. Furthermore, claudin-1, occludin and ZO-1 expressions were decreased. In all groups, claudin-2 was localized at nuclei. We observed that ATRA improved TJ distribution and increased TJ expression in HT. This retinoid did not modify claudin-2 and -8 expressions. All-trans retinoic acid decreased TER in HT, but had no effect in LT. ♦ Conclusions: Tight junctions were altered in HPMCs from dialyzed patients. The HT monolayer has lower TER than LT, which might be associated with the peritoneal permeability in these patients. ATRA might be a therapeutic alternative to maintain mesothelial integrity, since it improved TJ localization and expression. PMID:24584604

  5. Comparing dark matter models, modified Newtonian dynamics and modified gravity in accounting for galaxy rotation curves

    NASA Astrophysics Data System (ADS)

    Li, Xin; Tang, Li; Lin, Hai-Nan

    2017-05-01

    We compare six models (including the baryonic model, two dark matter models, two modified Newtonian dynamics models and one modified gravity model) in accounting for galaxy rotation curves. For the dark matter models, we assume NFW profile and core-modified profile for the dark halo, respectively. For the modified Newtonian dynamics models, we discuss Milgrom’s MOND theory with two different interpolation functions, the standard and the simple interpolation functions. For the modified gravity, we focus on Moffat’s MSTG theory. We fit these models to the observed rotation curves of 9 high-surface brightness and 9 low-surface brightness galaxies. We apply the Bayesian Information Criterion and the Akaike Information Criterion to test the goodness-of-fit of each model. It is found that none of the six models can fit all the galaxy rotation curves well. Two galaxies can be best fitted by the baryonic model without involving nonluminous dark matter. MOND can fit the largest number of galaxies, and only one galaxy can be best fitted by the MSTG model. Core-modified model fits about half the LSB galaxies well, but no HSB galaxies, while the NFW model fits only a small fraction of HSB galaxies but no LSB galaxies. This may imply that the oversimplified NFW and core-modified profiles cannot model the postulated dark matter haloes well. Supported by Fundamental Research Funds for the Central Universities (106112016CDJCR301206), National Natural Science Fund of China (11305181, 11547305 and 11603005), and Open Project Program of State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, China (Y5KF181CJ1)

  6. pH sensitive core-shell magnetic nanoparticles for targeted drug delivery in cancer therapy.

    PubMed

    Lungu, Iulia Ioana; Rădulescu, Marius; Mogoşanu, George Dan; Grumezescu, Alexandru Mihai

    2016-01-01

    In the last decade, nanobiotechnology has evolved rapidly with an extensive impact on biomedical area. In order to improve bioavailability and minimize adverse effects, drug delivery systems based on magnetic nanocomposites are under development mainly for cancer imaging and antitumor therapy. In this regard, pH sensitive core-shell magnetic nanoparticles (NPs) with accurate controlled size and shape are synthesized by various modern methods, such as homogeneous precipitation, coprecipitation, microemulsion or polyol approaches, high temperature and hydrothermal reactions, sol-gel reactions, aerosol÷vapor processes and sonolysis. Due to their unique combined physico-chemical and biological properties (such as higher dispensability, chemical and thermal stability, biocompatibility), pH responsive core-shell magnetic NPs are widely investigated for controlled release of cytostatic drugs into the tumor site by means of pH change: magnetite@silicon dioxide (Fe3O4@SiO2), Fe3O4@titanium dioxide (TiO2), β-thiopropionate-polyethylene glycol (PEG)-modified Fe3O4@mSiO2, Fe3O4 NPs core coated with SiO2 with an imidazole group modified PEG-polypeptide (mPEG-poly-L-Asparagine), polyacrylic acid (PAA) and folic acid (FA) coating of the iron oxide NP core, methoxy polyethylene glycol-block-polymethacrylic acid-block-polyglycerol monomethacrylate (MPEG-b-PMAA-b-PGMA) attached by a PGMA block to a Fe3O4 core, PEG-modified polyamidoamine (PAMAM) dendrimer shell with Fe3O4 core and mesoporous silica coated on Fe3O4, mostly coated with an anticancer drug. This review paper highlights the modern research directions currently employed to demonstrate the utility of the pH responsive core-shell magnetic NPs in diagnosis and treatment of oncological diseases.

  7. The Escherichia coli O157:H7 cattle immunoproteome includes outer membrane protein A (OmpA), a modulator of adherence to bovine rectoanal junction squamous epithelial (RSE) cells

    USDA-ARS?s Scientific Manuscript database

    Building on previous studies, we defined the repertoire of proteins comprising the antigenome of Escherichia coli (E. coli) O157 cultured in Dulbecco's Modified Eagles Medium (DMEM) supplemented with norepinephrine (NE; O157 protein-antigenome), a beta-adrenergic hormone that regulates E. coli O157 ...

  8. Nondestructive observation of teeth post core-space using optical coherence tomography: comparison with microcomputed tomography and live images

    NASA Astrophysics Data System (ADS)

    Minamino, Takuya; Mine, Atsushi; Matsumoto, Mariko; Sugawa, Yoshihiko; Kabetani, Tomoshige; Higashi, Mami; Kawaguchi, Asuka; Ohmi, Masato; Awazu, Kunio; Yatani, Hirofumi

    2015-10-01

    No previous reports have observed inside the root canal using both optical coherence tomography (OCT) and x-ray microcomputed tomography (μCT) for the same sample. The purpose of this study was to clarify both OCT and μCT image properties from observations of the same root canal after resin core build-up treatment. As OCT allows real-time observation of samples, gap formation may be able to be shown in real time. A dual-cure, one-step, self-etch adhesive system bonding agent, and dual-cure resin composite core material were used in root canals in accordance with instructions from the manufacturer. The resulting OCT images were superior for identifying gap formation at the interface, while μCT images were better to grasp the tooth form. Continuous tomographic images from real-time OCT observation allowed successful construction of a video of the resin core build-up procedure. After 10 to 12 s of light curing, a gap with a clear new signal occurred at the root-core material interface, proceeding from the coronal side (6 mm from the cemento-enamel junction) to the apical side of the root.

  9. Lipid Bilayer-Enabled Synthesis of Waxberry-like Core/Fluidic Satellite Nanoparticles: toward Ultrasensitive SERS Tags for Bioimaging.

    PubMed

    Mei, Rongchao; Wang, Yunqing; Liu, Wanhui; Chen, Lingxin

    2018-06-25

    Herein, we presented waxberry-like core-satellite (C-S) nanoparticles (NPs) prepared by in situ growth of satellite gold NPs on spherical phospholipid bilayer-coated gold cores. The fluidic lipid bilayer cross-linker was reported for the first time, which imparted several novel morphological and optical properties to the C-S NPs. First, it regulated the anisotropic growth of the satellite NPs into vertically oriented nanorods on the core NP surface. Thus, an interesting waxberry-like nanostructure could be obtained, which was different from the conventional raspberry-like C-S structures decorated with spherical satellite NPs. Second, the satellite NPs were "soft-landed" on the lipid bilayer and could move on the core NP surface under certain conditions. The movement induced tunable plasmonic features in the C-S NPs. Furthermore, the fluidic lipid bilayer was capable of not only holding an abundance of reporter molecules but also delivering them to hotspots at junctions between the core and satellite NPs, which made the C-S NPs an excellent candidate for preparing ultrasensitive surface-enhanced Raman scattering (SERS) tags. The bioimaging capabilities of the C-S NP-based SERS tags were successfully demonstrated in living cells and mice. The developed SERS tags hold great potential for bioanalysis and medical diagnostics.

  10. Common and distinctive localization patterns of Crumbs polarity complex proteins in the mammalian eye.

    PubMed

    Kim, Jin Young; Song, Ji Yun; Karnam, Santi; Park, Jun Young; Lee, Jamie J H; Kim, Seonhee; Cho, Seo-Hee

    2015-01-01

    Crumbs polarity complex proteins are essential for cellular and tissue polarity, and for adhesion of epithelial cells. In epithelial tissues deletion of any of three core proteins disrupts localization of the other proteins, indicating structural and functional interdependence among core components. Despite previous studies of function and co-localization that illustrated the properties that these proteins share, it is not known whether an individual component of the complex plays a distinct role in a unique cellular and developmental context. In order to investigate this question, we primarily used confocal imaging to determine the expression and subcellular localization of the core Crumbs polarity complex proteins during ocular development. Here we show that in developing ocular tissues core Crumbs polarity complex proteins, Crb, Pals1 and Patj, generally appear in an overlapping pattern with some exceptions. All three core complex proteins localize to the apical junction of the retinal and lens epithelia. Pals1 is also localized in the Golgi of the retinal cells and Patj localizes to the nuclei of the apically located subset of progenitor cells. These findings suggest that core Crumbs polarity complex proteins exert common and independent functions depending on cellular context. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. 76 FR 14055 - Notice of Inventory Completion: California State Department of Transportation (Caltrans...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-15

    ... silicate core, 2 lots of debitage, 490 faunal bones, 2 flake tools, 61 tule mat impressions, 20 modified bones, 1 modified shell, 2 modified stones, 20 pieces of ochre, 14 ornaments, 3 pestles, 20 projectile..., 5 faunal bones, 1 flake tool, 1 modified bone, 1 quartz rock, 1 steatite ring, and 5 bone whistles...

  12. Lamination effects on a 3D model of the magnetic core of power transformers

    NASA Astrophysics Data System (ADS)

    Poveda-Lerma, Antonio; Serrano-Callergues, Guillermo; Riera-Guasp, Martin; Pineda-Sanchez, Manuel; Puche-Panadero, Ruben; Perez-Cruz, Juan

    2017-12-01

    In this paper the lamination effect on the model of a power transformer's core with stacked E-I structure is analyzed. The distribution of the magnetic flux in the laminations depends on the stacking method. In this work it is shown, using a 3D FEM model and an experimental prototype, that the non-uniform distribution of the flux in a laminated E-I core with alternate-lap joint stack increases substantially the average value of the magnetic flux density in the core, compared with a butt joint stack. Both the simulated model and the experimental tests show that the presence of constructive air-gaps in the E-I junctions gives rise to a zig-zag flux in the depth direction. This inter-lamination flux reduces the magnetic flux density in the I-pieces and increases substantially the magnetic flux density in the E-pieces, with highly saturated points that traditional 2D analysis cannot reproduce. The relation between the number of laminations included in the model, and the computational resourses needed to build it, is also evaluated in this work.

  13. Rational growth of branched nanowire heterostructures with synthetically encoded properties and function

    PubMed Central

    Jiang, Xiaocheng; Tian, Bozhi; Xiang, Jie; Qian, Fang; Zheng, Gengfeng; Wang, Hongtao; Mai, Liqiang; Lieber, Charles M.

    2011-01-01

    Branched nanostructures represent unique, 3D building blocks for the “bottom-up” paradigm of nanoscale science and technology. Here, we report a rational, multistep approach toward the general synthesis of 3D branched nanowire (NW) heterostructures. Single-crystalline semiconductor, including groups IV, III–V, and II–VI, and metal branches have been selectively grown on core or core/shell NW backbones, with the composition, morphology, and doping of core (core/shell) NWs and branch NWs well controlled during synthesis. Measurements made on the different composition branched NW structures demonstrate encoding of functional p-type/n-type diodes and light-emitting diodes (LEDs) as well as field effect transistors with device function localized at the branch/backbone NW junctions. In addition, multibranch/backbone NW structures were synthesized and used to demonstrate capability to create addressable nanoscale LED arrays, logic circuits, and biological sensors. Our work demonstrates a previously undescribed level of structural and functional complexity in NW materials, and more generally, highlights the potential of bottom-up synthesis to yield increasingly complex functional systems in the future. PMID:21730174

  14. Microtubules provide directional information for core PCP function

    PubMed Central

    Matis, Maja; Russler-Germain, David A; Hu, Qie; Tomlin, Claire J; Axelrod, Jeffrey D

    2014-01-01

    Planar cell polarity (PCP) signaling controls the polarization of cells within the plane of an epithelium. Two molecular modules composed of Fat(Ft)/Dachsous(Ds)/Four-jointed(Fj) and a ‘PCP-core’ including Frizzled(Fz) and Dishevelled(Dsh) contribute to polarization of individual cells. How polarity is globally coordinated with tissue axes is unresolved. Consistent with previous results, we find that the Ft/Ds/Fj-module has an effect on a MT-cytoskeleton. Here, we provide evidence for the model that the Ft/Ds/Fj-module provides directional information to the core-module through this MT organizing function. We show Ft/Ds/Fj-dependent initial polarization of the apical MT-cytoskeleton prior to global alignment of the core-module, reveal that the anchoring of apical non-centrosomal MTs at apical junctions is polarized, observe that directional trafficking of vesicles containing Dsh depends on Ft, and demonstrate the feasibility of this model by mathematical simulation. Together, these results support the hypothesis that Ft/Ds/Fj provides a signal to orient core PCP function via MT polarization. DOI: http://dx.doi.org/10.7554/eLife.02893.001 PMID:25124458

  15. The anchoring effect on the spin transport properties and I-V characteristics of pentacene molecular devices suspended between nickel electrodes.

    PubMed

    Caliskan, S; Laref, A

    2014-07-14

    Spin-polarized transport properties are determined for pentacene sandwiched between Ni surface electrodes with various anchoring ligands. These calculations are carried out using spin density functional theory in tandem with a non-equilibrium Green's function technique. The presence of a Se atom at the edge of the pentacene molecule significantly modifies the transport properties of the device because Se has a different electronegativity than S. Our theoretical results clearly show a larger current for spin-up electrons than for spin-down electrons in the molecular junction that is attached asymmetrically across the Se linker at one side of the Ni electrodes (in an APL magnetic orientation). Moreover, this molecular junction exhibits pronounced NDR as the bias voltage is increased from 0.8 to 1.0 V. However, this novel NDR behavior is only detected in this promising pentacene molecular device. The NDR in the current-voltage (I-V) curve results from the narrowness of the density of states for the molecular states. The feasibility of controlling the TMR is also predicted in these molecular device nanostructures. Spin-dependent transmission calculations show that the sign and strength of the current-bias voltage characteristics and the TMR could be tailored for the organic molecule devices. These molecular junctions are joined symmetrically and asymmetrically between Ni metallic probes across the S and Se atoms (at the ends of the edges of the pentacene molecule). Our theoretical findings show that spin-valve phenomena can occur in these prototypical molecular junctions. The TMR and NDR results show that nanoscale junctions with spin valves could play a vital role in the production of novel functional molecular devices.

  16. Novel materials to enhance corneal epithelial cell migration on keratoprosthesis.

    PubMed

    Karkhaneh, Akbar; Mirzadeh, Hamid; Ghaffariyeh, Alireza; Ebrahimi, Abdolali; Honarpisheh, Nazafarin; Hosseinzadeh, Masud; Heidari, Mohammad Hossein

    2011-03-01

    To introduce a new modification for silicone optical core Keratoprosthesis. Using mixtures of 2-hydroxyethyl methacrylate and acrylic acid polydimethylsiloxane (PDMS) films were modified with two-step oxygen plasma treatment, and then type I collagen was immobilised onto this modified surfaces. Both the biocompatibility of the modified films and cell behaviour on the surface of these films were investigated by in vitro tests, and formation of epithelial cell layer was evaluated by implantation of the modified films in the corneas of 10 rabbits. In vitro studies indicated that the number of attached and proliferated cells onto modified PDMS in comparison with the unmodified PDMS significantly increased. Histological studies showed that corneal epithelial cells migrated on the anterior surface of the modified films after 1week. The corneal epithelial cell formed an incomplete monolayer cellular sheet after 10days. A complete epithelialisation on the modified surface was formed after 21days. The epithelial layer persisted on the anterior surface of implant after 1-month and 3-month follow-up. This method may have potential use in silicone optical core Keratoprosthesis.

  17. Assessment of a Thermoelectric Vest through Physical and Mental Performance

    DTIC Science & Technology

    2012-04-01

    system is a sandwich- type structure of doped bismuth telluride (Bi2Te3) soldered between two ceramic plates. Bi2Te3 acts as a semiconductor and after... doping , the material becomes an efficient TE. Variations in doping create P-N junctions throughout the TE. Figure 3 shows a schematic of a TE...Excalibur Sport Ergonometer was used to increase subject’s core body temperature. The Excalibur Sport is a multi-adjustable ergonometer and is

  18. Optical silencing of body wall muscles induces pumping inhibition in Caenorhabditis elegans

    PubMed Central

    Takahashi, Megumi

    2017-01-01

    Feeding, a vital behavior in animals, is modulated depending on internal and external factors. In the nematode Caenorhabditis elegans, the feeding organ called the pharynx ingests food by pumping driven by the pharyngeal muscles. Here we report that optical silencing of the body wall muscles, which drive the locomotory movement of worms, affects pumping. In worms expressing the Arch proton pump or the ACR2 anion channel in the body wall muscle cells, the pumping rate decreases after activation of Arch or ACR2 with light illumination, and recovers gradually after terminating illumination. Pumping was similarly inhibited by illumination in locomotion-defective mutants carrying Arch, suggesting that perturbation of locomotory movement is not critical for pumping inhibition. Analysis of mutants and cell ablation experiments showed that the signals mediating the pumping inhibition response triggered by activation of Arch with weak light are transferred mainly through two pathways: one involving gap junction-dependent mechanisms through pharyngeal I1 neurons, which mediate fast signals, and the other involving dense-core vesicle-dependent mechanisms, which mediate slow signals. Activation of Arch with strong light inhibited pumping strongly in a manner that does not rely on either gap junction-dependent or dense-core vesicle-dependent mechanisms. Our study revealed a new aspect of the neural and neuroendocrine controls of pumping initiated from the body wall muscles. PMID:29281635

  19. STED super-resolution microscopy reveals an array of MINOS clusters along human mitochondria

    PubMed Central

    Jans, Daniel C.; Wurm, Christian A.; Riedel, Dietmar; Wenzel, Dirk; Stagge, Franziska; Deckers, Markus; Rehling, Peter; Jakobs, Stefan

    2013-01-01

    The mitochondrial inner membrane organizing system (MINOS) is a conserved large hetero-oligomeric protein complex in the mitochondrial inner membrane, crucial for the maintenance of cristae morphology. MINOS has been suggested to represent the core of an extended protein network that controls mitochondrial function and structure, and has been linked to several human diseases. The spatial arrangement of MINOS within mitochondria is ill-defined, however. Using super-resolution stimulated emission depletion (STED) microscopy and immunogold electron microscopy, we determined the distribution of three known human MINOS subunits (mitofilin, MINOS1, and CHCHD3) in mammalian cells. Super-resolution microscopy revealed that all three subunits form similar clusters within mitochondria, and that MINOS is more abundant in mitochondria around the nucleus than in peripheral mitochondria. At the submitochondrial level, mitofilin, a core MINOS subunit, is preferentially localized at cristae junctions. In primary human fibroblasts, mitofilin labeling uncovered a regularly spaced pattern of clusters arranged in parallel to the cell growth surfaces. We suggest that this array of MINOS complexes might explain the observed phenomenon of largely horizontally arranged cristae junctions that connect the inner boundary membrane to lamellar cristae. The super-resolution images demonstrate an unexpectedly high level of regularity in the nanoscale distribution of the MINOS complex in human mitochondria, supporting an integrating role of MINOS in the structural organization of the organelle. PMID:23676277

  20. Modification of the band offset in boronitrene

    NASA Astrophysics Data System (ADS)

    Obodo, K. O.; Andrew, R. C.; Chetty, N.

    2011-10-01

    Using density functional methods within the generalized gradient approximation implemented in the Quantum Espresso codes, we modify the band offset in a single layer of boronitrene by substituting a double line of carbon atoms. This effectively introduces a line of dipoles at the interface. We considered various junctions of this system within the zigzag and armchair orientations. Our results show that the “zigzag-short” structure is energetically most stable, with a formation energy of 0.502 eV and with a band offset of 1.51 eV. The “zigzag-long” structure has a band offset of 1.99 eV. The armchair structures are nonpolar, while the zigzag-single structures show a charge accumulation for the C-substituted B and charge depletion for the C-substituted N at the junction. Consequently there is no shifting of the bands.

  1. Controlled Synthesis of Pd/Pt Core Shell Nanoparticles Using Area-selective Atomic Layer Deposition

    PubMed Central

    Cao, Kun; Zhu, Qianqian; Shan, Bin; Chen, Rong

    2015-01-01

    We report an atomic scale controllable synthesis of Pd/Pt core shell nanoparticles (NPs) via area-selective atomic layer deposition (ALD) on a modified surface. The method involves utilizing octadecyltrichlorosilane (ODTS) self-assembled monolayers (SAMs) to modify the surface. Take the usage of pinholes on SAMs as active sites for the initial core nucleation, and subsequent selective deposition of the second metal as the shell layer. Since new nucleation sites can be effectively blocked by surface ODTS SAMs in the second deposition stage, we demonstrate the successful growth of Pd/Pt and Pt/Pd NPs with uniform core shell structures and narrow size distribution. The size, shell thickness and composition of the NPs can be controlled precisely by varying the ALD cycles. Such core shell structures can be realized by using regular ALD recipes without special adjustment. This SAMs assisted area-selective ALD method of core shell structure fabrication greatly expands the applicability of ALD in fabricating novel structures and can be readily applied to the growth of NPs with other compositions. PMID:25683469

  2. Structure of screw dislocation core in Ta at high pressure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Shaofeng, E-mail: sfwang@cqu.edu.cn; Jiang, Na; Wang, Rui

    2014-03-07

    The core structure and Peierls stress of the 1/2 〈111〉(110) screw dislocation in Ta have been investigated theoretically using the modified Peierls–Nabarro theory that takes into account the discreteness effect of crystal. The lattice constants, the elastic properties, and the generalized-stacking-fault energy(γ-surface) under the different pressures have been calculated from the electron density functional theory. The core structure of dislocation is determined by the modified Peierls equation, and the Peierls stress is evaluated from the dislocation energy that varies periodically as dislocation moves. The results show the core width and Peierls stress in Ta are weakly dependent of the pressuremore » up to 100 GPa when the length and stress are measured separately by the Burgers vector b and shear modulus μ. This indicates that core structure is approximately scaling invariant for the screw dislocation in Ta. The scaled plasticity of Ta changes little in high pressure environment.« less

  3. Development of Modified Titanium Nitride Nanoparticles as Potential Contrast Material for Photoacoustic Imaging

    DTIC Science & Technology

    2014-05-10

    based on modified fullerenes , carbon nanotubes and gold nanoparticles (including nanocages and nanorods) were very recently reported.4 Nevertheless, this...ratios of 1:1.6 and 1:16, in order to form an onion- like core-shell structure, containing TiN core and shells of TPP (inner shell) and chitosan (outer...These results nicely correlate with the cells viability results and the formation of the ROS is most likely the cause of the cells death (Figure 24

  4. Tectonics and geology of spreading ridge subduction at the Chile Triple Junction: a synthesis of results from Leg 141 of the Ocean Drilling Program

    USGS Publications Warehouse

    Behrmann, J.H.; Lewis, S.D.; Cande, S.C.

    1994-01-01

    An active oceanic spreading ridge is being subducted beneath the South American continent at the Chile Triple Junction. This process has played a major part in the evolution of most of the continental margins that border the Pacific Ocean basin. A combination of high resolution swath bathymetric maps, seismic reflection profiles and drillhole and core data from five sites drilled during Ocean Drilling Program (ODP) Leg 141 provide important data that define the tectonic, structural and stratigraphic effects of this modern example of spreading ridge subduction. A change from subduction accretion to subduction erosion occurs along-strike of the South American forearc. This change is prominently expressed by normal faulting, forearc subsidence, oversteepening of topographic slopes and intensive sedimentary mass wasting, overprinted on older signatures of sediment accretion, overthrusting and uplift processes in the forearc. Data from drill sites north of the triple junction (Sites 859-861) show that after an important phase of forearc building in the early to late Pliocene, subduction accretion had ceased in the late Pliocene. Since that time sediment on the downgoing oceanic Nazca plate has been subducted. Site 863 was drilled into the forearc in the immediate vicinity of the triple junction above the subducted spreading ridge axis. Here, thick and intensely folded and faulted trench slope sediments of Pleistocene age are currently involved in the frontal deformation of the forearc. Early faults with thrust and reverse kinematics are overprinted by later normal faults. The Chile Triple Junction is also the site of apparent ophiolite emplacement into the South American forearc. Drilling at Site 862 on the Taitao Ridge revealed an offshore volcanic sequence of Plio-Pleistocene age associated with the Taitao Fracture Zone, adjacent to exposures of the Pliocene-aged Taitao ophiolite onshore. Despite the large-scale loss of material from the forearc at the triple junction, ophiolite emplacement produces a large topographic promontory in the forearc immediately after ridge subduction, and represents the first stage of forearc rebuilding. ?? 1994 Springer-Verlag.

  5. Specialised sympathetic neuroeffector associations in immature rat iris arterioles

    PubMed Central

    SANDOW, SHAUN L.; HILL, CARYL E.

    1999-01-01

    Sympathetic nerve-mediated vasoconstriction in iris arterioles of mature rats occurs via the activation of α1B-adrenoceptors alone, while in immature rat iris arterioles, vasoconstriction occurs via activation of both α1- and α2-adrenoceptors. In mature rats the vast majority of sympathetic varicosities form close neuroeffector junctions. Serial section electron microscopy of 14 d iris arterioles has been used to determine whether restriction in physiological receptor types with age may result from the establishment of these close neuroeffector junctions. Ninety varicosities which lay within 4 μm of arteriolar smooth muscle were followed for their entire length. Varicosities rarely contained dense cored vesicles even after treatment with 5-hydroxydopamine. 47% of varicosities formed close associations with muscle cells and 88% formed close associations with muscle cells or melanocytes. Varicosities in bundles were as likely as single varicosities to form close associations with vascular smooth muscle cells, although the distribution of synaptic vesicles in single varicosities did not show the asymmetric accumulation towards the smooth muscle cells seen in the varicosities in bundles which were frequently clustered together. We conclude that restriction of physiological receptor types during development does not appear to correlate with the establishment of close neuroeffector junctions, although changes in presynaptic structures may contribute to the refinement of postsynaptic responses. PMID:10529061

  6. Ultrastructural analysis of chemical synapses and gap junctions between Drosophila brain neurons in culture.

    PubMed

    Oh, Hyun-Woo; Campusano, Jorge M; Hilgenberg, Lutz G W; Sun, Xicui; Smith, Martin A; O'Dowd, Diane K

    2008-02-15

    Dissociated cultures from many species have been important tools for exploring factors that regulate structure and function of central neuronal synapses. We have previously shown that cells harvested from brains of late stage Drosophila pupae can regenerate their processes in vitro. Electrophysiological recordings demonstrate the formation of functional synaptic connections as early as 3 days in vitro (DIV), but no information about synapse structure is available. Here, we report that antibodies against pre-synaptic proteins Synapsin and Bruchpilot result in punctate staining of regenerating neurites. Puncta density increases as neuritic plexuses develop over the first 4 DIV. Electron microscopy reveals that closely apposed neurites can form chemical synapses with both pre- and postsynaptic specializations characteristic of many inter-neuronal synapses in the adult brain. Chemical synapses in culture are restricted to neuritic processes and some neurite pairs form reciprocal synapses. GABAergic synapses have a significantly higher percentage of clear core versus granular vesicles than non-GABA synapses. Gap junction profiles, some adjacent to chemical synapses, suggest that neurons in culture can form purely electrical as well as mixed synapses, as they do in the brain. However, unlike adult brain, gap junctions in culture form between neuronal somata as well as neurites, suggesting soma ensheathing glia, largely absent in culture, regulate gap junction location in vivo. Thus pupal brain cultures, which support formation of interneuronal synapses with structural features similar to synapses in adult brain, are a useful model system for identifying intrinsic and extrinsic regulators of central synapse structure as well as function.

  7. Unexpected optical limiting properties from MoS2 nanosheets modified by a semiconductive polymer.

    PubMed

    Zhao, Min; Chang, Meng-Jie; Wang, Qiang; Zhu, Zhen-Tong; Zhai, Xin-Ping; Zirak, Mohammad; Moshfegh, Alireza Z; Song, Ying-Lin; Zhang, Hao-Li

    2015-08-07

    Direct solvent exfoliation of bulk MoS2 with the assistance of poly(3-hexylthiophene) (P3HT) produces a novel two-dimensional organic/inorganic semiconductor hetero-junction. The obtained P3HT-MoS2 nanohybrid exhibits unexpected optical limiting properties in contrast to the saturated absorption behavior of both P3HT and MoS2, showing potential in future photoelectric applications.

  8. High Efficiency Narrow Gap and Tandem Junction Devices: Final Technical Report, 1 May 2002--31 October 2004

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Madan, A

    2005-03-01

    The work described in this report uses a modified pulsed plasma-enhanced chemical vapor deposition (PECVD) technique that has been successfully developed to fabricate state-of-the-art nc-Si materials and devices. Specifically, we have achieved the following benchmarks: nc SiH device with an efficiency of 8% achieved at a deposition rate of {approx}1 A/s; nc SiH device with an efficiency of 7% achieved at a deposition rate of {approx}5 A/s; large-area technology developed using pulsed PECVD with uniformity of +/-5% over 25 cm x 35 cm; devices have been fabricated in the large-area system (part of Phase 3); an innovative stable four-terminal (4-T)more » tandem-junction device of h> 9% fabricated. (Note that the 4-T device was fabricated with existing technology base and with further development can reach stabilized h of 12%); and with improvement in Voc {approx} 650 mV, from the current value of 480 mV can lead to stable 4-T device with h>16%. Toward this objective, modified pulsed PECVD was developed where layer- by-layer modification of nc-SiH has been achieved. (Note that due to budget cuts at NREL, this project was curtailed by about one year.)« less

  9. Development and in-house validation of the event-specific qualitative and quantitative PCR detection methods for genetically modified cotton MON15985.

    PubMed

    Jiang, Lingxi; Yang, Litao; Rao, Jun; Guo, Jinchao; Wang, Shu; Liu, Jia; Lee, Seonghun; Zhang, Dabing

    2010-02-01

    To implement genetically modified organism (GMO) labeling regulations, an event-specific analysis method based on the junction sequence between exogenous integration and host genomic DNA has become the preferential approach for GMO identification and quantification. In this study, specific primers and TaqMan probes based on the revealed 5'-end junction sequence of GM cotton MON15985 were designed, and qualitative and quantitative polymerase chain reaction (PCR) assays were established employing the designed primers and probes. In the qualitative PCR assay, the limit of detection (LOD) was 0.5 g kg(-1) in 100 ng total cotton genomic DNA, corresponding to about 17 copies of haploid cotton genomic DNA, and the LOD and limit of quantification (LOQ) for quantitative PCR assay were 10 and 17 copies of haploid cotton genomic DNA, respectively. Furthermore, the developed quantitative PCR assays were validated in-house by five different researchers. Also, five practical samples with known GM contents were quantified using the developed PCR assay in in-house validation, and the bias between the true and quantification values ranged from 2.06% to 12.59%. This study shows that the developed qualitative and quantitative PCR methods are applicable for the identification and quantification of GM cotton MON15985 and its derivates.

  10. Silica-modified luminescent LaPO4 :Eu@LaPO4 @SiO2 core/shell nanorods: Synthesis, structural and luminescent properties.

    PubMed

    Ansari, Anees A

    2018-02-01

    Monoclinic-type tetragonal LaPO 4 :Eu (core) and LaPO 4 :Eu@LaPO 4 (core/shell) nanorods (NRs) were successfully prepared using a urea-based co-precipitation process under ambient conditions. An amorphous silica layer was coated around the luminescent core/shell NRs via the sol-gel process to improve their solubility and colloidal stability in aqueous and non-aqueous media. The prepared nano-products were systematically characterized by X-ray diffraction pattern, transmission electron microscopy, energy dispersive X-ray analysis, and FTIR, UV/Vis, and photoluminescence spectroscopy to examine their phase purity, crystal phase, surface chemistry, solubility and luminescence characteristics. The length and diameter of the nano-products were in the range 80-120 nm and 10-15 nm, respectively. High solubility of the silica-modified core/shell/Si NRs was found for the aqueous medium. The luminescent core NRs exhibited characteristic excitation and emission transitions in the visible region that were greatly affected by surface growth of insulating LaPO 4 and silica layers due to the multiphonon relaxation rate. Our luminescence spectral results clearly show a distinct difference in intensities for core, core/shell, and core/shell/Si NRs. Highly luminescent NRs with good solubility could be useful candidates for a variety of photonic-based biomedical applications. Copyright © 2017 John Wiley & Sons, Ltd.

  11. Experimental foundation of the Gabor-Nelson theory applied to boundaries which are non-insulating.

    PubMed

    Troquet, J; Lambin, P; Nelson, C V

    1985-06-07

    In order to found the application of the Gabor-Nelson theory to non-insulating boundaries, we have used a network which we have divided into two parts: a core energized by a source sink pair and an appendage, the conductivity of which may or may not differ from that of the core. By ignoring the appendage and by applying the Gabor-Nelson method to the restricted perimeter as if it were totally insulating, we stress the errors made in computing the dipole strength, orientation and position and how they are influenced by the dipole eccentricity, by its orientation with respect to the junction between the added portion and the core, and by a change in conductivity between the same compartments. Finally, we restore the dipole characteristics by using the appropriate correction derived from theory. Comparing the later results to those obtained by applying the Gabor-Nelson method to the whole insulating boundary leads to the conclusion that the correction is founded and must be taken into account.

  12. Test simulation of neutron damage to electronic components using accelerator facilities

    NASA Astrophysics Data System (ADS)

    King, D. B.; Fleming, R. M.; Bielejec, E. S.; McDonald, J. K.; Vizkelethy, G.

    2015-12-01

    The purpose of this work is to demonstrate equivalent bipolar transistor damage response to neutrons and silicon ions. We report on irradiation tests performed at the White Sands Missile Range Fast Burst Reactor, the Sandia National Laboratories (SNL) Annular Core Research Reactor, the SNL SPHINX accelerator, and the SNL Ion Beam Laboratory using commercial silicon npn bipolar junction transistors (BJTs) and III-V Npn heterojunction bipolar transistors (HBTs). Late time and early time gain metrics as well as defect spectra measurements are reported.

  13. Rationally Designed Graphene-Nanotube 3D Architectures with a Seamless Nodal Junction for Efficient Energy Conversion and Storage

    DTIC Science & Technology

    2015-09-04

    aluminum wire into an anodized aluminum oxide ( AAO ) shell (step 1, Fig. 1, A and B). The thickness of the resulting AAO shell can be...regulated by changing the anodizing time. Thus, a prepared wire with aluminum core and AAO shell ( AAO wire) was then used as a template for a single-step...showing the synthesis and microstructures of a 3D graphene-RACNT fiber. (A) Aluminum wire. (B) Surface anodized aluminum wire ( AAO wire). (C)

  14. Gravity drives the evolution of infrared dark hubs: JVLA observations of SDC13

    NASA Astrophysics Data System (ADS)

    Williams, G. M.; Peretto, N.; Avison, A.; Duarte-Cabral, A.; Fuller, G. A.

    2018-05-01

    Context. Converging networks of interstellar filaments, that is hubs, have been recently linked to the formation of stellar clusters and massive stars. Understanding the relationship between the evolution of these systems and the formation of cores and stars inside them is at the heart of current star formation research. Aims: The goal is to study the kinematic and density structure of the SDC13 prototypical hub at high angular resolution to determine what drives its evolution and fragmentation. Methods: We have mapped SDC13, a 1000 M⊙ infrared dark hub, in NH3(1,1) and NH3(2,2) emission lines, with both the Jansky Very Large Array and Green Bank Telescope. The high angular resolution achieved in the combined dataset allowed us to probe scales down to 0.07 pc. After fitting the ammonia lines, we computed the integrated intensities, centroid velocities and line widths, along with gas temperatures and H2 column densities. Results: The mass-per-unit-lengths of all four hub filaments are thermally super-critical, consistent with the presence of tens of gravitationally bound cores identified along them. These cores exhibit a regular separation of 0.37 ± 0.16 pc suggesting gravitational instabilities running along these super-critical filaments are responsible for their fragmentation. The observed local increase of the dense gas velocity dispersion towards starless cores is believed to be a consequence of such fragmentation process. Using energy conservation arguments, we estimate that the gravitational to kinetic energy conversion efficiency in the SDC13 cores is 35%. We see velocity gradient peaks towards 63% of cores as expected during the early stages of filament fragmentation. Another clear observational signature is the presence of the most massive cores at the filaments' junction, where the velocity dispersion is largest. We interpret this as the result of the hub morphology generating the largest acceleration gradients near the hub centre. Conclusions: We propose a scenario for the evolution of the SDC13 hub in which filaments first form as post-shock structures in a supersonic turbulent flow. As a result of the turbulent energy dissipation in the shock, the dense gas within the filaments is initially mostly sub-sonic. Then gravity takes over and starts shaping the evolution of the hub, both fragmenting filaments and pulling the gas towards the centre of the gravitational well. By doing so, gravitational energy is converted into kinetic energy in both local (cores) and global (hub centre) potential well minima. Furthermore, the generation of larger gravitational acceleration gradients at the filament junctions promotes the formation of more massive cores. The FITS files of the JVLA and GBT combined NH3(1,1) and NH3(2,2) data cubes are also available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/613/A11

  15. Complementary Barrier Infrared Detector (CBIRD) with Double Tunnel Junction Contact and Quantum Dot Barrier Infrared Detector (QD-BIRD)

    NASA Technical Reports Server (NTRS)

    Ting, David Z.-Y; Soibel, Alexander; Khoshakhlagh, Arezou; Keo, Sam A.; Nguyen, Jean; Hoglund, Linda; Mumolo, Jason M.; Liu, John K.; Rafol, Sir B.; Hill, Cory J.; hide

    2012-01-01

    The InAs/GaSb type-II superlattice based complementary barrier infrared detector (CBIRD) has already demonstrated very good performance in long-wavelength infrared (LWIR) detection. In this work, we describe results on a modified CBIRD device that incorporates a double tunnel junction contact designed for robust device and focal plane array processing. The new device also exhibited reduced turn-on voltage. We also report results on the quantum dot barrier infrared detector (QD-BIRD). By incorporating self-assembled InSb quantum dots into the InAsSb absorber of the standard nBn detector structure, the QD-BIRD extend the detector cutoff wavelength from approximately 4.2 micrometers to 6 micrometers, allowing the coverage of the mid-wavelength infrared (MWIR) transmission window. The device has been observed to show infrared response at 225 K.

  16. Gap Junction Intercellular Communication in Bone Marrow Failure

    DTIC Science & Technology

    2012-10-01

    enzyme systems, making individuals with these syndromes highly sensitive to DNA-damaging events. However, researchers suspect that modifier genes or...associated with a single gene defect. A major example of the progress in this area is Fanconi Anemia (FA), where mutations in up to 15 different...proteins have been associated to this disease, being FA-A the most frequent (1, 2). Single mutated genes in the DNA repair or ribosome biogenesis of HSC

  17. Steering of quantum waves: Demonstration of Y-junction transistors using InAs quantum wires

    NASA Astrophysics Data System (ADS)

    Jones, Gregory M.; Qin, Jie; Yang, Chia-Hung; Yang, Ming-Jey

    2005-06-01

    In this paper we demonstrate using an InAs quantum wire Y-branch switch that the electron wave can be switched to exit from the two drains by a lateral gate bias. The gating modifies the electron wave functions as well as their interference pattern, causing the anti-correlated, oscillatory transconductances. Our result suggests a new transistor function in a multiple-lead ballistic quantum wire system.

  18. Applications of the modified Rydberg-Vinet equation-of-state to the lower mantle and core

    NASA Astrophysics Data System (ADS)

    Fang, Zheng-Hua

    2016-01-01

    A modified Rydberg-Vinet equation-of-state (mRV EOS) with an arbitrary nonzero-pressure reference point, as is derived strictly from the related Rydberg potential, has been applied to the mantle and the core. The tests and comparisons demonstrate that mRV EOS is superior to the reciprocal K-primed equation [see F. D. Stacey and P. M. Davis, Phys. Earth Planet. Inter. 142 (2004) 137] not only because of its higher fitting accuracy but also because it has fewer fitting parameters and is easier to use.

  19. 65nm RadSafe™ Technology for RC64 and Advanced SOCs

    NASA Astrophysics Data System (ADS)

    Liran, Tuvia; Ginosar, Ran; Lange, Fredy; Mandler, Alberto; Aviely, Peleg; Meirov, Henri; Goldberg, Michael; Meister, Zeev; Oliel, Mickey

    2015-09-01

    The trend of scaling of microelectronic provides certain advantages for space components, as well as some challenges. It enables implementing highly integrated and high performance ASICs, reducing power, area and weight. Scaling also improves the immunity to TID and SEL in most cases, but increases soft error rate significantly. Ramon Chips adopted the 65nm technology for implementing RC64 [1,2], a 64 core DSP for space applications, and for making other future products. The 65nm process node is widely used, very mature, and supported by wide range of IP providers. Thus the need for full custom design of cores and IPs is minimized, and radiation hardening is achievable by mitigating the radiation effects on the available IPs, and developing proprietary IPs only for complementing the available IPs. The RadSafe_65TM technology includes hardened standard cells and I/O libraries, methods for mitigation of radiation effects in COTS IP cores (SRAM, PLL, SERDES, DDR2/3 interface) and adding unique cores for monitoring radiation effects and junction temperature. We had developed RADIC6, a technology development vehicle, for verification of all hard cores and verification of the methodologies and design flow required for RC64. RADIC6 includes the test structures for characterizing the IP cores for immunity to all radiation effects. This paper describes the main elements and IP cores of RadSafe_65TM, as well as the contents of RADIC6 test chip.

  20. Nanoparticles modified with multiple organic acids

    NASA Technical Reports Server (NTRS)

    Luebben, Silvia DeVito (Inventor); Cook, Ronald Lee (Inventor); Wilson, Carolina (Inventor); Meiser, Manfred (Inventor); Myers, Andrew William (Inventor); Smith, Bryan Matthew (Inventor); Elliott, Brian John (Inventor); Kreutzer, Cory (Inventor)

    2007-01-01

    Surface-modified nanoparticles of boehmite, and methods for preparing the same. Aluminum oxyhydroxide nanoparticles are surface modified by reaction with selected amounts of organic acids. In particular, the nanoparticle surface is modified by reactions with two or more different carboxylic acids, at least one of which is an organic carboxylic acid. The product is a surface modified boehmite nanoparticle that has an inorganic aluminum oxyhydroxide core, or part aluminum oxyhydroxide core and a surface-bonded organic shell. Organic carboxylic acids of this invention contain at least one carboxylic acid group and one carbon-hydrogen bond. One embodiment of this invention provides boehmite nanoparticles that have been surface modified with two or more acids one of which additional carries at least one reactive functional group. Another embodiment of this invention provides boehmite nanoparticles that have been surface modified with multiple acids one of which has molecular weight or average molecular weight greater than or equal to 500 Daltons. Yet, another embodiment of this invention provides boehmite nanoparticles that are surface modified with two or more acids one of which is hydrophobic in nature and has solubility in water of less than 15 by weight. The products of the methods of this invention have specific useful properties when used in mixture with liquids, as filler in solids, or as stand-alone entities.

  1. Nanoparticles modified with multiple organic acids

    DOEpatents

    Cook, Ronald Lee [Lakewood, CO; Luebben, Silvia DeVito [Golden, CO; Myers, Andrew William [Arvada, CO; Smith, Bryan Matthew [Boulder, CO; Elliott, Brian John [Superior, CO; Kreutzer, Cory [Brighton, CO; Wilson, Carolina [Arvada, CO; Meiser, Manfred [Aurora, CO

    2007-07-17

    Surface-modified nanoparticles of boehmite, and methods for preparing the same. Aluminum oxyhydroxide nanoparticles are surface modified by reaction with selected amounts of organic acids. In particular, the nanoparticle surface is modified by reactions with two or more different carboxylic acids, at least one of which is an organic carboxylic acid. The product is a surface modified boehmite nanoparticle that has an inorganic aluminum oxyhydroxide core, or part aluminum oxyhydroxide core and a surface-bonded organic shell. Organic carboxylic acids of this invention contain at least one carboxylic acid group and one carbon-hydrogen bond. One embodiment of this invention provides boehmite nanoparticles that have been surface modified with two or more acids one of which additional carries at least one reactive functional group. Another embodiment of this invention provides boehmite nanoparticles that have been surface modified with multiple acids one of which has molecular weight or average molecular weight greater than or equal to 500 Daltons. Yet, another embodiment of this invention provides boehmite nanoparticles that are surface modified with two or more acids one of which is hydrophobic in nature and has solubility in water of less than 15 by weight. The products of the methods of this invention have specific useful properties when used in mixture with liquids, as filler in solids, or as stand-alone entities.

