NASA Technical Reports Server (NTRS)
Bauschlicher, Charles W., Jr.
1994-01-01
Modified coupled-pair functional (MCPF) calculations and coupled cluster singles and doubles calculations, which include a perturbational estimate of the connected triples [CCSD(T)], yield a bent structure for CuCO, thus, supporting the prediction of a nonlinear structure based on density functional (DF) calculations. Our best estimate for the binding energy is 4.9 +/- 1.4 kcal/mol; this is in better agreement with experiment (6.0 +/- 1.2 kcal/mol) than the DF approach which yields a value (19.6 kcal/mol) significantly larger than experiment.
Cooper-pair-condensate fluctuations and plasmons in layered superconductors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cote, R.; Griffin, A.
1993-10-01
Starting from a given attractive potential, we give a systematic analysis of the spin-singlet [ital s]-wave Cooper-pair-condensate fluctuations in a two-dimensional (2D) superconductor. These results are applied to a superlattice of superconducting sheets in which the 2D charge fluctuations are coupled via the Coulomb interaction. Our main interest is how the low-energy Anderson-Bogoliubov (AB) phonon mode in the pair-breaking gap [omega][lt]2[Delta] is modified by the Coulomb interaction. Our formal analysis is valid at arbitrary temperatures. It describes the weakly bound, large-Cooper-pair limit as well as the strongly bound, small-Cooper-pair limit and thus includes both the BCS and Bose-Einstein scenarios (asmore » discussed by Nozieres and Schmitt-Rink as well as Randeira [ital et] [ital al].). A comlete normal-mode analysis is given for a charged BCS superconductor, showing how the repulsive (Coulomb) interaction modifies the collective modes of a neutral superconductor. This complements the recent numerical study carried out by Fertig and Das Sarma. We show that the pair-response function shares the same spectrum as the charge-response function, given by the zero of the longitudinal dielectric function [epsilon]([bold q],[omega]). In 2D and layered superconductors, there is a low-frequency and high-frequency plasmon branch, separated by a relatively narrow particle-hole continuum at around 2[Delta]. The low-frequency ([omega][lt]2[Delta]) plasmon branch is a renormalized version of the AB phonon mode.« less
Ab initio study of Fe(+)-benzyne
NASA Technical Reports Server (NTRS)
Bauschlicher, Charles W., Jr.
1993-01-01
The interaction of Fe(+) with benzyne is studied using the self-consistent-field (SCF), complete active space SCF, and modified-coupled-pair functional levels of theory. The most stable structure is planar, where the Fe(+) has inserted into the in-plane pi bond, although the C-C bond distance suggests that some in-plane pi bonding remains. This system is compared with Sc(+) bonding to benzyne and other ligands.
Structural landscape of base pairs containing post-transcriptional modifications in RNA
Seelam, Preethi P.; Sharma, Purshotam
2017-01-01
Base pairs involving post-transcriptionally modified nucleobases are believed to play important roles in a wide variety of functional RNAs. Here we present our attempts toward understanding the structural and functional role of naturally occurring modified base pairs using a combination of X-ray crystal structure database analysis, sequence analysis, and advanced quantum chemical methods. Our bioinformatics analysis reveals that despite their presence in all major secondary structural elements, modified base pairs are most prevalent in tRNA crystal structures and most commonly involve guanine or uridine modifications. Further, analysis of tRNA sequences reveals additional examples of modified base pairs at structurally conserved tRNA regions and highlights the conservation patterns of these base pairs in three domains of life. Comparison of structures and binding energies of modified base pairs with their unmodified counterparts, using quantum chemical methods, allowed us to classify the base modifications in terms of the nature of their electronic structure effects on base-pairing. Analysis of specific structural contexts of modified base pairs in RNA crystal structures revealed several interesting scenarios, including those at the tRNA:rRNA interface, antibiotic-binding sites on the ribosome, and the three-way junctions within tRNA. These scenarios, when analyzed in the context of available experimental data, allowed us to correlate the occurrence and strength of modified base pairs with their specific functional roles. Overall, our study highlights the structural importance of modified base pairs in RNA and points toward the need for greater appreciation of the role of modified bases and their interactions, in the context of many biological processes involving RNA. PMID:28341704
Singlet-paired coupled cluster theory for open shells
NASA Astrophysics Data System (ADS)
Gomez, John A.; Henderson, Thomas M.; Scuseria, Gustavo E.
2016-06-01
Restricted single-reference coupled cluster theory truncated to single and double excitations accurately describes weakly correlated systems, but often breaks down in the presence of static or strong correlation. Good coupled cluster energies in the presence of degeneracies can be obtained by using a symmetry-broken reference, such as unrestricted Hartree-Fock, but at the cost of good quantum numbers. A large body of work has shown that modifying the coupled cluster ansatz allows for the treatment of strong correlation within a single-reference, symmetry-adapted framework. The recently introduced singlet-paired coupled cluster doubles (CCD0) method is one such model, which recovers correct behavior for strong correlation without requiring symmetry breaking in the reference. Here, we extend singlet-paired coupled cluster for application to open shells via restricted open-shell singlet-paired coupled cluster singles and doubles (ROCCSD0). The ROCCSD0 approach retains the benefits of standard coupled cluster theory and recovers correct behavior for strongly correlated, open-shell systems using a spin-preserving ROHF reference.
Molecular switching behavior in isosteric DNA base pairs.
Jissy, A K; Konar, Sukanya; Datta, Ayan
2013-04-15
The structures and proton-coupled behavior of adenine-thymine (A-T) and a modified base pair containing a thymine isostere, adenine-difluorotoluene (A-F), are studied in different solvents by dispersion-corrected density functional theory. The stability of the canonical Watson-Crick base pair and the mismatched pair in various solvents with low and high dielectric constants is analyzed. It is demonstrated that A-F base pairing is favored in solvents with low dielectric constant. The stabilization and conformational changes induced by protonation are also analyzed for the natural as well as the mismatched base pair. DNA sequences capable of changing their sequence conformation on protonation are used in the construction of pH-based molecular switches. An acidic medium has a profound influence in stabilizing the isostere base pair. Such a large gain in stability on protonation leads to an interesting pH-controlled molecular switch, which can be incorporated in a natural DNA tract. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Wu, Jianping; Geng, Xianguo
2017-12-01
The inverse scattering transform of the coupled modified Korteweg-de Vries equation is studied by the Riemann-Hilbert approach. In the direct scattering process, the spectral analysis of the Lax pair is performed, from which a Riemann-Hilbert problem is established for the equation. In the inverse scattering process, by solving Riemann-Hilbert problems corresponding to the reflectionless cases, three types of multi-soliton solutions are obtained. The multi-soliton classification is based on the zero structures of the Riemann-Hilbert problem. In addition, some figures are given to illustrate the soliton characteristics of the coupled modified Korteweg-de Vries equation.
Theoretical study of the hyperfine parameters of OH
NASA Technical Reports Server (NTRS)
Chong, Delano P.; Langhoff, Stephen R.; Bauschlicher, Charles W., Jr.
1991-01-01
In the present study of the hyperfine parameters of O-17H as a function of the one- and n-particle spaces, all of the parameters except oxygen's spin density, b sub F(O), are sufficiently easily tractable to allow concentration on the computational requirements for accurate determination of b sub F(O). Full configuration-interaction (FCI) calculations in six Gaussian basis sets yield unambiguous results for (1) the effect of uncontracting the O s and p basis sets; (2) that of adding diffuse s and p functions; and (3) that of adding polarization functions to O. The size-extensive modified coupled-pair functional method yields b sub F values which are in fair agreement with FCI results.
Theoretical study of the electric dipole moment function of the ClO molecule
NASA Technical Reports Server (NTRS)
Pettersson, L. G. M.; Langhoff, S. R.; Chong, D. P.
1986-01-01
The potential energy function and electric dipole moment function (EDMF) are computed for ClO X 2Pi using several different techniques to include electron correlation. The EDMF is used to compute Einstein coefficients, vibrational lifetimes, and dipole moments in higher vibrational levels. The band strength of the 1-0 fundamental transition is computed to be 12 + or - 2 per sq cm atm determined from infrared heterodyne spectroscopy. The theoretical methods used include SCF, CASSCF, multireference singles plus doubles configuration interaction (MRCI) and contracted CI, coupled pair functional (CPF), and a modified version of the CPF method. The results obtained using the different methods are critically compared.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gomez, John A.; Henderson, Thomas M.; Scuseria, Gustavo E.
Restricted single-reference coupled cluster theory truncated to single and double excitations accurately describes weakly correlated systems, but often breaks down in the presence of static or strong correlation. Good coupled cluster energies in the presence of degeneracies can be obtained by using a symmetry-broken reference, such as unrestricted Hartree-Fock, but at the cost of good quantum numbers. A large body of work has shown that modifying the coupled cluster ansatz allows for the treatment of strong correlation within a single-reference, symmetry-adapted framework. The recently introduced singlet-paired coupled cluster doubles (CCD0) method is one such model, which recovers correct behavior formore » strong correlation without requiring symmetry breaking in the reference. Here, we extend singlet-paired coupled cluster for application to open shells via restricted open-shell singlet-paired coupled cluster singles and doubles (ROCCSD0). The ROCCSD0 approach retains the benefits of standard coupled cluster theory and recovers correct behavior for strongly correlated, open-shell systems using a spin-preserving ROHF reference.« less
Probes labelled with energy transfer coupled dyes
Mathies, R.A.; Glazer, A.; Ju, J.
1997-11-18
Compositions are provided comprising sets of fluorescent labels carrying pairs of donor and acceptor dye molecules, designed for efficient excitation of the donors at a single wavelength and emission from the acceptor in each of the pairs at different wavelengths. The different molecules having different donor-acceptor pairs can be modified to have substantially the same mobility under separation conditions, by varying the distance between the donor and acceptor in a given pair. Particularly, the fluorescent compositions find use as labels in sequencing nucleic acids. 7 figs.
Probes labelled with energy transfer coupled dyes
Mathies, Richard A.; Glazer, Alexander; Ju, Jingyue
1997-01-01
Compositions are provided comprising sets of fluorescent labels carrying pairs of donor and acceptor dye molecules, designed for efficient excitation of the donors at a single wavelength and emission from the acceptor in each of the pairs at different wavelengths. The different molecules having different donor-acceptor pairs can be modified to have substantially the same mobility under separation conditions, by varying the distance between the donor and acceptor in a given pair. Particularly, the fluorescent compositions find use as labels in sequencing nucleic acids.
Xu, Lu T; Dunning, Thom H
2015-06-09
The ground state, X1Σg+, of N2 is a textbook example of a molecule with a triple bond consisting of one σ and two π bonds. This assignment, which is usually rationalized using molecular orbital (MO) theory, implicitly assumes that the spins of the three pairs of electrons involved in the bonds are singlet-coupled (perfect pairing). However, for a six-electron singlet state, there are five distinct ways to couple the electron spins. The generalized valence bond (GVB) wave function lifts this restriction, including all of the five spin functions for the six electrons involved in the bond. For N2, we find that the perfect pairing spin function is indeed dominant at Re but that it becomes progressively less so from N2 to P2 and As2. Although the perfect pairing spin function is still the most important spin function in P2, the importance of a quasi-atomic spin function, which singlet couples the spins of the electrons in the σ orbitals while high spin coupling those of the electrons in the π orbitals on each center, has significantly increased relative to N2 and, in As2, the perfect pairing and quasi-atomic spin couplings are on essentially the same footing. This change in the spin coupling of the electrons in the bonding orbitals down the periodic table may contribute to the rather dramatic decrease in the strengths of the Pn2 bonds from N2 to As2 as well as in the increase in their chemical reactivity and should be taken into account in more detailed analyses of the bond energies in these species. We also compare the spin coupling in N2 with that in C2, where the quasi-atomic spin coupling dominants around Re.
Role of the Pair Correlation Function in the Dynamical Transition Predicted by Mode Coupling Theory
NASA Astrophysics Data System (ADS)
Nandi, Manoj Kumar; Banerjee, Atreyee; Dasgupta, Chandan; Bhattacharyya, Sarika Maitra
2017-12-01
In a recent study, we have found that for a large number of systems the configurational entropy at the pair level Sc 2, which is primarily determined by the pair correlation function, vanishes at the dynamical transition temperature Tc. Thus, it appears that the information of the transition temperature is embedded in the structure of the liquid. In order to investigate this, we describe the dynamics of the system at the mean field level and, using the concepts of the dynamical density functional theory, show that the dynamical transition temperature depends only on the pair correlation function. Thus, this theory is similar in spirit to the microscopic mode coupling theory (MCT). However, unlike microscopic MCT, which predicts a very high transition temperature, the present theory predicts a transition temperature that is similar to Tc. This implies that the information of the dynamical transition temperature is embedded in the pair correlation function.
Theoretical Study of the H2-ML(+) Binding Energies
NASA Technical Reports Server (NTRS)
Maitre, Philippe; Bauschlicher, Charles W., Jr.
1993-01-01
The cooperative ligand effects are studied in MLH2(+) and the results are compared to the recent experiments of Kemper et al. The bonding in these compounds is principally electrostatic in origin; however, ligand to metal and metal to ligand donations are important, especially for H2. We show that differences arise among the vanadium, cobalt, and copper complexes which are due to 3d donation to H2. Electron correlation is required to describe the dative interaction, and we find that second order Moller-Plesset perturbation theory (MP2) yields a good description of these systems compared with higher levels of correlation (such as the modified coupled pair functional and coupled cluster approaches) and experiment. However, obtaining quantitative results requires higher levels of theory than MP2.
Couples, Pairs, and Clusters: Mechanisms and Implications of Centromere Associations in Meiosis
Obeso, David; Pezza, Roberto J; Dawson, Dean
2013-01-01
Observations from a wide range of organisms show the centromeres form associations of pairs or small groups at different stages of meiotic prophase. Little is known about the functions or mechanisms of these associations, but in many cases synaptonemal complex elements seem to play a fundamental role. Two main associations are observed: homology-independent associations very early in the meiotic program – sometimes referred to as centromere coupling, and a later association of homologous centromeres, referred to as centromere pairing or tethering. The later centromere pairing initiates during synaptonemal complex assembly, then persists after the dissolution of the synaptonemal complex. While the function of the homology-independent centromere coupling remains a mystery, centromere pairing appears to have a direct impact on the chromosome segregation fidelity of achiasmatic chromosomes. Recent work in yeast, Drosophila, and mice suggest centromere pairing is a previously unappreciated, general meiotic feature that may promote meiotic segregation fidelity of the exchange and non-exchange chromosomes. PMID:24126501
Couples, pairs, and clusters: mechanisms and implications of centromere associations in meiosis.
Obeso, David; Pezza, Roberto J; Dawson, Dean
2014-03-01
Observations of a wide range of organisms show that the centromeres form associations of pairs or small groups at different stages of meiotic prophase. Little is known about the functions or mechanisms of these associations, but in many cases, synaptonemal complex elements seem to play a fundamental role. Two main associations are observed: homology-independent associations very early in the meiotic program-sometimes referred to as centromere coupling-and a later association of homologous centromeres, referred to as centromere pairing or tethering. The later centromere pairing initiates during synaptonemal complex assembly, then persists after the dissolution of the synaptonemal complex. While the function of the homology-independent centromere coupling remains a mystery, centromere pairing appears to have a direct impact on the chromosome segregation fidelity of achiasmatic chromosomes. Recent work in yeast, Drosophila, and mice suggest that centromere pairing is a previously unappreciated, general meiotic feature that may promote meiotic segregation fidelity of the exchange and non-exchange chromosomes.
Role of the Pair Correlation Function in the Dynamical Transition Predicted by Mode Coupling Theory.
Nandi, Manoj Kumar; Banerjee, Atreyee; Dasgupta, Chandan; Bhattacharyya, Sarika Maitra
2017-12-29
In a recent study, we have found that for a large number of systems the configurational entropy at the pair level S_{c2}, which is primarily determined by the pair correlation function, vanishes at the dynamical transition temperature T_{c}. Thus, it appears that the information of the transition temperature is embedded in the structure of the liquid. In order to investigate this, we describe the dynamics of the system at the mean field level and, using the concepts of the dynamical density functional theory, show that the dynamical transition temperature depends only on the pair correlation function. Thus, this theory is similar in spirit to the microscopic mode coupling theory (MCT). However, unlike microscopic MCT, which predicts a very high transition temperature, the present theory predicts a transition temperature that is similar to T_{c}. This implies that the information of the dynamical transition temperature is embedded in the pair correlation function.
Strongly exchange-coupled triplet pairs in an organic semiconductor
NASA Astrophysics Data System (ADS)
Weiss, Leah R.; Bayliss, Sam L.; Kraffert, Felix; Thorley, Karl J.; Anthony, John E.; Bittl, Robert; Friend, Richard H.; Rao, Akshay; Greenham, Neil C.; Behrends, Jan
2017-02-01
From biological complexes to devices based on organic semiconductors, spin interactions play a key role in the function of molecular systems. For instance, triplet-pair reactions impact operation of organic light-emitting diodes as well as photovoltaic devices. Conventional models for triplet pairs assume they interact only weakly. Here, using electron spin resonance, we observe long-lived, strongly interacting triplet pairs in an organic semiconductor, generated via singlet fission. Using coherent spin manipulation of these two-triplet states, we identify exchange-coupled (spin-2) quintet complexes coexisting with weakly coupled (spin-1) triplets. We measure strongly coupled pairs with a lifetime approaching 3 μs and a spin coherence time approaching 1 μs, at 10 K. Our results pave the way for the utilization of high-spin systems in organic semiconductors.
Structure and energetics of Cr(CO)6 and Cr(CO)5
NASA Technical Reports Server (NTRS)
Barnes, Leslie A.; Liu, Bowen; Lindh, Roland
1993-01-01
The geometric structures and energetics of Cr(CO)6 and Cr(CO)5 are determined at the modified coupled-pair functional, single and double excitation coupled-cluster (CCSD), and CCSD(T) levels of theory. For Cr(CO)6, the structure and force constants for the totally symmetric representation are in good agreement with experimental data once basis set constants are taken into account. In the largest basis set at the CCSD(T) level of theory, the total binding energy of CR(CO)6 is estimated at around 140 kcal/mol, or about 86 percent of the experimental value. In contrast, the first bond energy of Cr(CO)6 is very well described at the CCSD(T) level of theory, with the best estimated value of 38 kcal/mol being within the experimental uncertainty.
Micromagnetic simulations of anisotropies in coupled and uncoupled ferromagnetic nanowire systems.
Blachowicz, T; Ehrmann, A
2013-01-01
The influence of a variation of spatial relative orientations onto the coupling dynamics and subsequent magnetic anisotropies was modeled in ferromagnetic nanowires. The wires were analyzed in the most elementary configurations, thus, arranged in pairs perpendicular to each other, leading to one-dimensional (linear) and zero-dimensional (point-like) coupling. Different distances within each elementary pair of wires and between the pairs give rise to varying interactions between parallel and perpendicular wires, respectively. Simulated coercivities show an exchange of easy and hard axes for systems with different couplings. Additionally, two of the systems exhibit a unique switching behavior which can be utilized for developing new functionalities.
Theoretical Study of the Electric Dipole Moment Function of the CIO Molecule
NASA Technical Reports Server (NTRS)
Pettersson, Lars G. M.; Langhoff, Stephen R.; Chong, Delano P.
1986-01-01
The potential energy function and electric dipole moment function (EDMF) are computed for CIO Chi(sup 2)Pi using several different techniques to include electron correlation. The EDMF is used to compute Einstein coefficients, vibrational lifetimes, and dipole moments in higher vibrational levels. Remaining questions concerning the position of the maximum of the EDMF may be resolved through experimental measurement of dipole moments of higher vibrational levels. The band strength of the 1-0 fundamental transition is computed to be 12 +/- 2 /sq cm atm in good agreement with three experimental values, but larger than a recent value of 5 /sq cm atm determined from infrared heterodyne spectroscopy. The theoretical methods used include SCF, CASSCF, multireference singles plus doubles configuration interaction (MRCI) and contracted CI, coupled pair functional (CPF), and a modified version of the CPF method. The results obtained using the different methods are critically compared.
Crossover from BCS to Bose superconductivity: A functional integral approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Randeria, M.; Sa de Melo, C.A.R.; Engelbrecht, J.R.
1993-04-01
We use a functional integral formulation to study the crossover from cooperative Cooper pairing to the formation and condensation of tightly bound pairs in a 3D continuum model of fermions with attractive interactions. The inadequacy of a saddle point approximation with increasing coupling is pointed out, and the importance of temporal (quantum) fluctuations for normal state properties at intermediate and strong coupling is emphasized. In addition to recovering the Nozieres-Schmitt-Pink interpolation scheme for T{sub c}, and the Leggett variational results for T = 0, we also present results for evolution of the time-dependent Ginzburg-Landau equation and collective mode spectrum asmore » a function of the coupling.« less
Altered minor-groove hydrogen bonds in DNA block transcription elongation by T7 RNA polymerase.
Tanasova, Marina; Goeldi, Silvan; Meyer, Fabian; Hanawalt, Philip C; Spivak, Graciela; Sturla, Shana J
2015-05-26
DNA transcription depends upon the highly efficient and selective function of RNA polymerases (RNAPs). Modifications in the template DNA can impact the progression of RNA synthesis, and a number of DNA adducts, as well as abasic sites, arrest or stall transcription. Nonetheless, data are needed to understand why certain modifications to the structure of DNA bases stall RNA polymerases while others are efficiently bypassed. In this study, we evaluate the impact that alterations in dNTP/rNTP base-pair geometry have on transcription. T7 RNA polymerase was used to study transcription over modified purines and pyrimidines with altered H-bonding capacities. The results suggest that introducing wobble base-pairs into the DNA:RNA heteroduplex interferes with transcriptional elongation and stalls RNA polymerase. However, transcriptional stalling is not observed if mismatched base-pairs do not H-bond. Together, these studies show that RNAP is able to discriminate mismatches resulting in wobble base-pairs, and suggest that, in cases of modifications with minor steric impact, DNA:RNA heteroduplex geometry could serve as a controlling factor for initiating transcription-coupled DNA repair. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Designing allostery-inspired response in mechanical networks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rocks, Jason W.; Pashine, Nidhi; Bischofberger, Irmgard
Recent advances in designing metamaterials have demonstrated that global mechanical properties of disordered spring networks can be tuned by selectively modifying only a small subset of bonds. Here, using a computationally efficient approach, we extend this idea to tune more general properties of networks. With nearly complete success, we are then able to produce a strain between any two target nodes in a network in response to an applied source strain on any other pair of nodes by removing only ~1% of the bonds. We are also able to control multiple pairs of target nodes, each with a different individualmore » response, from a single source, and to tune multiple independent source/target responses simultaneously into a network. We have fabricated physical networks in macroscopic 2D and 3D systems that exhibit these responses. This work is inspired by the long-range coupled conformational changes that constitute allosteric function in proteins. The fact that allostery is a common means for regulation in biological molecules suggests that it is a relatively easy property to develop through evolution. In analogy, our results show that long-range coupled mechanical responses are similarly easy to achieve in disordered networks.« less
Designing allostery-inspired response in mechanical networks
Rocks, Jason W.; Pashine, Nidhi; Bischofberger, Irmgard; ...
2017-02-21
Recent advances in designing metamaterials have demonstrated that global mechanical properties of disordered spring networks can be tuned by selectively modifying only a small subset of bonds. Here, using a computationally efficient approach, we extend this idea to tune more general properties of networks. With nearly complete success, we are then able to produce a strain between any two target nodes in a network in response to an applied source strain on any other pair of nodes by removing only ~1% of the bonds. We are also able to control multiple pairs of target nodes, each with a different individualmore » response, from a single source, and to tune multiple independent source/target responses simultaneously into a network. We have fabricated physical networks in macroscopic 2D and 3D systems that exhibit these responses. This work is inspired by the long-range coupled conformational changes that constitute allosteric function in proteins. The fact that allostery is a common means for regulation in biological molecules suggests that it is a relatively easy property to develop through evolution. In analogy, our results show that long-range coupled mechanical responses are similarly easy to achieve in disordered networks.« less
Designing allostery-inspired response in mechanical networks
Rocks, Jason W.; Pashine, Nidhi; Bischofberger, Irmgard; Goodrich, Carl P.; Liu, Andrea J.; Nagel, Sidney R.
2017-01-01
Recent advances in designing metamaterials have demonstrated that global mechanical properties of disordered spring networks can be tuned by selectively modifying only a small subset of bonds. Here, using a computationally efficient approach, we extend this idea to tune more general properties of networks. With nearly complete success, we are able to produce a strain between any two target nodes in a network in response to an applied source strain on any other pair of nodes by removing only ∼1% of the bonds. We are also able to control multiple pairs of target nodes, each with a different individual response, from a single source, and to tune multiple independent source/target responses simultaneously into a network. We have fabricated physical networks in macroscopic 2D and 3D systems that exhibit these responses. This work is inspired by the long-range coupled conformational changes that constitute allosteric function in proteins. The fact that allostery is a common means for regulation in biological molecules suggests that it is a relatively easy property to develop through evolution. In analogy, our results show that long-range coupled mechanical responses are similarly easy to achieve in disordered networks. PMID:28223534
Designing allostery-inspired response in mechanical networks.
Rocks, Jason W; Pashine, Nidhi; Bischofberger, Irmgard; Goodrich, Carl P; Liu, Andrea J; Nagel, Sidney R
2017-03-07
Recent advances in designing metamaterials have demonstrated that global mechanical properties of disordered spring networks can be tuned by selectively modifying only a small subset of bonds. Here, using a computationally efficient approach, we extend this idea to tune more general properties of networks. With nearly complete success, we are able to produce a strain between any two target nodes in a network in response to an applied source strain on any other pair of nodes by removing only ∼1% of the bonds. We are also able to control multiple pairs of target nodes, each with a different individual response, from a single source, and to tune multiple independent source/target responses simultaneously into a network. We have fabricated physical networks in macroscopic 2D and 3D systems that exhibit these responses. This work is inspired by the long-range coupled conformational changes that constitute allosteric function in proteins. The fact that allostery is a common means for regulation in biological molecules suggests that it is a relatively easy property to develop through evolution. In analogy, our results show that long-range coupled mechanical responses are similarly easy to achieve in disordered networks.
Tunable two-dimensional interfacial coupling in molecular heterostructures
Xu, Beibei; Chakraborty, Himanshu; Yadav, Vivek K.; ...
2017-08-22
Two-dimensional van der Waals heterostructures are of considerable interest for the next generation nanoelectronics because of their unique interlayer coupling and optoelectronic properties. Here, we report a modified Langmuir–Blodgett method to organize twodimensional molecular charge transfer crystals into arbitrarily and vertically stacked heterostructures, consisting of bis(ethylenedithio)tetrathiafulvalene (BEDT–TTF)/C 60 and poly (3-dodecylthiophene-2,5-diyl) (P3DDT)/C 60 nanosheets. A strong and anisotropic interfacial coupling between the charge transfer pairs is demonstrated. The van der Waals heterostructures exhibit pressure dependent sensitivity with a high piezoresistance coefficient of -4.4 × 10 -6 Pa -1, and conductance and capacitance tunable by external stimuli (ferroelectric field and magneticmore » field). Density functional theory calculations confirm charge transfer between the n-orbitals of the S atoms in BEDT–TTF of the BEDT–TTF/C 60 layer and the π* orbitals of C atoms in C 60 of the P3DDT/C 60 layer contribute to the inter-complex CT. Thus, the two-dimensional molecular van der Waals heterostructures with tunable optical–electronic–magnetic coupling properties are promising for flexible electronic applications.« less
Li, Chenyu; Chang, Chun-Chieh; Zhou, Qingli; ...
2017-10-10
Here, we investigate edge-coupling of twisted split-ring resonator (SRR) pairs in the terahertz (THz) frequency range. By using a simple coupled-resonator model we show that such a system exhibits resonance splitting and cross-polarization conversion. Numerical simulations and experimental measurements agree well with theoretical calculations, verifying the resonance splitting as a function of the coupling strength given by the SRR separation. We further show that a metal ground plane can be integrated to significantly enhance the resonance coupling, which enables the effective control of resonance splitting and the efficiency and bandwidth of the cross-polarization conversion. Our findings improve the fundamental understandingmore » of metamaterials with a view of accomplishing metamaterial functionalities with enhanced performance, which is of great interest in realizing THz functional devices required in a variety of applications.« less
The effect of movement and load on the dynamic coupling of abdominal electromyography.
King, Adam C
2018-05-14
This study investigated the degree of neural coupling in abdominal muscle activity and whether the task constraints of movement and load altered the coupling within three muscle pairings. Nineteen young, physically-active individuals performed sit-up and reverse crunch movements in bodyweight (BW) and loaded (+4.54 kg) conditions. Surface electromyography (sEMG) was recorded from the rectus abdominus (RA), external oblique (EO), and transverse abdominus (TA) muscles. Linear (correlation coefficient) and non-linear (Cross-Approximate Entropy) measurements evaluated the degree of couplings across three muscle pairings. Compared to a resting coupling state, most conditions showed evidence of coupling. The linear coupling showed greater coupling compared to the resting state. Dynamic coupling showed lower degrees of coupling for the RA-EO and RA-TA pairings but stronger coupling for the EO-TA pairing with the sit-up movement exhibiting lower Cross-ApEn (higher dynamic coupling) than the reverse crunch. The results provide preliminary evidence of coupling in abdominal muscle activity that was influenced by movement, but not load. The functional roles of the RA (prime mover), EO and TA (stabilizers) muscles may have influenced the degree of coupling and future investigations are needed to better understand the coupling of abdominal muscle activity. Copyright © 2018 Elsevier B.V. All rights reserved.
MATSUBAYASHI, Yoshikatsu
2018-01-01
The identification of hormones and their receptors in multicellular organisms is one of the most exciting research areas and has lead to breakthroughs in understanding how their growth and development are regulated. In particular, peptide hormones offer advantages as cell-to-cell signals in that they can be synthesized rapidly and have the greatest diversity in their structure and function. Peptides often undergo post-translational modifications and proteolytic processing to generate small oligopeptide hormones. In plants, such small post-translationally modified peptides constitute the largest group of peptide hormones. We initially explored this type of peptide hormone using bioassay-guided fractionation and later by in silico gene screening coupled with biochemical peptide detection, which led to the identification of four types of novel peptide hormones in plants. We also identified specific receptors for these peptides and transferases required for their post-translational modification. This review summarizes how we discovered these peptide hormone–receptor pairs and post-translational modification enzymes, and how these molecules function in plant growth, development and environmental adaptation. PMID:29434080
Matsubayashi, Yoshikatsu
2018-01-01
The identification of hormones and their receptors in multicellular organisms is one of the most exciting research areas and has lead to breakthroughs in understanding how their growth and development are regulated. In particular, peptide hormones offer advantages as cell-to-cell signals in that they can be synthesized rapidly and have the greatest diversity in their structure and function. Peptides often undergo post-translational modifications and proteolytic processing to generate small oligopeptide hormones. In plants, such small post-translationally modified peptides constitute the largest group of peptide hormones. We initially explored this type of peptide hormone using bioassay-guided fractionation and later by in silico gene screening coupled with biochemical peptide detection, which led to the identification of four types of novel peptide hormones in plants. We also identified specific receptors for these peptides and transferases required for their post-translational modification. This review summarizes how we discovered these peptide hormone-receptor pairs and post-translational modification enzymes, and how these molecules function in plant growth, development and environmental adaptation.
Microcavities coupled to multilevel atoms
NASA Astrophysics Data System (ADS)
Schmid, Sandra Isabelle; Evers, Jörg
2011-11-01
A three-level atom in the Λ configuration coupled to a microcavity is studied. The two transitions of the atom are assumed to couple to different counterpropagating mode pairs in the cavity. We analyze the dynamics both in the strong-coupling and the bad-cavity limits. We find that, compared to a two-level setup, the third atomic state and the additional control field modes crucially modify the system dynamics and enable more advanced control schemes. All results are explained using appropriate dressed-state and eigenmode representations. As potential applications, we discuss optical switching and turnstile operations and detection of particles close to the resonator surface.
Theoretical study of the alkaline-earth metal superoxides BeO2 through SrO2
NASA Technical Reports Server (NTRS)
Bauschlicher, Charles W., Jr.; Partridge, Harry; Sodupe, Mariona; Langhoff, Stephen R.
1992-01-01
Three competing bonding mechanisms have been identified for the alkaline-earth metal superoxides: these result in a change in the optimal structure and ground state as the alkaline-earth metal becomes heavier. For example, BeO2 has a linear 3Sigma(-)g ground-state structure, whereas both CaO2 and SrO2 have C(2v)1A1 structures. For MgO2, the theoretical calculations are less definitive, as the 3A2 C(2v) structure is computed to lie only about 3 kcal/mol above the 3Sigma(-)g linear structure. The bond dissociation energies for the alkaline-earth metal superoxides have been computed using extensive Gaussian basis sets and treating electron correlation at the modified coupled-pair functional or coupled-cluster singles and doubles level with a perturbational estimate of the triple excitations.
Cluster-modified function projective synchronisation of complex networks with asymmetric coupling
NASA Astrophysics Data System (ADS)
Wang, Shuguo
2018-02-01
This paper investigates the cluster-modified function projective synchronisation (CMFPS) of a generalised linearly coupled network with asymmetric coupling and nonidentical dynamical nodes. A novel synchronisation scheme is proposed to achieve CMFPS in community networks. We use adaptive control method to derive CMFPS criteria based on Lyapunov stability theory. Each cluster of networks is synchronised with target system by state transformation with scaling function matrix. Numerical simulation results are presented finally to illustrate the effectiveness of this method.
Diffusivity anomaly in modified Stillinger-Weber liquids
NASA Astrophysics Data System (ADS)
Sengupta, Shiladitya; Vasisht, Vishwas V.; Sastry, Srikanth
2014-01-01
By modifying the tetrahedrality (the strength of the three body interactions) in the well-known Stillinger-Weber model for silicon, we study the diffusivity of a series of model liquids as a function of tetrahedrality and temperature at fixed pressure. Previous work has shown that at constant temperature, the diffusivity exhibits a maximum as a function of tetrahedrality, which we refer to as the diffusivity anomaly, in analogy with the well-known anomaly in water upon variation of pressure at constant temperature. We explore to what extent the structural and thermodynamic changes accompanying changes in the interaction potential can help rationalize the diffusivity anomaly, by employing the Rosenfeld relation between diffusivity and the excess entropy (over the ideal gas reference value), and the pair correlation entropy, which provides an approximation to the excess entropy in terms of the pair correlation function. We find that in the modified Stillinger-Weber liquids, the Rosenfeld relation works well above the melting temperatures but exhibits deviations below, with the deviations becoming smaller for smaller tetrahedrality. Further we find that both the excess entropy and the pair correlation entropy at constant temperature go through maxima as a function of the tetrahedrality, thus demonstrating the close relationship between structural, thermodynamic, and dynamical anomalies in the modified Stillinger-Weber liquids.
Postadsorption Work Function Tuning via Hydrogen Pressure Control
2015-01-01
The work function of metal substrates can be easily tuned, for instance, by adsorbing layers of molecular electron donors and acceptors. In this work, we discuss the possibility of changing the donor/acceptor mixing ratio reversibly after adsorption by choosing a donor/acceptor pair that is coupled via a redox reaction and that is in equilibrium with a surrounding gas phase. We discuss such a situation for the example of tetrafluoro-1,4-benzenediol (TFBD)/tetrafluoro-1,4-benzoquinone (TFBQ), adsorbed on Cu(111) and Ag(111) surfaces. We use density functional theory and ab initio thermodynamics to show that arbitrary TFBD/TFBQ mixing ratios can be set using hydrogen pressures attainable in low to ultrahigh vacuum. Adjusting the mixing ratio allows modifying the work function over a range of about 1 eV. Finally, we contrast single-species submonolayers with mixed layers to discuss why the resulting inhomogeneities in the electrostatic energy above the surface have different impacts on the interfacial level alignment and the work function. PMID:26692915
NASA Technical Reports Server (NTRS)
Bauschlicher, Charles W., Jr.; Partridge, Harry; Scuseria, Gustavo E.
1992-01-01
The correlation contribution to the M-C binding energy for the MCH2(+) systems can exceed 100 kcal/mol. At the self-consistent field (SCF) level, these systems can be more than 50 kcal/mol above the fragment energies. In spite of the poor zeroth-order reference, the coupled cluster single and double excitation method with a perturbational estimate of triple excitations, CCSD(T), method is shown to provide an accurate description of these systems. The maximum difference between the CCSD(T) and internally contracted averaged coupled-pair functional binding energies is 1.5 kcal/mol for CrCH2(+), with the remaining systems agreeing to within 1.0 kcal/mol.
Proximity-induced mixed odd- and even-frequency pairing in monolayer NbSe2
NASA Astrophysics Data System (ADS)
Aliabad, Mojtaba Rahimi; Zare, Mohammad-Hossein
2018-06-01
Monolayer superconducting transition-metal dichalcogenide NbSe2 is a candidate for a nodal topological superconductor by magnetic field. Because of the so-called Ising spin-orbit coupling that strongly pins the electron spins to the out-of-plane direction, Cooper pairs in monolayer superconductor NbSe2 are protected against an applied in-plane magnetic field much larger than the Pauli limit. In monolayer NbSe2, in addition to the Fermi pockets at the corners of Brillouin zone with opposite crystal momentum similar to other semiconducting transition-metal dichalcogenids, there is an extra Fermi pocket around the Γ point with much smaller spin splitting, which could lead to an alternative strategy for pairing possibilities that are manipulable by a smaller magnetic field. By considering a monolayer NbSe2-ferromagnet substrate junction, we explore the modified pairing correlations on the pocket at Γ point in hole-doped monolayer NbSe2. The underlying physics is fascinating as there is a delicate interplay of the induced exchange field and the Ising spin-orbit coupling. We realize a mixed singlet-triplet superconductivity, s +f , due to the Ising spin-orbit coupling. Moreover, our results reveal the admixture state including both odd- and even-frequency components, associated with the ferromagnetic proximity effect. Different frequency symmetries of the induced pairing correlations can be realized by manipulating the magnitude and direction of the induced magnetization.
NASA Astrophysics Data System (ADS)
Khazaei, Somayeh; Sebastiani, Daniel
2017-11-01
We study the influence of rotational coupling between a pair of methyl rotators on the tunneling spectrum in condensed phase. Two interacting adjacent methyl groups are simulated within a coupled-pair model composed of static rotational potential created by the chemical environment and the interaction potential between two methyl groups. We solve the two-dimensional time-independent Schrödinger equation analytically by expanding the wave functions on the basis set of two independent free-rotor functions. We investigate three scenarios which differ with respect to the relative strength of single-rotor and coupling potential. For each scenario, we illustrate the dependence of the energy level scheme on the coupling strength. It is found that the main determinant of splitting energy levels tends to be a function of the ratio of strengths of coupling and single-rotor potential. The tunnel splitting caused by coupling is maximized for the coupled rotors in which their total hindering potential is relatively shallow. Such a weakly hindered methyl rotational potential is predicted for 4-methylpyridine at low temperature. The experimental observation of multiple tunneling peaks arising from a single type of methyl group in 4-methylpyridine in the inelastic neutron scattering spectrum is widely attributed to the rotor-rotor coupling. In this regard, using a set of first-principles calculations combined with the nudged elastic band method, we investigate the rotational potential energy surface (PES) of the coaxial pairs of rotors in 4-methylpyridine. A Numerov-type method is used to numerically solve the two-dimensional time-independent Schrödinger equation for the calculated 2D-density functional theory profile. Our computed energy levels reproduce the observed tunneling transitions well. Moreover, the calculated density distribution of the three methyl protons resembles the experimental nuclear densities obtained from the Fourier difference method. By mapping the calculated first-principles PES on the model, it is confirmed that the hindering potential in 4-methylpyridine consists of proportionally shallow single-rotor potential to coupling interaction.
Khazaei, Somayeh; Sebastiani, Daniel
2017-11-21
We study the influence of rotational coupling between a pair of methyl rotators on the tunneling spectrum in condensed phase. Two interacting adjacent methyl groups are simulated within a coupled-pair model composed of static rotational potential created by the chemical environment and the interaction potential between two methyl groups. We solve the two-dimensional time-independent Schrödinger equation analytically by expanding the wave functions on the basis set of two independent free-rotor functions. We investigate three scenarios which differ with respect to the relative strength of single-rotor and coupling potential. For each scenario, we illustrate the dependence of the energy level scheme on the coupling strength. It is found that the main determinant of splitting energy levels tends to be a function of the ratio of strengths of coupling and single-rotor potential. The tunnel splitting caused by coupling is maximized for the coupled rotors in which their total hindering potential is relatively shallow. Such a weakly hindered methyl rotational potential is predicted for 4-methylpyridine at low temperature. The experimental observation of multiple tunneling peaks arising from a single type of methyl group in 4-methylpyridine in the inelastic neutron scattering spectrum is widely attributed to the rotor-rotor coupling. In this regard, using a set of first-principles calculations combined with the nudged elastic band method, we investigate the rotational potential energy surface (PES) of the coaxial pairs of rotors in 4-methylpyridine. A Numerov-type method is used to numerically solve the two-dimensional time-independent Schrödinger equation for the calculated 2D-density functional theory profile. Our computed energy levels reproduce the observed tunneling transitions well. Moreover, the calculated density distribution of the three methyl protons resembles the experimental nuclear densities obtained from the Fourier difference method. By mapping the calculated first-principles PES on the model, it is confirmed that the hindering potential in 4-methylpyridine consists of proportionally shallow single-rotor potential to coupling interaction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pistolesi, F.; Strinati, G.C.
1996-06-01
We consider a fermionic system at zero temperature interacting through an effective nonretarded potential of the type introduced by Nozi{grave e}res and Schmitt-Rink, and calculate the {ital phase} coherence length {xi}{sub phase} (associated with the spatial fluctuations of the superconducting order parameter) by exploiting a functional-integral formulation for the correlation functions and the associated loop expansion. This formulation is especially suited to follow the evolution of the fermionic system from a BCS-type superconductor for weak coupling to a Bose-condensed system for strong coupling, since in the latter limit a {ital direct} mapping of the original fermionic system onto an effectivemore » system of bosons with a residual boson-boson interaction can be established. Explicit calculations are performed at the one-loop order. The phase coherence length {xi}{sub phase} is compared with the coherence length {xi}{sub pair} for two-electron correlation, which is relevant to distinguish the weak- ({ital k}{sub {ital F}}{xi}{sub pair}{gt}1) from the strong- ({ital k}{sub {ital F}}{xi}{sub pair}{lt}1) coupling limits ({ital k}{sub {ital F}} being the Fermi wave vector) {ital as} {ital well} {ital as} to follow the crossover in between. It is shown that {xi}{sub phase} coincides with {xi}{sub pair} down to {ital k}{sub {ital F}}{xi}{sub pair}{approx_equal}10, {xi}{sub pair} in turn coinciding with the Pippard coherence length. In the strong-coupling limit we find instead that {xi}{sub phase}{gt}{xi}{sub pair}, with {xi}{sub pair} coinciding with the radius of the bound-electron pair. From the mapping onto an effective system of bosons in the strong-coupling limit we further relate {xi}{sub pair} with the {open_quote}{open_quote}range{close_quote}{close_quote} of the residual boson-boson interaction, which is physically the only significant length associated with the dynamics of the bosonic system. {copyright} {ital 1996 The American Physical Society.}« less
Single-round selection yields a unique retroviral envelope utilizing GPR172A as its host receptor.
Mazari, Peter M; Linder-Basso, Daniela; Sarangi, Anindita; Chang, Yehchung; Roth, Monica J
2009-04-07
The recognition by a viral envelope of its cognate host-cell receptor is the initial critical step in defining the viral host-range and tissue specificity. This study combines a single-round of selection of a random envelope library with a parallel cDNA screen for receptor function to identify a distinct retroviral envelope/receptor pair. The 11-aa targeting domain of the modified feline leukemia virus envelope consists of a constrained peptide. Critical to the binding of the constrained peptide envelope to its cellular receptor are a pair of internal cysteines and an essential Trp required for maintenance of titers >10(5) lacZ staining units per milliliter. The receptor used for viral entry is the human GPR172A protein, a G-protein-coupled receptor isolated from osteosarcoma cells. The ability to generate unique envelopes capable of using tissue- or disease-specific receptors marks an advance in the development of efficient gene-therapy vectors.
Resolving the degeneracy in single Higgs production with Higgs pair production
NASA Astrophysics Data System (ADS)
Cao, Qing-Hong; Yan, Bin; Zhang, Dong-Ming; Zhang, Hao
2016-01-01
The Higgs boson production can be affected by several anomalous couplings, e.g. ct and cg anomalous couplings. Precise measurement of gg → h production yields two degenerate parameter spaces of ct and cg; one parameter space exhibits the SM limit while the other does not. Such a degeneracy could be resolved by Higgs boson pair production. In this work we adapt the strategy suggested by the ATLAS collaboration to explore the potential of distinguishing the degeneracy at the 14 TeV LHC. If the ct anomalous coupling is induced only by the operator H† HQbarL H ˜ tR, then the non-SM-like band could be excluded with an integrated luminosity of ∼ 210 fb-1. Making use of the fact that the Higgs boson pair is mainly produced through an s-wave scattering, we propose an analytical function to describe the fraction of signal events surviving a series of experimental cuts for a given invariant mass of Higgs boson pair. The function is model independent and can be applied to estimate the discovery potential of various NP models.
Resolving the degeneracy in single Higgs production with Higgs pair production
Cao, Qing -Hong; Yan, Bin; Zhang, Dong -Ming; ...
2015-11-28
The Higgs boson production can be affected by several anomalous couplings, e.g. ct and cg anomalous couplings. Precise measurement of gg → h production yields two degenerate parameter spaces of ct and cg; one parameter space exhibits the SM limit while the other does not. Such a degeneracy could be resolved by Higgs boson pair production. In this work we adapt the strategy suggested by the ATLAS collaboration to explore the potential of distinguishing the degeneracy at the 14 TeV LHC. If the ct anomalous coupling is induced only by the operator H↑HQ¯ LH ~t R, then the non-SM-like bandmore » could be excluded with an integrated luminosity of ~235 fb –1. Making use of the fact that the Higgs boson pair is mainly produced through an s-wave scattering, we propose an analytical function to describe the fraction of signal events surviving a series of experimental cuts for a given invariant mass of Higgs boson pair. As a result, the function is model independent and can be applied to estimate the discovery potential of various NP models.« less
NASA Astrophysics Data System (ADS)
Hart, Sean; Ren, Hechen; Kosowsky, Michael; Ben-Shach, Gilad; Leubner, Philipp; Bruene, Christoph; Buhmann, Hartmut; Molenkamp, Laurens; Halperin, Bertrand; Yacoby, Amir
Conventional s-wave superconductivity arises from singlet pairing of electrons with opposite Fermi momenta, forming Cooper pairs with zero net momentum. Recent studies have focused on coupling s-wave superconductors to systems with an unusual configuration of electronic spin and momentum at the Fermi surface, where the nature of the paired state can be modified and the system may even undergo a topological phase transition. Here we present measurements on Josephson junctions based on HgTe quantum wells coupled to aluminum or niobium superconductors, and subject to a magnetic field in the plane of the quantum well. We observe that the in-plane magnetic field modulates the Fraunhofer interference pattern, and that this modulation depends both on electron density and on the direction of the in-plane field with respect to the junction. However, the orientation of the junction with respect to the underlying crystal lattice does not impact the measurements. These findings suggest that spin-orbit coupling plays a role in the observed behavior, and that measurements of Josephson junctions in the presence of an in-plane field can elucidate the Fermi surface properties of the weak link material. NSF DMR-1206016; STC Center for Integrated Quantum Materials under NSF Grant No. DMR-1231319; NSF GRFP under Grant DGE1144152, Microsoft Corporation Project Q.
Pair Cascades and Deathlines in Magnetic Fields with Offset Polar Caps
NASA Technical Reports Server (NTRS)
Harding, Alice K.; Muslimov, Alex G.
2012-01-01
We present results of electron-positron pair cascade simulations in a dipole magnetic field whose polar cap is offset from the dipole axis. In such a field geometry, the polar cap is displaced a small fraction of the neutron star radius from the star symmetry axis and the field line radius of curvature is modified. Using the modified parallel electric field near the offset polar cap, we simulate pair cascades to determine the pair deathlines and pair multiplicities as a function of the offset. We find that the pair multiplicity can change dr;unatically with a modest offset, with a significant increase on one side of the polar cap. Lower pair deathlines allow a larger fraction of the pulsar population, that include old and millisecond pulsars, to produce cascades with high multiplicity. The results have some important implications for pulsar particle production, high-energy emission and cosmic-ray contribution.
[Paired kidneys in transplant].
Regueiro López, Juan C; Leva Vallejo, Manuel; Prieto Castro, Rafael; Anglada Curado, Francisco; Vela Jiménez, Francisco; Ruiz García, Jesús
2009-02-01
Many factors affect the graft and patient survival on the renal transplant outcome. These factors depend so much of the recipient and donor. We accomplished a study trying to circumvent factors that depend on the donor. We checked the paired kidneys originating of a same donor cadaver. We examined the risk factors in the evolution and follow-up in 278 couples of kidney transplant. We describe their differences, significance, the graft and patient survival, their functionality in 3 and 5 years and the risk factors implicated in their function. We study immunogenic and no immunogenic variables, trying to explain the inferior results in the grafts that are established secondly. We regroup the paired kidneys in those that they did not show paired initial function within the same couple. The results yield a discreet deterioration in the graft and patient survival for second group establish, superior creatinina concentration, without obtaining statistical significance. The Cox regression study establishes the early rejection (inferior to three months) and DR incompatibility values like risk factors. This model of paired kidneys would be able to get close to best-suited form for risk factors analysis in kidney transplant from cadaver donors, if more patients examine themselves in the same way. The paired kidneys originating from the same donor do not show the same function in spite of sharing the same conditions of the donor and perioperative management.
Charissou, Camille; Amarantini, David; Baurès, Robin; Berton, Eric; Vigouroux, Laurent
2017-11-01
The mechanisms governing the control of musculoskeletal redundancy remain to be fully understood. The hand is highly redundant, and shows different functional role of extensors according to its configuration for a same functional task of finger flexion. Through intermuscular coherence analysis combined with hand musculoskeletal modelling during maximal isometric hand contractions, our aim was to better understand the neural mechanisms underlying the control of muscle force coordination and agonist-antagonist co-contraction. Thirteen participants performed maximal isometric flexions of the fingers in two configurations: power grip (Power) and finger-pressing on a surface (Press). Hand kinematics and force/moment measurements were used as inputs in a musculoskeletal model of the hand to determine muscular tensions and co-contraction. EMG-EMG coherence analysis was performed between wrist and finger flexors and extensor muscle pairs in alpha, beta and gamma frequency bands. Concomitantly with tailored muscle force coordination and increased co-contraction between Press and Power (mean difference: 48.08%; p < 0.05), our results showed muscle-pair-specific modulation of intermuscular coupling, characterized by pair-specific modulation of EMG-EMG coherence between Power and Press (p < 0.05), and a negative linear association between co-contraction and intermuscular coupling for the ECR/FCR agonist-antagonist muscle pair (r = - 0.65; p < 0.05). This study brings new evidence that pair-specific modulation of EMG-EMG coherence is related to modulation of muscle force coordination during hand contractions. Our results highlight the functional importance of intermuscular coupling as a mechanism contributing to the control of muscle force synergies and agonist-antagonist co-contraction.
Englert, Markus; Vargas-Rodriguez, Oscar; Reynolds, Noah M; Wang, Yane-Shih; Söll, Dieter; Umehara, Takuya
2017-11-01
Development of new aminoacyl-tRNA synthetase (aaRS)•tRNA pairs is central for incorporation of novel non-canonical amino acids (ncAAs) into proteins via genetic code expansion (GCE). The Escherichia coli and Caulobacter crescentus histidyl-tRNA synthetases (HisRS) evolved divergent mechanisms of tRNA His recognition that prevent their cross-reactivity. Although the E. coli HisRS•tRNA His pair is a good candidate for GCE, its use in C. crescentus is limited by the lack of established genetic selection methods and by the low transformation efficiency of C. crescentus. E. coli was genetically engineered to use a C. crescentus HisRS•tRNA His pair. Super-folder green fluorescent protein (sfGFP) and chloramphenicol acetyltransferase (CAT) were used as reporters for read-through assays. A library of 313 ncAAs coupled with the sfGFP reporter system was employed to investigate the specificity of E. coli HisRS in vivo. A genomically modified E. coli strain (named MEOV1) was created. MEVO1 requires an active C. crescentus HisRS•tRNA His pair for growth, and displays a similar doubling time as the parental E. coli strain. sfGFP- and CAT-based assays showed that the E. coli HisRS•tRNA His pair is orthogonal in MEOV1 cells. A mutation in the anticodon loop of E. coli tRNA His CUA elevated its suppression efficiency by 2-fold. The C. crescentus HisRS•tRNA His pair functionally complements an E. coli ΔhisS strain. The E. coli HisRS•tRNA His is orthogonal in MEOV1 cells. E. coli tRNA His CUA is an efficient amber suppressor in MEOV1. We developed a platform that allows protein engineering of E. coli HisRS that should facilitate GCE in E. coli. This article is part of a Special Issue entitled "Biochemistry of Synthetic Biology - Recent Developments" Guest Editor: Dr. Ilka Heinemann and Dr. Patrick O'Donoghue. Copyright © 2017 Elsevier B.V. All rights reserved.
Naritsuka, M.; Rosa, P. F. S.; Luo, Yongkang; ...
2018-05-04
Unconventional superconductivity and magnetism are intertwined on a microscopic level in a wide class of materials. A new approach to this most fundamental and hotly debated issue focuses on the role of interactions between superconducting electrons and bosonic fluctuations at the interface between adjacent layers in heterostructures. In this paper, we fabricate hybrid superlattices consisting of alternating atomic layers of the heavy-fermion superconductormore » $${\\mathrm{CeCoIn}}_{5}$$ and antiferromagnetic (AFM) metal $${\\mathrm{CeRhIn}}_{5}$$, in which the AFM order can be suppressed by applying pressure. We find that the superconducting and AFM states coexist in spatially separated layers, but their mutual coupling via the interface significantly modifies the superconducting properties. An analysis of upper critical fields reveals that, upon suppressing the AFM order by applied pressure, the force binding superconducting electron pairs acquires an extreme strong-coupling nature. Finally, this demonstrates that superconducting pairing can be tuned nontrivially by magnetic fluctuations (paramagnons) injected through the interface.« less
NASA Astrophysics Data System (ADS)
Naritsuka, M.; Rosa, P. F. S.; Luo, Yongkang; Kasahara, Y.; Tokiwa, Y.; Ishii, T.; Miyake, S.; Terashima, T.; Shibauchi, T.; Ronning, F.; Thompson, J. D.; Matsuda, Y.
2018-05-01
Unconventional superconductivity and magnetism are intertwined on a microscopic level in a wide class of materials. A new approach to this most fundamental and hotly debated issue focuses on the role of interactions between superconducting electrons and bosonic fluctuations at the interface between adjacent layers in heterostructures. Here we fabricate hybrid superlattices consisting of alternating atomic layers of the heavy-fermion superconductor CeCoIn5 and antiferromagnetic (AFM) metal CeRhIn5 , in which the AFM order can be suppressed by applying pressure. We find that the superconducting and AFM states coexist in spatially separated layers, but their mutual coupling via the interface significantly modifies the superconducting properties. An analysis of upper critical fields reveals that, upon suppressing the AFM order by applied pressure, the force binding superconducting electron pairs acquires an extreme strong-coupling nature. This demonstrates that superconducting pairing can be tuned nontrivially by magnetic fluctuations (paramagnons) injected through the interface.
NASA Astrophysics Data System (ADS)
Neese, Frank; Wennmohs, Frank; Hansen, Andreas
2009-03-01
Coupled-electron pair approximations (CEPAs) and coupled-pair functionals (CPFs) have been popular in the 1970s and 1980s and have yielded excellent results for small molecules. Recently, interest in CEPA and CPF methods has been renewed. It has been shown that these methods lead to competitive thermochemical, kinetic, and structural predictions. They greatly surpass second order Møller-Plesset and popular density functional theory based approaches in accuracy and are intermediate in quality between CCSD and CCSD(T) in extended benchmark studies. In this work an efficient production level implementation of the closed shell CEPA and CPF methods is reported that can be applied to medium sized molecules in the range of 50-100 atoms and up to about 2000 basis functions. The internal space is spanned by localized internal orbitals. The external space is greatly compressed through the method of pair natural orbitals (PNOs) that was also introduced by the pioneers of the CEPA approaches. Our implementation also makes extended use of density fitting (or resolution of the identity) techniques in order to speed up the laborious integral transformations. The method is called local pair natural orbital CEPA (LPNO-CEPA) (LPNO-CPF). The implementation is centered around the concepts of electron pairs and matrix operations. Altogether three cutoff parameters are introduced that control the size of the significant pair list, the average number of PNOs per electron pair, and the number of contributing basis functions per PNO. With the conservatively chosen default values of these thresholds, the method recovers about 99.8% of the canonical correlation energy. This translates to absolute deviations from the canonical result of only a few kcal mol-1. Extended numerical test calculations demonstrate that LPNO-CEPA (LPNO-CPF) has essentially the same accuracy as parent CEPA (CPF) methods for thermochemistry, kinetics, weak interactions, and potential energy surfaces but is up to 500 times faster. The method performs best in conjunction with large and flexible basis sets. These results open the way for large-scale chemical applications.
Neese, Frank; Wennmohs, Frank; Hansen, Andreas
2009-03-21
Coupled-electron pair approximations (CEPAs) and coupled-pair functionals (CPFs) have been popular in the 1970s and 1980s and have yielded excellent results for small molecules. Recently, interest in CEPA and CPF methods has been renewed. It has been shown that these methods lead to competitive thermochemical, kinetic, and structural predictions. They greatly surpass second order Moller-Plesset and popular density functional theory based approaches in accuracy and are intermediate in quality between CCSD and CCSD(T) in extended benchmark studies. In this work an efficient production level implementation of the closed shell CEPA and CPF methods is reported that can be applied to medium sized molecules in the range of 50-100 atoms and up to about 2000 basis functions. The internal space is spanned by localized internal orbitals. The external space is greatly compressed through the method of pair natural orbitals (PNOs) that was also introduced by the pioneers of the CEPA approaches. Our implementation also makes extended use of density fitting (or resolution of the identity) techniques in order to speed up the laborious integral transformations. The method is called local pair natural orbital CEPA (LPNO-CEPA) (LPNO-CPF). The implementation is centered around the concepts of electron pairs and matrix operations. Altogether three cutoff parameters are introduced that control the size of the significant pair list, the average number of PNOs per electron pair, and the number of contributing basis functions per PNO. With the conservatively chosen default values of these thresholds, the method recovers about 99.8% of the canonical correlation energy. This translates to absolute deviations from the canonical result of only a few kcal mol(-1). Extended numerical test calculations demonstrate that LPNO-CEPA (LPNO-CPF) has essentially the same accuracy as parent CEPA (CPF) methods for thermochemistry, kinetics, weak interactions, and potential energy surfaces but is up to 500 times faster. The method performs best in conjunction with large and flexible basis sets. These results open the way for large-scale chemical applications.
Hu, Jundie; Chen, Dongyun; Li, Najun; Xu, Qingfeng; Li, Hua; He, Jinghui; Lu, Jianmei
2018-05-01
3D materials are considered promising for photocatalytic applications in air purification because of their large surface areas, controllability, and recyclability. Here, a series of aerogels consisting of graphitic-carbon nitride (g-C 3 N 4 ) modified with a perylene imide (PI) and graphene oxide (GO) are prepared for nitric oxide (NO) removal under visible-light irradiation. All of the photocatalysts exhibit excellent activity in NO removal because of the strong light absorption and good planarity of PI-g-C 3 N 4 coupled with the favorable charge transport properties of GO, which slow the recombination of electron-hole pairs. The aerogel containing thiophene displays the most efficient NO removal of the aerogel series, with a removal ratio of up to 66%. Density functional theory calculations are conducted to explain this result and recycling experiments are carried out to verify the stability and recyclability of these photocatalysts. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Corrections to di-Higgs boson production with light stops and modified Higgs couplings
NASA Astrophysics Data System (ADS)
Huang, Peisi; Joglekar, Aniket; Li, Min; Wagner, Carlos E. M.
2018-04-01
The Higgs pair production in gluon fusion is a sensitive probe of beyond-standard model (BSM) phenomena and its detection is a major goal for the LHC and higher energy hadron collider experiments. In this work we reanalyze the possible modifications of the Higgs pair production cross section within low energy supersymmetry models. We show that the supersymmetric contributions to the Higgs pair production cross section are strongly correlated with the ones of the single Higgs production in the gluon fusion channel. Motivated by the analysis of ATLAS and CMS Higgs production data, we show that the scalar superpartners' contributions may lead to significant modification of the di-Higgs production rate and invariant mass distribution with respect to the SM predictions. We also analyze the combined effects on the di-Higgs production rate of a modification of the Higgs trilinear and top-quark Yukawa couplings in the presence of light stops. In particular, we show that due to the destructive interference of the triangle and box amplitude contributions to the di-Higgs production cross section, even a small modification of the top-quark Yukawa coupling can lead to a significant increase of the di-Higgs production rate.
NASA Astrophysics Data System (ADS)
Su, Yu; Swan, James W.; Zia, Roseanna N.
2017-03-01
Accurate modeling of particle interactions arising from hydrodynamic, entropic, and other microscopic forces is essential to understanding and predicting particle motion and suspension behavior in complex and biological fluids. The long-range nature of hydrodynamic interactions can be particularly challenging to capture. In dilute dispersions, pair-level interactions are sufficient and can be modeled in detail by analytical relations derived by Jeffrey and Onishi [J. Fluid Mech. 139, 261-290 (1984)] and Jeffrey [Phys. Fluids A 4, 16-29 (1992)]. In more concentrated dispersions, analytical modeling of many-body hydrodynamic interactions quickly becomes intractable, leading to the development of simplified models. These include mean-field approaches that smear out particle-scale structure and essentially assume that long-range hydrodynamic interactions are screened by crowding, as particle mobility decays at high concentrations. Toward the development of an accurate and simplified model for the hydrodynamic interactions in concentrated suspensions, we recently computed a set of effective pair of hydrodynamic functions coupling particle motion to a hydrodynamic force and torque at volume fractions up to 50% utilizing accelerated Stokesian dynamics and a fast stochastic sampling technique [Zia et al., J. Chem. Phys. 143, 224901 (2015)]. We showed that the hydrodynamic mobility in suspensions of colloidal spheres is not screened, and the power law decay of the hydrodynamic functions persists at all concentrations studied. In the present work, we extend these mobility functions to include the couplings of particle motion and straining flow to the hydrodynamic stresslet. The couplings computed in these two articles constitute a set of orthogonal coupling functions that can be utilized to compute equilibrium properties in suspensions at arbitrary concentration and are readily applied to solve many-body hydrodynamic interactions analytically.
NASA Astrophysics Data System (ADS)
Tazai, Rina; Yamakawa, Youichi; Tsuchiizu, Masahisa; Kontani, Hiroshi
2016-09-01
In various multiorbital systems, the emergence of the orbital fluctuations and their role on the pairing mechanism attract increasing attention. To achieve deep understanding on these issues, we perform a functional renormalization group (fRG) study for the two-orbital Hubbard model. The vertex corrections for the electron-boson coupling (U -VC), which are dropped in the Migdal-Eliashberg gap equation, are obtained by solving the RG equation. We reveal that the dressed electron-boson coupling for the charge channel Ûeffc becomes much larger than the bare Coulomb interaction Û 0 due to the U -VC in the presence of moderate spin fluctuations. For this reason, the attractive pairing interaction due to the charge or orbital fluctuations is enlarged by the factor (Ûeffc/Û0) 2≫1 . In contrast, the spin fluctuation pairing interaction is suppressed by the spin-channel U -VC, because of the relation Ûeffs≪Û 0 . The present study demonstrates that the orbital or charge fluctuation pairing mechanism can be realized in various multiorbital systems thanks to the U -VC, such as in Fe-based superconductors.
Agrawal, Piyush; Tkatchenko, Alexandre; Kronik, Leeor
2013-08-13
We propose a nonempirical, pair-wise or many-body dispersion-corrected, optimally tuned range-separated hybrid functional. This functional retains the advantages of the optimal-tuning approach in the prediction of the electronic structure. At the same time, it gains accuracy in the prediction of binding energies for dispersively bound systems, as demonstrated on the S22 and S66 benchmark sets of weakly bound dimers.
Vertex functions at finite momentum: Application to antiferromagnetic quantum criticality
NASA Astrophysics Data System (ADS)
Wölfle, Peter; Abrahams, Elihu
2016-02-01
We analyze the three-point vertex function that describes the coupling of fermionic particle-hole pairs in a metal to spin or charge fluctuations at nonzero momentum. We consider Ward identities, which connect two-particle vertex functions to the self-energy, in the framework of a Hubbard model. These are derived using conservation laws following from local symmetries. The generators considered are the spin density and particle density. It is shown that at certain antiferromagnetic critical points, where the quasiparticle effective mass is diverging, the vertex function describing the coupling of particle-hole pairs to the spin density Fourier component at the antiferromagnetic wave vector is also divergent. Then we give an explicit calculation of the irreducible vertex function for the case of three-dimensional antiferromagnetic fluctuations, and show that it is proportional to the diverging quasiparticle effective mass.
Universal spectral signatures in pnictides and cuprates: the role of quasiparticle-pair coupling.
Sacks, William; Mauger, Alain; Noat, Yves
2017-11-08
Understanding the physical properties of a large variety of high-T c superconductors (SC), the cuprate family as well as the more recent iron-based superconductors, is still a major challenge. In particular, these materials exhibit the 'peak-dip-hump' structure in the quasiparticle density of states (DOS). The origin of this structure is explained within our pair-pair interaction (PPI) model: The non-superconducting state consists of incoherent pairs, a 'Cooper-pair glass' which, due to the PPI, undergoes a Bose-like condensation below T c to the coherent SC state. We derive the equations of motion for the quasiparticle operators showing that the DOS 'peak-dip-hump' is caused by the coupling between quasiparticles and excited pair states, or 'super-quasiparticles'. The renormalized SC gap function becomes energy-dependent and non retarded, reproducing accurately the experimental spectra of both pnictides and cuprates, despite the large difference in gap value.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Salon, J.; Jiang, J; Sheng, J
2008-01-01
To investigate nucleic acid base pairing and stacking via atom-specific mutagenesis and crystallography, we have synthesized for the first time the 6-Se-deoxyguanosine phosphoramidite and incorporated it into DNAs via solid-phase synthesis with a coupling yield over 97%. We found that the UV absorption of the Se-DNAs red-shifts over 100 nm to 360 nm ({Epsilon} = 2.3 x 10{sup 4} M{sup -1} cm{sup -1}), the Se-DNAs are yellow colored, and this Se modification is relatively stable in water and at elevated temperature. Moreover, we successfully crystallized a ternary complex of the Se-G-DNA, RNA and RNase H. The crystal structure determination andmore » analysis reveal that the overall structures of the native and Se-modified nucleic acid duplexes are very similar, the selenium atom participates in a Se-mediated hydrogen bond (Se H-N), and the {sup Se}G and C form a base pair similar to the natural G-C pair though the Se-modification causes the base-pair to shift (approximately 0.3 {angstrom}). Our biophysical and structural studies provide new insights into the nucleic acid flexibility, duplex recognition and stability. Furthermore, this novel selenium modification of nucleic acids can be used to investigate chemogenetics and structure of nucleic acids and their protein complexes.« less
Equilibrium properties and phase diagram of two-dimensional Yukawa systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hartmann, P.; Donko, Z.; Kutasi, K.
Properties of two-dimensional strongly coupled Yukawa systems are explored through molecular dynamics simulations. An effective coupling coefficient {gamma}{sup *} for the liquid phase is introduced on the basis of the constancy of the first peak amplitude of the pair-correlation functions. Thermodynamic quantities are calculated from the pair-correlation function. The solid-liquid transition of the system is investigated through the analysis of the bond-angular order parameter. The static structure function satisfies consistency relation, attesting to the reliability of the computational method. The response is shown to be governed by the correlational part of the inverse compressibility. An analysis of the velocity autocorrelationmore » demonstrates that this latter also exhibits a universal behavior.« less
Bosonic excitations and electron pairing in an electron-doped cuprate superconductor
NASA Astrophysics Data System (ADS)
Wang, M. C.; Yu, H. S.; Xiong, J.; Yang, Y.-F.; Luo, S. N.; Jin, K.; Qi, J.
2018-04-01
By applying ultrafast optical spectroscopy to electron-doped La1.9Ce0.1CuO4 ±δ , we discern a bosonic mode of electronic origin and provide the evolution of its coupling with the charge carriers as a function of temperature. Our results show that it has the strongest coupling strength near Tc and can fully account for the superconducting pairing. This mode can be associated with the two-dimensional antiferromagnetic spin correlations emerging below a critical temperature T† larger than Tc. Our work may help to establish a quantitative relation between bosonic excitations and superconducting pairing in electron-doped cuprates.
Controlling the superconducting transition by spin-orbit coupling
NASA Astrophysics Data System (ADS)
Banerjee, N.; Ouassou, J. A.; Zhu, Y.; Stelmashenko, N. A.; Linder, J.; Blamire, M. G.
2018-05-01
Whereas considerable evidence exists for the conversion of singlet Cooper pairs into triplet Cooper pairs in the presence of inhomogeneous magnetic fields, recent theoretical proposals have suggested an alternative way to exert control over triplet generation: intrinsic spin-orbit coupling in a homogeneous ferromagnet coupled to a superconductor. Here, we proximity couple Nb to an asymmetric Pt/Co/Pt trilayer, which acts as an effective spin-orbit-coupled ferromagnet owing to structural inversion asymmetry. Unconventional modulation of the superconducting critical temperature as a function of in-plane and out-of-plane applied magnetic fields suggests the presence of triplets that can be controlled by the magnetic orientation of a single homogeneous ferromagnet. Our studies demonstrate an active role of spin-orbit coupling in controlling the triplets, an important step towards the realization of novel superconducting spintronic devices.
Sochacka, Elzbieta; Szczepanowski, Roman H.; Cypryk, Marek; Sobczak, Milena; Janicka, Magdalena; Kraszewska, Karina; Bartos, Paulina; Chwialkowska, Anna; Nawrot, Barbara
2015-01-01
2-Thiouracil-containing nucleosides are essential modified units of natural and synthetic nucleic acids. In particular, the 5-substituted-2-thiouridines (S2Us) present in tRNA play an important role in tuning the translation process through codon–anticodon interactions. The enhanced thermodynamic stability of S2U-containing RNA duplexes and the preferred S2U-A versus S2U-G base pairing are appreciated characteristics of S2U-modified molecular probes. Recently, we have demonstrated that 2-thiouridine (alone or within an RNA chain) is predominantly transformed under oxidative stress conditions to 4-pyrimidinone riboside (H2U) and not to uridine. Due to the important biological functions and various biotechnological applications for sulfur-containing nucleic acids, we compared the thermodynamic stabilities of duplexes containing desulfured products with those of 2-thiouracil-modified RNA and DNA duplexes. Differential scanning calorimetry experiments and theoretical calculations demonstrate that upon 2-thiouracil desulfuration to 4-pyrimidinone, the preferred base pairing of S2U with adenosine is lost, with preferred base pairing with guanosine observed instead. Therefore, biological processes and in vitro assays in which oxidative desulfuration of 2-thiouracil-containing components occurs may be altered. Moreover, we propose that the H2U-G base pair is a suitable model for investigation of the preferred recognition of 3′-G-ending versus A-ending codons by tRNA wobble nucleosides, which may adopt a 4-pyrimidinone-type structural motif. PMID:25690900
DOE Office of Scientific and Technical Information (OSTI.GOV)
Naritsuka, M.; Rosa, P. F. S.; Luo, Yongkang
Unconventional superconductivity and magnetism are intertwined on a microscopic level in a wide class of materials. A new approach to this most fundamental and hotly debated issue focuses on the role of interactions between superconducting electrons and bosonic fluctuations at the interface between adjacent layers in heterostructures. In this paper, we fabricate hybrid superlattices consisting of alternating atomic layers of the heavy-fermion superconductormore » $${\\mathrm{CeCoIn}}_{5}$$ and antiferromagnetic (AFM) metal $${\\mathrm{CeRhIn}}_{5}$$, in which the AFM order can be suppressed by applying pressure. We find that the superconducting and AFM states coexist in spatially separated layers, but their mutual coupling via the interface significantly modifies the superconducting properties. An analysis of upper critical fields reveals that, upon suppressing the AFM order by applied pressure, the force binding superconducting electron pairs acquires an extreme strong-coupling nature. Finally, this demonstrates that superconducting pairing can be tuned nontrivially by magnetic fluctuations (paramagnons) injected through the interface.« less
Using Paired Comparisons to Assess Maslow's Hierarchy of Needs.
ERIC Educational Resources Information Center
Strong, Lisa L.; Fiebert, Martin S.
Past studies which have examined need levels have identified individuals as functioning at specific need levels without an adequate assessment of the intensity of each need or a clear comparison with other need levels. To address these issues, a self-report inventory using a modified paired comparison format was developed to assess need potencies…
NASA Technical Reports Server (NTRS)
Geng, Steven M.; Briggs, Maxwell H.; Hervol, David S.
2011-01-01
A pair of 1-kWe free-piston Stirling power convertors has been modified into a thermodynamically coupled configuration, and performance map testing has been completed. This is the same configuration planned for the full-scale 12-kWe power conversion unit (PCU) that will be used in the Fission Power System Technology Demonstration Unit (TDU). The 1-kWe convertors were operated over a range of conditions to evaluate the effects of thermodynamic coupling on convertor performance and to identify any possible control challenges. The thermodynamically coupled convertor showed no measureable difference in performance from the baseline data collected when the engines were separate, and no major control issues were encountered during operation. The results of this test are guiding controller development and instrumentation selection for the TDU.
NASA Astrophysics Data System (ADS)
Geng, S. M.; Briggs, M. H.; Hervol, D. S.
A pair of 1kWe free-piston Stirling power convertors has been modified into a thermodynamically coupled configuration, and performance map testing has been completed. This is the same configuration planned for the full-scale 12 kWe power conversion unit (PCU) that will be used in the Fission Power System Technology Demonstration Unit (TDU). The 1-kWe convertors were operated over a range of conditions to evaluate the effects of thermodynamic coupling on convertor performance and to identify any possible control challenges. The thermodynamically coupled convertor showed no measurable difference in performance from the baseline data collected when the engines were separate and no major control issues were encountered during operation. The results of this test are guiding controller development and instrumentation selection for the TDU.
Constraints on the trilinear Higgs self coupling from precision observables
Degrassi, G.; Fedele, M.; Giardino, P. P.
2017-04-27
We present the constraints on the trilinear Higgs self coupling that arise from loop effects in the W boson mass and the effective sine predictions. Here, we compute the contributions to these precision observables of two-loop diagrams featuring an anomalous trilinear Higgs self coupling. We explicitly show that the same anomalous contributions are found if the analysis of m W and sin 2θmore » $$lep\\atop{eff}$$ is performed in a theory in which the scalar potential in the Standard Model Lagrangian is modified by an (in)finite tower of (Φ †Φ) n terms with Φ the Higgs doublet. Lastly, we find that the bounds on the trilinear Higgs self coupling from precision observables are competitive with those coming from Higgs pair production.« less
Dark soliton pair of ultracold Fermi gases for a generalized Gross-Pitaevskii equation model.
Wang, Ying; Zhou, Yu; Zhou, Shuyu; Zhang, Yongsheng
2016-07-01
We present the theoretical investigation of dark soliton pair solutions for one-dimensional as well as three-dimensional generalized Gross-Pitaevskii equation (GGPE) which models the ultracold Fermi gas during Bardeen-Cooper-Schrieffer-Bose-Einstein condensates crossover. Without introducing any integrability constraint and via the self-similar approach, the three-dimensional solution of GGPE is derived based on the one-dimensional dark soliton pair solution, which is obtained through a modified F-expansion method combined with a coupled modulus-phase transformation technique. We discovered the oscillatory behavior of the dark soliton pair from the theoretical results obtained for the three-dimensional case. The calculated period agrees very well with the corresponding reported experimental result [Weller et al., Phys. Rev. Lett. 101, 130401 (2008)PRLTAO0031-900710.1103/PhysRevLett.101.130401], demonstrating the applicability of the theoretical treatment presented in this work.
Cooper-pair size and binding energy for unconventional superconducting systems
NASA Astrophysics Data System (ADS)
Dinóla Neto, F.; Neto, Minos A.; Salmon, Octavio D. Rodriguez
2018-06-01
The main proposal of this paper is to analyze the size of the Cooper pairs composed by unbalanced mass fermions from different electronic bands along the BCS-BEC crossover and study the binding energy of the pairs. We are considering an interaction between fermions with different masses leading to an inter-band pairing. In addiction to the attractive interaction we have an hybridization term to couple both bands, which in general acts unfavorable for the pairing between the electrons. We get first order phase transitions as the hybridization breaks the Cooper pairs for the s-wave symmetry of the gap amplitude. The results show the dependence of the Cooper-pair size as a function of the hybridization for T = 0 . We also propose the structure of the binding energy of the inter-band system as a function of the two-bands quasi-particle energies.
Colloid-colloid hydrodynamic interaction around a bend in a quasi-one-dimensional channel.
Liepold, Christopher; Zarcone, Ryan; Heumann, Tibor; Rice, Stuart A; Lin, Binhua
2017-07-01
We report a study of how a bend in a quasi-one-dimensional (q1D) channel containing a colloid suspension at equilibrium that exhibits single-file particle motion affects the hydrodynamic coupling between colloid particles. We observe both structural and dynamical responses as the bend angle becomes more acute. The structural response is an increasing depletion of particles in the vicinity of the bend and an increase in the nearest-neighbor separation in the pair correlation function for particles on opposite sides of the bend. The dynamical response monitored by the change in the self-diffusion [D_{11}(x)] and coupling [D_{12}(x)] terms of the pair diffusion tensor reveals that the pair separation dependence of D_{12} mimics that of the pair correlation function just as in a straight q1D channel. We show that the observed behavior is a consequence of the boundary conditions imposed on the q1D channel: both the single-file motion and the hydrodynamic flow must follow the channel around the bend.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reppert, Mike; Kell, Adam; Pruitt, Thomas
The vibrational spectral density is an important physical parameter needed to describe both linear and non-linear spectra of multi-chromophore systems such as photosynthetic complexes. Low-temperature techniques such as hole burning (HB) and fluorescence line narrowing are commonly used to extract the spectral density for a given electronic transition from experimental data. We report here that the lineshape function formula reported by Hayes et al. [J. Phys. Chem. 98, 7337 (1994)] in the mean-phonon approximation and frequently applied to analyzing HB data contains inconsistencies in notation, leading to essentially incorrect expressions in cases of moderate and strong electron-phonon (el-ph) coupling strengths.more » A corrected lineshape function L(ω) is given that retains the computational and intuitive advantages of the expression of Hayes et al. [J. Phys. Chem. 98, 7337 (1994)]. Although the corrected lineshape function could be used in modeling studies of various optical spectra, we suggest that it is better to calculate the lineshape function numerically, without introducing the mean-phonon approximation. New theoretical fits of the P870 and P960 absorption bands and frequency-dependent resonant HB spectra of Rb. sphaeroides and Rps. viridis reaction centers are provided as examples to demonstrate the importance of correct lineshape expressions. Comparison with the previously determined el-ph coupling parameters [Johnson et al., J. Phys. Chem. 94, 5849 (1990); Lyle et al., ibid. 97, 6924 (1993); Reddy et al., ibid. 97, 6934 (1993)] is also provided. The new fits lead to modified el-ph coupling strengths and different frequencies of the special pair marker mode, ω{sub sp}, for Rb. sphaeroides that could be used in the future for more advanced calculations of absorption and HB spectra obtained for various bacterial reaction centers.« less
NASA Astrophysics Data System (ADS)
Garza, Alejandro J.; Sousa Alencar, Ana G.; Scuseria, Gustavo E.
2015-12-01
Singlet-paired coupled cluster doubles (CCD0) is a simplification of CCD that relinquishes a fraction of dynamic correlation in order to be able to describe static correlation. Combinations of CCD0 with density functionals that recover specifically the dynamic correlation missing in the former have also been developed recently. Here, we assess the accuracy of CCD0 and CCD0+DFT (and variants of these using Brueckner orbitals) as compared to well-established quantum chemical methods for describing ground-state properties of singlet actinide molecules. The f0 actinyl series (UO22+, NpO23+, PuO24+), the isoelectronic NUN, and thorium (ThO, ThO2+) and nobelium (NoO, NoO2) oxides are studied.
Modified Mason number for charged paramagnetic colloidal suspensions
NASA Astrophysics Data System (ADS)
Du, Di; Hilou, Elaa; Biswal, Sibani Lisa
2016-06-01
The dynamics of magnetorheological fluids have typically been described by the Mason number, a governing parameter defined as the ratio between viscous and magnetic forces in the fluid. For most experimental suspensions of magnetic particles, surface forces, such as steric and electrostatic interactions, can significantly influence the dynamics. Here we propose a theory of a modified Mason number that accounts for surface forces and show that this modified Mason number is a function of interparticle distance. We demonstrate that this modified Mason number is accurate in describing the dynamics of a rotating pair of paramagnetic colloids of identical or mismatched sizes in either high or low salt solutions. The modified Mason number is confirmed to be pseudoconstant for particle pairs and particle chains undergoing a stable-metastable transition during rotation. The interparticle distance term can be calculated using theory or can be measured experimentally. This modified Mason number is more applicable to magnetorheological systems where surface forces are not negligible.
Estimates of electronic coupling for excess electron transfer in DNA
NASA Astrophysics Data System (ADS)
Voityuk, Alexander A.
2005-07-01
Electronic coupling Vda is one of the key parameters that determine the rate of charge transfer through DNA. While there have been several computational studies of Vda for hole transfer, estimates of electronic couplings for excess electron transfer (ET) in DNA remain unavailable. In the paper, an efficient strategy is established for calculating the ET matrix elements between base pairs in a π stack. Two approaches are considered. First, we employ the diabatic-state (DS) method in which donor and acceptor are represented with radical anions of the canonical base pairs adenine-thymine (AT) and guanine-cytosine (GC). In this approach, similar values of Vda are obtained with the standard 6-31G* and extended 6-31++G** basis sets. Second, the electronic couplings are derived from lowest unoccupied molecular orbitals (LUMOs) of neutral systems by using the generalized Mulliken-Hush or fragment charge methods. Because the radical-anion states of AT and GC are well reproduced by LUMOs of the neutral base pairs calculated without diffuse functions, the estimated values of Vda are in good agreement with the couplings obtained for radical-anion states using the DS method. However, when the calculation of a neutral stack is carried out with diffuse functions, LUMOs of the system exhibit the dipole-bound character and cannot be used for estimating electronic couplings. Our calculations suggest that the ET matrix elements Vda for models containing intrastrand thymine and cytosine bases are essentially larger than the couplings in complexes with interstrand pyrimidine bases. The matrix elements for excess electron transfer are found to be considerably smaller than the corresponding values for hole transfer and to be very responsive to structural changes in a DNA stack.
The Role of Cytosine Methylation on Charge Transport through a DNA Strand
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qi, Jianqing; Govind, Niranjan; Anantram, M. P.
Cytosine methylation has been found to play a crucial role in various biological processes, including a number of human diseases. The detection of this small modifi-cation remains challenging. In this work, we computationally explore the possibility of detecting methylated DNA strands through direct electrical conductance measurements. Using density functional theory and the Landauer-Buttiker method, we study the electronic properties and charge transport through an eight base-pair methylated DNA strand and its native counterpart. Specifically, we compare the results generated with the widely used B3LYP exchange-correlation (XC) functional and CAM-B3LYP based tuned range-separated hybrid density functional. We first analyze the effectmore » of cytosine methylation on the tight-binding parameters of two DNA strands and then model the transmission of the electrons and conductance through the strands both with and without decoherence. We find that with both functionals, the main difference of the tight-binding parameters between the native DNA and the methylated DNA lies in the on-site energies of (methylated) cytosine bases. The intra- and interstrand hopping integrals between two nearest neighboring guanine base and (methylated) cytosine base also change with the addition of the methyl groups. Our calculations show that in the phase-coherent limit, the transmission of the methylated strand is close to the native strand when the energy is nearby the highest occupied molecular orbital (HOMO) level and larger than the native strand by 5 times in the bandgap. The trend in transmission also holds in the presence of the decoherence with both functionals. We also study the effect of contact coupling by choosing coupling strengths ranging from weak to strong coupling limit. Our results suggest that the effect of the two different functionals is to alter the on-site energies of the DNA bases at the HOMO level, while the transport properties don't depend much on the two functionals.« less
Multi-band phase shifter design using modified slotline configuration
NASA Astrophysics Data System (ADS)
Kulandhaisamy, Indhumathi; Rajendran, Dinesh Babu; Kanagasabai, Malathi; Gurusamy, Gunasekaran; Moorthy, Balaji; George, Jithila V.; Lawrance, Livya
2017-01-01
In this paper, an analog multiband phase shifter using slotline configuration is proposed. To implement the design, a pair of modified Split Ring Resonator (SRR) is employed. The periodic property of SRR provides multiband characteristics, whether the coupling slot gives the phase variations over the bands. The operation is well explained with an equivalent circuit model and its characteristics have been studied both in simulation and measurement. The prototype operates in 1.77-2.16, 3.5-3.97, 5.08-5.33, 6.43-6.93, and 8.01-8.59 GHz frequency bands which can be utilized for GSM, GPS, WLAN, C-band, and X-band applications, respectively.
NASA Astrophysics Data System (ADS)
Kapri, Priyadarshini; Adhikary, Priyanka; Sinha, Shubham; Basu, Saurabh
2018-05-01
Thermoelectric effect for metal, insulator and the superconductor junctions has been studied with Rashba spin-orbit coupling (RSOC) being present at the interfaces via modified Blonder-Tinkham-Klapwijk (BTK) theory. We find that the thermopower, as a function of an effective barrier potential that characterizes the intermediate insulating layer, displays an oscillatory behavior. Interesting interplay between the strength of RSOC and the effective barrier potential has been carried out in details in this regard. For specific ranges of the effective barrier potential, RSOC enhances the thermopower, while the reverse happens for other values. Moreover it is found that the effective barrier potential plays a crucial role in determining the thermopower spectrum. For a tunable Rashba coupling, the thermopower of the junction can be controlled with precision, which may useful for the thermoelectric applications, at low temperatures. Further the efficiency of the system is obtained for different pairing correlations of the superconducting lead where we find that the system with a d-wave symmetry is more efficient as compared to a s-wave correlation, in some selective regions of effective barrier potential. It is found that for some selective regions of effective barrier potential, the efficiency of the system increases with RSOC and the opposite happens for other values.
ERIC Educational Resources Information Center
Pattillo, Suzan Trefry; Heller, Kathryn Wolf; Smith, Maureen
2004-01-01
The repeated-reading strategy and optical character recognition were paired to demonstrate a functional relationship between the combined strategies and two factors: the reading rates of students with visual impairments and the students' self-perceptions, or attitudes, toward reading. The results indicated that all five students increased their…
Function Transformation without Reinforcement
Tonneau, François; Arreola, Fara; Martínez, Alma Gabriela
2006-01-01
In studies of function transformation, participants initially are taught to match stimuli in the presence of a contextual cue, X; the stimuli to be matched bear some formal relation to each other, for example, a relation of opposition or difference. In a second phase, the participants are taught to match arbitrary stimuli (say, A and B) in the presence of X. In a final test, A often displays behavioral functions that differ from those of B, and can be predicted from the nature of the relation associated with X in the initial training phase. Here we report function-transformation effects in the absence of selection responses and of their reinforcers. In three experiments with college students, exposure to relations of difference or identity modified the responses given to later stimuli. In Experiment 1, responses to a test stimulus A varied depending on preexposure to pairs of colors that were distinct from A but exemplified relations of difference or identity. In Experiment 2, a stimulus A acquired distinct functions, depending on its previous pairing with a contextual cue X that had itself been paired with identity or difference among colors. Experiment 3 confirmed the results of Experiment 2 with a modified design. Our data are consistent with the notion that relations of identity or difference can serve as stimuli for Pavlovian processes, and, in compound with other cues, produce apparent function-transformation effects. PMID:16776058
Function transformation without reinforcement.
Tonneau, Franćois; Arreola, Fara; Martínez, Alma Gabriela
2006-05-01
In studies of function transformation, participants initially are taught to match stimuli in the presence of a contextual cue, X; the stimuli to be matched bear some formal relation to each other, for example, a relation of opposition or difference. In a second phase, the participants are taught to match arbitrary stimuli (say, A and B) in the presence of X. In a final test, A often displays behavioral functions that differ from those of B, and can be predicted from the nature of the relation associated with X in the initial training phase. Here we report function-transformation effects in the absence of selection responses and of their reinforcers. In three experiments with college students, exposure to relations of difference or identity modified the responses given to later stimuli. In Experiment 1, responses to a test stimulus A varied depending on preexposure to pairs of colors that were distinct from A but exemplified relations of difference or identity. In Experiment 2, a stimulus A acquired distinct functions, depending on its previous pairing with a contextual cue X that had itself been paired with identity or difference among colors. Experiment 3 confirmed the results of Experiment 2 with a modified design. Our data are consistent with the notion that relations of identity or difference can serve as stimuli for Pavlovian processes, and, in compound with other cues, produce apparent function-transformation effects.
Flexibility in the patterning and control of axial locomotor networks in lamprey.
Buchanan, James T
2011-12-01
In lower vertebrates, locomotor burst generators for axial muscles generally produce unitary bursts that alternate between the two sides of the body. In lamprey, a lower vertebrate, locomotor activity in the axial ventral roots of the isolated spinal cord can exhibit flexibility in the timings of bursts to dorsally-located myotomal muscle fibers versus ventrally-located myotomal muscle fibers. These episodes of decreased synchrony can occur spontaneously, especially in the rostral spinal cord where the propagating body waves of swimming originate. Application of serotonin, an endogenous spinal neurotransmitter known to presynaptically inhibit excitatory synapses in lamprey, can promote decreased synchrony of dorsal-ventral bursting. These observations suggest the possible existence of dorsal and ventral locomotor networks with modifiable coupling strength between them. Intracellular recordings of motoneurons during locomotor activity provide some support for this model. Pairs of motoneurons innervating myotomal muscle fibers of similar ipsilateral dorsoventral location tend to have higher correlations of fast synaptic activity during fictive locomotion than do pairs of motoneurons innervating myotomes of different ipsilateral dorsoventral locations, suggesting their control by different populations of premotor interneurons. Further, these different motoneuron pools receive different patterns of excitatory and inhibitory inputs from individual reticulospinal neurons, conveyed in part by different sets of premotor interneurons. Perhaps, then, the locomotor network of the lamprey is not simply a unitary burst generator on each side of the spinal cord that activates all ipsilateral body muscles simultaneously. Instead, the burst generator on each side may comprise at least two coupled burst generators, one controlling motoneurons innervating dorsal body muscles and one controlling motoneurons innervating ventral body muscles. The coupling strength between these two ipsilateral burst generators may be modifiable and weakening when greater swimming maneuverability is required. Variable coupling of intrasegmental burst generators in the lamprey may be a precursor to the variable coupling of burst generators observed in the control of locomotion in the joints of limbed vertebrates.
Novoderezhkin, Vladimir I.; Dekker, Jan P.; van Grondelle, Rienk
2007-01-01
We propose an exciton model for the Photosystem II reaction center (RC) based on a quantitative simultaneous fit of the absorption, linear dichroism, circular dichroism, steady-state fluorescence, triplet-minus-singlet, and Stark spectra together with the spectra of pheophytin-modified RCs, and so-called RC5 complexes that lack one of the peripheral chlorophylls. In this model, the excited state manifold includes a primary charge-transfer (CT) state that is supposed to be strongly mixed with the pure exciton states. We generalize the exciton theory of Stark spectra by 1), taking into account the coupling to a CT state (whose static dipole cannot be treated as a small parameter in contrast to usual excited states); and 2), expressing the line shape functions in terms of the modified Redfield approach (the same as used for modeling of the linear responses). This allows a consistent modeling of the whole set of experimental data using a unified physical picture. We show that the fluorescence and Stark spectra are extremely sensitive to the assignment of the primary CT state, its energy, and coupling to the excited states. The best fit of the data is obtained supposing that the initial charge separation occurs within the special-pair PD1PD2. Additionally, the scheme with primary electron transfer from the accessory chlorophyll to pheophytin gave a reasonable quantitative fit. We show that the effectiveness of these two pathways is strongly dependent on the realization of the energetic disorder. Supposing a mixed scheme of primary charge separation with a disorder-controlled competition of the two channels, we can explain the coexistence of fast sub-ps and slow ps components of the Phe-anion formation as revealed by different ultrafast spectroscopic techniques. PMID:17526589
Colloid-Colloid Hydrodynamic Interaction Around a Bend in a Quasi-One-Dimensional Channel
NASA Astrophysics Data System (ADS)
Liepold, Christopher; Zarcone, Ryan; Heumann, Tibor; Lin, Binhua; Rice, Stuart
We report a study of the correlation between a pair of particles in a colloid suspension in a bent quasi-one-dimensional (q1d) channel as a function of bend angle. As the bend angle becomes more acute, we observe an increasing depletion of particles in the vicinity of the bend and an increase in the nearest-neighbor separation in the pair correlation function for particles on opposite sides of the bend. Further, we observe that the peak value of D12, the coupling term in the pair diffusion tensor that characterizes the effect of the motion of particle 1 on particle 2, coincides with the first peak in the pair correlation function, and that the pair separation dependence of D12 mimics that of the pair correlation function. We show that the observed behavior is a consequence of the geometric constraints imposed by the single-file requirement that the particle centers lie on the centerline of the channel and the requirement that the hydrodynamic flow must follow the channel around the bend. We find that the correlation between a pair of particles in a colloidal suspension in a bent q1D channel has the same functional dependence on the pair correlation function as in a straight q1D channel when measured in a coordinate system that follows the centerline of the bent channel. NSF MRSEC (DMR-1420709), Dreyfus Foundation (SI-14-014).
Strong temperature effect on the sizes of the Cooper pairs in a two-band superconductor
NASA Astrophysics Data System (ADS)
Örd, Teet; Rägo, Küllike; Vargunin, Artjom; Litak, Grzegorz
2018-01-01
We study the temperature dependencies of the mean sizes of the Cooper pairs in a two-band BCS-type s-wave superconductivity model with coupling cut-off in the momentum space. It is found that, in contrast to single-band systems, the size of Cooper pairs in the weaker superconductivity band can significantly decrease with a temperature increase due to an interband proximity effect. The relevant spatial behaviour of the wave functions of the Cooper pairs is analyzed. The results also indicate a possibility that the size of Cooper pairs in two-band systems may increase with an increase in temperature.
Origins of coevolution between residues distant in protein 3D structures
Ovchinnikov, Sergey; Kamisetty, Hetunandan; Baker, David
2017-01-01
Residue pairs that directly coevolve in protein families are generally close in protein 3D structures. Here we study the exceptions to this general trend—directly coevolving residue pairs that are distant in protein structures—to determine the origins of evolutionary pressure on spatially distant residues and to understand the sources of error in contact-based structure prediction. Over a set of 4,000 protein families, we find that 25% of directly coevolving residue pairs are separated by more than 5 Å in protein structures and 3% by more than 15 Å. The majority (91%) of directly coevolving residue pairs in the 5–15 Å range are found to be in contact in at least one homologous structure—these exceptions arise from structural variation in the family in the region containing the residues. Thirty-five percent of the exceptions greater than 15 Å are at homo-oligomeric interfaces, 19% arise from family structural variation, and 27% are in repeat proteins likely reflecting alignment errors. Of the remaining long-range exceptions (<1% of the total number of coupled pairs), many can be attributed to close interactions in an oligomeric state. Overall, the results suggest that directly coevolving residue pairs not in repeat proteins are spatially proximal in at least one biologically relevant protein conformation within the family; we find little evidence for direct coupling between residues at spatially separated allosteric and functional sites or for increased direct coupling between residue pairs on putative allosteric pathways connecting them. PMID:28784799
Weakly Nonergodic Dynamics in the Gross-Pitaevskii Lattice
NASA Astrophysics Data System (ADS)
Mithun, Thudiyangal; Kati, Yagmur; Danieli, Carlo; Flach, Sergej
2018-05-01
The microcanonical Gross-Pitaevskii (also known as the semiclassical Bose-Hubbard) lattice model dynamics is characterized by a pair of energy and norm densities. The grand canonical Gibbs distribution fails to describe a part of the density space, due to the boundedness of its kinetic energy spectrum. We define Poincaré equilibrium manifolds and compute the statistics of microcanonical excursion times off them. The tails of the distribution functions quantify the proximity of the many-body dynamics to a weakly nonergodic phase, which occurs when the average excursion time is infinite. We find that a crossover to weakly nonergodic dynamics takes place inside the non-Gibbs phase, being unnoticed by the largest Lyapunov exponent. In the ergodic part of the non-Gibbs phase, the Gibbs distribution should be replaced by an unknown modified one. We relate our findings to the corresponding integrable limit, close to which the actions are interacting through a short range coupling network.
Theoretical study of transition-metal ions bound to benzene
NASA Technical Reports Server (NTRS)
Bauschlicher, Charles W., Jr.; Partridge, Harry; Langhoff, Stephen R.
1992-01-01
Theoretical binding energies are reported for all first-row and selected second-row transition metal ions (M+) bound to benzene. The calculations employ basis sets of at least double-zeta plus polarization quality and account for electron correlation using the modified coupled-pair functional method. While the bending is predominantly electrostatic, the binding energies are significantly increased by electron correlation, because the donation from the metal d orbitals to the benzene pi* orbitals is not well described at the self-consistent-field level. The uncertainties in the computed binding energies are estimated to be about 5 kcal/mol. Although the calculated and experimental binding energies generally agree to within their combined uncertainties, it is likely that the true binding energies lie in the lower portion of the experimental range. This is supported by the very good agreement between the theoretical and recent experimental binding energies for AgC6H6(+).
Coupling effects in the modal emission of colloidal quantum dot microdisk lasers.
NASA Astrophysics Data System (ADS)
Lafalce, Evan; Zheng, Qingji; Lin, Chunhao; Smith, Marcus; Malak, Sidney; Jung, Jaehan; Yoon, Young; Lin, Zhiqun; Tsukruk, Vladimir; Vardeny, Z. Valy
Solution-processed semiconductors such as colloidal quantum dots (CQD) are particularly suited materials for monolithic fabrication of laser microstructures because of their ease of fabrication and compatibility with conventional lithographic techniques. We use the functionality of core/alloyed-shell CQDs to fabricate microdisk lasers of variable size and study the resulting whispering-gallery mode laser emission. In particular we study the effects of near-field coupling on resonant modes of pairs of these lasers with sub-micrometer spacing. We demonstrate the occurrence of lasing modes that originate from the interaction between two such microdisks by means of varying the spatial distribution and magnitude of the gain and loss in the coupled-pair. The transition from emission of modes localized on a single disk to those of the interacting pair is accompanied by coalescence of eigen-frequencies and pump-induced turn-off of lasing, highlighting the role of parity-time symmetry and exceptional point physics. This work was funded by AFOSR through MURI Grant RA 9550-14-1-0037.
Dhumal, Nilesh R; Kim, Hyung J; Kiefer, Johannes
2011-04-21
Electronic and structural properties of the ion pair 1-ethyl-3-methylimidazolium ethyl sulfate are studied using density functional methods. Three locally stable conformers of the ion pair complex are considered to analyze molecular interactions between its cation and anion. Manifestations of these interactions in the vibrational spectra are discussed and compared with experimental IR and Raman spectroscopy data. NBO analysis and difference electron density coupled with molecular electron density topography are used to interpret the frequency shifts of the normal vibrations of the ion pair, compared to the free anion and cation. Excitation energies of low-lying singlet excited states of the conformers are also studied. The density functional theory results are found to be in a reasonable agreement with experimental UV/vis absorption spectra.
Targeting excited states in all-trans polyenes with electron-pair states.