  2. Photoenergy Harvesting Organic PV Cells Using Modified Photosynthetic Light-Harvesting Complex for Energy Harvesting Materials

    DTIC Science & Technology

    2008-07-03

    complex is still unclear even in the crystal structure of RC-LH1 core complex from Rhodopseudomonas (Rps.) palustris [1]. In this study, we use a...complex of R. palustris . 16 The NIR absorption spectra of these core complexes on the electrode indicate that these complexes are stable when...as the LH or the core complex. For example, the core complex, isolated from the photosynthetic bacterium, Rps. palustris , was successfully

  3. Extending the maximum operation time of the MNSR reactor.

    PubMed

    Dawahra, S; Khattab, K; Saba, G

    2016-09-01

    An effective modification to extend the maximum operation time of the Miniature Neutron Source Reactor (MNSR) to enhance the utilization of the reactor has been tested using the MCNP4C code. This modification consisted of inserting manually in each of the reactor inner irradiation tube a chain of three polyethylene-connected containers filled of water. The total height of the chain was 11.5cm. The replacement of the actual cadmium absorber with B(10) absorber was needed as well. The rest of the core structure materials and dimensions remained unchanged. A 3-D neutronic model with the new modifications was developed to compare the neutronic parameters of the old and modified cores. The results of the old and modified core excess reactivities (ρex) were: 3.954, 6.241 mk respectively. The maximum reactor operation times were: 428, 1025min and the safety reactivity factors were: 1.654 and 1.595 respectively. Therefore, a 139% increase in the maximum reactor operation time was noticed for the modified core. This increase enhanced the utilization of the MNSR reactor to conduct a long time irradiation of the unknown samples using the NAA technique and increase the amount of radioisotope production in the reactor. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. The plasma membrane of myxosporidian valve cells: freeze fracture data.

    PubMed

    Desportes-Livage, I; Nicolas, G

    1990-01-01

    Freeze fracturing of Myxosporidian spores reveals the occurrence of a continuous layer of transmembrane particles all over the surface area of the valve cells which form the spore envelope. These particles are densely packed all over the P face membrane. Due to their polygonal outline, their diameter (6-7 nm) and their central core, they resemble the particles forming the connections of gap junctions which metabolically couple the neighboring cells in animal tissues. In the present report, the role of the transmembrane particles is still hypothetical. However, they might represent a membrane structural specialization of the spores which are submitted to osmotic variations of the fluid external medium. Furthermore similar transmembrane particles are observed at the level of the septate junction which seals the valve cells. In this occurrence, they are arranged in a series of 40 double rows parallel to the suture of the spore envelope. These findings support the view that Myxosporidia are Metazoa and raise the problem of their origin.

  5. High efficiency silicon solar cell based on asymmetric nanowire.

    PubMed

    Ko, Myung-Dong; Rim, Taiuk; Kim, Kihyun; Meyyappan, M; Baek, Chang-Ki

    2015-07-08

    Improving the efficiency of solar cells through novel materials and devices is critical to realize the full potential of solar energy to meet the growing worldwide energy demands. We present here a highly efficient radial p-n junction silicon solar cell using an asymmetric nanowire structure with a shorter bottom core diameter than at the top. A maximum short circuit current density of 27.5 mA/cm(2) and an efficiency of 7.53% were realized without anti-reflection coating. Changing the silicon nanowire (SiNW) structure from conventional symmetric to asymmetric nature improves the efficiency due to increased short circuit current density. From numerical simulation and measurement of the optical characteristics, the total reflection on the sidewalls is seen to increase the light trapping path and charge carrier generation in the radial junction of the asymmetric SiNW, yielding high external quantum efficiency and short circuit current density. The proposed asymmetric structure has great potential to effectively improve the efficiency of the SiNW solar cells.

  6. Operando x-ray photoelectron emission microscopy for studying forward and reverse biased silicon p-n junctions.

    PubMed

    Barrett, N; Gottlob, D M; Mathieu, C; Lubin, C; Passicousset, J; Renault, O; Martinez, E

    2016-05-01

    Significant progress in the understanding of surfaces and interfaces of materials for new technologies requires operando studies, i.e., measurement of chemical, electronic, and magnetic properties under external stimulus (such as mechanical strain, optical illumination, or electric fields) applied in situ in order to approach real operating conditions. Electron microscopy attracts much interest, thanks to its ability to determine semiconductor doping at various scales in devices. Spectroscopic photoelectron emission microscopy (PEEM) is particularly powerful since it combines high spatial and energy resolution, allowing a comprehensive analysis of local work function, chemistry, and electronic structure using secondary, core level, and valence band electrons, respectively. Here we present the first operando spectroscopic PEEM study of a planar Si p-n junction under forward and reverse bias. The method can be used to characterize a vast range of materials at near device scales such as resistive oxides, conducting bridge memories and domain wall arrays in ferroelectrics photovoltaic devices.

  7. RNA connectivity requirements between conserved elements in the core of the yeast telomerase RNP

    PubMed Central

    Mefford, Melissa A; Rafiq, Qundeel; Zappulla, David C

    2013-01-01

    Telomerase is a specialized chromosome end-replicating enzyme required for genome duplication in many eukaryotes. An RNA and reverse transcriptase protein subunit comprise its enzymatic core. Telomerase is evolving rapidly, particularly its RNA component. Nevertheless, nearly all telomerase RNAs, including those of H. sapiens and S. cerevisiae, share four conserved structural elements: a core-enclosing helix (CEH), template-boundary element, template, and pseudoknot, in this order along the RNA. It is not clear how these elements coordinate telomerase activity. We find that although rearranging the order of the four conserved elements in the yeast telomerase RNA subunit, TLC1, disrupts activity, the RNA ends can be moved between the template and pseudoknot in vitro and in vivo. However, the ends disrupt activity when inserted between the other structured elements, defining an Area of Required Connectivity (ARC). Within the ARC, we find that only the junction nucleotides between the pseudoknot and CEH are essential. Integrating all of our findings provides a basic map of functional connections in the core of the yeast telomerase RNP and a framework to understand conserved element coordination in telomerase mechanism. PMID:24129512

  8. Functional organization of the Sm core in the crystal structure of human U1 snRNP.

    PubMed

    Weber, Gert; Trowitzsch, Simon; Kastner, Berthold; Lührmann, Reinhard; Wahl, Markus C

    2010-12-15

    U1 small nuclear ribonucleoprotein (snRNP) recognizes the 5'-splice site early during spliceosome assembly. It represents a prototype spliceosomal subunit containing a paradigmatic Sm core RNP. The crystal structure of human U1 snRNP obtained from natively purified material by in situ limited proteolysis at 4.4 Å resolution reveals how the seven Sm proteins, each recognize one nucleotide of the Sm site RNA using their Sm1 and Sm2 motifs. Proteins D1 and D2 guide the snRNA into and out of the Sm ring, and proteins F and E mediate a direct interaction between the Sm site termini. Terminal extensions of proteins D1, D2 and B/B', and extended internal loops in D2 and B/B' support a four-way RNA junction and a 3'-terminal stem-loop on opposite sides of the Sm core RNP, respectively. On a higher organizational level, the core RNP presents multiple attachment sites for the U1-specific 70K protein. The intricate, multi-layered interplay of proteins and RNA rationalizes the hierarchical assembly of U snRNPs in vitro and in vivo.

  9. Characterization of ZnO Nanoparticles using Superconducting Tunnel Junction Cryodetection Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Plath, Logan D.; Wang, Zongyu; Yan, Jiajun; Matyjaszewski, Krzysztof; Bier, Mark E.

    2017-06-01

    Zinc oxide (ZnO) nanoparticles coated with either n-octylamine (OA) or α-amino poly(styrene- co-acrylonitrile) (PSAN) ligands (L) have been analyzed using laser desorption/ionization and matrix assisted laser desorption/ionization (MALDI) time-of-flight (TOF) superconducting tunnel junction (STJ) cryodetection mass spectrometry. STJ cryodetection has the advantage of high m/ z detection and allows for the determination of average molecular weights and dispersities for 500-600 kDa ZnO-L nanoparticles. The ability to detect the relative energies deposited into the STJs has allowed for investigation of ZnO-L metastable fragmentation. ZnO-L precursor ions gain enough internal energy during the MALDI process to undergo metastable fragmentation in the flight tube. These fragments produced a lower energy peak, which was assigned as ligand-stripped ZnO cores whereas the individual ligands were at too low of an energy to be observed. From these STJ energy resolved peaks, the average weight percentage of inorganic material making up the nanoparticle was determined, where ZnO-OA and ZnO-PSAN nanoparticles are comprised of 62% and 68% wt ZnO, respectively. In one example, grafting densities were calculated based on the metastable fragmentation of ligands from the core to be 16 and 1.1 nm-2 for ZnO-OA and ZnO-PSAN, respectively, and compared with values determined by thermogravimetric analysis (TGA) and transmission electron microscopy (TEM). [Figure not available: see fulltext.

  10. The impact of teachers’ modifications of an evidenced-based HIV prevention intervention on program outcomes

    PubMed Central

    Wang, Bo; Stanton, Bonita; Lunn, Sonja; Rolle, Glenda; Poitier, Maxwell; Adderley, Richard; Li, Xiaoming; Koci, Veronica; Deveaux, Lynette

    2015-01-01

    The degree to which evidence-based program outcomes are affected by modifications is a significant concern in the implementation of interventions. The ongoing national implementation of an evidence-based HIV prevention program targeting grade six students in The Bahamas [Focus on Youth in The Caribbean (FOYC)] offers an opportunity to explore factors associated with teachers’ modification of FOYC lessons and to examine the impact of types and degrees of modifications on student outcomes. Data were collected in 2012 from 155 teachers and 3646 students in 77 government elementary schools. Results indicate that teachers taught 16 of 30 core activities, 24.5 of 46 total activities and 4.7 of 8 sessions. Over one-half of the teachers made modifications to FOYC core activities; one-fourth of the teachers modified 25% or more core activities that they taught (heavily modified FOYC). Omitting core activities was the most common content modification, followed by lengthening FOYC lessons with reading, writing assignments or role-play games, shortening core activities or adding educational videos. Mixed-effects modeling revealed that omitting core activities had negative impacts on all four student outcomes. Shortening core activities and adding videos into lessons had negative impacts on HIV/AIDS knowledge and/or intention to use condom protection. Heavy modifications (>1/4 core activities) were associated with diminished program effectiveness. Heavy modifications and omitting or shortening core activities were negatively related to teachers’ level of implementation. We conclude that poorer student outcomes were associated with heavy modifications. PMID:26297497

  11. The Impact of Teachers' Modifications of an Evidenced-Based HIV Prevention Intervention on Program Outcomes.

    PubMed

    Wang, Bo; Stanton, Bonita; Lunn, Sonja; Rolle, Glenda; Poitier, Maxwell; Adderley, Richard; Li, Xiaoming; Koci, Veronica; Deveaux, Lynette

    2016-01-01

    The degree to which evidence-based program outcomes are affected by modifications is a significant concern in the implementation of interventions. The ongoing national implementation of an evidence-based HIV prevention program targeting grade 6 students in The Bahamas [Focus on Youth in The Caribbean (FOYC)] offers an opportunity to explore factors associated with teachers' modification of FOYC lessons and to examine the impact of types and degrees of modifications on student outcomes. Data were collected in 2012 from 155 teachers and 3646 students in 77 government elementary schools. Results indicate that teachers taught 16 of 30 core activities, 24.5 of 46 total activities and 4.7 of 8 sessions. Over one-half of the teachers made modifications to FOYC core activities; one-fourth of the teachers modified 25 % or more core activities that they taught (heavily modified FOYC). Omitting core activities was the most common content modification, followed by lengthening FOYC lessons with reading, writing assignments or role-play games, and shortening core activities or adding educational videos. Mixed-effects modeling revealed that omitting core activities had negative impacts on all four student outcomes. Shortening core activities and adding videos into lessons had negative impacts on HIV/AIDS knowledge and/or intention to use condom protection. Heavy modifications (>1/4 core activities) were associated with diminished program effectiveness. Heavy modifications and omitting or shortening core activities were negatively related to teachers' level of implementation. We conclude that poorer student outcomes were associated with heavy modifications.

  12. Coordination of Septate Junctions Assembly and Completion of Cytokinesis in Proliferative Epithelial Tissues.

    PubMed

    Daniel, Emeline; Daudé, Marion; Kolotuev, Irina; Charish, Kristi; Auld, Vanessa; Le Borgne, Roland

    2018-05-07

    How permeability barrier function is maintained when epithelial cells divide is largely unknown. Here, we have investigated how the bicellular septate junctions (BSJs) and tricellular septate junctions (TSJs) are remodeled throughout completion of cytokinesis in Drosophila epithelia. We report that, following cytokinetic ring constriction, the midbody assembles, matures within SJs, and is displaced basally in two phases. In a first slow phase, the neighboring cells remain connected to the dividing cells by means of SJ-containing membrane protrusions pointing to the maturing midbody. Fluorescence recovery after photobleaching (FRAP) experiments revealed that SJs within the membrane protrusions correspond to the old SJs that were present prior to cytokinesis. In contrast, new SJs are assembled below the adherens junctions and spread basally to build a new belt of SJs in a manner analogous to a conveyor belt. Loss of function of a core BSJ component, the Na+/K+-ATPase pump Nervana 2 subunit, revealed that the apical-to-basal spread of BSJs drives the basal displacement of the midbody. In contrast, loss of the TSJ protein Bark beetle indicated that remodeling of TSJs is rate limiting and slowed down midbody migration. In the second phase, once the belt of SJs is assembled, the basal displacement of the midbody is accelerated and ultimately leads to abscission. This last step is temporally uncoupled from the remodeling of SJs. We propose that cytokinesis in epithelia involves the coordinated polarized assembly and remodeling of SJs both in the dividing cell and its neighbors to ensure the maintenance of permeability barrier integrity in proliferative epithelia. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Surfing the wave, cycle, life history, and genes/proteins expressed by testicular germ cells. Part 5: intercellular junctions and contacts between germs cells and Sertoli cells and their regulatory interactions, testicular cholesterol, and genes/proteins associated with more than one germ cell generation.

    PubMed

    Hermo, Louis; Pelletier, R-Marc; Cyr, Daniel G; Smith, Charles E

    2010-04-01

    In the testis, cell adhesion and junctional molecules permit specific interactions and intracellular communication between germ and Sertoli cells and apposed Sertoli cells. Among the many adhesion family of proteins, NCAM, nectin and nectin-like, catenins, and cadherens will be discussed, along with gap junctions between germ and Sertoli cells and the many members of the connexin family. The blood-testis barrier separates the haploid spermatids from blood borne elements. In the barrier, the intercellular junctions consist of many proteins such as occludin, tricellulin, and claudins. Changes in the expression of cell adhesion molecules are also an essential part of the mechanism that allows germ cells to move from the basal compartment of the seminiferous tubule to the adluminal compartment thus crossing the blood-testis barrier and well-defined proteins have been shown to assist in this process. Several structural components show interactions between germ cells to Sertoli cells such as the ectoplasmic specialization which are more closely related to Sertoli cells and tubulobulbar complexes that are processes of elongating spermatids embedded into Sertoli cells. Germ cells also modify several Sertoli functions and this also appears to be the case for residual bodies. Cholesterol plays a significant role during spermatogenesis and is essential for germ cell development. Lastly, we list genes/proteins that are expressed not only in any one specific generation of germ cells but across more than one generation. Copyright 2009 Wiley-Liss, Inc.

  14. Fabrication of interface-modified ramp-edge junction on YBCO ground plane with multilayer structure

    NASA Astrophysics Data System (ADS)

    Wakana, H.; Adachi, S.; Kamitani, A.; Sugiyama, H.; Sugano, T.; Horibe, M.; Ishimaru, Y.; Tarutani, Y.; Tanabe, K.

    2003-10-01

    We examined the fabrication conditions to obtain high-quality ramp-edge Josephson junctions on a liquid-phase-epitaxy YBa 2Cu 3O y (LPE-YBCO) ground plane, in particular, focusing on the fabrication of a suitable insulating layer on the ground plane and the post-annealing conditions to load oxygen to the ground plane. A (LaAlO 3) 0.3-(SrAl 0.5Ta 0.5O 3) 0.7 (LSAT) insulating film on the ground planes exhibited a conductance ranging from 10 -4 to 10 -8 S after deposition of an upper superconducting film, suggesting existence of some leak paths through the LSAT insulating layer. By introducing approximately 30 nm thick SrTiO 3 (STO) buffer layers on both side of the LSAT insulating layer. We reproducibly obtained a conductance lower than 10 -8 S. The dielectric constant of the STO/LSAT/STO layer was 32, which was slightly larger than that of the single LSAT layer. It was found that a very slow cooling rate of 1.0 °C/h in oxygen was needed to fully oxidize the ground plane through the STO/LSAT/STO insulating layers, while the oxidation time could be effectively reduced by introducing via holes in the insulating layer at an interval of 200 μm. Ramp-edge junctions on LPE-YBCO ground planes with STO/LSAT/STO insulating layers exhibited a 1 σ-spread in Ic of 8% for 100-junction series-arrays and a sheet inductance of 0.7 pH/□ at 4.2 K.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deschenes, Austin; Muneer, Sadid; Akbulut, Mustafa

    Thermal assistance has been shown to significantly reduce the required operation power for spin torque transfer magnetic random access memory (STT-MRAM). Proposed heating methods include modified material stack compositions that result in increased self-heating or external heat sources. Here, we analyze the self-heating process of a standard perpendicular magnetic anisotropy STT-MRAM device through numerical simulations in order to understand the relative contributions of Joule, thermoelectric Peltier and Thomson, and tunneling junction heating. A 2D rotationally symmetric numerical model is used to solve the coupled electro-thermal equations including thermoelectric effects and heat absorbed or released at the tunneling junction. We comparemore » self-heating for different common passivation materials, positive and negative electrical current polarity, and different device thermal anchoring and boundaries resistance configurations. The variations considered are found to result in significant differences in maximum temperatures reached. Average increases of 3 K, 10 K, and 100 K for different passivation materials, positive and negative polarity, and different thermal anchoring configurations, respectively, are observed. Furthermore, the highest temperatures, up to 424 K, are obtained for silicon dioxide as the passivation material, positive polarity, and low thermal anchoring with thermal boundary resistance configurations. Interestingly it is also found that due to the tunneling heat, Peltier effect, device geometry, and numerous interfacial layers around the magnetic tunnel junction (MTJ), most of the heat is dissipated on the lower potential side of the magnetic junction. We have observed this asymmetry in heating and is important as thermally assisted switching requires heating of the free layer specifically and this will be significantly different for the two polarity operations, set and reset.« less

  16. Impact and Blast Resistance of Sandwich Plates

    NASA Astrophysics Data System (ADS)

    Dvorak, George J.; Bahei-El-Din, Yehia A.; Suvorov, Alexander P.

    Response of conventional and modified sandwich plate designs is examined under static load, impact by a rigid cylindrical or flat indenter, and during and after an exponential pressure impulse lasting for 0.05 ms, at peak pressure of 100 MPa, simulating a nearby explosion. The conventional sandwich design consists of thin outer (loaded side) and inner facesheets made of carbon/epoxy fibrous laminates, separated by a thick layer of structural foam core. In the three modified designs, one or two thin ductile interlayers are inserted between the outer facesheet and the foam core. Materials selected for the interlayers are a hyperelas-tic rate-independent polyurethane;a compression strain and strain rate dependent, elastic-plastic polyurea;and an elastomeric foam. ABAQUS and LS-Dyna software were used in various response simulations. Performance comparisons between the enhanced and conventional designs show that the modified designs provide much better protection against different damage modes under both load regimes. After impact, local facesheet deflection, core compression, and energy release rate of delamination cracks, which may extend on hidden interfaces between facesheet and core, are all reduced. Under blast or impulse loads, reductions have been observed in the extent of core crushing, facesheet delaminations and vibration amplitudes, and in overall deflections. Similar reductions were found in the kinetic energy and in the stored and dissipated strain energy. Although strain rates as high as 10-4/s1 are produced by the blast pressure, peak strains in the interlayers were too low to raise the flow stress in the polyurea to that in the polyurethane, where a possible rate-dependent response was neglected. Therefore, stiff polyurethane or hard rubber interlayers materials should be used for protection of sandwich plate foam cores against both impact and blast-induced damage.

  17. Simultaneous antegrade/retrograde upper urinary tract access: Bart's modified lateral position for complex upper tract endourologic pathologic features.

    PubMed

    Moraitis, Konstantinos; Philippou, Prodromos; El-Husseiny, Tamer; Wazait, Hassan; Masood, Junaid; Buchholz, Noor

    2012-02-01

    To determine whether the Bart's modified lateral position is safe and effective for achieving simultaneous anterograde and retrograde access in complex upper urinary tract pathologic features. From November 2006 to September 2010, 45 procedures were performed, with the patients in the modified lateral position. The indication for these procedures was the presence of complex unilateral upper urinary tract pathologic features. The patients with muscular and/or skeletal abnormalities were excluded. All procedures were performed using simultaneous anterograde and retrograde access with the patient under general anesthesia. The preoperative investigation protocol included assessment of the stone burden and location using enhanced abdominal computed tomography. The patients were routinely examined 6 weeks after the procedure with a combination of plain abdominal radiography and renal ultrasonography. For patients treated for conditions causing upper urinary tract obstruction (pelviureteral junction obstruction and/or ureteral strictures), a mercaptoacetyltriglycine renography was performed at 4, 12, and 24 months postoperatively. The mean patient age was 51.2 years (range 17-79). Stone clearance was achieved by a single combined procedure in 36 patients (80%). Successful recanalization was achieved in all patients with pelviureteral junction obstruction and ureteral strictures. In 4 patients (8.8%), persistent hematuria was noted, and 2 patients (4.4%) developed postoperative urinary sepsis and were treated conservatively. Modification to the lateral position compares equally with contemporary percutaneous nephrolithotomy series. It provides wide exposure of the flank, allowing the choice of multiple access sites, enhanced control, and a wide angle for handling of the antegrade instruments. Two surgeons can work simultaneously, addressing complex endourologic pathologic features in high-risk patients. Copyright © 2012. Published by Elsevier Inc.

  18. [History of ureteropelvic junction obstruction repair (pyeloplasty). From Trendelenburg (1886) to the present].

    PubMed

    Poulakis, V; Witzsch, U; Schultheiss, D; Rathert, P; Becht, E

    2004-12-01

    The first reconstructive procedure for ureteropelvic junction (UPJ) obstruction was performed by Trendelenburg in 1886. The important milestones in the reconstruction of UPJ are discussed and all available historical papers and reports since 1886 are reviewed. Kuster published the first successful dismembered pyeloplasty 5 years later, but his technique was prone to strictures. In 1892, the application of the Heineke-Mickulicz principle by Fenger resulted in bulking and kinking with obstruction. Plication of the renal pelvis, first introduced by Israel in 1896, was modified by Kelly in 1906. After the principle of the Finney pyloroplasty, von Lichtenberg designed his pyeloplasty in 1921, best suited to cases of high implantation of the ureter. Foley modified flap techniques, first introduced by Schwyzer in 1923 after the application of the Durante pyloroplasty principle, successfully to Y-V pyeloplasty in 1937. Culp and de-Weerd introduced the spiral flap in 1951. Scardino and Prince reported about the vertical flap in 1953. Patel published the extra-long spiral flap technique in 1982. In order to decrease the likelihood of stricture, Nesbit, in 1949, modified Kuster's procedure by utilizing an elliptic anastomosis. In the same year, Anderson and Hynes, published their technique. With the advent of endourology, several minimally invasive procedures were applied: antegrade or retrograde endopyelotomy, balloon dilation, and laparoscopic pyeloplasty. The concept of full-thickness incision of the narrow segment followed by prolonged stenting was first described in 1903 by Albarran and was popularized by Davis in 1943. Several basic principles must be applied in order to ensure successful repair: the resultant anastomosis should be widely patent, performed in a watertight fashion without tension. Endopyelotomy represents an alternative to open surgery.

  19. Chemical Phenomena of Atomic Force Microscopy Scanning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ievlev, Anton V.; Brown, Chance; Burch, Matthew J.

    Atomic force microscopy is widely used for nanoscale characterization of materials by scientists worldwide. The long-held belief of ambient AFM is that the tip is generally chemically inert but can be functionalized with respect to the studied sample. This implies that basic imaging and scanning procedures do not affect surface and bulk chemistry of the studied sample. However, an in-depth study of the confined chemical processes taking place at the tip–surface junction and the associated chemical changes to the material surface have been missing as of now. Here, we used a hybrid system that combines time-of-flight secondary ion mass spectrometrymore » with an atomic force microscopy to investigate the chemical interactions that take place at the tip–surface junction. Investigations showed that even basic contact mode AFM scanning is able to modify the surface of the studied sample. In particular, we found that the silicone oils deposited from the AFM tip into the scanned regions and spread to distances exceeding 15 μm from the tip. These oils were determined to come from standard gel boxes used for the storage of the tips. In conclusion, the explored phenomena are important for interpreting and understanding results of AFM mechanical and electrical studies relying on the state of the tip–surface junction.« less

  20. Controlled thermoelectric response of a tunable Rashba coupled metal-insulator-superconductor junction

    NASA Astrophysics Data System (ADS)

    Kapri, Priyadarshini; Adhikary, Priyanka; Sinha, Shubham; Basu, Saurabh

    2018-05-01

    Thermoelectric effect for metal, insulator and the superconductor junctions has been studied with Rashba spin-orbit coupling (RSOC) being present at the interfaces via modified Blonder-Tinkham-Klapwijk (BTK) theory. We find that the thermopower, as a function of an effective barrier potential that characterizes the intermediate insulating layer, displays an oscillatory behavior. Interesting interplay between the strength of RSOC and the effective barrier potential has been carried out in details in this regard. For specific ranges of the effective barrier potential, RSOC enhances the thermopower, while the reverse happens for other values. Moreover it is found that the effective barrier potential plays a crucial role in determining the thermopower spectrum. For a tunable Rashba coupling, the thermopower of the junction can be controlled with precision, which may useful for the thermoelectric applications, at low temperatures. Further the efficiency of the system is obtained for different pairing correlations of the superconducting lead where we find that the system with a d-wave symmetry is more efficient as compared to a s-wave correlation, in some selective regions of effective barrier potential. It is found that for some selective regions of effective barrier potential, the efficiency of the system increases with RSOC and the opposite happens for other values.

  1. [Changes in the electrical activity of the rabbit proximal colon in vivo by stimulation of the vagus and splanchnic nerves].

    PubMed

    Julé, Y

    1975-05-01

    1. Using extracellular electrodes placed on the serosa, we recorded the modifications of the electrical activity of the colonic muslce fibers caused by the stimulation of vagal and splanchnic nerve fibers. 2. Vagal stimulation produces two types of junction potentials: excitatory junction potentials (EJPs) and inhibitory junction potentials (IJPs). The IJPs are elicited by stimulation of vagal fibers which innervate intramural non-adrenergic inhibitory neurons. 3. The conduction velocity of the nerve impulse along the vagal pre-ganglionic fibers is 1.01 m/sec for excitatory fibers and 0.5. m/sec for inhibitory fibers. 4. Splanchnic fiber stimulation causes EJP disappearance, blocking transmission between preganglionic fibers and intramural excitatory neurons, and a decrease in IJP amplitude that most likely indicates a previous hyperpolarization of the smooth muscle. 5. IJP persistence during splanchnic stimulation proves that sympathetic inhibition does not modify the transmission of the vagal influx onto the non-adrenergic inhibitory neurons of the intramural plexuses. 6. Through a comparative study of proximal and distal colonic innervation, we are able to show that there is a similar organization of both regions, that is a double inhibitory innervation: an adrenergic one of a sympathetic origin, and a non adrenergic one of a parasympathetic origin.

  2. Chemical Phenomena of Atomic Force Microscopy Scanning

    DOE PAGES

    Ievlev, Anton V.; Brown, Chance; Burch, Matthew J.; ...

    2018-01-30

    Atomic force microscopy is widely used for nanoscale characterization of materials by scientists worldwide. The long-held belief of ambient AFM is that the tip is generally chemically inert but can be functionalized with respect to the studied sample. This implies that basic imaging and scanning procedures do not affect surface and bulk chemistry of the studied sample. However, an in-depth study of the confined chemical processes taking place at the tip–surface junction and the associated chemical changes to the material surface have been missing as of now. Here, we used a hybrid system that combines time-of-flight secondary ion mass spectrometrymore » with an atomic force microscopy to investigate the chemical interactions that take place at the tip–surface junction. Investigations showed that even basic contact mode AFM scanning is able to modify the surface of the studied sample. In particular, we found that the silicone oils deposited from the AFM tip into the scanned regions and spread to distances exceeding 15 μm from the tip. These oils were determined to come from standard gel boxes used for the storage of the tips. In conclusion, the explored phenomena are important for interpreting and understanding results of AFM mechanical and electrical studies relying on the state of the tip–surface junction.« less

  3. Anticonvulsant effects of mefloquine on generalized tonic-clonic seizures induced by two acute models in rats.

    PubMed

    Franco-Pérez, Javier; Ballesteros-Zebadúa, Paola; Manjarrez-Marmolejo, Joaquín

    2015-03-01

    Mefloquine can cross the blood-brain barrier and block the gap junction intercellular communication in the brain. Enhanced electrical coupling mediated by gap junctions is an underlying mechanism involved in the generation and maintenance of seizures. For this reason, the aim of this study was to analyze the effects of the systemic administration of mefloquine on tonic-clonic seizures induced by two acute models such as pentylenetetrazole and maximal electroshock. All the control rats presented generalized tonic-clonic seizures after the administration of pentylenetetrazole. However, the incidence of seizures induced by pentylenetetrazole significantly decreased in the groups administered systematically with 40 and 80 mg/kg of mefloquine. In the control group, none of the rats survived after the generalized tonic-clonic seizures induced by pentylenetetrazole, but survival was improved by mefloquine. Besides, mefloquine significantly modified the total spectral power as well as the duration, amplitude and frequency of the epileptiform activity induced by pentylenetetrazole. For the maximal electroshock model, mefloquine did not change the occurrence of tonic hindlimb extension. However, this gap junction blocker significantly decreased the duration of the tonic hindlimb extension induced by the acute electroshock. These data suggest that mefloquine at low doses might be eliciting some anticonvulsant effects when is systemically administered to rats.

  4. Preparation of monodisperse microbubbles using an integrated embedded capillary T-junction with electrohydrodynamic focusing.

    PubMed

    Parhizkar, Maryam; Stride, Eleanor; Edirisinghe, Mohan

    2014-07-21

    This work investigates the generation of monodisperse microbubbles using a microfluidic setup combined with electrohydrodynamic processing. A basic T-junction microfluidic device was modified by applying an electrical potential difference across the outlet channel. A model glycerol air system was selected for the experiments. In order to investigate the influence of the electric field strength on bubble formation, the applied voltage was increased systematically up to 21 kV. The effect of solution viscosity and electrical conductivity was also investigated. It was found that with increasing electrical potential difference, the size of the microbubbles reduced to ~25% of the capillary diameter whilst their size distribution remained narrow (polydispersity index ~1%). A critical value of 12 kV was found above which no further significant reduction in the size of the microbubbles was observed. The findings suggest that the size of the bubbles formed in the T-junction (i.e. in the absence of the electric field) is strongly influenced by the viscosity of the solution. The eventual size of bubbles produced by the composite device, however, was only weakly dependent upon viscosity. Further experiments, in which the solution electrical conductivity was varied by the addition of a salt indicated that this had a much stronger influence upon bubble size.

  5. Modulation of venlafaxine hydrochloride release from press coated matrix tablet.

    PubMed

    Gohel, M C; Soni, C D; Nagori, S A; Sarvaiya, K G

    2008-01-01

    The aim of present study was to prepare novel modified release press coated tablets of venlafaxine hydrochloride. Hydroxypropylmethylcellulose K4M and hydroxypropylmethylcellulose K100M were used as release modifier in core and coat, respectively. A 3(2) full factorial design was adopted in the optimization study. The drug to polymer ratio in core and coat were chosen as independent variables. The drug release in the first hour and drug release rate between 1 and 12 h were chosen as dependent variables. The tablets were characterized for dimension analysis, crushing strength, friability and in vitro drug release. A check point batch, containing 1:2.6 and 1:5.4 drug to polymer in core and coat respectively, was prepared. The tablets of check point batch were subjected to in vitro drug release in dissolution media with pH 5, 7.2 and distilled water. The kinetics of drug release was best explained by Korsmeyer and Peppas model (anomalous non-Fickian diffusion). The systematic formulation approach enabled us to develop modified release venlafaxine hydrochloride tablets.

  6. Nafion covered core-shell structured Fe3O4@graphene nanospheres modified electrode for highly selective detection of dopamine.

    PubMed

    Zhang, Wuxiang; Zheng, Jianzhong; Shi, Jiangu; Lin, Zhongqiu; Huang, Qitong; Zhang, Hanqiang; Wei, Chan; Chen, Jianhua; Hu, Shirong; Hao, Aiyou

    2015-01-01

    Nafion covered core-shell structured Fe3O4@graphene nanospheres (GNs) modified glassy carbon electrode (GCE) was successfully prepared and used for selective detection dopamine. Firstly, the characterizations of hydro-thermal synthesized Fe3O4@GNs were investigated by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Raman spectroscopy. Then Fe3O4@GNs/Nafion modified electrode exhibited excellent electrocatalytic activity toward the oxidations of dopamine (DA). The interference test showed that the coexisted ascorbic acid (AA) and uric acid (UA) had no electrochemical interference toward DA. Under the optimum conditions, the broad linear relationship was obtained in the experimental concentration from 0.020 μM to 130.0 μM with the detection limit (S/N=3) of 0.007 μM. Furthermore, the core-shell structured Fe3O4@GNs/Nafion/GCE was applied to the determination of DA in real samples and satisfactory results were got, which could provide a promising platform to develop excellent biosensor for detecting DA. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Photo-cured PMMA/PEI core/shell nanoparticles surface-modified with Gd-DTPA for T1 MR imaging.

    PubMed

    Ratanajanchai, Montri; Lee, Don Haeng; Sunintaboon, Panya; Yang, Su-Geun

    2014-02-01

    Herein, we introduced amine-functionalized core-shell nanoparticles (Polymethyl methacrylate/Polyethyleneimine; PMMA/PEI) with surface primary amines (3.15×10(5) groups/particle) and uniform size distribution (150-200nm) that were prepared by one-step photo-induced emulsion polymerization. Further PEI-surface was modified with diethylenetriamine pentaacetic acid (DTPA) and introduced with Gd(III). The modified particles possessing DTPA can entrap a high content of Gd(III) ions of over 5.5×10(4)Gd/particle with stable chelation (no release of free Gd) at least 7h. The Gd-DTPA-conjugated core-shell nanoparticles (PMMA/PEI-DTPA-Gd NPs) enhanced the MRI intensity more than Primovist (a commercial hepatic contrast agent). Moreover, the PMMA/PEI-DTPA-Gd NPs showed non-cytotoxicity up to 250μM in normal liver cells. Thus, in vitro data suggested the PMMA/PEI-DTPA-Gd NPs is promising delivery system as a superior MRI contrast agent, especially for hepatic lesion targeted MR imaging. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Advanced solar panel designs

    NASA Technical Reports Server (NTRS)

    Ralph, E. L.; Linder, E. B.

    1996-01-01

    Solar panel designs that utilize new high-efficiency solar cells and lightweight rigid panel technologies are described. The resulting designs increase the specific power (W/kg) achievable in the near-term and are well suited to meet the demands of higher performance small satellites (smallsats). Advanced solar panel designs have been developed and demonstrated on two NASA SBIR contracts at Applied Solar. The first used 19% efficient, large area (5.5 cm x 6.5 cm) GaAs/Ge solar cells with a lightweight rigid graphite epoxy isogrid substrate configuration. A 1,445 cm(exp 2) coupon was fabricated and tested to demonstrate 60 W/kg with a high potential of achieving 80 W/kg. The second panel design used new 22% efficiency, dual junction GaInP2/GaAs/Ge solar cells combined with a lightweight aluminum core/graphite fiber mesh facesheet substrate. A 1,445 cm(exp 2) coupon was fabricated and tested to demonstrate 105 W/kg with the potential of achieving 115 W/kg. This paper will address the construction details for the GaAs/isogrid and dual-junction GaAs/carbon mesh panel configurations. These are ultimately sized to provide 75 Watts and 119 Watts respectively for smallsats or may be used as modular building blocks for larger systems. GaAs/isogrid and dual-junction GaAs/carbon mesh coupons have been fabricated and tested to successfully demonstrate critical performance parameters and results are also provided here.

  9. Modified radiotherapy technique in the treatment of medulloblastoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dewit, L.; Van Dam, J.; Rijnders, A.

    1984-02-01

    Craniospinal irradiation is a standard treatment technique in patients who receive surgery for medulloblastoma. In most centers megavoltage photon irradiation is used, resulting in significant irradiation exposure to critical organs. In order to overcome this difficulty, the authors recently modified the technique applied in their center, by using high energy electrons (20 MeV) for irradiation of the spinal cord. The reliability of this technique was checked by performing dosimetry in a specially constructed wax phantom. Attention was focused upon dose variations at the junction of fields. Furthermore, the influence of vertebrae on the absorbed dose distribution of high energy electronsmore » is presented. This technique seems to be safe and reliable in selected patients (children and teenagers).« less

  10. Enhancement of solar hydrogen evolution from water by surface modification with CdS and TiO2 on porous CuInS2 photocathodes prepared by an electrodeposition-sulfurization method.

    PubMed

    Zhao, Jiao; Minegishi, Tsutomu; Zhang, Li; Zhong, Miao; Gunawan; Nakabayashi, Mamiko; Ma, Guijun; Hisatomi, Takashi; Katayama, Masao; Ikeda, Shigeru; Shibata, Naoya; Yamada, Taro; Domen, Kazunari

    2014-10-27

    Porous films of p-type CuInS2, prepared by sulfurization of electrodeposited metals, are surface-modified with thin layers of CdS and TiO2. This specific porous electrode evolved H2 from photoelectrochemical water reduction under simulated sunlight. Modification with thin n-type CdS and TiO2 layers significantly increased the cathodic photocurrent and onset potential through the formation of a p-n junction on the surface. The modified photocathodes showed a relatively high efficiency and stable H2 production under the present reaction conditions. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Exploring the Electronic Landscape at Interfaces and Junctions in Semiconductor Nanowire Devices with Subsurface Local Probing of Carrier Dynamics

    NASA Astrophysics Data System (ADS)

    McGuckin, Terrence

    The solid state devices that are pervasive in our society, are based on building blocks composed of interfaces between materials and junctions that manipulate how charge carriers behave in a device. As the dimensions of these devices are reduced to the nanoscale, surfaces and interfaces play a larger role in the behavior of carriers in devices and must be thoroughly investigated to understand not only the material properties but how these materials interact. Separating the effects of these different building blocks is a challenge, as most testing methods measure the performance of the whole device. Semiconductor nanowires represent an excellent test system to explore the limits of size and novel device structures. The behavior of charge carriers in semiconductor nanowire devices under operational conditions is investigated using local probing technique electron beam induced current (EBIC). The behavior of locally excited carriers are driven by the forces of drift, from electric fields within a device at junctions, surfaces, contacts and, applied voltage bias, and diffusion. This thesis presents the results of directly measuring these effects spatially with nanometer resolution, using EBIC in Ge, Si, and complex heterostructure GaAs/AlGaAs nanowire devices. Advancements to the EBIC technique, have pushed the resolution from tens of nanometers down to 1 to 2 nanometers. Depth profiling and tuning of the interaction volume allows for the separating the signal originating from the surface and the interior of the nanowire. Radial junctions and variations in bands can now be analyzed including core/shell hetero-structures. This local carrier probing reveals a number of surprising behaviors; Most notably, directly imaging the evolution of surface traps filling with electrons causing bandbending at the surface of Ge nanowires that leads to an enhancement in the charge separation of electrons and holes, and extracting different characteristic lengths from GaAs and AlGaAs in core/shell nanowires. For new and emerging solid state materials, understanding charge carrier dynamics is crucial to designing functional devices. Presented here are examples of the wide application of EBIC, and its variants, through imaging domains in ferroelectric materials, local electric fields and defects in 2D semiconductor material MoS2, and gradients in doping profiles of solar cells. Measuring the local behavior of carrier dynamics, EBIC has the potential to be a key metrology technique in correlative microscopy, enabling a deeper understanding of materials and how they interact within devices.

  12. Electrostatic Discharge Test of Multi-Junction Solar Array Coupons After Combined Space Environmental Exposures

    NASA Technical Reports Server (NTRS)

    Wright, Kenneth H.; Schneider, Todd; Vaughn, Jason; Hoang, Bao; Funderburk, Victor V.; Wong, Frankie; Gardiner, George

    2010-01-01

    A set of multi-junction GaAs/Ge solar array test coupons were subjected to a sequence of 5-year increments of combined environmental exposure tests. The test coupons capture an integrated design intended for use in a geosynchronous (GEO) space environment. A key component of this test campaign is conducting electrostatic discharge (ESD) tests in the inverted gradient mode. The protocol of the ESD tests is based on the ISO/CD 11221, the ISO standard for ESD testing on solar array panels. This standard is currently in its final review with expected approval in 2010. The test schematic in the ISO reference has been modified with Space System/Loral designed circuitry to better simulate the on-orbit operational conditions of its solar array design. Part of the modified circuitry is to simulate a solar array panel coverglass flashover discharge. All solar array coupons used in the test campaign consist of 4 cells. The ESD tests are performed at the beginning of life (BOL) and at each 5-year environment exposure point. The environmental exposure sequence consists of UV radiation, electron/proton particle radiation, thermal cycling, and ion thruster plume. This paper discusses the coverglass flashover simulation, ESD test setup, and the importance of the electrical test design in simulating the on-orbit operational conditions. Results from 5th-year testing are compared to the baseline ESD characteristics determined at the BOL condition.

  13. Time-dependent expression of hypertonic effects on bullfrog taste nerve responses to salts and bitter substances.

    PubMed

    Mashiyama, Kazunori; Nozawa, Yuhei; Ohtubo, Yoshitaka; Kumazawa, Takashi; Yoshii, Kiyonori

    2014-03-27

    We previously showed that the hypertonicity of taste stimulating solutions modified tonic responses, the quasi-steady state component following the transient (phasic) component of each integrated taste nerve response. Here we show that the hypertonicity opens tight junctions surrounding taste receptor cells in a time-dependent manner and modifies whole taste nerve responses in bullfrogs. We increased the tonicity of stimulating solutions with non-taste substances such as urea or ethylene glycol. The hypertonicity enhanced phasic responses to NaCl>0.2M, and suppressed those to NaCl<0.1M, 1mM CaCl2, and 1mM bitter substances (quinine, denatonium and strychnine). The hypertonicity also enhanced the phasic responses to a variety of 0.5M salts such as LiCl and KCl. The enhancing effect was increased by increasing the difference between the ionic mobilities of the cations and anions in the salt. A preincubation time >20s in the presence of 1M non-taste substances was needed to elicit both the enhancing and suppressing effects. Lucifer Yellow CH, a paracellular marker dye, diffused into bullfrog taste receptor organs in 30s in the presence of hypertonicity. These results agreed with our proposed mechanism of hypertonic effects that considered the diffusion potential across open tight junctions. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Comparative study of the physical properties of core materials.

    PubMed

    Saygili, Gülbin; Mahmali, Sevil M

    2002-08-01

    This study was undertaken to measure physical properties of materials used for direct core buildups, including high-copper amalgam, visible light-cured resin composite, autocured titanium-containing composite, polyacid-modified composite, resin-modified glass-ionomer, and silver cermet cement. Compressive strength, diametral tensile strength, and flexural strength of six core materials of various material classes were measured for each material as a function of time up to 3 months at different storage conditions, using a standard specification test designed for the materials. Three different storage conditions (dry, humid, wet) at 37 degrees C were chosen. Materials were manipulated according to manufacturers' instructions for use as cores. Mean compressive, diametral tensile, and flexural strengths with associated standard deviations were calculated for each material. Multiple comparison and Newman-Keuls tests discerned many differences among materials. All materials were found to meet the minimum specification requirements, except in terms of flexural strength for amalgam after 1 hour and the silver cermet at all time intervals.

  15. First-principles studies of electrical transport in nanoscale molecular junctions

    NASA Astrophysics Data System (ADS)

    Neaton, J. B.

    2008-03-01

    Understanding the conductance of individual molecular junctions is a forefront topic in theoretical nanoscience. The development of a general, efficient atomistic approach for treating an open system out of equilibrium with good accuracy, and then using it to inform experiment, is a significant open challenge in the field. Here I will describe studies where first-principles techniques, based on density functional theory (DFT) and beyond, are used to investigate some of the fundamental issues associated with single-molecule transport measurements. After a brief summary of previous work, a DFT-based scattering-state approach is presented and applied to H2 and amine-Au linked molecular junctions [1], two systems for which there exist reliable data [2]. Similar to most ab initio studies, we rely on a Landauer approach within DFT for junction conductance. Using this framework, which has proven relatively accurate for metallic point contacts, good agreement with experiment is obtained for the H2 conductance. For amine-Au linked junctions, however, the computed conductance is significantly larger than that measured,although structural trends are reproduced by the calculations. To explore this further, we draw on GW calculations of a prototypical metal-molecule contact, benzene on graphite, where interfacial polarization effects are found to drastically modify frontier orbital energies [3]. A physically motivated model self-energy correction is developed from our GW calculations,applied to the amine case, and shown to quantitatively explain the discrepancy with experiment. The importance of many-electron corrections beyond DFT for accurately computing molecular conductance and understanding experiments is thoroughly discussed. [1] S. Y. Quek et al., Nano Lett 7, 3482 (2007); K. H. Khoo et al., submitted (2007). [2] R. Smit et al., Nature 419, 906 (2002); L. Venkataraman et al., Nature 442 ,904 (2006). [3] J. B. Neaton et al., Phys. Rev. Lett. 97, 216405 (2006).