Boguslawski, Katharina
2016-12-21
Wavefunctions restricted to electron pair states are promising models for strongly correlated systems. Specifically, the pair Coupled Cluster Doubles (pCCD) ansatz allows us to accurately describe bond dissociation processes and heavy-element containing compounds with multiple quasi-degenerate single-particle states. Here, we extend the pCCD method to model excited states using the equation of motion (EOM) formalism. As the cluster operator of pCCD is restricted to electron-pair excitations, EOM-pCCD allows us to target excited electron-pair states only. To model singly excited states within EOM-pCCD, we modify the configuration interaction ansatz of EOM-pCCD to contain also single excitations. Our proposed model represents a simple and cost-effective alternative to conventional EOM-CC methods to study singly excited electronic states. The performance of the excited state models is assessed against the lowest-lying excited states of the uranyl cation and the two lowest-lying excited states of all-trans polyenes. Our numerical results suggest that EOM-pCCD including single excitations is a good starting point to target singly excited states.
On the Relativistic Separable Functions for the Breakup Reactions
NASA Astrophysics Data System (ADS)
Bondarenko, Serge G.; Burov, Valery V.; Rogochaya, Elena P.
2018-02-01
In the paper the so-called modified Yamaguchi function for the Bethe-Salpeter equation with a separable kernel is discussed. The type of the functions is defined by the analytic stucture of the hadron current with breakup - the reactions with interacting nucleon-nucleon pair in the final state (electro-, photo-, and nucleon-disintegration of the deuteron).
Production of τ τ jj final states at the LHC and the TauSpinner algorithm: the spin-2 case
NASA Astrophysics Data System (ADS)
Bahmani, M.; Kalinowski, J.; Kotlarski, W.; Richter-Wąs, E.; Wąs, Z.
2018-01-01
The TauSpinner algorithm is a tool that allows one to modify the physics model of the Monte Carlo generated samples due to the changed assumptions of event production dynamics, but without the need of re-generating events. With the help of weights τ -lepton production or decay processes can be modified accordingly to a new physics model. In a recent paper a new version TauSpinner ver.2.0.0 has been presented which includes a provision for introducing non-standard states and couplings and study their effects in the vector-boson-fusion processes by exploiting the spin correlations of τ -lepton pair decay products in processes where final states include also two hard jets. In the present paper we document how this can be achieved taking as an example the non-standard spin-2 state that couples to Standard Model particles and tree-level matrix elements with complete helicity information included for the parton-parton scattering amplitudes into a τ -lepton pair and two outgoing partons. This implementation is prepared as the external (user-provided) routine for the TauSpinner algorithm. It exploits amplitudes generated by MadGraph5 and adapted to the TauSpinner algorithm format. Consistency tests of the implemented matrix elements, re-weighting algorithm and numerical results for observables sensitive to τ polarisation are presented.
High-pressure pair distribution function (PDF) measurement using high-energy focused x-ray beam
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hong, Xinguo, E-mail: xhong@bnl.gov; Weidner, Donald J.; Ehm, Lars
In this paper, we report recent development of the high-pressure pair distribution function (HP-PDF) measurement technique using a focused high-energy X-ray beam coupled with a diamond anvil cell (DAC). The focusing optics consist of a sagittally bent Laue monochromator and Kirkpatrick-Baez (K–B) mirrors. This combination provides a clean high-energy X-ray beam suitable for HP-PDF research. Demonstration of the HP-PDF technique for nanocrystalline platinum under quasi-hydrostatic condition above 30 GPa is presented.
Higgs pair production at NLO QCD for CP-violating Higgs sectors
NASA Astrophysics Data System (ADS)
Gröber, R.; Mühlleitner, M.; Spira, M.
2017-12-01
Higgs pair production through gluon fusion is an important process at the LHC to test the dynamics underlying electroweak symmetry breaking. Higgs sectors beyond the Standard Model (SM) can substantially modify this cross section through novel couplings not present in the SM or the on-shell production of new heavy Higgs bosons that subsequently decay into Higgs pairs. CP violation in the Higgs sector is important for the explanation of the observed matter-antimatter asymmetry through electroweak baryogenesis. In this work we compute the next-to-leading order (NLO) QCD corrections in the heavy top quark limit, including the effects of CP violation in the Higgs sector. We choose the effective theory (EFT) approach, which provides a rather model-independent way to explore New Physics (NP) effects by adding dimension-6 operators, both CP-conserving and CP-violating ones, to the SM Lagrangian. Furthermore, we perform the computation within a specific UV-complete model and choose as benchmark model the general 2-Higgs-Doublet Model with CP violation, the C2HDM. Depending on the dimension-6 coefficients, the relative NLO QCD corrections are affected by several per cent through the new CP-violating operators. This is also the case for SM-like Higgs pair production in the C2HDM, while the relative QCD corrections in the production of heavier C2HDM Higgs boson pairs deviate more strongly from the SM case. The absolute cross sections both in the EFT and the C2HDM can be modified by more than an order of magnitude. In particular, in the C2HDM the resonant production of Higgs pairs can by far exceed the SM cross section.
Quantum Treatment of Two Coupled Oscillators in Interaction with a Two-Level Atom:
NASA Astrophysics Data System (ADS)
Khalil, E. M.; Abdalla, M. Sebawe; Obada, A. S.-F.
In this communication we handle a modified model representing the interaction between a two-level atom and two modes of the electromagnetic field in a cavity. The interaction between the modes is assumed to be of a parametric amplifier type. The model consists of two different systems, one represents the Jaynes-Cummings model (atom-field interaction) and the other represents the two mode parametric amplifier model (field-field interaction). After some canonical transformations the constants of the motion have been obtained and used to derive the time evolution operator. The wave function in the Schrödinger picture is constructed and employed to discuss some statistical properties related to the system. Further discussion related to the statistical properties of some physical quantities is given where we have taken into account an initial correlated pair-coherent state for the modes. We concentrate in our examination on the system behavior that occurred as a result of the variation of the parametric amplifier coupling parameter as well as the detuning parameter. It has been shown that the interaction of the parametric amplifier term increases the revival period and consequently longer period of strong interaction between the atom and the fields.
Colossal spin-orbit coupling in functionalized graphene
NASA Astrophysics Data System (ADS)
Balakrishnan, Jayakumar; Koon, Gavin; Oezyilmaz, Barbaros
2013-03-01
Graphene's low intrinsic spin orbit (SO) interaction strongly limits the realization of several functional spintronics devices. It is therefore quite desirable to develop methods to tune this SO coupling strength. Among the different approaches, the functionalization of graphene seems to be more promising from an application perspective. Recent theoretical and experimental results on functionalized graphene have shown interesting magnetic properties. Here, we will show our preliminary spin-transport results on such functionally modified graphene and discuss the various possibilities it holds for future graphene-based spintronics applications.
Electron—phonon Coupling and the Superconducting Phase Diagram of the LaAlO3—SrTiO3 Interface
Boschker, Hans; Richter, Christoph; Fillis-Tsirakis, Evangelos; Schneider, Christof W.; Mannhart, Jochen
2015-01-01
The superconductor at the LaAlO3—SrTiO3 interface provides a model system for the study of two-dimensional superconductivity in the dilute carrier density limit. Here we experimentally address the pairing mechanism in this superconductor. We extract the electron—phonon spectral function from tunneling spectra and conclude, without ruling out contributions of further pairing channels, that electron—phonon mediated pairing is strong enough to account for the superconducting critical temperatures. Furthermore, we discuss the electron—phonon coupling in relation to the superconducting phase diagram. The electron—phonon spectral function is independent of the carrier density, except for a small part of the phase diagram in the underdoped region. The tunneling measurements reveal that the increase of the chemical potential with increasing carrier density levels off and is zero in the overdoped region of the phase diagram. This indicates that the additionally induced carriers do not populate the band that hosts the superconducting state and that the superconducting order parameter therefore is weakened by the presence of charge carriers in another band. PMID:26169351
NASA Astrophysics Data System (ADS)
Bakhshi Khaniki, Hossein; Rajasekaran, Sundaramoorthy
2018-05-01
This study develops a comprehensive investigation on mechanical behavior of non-uniform bi-directional functionally graded beam sensors in the framework of modified couple stress theory. Material variation is modelled through both length and thickness directions using power-law, sigmoid and exponential functions. Moreover, beam is assumed with linear, exponential and parabolic cross-section variation through the length using power-law and sigmoid varying functions. Using these assumptions, a general model for microbeams is presented and formulated by employing Hamilton’s principle. Governing equations are solved using a mixed finite element method with Lagrangian interpolation technique, Gaussian quadrature method and Wilson’s Lagrangian multiplier method. It is shown that by using bi-directional functionally graded materials in nonuniform microbeams, mechanical behavior of such structures could be affected noticeably and scale parameter has a significant effect in changing the rigidity of nonuniform bi-directional functionally graded beams.
Effects of cluster-shell competition and BCS-like pairing in 12C
NASA Astrophysics Data System (ADS)
Matsuno, H.; Itagaki, N.
2017-12-01
The antisymmetrized quasi-cluster model (AQCM) was proposed to describe α-cluster and jj-coupling shell models on the same footing. In this model, the cluster-shell transition is characterized by two parameters, R representing the distance between α clusters and Λ describing the breaking of α clusters, and the contribution of the spin-orbit interaction, very important in the jj-coupling shell model, can be taken into account starting with the α-cluster model wave function. Not only the closure configurations of the major shells but also the subclosure configurations of the jj-coupling shell model can be described starting with the α-cluster model wave functions; however, the particle-hole excitations of single particles have not been fully established yet. In this study we show that the framework of AQCM can be extended even to the states with the character of single-particle excitations. For ^{12}C, two-particle-two-hole (2p2h) excitations from the subclosure configuration of 0p_{3/2} corresponding to a BCS-like pairing are described, and these shell model states are coupled with the three α-cluster model wave functions. The correlation energy from the optimal configuration can be estimated not only in the cluster part but also in the shell model part. We try to pave the way to establish a generalized description of the nuclear structure.
Guo, Liyuan; Wang, Jing
2018-01-04
Here, we present the updated rSNPBase 3.0 database (http://rsnp3.psych.ac.cn), which provides human SNP-related regulatory elements, element-gene pairs and SNP-based regulatory networks. This database is the updated version of the SNP regulatory annotation database rSNPBase and rVarBase. In comparison to the last two versions, there are both structural and data adjustments in rSNPBase 3.0: (i) The most significant new feature is the expansion of analysis scope from SNP-related regulatory elements to include regulatory element-target gene pairs (E-G pairs), therefore it can provide SNP-based gene regulatory networks. (ii) Web function was modified according to data content and a new network search module is provided in the rSNPBase 3.0 in addition to the previous regulatory SNP (rSNP) search module. The two search modules support data query for detailed information (related-elements, element-gene pairs, and other extended annotations) on specific SNPs and SNP-related graphic networks constructed by interacting transcription factors (TFs), miRNAs and genes. (3) The type of regulatory elements was modified and enriched. To our best knowledge, the updated rSNPBase 3.0 is the first data tool supports SNP functional analysis from a regulatory network prospective, it will provide both a comprehensive understanding and concrete guidance for SNP-related regulatory studies. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.
2018-01-01
Abstract Here, we present the updated rSNPBase 3.0 database (http://rsnp3.psych.ac.cn), which provides human SNP-related regulatory elements, element-gene pairs and SNP-based regulatory networks. This database is the updated version of the SNP regulatory annotation database rSNPBase and rVarBase. In comparison to the last two versions, there are both structural and data adjustments in rSNPBase 3.0: (i) The most significant new feature is the expansion of analysis scope from SNP-related regulatory elements to include regulatory element–target gene pairs (E–G pairs), therefore it can provide SNP-based gene regulatory networks. (ii) Web function was modified according to data content and a new network search module is provided in the rSNPBase 3.0 in addition to the previous regulatory SNP (rSNP) search module. The two search modules support data query for detailed information (related-elements, element-gene pairs, and other extended annotations) on specific SNPs and SNP-related graphic networks constructed by interacting transcription factors (TFs), miRNAs and genes. (3) The type of regulatory elements was modified and enriched. To our best knowledge, the updated rSNPBase 3.0 is the first data tool supports SNP functional analysis from a regulatory network prospective, it will provide both a comprehensive understanding and concrete guidance for SNP-related regulatory studies. PMID:29140525
State-Dependent Cross-Brain Information Flow in Borderline Personality Disorder.
Bilek, Edda; Stößel, Gabriela; Schäfer, Axel; Clement, Laura; Ruf, Matthias; Robnik, Lydia; Neukel, Corinne; Tost, Heike; Kirsch, Peter; Meyer-Lindenberg, Andreas
2017-09-01
Although borderline personality disorder (BPD)-one of the most common, burdensome, and costly psychiatric conditions-is characterized by repeated interpersonal conflict and instable relationships, the neurobiological mechanism of social interactive deficits remains poorly understood. To apply recent advancements in the investigation of 2-person human social interaction to investigate interaction difficulties among people with BPD. Cross-brain information flow in BPD was examined from May 25, 2012, to December 4, 2015, in pairs of participants studied in 2 linked functional magnetic resonance imaging scanners in a university setting. Participants performed a joint attention task. Each pair included a healthy control individual (HC) and either a patient currently fulfilling DSM-IV criteria for BPD (cBPD) (n = 23), a patient in remission for 2 years or more (rBPD) (n = 17), or a second HC (n = 20). Groups were matched for age and educational level. A measure of cross-brain neural coupling was computed following previously published work to indicate synchronized flow between right temporoparietal junction networks (previously shown to host neural coupling abilities in health). This measure is derived from an independent component analysis contrasting the time courses of components between pairs of truly interacting participants compared with bootstrapped control pairs. In the sample including 23 women with cBPD (mean [SD] age, 26.8 [5.7] years), 17 women with rBPD (mean [SD] age, 28.5 [4.3] years), and 80 HCs (mean [SD] age, 24.0 [3.4] years]) investigated as dyads, neural coupling was found to be associated with disorder state (η2 = 0.17; P = .007): while HC-HC pairs showed synchronized neural responses, cBPD-HC pairs exhibited significantly lower neural coupling just above permutation-based data levels (η2 = 0.16; P = .009). No difference was found between neural coupling in rBPD-HC and HC-HC pairs. The neural coupling in patients was significantly associated with childhood adversity (T = 2.3; P = .03). This study provides a neural correlate for a core diagnostic and clinical feature of BPD. Results indicate that hyperscanning may deliver state-associated biomarkers for clinical social neuroscience. In addition, at least some neural deficits of BPD may be more reversible than is currently assumed for personality disorders.
Nonlinear optics in organic cavity polaritons (Conference Presentation)
NASA Astrophysics Data System (ADS)
Singer, Kenneth D.; Liu, Bin; Crescimanno, Michael; Twieg, Robert J.
2017-02-01
Coupling between excitons belonging to organic dyes and photons in a microcavities forming cavity polaritons have been receiving attention for their fundamental interest as well as potential applications in coherent light sources. Organic materials are of particular interest as the coupling is particularly strong due to the large oscillator strength of conjugated organic molecules. The resulting coupling in organic materials is routinely in the strong regime. Ultrastrong coupling between photons and excitons in microcavities containing organic dyes and semiconductors has been recently observed in room temperature. We have studied the coupling between cavity pairs in the ultrastrong regime and found that the high order terms in the modified Jaynes-Cummings model result in broken degeneracy between the symmetric and antisymmetric modes. The unusually strong coupling between cavity photons and organic excitons dovetail with the robust nonlinear optical responses of the same materials. This provides a new and promising hybrid material for photonics. We report on measurements of photorefraction in organic cavities containing a derivative of the photorefractive organic glass based on 2-dicyanomethylene-3-cyano-2,5-dihydrofuran (DCDHF).
Excitonic couplings between molecular crystal pairs by a multistate approximation
NASA Astrophysics Data System (ADS)
Aragó, Juan; Troisi, Alessandro
2015-04-01
In this paper, we present a diabatization scheme to compute the excitonic couplings between an arbitrary number of states in molecular pairs. The method is based on an algebraic procedure to find the diabatic states with a desired property as close as possible to that of some reference states. In common with other diabatization schemes, this method captures the physics of the important short-range contributions (exchange, overlap, and charge-transfer mediated terms) but it becomes particularly suitable in presence of more than two states of interest. The method is formulated to be usable with any level of electronic structure calculations and to diabatize different types of states by selecting different molecular properties. These features make the diabatization scheme presented here especially appropriate in the context of organic crystals, where several excitons localized on the same molecular pair may be found close in energy. In this paper, the method is validated on the tetracene crystal dimer, a well characterized case where the charge transfer (CT) states are closer in energy to the Frenkel excitons (FE). The test system was studied as a function of an external electric field (to explore the effect of changing the relative energy of the CT excited state) and as a function of different intermolecular distances (to probe the strength of the coupling between FE and CT states). Additionally, we illustrate how the approximation can be used to include the environment polarization effect.
Improvements and Performance of the Fermilab Solenoid Test Facility
Orris, Darryl; Arnold, Don; Brandt, Jeffrey; ...
2017-06-01
Here, the Solenoid Test Facility at Fermilab was built using a large vacuum vessel for testing of conduction-cooled superconducting solenoid magnets, and was first used to determine the performance of the MICE Coupling Coil. The facility was modified recently to enable testing of solenoid magnets for the Mu2e experiment, which operate at much higher current than the Coupling Coil. One pair of low current conduction-cooled copper and NbTi leads was replaced with two pairs of 10 kA HTS leads cooled by heat exchange with liquid nitrogen and liquid helium. The new design, with additional control and monitoring capability, also providesmore » helium cooling of the superconducting magnet leads by conduction. A high current power supply with energy extraction was added, and several improvements to the quench protection and characterization system were made. Here we present details of these changes and report on performance results from a test of the Mu2e prototype Transport Solenoid (TS) module. Progress on additional improvements in preparation for production TS module testing will be presented.« less
Improvements and Performance of the Fermilab Solenoid Test Facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Orris, Darryl; Arnold, Don; Brandt, Jeffrey
Here, the Solenoid Test Facility at Fermilab was built using a large vacuum vessel for testing of conduction-cooled superconducting solenoid magnets, and was first used to determine the performance of the MICE Coupling Coil. The facility was modified recently to enable testing of solenoid magnets for the Mu2e experiment, which operate at much higher current than the Coupling Coil. One pair of low current conduction-cooled copper and NbTi leads was replaced with two pairs of 10 kA HTS leads cooled by heat exchange with liquid nitrogen and liquid helium. The new design, with additional control and monitoring capability, also providesmore » helium cooling of the superconducting magnet leads by conduction. A high current power supply with energy extraction was added, and several improvements to the quench protection and characterization system were made. Here we present details of these changes and report on performance results from a test of the Mu2e prototype Transport Solenoid (TS) module. Progress on additional improvements in preparation for production TS module testing will be presented.« less
NASA Astrophysics Data System (ADS)
Jawad, A.; Chattopadhyay, S.; Bhattacharya, S.; Pasqua, A.
2015-04-01
The objective of this paper is to discuss the Chameleon Brans-Dicke gravity with non-minimally matter coupling of scalar field. We take modified Holographic Ricci dark energy model in this gravity with its energy density in interaction with energy density of cold dark matter. We assume power-law ansatz for scale factor and scalar field to discuss potential as well as coupling functions in the evolving universe. These reconstructed functions are plotted versus scalar field and time for different values of power component of scale factor n. We observe that potential and coupling functions represent increasing behavior, in particular, consistent results for a specific value of n. Finally, we have examined validity of the generalized second law of thermodynamics and we have observed its validity for all values of n. The financial Supported from Department of Science and Technology, Govt. of India under Project Grant No. SR/FTP/PS-167/2011 is thankfully acknowledged by SC
Doxorubicin coupled to lactosaminated albumin: Effects on rats with liver fibrosis and cirrhosis.
Di Stefano, G; Fiume, L; Domenicali, M; Busi, C; Chieco, P; Kratz, F; Lanza, M; Mattioli, A; Pariali, M; Bernardi, M
2006-06-01
The conjugate of doxorubicin with lactosaminated human albumin has the potential of increasing the doxorubicin efficacy in the treatment of hepatocellular carcinomas expressing the asialoglycoprotein receptor. However, coupled doxorubicin also accumulates in the liver, which might damage hepatocytes. To verify whether coupled doxorubicin impairs liver function in rats with liver fibrosis and cirrhosis. Coupled doxorubicin was administered using the same schedule which exerted an antineoplastic effect on rat hepatocellular carcinomas (4-weekly injections of doxorubicin at 1 microg/g). Liver fibrosis/cirrhosis was produced by carbon tetrachloride (CCl4) poisoning. Liver samples were studied histologically. Serum parameters of liver function and viability were determined. In normal rats, administration of coupled doxorubicin neither caused microscopic changes of hepatocytes nor modified serum liver parameters. In rats with fibrosis/cirrhosis, although a selective doxorubicin accumulation within the liver followed coupled doxorubicin administration, the drug did not have a detrimental effect on the histology of the liver and, among serum liver tests, only alanine aminotransferase and aspartate aminotransferase levels were moderately modified. Coupled doxorubicin can be administered to rats with liver fibrosis/cirrhosis without inducing a severe liver damage. If further studies will confirm the efficacy and safety of this compound, coupled doxorubicin therapy may open a new perspective in the treatment of hepatocellular carcinoma.
NASA Astrophysics Data System (ADS)
Verdebout, S.; Jönsson, P.; Gaigalas, G.; Godefroid, M.; Froese Fischer, C.
2010-04-01
Multiconfiguration expansions frequently target valence correlation and correlation between valence electrons and the outermost core electrons. Correlation within the core is often neglected. A large orbital basis is needed to saturate both the valence and core-valence correlation effects. This in turn leads to huge numbers of configuration state functions (CSFs), many of which are unimportant. To avoid the problems inherent to the use of a single common orthonormal orbital basis for all correlation effects in the multiconfiguration Hartree-Fock (MCHF) method, we propose to optimize independent MCHF pair-correlation functions (PCFs), bringing their own orthonormal one-electron basis. Each PCF is generated by allowing single- and double-excitations from a multireference (MR) function. This computational scheme has the advantage of using targeted and optimally localized orbital sets for each PCF. These pair-correlation functions are coupled together and with each component of the MR space through a low dimension generalized eigenvalue problem. Nonorthogonal orbital sets being involved, the interaction and overlap matrices are built using biorthonormal transformation of the coupled basis sets followed by a counter-transformation of the PCF expansions. Applied to the ground state of beryllium, the new method gives total energies that are lower than the ones from traditional complete active space (CAS)-MCHF calculations using large orbital active sets. It is fair to say that we now have the possibility to account for, in a balanced way, correlation deep down in the atomic core in variational calculations.
Wittmann, Daniela; Carolan, Marsha; Given, Barbara; Skolarus, Ted A; Crossley, Heather; An, Lawrence; Palapattu, Ganesh; Clark, Patricia; Montie, James E
2015-02-01
Interventions designed to help couples recover sexual intimacy after prostatectomy have not been guided by a comprehensive conceptual model. We examined a proposed biopsychosocial conceptual model of couples' sexual recovery that included functional, psychological, and relational aspects of sexuality, surgery-related sexual losses, and grief and mourning as recovery process. We interviewed 20 couples preoperatively and 3 months postoperatively. between 2010 and 2012. Interviews were analyzed with Analytic Induction qualitative methodology, using NVivo software. Paired t-tests described functional assessment data. Study findings led to a revised conceptual model. Couples' experiences were assessed through semi-structured interviews; male participants' sexual function was assessed with the Expanded Prostate Cancer Index Composite and female participants' sexual function with the Female Sexual Function Index. Preoperatively, 30% of men had erectile dysfunction (ED) and 84% of partners were postmenopausal. All valued sexual recovery, but worried about cancer spread and surgery side effects. Faith in themselves and their surgeons led 90% of couples to overestimate erectile recovery. Postoperatively, most men had ED and lost confidence. Couples' sexual activity decreased. Couples reported feeling loss and grief: cancer diagnosis was the first loss, followed by surgery-related sexual losses. Couples' engagement in intentional sex, patients' acceptance of erectile aids, and partners' interest in sex aided the recovery of couples' sexual intimacy recovery. Unselfconscious sex, not returning to erectile function baseline, was seen as the end point. Survey findings documented participants' sexual function losses, confirming qualitative findings. Couples' sexual recovery requires addressing sexual function, feelings about losses, and relationship simultaneously. Perioperative education should emphasize the roles of nerve damage in ED and grief and mourning in sexual recovery. © 2014 International Society for Sexual Medicine.
Conformations of stereoisomeric base adducts to 4-hydroxyequilenin.
Ding, Shuang; Shapiro, Robert; Geacintov, Nicholas E; Broyde, Suse
2003-06-01
Exposure to estrogen through estrogen replacement therapy increases the risk of women developing cancer in hormone sensitive tissues. Premarin (Wyeth), which has been the most frequent choice for estrogen replacement therapy in the United States, contains the equine estrogens equilin and equilenin as major components. 4-Hydroxyequilenin (4-OHEN) is a phase I metabolite of both of these substances. This catechol estrogen autoxidizes to potent cytotoxic quinoids that can react with dG, dA, and dC to form unusual stereoisomeric cyclic adducts (Bolton, J. L., et al. (1998) Chem. Res. Toxicol. 11, 1113-1127). Like other bulky DNA adducts, these lesions may exhibit different susceptibilities to DNA repair and mutagenic potential, if not repaired in a structure-dependent manner. To ultimately gain insights into structure-function relationships, we computed conformations of stereoisomeric guanine, adenine, and cytosine base adducts using density functional theory. We find near mirror image conformations in stereoisomer adduct pairs for each modified base, suggesting opposite orientations with respect to the 5' --> 3' direction of the modified strand when the stereoisomer pairs are incorporated into duplex DNA. Such opposite orientations could cause stereoisomer pairs of lesions to respond differently to DNA replication and repair enzymes.
Spectral broadening of optical transitions in InAs/GaAs coupled quantum dot pairs
NASA Astrophysics Data System (ADS)
Kumar, P.; Czarnocki, C.; Jennings, C.; Casara, J.; Monteros, A. L.; Zahbihi, N.; Scheibner, M.; Economou, S. E.; Bracker, A. S.; Pursley, B. C.; Gammon, D.; Carter, S. G.
The optical transitions in InAs/GaAs coupled quantum dot (CQD) pairs are investigated experimentally. These coupled dot systems provide new means to study the interaction of quantum states with the mechanical modes of the crystal environment. Here, the line width and line shape of CQD optical transitions are analyzed in detail as a function of temperature, excitation power, excitation energy, and tunnel coupling strength. A significant line broadening, up to 25 times the typical lifetime-limited linewidth of single-dot excitons, is being observed at level anti-crossings where the coherent tunnel coupling between spatially direct and indirect exciton states is considerable. The experimental observations are compared with theoretical predictions where linewidth broadening at anti-crossings is attributed to the phonon assisted transitions, and found to be strongly dependent on the energy splitting of the two exciton branches. This work focuses on understanding the linewidth broadening due to the pure dephasing, and fundamental aspects of the interaction of these systems with the local environment. This work was supported by the Defense Threat Reduction Agency, Basic Research Award HDTRA1-15-1-0011.
Alexander, Stephen P. H.; Sharman, Joanna L.; Pawson, Adam J.; Benson, Helen E.; Monaghan, Amy E.; Liew, Wen Chiy; Mpamhanga, Chidochangu P.; Bonner, Tom I.; Neubig, Richard R.; Pin, Jean Philippe; Spedding, Michael; Harmar, Anthony J.
2013-01-01
In 2005, the International Union of Basic and Clinical Pharmacology Committee on Receptor Nomenclature and Drug Classification (NC-IUPHAR) published a catalog of all of the human gene sequences known or predicted to encode G protein-coupled receptors (GPCRs), excluding sensory receptors. This review updates the list of orphan GPCRs and describes the criteria used by NC-IUPHAR to recommend the pairing of an orphan receptor with its cognate ligand(s). The following recommendations are made for new receptor names based on 11 pairings for class A GPCRs: hydroxycarboxylic acid receptors [HCA1 (GPR81) with lactate, HCA2 (GPR109A) with 3-hydroxybutyric acid, HCA3 (GPR109B) with 3-hydroxyoctanoic acid]; lysophosphatidic acid receptors [LPA4 (GPR23), LPA5 (GPR92), LPA6 (P2Y5)]; free fatty acid receptors [FFA4 (GPR120) with omega-3 fatty acids]; chemerin receptor (CMKLR1; ChemR23) with chemerin; CXCR7 (CMKOR1) with chemokines CXCL12 (SDF-1) and CXCL11 (ITAC); succinate receptor (SUCNR1) with succinate; and oxoglutarate receptor [OXGR1 with 2-oxoglutarate]. Pairings are highlighted for an additional 30 receptors in class A where further input is needed from the scientific community to validate these findings. Fifty-seven human class A receptors (excluding pseudogenes) are still considered orphans; information has been provided where there is a significant phenotype in genetically modified animals. In class B, six pairings have been reported by a single publication, with 28 (excluding pseudogenes) still classified as orphans. Seven orphan receptors remain in class C, with one pairing described by a single paper. The objective is to stimulate research into confirming pairings of orphan receptors where there is currently limited information and to identify cognate ligands for the remaining GPCRs. Further information can be found on the IUPHAR Database website (http://www.iuphar-db.org). PMID:23686350
Optical signatures of coupled quantum dots.
Stinaff, E A; Scheibner, M; Bracker, A S; Ponomarev, I V; Korenev, V L; Ware, M E; Doty, M F; Reinecke, T L; Gammon, D
2006-02-03
An asymmetric pair of coupled InAs quantum dots is tuned into resonance by applying an electric field so that a single hole forms a coherent molecular wave function. The optical spectrum shows a rich pattern of level anticrossings and crossings that can be understood as a superposition of charge and spin configurations of the two dots. Coulomb interactions shift the molecular resonance of the optically excited state (charged exciton) with respect to the ground state (single charge), enabling light-induced coupling of the quantum dots. This result demonstrates the possibility of optically coupling quantum dots for application in quantum information processing.
Optical Signatures of Coupled Quantum Dots
NASA Astrophysics Data System (ADS)
Stinaff, E. A.; Scheibner, M.; Bracker, A. S.; Ponomarev, I. V.; Korenev, V. L.; Ware, M. E.; Doty, M. F.; Reinecke, T. L.; Gammon, D.
2006-02-01
An asymmetric pair of coupled InAs quantum dots is tuned into resonance by applying an electric field so that a single hole forms a coherent molecular wave function. The optical spectrum shows a rich pattern of level anticrossings and crossings that can be understood as a superposition of charge and spin configurations of the two dots. Coulomb interactions shift the molecular resonance of the optically excited state (charged exciton) with respect to the ground state (single charge), enabling light-induced coupling of the quantum dots. This result demonstrates the possibility of optically coupling quantum dots for application in quantum information processing.
NASA Astrophysics Data System (ADS)
Esmaielzadeh, Sheida; Ahmadizadegan, Hashem
2018-04-01
In the present investigation novel Polyimide/functionalized ZnO (PI/ZnO) bionanocomposites containing amino acid (Methionine) and benzimidazole pendent groups with different amounts of modified ZnO nanoparticles (ZnO NPs) were successfully prepared through ultrasonic irradiation technique. Due to the high surface energy and tendency for agglomeration, the surface ZnO NPs was modified by a coupling agent as 3- methacryloxypropyl-trimethoxysilane (MPS) to form MPS-ZnO nanoparticles. The ultrasonic irradiation effectively changes the rheology and the glass transition temperature and the crystallinity of the composite polymer. PI/ZnO nanocomposites were characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscope (TEM). TEM analysis showed that the modified ZnO nanoparticles were homogeneously dispersed in polymer matrix. The TGA results of PI/ZnO nanocomposites showed that the thermal stability is obviously improved the presence of MPS-ZnO NPs in comparison with the pure PI and that this increase is higher when the NP content increases. The permeabilities of pure H2, CH4, O2, and N2 gases through prepared membranes were determined at room temperature (25 °C) and 20 bar feed pressure. The membranes having 20% ZnO showed higher values of H2 permeability, and H2/CH4 and H2/N2 ideal selectivities (the ratio of pair gas permeabilities) compared with other membranes. The antibacterial activity of bionanocomposite films was tested against gram-positive bacteria (Staphylococcus aureus and Bacillus subtilis) and gram-negative bacteria (Escherichia coli and Pseudomonas aeruginosa). Further, it was observed that antibacterial activity of the resulting hybrid biofilms showed somewhat higher for gram-positive bacteria compared to gram-negative bacteria.
Language style matching predicts relationship initiation and stability.
Ireland, Molly E; Slatcher, Richard B; Eastwick, Paul W; Scissors, Lauren E; Finkel, Eli J; Pennebaker, James W
2011-01-01
Previous relationship research has largely ignored the importance of similarity in how people talk with one another. Using natural language samples, we investigated whether similarity in dyads' use of function words, called language style matching (LSM), predicts outcomes for romantic relationships. In Study 1, greater LSM in transcripts of 40 speed dates predicted increased likelihood of mutual romantic interest (odds ratio = 3.05). Overall, 33.3% of pairs with LSM above the median mutually desired future contact, compared with 9.1% of pairs with LSM at or below the median. In Study 2, LSM in 86 couples' instant messages positively predicted relationship stability at a 3-month follow-up (odds ratio = 1.95). Specifically, 76.7% of couples with LSM greater than the median were still dating at the follow-up, compared with 53.5% of couples with LSM at or below the median. LSM appears to reflect implicit interpersonal processes central to romantic relationships.
NASA Astrophysics Data System (ADS)
Chen, H. C.; Lai, S. K.
1992-03-01
The role of the Percus-Yevick hard-sphere bridge function in the modified hypernetted-chain integral equation is examined within the context of Lado's criterion [F. Lado, S. M. Foiles, and N. W. Ashcroft, Phys. Rev. A 28, 2374 (1983)]. It is found that the commonly used Lado's criterion, which takes advantage of the analytical simplicity of the Percus-Yevick hard-sphere bridge function, is inadequate for determining an accurate static pair-correlation function. Following Rosenfeld [Y. Rosenfeld, Phys. Rev. A 29, 2877 (1984)], we reconsider Lado's criterion in the so-called variational modified hypernetted-chain theory. The main idea is to construct a free-energy functional satisfying the virial-energy thermodynamic self-consistency. It turns out that the widely used Gibbs-Bogoliubov inequality is equivalent to this integral approach of Lado's criterion. Detailed comparison between the presently obtained structural and thermodynamic quantities for liquid alkali metals and those calculated also in the modified hypernetted-chain theory but with the one-component-plasma reference system leads us to a better understanding of the universality property of the bridge function.
NASA Astrophysics Data System (ADS)
Immanuel, Susan; Aparna T., K.; Sivasubramanian, R.
2018-04-01
In this paper the interfacial behavior of graphene oxide and 2-aminothiophenol functionalized graphene oxide was investigated by electrochemical method. The GO was prepared by modified Hummers method and the 2-aminothiophenol was covalently attached on the surface of GO sheets. The electrochemical properties were investigated using a redox couple and the electrokinetic parameter was inferred. It was found that the ATP-GO exhibited slow kinetics compared to GO due to the increased deformation of GO sheets after ATP functionalization.
Periodical energy oscillation and pulse splitting in sinusoidal volume holographic grating.
Yan, Xiaona; Gao, Lirun; Dai, Ye; Yang, Xihua; Chen, Yuanyuan; Ma, Guohong
2014-07-28
This paper presents dynamical diffraction properties of a femtosecond pulse in a sinusoidal volume holographic grating (VHG). By the modified coupled-wave equations of Kogelnik, we show that the diffraction of a femtosecond pulse on the VHG gives rise to periodical energy oscillation and pulse splitting. In the initial stage of diffraction, one diffracted pulse and one transmitted pulse emerge, and energy of the transmitted pulse periodically transfers to the diffracted pulse and vice versa. In the latter stage, both the diffracted and transmitted pulses split into two spatially separated pulses. One pair of transmitted and diffracted pulses propagates in the same direction and forms the output diffracted dual pulses of the VHG, and the other pair of pulses forms the output transmitted dual pulses. The pulse interval between each pair of dual pulses is in linearly proportional to the refractive index modulation and grating thickness. By the interference effect and group velocity difference we give explanations on the periodical energy oscillation and pulse splitting respectively.
Langeslay, Derek J; Urso, Elena; Gardini, Cristina; Naggi, Annamaria; Torri, Giangiacomo; Larive, Cynthia K
2013-05-31
Heparin is a complex mixture of sulfated linear carbohydrate polymers. It is widely used as an antithrombotic drug, though it has been shown to have a myriad of additional biological activities. Heparin is often partially depolymerized in order to decrease the average molecular weight, as it has been shown that low molecular weight heparins (LMWH) possess more desirable pharmacokinetic and pharmacodynamic properties than unfractionated heparin (UFH). Due to the prevalence of LMWHs in the market and the emerging availability of generic LMWH products, it is important that analytical methods be developed to ensure the drug quality. This work explores the use of tributylamine (TrBA), dibutylamine (DBA), and pentylamine (PTA) as ion-pairing reagents in conjunction with acetonitrile and methanol modified mobile phases for reversed-phase ion-pairing ultraperformance liquid chromatography coupled to mass spectrometry (RPIP-UPLC-MS) for fingerprint analysis of LMWH preparations. RPIP-UPLC-MS fingerprints are presented and compared for tinzaparinand enoxaparin. Copyright © 2013 Elsevier B.V. All rights reserved.
Superfluid transition temperature in a trapped gas of Fermi atoms with a Feshbach resonance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ohashi, Y.; Institute of Physics, University of Tsukuba, Ibaraki 305; Griffin, A.
2003-03-01
We investigate strong-coupling effects on the superfluid phase transition in a gas of Fermi atoms with a Feshbach resonance. The Feshbach resonance describes a composite quasiboson that can give rise to an additional pairing interaction between the Fermi atoms. This attractive interaction becomes stronger as the threshold energy 2{nu} of the Feshbach resonance two-particle bound state is lowered. In a recent paper, we showed that in the uniform Fermi gas, this tunable pairing interaction naturally leads to a crossover from a BCS state to a Bose-Einstein condensate (BEC) of the Nozieres and Schmitt-Rink kind, in which the BCS-type superfluid phasemore » transition continuously changes into the BEC type as the threshold energy is decreased. In this paper, we extend our previous work by including the effect of a harmonic trap potential, treated within the local-density approximation. We also give results for both weak and strong coupling to the Feshbach resonance. We show that the BCS-BEC crossover phenomenon strongly modifies the shape of the atomic density profile at the superfluid phase-transition temperature T{sub c}, reflecting the change of the dominant particles going from Fermi atoms to composite bosons. In the BEC regime, these composite bosons are shown to first appear well above T{sub c}. We also discuss the 'phase diagram' above T{sub c} as a function of the tunable threshold energy 2{nu}. We introduce a characteristic temperature T*(2{nu}) describing the effective crossover in the normal phase from a Fermi gas of atoms to a gas of stable molecules.« less
Series-Coupled Pairs of Silica Microresonators
NASA Technical Reports Server (NTRS)
Savchenkov, Anatoliy; Iltchenko, Vladimir; Maleki, Lute; Handley, Tim
2009-01-01
Series-coupled pairs of whispering-gallery-mode optical microresonators have been demonstrated as prototypes of stable, narrow-band-pass photonic filters. Characteristics that are generally considered desirable in a photonic or other narrow-band-pass filter include response as nearly flat as possible across the pass band, sharp roll-off, and high rejection of signals outside the pass band. A single microresonator exhibits a Lorentzian filter function: its peak response cannot be made flatter and its roll-off cannot be made sharper. However, as a matter of basic principle applicable to resonators in general, it is possible to (1) use multiple resonators, operating in series or parallel, to obtain a roll-off sharper, and out-of-band rejection greater, relative to those of a Lorentzian filter function and (2) to make the peak response (the response within the pass band) flatter by tuning the resonators to slightly different resonance frequencies that span the pass band. The first of the two microresonators in each series-coupled pair was a microtorus made of germania-doped silica (containing about 19 mole percent germania), which is a material used for the cores of some optical fibers. The reasons for choosing this material is that exposing it to ultraviolet light causes it to undergo a chemical change that changes its index of refraction and thereby changes the resonance frequency. Hence, this material affords the means to effect the desired slight relative detuning of the two resonators. The second microresonator in each pair was a microsphere of pure silica. The advantage of making one of the resonators a torus instead of a sphere is that its spectrum of whispering-gallery-mode resonances is sparser, as needed to obtain a frequency separation of at least 100 GHz between resonances of the filter as a whole.
Majorana surface modes of nodal topological pairings in spin-3/2 semimetals
NASA Astrophysics Data System (ADS)
Yang, Wang; Xiang, Tao; Wu, Congjun
2017-10-01
When solid state systems possess active orbital-band structures subject to spin-orbit coupling, their multicomponent electronic structures are often described in terms of effective large-spin fermion models. Their topological structures of superconductivity are beyond the framework of spin singlet and triplet Cooper pairings for spin-1/2 systems. Examples include the half-Heusler compound series of RPtBi, where R stands for a rare-earth element. Their spin-orbit coupled electronic structures are described by the Luttinger-Kohn model with effective spin-3/2 fermions and are characterized by band inversion. Recent experiments provide evidence to unconventional superconductivity in the YPtBi material with nodal spin-septet pairing. We systematically study topological pairing structures in spin-3/2 systems with the cubic group symmetries and calculate the surface Majorana spectra, which exhibit zero energy flat bands, or, cubic dispersion depending on the specific symmetry of the superconducting gap functions. The signatures of these surface states in the quasiparticle interference patterns of tunneling spectroscopy are studied, which can be tested in future experiments.
Hirabayashi, Toshiyuki; Tamura, Keita; Takeuchi, Daigo; Takeda, Masaki; Koyano, Kenji W; Miyashita, Yasushi
2014-07-09
In macaque monkeys, the anterior inferotemporal cortex, a region crucial for object memory processing, is composed of two adjacent, hierarchically distinct areas, TE and 36, for which different functional roles and neuronal responses in object memory tasks have been characterized. However, it remains unknown how the neuronal interactions differ between these areas during memory retrieval. Here, we conducted simultaneous recordings from multiple single-units in each of these areas while monkeys performed an object association memory task and examined the inter-area differences in neuronal interactions during the delay period. Although memory neurons showing sustained activity for the presented cue stimulus, cue-holding (CH) neurons, interacted with each other in both areas, only those neurons in area 36 interacted with another type of memory neurons coding for the to-be-recalled paired associate (pair-recall neurons) during memory retrieval. Furthermore, pairs of CH neurons in area TE showed functional coupling in response to each individual object during memory retention, whereas the same class of neuron pairs in area 36 exhibited a comparable strength of coupling in response to both associated objects. These results suggest predominant neuronal interactions in area 36 during the mnemonic processing, which may underlie the pivotal role of this brain area in both storage and retrieval of object association memory. Copyright © 2014 the authors 0270-6474/14/349377-12$15.00/0.
NASA Astrophysics Data System (ADS)
Shi, Shuangxia; Jin, Guoyong; Xiao, Bin; Liu, Zhigang
2018-04-01
This paper is concerned with the modeling and acoustic eigenanalysis of coupled spaces with a coupling aperture of variable size. A modeling method for this problem is developed based on the energy principle in combination with a 3D modified Fourier cosine series approach. Under this theoretical framework, the energy exchange property and acoustically transparent characteristics of the opening are taken into account via the inflow and outflow sound powers through the opening without any assumptions. The sound pressure in the subrooms is constructed in the form of the three-dimensional modified Fourier series with several auxiliary functions introduced to ensure the uniform convergence of the solution over the entire solution domain. The accuracy of the natural frequencies and mode shapes of three exemplary coupled rooms systems is verified against numerical data obtained by finite element method, with good agreement achieved. The present method offers a unified procedure for a variety of cases because the modification of any parameter from one case to another, such as the size and location of the coupling aperture, is as simple as modifying the material properties, requiring no changes to the solution procedures.
Thermophysical properties of krypton-helium gas mixtures from ab initio pair potentials
2017-01-01
A new potential energy curve for the krypton-helium atom pair was developed using supermolecular ab initio computations for 34 interatomic distances. Values for the interaction energies at the complete basis set limit were obtained from calculations with the coupled-cluster method with single, double, and perturbative triple excitations and correlation consistent basis sets up to sextuple-zeta quality augmented with mid-bond functions. Higher-order coupled-cluster excitations up to the full quadruple level were accounted for in a scheme of successive correction terms. Core-core and core-valence correlation effects were included. Relativistic corrections were considered not only at the scalar relativistic level but also using full four-component Dirac–Coulomb and Dirac–Coulomb–Gaunt calculations. The fitted analytical pair potential function is characterized by a well depth of 31.42 K with an estimated standard uncertainty of 0.08 K. Statistical thermodynamics was applied to compute the krypton-helium cross second virial coefficients. The results show a very good agreement with the best experimental data. Kinetic theory calculations based on classical and quantum-mechanical approaches for the underlying collision dynamics were utilized to compute the transport properties of krypton-helium mixtures in the dilute-gas limit for a large temperature range. The results were analyzed with respect to the orders of approximation of kinetic theory and compared with experimental data. Especially the data for the binary diffusion coefficient confirm the predictive quality of the new potential. Furthermore, inconsistencies between two empirical pair potential functions for the krypton-helium system from the literature could be resolved. PMID:28595411
Thermophysical properties of krypton-helium gas mixtures from ab initio pair potentials
NASA Astrophysics Data System (ADS)
Jäger, Benjamin; Bich, Eckard
2017-06-01
A new potential energy curve for the krypton-helium atom pair was developed using supermolecular ab initio computations for 34 interatomic distances. Values for the interaction energies at the complete basis set limit were obtained from calculations with the coupled-cluster method with single, double, and perturbative triple excitations and correlation consistent basis sets up to sextuple-zeta quality augmented with mid-bond functions. Higher-order coupled-cluster excitations up to the full quadruple level were accounted for in a scheme of successive correction terms. Core-core and core-valence correlation effects were included. Relativistic corrections were considered not only at the scalar relativistic level but also using full four-component Dirac-Coulomb and Dirac-Coulomb-Gaunt calculations. The fitted analytical pair potential function is characterized by a well depth of 31.42 K with an estimated standard uncertainty of 0.08 K. Statistical thermodynamics was applied to compute the krypton-helium cross second virial coefficients. The results show a very good agreement with the best experimental data. Kinetic theory calculations based on classical and quantum-mechanical approaches for the underlying collision dynamics were utilized to compute the transport properties of krypton-helium mixtures in the dilute-gas limit for a large temperature range. The results were analyzed with respect to the orders of approximation of kinetic theory and compared with experimental data. Especially the data for the binary diffusion coefficient confirm the predictive quality of the new potential. Furthermore, inconsistencies between two empirical pair potential functions for the krypton-helium system from the literature could be resolved.
Quasi-Equilibrium Pairs in Pursuit Games on a Cyclic Graph: Some Modified Cases
1989-05-01
CCS Research Report No. 627 QUASI-EQUILIBRIUM PAIRS IN PURSUIT GAMES ON A CYCLIC GRAPH: SOME MODIFIED CASES by A. Charnes D. Zhang i-0 00 CENTER FOR...CCS Research Report No. 627 QUASI-EQUILIBRIUM PAIRS IN PURSUIT GAMES ON A CYCLIC GRAPH: SOME MODIFIED CASES by A. Charnes D. Zhang May 1989 This...University of Texas at Austin Austin, Texas 78712-1177 II (512) 471-1821 APAWNJIZf ] ’ Api, k..s UsW , QUASI-EQUILIBRIUM PAIRS IN PURSUIT GAMES ON A
Tessé, Sophie; Bourbon, Henri-Marc; Debuchy, Robert; Budin, Karine; Dubois, Emeline; Liangran, Zhang; Antoine, Romain; Piolot, Tristan; Kleckner, Nancy; Zickler, Denise; Espagne, Eric
2017-01-01
Meiosis is the cellular program by which a diploid cell gives rise to haploid gametes for sexual reproduction. Meiotic progression depends on tight physical and functional coupling of recombination steps at the DNA level with specific organizational features of meiotic-prophase chromosomes. The present study reveals that every step of this coupling is mediated by a single molecule: Asy2/Mer2. We show that Mer2, identified so far only in budding and fission yeasts, is in fact evolutionarily conserved from fungi (Mer2/Rec15/Asy2/Bad42) to plants (PRD3/PAIR1) and mammals (IHO1). In yeasts, Mer2 mediates assembly of recombination–initiation complexes and double-strand breaks (DSBs). This role is conserved in the fungus Sordaria. However, functional analysis of 13 mer2 mutants and successive localization of Mer2 to axis, synaptonemal complex (SC), and chromatin revealed, in addition, three further important functions. First, after DSB formation, Mer2 is required for pairing by mediating homolog spatial juxtaposition, with implications for crossover (CO) patterning/interference. Second, Mer2 participates in the transfer/maintenance and release of recombination complexes to/from the SC central region. Third, after completion of recombination, potentially dependent on SUMOylation, Mer2 mediates global chromosome compaction and post-recombination chiasma development. Thus, beyond its role as a recombinosome–axis/SC linker molecule, Mer2 has important functions in relation to basic chromosome structure. PMID:29021238
Probing baryogenesis through the Higgs boson self-coupling
NASA Astrophysics Data System (ADS)
Reichert, M.; Eichhorn, A.; Gies, H.; Pawlowski, J. M.; Plehn, T.; Scherer, M. M.
2018-04-01
The link between a modified Higgs self-coupling and the strong first-order phase transition necessary for baryogenesis is well explored for polynomial extensions of the Higgs potential. We broaden this argument beyond leading polynomial expansions of the Higgs potential to higher polynomial terms and to nonpolynomial Higgs potentials. For our quantitative analysis we resort to the functional renormalization group, which allows us to evolve the full Higgs potential to higher scales and finite temperature. In all cases we find that a strong first-order phase transition manifests itself in an enhancement of the Higgs self-coupling by at least 50%, implying that such modified Higgs potentials should be accessible at the LHC.
Role of temperature on static correlational properties in a spin-polarized electron gas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arora, Priya; Moudgil, R. K., E-mail: rkmoudgil@kuk.ac.in; Kumar, Krishan
We have studied the effect of temperature on the static correlational properties of a spin-polarized three-dimensional electron gas (3DEG) over a wide coupling and temperature regime. This problem has been very recently studied by Brown et al. using the restricted path-integral Monte Carlo (RPIMC) technique in the warm-dense regime. To this endeavor, we have used the finite temperature version of the dynamical mean-field theory of Singwi et al, the so-called quantum STLS (qSTLS) approach. The static density structure factor and the static pair-correlation function are calculated, and compared with the RPIMC simulation data. We find an excellent agreement with themore » simulation at high temperature over a wide coupling range. However, the agreement is seen to somewhat deteriorate with decreasing temperature. The pair-correlation function is found to become small negative for small electron separation. This may be attributed to the inadequacy of the mean-field theory in dealing with the like spin electron correlations in the strong-coupling domain. A nice agreement with RPIMC data at high temperature seems to arise due to weakening of both the exchange and coulomb correlations with rising temperature.« less
Coherence lengths for three-dimensional superconductors in the BCS-Bose picture
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carter, R.M.; Casas, M.; Getino, J.M.
1995-12-01
Following an approach similar to that of Miyake or Randeria, Duan, and Shieh in two dimensions, we study a three-dimensional many-fermion gas at zero temperature interacting via some short-ranged two-body potential. To accommodate a possible singularity (e.g., the Coulomb repulsion) in the interaction, the potential is eliminated in favor of the two-body scattering {ital t}-matrix, the low-energy form of which is expressible in terms of the {ital s}-wave scattering length {ital a}{sub {ital s}}. The BCS gap equation for {ital s}-wave pairing is then solved simultaneously with the number equation in order to self-consistently obtain the zero-temperature BCS gap {Delta}more » as well as the chemical potential {mu} as functions of the dimensionless coupling variable {lambda}{equivalent_to}{ital k}{sub {ital F}}{ital a}{sub {ital s}}, where {ital k}{sub {ital F}} is the Fermi momentum. Results are valid for arbitrary coupling strength, and in the weak coupling limit reproduce the standard BCS results. Finally, root-mean-square pair sizes are obtained as a function of {lambda} and compared with experimental values.« less
Optical Properties of Vibronically Coupled Cy3 Dimers on DNA Scaffolds.
Cunningham, Paul D; Kim, Young C; Díaz, Sebastián A; Buckhout-White, Susan; Mathur, Divita; Medintz, Igor L; Melinger, Joseph S
2018-05-17
We examine the effect of electronic coupling on the optical properties of Cy3 dimers attached to DNA duplexes as a function of base pair (bp) separation using steady-state and time-resolved spectroscopy. For close Cy3-Cy3 separations, 0 and 1 bp between dyes, intermediate to strong electronic coupling is revealed by modulation of the absorption and fluorescence properties including spectral band shape, peak wavelength, and excited-state lifetime. Using a vibronic exciton model, we estimate coupling strengths of 150 and 266 cm -1 for the 1 and 0 bp separations, respectively, which are comparable to those found in natural light-harvesting complexes. For the strongest electronic coupling (0 bp separation), we observe that the absorption band shape is strongly affected by the base pairs that surround the dyes, where more strongly hydrogen-bonded G-C pairs produce a red-shifted absorption spectrum consistent with a J-type dimer. This effect is studied theoretically using molecular dynamics simulation, which predicts an in-line dye configuration that is consistent with the experimental J-type spectrum. When the Cy3 dimers are in a standard aqueous buffer, the presence of relatively strong electronic coupling is accompanied by decreased fluorescence lifetime, suggesting that it promotes nonradiative relaxation in cyanine dyes. However, we show that the use of a viscous solvent can suppress this nonradiative recombination and thereby restore the dimer fluorescent emission. Ultrafast transient absorption measurements of Cy3 dimers in both standard aqueous buffer and viscous glycerol buffer suggest that sufficiently strong electronic coupling increases the probability of excited-state relaxation through a dark state that is related to Cy3 torsional motion.
NASA Astrophysics Data System (ADS)
Hansen, Andreas; Liakos, Dimitrios G.; Neese, Frank
2011-12-01
A production level implementation of the high-spin open-shell (spin unrestricted) single reference coupled pair, quadratic configuration interaction and coupled cluster methods with up to doubly excited determinants in the framework of the local pair natural orbital (LPNO) concept is reported. This work is an extension of the closed-shell LPNO methods developed earlier [F. Neese, F. Wennmohs, and A. Hansen, J. Chem. Phys. 130, 114108 (2009), 10.1063/1.3086717; F. Neese, A. Hansen, and D. G. Liakos, J. Chem. Phys. 131, 064103 (2009), 10.1063/1.3173827]. The internal space is spanned by localized orbitals, while the external space for each electron pair is represented by a truncated PNO expansion. The laborious integral transformation associated with the large number of PNOs becomes feasible through the extensive use of density fitting (resolution of the identity (RI)) techniques. Technical complications arising for the open-shell case and the use of quasi-restricted orbitals for the construction of the reference determinant are discussed in detail. As in the closed-shell case, only three cutoff parameters control the average number of PNOs per electron pair, the size of the significant pair list, and the number of contributing auxiliary basis functions per PNO. The chosen threshold default values ensure robustness and the results of the parent canonical methods are reproduced to high accuracy. Comprehensive numerical tests on absolute and relative energies as well as timings consistently show that the outstanding performance of the LPNO methods carries over to the open-shell case with minor modifications. Finally, hyperfine couplings calculated with the variational LPNO-CEPA/1 method, for which a well-defined expectation value type density exists, indicate the great potential of the LPNO approach for the efficient calculation of molecular properties.
Tu, Wenwen; Lei, Jianping; Ju, Huangxian
2009-01-01
A functional composite of single-walled carbon nanotubes (SWNTs) with hematin, a water-insoluble porphyrin, was first prepared in 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIM][PF(6)]) ionic liquid. The novel composite in ionic liquid was characterized by scanning electron microscopy, ultraviolet absorption spectroscopy, and electrochemical impedance spectroscopy, and showed a pair of direct redox peaks of the Fe(III)/Fe(II) couple. The composite-[BMIM][PF(6)]-modified glassy carbon electrode showed excellent electrocatalytic activity toward the reduction of trichloroacetic acid (TCA) in neutral media due to the synergic effect among SWNTs, [BMIM][PF(6)], and porphyrin, which led to a highly sensitive and stable amperometric biosensor for TCA with a linear range from 9.0x10(-7) to 1.4x10(-4) M. The detection limit was 3.8x10(-7) M at a signal-to-noise ratio of 3. The TCA biosensor had good analytical performance, such as rapid response, good reproducibility, and acceptable accuracy, and could be successfully used for the detection of residual TCA in polluted water. The functional composite in ionic liquid provides a facile way to not only obtain the direct electrochemistry of water-insoluble porphyrin, but also construct novel biosensors for monitoring analytes in real environmental samples.
Tian, Feng; Sumikura, Hisashi; Kuramochi, Eiichi; Taniyama, Hideaki; Takiguchi, Masato; Notomi, Masaya
2016-11-28
Optomechanical control of on-chip emitters is an important topic related to integrated all-optical circuits. However, there is neither a realization nor a suitable optomechanical structure for this control. The biggest obstacle is that the emission signal can hardly be distinguished from the pump light because of the several orders' power difference. In this study, we designed and experimentally verified an optomechanical oscillation system, in which a lumped mechanical oscillator connected two optically isolated pairs of coupled one-dimensional photonic crystal cavities. As a functional device, the two pairs of coupled cavities were respectively used as an optomechanical pump for the lumped oscillator (cavity pair II, wavelengths were designed to be within a 1.5 μm band) and a modulation target of the lumped oscillator (cavity pair I, wavelengths were designed to be within a 1.2 μm band). By conducting finite element method simulations, we found that the lumped-oscillator-supported configurations of both cavity pairs enhance the optomechanical interactions, especially for higher order optical modes, compared with their respective conventional side-clamped configurations. Besides the desired first-order in-plane antiphase mechanical mode, other mechanical modes of the lumped oscillator were investigated and found to possibly have optomechanical applications with a versatile degree of freedom. In experiments, the oscillator's RF spectra were probed using both cavity pairs I and II, and the results matched those of the simulations. Dynamic detuning of the optical spectrum of cavity pair I was then implemented with a pumped lumped oscillator. This was the first demonstration of an optomechanical lumped oscillator connecting two optically isolated pairs of coupled cavities, whose biggest advantage is that one cavity pair can be modulated with an lumped oscillator without interference from the pump light in the other cavity pair. Thus, the oscillator is a suitable platform for optomechanical control of integrated lasers, cavity quantum electrodynamics, and spontaneous emission. Furthermore, this device may open the door on the study of interactions between photons, phonons, and excitons in the quantum regime.
Mixed coherent states in coupled chaotic systems: Design of secure wireless communication
NASA Astrophysics Data System (ADS)
Vigneshwaran, M.; Dana, S. K.; Padmanaban, E.
2016-12-01
A general coupling design is proposed to realize a mixed coherent (MC) state: coexistence of complete synchronization, antisynchronization, and amplitude death in different pairs of similar state variables of the coupled chaotic system. The stability of coupled system is ensured by the Lyapunov function and a scaling of each variable is also separately taken care of. When heterogeneity as a parameter mismatch is introduced in the coupled system, the coupling function facilitates to retain its coherence and displays the global stability with renewed scaling factor. Robust synchronization features facilitated by a MC state enable to design a dual modulation scheme: binary phase shift key (BPSK) and parameter mismatch shift key (PMSK), for secure data transmission. Two classes of decoders (coherent and noncoherent) are discussed, the noncoherent decoder shows better performance over the coherent decoder, mostly a noncoherent demodulator is preferred in biological implant applications. Both the modulation schemes are demonstrated numerically by using the Lorenz oscillator and the BPSK scheme is demonstrated experimentally using radio signals.
Spectral properties of excitons in the bilayer graphene
NASA Astrophysics Data System (ADS)
Apinyan, V.; Kopeć, T. K.
2018-01-01
In this paper, we consider the spectral properties of the bilayer graphene with the local excitonic pairing interaction between the electrons and holes. We consider the generalized Hubbard model, which includes both intralayer and interlayer Coulomb interaction parameters. The solution of the excitonic gap parameter is used to calculate the electronic band structure, single-particle spectral functions, the hybridization gap, and the excitonic coherence length in the bilayer graphene. We show that the local interlayer Coulomb interaction is responsible for the semimetal-semiconductor transition in the double layer system, and we calculate the hybridization gap in the band structure above the critical interaction value. The formation of the excitonic band gap is reported as the threshold process and the momentum distribution functions have been calculated numerically. We show that in the weak coupling limit the system is governed by the Bardeen-Cooper-Schrieffer (BCS)-like pairing state. Contrary, in the strong coupling limit the excitonic condensate states appear in the semiconducting phase, by forming the Dirac's pockets in the reciprocal space.
The G protein-coupled receptors deorphanization landscape.
Laschet, Céline; Dupuis, Nadine; Hanson, Julien
2018-07-01
G protein-coupled receptors (GPCRs) are usually highlighted as being both the largest family of membrane proteins and the most productive source of drug targets. However, most of the GPCRs are understudied and hence cannot be used immediately for innovative therapeutic strategies. Besides, there are still around 100 orphan receptors, with no described endogenous ligand and no clearly defined function. The race to discover new ligands for these elusive receptors seems to be less intense than before. Here, we present an update of the various strategies employed to assign a function to these receptors and to discover new ligands. We focus on the recent advances in the identification of endogenous ligands with a detailed description of newly deorphanized receptors. Replication being a key parameter in these endeavors, we also discuss the latest controversies about problematic ligand-receptor pairings. In this context, we propose several recommendations in order to strengthen the reporting of new ligand-receptor pairs. Copyright © 2018 Elsevier Inc. All rights reserved.
A Semiclassical Derivation of the QCD Coupling
NASA Technical Reports Server (NTRS)
Batchelor, David
2009-01-01
The measured value of the QCD coupling alpha(sub s) at the energy M(sub Zo), the variation of alpha(sub s) as a function of energy in QCD, and classical relativistic dynamics are used to investigate virtual pairs of quarks and antiquarks in vacuum fluctuations. For virtual pairs of bottom quarks and antiquarks, the pair lifetime in the classical model agrees with the lifetime from quantum mechanics to good approximation, and the action integral in the classical model agrees as well with the action that follows from the Uncertainty Principle. This suggests that the particles might have small de Broglie wavelengths and behave with well-localized pointlike dynamics. It also permits alpha(sub s) at the mass energy twice the bottom quark mass to be expressed as a simple fraction: 3/16. This is accurate to approximately 10%. The model in this paper predicts the measured value of alpha(sub s)(M(sub Zo)) to be 0.121, which is in agreement with recent measurements within statistical uncertainties.
Minc, Daniel; Machado, Sergio; Bastos, Victor Hugo; Machado, Dionis; Cunha, Marlo; Cagy, Mauricio; Budde, Henning; Basile, Luis; Piedade, Roberto; Ribeiro, Pedro
2010-01-18
The goal of the present study was to explore the dynamics of the gamma band using the coherence of the quantitative electroencephalography (qEEG) in a sensorimotor integration task and the influence of the neuromodulator bromazepam on the band behavior. Our hypothesis is that the needs of the typewriting task will demand the coupling of different brain areas, and that the gamma band will promote the binding of information. It is also expected that the neuromodulator will modify this coupling. The sample was composed of 39 healthy subjects. We used a randomized double-blind design and divided subjects into three groups: placebo (n=13), bromazepam 3mg (n=13) and bromazepam 6 mg (n=13). The two-way ANOVA analysis demonstrated a main effect for the factors condition (i.e., C4-CZ electrode pair) and moment (i.e., C3-CZ, C3-C4 and C4-CZ pairs of electrodes). We propose that the gamma band plays an important role in the binding among several brain areas in complex motor tasks and that each hemisphere is influenced in a different manner by the neuromodulator. (c) 2009 Elsevier Ireland Ltd. All rights reserved.
A Coupling Function Linking Solar Wind /IMF Variations and Geomagnetic Activity
NASA Astrophysics Data System (ADS)
Lyatsky, W.; Lyatskaya, S.; Tan, A.
2006-12-01
From a theoretical consideration we have obtained expressions for the coupling function linking solar wind and IMF parameters to geomagnetic activity. While deriving these expressions, we took into account (1) a scaling factor due to polar cap expansion while increasing a reconnected magnetic flux in the dayside magnetosphere, and (2) a modified Akasofu function for the reconnected flux for combined IMF Bz and By components. The resulting coupling function may be written as Fa = aVsw B^1/2 sina (q/2), where Vsw is the solar wind speed, B^ is the magnitude of the IMF vector in the Y-Z plane, q is the clock angle between the Z axis and IMF vector in the Y-Z plane, a is a coefficient, and the exponent, a, is derived from the experimental data and equals approximately to 2. The Fa function differs primary by the power of B^ from coupling functions proposed earlier. For testing the obtained coupling function, we used solar wind and interplanetary magnetic field data for four years for maximum and minimum solar activity. We computed 2-D contour plots for correlation coefficients for the dependence of geomagnetic activity indices on solar wind parameters for different coupling functions. The obtained diagrams showed a good correspondence to the theoretic coupling function Fa for a »2. The maximum correlation coefficient for the dependence of the polar cap PC index on the Fa coupling function is significantly higher than that computed for other coupling functions used researchers, for the same time intervals.
Antunes, Gabriela; Faria da Silva, Samuel F; Simoes de Souza, Fabio M
2018-06-01
Mirror neurons fire action potentials both when the agent performs a certain behavior and watches someone performing a similar action. Here, we present an original mirror neuron model based on the spike-timing-dependent plasticity (STDP) between two morpho-electrical models of neocortical pyramidal neurons. Both neurons fired spontaneously with basal firing rate that follows a Poisson distribution, and the STDP between them was modeled by the triplet algorithm. Our simulation results demonstrated that STDP is sufficient for the rise of mirror neuron function between the pairs of neocortical neurons. This is a proof of concept that pairs of neocortical neurons associating sensory inputs to motor outputs could operate like mirror neurons. In addition, we used the mirror neuron model to investigate whether channelopathies associated with autism spectrum disorder could impair the modeled mirror function. Our simulation results showed that impaired hyperpolarization-activated cationic currents (Ih) affected the mirror function between the pairs of neocortical neurons coupled by STDP.
Pseudoscalar D and B mesons in the hot dense and nonstrange symmetric medium
NASA Astrophysics Data System (ADS)
Chhabra, Rahul; Kumar, Arvind
2017-01-01
We investigate the effect of temperature and density on the shift in the masses and decay constants of the pseudoscalar D and B mesons in the nonstrange symmetric medium. We use chiral SU(3) model to calculate the medium modified scalar and isoscalar fields σ, ζ, δ and χ. We use these modified fields to calculate the in-medium quark and gluon condensates by solving the coupled equations of motions in the chiral SU(3) model. We obtain the medium modified mass and decay constant through these medium modified condensates using the QCD sum rules. Further we use the 3P0 model by taking the internal structure of the mesons to calculate the in-medium decay width of the higher charmonium states χ(3556) , ψ(3686) and ψ(3770) to the D D pairs, through the in-medium mass of D meson and neglecting the mass modification of higher charmonium states. We also compare the present data with the previous results. These results of present investigation may be important to explain the possible outcomes of the experiments like CBM, Panda at GSI.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eliav, E.; Kaldor, U.; Ishikawa, Y.
1994-12-31
Relativistic pair correlation energies of Xe were computed by employing a recently developed relativistic coupled cluster theory based on the no-pair Dirac-Coulomb-Breit Hamiltonian. The matrix Dirac-Fock-Breit SCF and relativistic coupled cluster calculations were performed by means of expansion in basis sets of well-tempered Gaussian spinors. A detailed study of the pair correlation energies in Xe is performed, in order to investigate the effects of the low-frequency Breit interaction on the correlation energies of Xe. Nonadditivity of correlation and relativistic (particularly Breit) effects is discussed.
Cao, Xu-Ni; Lin, Li; Zhou, Yu-Yan; Shi, Guo-Yue; Zhang, Wen; Yamamoto, Katsunobu; Jin, Li-Tong
2003-07-27
In this paper, multi-wall carbon nanotubes functionalized with carboxylic groups modified electrode (MWNT-COOH CME) was fabricated. This chemically modified electrode (CME) can be used as the working electrode in the liquid chromatography for the determination of 6-mercaptopurine (6-MP). The results indicate that the CME exhibits efficiently electrocatalytic oxidation for 6-MP with relatively high sensitivity, stability and long-life. The peak currents of 6-MP are linear to its concentrations ranging from 4.0 x 10(-7) to 1.0 x 10(-4) mol l(-1) with the calculated detection limit (S/N=3) of 2.0 x 10(-7) mol l(-1). Coupled with microdialysis, the method has been successfully applied to the pharmacokinetic study of 6-MP in rabbit blood. This method provides a fast, sensible and simple technique for the pharmacokinetic study of 6-MP in vivo.
Mobile phone emission modulates interhemispheric functional coupling of EEG alpha rhythms.
Vecchio, Fabrizio; Babiloni, Claudio; Ferreri, Florinda; Curcio, Giuseppe; Fini, Rita; Del Percio, Claudio; Rossini, Paolo Maria
2007-03-01
We tested the working hypothesis that electromagnetic fields from mobile phones (EMFs) affect interhemispheric synchronization of cerebral rhythms, an important physiological feature of information transfer into the brain. Ten subjects underwent two electroencephalographic (EEG) recordings, separated by 1 week, following a crossover double-blind paradigm in which they were exposed to a mobile phone signal (global system for mobile communications; GSM). The mobile phone was held on the left side of the subject head by a modified helmet, and orientated in the normal position for use over the ear. The microphone was orientated towards the corner of the mouth, and the antenna was near the head in the parietotemporal area. In addition, we positioned another similar phone (but without battery) on the right side of the helmet, to balance the weight and to prevent the subject localizing the side of GSM stimulation (and consequently lateralizing attention). In one session the exposure was real (GSM) while in the other it was Sham; both sessions lasted 45 min. Functional interhemispheric connectivity was modelled using the analysis of EEG spectral coherence between frontal, central and parietal electrode pairs. Individual EEG rhythms of interest were delta (about 2-4 Hz), theta (about 4-6 Hz), alpha 1 (about 6-8 Hz), alpha 2 (about 8-10 Hz) and alpha 3 (about 10-12 Hz). Results showed that, compared to Sham stimulation, GSM stimulation modulated the interhemispheric frontal and temporal coherence at alpha 2 and alpha 3 bands. The present results suggest that prolonged mobile phone emission affects not only the cortical activity but also the spread of neural synchronization conveyed by interhemispherical functional coupling of EEG rhythms.
Characteristics of manipulator for industrial robot with three rotational pairs having parallel axes
NASA Astrophysics Data System (ADS)
Poteyev, M. I.
1986-01-01
The dynamics of a manipulator with three rotatinal kinematic pairs having parallel axes are analyzed, for application in an industrial robot. The system of Lagrange equations of the second kind, describing the motion of such a mechanism in terms of kinetic energy in generalized coordinates, is reduced to equations of motion in terms of Newton's laws. These are useful not only for either determining the moments of force couples which will produce a prescribed motion or, conversely determining the motion which given force couples will produce but also for solving optimization problems under constraints in both cases and for estimating dynamic errors. As a specific example, a manipulator with all three axes of vertical rotation is considered. The performance of this manipulator, namely the parameters of its motion as functions of time, is compared with that of a manipulator having one rotational and two translational kinematic pairs. Computer aided simulation of their motion on the basis of ideal models, with all three links represented by identical homogeneous bars, has yielded velocity time diagrams which indicate that the manipulator with three rotational pairs is 4.5 times faster.
Superconducting pairing of topological surface states in bismuth selenide films on niobium
Zhang, Can; Tsuzuki, Akihiro
2018-01-01
A topological insulator film coupled to a simple isotropic s-wave superconductor substrate can foster helical pairing of the Dirac fermions associated with the topological surface states. Experimental realization of such a system is exceedingly difficult, however using a novel “flip-chip” technique, we have prepared single-crystalline Bi2Se3 films with predetermined thicknesses in terms of quintuple layers (QLs) on top of Nb substrates fresh from in situ cleavage. Our angle-resolved photoemission spectroscopy (ARPES) measurements of the film surface disclose superconducting gaps and coherence peaks of similar magnitude for both the topological surface states and bulk states. The ARPES spectral map as a function of temperature and film thickness up to 10 QLs reveals key characteristics relevant to the mechanism of coupling between the topological surface states and the superconducting Nb substrate; the effective coupling length is found to be much larger than the decay length of the topological surface states. PMID:29719866
Exciton coupling between enones: Quassinoids revisited.
Pescitelli, Gennaro; Di Bari, Lorenzo
2017-09-01
The electronic circular dichroism (ECD) spectra of two previously reported quassinoids containing a pair of enone chromophores are revisited to gain insight into the consistency and applicability of the exciton chirality method. Our study is based on time-dependent Density Functional Theory calculations, transition and orbital analysis, and numerical exciton coupling calculations. In quassin (1) the enone/enone exciton coupling is quasi-degenerate, yielding strong rotational strengths that account for the observed ECD spectrum in the enone π-π* region. In perforalactone C (2) the nondegenerate coupling produces weak rotational strengths, and the ECD spectrum is dominated by other mechanisms of optical activity. We remark the necessity of a careful application of the nondegenerate exciton coupling method in similar cases. © 2017 Wiley Periodicals, Inc.
Functional analysis of coordinated cleavage in V(D)J recombination.
Kim, D R; Oettinger, M A
1998-08-01
V(D)J recombination in vivo requires a pair of signals with distinct spacer elements of 12 and 23 bp that separate conserved heptamer and nonamer motifs. Cleavage in vitro by the RAG1 and RAG2 proteins can occur at individual signals when the reaction buffer contains Mn2+, but cleavage is restricted to substrates containing two signals when Mg2+ is the divalent cation. By using a novel V(D)J cleavage substrate, we show that while the RAG proteins alone establish a moderate preference for a 12/23 pair versus a 12/12 pair, a much stricter dependence of cleavage on the 12/23 signal pair is produced by the inclusion of HMG1 and competitor double-stranded DNA. The competitor DNA serves to inhibit the cleavage of substrates carrying a 12/12 or 23/23 pair, as well as the cutting at individual signals in 12/23 substrates. We show that a 23/33 pair is more efficiently recombined than a 12/33 pair, suggesting that the 12/23 rule can be generalized to a requirement for spacers that differ from each other by a single helical turn. Furthermore, we suggest that a fixed spatial orientation of signals is required for cleavage. In general, the same signal variants that can be cleaved singly can function under conditions in which a signal pair is required. However, a chemically modified substrate with one noncleavable signal enables us to show that formation of a functional cleavage complex is mechanistically separable from the cleavage reaction itself and that although cleavage requires a pair of signals, cutting does not have to occur simultaneously at both. The implications of these results are discussed with respect to the mechanism of V(D)J recombination and the generation of chromosomal translocations.
Tessé, Sophie; Bourbon, Henri-Marc; Debuchy, Robert; Budin, Karine; Dubois, Emeline; Liangran, Zhang; Antoine, Romain; Piolot, Tristan; Kleckner, Nancy; Zickler, Denise; Espagne, Eric
2017-09-15
Meiosis is the cellular program by which a diploid cell gives rise to haploid gametes for sexual reproduction. Meiotic progression depends on tight physical and functional coupling of recombination steps at the DNA level with specific organizational features of meiotic-prophase chromosomes. The present study reveals that every step of this coupling is mediated by a single molecule: Asy2/Mer2. We show that Mer2, identified so far only in budding and fission yeasts, is in fact evolutionarily conserved from fungi (Mer2/Rec15/Asy2/Bad42) to plants (PRD3/PAIR1) and mammals (IHO1). In yeasts, Mer2 mediates assembly of recombination-initiation complexes and double-strand breaks (DSBs). This role is conserved in the fungus Sordaria However, functional analysis of 13 mer2 mutants and successive localization of Mer2 to axis, synaptonemal complex (SC), and chromatin revealed, in addition, three further important functions. First, after DSB formation, Mer2 is required for pairing by mediating homolog spatial juxtaposition, with implications for crossover (CO) patterning/interference. Second, Mer2 participates in the transfer/maintenance and release of recombination complexes to/from the SC central region. Third, after completion of recombination, potentially dependent on SUMOylation, Mer2 mediates global chromosome compaction and post-recombination chiasma development. Thus, beyond its role as a recombinosome-axis/SC linker molecule, Mer2 has important functions in relation to basic chromosome structure. © 2017 Tessé et al.; Published by Cold Spring Harbor Laboratory Press.
A modified Stern-Gerlach experiment using a quantum two-state magnetic field
NASA Astrophysics Data System (ADS)
Daghigh, Ramin G.; Green, Michael D.; West, Christopher J.
2018-06-01
The Stern-Gerlach experiment has played an important role in our understanding of quantum behavior. We propose and analyze a modified version of this experiment where the magnetic field of the detector is in a quantum superposition, which may be experimentally realized using a superconducting flux qubit. We show that if incident spin-1/2 particles couple with the two-state magnetic field, a discrete target distribution results that resembles the distribution in the classical Stern-Gerlach experiment. As an application of the general result, we compute the distribution for a Gaussian waveform of the incident fermion. This analysis allows us to demonstrate theoretically: (1) the quantization of the intrinsic angular momentum of a spin-1/2 particle, and (2) a correlation between EPR pairs leading to nonlocality, without necessarily collapsing the particle's spin wavefunction.
Castro-Chavez, Fernando
2012-01-01
Background Three binary representations of the genetic code according to the ancient I Ching of Fu-Xi will be presented, depending on their defragging capabilities by pairing based on three biochemical properties of the nucleic acids: H-bonds, Purine/Pyrimidine rings, and the Keto-enol/Amino-imino tautomerism, yielding the last pair a 32/32 single-strand self-annealed genetic code and I Ching tables. Methods Our working tool is the ancient binary I Ching's resulting genetic code chromosomes defragged by vertical and by horizontal pairing, reverse engineered into non-binaries of 2D rotating 4×4×4 circles and 8×8 squares and into one 3D 100% symmetrical 16×4 tetrahedron coupled to a functional tetrahedron with apical signaling and central hydrophobicity (codon formula: 4[1(1)+1(3)+1(4)+4(2)]; 5:5, 6:6 in man) forming a stella octangula, and compared to Nirenberg's 16×4 codon table (1965) pairing the first two nucleotides of the 64 codons in axis y. Results One horizontal and one vertical defragging had the start Met at the center. Two, both horizontal and vertical pairings produced two pairs of 2×8×4 genetic code chromosomes naturally arranged (M and I), rearranged by semi-introversion of central purines or pyrimidines (M' and I') and by clustering hydrophobic amino acids; their quasi-identity was disrupted by amino acids with odd codons (Met and Tyr pairing to Ile and TGA Stop); in all instances, the 64-grid 90° rotational ability was restored. Conclusions We defragged three I Ching representations of the genetic code while emphasizing Nirenberg's historical finding. The synthetic genetic code chromosomes obtained reflect the protective strategy of enzymes with a similar function, having both humans and mammals a biased G-C dominance of three H-bonds in the third nucleotide of their most used codons per amino acid, as seen in one chromosome of the i, M and M' genetic codes, while a two H-bond A-T dominance was found in their complementary chromosome, as seen in invertebrates and plants. The reverse engineering of chromosome I' into 2D rotating circles and squares was undertaken, yielding a 100% symmetrical 3D geometry which was coupled to a previously obtained genetic code tetrahedron in order to differentiate the start methionine from the methionine that is acting as a codifying non-start codon. PMID:23431415
Mimicking glide symmetry dispersion with coupled slot metasurfaces
NASA Astrophysics Data System (ADS)
Camacho, Miguel; Mitchell-Thomas, Rhiannon C.; Hibbins, Alastair P.; Sambles, J. Roy; Quevedo-Teruel, Oscar
2017-09-01
In this letter, we demonstrate that the dispersion properties associated with glide symmetry can be achieved in systems that only possess reflection symmetry by balancing the influence of two sublattices. We apply this approach to a pair of coupled slots cut into an infinite perfectly conducting plane. Each slot is notched on either edge, with the complete two-slot system having only mirror symmetry. By modifying the relative size of the notches on either side of the slots, we show that a linear dispersion relation with a degeneracy with non-zero group velocity at the Brillouin zone boundary can be achieved. These properties, until now, only found in systems with glide symmetry are numerically and experimentally validated. We also show that these results can be used for the design of ultra-wideband one-dimensional leaky wave antennas in coplanar waveguide technology.
Interlayer-coupled spin vortex pairs and their response to external magnetic fields
NASA Astrophysics Data System (ADS)
Wintz, Sebastian; Bunce, Christopher; Banholzer, Anja; Körner, Michael; Strache, Thomas; Mattheis, Roland; McCord, Jeffrey; Raabe, Jörg; Quitmann, Christoph; Erbe, Artur; Fassbender, Jürgen
2012-06-01
We report on the response of multilayer spin textures to static magnetic fields. Coupled magnetic vortex pairs in trilayer elements (ferromagnetic/nonmagnetic/ferromagnetic) are imaged directly by means of layer-selective magnetic x-ray microscopy. We observe two different circulation configurations with parallel and opposing senses of magnetization rotation at remanence. Upon application of a field, all of the vortex pairs investigated react with a displacement of their cores. For purely dipolar coupled pairs, the individual core displacements are similar to those of an isolated single-layer vortex, but also a noticeable effect of the mutual stray fields is detected. Vortex pairs that are linked by an additional interlayer exchange coupling (IEC), which is either ferromagnetic or antiferromagnetic, mainly exhibit a layer-congruent response. We find that, apart from a possible decoupling at higher fields, these strict IEC vortex pairs can be described by a single-layer model with effective material parameters. This result implies the possibility to design multilayer spin structures with arbitrary effective magnetization.
NASA Astrophysics Data System (ADS)
Hugdal, Henning G.; Rex, Stefan; Nogueira, Flavio S.; Sudbø, Asle
2018-05-01
We study the effective interactions between Dirac fermions on the surface of a three-dimensional topological insulator due to the proximity coupling to the magnetic fluctuations in a ferromagnetic or antiferromagnetic insulator. Our results show that the magnetic fluctuations can mediate attractive interactions between Dirac fermions of both Amperean and BCS types. In the ferromagnetic case, we find pairing between fermions with parallel momenta, so-called Amperean pairing, whenever the effective Lagrangian for the magnetic fluctuations does not contain a quadratic term. The pairing interaction also increases with increasing Fermi momentum and is in agreement with previous studies in the limit of high chemical potential. If a quadratic term is present, the pairing is instead of BCS type above a certain chemical potential. In the antiferromagnetic case, BCS pairing occurs when the ferromagnetic coupling between magnons on the same sublattice exceeds the antiferromagnetic coupling between magnons on different sublattices. Outside this region in parameter space, we again find that Amperean pairing is realized.
Yang, Tian; Yang, Xiao-Lu; Zhang, Yu-Shuai; Xiao, BaoLin; Hong, Jun
2014-01-01
Direct electrochemistry of glucose oxidase (GOD) was achieved when an ionic liquid/GOD-Polyhydroxy-C60 functional membrane was confined on a glassy carbon electrode (GCE). The cyclic voltammograms (CVs) of the modified GCE showed a pair of redox peaks with a formal potential (E°') of - 329 ± 2 mV. The heterogeneous electron transfer constant (k(s)) was 1.43 s-1. The modified GCE response to glucose was linear in the range from 0.02 to 2.0 mM. The detection limit was 1 μM. The apparent Michaelis-Menten constant (K(m)(app)) was 1.45 mM.
NASA Astrophysics Data System (ADS)
Bourgin, D.; Courtin, S.; Haas, F.; Stefanini, A. M.; Montagnoli, G.; Goasduff, A.; Montanari, D.; Corradi, L.; Fioretto, E.; Huiming, J.; Scarlassara, F.; Rowley, N.; Szilner, S.; Mijatović, T.
2014-10-01
Background: The nuclear structure of colliding nuclei is known to influence the fusion process. Couplings of the relative motion to nuclear shape deformations and vibrations lead to an enhancement of the sub-barrier fusion cross section in comparison with the predictions of one-dimensional barrier penetration models. This enhancement is explained by coupled-channels calculations including these couplings. The sub-barrier fusion cross section is also affected by nucleon transfer channels between the colliding nuclei. Purpose: The aim of the present experiment is to investigate the influence of the projectile and target nuclear structures on the fusion cross sections in the Ca40+Ni58 and Ca40+Ni64 systems. Methods: The experimental and theoretical fusion excitation functions as well as the barrier distributions were compared for these two systems. Coupled-channels calculations were performed using the ccfull code. Results: Good agreement was found between the measured and calculated fusion cross sections for the Ca40+Ni58 system. The situation is different for the Ca40+Ni64 system where the coupled-channels calculations with no nucleon transfer clearly underestimate the fusion cross sections below the Coulomb barrier. The fusion excitation function was, however, well reproduced at low and high energies by including the coupling to the neutron pair-transfer channel in the calculations. Conclusions: The nuclear structure of the colliding nuclei influences the fusion cross sections below the Coulomb barrier for both Ca40+Ni58,64 systems. Moreover, we highlighted the effect of the neutron pair-transfer channel on the fusion cross sections in Ca40+Ni64.
Higgs pair production in vector-boson fusion at the LHC and beyond.
Bishara, Fady; Contino, Roberto; Rojo, Juan
2017-01-01
The production of pairs of Higgs bosons at hadron colliders provides unique information on the Higgs sector and on the mechanism underlying electroweak symmetry breaking (EWSB). Most studies have concentrated on the gluon-fusion production mode which has the largest cross section. However, despite its small production rate, the vector-boson fusion channel can also be relevant since even small modifications of the Higgs couplings to vector bosons induce a striking increase of the cross section as a function of the invariant mass of the Higgs boson pair. In this work we exploit this unique signature to propose a strategy to extract the hhVV quartic coupling and provide model-independent constraints on theories where EWSB is driven by new strong interactions. We take advantage of the higher signal yield of the [Formula: see text] final state and make extensive use of jet-substructure techniques to reconstruct signal events with a boosted topology, characteristic of large partonic energies, where each Higgs boson decays to a single collimated jet. Our results demonstrate that the hhVV coupling can be measured with 45% (20%) precision at the LHC for [Formula: see text] (3000) fb[Formula: see text], while a 1% precision can be achieved at a 100 TeV collider.
Lithium formate for EPR dosimetry: radiation-induced radical trapping at low temperatures.
Krivokapić, André; Aalbergsjø, Siv G; De Cooman, Hendrik; Hole, Eli Olaug; Nelson, William H; Sagstuen, Einar
2014-05-01
Radiation-induced primary radicals in lithium formate. A material used in EPR dosimetry have been studied using electron paramagnetic resonance (EPR), electron nuclear double resonance (ENDOR) and ENDOR-Induced EPR (EIE) techniques. In this study, single crystals were X irradiated at 6-8 K and radical formation at these and higher temperatures were investigated. Periodic density functional theory calculations were used to assist in assigning the radical structures. Mainly two radicals are present at 6 K, the well-known CO2(•-) radical and a protonated electron-gain product. Hyperfine coupling tensors for proton and lithium interactions were obtained for these two radicals and show that the latter radical exists in four conformations with various degrees of bending at the radical center. Pairs of CO2(•-) radicals were also observed and the tensor for the electron-electron dipolar coupling was determined for the strongest coupled pair, which exhibited the largest spectral intensity. Upon warming, both the radical pairs and the reduction product decay, the latter apparently by a transient species. Above 200 K the EPR spectrum was mainly due to the CO2(•-) (mono) radicals, which were previously characterized as the dominant species present at room temperature and which account for the dosimetric EPR signal.
Rapid Assembly of Customized TALENs into Multiple Delivery Systems
Zhang, Zhengxing; Zhang, Siliang; Huang, Xin; Orwig, Kyle E.; Sheng, Yi
2013-01-01
Transcriptional activator-like effector nucleases (TALENs) have become a powerful tool for genome editing. Here we present an efficient TALEN assembly approach in which TALENs are assembled by direct Golden Gate ligation into Gateway® Entry vectors from a repeat variable di-residue (RVD) plasmid array. We constructed TALEN pairs targeted to mouse Ddx3 subfamily genes, and demonstrated that our modified TALEN assembly approach efficiently generates accurate TALEN moieties that effectively introduce mutations into target genes. We generated “user friendly” TALEN Entry vectors containing TALEN expression cassettes with fluorescent reporter genes that can be efficiently transferred via Gateway (LR) recombination into different delivery systems. We demonstrated that the TALEN Entry vectors can be easily transferred to an adenoviral delivery system to expand application to cells that are difficult to transfect. Since TALENs work in pairs, we also generated a TALEN Entry vector set that combines a TALEN pair into one PiggyBac transposon-based destination vector. The approach described here can also be modified for construction of TALE transcriptional activators, repressors or other functional domains. PMID:24244669
NASA Astrophysics Data System (ADS)
Zia, Roseanna N.; Swan, James W.; Su, Yu
2015-12-01
The formulation of detailed models for the dynamics of condensed soft matter including colloidal suspensions and other complex fluids requires accurate description of the physical forces between microstructural constituents. In dilute suspensions, pair-level interactions are sufficient to capture hydrodynamic, interparticle, and thermodynamic forces. In dense suspensions, many-body interactions must be considered. Prior analytical approaches to capturing such interactions such as mean-field approaches replace detailed interactions with averaged approximations. However, long-range coupling and effects of concentration on local structure, which may play an important role in, e.g., phase transitions, are smeared out in such approaches. An alternative to such approximations is the detailed modeling of hydrodynamic interactions utilizing precise couplings between moments of the hydrodynamic traction on a suspended particle and the motion of that or other suspended particles. For two isolated spheres, a set of these functions was calculated by Jeffrey and Onishi [J. Fluid Mech. 139, 261-290 (1984)] and Jeffrey [J. Phys. Fluids 4, 16-29 (1992)]. Along with pioneering work by Batchelor, these are the touchstone for low-Reynolds-number hydrodynamic interactions and have been applied directly in the solution of many important problems related to the dynamics of dilute colloidal dispersions [G. K. Batchelor and J. T. Green, J. Fluid Mech. 56, 375-400 (1972) and G. K. Batchelor, J. Fluid Mech. 74, 1-29 (1976)]. Toward extension of these functions to concentrated systems, here we present a new stochastic sampling technique to rapidly calculate an analogous set of mobility functions describing the hydrodynamic interactions between two hard spheres immersed in a suspension of arbitrary concentration, utilizing accelerated Stokesian dynamics simulations. These mobility functions provide precise, radially dependent couplings of hydrodynamic force and torque to particle translation and rotation, for arbitrary colloid volume fraction ϕ. The pair mobilities (describing entrainment of one particle by the disturbance flow created by another) decay slowly with separation distance: as 1/r, for volume fractions 0.05 ≤ ϕ ≤ 0.5. For the relative mobility, we find an initially rapid growth as a pair separates, followed by a slow, 1/r growth. Up to ϕ ≤ 0.4, the relative mobility does not reached the far-field value even beyond separations of many particle sizes. In the case of ϕ = 0.5, the far-field asymptote is reached but only at a separation of eight radii and after a slow 1/r growth. At these higher concentrations, the coefficients also reveal liquid-like structural effects on pair mobility at close separations. These results confirm that long-range many-body hydrodynamic interactions are an essential part of the dynamics of concentrated systems and that care must be taken when applying renormalization schemes.
Zia, Roseanna N; Swan, James W; Su, Yu
2015-12-14
The formulation of detailed models for the dynamics of condensed soft matter including colloidal suspensions and other complex fluids requires accurate description of the physical forces between microstructural constituents. In dilute suspensions, pair-level interactions are sufficient to capture hydrodynamic, interparticle, and thermodynamic forces. In dense suspensions, many-body interactions must be considered. Prior analytical approaches to capturing such interactions such as mean-field approaches replace detailed interactions with averaged approximations. However, long-range coupling and effects of concentration on local structure, which may play an important role in, e.g., phase transitions, are smeared out in such approaches. An alternative to such approximations is the detailed modeling of hydrodynamic interactions utilizing precise couplings between moments of the hydrodynamic traction on a suspended particle and the motion of that or other suspended particles. For two isolated spheres, a set of these functions was calculated by Jeffrey and Onishi [J. Fluid Mech. 139, 261-290 (1984)] and Jeffrey [J. Phys. Fluids 4, 16-29 (1992)]. Along with pioneering work by Batchelor, these are the touchstone for low-Reynolds-number hydrodynamic interactions and have been applied directly in the solution of many important problems related to the dynamics of dilute colloidal dispersions [G. K. Batchelor and J. T. Green, J. Fluid Mech. 56, 375-400 (1972) and G. K. Batchelor, J. Fluid Mech. 74, 1-29 (1976)]. Toward extension of these functions to concentrated systems, here we present a new stochastic sampling technique to rapidly calculate an analogous set of mobility functions describing the hydrodynamic interactions between two hard spheres immersed in a suspension of arbitrary concentration, utilizing accelerated Stokesian dynamics simulations. These mobility functions provide precise, radially dependent couplings of hydrodynamic force and torque to particle translation and rotation, for arbitrary colloid volume fraction ϕ. The pair mobilities (describing entrainment of one particle by the disturbance flow created by another) decay slowly with separation distance: as 1/r, for volume fractions 0.05 ≤ ϕ ≤ 0.5. For the relative mobility, we find an initially rapid growth as a pair separates, followed by a slow, 1/r growth. Up to ϕ ≤ 0.4, the relative mobility does not reached the far-field value even beyond separations of many particle sizes. In the case of ϕ = 0.5, the far-field asymptote is reached but only at a separation of eight radii and after a slow 1/r growth. At these higher concentrations, the coefficients also reveal liquid-like structural effects on pair mobility at close separations. These results confirm that long-range many-body hydrodynamic interactions are an essential part of the dynamics of concentrated systems and that care must be taken when applying renormalization schemes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zia, Roseanna N., E-mail: zia@cbe.cornell.edu; Su, Yu; Swan, James W.
2015-12-14
The formulation of detailed models for the dynamics of condensed soft matter including colloidal suspensions and other complex fluids requires accurate description of the physical forces between microstructural constituents. In dilute suspensions, pair-level interactions are sufficient to capture hydrodynamic, interparticle, and thermodynamic forces. In dense suspensions, many-body interactions must be considered. Prior analytical approaches to capturing such interactions such as mean-field approaches replace detailed interactions with averaged approximations. However, long-range coupling and effects of concentration on local structure, which may play an important role in, e.g., phase transitions, are smeared out in such approaches. An alternative to such approximations ismore » the detailed modeling of hydrodynamic interactions utilizing precise couplings between moments of the hydrodynamic traction on a suspended particle and the motion of that or other suspended particles. For two isolated spheres, a set of these functions was calculated by Jeffrey and Onishi [J. Fluid Mech. 139, 261–290 (1984)] and Jeffrey [J. Phys. Fluids 4, 16–29 (1992)]. Along with pioneering work by Batchelor, these are the touchstone for low-Reynolds-number hydrodynamic interactions and have been applied directly in the solution of many important problems related to the dynamics of dilute colloidal dispersions [G. K. Batchelor and J. T. Green, J. Fluid Mech. 56, 375–400 (1972) and G. K. Batchelor, J. Fluid Mech. 74, 1–29 (1976)]. Toward extension of these functions to concentrated systems, here we present a new stochastic sampling technique to rapidly calculate an analogous set of mobility functions describing the hydrodynamic interactions between two hard spheres immersed in a suspension of arbitrary concentration, utilizing accelerated Stokesian dynamics simulations. These mobility functions provide precise, radially dependent couplings of hydrodynamic force and torque to particle translation and rotation, for arbitrary colloid volume fraction ϕ. The pair mobilities (describing entrainment of one particle by the disturbance flow created by another) decay slowly with separation distance: as 1/r, for volume fractions 0.05 ≤ ϕ ≤ 0.5. For the relative mobility, we find an initially rapid growth as a pair separates, followed by a slow, 1/r growth. Up to ϕ ≤ 0.4, the relative mobility does not reached the far-field value even beyond separations of many particle sizes. In the case of ϕ = 0.5, the far-field asymptote is reached but only at a separation of eight radii and after a slow 1/r growth. At these higher concentrations, the coefficients also reveal liquid-like structural effects on pair mobility at close separations. These results confirm that long-range many-body hydrodynamic interactions are an essential part of the dynamics of concentrated systems and that care must be taken when applying renormalization schemes.« less
Liu, Jia; Han, Qiang; Shao, L B; Wang, Z D
2011-07-08
A type of electron pairing model with spin-orbit interactions or Zeeman coupling is solved exactly in the framework of the Richardson ansatz. Based on the exact solutions for the case with spin-orbit interactions, it is shown rigorously that the pairing symmetry is of the p + ip wave and the ground state possesses time-reversal symmetry, regardless of the strength of the pairing interaction. Intriguingly, how Majorana fermions can emerge in the system is also elaborated. Exact results are illustrated for two systems, respectively, with spin-orbit interactions and Zeeman coupling.
Comments on the variational modified-hypernetted-chain theory for simple fluids
NASA Astrophysics Data System (ADS)
Rosenfeld, Yaakov
1986-02-01
The variational modified-hypernetted-chain (VMHNC) theory, based on the approximation of universality of the bridge functions, is reformulated. The new formulation includes recent calculations by Lado and by Lado, Foiles, and Ashcroft, as two stages in a systematic approach which is analyzed. A variational iterative procedure for solving the exact (diagrammatic) equations for the fluid structure which is formally identical to the VMHNC is described, featuring the theory of simple classical fluids as a one-iteration theory. An accurate method for calculating the pair structure for a given potential and for inverting structure factor data in order to obtain the potential and the thermodynamic functions, follows from our analysis.
Equivalence of the AdS-metric and the QCD running coupling
NASA Astrophysics Data System (ADS)
Pirner, H. J.; Galow, B.
2009-08-01
We use the functional form of the QCD running coupling to modify the conformal metric in AdS/CFT mapping the fifth-dimensional z-coordinate to the energy scale in the four-dimensional QCD. The resulting type-0 string theory in five dimensions is solved with the Nambu-Goto action giving good agreement with the Coulombic and confinement QQbar potential.
Interfacial Shear Strength and Adhesive Behavior of Silk Ionomer Surfaces.
Kim, Sunghan; Geryak, Ren D; Zhang, Shuaidi; Ma, Ruilong; Calabrese, Rossella; Kaplan, David L; Tsukruk, Vladimir V
2017-09-11
The interfacial shear strength between different layers in multilayered structures of layer-by-layer (LbL) microcapsules is a crucial mechanical property to ensure their robustness. In this work, we investigated the interfacial shear strength of modified silk fibroin ionomers utilized in LbL shells, an ionic-cationic pair with complementary ionic pairing, (SF)-poly-l-glutamic acid (Glu) and SF-poly-l-lysine (Lys), and a complementary pair with partially screened Coulombic interactions due to the presence of poly(ethylene glycol) (PEG) segments and SF-Glu/SF-Lys[PEG] pair. Shearing and adhesive behavior between these silk ionomer surfaces in the swollen state were probed at different spatial scales and pressure ranges by using functionalized atomic force microscopy (AFM) tips as well as functionalized colloidal probes. The results show that both approaches were consistent in analyzing the interfacial shear strength of LbL silk ionomers at different spatial scales from a nanoscale to a fraction of a micron. Surprisingly, the interfacial shear strength between SF-Glu and SF-Lys[PEG] pair with partially screened ionic pairing was greater than the interfacial shear strength of the SF-Glu and SF-Lys pair with a high density of complementary ionic groups. The difference in interfacial shear strength and adhesive strength is suggested to be predominantly facilitated by the interlayer hydrogen bonding of complementary amino acids and overlap of highly swollen PEG segments.
NASA Astrophysics Data System (ADS)
Brancolini, Giorgia; Di Felice, Rosa
2011-05-01
Novel DNA derivatives have been recently investigated in the pursuit of modified DNA duplexes to tune the electronic structure of DNA-based assemblies for nanotechnology applications. Size-expanded DNAs (e.g., xDNA) and metalated DNAs (M-DNA) may enhance stacking interactions and induce metallic conductivity, respectively. Here we explore possible ways of tailoring the DNA electronic structure by combining the aromatic size expansion with the metal-doping. We select the salient structures from our recent study on natural DNA pairs complexed with transition metal ions and consider the equivalent model configurations for xDNA pairs. We present the results of density functional theory electronic structure calculations of the metalated expanded base-pairs with various localized basis sets and exchange-correlation functionals. Implicit solvent and coordination water molecules are also included. Our results indicate that the effect of base expansion is largest in Ag-xGC complexes, while Cu-xGC complexes are the most promising candidates for nanowires with enhanced electron transfer and also for on-purpose modification of the DNA double-helix for signal detection.