  16. OSA Proceedings on Ultrafast Electronics and Optoelectronics Held in San Francisco, California on January 25 -27, 1993. Volume 14,

    DTIC Science & Technology

    1993-01-27

    Venkatesan, Zhi- Yuan Shen, Philip Pang, Dennis J. Kountz, and William L Holstein Response of a Nb/A1203/Nb Tunnel Junction to Picosecond Electrical Pulses...Mwhra (edo) 0 1993 Optical Sockty ofAnierica 152 Ultrafast Electronics and Optoelectronics core cladding COW MAD 75. 4UHN 1058nm 50Ps A A optical...Maryland. College Park; Maryland 20742 7hi-Yuan Shen, Philip Pang, Dennis J. Kountz, and William L. Holstein Central Research and Development, Du Pont, PO

  17. Synthesis of highly monodisperse particles composed of a magnetic core and fluorescent shell.

    PubMed

    Nagao, Daisuke; Yokoyama, Mikio; Yamauchi, Noriko; Matsumoto, Hideki; Kobayashi, Yoshio; Konno, Mikio

    2008-09-02

    Highly monodisperse particles composed of a magnetic silica core and fluorescent polymer shell were synthesized with a combined technique of heterocoagulation and soap-free emulsion polymerization. Prior to heterocoagulation, monodisperse, submicrometer-sized silica particles were prepared with the Stober method, and magnetic nanoparticles were prepared with a modified Massart method in which a cationic silane coupling agent of N-trimethoxysilylpropyl- N, N, N-trimethylammonium chloride was added just after coprecipitation of Fe (2+) and Fe (3+). The silica particles with negative surface potential were heterocoagulated with the magnetic nanoparticles with positive surface potential. The magnetic silica particles obtained with the heterocoagulation were treated with sodium silicate to modify their surfaces with silica. In the formation of a fluorescent polymer shell onto the silica-coated magnetic silica cores, an amphoteric initiator of 2,2'-azobis[ N-(2-carboxyethyl)-2-2-methylpropionamidine] (VA-057) was used to control the colloidal stability of the magnetic cores during the polymer coating. The polymerization of St in the presence of a hydrophobic fluorophore of pyrene could coat the cores with fluorescent polymer shells, resulting in monodisperse particles with a magnetic silica core and fluorescent polymer shell. Measurements of zeta potential for the composite particles in different pH values indicated that the composite particles had an amphoteric property originating from VA-057 initiator.

  18. Latex modified Portland cement overlays : an analysis of samples removed from a bridge deck.

    DOT National Transportation Integrated Search

    1975-01-01

    This report describes an evaluation of the latex modified mortar overlay the Route 85 (NBL) bridge over the Roanoke River. While the performance of the overlay has been generally satisfactory, corings and chloride analyses indicate the possibility of...

  19. Core/shell-type nanorods of Tb3+-doped LaPO4, modified with amine groups, revealing reduced cytotoxicity

    NASA Astrophysics Data System (ADS)

    Runowski, Marcin; Dąbrowska, Krystyna; Grzyb, Tomasz; Miernikiewicz, Paulina; Lis, Stefan

    2013-11-01

    A simple co-precipitation reaction between Ln3+ cations (Ln = lanthanide) and phosphate ions in the presence of polyethylene glycol (PEG), including post-treatment under hydrothermal conditions, leads to the formation of Tb3+-doped LaPO4 crystalline nanorods. The nanoparticles obtained can be successfully coated with amorphous and porous silica, forming core/shell-type nanorods. Both products reveal intensive green luminescence under UV lamp irradiation. The surface of the core/shell-type product can also be modified with -NH2 groups via silylation procedure, using 3-aminopropyltriethoxysilane as a modifier. Powder X-ray diffraction, transmission electron microscopy, and scanning electron microscopy confirm the desired structure and needle-like shape of the products synthesized. Fourier transform infrared spectroscopy and specific surface area measurements by Brunauer-Emmett-Teller method reveal a successful surface modification with amine groups of the core/shell-type nanoparticles prepared. The nanomaterials synthesized exhibit green luminescence characteristic of Tb3+ ions, as solid powders and aqueous colloids, examined by spectrofluorometry. The in vitro cytotoxicity studies reveal different degree toxicity of the products. LaPO4:Tb3+@SiO2@NH2 exhibits the smallest toxicity against B16F0 mouse melanoma cancer cells and human skin microvascular endothelial cell lines, in contrast to the most toxic LaPO4:Tb3+@SiO2.

  20. Core/shell-type nanorods of Tb3+-doped LaPO4, modified with amine groups, revealing reduced cytotoxicity.

    PubMed

    Runowski, Marcin; Dąbrowska, Krystyna; Grzyb, Tomasz; Miernikiewicz, Paulina; Lis, Stefan

    2013-01-01

    A simple co-precipitation reaction between Ln 3+ cations (Ln = lanthanide) and phosphate ions in the presence of polyethylene glycol (PEG), including post-treatment under hydrothermal conditions, leads to the formation of Tb 3+ -doped LaPO 4 crystalline nanorods. The nanoparticles obtained can be successfully coated with amorphous and porous silica, forming core/shell-type nanorods. Both products reveal intensive green luminescence under UV lamp irradiation. The surface of the core/shell-type product can also be modified with -NH 2 groups via silylation procedure, using 3-aminopropyltriethoxysilane as a modifier. Powder X-ray diffraction, transmission electron microscopy, and scanning electron microscopy confirm the desired structure and needle-like shape of the products synthesized. Fourier transform infrared spectroscopy and specific surface area measurements by Brunauer-Emmett-Teller method reveal a successful surface modification with amine groups of the core/shell-type nanoparticles prepared. The nanomaterials synthesized exhibit green luminescence characteristic of Tb 3+ ions, as solid powders and aqueous colloids, examined by spectrofluorometry. The in vitro cytotoxicity studies reveal different degree toxicity of the products. LaPO 4 :Tb 3+ @SiO 2 @NH 2 exhibits the smallest toxicity against B16F0 mouse melanoma cancer cells and human skin microvascular endothelial cell lines, in contrast to the most toxic LaPO 4 :Tb 3+ @SiO 2 .

  1. Catching the electron in action in real space inside a Ge-Si core-shell nanowire transistor.

    PubMed

    Jaishi, Meghnath; Pati, Ranjit

    2017-09-21

    Catching the electron in action in real space inside a semiconductor Ge-Si core-shell nanowire field effect transistor (FET), which has been demonstrated (J. Xiang, W. Lu, Y. Hu, Y. Wu, H. Yan and C. M. Lieber, Nature, 2006, 441, 489) to outperform the state-of-the-art metal oxide semiconductor FET, is central to gaining unfathomable access into the origin of its functionality. Here, using a quantum transport approach that does not make any assumptions on electronic structure, charge, and potential profile of the device, we unravel the most probable tunneling pathway for electrons in a Ge-Si core-shell nanowire FET with orbital level spatial resolution, which demonstrates gate bias induced decoupling of electron transport between the core and the shell region. Our calculation yields excellent transistor characteristics as noticed in the experiment. Upon increasing the gate bias beyond a threshold value, we observe a rapid drop in drain current resulting in a gate bias driven negative differential resistance behavior and switching in the sign of trans-conductance. We attribute this anomalous behavior in drain current to the gate bias induced modification of the carrier transport pathway from the Ge core to the Si shell region of the nanowire channel. A new experiment involving a four probe junction is proposed to confirm our prediction on gate bias induced decoupling.

  2. Unexpected electronic perturbation effects of simple PEG environments on the optical properties of small cadmium chalcogenide clusters

    NASA Astrophysics Data System (ADS)

    Fukunaga, Naoto; Konishi, Katsuaki

    2015-12-01

    Poly(ethylene glycol) (PEG) has been widely used for the surface protection of inorganic nanoobjects because of its virtually `inert' nature, but little attention has been paid to its inherent electronic impacts on inorganic cores. Herein, we definitively show, through studies on optical properties of a series of PEG-modified Cd10Se4(SR)10 clusters, that the surrounding PEG environments can electronically affect the properties of the inorganic core. For the clusters with PEG units directly attached to an inorganic core (R = (CH2CH2O)nOCH3, 1-PEGn, n = 3, ~7, ~17, ~46), the absorption bands, associated with the low-energy transitions, continuously blue-shifted with the increasing PEG chain length. The chain length dependencies were also observed in the photoluminescence properties, particularly in the excitation spectral profiles. By combining the spectral features of several PEG17-modified clusters (2-Cm-PEG17 and 3) whose PEG and core units are separated by various alkyl chain-based spacers, it was demonstrated that sufficiently long PEG units, including PEG17 and PEG46, cause electronic perturbations in the cluster properties when they are arranged near the inorganic core. These unique effects of the long-PEG environments could be correlated with their large dipole moments, suggesting that the polarity of the proximal chemical environment is critical when affecting the electronic properties of the inorganic cluster core.Poly(ethylene glycol) (PEG) has been widely used for the surface protection of inorganic nanoobjects because of its virtually `inert' nature, but little attention has been paid to its inherent electronic impacts on inorganic cores. Herein, we definitively show, through studies on optical properties of a series of PEG-modified Cd10Se4(SR)10 clusters, that the surrounding PEG environments can electronically affect the properties of the inorganic core. For the clusters with PEG units directly attached to an inorganic core (R = (CH2CH2O)nOCH3, 1-PEGn, n = 3, ~7, ~17, ~46), the absorption bands, associated with the low-energy transitions, continuously blue-shifted with the increasing PEG chain length. The chain length dependencies were also observed in the photoluminescence properties, particularly in the excitation spectral profiles. By combining the spectral features of several PEG17-modified clusters (2-Cm-PEG17 and 3) whose PEG and core units are separated by various alkyl chain-based spacers, it was demonstrated that sufficiently long PEG units, including PEG17 and PEG46, cause electronic perturbations in the cluster properties when they are arranged near the inorganic core. These unique effects of the long-PEG environments could be correlated with their large dipole moments, suggesting that the polarity of the proximal chemical environment is critical when affecting the electronic properties of the inorganic cluster core. Electronic supplementary information (ESI) available: Details of synthetic procedures and characterisation data of the PEGylated thiols and clusters and additional absorption, photoluminescence emission and excitation spectral data. See DOI: 10.1039/c5nr06307h

  3. Single molecule junction conductance and binding geometry

    NASA Astrophysics Data System (ADS)

    Kamenetska, Maria

    This Thesis addresses the fundamental problem of controlling transport through a metal-organic interface by studying electronic and mechanical properties of single organic molecule-metal junctions. Using a Scanning Tunneling Microscope (STM) we image, probe energy-level alignment and perform STM-based break junction (BJ) measurements on molecules bound to a gold surface. Using Scanning Tunneling Microscope-based break-junction (STM-BJ) techniques, we explore the effect of binding geometry on single-molecule conductance by varying the structure of the molecules, metal-molecule binding chemistry and by applying sub-nanometer manipulation control to the junction. These experiments are performed both in ambient conditions and in ultra high vacuum (UHV) at cryogenic temperatures. First, using STM imaging and scanning tunneling spectroscopy (STS) measurements we explore binding configurations and electronic properties of an amine-terminated benzene derivative on gold. We find that details of metal-molecule binding affect energy-level alignment at the interface. Next, using the STM-BJ technique, we form and rupture metal-molecule-metal junctions ˜104 times to obtain conductance-vs-extension curves and extract most likely conductance values for each molecule. With these measurements, we demonstrated that the control of junction conductance is possible through a choice of metal-molecule binding chemistry and sub-nanometer positioning. First, we show that molecules terminated with amines, sulfides and phosphines bind selectively on gold and therefore demonstrate constant conductance levels even as the junction is elongated and the metal-molecule attachment point is modified. Such well-defined conductance is also obtained with paracyclophane molecules which bind to gold directly through the pi system. Next, we are able to create metal-molecule-metal junctions with more than one reproducible conductance signatures that can be accessed by changing junction geometry. In the case of pyridine-linked molecules, conductance can be reliably switched between two distinct conductance states using sub-nanometer mechanical manipulation. Using a methyl sulfide linker attached to an oligoene backbone, we are able to create a 3-nm-long molecular potentiometer, whose resistance can be tuned exponentially with Angstom-scale modulations in metal-molecule configuration. These experiments points to a new paradigm for attaining reproducible electrical characteristics of metal-organic devices which involves controlling linker-metal chemistry rather than fabricating identically structured metal-molecule interfaces. By choosing a linker group which is either insensitive to or responds reproducibly to changes in metal-molecule configuration, one can design single molecule devices with functionality more complex than a simple resistor. These ambient temperature experiments were combined with UHV conductance measurements performed in a commercial STM on amine-terminated benzene derivatives which conduct through a non-resonant tunneling mechanism, at temperatures varying from 5 to 300 Kelvin. Our results indicate that while amine-gold binding remains selective irrespective of environment, conductance is not temperature independent, in contrast to what is expected for a tunneling mechanism. Furthermore, using temperature-dependent measurements in ambient conditions we find that HOMO-conducting amines and LUMO-conducting pyridines show opposite dependence of conductance on temperature. These results indicate that energy-level alignment between the molecule and the electrodes changes as a result of varying electrode structure at different temperatures. We find that temperature can serve as a knob with which to tune transport properties of single molecule-metal junctions.

  4. Biopharmaceutical evaluation of time-controlled press-coated tablets containing polymers to adjust drug release.

    PubMed

    Halsas, M; Ervasti, P; Veski, P; Jürjenson, H; Marvola, M

    1998-01-01

    This paper deals with press-coated modified release tablets in which the drug dose is situated in the core or is divided between the core and the coat. The coat contains polymer (sodium alginate or hydroxypropylmethyl cellulose, HPMC) to control drug release. The main objective was to investigate how the pharmacokinetic profile of the model drug could be modified by altering the proportion of the drug between the core and the coat. The effect of the amount of the polymer in the coat was also studied. Bioavailability tests were carried out on healthy volunteers. In the absorption curves of the tablets containing 50%, 67% and 80% of the drug in the core and 180 mg HPMC in the coat a bimodal profile was observed. No bimodal release pattern in the in vitro dissolution studies was found. If the whole dose was incorporated in the core the absorption curve has only one clear t(max) value at about 10 h. Doubling the amount of HPMC in the coat dramatically decreased drug absorption. It was concluded that, if a slightly reduced t(max)-value was required, the viscosity grade of HPMC used should be lowered.

  5. Literacy Instruction in the Wake of Common Core State Standards

    ERIC Educational Resources Information Center

    Barrett-Mynes, Jennifer

    2013-01-01

    As teachers modify their instruction to meet English Language Arts (ELA) Common Core State Standards (CCSS), how do these modifications influence literacy instruction and learning opportunities afforded to students? While the CCSS standardized objectives for literacy instruction, the enacted curriculum is uniquely shaped by teachers and their…

  6. Power flattening on modified CANDLE small long life gas-cooled fast reactor

    NASA Astrophysics Data System (ADS)

    Monado, Fiber; Su'ud, Zaki; Waris, Abdul; Basar, Khairul; Ariani, Menik; Sekimoto, Hiroshi

    2014-09-01

    Gas-cooled Fast Reactor (GFR) is one of the candidates of next generation Nuclear Power Plants (NPPs) that expected to be operated commercially after 2030. In this research conceptual design study of long life 350 MWt GFR with natural uranium metallic fuel as fuel cycle input has been performed. Modified CANDLE burn-up strategy with first and second regions located near the last region (type B) has been applied. This reactor can be operated for 10 years without refuelling and fuel shuffling. Power peaking reduction is conducted by arranging the core radial direction into three regions with respectively uses fuel volume fraction 62.5%, 64% and 67.5%. The average power density in the modified core is about 82 Watt/cc and the power peaking factor decreased from 4.03 to 3.43.

  7. Critical current and linewidth reduction in spin-torque nano-oscillators by delayed self-injection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khalsa, Guru, E-mail: guru.khalsa@nist.gov; Stiles, M. D.; Grollier, J.

    2015-06-15

    Based on theoretical models, the dynamics of spin-torque nano-oscillators can be substantially modified by re-injecting the emitted signal to the input of the oscillator after some delay. Numerical simulations for vortex magnetic tunnel junctions show that with reasonable parameters this approach can decrease critical currents as much as 25% and linewidths by a factor of 4. Analytical calculations, which agree well with simulations, demonstrate that these results can be generalized to any kind of spin-torque oscillator.

  8. Oxide nanoelectronics on demand.

    PubMed

    Cen, Cheng; Thiel, Stefan; Mannhart, Jochen; Levy, Jeremy

    2009-02-20

    Electronic confinement at nanoscale dimensions remains a central means of science and technology. We demonstrate nanoscale lateral confinement of a quasi-two-dimensional electron gas at a lanthanum aluminate-strontium titanate interface. Control of this confinement using an atomic force microscope lithography technique enabled us to create tunnel junctions and field-effect transistors with characteristic dimensions as small as 2 nanometers. These electronic devices can be modified or erased without the need for complex lithographic procedures. Our on-demand nanoelectronics fabrication platform has the potential for widespread technological application.

  9. Work function and temperature dependence of electron tunneling through an N-type perylene diimide molecular junction with isocyanide surface linkers.

    PubMed

    Smith, Christopher E; Xie, Zuoti; Bâldea, Ioan; Frisbie, C Daniel

    2018-01-18

    Conducting probe atomic force microscopy (CP-AFM) was employed to examine electron tunneling in self-assembled monolayer (SAM) junctions. A 2.3 nm long perylene tetracarboxylic acid diimide (PDI) acceptor molecule equipped with isocyanide linker groups was synthesized, adsorbed onto Ag, Au and Pt substrates, and the current-voltage (I-V) properties were measured by CP-AFM. The dependence of the low-bias resistance (R) on contact work function indicates that transport is LUMO-assisted ('n-type behavior'). A single-level tunneling model combined with transition voltage spectroscopy (TVS) was employed to analyze the experimental I-V curves and to extract the effective LUMO position ε l = E LUMO - E F and the effective electronic coupling (Γ) between the PDI redox core and the contacts. This analysis revealed a strong Fermi level (E F ) pinning effect in all the junctions, likely due to interface dipoles that significantly increased with increasing contact work function, as revealed by scanning Kelvin probe microscopy (SKPM). Furthermore, the temperature (T) dependence of R was found to be substantial. For Pt/Pt junctions, R varied more than two orders of magnitude in the range 248 K < T < 338 K. Importantly, the R(T) data are consistent with a single step electron tunneling mechanism and allow independent determination of ε l , giving values compatible with estimates of ε l based on analysis of the full I-V data. Theoretical analysis revealed a general criterion to unambiguously rule out a two-step transport mechanism: namely, if measured resistance data exhibit a pronounced Arrhenius-type temperature dependence, a two-step electron transfer scenario should be excluded in cases where the activation energy depends on contact metallurgy. Overall, our results indicate (1) the generality of the Fermi level pinning phenomenon in molecular junctions, (2) the utility of employing the single level tunneling model for determining essential electronic structure parameters (ε l and Γ), and (3) the importance of changing the nature of the contacts to verify transport mechanisms.

  10. Scribble is required for normal epithelial cell–cell contacts and lumen morphogenesis in the mammalian lung

    PubMed Central

    Yates, Laura L.; Schnatwinkel, Carsten; Hazelwood, Lee; Chessum, Lauren; Paudyal, Anju; Hilton, Helen; Romero, M. Rosario; Wilde, Jonathan; Bogani, Debora; Sanderson, Jeremy; Formstone, Caroline; Murdoch, Jennifer N.; Niswander, Lee A.; Greenfield, Andy; Dean, Charlotte H.

    2013-01-01

    During lung development, proper epithelial cell arrangements are critical for the formation of an arborized network of tubes. Each tube requires a lumen, the diameter of which must be tightly regulated to enable optimal lung function. Lung branching and lumen morphogenesis require close epithelial cell–cell contacts that are maintained as a result of adherens junctions, tight junctions and by intact apical–basal (A/B) polarity. However, the molecular mechanisms that maintain epithelial cohesion and lumen diameter in the mammalian lung are unknown. Here we show that Scribble, a protein implicated in planar cell polarity (PCP) signalling, is necessary for normal lung morphogenesis. Lungs of the Scrib mouse mutant Circletail (Crc) are abnormally shaped with fewer airways, and these airways often lack a visible, ‘open’ lumen. Mechanistically we show that Scrib genetically interacts with the core PCP gene Vangl2 in the developing lung and that the distribution of PCP pathway proteins and Rho mediated cytoskeletal modification is perturbed in ScribCrc/Crc lungs. However A/B polarity, which is disrupted in Drosophila Scrib mutants, is largely unaffected. Notably, we find that Scrib mediates functions not attributed to other PCP proteins in the lung. Specifically, Scrib localises to both adherens and tight junctions of lung epithelia and knockdown of Scrib in lung explants and organotypic cultures leads to reduced cohesion of lung epithelial cells. Live imaging of Scrib knockdown lungs shows that Scrib does not affect bud bifurcation, as previously shown for the PCP protein Celsr1, but is required to maintain epithelial cohesion. To understand the mechanism leading to reduced cell–cell association, we show that Scrib associates with β-catenin in embryonic lung and the sub-cellular distribution of adherens and tight junction proteins is perturbed in mutant lung epithelia. Our data reveal that Scrib is required for normal lung epithelial organisation and lumen morphogenesis by maintaining cell–cell contacts. Thus we reveal novel and important roles for Scrib in lung development operating via the PCP pathway, and in regulating junctional complexes and cell cohesion. PMID:23195221

  11. The importance of data collection for timely and accurate risk assessment

    NASA Astrophysics Data System (ADS)

    Gilsenan, MB

    2017-09-01

    The European Food Safety Authority (EFSA) is responsible for food safety risk assessments at EU level. It provides independent scientific advice on risks associated with the food chain to support EU risk management decisions. Since its establishment, EFSA has amassed a wealth of data to underpin its risk assessments, such as food consumption data, monitoring data and experimental data. Increasing transparency of its risk assessments is a core objective of EFSA. EFSA aims to enhance the quality and transparency of its outputs by giving insofar as possible access to data and methods underpinning its scientific outputs. This paper provides an overview of the role of EFSA, its core data collections and their regulatory framework, as well as data quality and standardisation aspects. Finally, the paper elaborates on EFSA’s 2020 strategy in relation to data, and describes EFSA scientific data warehouse and Knowledge Junction in this regard.

  12. Analysis of self-heating of thermally assisted spin-transfer torque magnetic random access memory

    DOE PAGES

    Deschenes, Austin; Muneer, Sadid; Akbulut, Mustafa; ...

    2016-11-11

    Thermal assistance has been shown to significantly reduce the required operation power for spin torque transfer magnetic random access memory (STT-MRAM). Proposed heating methods include modified material stack compositions that result in increased self-heating or external heat sources. Here, we analyze the self-heating process of a standard perpendicular magnetic anisotropy STT-MRAM device through numerical simulations in order to understand the relative contributions of Joule, thermoelectric Peltier and Thomson, and tunneling junction heating. A 2D rotationally symmetric numerical model is used to solve the coupled electro-thermal equations including thermoelectric effects and heat absorbed or released at the tunneling junction. We comparemore » self-heating for different common passivation materials, positive and negative electrical current polarity, and different device thermal anchoring and boundaries resistance configurations. The variations considered are found to result in significant differences in maximum temperatures reached. Average increases of 3 K, 10 K, and 100 K for different passivation materials, positive and negative polarity, and different thermal anchoring configurations, respectively, are observed. Furthermore, the highest temperatures, up to 424 K, are obtained for silicon dioxide as the passivation material, positive polarity, and low thermal anchoring with thermal boundary resistance configurations. Interestingly it is also found that due to the tunneling heat, Peltier effect, device geometry, and numerous interfacial layers around the magnetic tunnel junction (MTJ), most of the heat is dissipated on the lower potential side of the magnetic junction. We have observed this asymmetry in heating and is important as thermally assisted switching requires heating of the free layer specifically and this will be significantly different for the two polarity operations, set and reset.« less

  13. A concept of wireless and passive very-high temperature sensor

    NASA Astrophysics Data System (ADS)

    Nicolay, P.; Matloub, R.; Bardong, J.; Mazzalai, A.; Muralt, P.

    2017-05-01

    There is a need for sensors capable operating at temperatures above 1000 °C. We describe an innovative sensor that might achieve this goal. The sensor comprises two main elements: a thermocouple and a surface acoustic wave (SAW) strain sensor. The cold junction of the thermocouple is electrically connected to a highly piezoelectric thin layer, deposited on top of a SAW substrate. In operation, the voltage generated by the temperature gradient between the hot (>1000 °C) and cold junction (<350 °C) generates a strain field in the layer, which is mechanically transmitted to the substrate. This modifies the SAW propagation conditions and therefore the sensors' radiofrequency response. The change depends on the applied voltage and thus on the hot junction temperature. As SAW devices are passive elements that can be remotely interrogated, it becomes possible to infer the hot junction temperature from the radiofrequency response, i.e., to remotely read temperatures above 1000 °C, without embedded electronics. In this paper, we demonstrate the feasibility of this concept, using AlN layers deposited on Y-Z Lithium Niobate (LN). The achieved sensitivity of 80 Hz/V at 400 MHz is constant over a wide voltage range. Numerical simulations were performed to compute the main properties of the demonstrators and suggest optimization strategies. Improvements are expected from the use of stronger piezoelectric layers, such as AlScN or Pb(Ti,Zr)O3 (PZT), which could increase the sensitivity by factors of 3 and 20, as estimated from their transverse piezoelectric coefficients. As a first step in this direction, thin PZT layers have been deposited on Y-Z LN.

  14. Structural and thermodynamic analysis of modified nucleosides in self-assembled DNA cross-tiles.

    PubMed

    Hakker, Lauren; Marchi, Alexandria N; Harris, Kimberly A; LaBean, Thomas H; Agris, Paul F

    2014-01-01

    DNA Holliday junctions are important natural strand-exchange structures that form during homologous recombination. Immobile four-arm junctions, analogs to Holliday junctions, have been designed to self-assemble into cross-tile structures by maximizing Watson-Crick base pairing and fixed crossover points. The cross-tiles, self-assembled from base pair recognition between designed single-stranded DNAs, form higher order lattice structures through cohesion of self-associating sticky ends. These cross-tiles have 16 unpaired nucleosides in the central loop at the junction of the four duplex stems. The importance of the centralized unpaired nucleosides to the structure's thermodynamic stability and self-assembly is unknown. Cross-tile DNA nanostructures were designed and constructed from nine single-stranded DNAs with four shell strands, four arms, and a central loop containing 16 unpaired bases. The 16 unpaired bases were either 2'-deoxyribothymidines, 2'-O-methylribouridines, or abasic 1',2'-dideoxyribonucleosides. Thermodynamic profiles and structural base-stacking contributions were assessed using UV absorption spectroscopy during thermal denaturation and circular dichroism spectroscopy, respectively, and the resulting structures were observed by atomic force microscopy. There were surprisingly significant changes in the thermodynamic and structural properties of lattice formation as a result of altering only the 16 unpaired, centralized nucleosides. The 16 unpaired 2'-O-methyluridines were stabilizing and produced uniform tubular structures. In contrast, the abasic nucleosides were destabilizing producing a mixture of structures. These results strongly indicate the importance of a small number of centrally located unpaired nucleosides within the structures. Since minor modifications lead to palpable changes in lattice formation, DNA cross-tiles present an easily manipulated structure convenient for applications in biomedical and biosensing devices.

  15. Microstructural features of carious human enamel imaged with back-scattered electrons.

    PubMed

    Pearce, E I; Nelson, D G

    1989-02-01

    We have used back-scattered electrons (BE) in the scanning electron microscope to produce mineral density images of enamel. Flat surfaces of artificially-carious enamel, softened in an intra-oral experiment, and naturally-carious (white spot) enamel were polished to a high gloss with diamond lapping compound, rendering them almost featureless by secondary electron scanning electron microscopy. They were then examined at 10 to 30 kV in a Philips 505 instrument fitted with a 4-quadrant BE detector. Study of surfaces prepared approximately parallel to the natural surface showed that mineral was lost from both prism core and the interprismatic region, leaving a thin mineral-rich rim at the prism periphery. The same lesions viewed longitudinally on a surface prepared perpendicular to the natural surface showed mineral-rich bands at the prism margins in the outer enamel. Near the advancing front of the lesion, the prism junctions were widened and the prism cores sometimes hypermineralized. Natural lesions sectioned in the prism long axis showed features previously seen with other techniques, e.g., cross-striations and striae of Retzius, but in much greater detail. Mineral enrichment at the prism periphery in the lesion body and a widening of the prism junction at the advancing fronts of lesions in permanent teeth were most obvious. Calculations showed that with an accelerating voltage of 30 kV, the images reflected mineral density up to 4 microns beneath the surface. BE microscopy produces a high-resolution image of mineral loss or gain in carious enamel, with relatively easy sample preparation.

  16. Prognosis in adenocarcinomas of lower oesophagus, gastro-oesophageal junction and cardia evaluated by uPAR-immunohistochemistry.

    PubMed

    Laerum, Ole Didrik; Ovrebo, Kjell; Skarstein, Arne; Christensen, Ib Jarle; Alpízar-Alpízar, Warner; Helgeland, Lars; Danø, Keld; Nielsen, Boye Schnack; Illemann, Martin

    2012-08-01

    Adenocarcinomas of lower oesophagus, gastro-oesophageal junction and cardia in humans are highly invasive tumours with poor prognosis. The localisation of urokinase-type plasminogen activator receptor (uPAR) was determined in 66 patients; 60 with adenocarcinomas and six cases with Barrett's oesophagus. uPAR was expressed in nearly all cases of invasive adenocarcinomas by populations of cancer cells, macrophages and myofibroblasts at both the invasion front and the tumour core. In areas with high-grade dysplasia or with Barrett's metaplasia adjacent to the tumour tissue, no uPAR-immunoreactivity was found. High local expression of uPAR, therefore, appears to be a characteristic marker for invasive behaviour in this tumour, suggesting that uPAR's contribution to matrix degradation during invasive growth is a late event in carcinogenesis. Using a scoring system for semiquantitative estimation of uPAR-positivity on immmunohistochemically stained specimens, a significant association was found between poor overall survival and high uPAR-score for cancer cells in the tumour core and for macrophages peripherally at the tumour invasion zone. In multivariate analysis, these two uPAR-scores were confirmed as highly significant prognostic parameters independent of Tumour, Node, Metastasis (TNM)-stage and World Health Organization (WHO) classification. The proteolytic action of these malignant and nonmalignant accessory cells thus seemed to follow two main patterns: one dominated by uPAR positive cancer cells and one by uPAR-positive macrophages. Scoring of uPAR-positivity might be a useful parameter for onset of invasion and prognosis in these adenocarcinomas. Copyright © 2011 UICC.

  17. Crew Member Interface with Space Station Furnace Facility

    NASA Technical Reports Server (NTRS)

    Cash, Martha B.

    1997-01-01

    The Space Station Furnace Facility (SSFF) is a facility located in the International Space Station United States Laboratory (ISS US Lab) for materials research in the microgravity environment. The SSFF will accommodate basic research, commercial applications, and studies of phenomena of metals and alloys, electronic and photonic materials, and glasses and ceramics. To support this broad base of research requirements, the SSFF will operate, regulate, and support a variety of Experiment Modules (EMs). To meet station requirements concerning the microgravity level needed for experiments, station is providing an active vibration isolation system, and SSFF provides the interface. SSFF physically consists of a Core Rack and two instrument racks (IRs) that occupy three adjacent ISS US Lab rack locations within the International Space Station (ISS). All SSFF racks are modified International Standard Payload Racks (ISPR). SSFF racks will have a 50% larger pass through area on the lower sides than ISPRs to accommodate the many rack to rack interconnections. The Instrument Racks are further modified with lowered floors and an additional removable panel (15" x 22") on top of the rack for access if needed. The Core Rack shall contain all centralized Core subsystems and ISS subsystem equipment. The two Instrument Racks shall contain the distributed Core subsystem equipment, ISS subsystem equipment, and the EMs. The Core System, which includes the Core Rack, the IR structures, and subsystem components located in the IRs serves as the central control and management for the IRs and the EMs. The Core System receives the resources provided by the International Space Station (ISS) and modifies, allocates, and distributes these resources to meet the operational requirements of the furnace. The Core System is able to support a total of four EMs and can control, support, and activate/deactivate the operations of two EMs, simultaneously. The IRs can be configured to house two small EMs or one tall vertical EM, and serve as the interface between the Core and the respective EM. The Core Rack and an adjacent Instrument Rack (containing one or more furnaces) will be delivered to the ISS in one launch. This is Integrated Configuration One (ICI). The Core Rack and IRI will be passive during transport in the Mini Pressurized Logistics Module (MPLM): Any subsequent EMs to operate within IRI are installed on-orbit. The second IR (containing one or more furnaces) is delivered to ISS on a subsequent launch which will establish Integrated Configuration Two (IC2). Additional integrated configurations will be established with the replacement of EMs or Instrument Racks.

  18. Glutamatergic postsynaptic block by Pamphobeteus spider venoms in crayfish.

    PubMed

    Araque, A; Ferreira, W; Lucas, S; Buño, W

    1992-01-31

    The effects of toxins from venom glands of two south american spiders (Pamphobeteus platyomma and P. soracabae) on glutamatergic excitatory synaptic transmission were studied in the neuromuscular junction of the opener muscle of crayfish. The toxins selectively and reversibly blocked both excitatory postsynaptic currents and potentials in a dose-dependent manner. They also reversibly abolished glutamate-induced postsynaptic membrane depolarization. They had no effect on resting postsynaptic membrane conductance nor on postsynaptic voltage-gated currents. The synaptic facilitation and the frequency of miniature postsynaptic potentials were unaffected by the toxins, indicating that presynaptic events were not modified. Picrotoxin, a selective antagonist of the gamma-aminobutyric acid (GABA)A receptor, did not modify toxin effects. We conclude that both toxins specifically block the postsynaptic glutamate receptor-channel complex.

  19. ACFIS: a web server for fragment-based drug discovery

    PubMed Central

    Hao, Ge-Fei; Jiang, Wen; Ye, Yuan-Nong; Wu, Feng-Xu; Zhu, Xiao-Lei; Guo, Feng-Biao; Yang, Guang-Fu

    2016-01-01

    In order to foster innovation and improve the effectiveness of drug discovery, there is a considerable interest in exploring unknown ‘chemical space’ to identify new bioactive compounds with novel and diverse scaffolds. Hence, fragment-based drug discovery (FBDD) was developed rapidly due to its advanced expansive search for ‘chemical space’, which can lead to a higher hit rate and ligand efficiency (LE). However, computational screening of fragments is always hampered by the promiscuous binding model. In this study, we developed a new web server Auto Core Fragment in silico Screening (ACFIS). It includes three computational modules, PARA_GEN, CORE_GEN and CAND_GEN. ACFIS can generate core fragment structure from the active molecule using fragment deconstruction analysis and perform in silico screening by growing fragments to the junction of core fragment structure. An integrated energy calculation rapidly identifies which fragments fit the binding site of a protein. We constructed a simple interface to enable users to view top-ranking molecules in 2D and the binding mode in 3D for further experimental exploration. This makes the ACFIS a highly valuable tool for drug discovery. The ACFIS web server is free and open to all users at http://chemyang.ccnu.edu.cn/ccb/server/ACFIS/. PMID:27150808

  20. ACFIS: a web server for fragment-based drug discovery.

    PubMed

    Hao, Ge-Fei; Jiang, Wen; Ye, Yuan-Nong; Wu, Feng-Xu; Zhu, Xiao-Lei; Guo, Feng-Biao; Yang, Guang-Fu

    2016-07-08

    In order to foster innovation and improve the effectiveness of drug discovery, there is a considerable interest in exploring unknown 'chemical space' to identify new bioactive compounds with novel and diverse scaffolds. Hence, fragment-based drug discovery (FBDD) was developed rapidly due to its advanced expansive search for 'chemical space', which can lead to a higher hit rate and ligand efficiency (LE). However, computational screening of fragments is always hampered by the promiscuous binding model. In this study, we developed a new web server Auto Core Fragment in silico Screening (ACFIS). It includes three computational modules, PARA_GEN, CORE_GEN and CAND_GEN. ACFIS can generate core fragment structure from the active molecule using fragment deconstruction analysis and perform in silico screening by growing fragments to the junction of core fragment structure. An integrated energy calculation rapidly identifies which fragments fit the binding site of a protein. We constructed a simple interface to enable users to view top-ranking molecules in 2D and the binding mode in 3D for further experimental exploration. This makes the ACFIS a highly valuable tool for drug discovery. The ACFIS web server is free and open to all users at http://chemyang.ccnu.edu.cn/ccb/server/ACFIS/. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  1. Perpendicular magnetic tunnel junction with a strained Mn-based nanolayer

    PubMed Central

    Suzuki, K. Z.; Ranjbar, R.; Okabayashi, J.; Miura, Y.; Sugihara, A.; Tsuchiura, H.; Mizukami, S.

    2016-01-01

    A magnetic tunnel junction with a perpendicular magnetic easy-axis (p-MTJ) is a key device for spintronic non-volatile magnetoresistive random access memory (MRAM). Co-Fe-B alloy-based p-MTJs are being developed, although they have a large magnetisation and medium perpendicular magnetic anisotropy (PMA), which make it difficult to apply them to a future dense MRAM. Here, we demonstrate a p-MTJ with an epitaxially strained MnGa nanolayer grown on a unique CoGa buffer material, which exhibits a large PMA of more than 5 Merg/cm3 and magnetisation below 500 emu/cm3; these properties are sufficient for application to advanced MRAM. Although the experimental tunnel magnetoresistance (TMR) ratio is still low, first principles calculations confirm that the strain-induced crystal lattice distortion modifies the band dispersion along the tetragonal c-axis into the fully spin-polarised state; thus, a huge TMR effect can be generated in this p-MTJ. PMID:27457186

  2. Plasmon transmutation: inducing new modes in nanoclusters by adding dielectric nanoparticles.

    PubMed

    Wen, Fangfang; Ye, Jian; Liu, Na; Van Dorpe, Pol; Nordlander, Peter; Halas, Naomi J

    2012-09-12

    Planar clusters of coupled plasmonic nanoparticles support nanoscale electromagnetic "hot spots" and coherent effects, such as Fano resonances, with unique near and far field signatures, currently of prime interest for sensing applications. Here we show that plasmonic cluster properties can be substantially modified by the addition of individual, discrete dielectric nanoparticles at specific locations on the cluster, introducing new plasmon modes, or transmuting existing plasmon modes to new ones, in the resulting metallodielectric nanocomplex. Depositing a single carbon nanoparticle in the junction between a pair of adjacent nanodisks induces a metal-dielectric-metal quadrupolar plasmon mode. In a ten-membered cluster, placement of several carbon nanoparticles in junctions between multiple adjacent nanoparticles introduces a collective magnetic plasmon mode into the Fano dip, giving rise to an additional subradiant mode in the metallodielectric nanocluster response. These examples illustrate that adding dielectric nanoparticles to metallic nanoclusters expands the number and types of plasmon modes supported by these new mixed-media nanoscale assemblies.

  3. Report on Project to Characterize Multi-Junction Solar Cells in the Stratosphere using Low-Cost Balloon and Communication Technologies

    NASA Technical Reports Server (NTRS)

    Mirza, Ali; Sant, David; Woodyard, James R.; Johnston, Richard R.; Brown, William J.

    2002-01-01

    Balloon, control and communication technologies are under development in our laboratory for testing multi-junction solar cells in the stratosphere to achieve near AM0 conditions. One flight, Suntracker I, has been carried out reported earlier. We report on our efforts in preparation for a second flight, Suntracker II, that was aborted due to hardware problems. The package for Suntracker I system has been modified to include separate electronics and battery packs for the 70 centimeter and 2 meter systems. The collimator control system and motor gearboxes have been redesigned to address problems with the virtual stops and backlash. Surface mount technology on a printed circuit board was used in place of the through-hole prototype circuit in efforts to reduce weight and size, and improve reliability. A mobile base station has been constructed that includes a 35' tower with a two axis rotator and multi-element yagi antennas. Modifications in Suntracker I and the factors that lead to aborting Suntracker II are discussed.

  4. Three-dimensional turbulent near-wall flows in streamwise corners: Current state and questions

    NASA Astrophysics Data System (ADS)

    Kornilov, V. I.

    2017-10-01

    Current advances in experimental and computational studies of three-dimensional (3-D) near-wall turbulent flows in streamwise corners (SC) including the boundary-layer transition are reviewed. The focus is the structure, properties and main regularities of such flows in a wide range of variable conditions and basic parameters. A variety of different kinds of near-wall streamwise corner flows is displayed. Analysis of approaches for modeling of the near-wall corner flow in laboratory experiment is given. The problem of simulation of such flows where some ambiguities remain is discussed. The main factors on the structure of the flow in streamwise corners are analyzed. Also, the effectiveness of flow control by streamwise vortices in the junction regions of aerodynamic surfaces is shown. Finally, some important properties of the modified near-wall turbulent corner flows which have been revealed experimentally, in particular, for the flow near the wing/body junction (WBJ), can be used as an attractive alternative for real applications.

  5. Grain Refinement Kinetics in a Low Alloyed Cu–Cr–Zr Alloy Subjected to Large Strain Deformation

    PubMed Central

    Morozova, Anna; Borodin, Elijah; Bratov, Vladimir; Zherebtsov, Sergey; Kaibyshev, Rustam

    2017-01-01

    This paper investigates the microstructural evolution and grain refinement kinetics of a solution-treated Cu–0.1Cr–0.06Zr alloy during equal channel angular pressing (ECAP) at a temperature of 673 K via route BC. The microstructural change during plastic deformation was accompanied by the formation of the microband and an increase in the misorientations of strain-induced subboundaries. We argue that continuous dynamic recrystallization refined the initially coarse grains, and discuss the dynamic recrystallization kinetics in terms of grain/subgrain boundary triple junction evolution. A modified Johnson–Mehl–Avrami–Kolmogorov relationship with a strain exponent of about 1.49 is used to express the strain dependence of the triple junctions of high-angle boundaries. Severe plastic deformation by ECAP led to substantial strengthening of the Cu–0.1Cr–0.06Zr alloy. The yield strength increased from 60 MPa in the initial state to 445 MPa after a total strain level of 12. PMID:29210990

  6. Segregation and inhomogeneities in photorefractive SBN fibers

    NASA Astrophysics Data System (ADS)

    Erdei, Sandor; Galambos, Ludwig; Tanaka, Isao; Hesselink, Lambertus; Ainger, Frank W.; Cross, Leslie E.; Feigelson, Robert S.

    1996-10-01

    Ce doped and undoped SrxBa1-xNb2O6 (SBN) fibers grown by the laser heated pedestal growth (LHPG) technique in Stanford University were investigated by 2D scanning electron microprobe analysis. The SBN fibers grown along c [001] or a [100] axes often show radially distributed optical inhomogeneities (core effects) of varying magnitude. Ba enrichment and Sr reduction were primarily detected in the core which can be qualitatively described by a complex-segregation effect. This defect structure as a complex-congruency related phenomenon modified by the composition-control mechanism of LHPG system. Its radial dependence of effective segregation coefficient is described by the modified Burton-Prim- Slichter equation.

  7. Anatomical Society core regional anatomy syllabus for undergraduate medicine: the Delphi process.

    PubMed

    Smith, C F; Finn, G M; Stewart, J; McHanwell, S

    2016-01-01

    A modified Delphi method was employed to seek consensus when revising the UK and Ireland's core syllabus for regional anatomy in undergraduate medicine. A Delphi panel was constructed involving 'expert' (individuals with at least 5 years' experience in teaching medical students anatomy at the level required for graduation). The panel (n = 39) was selected and nominated by members of Council and/or the Education Committee of the Anatomical Society and included a range of specialists including surgeons, radiologists and anatomists. The experts were asked in two stages to 'accept', 'reject' or 'modify' (first stage only) each learning outcome. A third stage, which was not part of the Delphi method, then allowed the original authors of the syllabus to make changes either to correct any anatomical errors or to make minor syntax changes. From the original syllabus of 182 learning outcomes, removing the neuroanatomy component (163), 23 learning outcomes (15%) remained unchanged, seven learning outcomes were removed and two new learning outcomes added. The remaining 133 learning outcomes were modified. All learning outcomes on the new core syllabus achieved over 90% acceptance by the panel. © 2015 Anatomical Society.

  8. Evolutionary divergence of core and post-translational circadian clock genes in the pitcher-plant mosquito, Wyeomyia smithii.

    PubMed

    Tormey, Duncan; Colbourne, John K; Mockaitis, Keithanne; Choi, Jeong-Hyeon; Lopez, Jacqueline; Burkhart, Joshua; Bradshaw, William; Holzapfel, Christina

    2015-10-06

    Internal circadian (circa, about; dies, day) clocks enable organisms to maintain adaptive timing of their daily behavioral activities and physiological functions. Eukaryotic clocks consist of core transcription-translation feedback loops that generate a cycle and post-translational modifiers that maintain that cycle at about 24 h. We use the pitcher-plant mosquito, Wyeomyia smithii (subfamily Culicini, tribe Sabethini), to test whether evolutionary divergence of the circadian clock genes in this species, relative to other insects, has involved primarily genes in the core feedback loops or the post-translational modifiers. Heretofore, there is no reference transcriptome or genome sequence for any mosquito in the tribe Sabethini, which includes over 375 mainly circumtropical species. We sequenced, assembled and annotated the transcriptome of W. smithii containing nearly 95 % of conserved single-copy orthologs in animal genomes. We used the translated contigs and singletons to determine the average rates of circadian clock-gene divergence in W. smithii relative to three other mosquito genera, to Drosophila, to the butterfly, Danaus, and to the wasp, Nasonia. Over 1.08 million cDNA sequence reads were obtained consisting of 432.5 million nucleotides. Their assembly produced 25,904 contigs and 54,418 singletons of which 62 % and 28 % are annotated as protein-coding genes, respectively, sharing homology with other animal proteomes. The W. smithii transcriptome includes all nine circadian transcription-translation feedback-loop genes and all eight post-translational modifier genes we sought to identify (Fig. 1). After aligning translated W. smithii contigs and singletons from this transcriptome with other insects, we determined that there was no significant difference in the average divergence of W. smithii from the six other taxa between the core feedback-loop genes and post-translational modifiers. The characterized transcriptome is sufficiently complete and of sufficient quality to have uncovered all of the insect circadian clock genes we sought to identify (Fig. 1). Relative divergence does not differ between core feedback-loop genes and post-translational modifiers of those genes in a Sabethine species (W. smithii) that has experienced a continual northward dispersal into temperate regions of progressively longer summer day lengths as compared with six other insect taxa. An associated microarray platform derived from this work will enable the investigation of functional genomics of circadian rhythmicity, photoperiodic time measurement, and diapause along a photic and seasonal geographic gradient.

  9. Midterm Clinical Outcomes after Modified High Ligation and Segmental Stripping of Incompetent Small Saphenous Veins

    PubMed Central

    Hong, Ki Pyo

    2015-01-01

    Background The aim of this study was to evaluate the midterm clinical outcomes after modified high ligation and segmental stripping of small saphenous vein (SSV) varicosities. Methods Between January 2010 and March 2013, 62 patients (69 legs) with isolated primary small saphenous varicose veins were enrolled in this study. The outcomes measured were reflux in the remaining distal SSV, the recurrence of varicose veins, the improvement of preoperative symptoms, and the rate of postoperative complications. Results No major complications occurred. No instances of the recurrence of varicose veins at previous stripping sites were noted. Three legs (4.3%) showed reflux in the remaining distal small saphenous veins. The preoperative symptoms were found to have improved in 96.4% of the cases. Conclusion In the absence of flush ligation of the saphenopopliteal junction, modified high ligation and segmental stripping of small saphenous vein varicosities with preoperative duplex marking is an effective treatment method for reducing postoperative complications and the recurrence of SSV incompetence. PMID:26665106

  10. Optimization of Broadband Optical Response of Multilayer Nanospheres

    DTIC Science & Technology

    2012-07-27

    response of complex nanostructures,” Science 302, 419–422 (2003). 12. R. Bardhan , N. K. Grady, T. Ali, and N. J. Halas, “Metallic nanoshells with...semiconductor cores: Optical char- acteristics modified by core medium properties,” ACS Nano 4, 6169–6179 (2010). 13. R. Bardhan , S. Mukherjee, N. A. Mirin, S

  11. A modified carbothermal reduction method for preparation of high-performance nano-scale core/shell Cu 6Sn 5 alloy anodes in Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Cui, Wangjun; Wang, Fei; Wang, Jie; Liu, Haijing; Wang, Congxiao; Xia, Yongyao

    Core-shell structured, carbon-coated, nano-scale Cu 6Sn 5 has been prepared by a modified carbothermal reduction method using polymer coated mixed oxides of CuO and SnO 2 as precursors. On heat treatment, the mixture oxides were converted into Cu 6Sn 5 alloy by carbothermal reduction. Simultaneously, the remnants carbon was coated on the surface of the Cu 6Sn 5 particles to form a core-shell structure. Transmission electron microscope (TEM) images demonstrate that the well-coated carbon layer effectively prevents the encapsulated, low melting point alloy from out flowing in a high-temperature treatment process. Core-shell structured, carbon coated Cu 6Sn 5 delivers a reversible capacity of 420 mAh g -1 with capacity retention of 80% after 50 cycles. The improvement in the cycling ability can be attributed to the fact that the carbon-shell prevents aggregation and pulverization of nano-sized tin-based alloy particles during charge/discharge cycling.

  12. The Replacement of 10 Non-Conserved Residues in the Core Protein of JFH-1 Hepatitis C Virus Improves Its Assembly and Secretion

    PubMed Central

    Etienne, Loïc; Blanchard, Emmanuelle; Boyer, Audrey; Desvignes, Virginie; Gaillard, Julien; Meunier, Jean-Christophe; Roingeard, Philippe; Hourioux, Christophe

    2015-01-01

    Hepatitis C virus (HCV) assembly is still poorly understood. It is thought that trafficking of the HCV core protein to the lipid droplet (LD) surface is essential for its multimerization and association with newly synthesized HCV RNA to form the viral nucleocapsid. We carried out a mapping analysis of several complete HCV genomes of all genotypes, and found that the genotype 2 JFH-1 core protein contained 10 residues different from those of other genotypes. The replacement of these 10 residues of the JFH-1 strain sequence with the most conserved residues deduced from sequence alignments greatly increased virus production. Confocal microscopy of the modified JFH-1 strain in cell culture showed that the mutated JFH-1 core protein, C10M, was present mostly at the endoplasmic reticulum (ER) membrane, but not at the surface of the LDs, even though its trafficking to these organelles was possible. The non-structural 5A protein of HCV was also redirected to ER membranes and colocalized with the C10M core protein. Using a Semliki forest virus vector to overproduce core protein, we demonstrated that the C10M core protein was able to form HCV-like particles, unlike the native JFH-1 core protein. Thus, the substitution of a few selected residues in the JFH-1 core protein modified the subcellular distribution and assembly properties of the protein. These findings suggest that the early steps of HCV assembly occur at the ER membrane rather than at the LD surface. The C10M-JFH-1 strain will be a valuable tool for further studies of HCV morphogenesis. PMID:26339783

  13. Additive Effects of Rebamipide Plus Proton Pump Inhibitors on the Expression of Tight Junction Proteins in a Rat Model of Gastro-Esophageal Reflux Disease.

    PubMed

    Gweon, Tae-Geun; Park, Jong-Hyung; Kim, Byung-Wook; Choi, Yang Kyu; Kim, Joon Sung; Park, Sung Min; Kim, Chang Whan; Kim, Hyung-Gil; Chung, Jun-Won

    2018-01-15

    The aim of this study was to investigate the effects of rebamipide on tight junction proteins in the esophageal mucosa in a rat model of gastroesophageal reflux disease (GERD). GERD was created in rats by tying the proximal stomach. The rats were divided into a control group, a proton pump inhibitor (PPI) group, and a PPI plus rebamipide (PPI+R) group. Pantoprazole (5 mg/kg) was administered intraperitoneally to the PPI and PPI+R groups. An additional dose of rebamipide (100 mg/kg) was administered orally to the PPI+R group. Mucosal erosions, epithelial thickness, and leukocyte infiltration into the esophageal mucosa were measured in isolated esophagi 14 days after the procedure. A Western blot analysis was conducted to measure the expression of claudin-1, -3, and -4. The mean surface area of mucosal erosions, epithelial thickness, and leukocyte infiltration were lower in the PPI group and the PPI+R group than in the control group. Western blot analysis revealed that the expression of claudin-3 and -4 was significantly higher in the PPI+R group than in the control group. Rebamipide may exert an additive effect in combination with PPI to modify the tight junction proteins of the esophageal mucosa in a rat model of GERD. This treatment might be associated with the relief of GERD symptoms.

  14. Origin of Photovoltage Enhancement via Interfacial Modification with Silver Nanoparticles Embedded in an a-SiC:H p-Type Layer in a-Si:H Solar Cells.

    PubMed

    Li, Tiantian; Zhang, Qixing; Ni, Jian; Huang, Qian; Zhang, Dekun; Li, Baozhang; Wei, Changchun; Yan, Baojie; Zhao, Ying; Zhang, Xiaodan

    2017-03-29

    We used silver nanoparticles (Ag-NPs) embedded in the p-type semiconductor layer of hydrogenated amorphous silicon (a-Si:H) solar cells in the Schottky barrier contact design to modify the interface between aluminum-doped ZnO (ZnO:Al, AZO) and p-type hydrogenated amorphous silicon carbide (p-a-SiC:H) without plasmonic absorption. The high work function of the Ag-NPs provided a good channel for the transport of photogenerated holes. A p-type nanocrystalline SiC:H layer was used to compensate for the real surface defects and voids on the surface of Ag-NPs to reduce recombination at the AZO/p-type layer interface, which then enhanced the photovoltage of single-junction a-Si:H solar cells to values as high as 1.01 V. The Ag-NPs were around 10 nm in diameter and thermally stable in the p-type a-SiC:H film at the solar-cell process temperature. We will also show that a wide range of photovoltages between 1.01 and 2.89 V could be obtained with single-, double-, and triple-junction solar cells based on the single-junction a-Si:H solar cells with tunable high photovoltage. These solar cells are suitable photocathodes for solar water-splitting applications.

  15. Drosophila Symplekin localizes dynamically to the histone locus body and tricellular junctions.

    PubMed

    Tatomer, Deirdre C; Rizzardi, Lindsay F; Curry, Kaitlin P; Witkowski, Alison M; Marzluff, William F; Duronio, Robert J

    2014-01-01

    The scaffolding protein Symplekin is part of multiple complexes involved in generating and modifying the 3' end of mRNAs, including cleavage-polyadenylation, histone pre-mRNA processing and cytoplasmic polyadenylation. To study these functions in vivo, we examined the localization of Symplekin during development and generated mutations of the Drosophila Symplekin gene. Mutations in Symplekin that reduce Symplekin protein levels alter the efficiency of both poly A(+) and histone mRNA 3' end formation resulting in lethality or sterility. Histone mRNA synthesis takes place at the histone locus body (HLB) and requires a complex composed of Symplekin and several polyadenylation factors that associates with the U7 snRNP. Symplekin is present in the HLB in the early embryo when Cyclin E/Cdk2 is active and histone genes are expressed and is absent from the HLB in cells that have exited the cell cycle. During oogenesis, Symplekin is preferentially localized to HLBs during S-phase in endoreduplicating follicle cells when histone mRNA is synthesized. After the completion of endoreplication, Symplekin accumulates in the cytoplasm, in addition to the nucleoplasm, and localizes to tricellular junctions of the follicle cell epithelium. This localization depends on the RNA binding protein ypsilon schachtel. CPSF-73 and a number of mRNAs are localized at this same site, suggesting that Symplekin participates in cytoplasmic polyadenylation at tricellular junctions.

  16. Synthesis of cis- and trans-α-l-[4.3.0]bicyclo-DNA monomers for antisense technology: methods for the diastereoselective formation of bicyclic nucleosides.

    PubMed

    Hanessian, Stephen; Schroeder, Benjamin R; Merner, Bradley L; Chen, Bin; Swayze, Eric E; Seth, Punit P

    2013-09-20

    Two α-L-ribo-configured bicyclic nucleic acid modifications, represented by analogues 12 and 13, which are epimeric at C3' and C5' have been synthesized using a carbohydrate-based approach to build the bicyclic core structure. An intramolecular L-proline-mediated aldol reaction was employed to generate the cis-configured ring junction of analogue 12 and represents a rare application of this venerable organocatalytic reaction to a carbohydrate system. In the case of analogue 13, where a trans-ring junction was desired, an intermolecular diastereoselective Grignard reaction followed by ring-closing metathesis was used. In order to set the desired stereochemistry at the C5' positions of both nucleoside targets, a study of diastereoselective Lewis acid mediated allylation reactions on a common bicyclic aldehyde precursor was carried out. Analogue 12 was incorporated in oligonucleotide sequences, and thermal denaturation experiments indicate that it is destabilizing when paired with complementary DNA and RNA. However, this construct shows a significant improvement in nuclease stability relative to a DNA oligonucleotide.

  17. Semiconductor quantum dot super-emitters: spontaneous emission enhancement combined with suppression of defect environment using metal-oxide plasmonic metafilms

    NASA Astrophysics Data System (ADS)

    Sadeghi, Seyed M.; Wing, Waylin J.; Gutha, Rithvik R.; Sharp, Christina

    2018-01-01

    We demonstrate that a metal-oxide plasmonic metafilm consisting of a Si/Al oxide junction in the vicinity of a thin gold layer can quarantine excitons in colloidal semiconductor quantum dots against their defect environments. This process happens while the plasmon fields of the gold layer enhance spontaneous emission decay rates of the quantum dots. We study the emission dynamics of such quantum dots when the distance between the Si/Al oxide junction and the gold thin layer is varied. The results show that for distances less than a critical value the lifetime of the quantum dots can be elongated while they experience intense plasmon fields. This suggests that the metal-oxide metafilm can keep photo-excited electrons in the cores of the quantum dots, suppressing their migration to the surface defect sites. This leads to suppression of Auger recombination, offering quantum dot super-emitters with emission that is enhanced not only by the plasmon fields (Purcell effect), but also by strong suppression of the non-radiative decay caused by the defect sites.

  18. A reversible single-molecule switch based on activated antiaromaticity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yin, Xiaodong; Zang, Yaping; Zhu, Liangliang

    Single-molecule electronic devices provide researchers with an unprecedented ability to relate novel physical phenomena to molecular chemical structures. Typically, conjugated aromatic molecular backbones are relied upon to create electronic devices, where the aromaticity of the building blocks is used to enhance conductivity. We capitalize on the classical physical organic chemistry concept of Hückel antiaromaticity by demonstrating a single-molecule switch that exhibits low conductance in the neutral state and, upon electrochemical oxidation, reversibly switches to an antiaromatic high-conducting structure. We form single-molecule devices using the scanning tunneling microscope–based break-junction technique and observe an on/off ratio of ~70 for a thiophenylidene derivativemore » that switches to an antiaromatic state with 6-4-6-p electrons. Through supporting nuclear magnetic resonance measurements, we show that the doubly oxidized core has antiaromatic character and we use density functional theory calculations to rationalize the origin of the high-conductance state for the oxidized single-molecule junction. Together, our work demonstrates how the concept of antiaromaticity can be exploited to create single-molecule devices that are highly conducting.« less

  19. A reversible single-molecule switch based on activated antiaromaticity

    DOE PAGES

    Yin, Xiaodong; Zang, Yaping; Zhu, Liangliang; ...

    2017-10-27

    Single-molecule electronic devices provide researchers with an unprecedented ability to relate novel physical phenomena to molecular chemical structures. Typically, conjugated aromatic molecular backbones are relied upon to create electronic devices, where the aromaticity of the building blocks is used to enhance conductivity. We capitalize on the classical physical organic chemistry concept of Hückel antiaromaticity by demonstrating a single-molecule switch that exhibits low conductance in the neutral state and, upon electrochemical oxidation, reversibly switches to an antiaromatic high-conducting structure. We form single-molecule devices using the scanning tunneling microscope–based break-junction technique and observe an on/off ratio of ~70 for a thiophenylidene derivativemore » that switches to an antiaromatic state with 6-4-6-p electrons. Through supporting nuclear magnetic resonance measurements, we show that the doubly oxidized core has antiaromatic character and we use density functional theory calculations to rationalize the origin of the high-conductance state for the oxidized single-molecule junction. Together, our work demonstrates how the concept of antiaromaticity can be exploited to create single-molecule devices that are highly conducting.« less

  20. Clustering and negative feedback by endocytosis in planar cell polarity signaling is modulated by ubiquitinylation of prickle.

    PubMed

    Cho, Bomsoo; Pierre-Louis, Gandhy; Sagner, Andreas; Eaton, Suzanne; Axelrod, Jeffrey D

    2015-05-01

    The core components of the planar cell polarity (PCP) signaling system, including both transmembrane and peripheral membrane associated proteins, form asymmetric complexes that bridge apical intercellular junctions. While these can assemble in either orientation, coordinated cell polarization requires the enrichment of complexes of a given orientation at specific junctions. This might occur by both positive and negative feedback between oppositely oriented complexes, and requires the peripheral membrane associated PCP components. However, the molecular mechanisms underlying feedback are not understood. We find that the E3 ubiquitin ligase complex Cullin1(Cul1)/SkpA/Supernumerary limbs(Slimb) regulates the stability of one of the peripheral membrane components, Prickle (Pk). Excess Pk disrupts PCP feedback and prevents asymmetry. We show that Pk participates in negative feedback by mediating internalization of PCP complexes containing the transmembrane components Van Gogh (Vang) and Flamingo (Fmi), and that internalization is activated by oppositely oriented complexes within clusters. Pk also participates in positive feedback through an unknown mechanism promoting clustering. Our results therefore identify a molecular mechanism underlying generation of asymmetry in PCP signaling.

  1. Gap Junctional Coupling in Lenses from α8 Connexin Knockout Mice

    PubMed Central

    Baldo, George J.; Gong, Xiaohua; Martinez-Wittinghan, Francisco J.; Kumar, Nalin M.; Gilula, Norton B.; Mathias, Richard T.

    2001-01-01

    Lens fiber cell gap junctions contain α3 (Cx46) and α8 (Cx50) connexins. To examine the roles of the two different connexins in lens physiology, we have genetically engineered mice lacking either α3 or α8 connexin. Intracellular impedance studies of these lenses were used to measure junctional conductance and its sensitivity to intracellular pH. In Gong et al. 1998, we described results from α3 connexin knockout lenses. Here, we present original data from α8 connexin knockout lenses and a comparison with the previous results. The lens has two functionally distinct domains of fiber cell coupling. In wild-type mouse lenses, the outer shell of differentiating fibers (see 1, DF) has an average coupling conductance per area of cell–cell contact of ∼1 S/cm2, which falls to near zero when the cytoplasm is acidified. In the inner core of mature fibers (see 1, MF), the average coupling conductance is ∼0.4 S/cm2, and is insensitive to acidification of the cytoplasm. Both connexin isoforms appear to contribute about equally in the DF since the coupling conductance for either heterozygous knockout (+/−) was ∼70% of normal and 30–40% of the normal for both −/− lenses. However, their contribution to the MF was different. About 50% of the normal coupling conductance was found in the MF of α3 +/− lenses. In contrast, the coupling of MF in the α8 +/− lenses was the same as normal. Moreover, no coupling was detected in the MF of α3 −/− lenses. Together, these results suggest that α3 connexin alone is responsible for coupling MF. The pH- sensitive gating of DF junctions was about the same in wild-type and α3 connexin −/− lenses. However, in α8 −/− lenses, the pure α3 connexin junctions did not gate closed in the response to acidification. Since α3 connexin contributes about half the coupling conductance in DF of wild-type lenses, and that conductance goes to zero when the cytoplasmic pH drops, it appears α8 connexin regulates the gating of α3 connexin. Both connexins are clearly important to lens physiology as lenses null for either connexin lose transparency. Gap junctions in the MF survive for the lifetime of the organism without protein turnover. It appears that α3 connexin provides the long-term communication in MF. Gap junctions in DF may be physiologically regulated since they are capable of gating when the cytoplasm is acidified. It appears α8 connexin is required for gating in DF. PMID:11696604

  2. Ensuring the relocatability of programs in the operational system DOS YeS

    NASA Technical Reports Server (NTRS)

    Novoseltsev, S. K.; Orlov, I. G.; Chesalin, A. S.

    1979-01-01

    Specific modifications in the Disk Operational System Unified Series to insure the relocatability of programs stored permanently in the core image library is described. A self-relocating method for loading programs into the working memory with re-editing all the programs recorded in the core image library is presented. The modified linkage editor can be included in a relocation dictionary containing data about each address constant at the assembly stage at the request of the programmer. The relocation dictionary increases the dimension of the RL-phase in comparison with the dimension of this same phase when edited by the standard method, making possible the creation of multiphase program complexes. Generation and use of the modified system using Assembly language is described. An example of the use of the system is given, and limitations of the use of the relocatable programs in the modified system are outlined.

  3. Polarisation effects in twin-core fibre: Application for mode locking in a fibre laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lobach, I A; Kablukov, S I; Podivilov, Evgenii V

    2012-09-30

    We report the first measurements of the longitudinal power distribution in a twin-core optical fibre at different input light polarisations. Experimental evidence is presented that, because of the difference in birefringence between the cores, the power in them depends on which core the beam is launched into. Experimental data are interpreted in terms of a modified polarisation model for mode coupling in twin-core fibres which takes into account the birefringence of the cores. In addition, we demonstrate for the first time the use of the polarisation properties of a twincore fibre for mode locking in a fibre laser. (optical fibres,more » lasers and amplifiers. properties and applications)« less

  4. Glucuronylated core 1 glycans are required for precise localization of neuromuscular junctions and normal formation of basement membranes on Drosophila muscles.

    PubMed

    Itoh, Kazuyoshi; Akimoto, Yoshihiro; Kondo, Shu; Ichimiya, Tomomi; Aoki, Kazuhiro; Tiemeyer, Michael; Nishihara, Shoko

    2018-04-15

    T antigen (Galβ1-3GalNAcα1-Ser/Thr) is an evolutionary-conserved mucin-type core 1 glycan structure in animals synthesized by core 1 β1,3-galactosyltransferase 1 (C1GalT1). Previous studies showed that T antigen produced by Drosophila C1GalT1 (dC1GalT1) was expressed in various tissues and dC1GalT1 loss in larvae led to various defects, including decreased number of circulating hemocytes, hyper-differentiation of hematopoietic stem cells in lymph glands, malformation of the central nervous system, mislocalization of neuromuscular junction (NMJ) boutons, and ultrastructural abnormalities in NMJs and muscle cells. Although glucuronylated T antigen (GlcAβ1-3Galβ1-3GalNAcα1-Ser/Thr) has been identified in Drosophila, the physiological function of this structure has not yet been clarified. In this study, for the first time, we unraveled biological roles of glucuronylated T antigen. Our data show that in Drosophila, glucuronylation of T antigen is predominantly carried out by Drosophila β1,3-glucuronyltransferase-P (dGlcAT-P). We created dGlcAT-P null mutants and found that mutant larvae showed lower expression of glucuronylated T antigen on the muscles and at NMJs. Furthermore, mislocalization of NMJ boutons and a partial loss of the basement membrane components collagen IV (Col IV) and nidogen (Ndg) at the muscle 6/7 boundary were observed. Those two phenotypes were correlated and identical to previously described phenotypes in dC1GalT1 mutant larvae. In addition, dGlcAT-P null mutants exhibited fewer NMJ branches on muscles 6/7. Moreover, ultrastructural analysis revealed that basement membranes that lacked Col IV and Ndg were significantly deformed. We also found that the loss of dGlcAT-P expression caused ultrastructural defects in NMJ boutons. Finally, we showed a genetic interaction between dGlcAT-P and dC1GalT1. Therefore, these results demonstrate that glucuronylated core 1 glycans synthesized by dGlcAT-P are key modulators of NMJ bouton localization, basement membrane formation, and NMJ arborization on larval muscles. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. A case report of a TPS dental implant rigidly connected to a natural tooth: 19-year follow-up.

    PubMed

    Quaranta, Alessandro; Poli, Ottavia; Vozza, Iole

    2013-01-01

    A partial edentulous area was restored with a tooth to implant fixed partial denture and a rigid connection between the two elements. Maintenance recalls were performed over a 19-year period of observation on a yearly basis. THE FOLLOWING PARAMETERS WERE COLLECTED DURING EACH EXAMINATION OVER THE ENTIRE PERIOD OF OBSERVATION: PD around the implant and natural tooth abutment, gingival index, modified gingival index, plaque index, modified plaque index, occlusal assessment, marginal bone loss. Radiographic assessment of peri-implant bone remodeling was performed in a retrospective way. The following reference points were assessed on each image: fixture-abutment junction, threads, first contact of the crestal bone with the implant on both mesial and distal side. This made possible, with the known values for implant diameter and length, to make linear measurements of remaining peri-implant bone measured from the mesial and distal marginal bone levels and the fixture-abutment junction. The amount of bone change over the baseline to a 19 years follow-up observation time was calculated for both the implant and the natural tooth. Clinical parameters showed healthy values over the entire period of observation with slight isolated positive bleeding on probing. Bone remodeling values were constant over the entire period with slight higher values around the tooth. Peri-apical radiographs did not show any intrusion of the tooth. The present case report showed the complete functionality and stability of a tooth to implant rigidly connected FPD over a period of 19 years.

  6. A simulator study investigating how motorcyclists approach side-road hazards.

    PubMed

    Crundall, Elizabeth; Stedmon, Alex W; Saikayasit, Rossukorn; Crundall, David

    2013-03-01

    The most common form of motorcycle collision in the UK occurs when another road user fails to give way and pulls out from a side road in front of an oncoming motorcyclist. While research has considered these collisions from the car driver's perspective, no research to date has addressed how motorcyclists approach these potential hazards. This study conducted a detailed analysis of motorcyclist speed and road position on approach to side-roads in a simulated suburban setting. Novice, Experienced and Advanced riders rode two laps of a simulated route, encountering five side-roads on each lap. On the second lap, a car emerged from the first side-road in a typical 'looked but failed to see' accident scenario. Three Experienced riders and one Novice rider collided with the hazard. The Advanced rider group adopted the safest strategy when approaching side-roads, with a lane position closer to the centre of the road and slower speeds. In contrast, Experienced riders chose faster speeds, often over the speed limit, especially when approaching junctions with good visibility. Rider behaviour at non-hazard junctions was compared between laps, to investigate if riders modified their behaviour after experiencing the hazard. Whilst all riders were generally more cautious after the hazard, the Advanced riders modified their behaviour more than the other groups after the hazard vehicle had pulled out. The results suggest that advanced training can lead to safer riding styles that are not acquired by experience alone. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Tunable magnetic vortex resonance in a potential well

    NASA Astrophysics Data System (ADS)

    Warnicke, P.; Wohlhüter, P.; Suszka, A. K.; Stevenson, S. E.; Heyderman, L. J.; Raabe, J.

    2017-11-01

    We use frequency-resolved x-ray microscopy to fully characterize the potential well of a magnetic vortex in a soft ferromagnetic permalloy square. The vortex core is excited with magnetic broadband pulses and simultaneously displaced with a static magnetic field. We observe a frequency increase (blueshift) in the gyrotropic mode of the vortex core with increasing bias field. Supported by micromagnetic simulations, we show that this frequency increase is accompanied by internal deformation of the vortex core. The ability to modify the inner structure of the vortex core provides a mechanism to control the dynamics of magnetic vortices.

  8. Structural landscape of base pairs containing post-transcriptional modifications in RNA

    PubMed Central

    Seelam, Preethi P.; Sharma, Purshotam

    2017-01-01

    Base pairs involving post-transcriptionally modified nucleobases are believed to play important roles in a wide variety of functional RNAs. Here we present our attempts toward understanding the structural and functional role of naturally occurring modified base pairs using a combination of X-ray crystal structure database analysis, sequence analysis, and advanced quantum chemical methods. Our bioinformatics analysis reveals that despite their presence in all major secondary structural elements, modified base pairs are most prevalent in tRNA crystal structures and most commonly involve guanine or uridine modifications. Further, analysis of tRNA sequences reveals additional examples of modified base pairs at structurally conserved tRNA regions and highlights the conservation patterns of these base pairs in three domains of life. Comparison of structures and binding energies of modified base pairs with their unmodified counterparts, using quantum chemical methods, allowed us to classify the base modifications in terms of the nature of their electronic structure effects on base-pairing. Analysis of specific structural contexts of modified base pairs in RNA crystal structures revealed several interesting scenarios, including those at the tRNA:rRNA interface, antibiotic-binding sites on the ribosome, and the three-way junctions within tRNA. These scenarios, when analyzed in the context of available experimental data, allowed us to correlate the occurrence and strength of modified base pairs with their specific functional roles. Overall, our study highlights the structural importance of modified base pairs in RNA and points toward the need for greater appreciation of the role of modified bases and their interactions, in the context of many biological processes involving RNA. PMID:28341704

  9. Experimental results from the VENUS-F critical reference state for the GUINEVERE accelerator driven system project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Uyttenhove, W.; Baeten, P.; Ban, G.

    The GUINEVERE (Generation of Uninterrupted Intense Neutron pulses at the lead Venus Reactor) project was launched in 2006 within the framework of FP6 EUROTRANS in order to validate on-line reactivity monitoring and subcriticality level determination in Accelerator Driven Systems. Therefore the VENUS reactor at SCK.CEN in Mol (Belgium) was modified towards a fast core (VENUS-F) and coupled to the GENEPI-3C accelerator built by CNRS The accelerator can operate in both continuous and pulsed mode. The VENUS-F core is loaded with enriched Uranium and reflected with solid lead. A well-chosen critical reference state is indispensable for the validation of the on-linemore » subcriticality monitoring methodology. Moreover a benchmarking tool is required for nuclear data research and code validation. In this paper the design and the importance of the critical reference state for the GUINEVERE project are motivated. The results of the first experimental phase on the critical core are presented. The control rods worth is determined by the rod drop technique and the application of the Modified Source Multiplication (MSM) method allows the determination of the worth of the safety rods. The results are implemented in the VENUS-F core certificate for full exploitation of the critical core. (authors)« less

  10. Experimental results from the VENUS-F critical reference state for the GUINEVERE accelerator driven system project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Uyttenhove, W.; Baeten, P.; Kochetkov, A.

    The GUINEVERE (Generation of Uninterrupted Intense Neutron pulses at the lead Venus Reactor) project was launched in 2006 within the framework of FP6 EUROTRANS in order to validate online reactivity monitoring and subcriticality level determination in accelerator driven systems (ADS). Therefore, the VENUS reactor at SCK.CEN in Mol, Belgium, was modified towards a fast core (VENUS-F) and coupled to the GENEPI-3C accelerator built by CNRS. The accelerator can operate in both continuous and pulsed mode. The VENUS-F core is loaded with enriched Uranium and reflected with solid lead. A well-chosen critical reference state is indispensable for the validation of themore » online subcriticality monitoring methodology. Moreover, a benchmarking tool is required for nuclear data research and code validation. In this paper, the design and the importance of the critical reference state for the GUINEVERE project are motivated. The results of the first experimental phase on the critical core are presented. The control rods worth is determined by the positive period method and the application of the Modified Source Multiplication (MSM) method allows the determination of the worth of the safety rods. The results are implemented in the VENUS-F core certificate for full exploitation of the critical core. (authors)« less

  11. Comparative study of mechanical properties of direct core build-up materials

    PubMed Central

    Kumar, Girish; Shivrayan, Amit

    2015-01-01

    Background and Objectives: The strength greatly influences the selection of core material because core must withstand forces due to mastication and para-function for many years. This study was conducted to evaluate certain mechanical properties of commonly used materials for direct core build-up, including visible light cured composite, polyacid modified composite, resin modified glass ionomer, high copper amalgam, and silver cermet cement. Materials and Methods: All the materials were manipulated according to the manufacturer's recommendations and standard test specimens were prepared. A universal testing machine at different cross-head speed was used to determine all the four mechanical properties. Mean compressive strength, diametral tensile strength, flexural strength, and elastic modulus with standard deviations were calculated. Multiple comparisons of the materials were also done. Results: Considerable differences in compressive strength, diametral tensile strength, and flexural strength were observed. Visible light cured composite showed relatively high compressive strength, diametral tensile strength, and flexural strength compared with the other tested materials. Amalgam showed the highest value for elastic modulus. Silver cermet showed less value for all the properties except for elastic modulus. Conclusions: Strength is one of the most important criteria for selection of a core material. Stronger materials better resist deformation and fracture provide more equitable stress distribution, greater stability, and greater probability of clinical success. PMID:25684905

  12. Electrospun Blank Nanocoating for Improved Sustained Release Profiles from Medicated Gliadin Nanofibers

    PubMed Central

    Liu, Xinkuan; Shao, Wenyi; Luo, Mingyi; Bian, Jiayin

    2018-01-01

    Nanomaterials providing sustained release profiles are highly desired for efficacious drug delivery. Advanced nanotechnologies are useful tools for creating elaborate nanostructure-based nanomaterials to achieve the designed functional performances. In this research, a modified coaxial electrospinning was explored to fabricate a novel core-sheath nanostructure (nanofibers F2), in which a sheath drug-free gliadin layer was successfully coated on the core ketoprofen (KET)-gliadin nanocomposite. A monolithic nanocomposite (nanofibers F1) that was generated through traditional blending electrospinning of core fluid was utilized as a control. Scanning electron microscopy demonstrated that both nanofibers F1 and F2 were linear. Transmission electron microscopy verified that nanofibers F2 featured a clear core-sheath nanostructure with a thin sheath layer about 25 nm, whereas their cores and nanofibers F1 were homogeneous KET-gliadin nanocomposites. X-ray diffraction patterns verified that, as a result of fine compatibility, KET was dispersed in gliadin in an amorphous state. In vitro dissolution tests demonstrated that the thin blank nanocoating in nanofibers F2 significantly modified drug release kinetics from a traditional exponential equation of nanofibers F1 to a zero-order controlled release model, linearly freeing 95.7 ± 4.7% of the loaded cargoes over a time period of 16 h. PMID:29565280

  13. Electrospun Blank Nanocoating for Improved Sustained Release Profiles from Medicated Gliadin Nanofibers.

    PubMed

    Liu, Xinkuan; Shao, Wenyi; Luo, Mingyi; Bian, Jiayin; Yu, Deng-Guang

    2018-03-22

    Nanomaterials providing sustained release profiles are highly desired for efficacious drug delivery. Advanced nanotechnologies are useful tools for creating elaborate nanostructure-based nanomaterials to achieve the designed functional performances. In this research, a modified coaxial electrospinning was explored to fabricate a novel core-sheath nanostructure (nanofibers F2), in which a sheath drug-free gliadin layer was successfully coated on the core ketoprofen (KET)-gliadin nanocomposite. A monolithic nanocomposite (nanofibers F1) that was generated through traditional blending electrospinning of core fluid was utilized as a control. Scanning electron microscopy demonstrated that both nanofibers F1 and F2 were linear. Transmission electron microscopy verified that nanofibers F2 featured a clear core-sheath nanostructure with a thin sheath layer about 25 nm, whereas their cores and nanofibers F1 were homogeneous KET-gliadin nanocomposites. X-ray diffraction patterns verified that, as a result of fine compatibility, KET was dispersed in gliadin in an amorphous state. In vitro dissolution tests demonstrated that the thin blank nanocoating in nanofibers F2 significantly modified drug release kinetics from a traditional exponential equation of nanofibers F1 to a zero-order controlled release model, linearly freeing 95.7 ± 4.7% of the loaded cargoes over a time period of 16 h.

  14. Core outcome measures for interventions to prevent or slow the progress of dementia for people living with mild to moderate dementia: Systematic review and consensus recommendations

    PubMed Central

    Groskreutz, Derek; Grinbergs-Saull, Anna; Howard, Rob; O’Brien, John T.; Mountain, Gail; Woods, Bob; Perneczky, Robert; McCleery, Jenny; Pickett, James; Challis, David; Charlesworth, Georgina; Featherstone, Katie; Jones, Roy; Schneider, Justine; Shepperd, Sasha; Thompson-Coon, Jo; Ballard, Clive; Burns, Alistair; Garrard, Peter; Kehoe, Patrick; Passmore, Peter; Robinson, Louise

    2017-01-01

    Background There are no disease-modifying treatments for dementia. There is also no consensus on disease modifying outcomes. We aimed to produce the first evidence-based consensus on core outcome measures for trials of disease modification in mild-to-moderate dementia. Methods and findings We defined disease-modification interventions as those aiming to change the underlying pathology. We systematically searched electronic databases and previous systematic reviews for published and ongoing trials of disease-modifying treatments in mild-to-moderate dementia. We included 149/22,918 of the references found; with 81 outcome measures from 125 trials. Trials involved participants with Alzheimer’s disease (AD) alone (n = 111), or AD and mild cognitive impairment (n = 8) and three vascular dementia. We divided outcomes by the domain measured (cognition, activities of daily living, biological markers, neuropsychiatric symptoms, quality of life, global). We calculated the number of trials and of participants using each outcome. We detailed psychometric properties of each outcome. We sought the views of people living with dementia and family carers in three cities through Alzheimer’s society focus groups. Attendees at a consensus conference (experts in dementia research, disease-modification and harmonisation measures) decided on the core set of outcomes using these results. Recommended core outcomes were cognition as the fundamental deficit in dementia and to indicate disease modification, serial structural MRIs. Cognition should be measured by Mini Mental State Examination or Alzheimer's Disease Assessment Scale-Cognitive Subscale. MRIs would be optional for patients. We also made recommendations for measuring important, but non-core domains which may not change despite disease modification. Limitations Most trials were about AD. Specific instruments may be superseded. We searched one database for psychometric properties. Interpretation This is the first review to identify the 81 outcome measures the research community uses for disease-modifying trials in mild-to-moderate dementia. Our recommendations will facilitate designing, comparing and meta-analysing disease modification trials in mild-to-moderate dementia, increasing their value. Trial registration PROSPERO no. CRD42015027346. PMID:28662127

  15. Adjustment of Jacobs' formulation to the case of Mercury

    NASA Astrophysics Data System (ADS)

    Chiappini, M.; de Santis, A.

    1991-04-01

    Magnetic investigations play an important role in studies on the constitution of planetary interiors. One of these techniques (the so-called Jacobs' formulation), appropriately modified, has been applied to the case of Mercury. According to the results found, the planet, supposed to be divided internally as the earth (crust-mantle-core), would have a core/planet volume ratio of 28 percent, much greater than the earth's core percentage (16 percent). This result is in agreement with previous work which used other independent methods.

  16. Post-igneous redistribution of components in eucrites

    NASA Technical Reports Server (NTRS)

    Phinney, W. C.; Lindstrom, D. J.; Mittlefehldt, D. W.; Martinez, R. R.

    1993-01-01

    In our analyses, we utilize a microdrilling technique that removes 40 to 100 micron diameter cores from mineral grains in thin sections analyzed by microprobe. The cores are then analyzed by INAA using the technique of Lindstrom. Three eucrites were selected for application of this analytical technique: monomict breccias Pasamonte and Stannern and unbrecciated EET90020. Pasamonte is among the most unequilibrated of the eucrites on the basis of zoning in pyroxenes and is considered to be an igneous rock not significantly affected by metamorphism. Stannern has igneous texture but its pyroxenes indicate some re-equilibration, although little, if any, recrystallization. EET90020 has a granulite texture and has been substantially recrystallized. Our sample of Pasamonte contains several clasts of different grain sizes ranging from glass to fine grained with diabasic texture containing lathy plagioclase, unexsolved pigeonite, and mesostasis. Cores were taken of the glass and from minerals and mesostases in six lithic clasts which normally allowed sampling of more than one phase per clast. Our sample of Stannern is also a breccia but with little difference in grain size between clasts and matrix. The plagioclase and pigeonite are blocky, twinned, and exsolved and coexist with a bit of mesostasis. Cores were taken of plagioclase and pigeonite with no attempt to distinguish separate clasts. EET90020 is a granular mixture of twinned plagioclase and pigeonite having rather uniform size and many triple junctions. Several cores were taken of both phases. Both clear and cloudy grains of plagioclase and pyroxene were sampled in all three eucrites.

  17. Position-controlled MOVPE growth and electro-optical characterization of core-shell InGaN/GaN microrod LEDs

    NASA Astrophysics Data System (ADS)

    Schimpke, Tilman; Lugauer, H.-J.; Avramescu, A.; Varghese, T.; Koller, A.; Hartmann, J.; Ledig, J.; Waag, A.; Strassburg, M.

    2016-03-01

    Today's InGaN-based white LEDs still suffer from a significant efficiency reduction at elevated current densities, the so-called "Droop". Core-shell microrods, with quantum wells (QWs) covering their entire surface, enable a tremendous increase in active area scaling with the rod's aspect ratio. Enlarging the active area on a given footprint area is a viable and cost effective route to mitigate the droop by effectively reducing the local current density. Microrods were grown in a large volume metal-organic vapor phase epitaxy (MOVPE) reactor on GaN-on-sapphire substrates with a thin, patterned SiO2 mask for position control. Out of the mask openings, pencil-shaped n-doped GaN microrod cores were grown under conditions favoring 3D growth. In a second growth step, these cores are covered with a shell containing a quantum well and a p-n junction to form LED structures. The emission from the QWs on the different facets was studied using resonant temperature-dependent photoluminescence (PL) and cathodoluminescence (CL) measurements. The crystal quality of the structures was investigated by transmission electron microscopy (TEM) showing the absence of extended defects like threading dislocations in the 3D core. In order to fabricate LED chips, dedicated processes were developed to accommodate for the special requirements of the 3D geometry. The electrical and optical properties of ensembles of tens of thousands microrods connected in parallel are discussed.

  18. Modified rod-in-tube for high-NA tellurite glass fiber fabrication: materials and technologies.

    PubMed

    Chen, Qiuling; Wang, Hui; Wang, Qingwei; Chen, Qiuping; Hao, Yinlei

    2015-02-01

    In this paper, we report the whole fabrication process for high-numerical aperture (NA) tellurite glass fibers from material preparation to preform fabrication, and eventually, fiber drawing. A tellurite-based high-NA (0.9) magneto-optical glass fiber was drawn successfully and characterized. First, matchable core and cladding glasses were fabricated and matched in terms of physical properties. Second, a uniform bubble-free preform was fabricated by means of a modified rod-in-tube technique. Finally, the fiber drawing process was studied and optimized. The high-NA fibers (∅(core), 40-50 μm and ∅(cladding), 120-130 μm) so obtained were characterized for their geometrical and optical properties.

  19. The mechanism in junctional failure of thoraco-lumbar fusions. Part II: Analysis of a series of PJK after thoraco-lumbar fusion to determine parameters allowing to predict the risk of junctional breakdown.

    PubMed

    Faundez, Antonio A; Richards, Jonathon; Maxy, Philippe; Price, Rachel; Léglise, Amélie; Le Huec, Jean-Charles

    2018-02-01

    To identify risk factors, in 12 patients with junctional breakdown (JBD) after thoraco-sacral fusions and to test a software locating maximal bending moment on full spine EOS images. Twelve patients underwent long fusions for lumbar degenerative pathologies. Preop EOS images were compared to first postop EOS showing JBD. Parameters analyzed were: spinopelvic parameters [pelvic incidence (PI), pelvic tilt (PT), sacral slope (SS), sagittal vertical axis (SVA), spinosacral angle (SSA), lordosis, and kyphosis], proximal junctional angle (PJA), odontoid-hip axis angle (ODHA), and CIA. A new software estimated the location of maximum bending moment (M max ) before and after JBD. All patients except one had a JBD located between T10 and L1, diagnosed at average follow-up of 18.58 months. JBD was a fracture in six patients, severe adjacent disc degeneration in the remaining. Average PI was 52°. PT increased, SS decreased after JBD versus preop (p > 0.05). Average PJA was 34.5°. Global lordosis (GLL), upper lordosis (ULL), L4-S1 lordosis, and thoracic kyphosis (TK) were increased (p < 0.05). Lower lumbar lordosis (LLL), was not increased postJBD (p = 0.6). SVA, SSA, ODHA, and C7 slope were not modified (p > 0.05). CIA average value decreased by 7.5% after JBD. T1-T5 alignment was correlated to C7 slope before (R 2  = 0.77075) and after JBD (R 2  = 0.85409). ODHA decreased after JBD (p > 0.05). Most JBD occurred at or one level away from preoperative M max location. This study confirms the importance of harmonious distribution of lumbar (GLL, ULL, and ILL) and thoracic curves (TK, T1-T5 segment) in thoraco-sacral fusions. All patients showed an exaggerated ULL, resulting in a posterior shift and increased lever arm at the thoraco-lumbar junction, leading to JBD.

  20. An electrochemically-driven dual-mode display device with both reflective and emissive modes using poly(p-phenylenevinylene) derivatives

    NASA Astrophysics Data System (ADS)

    Tsuneyasu, Shota; Jin, Lu; Nakamura, Kazuki; Kobayashi, Norihisa

    2016-04-01

    We demonstrate a novel electrochemical dual-mode displaying (DMD) device, which enables control of both coloration and light emission using an electrochemical reaction. The coloration control of the DMD device was based on an electrochromic (EC) reaction, whereas the light emission of the device was caused by an electrochemiluminescence (ECL) mechanism. This novel DMD device consisted of a pair of facing conductive polymer-modified electrodes: comb-shaped interdigitated Au electrodes modified with poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] (MEH-PPV) layers and poly(2,3-dihydrothieno-1,4-dioxin)-poly(styrene sulfonate) (PEDOT/PSS) film-modified indium tin oxide (ITO) electrodes. When a bias voltage was applied between the PEDOT/PSS film-modified ITO electrode and the comb-shaped electrodes, a color change of the device was observed by the EC reaction of the MEH-PPV and PEDOT/PSS. On the other hand, an emission was obtained when the bias voltage was applied between two comb-shaped interdigitated electrodes. The orange emission was ascribed to the ECL reaction of the MEH-PPV layer, which resulted from the formation of a p-i-n junction in this layer.

  1. A comparison of the stability of beverage cloud emulsions formulated with different gum acacia- and starch-based emulsifiers.

    PubMed

    Reiner, S J; Reineccius, G A; Peppard, T L

    2010-06-01

    The performance of several hydrocolloids (3 gum acacias, 1 modified gum acacia, and 3 modified starches) in stabilizing beverage emulsions and corresponding model beverages was investigated employing different core materials, emulsifier usage levels, and storage temperatures. Concentrated emulsions were prepared using orange terpenes or Miglyol 812 (comprising medium-chain triglycerides, MCT) weighted 1:1 with ester gum, stored at 25 or 35 degrees C, and analyzed on days 0, 1, and 3. On day 3, model beverages were made from each emulsion, stored at both temperatures, and analyzed weekly for 4 wk. Stability of concentrated emulsions was assessed by measuring mean particle size and by visual observations of ringing; beverage stability was judged similarly and also by loss of turbidity. Particle size measurements showed concentrated emulsions containing gum acacia or modified gum acacia with either core material were stable over 3 d storage at both temperatures whereas those made with modified starches were not, destabilization being faster at 35 degrees C. Beverages based on orange terpenes, in contrast to Miglyol, yielded smaller mean particle sizes, both on manufacture and during storage, regardless of hydrocolloid used. Visual observations of ringing generally supported this finding. Modified gum acacia was evaluated at both recommended and higher usage levels, stability increasing in the latter case. In general, all gum acacia and modified gum acacia emulsifiers were superior in stability to those based on modified starches, at either temperature, for orange terpene-based beverages. In Miglyol-based beverages, similar results were seen, except 1 modified starch performed as well as the gum acacia products.