Computerized Design and Generation of Low-noise Helical Gears with Modified Surface Topology
NASA Technical Reports Server (NTRS)
Litvin, F. L.; Chen, N. X.; Lu, J.; Handschuh, R. F.
1994-01-01
An approach for design and generation of low-noise helical gears with localized bearing contact is proposed. The approach is applied to double circular arc helical gears and modified involute helical gears. The reduction of noise and vibration is achieved by application of a predesigned parabolic function of transmission errors that is able to absorb a discontinuous linear function of transmission errors caused by misalignment. The localization of the bearing contact is achieved by the mismatch of pinion-gear tooth surfaces. Computerized simulation of meshing and contact of the designed gears demonstrated that the proposed approach will produce a pair of gears that has a parabolic transmission error function even when misalignment is present. Numerical examples for illustration of the developed approach are given.
Reimers, Jeffrey R; Hush, Noel S
2004-04-07
We apply our four-state 70-vibration vibronic-coupling model for the properties of the photosynthetic special-pair radical cation to: (1) interpret the observed correlations between the midpoint potential and the distribution of spin density between the two bacteriochlorophylls for 30 mutants of Rhodobacter sphaeroides, (2) interpret the observed average intervalence hole-transfer absorption energies as a function of spin density for six mutants, and (3) simulate the recently obtained intervalence electroabsorption Stark spectrum of the wild-type reaction center. While three new parameters describing the location of the sites of mutation with respect to the special pair are required to describe the midpoint-potential data, a priori predictions are made for the transition energies and the Stark spectrum. In general, excellent predictions are made of the observed quantities, with deviations being typically of the order of twice the experimental uncertainties. A unified description of many chemical and spectroscopic properties of the bacterial reaction center is thus provided. Central to the analysis is the assumption that the perturbations made to the reaction center, either via mutations of protein residues or by application of an external electric field, act only to independently modify the oxidation potentials of the two halves of the special pair and hence the redox asymmetry E0. While this appears to be a good approximation, clear evidence is presented that effects of mutation can be more extensive than what is allowed for. A thorough set of analytical equations describing the observed properties is obtained using the Born-Oppenheimer adiabatic approximation. These equations are generally appropriate for intervalence charge-transfer problems and include, for the first time, full treatment of both symmetric and antisymmetric vibrational motions. The limits of validity of the adiabatic approach to the full nonadiabatic problem are obtained.
Sumi, Tomonari; Maruyama, Yutaka; Mitsutake, Ayori; Koga, Kenichiro
2016-06-14
In the conventional classical density functional theory (DFT) for simple fluids, an ideal gas is usually chosen as the reference system because there is a one-to-one correspondence between the external field and the density distribution function, and the exact intrinsic free-energy functional is available for the ideal gas. In this case, the second-order density functional Taylor series expansion of the excess intrinsic free-energy functional provides the hypernetted-chain (HNC) approximation. Recently, it has been shown that the HNC approximation significantly overestimates the solvation free energy (SFE) for an infinitely dilute Lennard-Jones (LJ) solution, especially when the solute particles are several times larger than the solvent particles [T. Miyata and J. Thapa, Chem. Phys. Lett. 604, 122 (2014)]. In the present study, we propose a reference-modified density functional theory as a systematic approach to improve the SFE functional as well as the pair distribution functions. The second-order density functional Taylor series expansion for the excess part of the intrinsic free-energy functional in which a hard-sphere fluid is introduced as the reference system instead of an ideal gas is applied to the LJ pure and infinitely dilute solution systems and is proved to remarkably improve the drawbacks of the HNC approximation. Furthermore, the third-order density functional expansion approximation in which a factorization approximation is applied to the triplet direct correlation function is examined for the LJ systems. We also show that the third-order contribution can yield further refinements for both the pair distribution function and the excess chemical potential for the pure LJ liquids.
A general ansatz for constructing quasi-diabatic states in electronically excited aggregated systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Wenlan; Köhn, Andreas; InnovationLab GmbH, Speyerer St. 4, D-69115 Heidelberg
2015-08-28
We present a general method for analyzing the character of singly excited states in terms of charge transfer (CT) and locally excited (LE) configurations. The analysis is formulated for configuration interaction singles (CIS) singly excited wave functions of aggregate systems. It also approximately works for the second-order approximate coupled cluster singles and doubles and the second-order algebraic-diagrammatic construction methods [CC2 and ADC(2)]. The analysis method not only generates a weight of each character for an excited state, but also allows to define the related quasi-diabatic states and corresponding coupling matrix elements. In the character analysis approach, we divide the targetmore » system into domains and use a modified Pipek-Mezey algorithm to localize the canonical MOs on each domain, respectively. The CIS wavefunction is then transformed into the localized basis, which allows us to partition the wavefunction into LE configurations within domains and CT configuration between pairs of different domains. Quasi-diabatic states are then obtained by mixing excited states subject to the condition of maximizing the weight of one single LE or CT configuration (localization in configuration space). Different aims of such a procedure are discussed, either the construction of pure LE and CT states for analysis purposes (by including a large number of excited states) or the construction of effective models for dynamics calculations (by including a restricted number of excited states). Applications are given to LE/CT mixing in π-stacked systems, charge-recombination matrix elements in a hetero-dimer, and excitonic couplings in multi-chromophoric systems.« less
Tan, Ting; Yang, Xueliang; Krauter, Caroline M; Ju, Yiguang; Carter, Emily A
2015-06-18
The kinetics of hydrogen abstraction by five radicals (H, O((3)P), OH, CH3, and HO2) from methyl acetate (MA) is investigated theoretically in order to gain further understanding of certain aspects of the combustion chemistry of biodiesels, such as the effect of the ester moiety. We employ ab initio quantum chemistry methods, coupled cluster singles and doubles with perturbative triples correction (CCSD(T)) and multireference averaged coupled pair functional theory (MRACPF2), to predict chemically accurate reaction energetics. Overall, MRACPF2 predicts slightly higher barrier heights than CCSD(T) for MA + H/CH3/O/OH, but slightly lower barrier heights for hydrogen abstraction by HO2. Based on the obtained reaction energies, we also report high-pressure-limit rate constants using transition state theory (TST) in conjunction with the separable-hindered-rotor approximation, the variable reaction coordinate TST, and the multi-structure all-structure approach. The fitted modified Arrhenius expressions are provided over a temperature range of 250 to 2000 K. The predictions are in good agreement with available experimental results. Abstractions from both of the methyl groups in MA are expected to contribute to consumption of the fuel as they exhibit similar rate coefficients. The reactions involving the OH radical are predicted to have the highest rates among the five abstracting radicals, while those initiated by HO2 are expected to be the lowest.
Maximizing the significance in Higgs boson pair analyses [Mad-Maximized Higgs Pair Analyses
Kling, Felix; Plehn, Tilman; Schichtel, Peter
2017-02-22
Here, we study Higgs pair production with a subsequent decay to a pair of photons and a pair of bottoms at the LHC. We use the log-likelihood ratio to identify the kinematic regions which either allow us to separate the di-Higgs signal from backgrounds or to determine the Higgs self-coupling. We find that both regions are separate enough to ensure that details of the background modeling will not affect the determination of the self-coupling. Assuming dominant statistical uncertainties we determine the best precision with which the Higgs self-coupling can be probed in this channel. We finally comment on the samemore » questions at a future 100 TeV collider.« less
Maximizing the significance in Higgs boson pair analyses [Mad-Maximized Higgs Pair Analyses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kling, Felix; Plehn, Tilman; Schichtel, Peter
Here, we study Higgs pair production with a subsequent decay to a pair of photons and a pair of bottoms at the LHC. We use the log-likelihood ratio to identify the kinematic regions which either allow us to separate the di-Higgs signal from backgrounds or to determine the Higgs self-coupling. We find that both regions are separate enough to ensure that details of the background modeling will not affect the determination of the self-coupling. Assuming dominant statistical uncertainties we determine the best precision with which the Higgs self-coupling can be probed in this channel. We finally comment on the samemore » questions at a future 100 TeV collider.« less
Siddiqui, Shamoon Ahmad; Bouarissa, Nadir; Rasheed, Tabish; Al-Hajry, A
2014-12-01
Quantum chemical calculations were carried out to study the electronic structure and stability of adenine-thymine and the rare tautomer of adenine-thymine base pairs along with their Cu 2+ complexes and their interactions with AlN-modified fullerene (C58AlN) using Density Functional Theory (B3LYP method). Since, these two forms of base pairs and their Cu 2+ complexes have almost similar electronic structures, their chemical differentiation is an extremely difficult task. In this investigation, we have observed that AlN-doped C 60 could be used as a potentially viable nanoscale sensor to detect these two base pairs as well as their Cu2+ complexes.
Ab initio multireference study of the BN molecule
NASA Technical Reports Server (NTRS)
Martin, J. M. L.; Lee, Timothy J.; Scuseria, Gustavo E.; Taylor, Peter R.
1992-01-01
The lowest 1Sigma(+) and 3Pi states of the BN molecule are studied using multireference configuration interaction (MRCI) and averaged coupled-pair functional (ACPF) methods and large atomic natural orbital (ANO) basis sets, as well as several coupled cluster methods. Our calculations strongly support a 3Pi ground state, but the a1Sigma(+) state lies only 381 +/- 100/cm higher. The a1Sigma(+) state wave function exhibits strong multireference character and, consequently, the predictions of the perturbationally-based single-reference CCSD(T) coupled cluster method are not as reliable in this case as the multireference results. The theoretical predictions for the spectroscopic constants of BN are in good agreement with experiment for the Chi3Pi state, but strongly suggest a misassignment of the fundamental vibrational frequency for the a1Sigma(+) state.
Baryogenesis in nonminimally coupled f (R ) theories
NASA Astrophysics Data System (ADS)
Ramos, M. P. L. P.; Páramos, J.
2017-11-01
We generalize the mechanism for gravitational baryogensis in the context of f (R ) theories of gravity, including a nonminimal coupling between curvature and matter. In these models, the baryon asymmetry is generated through an effective coupling between the Ricci scalar curvature and the net baryon current that dynamically breaks Charge conjugation, parity and time reversal (C P T ) invariance. We study the combinations of characteristic mass scales and exponents for both nontrivial functions present in the modified action functional and establish the allowed region for these parameters: we find that very small deviations from general relativity are consistent with the observed baryon asymmetry and lead to temperatures compatible with the subsequent formation of the primordial abundances of light elements. In particular, we show the viability of a power-law nonminimal coupling function f2(R )˜Rn with 0
Multiconfiguration pair-density functional theory investigation of the electronic spectrum of MnO4-
NASA Astrophysics Data System (ADS)
Sharma, Prachi; Truhlar, Donald G.; Gagliardi, Laura
2018-03-01
The electronic spectrum of permanganate ions contains various highly multiconfigurational ligand-to-metal charge transfer states and is notorious for being one of the most challenging systems to be treated by quantum-chemical methods. Here we studied the lowest nine vertical excitation energies using restricted active space second-order perturbation theory (RASPT2) and multiconfiguration pair-density functional theory (MC-PDFT) to test and compare these two theories in computing such a challenging spectrum. The results are compared to literature data, including time-dependent density functional theory, completely renormalized equation-of-motion couple-cluster theory with single and double excitations, symmetry-adapted-cluster configuration interaction, and experimental spectra in the gas phase and solution. Our results show that MC-PDFT accurately predicts the spectrum at a significantly reduced cost as compared to RASPT2.
Multiconfiguration pair-density functional theory investigation of the electronic spectrum of MnO4.
Sharma, Prachi; Truhlar, Donald G; Gagliardi, Laura
2018-03-28
The electronic spectrum of permanganate ions contains various highly multiconfigurational ligand-to-metal charge transfer states and is notorious for being one of the most challenging systems to be treated by quantum-chemical methods. Here we studied the lowest nine vertical excitation energies using restricted active space second-order perturbation theory (RASPT2) and multiconfiguration pair-density functional theory (MC-PDFT) to test and compare these two theories in computing such a challenging spectrum. The results are compared to literature data, including time-dependent density functional theory, completely renormalized equation-of-motion couple-cluster theory with single and double excitations, symmetry-adapted-cluster configuration interaction, and experimental spectra in the gas phase and solution. Our results show that MC-PDFT accurately predicts the spectrum at a significantly reduced cost as compared to RASPT2.
DOE Office of Scientific and Technical Information (OSTI.GOV)
San Fabián, J.; Omar, S.; García de la Vega, J. M., E-mail: garcia.delavega@uam.es
The effect of a fraction of Hartree-Fock exchange on the calculated spin-spin coupling constants involving fluorine through a hydrogen bond is analyzed in detail. Coupling constants calculated using wavefunction methods are revisited in order to get high-level calculations using the same basis set. Accurate MCSCF results are obtained using an additive approach. These constants and their contributions are used as a reference for density functional calculations. Within the density functional theory, the Hartree-Fock exchange functional is split in short- and long-range using a modified version of the Coulomb-attenuating method with the SLYP functional as well as with the original B3LYP.more » Results support the difficulties for calculating hydrogen bond coupling constants using density functional methods when fluorine nuclei are involved. Coupling constants are very sensitive to the Hartree-Fock exchange and it seems that, contrary to other properties, it is important to include this exchange for short-range interactions. Best functionals are tested in two different groups of complexes: those related with anionic clusters of type [F(HF){sub n}]{sup −} and those formed by difluoroacetylene and either one or two hydrogen fluoride molecules.« less
Pairing-induced speedup of nuclear spontaneous fission
NASA Astrophysics Data System (ADS)
Sadhukhan, Jhilam; Dobaczewski, J.; Nazarewicz, W.; Sheikh, J. A.; Baran, A.
2014-12-01
Background: Collective inertia is strongly influenced at the level crossing at which the quantum system changes its microscopic configuration diabatically. Pairing correlations tend to make the large-amplitude nuclear collective motion more adiabatic by reducing the effect of these configuration changes. Competition between pairing and level crossing is thus expected to have a profound impact on spontaneous fission lifetimes. Purpose: To elucidate the role of nucleonic pairing on spontaneous fission, we study the dynamic fission trajectories of 264Fm and 240Pu using the state-of-the-art self-consistent framework. Methods: We employ the superfluid nuclear density functional theory with the Skyrme energy density functional SkM* and a density-dependent pairing interaction. Along with shape variables, proton and neutron pairing correlations are taken as collective coordinates. The collective inertia tensor is calculated within the nonperturbative cranking approximation. The fission paths are obtained by using the least action principle in a four-dimensional collective space of shape and pairing coordinates. Results: Pairing correlations are enhanced along the minimum-action fission path. For the symmetric fission of 264Fm, where the effect of triaxiality on the fission barrier is large, the geometry of the fission pathway in the space of the shape degrees of freedom is weakly impacted by pairing. This is not the case for 240Pu, where pairing fluctuations restore the axial symmetry of the dynamic fission trajectory. Conclusions: The minimum-action fission path is strongly impacted by nucleonic pairing. In some cases, the dynamical coupling between shape and pairing degrees of freedom can lead to a dramatic departure from the static picture. Consequently, in the dynamical description of nuclear fission, particle-particle correlations should be considered on the same footing as those associated with shape degrees of freedom.
Pairing-induced speedup of nuclear spontaneous fission
Sadhukhan, Jhilam; Dobaczewski, J.; Nazarewicz, W.; ...
2014-12-22
Collective inertia is strongly influenced at the level crossing at which the quantum system changes its microscopic configuration diabatically. Pairing correlations tend to make the large-amplitude nuclear collective motion more adiabatic by reducing the effect of these configuration changes. Competition between pairing and level crossing is thus expected to have a profound impact on spontaneous fission lifetimes. To elucidate the role of nucleonic pairing on spontaneous fission, we study the dynamic fission trajectories of 264Fm and 240Pu using the state-of-the-art self-consistent framework. We employ the superfluid nuclear density functional theory with the Skyrme energy density functional SkM* and a density-dependentmore » pairing interaction. Along with shape variables, proton and neutron pairing correlations are taken as collective coordinates. The collective inertia tensor is calculated within the nonperturbative cranking approximation. The fission paths are obtained by using the least action principle in a four-dimensional collective space of shape and pairing coordinates. Pairing correlations are enhanced along the minimum-action fission path. For the symmetric fission of 264Fm, where the effect of triaxiality on the fission barrier is large, the geometry of the fission pathway in the space of the shape degrees of freedom is weakly impacted by pairing. This is not the case for 240Pu, where pairing fluctuations restore the axial symmetry of the dynamic fission trajectory. The minimum-action fission path is strongly impacted by nucleonic pairing. In some cases, the dynamical coupling between shape and pairing degrees of freedom can lead to a dramatic departure from the static picture. As a result, in the dynamical description of nuclear fission, particle-particle correlations should be considered on the same footing as those associated with shape degrees of freedom.« less
The cingulum: A unique structure of some Dolichopodidae
Justin Runyon
2008-01-01
The cingulum is a U-shaped structure of unknown function which arises between abdominal sterna 4 and 5 and terminates in a pair of variously modified flag-like appendages. This structure is well developed only in males of the genus Scellus. Richard Hurley discovered that Hydatostega have a much reduced cingulum, a finding that had broad implications for elucidating...
Light-Inducible Gene Regulation with Engineered Zinc Finger Proteins
Polstein, Lauren R.; Gersbach, Charles A.
2014-01-01
The coupling of light-inducible protein-protein interactions with gene regulation systems has enabled the control of gene expression with light. In particular, heterodimer protein pairs from plants can be used to engineer a gene regulation system in mammalian cells that is reversible, repeatable, tunable, controllable in a spatiotemporal manner, and targetable to any DNA sequence. This system, Light-Inducible Transcription using Engineered Zinc finger proteins (LITEZ), is based on the blue light-induced interaction of GIGANTEA and the LOV domain of FKF1 that drives the localization of a transcriptional activator to the DNA-binding site of a highly customizable engineered zinc finger protein. This chapter provides methods for modifying LITEZ to target new DNA sequences, engineering a programmable LED array to illuminate cell cultures, and using the modified LITEZ system to achieve spatiotemporal control of transgene expression in mammalian cells. PMID:24718797
Development of dansyl-modified oligonucleotide probes responding to structural changes in a duplex.
Suzuki, Yoshio; Kowata, Keiko; Komatsu, Yasuo
2013-11-15
We have synthesized a nonnucleoside amidite block of dansyl fluorophore to prepare dansyl-modified oligonucleotides (ONTs). The fluorescence intensities of dansyl-ONT specifically increased by the presence of adjacent guanosine residues but, significantly reduced in a dansyl-flipping duplex. These changes were caused by solvatochromism effect due to the number of guanine which is hydrophobic functional group and the external environment of dansyl group. The fluorescence intensities could be plotted as a function of the ONTs concentrations and the increase in the fluorescence was observed to equimolar concentrations of target DNA. This duplex exhibited higher melting temperature relative to the corresponding duplexes containing other base pairs. Similar changes in fluorescence could be detected upon hybridization with complementary RNAs. Thus, the dansyl-modified ONTs provide sequence specific fluorescent probe of DNA and RNA. Copyright © 2013 Elsevier Ltd. All rights reserved.
Entanglement and co-tunneling of two equivalent protons in hydrogen bond pairs
NASA Astrophysics Data System (ADS)
Smedarchina, Zorka; Siebrand, Willem; Fernández-Ramos, Antonio
2018-03-01
A theoretical study is reported of a system of two identical symmetric hydrogen bonds, weakly coupled such that the two mobile protons can move either separately (stepwise) or together (concerted). It is modeled by two equivalent quartic potentials interacting through dipolar and quadrupolar coupling terms. The tunneling Hamiltonian has two imaginary modes (reaction coordinates) and a potential with a single maximum that may turn into a saddle-point of second order and two sets of (inequivalent) minima. Diagonalization is achieved via a modified Jacobi-Davidson algorithm. From this Hamiltonian the mechanism of proton transfer is derived. To find out whether the two protons move stepwise or concerted, a new tool is introduced, based on the distribution of the probability flux in the dividing plane of the transfer mode. While stepwise transfer dominates for very weak coupling, it is found that concerted transfer (co-tunneling) always occurs, even when the coupling vanishes since the symmetry of the Hamiltonian imposes permanent entanglement on the motions of the two protons. We quantify this entanglement and show that, for a wide range of parameters of interest, the lowest pair of states of the Hamiltonian represents a perfect example of highly entangled quantum states in continuous variables. The method is applied to the molecule porphycene for which the observed tunneling splitting is calculated in satisfactory agreement with experiment, and the mechanism of double-proton tunneling is found to be predominantly concerted. We show that, under normal conditions, when they are in the ground state, the two porphycene protons are highly entangled, which may have interesting applications. The treatment also identifies the conditions under which such a system can be handled by conventional one-instanton techniques.
Opiates and cerebral functional activity in rats
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trusk, T.C.
1986-01-01
Cerebral activity was measured using the free-fatty acid (1-/sup 14/C) octanoate as a fast functional tracer in conscious, unrestrained rats 5 minutes after intravenous injection of heroin, cocaine or saline vehicle. Regional changes of octanoate labeling density in the autoradiograms relative to saline-injected animals were used to determine the functional activity effects of each drug. Heroin and cocaine each produced a distinctive pattern of activity increases and suppression throughout the rat brain. Similar regional changes induced by both drugs were found in limbic brain regions implicated in drug reinforcement. Labeled octanoate autoradiography was used to measure the cerebral functional responsemore » to a tone that had previously been paired to heroin injections. Rats were trained in groups of three consisting of one heroin self-administration animal, and two animals receiving yoked infusion of heroin or saline. A tone was paired with each infusion during training. Behavioral experiments in similarly trained rats demonstrated that these training conditions impart secondary reinforcing properties to the tone in animals previously self-administering heroin, while the tone remains behaviorally neutral in yoked-infusion rats. Cerebral functional activity was measured during presentation of the tone without drug infusion. Octanoate labeling density changed in fifteen brain areas in response to the tone previously paired to heroin without response contingency. Labeling density was significantly modified in sixteen regions as a result of previously pairing the tone to response-contingent heroin infusions.« less
Systematic and simulation-free coarse graining of homopolymer melts: a relative-entropy-based study.
Yang, Delian; Wang, Qiang
2015-09-28
We applied the systematic and simulation-free strategy proposed in our previous work (D. Yang and Q. Wang, J. Chem. Phys., 2015, 142, 054905) to the relative-entropy-based (RE-based) coarse graining of homopolymer melts. RE-based coarse graining provides a quantitative measure of the coarse-graining performance and can be used to select the appropriate analytic functional forms of the pair potentials between coarse-grained (CG) segments, which are more convenient to use than the tabulated (numerical) CG potentials obtained from structure-based coarse graining. In our general coarse-graining strategy for homopolymer melts using the RE framework proposed here, the bonding and non-bonded CG potentials are coupled and need to be solved simultaneously. Taking the hard-core Gaussian thread model (K. S. Schweizer and J. G. Curro, Chem. Phys., 1990, 149, 105) as the original system, we performed RE-based coarse graining using the polymer reference interaction site model theory under the assumption that the intrachain segment pair correlation functions of CG systems are the same as those in the original system, which de-couples the bonding and non-bonded CG potentials and simplifies our calculations (that is, we only calculated the latter). We compared the performance of various analytic functional forms of non-bonded CG pair potential and closures for CG systems in RE-based coarse graining, as well as the structural and thermodynamic properties of original and CG systems at various coarse-graining levels. Our results obtained from RE-based coarse graining are also compared with those from structure-based coarse graining.
Transfer impedances of balanced shielded cables
NASA Astrophysics Data System (ADS)
Hardiguian, M.
1982-07-01
The transfer impedance concept is extended to balanced shielded cables, e.g., shielded pairs and twinax in which the actual voltage developed at the load, between the two wires of a pair is emphasized. This parameter can be computed by a separate knowledge of the shield, and the shield-to-pair coupling (i.e., the pair unbalance ratio). Thus, a unique parameter called shield coupling evolves which relates directly the shield current to the differential output voltage. Conditions of cable pair and harness shielding and the impact of grounding at one or both ends are discussed.
Rasheed, Tabish; Ahmad, Shabbir
2010-10-01
Ab initio Hartree-Fock (HF), density functional theory (DFT) and second-order Møller-Plesset (MP2) methods were used to perform harmonic and anharmonic calculations for the biomolecule cytosine and its deuterated derivative. The anharmonic vibrational spectra were computed using the vibrational self-consistent field (VSCF) and correlation-corrected vibrational self-consistent field (CC-VSCF) methods. Calculated anharmonic frequencies have been compared with the argon matrix spectra reported in literature. The results were analyzed with focus on the properties of anharmonic couplings between pair of modes. A simple and easy to use formula for calculation of mode-mode coupling magnitudes has been derived. The key element in present approach is the approximation that only interactions between pairs of normal modes have been taken into account, while interactions of triples or more are neglected. FTIR and Raman spectra of solid state cytosine have been recorded in the regions 400-4000 cm(-1) and 60-4000 cm(-1), respectively. Vibrational analysis and assignments are based on calculated potential energy distribution (PED) values. Copyright 2010 Elsevier B.V. All rights reserved.
Jozifkova, Eva; Konvicka, Martin; Flegr, Jaroslav
2014-01-01
Equality between partners is considering a feature of the functional partnerships in westernized societies. However, the evolutionary consequences of how in-pair hierarchy influences reproduction are less known. Attraction of some high-ranking women towards low-ranking men represents a puzzle. Young urban adults (120 men, 171 women) filled out a questionnaire focused on their sexual preference for higher or lower ranking partners, their future in-pair hierarchy, and hierarchy between their parents. Human pairs with a hierarchic disparity between partners conceive more offspring than pairs of equally-ranking individuals, who, in turn, conceive more offspring than pairs of two dominating partners. Importantly, the higher reproductive success of hierarchically disparate pairs holds, regardless of which sex, male or female, is the dominant one. In addition, the subjects preferring hierarchy disparity in partnerships were with greater probability sexually aroused by such disparity, suggesting that both the partnership preference and the triggers of sexual arousal may reflect a mating strategy. These results challenge the frequently held belief in within-pair equality as a trademark of functional partnerships. It rather appears that existence of some disparity improves within-pair cohesion, facilitating both cooperation between partners and improving the pairs' ability to face societal challenges. The parallel existence of submissivity-dominance hierarchies within human sexes allows for the parallel existence of alternative reproductive strategies, and may form a background for the diversity of mating systems observed in human societies. Arousal of overemphasized dominance/submissiveness may explain sadomasochistic sex, still little understood from the evolutionary psychology point of view.
Charged particle layers in the Debye limit.
Golden, Kenneth I; Kalman, Gabor J; Kyrkos, Stamatios
2002-09-01
We develop an equivalent of the Debye-Hückel weakly coupled equilibrium theory for layered classical charged particle systems composed of one single charged species. We consider the two most important configurations, the charged particle bilayer and the infinite superlattice. The approach is based on the link provided by the classical fluctuation-dissipation theorem between the random-phase approximation response functions and the Debye equilibrium pair correlation function. Layer-layer pair correlation functions, screened and polarization potentials, static structure functions, and static response functions are calculated. The importance of the perfect screening and compressibility sum rules in determining the overall behavior of the system, especially in the r--> infinity limit, is emphasized. The similarities and differences between the quasi-two-dimensional bilayer and the quasi-three-dimensional superlattice are highlighted. An unexpected behavior that emerges from the analysis is that the screened potential, the correlations, and the screening charges carried by the individual layers exhibit a marked nonmonotonic dependence on the layer separation.
Peculiarities of the momentum distribution functions of strongly correlated charged fermions
NASA Astrophysics Data System (ADS)
Larkin, A. S.; Filinov, V. S.; Fortov, V. E.
2018-01-01
New numerical version of the Wigner approach to quantum thermodynamics of strongly coupled systems of particles has been developed for extreme conditions, when analytical approximations based on different kinds of perturbation theories cannot be applied. An explicit analytical expression of the Wigner function has been obtained in linear and harmonic approximations. Fermi statistical effects are accounted for by effective pair pseudopotential depending on coordinates, momenta and degeneracy parameter of particles and taking into account Pauli blocking of fermions. A new quantum Monte-Carlo method for calculations of average values of arbitrary quantum operators has been developed. Calculations of the momentum distribution functions and the pair correlation functions of degenerate ideal Fermi gas have been carried out for testing the developed approach. Comparison of the obtained momentum distribution functions of strongly correlated Coulomb systems with the Maxwell-Boltzmann and the Fermi distributions shows the significant influence of interparticle interaction both at small momenta and in high energy quantum ‘tails’.
Mao, Wenzhi; Kaya, Cihan; Dutta, Anindita; Horovitz, Amnon; Bahar, Ivet
2015-06-15
With rapid accumulation of sequence data on several species, extracting rational and systematic information from multiple sequence alignments (MSAs) is becoming increasingly important. Currently, there is a plethora of computational methods for investigating coupled evolutionary changes in pairs of positions along the amino acid sequence, and making inferences on structure and function. Yet, the significance of coevolution signals remains to be established. Also, a large number of false positives (FPs) arise from insufficient MSA size, phylogenetic background and indirect couplings. Here, a set of 16 pairs of non-interacting proteins is thoroughly examined to assess the effectiveness and limitations of different methods. The analysis shows that recent computationally expensive methods designed to remove biases from indirect couplings outperform others in detecting tertiary structural contacts as well as eliminating intermolecular FPs; whereas traditional methods such as mutual information benefit from refinements such as shuffling, while being highly efficient. Computations repeated with 2,330 pairs of protein families from the Negatome database corroborated these results. Finally, using a training dataset of 162 families of proteins, we propose a combined method that outperforms existing individual methods. Overall, the study provides simple guidelines towards the choice of suitable methods and strategies based on available MSA size and computing resources. Software is freely available through the Evol component of ProDy API. © The Author 2015. Published by Oxford University Press.
Effect of proton transfer on the electronic coupling in DNA
NASA Astrophysics Data System (ADS)
Rak, Janusz; Makowska, Joanna; Voityuk, Alexander A.
2006-06-01
The effects of single and double proton transfer within Watson-Crick base pairs on donor-acceptor electronic couplings, Vda, in DNA are studied on the bases of quantum chemical calculations. Four dimers [AT,AT], [GC,GC], [GC,AT] and [GC,TA)] are considered. Three techniques - the generalized Mulliken-Hush scheme, the fragment charge method and the diabatic states method - are employed to estimate Vda for hole transfer between base pairs. We show that both single- and double proton transfer (PT) reactions may substantially affect the electronic coupling in DNA. The electronic coupling in [AT,AT] is predicted to be most sensitive to PT. Single PT within the first base pair in the dimer leads to increase in the hole transfer efficiency by a factor of 4, while proton transfer within the second pair should substantially, by 2.7 times, decrease the rate of charge transfer. Thus, directional asymmetry of the PT effects on the electronic coupling is predicted. The changes in the Vda matrix elements correlate with the topological properties of orbitals of donor and acceptor and can be qualitatively rationalized in terms of resonance structures of donor and acceptor. Atomic pair contributions to the Vda matrix elements are also analyzed.
Takagi, Daisuke; Kondo, Naoki; Takada, Misato; Hashimoto, Hideki
2014-11-19
Previous studies have reported that spousal non-smoking has a spillover effect on the partner's cessation. However, discussion is lacking on the factors modifying that association. We examined whether the spillover effect of spousal non-smoking was associated with the couple's educational attainment. We used paired marital data from the Japanese Study on Stratification, Health, Income, and Neighborhood (J-SHINE), which targeted residents aged 25-50 years in four Japanese municipalities. We selected a spouse smoker at the time of marriage (target respondent), and set his/her smoking status change (continued or quit smoking after marriage) as an outcome, regressed on the counterpart's smoking status (continued smoking or non-smoking) and combinations of each couple's educational attainment as explanatory variables using log-binomial regression models (n =1001 targets; 708 men and 293 women). Regression results showed that a counterpart who previously quit smoking or was a never-smoker was associated with the target male spouse's subsequent cessation. However, for women, the association between husband's non-smoking and their own cessation was significant only for couples in which both spouses were highly educated. Our findings suggest that a spouse's smoking status is important for smoking cessation interventions in men. For women, however, a couple's combined educational attainment may matter in the interventions.
Ab Initio Reaction Kinetics of CH 3 O$$\\dot{C}$$(=O) and $$\\dot{C}$$H 2 OC(=O)H Radicals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tan, Ting; Yang, Xueliang; Ju, Yiguang
The dissociation and isomerization kinetics of the methyl ester combustion intermediates methoxycarbonyl radical (CH3Omore » $$\\dot{C}$$(=O)) and (formyloxy)methyl radical ($$\\dot{C}$$H2OC(=O)H) are investigated theoretically using high-level ab initio methods and Rice–Ramsperger–Kassel–Marcus (RRKM)/master equation (ME) theory. Geometries obtained at the hybrid density functional theory (DFT) and coupled cluster singles and doubles with perturbative triples correction (CCSD(T)) levels of theory are found to be similar. We employ high-level ab initio wave function methods to refine the potential energy surface: CCSD(T), multireference singles and doubles configuration interaction (MRSDCI) with the Davidson–Silver (DS) correction, and multireference averaged coupled-pair functional (MRACPF2) theory. MRSDCI+DS and MRACPF2 capture the multiconfigurational character of transition states (TSs) and predict lower barrier heights than CCSD(T). The temperature- and pressure-dependent rate coefficients are computed using RRKM/ME theory in the temperature range 300–2500 K and a pressure range of 0.01 atm to the high-pressure limit, which are then fitted to modified Arrhenius expressions. Dissociation of CH3O$$\\dot{C}$$(=O) to $$\\dot{C}$$H3 and CO2 is predicted to be much faster than dissociating to CH3$$\\dot{O}$$ and CO, consistent with its greater exothermicity. Isomerization between CH3O$$\\dot{C}$$(=O) and $$\\dot{C}$$H2OC(=O)H is predicted to be the slowest among the studied reactions and rarely happens even at high temperature and high pressure, suggesting the decomposition pathways of the two radicals are not strongly coupled. The predicted rate coefficients and branching fractions at finite pressures differ significantly from the corresponding high-pressure-limit results, especially at relatively high temperatures. Finally, because it is one of the most important CH3$$\\dot{O}$$ removal mechanisms under atmospheric conditions, the reaction kinetics of CH3$$\\dot{O}$$ + CO was also studied along the PES of CH3O$$\\dot{C}$$(=O); the resulting kinetics predictions are in remarkable agreement with experiments.« less
Photon pair source via two coupling single quantum emitters
NASA Astrophysics Data System (ADS)
Peng, Yong-Gang; Zheng, Yu-Jun
2015-10-01
We study the two coupling two-level single molecules driven by an external field as a photon pair source. The probability of emitting two photons, P2, is employed to describe the photon pair source quality in a short time, and the correlation coefficient RAB is employed to describe the photon pair source quality in a long time limit. The results demonstrate that the coupling single quantum emitters can be considered as a stable photon pair source. Project supported by the National Natural Science Foundation of China (Grand Nos. 91021009, 21073110, and 11374191), the Natural Science Foundation of Shandong Province, China (Grant No. ZR2013AQ020), the Postdoctoral Science Foundation of China (Grant No. 2013M531584), the Doctoral Program of Higher Education of China (Grant Nos. 20130131110005 and 20130131120006), and the Taishan Scholarship Project of Shandong Province, China.
Derivation of the density functional theory from the cluster expansion.
Hsu, J Y
2003-09-26
The density functional theory is derived from a cluster expansion by truncating the higher-order correlations in one and only one term in the kinetic energy. The formulation allows self-consistent calculation of the exchange correlation effect without imposing additional assumptions to generalize the local density approximation. The pair correlation is described as a two-body collision of bound-state electrons, and modifies the electron- electron interaction energy as well as the kinetic energy. The theory admits excited states, and has no self-interaction energy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jäger, Benjamin, E-mail: benjamin.jaeger@uni-rostock.de; Hellmann, Robert, E-mail: robert.hellmann@uni-rostock.de; Bich, Eckard
2016-03-21
A new reference krypton-krypton interatomic potential energy curve was developed by means of quantum-chemical ab initio calculations for 36 interatomic separations. Highly accurate values for the interaction energies at the complete basis set limit were obtained using the coupled-cluster method with single, double, and perturbative triple excitations as well as t-aug-cc-pV5Z and t-aug-cc-pV6Z basis sets including mid-bond functions, with the 6Z basis set being newly constructed for this study. Higher orders of coupled-cluster terms were considered in a successive scheme up to full quadruple excitations. Core-core and core-valence correlation effects were included. Furthermore, relativistic effects were studied not only atmore » a scalar relativistic level using second-order direct perturbation theory, but also utilizing full four-component and Gaunt-effect computations. An analytical pair potential function was fitted to the interaction energies, which is characterized by a depth of 200.88 K with an estimated standard uncertainty of 0.51 K. Thermophysical properties of low-density krypton were calculated for temperatures up to 5000 K. Second and third virial coefficients were obtained from statistical thermodynamics. Viscosity and thermal conductivity as well as the self-diffusion coefficient were computed using the kinetic theory of gases. The theoretical results are compared with experimental data and with results for other pair potential functions from the literature, especially with those calculated from the recently developed ab initio potential of Waldrop et al. [J. Chem. Phys. 142, 204307 (2015)]. Highly accurate experimental viscosity data indicate that both the present ab initio pair potential and the one of Waldrop et al. can be regarded as reference potentials, even though the quantum-chemical methods and basis sets differ. However, the uncertainties of the present potential and of the derived properties are estimated to be considerably lower.« less
Jäger, Benjamin; Hellmann, Robert; Bich, Eckard; Vogel, Eckhard
2016-03-21
A new reference krypton-krypton interatomic potential energy curve was developed by means of quantum-chemical ab initio calculations for 36 interatomic separations. Highly accurate values for the interaction energies at the complete basis set limit were obtained using the coupled-cluster method with single, double, and perturbative triple excitations as well as t-aug-cc-pV5Z and t-aug-cc-pV6Z basis sets including mid-bond functions, with the 6Z basis set being newly constructed for this study. Higher orders of coupled-cluster terms were considered in a successive scheme up to full quadruple excitations. Core-core and core-valence correlation effects were included. Furthermore, relativistic effects were studied not only at a scalar relativistic level using second-order direct perturbation theory, but also utilizing full four-component and Gaunt-effect computations. An analytical pair potential function was fitted to the interaction energies, which is characterized by a depth of 200.88 K with an estimated standard uncertainty of 0.51 K. Thermophysical properties of low-density krypton were calculated for temperatures up to 5000 K. Second and third virial coefficients were obtained from statistical thermodynamics. Viscosity and thermal conductivity as well as the self-diffusion coefficient were computed using the kinetic theory of gases. The theoretical results are compared with experimental data and with results for other pair potential functions from the literature, especially with those calculated from the recently developed ab initio potential of Waldrop et al. [J. Chem. Phys. 142, 204307 (2015)]. Highly accurate experimental viscosity data indicate that both the present ab initio pair potential and the one of Waldrop et al. can be regarded as reference potentials, even though the quantum-chemical methods and basis sets differ. However, the uncertainties of the present potential and of the derived properties are estimated to be considerably lower.
Higgs Pair Production as a Signal of Enhanced Yukawa Couplings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bauer, Martin; Carena, Marcela; Carmona, Adrián
We present a non-trivial correlation between the enhancement of the Higgs-fermion couplings and the Higgs pair production cross section in two Higgs doublet models with a flavour symmetry. This symmetry suppresses flavour-changing neutral couplings of the Higgs boson and allows for a partial explanation of the hierarchy in the Yukawa sector. After taking into account the constraints from electroweak precision measurements, Higgs coupling strength measurements, and unitarity and perturbativity bounds, we identify an interesting region of parameter space leading to enhanced Yukawa couplings as well as enhanced di-Higgs gluon fusion production at the LHC reach. This effect is visible inmore » both the resonant and non-resonant contributions to the Higgs pair production cross section. We encourage dedicated searches based on differential distributions as a novel way to indirectly probe enhanced Higgs couplings to light fermions.« less
Dimensionality Driven Enhancement of Ferromagnetic Superconductivity in URhGe.
Braithwaite, Daniel; Aoki, Dai; Brison, Jean-Pascal; Flouquet, Jacques; Knebel, Georg; Nakamura, Ai; Pourret, Alexandre
2018-01-19
In most unconventional superconductors, like the high-T_{c} cuprates, iron pnictides, or heavy-fermion systems, superconductivity emerges in the proximity of an electronic instability. Identifying unambiguously the pairing mechanism remains nevertheless an enormous challenge. Among these systems, the orthorhombic uranium ferromagnetic superconductors have a unique position, notably because magnetic fields couple directly to ferromagnetic order, leading to the fascinating discovery of the reemergence of superconductivity in URhGe at a high field. Here we show that uniaxial stress is a remarkable tool allowing the fine-tuning of the pairing strength. With a relatively small stress, the superconducting phase diagram is spectacularly modified, with a merging of the low- and high-field superconducting states and a significant enhancement of the superconductivity. The superconducting critical temperature increases both at zero field and under a field, reaching 1 K, more than twice higher than at ambient pressure. This enhancement of superconductivity is shown to be directly related to a change of the magnetic dimensionality detected from an increase of the transverse magnetic susceptibility: In addition to the Ising-type longitudinal ferromagnetic fluctuations, transverse magnetic fluctuations also play an important role in the superconducting pairing.
Tang, Shouchu; Wang, Qianli
2010-01-01
Monophosphoryl lipid A is a safe and potent immunostimulant and vaccine adjuvant, which is potentially useful for the development of effective carbohydrate-based conjugate vaccines. This paper presented a convergent and efficient synthesis of a monophosphoryl derivative of E. coli lipid A having an alkyne functionality at the reducing end, which is suitable for the coupling with various molecules. The coupling of this derivative to an N-modified analog of tumor-associated antigen GM3 by click chemistry is also presented. PMID:19943286
Frequency-phase analysis of resting-state functional MRI
Goelman, Gadi; Dan, Rotem; Růžička, Filip; Bezdicek, Ondrej; Růžička, Evžen; Roth, Jan; Vymazal, Josef; Jech, Robert
2017-01-01
We describe an analysis method that characterizes the correlation between coupled time-series functions by their frequencies and phases. It provides a unified framework for simultaneous assessment of frequency and latency of a coupled time-series. The analysis is demonstrated on resting-state functional MRI data of 34 healthy subjects. Interactions between fMRI time-series are represented by cross-correlation (with time-lag) functions. A general linear model is used on the cross-correlation functions to obtain the frequencies and phase-differences of the original time-series. We define symmetric, antisymmetric and asymmetric cross-correlation functions that correspond respectively to in-phase, 90° out-of-phase and any phase difference between a pair of time-series, where the last two were never introduced before. Seed maps of the motor system were calculated to demonstrate the strength and capabilities of the analysis. Unique types of functional connections, their dominant frequencies and phase-differences have been identified. The relation between phase-differences and time-delays is shown. The phase-differences are speculated to inform transfer-time and/or to reflect a difference in the hemodynamic response between regions that are modulated by neurotransmitters concentration. The analysis can be used with any coupled functions in many disciplines including electrophysiology, EEG or MEG in neuroscience. PMID:28272522
Auditory fear conditioning modifies steady-state evoked potentials in the rat inferior colliculus.
Lockmann, André Luiz Vieira; Mourão, Flávio Afonso Gonçalves; Moraes, Marcio Flávio Dutra
2017-08-01
The rat inferior colliculus (IC) is a major midbrain relay for ascending inputs from the auditory brain stem and has been suggested to play a key role in the processing of aversive sounds. Previous studies have demonstrated that auditory fear conditioning (AFC) potentiates transient responses to brief tones in the IC, but it remains unexplored whether AFC modifies responses to sustained periodic acoustic stimulation-a type of response called the steady-state evoked potential (SSEP). Here we used an amplitude-modulated tone-a 10-kHz tone with a sinusoidal amplitude modulation of 53.7 Hz-as the conditioning stimulus (CS) in an AFC protocol (5 CSs per day in 3 consecutive days) while recording local field potentials (LFPs) from the IC. In the preconditioning session ( day 1 ), the CS elicited prominent 53.7-Hz SSEPs. In the training session ( day 2 ), foot shocks occurred at the end of each CS (paired group) or randomized in the inter-CS interval (unpaired group). In the test session ( day 3 ), SSEPs markedly differed from preconditioning in the paired group: in the first two trials the phase to which the SSEP coupled to the CS amplitude envelope shifted ~90°; in the last two trials the SSEP power and the coherence of SSEP with the CS amplitude envelope increased. LFP power decreased in frequency bands other than 53.7 Hz. In the unpaired group, SSEPs did not change in the test compared with preconditioning. Our results show that AFC causes dissociated changes in the phase and power of SSEP in the IC. NEW & NOTEWORTHY Local field potential oscillations in the inferior colliculus follow the amplitude envelope of an amplitude-modulated tone, originating a neural response called the steady-state evoked potential. We show that auditory fear conditioning of an amplitude-modulated tone modifies two parameters of the steady-state evoked potentials in the inferior colliculus: first the phase to which the evoked oscillation couples to the amplitude-modulated tone shifts; subsequently, the evoked oscillation power increases along with its coherence with the amplitude-modulated tone. Copyright © 2017 the American Physiological Society.
Evolution of a Fourth Generation Catalyst for the Amination and Thioetherification of Aryl Halides
Hartwig, John F.
2010-01-01
Conspectus Synthetic methods to form the carbon-nitrogen bonds in aromatic amines are fundamental enough to be considered part of introductory organic courses. Arylamines are important because they are common precursors to or substructures within active pharmaceutical ingredients and herbicides produced on ton scales, as well as conducting polymers and layers of organic light-emitting diodes produced on small scale. For many years, this class of compound was prepared from classical methods, such as nitration, reduction and reductive alkylation, copper-mediated chemistry at high temperatures, addition to benzyne intermediates, or direct nucleophilic substitution on particularly electron-poor aromatic or heteroaromatic halides. During the past decade, these methods to form aromatic amines have been largely supplanted by palladium-catalyzed coupling reactions of amines with aryl halides. The scope and efficiency of the palladium-catalyzed processes has gradually improved with successive generations of catalysts to the point of being useful for the synthesis of both milligrams and kilograms of product. This Account describes the conceptual basis and utility of our latest, “fourth-generation” catalyst for the coupling of amines and related reagents with aryl halides. The introductory sections of this account describe the progression of catalyst development from the first-generation to current systems and the motivation for selection of the components of the fourth-generation catalyst. This progression began with catalysts containing palladium and sterically hindered monodentate aromatic phosphines used initially for coupling of tin amides with haloarenes in the first work on C-N coupling. A second generation of catalysts was then developed based on the combination of palladium and aromatic bisphosphines. These systems were then followed by third-generation systems catalysts on the combination of palladium and a sterically hindered alkylmonophosphine or N-heterocyclic carbene. During the past five years, we have studied a fourth-generation catalyst for these reactions containing ligands that combine the chelating properties of the second-generation systems with the steric hindrance and strong electron donation of the third-generation systems. This combination has created a catalyst that couples aryl chlorides, bromides and iodides with primary amines, N-H imines, and hydrazones in high yield, with broad scope, high functional group tolerance, nearly perfect selectivity for monoarylation, and the lowest levels of palladium that have been used for C-N coupling. This catalyst is based on palladium and a sterically hindered version of the Josiphos family of ligands that possesses a ferrocenyl-1-ethylbackbone, a hindered di-tert-butylphosphino group, and a hindered dicyclohexylphosphino group. This latest generation of catalyst not only improves the coupling of primary amines and related nucleophiles, but it has dramatically improved the coupling of thiols with haloarenes to form C-S bonds. This catalyst system couples both aliphatic and aromatic thiols with chloroarenes with much greater scope, functional group tolerance, and turnover numbers than had been observed previously. The effects of structural features of the Josiphos ligand on catalyst activity have been revealed by examining the reactivity of catalysts generated from ligands lacking one or more of the structural elements of the most active catalyst. These modified ligands lack the relative stereochemistry of the ferrocenyl-1-ethyl backbone, the strong electron donation of the dialkylphosphino groups, the steric demands of the alkylphosphine groups, or the stability of the ferrocenyl unit. This set of studies showed that each one of these structural features contributed to the high reactivity and selectivity of the catalyst containing the hindered, bidentate Josiphos ligand. Finally, a series of studies on the effect of electronic properties on the rates of reductive elimination have recently distinguished between the effect of the properties of the M-N σ-bond and the nitrogen electron pair on the rate of reductive elimination. These studies have shown that the effect of substituents attached to the metal-bound nitrogen or carbon atoms on the rate of reductive elimination are similar. Because the amido ligands contain an electron pair, while the alkyl ligands do not, we have concluded that the major electronic effect is transmitted through the σ-bond. In other words, we have concluded that the electronic effect on the metal-nitrogen σ bond dominates an electronic effect on the nitrogen electron pair. PMID:18681463
Guidez, Emilie B; Gordon, Mark S
2015-03-12
The modeling of dispersion interactions in density functional theory (DFT) is commonly performed using an energy correction that involves empirically fitted parameters for all atom pairs of the system investigated. In this study, the first-principles-derived dispersion energy from the effective fragment potential (EFP) method is implemented for the density functional theory (DFT-D(EFP)) and Hartree-Fock (HF-D(EFP)) energies. Overall, DFT-D(EFP) performs similarly to the semiempirical DFT-D corrections for the test cases investigated in this work. HF-D(EFP) tends to underestimate binding energies and overestimate intermolecular equilibrium distances, relative to coupled cluster theory, most likely due to incomplete accounting for electron correlation. Overall, this first-principles dispersion correction yields results that are in good agreement with coupled-cluster calculations at a low computational cost.
Two-Drug Antimicrobial Chemotherapy: A Mathematical Model and Experiments with Mycobacterium marinum
Ankomah, Peter; Levin, Bruce R.