  2. Real-Time PCR-Based Quantitation Method for the Genetically Modified Soybean Line GTS 40-3-2.

    PubMed

    Kitta, Kazumi; Takabatake, Reona; Mano, Junichi

    2016-01-01

    This chapter describes a real-time PCR-based method for quantitation of the relative amount of genetically modified (GM) soybean line GTS 40-3-2 [Roundup Ready(®) soybean (RRS)] contained in a batch. The method targets a taxon-specific soybean gene (lectin gene, Le1) and the specific DNA construct junction region between the Petunia hybrida chloroplast transit peptide sequence and the Agrobacterium 5-enolpyruvylshikimate-3-phosphate synthase gene (epsps) sequence present in GTS 40-3-2. The method employs plasmid pMulSL2 as a reference material in order to quantify the relative amount of GTS 40-3-2 in soybean samples using a conversion factor (Cf) equal to the ratio of the RRS-specific DNA to the taxon-specific DNA in representative genuine GTS 40-3-2 seeds.

  3. Toward Connecting Core-Collapse Supernova Theory with Observations: Nucleosynthetic Yields and Distribution of Elements in a 15 M⊙ Blue Supergiant Progenitor with SN 1987A Energetics

    NASA Astrophysics Data System (ADS)

    Plewa, Tomasz; Handy, Timothy; Odrzywolek, Andrzej

    2014-09-01

    We compute and discuss the process of nucleosynthesis in a series of core-collapse explosion models of a 15 solar mass, blue supergiant progenitor. We obtain nucleosynthetic yields and study the evolution of the chemical element distribution from the moment of core bounce until young supernova remnant phase. Our models show how the process of energy deposition due to radioactive decay modifies the dynamics and the core ejecta structure on small and intermediate scales. The results are compared against observations of young supernova remnants including Cas A and the recent data obtained for SN 1987A. We compute and discuss the process of nucleosynthesis in a series of core-collapse explosion models of a 15 solar mass, blue supergiant progenitor. We obtain nucleosynthetic yields and study the evolution of the chemical element distribution from the moment of core bounce until young supernova remnant phase. Our models show how the process of energy deposition due to radioactive decay modifies the dynamics and the core ejecta structure on small and intermediate scales. The results are compared against observations of young supernova remnants including Cas A and the recent data obtained for SN 1987A. The work has been supported by the NSF grant AST-1109113 and DOE grant DE-FG52-09NA29548. This research used resources of the National Energy Research Scientific Computing Center, which is supported by the U.S. DoE under Contract No. DE-AC02-05CH11231.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Repins, Ingrid; Jordan, Dirk; Bosco, Nick

    The proposed new IEC standard will address the test temperature requirements in IEC 61215 (module design), IEC 61730 (module safety), IEC 62790 (junction box safety) and IEC 62852 (connectors), and will provide guidelines to modify temperature limits in four existing standards to better describe module performance in hotter climates. This workshop includes four presentations: Special Testing for Modules Deployed in Hot Use Environments - Are We Doing This in a Low-Cost Way?, Experimental Evidence, Why the highest temperatures are the most stressful to PV modules during thermal cycling, and Safety Aspects for Modules Deployed in Hot Use Environments.

  5. Sequence of retrovirus provirus resembles that of bacterial transposable elements

    NASA Astrophysics Data System (ADS)

    Shimotohno, Kunitada; Mizutani, Satoshi; Temin, Howard M.

    1980-06-01

    The nucleotide sequences of the terminal regions of an infectious integrated retrovirus cloned in the modified λ phage cloning vector Charon 4A have been elucidated. There is a 569-base pair direct repeat at both ends of the viral DNA. The cell-virus junctions at each end consist of a 5-base pair direct repeat of cell DNA next to a 3-base pair inverted repeat of viral DNA. This structure resembles that of a transposable element and is consistent with the protovirus hypothesis that retroviruses evolved from the cell genome.

  6. Results of the 1995 JPL balloon flight solar cell calibration program

    NASA Technical Reports Server (NTRS)

    Anspaugh, B. E.; Weiss, R. S.

    1995-01-01

    The Jet Propulsion Laboratory (JPL) solar cell calibration program was conceived to produce reference standards for the purpose of accurately setting solar simulator intensities. The concept was to fly solar cells on a high-altitude balloon, to measure their output at altitudes near 120,000 ft (36.6 km), to recover the cells, and to use them as reference standards. The procedure is simple. The reference cell is placed in the simulator beam, and the beam intensity is adjusted until the reference cell reads the same as it read on the balloon. As long as the reference cell has the same spectral response as the cells or panels to be measured, this is a very accurate method of setting the intensity. But as solar cell technology changes, the spectral response of the solar cells changes also, and reference standards using the new technology must be built and calibrated. Until the summer of 1985, there had always been a question as to how much the atmosphere above the balloon modified the solar spectrum. If the modification was significant, the reference cells might not have the required accuracy. Solar cells made in recent years have increasingly higher blue responses, and if the atmosphere has any effect at all, it would be expected to modify the calibration of these newer blue cells much more so than for cells made in the past. JPL has been flying calibration standards on high-altitude balloons since 1963 and continues to organize a calibration balloon flight at least once a year. The 1995 flight was the 48th flight in this series. The 1995 flight incorporated 46 solar cell modules from 7 different participants. The payload included Si, amorphous Si, GaAs, GaAs/Ge, dual junction cells, top and bottom sections of dual junction cells, and a triple junction cell. A new data acquisition system was built for the balloon flights and flown for the first time on the 1995 flight. This system allows the measurement of current-voltage (I-V) curves for 20 modules in addition to measurement of modules with fixed loads as had been done in the past.

  7. Modifying scoping codes to accurately calculate TMI-cores with lifetimes greater than 500 effective full-power days

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bai, D.; Levine, S.L.; Luoma, J.

    1992-01-01

    The Three Mile Island unit 1 core reloads have been designed using fast but accurate scoping codes, PSUI-LEOPARD and ADMARC. PSUI-LEOPARD has been normalized to EPRI-CPM2 results and used to calculate the two-group constants, whereas ADMARC is a modern two-dimensional, two-group diffusion theory nodal code. Problems in accuracy were encountered for cycles 8 and higher as the core lifetime was increased beyond 500 effective full-power days. This is because the heavier loaded cores in both {sup 235}U and {sup 10}B have harder neutron spectra, which produces a change in the transport effect in the baffle reflector region, and the burnablemore » poison (BP) simulations were not accurate enough for the cores containing the increased amount of {sup 10}B required in the BP rods. In the authors study, a technique has been developed to take into account the change in the transport effect in the baffle region by modifying the fast neutron diffusion coefficient as a function of cycle length and core exposure or burnup. A more accurate BP simulation method is also developed, using integral transport theory and CPM2 data, to calculate the BP contribution to the equivalent fuel assembly (supercell) two-group constants. The net result is that the accuracy of the scoping codes is as good as that produced by CASMO/SIMULATE or CPM2/SIMULATE when comparing with measured data.« less

  8. The 'modified prone position': a new approach for treating pre-vesical stones with extracorporeal shock wave lithotripsy.

    PubMed

    Köse, A C; Demirbas, M

    2004-02-01

    To investigate the utility of a new 'modified-prone' position for treating pre-vesical stones with extracorporeal shock wave lithotripsy (ESWL), usually considered an acceptable and effective treatment for such stones, but for which many different body positions have been used in an attempt to increase its efficacy. The study included 268 consecutive patients with a solitary pre-vesical stone who underwent ESWL either prone (69) or in the modified-prone position (199) between May 1999 and August 2001. Only those with one stone between the ureteric orifice and 1 cm proximal to the vesico-ureteric junction were included. In each case the stone diameter, days to stone clearance, number of shock waves applied per treatment, and number of sessions required to become stone-free were recorded. If the treatment failed this was also noted. Success rates in the prone and modified-prone groups were compared and analysed to assess which of the variables influenced success with ESWL. After ESWL, 95.5% of the 268 patients were stone-free; the rates in the prone and modified-prone groups were 89.9% and 97.5%, respectively (P = 0.015). The probability of success with ESWL therapy for pre-vesical calculi in modified-prone position was about five times (odds ratio 4.56, 95% confidence interval 1.2-17.7) greater than that expected with when prone. The modified-prone position was an independent factor most significantly influencing success with ESWL in these patients. The modified-prone position for ESWL is a new and very effective way to treat patients with pre-vesical stones.

  9. Non-Micropipe Dislocations in 4H-SiC Devices: Electrical Properties and Device Technology Implications

    NASA Technical Reports Server (NTRS)

    Neudeck, Philip G.; Huang, Wei; Dudley, Michael; Fazi, Christian

    1998-01-01

    It is well-known that SiC wafer quality deficiencies are delaying the realization of outstandingly superior 4H-SiC power electronics. While efforts to date have centered on eradicating micropipes (i.e., hollow core super-screw dislocations with Burgers vectors greater than or equal to 2c), 4H-SiC wafers and epilayers also contain elementary screw dislocations (i.e., Burgers vector = 1c with no hollow core) in densities on the order of thousands per sq cm, nearly 100-fold micropipe densities. While not nearly as detrimental to SiC device performance as micropipes, it has recently been demonstrated that elementary screw dislocations somewhat degrade the reverse leakage and breakdown properties of 4H-SiC p(+)n diodes. Diodes containing elementary screw dislocations exhibited a 5% to 35% reduction in breakdown voltage, higher pre-breakdown reverse leakage current, softer reverse breakdown I-V knee, and microplasmic breakdown current filaments that were non-catastrophic as measured under high series resistance biasing. This paper details continuing experimental and theoretical investigations into the electrical properties of 4H-SiC elementary screw dislocations. The nonuniform breakdown behavior of 4H-SiC p'n junctions containing elementary screw dislocations exhibits interesting physical parallels with nonuniform breakdown phenomena previously observed in other semiconductor materials. Based upon experimentally observed dislocation-assisted breakdown, a re-assessment of well-known physical models relating power device reliability to junction breakdown has been undertaken for 4H-SiC. The potential impact of these elementary screw dislocation defects on the performance and reliability of various 4H-SiC device technologies being developed for high-power applications will be discussed.

  10. Histomorphometrical analysis following augmentation of infected extraction sites exhibiting severe bone loss and primarily closed by intrasocket reactive soft tissue.

    PubMed

    Mardinger, Ofer; Vered, Marilena; Chaushu, Gavriel; Nissan, Joseph

    2012-06-01

    Intrasocket reactive soft tissue can be used for primary closure during augmentation of infected extraction sites exhibiting severe bone loss prior to implant placement. The present study evaluated the histological characteristics of the initially used intrasocket reactive soft tissue, the overlying soft tissue, and the histomorphometry of the newly formed bone during implant placement. Thirty-six consecutive patients (43 sites) were included in the study. Extraction sites demonstrating extensive bone loss on preoperative periapical and panoramic radiographs served as inclusion criteria. Forty-three implants were inserted after a healing period of 6 months. Porous bovine xenograft bone mineral was used as a single bone substitute. The intrasocket reactive soft tissue was sutured over the grafting material to seal the coronal portion of the socket. Biopsies of the intrasocket reactive soft tissue at augmentation, healed mucosa, and bone cores at implant placement were retrieved and evaluated. The intrasocket reactive soft tissue demonstrated features compatible with granulation tissue and long junctional epithelium. The mucosal samples at implant placement demonstrated histopathological characteristics of keratinized mucosa with no residual elements of granulation tissue. Histomorphometrically, the mean composition of the bone cores was - vital bone 40 ± 19% (13.7-74.8%); bone substitute 25.7 ± 13% (0.6-51%); connective tissue 34.3 ± 15% (13.8-71.9%). Intrasocket reactive soft tissue used for primary closure following ridge augmentation is composed of granulation tissue and long junctional epithelium. At implant placement, clinical and histological results demonstrate its replacement by keratinized gingiva. The histomorphometrical results reveal considerable bone formation. Fresh extraction sites of hopeless teeth demonstrating chronic infection and severe bone loss may be grafted simultaneously with their removal. © 2010 Wiley Periodicals, Inc.

  11. Schottky barrier parameters and structural properties of rapidly annealed Zr Schottky electrode on p-type GaN

    NASA Astrophysics Data System (ADS)

    Rajagopal Reddy, V.; Asha, B.; Choi, Chel-Jong

    2017-06-01

    The Schottky barrier junction parameters and structural properties of Zr/p-GaN Schottky diode are explored at various annealing temperatures. Experimental analysis showed that the barrier height (BH) of the Zr/p-GaN Schottky diode increases with annealing at 400 °C (0.92 eV (I-V)/1.09 eV (C-V)) compared to the as-deposited one (0.83 eV (I-V)/0.93 eV (C-V)). However, the BH decreases after annealing at 500 °C. Also, at different annealing temperatures, the series resistance and BH are assessed by Cheung's functions and their values compared. Further, the interface state density (N SS) of the diode decreases after annealing at 400 °C and then somewhat rises upon annealing at 500 °C. Analysis reveals that the maximum BH is obtained at 400 °C, and thus the optimum annealing temperature is 400 °C for the diode. The XPS and XRD analysis revealed that the increase in BH may be attributed to the creation of Zr-N phases with increasing annealing up to 400 °C. The BH reduces for the diode annealed at 500 °C, which may be due to the formation of Ga-Zr phases at the junction. The AFM measurements reveal that the overall surface roughness of the Zr film is quite smooth during rapid annealing process. Project supported by the R&D Program for Industrial Core Technology (No. 10045216) and the Transfer Machine Specialized Lighting Core Technology Development Professional Manpower Training Project (No. N0001363) Funded by the Ministry of Trade, Industry and Energy (MOTIE), Republic of Korea.

  12. Cooperative effects in spherical spasers: Ab initio analytical model

    NASA Astrophysics Data System (ADS)

    Bordo, V. G.

    2017-06-01

    A fully analytical semiclassical theory of cooperative optical processes which occur in an ensemble of molecules embedded in a spherical core-shell nanoparticle is developed from first principles. Both the plasmonic Dicke effect and spaser generation are investigated for the designs in which a shell/core contains an arbitrarily large number of active molecules in the vicinity of a metallic core/shell. An essential aspect of the theory is an ab initio account of the feedback from the core/shell boundaries which significantly modifies the molecular dynamics. The theory provides rigorous, albeit simple and physically transparent, criteria for both plasmonic superradiance and surface plasmon generation.

  13. Development of the Learning Health System Researcher Core Competencies.

    PubMed

    Forrest, Christopher B; Chesley, Francis D; Tregear, Michelle L; Mistry, Kamila B

    2017-08-04

    To develop core competencies for learning health system (LHS) researchers to guide the development of training programs. Data were obtained from literature review, expert interviews, a modified Delphi process, and consensus development meetings. The competencies were developed from August to December 2016 using qualitative methods. The literature review formed the basis for the initial draft of a competency domain framework. Key informant semi-structured interviews, a modified Delphi survey, and three expert panel (n = 19 members) consensus development meetings produced the final set of competencies. The iterative development process yielded seven competency domains: (1) systems science; (2) research questions and standards of scientific evidence; (3) research methods; (4) informatics; (5) ethics of research and implementation in health systems; (6) improvement and implementation science; and (7) engagement, leadership, and research management. A total of 33 core competencies were prioritized across these seven domains. The real-world milieu of LHS research, the embeddedness of the researcher within the health system, and engagement of stakeholders are distinguishing characteristics of this emerging field. The LHS researcher core competencies can be used to guide the development of learning objectives, evaluation methods, and curricula for training programs. © Health Research and Educational Trust.

  14. Paclitaxel loaded folic acid targeted nanoparticles of mixed lipid-shell and polymer-core: in vitro and in vivo evaluation.

    PubMed

    Zhao, Peiqi; Wang, Hanjie; Yu, Man; Liao, Zhenyu; Wang, Xianhuo; Zhang, Fei; Ji, Wei; Wu, Bing; Han, Jinghua; Zhang, Haichang; Wang, Huaqing; Chang, Jin; Niu, Ruifang

    2012-06-01

    A functional drug carrier comprised of folic acid modified lipid-shell and polymer-core nanoparticles (FLPNPs) including poly(D,L-lactide-co-glycolide) (PLGA) core, PEGylated octadecyl-quaternized lysine modified chitosan (PEG-OQLCS) as lipid-shell, folic acid as targeting ligand and cholesterol was prepared and evaluated for targeted delivery of paclitaxel (PTX). Confocal microscopy analysis confirmed the coating of the lipid-shell on the polymer-core. Physicochemical characterizations of FLPNPs, such as particle size, zeta potential, morphology, encapsulation efficiency, and in vitro PTX release, were also evaluated. The internalization efficiency and targeting ability of FLPNPs were demonstrated by flow cytometry and confocal microscopy. PTX loaded FLPNPs showed a significantly higher cytotoxicity than the commercial PTX formulation (Taxol®). The intravenous administration of PTX encapsulated FLPNPs led to tumor regression and improvement of animal survival in a murine model, compared with that observed with Taxol® and biodistribution study showed that PTX concentration in tumor for PTX encapsulated FLPNPs was higher than other PTX formulations. Our data indicate that PTX loaded FLPNPs are a promising nano-sized drug formulation for cancer therapy. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Comparative evaluation of the effect of different crown ferrule designs on the fracture resistance of endodontically treated mandibular premolars restored with fiber posts, composite cores, and crowns: An ex-vivo study

    PubMed Central

    Dua, Nikita; Kumar, Bhupendra; Arunagiri, D.; Iqbal, Mohammad; Pushpa, S.; Hussain, Juhi

    2016-01-01

    Introduction: In cases of severe hard tissue loss, 2 mm circumferential ferrule is difficult to achieve which leads to incorporation of different ferrule designs. Aim: To compare and evaluate the effect of different crown ferrule designs on the fracture resistance of mandibular premolars restored with fiber posts, composite cores, and crowns. Materials and Methods: Fifty freshly extracted mandibular premolars were endodontically treated and divided into five groups: Group I - 2 mm circumferential ferrule above the cementoenamel junction (CEJ); Group II - 2 mm ferrule on the facial aspect above CEJ; Group III - 2 mm ferrule on the lingual aspect above CEJ; Group IV - 2 mm ferrule on the facial and lingual aspects above CEJ with interproximal concavities, and Group V - no ferrule (control group) and were later restored with fiber posts, composite cores, and crowns. Specimens were mounted on a universal testing machine, and compressive load was applied at a crosshead speed of 1 mm/min until fracture occurred. Results: The results showed that circumferential ferrule produced the highest mean fracture resistance and the least fracture resistance was found in the control group. Conclusion: Circumferential ferrule increases the fracture resistance of endodontically treated teeth restored with bonded post, core, and crown. PMID:27217642

  16. The mystery of the "Kite" radio source in Abell 2626: Insights from new Chandra observations

    NASA Astrophysics Data System (ADS)

    Ignesti, A.; Gitti, M.; Brunetti, G.; O'Sullivan, E.; Sarazin, C.; Wong, K.

    2018-03-01

    Context. We present the results of a new Chandra study of the galaxy cluster Abell 2626. The radio emission of the cluster shows a complex system of four symmetric arcs without known correlations with the thermal X-ray emission. The mirror symmetry of the radio arcs toward the center and the presence of two optical cores in the central galaxy suggested that they may be created by pairs of precessing radio jets powered by dual active galactic nuclei (AGNs) inside the core dominant galaxy. However, previous observations failed to observe the second jetted AGN and the spectral trend due to radiative age along the radio arcs, thus challenging this interpretation. Aim. The new Chandra observation had several scientific objectives, including the search for the second AGN that would support the jet precession model. We focus here on the detailed study of the local properties of the thermal and non-thermal emission in the proximity of the radio arcs, in order to obtain further insights into their origin. Methods: We performed a standard data reduction of the Chandra dataset deriving the radial profiles of temperature, density, pressure and cooling time of the intra-cluster medium. We further analyzed the two-dimensional (2D) distribution of the gas temperature, discovering that the south-western junction of the radio arcs surrounds the cool core of the cluster. Results: We studied the X-ray surface brightness and spectral profiles across the junction, finding a cold front spatially coincident with the radio arcs. This may suggest a connection between the sloshing of the thermal gas and the nature of the radio filaments, raising new scenarios for their origin. A tantalizing possibility is that the radio arcs trace the projection of a complex surface connecting the sites where electrons are most efficiently reaccelerated by the turbulence that is generated by the gas sloshing. In this case, diffuse emission embedded by the arcs and with extremely steep spectrum should be most visible at very low radio frequencies.

  17. Synthesis of bi-phase dispersible core-shell FeAu@ZnO magneto-opto-fluorescent nanoparticles

    PubMed Central

    Li, Xue-Mei; Liu, Hong-Ling; Liu, Xiao; Fang, Ning; Wang, Xian-Hong; Wu, Jun-Hua

    2015-01-01

    Bi-phase dispersible core-shell FeAu@ZnO magneto-opto-fluorescent nanoparticles were synthesized by a modified nanoemulsion process using poly(ethylene glycol)-block-poly(propylene glycol)-block-poly(ethylene glycol) (PEO-PPO-PEO) as the surfactant. The morphology and crystal structure of the nanoparticles were studied by TEM/HRTEM and XRD. The nanoparticles manifest soft ferromagnetic and/or near superparamagnetic behavior with a small coercivity of ~19 Oe at room temperature. The corresponding magnetic hysteresis curves were elucidated by the modified Langevin equation. The FTIR study confirms the PEO-PPO-PEO molecules on the surface of the nanoparticles. The UV-vis and PL results reveal the well-behaved absorption bands including surface plasmon resonance and multiple visible fingerprint photoluminescent emissions of the nanoparticles dispersed in both hydrophilic and hydrophobic solvents. Moreover, the processes of solvent dispersion-collection of the nanoparticles were demonstrated for application readiness of such core-shell nanostructures. PMID:26548369

  18. Synthesis of bi-phase dispersible core-shell FeAu@ZnO magneto-opto-fluorescent nanoparticles

    NASA Astrophysics Data System (ADS)

    Li, Xue-Mei; Liu, Hong-Ling; Liu, Xiao; Fang, Ning; Wang, Xian-Hong; Wu, Jun-Hua

    2015-11-01

    Bi-phase dispersible core-shell FeAu@ZnO magneto-opto-fluorescent nanoparticles were synthesized by a modified nanoemulsion process using poly(ethylene glycol)-block-poly(propylene glycol)-block-poly(ethylene glycol) (PEO-PPO-PEO) as the surfactant. The morphology and crystal structure of the nanoparticles were studied by TEM/HRTEM and XRD. The nanoparticles manifest soft ferromagnetic and/or near superparamagnetic behavior with a small coercivity of ~19 Oe at room temperature. The corresponding magnetic hysteresis curves were elucidated by the modified Langevin equation. The FTIR study confirms the PEO-PPO-PEO molecules on the surface of the nanoparticles. The UV-vis and PL results reveal the well-behaved absorption bands including surface plasmon resonance and multiple visible fingerprint photoluminescent emissions of the nanoparticles dispersed in both hydrophilic and hydrophobic solvents. Moreover, the processes of solvent dispersion-collection of the nanoparticles were demonstrated for application readiness of such core-shell nanostructures.

  19. DNA nanoparticles with core-shell morphology.

    PubMed

    Chandran, Preethi L; Dimitriadis, Emilios K; Lisziewicz, Julianna; Speransky, Vlad; Horkay, Ferenc

    2014-10-14

    Mannobiose-modified polyethylenimines (PEI) are used in gene therapy to generate nanoparticles of DNA that can be targeted to the antigen-presenting cells of the immune system. We report that the sugar modification alters the DNA organization within the nanoparticles from homogenous to shell-like packing. The depth-dependent packing of DNA within the nanoparticles was probed using AFM nano-indentation. Unmodified PEI-DNA nanoparticles display linear elastic properties and depth-independent mechanics, characteristic of homogenous materials. Mannobiose-modified nanoparticles, however, showed distinct force regimes that were dependent on indentation depth, with 'buckling'-like response that is reproducible and not due to particle failure. By comparison with theoretical studies of spherical shell mechanics, the structure of mannobiosylated particles was deduced to be a thin shell with wall thickness in the order of few nanometers, and a fluid-filled core. The shell-core structure is also consistent with observations of nanoparticle denting in altered solution conditions, with measurements of nanoparticle water content from AFM images, and with images of DNA distribution in Transmission Electron Microscopy.

  20. Synthesis of water dispersible boron core silica shell (B@SiO2) nanoparticles

    NASA Astrophysics Data System (ADS)

    Walton, Nathan I.; Gao, Zhe; Eygeris, Yulia; Ghandehari, Hamidreza; Zharov, Ilya

    2018-04-01

    Water dispersible boron nanoparticles have great potential as materials for boron neutron capture therapy of cancer and magnetic resonance imaging, if they are prepared on a large scale with uniform size and shape and hydrophilic modifiable surface. We report the first method to prepare spherical, monodisperse, water dispersible boron core silica shell nanoparticles (B@SiO2 NPs) suitable for aforementioned biomedical applications. In this method, 40 nm elemental boron nanoparticles, easily prepared by mechanical milling and carrying 10-undecenoic acid surface ligands, are hydrosilylated using triethoxysilane, followed by base-catalyzed hydrolysis of tetraethoxysilane, which forms a 10-nm silica shell around the boron core. This simple two-step process converts irregularly shaped hydrophobic boron particles into the spherically shaped uniform nanoparticles. The B@SiO2 NPs are dispersible in water and the silica shell surface can be modified with primary amines that allow for the attachment of a fluorophore and, potentially, of targeting moieties. [Figure not available: see fulltext.

  1. The 1.1-Ga Midcontinent Rift System, central North America: sedimentology of two deep boreholes, Lake Superior region

    NASA Astrophysics Data System (ADS)

    Ojakangas, Richard W.; Dickas, Albert B.

    2002-03-01

    The Midcontinent Rift System (MRS) of central North America is a 1.1-Ga, 2500-km long structural feature that has been interpreted as a triple-junction rift developed over a mantle plume. As much as 20 km of subaerial lava flows, mainly flood basalts, are overlain by as much as 10 km of sedimentary rocks that are mostly continental fluvial red beds. This rock sequence, known as the Keweenawan Supergroup, has been penetrated by a few deep boreholes in the search for petroleum. In this paper, two deep boreholes in the Upper Peninsula of Michigan are described in detail for the first time. Both the Amoco Production #1-29R test, herein referred to as the St. Amour well, and the nearby Hickey Creek well drilled by Cleveland Cliffs Mining Services, were 100% cored. The former is 7238 ft (2410 m) deep and the latter is 5345 ft (1780 m) deep. The entirety of the stratigraphic succession of the Hickey Creek core correlates very well with the upper portion of the St. Amour core, as determined by core description and point-counting of 43 thin sections selected out of 100 studied thin sections. Two Lower Paleozoic units and two Keweenawan red bed units—the Jacobsville Sandstone and the underlying Freda Sandstone—are described. The Jacobsville is largely a feldspatholithic sandstone and the Freda is largely a lithofeldspathic sandstone. Below the Freda, the remaining footage of the St. Amour core consists of a thick quartzose sandstone unit that overlies a heterogenous unit of intercalated red bed units of conglomerate, sandstone, siltstone, and shale; black shale; individual basalt flows; and a basal ignimbritic rhyolite. This lower portion of the St. Amour core presents an enigma, as it correlates very poorly with other key boreholes located to the west and southwest. While a black shale sequence is similar to the petroleum-bearing Nonesuch Formation farther west, there is no conglomerate unit to correlate with the Copper Harbor Conglomerate. Other key boreholes are distributed over a 1300-km distance along the better known southwest arm of the triple-junction MRS, and can be correlated rather well with the units that are exposed in the Lake Superior region. However, a definitive explanation of the anomalous, deeper St. Amour stratigraphy is elusive and any explanation is tenuous. A possible explanation for this anomalous stratigraphy may be the geographic proximity of the St. Amour borehole to the Keweenawan Hot Spot (mantle plume), the suggested thermal force behind the development of the MRS. Similarly, a drastic change in structural architecture may be explained by this geographic relationship. Thus, within the locale of this rifting center, complexities of expansion tectonics may well be responsible for igneous and sedimentary sequences that differ considerably from those found farther west along the rift arm.

  2. Devescovinid features, a remarkable surface cytoskeleton, and epibiotic bacteria revisited in Mixotricha paradoxa, a parabasalid flagellate.

    PubMed

    Brugerolle, G

    2004-10-01

    This work reports on the flagellate systematics and phylogeny, cytoskeleton, prokaryote-eukaryote cell junction organisation, and epibiotic bacteria identification. It confirms the pioneer 1964 study on Mixotricha paradoxa and supplies new information. Mixotricha paradoxa has a cresta structure specific to devescovinid parabasalid flagellates, a slightly modified recurrent flagellum, and an axostylar tube containing two lamina-shaped parabasal fibres. However, many parabasal profiles are distributed throughout the cell body. There is a conspicuous cortical microfibrillar network whose strands are related to cell junction structures subjacent to epibiotic bacteria. The supposed actin composition of this network could not be demonstrated with anti-actin antibodies or phalloidin labelling. Four types of epibiotic bacteria were described. Bacillus-shaped bacteria with a Gram-negative organisation are nested in alternate rows on most of the surface of the protozoon. They induce a striated calyxlike junction structure beneath the adhesion zone linked to the cortical microfibrillar network. Slender spirochetes are attached by one differentiated end to the plasma membrane of the protozoon, forming knobs on the cell surface. Two very similar long rod-shaped bacteria are also attached on the knobs of the plasma membrane. A large spirochete attributed to the genus Canaleparolina is also attached to the protozoon. Observations on epibiotic bacteria and of their attachments are compared with several described epibiotic bacteria of symbiotic protozoa and with the results of the molecular identification of the epibiotic bacteria of M. paradoxa.

  3. Additive Effects of Rebamipide Plus Proton Pump Inhibitors on the Expression of Tight Junction Proteins in a Rat Model of Gastro-Esophageal Reflux Disease

    PubMed Central

    Gweon, Tae-Geun; Park, Jong-Hyung; Kim, Byung-Wook; Choi, Yang Kyu; Kim, Joon Sung; Park, Sung Min; Kim, Chang Whan; Kim, Hyung-Gil; Chung, Jun-Won; Incheon

    2018-01-01

    Background/Aims The aim of this study was to investigate the effects of rebamipide on tight junction proteins in the esophageal mucosa in a rat model of gastroesophageal reflux disease (GERD). Methods GERD was created in rats by tying the proximal stomach. The rats were divided into a control group, a proton pump inhibitor (PPI) group, and a PPI plus rebamipide (PPI+R) group. Pantoprazole (5 mg/kg) was administered intraperitoneally to the PPI and PPI+R groups. An additional dose of rebamipide (100 mg/kg) was administered orally to the PPI+R group. Mucosal erosions, epithelial thickness, and leukocyte infiltration into the esophageal mucosa were measured in isolated esophagi 14 days after the procedure. A Western blot analysis was conducted to measure the expression of claudin-1, -3, and -4. Results The mean surface area of mucosal erosions, epithelial thickness, and leukocyte infiltration were lower in the PPI group and the PPI+R group than in the control group. Western blot analysis revealed that the expression of claudin-3 and -4 was significantly higher in the PPI+R group than in the control group. Conclusions Rebamipide may exert an additive effect in combination with PPI to modify the tight junction proteins of the esophageal mucosa in a rat model of GERD. This treatment might be associated with the relief of GERD symptoms. PMID:29069891

  4. The merger of electrochemistry and molecular electronics.

    PubMed

    McCreery, Richard L

    2012-02-01

    Molecular Electronics has the potential to greatly enhance existing silicon-based microelectronics to realize new functions, higher device density, lower power consumption, and lower cost. Although the investigation of electron transport through single molecules and molecular monolayers in "molecular junctions" is a recent development, many of the relevant concepts and phenomena are derived from electrochemistry, as practiced for the past several decades. The past 10+ years have seen an explosion of research activity directed toward how the structure of molecules affects electron transport in molecular junctions, with the ultimate objective of "rational design" of molecular components with new electronic functions, such as chemical sensing, interactions with light, and low-cost, low-power consumer electronics. In order to achieve these scientifically and commercially important objectives, the factors controlling charge transport in molecules "connected" to conducting contacts must be understood, and methods for massively parallel manufacturing of molecular circuits must be developed. This Personal Account describes the development of reproducible and robust molecular electronic devices, starting with modified electrodes used in electrochemistry and progressing to manufacturable molecular junctions. Although the field faced some early difficulties in reliability and characterization, the pieces are now in place for rapid advances in understanding charge transport at the molecular level. Inherent in the field of Molecular Electronics are many electrochemical concepts, including tunneling, redox exchange, activated electron transfer, and electron coupling between molecules and conducting contacts. Copyright © 2012 The Japan Chemical Journal Forum and Wiley Periodicals, Inc.

  5. Construction of a Holliday Junction in Small Circular DNA Molecules for Stable Motifs and Two-Dimensional Lattices.

    PubMed

    Guo, Xin; Wang, Xue-Mei; Wei, Shuai; Xiao, Shou-Jun

    2018-04-12

    Design rules for DNA nanotechnology have been mostly learnt from using linear single-stranded (ss) DNA as the source material. For example, the core structure of a typical DAO (double crossover, antiparallel, odd half-turns) tile for assembling 2D lattices is constructed from only two linear ss-oligonucleotide scaffold strands, similar to two ropes making a square knot. Herein, a new type of coupled DAO (cDAO) tile and 2D lattices of small circular ss-oligonucleotides as scaffold strands and linear ss-oligonucleotides as staple strands are reported. A cDAO tile of cDAO-c64nt (c64nt: circular 64 nucleotides), shaped as a solid parallelogram, is constructed with a Holliday junction (HJ) at the center and two HJs at both poles of a c64nt; similarly, cDAO-c84nt, shaped as a crossed quadrilateral composed of two congruent triangles, is formed with a HJ at the center and four three-way junctions at the corners of a c84nt. Perfect 2D lattices were assembled from cDAO tiles: infinite nanostructures of nanoribbons, nanotubes, and nanorings, and finite nanostructures. The structural relationship between the visible lattices imaged by AFM and the corresponding invisible secondary and tertiary molecular structures of HJs, inclination angle of hydrogen bonds against the double-helix axis, and the chirality of the tile can be interpreted very well. This work could shed new light on DNA nanotechnology with unique circular tiles. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Mollebenzylanols A and B, Highly Modified and Functionalized Diterpenoids with a 9-Benzyl-8,10-dioxatricyclo[5.2.1.01,5]decane Core from Rhododendron molle.

    PubMed

    Zhou, Junfei; Liu, Junjun; Dang, Ting; Zhou, Haofeng; Zhang, Hanqi; Yao, Guangmin

    2018-04-06

    Two highly modified and functionalized diterpenoids, mollebenzylanols A (1) and B (2), and a known grayanane diterpenoid rhodojaponin III (3) were isolated from Rhododendron molle. Their structures were determined by spectroscopic data analysis, an electronic circular dichroism (ECD) exciton chirality method, ECD calculations, and X-ray diffraction analysis of the p-bromobenzoate ester of 1 (1a). Compounds 1 and 2 possess an unprecedented diterpene carbon skeleton featuring a unique 9-benzyl-8,10-dioxatricyclo[5.2.1.0 1,5 ]decane core, and their plausible biosynthetic pathways are proposed. Their PTP1B inhibitory activity and modes of action were investigated.

  7. A case report of a TPS dental implant rigidly connected to a natural tooth: 19-year follow-up

    PubMed Central

    Quaranta, Alessandro; Poli, Ottavia; Vozza, Iole

    2013-01-01

    Summary Aim A partial edentulous area was restored with a tooth to implant fixed partial denture and a rigid connection between the two elements. Maintenance recalls were performed over a 19-year period of observation on a yearly basis. Methods The following parameters were collected during each examination over the entire period of observation: PD around the implant and natural tooth abutment, gingival index, modified gingival index, plaque index, modified plaque index, occlusal assessment, marginal bone loss. Radiographic assessment of peri-implant bone remodeling was performed in a retrospective way. The following reference points were assessed on each image: fixture-abutment junction, threads, first contact of the crestal bone with the implant on both mesial and distal side. This made possible, with the known values for implant diameter and length, to make linear measurements of remaining peri-implant bone measured from the mesial and distal marginal bone levels and the fixture-abutment junction. The amount of bone change over the baseline to a 19 years follow-up observation time was calculated for both the implant and the natural tooth. Results Clinical parameters showed healthy values over the entire period of observation with slight isolated positive bleeding on probing. Bone remodeling values were constant over the entire period with slight higher values around the tooth. Peri-apical radiographs did not show any intrusion of the tooth. Conclusions The present case report showed the complete functionality and stability of a tooth to implant rigidly connected FPD over a period of 19 years. PMID:24611092

  8. Effects of driver nationality and road characteristics on accident fault risk.

    PubMed

    Yannis, George; Golias, John; Papadimitriou, Eleonora

    2007-09-01

    This paper investigates the combined effect of driver nationality and several road characteristics (area type, at or not at junction, lighting conditions) on accident fault risk. Data from the national accident database of Greece are used to calculate accident relative fault risk rates under induced exposure assumptions. A log-linear analysis is then used to examine first- and higher-order effects within three or more variable groups. The examination of the second-order interaction among the accident fault risks of various driver nationalities at or not at junction was found to be significant. On the contrary, the respective combined effects of area type and lighting conditions were found to be non-significant. It was also shown that roadway features do not affect accident fault risk in a combined way. Results clearly indicate that foreign drivers in Greece are at increased risk. Moreover, foreign nationalities corresponding to permanent residents (i.e. Greeks and Albanians) appear to be at lower fault risk compared to foreign nationalities corresponding to tourists and visitors (e.g. EU Nationals). The effects of the various road characteristics do not modify these general trends.

  9. Transmission, Development, and Plasticity of Synapses

    PubMed Central

    Harris, Kathryn P.

    2015-01-01

    Chemical synapses are sites of contact and information transfer between a neuron and its partner cell. Each synapse is a specialized junction, where the presynaptic cell assembles machinery for the release of neurotransmitter, and the postsynaptic cell assembles components to receive and integrate this signal. Synapses also exhibit plasticity, during which synaptic function and/or structure are modified in response to activity. With a robust panel of genetic, imaging, and electrophysiology approaches, and strong evolutionary conservation of molecular components, Drosophila has emerged as an essential model system for investigating the mechanisms underlying synaptic assembly, function, and plasticity. We will discuss techniques for studying synapses in Drosophila, with a focus on the larval neuromuscular junction (NMJ), a well-established model glutamatergic synapse. Vesicle fusion, which underlies synaptic release of neurotransmitters, has been well characterized at this synapse. In addition, studies of synaptic assembly and organization of active zones and postsynaptic densities have revealed pathways that coordinate those events across the synaptic cleft. We will also review modes of synaptic growth and plasticity at the fly NMJ, and discuss how pre- and postsynaptic cells communicate to regulate plasticity in response to activity. PMID:26447126

  10. The Saccharomyces boulardii CNCM I-745 strain shows protective effects against the B. anthracis LT toxin.

    PubMed

    Pontier-Bres, Rodolphe; Rampal, Patrick; Peyron, Jean-François; Munro, Patrick; Lemichez, Emmanuel; Czerucka, Dorota

    2015-10-30

    The probiotic yeast Saccharomyces boulardii (S. boulardii) has been prescribed for the prophylaxis and treatment of several infectious diarrheal diseases. Gastrointestinal anthrax causes fatal systemic disease. In the present study, we investigated the protective effects conferred by Saccharomyces boulardii CNCM I-745 strain on polarized T84 columnar epithelial cells intoxicated by the lethal toxin (LT) of Bacillus anthracis. Exposure of polarized T84 cells to LT affected cell monolayer integrity, modified the morphology of tight junctions and induced the formation of actin stress fibers. Overnight treatment of cells with S. boulardii before incubation with LT maintained the integrity of the monolayers, prevented morphological modification of tight junctions, restricted the effects of LT on actin remodeling and delayed LT-induced MEK-2 cleavage. Mechanistically, we demonstrated that in the presence of S. boulardii, the medium is depleted of both LF and PA sub-units of LT and the appearance of a cleaved form of PA. Our study highlights the potential of the S. boulardii CNCM I-745 strain as a prophylactic agent against the gastrointestinal form of anthrax.

  11. The Saccharomyces boulardii CNCM I-745 Strain Shows Protective Effects against the B. anthracis LT Toxin

    PubMed Central

    Pontier-Bres, Rodolphe; Rampal, Patrick; Peyron, Jean-François; Munro, Patrick; Lemichez, Emmanuel; Czerucka, Dorota

    2015-01-01

    The probiotic yeast Saccharomyces boulardii (S. boulardii) has been prescribed for the prophylaxis and treatment of several infectious diarrheal diseases. Gastrointestinal anthrax causes fatal systemic disease. In the present study, we investigated the protective effects conferred by Saccharomyces boulardii CNCM I-745 strain on polarized T84 columnar epithelial cells intoxicated by the lethal toxin (LT) of Bacillus anthracis. Exposure of polarized T84 cells to LT affected cell monolayer integrity, modified the morphology of tight junctions and induced the formation of actin stress fibers. Overnight treatment of cells with S. boulardii before incubation with LT maintained the integrity of the monolayers, prevented morphological modification of tight junctions, restricted the effects of LT on actin remodeling and delayed LT-induced MEK-2 cleavage. Mechanistically, we demonstrated that in the presence of S. boulardii, the medium is depleted of both LF and PA sub-units of LT and the appearance of a cleaved form of PA. Our study highlights the potential of the S. boulardii CNCM I-745 strain as a prophylactic agent against the gastrointestinal form of anthrax. PMID:26529015

  12. RNA Nanoparticles Derived from Three-Way Junction of Phi29 Motor pRNA Are Resistant to I-125 and Cs-131 Radiation

    PubMed Central

    Li, Hui; Rychahou, Piotr G.; Cui, Zheng; Pi, Fengmei; Evers, B. Mark; Shu, Dan

    2015-01-01

    Radiation reagents that specifically target tumors are in high demand for the treatment of cancer. The emerging field of RNA nanotechnology might provide new opportunities for targeted radiation therapy. This study investigates whether chemically modified RNA nanoparticles derived from the packaging RNA (pRNA) three-way junction (3WJ) of phi29 DNA-packaging motor are resistant to potent I-125 and Cs-131 radiation, which is a prerequisite for utilizing these RNA nanoparticles as carriers for targeted radiation therapy. pRNA 3WJ nanoparticles were constructed and characterized, and the stability of these nanoparticles under I-125 and Cs-131 irradiation with clinically relevant doses was examined. RNA nanoparticles derived from the pRNA 3WJ targeted tumors specifically and they were stable under irradiation of I-125 and Cs-131 with clinically relevant doses ranging from 1 to 90 Gy over a significantly long time up to 20 days, while control plasmid DNA was damaged at 20 Gy or higher. PMID:26017686

  13. Gas network model allows full reservoir coupling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Methnani, M.M.

    The gas-network flow model (Gasnet) developed for and added to an existing Qatar General Petroleum Corp. (OGPC) in-house reservoir simulator, allows improved modeling of the interaction among the reservoir, wells, and pipeline networks. Gasnet is a three-phase model that is modified to handle gas-condensate systems. The numerical solution is based on a control volume scheme that uses the concept of cells and junctions, whereby pressure and phase densities are defined in cells, while phase flows are defined at junction links. The model features common numerical equations for the reservoir, the well, and the pipeline components and an efficient state-variable solutionmore » method in which all primary variables including phase flows are solved directly. Both steady-state and transient flow events can be simulated with the same tool. Three test cases show how the model runs. One case simulates flow redistribution in a simple two-branch gas network. The second simulates a horizontal gas well in a waterflooded gas reservoir. The third involves an export gas pipeline coupled to a producing reservoir.« less

  14. pH-triggered conduction of amine-functionalized single ZnO wire integrated on a customized nanogap electronic platform

    PubMed Central

    2014-01-01

    The electrical conductance response of single ZnO microwire functionalized with amine-groups was tested upon an acid pH variation of a solution environment after integration on a customized gold electrode array chip. ZnO microwires were easily synthesized by hydrothermal route and chemically functionalized with aminopropyl groups. Single wires were deposited from the solution and then oriented through dielectrophoresis across eight nanogap gold electrodes on a platform single chip. Therefore, eight functionalized ZnO microwire-gold junctions were formed at the same time, and being integrated on an ad hoc electronic platform, they were ready for testing without any further treatment. Experimental and simulation studies confirmed the high pH-responsive behavior of the amine-modified ZnO-gold junctions, obtaining in a simple and reproducible way a ready-to-use device for pH detection in the acidic range. We also compared this performance to bare ZnO wires on the same electronic platform, showing the superiority in pH response of the amine-functionalized material. PMID:24484615

  15. Vibrational Properties of h-BN and h-BN-Graphene Heterostructures Probed by Inelastic Electron Tunneling Spectroscopy

    PubMed Central

    Jung, Suyong; Park, Minkyu; Park, Jaesung; Jeong, Tae-Young; Kim, Ho-Jong; Watanabe, Kenji; Taniguchi, Takashi; Ha, Dong Han; Hwang, Chanyong; Kim, Yong-Sung

    2015-01-01

    Inelastic electron tunneling spectroscopy is a powerful technique for investigating lattice dynamics of nanoscale systems including graphene and small molecules, but establishing a stable tunnel junction is considered as a major hurdle in expanding the scope of tunneling experiments. Hexagonal boron nitride is a pivotal component in two-dimensional Van der Waals heterostructures as a high-quality insulating material due to its large energy gap and chemical-mechanical stability. Here we present planar graphene/h-BN-heterostructure tunneling devices utilizing thin h-BN as a tunneling insulator. With much improved h-BN-tunneling-junction stability, we are able to probe all possible phonon modes of h-BN and graphite/graphene at Γ and K high symmetry points by inelastic tunneling spectroscopy. Additionally, we observe that low-frequency out-of-plane vibrations of h-BN and graphene lattices are significantly modified at heterostructure interfaces. Equipped with an external back gate, we can also detect high-order coupling phenomena between phonons and plasmons, demonstrating that h-BN-based tunneling device is a wonderful playground for investigating electron-phonon couplings in low-dimensional systems. PMID:26563740

  16. Vibrational Properties of h-BN and h-BN-Graphene Heterostructures Probed by Inelastic Electron Tunneling Spectroscopy.