2012-01-01
Multi-drug therapy is the standard-of-care treatment for tuberculosis. Despite this, virtually all studies of the pharmacodynamics (PD) of mycobacterial drugs employed for the design of treatment protocols are restricted to single agents. In this report, mathematical models and in vitro experiments with Mycobacterium marinum and five antimycobacterial drugs are used to quantitatively evaluate the pharmaco-, population and evolutionary dynamics of two-drug antimicrobial chemotherapy regimes. Time kill experiments with single and pairs of antibiotics are used to estimate the parameters and evaluate the fit of Hill-function-based PD models. While Hill functions provide excellent fits for the PD of each single antibiotic studied, rifampin, amikacin, clarithromycin, streptomycin and moxifloxacin, two-drug Hill functions with a unique interaction parameter cannot account for the PD of any of the 10 pairs of these drugs. If we assume two antibiotic-concentration dependent functions for the interaction parameter, one for sub-MIC and one for supra-MIC drug concentrations, the modified biphasic Hill function provides a reasonably good fit for the PD of all 10 pairs of antibiotics studied. Monte Carlo simulations of antibiotic treatment based on the experimentally-determined PD functions are used to evaluate the potential microbiological efficacy (rate of clearance) and evolutionary consequences (likelihood of generating multi-drug resistance) of these different drug combinations as well as their sensitivity to different forms of non-adherence to therapy. These two-drug treatment simulations predict varying outcomes for the different pairs of antibiotics with respect to the aforementioned measures of efficacy. In summary, Hill functions with biphasic drug-drug interaction terms provide accurate analogs for the PD of pairs of antibiotics and M. marinum. The models, experimental protocols and computer simulations used in this study can be applied to evaluate the potential microbiological and evolutionary efficacy of two-drug therapy for any bactericidal antibiotics and bacteria that can be cultured in vitro. PMID:22253599
Beta value coupled wave theory for nonslanted reflection gratings.
Neipp, Cristian; Francés, Jorge; Gallego, Sergi; Bleda, Sergio; Martínez, Francisco Javier; Pascual, Inmaculada; Beléndez, Augusto
2014-01-01
We present a modified coupled wave theory to describe the properties of nonslanted reflection volume diffraction gratings. The method is based on the beta value coupled wave theory, which will be corrected by using appropriate boundary conditions. The use of this correction allows predicting the efficiency of the reflected order for nonslanted reflection gratings embedded in two media with different refractive indices. The results obtained by using this method will be compared to those obtained using a matrix method, which gives exact solutions in terms of Mathieu functions, and also to Kogelnik's coupled wave theory. As will be demonstrated, the technique presented in this paper means a significant improvement over Kogelnik's coupled wave theory.
Beta Value Coupled Wave Theory for Nonslanted Reflection Gratings
Neipp, Cristian; Francés, Jorge; Gallego, Sergi; Bleda, Sergio; Martínez, Francisco Javier; Pascual, Inmaculada; Beléndez, Augusto
2014-01-01
We present a modified coupled wave theory to describe the properties of nonslanted reflection volume diffraction gratings. The method is based on the beta value coupled wave theory, which will be corrected by using appropriate boundary conditions. The use of this correction allows predicting the efficiency of the reflected order for nonslanted reflection gratings embedded in two media with different refractive indices. The results obtained by using this method will be compared to those obtained using a matrix method, which gives exact solutions in terms of Mathieu functions, and also to Kogelnik's coupled wave theory. As will be demonstrated, the technique presented in this paper means a significant improvement over Kogelnik's coupled wave theory. PMID:24723811
van de Bruck, Carsten; Morrice, Jack; Vu, Susan
2013-10-18
Certain modified gravity theories predict the existence of an additional, nonconformally coupled scalar field. A disformal coupling of the field to the cosmic microwave background (CMB) is shown to affect the evolution of the energy density in the radiation fluid and produces a modification of the distribution function of the CMB, which vanishes if photons and baryons couple in the same way to the scalar. We find the constraints on the couplings to matter and photons coming from the measurement of the CMB temperature evolution and from current upper limits on the μ distortion of the CMB spectrum. We also point out that the measured equation of state of photons differs from w(γ)=1/3 in the presence of disformal couplings.
NASA Astrophysics Data System (ADS)
Žukovič, Milan; Kalagov, Georgii
2018-05-01
Critical properties of the two-dimensional X Y model involving solely nematic-like terms of the second and third orders are investigated by spin-wave analysis and Monte Carlo simulation. It is found that, even though neither of the nematic-like terms alone can induce magnetic ordering, their coexistence and competition leads to an extended phase of the magnetic quasi-long-range-order phase, wedged between the two nematic-like phases induced by the respective couplings. Thus, except for the multicritical point, at which all the phases meet, for any finite value of the coupling parameters ratio there are two phase transition: one from the paramagnetic phase to one of the two nematic-like phases followed by another one at lower temperatures to the magnetic phase. The finite-size scaling analysis indicates that the phase transitions between the magnetic and nematic-like phases belong to the Ising and three-state Potts universality classes. Inside the competition-induced algebraic magnetic phase, the spin-pair correlation function is found to decay even much more slowly than in the standard X Y model with purely magnetic interactions. Such a magnetic phase is characterized by an extremely low vortex-antivortex pair density attaining a minimum close to the point at which the two couplings are of about equal strength.
Sparse networks of directly coupled, polymorphic, and functional side chains in allosteric proteins.
Soltan Ghoraie, Laleh; Burkowski, Forbes; Zhu, Mu
2015-03-01
Recent studies have highlighted the role of coupled side-chain fluctuations alone in the allosteric behavior of proteins. Moreover, examination of X-ray crystallography data has recently revealed new information about the prevalence of alternate side-chain conformations (conformational polymorphism), and attempts have been made to uncover the hidden alternate conformations from X-ray data. Hence, new computational approaches are required that consider the polymorphic nature of the side chains, and incorporate the effects of this phenomenon in the study of information transmission and functional interactions of residues in a molecule. These studies can provide a more accurate understanding of the allosteric behavior. In this article, we first present a novel approach to generate an ensemble of conformations and an efficient computational method to extract direct couplings of side chains in allosteric proteins, and provide sparse network representations of the couplings. We take the side-chain conformational polymorphism into account, and show that by studying the intrinsic dynamics of an inactive structure, we are able to construct a network of functionally crucial residues. Second, we show that the proposed method is capable of providing a magnified view of the coupled and conformationally polymorphic residues. This model reveals couplings between the alternate conformations of a coupled residue pair. To the best of our knowledge, this is the first computational method for extracting networks of side chains' alternate conformations. Such networks help in providing a detailed image of side-chain dynamics in functionally important and conformationally polymorphic sites, such as binding and/or allosteric sites. © 2014 Wiley Periodicals, Inc.
Mezei, Pál D; Csonka, Gábor I; Ruzsinszky, Adrienn; Sun, Jianwei
2015-01-13
A correct description of the anion-π interaction is essential for the design of selective anion receptors and channels and important for advances in the field of supramolecular chemistry. However, it is challenging to do accurate, precise, and efficient calculations of this interaction, which are lacking in the literature. In this article, by testing sets of 20 binary anion-π complexes of fluoride, chloride, bromide, nitrate, or carbonate ions with hexafluorobenzene, 1,3,5-trifluorobenzene, 2,4,6-trifluoro-1,3,5-triazine, or 1,3,5-triazine and 30 ternary π-anion-π' sandwich complexes composed from the same monomers, we suggest domain-based local-pair natural orbital coupled cluster energies extrapolated to the complete basis-set limit as reference values. We give a detailed explanation of the origin of anion-π interactions, using the permanent quadrupole moments, static dipole polarizabilities, and electrostatic potential maps. We use symmetry-adapted perturbation theory (SAPT) to calculate the components of the anion-π interaction energies. We examine the performance of the direct random phase approximation (dRPA), the second-order screened exchange (SOSEX), local-pair natural-orbital (LPNO) coupled electron pair approximation (CEPA), and several dispersion-corrected density functionals (including generalized gradient approximation (GGA), meta-GGA, and double hybrid density functional). The LPNO-CEPA/1 results show the best agreement with the reference results. The dRPA method is only slightly less accurate and precise than the LPNO-CEPA/1, but it is considerably more efficient (6-17 times faster) for the binary complexes studied in this paper. For 30 ternary π-anion-π' sandwich complexes, we give dRPA interaction energies as reference values. The double hybrid functionals are much more efficient but less accurate and precise than dRPA. The dispersion-corrected double hybrid PWPB95-D3(BJ) and B2PLYP-D3(BJ) functionals perform better than the GGA and meta-GGA functionals for the present test set.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weiss, J.
1985-09-01
We propose a method for finding the Lax pairs and rational solutions of integrable partial differential equations. That is, when an equation possesses the Painleve property, a Baecklund transformation is defined in terms of an expansion about the singular manifold. This Baecklund transformation obtains (1) a type of modified equation that is formulated in terms of Schwarzian derivatives and (2) a Miura transformation from the modified to the original equation. By linearizing the (Ricati-type) Miura transformation the Lax pair is found. On the other hand, consideration of the (distinct) Baecklund transformations of the modified equations provides a method for themore » iterative construction of rational solutions. This also obtains the Lax pairs for the modified equations. In this paper we apply this method to the Kadomtsev--Petviashvili equation and the Hirota--Satsuma equations.« less
Understanding The Role of Mate Selection Processes in Couples' Pair-Bonding Behavior.
Horwitz, Briana N; Reynolds, Chandra A; Walum, Hasse; Ganiban, Jody; Spotts, Erica L; Reiss, David; Lichtenstein, Paul; Neiderhiser, Jenae M
2016-01-01
Couples are similar in their pair-bonding behavior, yet the reasons for this similarity are often unclear. A common explanation is phenotypic assortment, whereby individuals select partners with similar heritable characteristics. Alternatively, social homogamy, whereby individuals passively select partners with similar characteristic due to shared social backgrounds, is rarely considered. We examined whether phenotypic assortment and/or social homogamy can contribute to mate similarity using a twin-partner design. The sample came from the Twin and Offspring Study in Sweden, which included 876 male and female monozygotic and same-sex dizygotic twins plus their married or cohabitating partners. Results showed that variance in pair-bonding behavior was attributable to genetic and nonshared environmental factors. Furthermore, phenotypic assortment accounted for couple similarity in pair-bonding behavior. This suggests that individuals' genetically based characteristics are involved in their selection of mates with similar pair-bonding behavior.
Kinematic analysis of articulatory coupling in acquired apraxia of speech post-stroke.
Bartle-Meyer, Carly J; Goozée, Justine V; Murdoch, Bruce E; Green, Jordan R
2009-02-01
Electromagnetic articulography was employed to investigate the strength of articulatory coupling and hence the degree of functional movement independence between individual articulators in apraxia of speech (AOS). Tongue-tip, tongue-back and jaw movement was recorded from five speakers with AOS and a concomitant aphasia (M = 53.6 years; SD = 12.60) during /ta, sa, la, ka/ syllable repetitions, spoken at typical and fast rates of speech. Covariance values were calculated for each articulatory pair to gauge the strength of articulatory coupling. The results obtained for each of the participants with AOS were individually compared to those obtained by a control group (n = 12; M = 52.08 years; SD = 12.52). Comparisons were made between the typical rate productions of the control group and the typical and fast rate productions of the participants with AOS. In comparison to the control group, four speakers with AOS exhibited significantly stronger articulatory coupling for alveolar and/or velar speech targets, during typical and/or fast rate conditions, suggesting decreased functional movement independence. The reduction in functional movement independence might have reflected an attempt to simplify articulatory control or a decrease in the ability to differentially control distinct articulatory regions.
Plasmon dispersion in strongly correlated superlattices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, D.; Golden, K.I.; Kalman, G.
The dielectric response function of a strongly correlated superlattice is calculated in the quasilocalized charge (QLC) approximation. The resulting QLC static local-field correction, which contains both intralayer and interlayer pair-correlational effects, is identical to the correlational part of the third-frequency-moment sum-rule coefficient. This approximation treats the interlayer and intralayer couplings on an equal footing. The resulting dispersion relation is first analyzed to determine the effect of intralayer coupling on the out-of-phase acoustic-mode dispersion; in this approximation the interlayer coupling is suppressed and the mutual interaction of the layers is taken into account only through the average random-phase approximation (RPA) field.more » In the resulting mode dispersion, the onset of a finite-{ital k} ({ital k} being the in-plane wave number) reentrant low-frequency excitation developing (with decreasing {ital d}/{ital a}) into a dynamical instability is indicated ({ital a} being the in-plane Wigner-Seitz radius and {ital d} the distance between adjacent lattice planes). This dynamical instability parallels a static structural instability reported earlier both for a bilayer electron system and a superlattice and presumably indicates a structural change in the electron liquid. If one takes account of interlayer correlations beyond the RPA, the acoustic excitation spectrum is dramatically modified by the appearance of an energy gap which also has a stabilizing effect on the instability. We extend a previous energy gap study at {ital k}=0 [G. Kalman, Y. Ren, and K. I. Golden, Phys Rev. B {bold 50}, 2031 (1994)] to a calculation of the dispersion of the gapped acoustic excitation spectrum in the long-wavelength domain. {copyright} {ital 1996 The American Physical Society.}« less
Polymer blend compositions and methods of preparation
Naskar, Amit K.
2016-09-27
A polymer blend material comprising: (i) a first polymer containing hydrogen bond donating groups having at least one hydrogen atom bound to a heteroatom selected from oxygen, nitrogen, and sulfur, or an anionic version of said first polymer wherein at least a portion of hydrogen atoms bound to a heteroatom is absent and replaced with at least one electron pair; (ii) a second polymer containing hydrogen bond accepting groups selected from nitrile, halogen, and ether functional groups; and (iii) at least one modifying agent selected from carbon particles, ether-containing polymers, and Lewis acid compounds; wherein, if said second polymer contains ether functional groups, then said at least one modifying agent is selected from carbon particles and Lewis acid compounds. Methods for producing the polymer blend, molded forms thereof, and articles thereof, are also described.
Wittmann, Daniela; Carolan, Marsha; Given, Barbara; Skolarus, Ted A.; Crossley, Heather; An, Lawrence; Palapattu, Ganesh; Clark, Patricia; Montie, James E.
2015-01-01
Introduction Interventions designed to help couples recover sexual intimacy after prostatectomy have not been guided by a comprehensive conceptual model. Aim We examined a proposed biopsychosocial conceptual model of couples’ sexual recovery that included functional, psychological and relational aspects of sexuality, surgery-related sexual losses, and grief and mourning as recovery process. Methods We interviewed twenty couples pre-operatively and 3-months post-operatively. between 2010 and 2012. Interviews were analyzed with Analytic Induction qualitative methodology, using NVivo software. Paired t-tests described functional assessment data. Study findings led to a revised conceptual model. Main Outcome Measures Couples’ experiences were assessed through semi-structured interviews; male participants’ sexual function was assessed with the Expanded Prostate Cancer Index Composite and female participants’ sexual function with the Female Sexual Function Index. Results Pre-operatively, 30% of men had erectile dysfunction (ED), 84% of partners were post-menopausal. All valued sexual recovery, but worried about cancer spread and surgery side-effects. Faith in themselves and their surgeons led 90% of couples to overestimate erectile recovery. Post-operatively, most men had ED and lost confidence. Couples’ sexual activity decreased. Couples reported feeling loss and grief: cancer diagnosis was the first loss, followed by surgery-related sexual losses. Couples’ engagement in intentional sex, patients’ acceptance of erectile aids and partners’ interest in sex aided the recovery of couples’ sexual intimacy recovery. Unselfconscious sex, not return to erectile function baseline, was seen as the endpoint. Survey findings documented participants’ sexual function losses, confirming qualitative findings. Conclusions Couples’ sexual recovery requires addressing sexual function, feelings about losses and relationship simultaneously. Peri-operative education should emphasize the roles of nerve damage in ED and grief and mourning in sexual recovery. PMID:25358901
Accelerating calculations of RNA secondary structure partition functions using GPUs
2013-01-01
Background RNA performs many diverse functions in the cell in addition to its role as a messenger of genetic information. These functions depend on its ability to fold to a unique three-dimensional structure determined by the sequence. The conformation of RNA is in part determined by its secondary structure, or the particular set of contacts between pairs of complementary bases. Prediction of the secondary structure of RNA from its sequence is therefore of great interest, but can be computationally expensive. In this work we accelerate computations of base-pair probababilities using parallel graphics processing units (GPUs). Results Calculation of the probabilities of base pairs in RNA secondary structures using nearest-neighbor standard free energy change parameters has been implemented using CUDA to run on hardware with multiprocessor GPUs. A modified set of recursions was introduced, which reduces memory usage by about 25%. GPUs are fastest in single precision, and for some hardware, restricted to single precision. This may introduce significant roundoff error. However, deviations in base-pair probabilities calculated using single precision were found to be negligible compared to those resulting from shifting the nearest-neighbor parameters by a random amount of magnitude similar to their experimental uncertainties. For large sequences running on our particular hardware, the GPU implementation reduces execution time by a factor of close to 60 compared with an optimized serial implementation, and by a factor of 116 compared with the original code. Conclusions Using GPUs can greatly accelerate computation of RNA secondary structure partition functions, allowing calculation of base-pair probabilities for large sequences in a reasonable amount of time, with a negligible compromise in accuracy due to working in single precision. The source code is integrated into the RNAstructure software package and available for download at http://rna.urmc.rochester.edu. PMID:24180434
Majorana edge States in atomic wires coupled by pair hopping.
Kraus, Christina V; Dalmonte, Marcello; Baranov, Mikhail A; Läuchli, Andreas M; Zoller, P
2013-10-25
We present evidence for Majorana edge states in a number conserving theory describing a system of spinless fermions on two wires that are coupled by pair hopping. Our analysis is based on a combination of a qualitative low energy approach and numerical techniques using the density matrix renormalization group. In addition, we discuss an experimental realization of pair-hopping interactions in cold atom gases confined in optical lattices.
Boson mapping techniques applied to constant gauge fields in QCD
NASA Technical Reports Server (NTRS)
Hess, Peter Otto; Lopez, J. C.
1995-01-01
Pairs of coordinates and derivatives of the constant gluon modes are mapped to new gluon-pair fields and their derivatives. Applying this mapping to the Hamiltonian of constant gluon fields results for large coupling constants into an effective Hamiltonian which separates into one describing a scalar field and another one for a field with spin two. The ground state is dominated by pairs of gluons coupled to color and spin zero with slight admixtures of color zero and spin two pairs. As color group we used SU(2).
Fermionic extensions of the Standard Model in light of the Higgs couplings
NASA Astrophysics Data System (ADS)
Bizot, Nicolas; Frigerio, Michele
2016-01-01
As the Higgs boson properties settle, the constraints on the Standard Model extensions tighten. We consider all possible new fermions that can couple to the Higgs, inspecting sets of up to four chiral multiplets. We confront them with direct collider searches, electroweak precision tests, and current knowledge of the Higgs couplings. The focus is on scenarios that may depart from the decoupling limit of very large masses and vanishing mixing, as they offer the best prospects for detection. We identify exotic chiral families that may receive a mass from the Higgs only, still in agreement with the hγγ signal strength. A mixing θ between the Standard Model and non-chiral fermions induces order θ 2 deviations in the Higgs couplings. The mixing can be as large as θ ˜ 0 .5 in case of custodial protection of the Z couplings or accidental cancellation in the oblique parameters. We also notice some intriguing effects for much smaller values of θ, especially in the lepton sector. Our survey includes a number of unconventional pairs of vector-like and Majorana fermions coupled through the Higgs, that may induce order one corrections to the Higgs radiative couplings. We single out the regions of parameters where hγγ and hgg are unaffected, while the hγZ signal strength is significantly modified, turning a few times larger than in the Standard Model in two cases. The second run of the LHC will effectively test most of these scenarios.
Cosmic acceleration from matter-curvature coupling
NASA Astrophysics Data System (ADS)
Zaregonbadi, Raziyeh; Farhoudi, Mehrdad
2016-10-01
We consider f( {R,T} ) modified theory of gravity in which, in general, the gravitational Lagrangian is given by an arbitrary function of the Ricci scalar and the trace of the energy-momentum tensor. We indicate that in this type of the theory, the coupling energy-momentum tensor is not conserved. However, we mainly focus on a particular model that matter is minimally coupled to the geometry in the metric formalism and wherein, its coupling energy-momentum tensor is also conserved. We obtain the corresponding Raychaudhuri dynamical equation that presents the evolution of the kinematic quantities. Then for the chosen model, we derive the behavior of the deceleration parameter, and show that the coupling term can lead to an acceleration phase after the matter dominated phase. On the other hand, the curvature of the universe corresponds with the deviation from parallelism in the geodesic motion. Thus, we also scrutinize the motion of the free test particles on their geodesics, and derive the geodesic deviation equation in this modified theory to study the accelerating universe within the spatially flat FLRW background. Actually, this equation gives the relative accelerations of adjacent particles as a measurable physical quantity, and provides an elegant tool to investigate the timelike and the null structures of spacetime geometries. Then, through the null deviation vector, we find the observer area-distance as a function of the redshift for the chosen model, and compare the results with the corresponding results obtained in the literature.
Sciacca, Beniamino; Alvarez, Sara D.; Geobaldo, Francesco; Sailor, Michael J.
2011-01-01
The high stability of Salonen’s thermally carbonized porous silicon (TCPSi) has attracted attention for environmental and biochemical sensing applications, where corrosion-induced zero point drift of porous silicon-based sensor elements has historically been a significant problem. Prepared by the high temperature reaction of porous silicon with acetylene gas, the stability of this silicon carbide-like material also poses a challenge—many sensor applications require a functionalized surface, and the low reactivity of TCPSi has limited the ability to chemically modify its surface. This work presents a simple reaction to modify the surface of TCPSi with an alkyl carboxylate. The method involves radical coupling of a dicarboxylic acid (sebacic acid) to the TCPSi surface using a benzoyl peroxide initiator. The grafted carboxylic acid species provides a route for bioconjugate chemical modification, demonstrated in this work by coupling propylamine to the surface carboxylic acid group through the intermediacy of pentafluorophenol and 1-ethyl-3-[3-dimethylaminopropyl]carbodiimide hydrochloride (EDC). The stability of the carbonized porous Si surface, both before and after chemical modification, is tested in phosphate buffered saline solution and found to be superior to either hydrosilylated (with undecylenic acid) or thermally oxidized porous Si surfaces. PMID:20967329
Electrophysiological CNS-processes related to associative learning in humans.
Christoffersen, Gert R J; Schachtman, Todd R
2016-01-01
The neurophysiology of human associative memory has been studied with electroencephalographic techniques since the 1930s. This research has revealed that different types of electrophysiological processes in the human brain can be modified by conditioning: sensory evoked potentials, sensory induced gamma-band activity, periods of frequency-specific waves (alpha and beta waves, the sensorimotor rhythm and the mu-rhythm) and slow cortical potentials. Conditioning of these processes has been studied in experiments that either use operant conditioning or repeated contingent pairings of conditioned and unconditioned stimuli (classical conditioning). In operant conditioning, the appearance of a specific brain process is paired with an external stimulus (neurofeedback) and the feedback enables subjects to obtain varying degrees of control of the CNS-process. Such acquired self-regulation of brain activity has found practical uses for instance in the amelioration of epileptic seizures, Autism Spectrum Disorders (ASD) and Attention Deficit Hyperactivity Disorder (ADHD). It has also provided communicative means of assistance for tetraplegic patients through the use of brain computer interfaces. Both extra and intracortically recorded signals have been coupled with contingent external feedback. It is the aim for this review to summarize essential results on all types of electromagnetic brain processes that have been modified by classical or operant conditioning. The results are organized according to type of conditioned EEG-process, type of conditioning, and sensory modalities of the conditioning stimuli. Copyright © 2015 Elsevier B.V. All rights reserved.
Dynamics and couplings of N-H stretching excitations of guanosine-cytidine base pairs in solution.
Yang, Ming; Szyc, Łukasz; Röttger, Katharina; Fidder, Henk; Nibbering, Erik T J; Elsaesser, Thomas; Temps, Friedrich
2011-05-12
N-H stretching vibrations of hydrogen-bonded guanosine-cytidine (G·C) base pairs in chloroform solution are studied with linear and ultrafast nonlinear infrared (IR) spectroscopy. Assignment of the IR-active bands in the linear spectrum is made possible by combining structural information on the hydrogen bonds in G·C base pairs with literature results of density functional theory calculations, and empirical relations connecting frequency shifts and intensity of the IR-active vibrations. A local mode representation of N-H stretching vibrations is adopted, consisting of ν(G)(NH(2))(f) and ν(C)(NH(2))(f) modes for free NH groups of G and C, and of ν(G)(NH(2))(b), ν(G)(NH), and ν(C)(NH(2))(b) modes associated with N-H stretching motions of hydrogen-bonded NH groups. The couplings and relaxation dynamics of the N-H stretching excitations are studied with femtosecond mid-infrared two-dimensional (2D) and pump-probe spectroscopy. The N-H stretching vibrations of the free NH groups of G and C have an average population lifetime of 2.4 ps. Besides a vibrational population lifetime shortening to subpicosecond values observed for the hydrogen-bonded N-H stretching vibrations, the 2D spectra reveal vibrational excitation transfer from the ν(G)(NH(2))(b) mode to the ν(G)(NH) and/or ν(C)(NH(2))(b) modes. The underlying intermode vibrational couplings are on the order of 10 cm(-1).
Common Coupled Fixed Point Theorems for Two Hybrid Pairs of Mappings under φ-ψ Contraction
Handa, Amrish
2014-01-01
We introduce the concept of (EA) property and occasional w-compatibility for hybrid pair F : X × X → 2X and f : X → X. We also introduce common (EA) property for two hybrid pairs F, G : X → 2X and f, g : X → X. We establish some common coupled fixed point theorems for two hybrid pairs of mappings under φ-ψ contraction on noncomplete metric spaces. An example is also given to validate our results. We improve, extend and generalize several known results. The results of this paper generalize the common fixed point theorems for hybrid pairs of mappings and essentially contain fixed point theorems for hybrid pair of mappings. PMID:27340688
NASA Astrophysics Data System (ADS)
Rafhay, Quentin; Beug, M. Florian; Duane, Russell
2007-04-01
This paper presents an experimental comparison of dummy cell extraction methods of the gate capacitance coupling coefficient for floating gate non-volatile memory structures from different geometries and technologies. These results show the significant influence of mismatching floating gate devices and reference transistors on the extraction of the gate capacitance coupling coefficient. In addition, it demonstrates the accuracy of the new bulk bias dummy cell extraction method and the importance of the β function, introduced recently in [Duane R, Beug F, Mathewson A. Novel capacitance coupling coefficient measurement methodology for floating gate non-volatile memory devices. IEEE Electr Dev Lett 2005;26(7):507-9], to determine matching pairs of floating gate memory and reference transistor.
Pairing tendencies in a two-orbital Hubbard model in one dimension
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patel, Niravkumar D.; Nocera, Adriana; Alvarez, Gonzalo
The recent discovery of superconductivity under high pressure in the ladder compound BaFe2S3 has opened a new field of research in iron-based superconductors with focus on quasi-one-dimensional geometries. In this publication, using the density matrix renormalization group technique, we study a two-orbital Hubbard model defined in one-dimensional chains. Our main result is the presence of hole binding tendencies at intermediate Hubbard U repulsion and robust Hund coupling JH / U = 0.25. Binding does not occur either in weak coupling or at very strong coupling. The pair-pair correlations that are dominant near half-filling, or of similar strength as the chargemore » and spin correlation channels, involve hole-pair operators that are spin singlets, use nearest-neighbor sites, and employ different orbitals for each hole. As a result, the Hund coupling strength, presence of robust magnetic moments, and antiferromagnetic correlations among them are important for the binding tendencies found here.« less
Stoleru, Elena; Zaharescu, Traian; Hitruc, Elena Gabriela; Vesel, Alenka; Ioanid, Emil G; Coroaba, Adina; Safrany, Agnes; Pricope, Gina; Lungu, Maria; Schick, Christoph; Vasile, Cornelia
2016-11-23
Both cold nitrogen radiofrequency plasma and gamma irradiation have been applied to activate and functionalize the polylactic acid (PLA) surface and the subsequent lactoferrin immobilization. Modified films were comparatively characterized with respect to the procedure of activation and also with unmodified sample by water contact angle measurements, mass loss, X-ray photoelectron spectroscopy (XPS), attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR), atomic force microscopy (AFM), and chemiluminescence measurements. All modified samples exhibit enhanced surface properties mainly those concerning biocompatibility, antimicrobial, and antioxidant properties, and furthermore, they are biodegradable and environmentally friendly. Lactoferrin deposited layer by covalent coupling using carbodiimide chemistry showed a good stability. It was found that the lactoferrin-modified PLA materials present significantly increased oxidative stability. Gamma-irradiated samples and lactoferrin-functionalized samples show higher antioxidant, antimicrobial, and cell proliferation activity than plasma-activated and lactoferrin-functionalized ones. The multifunctional materials thus obtained could find application as biomaterials or as bioactive packaging films.
Studzińska, Sylwia; Krzemińska, Katarzyna; Szumski, Michał; Buszewski, Bogusław
2016-07-01
The main aim of this study was the investigation of the influence of several ion pair reagents towards both the retention and the mass spectrometry sensitivity of phosphorothioate oligonucleotides. A cholesterol stationary phase was applied for the first time in the analysis of this group of compounds. The mobile phase composition was modified by changing the concentration and the type of amines and acetates or 1,1,1,3,3,3-hexafluoroisopropanol. It has been shown that the increase of amines concentration results in the retention factor increase for each oligonucleotide, on each adsorbent. The only exception was the mobile phase composed of triethylamine and 1,1,1,3,3,3-hexafluoroisopropanol. This is a consequence of interactions taking place between a cholesterol molecule and an alcohol. This effect was convenient when the mass spectrometry detection was applied, since it allowed an increase in the sensitivity. Moreover, optimization of the mobile phase composition and its impact on the efficiency of ionization process and on the sensitivity in mass spectrometry were also presented. The optimization of this new method, based on cholesterol stationary phase coupled with mass spectrometry detection, was finally applied for the determination of phosphorothioate oligonucleotides impurity in a real sample. Copyright © 2016 Elsevier B.V. All rights reserved.
Eteng, Akaa Agbaeze; Abdul Rahim, Sharul Kamal; Leow, Chee Yen; Chew, Beng Wah; Vandenbosch, Guy A E
2016-01-01
Q-factor constraints are usually imposed on conductor loops employed as proximity range High Frequency Radio Frequency Identification (HF-RFID) reader antennas to ensure adequate data bandwidth. However, pairing such low Q-factor loops in inductive energy transmission links restricts the link transmission performance. The contribution of this paper is to assess the improvement that is reached with a two-stage design method, concerning the transmission performance of a planar square loop relative to an initial design, without compromise to a Q-factor constraint. The first stage of the synthesis flow is analytical in approach, and determines the number and spacing of turns by which coupling between similar paired square loops can be enhanced with low deviation from the Q-factor limit presented by an initial design. The second stage applies full-wave electromagnetic simulations to determine more appropriate turn spacing and widths to match the Q-factor constraint, and achieve improved coupling relative to the initial design. Evaluating the design method in a test scenario yielded a more than 5% increase in link transmission efficiency, as well as an improvement in the link fractional bandwidth by more than 3%, without violating the loop Q-factor limit. These transmission performance enhancements are indicative of a potential for modifying proximity HF-RFID reader antennas for efficient inductive energy transfer and data telemetry links.
The structure and energetics of Cr(CO)6 and Cr(CO)5
NASA Technical Reports Server (NTRS)
Barnes, Leslie A.; Liu, Bowen; Lindh, Roland
1992-01-01
The geometric structure of Cr(CO)6 is optimized at the modified coupled pair functional (MCPF), single and double excitation coupled-cluster (CCSD) and CCSD(T) levels of theory (including a perturbational estimate for connected triple excitations), and the force constants for the totally symmetric representation are determined. The geometry of Cr(CO)5 is partially optimized at the MCPF, CCSD, and CCSD(T) levels of theory. Comparison with experimental data shows that the CCSD(T) method gives the best results for the structures and force constants, and that remaining errors are probably due to deficiencies in the one-particle basis sets used for CO. The total binding energies of Cr(CO)6 and Cr(CO)5 are also determined at the MCPF, CCSD, and CCSD(T) levels of theory. The CCSD(T) method gives a much larger total binding energy than either the MCPF or CCSD methods. An analysis of the basis set superposition error (BSSE) at the MCPF level of treatment points out limitations in the one-particle basis used. Calculations using larger basis sets reduce the BSSE, but the total binding energy of Cr(CO)6 is still significantly smaller than the experimental value, although the first CO bond dissociation energy of Cr(CO)6 is well described. An investigation of 3s3p correlation reveals only a small effect. In the largest basis set, the total CO binding energy of Cr(CO)6 is estimated to be 140 kcal/mol at the CCSD(T) level of theory, or about 86 percent of the experimental value. The remaining discrepancy between the experimental and theoretical value is probably due to limitations in the one-particle basis, rather than limitations in the correlation treatment. In particular an additional d function and an f function on each C and O are needed to obtain quantitative results. This is underscored by the fact that even using a very large primitive set (1042 primitive functions contracted to 300 basis functions), the superposition error for the total binding energy of Cr(CO)6 is 22 kcal/mol at the MCPF level of treatment.
Nuclear quantum shape-phase transitions in odd-mass systems
NASA Astrophysics Data System (ADS)
Quan, S.; Li, Z. P.; Vretenar, D.; Meng, J.
2018-03-01
Microscopic signatures of nuclear ground-state shape-phase transitions in odd-mass Eu isotopes are explored starting from excitation spectra and collective wave functions obtained by diagonalization of a core-quasiparticle coupling Hamiltonian based on energy density functionals. As functions of the physical control parameter—the number of nucleons—theoretical low-energy spectra, two-neutron separation energies, charge isotope shifts, spectroscopic quadrupole moments, and E 2 reduced transition matrix elements accurately reproduce available data and exhibit more-pronounced discontinuities at neutron number N =90 compared with the adjacent even-even Sm and Gd isotopes. The enhancement of the first-order quantum phase transition in odd-mass systems can be attributed to a shape polarization effect of the unpaired proton which, at the critical neutron number, starts predominantly coupling to Gd core nuclei that are characterized by larger quadrupole deformation and weaker proton pairing correlations compared with the corresponding Sm isotopes.
NASA Astrophysics Data System (ADS)
Saari, Timo; Nieminen, Jouko; Bansil, Arun
2017-06-01
Motivated by the recent experiments indicating superconductivity in metal-decorated graphene sheets, we investigate their quasi-particle structure within the framework of an effective tight-binding Hamiltonian augmented by appropriate BCS-like pairing terms for p-type order parameter. The normal state band structure of graphene is modified not only through interaction with adsorbed metal atoms, but also due to the folding of bands at Brillouin zone boundaries resulting from a \\sqrt{3}× \\sqrt{3}R{{30}\\circ} reconstruction. Several different types of pairing symmetries are analyzed utilizing Nambu-Gorkov Green’s function techniques to show that p+\\text{i}p -symmetric nearest-neighbor pairing yields the most enhanced superconducting gap. The character of the order parameter depends on the nature of the atomic orbitals involved in the pairing process and exhibits interesting angular and radial asymmetries. Finally, we suggest a method to distinguish between singlet and triplet type superconductivity in the presence of magnetic substitutional impurities using scanning tunneling spectroscopy.
Preliminary laboratory testing on the sound absorption of coupled cavity sonic crystal
NASA Astrophysics Data System (ADS)
Kristiani, R.; Yahya, I.; Harjana; Suparmi
2016-11-01
This paper focuses on the sound absorption performance of coupled cavity sonic crystal. It constructed by a pair of a cylindrical tube with different values in diameters. A laboratory test procedure after ASTM E1050 has been conducted to measure the sound absorption of the sonic crystal elements. The test procedures were implemented to a single coupled scatterer and also to a pair of similar structure. The results showed that using the paired structure bring a better possibility for increase the sound absorption to a wider absorption range. It also bring a practical advantage for setting the local Helmholtz resonant frequency to certain intended frequency.
Functional Hubs in Mild Cognitive Impairment
NASA Astrophysics Data System (ADS)
Navas, Adrián; Papo, David; Boccaletti, Stefano; Del-Pozo, F.; Bajo, Ricardo; Maestú, Fernando; Martínez, J. H.; Gil, Pablo; Sendiña-Nadal, Irene; Buldú, Javier M.
We investigate how hubs of functional brain networks are modified as a result of mild cognitive impairment (MCI), a condition causing a slight but noticeable decline in cognitive abilities, which sometimes precedes the onset of Alzheimer's disease. We used magnetoencephalography (MEG) to investigate the functional brain networks of a group of patients suffering from MCI and a control group of healthy subjects, during the execution of a short-term memory task. Couplings between brain sites were evaluated using synchronization likelihood, from which a network of functional interdependencies was constructed and the centrality, i.e. importance, of their nodes was quantified. The results showed that, with respect to healthy controls, MCI patients were associated with decreases and increases in hub centrality respectively in occipital and central scalp regions, supporting the hypothesis that MCI modifies functional brain network topology, leading to more random structures.
2017-01-01
Drosophila segmentation is a well-established paradigm for developmental pattern formation. However, the later stages of segment patterning, regulated by the “pair-rule” genes, are still not well understood at the system level. Building on established genetic interactions, I construct a logical model of the Drosophila pair-rule system that takes into account the demonstrated stage-specific architecture of the pair-rule gene network. Simulation of this model can accurately recapitulate the observed spatiotemporal expression of the pair-rule genes, but only when the system is provided with dynamic “gap” inputs. This result suggests that dynamic shifts of pair-rule stripes are essential for segment patterning in the trunk and provides a functional role for observed posterior-to-anterior gap domain shifts that occur during cellularisation. The model also suggests revised patterning mechanisms for the parasegment boundaries and explains the aetiology of the even-skipped null mutant phenotype. Strikingly, a slightly modified version of the model is able to pattern segments in either simultaneous or sequential modes, depending only on initial conditions. This suggests that fundamentally similar mechanisms may underlie segmentation in short-germ and long-germ arthropods. PMID:28953896
Tunneling spectroscopy of close-spaced dangling-bond pairs in Si(001):H
Engelund, Mads; Zuzak, Rafał; Godlewski, Szymon; Kolmer, Marek; Frederiksen, Thomas; García-Lekue, Aran; Sánchez-Portal, Daniel; Szymonski, Marek
2015-01-01
We present a combined experimental and theoretical study of the electronic properties of close-spaced dangling-bond (DB) pairs in a hydrogen-passivated Si(001):H p-doped surface. Two types of DB pairs are considered, called “cross” and “line” structures. Our scanning tunneling spectroscopy (STS) data show that, although the spectra taken over different DBs in each pair exhibit a remarkable resemblance, they appear shifted by a constant energy that depends on the DB-pair type. This spontaneous asymmetry persists after repeated STS measurements. By comparison with density functional theory (DFT) calculations, we demonstrate that the magnitude of this shift and the relative position of the STS peaks can be explained by distinct charge states for each DB in the pair. We also explain how the charge state is modified by the presence of the scanning tunneling microscopy (STM) tip and the applied bias. Our results indicate that, using the STM tip, it is possible to control the charge state of individual DBs in complex structures, even if they are in close proximity. This observation might have important consequences for the design of electronic circuits and logic gates based on DBs in passivated silicon surfaces. PMID:26404520
Simplifying the EFT of Inflation: generalized disformal transformations and redundant couplings
NASA Astrophysics Data System (ADS)
Bordin, Lorenzo; Cabass, Giovanni; Creminelli, Paolo; Vernizzi, Filippo
2017-09-01
We study generalized disformal transformations, including derivatives of the metric, in the context of the Effective Field Theory of Inflation. All these transformations do not change the late-time cosmological observables but change the coefficients of the operators in the action: some couplings are effectively redundant. At leading order in derivatives and up to cubic order in perturbations, one has 6 free functions that can be used to set to zero 6 of the 17 operators at this order. This is used to show that the tensor three-point function cannot be modified at leading order in derivatives, while the scalar-tensor-tensor correlator can only be modified by changing the scalar dynamics. At higher order in derivatives there are transformations that do not affect the Einstein-Hilbert action: one can find 6 additional transformations that can be used to simplify the inflaton action, at least when the dynamics is dominated by the lowest derivative terms. We also identify the leading higher-derivative corrections to the tensor power spectrum and bispectrum.
Post-polymerization modification of poly(L-glutamic acid) with D-(+)-glucosamine.
Perdih, Peter; Cebašek, Sašo; Možir, Alenka; Zagar, Ema
2014-11-27
Carboxyl functional groups of poly(L-glutamic acid) (PGlu) were modified with a D-(+)-glucosamine (GlcN) by amidation using 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium chloride (DMTMM) as a coupling reagent. The coupling reaction was performed in aqueous medium without protection of hydroxyl functional groups of D-(+)-glucosamine. Poly(L-glutamic acid) and GlcN functionalized polyglutamates (P(Glu-GlcN)) were thoroughly characterized by 1D and 2D NMR spectroscopy and SEC-MALS to gain detailed information on their structure, composition and molar mass characteristics. The results reveal successful functionalization with GlcN through the amide bond and also to a minor extent through ester bond formation in position 1 of GlcN. In addition, a ratio between the α- and β-form of glucosamine substituent coupled to polyglutamate repeating units as well as the content of residual dimethoxy triazinyl active ester moiety in the samples were evaluated.
Effective gravitational coupling in modified teleparallel theories
NASA Astrophysics Data System (ADS)
Abedi, Habib; Capozziello, Salvatore; D'Agostino, Rocco; Luongo, Orlando
2018-04-01
In the present study, we consider an extended form of teleparallel Lagrangian f (T ,ϕ ,X ) , as function of a scalar field ϕ , its kinetic term X and the torsion scalar T . We use linear perturbations to obtain the equation of matter density perturbations on sub-Hubble scales. The gravitational coupling is modified in scalar modes with respect to the one of general relativity, albeit vector modes decay and do not show any significant effects. We thus extend these results by involving multiple scalar field models. Further, we study conformal transformations in teleparallel gravity and we obtain the coupling as the scalar field is nonminimally coupled to both torsion and boundary terms. Finally, we propose the specific model f (T ,ϕ ,X )=T +∂μϕ ∂μϕ +ξ T ϕ2 . To check its goodness, we employ the observational Hubble data, constraining the coupling constant, ξ , through a Monte Carlo technique based on the Metropolis-Hastings algorithm. Hence, fixing ξ to its best-fit value got from our numerical analysis, we calculate the growth rate of matter perturbations and we compare our outcomes with the latest measurements and the predictions of the Λ CDM model.
Chemisorption of hydrogen atoms and hydroxyl groups on stretched graphene: A coupled QM/QM study
NASA Astrophysics Data System (ADS)
Katin, Konstantin P.; Prudkovskiy, Vladimir S.; Maslov, Mikhail M.
2017-09-01
Using the density functional theory coupled with the nonorthogonal tight-binding model, we analyze the chemisorption of hydrogen atoms and hydroxyl groups on the unstrained and stretched graphene sheets. Drawback of finite cluster model of graphene for the chemisorption energy calculation in comparison with the QM/QM approach applied is discussed. It is shown that the chemisorption energy for the hydroxyl group is sufficiently lower than for hydrogen at stretching up to 7.5%. The simultaneous paired chemisorption of hydrogen and hydroxyl groups on the same hexagon has also been examined. Adsorption of two radicals in ortho and para positions is found to be more energetically favorable than those in meta position at any stretching considered. In addition the energy difference between adsorbent pairs in ortho and para positions decreases as the stretching rises. It could be concluded that the graphene stretching leads to the loss of preferred mutual arrangement of two radicals on its surface.
CH stretching overtone spectra of trimethyl amine and dimethyl sulfide
NASA Astrophysics Data System (ADS)
Billinghurst, Brant E.; Gough, Kathleen M.; Low, Geoffrey R.; Kjaergaard, Henrik G.
2004-01-01
Trimethyl amine (TMA) exhibits the largest known difference in CH bond lengths within a methyl group, due to what is known as the lone pair trans effect. Dimethyl sulfide also exhibits this effect, but to a far lesser extent, making it ideal for comparison to TMA. In this paper, the first through fourth overtone spectra of N(CH3)3, N(CD3)3, N(CD2H)(CD3)2, N(CH3)(CD3)2, N(CD3)(CH3)2 and S(CH3)2 are reported and all major bands are assigned. The intensities of the observed bands are compared to intensities predicted by the harmonically coupled anharmonic oscillator local mode model. Good correlation is found between the experimental intensities and those predicted with the local mode model and HF/6-311++G(2d,2p) calculated dipole moment functions. An increase in the ability to resolve peaks as methyl groups are deuterated suggests that the lone pair mediates increased coupling between methyl groups.
Ambrosi, Cinzia; Walker, Amy E; Depriest, Adam D; Cone, Angela C; Lu, Connie; Badger, John; Skerrett, I Martha; Sosinsky, Gina E
2013-01-01
Human Connexin26 gene mutations cause hearing loss. These hereditary mutations are the leading cause of childhood deafness worldwide. Mutations in gap junction proteins (connexins) can impair intercellular communication by eliminating protein synthesis, mis-trafficking, or inducing channels that fail to dock or have aberrant function. We previously identified a new class of mutants that form non-functional gap junction channels and hemichannels (connexons) by disrupting packing and inter-helix interactions. Here we analyzed fourteen point mutations in the fourth transmembrane helix of connexin26 (Cx26) that cause non-syndromic hearing loss. Eight mutations caused mis-trafficking (K188R, F191L, V198M, S199F, G200R, I203K, L205P, T208P). Of the remaining six that formed gap junctions in mammalian cells, M195T and A197S formed stable hemichannels after isolation with a baculovirus/Sf9 protein purification system, while C202F, I203T, L205V and N206S formed hemichannels with varying degrees of instability. The function of all six gap junction-forming mutants was further assessed through measurement of dye coupling in mammalian cells and junctional conductance in paired Xenopus oocytes. Dye coupling between cell pairs was reduced by varying degrees for all six mutants. In homotypic oocyte pairings, only A197S induced measurable conductance. In heterotypic pairings with wild-type Cx26, five of the six mutants formed functional gap junction channels, albeit with reduced efficiency. None of the mutants displayed significant alterations in sensitivity to transjunctional voltage or induced conductive hemichannels in single oocytes. Intra-hemichannel interactions between mutant and wild-type proteins were assessed in rescue experiments using baculovirus expression in Sf9 insect cells. Of the four unstable mutations (C202F, I203T, L205V, N206S) only C202F and N206S formed stable hemichannels when co-expressed with wild-type Cx26. Stable M195T hemichannels displayed an increased tendency to aggregate. Thus, mutations in TM4 cause a range of phenotypes of dysfunctional gap junction channels that are discussed within the context of the X-ray crystallographic structure.
NASA Astrophysics Data System (ADS)
Derrien, Thibault J.-Y.; Bulgakova, Nadezhda M.
2017-05-01
During the last decades, femtosecond laser irradiation of materials has led to the emergence of various applications based on functionalization of surfaces at the nano- and microscale. Via inducing a periodic modification on material surfaces (band gap modification, nanostructure formation, crystallization or amorphization), optical and mechanical properties can be tailored, thus turning femtosecond laser to a key technology for development of nanophotonics, bionanoengineering, and nanomechanics. Although modification of semiconductor surfaces with femtosecond laser pulses has been studied for more than two decades, the dynamics of coupling of intense laser light with excited matter remains incompletely understood. In particular, swift formation of a transient overdense electron-hole plasma dynamically modifies optical properties in the material surface layer and induces large gradients of hot charge carriers, resulting in ultrafast charge-transport phenomena. In this work, the dynamics of ultrafast laser excitation of a semiconductor material is studied theoretically on the example of silicon. A special attention is paid to the electron-hole pair dynamics, taking into account ambipolar diffusion effects. The results are compared with previously developed simulation models, and a discussion of the role of charge-carrier dynamics in localization of material modification is provided.
ac Josephson effect and resonant Cooper pair tunneling emission of a single Cooper pair transistor.
Billangeon, P-M; Pierre, F; Bouchiat, H; Deblock, R
2007-05-25
We measure the high-frequency emission of a single Cooper pair transistor (SCPT) in the regime where transport is only due to tunneling of Cooper pairs. This is achieved by coupling on chip the SCPT to a superconductor-insulator-superconductor junction and by measuring the photon assisted tunneling current of quasiparticles across the junction. This technique allows a direct detection of the ac Josephson effect of the SCPT and provides evidence of Landau-Zener transitions for proper gate voltage. The emission in the regime of resonant Cooper pair tunneling is also investigated. It is interpreted in terms of transitions between charge states coupled by the Josephson effect.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Strassburger, E.; Patel, P.; McCauley, J. W.
An Edge-on Impact (EOI) technique, developed at the Ernst-Mach-Institute (EMI), coupled with a Cranz-Schardin high-speed camera, has been successfully utilized to visualize dynamic fracture in many brittle materials. In a typical test, the projectile strikes one edge of a specimen and damage formation and fracture propagation is recorded during the first 20 {mu}s after impact. In the present study, stress waves and damage propagation in fused silica and AlON were examined by means of two modified Edge-on Impact arrangements. In one arrangement, fracture propagation was observed simultaneously in side and top views of the specimens by means of two Cranz-Schardinmore » cameras. In another arrangement, the photographic technique was modified by placing the specimen between crossed polarizers and using the photo-elastic effect to visualize the stress waves. Pairs of impact tests at approximately equivalent velocities were carried out in transmitted plane (shadowgraphs) and crossed polarized light.« less
Quantum entanglement and quantum information in biological systems (DNA)
NASA Astrophysics Data System (ADS)
Hubač, Ivan; Švec, Miloslav; Wilson, Stephen
2017-12-01
Recent studies of DNA show that the hydrogen bonds between given base pairs can be treated as diabatic systems with spin-orbit coupling. For solid state systems strong diabaticity and spin-orbit coupling the possibility of forming Majorana fermions has been discussed. We analyze the hydrogen bonds in the base pairs in DNA from this perspective. Our analysis is based on a quasiparticle supersymmetric transformation which couples electronic and vibrational motion and includes normal coordinates and the corresponding momenta. We define qubits formed by Majorana fermions in the hydrogen bonds and also discuss the entangled states in base pairs. Quantum information and quantum entropy are introduced. In addition to the well-known classical information connected with the DNA base pairs, we also consider quantum information and show that the classical and quantum information are closely connected.