    PubMed

    Jung, Suyong; Park, Minkyu; Park, Jaesung; Jeong, Tae-Young; Kim, Ho-Jong; Watanabe, Kenji; Taniguchi, Takashi; Ha, Dong Han; Hwang, Chanyong; Kim, Yong-Sung

    2015-11-13

    Inelastic electron tunneling spectroscopy is a powerful technique for investigating lattice dynamics of nanoscale systems including graphene and small molecules, but establishing a stable tunnel junction is considered as a major hurdle in expanding the scope of tunneling experiments. Hexagonal boron nitride is a pivotal component in two-dimensional Van der Waals heterostructures as a high-quality insulating material due to its large energy gap and chemical-mechanical stability. Here we present planar graphene/h-BN-heterostructure tunneling devices utilizing thin h-BN as a tunneling insulator. With much improved h-BN-tunneling-junction stability, we are able to probe all possible phonon modes of h-BN and graphite/graphene at Γ and K high symmetry points by inelastic tunneling spectroscopy. Additionally, we observe that low-frequency out-of-plane vibrations of h-BN and graphene lattices are significantly modified at heterostructure interfaces. Equipped with an external back gate, we can also detect high-order coupling phenomena between phonons and plasmons, demonstrating that h-BN-based tunneling device is a wonderful playground for investigating electron-phonon couplings in low-dimensional systems.

  17. 75 FR 5105 - Notice of Inventory Completion: Thomas Burke Memorial Washington State Museum, University of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-01

    ... associated funerary objects are 2 stone flakes; 5 unmodified stones; 1 bone bipoint; 1 bone tool; 1 bone tube; 5 charcoal samples; 1 core; 1 dog cranium; 1 hammerstone; 2 harpoon points; 5 modified bones; 2... bags); 1 modified shell; 2 unmodified shells; 1 lot unmodified dentalium shells; 2 lots of bone and...

  18. Sensitivity of the Modified Children's Yale-Brown Obsessive Compulsive Scale to Detect Change: Results from Two Multi-Site Trials

    ERIC Educational Resources Information Center

    Scahill, Lawrence; Sukhodolsky, Denis G.; Anderberg, Emily; Dimitropoulos, Anastasia; Dziura, James; Aman, Michael G.; McCracken, James; Tierney, Elaine; Hallett, Victoria; Katz, Karol; Vitiello, Benedetto; McDougle, Christopher

    2016-01-01

    Repetitive behavior is a core feature of autism spectrum disorder. We used 8-week data from two federally funded, multi-site, randomized trials with risperidone conducted by the Research Units on Pediatric Psychopharmacology Autism Network to evaluate the sensitivity of the Children's Yale-Brown Obsessive Compulsive Scale modified for autism…

  19. The determination of modified barrier heights in Ti/GaN nano-Schottky diodes at high temperature.

    PubMed

    Lee, Seung-Yong; Kim, Tae-Hong; Chol, Nam-Kyu; Seong, Han-Kyu; Choi, Heon-Jin; Ahn, Byung-Guk; Lee, Sang-Kwon

    2008-10-01

    We have investigated the size-effect of the nano-Schottky diodes on the electrical transport properties and the temperature-dependent current transport mechanism in a metal-semiconductor nanowire junction (a Ti/GaN nano-Schottky diode) using current-voltage characterization in the range of 300-423 K. We found that the modified mean Schottky barrier height (SBH) was approximately 0.7 eV with a standard deviation of approximately 0.14 V using a Gaussian distribution model of the barrier heights. The slightly high value of the modified mean SBH (approximately 0.11 eV) compared to the results from the thin-film based Ti/GaN Schottky diodes could be due to an additional oxide layer at the interface between the Ti and GaN nanowires. Moreover, we found that the abnormal behavior of the barrier heights and the ideality factors in a Ti/GaN nano-Schottky diode at a temperature below 423 K could be explained by a combination of the enhancement of the tunneling current and a model with a Gaussian distribution of the barrier heights.

  20. Progressive replacement of oral mucosa by conjunctiva in osteo-odonto-keratoprosthesis: preliminary observations.

    PubMed

    Pecorella, Irene; Maurizio, Taloni; Antonio, Ciardi; Giancarlo, Falcinelli

    2006-02-01

    In a Strampelli osteo-odonto-keratoprosthesis, a patch of oral mucosa is frequently used to cover the ocular surface after implantation of an osteodental lamina into the eye. In many cases, gross modifications in the eye covering become apparent a few years later. The aim of this study was to investigate the histologic findings in the clinically modified ocular surface. Biopsies were performed in 7 patients at the junction between the osteodental acrylic lamina and surrounding modified oral mucosa, during surgery for local plastic reconstruction or positioning of antiglaucoma silicone tubes. Specimens were examined by light microscopy. Six of the 7 clinically modified specimens corresponded microscopically to conjunctiva. Typical oral mucosa could still be observed overlying the osteodental acrylic lamina. The production of local regulatory factors is a possible explanation for the survival of oral mucosa over the osteodental acrylic lamina, whereas their absence in distant areas may have induced the oral mucosa to transdifferentiate into a conjunctival-type lining. Alternatively, conjunctival regrowth from forniceal stem cells should be taken into consideration.

  1. Optical properties of new wide heterogeneous waveguides with thermo optical shifters.

    PubMed

    De Leonardis, Francesco; Tsarev, Andrei V; Passaro, Vittorio M

    2008-12-22

    We present analysis and simulation of novel silicon-on-insulator (SOI) heterogeneous waveguides with thermo-optic phase shifters. New structure design contains a p-n junction on both sides of SOI ridge waveguide with 220 nm x 35 microm silicon core. Strongly mode-dependent optical losses (by additional free charge absorption) provide quasi-singe-mode behavior of wide waveguide with mode size approximately 10 microm. Local heater produces an efficient phase shifting by small temperature increase (DeltaT approximately 2K), switching power (< 40 mW) and switching time (< 10 micros). Mode optical losses are significantly decreased at high heating (DeltaT approximately 120 K).

  2. Rylene and related diimides for organic electronics.

    PubMed

    Zhan, Xiaowei; Facchetti, Antonio; Barlow, Stephen; Marks, Tobin J; Ratner, Mark A; Wasielewski, Michael R; Marder, Seth R

    2011-01-11

    Organic electron-transporting materials are essential for the fabrication of organic p-n junctions, photovoltaic cells, n-channel field-effect transistors, and complementary logic circuits. Rylene diimides are a robust, versatile class of polycyclic aromatic electron-transport materials with excellent thermal and oxidative stability, high electron affinities, and, in many cases, high electron mobilities; they are, therefore, promising candidates for a variety of organic electronics applications. In this review, recent developments in the area of high-electron-mobility diimides based on rylenes and related aromatic cores, particularly perylene- and naphthalene-diimide-based small molecules and polymers, for application in high-performance organic field-effect transistors and photovoltaic cells are summarized and analyzed.

  3. Developing a Consensus-Driven, Core Competency Model to Shape Future Audio Engineering Technology Curriculum: A Web-Based Modified Delphi Study

    ERIC Educational Resources Information Center

    Tough, David T.

    2009-01-01

    The purpose of this online study was to create a ranking of essential core competencies and technologies required by AET (audio engineering technology) programs 10 years in the future. The study was designed to facilitate curriculum development and improvement in the rapidly expanding number of small to medium sized audio engineering technology…

  4. Thomson's Jumping Ring over a Long Coil

    ERIC Educational Resources Information Center

    Jeffery, Rondo N.; Amiri, Farhang

    2018-01-01

    The classic jumping ring apparatus consists of a coil with an iron core that extends out of the coil. A copper or aluminum ring placed over the iron core jumps upward when AC power is applied to the coil. In this paper we will examine a modified design of the jumping ring apparatus, called the "long-coil design." It allows the ring to…

  5. On the Evolution of the Cores of Radio Sources and Their Extended Radio Emission

    NASA Astrophysics Data System (ADS)

    Yuan, Zunli; Wang, Jiancheng

    2012-01-01

    The work in this paper aims at determining the evolution and possible co-evolution of radio-loud active galactic nuclei (AGNs) and their cores via their radio luminosity functions (i.e., total and core RLFs, respectively). Using a large combined sample of 1063 radio-loud AGNs selected at low radio frequency, we investigate the RLF at 408 MHz of steep-spectrum radio sources. Our results support a luminosity-dependent evolution. Using core flux density data of the complete sample 3CRR, we investigate the core RLF at 5.0 GHz. Based on the combined sample with incomplete core flux data, we also estimate the core RLF using a modified factor of completeness. Both results are consistent and show that the comoving number density of radio cores displays a persistent decline with redshift, implying a negative density evolution. We find that the core RLF is obviously different from the total RLF at the 408 MHz band which is mainly contributed by extended lobes, implying that the cores and extended lobes could not be co-evolving at radio emission.

  6. Self-assembly and graft polymerization route to Monodispersed Fe3O4@SiO2--polyaniline core-shell composite nanoparticles: physical properties.

    PubMed

    Reddy, Kakarla Raghava; Lee, Kwang-Pill; Kim, Ju Young; Lee, Youngil

    2008-11-01

    This study describes the synthesis of monodispersed core-shell composites of silica-modified magnetic nanoparticles and conducting polyaniline by self-assembly and graft polymerization. Magnetic ferrite nanoparticles (Fe3O4) were prepared by coprecipitation of Fe+2 and Fe+3 ions in alkaline solution, and then silananized. The silanation of magnetic particles (Fe3O4@SiO2) was carried out using 3-bromopropyltrichlorosilane (BPTS) as the coupling agent. FT-IR spectra indicated the presence of Fe--O--Si chemical bonds in Fe3O4@SiO2. Core-shell type nanocomposites (Fe3O4@SiO2/PANI) were prepared by grafting polyaniline (PANI) on the surface of silanized magnetic particles through surface initiated in-situ chemical oxidative graft polymerization. The nanocomposites were characterized by high resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), X-ray photoelectron spectra (XPS), Fourier transform infrared (FTIR) spectra, UV-visible spectroscopy, photoluminescence (PL) spectra, electrical conductivity and magnetic characteristics. HRTEM images of the nanocomposites revealed that the silica-modified magnetic particles made up the core while PANI made up the shell. The XPS spectrum revealed the presence of silica in the composites, and the XRD results showed that the composites were more crystalline than pure PANI. PL spectra show that composites exhibit photoluminescent property. Conductivity of the composites (6.2 to 9.4 x 10(-2) S/cm) was higher than that of pristine PANI (3.7 x 10(-3) S/cm). The nanocomposites exhibited superparamagnetism. Formation mechanism of the core-shell structured nanocomposites and the effect of modified magnetic nanoparticles on the electro-magnetic properties of the Fe3O4@SiO2/PANI nanocomposites are also investigated. This method provides a new strategy for the generation of multi-functional nanocomposites that composed of other conducting polymers and metal nanoparticles.

  7. Process engineering of polynanomeric layered and infused composites

    NASA Astrophysics Data System (ADS)

    Williams, Ebonee Porche Marie

    As the application of advanced polymeric composites expands, the continued adaptation of traditional as well as the incorporation and/or implementation of new technologies continue to be at the core of development for engineers. One of these traditional technologies is honeycomb sandwich composites. This technology has been around for more than fifty years and there have been minimal alterations to the materials used to produce the parts and the process used to manufacture the structures. This is where the depth of this work focused. Traditional honeycomb core dip resin systems were modified to incorporate nano scale fillers. This adaptation is one of the defining aspects of polynanomeric systems, the concept of which is that modifications of the nano scale in a polymer system create nano layered structures that emulate the properties of both the polymer and the nano filler, a nano composite. The modified resin systems were characterized to investigate morphology, thermal and mechanical properties as well as electrical characteristics. It was observed that the nano altered resin system exhibited increased mechanical, 50 to 60%, and thermal properties, burn temperatures extended by 30°C, while also demonstrating improved electrical properties. These were significant results given that the main applications of honeycomb sandwich structures are on the interior of aircrafts. These results could open the door to some new applications of the modified resin system. This work also implemented a new processing technique to produce honeycomb sandwich structures. The technique was Vacuum Assisted Resin Transfer Molding, VARTM, which has gained interest over the last decade due to the reduced up front cost to initiate production, the ease of processing, and the overall health benefits. This process was successfully performed to produce sandwich structures by incorporating a permeable scrim layer at the core face sheet interface. This was the first successful production of unfilled honeycomb core sandwich part production. Overall this work is at the tip of implementing new materials and processing techniques into honeycomb core and honeycomb sandwich composite structures.

  8. Control of Nanofilament Structure and Observations of Quantum Point Contact Behavior in Ni/NiO Nanowire Junctions

    NASA Astrophysics Data System (ADS)

    Oliver, Sean; Fairfield, Jessamyn; Lee, Sunghun; Bellew, Allen; Stone, Iris; Ruppalt, Laura; Boland, John; Vora, Patrick

    Resistive switching is ideal for use in non-volatile memory where information is stored in a metallic or insulating state. Nanowire junctions formed at the intersection of two Ni/NiO core/shell nanowires have emerged as a leading candidate structure where resistive switching occurs due to the formation and destruction of conducting filaments. However, significant knowledge gaps remain regarding the conduction mechanisms as measurements are typically only performed at room temperature. Here, we combine temperature-dependent current-voltage (IV) measurements from 15 - 300 K with magnetoresistance studies and achieve new insight into the nature of the conducting filaments. We identify a novel semiconducting state that behaves as a quantum point contact and find evidence for a possible electric-field driven phase transition. The insulating state exhibits unexpectedly complex IV characteristics that highlight the disordered nature of the ruptured filament while we find clear signs of anisotropic magnetoresistance in the metallic state. Our results expose previously unobserved behaviors in nanowire resistive switching devices and pave the way for future applications where both electrical and magnetic switching can be achieved in a single device. This work was supported by ONR Grant N-00014-15-1-2357.

  9. Solitonic Josephson-based meminductive systems

    NASA Astrophysics Data System (ADS)

    Guarcello, Claudio; Solinas, Paolo; di Ventra, Massimiliano; Giazotto, Francesco

    2017-04-01

    Memristors, memcapacitors, and meminductors represent an innovative generation of circuit elements whose properties depend on the state and history of the system. The hysteretic behavior of one of their constituent variables, is their distinctive fingerprint. This feature endows them with the ability to store and process information on the same physical location, a property that is expected to benefit many applications ranging from unconventional computing to adaptive electronics to robotics. Therefore, it is important to find appropriate memory elements that combine a wide range of memory states, long memory retention times, and protection against unavoidable noise. Although several physical systems belong to the general class of memelements, few of them combine these important physical features in a single component. Here, we demonstrate theoretically a superconducting memory based on solitonic long Josephson junctions. Moreover, since solitons are at the core of its operation, this system provides an intrinsic topological protection against external perturbations. We show that the Josephson critical current behaves hysteretically as an external magnetic field is properly swept. Accordingly, long Josephson junctions can be used as multi-state memories, with a controllable number of available states, and in other emerging areas such as memcomputing, i.e., computing directly in/by the memory.

  10. Cadherin complexes recruit mRNAs and RISC to regulate epithelial cell signaling

    PubMed Central

    Lin, Wan-Hsin; Lu, Ruifeng; Feathers, Ryan W.; Asmann, Yan W.; Thompson, E. Aubrey

    2017-01-01

    Cumulative evidence demonstrates that most RNAs exhibit specific subcellular distribution. However, the mechanisms regulating this phenomenon and its functional consequences are still under investigation. Here, we reveal that cadherin complexes at the apical zonula adherens (ZA) of epithelial adherens junctions recruit the core components of the RNA-induced silencing complex (RISC) Ago2, GW182, and PABPC1, as well as a set of 522 messenger RNAs (mRNAs) and 28 mature microRNAs (miRNAs or miRs), via PLEKHA7. Top canonical pathways represented by these mRNAs include Wnt/β-catenin, TGF-β, and stem cell signaling. We specifically demonstrate the presence and silencing of MYC, JUN, and SOX2 mRNAs by miR-24 and miR-200c at the ZA. PLEKHA7 knockdown dissociates RISC from the ZA, decreases loading of the ZA-associated mRNAs and miRNAs to Ago2, and results in a corresponding increase of MYC, JUN, and SOX2 protein expression. The present work reveals a mechanism that directly links junction integrity to the silencing of a set of mRNAs that critically affect epithelial homeostasis. PMID:28877994

  11. Cadherin complexes recruit mRNAs and RISC to regulate epithelial cell signaling.

    PubMed

    Kourtidis, Antonis; Necela, Brian; Lin, Wan-Hsin; Lu, Ruifeng; Feathers, Ryan W; Asmann, Yan W; Thompson, E Aubrey; Anastasiadis, Panos Z

    2017-10-02

    Cumulative evidence demonstrates that most RNAs exhibit specific subcellular distribution. However, the mechanisms regulating this phenomenon and its functional consequences are still under investigation. Here, we reveal that cadherin complexes at the apical zonula adherens (ZA) of epithelial adherens junctions recruit the core components of the RNA-induced silencing complex (RISC) Ago2, GW182, and PABPC1, as well as a set of 522 messenger RNAs (mRNAs) and 28 mature microRNAs (miRNAs or miRs), via PLEKHA7. Top canonical pathways represented by these mRNAs include Wnt/β-catenin, TGF-β, and stem cell signaling. We specifically demonstrate the presence and silencing of MYC, JUN, and SOX2 mRNAs by miR-24 and miR-200c at the ZA. PLEKHA7 knockdown dissociates RISC from the ZA, decreases loading of the ZA-associated mRNAs and miRNAs to Ago2, and results in a corresponding increase of MYC, JUN, and SOX2 protein expression. The present work reveals a mechanism that directly links junction integrity to the silencing of a set of mRNAs that critically affect epithelial homeostasis. © 2017 Kourtidis et al.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gergely, Laszlo A.

    We study the possibility of brane-world generalization of the Einstein-Straus Swiss-cheese cosmological model. We find that the modifications induced by the brane-world scenario are excessively restrictive. At a first glance only the motion of the boundary is modified and the fluid in the exterior region is allowed to have pressure. The general relativistic Einstein-Straus model emerges in the low density limit. However by imposing that the central mass in the Schwarzschild voids is constant, a combination of the junction conditions and modified cosmological evolution leads to the conclusion that the brane is flat. Thus no generic Swiss-cheese universe can existmore » on the brane. The conclusion is not altered by the introduction of a cosmological constant in the FLRW regions. This shows that although allowed in the low density limit, the Einstein-Straus universe cannot emerge from cosmological evolution in the brane-world scenario.« less

  13. MicroRNAs and the Evolution of Insect Metamorphosis.

    PubMed

    Belles, Xavier

    2017-01-31

    MicroRNAs (miRNAs) are involved in the regulation of a number of processes associated with metamorphosis, either in the less modified hemimetabolan mode or in the more modified holometabolan mode. The miR-100/let-7/miR-125 cluster has been studied extensively, especially in relation to wing morphogenesis in both hemimetabolan and holometabolan species. Other miRNAs also participate in wing morphogenesis, as well as in programmed cell and tissue death, neuromaturation, neuromuscular junction formation, and neuron cell fate determination, typically during the pupal stage of holometabolan species. A special case is the control of miR-2 over Kr-h1 transcripts, which determines adult morphogenesis in the hemimetabolan metamorphosis. This is an elegant example of how a single miRNA can control an entire process by acting on a crucial mediator; however, this is a quite exceptional mechanism that was apparently lost during the transition from hemimetaboly to holometaboly.

  14. Rhombic Coulomb diamonds in a single-electron transistor based on an Au nanoparticle chemically anchored at both ends.

    PubMed

    Azuma, Yasuo; Onuma, Yuto; Sakamoto, Masanori; Teranishi, Toshiharu; Majima, Yutaka

    2016-02-28

    Rhombic Coulomb diamonds are clearly observed in a chemically anchored Au nanoparticle single-electron transistor. The stability diagrams show stable Coulomb blockade phenomena and agree with the theoretical curve calculated using the orthodox model. The resistances and capacitances of the double-barrier tunneling junctions between the source electrode and the Au core (R1 and C1, respectively), and those between the Au core and the drain electrode (R2 and C2, respectively), are evaluated as 4.5 MΩ, 1.4 aF, 4.8 MΩ, and 1.3 aF, respectively. This is determined by fitting the theoretical curve against the experimental Coulomb staircases. Two-methylene-group short octanedithiols (C8S2) in a C8S2/hexanethiol (C6S) mixed self-assembled monolayer is concluded to chemically anchor the core of the Au nanoparticle at both ends between the electroless-Au-plated nanogap electrodes even when the Au nanoparticle is protected by decanethiol (C10S). This is because the R1 value is identical to that of R2 and corresponds to the tunneling resistances of the octanedithiol chemically bonded with the Au core and the Au electrodes. The dependence of the Coulomb diamond shapes on the tunneling resistance ratio (R1/R2) is also discussed, especially in the case of the rhombic Coulomb diamonds. Rhombic Coulomb diamonds result from chemical anchoring of the core of the Au nanoparticle at both ends between the electroless-Au-plated nanogap electrodes.

  15. A Comparative Evaluation of Effect of Different Chemical Solvents on the Shear Bond Strength of Glass Fiber reinforced Post to Core Material

    PubMed Central

    Samadi, Firoza; Jaiswal, JN; Saha, Sonali

    2014-01-01

    ABSTRACT% Aim: To compare the effect of different chemical solvents on glass fiber reinforced posts and to study the effect of these solvents on the shear bond strength of glass fiber reinforced post to core material. Materials and methods: This study was conducted to evaluate the effect of three chemical solvents, i.e. silane coupling agent, 6% H2O2 and 37% phosphoric acid on the shear bond strength of glass fiber post to a composite resin restorative material. The changes in post surface characteristics after different treatments were also observed, using scanning electron microscopy (SEM) and shear bond strength was analyzed using universal testing machine (UTM). Results: Surface treatment with hydrogen peroxide had greatest impact on the post surface followed by 37% phosphoric acid and silane. On evaluation of the shear bond strength, 6% H2O2 exhibited the maximum shear bond strength followed in descending order by 37% phosphoric acid and silane respectively. Conclusion: The surface treatment of glass fiber post enhances the adhesion between the post and composite resin which is used as core material. Failure of a fiber post and composite resin core often occurs at the junction between the two materials. This failure process requires better characterization. How to cite this article: Sharma A, Samadi F, Jaiswal JN, Saha S. A Comparative Evaluation of Effect of Different Chemical Solvents on the Shear Bond Strength of Glass Fiber Reinforced Post to Core Material. Int J Clin Pediatr Dent 2014;7(3):192-196. PMID:25709300

  16. Comparative 1D and 3D numerical investigation of open-channel junction flows and energy losses

    NASA Astrophysics Data System (ADS)

    Luo, Hao; Fytanidis, Dimitrios K.; Schmidt, Arthur R.; García, Marcelo H.

    2018-07-01

    The complexity of open channel confluences stems from flow mixing, secondary circulation, post-confluence flow separation, contraction and backwater effects. These effects in turn result in a large number of parameters required to adequately quantify the junction induced hydraulic resistance and describe mean flow pattern and turbulent flow structures due to flow merging. The recent development in computing power advances the application of 3D Computational Fluid Dynamics (CFD) codes to visualize and understand the Confluence Hydrodynamic Zone (CHZ). Nevertheless, 1D approaches remain the mainstay in large drainage network or waterway system modeling considering computational efficiency and data availability. This paper presents (i) a modified 1D nonlinear dynamic model; (ii) a fully 3D non-hydrostatic, Reynolds-averaged Navier-Stokes Equations (RANS)-based, Computational Fluid Dynamics (CFD) model; (iii) an analysis of changing confluence hydrodynamics and 3D turbulent flow structure under various controls; (iv) a comparison of flow features (i.e. upstream water depths, energy losses and post-confluence contraction) predicted by 1D and 3D models; and (v) parameterization of 3D flow characteristics in 1D modeling through the computation of correction coefficients associated with contraction, energy and momentum. The present comprehensive 3D numerical investigation highlights the driving mechanisms for junction induced energy losses. Moreover, the comparative 1D and 3D study quantifies the deviation of 1D approximations and associated underlying assumptions from the 'true' resultant flow field. The study may also shed light on improving the accuracy of the 1D large network modeling through the parameterization of the complex 3D feature of the flow field and correction of interior boundary conditions at junctions of larger angles and/or with substantial lateral inflows. Moreover, the enclosed numerical investigations may enhance the understanding of the primary mechanisms contributing to hydraulic structure induced turbulent flow behavior and increased hydraulic resistance.

  17. A microbial trigger for gelled polymers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bailey, S.; Bryant, R.; Zhu, T.

    1995-12-31

    A process using a microbially gelled biopolymer was developed and used to modify permeability in coreflood experiments. Alkaline-soluble curdlan biopolymer was mixed with microbial nutrients and acid-producing alkaliphilic bacteria, and injected into Berea sandstone cores. Concurrent bottle tests with the polymer solution were incubated beside the core. Polymer in the bottle tests formed rigid gel in 2-5 days at 27{degree}C. After 7 days incubation, 25-35 psi fluid pressure was required to begin flow through the cores. Permeability of the cores was decreased from 852 md to 2.99 md and from 904 md to 4.86 md, respectively, giving residual resistance factorsmore » of 334 and 186.« less

  18. Equilibrium cycle pin by pin transport depletion calculations with DeCART

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kochunas, B.; Downar, T.; Taiwo, T.

    As the Advanced Fuel Cycle Initiative (AFCI) program has matured it has become more important to utilize more advanced simulation methods. The work reported here was performed as part of the AFCI fellowship program to develop and demonstrate the capability of performing high fidelity equilibrium cycle calculations. As part of the work here, a new multi-cycle analysis capability was implemented in the DeCART code which included modifying the depletion modules to perform nuclide decay calculations, implementing an assembly shuffling pattern description, and modifying iteration schemes. During the work, stability issues were uncovered with respect to converging simultaneously the neutron flux,more » isotopics, and fluid density and temperature distributions in 3-D. Relaxation factors were implemented which considerably improved the stability of the convergence. To demonstrate the capability two core designs were utilized, a reference UOX core and a CORAIL core. Full core equilibrium cycle calculations were performed on both cores and the discharge isotopics were compared. From this comparison it was noted that the improved modeling capability was not drastically different in its prediction of the discharge isotopics when compared to 2-D single assembly or 2-D core models. For fissile isotopes such as U-235, Pu-239, and Pu-241 the relative differences were 1.91%, 1.88%, and 0.59%), respectively. While this difference may not seem large it translates to mass differences on the order of tens of grams per assembly, which may be significant for the purposes of accounting of special nuclear material. (authors)« less

  19. Pokemon siRNA Delivery Mediated by RGD-Modified HBV Core Protein Suppressed the Growth of Hepatocellular Carcinoma.

    PubMed

    Kong, Jing; Liu, Xiaoping; Jia, Jianbo; Wu, Jinsheng; Wu, Ning; Chen, Jun; Fang, Fang

    2015-10-01

    Hepatocellular carcinoma (HCC) is a deadly human malignant tumor that is among the most common cancers in the world, especially in Asia. Hepatitis B virus (HBV) infection has been well established as a high risk factor for hepatic malignance. Studies have shown that Pokemon is a master oncogene for HCC growth, suggesting it as an ideal therapeutic target. However, efficient delivery system is still lacking for Pokemon targeting treatment. In this study, we used core proteins of HBV, which is modified with RGD peptides, to construct a biomimetic vector for the delivery of Pokemon siRNAs (namely, RGD-HBc-Pokemon siRNA). Quantitative PCR and Western blot assays revealed that RGD-HBc-Pokemon siRNA possessed the highest efficiency of Pokemon suppression in HCC cells. In vitro experiments further indicated that RGD-HBc-Pokemon-siRNA exerted a higher tumor suppressor activity on HCC cell lines, evidenced by reduced proliferation and attenuated invasiveness, than Pokemon-siRNA or RGD-HBc alone. Finally, animal studies demonstrated that RGD-HBc-Pokemon siRNA suppressed the growth of HCC xenografts in mice by a greater extent than Pokemon-siRNA or RGD-HBc alone. Based on the above results, Pokemon siRNA delivery mediated by RGD-modified HBV core protein was shown to be an effective strategy of HCC gene therapy.

  20. Core-shell alginate-ghatti gum modified montmorillonite composite matrices for stomach-specific flurbiprofen delivery.

    PubMed

    Bera, Hriday; Ippagunta, Sohitha Reddy; Kumar, Sanoj; Vangala, Pavani

    2017-07-01

    Novel alginate-arabic gum (AG) gel membrane coated alginate-ghatti gum (GG) modified montmorillonite (MMT) composite matrices were developed for intragastric flurbiprofen (FLU) delivery by combining floating and mucoadhesion mechanisms. The clay-biopolymer composite matrices containing FLU as core were accomplished by ionic-gelation technique. Effects of polymer-blend (alginate:GG) ratios and crosslinker (CaCl 2 ) concentrations on drug entrapment efficiency (DEE, %) and cumulative drug release after 8h (Q 8h , %) were studied to optimize the core matrices by a 3 2 factorial design. The optimized matrices (F-O) demonstrated DEE of 91.69±1.43% and Q 8h of 74.96±1.56% with minimum errors in prediction. The alginate-AG gel membrane enveloped optimized matrices (F-O, coated) exhibited superior buoyancy, better ex vivo mucoadhesion and slower drug release rate. The drug release profile of FLU-loaded uncoated and coated optimized matrices was best fitted in Korsmeyer-Peppas model with anomalous diffusion and case-II transport driven mechanism, respectively. The uncoated and coated matrices containing FLU were also characterized for drug-excipients compatibility, drug crystallinity, thermal behaviour and surface morphology. Thus, the newly developed alginate-AG gel membrane coated alginate-GG modified MMT composite matrices are appropriate for intragastric delivery of FLU over an extended period of time with improved therapeutic benefits. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Two highly similar DEAD box proteins, OsRH2 and OsRH34, homologous to eukaryotic initiation factor 4AIII, play roles of the exon junction complex in regulating growth and development in rice.

    PubMed

    Huang, Chun-Kai; Sie, Yi-Syuan; Chen, Yu-Fu; Huang, Tian-Sheng; Lu, Chung-An

    2016-04-12

    The exon junction complex (EJC), which contains four core components, eukaryotic initiation factor 4AIII (eIF4AIII), MAGO/NASHI (MAGO), Y14/Tsunagi/RNA-binding protein 8A, and Barentsz/Metastatic lymph node 51, is formed in both nucleus and cytoplasm, and plays important roles in gene expression. Genes encoding core EJC components have been found in plants, including rice. Currently, the functional characterizations of MAGO and Y14 homologs have been demonstrated in rice. However, it is still unknown whether eIF4AIII is essential for the functional EJC in rice. This study investigated two DEAD box RNA helicases, OsRH2 and OsRH34, which are homologous to eIF4AIII, in rice. Amino acid sequence analysis indicated that OsRH2 and OsRH34 had 99 % identity and 100 % similarity, and their gene expression patterns were similar in various rice tissues, but the level of OsRH2 mRNA was about 58-fold higher than that of OsRH34 mRNA in seedlings. From bimolecular fluorescence complementation results, OsRH2 and OsRH34 interacted physically with OsMAGO1 and OsY14b, respectively, which indicated that both of OsRH2 and OsRH34 were core components of the EJC in rice. To study the biological roles of OsRH2 and OsRH34 in rice, transgenic rice plants were generated by RNA interference. The phenotypes of three independent OsRH2 and OsRH34 double-knockdown transgenic lines included dwarfism, a short internode distance, reproductive delay, defective embryonic development, and a low seed setting rate. These phenotypes resembled those of mutants with gibberellin-related developmental defects. In addition, the OsRH2 and OsRH34 double-knockdown transgenic lines exhibited the accumulation of unspliced rice UNDEVELOPED TAPETUM 1 mRNA. Rice contains two eIF4AIII paralogous genes, OsRH2 and OsRH34. The abundance of OsRH2 mRNA was about 58-fold higher than that of OsRH34 mRNA in seedlings, suggesting that the OsRH2 is major eIF4AIII in rice. Both OsRH2 and OsRH34 are core components of the EJC, and participate in regulating of plant height, pollen, and seed development in rice.

  2. Protein coated gold nanoparticles as template for the directed synthesis of highly fluorescent gold nanoclusters

    NASA Astrophysics Data System (ADS)

    Zhang, Lingyan; Han, Fei

    2018-04-01

    Bovine serum albumin (BSA) modified gold nanoparticles (AuNPs) was selected as template for the synthesis of AuNPs@gold nanoclusters (AuNCs) core/shell nanoparticles, in which BSA not only acted as dual functions agent for both anchoring and reducing Au3+ ions, but also was employed as a bridge between the AuNPs and AuNCs. Optical properties of AuNPs@AuNCs core/shell nanoparticles were studied using UV-visible and fluorescence spectroscopy. The prepared AuNPs@AuNCs core/shell nanoparticles exhibited sphere size uniformity with improved monodispersity, excellent fluorescence and fluorescent stability. Compared with AuNCs, AuNPs@AuNCs core/shell nanoparticles possessed large size and strong fluorescence intensity due to the effect of AuNPs as core. Moreover, the mechanism of the AuNPs induced fluorescence changes of the core/shell nanoparticles was first explored.

  3. The Effect of Modifying the Traditional Public School Calendar on Student Achievement in English and Mathematics in Selected School Populations in Hawaii

    ERIC Educational Resources Information Center

    Anderson, John Albert

    2009-01-01

    This quasi-experimental study strives to ascertain whether the change from a public school traditional calendar to a modified or year-round calendar effects academic achievement in English and mathematics. The twelve public elementary schools, not U.S. Department of Defense schools, in the core of this research are identified only as serving…

  4. A New Method of Obtaining an n- p-Structure on the Basis of the Defective Semiconductor AgIn5S8

    NASA Astrophysics Data System (ADS)

    Guseinov, A. G.; Salmanov, V. M.; Mamedov, R. M.; Dzhabrailova, R.; Magomedov, A. Z.

    2018-02-01

    The type of electrical conductivity of A 1 B 3 5 C 6 8 semiconductor compounds with defective crystalline structure is modified by the influence of powerful laser radiation. It is shown that at certain power and wavelength of laser radiation acting on the single-crystal п-AgIn5S8, an area with the p-type of conductivity is formed in the irradiated region of the crystal. Current-voltage characteristics of homo-junctions created on the basis of n-AgIn5S8 are recorded.

  5. Highly sensitive and rapid detection of acetylcholine using an ITO plate modified with platinum-graphene nanoparticles.

    PubMed

    Chauhan, Nidhi; Narang, Jagriti; Jain, Utkarsh

    2015-03-21

    Determining the concentrations of acetylcholine (ACh) and choline (Ch) is clinically important. ACh is a neurotransmitter that acts as a key link in the communication between neurons in the spinal cord and in nerve skeletal junctions in vertebrates, and plays an important role in transmitting signals in the brain. A bienzymatic sensor for the detection of ACh was prepared by co-immobilizing choline oxidase (ChO) and acetylcholinesterase (AChE) on graphene matrix/platinum nanoparticles, and then electrodepositing them on an ITO-coated glass plate. Graphene nanoparticles were decorated with platinum nanoparticles and were electrodeposited on a modified ITO-coated glass plate to form a modified electrode. The modified electrode was characterized by scanning electron microscopy (SEM), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) studies. The optimum response of the enzyme electrode was obtained at pH 7.0 and 35 °C. The response time of this ACh-sensing system was shown to be 4 s. The linear range of responses to ACh was 0.005-700 μM. This biosensor exhibits excellent anti-interferential abilities and good stability, retaining 50% of its original current even after 4 months. It has been applied for the detection of ACh levels in human serum samples.

  6. Syntheses of the hexahydroindene cores of indanomycin and stawamycin by combinations of iridium-catalyzed asymmetric allylic alkylations and intramolecular Diels-Alder reactions.

    PubMed

    Gärtner, Martin; Satyanarayana, Gedu; Förster, Sebastian; Helmchen, Günter

    2013-01-02

    Short and concise syntheses of the hexahydroindene cores of the antibiotics indanomycin (X-14547 A) and stawamycin are presented. Key methods used are an asymmetric iridium-catalyzed allylic alkylation, a modified Julia olefination, a Suzuki-Miyaura coupling, and an intramolecular Diels-Alder reaction. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. A sensitive glucose biosensor based on Ag@C core-shell matrix.

    PubMed

    Zhou, Xuan; Dai, Xingxin; Li, Jianguo; Long, Yumei; Li, Weifeng; Tu, Yifeng

    2015-04-01

    Nano-Ag particles were coated with colloidal carbon (Ag@C) to improve its biocompatibility and chemical stability for the preparation of biosensor. The core-shell structure was evidenced by transmission electron microscope (TEM) and the Fourier transfer infrared (FTIR) spectra revealed that the carbon shell is rich of function groups such as -OH and -COOH. The as-prepared Ag@C core-shell structure can offer favorable microenvironment for immobilizing glucose oxidase and the direct electrochemistry process of glucose oxidase (GOD) at Ag@C modified glassy carbon electrode (GCE) was realized. The modified electrode exhibited good response to glucose. Under optimum experimental conditions the biosensor linearly responded to glucose concentration in the range of 0.05-2.5mM, with a detection limit of 0.02mM (S/N=3). The apparent Michaelis-Menten constant (KM(app)) of the biosensor is calculated to be 1.7mM, suggesting high enzymatic activity and affinity toward glucose. In addition, the GOD-Ag@C/Nafion/GCE shows good reproducibility and long-term stability. These results suggested that core-shell structured Ag@C is an ideal matrix for the immobilization of the redox enzymes and further the construction of the sensitive enzyme biosensor. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Simple and efficient synthesis of copper(II)-modified uniform magnetic Fe3O4@SiO2 core/shell microspheres for immobilization of cellulase

    NASA Astrophysics Data System (ADS)

    Li, Shi-Kuo; Hou, Xiao-Cheng; Huang, Fang-Zhi; Li, Chuan-Hao; Kang, Wen-Juan; Xie, An-Jian; Shen, Yu-Hua

    2013-11-01

    In this paper, we reported a simple and efficient protocol for preparation of Cu2+-modified magnetic Fe3O4@SiO2 core/shell microspheres for immobilization of cellulase. The uniform magnetic Fe3O4@SiO2 core/shell microspheres with a thin shell of 20 nm were synthesized through a solvothermal method followed by a sol-gel process. An amino-terminated silane coupling agent of (3-aminopropyl)triethoxysilane (APTS) was then grafted on them for capturing Cu2+ ions. The reaction process is very simple, efficient, and economical. Noticeably, the content of Cu2+ ions on the magnetic core/shell microspheres can reach 4.6 Wt%, endowing them possess as high immobilization capacity as 225.5 mg/g for cellulase. And the immobilized cellulase can be retained over 90 % on the magnetic microspheres after six cycles. Meanwhile, the magnetic microspheres decorated with Cu2+ ions show a superparamagnetic character with a high magnetic saturation of 58.5 emu/g at room temperature, suggesting conveniently and rapidly recycle the enzyme from solution. This facile, recyclable, high immobilization capacity and activity strategy may find potential applications in enzyme catalytic reactions with low cost.

  9. Using a Delphi process to establish consensus on emergency medicine clerkship competencies.

    PubMed

    Penciner, Rick; Langhan, Trevor; Lee, Richard; McEwen, Jill; Woods, Robert A; Bandiera, Glen

    2011-01-01

    Currently, there is no consensus on the core competencies required for emergency medicine (EM) clerkships in Canada. Existing EM curricula have been developed through informal consensus or local efforts. The Delphi process has been used extensively as a means for establishing consensus. The purpose of this project was to define core competencies for EM clerkships in Canada, to validate a Delphi process in the context of national curriculum development, and to demonstrate the adoption of the CanMEDS physician competency paradigm in the undergraduate medical education realm. Using a modified Delphi process, we developed a consensus amongst a panel of expert emergency physicians from across Canada utilizing the CanMEDS 2005 Physician Competency Framework. Thirty experts from nine different medical schools across Canada participated on the panel. The initial list consisted of 152 competencies organized in the seven domains of the CanMEDS 2005 Physician Competency Framework. After the second round of the Delphi process, the list of competencies was reduced to 62 (59% reduction). This study demonstrated that a modified Delphi process can result in a strong consensus around a realistic number of core competencies for EM clerkships. We propose that such a method could be used by other medical specialties and health professions to develop rotation-specific core competencies.

  10. Modifying the size and uniformity of upconversion Yb/Er:NaGdF4 nanocrystals through alkaline-earth doping.

    PubMed

    Lei, Lei; Chen, Daqin; Huang, Ping; Xu, Ju; Zhang, Rui; Wang, Yuansheng

    2013-11-21

    NaGdF4 is regarded as an ideal upconversion (UC) host material for lanthanide (Ln(3+)) activators because of its unique crystal structure, high Ln(3+) solubility, low phonon energy and high photochemical stability, and Ln(3+)-doped NaGdF4 UC nanocrystals (NCs) have been widely investigated as bio-imaging and magnetic resonance imaging agents recently. To realize their practical applications, controlling the size and uniformity of the monodisperse Ln(3+)-doped NaGdF4 UC NCs is highly desired. Unlike the routine routes by finely adjusting the multiple experimental parameters, herein we provide a facile and straightforward strategy to modify the size and uniformity of NaGdF4 NCs via alkaline-earth doping for the first time. With the increase of alkaline-earth doping content, the size of NaGdF4 NCs increases gradually, while the size-uniformity is still retained. We attribute this "focusing" of size distribution to the diffusion controlled growth of NaGdF4 NCs induced by alkaline-earth doping. Importantly, adopting the Ca(2+)-doped Yb/Er:NaGdF4 NCs as cores, the complete Ca/Yb/Er:NaGdF4@NaYF4 core-shell particles with excellent size-uniformity can be easily achieved. However, when taking the Yb/Er:NaGdF4 NCs without Ca(2+) doping as cores, they could not be perfectly covered by NaYF4 shells, and the obtained products are non-uniform in size. As a result, the UC emission intensity of the complete core-shell NCs increases by about 30 times in comparison with that of the cores, owing to the effective surface passivation of the Ca(2+)-doped cores and therefore protection of Er(3+) in the cores from the non-radiative decay caused by surface defects, whereas the UC intensity of the incomplete core-shell NCs is enhanced by only 3 times.

  11. Three-junction solar cell

    DOEpatents

    Ludowise, Michael J.

    1986-01-01

    A photovoltaic solar cell is formed in a monolithic semiconductor. The cell contains three junctions. In sequence from the light-entering face, the junctions have a high, a medium, and a low energy gap. The lower junctions are connected in series by one or more metallic members connecting the top of the lower junction through apertures to the bottom of the middle junction. The upper junction is connected in voltage opposition to the lower and middle junctions by second metallic electrodes deposited in holes 60 through the upper junction. The second electrodes are connected to an external terminal.

  12. The Amateur Scientist.

    ERIC Educational Resources Information Center

    Walker, Jearl

    1980-01-01

    Describes an inexpensive apparatus for the detection of gravity waves traveling through the ionosphere. The detector consists of a modified transistor radio with a ferrite-core antenna. Numerous diagrams accompany a lengthy description. (CS)

  13. Lateral view dissection of the prostato-urethral junction to reduce positive apical margin in laparoscopic radical prostatectomy.

    PubMed

    Sasaki, Hiroshi; Miki, Jun; Kimura, Takahiro; Sanuki, Kunitaro; Miki, Kenta; Takahashi, Hiroyuki; Egawa, Shin

    2009-08-01

    To assess the impact of lateral view apical dissection in laparoscopic radical prostatectomy (LRP) on the reduction of positive surgical margin rates and recovery of postoperative continence. One hundred and forty-four consecutive patients underwent LRP from October 2004 to March 2008. Lateral view dissection of the prostato-urethral junction was conducted in 76 of them (Group 2). Standard dissection was used in the remaining patients (Group 1). The effect of this technical modification on the reduction of positive surgical margin rates and postoperative recovery of urinary continence was assessed in the two groups. Overall, the incidence of positive margins decreased from 23 (35.9%) in Group 1 to 16 cases (21.9%) in Group 2 (P = 0.07). Positive margin rates in pT2 decreased from 30.6% to 6.5% (P = 0.006). Apical and dorso-apical margins were reduced from 26.5% to 4.3% (P = 0.009) and from 10.2% to 0% (P < 0.001), respectively. Postoperative recovery of urinary continence improved significantly, with a pad-free rate over the first 3 months of 55.9% in Group 1 vs 71.7% in Group 2 (P = 0.01). Multivariate logistic regression analysis showed this modified surgical technique to predict a lower rate of positive margins. Lateral view dissection of the prostato-urethral junction is an easily applicable technical modification. It provides better visualization of apical anatomy substantially contributing to the reduction of positive surgical margin rates, especially at the level of prostatic apex.

  14. The macrophage cytoskeleton acts as a contact sensor upon interaction with Entamoeba histolytica to trigger IL-1β secretion

    PubMed Central

    Moreau, France; Gorman, Hayley

    2017-01-01

    Entamoeba histolytica (Eh) is the causative agent of amebiasis, one of the major causes of dysentery-related morbidity worldwide. Recent studies have underlined the importance of the intercellular junction between Eh and host cells as a determinant in the pathogenesis of amebiasis. Despite the fact that direct contact and ligation between Eh surface Gal-lectin and EhCP-A5 with macrophage α5β1 integrin are absolute requirements for NLRP3 inflammasome activation and IL-1β release, many other undefined molecular events and downstream signaling occur at the interface of Eh and macrophage. In this study, we investigated the molecular events at the intercellular junction that lead to recognition of Eh through modulation of the macrophage cytoskeleton. Upon Eh contact with macrophages key cytoskeletal-associated proteins were rapidly post-translationally modified only with live Eh but not with soluble Eh proteins or fragments. Eh ligation with macrophages rapidly activated caspase-6 dependent cleavage of the cytoskeletal proteins talin, Pyk2 and paxillin and caused robust release of the pro-inflammatory cytokine, IL-1β. Macrophage cytoskeletal cleavages were dependent on Eh cysteine proteinases EhCP-A1 and EhCP-A4 but not EhCP-A5 based on pharmacological blockade of Eh enzyme inhibitors and EhCP-A5 deficient parasites. These results unravel a model where the intercellular junction between macrophages and Eh form an area of highly interacting proteins that implicate the macrophage cytoskeleton as a sensor for Eh contact that leads downstream to subsequent inflammatory immune responses. PMID:28837696

  15. DLG1 is an anchor for the E3 ligase MARCH2 at sites of cell-cell contact

    PubMed Central

    Cao, Zhifang; Huett, Alan; Kuballa, Petric; Giallourakis, Cosmas; Xavier, Ramnik J.

    2008-01-01

    PDZ domain containing molecular scaffolds play a central role in organizing synaptic junctions. Observations in Drosophila and mammalian cells have implicated that ubiquitination and endosomal trafficking, of molecular scaffolds are critical to the development and maintenance of cell-cell junctions and cell polarity. To elucidate if there is a connection between these pathways, we applied an integrative genomic strategy, which combined comparative genomics and proteomics with cell biological assays. Given the importance of ubiquitin in regulating endocytic processes, we first identified the subset of E3 ligases with conserved PDZ binding motifs. Among this subset, the MARCH family ubiquitin ligases account for the largest family and MARCH2 has been previously implicated in endosomal trafficking. Next, we tested in an unbiased fashion, if MARCH2 binds PDZ proteins in vivo using a modified tandem affinity purification strategy followed by mass spectrometry. Of note, DLG1 was co-purified from MARCH2, with subsequent confirmation that MARCH2 interacts with full-length DLG1 in a PDZ domain dependent manner. Furthermore, we demonstrated that MARCH2 co-localized with DLG1 at sites of cell-cell contact. In addition, loss of the MARCH2 PDZ binding motif led to loss of MARCH2 localization at cell-cell contact sites and MARCH2 appeared to localize away from cell-cell junctions. In in vivo ubiquitination assays we show that MARCH2 promotes DLG1 ubiquitination Overall, these results suggest that PDZ ligands with E3 ligase activity may link PDZ domain containing tumor suppressors to endocytic pathways and cell polarity determination. PMID:17980554

  16. A novel coating concept for ileo-colonic drug targeting: proof of concept in humans using scintigraphy.

    PubMed

    Varum, F J O; Hatton, G B; Freire, A C; Basit, A W

    2013-08-01

    The in vivo proof of concept of a novel double-coating system, based on enteric polymers, which accelerated drug release in the ileo-colonic region, was investigated in humans. Prednisolone tablets were coated with a double-coating formulation by applying an inner layer composed of EUDRAGIT S neutralised to pH 8.0 and a buffer salt (10% KH₂PO₄), which was overcoated with layer of standard EUDRAGIT S organic solution. For comparison, a single coating system was produced by applying the same amount of EUDRAGIT S organic solution on the tablet cores. Dissolution tests on the tablets were carried out using USP II apparatus in 0.1N HCl for 2 h and subsequently in pH 7.4 Krebs bicarbonate buffer. For comparison, tablets were also tested under the USP method established for modified release mesalamine formulations. Ten fasted volunteers received the double-coated and single-coated tablets in a two-way crossover study. The formulations were radiolabelled and followed by gamma scintigraphy; the disintegration times and positions were recorded. There was no drug release from the single-coated or double-coated tablets in 0.1N HCl for 2h. The single-coated tablets showed slow release in subsequent Krebs bicarbonate buffer with a lag time of 120 min, while in contrast drug release from the double-coated tablets was initiated at 60 min. In contrast, using the USP dissolution method, normally employed for modified release mesalamine products, no discrimination was attained. The in vivo disintegration of the single-coated EUDRAGIT S tablets in the large intestine was erratic. Furthermore, in 2 volunteers, the single-coated tablet was voided intact. Double-coated tablets disintegrated in a more consistent way, mainly in the ileo-caecal junction or terminal ileum. The accelerated in vivo disintegration of the double-coating EUDRAGIT S system can overcome the limitations of conventional enteric coatings targeting the colon and avoid the pass-through of intact tablets. Moreover, Krebs bicarbonate buffer has the ability to discriminate between formulations designed to target the ileo-colonic region. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Plasma current start-up by the outer ohmic heating coils in the Saskatchewan TORus Modified (STOR-M) iron core tokamak

    DOE PAGES

    Mitarai, O.; Xiao, C.; McColl, D.; ...

    2015-03-24

    A plasma current up to 15 kA has been driven with outer ohmic heating (OH) coils in the STOR-M iron core tokamak. Even when the inner OH coil is disconnected, the outer OH coils alone can induce the plasma current as primary windings and initial breakdown are even easier in this coil layout. Our results suggest a possibility to use an iron core in a spherical tokamak to start up the plasma current without a central solenoid. Finally, the effect of the iron core saturation on the extension of the discharge pulse length has been estimated for further experiments inmore » the STOR-M tokamak.« less

  18. Plasma current start-up by the outer ohmic heating coils in the Saskatchewan TORus Modified (STOR-M) iron core tokamak

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitarai, O.; Xiao, C.; McColl, D.

    A plasma current up to 15 kA has been driven with outer ohmic heating (OH) coils in the STOR-M iron core tokamak. Even when the inner OH coil is disconnected, the outer OH coils alone can induce the plasma current as primary windings and initial breakdown are even easier in this coil layout. Our results suggest a possibility to use an iron core in a spherical tokamak to start up the plasma current without a central solenoid. Finally, the effect of the iron core saturation on the extension of the discharge pulse length has been estimated for further experiments inmore » the STOR-M tokamak.« less

  19. Evaluation of a conditioning method to improve core-veneer bond strength of zirconia restorations.

    PubMed

    Teng, Jili; Wang, Hang; Liao, Yunmao; Liang, Xing

    2012-06-01

    The high strength and fracture toughness of zirconia have supported its extensive application in esthetic dentistry. However, the fracturing of veneering porcelains remains one of the primary causes of failure. The purpose of this study was to evaluate, with shear bond strength testing, the effect of a simple and novel surface conditioning method on the core-veneer bond strength of a zirconia ceramic system. The shear bond strength of a zirconia core ceramic to the corresponding veneering porcelain was tested by the Schmitz-Schulmeyer method. Thirty zirconia core specimens (10 × 5 × 5 mm) were layered with a veneering porcelain (5 × 3 × 3 mm). Three different surface conditioning methods were evaluated: polishing with up to 1200 grit silicon carbide paper under water cooling, airborne-particle abrasion with 110 μm alumina particles, and modification with zirconia powder coating before sintering. A metal ceramic system was used as a control group. All specimens were subjected to shear force in a universal testing machine at a crosshead speed of 0.5 mm/min. The shear bond strength values were analyzed with 1-way ANOVA and Tukey's post hoc pairwise comparisons (α=.05). The fractured specimens were examined with a scanning electron microscope to observe the failure mode. The mean (SD) shear bond strength values in MPa were 47.02 (6.4) for modified zirconia, 36.66 (8.6) for polished zirconia, 39.14 (6.5) for airborne-particle-abraded zirconia, and 46.12 (7.1) for the control group. The mean bond strength of the control (P=.028) and modified zirconia groups (P=.014) was significantly higher than that of the polished zirconia group. The airborne-particle-abraded group was not significantly different from any other group. Scanning electron microscopy evaluation showed that cohesive fracture in the veneering porcelain was the predominant failure mode of modified zirconia, while the other groups principally fractured at the interface. Modifying the zirconia surface with powder coating could significantly increase the shear bond strength of zirconia to veneering porcelain. Copyright © 2012 The Editorial Council of the Journal of Prosthetic Dentistry. Published by Mosby, Inc. All rights reserved.

  20. The use of polyimide-modified aluminum nitride fillers in AlN@PI/Epoxy composites with enhanced thermal conductivity for electronic encapsulation

    PubMed Central

    Zhou, Yongcun; Yao, Yagang; Chen, Chia-Yun; Moon, Kyoungsik; Wang, Hong; Wong, Ching-ping

    2014-01-01

    Polymer modified fillers in composites has attracted the attention of numerous researchers. These fillers are composed of core-shell structures that exhibit enhanced physical and chemical properties that are associated with shell surface control and encapsulated core materials. In this study, we have described an apt method to prepare polyimide (PI)-modified aluminum nitride (AlN) fillers, AlN@PI. These fillers are used for electronic encapsulation in high performance polymer composites. Compared with that of untreated AlN composite, these AlN@PI/epoxy composites exhibit better thermal and dielectric properties. At 40 wt% of filler loading, the highest thermal conductivity of AlN@PI/epoxy composite reached 2.03 W/mK. In this way, the thermal conductivity is approximately enhanced by 10.6 times than that of the used epoxy matrix. The experimental results exhibiting the thermal conductivity of AlN@PI/epoxy composites were in good agreement with the values calculated from the parallel conduction model. This research work describes an effective pathway that modifies the surface of fillers with polymer coating. Furthermore, this novel technique improves the thermal and dielectric properties of fillers and these can be used extensively for electronic packaging applications. PMID:24759082

  1. Supramolecular Systems and Chemical Reactions in Single-Molecule Break Junctions.

    PubMed

    Li, Xiaohui; Hu, Duan; Tan, Zhibing; Bai, Jie; Xiao, Zongyuan; Yang, Yang; Shi, Jia; Hong, Wenjing

    2017-04-01

    The major challenges of molecular electronics are the understanding and manipulation of the electron transport through the single-molecule junction. With the single-molecule break junction techniques, including scanning tunneling microscope break junction technique and mechanically controllable break junction technique, the charge transport through various single-molecule and supramolecular junctions has been studied during the dynamic fabrication and continuous characterization of molecular junctions. This review starts from the charge transport characterization of supramolecular junctions through a variety of noncovalent interactions, such as hydrogen bond, π-π interaction, and electrostatic force. We further review the recent progress in constructing highly conductive molecular junctions via chemical reactions, the response of molecular junctions to external stimuli, as well as the application of break junction techniques in controlling and monitoring chemical reactions in situ. We suggest that beyond the measurement of single molecular conductance, the single-molecule break junction techniques provide a promising access to study molecular assembly and chemical reactions at the single-molecule scale.

  2. Different Timing Features in Brain Processing of Core and Moral Disgust Pictures: An Event-Related Potentials Study

    PubMed Central

    Zhang, Youxue; Lou, Liandi; Ding, Daoqun

    2015-01-01

    Disgust, an emotion motivating withdrawal from offensive stimuli, protects us from the risk of biological pathogens and sociomoral violations. Homogeneity of its two types, namely, core and moral disgust has been under intensive debate. To examine the dynamic relationship between them, we recorded event-related potentials (ERPs) for core disgust, moral disgust and neutral pictures while participants performed a modified oddball task. ERP analysis revealed that N1 and P2 amplitudes were largest for the core disgust pictures, indicating automatic processing of the core disgust-evoking pictures. N2 amplitudes were higher for pictures evoking moral disgust relative to core disgust and neutral pictures, reflecting a violation of social norms. The core disgust pictures elicited larger P3 and late positive potential (LPP) amplitudes in comparison with the moral disgust pictures which, in turn, elicited larger P3 and LPP amplitudes when compared to the neutral pictures. Taken together, these findings indicated that core and moral disgust pictures elicited different neural activities at various stages of information processing, which provided supporting evidence for the heterogeneity of disgust. PMID:26011635

  3. Different timing features in brain processing of core and moral disgust pictures: an event-related potentials study.

    PubMed

    Zhang, Xiangyi; Guo, Qi; Zhang, Youxue; Lou, Liandi; Ding, Daoqun

    2015-01-01

    Disgust, an emotion motivating withdrawal from offensive stimuli, protects us from the risk of biological pathogens and sociomoral violations. Homogeneity of its two types, namely, core and moral disgust has been under intensive debate. To examine the dynamic relationship between them, we recorded event-related potentials (ERPs) for core disgust, moral disgust and neutral pictures while participants performed a modified oddball task. ERP analysis revealed that N1 and P2 amplitudes were largest for the core disgust pictures, indicating automatic processing of the core disgust-evoking pictures. N2 amplitudes were higher for pictures evoking moral disgust relative to core disgust and neutral pictures, reflecting a violation of social norms. The core disgust pictures elicited larger P3 and late positive potential (LPP) amplitudes in comparison with the moral disgust pictures which, in turn, elicited larger P3 and LPP amplitudes when compared to the neutral pictures. Taken together, these findings indicated that core and moral disgust pictures elicited different neural activities at various stages of information processing, which provided supporting evidence for the heterogeneity of disgust.

  4. Core Domains for Clinical Research in Acute Respiratory Failure Survivors: An International Modified Delphi Consensus Study.

    PubMed

    Turnbull, Alison E; Sepulveda, Kristin A; Dinglas, Victor D; Chessare, Caroline M; Bingham, Clifton O; Needham, Dale M

    2017-06-01

    To identify the "core domains" (i.e., patient outcomes, health-related conditions, or aspects of health) that relevant stakeholders agree are essential to assess in all clinical research studies evaluating the outcomes of acute respiratory failure survivors after hospital discharge. A two-round consensus process, using a modified Delphi methodology, with participants from 16 countries, including patient and caregiver representatives. Prior to voting, participants were asked to review 1) results from surveys of clinical researchers, acute respiratory failure survivors, and caregivers that rated the importance of 19 preliminary outcome domains and 2) results from a qualitative study of acute respiratory failure survivors' outcomes after hospital discharge, as related to the 19 preliminary outcome domains. Participants also were asked to suggest any additional potential domains for evaluation in the first Delphi survey. Web-based surveys of participants representing four stakeholder groups relevant to clinical research evaluating postdischarge outcomes of acute respiratory failure survivors: clinical researchers, clinicians, patients and caregivers, and U.S. federal research funding organizations. None. None. Survey response rates were 97% and 99% in round 1 and round 2, respectively. There were seven domains that met the a priori consensus criteria to be designated as core domains: physical function, cognition, mental health, survival, pulmonary function, pain, and muscle and/or nerve function. This study generated a consensus-based list of core domains that should be assessed in all clinical research studies evaluating acute respiratory failure survivors after hospital discharge. Identifying appropriate measurement instruments to assess these core domains is an important next step toward developing a set of core outcome measures for this field of research.

  5. Monolithic multi-color light emission/detection device

    DOEpatents

    Wanlass, Mark W.

    1995-01-01

    A single-crystal, monolithic, tandem, multi-color optical transceiver device is described, including (a) an InP substrate having upper and lower surfaces, (b) a first junction on the upper surface of the InP substrate, (c) a second junction on the first junction. The first junction is preferably GaInAsP of defined composition, and the second junction is preferably InP. The two junctions are lattice matched. The second junction has a larger energy band gap than the first junction. Additional junctions having successively larger energy band gaps may be included. The device is capable of simultaneous and distinct multi-color emission and detection over a single optical fiber.

  6. Validation of modified forms of the PedsQL generic core scales and cancer module scales for adolescents and young adults (AYA) with cancer or a blood disorder.

    PubMed

    Ewing, Jane E; King, Madeleine T; Smith, Narelle F

    2009-03-01

    To validate two health-related quality of life (HRQOL) measures, the PedsQL Generic Core and Cancer Module adolescent forms (13-18 years), after modification for 16-25-year-old adolescents and young adults (AYA) with cancer or a blood disorder. AYA patients and nominated proxies were recruited from three Sydney hospitals. Modified forms were administered by telephone or in clinics/wards. Analyses included correlations, factor analysis, and analysis of variance of known-groups (defined by the Memorial Symptom Assessment Scale). Eighty-eight patients and 79 proxies completed questionnaires. Factor structures consistent with those of the unmodified forms confirmed construct validity. Cronbach's alpha ranged 0.81-0.98. Inter-scale correlations were as hypothesized, confirming discriminant validity. Statistically significant differences between groups with mild, moderate, and severe symptoms (P < 0.05) confirmed clinical validity. These modified forms provide reliable and valid measures of HRQOL in AYA with cancer or a blood disorder, suitable for clinical trials, research, and practice.

  7. Electronic thermometry in tunable tunnel junction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maksymovych, Petro

    A tunable tunnel junction thermometry circuit includes a variable width tunnel junction between a test object and a probe. The junction width is varied and a change in thermovoltage across the junction with respect to the change in distance across the junction is determined. Also, a change in biased current with respect to a change in distance across the junction is determined. A temperature gradient across the junction is determined based on a mathematical relationship between the temperature gradient, the change in thermovoltage with respect to distance and the change in biased current with respect to distance. Thermovoltage may bemore » measured by nullifying a thermoelectric tunneling current with an applied voltage supply level. A piezoelectric actuator may modulate the probe, and thus the junction width, to vary thermovoltage and biased current across the junction. Lock-in amplifiers measure the derivatives of the thermovoltage and biased current modulated by varying junction width.« less

  8. Thiolated chitosan-modified PLA-PCL-TPGS nanoparticles for oral chemotherapy of lung cancer

    NASA Astrophysics Data System (ADS)

    Jiang, Liqin; Li, Xuemin; Liu, Lingrong; Zhang, Qiqing

    2013-02-01

    Oral chemotherapy is a key step towards `chemotherapy at home', a dream of cancer patients, which will radically change the clinical practice of chemotherapy and greatly improve the quality of life of the patients. In this research, three types of nanoparticle formulation from commercial PCL and self-synthesized d-α-tocopheryl polyethylene glycol 1000 succinate (PLA-PCL-TPGS) random copolymer were prepared in this research for oral delivery of antitumor agents, including thiolated chitosan-modified PCL nanoparticles, unmodified PLA-PCL-TPGS nanoparticles, and thiolated chitosan-modified PLA-PCL-TPGS nanoparticles. Firstly, the PLA-PCL-TPGS random copolymer was synthesized and characterized. Thiolated chitosan greatly increases its mucoadhesiveness and permeation properties, thus increasing the chances of nanoparticle uptake by the gastrointestinal mucosa and improving drug absorption. The PLA-PCL-TPGS nanoparticles were found by FESEM that they are of spherical shape and around 200 nm in diameter. The surface charge of PLA-PCL-TPGS nanoparticles was reversed from anionic to cationic after thiolated chitosan modification. The thiolated chitosan-modified PLA-PCL-TPGS nanoparticles have significantly higher level of the cell uptake than that of thiolated chitosan-modified PLGA nanoparticles and unmodified PLA-PCL-TPGS nanoparticles. In vitro cell viability studies showed advantages of the thiolated chitosan-modified PLA-PCL-TPGS nanoparticles over Taxol® in terms of cytotoxicity against A549 cells. It seems that the mucoadhesive nanoparticles can increase paclitaxel transport by opening tight junctions and bypassing the efflux pump of P-glycoprotein. In conclusion, PLA-PCL-TPGS nanoparticles modified by thiolated chitosan could enhance the cellular uptake and cytotoxicity, which revealed a potential application for oral chemotherapy of lung cancer.

  9. Thiolated chitosan-modified PLA-PCL-TPGS nanoparticles for oral chemotherapy of lung cancer

    PubMed Central

    2013-01-01

    Oral chemotherapy is a key step towards ‘chemotherapy at home’, a dream of cancer patients, which will radically change the clinical practice of chemotherapy and greatly improve the quality of life of the patients. In this research, three types of nanoparticle formulation from commercial PCL and self-synthesized d-α-tocopheryl polyethylene glycol 1000 succinate (PLA-PCL-TPGS) random copolymer were prepared in this research for oral delivery of antitumor agents, including thiolated chitosan-modified PCL nanoparticles, unmodified PLA-PCL-TPGS nanoparticles, and thiolated chitosan-modified PLA-PCL-TPGS nanoparticles. Firstly, the PLA-PCL-TPGS random copolymer was synthesized and characterized. Thiolated chitosan greatly increases its mucoadhesiveness and permeation properties, thus increasing the chances of nanoparticle uptake by the gastrointestinal mucosa and improving drug absorption. The PLA-PCL-TPGS nanoparticles were found by FESEM that they are of spherical shape and around 200 nm in diameter. The surface charge of PLA-PCL-TPGS nanoparticles was reversed from anionic to cationic after thiolated chitosan modification. The thiolated chitosan-modified PLA-PCL-TPGS nanoparticles have significantly higher level of the cell uptake than that of thiolated chitosan-modified PLGA nanoparticles and unmodified PLA-PCL-TPGS nanoparticles. In vitro cell viability studies showed advantages of the thiolated chitosan-modified PLA-PCL-TPGS nanoparticles over Taxol® in terms of cytotoxicity against A549 cells. It seems that the mucoadhesive nanoparticles can increase paclitaxel transport by opening tight junctions and bypassing the efflux pump of P-glycoprotein. In conclusion, PLA-PCL-TPGS nanoparticles modified by thiolated chitosan could enhance the cellular uptake and cytotoxicity, which revealed a potential application for oral chemotherapy of lung cancer. PMID:23394588

  10. Implicit and explicit social mentalizing: dual processes driven by a shared neural network

    PubMed Central

    Van Overwalle, Frank; Vandekerckhove, Marie

    2013-01-01

    Recent social neuroscientific evidence indicates that implicit and explicit inferences on the mind of another person (i.e., intentions, attributions or traits), are subserved by a shared mentalizing network. Under both implicit and explicit instructions, ERP studies reveal that early inferences occur at about the same time, and fMRI studies demonstrate an overlap in core mentalizing areas, including the temporo-parietal junction (TPJ) and the medial prefrontal cortex (mPFC). These results suggest a rapid shared implicit intuition followed by a slower explicit verification processes (as revealed by additional brain activation during explicit vs. implicit inferences). These data provide support for a default-adjustment dual-process framework of social mentalizing. PMID:24062663

  11. Electronic interaction and bipolar resistive switching in copper oxide-multilayer graphene hybrid interface: Graphene as an oxygen ion storage and blocking layer

    NASA Astrophysics Data System (ADS)

    Singh, Bharti; Mehta, B. R.; Govind, Feng, X.; Müllen, Klaus

    2011-11-01

    This study reports a bipolar resistive switching device based on copper oxide (CuO)-multilayer graphene (MLG) hybrid interface in complete contrast to the ohmic and rectifying characteristics of junctions based on individual MLG and CuO layers. The observed shift and the occurrence of additional O1s, Cu2p, and C1s core level peaks indicate electronic interaction at the hybrid interfacial layer. Large changes in the resistive switching parameters on changing the ambient conditions from air to vacuum establish the important role of MLG as oxygen ion storage and blocking layer towards the observed resistive switching effect.

  12. Gap junctions contain different amounts of cholesterol which undergo unique sequestering processes during fiber cell differentiation in the embryonic chicken lens.

    PubMed

    Biswas, Sondip K; Lo, Woo-Kuen

    2007-03-09

    To determine the possible changes in the distribution of cholesterol in gap junction plaques during fiber cell differentiation and maturation in the embryonic chicken lens. The possible mechanism by which cholesterol is removed from gap junction plaques is also investigated. Filipin cytochemistry in conjunction with freeze-fracture TEM was used to visualize cholesterol, as represented by filipin-cholesterol complexes (FCCs) in gap junction plaques. Quantitative analysis on the heterogeneous distribution of cholesterol in gap junction plaques was conducted from outer and inner cortical regions. A novel technique combining filipin cytochemistry with freeze-fracture replica immunogold labeling (FRIL) was used to label Cx45.6 and Cx56 antibodies in cholesterol-containing gap junctions. Filipin cytochemistry and freeze-fracture TEM and thin-section TEM were used to examine the appearance and nature of the cholesterol-containing vesicular structures associated with gap junction plaques. Chicken lens fibers contain cholesterol-rich, cholesterol-intermediate and cholesterol-free gap junction populations in both outer and inner cortical regions. Filipin cytochemistry and FRIL studies confirmed that cholesterol-containing junctions were gap junctions. Quantitative analysis showed that approximately 86% of gap junctions in the outer cortical zone were cholesterol-rich gap junctions, whereas approximately 81% of gap junctions in the inner cortical zone were cholesterol-free gap junctions. A number of pleiomorphic cholesterol-rich vesicles of varying sizes were often observed in the gap junction plaques. They appear to be involved in the removal of cholesterol from gap junction plaques through endocytosis. Gap junctions in the young fibers are enriched with cholesterol because they are assembled in the unique cholesterol-rich cell membranes in the lens. A majority of cholesterol-rich gap junctions in the outer young fibers are transformed into cholesterol-free ones in the inner mature fibers during fiber cell maturation. A distinct endocytotic process appears to be involved in removing cholesterol from the cholesterol-containing gap junctions, and it may play a major role in the transformation of cholesterol-rich gap junctions into cholesterol-free ones during fiber cell maturation.

  13. Monolithic multi-color light emission/detection device

    DOEpatents

    Wanlass, M.W.

    1995-02-21

    A single-crystal, monolithic, tandem, multi-color optical transceiver device is described, including (a) an InP substrate having upper and lower surfaces, (b) a first junction on the upper surface of the InP substrate, (c) a second junction on the first junction. The first junction is preferably GaInAsP of defined composition, and the second junction is preferably InP. The two junctions are lattice matched. The second junction has a larger energy band gap than the first junction. Additional junctions having successively larger energy band gaps may be included. The device is capable of simultaneous and distinct multi-color emission and detection over a single optical fiber. 5 figs.

  14. Light pollution modifies the expression of daily rhythms and behavior patterns in a nocturnal primate.

    PubMed

    Le Tallec, Thomas; Perret, Martine; Théry, Marc

    2013-01-01

    Among anthropogenic pressures, light pollution altering light/dark cycles and changing the nocturnal component of the environment constitutes a threat for biodiversity. Light pollution is widely spread across the world and continuously growing. However, despite the efforts realized to describe and understand the effects of artificial lighting on fauna, few studies have documented its consequences on biological rhythms, behavioral and physiological functions in nocturnal mammals. To determine the impacts of light pollution on nocturnal mammals an experimental study was conducted on a nocturnal primate, the grey mouse lemur Microcebus murinus. Male mouse lemurs (N = 8) were exposed 14 nights to moonlight treatment and then exposed 14 nights to light pollution treatment. For both treatments, chronobiological parameters related to locomotor activity and core temperature were recorded using telemetric transmitters. In addition, at the end of each treatment, the 14(th) night, nocturnal and feeding behaviors were explored using an infrared camera. Finally, throughout the study, body mass and daily caloric food intake were recorded. For the first time in a nocturnal primate, light pollution was demonstrated to modify daily rhythms of locomotor activity and core temperature especially through phase delays and increases in core temperature. Moreover, nocturnal activity and feeding behaviors patterns were modified negatively. This study suggests that light pollution induces daily desynchronization of biological rhythms and could lead to seasonal desynchronization with potential deleterious consequences for animals in terms of adaptation and anticipation of environmental changes.

  15. Light Pollution Modifies the Expression of Daily Rhythms and Behavior Patterns in a Nocturnal Primate

    PubMed Central

    Le Tallec, Thomas; Perret, Martine; Théry, Marc

    2013-01-01

    Among anthropogenic pressures, light pollution altering light/dark cycles and changing the nocturnal component of the environment constitutes a threat for biodiversity. Light pollution is widely spread across the world and continuously growing. However, despite the efforts realized to describe and understand the effects of artificial lighting on fauna, few studies have documented its consequences on biological rhythms, behavioral and physiological functions in nocturnal mammals. To determine the impacts of light pollution on nocturnal mammals an experimental study was conducted on a nocturnal primate, the grey mouse lemur Microcebus murinus. Male mouse lemurs (N = 8) were exposed 14 nights to moonlight treatment and then exposed 14 nights to light pollution treatment. For both treatments, chronobiological parameters related to locomotor activity and core temperature were recorded using telemetric transmitters. In addition, at the end of each treatment, the 14th night, nocturnal and feeding behaviors were explored using an infrared camera. Finally, throughout the study, body mass and daily caloric food intake were recorded. For the first time in a nocturnal primate, light pollution was demonstrated to modify daily rhythms of locomotor activity and core temperature especially through phase delays and increases in core temperature. Moreover, nocturnal activity and feeding behaviors patterns were modified negatively. This study suggests that light pollution induces daily desynchronization of biological rhythms and could lead to seasonal desynchronization with potential deleterious consequences for animals in terms of adaptation and anticipation of environmental changes. PMID:24236115

  16. The Galapagos Microplate Revealed

    NASA Astrophysics Data System (ADS)

    Smith, D. K.; Schouten, H.; Cann, J. R.; Zhu, W.; Montesi, L. G.; Mitchell, G. A.

    2009-12-01

    We report a new bathymetry survey of the Galapagos microplate (GMP), which separates the Pacific, Nazca, and Cocos plates at the Galapagos Triple Junction. Prior to the formation of the microplate, 1.5-1.0 Ma, there was a succession of transient minor rifts forming triple junctions north and south of the propagating Cocos-Nazca rift (see Schouten et al. abstract). As proposed by Lonsdale (1988) the formation of a large near-axis seamount coincided with the initiation of the GMP and stabilized rifting on its southern boundary, now called Dietz Deep Rift. Lonsdale also proposed that the GMP was rotating clockwise at 6 degrees/my. Schouten et al. (1993) and Klein et al. (2005) applied an edge-driven microplate model to the GMP to understand its kinematics and predicted rotation rates of 30-40 degrees/my and 22 degrees/my, respectively. These interpretations and predictions were based on sparse bathymetry data. In early 2009 (AT 15-41), we mapped the Galapagos microplate in its entirety to understand more fully the conditions that led to the stabilization of the southern triple junction at Dietz Deep Rift and to constrain the rotation rate of the microplate. Our new data show the two highly contrasted sections of Dietz Deep Rift. The northeastern section contains Dietz Deep, a 2 km deep basin, within a fault-dominated rift valley about 20 km wide; subsidiary rifts occur to the south. Sidescan data indicate that extension in this broadly rifted area has been largely amagmatic. The southwestern section of Dietz Deep Rift is dominated by a variety of volcanic constructions in which faulting plays a minor part. The volcanism has resulted in two large seamounts and a number of volcanic ridges running parallel to the fault dominated rift valley. The largest volcanic ridge is steep-sided and straight, and extends to intersect the East Pacific Rise (EPR) at 1 10’N to form the triple junction. Other minor volcanic ridges occur in the SW section of the microplate fanning towards the EPR from the north side of the large, straight ridge. Most of the core of the microplate shows N-S abyssal hills produced at the EPR, and indicates that the microplate is not rotating and has not rotated for much of its history. A section of seafloor in the northeast part of the microplate, however, has been rotated and indicates that before about 1 Ma the kinematics of the region were different. We present scenarios for the evolution of the southern triple junction to explain the seafloor patterns.

  17. [Biomechanical investigation of the tensile strength of tendon sutures - locking sutures increase stability].

    PubMed

    Betz, C; Schleicher, P; Winkel, R; Hoffmann, R

    2013-02-01

    In this study we examined the tensile strength of core sutures of tendons. In particular, we examined the effect of having 2 or 4 stitch strands in the core suture as well as the effect of additional locking sutures on the tensile strength. 60 flexor tendons from the forepaws of freshly slaughtered swines were harvested for biomechanical testing. They were divided into 4 groups (A, B, C and D) of 15 sutures each. Group A: core suture after Zechner with 2 strands; group B: modified core suture with 4 strands; group C: modified core suture with 2 strands and 4 locking sutures; group D: modified core suture with 4 strands and 4 locking sutures. The primary tensile strength of the sutures was measured in Newton using the testing machine with a traction speed of 0.1 mm/s. Simultaneously, the increasing space forming at the suture was filmed against graph paper. Our command variables were force measured in Newton when forming a space of 2 mm as well as the force at which the suture failed. Statistical analysis was carried out with the software SPSS to produce a multivariate analysis with a statistical significance of p<0.05. Results are presented as averages including the 1st and 3rd quartile (1Q/3Q). Under traction to form a 2 mm space, the force measured with group A was 14.2 N (12.9/15.1 N). In group B the force 22.5 N (20.0/24.7 N) was significantly higher (p<0.05). Group C required a traction force of 28.7 N (23.5/35.8 N) which was significantly higher than for groups A and B. Group D required the significantly highest traction force of 42.0 N (39.5/46.0 N) to produce a 2 mm space. The force required for the suture to fail in group A was 19.9 N (17.9/22.8 N), in group B: 26.2 N (24.5/29.7 N), in group C 32.0 N (27.1/40.1 N) and in Group D 46.5 N (41.5/50.0 N); the differences between the gloups were all statistically significant. The primary tensile strength of core sutures after Zechner on flexor tendons from the forepaws of swines was significantly increased by doubling the number of sutures and also by use of 4 additional locking sutures. © Georg Thieme Verlag KG Stuttgart · New York.

  18. Thin-film chemical sensors based on electron tunneling

    NASA Technical Reports Server (NTRS)

    Khanna, S. K.; Lambe, J.; Leduc, H. G.; Thakoor, A. P.

    1985-01-01

    The physical mechanisms underlying a novel chemical sensor based on electron tunneling in metal-insulator-metal (MIM) tunnel junctions were studied. Chemical sensors based on electron tunneling were shown to be sensitive to a variety of substances that include iodine, mercury, bismuth, ethylenedibromide, and ethylenedichloride. A sensitivity of 13 parts per billion of iodine dissolved in hexane was demonstrated. The physical mechanisms involved in the chemical sensitivity of these devices were determined to be the chemical alteration of the surface electronic structure of the top metal electrode in the MIM structure. In addition, electroreflectance spectroscopy (ERS) was studied as a complementary surface-sensitive technique. ERS was shown to be sensitive to both iodine and mercury. Electrolyte electroreflectance and solid-state MIM electroreflectance revealed qualitatively the same chemical response. A modified thin-film structure was also studied in which a chemically active layer was introduced at the top Metal-Insulator interface of the MIM devices. Cobalt phthalocyanine was used for the chemically active layer in this study. Devices modified in this way were shown to be sensitive to iodine and nitrogen dioxide. The chemical sensitivity of the modified structure was due to conductance changes in the active layer.

  19. Switching effects and spin-valley Andreev resonant peak shifting in silicene superconductor

    NASA Astrophysics Data System (ADS)

    Soodchomshom, Bumned; Niyomsoot, Kittipong; Pattrawutthiwong, Eakkarat

    2018-03-01

    The magnetoresistance and spin-valley transport properties in a silicene-based NM/FB/SC junction are investigated, where NM, FB and SC are normal, ferromagnetic and s-wave superconducting silicene, respectively. In the FB region, perpendicular electric and staggered exchange fields are applied. The quasiparticles may be described by Dirac Bogoliubov-de Gennes equation due to Cooper pairs formed by spin-valley massive fermions. The spin-valley conductances are calculated based on the modified Blonder-Tinkham-Klapwijk formalism. We find the spin-valley dependent Andreev resonant peaks in the junction shifted by applying exchange field. Perfect conductance switch generated by interplay of intrinsic spin orbit interaction and superconducting gap has been predicted. Spin and valley polarizations are almost linearly dependent on biased voltage near zero bias and then turn into perfect switch at biased voltage approaching the superconducting gap. The perfect switching of large magnetoresistance has been also predicted at biased energy near the superconducting gap. These switching effects may be due to the presence of spin-valley Andreev resonant peak near the superconducting gap. Our work reveals potential of silicene as applications of electronic switching devices and linear control of spin and valley polarizations.

  20. Synchronization of coupled different chaotic FitzHugh-Nagumo neurons with unknown parameters under communication-direction-dependent coupling.

    PubMed

    Iqbal, Muhammad; Rehan, Muhammad; Khaliq, Abdul; Saeed-ur-Rehman; Hong, Keum-Shik

    2014-01-01

    This paper investigates the chaotic behavior and synchronization of two different coupled chaotic FitzHugh-Nagumo (FHN) neurons with unknown parameters under external electrical stimulation (EES). The coupled FHN neurons of different parameters admit unidirectional and bidirectional gap junctions in the medium between them. Dynamical properties, such as the increase in synchronization error as a consequence of the deviation of neuronal parameters for unlike neurons, the effect of difference in coupling strengths caused by the unidirectional gap junctions, and the impact of large time-delay due to separation of neurons, are studied in exploring the behavior of the coupled system. A novel integral-based nonlinear adaptive control scheme, to cope with the infeasibility of the recovery variable, for synchronization of two coupled delayed chaotic FHN neurons of different and unknown parameters under uncertain EES is derived. Further, to guarantee robust synchronization of different neurons against disturbances, the proposed control methodology is modified to achieve the uniformly ultimately bounded synchronization. The parametric estimation errors can be reduced by selecting suitable control parameters. The effectiveness of the proposed control scheme is illustrated via numerical simulations.

  1. The role of the right temporo-parietal junction in social decision-making.

    PubMed

    Bitsch, Florian; Berger, Philipp; Nagels, Arne; Falkenberg, Irina; Straube, Benjamin

    2018-03-26

    Identifying someone else's noncooperative intentions can prevent exploitation in social interactions. Hence, the inference of another person's mental state might be most pronounced in order to improve social decision-making. Here, we tested the hypothesis that brain regions associated with Theory of Mind (ToM), particularly the right temporo-parietal junction (rTPJ), show higher neural responses when interacting with a selfish person and that the rTPJ-activity as well as cooperative tendencies will change over time. We used functional magnetic resonance imaging (fMRI) and a modified prisoner's dilemma game in which 20 participants interacted with three fictive playing partners who behaved according to stable strategies either competitively, cooperatively or randomly during seven interaction blocks. The rTPJ and the posterior-medial prefrontal cortex showed higher activity during the interaction with a competitive compared with a cooperative playing partner. Only the rTPJ showed a high response during an early interaction phase, which preceded participants increase in defective decisions. Enhanced functional connectivity between the rTPJ and the left hippocampus suggests that social cognition and learning processes co-occur when behavioral adaptation seems beneficial. © 2018 Wiley Periodicals, Inc.

  2. Perpendicular magnetic tunnel junctions with Mn-modified ultrathin MnGa layer

    NASA Astrophysics Data System (ADS)

    Suzuki, K. Z.; Miura, Y.; Ranjbar, R.; Bainsla, L.; Ono, A.; Sasaki, Y.; Mizukami, S.

    2018-02-01

    Perpendicular magnetic tunnel junctions (p-MTJs) with a MgO barrier and a 1-nm-thick MnGa electrode were investigated by inserting several monolayers (MLs) of Mn. The tunnel magnetoresistance (TMR) ratio systematically increased when increasing the Mn layer thickness with a maximum of 18 (38.4)% at 300 (5) K for a Mn layer thickness of 0.6-0.8 nm. This ratio is five times higher compared to that without the Mn layer. The perpendicular magnetic anisotropy (PMA) field and the PMA constant of the ultrathin MnGa layer also increased up to 62-90 kOe and 6.2-11.3 Merg/cm3, respectively, with an increase in the Mn interlayer thickness, even for the ultrathin regime of the MnGa layer. For p-MTJs showing a high TMR and PMA, electron microscopy indicated the presence of 3-4 MLs of Mn at the MnGa/MgO interface; thus, the Mn modification enhanced the TMR as well as improved the PMA. This may be a promising finding to develop a Mn-based free layer for spin-transfer-torque devices for high-recording-density magnetoresistive random access memory and a sub-THz oscillator/detector.

  3. Percutaneously drilling through femoral head and neck fenestration combining with compacted autograft for early femoral head necrosis: A retrospective study.

    PubMed

    Li, Donghai; Xie, Xiaowei; Kang, Pengde; Shen, Bin; Pei, Fuxing; Wang, Changde

    2017-11-01

    The purpose of this study was to evaluate the clinical results, survivorship and quick rehabilitation effects of modified surgery of percutaneously drilling and decompression through femoral head and neck fenestration combined with compacted autograft for early femoral head necrosis. We conducted a retrospective cohort study with 83 hips performed percutaneous decompression through femoral head and neck fenestration (Modified group) combined with autogenous bone grafting for early ONFH. For comparison, another 90 hips treated with conventional core decompression with bone grafting (Control group). Median follow-up was 36 months (32-44 months). The length of incision, blood loss in operation, incision drainage, operation time and hospital stays in Modified group had better results than those in control group (P < 0.001). There were four cases in Modified group and five cases in control group had complications (P = 0.9). The VAS score and range of hip motion were better in Modified group during hospital stays summarily (P < 0.05). The average Harris score in modified group was higher than the control group at the first month (P = 0.005), while at other time of follow-up the two groups were with similar Harris scores (P > 0.05). There were 22 hips progressed to stage III in Modified group, while 23 hips progressed to stage III in control group (P = 0.89). The clinical success rate in Modified group were 86.7%, compared with that in control group (87.8%) ( P= 0.84). Percutaneous drilling and decompression through femoral head and neck fenestration combined with compacted autograft we reported showed an good surgical effect with a quick rehabilitation and had similar short-term effects compared with the conventional core decompression in treatment of early ONFH. Copyright © 2017 The Japanese Orthopaedic Association. Published by Elsevier B.V. All rights reserved.

  4. Enhanced charge storage capability of Ge/GeO(2) core/shell nanostructure.

    PubMed

    Yuan, C L; Lee, P S

    2008-09-03

    A Ge/GeO(2) core/shell nanostructure embedded in an Al(2)O(3) gate dielectrics matrix was produced. A larger memory window with good data retention was observed in the fabricated metal-insulator-semiconductor (MIS) capacitor for Ge/GeO(2) core/shell nanoparticles compared to Ge nanoparticles only, which is due to the high percentage of defects located on the surface and grain boundaries of the GeO(2) shell. We believe that the findings presented here provide physical insight and offer useful guidelines to controllably modify the charge storage properties of indirect semiconductors through defect engineering.

  5. Preparation and evaluation of metoprolol tartrate sustained-release pellets using hot melt extrusion combined with hot melt coating.

    PubMed

    Yang, Yan; Shen, Lian; Li, Juan; Shan, Wei-Guang

    2017-06-01

    The objective of this study was to prepare and evaluate metoprolol tartrate sustained-release pellets. Cores were prepared by hot melt extrusion and coated pellets were prepared by hot melt coating. Cores were found to exist in a single-phase state and drug in amorphous form. Plasticizers had a significant effect on torque and drug content, while release modifiers and coating level significantly affected the drug-release behavior. The mechanisms of drug release from cores and coated pellets were Fickian diffusion and diffusion-erosion. The coated pellets exhibited sustained-release properties in vitro and in vivo.

  6. Core Competencies in Natural Health Products for Canadian Pharmacy Students

    PubMed Central

    Byrne, Ani; Austin, Zubin; Jurgens, Tannis; Raman-Wilms, Lalitha

    2010-01-01

    Objective To reach consensus on core competency statements for natural health products (NHPs) for Canadian pharmacy students. Methods Four rounds of a modified Delphi method were used to achieve consensus on core competency statements for NHPs. Pharmacy educators from Canada and the United States, and representatives from Canadian pharmacy organizations ranked their agreement using a 5-point Likert scale. Results Consensus was achieved on 3 NHP-related core competency statements: (1) to incorporate NHP knowledge when providing pharmaceutical care; (2) to access and critically appraise NHP-related information sources; and (3) to provide appropriate education to patients and other health care providers on the effectiveness, potential adverse effects, and drug interactions of NHPs. Conclusions Consensus was reached among leaders in NHP education on 3 NHP-related core competency statements. Implementation of these competencies would ensure that graduating Canadian pharmacists would be able to fulfill their professional responsibilities related to NHPs. PMID:20498738

  7. Teaching core competencies of reconstructive microsurgery with the use of standardized patients.

    PubMed

    Son, Ji; Zeidler, Kamakshi R; Echo, Anthony; Otake, Leo; Ahdoot, Michael; Lee, Gordon K

    2013-04-01

    The Accreditation Council of Graduate Medical Education has defined 6 core competencies that residents must master before completing their training. Objective structured clinical examinations (OSCEs) using standardized patients are effective educational tools to assess and teach core competencies. We developed an OSCE specific for microsurgical head and neck reconstruction. Fifteen plastic surgery residents participated in the OSCE simulating a typical new patient consultation, which involved a patient with oral cancer. Residents were scored in all 6 core competencies by the standardized patients and faculty experts. Analysis of participant performance showed that although residents performed well overall, many lacked proficiency in systems-based practice. Junior residents were also more likely to omit critical elements of the physical examination compared to senior residents. We have modified our educational curriculum to specifically address these deficiencies. Our study demonstrates that the OSCE is an effective assessment tool for teaching and assessing all core competencies in microsurgery.