NASA Technical Reports Server (NTRS)
Weber, Arthur L.; Fonda, Mark (Technical Monitor)
2001-01-01
The thermodynamics of organic chemistry under mild aqueous conditions was examined in order to begin to understand its influence on the structure and operation of metabolism and its antecedents. Free energies were estimated for four types reactions of biochemical importance carbon-carbon bond cleavage and synthesis, hydrogen transfer between carbon groups, dehydration of alcohol groups, and aldo-keto isomerization. The energies were calculated for mainly aliphatic groups composed of carbon, hydrogen, and oxygen. The energy values showed that (1) when carbon-carbon bond cleavage involves two different types of functional groups, transfer of the shared electron-pair to the more reduced carbon group is energetically favored over transfer to the more oxidized carbon group, and (2) the energy of carbon-carbon bond transformation is strongly dependent on the type of functional group that donates the shared electron-pair during cleavage, and the group that accepts the shared electron-pair during synthesis, and (3) the energetics of C-C bond transformation is determined primarily by the half-reaction energies of the couples: carbonyl/carboxylic acid, carboxylic acid/carbon dioxide, alcohol/carbonyl, and hydrocarbon/alcohol. The energy of hydrogen-transfer between carbon groups was found to depend on the functional group class of both the hydrogen-donor and hydrogen-acceptor. From these and other observations we concluded that the chemistry of the origin of metabolism (and to a lesser degree modem metabolism) is strongly constrained by the (1) limited disproportionation energy of organic substrates that can be dissipated in a few irreversible reactions, (2) the energy-dominance of few half-reaction couples in carbon-carbon bond transformation that establishes whether a chemical reaction is energetically irreversible, reversible or unfeasible, and (3) the dependence of the transformation-energy on the oxidation state of carbon groups (functional group type) which is contingent on prior reactions in the synthetic pathway.
Energy-level repulsion by spin-orbit coupling in two-dimensional Rydberg excitons
NASA Astrophysics Data System (ADS)
Stephanovich, V. A.; Sherman, E. Ya.; Zinner, N. T.; Marchukov, O. V.
2018-05-01
We study the effects of Rashba spin-orbit coupling on two-dimensional Rydberg exciton systems. Using analytical and numerical arguments we demonstrate that this coupling considerably modifies the wave functions and leads to a level repulsion that results in a deviation from the Poissonian statistics of the adjacent level distance distribution. This signifies the crossover to nonintegrability of the system and hints at the possibility of quantum chaos emerging. Such behavior strongly differs from the classical realization, where spin-orbit coupling produces highly entangled, chaotic electron trajectories in an exciton. We also calculate the oscillator strengths and show that randomization appears in the transitions between states with different total momenta.
Gupta, Tulika; Rajeshkumar, Thayalan; Rajaraman, Gopalan
2014-07-28
Density functional studies have been performed on ten different {Gd(III)-radical} complexes exhibiting both ferro and antiferromagnetic exchange interaction with an aim to assess a suitable exchange-correlation functional within DFT formalism. This study has also been extended to probe the mechanism of magnetic coupling and to develop suitable magneto-structural correlations for this pair. Our method assessments reveal the following order of increasing accuracy for the evaluation of J values compared to experimental coupling constants: B(40HF)LYP < BHandHLYP < TPSSH < PW91 < PBE < BP86 < OLYP < BLYP < PBE0 < X3LYP < B3LYP < B2PLYP. Grimme's double-hybrid functional is found to be superior compared to other functionals tested and this is followed very closely by the conventional hybrid B3LYP functional. At the basis set front, our calculations reveal that the incorporation of relativistic effect is important in these calculations and the relativistically corrected effective core potential (ECP) basis set is found to yield better Js compared to other methods. The supposedly empty 5d/6s/6p orbitals of Gd(III) are found to play an important role in the mechanism of magnetic coupling and different contributions to the exchange terms are probed using Molecular Orbital (MO) and Natural Bond Orbital (NBO) analysis. Magneto-structural correlations for Gd-O distances, Gd-O-N angles and Gd-O-N-C dihedral angles are developed where the bond angles as well as dihedral angle parameters are found to dictate the sign and strength of the magnetic coupling in this series.
Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.; ...
2017-02-09
A search for heavy resonances that decay to tau lepton pairs is performed using proton-proton collisions at √s = 13 TeV. The data were collected with the CMS detector at the CERN LHC and correspond to an integrated luminosity of 2.2 inverse femtobarns. Our observations are in agreement with standard model predictions. An upper limit at 95% confidence level on the product of the production cross section and branching fraction into tau lepton pairs is calculated as a function of the resonance mass. Furthermore, for the sequential standard model, the presence of Z' bosons decaying into tau lepton pairs ismore » excluded for Z' masses below 2.1 TeV, extending previous limits for this final state. Finally, for the topcolor-assisted technicolor model, which predicts Z' bosons that preferentially couple to third-generation fermions, Z' masses below 1.7 TeV are excluded, representing the most stringent limit to date.« less
Acousto-defect interaction in irradiated and non-irradiated silicon n+-p structures
NASA Astrophysics Data System (ADS)
Olikh, O. Ya.; Gorb, A. M.; Chupryna, R. G.; Pristay-Fenenkov, O. V.
2018-04-01
The influence of ultrasound on current-voltage characteristics of non-irradiated silicon n+-p structures as well as silicon structures exposed to reactor neutrons or 60Co gamma radiation has been investigated experimentally. It has been found that the ultrasound loading of the n+-p structure leads to the reversible change of shunt resistance, carrier lifetime, and ideality factor. Specifically, considerable acoustically induced alteration of the ideality factor and the space charge region lifetime was observed in the irradiated samples. The experimental results were described by using the models of coupled defect level recombination, Shockley-Read-Hall recombination, and dislocation-induced impedance. The experimentally observed phenomena are associated with the increase in the distance between coupled defects as well as the extension of the carrier capture coefficient of complex point defects and dislocations. It has been shown that divacancies and vacancy-interstitial oxygen pairs are effectively modified by ultrasound in contrast to interstitial carbon-interstitial oxygen complexes.
NASA Astrophysics Data System (ADS)
Tsiaousis, D.; Munn, R. W.
2004-04-01
Calculations for the acetanilide crystal yield the effective polarizability (16.6 Å3), local electric field tensor, effective dipole moment (5.41 D), and dipole-dipole energy (-12.8 kJ/mol). Fourier-transform techniques are used to calculate the polarization energy P for a single charge in the perfect crystal (-1.16 eV); the charge-dipole energy WD is zero if the crystal carries no bulk dipole moment. Polarization energies for charge-transfer (CT) pairs combine with the Coulomb energy EC to give the screened Coulomb energy Escr; screening is nearly isotropic, with Escr≈EC/2.7. For CT pairs WD reduces to a term δWD arising from the interaction of the charge on each ion with the change in dipole moment on the other ion relative to the neutral molecule. The dipole moments calculated by density-functional theory methods with the B3LYP functional at the 6-311++G** level are 3.62 D for the neutral molecule, changing to 7.13 D and 4.38 D for the anion and cation, relative to the center of mass. Because of the large change in the anion, δWD reaches -0.9 eV and modifies the sequence of CT energies markedly from that of Escr, giving the lowest two CT pairs at -1.98 eV and -1.41 eV. The changes in P and WD near a vacancy are calculated; WD changes for the individual charges because the vacancy removes a dipole moment and modifies the crystal dielectric response, but δWD and EC do not change. A vacancy yields a positive change ΔP that scatters a charge or CT pair, but the change ΔWD can be negative and large enough to outweigh ΔP, yielding traps with depths that can exceed 150 meV for single charges and for CT pairs. Divacancies yield traps with depths nearly equal to the sum of those produced by the separate vacancies and so they can exceed 300 meV. These results are consistent with a mechanism of optical damage in which vacancies trap optically generated CT pairs that recombine and release energy; this can disrupt the lattice around the vacancy, thereby favoring trapping and recombination of CT pairs generated by subsequent photon absorption, leading to further lattice disruption. Revisions to previous calculations on trapping of CT pairs in anthracene are reported.
AWG Filter for Wavelength Interrogator
NASA Technical Reports Server (NTRS)
Black, Richard J. (Inventor); Costa, Joannes M. (Inventor); Moslehi, Behzad (Inventor); Sotoudeh, Vahid (Inventor); Faridian, Fereydoun (Inventor)
2015-01-01
A wavelength interrogator is coupled to a circulator which couples optical energy from a broadband source to an optical fiber having a plurality of sensors, each sensor reflecting optical energy at a unique wavelength and directing the reflected optical energy to an AWG. The AWG has a detector coupled to each output, and the reflected optical energy from each grating is coupled to the skirt edge response of the AWG such that the adjacent channel responses form a complementary pair response. The complementary pair response is used to convert an AWG skirt response to a wavelength.
Foley, Kendra C; Spear, Timothy T; Murray, David C; Nagato, Kaoru; Garrett-Mayer, Elizabeth; Nishimura, Michael I
2017-06-16
T cell receptor (TCR)-gene-modified T cells for adoptive cell transfer can mediate objective clinical responses in melanoma and other malignancies. When introducing a second TCR, mispairing between the endogenous and introduced α and β TCR chains limits expression of the introduced TCR, which can result in impaired efficacy or off-target reactivity and autoimmunity. One approach to promote proper TCR chain pairing involves modifications of the introduced TCR genes: introducing a disulfide bridge, substituting murine for human constant regions, codon optimization, TCR chain leucine zipper fusions, and a single-chain TCR. We have introduced these modifications into our hepatitis C virus (HCV) reactive TCR and utilize a marker gene, CD34t, which allows us to directly compare transduction efficiency with TCR expression and T cell function. Our results reveal that of the TCRs tested, T cells expressing the murine Cβ2 TCR or leucine zipper TCR have the highest levels of expression and the highest percentage of lytic and interferon-γ (IFN-γ)-producing T cells. Our studies give us a better understanding of how TCR modifications impact TCR expression and T cell function that may allow for optimization of TCR-modified T cells for adoptive cell transfer to treat patients with malignancies.
Eckard, P R; Taylor, L T
1997-02-01
The supercritical fluid extraction (SFE) of an ionic compound, pseudoephedrine hydrochloride, from a spiked-sand surface was successfully demonstrated. The effect of carbon dioxide density (CO2), supercritical fluid composition (pure vs. methanol modified), and the addition of a commonly used reversed-phase liquid chromatographic ion-pairing reagent, 1-heptanesulfonic acid, sodium salt, on extraction efficiency was examined. The extraction recoveries of pseudoephedrine hydrochloride with the addition of the ion-pairing reagent from a spiked-sand surface were shown to be statistically greater than the extraction recoveries without the ion-pairing reagent with both pure and methanol-modified carbon dioxide.
Imaginary parts of coupled electron and phonon propagators
NASA Astrophysics Data System (ADS)
Schwartzman, K.; Lawrence, W. E.
1988-01-01
Quasiparticle and phonon damping rates due to the electron-phonon and Coulomb interactions are obtained directly from the self-energy formalism of strong-coupling theory. This accounts for all processes involving phonon or quasiparticle decay into a single particle-hole pair, or quasiparticle decay by emission or absorption of a single real phonon. The two quasiparticle decay modes are treated on a common footing, without ad hoc separation, by accounting fully for the dynamics of the phonon propagator and the Coulomb vertex-the latter by expansion of the four-point Coulomb vertex function. The results are shown to be expressible in terms of only the physical (i.e., fully renormalized) energies and coupling constants, and are written in terms of spectral functions such as α2F(ω) and its generalizations. Expansion of these in powers of a phonon linewidth parameter distinguishes (in lowest orders) between quasiparticle decay modes involving real and virtual phonons. However, the simplest prescription for calculating decay rates involves an effective scattering amplitude in which this distinction is not made.
Josephson coupling between superconducting islands on single- and bi-layer graphene
NASA Astrophysics Data System (ADS)
Mancarella, Francesco; Fransson, Jonas; Balatsky, Alexander
2016-05-01
We study the Josephson coupling of superconducting (SC) islands through the surface of single-layer graphene (SLG) and bilayer graphene (BLG) in the long-junction regime, as a function of the distance between the grains, temperature, chemical potential and external (transverse) gate-voltage. For SLG, we provide a comparison with existing literature. The proximity effect is analyzed through a Matsubara Green’s function approach. This represents the first step in a discussion of the conditions for the onset of a granular superconductivity within the film, made possible by Josephson currents flowing between superconductors. To ensure phase coherence over the 2D sample, a random spatial distribution can be assumed for the SC islands on the SLG sheet (or intercalating the BLG sheets). The tunable gate-voltage-induced band gap of BLG affects the asymptotic decay of the Josephson coupling-distance characteristic for each pair of SC islands in the sample, which results in a qualitatively strong field dependence of the relation between Berezinskii-Kosterlitz-Thouless transition critical temperature and gate voltage.
Ideological Dichotomies and Practical Realities in Educational Reform.
ERIC Educational Resources Information Center
Bredo, Eric
1989-01-01
Examines the effects of educational reforms and how one-sided reform ideologies, which provide little practical guidance, were reinterpreted and modified by principals and teachers. Uses a multilevel case study to analyze the relations between ideology and practice using functional, conflict, and loose-coupling theories. (FMW)
How to induce multiple delays in coupled chaotic oscillators?
NASA Astrophysics Data System (ADS)
Bhowmick, Sourav K.; Ghosh, Dibakar; Roy, Prodyot K.; Kurths, Jürgen; Dana, Syamal K.
2013-12-01
Lag synchronization is a basic phenomenon in mismatched coupled systems, delay coupled systems, and time-delayed systems. It is characterized by a lag configuration that identifies a unique time shift between all pairs of similar state variables of the coupled systems. In this report, an attempt is made how to induce multiple lag configurations in coupled systems when different pairs of state variables attain different time shift. A design of coupling is presented to realize this multiple lag synchronization. Numerical illustration is given using examples of the Rössler system and the slow-fast Hindmarsh-Rose neuron model. The multiple lag scenario is physically realized in an electronic circuit of two Sprott systems.
Pairing States of Spin-3/2 Fermions: Symmetry-Enforced Topological Gap Functions
NASA Astrophysics Data System (ADS)
Venderbos, Jörn W. F.; Savary, Lucile; Ruhman, Jonathan; Lee, Patrick A.; Fu, Liang
2018-01-01
We study the topological properties of superconductors with paired j =3/2 quasiparticles. Higher spin Fermi surfaces can arise, for instance, in strongly spin-orbit coupled band-inverted semimetals. Examples include the Bi-based half-Heusler materials, which have recently been established as low-temperature and low-carrier density superconductors. Motivated by this experimental observation, we obtain a comprehensive symmetry-based classification of topological pairing states in systems with higher angular momentum Cooper pairing. Our study consists of two main parts. First, we develop the phenomenological theory of multicomponent (i.e., higher angular momentum) pairing by classifying the stationary points of the free energy within a Ginzburg-Landau framework. Based on the symmetry classification of stationary pairing states, we then derive the symmetry-imposed constraints on their gap structures. We find that, depending on the symmetry quantum numbers of the Cooper pairs, different types of topological pairing states can occur: fully gapped topological superconductors in class DIII, Dirac superconductors, and superconductors hosting Majorana fermions. Notably, we find a series of nematic fully gapped topological superconductors, as well as double- and triple-Dirac superconductors, with quadratic and cubic dispersion, respectively. Our approach, applied here to the case of j =3/2 Cooper pairing, is rooted in the symmetry properties of pairing states, and can therefore also be applied to other systems with higher angular momentum and high-spin pairing. We conclude by relating our results to experimentally accessible signatures in thermodynamic and dynamic probes.
NASA Astrophysics Data System (ADS)
Lane, John; Kasparis, Takis; Michaelides, Silas
2016-04-01
The well-known Z -R power law Z = ARb uses two parameters, A and b, in order to relate rainfall rate R to measured weather radar reflectivity Z. A common method used by researchers is to compute Z and R from disdrometer data and then extract the A-bparameter pair from a log-linear line fit to a scatter plot of Z -R pairs. Even though it may seem far more truthful to extract the parameter pair from a fit of radar ZR versus gauge rainfall rate RG, the extreme difference in spatial and temporal sampling volumes between radar and rain gauge creates a slew of problems that can generally only be solved by using rain gauge arrays and long sampling averages. Disdrometer derived A - b parameters are easily obtained and can provide information for the study of stratiform versus convective rainfall. However, an inconsistency appears when comparing averaged A - b pairs from various researchers. Values of b range from 1.26 to 1.51 for both stratiform and convective events. Paradoxically the values of Afall into three groups: 150 to 200 for convective; 200 to 400 for stratiform; and 400 to 500 again for convective. This apparent inconsistency can be explained by computing the A - b pair using the gamma DSD coupled with a modified drop terminal velocity model, v(D) = αDβ - w, where w is a somewhat artificial constant vertical velocity of the air above the disdrometer. This model predicts three regions of A, corresponding to w < 0, w = 0, and w > 0, which approximately matches observed data.
Comprehensive analysis of helicopters with bearingless rotors
NASA Technical Reports Server (NTRS)
Murthy, V. R.
1988-01-01
A modified Galerkin method is developed to analyze the dynamic problems of multiple-load-path bearingless rotor blades. The development and selection of functions are quite parallel to CAMRAD procedures, greatly facilitating the implementation of the method into the CAMRAD program. A software is developed implementing the modified Galerkin method to determine free vibration characteristics of multiple-load-path rotor blades undergoing coupled flapwise bending, chordwise bending, twisting, and extensional motions. Results are in the process of being obtained by debugging the software.
The Influence of Head Motion on Intrinsic Functional Connectivity MRI
Van Dijk, Koene R.A.; Sabuncu, Mert R.; Buckner, Randy L.
2011-01-01
Functional connectivity MRI (fcMRI) has been widely applied to explore group and individual differences. A confounding factor is head motion. Children move more than adults, older adults more than younger adults, and patients more than controls. Head motion varies considerably among individuals within the same population. Here we explored the influence of head motion on fcMRI estimates. Mean head displacement, maximum head displacement, the number of micro movements (> 0.1 mm), and head rotation were estimated in 1000 healthy, young adult subjects each scanned for two resting-state runs on matched 3T scanners. The majority of fcMRI variation across subjects was not linked to estimated head motion. However, head motion had significant, systematic effects on fcMRI network measures. Head motion was associated with decreased functional coupling in the default and frontoparietal control networks – two networks characterized by coupling among distributed regions of association cortex. Other network measures increased with motion including estimates of local functional coupling and coupling between left and right motor regions – a region pair sometimes used as a control in studies to establish specificity. Comparisons between groups of individuals with subtly different levels of head motion yielded difference maps that could be mistaken for neuronal effects in other contexts. These effects are important to consider when interpreting variation between groups and across individuals. PMID:21810475
Analyzing survival curves at a fixed point in time for paired and clustered right-censored data
Su, Pei-Fang; Chi, Yunchan; Lee, Chun-Yi; Shyr, Yu; Liao, Yi-De
2018-01-01
In clinical trials, information about certain time points may be of interest in making decisions about treatment effectiveness. Rather than comparing entire survival curves, researchers can focus on the comparison at fixed time points that may have a clinical utility for patients. For two independent samples of right-censored data, Klein et al. (2007) compared survival probabilities at a fixed time point by studying a number of tests based on some transformations of the Kaplan-Meier estimators of the survival function. However, to compare the survival probabilities at a fixed time point for paired right-censored data or clustered right-censored data, their approach would need to be modified. In this paper, we extend the statistics to accommodate the possible within-paired correlation and within-clustered correlation, respectively. We use simulation studies to present comparative results. Finally, we illustrate the implementation of these methods using two real data sets. PMID:29456280
Hydrogen bond disruption in DNA base pairs from (14)C transmutation.
Sassi, Michel; Carter, Damien J; Uberuaga, Blas P; Stanek, Christopher R; Mancera, Ricardo L; Marks, Nigel A
2014-09-04
Recent ab initio molecular dynamics simulations have shown that radioactive carbon does not normally fragment DNA bases when it decays. Motivated by this finding, density functional theory and Bader analysis have been used to quantify the effect of C → N transmutation on hydrogen bonding in DNA base pairs. We find that (14)C decay has the potential to significantly alter hydrogen bonds in a variety of ways including direct proton shuttling (thymine and cytosine), thermally activated proton shuttling (guanine), and hydrogen bond breaking (cytosine). Transmutation substantially modifies both the absolute and relative strengths of the hydrogen bonding pattern, and in two instances (adenine and cytosine), the density at the critical point indicates development of mild covalent character. Since hydrogen bonding is an important component of Watson-Crick pairing, these (14)C-induced modifications, while infrequent, may trigger errors in DNA transcription and replication.
Synthesis and triplex forming properties of pyrimidine derivative containing extended functionality.
Gianolio, D A; McLaughlin, L W
1999-08-01
Two pyrimidine nucleosides have been synthesized containing extended hydrogen bonding functionality. In one case the side chain is based upon semicarbazide and in the second monoacetylated carbohydrazide was employed. DNA sequences could be prepared using both analogue nucleosides in a reverse coupling protocol, and provided that the normal capping step was eliminated and that the iodine-based oxidizing solution was replaced with one based upon 10-camphorsulfonyl oxaziridine. Both derivatives exhibited moderate effects in targeting selectively C-G base pairs embedded within a polypurine target sequence.
Surface modification of poly(dimethylsiloxane) for microfluidic assay applications
NASA Astrophysics Data System (ADS)
Séguin, Christine; McLachlan, Jessica M.; Norton, Peter R.; Lagugné-Labarthet, François
2010-02-01
The surface of a poly(dimethylsiloxane) (PDMS) film was imparted with patterned functionalities at the micron-scale level. Arrays of circles with diameters of 180 and 230 μm were functionalized using plasma oxidation coupled with aluminum deposition, followed by silanization with solutions of 3-aminopropyltrimethoxy silane (3-APTMS) and 3-mercaptopropyltrimethoxy silane (3-MPTMS), to obtain patterned amine and thiol functionalities, respectively. The modification of the samples was confirmed using X-ray photoelectron spectroscopy (XPS), gold nanoparticle adhesion coupled with optical microscopy, as well as by derivatization with fluorescent dyes. To further exploit the novel surface chemistry of the modified PDMS, samples with surface amine functionalities were used to develop a protein assay as well as an array capable of cellular capture and patterning. The modified substrate was shown to successfully selectively immobilize fluorescently labeled immunoglobulin G (IgG) by tethering Protein A to the surface, and, for the cellular arrays, C2C12 rat endothelial cells were captured. Finally, this novel method of patterning chemical functionalities onto PDMS has been incorporated into microfluidic channels. Finally, we demonstrate the in situ chemical modification of the protected PDMS oxidized surface within a microfluidic device. This emphasizes the potential of our method for applications involving micron-scale assays since the aluminum protective layer permits to functionalize the oxidized PDMS surface several weeks after plasma treatment simply after etching away the metallic thin film.
Coupled Loads Analysis of the Modified NASA Barge Pegasus and Space Launch System Hardware
NASA Technical Reports Server (NTRS)
Knight, J. Brent
2015-01-01
A Coupled Loads Analysis (CLA) has been performed for barge transport of Space Launch System hardware on the recently modified NASA barge Pegasus. The barge re-design was facilitated with detailed finite element analyses by the ARMY Corps of Engineers - Marine Design Center. The Finite Element Model (FEM) utilized in the design was also used in the subject CLA. The Pegasus FEM and CLA results are presented as well as a comparison of the analysis process to that of a payload being transported to space via the Space Shuttle. Discussion of the dynamic forcing functions is included as well. The process of performing a dynamic CLA of NASA hardware during marine transport is thought to be a first and can likely support minimization of undue conservatism.
Fidder, Henk; Yang, Ming; Nibbering, Erik T J; Elsaesser, Thomas; Röttger, Katharina; Temps, Friedrich
2013-02-07
Dynamics and couplings of N-H stretching vibrations of chemically modified guanosine-cytidine (G·C) base pairs in chloroform are investigated with linear infrared spectroscopy and ultrafast two-dimensional infrared (2D-IR) spectroscopy. Comparison of G·C absorption spectra before and after H/D exchange reveals significant N-H stretching absorption in the region from 2500 up to 3300 cm(-1). Both of the local stretching modes ν(C)(NH(2))(b) of the hydrogen-bonded N-H moiety of the cytidine NH(2) group and ν(G)(NH) of the guanosine N-H group contribute to this broad absorption band. Its complex line shape is attributed to Fermi resonances of the N-H stretching modes with combination and overtones of fingerprint vibrations and anharmonic couplings to low-frequency modes. Cross-peaks in the nonlinear 2D spectra between the 3491 cm(-1) free N-H oscillator band and the bands centered at 3145 and 3303 cm(-1) imply N-H···O═C hydrogen bond character for both of these transitions. Time evolution illustrates that the 3303 cm(-1) band is composed of a nearly homogeneous band absorbing at 3301 cm(-1), ascribed to ν(G)(NH(2))(b), and a broad inhomogeneous band peaking at 3380 cm(-1) with mainly guanosine carbonyl overtone character. Kinetics and signal strengths indicate a <0.2 ps virtually complete population transfer from the excited ν(G)(NH(2))(b) mode to the ν(G)(NH) mode at 3145 cm(-1), suggesting lifetime broadening as the dominant source for the homogeneous line shape of the 3301 cm(-1) transition. For the 3145 cm(-1) band, a 0.3 ps population lifetime was obtained.
Innexin-3 forms connexin-like intercellular channels.
Landesman, Y; White, T W; Starich, T A; Shaw, J E; Goodenough, D A; Paul, D L
1999-07-01
Innexins comprise a large family of genes that are believed to encode invertebrate gap junction channel-forming proteins. However, only two Drosophila innexins have been directly tested for the ability to form intercellular channels and only one of those was active. Here we tested the ability of Caenorhabditis elegans family members INX-3 and EAT-5 to form intercellular channels between paired Xenopus oocytes. We show that expression of INX-3 but not EAT-5, induces electrical coupling between the oocyte pairs. In addition, analysis of INX-3 voltage and pH gating reveals a striking degree of conservation in the functional properties of connexin and innnexin channels. These data strongly support the idea that innexin genes encode intercellular channels.
NASA Astrophysics Data System (ADS)
Mitsumori, Yasuyoshi; Matsuura, Shimpei; Uchiyama, Shoichi; Saito, Kentarao; Edamatsu, Keiichi; Nakayama, Masaaki; Ajiki, Hiroshi
2018-04-01
We study the biexciton relaxation process in CuCl films ranging from 6 to 200 nm. The relaxation time is measured as the dephasing time and the lifetime. We observe a unique thickness dependence of the biexciton relaxation time and also obtain an ultrafast relaxation time with a timescale as short as 100 fs, while the exciton lifetime monotonically decreases with increasing thickness. By analyzing the exciton-photon coupling energy for a surface polariton, we theoretically calculate the biexciton relaxation time as a function of the thickness. The calculated dependence qualitatively reproduces the observed relaxation time, indicating that the biexciton dissociation into a surface polariton pair is one of the major biexciton relaxation processes.
Two-dimensional fourier transform spectrometer
DeFlores, Lauren; Tokmakoff, Andrei
2016-10-25
The present invention relates to a system and methods for acquiring two-dimensional Fourier transform (2D FT) spectra. Overlap of a collinear pulse pair and probe induce a molecular response which is collected by spectral dispersion of the signal modulated probe beam. Simultaneous collection of the molecular response, pulse timing and characteristics permit real time phasing and rapid acquisition of spectra. Full spectra are acquired as a function of pulse pair timings and numerically transformed to achieve the full frequency-frequency spectrum. This method demonstrates the ability to acquire information on molecular dynamics, couplings and structure in a simple apparatus. Multi-dimensional methods can be used for diagnostic and analytical measurements in the biological, biomedical, and chemical fields.
Two-dimensional fourier transform spectrometer
DeFlores, Lauren; Tokmakoff, Andrei
2013-09-03
The present invention relates to a system and methods for acquiring two-dimensional Fourier transform (2D FT) spectra. Overlap of a collinear pulse pair and probe induce a molecular response which is collected by spectral dispersion of the signal modulated probe beam. Simultaneous collection of the molecular response, pulse timing and characteristics permit real time phasing and rapid acquisition of spectra. Full spectra are acquired as a function of pulse pair timings and numerically transformed to achieve the full frequency-frequency spectrum. This method demonstrates the ability to acquire information on molecular dynamics, couplings and structure in a simple apparatus. Multi-dimensional methods can be used for diagnostic and analytical measurements in the biological, biomedical, and chemical fields.
All-optical diffractive/transmissive switch based on coupled cycloidal diffractive waveplates.
Serak, Svetlana V; Hakobyan, Rafael S; Nersisyan, Sarik R; Tabiryan, Nelson V; White, Timothy J; Bunning, Timothy J; Steeves, Diane M; Kimball, Brian R
2012-02-27
Pairs of cycloidal diffractive waveplates can be used to doubly diffract or collinearly propagate laser radiation of the appropriate wavelength. The use of a dynamic phase retarder placed in between the pair can be utilized to switch between the two optical states. We present results from the implementation of an azo-based retarder whose optical properties can be modulated using light itself. We show fast and efficient switching between the two states for both CW and single nanosecond laser pulses of green radiation. Contrasts greater than 100:1 were achieved. The temporal response as a function of light intensity is presented and the optical switching is shown to be polarization independent.
NASA Astrophysics Data System (ADS)
Kjellander, Roland
2006-04-01
It is shown that the nature of the non-electrostatic part of the pair interaction potential in classical Coulomb fluids can have a profound influence on the screening behaviour. Two cases are compared: (i) when the non-electrostatic part equals an arbitrary finite-ranged interaction and (ii) when a dispersion r-6 interaction potential is included. A formal analysis is done in exact statistical mechanics, including an investigation of the bridge function. It is found that the Coulombic r-1 and the dispersion r-6 potentials are coupled in a very intricate manner as regards the screening behaviour. The classical one-component plasma (OCP) is a particularly clear example due to its simplicity and is investigated in detail. When the dispersion r-6 potential is turned on, the screened electrostatic potential from a particle goes from a monotonic exponential decay, exp(-κr)/r, to a power-law decay, r-8, for large r. The pair distribution function acquire, at the same time, an r-10 decay for large r instead of the exponential one. There still remains exponentially decaying contributions to both functions, but these contributions turn oscillatory when the r-6 interaction is switched on. When the Coulomb interaction is turned off but the dispersion r-6 pair potential is kept, the decay of the pair distribution function for large r goes over from the r-10 to an r-6 behaviour, which is the normal one for fluids of electroneutral particles with dispersion interactions. Differences and similarities compared to binary electrolytes are pointed out.
Emergence of a new pair-coherent phase in many-body quenches of repulsive bosons
NASA Astrophysics Data System (ADS)
Fischer, Uwe R.; Lee, Kang-Soo; Xiong, Bo
2011-07-01
We investigate the dynamical mode population statistics and associated first- and second-order coherence of an interacting bosonic two-mode model when the pair-exchange coupling is quenched from negative to positive values. It is shown that for moderately rapid second-order transitions, a new pair-coherent phase emerges on the positive coupling side in an excited state, which is not fragmented as the ground-state single-particle density matrix would prescribe it to be.
Dynamic Properties of Electrotonic Coupling between Cells of Early Xenopus Embryos
DiCaprio, R. A.; French, A. S.; Sanders, E. J.
1974-01-01
Frequency response functions were measured between the cells of Xenopus laevis embryos during the first two cleavage stages. Linear systems theory was then used to produce electronic models which account for the electrical behavior of the systems. Coupling between the cells may be explained by models which have simple resistive elements joining each cell to its neighbors. The vitelline, or fertilization, membrane which surrounds the embryos has no detectable resistance to the passage of electric current. The electrical properties of the four-cell embryo can only be explained by the existence of individual junctions linking each pair of cells. This arrangement suggests that electrotonic coupling is important in the development of the embryos, at least until the four-cell stage. ImagesFIGURE 5FIGURE 14FIGURE 15 PMID:19431351
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ko, L.F.
Calculations for the two-point correlation functions in the scaling limit for two statistical models are presented. In Part I, the Ising model with a linear defect is studied for T < T/sub c/ and T > T/sub c/. The transfer matrix method of Onsager and Kaufman is used. The energy-density correlation is given by functions related to the modified Bessel functions. The dispersion expansion for the spin-spin correlation functions are derived. The dominant behavior for large separations at T not equal to T/sub c/ is extracted. It is shown that these expansions lead to systems of Fredholm integral equations. Inmore » Part II, the electric correlation function of the eight-vertex model for T < T/sub c/ is studied. The eight vertex model decouples to two independent Ising models when the four spin coupling vanishes. To first order in the four-spin coupling, the electric correlation function is related to a three-point function of the Ising model. This relation is systematically investigated and the full dispersion expansion (to first order in four-spin coupling) is obtained. The results is a new kind of structure which, unlike those of many solvable models, is apparently not expressible in terms of linear integral equations.« less
Weakly and strongly coupled Belousov-Zhabotinsky patterns.
Weiss, Stephan; Deegan, Robert D
2017-02-01
We investigate experimentally and numerically the synchronization of two-dimensional spiral wave patterns in the Belousov-Zhabotinsky reaction due to point-to-point coupling of two separate domains. Different synchronization modalities appear depending on the coupling strength and the initial patterns in each domain. The behavior as a function of the coupling strength falls into two qualitatively different regimes. The weakly coupled regime is characterized by inter-domain interactions that distorted but do not break wave fronts. Under weak coupling, spiral cores are pushed around by wave fronts in the other domain, resulting in an effective interaction between cores in opposite domains. In the case where each domain initially contains a single spiral, the cores form a bound pair and orbit each other at quantized distances. When the starting patterns consist of multiple randomly positioned spiral cores, the number of cores decreases with time until all that remains are a few cores that are synchronized with a partner in the other domain. The strongly coupled regime is characterized by interdomain interactions that break wave fronts. As a result, the wave patterns in both domains become identical.
Weakly and strongly coupled Belousov-Zhabotinsky patterns
NASA Astrophysics Data System (ADS)
Weiss, Stephan; Deegan, Robert D.
2017-02-01
We investigate experimentally and numerically the synchronization of two-dimensional spiral wave patterns in the Belousov-Zhabotinsky reaction due to point-to-point coupling of two separate domains. Different synchronization modalities appear depending on the coupling strength and the initial patterns in each domain. The behavior as a function of the coupling strength falls into two qualitatively different regimes. The weakly coupled regime is characterized by inter-domain interactions that distorted but do not break wave fronts. Under weak coupling, spiral cores are pushed around by wave fronts in the other domain, resulting in an effective interaction between cores in opposite domains. In the case where each domain initially contains a single spiral, the cores form a bound pair and orbit each other at quantized distances. When the starting patterns consist of multiple randomly positioned spiral cores, the number of cores decreases with time until all that remains are a few cores that are synchronized with a partner in the other domain. The strongly coupled regime is characterized by interdomain interactions that break wave fronts. As a result, the wave patterns in both domains become identical.
Effects of exercise on mobility limitation in obese and non-obese older adults
USDA-ARS?s Scientific Manuscript database
Background: Coupled with an aging society, the rising obesity prevalence is likely to increase the future rates of physical disability. We set out to determine whether the effects of a physical activity intervention aimed to improve mobility function in older adults is modified by obesity. Method...
NASA Astrophysics Data System (ADS)
Tan, Juntao; Yang, Nuo; Hu, Zixi; Su, Jing; Zhong, Jianhong; Yang, Yang; Yu, Yating; Zhu, Jianmeng; Xue, Dabin; Huang, Yingying; Lai, Zongqiang; Huang, Yong; Lu, Xiaoling; Zhao, Yongxiang
2016-06-01
A simple, highly sensitive method to detect leukemia cells has been developed based on aptamer-modified fluorescent silica nanoparticles (FSNPs). In this strategy, the amine-labeled Sgc8 aptamer was conjugated to carboxyl-modified FSNPs via amide coupling between amino and carboxyl groups. Sensitivity and specificity of Sgc8-FSNPs were assessed using flow cytometry and fluorescence microscopy. These results showed that Sgc8-FSNPs detected leukemia cells with high sensitivity and specificity. Aptamer-modified FSNPs hold promise for sensitive and specific detection of leukemia cells. Changing the aptamer may allow the FSNPs to detect other types of cancer cells.
Eslami, Mansour; Begon, Mickaël; Farahpour, Nader; Allard, Paul
2007-01-01
Based on twisted plate and mitered hinge models of the foot and ankle, forefoot-rearfoot coupling motion patterns can contribute to the amount of tibial rotation. The present study determined the differences of forefoot-rearfoot coupling patterns as well as excessive excursion of tibial internal rotation in shod versus barefoot conditions during running. Sixteen male subjects ran 10 times at 170 steps per minute under the barefoot and shod conditions. Forefoot-rearfoot coupling motions were assessed by measuring mean relative phase angle during five intervals of stance phase for the main effect of five time intervals and two conditions (ANOVA, P<0.05). Tibial internal rotation excursion was compared between the shod and barefoot conditions over the first 50% of stance phase using paired t-test, (P<0.05). Forefoot adduction/abduction and rearfoot eversion/inversion coupling motion patterns were significantly different between the conditions and among the intervals (P<0.05; effect size=0.47). The mean absolute relative angle was significantly modified to 37 degrees in-phase relationship at the heel-strike of running with shoe wears. No significant differences were noted in the tibial internal rotation excursion between shod and barefoot conditions. Significant variations in the forefoot adduction/abduction and rearfoot eversion/inversion coupling patterns could have little effect on the amount of tibial internal rotation excursion. Yet it remains to be determined whether changes in the frontal plane forefoot-rearfoot coupling patterns influence the tibia kinematics for different shoe wears or foot orthotic interventions. The findings question the rational for the prophylactic use of forefoot posting in foot orthoses.
Novel conjugates of peptides and conjugated polymers for optoelectronics and neural interfaces
NASA Astrophysics Data System (ADS)
Bhagwat, Nandita
Peptide-polymer conjugates are a novel class of hybrid materials that take advantage of each individual component giving the opportunity to generate materials with unique physical, chemical, mechanical, optical, and electronic properties. In this dissertation peptide-polymer conjugates for two different applications are discussed. The first set of peptide-polymer conjugates were developed as templates to study the intermolecular interactions between electroactive molecules by manipulating the intermolecular distances at nano-scale level. A PEGylated, alpha-helical peptide template was employed to effectively display an array of organic chromophores (oxadiazole containing phenylenevinylene oligomers, Oxa-PPV). Three Oxa-PPV chromophores were strategically positioned on each template, at distances ranging from 6 to 17 A from each other, as dictated by the chemical and structural properties of the peptide. The Oxa-PPV modified PEGylated helical peptides (produced via Heck coupling strategies) were characterized by a variety of spectroscopic methods. Electronic contributions from multiple pairs of chromophores on a scaffold were detectable; the number and relative positioning of the chromophores dictated the absorbance and emission maxima, thus confirming the utility of these polymer--peptide templates for complex presentation of organic chromophores. The rest of the thesis is focused on using poly(3,4-alkylenedioxythiophene) based conjugated polymers as coatings for neural electrodes. This thiophene derivative is of considerable current interest for functionalizing the surfaces of a wide variety of devices including implantable biomedical electronics, specifically neural bio-electrodes. Toward these ends, copolymer films of 3,4-ethylenedioxythiophene (EDOT) with a carboxylic acid functional EDOT (EDOTacid) were electrochemically deposited and characterized as a systematic function of the EDOTacid content (0, 25, 50, 75, and 100%). The chemical surface characterization of the films confirmed the presence of both EODT and EDOTacid units. Cyclic voltammetry showed that the films had comparable charge storage capacities regardless of their composition. The morphology of the films varied depending on the monomer feed ratio. Thus we were able to develop a method for synthesizing electrically active carboxylic acid functional poly(3,4-ethylenedioxythiophene) copolymer films with tunable hydrophilicities and surface morphologies. For longer lifetime devices incorporating a biomolecule via covalent immobilization techniques are preferred over physical adsorption or entrapment. We took advantage of the carboxylic acid group on the PEDOTacid copolymer films to modify the surface of these films with a laminin based peptide, the nonapeptide sequence CDPGYIGSR. XPS and toluidine blue O assay proved the presence of the peptide on the surface and electrochemical analysis demonstrated unaltered properties of the peptide modified films. The bioactivity of the peptide along with the need of a spacer molecule for cell adhesion and differentiation was tested using the rat pheochromocytoma (PC12) cells. Films modified with the longest poly(ethylene glycol) spacer used in this study, a 3 nm long molecule, demonstrated the best attachment and neurite outgrowth compared to films with peptides with no spacer and a 1 nm spacer, PEG3. The films with PEG10-CDPGYISGR covalently modified to the surface demonstrated 11.5% neurite expression with the mean neurite length of 90 microm. Along with the acid functionalized PEDOT films, vinyl terminated ProDOT films were also investigated as coatings for neural electrodes. The vinyl group was successfully modified with a RGD peptide via thiol-ene click chemistry. Both the acid and vinyl functional conducting polymer films provide an effective approach to biofunctionalize conducting polymer films.
Haas, Laura T.; Salazar, Santiago V.; Kostylev, Mikhail A.; Um, Ji Won; Kaufman, Adam C.
2016-01-01
Alzheimer’s disease-related phenotypes in mice can be rescued by blockade of either cellular prion protein or metabotropic glutamate receptor 5. We sought genetic and biochemical evidence that these proteins function cooperatively as an obligate complex in the brain. We show that cellular prion protein associates via transmembrane metabotropic glutamate receptor 5 with the intracellular protein mediators Homer1b/c, calcium/calmodulin-dependent protein kinase II, and the Alzheimer’s disease risk gene product protein tyrosine kinase 2 beta. Coupling of cellular prion protein to these intracellular proteins is modified by soluble amyloid-β oligomers, by mouse brain Alzheimer’s disease transgenes or by human Alzheimer’s disease pathology. Amyloid-β oligomer-triggered phosphorylation of intracellular protein mediators and impairment of synaptic plasticity in vitro requires Prnp–Grm5 genetic interaction, being absent in transheterozygous loss-of-function, but present in either single heterozygote. Importantly, genetic coupling between Prnp and Grm5 is also responsible for signalling, for survival and for synapse loss in Alzheimer’s disease transgenic model mice. Thus, the interaction between metabotropic glutamate receptor 5 and cellular prion protein has a central role in Alzheimer’s disease pathogenesis, and the complex is a potential target for disease-modifying intervention. PMID:26667279
NASA Astrophysics Data System (ADS)
Wu, Guodong; Feng, Ping; Wan, Xiang; Zhu, Liqiang; Shi, Yi; Wan, Qing
2016-03-01
Recent progress in using biomaterials to fabricate functional electronics has got growing attention for the new generation of environmentally friendly and biocompatible electronic devices. As a kind of biological material with rich source, proteins are essential natural component of all organisms. At the same time, artificial synaptic devices are of great significance for neuromorphic systems because they can emulate the signal process and memory behaviors of biological synapses. In this report, natural chicken albumen with high proton conductivity was used as the coupling electrolyte film for organic/inorganic hybrid synaptic devices fabrication. Some important synaptic functions including paired-pulse facilitation, dynamic filtering, short-term to long-term memory transition and spatial summation and shunting inhibition were successfully mimicked. Our results are very interesting for biological friendly artificial neuron networks and neuromorphic systems.
Implicit multisensory associations influence voice recognition.
von Kriegstein, Katharina; Giraud, Anne-Lise
2006-10-01
Natural objects provide partially redundant information to the brain through different sensory modalities. For example, voices and faces both give information about the speech content, age, and gender of a person. Thanks to this redundancy, multimodal recognition is fast, robust, and automatic. In unimodal perception, however, only part of the information about an object is available. Here, we addressed whether, even under conditions of unimodal sensory input, crossmodal neural circuits that have been shaped by previous associative learning become activated and underpin a performance benefit. We measured brain activity with functional magnetic resonance imaging before, while, and after participants learned to associate either sensory redundant stimuli, i.e. voices and faces, or arbitrary multimodal combinations, i.e. voices and written names, ring tones, and cell phones or brand names of these cell phones. After learning, participants were better at recognizing unimodal auditory voices that had been paired with faces than those paired with written names, and association of voices with faces resulted in an increased functional coupling between voice and face areas. No such effects were observed for ring tones that had been paired with cell phones or names. These findings demonstrate that brief exposure to ecologically valid and sensory redundant stimulus pairs, such as voices and faces, induces specific multisensory associations. Consistent with predictive coding theories, associative representations become thereafter available for unimodal perception and facilitate object recognition. These data suggest that for natural objects effective predictive signals can be generated across sensory systems and proceed by optimization of functional connectivity between specialized cortical sensory modules.
Hybrid Semiclassical Theory of Quantum Quenches in One-Dimensional Systems
NASA Astrophysics Data System (ADS)
Moca, Cǎtǎlin Paşcu; Kormos, Márton; Zaránd, Gergely
2017-09-01
We develop a hybrid semiclassical method to study the time evolution of one-dimensional quantum systems in and out of equilibrium. Our method handles internal degrees of freedom completely quantum mechanically by a modified time-evolving block decimation method while treating orbital quasiparticle motion classically. We can follow dynamics up to time scales well beyond the reach of standard numerical methods to observe the crossover between preequilibrated and locally phase equilibrated states. As an application, we investigate the quench dynamics and phase fluctuations of a pair of tunnel-coupled one-dimensional Bose condensates. We demonstrate the emergence of soliton-collision-induced phase propagation, soliton-entropy production, and multistep thermalization. Our method can be applied to a wide range of gapped one-dimensional systems.
Biotin-dependent functions in adiposity: a study of monozygotic twin pairs.
Järvinen, E; Ismail, K; Muniandy, M; Bogl, L H; Heinonen, S; Tummers, M; Miettinen, S; Kaprio, J; Rissanen, A; Ollikainen, M; Pietiläinen, K H
2016-05-01
Biotin acts as a coenzyme for carboxylases regulating lipid and amino-acid metabolism. We investigated alterations of the biotin-dependent functions in obesity and the downstream effects of biotin restriction in adipocytes in vitro. Twenty-four monozygotic twin pairs discordant for body mass index (BMI). Mean within-pair difference (heavy-lean co-twin, Δ) of BMI was 6.0 kg m(-2) (range 3.1-15.2 kg m(-)(2)). Adipose tissue (AT) DNA methylation, gene expression of AT and adipocytes, and leukocytes (real-time quantitative PCR), serum biotin, C-reactive protein (CRP) and triglycerides were measured in the twins. Human adipocytes were cultured in low and control biotin concentrations and analyzed for lipid droplet content, mitochondrial morphology and mitochondrial respiration. The gene expression levels of carboxylases, PCCB and MCCC1, were upregulated in the heavier co-twins' leukocytes. ΔPCCB (r=0.91, P=0.0046) and ΔMCCC1 (r=0.79, P=0.036) correlated with ΔCRP within-pairs. Serum biotin levels were lower in the heavier (274 ng l(-1)) than in the lean co-twins (390 ng l(-1), P=0.034). ΔBiotin correlated negatively with Δtriglycerides (r=-0.56, P=0.045) within-pairs. In AT, HLCS and ACACB were hypermethylated and biotin cycle genes HLCS and BTD were downregulated (P<0.05). Biotin-dependent carboxylases were downregulated (ACACA, ACACB, PCCB, MCCC2 and PC; P<0.05) in both AT and adipocytes of the heavier co-twins. Adipocytes cultured in low biotin had decreased lipid accumulation, altered mitochondrial morphology and deficient mitochondrial respiration. Biotin-dependent functions are modified by adiposity independent of genetic effects, and correlate with inflammation and hypertriglyceridemia. Biotin restriction decreases lipid accumulation and respiration, and alters mitochondrial morphology in adipocytes.
Spin-Triplet Pairing Induced by Spin-Singlet Interactions in Noncentrosymmetric Superconductors
NASA Astrophysics Data System (ADS)
Matsuzaki, Tomoaki; Shimahara, Hiroshi
2017-02-01
In noncentrosymmetric superconductors, we examine the effect of the difference between the intraband and interband interactions, which becomes more important when the band splitting increases. We define the difference ΔVμ between their coupling constants, i.e., that between the intraband and interband hopping energies of intraband Cooper pairs. Here, the subscript μ of ΔVμ indicates that the interactions scatter the spin-singlet and spin-triplet pairs when μ = 0 and μ = 1,2,3, respectively. It is shown that the strong antisymmetric spin-orbit interaction reverses the target spin parity of the interaction: it converts the spin-singlet and spin-triplet interactions represented by ΔV0 and ΔVμ>0 into effective spin-triplet and spin-singlet pairing interactions, respectively. Hence, for example, triplet pairing can be induced solely by the singlet interaction ΔV0. We name the pairing symmetry of the system after that of the intraband Cooper pair wave function, but with an odd-parity phase factor excluded. The pairing symmetry must then be even, even for the triplet component, and the following results are obtained. When ΔVμ is small, the spin-triplet p-wave interactions induce spin-triplet s-wave and spin-triplet d-wave pairings in the regions where the repulsive singlet s-wave interaction is weak and strong, respectively. When ΔV0 is large, a repulsive interband spin-singlet interaction can stabilize spin-triplet pairing. When the Rashba interaction is adopted for the spin-orbit interaction, the spin-triplet pairing interactions mediated by transverse magnetic fluctuations do not contribute to triplet pairing.
NASA Astrophysics Data System (ADS)
Horikawa, Yo
2013-12-01
Transient patterns in a bistable ring of bidirectionally coupled sigmoidal neurons were studied. When the system had a pair of spatially uniform steady solutions, the instability of unstable spatially nonuniform steady solutions decreased exponentially with the number of neurons because of the symmetry of the system. As a result, transient spatially nonuniform patterns showed dynamical metastability: Their duration increased exponentially with the number of neurons and the duration of randomly generated patterns obeyed a power-law distribution. However, these metastable dynamical patterns were easily stabilized in the presence of small variations in coupling strength. Metastable rotating waves and their pinning in the presence of asymmetry in the direction of coupling and the disappearance of metastable dynamical patterns due to asymmetry in the output function of a neuron were also examined. Further, in a two-dimensional array of neurons with nearest-neighbor coupling, intrinsically one-dimensional patterns were dominant in transients, and self-excitation in these neurons affected the metastable dynamical patterns.
Coupled uncertainty provided by a multifractal random walker
NASA Astrophysics Data System (ADS)
Koohi Lai, Z.; Vasheghani Farahani, S.; Movahed, S. M. S.; Jafari, G. R.
2015-10-01
The aim here is to study the concept of pairing multifractality between time series possessing non-Gaussian distributions. The increasing number of rare events creates ;criticality;. We show how the pairing between two series is affected by rare events, which we call ;coupled criticality;. A method is proposed for studying the coupled criticality born out of the interaction between two series, using the bivariate multifractal random walk (BiMRW). This method allows studying dependence of the coupled criticality on the criticality of each individual system. This approach is applied to data sets of gold and oil markets, and inflation and unemployment.