  8. Ultrasonic approach to the synthesis of HMX@TATB core-shell microparticles with improved mechanical sensitivity.

    PubMed

    Huang, Bing; Hao, Xiaofei; Zhang, Haobin; Yang, Zhijian; Ma, Zhigang; Li, Hongzhen; Nie, Fude; Huang, Hui

    2014-07-01

    To improve the safety of sensitive explosive HMX while maintaining explosion performance, a moderately powerful but insensitive explosive TATB was used to coat HMX microparticles via a facile ultrasonic method. By using Estane as surface modifier and nano-sized TATB as the shell layer, the HMX@TATB core-shell microparticles with a monodisperse size and compact shell structure were successfully constructed. Both scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) results confirmed the formation of perfect core-shell structured composites. Based on a systematic and comparative study of the effect of experimental conditions, a possible formation mechanism of core-shell structure was proposed in detail. Moreover, the perfect core-shell HMX@TATB microparticles exhibited a unique thermal behavior and significantly improved mechanical sensitivity compared with that of the physical mixture. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Gap/silicon Tandem Solar Cell with Extended Temperature Range

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A. (Inventor)

    2006-01-01

    A two-junction solar cell has a bottom solar cell junction of crystalline silicon, and a top solar cell junction of gallium phosphide. A three (or more) junction solar cell has bottom solar cell junctions of silicon, and a top solar cell junction of gallium phosphide. The resulting solar cells exhibit improved extended temperature operation.

  10. Core/shell PLGA microspheres with controllable in vivo release profile via rational core phase design.

    PubMed

    Yu, Meiling; Yao, Qing; Zhang, Yan; Chen, Huilin; He, Haibing; Zhang, Yu; Yin, Tian; Tang, Xing; Xu, Hui

    2018-02-27

    Highly soluble drugs tend to release from preparations at high speeds, which make them need to be taken at frequent intervals. Additionally, some drugs need to be controlled to release in vivo at certain periods, so as to achieve therapeutic effects. Thus, the objective of this study is to design injectable microparticulate systems with controllable in vivo release profile. Biodegradable PLGA was used as the matrix material to fabricate microspheres using the traditional double emulsification-solvent evaporation method as well as improved techniques, with gel (5% gelatine or 25% F127) or LP powders as the inner phases. Their physicochemical properties were systemically investigated. Microspheres prepared by modified methods had an increase in drug loading (15.50, 16.72, 15.66%, respectively) and encapsulation efficiencies (73.46, 79.42, 74.40%, respectively) when compared with traditional methods (12.01 and 57.06%). The morphology of the particles was characterized by optical microscope (OM) and scanning electron microscopy (SEM), and the amorphous nature of the encapsulated drug was confirmed by differential scanning calorimetry (DSC) and X-ray diffraction (XRD) analysis. To evaluate their release behaviour, the in vitro degradation, in vitro release and in vivo pharmacodynamics were subsequently studied. Traditional microspheres prepared in this study with water as the inner phase had a relatively short release period within 16 d when compared with modified microspheres with 5% gelatine as the inner phase, which resulted in a smooth release profile and appropriate plasma LP concentrations over 21 d. Thus this type of modified microspheres can be better used in drugs requiring sustained release. The other two formulations containing 25% F127 and LP micropowders presented two-stage release profiles, resulting in fluctuant plasma LP concentrations which may be suitable for drugs requiring controlled release. All the results suggested that drug release rates from the microspheres prepared by various methods were mainly controlled by either the porosity inside the microspheres or the degradation of materials, which could, therefore, lead to different release behaviours. This results indicated great potential of the PLGA microsphere formulation as an injectable depot for controllable in vivo release profile via rational core phase design. Core/shell microspheres fabricated by modified double emulsification-solvent evaporation methods, with various inner phases, to obtain high loading drugs system, as well as appropriate release behaviours. Accordingly, control in vivo release profile via rational core phase design.

  11. The Good Food Junction: a Community-Based Food Store Intervention to Address Nutritional Health Inequities

    PubMed Central

    Muhajarine, Nazeem; Ridalls, Tracy; Abonyi, Sylvia; Vatanparast, Hassan; Whiting, Susan; Walker, Ryan

    2016-01-01

    Background This is a 2-year study to assess the early impacts of a new grocery store intervention in a former food desert. Objective The purpose of the study is to understand the early health effects of the introduction of a large-scale food and nutrition-focused community-based population health intervention, the Good Food Junction (GFJ) Cooperative Store, in a geographically bounded group of socially disadvantaged neighborhoods (the “core neighborhoods”) in a midsized Canadian city. The GFJ grocery store was tasked with improving the access of residents to healthy, affordable food. The 5 research questions are: (1) What is the awareness and perception of the GFJ store among residents of the core neighborhoods? (2) Are there differences in awareness and perception among those who do and do not shop at the GFJ? (3) Will healthy food purchasing at the GFJ by residents of the core neighborhoods change over time, and what purchases are these individuals making at this store? (4) What early impact(s) will the GFJ have on key health-related outcomes (such as household food security status, vegetable and fruit intake, key aspects of self-reported mental health, self-reported health)? and (5) Are the effects of the intervention seen for specific vulnerable population groups, such as Aboriginal people, seniors (65 years old or older) and new immigrants (settled in Saskatoon for less than 5 years)? Methods The research project examined initial impacts of the GFJ on the health of the residents in surrounding neighborhoods through a door-to-door cross-sectional survey of food access and household demographics; an examination of GFJ sales data by location of shoppers' residences; and a 1-year, 3-time-point longitudinal study of self-reported health of GFJ shoppers. Results Analyses are on-going, but preliminary results show that shoppers are using the store for its intended purpose, which is to improve access to healthy food in a former food desert. Conclusions To our knowledge this is the first large-scale study of a full-service grocery store intervention in a former food desert in Canada that has used multiple data sources, as well as longitudinal analyses, to examine its effects. Its findings will contribute significantly to the knowledge base on food environment interventions. PMID:27079140

  12. Sonochemical Synthesis of Zinc Oxide Nanostructures for Sensing and Energy Harvesting

    NASA Astrophysics Data System (ADS)

    Vabbina, Phani Kiran

    Semiconductor nanostructures have attracted considerable research interest due to their unique physical and chemical properties at nanoscale which open new frontiers for applications in electronics and sensing. Zinc oxide nanostructures with a wide range of applications, especially in optoelectronic devices and bio sensing, have been the focus of research over the past few decades. However ZnO nanostructures have failed to penetrate the market as they were expected to, a few years ago. The two main reasons widely recognized as bottleneck for ZnO nanostructures are (1) Synthesis technique which is fast, economical, and environmentally benign which would allow the growth on arbitrary substrates and (2) Difficulty in producing stable p-type doping. The main objective of this research work is to address these two bottlenecks and find a solution that is inexpensive, environmentally benign and CMOS compatible. To achieve this, we developed a Sonochemical method to synthesize 1D ZnO Nanorods, core-shell nanorods, 2D nanowalls and nanoflakes on arbitrary substrates which is a rapid, inexpensive, CMOS compatible and environmentally benign method and allows us to grow ZnO nanostructures on any arbitrary substrate at ambient conditions while most other popular methods used are either very slow or involve extreme conditions such as high temperatures and low pressure. A stable, reproducible p-type doping in ZnO is one of the most sought out application in the field of optoelectronics. Here in this project, we doped ZnO nanostructures using sonochemical method to achieve a stable and reproducible doping in ZnO. We have fabricated a homogeneous ZnO radial p-n junction by growing a p-type shell around an n-type core in a controlled way using the sonochemical synthesis method to realize ZnO homogeneous core-shell radial p-n junction for UV detection. ZnO has a wide range of applications from sensing to energy harvesting. In this work, we demonstrate the successful fabrication of an electrochemical immunosensor using ZnO nanoflakes to detect Cortisol and compare their performance with that of ZnO nanorods. We have explored the use of ZnO nanorods in energy harvesting in the form of Dye Sensitized Solar Cells (DSSC) and Perovskite Solar Cells.

  13. Recombinant Expression of Tandem-HBc Virus-Like Particles (VLPs).

    PubMed

    Stephen, Sam L; Beales, Lucy; Peyret, Hadrien; Roe, Amy; Stonehouse, Nicola J; Rowlands, David J

    2018-01-01

    The hepatitis B virus (HBV) core protein (HBc) has formed the building block for virus-like particle (VLP) production for more than 30 years. The ease of production of the protein, the robust ability of the core monomers to dimerize and assemble into intact core particles, and the strong immune responses they elicit when presenting antigenic epitopes all demonstrate its promise for vaccine development (reviewed in Pumpens and Grens (Intervirology 44: 98-114, 2001)). HBc has been modified in a number of ways in attempts to expand its potential as a novel vaccine platform. The HBc protein is predominantly α-helical in structure and folds to form an L-shaped molecule. The structural subunit of the HBc particle is a dimer of monomeric HBc proteins which together form an inverted T-shaped structure. In the assembled HBc particle the four-helix bundle formed at each dimer interface appears at the surface as a prominent "spike." The tips of the "spikes" are the preferred sites for the insertion of foreign sequences for vaccine purposes as they are the most highly exposed regions of the assembled particles. In the tandem-core modification two copies of the HBc protein are covalently linked by a flexible amino acid sequence which allows the fused dimer to fold correctly and assemble into HBc particles. The advantage of the modified structure is that the assembly of the dimeric subunits is defined and not formed by random association. This facilitates the introduction of single, larger sequences at the tip of each surface "spike," thus overcoming the conformational clashes contingent on insertion of large structures into monomeric HBc proteins.Differences in inserted sequences influence the assembly characteristics of the modified proteins, and it is important to optimize the design of each novel construct to maximize efficiency of assembly into regular VLPs. In addition to optimization of the construct, the expression system used can also influence the ability of recombinant structures to assemble into regular isometric particles. Here, we describe the production of recombinant tandem-core particles in bacterial, yeast and plant expression systems.

  14. Identification of a regulation network in response to cadmium toxicity using blood clam Tegillarca granosa as model

    PubMed Central

    Bao, Yongbo; Liu, Xiao; Zhang, Weiwei; Cao, Jianping; Li, Wei; Li, Chenghua; Lin, Zhihua

    2016-01-01

    Clam, a filter-feeding lamellibranch mollusk, is capable to accumulate high levels of trace metals and has therefore become a model for investigation the mechanism of heavy metal toxification. In this study, the effects of cadmium were characterized in the gills of Tegillarca granosa during a 96-hour exposure course using integrated metabolomic and proteomic approaches. Neurotoxicity and disturbances in energy metabolism were implicated according to the metabolic responses after Cd exposure, and eventually affected the osmotic function of gill tissue. Proteomic analysis showed that oxidative stress, calcium-binding and sulfur-compound metabolism proteins were key factors responding to Cd challenge. A knowledge-based network regulation model was constructed with both metabolic and proteomic data. The model suggests that Cd stimulation mainly inhibits a core regulation network that is associated with histone function, ribosome processing and tight junctions, with the hub proteins actin, gamma 1 and Calmodulin 1. Moreover, myosin complex inhibition causes abnormal tight junctions and is linked to the irregular synthesis of amino acids. For the first time, this study provides insight into the proteomic and metabolomic changes caused by Cd in the blood clam T. granosa and suggests a potential toxicological pathway for Cd. PMID:27760991

  15. A Point Mutation in the Exon Junction Complex Factor Y14 Disrupts Its Function in mRNA Cap Binding and Translation Enhancement*

    PubMed Central

    Chuang, Tzu-Wei; Lee, Kuo-Ming; Lou, Yuan-Chao; Lu, Chia-Chen; Tarn, Woan-Yuh

    2016-01-01

    Eukaryotic mRNA biogenesis involves a series of interconnected steps mediated by RNA-binding proteins. The exon junction complex core protein Y14 is required for nonsense-mediated mRNA decay (NMD) and promotes translation. Moreover, Y14 binds the cap structure of mRNAs and inhibits the activity of the decapping enzyme Dcp2. In this report, we show that an evolutionarily conserved tryptophan residue (Trp-73) of Y14 is critical for its binding to the mRNA cap structure. A Trp-73 mutant (W73V) bound weakly to mRNAs and failed to protect them from degradation. However, this mutant could still interact with the NMD and mRNA degradation factors and retained partial NMD activity. In addition, we found that the W73V mutant could not interact with translation initiation factors. Overexpression of W73V suppressed reporter mRNA translation in vitro and in vivo and reduced the level of a set of nascent proteins. These results reveal a residue of Y14 that confers cap-binding activity and is essential for Y14-mediated enhancement of translation. Finally, we demonstrated that Y14 may selectively and differentially modulate protein biosynthesis. PMID:26887951

  16. Experimental and Computational Study of the Flow past a Simplified Geometry of an Engine/Pylon/Wing Installation at low velocity/moderate incidence flight conditions

    NASA Astrophysics Data System (ADS)

    Bury, Yannick; Lucas, Matthieu; Bonnaud, Cyril; Joly, Laurent; ISAE Team; Airbus Team

    2014-11-01

    We study numerically and experimentally the vortices that develop past a model geometry of a wing equipped with pylon-mounted engine at low speed/moderate incidence flight conditions. For such configuration, the presence of the powerplant installation under the wing initiates a complex, unsteady vortical flow field at the nacelle/pylon/wing junctions. Its interaction with the upper wing boundary layer causes a drop of aircraft performances. In order to decipher the underlying physics, this study is initially conducted on a simplified geometry at a Reynolds number of 200000, based on the chord wing and on the freestream velocity. Two configurations of angle of attack and side-slip angle are investigated. This work relies on unsteady Reynolds Averaged Navier Stokes computations, oil flow visualizations and stereoscopic Particle Image Velocimetry measurements. The vortex dynamics thus produced is described in terms of vortex core position, intensity, size and turbulent intensity thanks to a vortex tracking approach. In addition, the analysis of the velocity flow fields obtained from PIV highlights the influence of the longitudinal vortex initiated at the pylon/wing junction on the separation process of the boundary layer near the upper wing leading-edge.

  17. A Laminin G-EGF-Laminin G module in Neurexin IV is essential for the apico-lateral localization of Contactin and organization of septate junctions.

    PubMed

    Banerjee, Swati; Paik, Raehum; Mino, Rosa E; Blauth, Kevin; Fisher, Elizabeth S; Madden, Victoria J; Fanning, Alan S; Bhat, Manzoor A

    2011-01-01

    Septate junctions (SJs) display a unique ultrastructural morphology with ladder-like electron densities that are conserved through evolution. Genetic and molecular analyses have identified a highly conserved core complex of SJ proteins consisting of three cell adhesion molecules Neurexin IV, Contactin, and Neuroglian, which interact with the cytoskeletal FERM domain protein Coracle. How these individual proteins interact to form the septal arrays that create the paracellular barrier is poorly understood. Here, we show that point mutations that map to specific domains of neurexin IV lead to formation of fewer septae and disorganization of SJs. Consistent with these observations, our in vivo domain deletion analyses identified the first Laminin G-EGF-Laminin G module in the extracellular region of Neurexin IV as necessary for the localization of and association with Contactin. Neurexin IV protein that is devoid of its cytoplasmic region is able to create septae, but fails to form a full complement of SJs. These data provide the first in vivo evidence that specific domains in Neurexin IV are required for protein-protein interactions and organization of SJs. Given the molecular conservation of SJ proteins across species, our studies may provide insights into how vertebrate axo-glial SJs are organized in myelinated axons.

  18. Solitonic Josephson-based meminductive systems

    DOE PAGES

    Guarcello, Claudio; Solinas, Paolo; Di Ventra, Massimiliano; ...

    2017-04-24

    Memristors, memcapacitors, and meminductors represent an innovative generation of circuit elements whose properties depend on the state and history of the system. The hysteretic behavior of one of their constituent variables, is their distinctive fingerprint. This feature endows them with the ability to store and process information on the same physical location, a property that is expected to benefit many applications ranging from unconventional computing to adaptive electronics to robotics. Therefore, it is important to find appropriate memory elements that combine a wide range of memory states, long memory retention times, and protection against unavoidable noise. Although several physical systemsmore » belong to the general class of memelements, few of them combine these important physical features in a single component. Here in this paper, we demonstrate theoretically a superconducting memory based on solitonic long Josephson junctions. Moreover, since solitons are at the core of its operation, this system provides an intrinsic topological protection against external perturbations. We show that the Josephson critical current behaves hysteretically as an external magnetic field is properly swept. Accordingly, long Josephson junctions can be used as multi-state memories, with a controllable number of available states, and in other emerging areas such as memcomputing, i.e., computing directly in/by the memory.« less

  19. Solitonic Josephson-based meminductive systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guarcello, Claudio; Solinas, Paolo; Di Ventra, Massimiliano

    Memristors, memcapacitors, and meminductors represent an innovative generation of circuit elements whose properties depend on the state and history of the system. The hysteretic behavior of one of their constituent variables, is their distinctive fingerprint. This feature endows them with the ability to store and process information on the same physical location, a property that is expected to benefit many applications ranging from unconventional computing to adaptive electronics to robotics. Therefore, it is important to find appropriate memory elements that combine a wide range of memory states, long memory retention times, and protection against unavoidable noise. Although several physical systemsmore » belong to the general class of memelements, few of them combine these important physical features in a single component. Here in this paper, we demonstrate theoretically a superconducting memory based on solitonic long Josephson junctions. Moreover, since solitons are at the core of its operation, this system provides an intrinsic topological protection against external perturbations. We show that the Josephson critical current behaves hysteretically as an external magnetic field is properly swept. Accordingly, long Josephson junctions can be used as multi-state memories, with a controllable number of available states, and in other emerging areas such as memcomputing, i.e., computing directly in/by the memory.« less

  20. A Laminin G-EGF-Laminin G Module in Neurexin IV Is Essential for the Apico-Lateral Localization of Contactin and Organization of Septate Junctions

    PubMed Central

    Banerjee, Swati; Paik, Raehum; Mino, Rosa E.; Blauth, Kevin; Fisher, Elizabeth S.; Madden, Victoria J.; Fanning, Alan S.; Bhat, Manzoor A.

    2011-01-01

    Septate junctions (SJs) display a unique ultrastructural morphology with ladder-like electron densities that are conserved through evolution. Genetic and molecular analyses have identified a highly conserved core complex of SJ proteins consisting of three cell adhesion molecules Neurexin IV, Contactin, and Neuroglian, which interact with the cytoskeletal FERM domain protein Coracle. How these individual proteins interact to form the septal arrays that create the paracellular barrier is poorly understood. Here, we show that point mutations that map to specific domains of neurexin IV lead to formation of fewer septae and disorganization of SJs. Consistent with these observations, our in vivo domain deletion analyses identified the first Laminin G-EGF-Laminin G module in the extracellular region of Neurexin IV as necessary for the localization of and association with Contactin. Neurexin IV protein that is devoid of its cytoplasmic region is able to create septae, but fails to form a full complement of SJs. These data provide the first in vivo evidence that specific domains in Neurexin IV are required for protein-protein interactions and organization of SJs. Given the molecular conservation of SJ proteins across species, our studies may provide insights into how vertebrate axo-glial SJs are organized in myelinated axons. PMID:22022470

  1. Autism and psychosis expressions diametrically modulate the right temporoparietal junction.

    PubMed

    Abu-Akel, Ahmad M; Apperly, Ian A; Wood, Stephen J; Hansen, Peter C

    2017-10-01

    The mentalizing network is atypically activated in autism and schizophrenia spectrum disorders. While these disorders are considered diagnostically independent, expressions of both can co-occur in the same individual. We examined the concurrent effect of autism traits and psychosis proneness on the activity of the mentalizing network in 24 neurotypical adults while performing a social competitive game. Activations were observed in the paracingulate cortex and the right temporoparietal junction (rTPJ). Autism traits and psychosis proneness did not modulate activity within the paracingulate or the dorsal component of the rTPJ. However, diametric modulations of autism traits and psychosis proneness were observed in the posterior (rvpTPJ) and anterior (rvaTPJ) subdivisions of the ventral rTPJ, which respectively constitute core regions within the mentalizing and attention-reorienting networks. Within the rvpTPJ, increasing autism tendencies decreased activity, and increasing psychosis proneness increased activity. This effect was reversed within the rvaTPJ. We suggest that this results from an interaction between regions responsible for higher level social cognitive processing (rvpTPJ) and regions responsible for domain-general attentional processes (rvaTPJ). The observed diametric modulation of autism tendencies and psychosis proneness of neuronal activity within the mentalizing network highlights the importance of assessing both autism and psychosis expressions within the individual.

  2. Fabrication of Ni@Ti core-shell nanoparticles by modified gas aggregation source

    NASA Astrophysics Data System (ADS)

    Hanuš, J.; Vaidulych, M.; Kylián, O.; Choukourov, A.; Kousal, J.; Khalakhan, I.; Cieslar, M.; Solař, P.; Biederman, H.

    2017-11-01

    Ni@Ti core-shell nanoparticles were prepared by a vacuum based method using the gas aggregation source (GAS) of nanoparticles. Ni nanoparticles fabricated in the GAS were afterwards coated by a Ti shell. The Ti shell was deposited by means of magnetron sputtering. The Ni nanoparticles were decelerated in the vicinity of the magnetron to the Ar drift velocity in the second deposition chamber. X-ray photoelectron spectroscopy and energy dispersive x-ray spectroscopy analysis of the nanoparticles showed the core-shell structure. It was shown that the thickness of the shell can be easily tuned by the process parameters with a maximum achieved thickness of the Ti shell ~2.5 nm. The core-shell structure was confirmed by the STEM analysis of the particles.

  3. Gap and tight junctions in the formation of feather branches: A descriptive ultrastructural study.

    PubMed

    Alibardi, Lorenzo

    2010-08-20

    The present study has focused on the distribution and ultrastructure of gap and tight junctions responsible for the formation of the barb/barbule branching in developing feathers using immunocytochemical detection. Apart from desmosomes, both tight and gap junctions are present between differentiating barb/barbule cells and during keratinization. While gap junctions are rare along the perimeter of these cells, tight junctions tend to remain localized in nodes joining barbule cells and between barb cells of the ramus. Occludin and connexin-26 but not connexin-43 have been detected between barb medullary, barb cortical and barbule cells during formation of barbs. Gap junctions are present in supportive cells located in the vicinity of barbule cells and destined to degenerate, but no close junctions are present between supportive and barb/barbule cells. Close junctions mature into penta-laminar junctions that are present between mature barb/barbule cells. Immunolabeling for occludin and Cx26 is rare along these cornified junctions. The junctions allow barb/barbule cells to remain connected until feather-keratin form the mature corneous syncytium that constitutes the barbs. A discussion of the role of gap and tight junctions during feather morphogenesis is presented. 2010 Elsevier GmbH. All rights reserved.

  4. An EMMPRIN-γ-catenin-Nm23 complex drives ATP production and actomyosin contractility at endothelial junctions.

    PubMed

    Moreno, Vanessa; Gonzalo, Pilar; Gómez-Escudero, Jesús; Pollán, Ángela; Acín-Pérez, Rebeca; Breckenridge, Mark; Yáñez-Mó, María; Barreiro, Olga; Orsenigo, Fabrizio; Kadomatsu, Kenji; Chen, Christopher S; Enríquez, José A; Dejana, Elisabetta; Sánchez-Madrid, Francisco; Arroyo, Alicia G

    2014-09-01

    Cell-cell adhesions are important sites through which cells experience and resist forces. In endothelial cells, these forces regulate junction dynamics and determine endothelial barrier strength. We identify the Ig superfamily member EMMPRIN (also known as basigin) as a coordinator of forces at endothelial junctions. EMMPRIN localization at junctions correlates with endothelial junction strength in different mouse vascular beds. Accordingly, EMMPRIN-deficient mice show altered junctions and increased junction permeability. Lack of EMMPRIN alters the localization and function of VE-cadherin (also known as cadherin-5) by decreasing both actomyosin contractility and tugging forces at endothelial cell junctions. EMMPRIN ensures proper actomyosin-driven maturation of competent endothelial junctions by forming a molecular complex with γ-catenin (also known as junction plakoglobin) and Nm23 (also known as NME1), a nucleoside diphosphate kinase, thereby locally providing ATP to fuel the actomyosin machinery. These results provide a novel mechanism for the regulation of actomyosin contractility at endothelial junctions and might have broader implications in biological contexts such as angiogenesis, collective migration and tissue morphogenesis by coupling compartmentalized energy production to junction assembly. © 2014. Published by The Company of Biologists Ltd.

  5. An EMMPRIN–γ-catenin–Nm23 complex drives ATP production and actomyosin contractility at endothelial junctions

    PubMed Central

    Moreno, Vanessa; Gonzalo, Pilar; Gómez-Escudero, Jesús; Pollán, Ángela; Acín-Pérez, Rebeca; Breckenridge, Mark; Yáñez-Mó, María; Barreiro, Olga; Orsenigo, Fabrizio; Kadomatsu, Kenji; Chen, Christopher S.; Enríquez, José A.; Dejana, Elisabetta; Sánchez-Madrid, Francisco; Arroyo, Alicia G.

    2014-01-01

    ABSTRACT Cell–cell adhesions are important sites through which cells experience and resist forces. In endothelial cells, these forces regulate junction dynamics and determine endothelial barrier strength. We identify the Ig superfamily member EMMPRIN (also known as basigin) as a coordinator of forces at endothelial junctions. EMMPRIN localization at junctions correlates with endothelial junction strength in different mouse vascular beds. Accordingly, EMMPRIN-deficient mice show altered junctions and increased junction permeability. Lack of EMMPRIN alters the localization and function of VE-cadherin (also known as cadherin-5) by decreasing both actomyosin contractility and tugging forces at endothelial cell junctions. EMMPRIN ensures proper actomyosin-driven maturation of competent endothelial junctions by forming a molecular complex with γ-catenin (also known as junction plakoglobin) and Nm23 (also known as NME1), a nucleoside diphosphate kinase, thereby locally providing ATP to fuel the actomyosin machinery. These results provide a novel mechanism for the regulation of actomyosin contractility at endothelial junctions and might have broader implications in biological contexts such as angiogenesis, collective migration and tissue morphogenesis by coupling compartmentalized energy production to junction assembly. PMID:24994937

  6. A novel site-specific recombination system derived from bacteriophage phiMR11.

    PubMed

    Rashel, Mohammad; Uchiyama, Jumpei; Ujihara, Takako; Takemura, Iyo; Hoshiba, Hiroshi; Matsuzaki, Shigenobu

    2008-04-04

    We report identification of a novel site-specific DNA recombination system that functions in both in vivo and in vitro, derived from lysogenic Staphylococcus aureus phage phiMR11. In silico analysis of the phiMR11 genome indicated orf1 as a putative integrase gene. Phage and bacterial attachment sites (attP and attB, respectively) and attachment junctions were determined and their nucleotide sequences decoded. Sequences of attP and attB were mostly different to each other except for a two bp common core that was the crossover point. We found several inverted repeats adjacent to the core sequence of attP as potential protein binding sites. The precise and efficient integration properties of phiMR11 integrase were shown on attP and attB in Escherichia coli and the minimum size of attP was found to be 34bp. In in vitro assays using crude or purified integrase, only buffer and substrate DNAs were required for the recombination reaction, indicating that other bacterially encoded factors are not essential for activity.

  7. Nanoparticle-Reinforced Associative Network Hydrogels

    PubMed Central

    Agrawal, Sarvesh K.; Sanabria-DeLong, Naomi; Tew, Gregory N.; Bhatia, Surita R.

    2009-01-01

    ABA triblock copolymers in solvents selective for the midblock are known to form associative micellar gels. We have modified the structure and rheology of ABA triblock copolymer gels comprising poly(lactide)-poly(ethylene oxide)-poly(lactide) (PLA-PEO-PLA) through addition of a clay nanoparticle, laponite. Addition of laponite particles resulted in additional junction points in the gel via adsorption of the PEO corona chains onto the clay surfaces. Rheological measurements showed that this strategy led to a significant enhancement of the gel elastic modulus with small amounts of nanoparticles. Further characterization using SAXS and DLS confirmed that nanoparticles increase the intermicellar attraction and result in aggregation of PLA-PEO-PLA micelles. PMID:18947244

  8. Valley- and spin-filter in monolayer MoS2

    NASA Astrophysics Data System (ADS)

    Majidi, Leyla; Zare, Moslem; Asgari, Reza

    2014-12-01

    We propose a valley- and spin-filter based on a normal/ferromagnetic/normal molybdenum disulfide (MoS2) junction where the polarizations of the valley and the spin can be inverted by reversing the direction of the exchange field in the ferromagnetic region. By using a modified Dirac Hamiltonian and the scattering formalism, we find that the polarizations can be tuned by applying a gate voltage and changing the exchange field in the structure. We further demonstrate that the presence of a topological term (β) in the Hamiltonian results in an enhancement or a reduction of the charge conductance depending on the value of the exchange field.

  9. Using a Large Scale Computational Model to Study the Effect of Longitudinal and Radial Electrical Coupling in the Cochlea

    NASA Astrophysics Data System (ADS)

    Mistrík, Pavel; Ashmore, Jonathan

    2009-02-01

    We describe a large scale computational model of electrical current flow in the cochlea which is constructed by a flexible Modified Nodal Analysis algorithm to incorporate electrical components representing hair cells and the intercellular radial and longitudinal current flow. The model is used as a laboratory to study the effects of changing longitudinal gap junctional coupling, and shows the way in which cochlear microphonic spreads and tuning is affected. The process for incorporating mechanical longitudinal coupling and feedback is described. We find a difference in tuning and attenuation depending on whether longitudinal or radial couplings are altered.

  10. Abundance and ultrastructural diversity of neuronal gap junctions in the OFF and ON sublaminae of the inner plexiform layer of rat and mouse retina.

    PubMed

    Kamasawa, N; Furman, C S; Davidson, K G V; Sampson, J A; Magnie, A R; Gebhardt, B R; Kamasawa, M; Yasumura, T; Zumbrunnen, J R; Pickard, G E; Nagy, J I; Rash, J E

    2006-11-03

    Neuronal gap junctions are abundant in both outer and inner plexiform layers of the mammalian retina. In the inner plexiform layer (IPL), ultrastructurally-identified gap junctions were reported primarily in the functionally-defined and anatomically-distinct ON sublamina, with few reported in the OFF sublamina. We used freeze-fracture replica immunogold labeling and confocal microscopy to quantitatively analyze the morphologies and distributions of neuronal gap junctions in the IPL of adult rat and mouse retina. Under "baseline" conditions (photopic illumination/general anesthesia), 649 neuronal gap junctions immunogold-labeled for connexin36 were identified in rat IPL, of which 375 were photomapped to OFF vs. ON sublaminae. In contrast to previous reports, the volume-density of gap junctions was equally abundant in both sublaminae. Five distinctive morphologies of gap junctions were identified: conventional crystalline and non-crystalline "plaques" (71% and 3%), plus unusual "string" (14%), "ribbon" (7%) and "reticular" (2%) forms. Plaque and reticular gap junctions were distributed throughout the IPL. However, string and ribbon gap junctions were restricted to the OFF sublamina, where they represented 48% of gap junctions in that layer. In string and ribbon junctions, curvilinear strands of connexons were dispersed over 5 to 20 times the area of conventional plaques having equal numbers of connexons. To define morphologies of gap junctions under different light-adaptation conditions, we examined an additional 1150 gap junctions from rats and mice prepared after 30 min of photopic, mesopic and scotopic illumination, with and without general anesthesia. Under these conditions, string and ribbon gap junctions remained abundant in the OFF sublamina and absent in the ON sublamina. Abundant gap junctions in the OFF sublamina of these two rodents with rod-dominant retinas revealed previously-undescribed but extensive pathways for inter-neuronal communication; and the wide dispersion of connexons in string and ribbon gap junctions suggests unique structural features of gap junctional coupling in the OFF vs. ON sublamina.

  11. Effect of geometric parameters on the in-plane crushing behavior of honeycombs and honeycombs with facesheets

    NASA Astrophysics Data System (ADS)

    Atli-Veltin, Bilim

    In aerospace field, use of honeycombs in energy absorbing applications is a very attractive concept since they are relatively low weight structures and their crushing behavior satisfies the requirements of ideal energy absorbing applications. This dissertation is about the utilization of honeycomb crushing in energy absorbing applications and maximizing their specific energy absorption (SEA) capacity by modifying their geometry. In-plane direction crushing of honeycombs is investigated with the help of simulations conducted with ABAQUS. Due to the nonlinearity of the problem an optimization technique could not be implemented; however, the results of the trend studies lead to geometries with improved SEA. This study has two objectives; the first is to obtain modified cell geometry for a hexagonal honeycomb cell in order to provide higher energy absorption for minimum weight relative to the regular hexagonal cell geometry which has 30° cell angle and walls at equal length. The results of the first objective show that by increasing the cell angle, increasing wall thickness and reducing vertical wall length it is possible to increase the SEA 4.8 times; where the honeycomb with modified geometry provided 3.3 kJ/kg SEA and with regular geometry 0.68 kJ/kg SEA. The second objective considers integration of the energy absorbing honeycombs into the helicopter subfloor, possibly as the web section of a keel beam. In-plane direction crushing of a honeycomb core sandwiched between two facesheets is simulated. Effects of core and facesheet geometric parameters on the energy absorption are investigated, and modified geometries are suggested. For the sandwich structure with thin facesheets increasing cell angle, increasing wall thicknesses and decreasing the cell depth increase the SEA. For the ones with thick facesheet reducing vertical wall length, increasing wall thicknesses and reducing the cell depth increase the SEA. The results show that regular honeycomb geometry with thin facesheets has SEA of 7.24 kJ/kg and with thick facesheets 13.16 kJ/kg. When the geometries are modified the SEA increases to 20.5 kJ/kg for the core with thin facesheets and 53.47 kJ/kg for the core with thick facesheets. The key finding of the dissertation is that the in-plane direction crushing of the honeycombs with facesheets has great potential to be used for the energy absorbing applications since their SEA levels are high enough to make them attractive for applications where high crash loads need to be absorbed such as helicopter crash.

  12. Profound Interfacial Effects in CoFe2O4/Fe3O4 and Fe3O4/CoFe2O4 Core/Shell Nanoparticles

    NASA Astrophysics Data System (ADS)

    Polishchuk, Dmytro; Nedelko, Natalia; Solopan, Sergii; Ślawska-Waniewska, Anna; Zamorskyi, Vladyslav; Tovstolytkin, Alexandr; Belous, Anatolii

    2018-03-01

    Two sets of core/shell magnetic nanoparticles, CoFe2O4/Fe3O4 and Fe3O4/CoFe2O4, with a fixed diameter of the core ( 4.1 and 6.3 nm for the former and latter sets, respectively) and thickness of shells up to 2.5 nm were synthesized from metal chlorides in a diethylene glycol solution. The nanoparticles were characterized by X-ray diffraction, transmission electron microscopy, and magnetic measurements. The analysis of the results of magnetic measurements shows that coating of magnetic nanoparticles with the shells results in two simultaneous effects: first, it modifies the parameters of the core-shell interface, and second, it makes the particles acquire combined features of the core and the shell. The first effect becomes especially prominent when the parameters of core and shell strongly differ from each other. The results obtained are useful for optimizing and tailoring the parameters of core/shell spinel ferrite magnetic nanoparticles for their use in various technological and biomedical applications.

  13. [Finite element analysis of the maxillary central incisor with crown lengthening surgery and post-core restoration in management of crown-root fracture].

    PubMed

    Zhen, Min; Hu, Wen-jie; Rong, Qi-guo

    2015-12-18

    To construct the finite element models of maxillary central incisor and the simulations with crown lengthening surgery and post-core restoration in management of different crown-root fracture types, to investigate the stress intensity and distributions of these models mentioned above, and to analyze the indications of crown lengthening from the point of view of mechanics. An extracted maxillary central incisor and alveolar bone plaster model were scanned by Micro-CT and dental impression scanner (3shape D700) respectively. Then the 3D finite element models of the maxillary central incisor and 9 simulations with crown lengthening surgery and post-core restoration were constructed by Mimics 10.0, Geomagic studio 9.0 and ANSYS 14.0 software. The oblique static force (100 N) was applied to the palatal surface (the junctional area of the incisal 1/3 and middle 1/3), at 45 degrees to the longitudinal axis, then the von Mises stress of dentin, periodontal ligament, alveolar bone, post and core, as well as the periodontal ligament area, were calculated. A total of 10 high-precision three-dimensional finite element models of maxillary central incisor were established. The von Mises stress of models: post>dentin>alveolar bone>core>periodontal ligament, and the von Mises stress increased linearly with the augmentation of fracture degree (besides the core). The periodontal ligament area of the crown lengthening was reduced by 12% to 33%. The von Mises stress of periodontal ligament of the B2L2c, B2L3c, B3L1c, B3L2c, B3L3c models exceeded their threshold limit value, respectively. The maxillary central incisors with the labial fracture greater than three-quarter crown length and the palatal fracture deeper than 1 mm below the alveolar crest are not the ideal indications of the crown lengthening surgery.

  14. Surface and Electrical Characterization of Conjugated Molecular Wires

    NASA Astrophysics Data System (ADS)

    Demissie, Abel Tesfahun

    This thesis describes the surface and electrical characterization of ultrathin organic films and interfaces. These films were synthesized on the surface of gold by utilizing layer by layer synthesis via imine condensation. Film growth by imine click (condensation) chemistry is particularly useful for molecular electronics experiments because it provides a convenient means to obtain and extend ?-conjugation in the growth direction. However, in the context of film growth from a solid substrate, the reaction yield per step has not been characterized previously, though it is critically important. To address these issues, my research focused on a comprehensive characterization of oligophenyleneimine (OPI) wires via Rutherford backscattering spectrometry (RBS), X-ray photoelectron spectroscopy (XPS), spectroscopic ellipsometry (SE), reflection-absorption infrared spectroscopy (RAIRS), and cyclic voltammetry (CV). In addition, we had the unique opportunity of developing the first of its kind implementation of nuclear reaction analysis (NRA) to probe the intensity of carbon atoms after each addition step. Overall the combination of various techniques indicated that film growth proceeds in a quantitative manner. Furthermore, the NRA experiment was optimized to measure the carbon content in self-assembled monolayers of alkyl thiols. The results indicated well-resolved coverage values for ultrathin films with consecutive steps of 2 carbon atoms per molecule. Another fundamental problem in molecular electronics is the vast discrepancy in the values of measured resistance per molecule between small and large area molecular junctions. In collaboration with researchers at the National University of Singapore, we addressed these issues by comparing the electrical properties of OPI wires with the eutectic gallium indium alloy (EGaIn) junction (1000 mum2), and conducting probe atomic force microscopy (CP-AFM) junction (50 nm2). Our results showed that intensive (i.e., area independent) observables such as crossover length, activation energy, and decay constants agreed very well across the two junction platforms. On the other hand, the extensive (area dependent) resistance per molecule values was 100 times higher for EGaIn junction verses CP-AFM after normalizing to contact area. This was most likely due to differences in metal-molecule contact resistances. My contribution to this collaborative work is in synthesis and timely delivery of OPI wires.. The structure-property relationships of OPI wires with 5 terminal F atoms were studied extensively by XPS. The results show similar crossover behavior obtained by molecular junction experiments. Saturated spacers (conjugation disruption units) were introduced into the molecular backbone, and their effects on the intensity of F 1s counts were measured. Overall, there was good correlation between the position and number of saturated units verses F 1s peak area. Even though core hole spectroscopy and time dependent density functional theory (TDDFT) calculations are required to fully understand the charge transport dynamics, the preliminary results point to a new ultrahigh vacuum method of measuring charge transfer rates. Overall, these experiments open significant opportunities to synthesize ultra-thin films and characterize a variety of donor-block-acceptor and metal complex systems in molecular electronics.

  15. 1.00 MeV proton radiation resistance studies of single-junction and single gap dual-junction amorphous-silicon alloy solar cells

    NASA Technical Reports Server (NTRS)

    Abdulaziz, Salman; Payson, J. S.; Li, Yang; Woodyard, James R.

    1990-01-01

    A comparative study of the radiation resistance of a-Si:H and a-SiGe:H single-junction and a-Si:H dual-junction solar cells was conducted. The cells were irradiated with 1.00-MeV protons with fluences of 1.0 x 10 to the 14th, 5.0 x 10 to the 14th and 1.0 x 10 to the 15th/sq cm and characterized using I-V and quantum efficiency measurements. The radiation resistance of single-junction cells cannot be used to explain the behavior of dual-junction cells at a fluence of 1.0 x 10 to the 15th/sq cm. The a-Si H single-junction cells degraded the least of the three cells; a-SiGe:H single-junction cells showed the largest reduction in short-circuit current, while a-Si:H dual-junction cells exhibited the largest degradation in the open-circuit voltage. The quantum efficiency of the cells degraded more in the red part of the spectrum; the bottom junction degrades first in dual-junction cells.

  16. Fabrication of magnetic tunnel junctions with epitaxial and textured ferromagnetic layers

    DOEpatents

    Chang, Y. Austin; Yang, Jianhua Joshua

    2008-11-11

    This invention relates to magnetic tunnel junctions and methods for making the magnetic tunnel junctions. The magnetic tunnel junctions include a tunnel barrier oxide layer sandwiched between two ferromagnetic layers both of which are epitaxial or textured with respect to the underlying substrate upon which the magnetic tunnel junctions are grown. The magnetic tunnel junctions provide improved magnetic properties, sharper interfaces and few defects.

  17. Possible involvement of gap junctions in the barrier function of tight junctions of brain and lung endothelial cells.

    PubMed

    Nagasawa, Kunihiko; Chiba, Hideki; Fujita, Hiroki; Kojima, Takashi; Saito, Tsuyoshi; Endo, Toshiaki; Sawada, Norimasa

    2006-07-01

    Gap-junction plaques are often observed with tight-junction strands of vascular endothelial cells but the molecular interaction and functional relationships between these two junctions remain obscure. We herein show that gap-junction proteins connexin40 (Cx40) and Cx43 are colocalized and coprecipitated with tight-junction molecules occludin, claudin-5, and ZO-1 in porcine blood-brain barrier (BBB) endothelial cells. Gap junction blockers 18beta-glycyrrhetinic acid (18beta-GA) and oleamide (OA) did not influence expression of Cx40, Cx43, occludin, claudin-5, junctional adhesion molecule (JAM)-A, JAM-B, JAM-C, or ZO-1, or their subcellular localization in the porcine BBB endothelial cells. In contrast, these gap-junction blocking agents inhibited the barrier function of tight junctions in cells, determined by measurement of transendothelial electrical resistance and paracellular flux of mannitol and inulin. 18beta-GA also significantly reduced the barrier property in rat lung endothelial (RLE) cells expressing doxycycline-induced claudin-1, but did not change the interaction between Cx43 and either claudin-1 or ZO-1, nor their expression levels or subcellular distribution. These findings suggest that Cx40- and/or Cx43-based gap junctions might be required to maintain the endothelial barrier function without altering the expression and localization of the tight-junction components analyzed. Copyright 2006 Wiley-Liss, Inc.

  18. Research and develop locking design for NJDOT junction boxes : final report, April 2009.

    DOT National Transportation Integrated Search

    2009-04-01

    The report outlines the guidelines for securing electrical junction box covers to the junction box to prevent vandalism. The report provides details drawings that show various methods for securing the junction box cover to the junction box.

  19. Four-junction superconducting circuit

    PubMed Central

    Qiu, Yueyin; Xiong, Wei; He, Xiao-Ling; Li, Tie-Fu; You, J. Q.

    2016-01-01

    We develop a theory for the quantum circuit consisting of a superconducting loop interrupted by four Josephson junctions and pierced by a magnetic flux (either static or time-dependent). In addition to the similarity with the typical three-junction flux qubit in the double-well regime, we demonstrate the difference of the four-junction circuit from its three-junction analogue, including its advantages over the latter. Moreover, the four-junction circuit in the single-well regime is also investigated. Our theory provides a tool to explore the physical properties of this four-junction superconducting circuit. PMID:27356619

  20. Intercellular junctions between palisade nerve endings and outer root sheath cells of rat vellus hairs.

    PubMed

    Kaidoh, T; Inoué, T

    2000-05-15

    Hair follicles have a longitudinal set of sensory nerve endings called palisade nerve endings (PN). We examined the junctional structures between the PN and outer root sheath (ORS) cells of hair follicles in the rat external ear. Transmission electron microscopy of serial thin sections showed that the processes of the ORS cells penetrated the basal lamina of the hair follicle, forming intercellular junctions with the PN (PN-ORS junctions). Two types of junctions were found: junctions between nerve endings and ORS cells (N-ORS junctions) and those between Schwann cell processes and ORS cells (S-ORS junctions). The N-ORS junctions had two subtypes: 1) a short process or small eminence of the ORS cell was attached to the nerve ending (type I); or 2) a process of the ORS cell was invaginated into the nerve ending (type II). The S-ORS junctions also had two subtypes: 1) a short process or small eminence of the ORS cell was abutted on the Schwann cell process (type I); or 2) a process of the ORS cell was invaginated into the Schwann cell process (type II). Vesicles, coated pits, coated vesicles, and endosomes were sometimes seen in nerve endings, Schwann cells, and ORS cells near the junctions. Computer-aided reconstruction of the serial thin sections displayed the three-dimensional structure of these junctions. These results suggested that the PN-ORS junctions provided direct relationships between the PN and ORS in at least four different patterns. The discovery of these junctions shows the PN-ORS relationship to be closer than previously realized. We speculate that these junctions may have roles in attachment of the PN to the ORS, contributing to increases in the sensitivity of the PN, and in chemical signaling between the PN and ORS.

Top