Bi, Kun; Hua, Lingling; Wei, Maobin; Qin, Jiaolong; Lu, Qing; Yao, Zhijian
2016-02-01
Dynamic functional-structural connectivity (FC-SC) coupling might reflect the flexibility by which SC relates to functional connectivity (FC). However, during the dynamic acute state change phases of FC, the relationship between FC and SC may be distinctive and embody the abnormality inherent in depression. This study investigated the depression-related inter-network FC-SC coupling within particular dynamic acute state change phases of FC. Magnetoencephalography (MEG) and diffusion tensor imaging (DTI) data were collected from 26 depressive patients (13 women) and 26 age-matched controls (13 women). We constructed functional brain networks based on MEG data and structural networks from DTI data. The dynamic connectivity regression algorithm was used to identify the state change points of a time series of inter-network FC. The time period of FC that contained change points were partitioned into types of dynamic phases (acute rising phase, acute falling phase,acute rising and falling phase and abrupt FC variation phase) to explore the inter-network FC-SC coupling. The selected FC-SC couplings were then fed into the support vector machine (SVM) for depression recognition. The best discrimination accuracy was 82.7% (P=0.0069) with FC-SC couplings, particularly in the acute rising phase of FC. Within the FC phases of interest, the significant discriminative network pair was related to the salience network vs ventral attention network (SN-VAN) (P=0.0126) during the early rising phase (70-170ms). This study suffers from a small sample size, and the individual acute length of the state change phases was not considered. The increased values of significant discriminative vectors of FC-SC coupling in depression suggested that the capacity to process negative emotion might be more directly related to the SC abnormally and be indicative of more stringent and less dynamic brain function in SN-VAN, especially in the acute rising phase of FC. We demonstrated that depressive brain dysfunctions could be better characterized by reduced FC-SC coupling flexibility in this particular phase. Copyright © 2015 Elsevier B.V. All rights reserved.
Heat flux and quantum correlations in dissipative cascaded systems
NASA Astrophysics Data System (ADS)
Lorenzo, Salvatore; Farace, Alessandro; Ciccarello, Francesco; Palma, G. Massimo; Giovannetti, Vittorio
2015-02-01
We study the dynamics of heat flux in the thermalization process of a pair of identical quantum systems that interact dissipatively with a reservoir in a cascaded fashion. Despite that the open dynamics of the bipartite system S is globally Lindbladian, one of the subsystems "sees" the reservoir in a state modified by the interaction with the other subsystem and hence it undergoes a non-Markovian dynamics. As a consequence, the heat flow exhibits a nonexponential time behavior which can greatly deviate from the case where each party is independently coupled to the reservoir. We investigate both thermal and correlated initial states of S and show that the presence of correlations at the beginning can considerably affect the heat-flux rate. We carry out our study in two paradigmatic cases—a pair of harmonic oscillators with a reservoir of bosonic modes and two qubits with a reservoir of fermionic modes—and compare the corresponding behaviors. In the case of qubits and for initial thermal states, we find that the trace distance discord is at any time interpretable as the correlated contribution to the total heat flux.
The precarious couple effect: verbally inhibited men + critical, disinhibited women = bad chemistry.
Swann, William B; Rentfrow, Peter J; Gosling, Samuel D
2003-12-01
When critical, verbally disinhibited women are paired with verbally inhibited men, relationship quality suffers, rendering the relationship precarious. This effect theoretically emerges when (a). verbally disinhibited women pair with relatively inhibited men (man-more-inhibited couples) and (b). the disinhibition of women in man-more-inhibited couples amplifies women's criticalness and alienates men. Three studies (Ns=437, 300, and 564) provided evidence that relationship quality suffered in man-more-inhibited couples; a 4th study (N=168) showed that the criticalness of women in man-more-inhibited couples did indeed undermine relationship quality. Implications for understanding the impact of gender expectations on relationships and for integrating behavioral and personological approaches to close relationships are discussed.
Spin Josephson effect in topological superconductor-ferromagnet junction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ren, C. D.; Wang, J., E-mail: jwang@seu.edu.cn
2014-03-21
The composite topological superconductor (TS), made of one-dimensional spin-orbit coupled nanowire with proximity-induced s-wave superconductivity, is not a pure p-wave superconductor but still has a suppressed s-wave pairing. We propose to probe the spin texture of the p-wave pairing in this composite TS by examining possible spin supercurrents in an unbiased TS/ferromagnet junction. It is found that both the exchange-coupling induced and spin-flip reflection induced spin currents exist in the setup and survive even in the topological phase. We showed that besides the nontrivial p-wave pairing state accounting for Majorana Fermions, there shall be a trivial p-wave pairing state thatmore » contributes to spin supercurrent. The trivial p-wave pairing state is diagnosed from the mixing effect between the suppressed s-wave pairing and the topologically nontrivial p-wave pairing. The d vector of the TS is proved not to be rigorously perpendicular to the spin projection of p-wave pairings. Our findings are also confirmed by the Kitaev's p-wave model with a nonzero s-wave pairing.« less
Molecular dynamics study of some non-hydrogen-bonding base pair DNA strands
NASA Astrophysics Data System (ADS)
Tiwari, Rakesh K.; Ojha, Rajendra P.; Tiwari, Gargi; Pandey, Vishnudatt; Mall, Vijaysree
2018-05-01
In order to elucidate the structural activity of hydrophobic modified DNA, the DMMO2-D5SICS, base pair is introduced as a constituent in different set of 12-mer and 14-mer DNA sequences for the molecular dynamics (MD) simulation in explicit water solvent. AMBER 14 force field was employed for each set of duplex during the 200ns production-dynamics simulation in orthogonal-box-water solvent by the Particle-Mesh-Ewald (PME) method in infinite periodic boundary conditions (PBC) to determine conformational parameters of the complex. The force-field parameters of modified base-pair were calculated by Gaussian-code using Hartree-Fock /ab-initio methodology. RMSD Results reveal that the conformation of the duplex is sequence dependent and the binding energy of the complex depends on the position of the modified base-pair in the nucleic acid strand. We found that non-bonding energy had a significant contribution to stabilising such type of duplex in comparison to electrostatic energy. The distortion produced within strands by such type of base-pair was local and destabilised the duplex integrity near to substitution, moreover the binding energy of duplex depends on the position of substitution of hydrophobic base-pair and the DNA sequence and strongly supports the corresponding experimental study.
Comparing Medline citations using modified N-grams
Nawab, Rao Muhammad Adeel; Stevenson, Mark; Clough, Paul
2014-01-01
Objective We aim to identify duplicate pairs of Medline citations, particularly when the documents are not identical but contain similar information. Materials and methods Duplicate pairs of citations are identified by comparing word n-grams in pairs of documents. N-grams are modified using two approaches which take account of the fact that the document may have been altered. These are: (1) deletion, an item in the n-gram is removed; and (2) substitution, an item in the n-gram is substituted with a similar term obtained from the Unified Medical Language System Metathesaurus. N-grams are also weighted using a score derived from a language model. Evaluation is carried out using a set of 520 Medline citation pairs, including a set of 260 manually verified duplicate pairs obtained from the Deja Vu database. Results The approach accurately detects duplicate Medline document pairs with an F1 measure score of 0.99. Allowing for word deletions and substitution improves performance. The best results are obtained by combining scores for n-grams of length 1–5 words. Discussion Results show that the detection of duplicate Medline citations can be improved by modifying n-grams and that high performance can also be obtained using only unigrams (F1=0.959), particularly when allowing for substitutions of alternative phrases. PMID:23715801
Comparing Medline citations using modified N-grams.
Nawab, Rao Muhammad Adeel; Stevenson, Mark; Clough, Paul
2014-01-01
We aim to identify duplicate pairs of Medline citations, particularly when the documents are not identical but contain similar information. Duplicate pairs of citations are identified by comparing word n-grams in pairs of documents. N-grams are modified using two approaches which take account of the fact that the document may have been altered. These are: (1) deletion, an item in the n-gram is removed; and (2) substitution, an item in the n-gram is substituted with a similar term obtained from the Unified Medical Language System Metathesaurus. N-grams are also weighted using a score derived from a language model. Evaluation is carried out using a set of 520 Medline citation pairs, including a set of 260 manually verified duplicate pairs obtained from the Deja Vu database. The approach accurately detects duplicate Medline document pairs with an F1 measure score of 0.99. Allowing for word deletions and substitution improves performance. The best results are obtained by combining scores for n-grams of length 1-5 words. Results show that the detection of duplicate Medline citations can be improved by modifying n-grams and that high performance can also be obtained using only unigrams (F1=0.959), particularly when allowing for substitutions of alternative phrases.
Some lemma on spectrum of eigen value regarding power method
NASA Astrophysics Data System (ADS)
Jamali, A. R. M. Jalal Uddin; Alam, Md. Sah
2017-04-01
Eigen value problems arise in almost all science and engineering fields. There exist some smart methods in literature in which most of them are able to find only Eigen values but could not find corresponding Eigen vectors. There exist many engineering as well as scientific fields in which both largest as well as smallest Eigen pairs are required. Power method is very simple but a powerful tool for finding largest Eigen value and corresponding Eigen vector (Eigen-pair). Again Inverse Power method is applied to find out smallest Eigen-pair and/or desire Eigen-pairs. But it is known that Inverse Power method is computationally very costly. On the other hand by using shifting property, Power method can find further Eigen-pairs. But the position of this Eigen value in the set of spectrum of the Eigen values is not identified. In this regard we proposed four lemma associate with Modified Power method. Each Lemma is proved ornately. The Modified Power method is implemented and illustrates an example for the verification of the Lemma. By using lemma the modified power algorithm is able to find out both largest and smallest Eigen-pairs successfully and efficiently in some cases. Moreover by the help of the Lemma, algorithm is able to detect the nature (positive and negative) of the Eigen values.
Tracking the coherent generation of polaron pairs in conjugated polymers
NASA Astrophysics Data System (ADS)
de Sio, Antonietta; Troiani, Filippo; Maiuri, Margherita; Réhault, Julien; Sommer, Ephraim; Lim, James; Huelga, Susana F.; Plenio, Martin B.; Rozzi, Carlo Andrea; Cerullo, Giulio; Molinari, Elisa; Lienau, Christoph
2016-12-01
The optical excitation of organic semiconductors not only generates charge-neutral electron-hole pairs (excitons), but also charge-separated polaron pairs with high yield. The microscopic mechanisms underlying this charge separation have been debated for many years. Here we use ultrafast two-dimensional electronic spectroscopy to study the dynamics of polaron pair formation in a prototypical polymer thin film on a sub-20-fs time scale. We observe multi-period peak oscillations persisting for up to about 1 ps as distinct signatures of vibronic quantum coherence at room temperature. The measured two-dimensional spectra show pronounced peak splittings revealing that the elementary optical excitations of this polymer are hybridized exciton-polaron-pairs, strongly coupled to a dominant underdamped vibrational mode. Coherent vibronic coupling induces ultrafast polaron pair formation, accelerates the charge separation dynamics and makes it insensitive to disorder. These findings open up new perspectives for tailoring light-to-current conversion in organic materials.
Pairing induced superconductivity in holography
NASA Astrophysics Data System (ADS)
Bagrov, Andrey; Meszena, Balazs; Schalm, Koenraad
2014-09-01
We study pairing induced superconductivity in large N strongly coupled systems at finite density using holography. In the weakly coupled dual gravitational theory the mechanism is conventional BCS theory. An IR hard wall cut-off is included to ensure that we can controllably address the dynamics of a single confined Fermi surface. We address in detail the interplay between the scalar order parameter field and fermion pairing. Adding an explicitly dynamical scalar operator with the same quantum numbers as the fermion-pair, the theory experiences a BCS/BEC crossover controlled by the relative scaling dimensions. We find the novel result that this BCS/BEC crossover exposes resonances in the canonical expectation value of the scalar operator. This occurs not only when the scaling dimension is degenerate with the Cooper pair, but also with that of higher derivative paired operators. We speculate that a proper definition of the order parameter which takes mixing with these operators into account stays finite nevertheless.
Rotary electrical contact device and method for providing current to and/or from a rotating member
Koplow, Jeffrey P
2013-11-19
Examples of rotary electrical connectors include a first pair and a second pair of opposing sheaves coupled together by intersecting first shaft connecting the first pair of opposing sheaves and a second shaft connecting the second pair of opposing sheaves, and at least partially electrically conductive belt disposed about respective perimeters of the first pair and second pair of opposing sheaves and adapted to remain in contact with at least a portion of the respective perimeters of the sheaves during motion of said sheaves. In example devices, one of the plurality of sheaves may remain stationary during operation of the device while the remaining sheaves rotate and/or orbit around a center axis of the stationary sheave, the device being configured to couple current between a stationary power source and a rotating member through the electrically conductive belt.
Chen, Lei; Chen, Hongkun; Yang, Jun; Shu, Zhengyu; He, Huiwen; Shu, Xin
2016-01-01
The modified flux-coupling-type superconducting fault current (SFCL) is a high-efficient electrical auxiliary device, whose basic function is to suppress the short-circuit current by controlling the magnetic path through a high-speed switch. In this paper, the high-speed switch is based on electromagnetic repulsion mechanism, and its conceptual design is carried out to promote the application of the modified SFCL. Regarding that the switch which is consisting of a mobile copper disc, two fixed opening and closing coils, the computational method for the electromagnetic force is discussed, and also the dynamic mathematical model including circuit equation, magnetic field equation as well as mechanical motion equation is theoretically deduced. According to the mathematical modeling and calculation of characteristic parameters, a feasible design scheme is presented, and the high-speed switch's response time can be less than 0.5 ms. For that the modified SFCL is equipped with this high-speed switch, the SFCL's application in a 10 kV micro-grid system with multiple renewable energy sources are assessed in the MATLAB software. The simulations are well able to affirm the SFCL's performance behaviors.
Sheng, Jia; Hassan, Abdalla E A; Zhang, Wen; Zhou, Jianfeng; Xu, Bingqian; Soares, Alexei S; Huang, Zhen
2011-05-01
We report here the first synthesis of 5-phenyl-telluride-thymidine derivatives and the Te-phosphoramidite. We also report here the synthesis, structure and STM current-imaging studies of DNA oligonucleotides containing the nucleobases (thymine) derivatized with 5-phenyl-telluride functionality (5-Te). Our results show that the 5-Te-DNA is stable, and that the Te-DNA duplex has the thermo-stability similar to the corresponding native duplex. The crystal structure indicates that the 5-Te-DNA duplex structure is virtually identical to the native one, and that the Te-modified T and native A interact similarly to the native T and A pair. Furthermore, while the corresponding native showed weak signals, the DNA duplex modified with electron-rich tellurium functionality showed strong topographic and current peaks by STM imaging, suggesting a potential strategy to directly image DNA without structural perturbation. © The Author(s) 2011. Published by Oxford University Press.
Sheng, Jia; Hassan, Abdalla E. A.; Zhang, Wen; Zhou, Jianfeng; Xu, Bingqian; Soares, Alexei S.; Huang, Zhen
2011-01-01
We report here the first synthesis of 5-phenyl–telluride–thymidine derivatives and the Te-phosphoramidite. We also report here the synthesis, structure and STM current-imaging studies of DNA oligonucleotides containing the nucleobases (thymine) derivatized with 5-phenyl-telluride functionality (5-Te). Our results show that the 5-Te-DNA is stable, and that the Te-DNA duplex has the thermo-stability similar to the corresponding native duplex. The crystal structure indicates that the 5-Te-DNA duplex structure is virtually identical to the native one, and that the Te-modified T and native A interact similarly to the native T and A pair. Furthermore, while the corresponding native showed weak signals, the DNA duplex modified with electron-rich tellurium functionality showed strong topographic and current peaks by STM imaging, suggesting a potential strategy to directly image DNA without structural perturbation. PMID:21245037
DOE Office of Scientific and Technical Information (OSTI.GOV)
J Sheng; A Hassan; W Zhang
2011-12-31
We report here the first synthesis of 5-phenyl-telluride-thymidine derivatives and the Te-phosphoramidite. We also report here the synthesis, structure and STM current-imaging studies of DNA oligonucleotides containing the nucleobases (thymine) derivatized with 5-phenyl-telluride functionality (5-Te). Our results show that the 5-Te-DNA is stable, and that the Te-DNA duplex has the thermo-stability similar to the corresponding native duplex. The crystal structure indicates that the 5-Te-DNA duplex structure is virtually identical to the native one, and that the Te-modified T and native A interact similarly to the native T and A pair. Furthermore, while the corresponding native showed weak signals, the DNAmore » duplex modified with electron-rich tellurium functionality showed strong topographic and current peaks by STM imaging, suggesting a potential strategy to directly image DNA without structural perturbation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sheng, J.; Soares, A.; Hassan, A. E. A.
2011-05-01
We report here the first synthesis of 5-phenyl-telluride-thymidine derivatives and the Te-phosphoramidite. We also report here the synthesis, structure and STM current-imaging studies of DNA oligonucleotides containing the nucleobases (thymine) derivatized with 5-phenyl-telluride functionality (5-Te). Our results show that the 5-Te-DNA is stable, and that the Te-DNA duplex has the thermo-stability similar to the corresponding native duplex. The crystal structure indicates that the 5-Te-DNA duplex structure is virtually identical to the native one, and that the Te-modified T and native A interact similarly to the native T and A pair. Furthermore, while the corresponding native showed weak signals, the DNAmore » duplex modified with electron-rich tellurium functionality showed strong topographic and current peaks by STM imaging, suggesting a potential strategy to directly image DNA without structural perturbation.« less
NASA Astrophysics Data System (ADS)
Hasan, Dihan; Lee, Chengkuo
2018-06-01
We experimentally demonstrate a modified abstraction of a fractal geometry (up to order M = 2), namely the Sierpiński fractal, with intrinsic self-similarity for a multitude of infrared sensing applications. The modification particularly strengthens the dipolar resonance and enables optical magnetism at longer wavelengths on a relatively miniaturized footprint. In contrast to the conventional resonant sensing, we harness the broadband electric field enhancement of the modified fractal patterns originating from the lightning rod effect in the non-resonant regime. We demonstrate strong enhancement of molecular absorption at mid-IR by the fractal patterns in the non-resonant regime even under extreme thermal broadening. Finally, we extend the work towards the functional study of the molecular fingerprint of ultra-thin film (∼5 nm) on a non-complementary metamaterial platform in the non-resonant regime. With the help of the solid state chemical dewetting of the monolayer, we also successfully demonstrate a new type of cross-coupling mediated sensitivity of the multispectral and mutually coupled fractal patterns. The research clearly indicates the usefulness of broadband electric field enhancement by the second order fractal pattern for on chip, complete profiling of mid-IR fingerprints of biological elements, i.e. cell, and protein monolayer on a limited footprint and under versatile morphological states.
Application of the joined wing to tiltrotor aircraft
NASA Technical Reports Server (NTRS)
Wolkovitch, Julian; Wainfan, Barnaby; Ben-Harush, Yitzhak; Johnson, Wayne
1989-01-01
A study was made to determine the potential speed improvements and other benefits resulting from the application of the joined wing concept to tiltrotor aircraft. Using the XV-15 as a baseline, the effect of replacing the cantilever wing by a joined-wing pair was studied. The baseline XV-15 cantilever wing has a thickness/chord ratio of 23 percent. It was found that this wing could be replaced by a joined-wing pair of the same span and total area employing airfoils of 12 percent thickness/chord ratio. The joined wing meets the same static strength requirements as the cantilever wing, but increases the limiting Mach Number of the aircraft from M=0.575 to M=0.75, equivalent to an increase of over 100 knots in maximum speed. The joined wing configuration studied is lighter than the cantilever and has approximately 11 percent less wing drag in cruise. Its flutter speed of 245 knots EAS is not high enough to allow the potential Mach number improvement to be attained at low altitude. The flutter speed can be raised either by employing rotors which can be stopped and folded in flight at speeds below 245 knots EAS, or by modifying the airframe to reduce adverse coupling with the rotor dynamics. Several modifications of wing geometry and nacelle mass distribution were investigated, but none produced a flutter speed above 260 knots EAS. It was concluded that additional research is required to achieve a more complete understanding of the mechanism of rotor/wing coupling.
Signatures of van der Waals binding: A coupling-constant scaling analysis
NASA Astrophysics Data System (ADS)
Jiao, Yang; Schröder, Elsebeth; Hyldgaard, Per
2018-02-01
The van der Waals (vdW) density functional (vdW-DF) method [Rep. Prog. Phys. 78, 066501 (2015), 10.1088/0034-4885/78/6/066501] describes dispersion or vdW binding by tracking the effects of an electrodynamic coupling among pairs of electrons and their associated exchange-correlation holes. This is done in a nonlocal-correlation energy term Ecnl, which permits density functional theory calculation in the Kohn-Sham scheme. However, to map the nature of vdW forces in a fully interacting materials system, it is necessary to also account for associated kinetic-correlation energy effects. Here, we present a coupling-constant scaling analysis, which permits us to compute the kinetic-correlation energy Tcnl that is specific to the vdW-DF account of nonlocal correlations. We thus provide a more complete spatially resolved analysis of the electrodynamical-coupling nature of nonlocal-correlation binding, including vdW attraction, in both covalently and noncovalently bonded systems. We find that kinetic-correlation energy effects play a significant role in the account of vdW or dispersion interactions among molecules. Furthermore, our mapping shows that the total nonlocal-correlation binding is concentrated to pockets in the sparse electron distribution located between the material fragments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Degroote, M.; Henderson, T. M.; Zhao, J.
We present a similarity transformation theory based on a polynomial form of a particle-hole pair excitation operator. In the weakly correlated limit, this polynomial becomes an exponential, leading to coupled cluster doubles. In the opposite strongly correlated limit, the polynomial becomes an extended Bessel expansion and yields the projected BCS wavefunction. In between, we interpolate using a single parameter. The e ective Hamiltonian is non-hermitian and this Polynomial Similarity Transformation Theory follows the philosophy of traditional coupled cluster, left projecting the transformed Hamiltonian onto subspaces of the Hilbert space in which the wave function variance is forced to be zero.more » Similarly, the interpolation parameter is obtained through minimizing the next residual in the projective hierarchy. We rationalize and demonstrate how and why coupled cluster doubles is ill suited to the strongly correlated limit whereas the Bessel expansion remains well behaved. The model provides accurate wave functions with energy errors that in its best variant are smaller than 1% across all interaction stengths. The numerical cost is polynomial in system size and the theory can be straightforwardly applied to any realistic Hamiltonian.« less
NASA Astrophysics Data System (ADS)
Liu, Fan; Abrol, Ravinder; Goddard, William, III; Dougherty, Dennis
2014-03-01
Entropic effect in GPCR activation is poorly understood. Based on the recent solved structures, researchers in the GPCR structural biology field have proposed several ``local activating switches'' that consisted of a few number of conserved residues, but have long ignored the collective dynamical effect (conformational entropy) of a domain comprised of an ensemble of residues. A new paradigm has been proposed recently that a GPCR can be viewed as a composition of several functional coupling domains, each of which undergoes order-to-disorder or disorder-to-order transitions upon activation. Here we identified and studied these functional coupling domains by comparing the local entropy changes of each residue between the inactive and active states of the β2 adrenergic receptor from computational simulation. We found that agonist and G-protein binding increases the heterogeneity of the entropy distribution in the receptor. This new activation paradigm and computational entropy analysis scheme provides novel ways to design functionally modified mutant and identify new allosteric sites for GPCRs. The authors thank NIH and Sanofi for funding this project.
Deck the Halls. Animated Displays: Coupled Mechanical Oscillators.
ERIC Educational Resources Information Center
Pizzo, Joe, Ed.
1992-01-01
Describes a set of displays on the theme of coupled mechanical oscillators. Displays encompass three common demonstrations: (1) a coupled pair of identical pendulums; (2) a multiple-pendulum resonance demonstration; and (3) a Wilberforce coupled oscillator. (MDH)
Integrable pair-transition-coupled nonlinear Schrödinger equations.
Ling, Liming; Zhao, Li-Chen
2015-08-01
We study integrable coupled nonlinear Schrödinger equations with pair particle transition between components. Based on exact solutions of the coupled model with attractive or repulsive interaction, we predict that some new dynamics of nonlinear excitations can exist, such as the striking transition dynamics of breathers, new excitation patterns for rogue waves, topological kink excitations, and other new stable excitation structures. In particular, we find that nonlinear wave solutions of this coupled system can be written as a linear superposition of solutions for the simplest scalar nonlinear Schrödinger equation. Possibilities to observe them are discussed in a cigar-shaped Bose-Einstein condensate with two hyperfine states. The results would enrich our knowledge on nonlinear excitations in many coupled nonlinear systems with transition coupling effects, such as multimode nonlinear fibers, coupled waveguides, and a multicomponent Bose-Einstein condensate system.
Sigvardt, Zandra M S; Rogers, D Christopher; Olesen, Jørgen
2017-04-01
Male clam shrimps (Crustacea: Branchiopoda: Laevicaudata, Spinicaudata, and Cyclestherida) have their first one or two trunk limb pairs modified as "claspers," which are used to hold the female during mating and mate guarding. Clasper morphology has traditionally been important for clam shrimp taxonomy and classification, but little is known about how the males actually use the claspers during amplexus (clasping). Homologies of the various clasper parts ("movable finger," "large palp," "palm," "gripping area," and "small palp") have long been discussed between the three clam shrimp taxa, and studies have shown that only some structures are homologous while others are convergent ("partial homology"). We studied the clasper functionality in four spinicaudatan species using video recordings and scanning electron microscopy, and compared our results with other clam shrimp groups. General mating behavior and carapace morphology was also studied. Generally, spinicaudatan and laevicaudatan claspers function similarly despite some parts being nonhomologous. We mapped clasper morphology and functionality aspects on a branchiopod phylogeny. We suggest that the claspers of the three groups were adapted from an original, simpler clasper, each for a "stronger" grip on the female's carapace margin: 1) Spinicaudata have two clasper pairs bearing an elongated apical club/gripping area with one setal type; 2); Cyclestherida have one clasper pair with clusters of molariform setae on the gripping area and at the movable finger apex; and 3) Laevicaudata have one clasper pair, but have incorporated an additional limb portion into the clasper palm and bear a diverse set of setae. J. Morphol. 278:523-546, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
New insights on the matter-gravity coupling paradigm.
Delsate, Térence; Steinhoff, Jan
2012-07-13
The coupling between matter and gravity in general relativity is given by a proportionality relation between the stress tensor and the geometry. This is an oriented assumption driven by the fact that both the stress tensor and the Einstein tensor are divergenceless. However, general relativity is in essence a nonlinear theory, so there is no obvious reason why the coupling to matter should be linear. On another hand, modified theories of gravity usually affect the vacuum dynamics, yet keep the coupling to matter linear. In this Letter, we address the implications of consistent nonlinear gravity-matter coupling. The Eddington-inspired Born-Infeld theory recently introduced by Bañados and Ferreira provides an enlightening realization of such coupling modifications. We find that this theory coupled to a perfect fluid reduces to general relativity coupled to a nonlinearly modified perfect fluid, leading to an ambiguity between modified coupling and modified equation of state. We discuss observational consequences of this degeneracy and argue that such a completion of general relativity is viable from both an experimental and theoretical point of view through energy conditions, consistency, and singularity-avoidance perspectives. We use these results to discuss the impact of changing the coupling paradigm.
Noise-enhanced coupling between two oscillators with long-term plasticity
NASA Astrophysics Data System (ADS)
Lücken, Leonhard; Popovych, Oleksandr V.; Tass, Peter A.; Yanchuk, Serhiy
2016-03-01
Spike timing-dependent plasticity is a fundamental adaptation mechanism of the nervous system. It induces structural changes of synaptic connectivity by regulation of coupling strengths between individual cells depending on their spiking behavior. As a biophysical process its functioning is constantly subjected to natural fluctuations. We study theoretically the influence of noise on a microscopic level by considering only two coupled neurons. Adopting a phase description for the neurons we derive a two-dimensional system which describes the averaged dynamics of the coupling strengths. We show that a multistability of several coupling configurations is possible, where some configurations are not found in systems without noise. Intriguingly, it is possible that a strong bidirectional coupling, which is not present in the noise-free situation, can be stabilized by the noise. This means that increased noise, which is normally expected to desynchronize the neurons, can be the reason for an antagonistic response of the system, which organizes itself into a state of stronger coupling and counteracts the impact of noise. This mechanism, as well as a high potential for multistability, is also demonstrated numerically for a coupled pair of Hodgkin-Huxley neurons.
Wang, Luwen; Jiang, Ning; Wang, Lin; Fang, Ou; Leach, Lindsey J; Hu, Xiaohua; Luo, Zewei
2014-01-01
Paired sense and antisense (S/AS) genes located in cis represent a structural feature common to the genomes of both prokaryotes and eukaryotes, and produce partially complementary transcripts. We used published genome and transcriptome sequence data and found that over 20% of genes (645 pairs) in the budding yeast Saccharomyces cerevisiae genome are arranged in convergent pairs with overlapping 3'-UTRs. Using published microarray transcriptome data from the standard laboratory strain of S. cerevisiae, our analysis revealed that expression levels of convergent pairs are significantly negatively correlated across a broad range of environments. This implies an important role for convergent genes in the regulation of gene expression, which may compensate for the absence of RNA-dependent mechanisms such as micro RNAs in budding yeast. We selected four representative convergent gene pairs and used expression assays in wild type yeast and its genetically modified strains to explore the underlying patterns of gene expression. Results showed that convergent genes are reciprocally regulated in yeast populations and in single cells, whereby an increase in expression of one gene produces a decrease in the expression of the other, and vice-versa. Time course analysis of the cell cycle illustrated the functional significance of this relationship for the three pairs with relevant functional roles. Furthermore, a series of genetic modifications revealed that the 3'-UTR sequence plays an essential causal role in mediating transcriptional interference, which requires neither the sequence of the open reading frame nor the translation of fully functional proteins. More importantly, transcriptional interference persisted even when one of the convergent genes was expressed ectopically (in trans) and therefore does not depend on the cis arrangement of convergent genes; we conclude that the mechanism of transcriptional interference cannot be explained by the transcriptional collision model, which postulates a clash between simultaneous transcriptional processes occurring on opposite DNA strands.
Wang, Luwen; Jiang, Ning; Wang, Lin; Fang, Ou; Leach, Lindsey J.; Hu, Xiaohua; Luo, Zewei
2014-01-01
Paired sense and antisense (S/AS) genes located in cis represent a structural feature common to the genomes of both prokaryotes and eukaryotes, and produce partially complementary transcripts. We used published genome and transcriptome sequence data and found that over 20% of genes (645 pairs) in the budding yeast Saccharomyces cerevisiae genome are arranged in convergent pairs with overlapping 3′-UTRs. Using published microarray transcriptome data from the standard laboratory strain of S. cerevisiae, our analysis revealed that expression levels of convergent pairs are significantly negatively correlated across a broad range of environments. This implies an important role for convergent genes in the regulation of gene expression, which may compensate for the absence of RNA-dependent mechanisms such as micro RNAs in budding yeast. We selected four representative convergent gene pairs and used expression assays in wild type yeast and its genetically modified strains to explore the underlying patterns of gene expression. Results showed that convergent genes are reciprocally regulated in yeast populations and in single cells, whereby an increase in expression of one gene produces a decrease in the expression of the other, and vice-versa. Time course analysis of the cell cycle illustrated the functional significance of this relationship for the three pairs with relevant functional roles. Furthermore, a series of genetic modifications revealed that the 3′-UTR sequence plays an essential causal role in mediating transcriptional interference, which requires neither the sequence of the open reading frame nor the translation of fully functional proteins. More importantly, transcriptional interference persisted even when one of the convergent genes was expressed ectopically (in trans) and therefore does not depend on the cis arrangement of convergent genes; we conclude that the mechanism of transcriptional interference cannot be explained by the transcriptional collision model, which postulates a clash between simultaneous transcriptional processes occurring on opposite DNA strands. PMID:24465217
NASA Astrophysics Data System (ADS)
Wilson, Jeffrey D.; Chaffee, Dalton W.; Wilson, Nathaniel C.; Lekki, John D.; Tokars, Roger P.; Pouch, John J.; Roberts, Tony D.; Battle, Philip R.; Floyd, Bertram; Lind, Alexander J.; Cavin, John D.; Helmick, Spencer R.
2016-09-01
A high generation rate photon-pair source using a dual element periodically-poled potassium titanyl phosphate (PP KTP) waveguide is described. The fully integrated photon-pair source consists of a 1064-nm pump diode laser, fiber-coupled to a dual element waveguide within which a pair of 1064-nm photons are up-converted to a single 532-nm photon in the first stage. In the second stage, the 532-nm photon is down-converted to an entangled photon-pair at 800 nm and 1600 nm which are fiber-coupled at the waveguide output. The photon-pair source features a high pair generation rate, a compact power-efficient package, and continuous wave (CW) or pulsed operation. This is a significant step towards the long term goal of developing sources for high-rate Quantum Key Distribution (QKD) to enable Earth-space secure communications. Characterization and test results are presented. Details and preliminary results of a laboratory free space QKD experiment with the B92 protocol are also presented.
NASA Technical Reports Server (NTRS)
Wilson, Jeffrey D.; Chaffee, Dalton W.; Wilson, Nathaniel C.; Lekki, John D.; Tokars, Roger P.; Pouch, John J.; Roberts, Tony D.; Battle, Philip; Floyd, Bertram M.; Lind, Alexander J.;
2016-01-01
A high generation rate photon-pair source using a dual element periodically-poled potassium titanyl phosphate (PP KTP) waveguide is described. The fully integrated photon-pair source consists of a 1064-nanometer pump diode laser, fiber-coupled to a dual element waveguide within which a pair of 1064-nanometer photons are up-converted to a single 532-nanometer photon in the first stage. In the second stage, the 532-nanometer photon is down-converted to an entangled photon-pair at 800 nanometer and 1600 nanometer which are fiber-coupled at the waveguide output. The photon-pair source features a high pair generation rate, a compact power-efficient package, and continuous wave (CW) or pulsed operation. This is a significant step towards the long term goal of developing sources for high-rate Quantum Key Distribution (QKD) to enable Earth-space secure communications. Characterization and test results are presented. Details and preliminary results of a laboratory free-space QKD experiment with the B92 protocol are also presented.
Effect of Fibonacci modulation on superconductivity
NASA Astrophysics Data System (ADS)
Gupta, Sanjay; Sil, Shreekantha; Bhattacharyya, Bibhas
2006-02-01
We have studied finite-sized single band models with short-range pairing interactions between electrons in the presence of diagonal Fibonacci modulation in one dimension. Two models, namely the attractive Hubbard model and the Penson-Kolb model, have been investigated at half-filling at zero temperature by solving the Bogoliubov-de Gennes equations in real space within a mean-field approximation. The competition between 'disorder' and the pairing interaction leads to a suppression of superconductivity (of usual pairs with zero centre-of-mass momenta) in the strong-coupling limit while an enhancement of the pairing correlation is observed in the weak-coupling regime for both models. However, the dissimilarity of the pairing mechanisms in these two models brings about notable differences in the results. The extent to which the bond-ordered wave and the η-paired (of pairs with centre-of-mass momenta = π) phases of the Penson-Kolb model are affected by the disorder has also been studied in the present calculation. Some finite size effects are also identified.
NASA Astrophysics Data System (ADS)
Ghadiri, Majid; Shafiei, Navvab
2016-04-01
In this study, thermal vibration of rotary functionally graded Timoshenko microbeam has been analyzed based on modified couple stress theory considering temperature change in four types of temperature distribution on thermal environment. Material properties of FG microbeam are supposed to be temperature dependent and vary continuously along the thickness according to the power-law form. The axial forces are also included in the model as the thermal and true spatial variation due to the rotation. Governing equations and boundary conditions have been derived by employing Hamiltonian's principle. The differential quadrature method is employed to solve the governing equations for cantilever and propped cantilever boundary conditions. Validations are done by comparing available literatures and obtained results which indicate accuracy of applied method. Results represent effects of temperature changes, different boundary conditions, nondimensional angular velocity, length scale parameter, different boundary conditions, FG index and beam thickness on fundamental, second and third nondimensional frequencies. Results determine critical values of temperature changes and other essential parameters which can be applicable to design micromachines like micromotor and microturbine.
Simplifying the EFT of Inflation: generalized disformal transformations and redundant couplings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bordin, Lorenzo; Cabass, Giovanni; Creminelli, Paolo
We study generalized disformal transformations, including derivatives of the metric, in the context of the Effective Field Theory of Inflation. All these transformations do not change the late-time cosmological observables but change the coefficients of the operators in the action: some couplings are effectively redundant. At leading order in derivatives and up to cubic order in perturbations, one has 6 free functions that can be used to set to zero 6 of the 17 operators at this order. This is used to show that the tensor three-point function cannot be modified at leading order in derivatives, while the scalar-tensor-tensor correlatormore » can only be modified by changing the scalar dynamics. At higher order in derivatives there are transformations that do not affect the Einstein-Hilbert action: one can find 6 additional transformations that can be used to simplify the inflaton action, at least when the dynamics is dominated by the lowest derivative terms. We also identify the leading higher-derivative corrections to the tensor power spectrum and bispectrum.« less
Effect of parameter mismatch on the dynamics of strongly coupled self sustained oscillators.
Chakrabarty, Nilaj; Jain, Aditya; Lal, Nijil; Das Gupta, Kantimay; Parmananda, Punit
2017-01-01
In this paper, we present an experimental setup and an associated mathematical model to study the synchronization of two self-sustained, strongly coupled, mechanical oscillators (metronomes). The effects of a small detuning in the internal parameters, namely, damping and frequency, have been studied. Our experimental system is a pair of spring wound mechanical metronomes; coupled by placing them on a common base, free to move along a horizontal direction. We designed a photodiode array based non-contact, non-magnetic position detection system driven by a microcontroller to record the instantaneous angular displacement of each oscillator and the small linear displacement of the base, coupling the two. In our system, the mass of the oscillating pendula forms a significant fraction of the total mass of the system, leading to strong coupling of the oscillators. We modified the internal mechanism of the spring-wound "clockwork" slightly, such that the natural frequency and the internal damping could be independently tuned. Stable synchronized and anti-synchronized states were observed as the difference in the parameters was varied in the experiments. The simulation results showed a rapid increase in the phase difference between the two oscillators beyond a certain threshold of parameter mismatch. Our simple model of the escapement mechanism did not reproduce a complete 180° out of phase state. However, the numerical simulations show that increased mismatch in parameters leads to a synchronized state with a large phase difference.
NASA Astrophysics Data System (ADS)
Wei, Gao-Feng; Dong, Shi-Hai
2010-11-01
By applying a Pekeris-type approximation to the pseudo-centrifugal term, we study the pseudospin symmetry of a Dirac nucleon subjected to scalar and vector modified Rosen-Morse (MRM) potentials. A complicated quartic energy equation and spinor wave functions with arbitrary spin-orbit coupling quantum number k are presented. The pseudospin degeneracy is checked numerically. Pseudospin symmetry is discussed theoretically and numerically in the limit case α rightarrow 0 . It is found that the relativistic MRM potential cannot trap a Dirac nucleon in this limit.
Higgs-precision constraints on colored naturalness
Essig, Rouven; Meade, Patrick; Ramani, Harikrishnan; ...
2017-09-19
The presence of weak-scale colored top partners is among the simplest solutions to the Higgs hierarchy problem and allows for a natural electroweak scale. We examine the constraints on generic colored top partners coming solely from their effect on the production and decay rates of the observed Higgs with a mass of 125 GeV. We use the latest Higgs precision data from the Tevatron and the LHC as of EPS 2017 to derive the current limits on spin-0, spin-1/2, and spin-1 colored top partners. We also investigate the expected sensitivity from the Run 3 and Run 4 of the LHC,more » as well from possible future electron-positron and proton-proton colliders, including the ILC, CEPC, FCC-ee, and FCC-hh. We discuss constraints on top partners in the Minimal Supersymmetric Standard Model and Little Higgs theories. We also consider various model-building aspects — multiple top partners, modified couplings between the Higgs and Standard-Model particles, and non-Standard-Model Higgs sectors — and evaluate how these weaken the current limits and expected sensitivities. By modifying other Standard-Model Higgs couplings, we find that the best way to hide low-mass top partners from current data is through modifications of the top-Yukawa coupling, although future measurements of top-quark-pair production in association with a Higgs will extensively probe this possibility. We also demonstrate that models with multiple top partners can generically avoid current and future Higgs precision measurements. Nevertheless, some of the model parameter space can be probed with precision measurements at future electron-positron colliders of, for example, the e + e - → Zhcrosssection.« less
Higgs-precision constraints on colored naturalness
DOE Office of Scientific and Technical Information (OSTI.GOV)
Essig, Rouven; Meade, Patrick; Ramani, Harikrishnan
The presence of weak-scale colored top partners is among the simplest solutions to the Higgs hierarchy problem and allows for a natural electroweak scale. We examine the constraints on generic colored top partners coming solely from their effect on the production and decay rates of the observed Higgs with a mass of 125 GeV. We use the latest Higgs precision data from the Tevatron and the LHC as of EPS 2017 to derive the current limits on spin-0, spin-1/2, and spin-1 colored top partners. We also investigate the expected sensitivity from the Run 3 and Run 4 of the LHC,more » as well from possible future electron-positron and proton-proton colliders, including the ILC, CEPC, FCC-ee, and FCC-hh. We discuss constraints on top partners in the Minimal Supersymmetric Standard Model and Little Higgs theories. We also consider various model-building aspects — multiple top partners, modified couplings between the Higgs and Standard-Model particles, and non-Standard-Model Higgs sectors — and evaluate how these weaken the current limits and expected sensitivities. By modifying other Standard-Model Higgs couplings, we find that the best way to hide low-mass top partners from current data is through modifications of the top-Yukawa coupling, although future measurements of top-quark-pair production in association with a Higgs will extensively probe this possibility. We also demonstrate that models with multiple top partners can generically avoid current and future Higgs precision measurements. Nevertheless, some of the model parameter space can be probed with precision measurements at future electron-positron colliders of, for example, the e + e - → Zhcrosssection.« less
Designing Kerr interactions using multiple superconducting qubit types in a single circuit
NASA Astrophysics Data System (ADS)
Elliott, Matthew; Joo, Jaewoo; Ginossar, Eran
2018-02-01
The engineering of Kerr interactions is of great interest for processing quantum information in multipartite quantum systems and for investigating many-body physics in a complex cavity-qubit network. We study how coupling multiple different types of superconducting qubits to the same cavity modes can be used to modify the self- and cross-Kerr effects acting on the cavities and demonstrate that this type of architecture could be of significant benefit for quantum technologies. Using both analytical perturbation theory results and numerical simulations, we first show that coupling two superconducting qubits with opposite anharmonicities to a single cavity enables the effective self-Kerr interaction to be diminished, while retaining the number splitting effect that enables control and measurement of the cavity field. We demonstrate that this reduction of the self-Kerr effect can maintain the fidelity of coherent states and generalised Schrödinger cat states for much longer than typical coherence times in realistic devices. Next, we find that the cross-Kerr interaction between two cavities can be modified by coupling them both to the same pair of qubit devices. When one of the qubits is tunable in frequency, the strength of entangling interactions between the cavities can be varied on demand, forming the basis for logic operations on the two modes. Finally, we discuss the feasibility of producing an array of cavities and qubits where intermediary and on-site qubits can tune the strength of self- and cross-Kerr interactions across the whole system. This architecture could provide a way to engineer interesting many-body Hamiltonians and be a useful platform for quantum simulation in circuit quantum electrodynamics.
Tunable 0-π transition by interband coupling in iron-based superconductor Josephson junctions
NASA Astrophysics Data System (ADS)
Tao, Y. C.; Liu, S. Y.; Bu, N.; Wang, J.; Di, Y. S.
2016-01-01
An extended four-component Bogoliubov-de Gennes equation is applied to study the Josephson effect in ballistic limit between either two iron-based superconductors (SCs) or an iron-based SC and a conventional s-wave SC, separated by a normal metal. A 0-π transition as a function of interband coupling strength α is always exhibited, arising from the tuning of mixing between the two trajectories with opposite phases. The novel property can be experimentally used to discriminate the {s}+/- -wave pairing symmetry in the iron-based SCs from the {s}++-wave one in MgB2. The effect of interface transparency on the 0-π transition is also presented. The 0-π transition as a function of α is wholly distinct from that as a function of barrier strength or temperature in recent theories (Linder et al 2009 Phys. Rev. B 80 020503(R)). The possible experimental probe of the phase-shift effect in iron-based SC Josephson junctions is commented on as well.
NASA Astrophysics Data System (ADS)
Cocchi, Caterina; Moldt, Thomas; Gahl, Cornelius; Weinelt, Martin; Draxl, Claudia
2016-12-01
In a joint theoretical and experimental work, the optical properties of azobenzene-functionalized self-assembled monolayers (SAMs) are studied at different molecular packing densities. Our results, based on density-functional and many-body perturbation theory, as well as on differential reflectance (DR) spectroscopy, shed light on the microscopic mechanisms ruling photo-absorption in these systems. While the optical excitations are intrinsically excitonic in nature, regardless of the molecular concentration, in densely packed SAMs intermolecular coupling and local-field effects are responsible for a sizable weakening of the exciton binding strength. Through a detailed analysis of the character of the electron-hole pairs, we show that distinct excitations involved in the photo-isomerization at low molecular concentrations are dramatically broadened by intermolecular interactions. Spectral shifts in the calculated DR spectra are in good agreement with the experimental results. Our findings represent an important step forward to rationalize the excited-state properties of these complex materials.
NASA Astrophysics Data System (ADS)
Meyer, V.; Maxit, L.; Guyader, J.-L.; Leissing, T.
2016-01-01
The vibroacoustic behavior of axisymmetric stiffened shells immersed in water has been intensively studied in the past. On the contrary, little attention has been paid to the modeling of these shells coupled to non-axisymmetric internal frames. Indeed, breaking the axisymmetry couples the circumferential orders of the Fourier series and considerably increases the computational costs. In order to tackle this issue, we propose a sub-structuring approach called the Condensed Transfer Function (CTF) method that will allow assembling a model of axisymmetric stiffened shell with models of non-axisymmetric internal frames. The CTF method is developed in the general case of mechanical subsystems coupled along curves. A set of orthonormal functions called condensation functions, which depend on the curvilinear abscissa along the coupling line, is considered. This set is then used as a basis for approximating and decomposing the displacements and the applied forces at the line junctions. Thanks to the definition and calculation of condensed transfer functions for each uncoupled subsystem and by using the superposition principle for passive linear systems, the behavior of the coupled subsystems can be deduced. A plane plate is considered as a test case to study the convergence of the method with respect to the type and the number of condensation functions taken into account. The CTF method is then applied to couple a submerged non-periodically stiffened shell described using the Circumferential Admittance Approach (CAA) with internal substructures described by Finite Element Method (FEM). The influence of non-axisymmetric internal substructures can finally be studied and it is shown that it tends to increase the radiation efficiency of the shell and can modify the vibrational and acoustic energy distribution.
NASA Astrophysics Data System (ADS)
Keivani, M.; Abadian, N.; Koochi, A.; Mokhtari, J.; Abadyan, M.
2016-10-01
It has been well established that the physical performance of nanodevices might be affected by the microstructure. Herein, a two-degree-of-freedom model base on the modified couple stress theory is developed to incorporate the impact of microstructure in the torsion/bending coupled instability of rotational nanoscanner. Effect of microstructure dependency on the instability parameters is determined as a function of the microstructure parameter, bending/torsion coupling ratio, van der Waals force parameter and geometrical dimensions. It is found that the bending/torsion coupling substantially affects the stable behavior of the scanners especially those with long rotational beam elements. Impact of microstructure on instability voltage of the nanoscanner depends on coupling ratio and the conquering bending mode over torsion mode. This effect is more highlighted for higher values of coupling ratio. Depending on the geometry and material characteristics, the presented model is able to simulate both hardening behavior (due to microstructure) and softening behavior (due to torsion/bending coupling) of the nanoscanners.
Dark matter relics and the expansion rate in scalar-tensor theories
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dutta, Bhaskar; Jimenez, Esteban; Zavala, Ivonne, E-mail: dutta@physics.tamu.edu, E-mail: este1985@physics.tamu.edu, E-mail: e.i.zavalacarrasco@swansea.ac.uk
We study the impact of a modified expansion rate on the dark matter relic abundance in a class of scalar-tensor theories. The scalar-tensor theories we consider are motivated from string theory constructions, which have conformal as well as disformally coupled matter to the scalar. We investigate the effects of such a conformal coupling to the dark matter relic abundance for a wide range of initial conditions, masses and cross-sections. We find that exploiting all possible initial conditions, the annihilation cross-section required to satisfy the dark matter content can differ from the thermal average cross-section in the standard case. We alsomore » study the expansion rate in the disformal case and find that physically relevant solutions require a nontrivial relation between the conformal and disformal functions. We study the effects of the disformal coupling in an explicit example where the disformal function is quadratic.« less
Artificial synapse network on inorganic proton conductor for neuromorphic systems.
Zhu, Li Qiang; Wan, Chang Jin; Guo, Li Qiang; Shi, Yi; Wan, Qing
2014-01-01
The basic units in our brain are neurons, and each neuron has more than 1,000 synapse connections. Synapse is the basic structure for information transfer in an ever-changing manner, and short-term plasticity allows synapses to perform critical computational functions in neural circuits. Therefore, the major challenge for the hardware implementation of neuromorphic computation is to develop artificial synapse network. Here in-plane lateral-coupled oxide-based artificial synapse network coupled by proton neurotransmitters are self-assembled on glass substrates at room-temperature. A strong lateral modulation is observed due to the proton-related electrical-double-layer effect. Short-term plasticity behaviours, including paired-pulse facilitation, dynamic filtering and spatiotemporally correlated signal processing are mimicked. Such laterally coupled oxide-based protonic/electronic hybrid artificial synapse network proposed here is interesting for building future neuromorphic systems.
NASA Astrophysics Data System (ADS)
Du, Zhong; Tian, Bo; Qu, Qi-Xing; Chai, Han-Peng; Wu, Xiao-Yu
2017-12-01
Investigated in this paper are the three-coupled fourth-order nonlinear Schrödinger equations, which describe the dynamics of alpha helical protein with the interspine coupling at the higher order. We show that the representation of the Lax pair with Expressions (42) -(45) in Ref. [25] is not correct, because the three-coupled fourth-order nonlinear Schrödinger equations can not be reproduced by the Lax pair with Expressions (42) -(45) in Ref. [25] through the compatibility condition. Therefore, we recalculate the Lax pair. Based on the recalculated Lax pair, we construct the generalized Darboux transformation, and derive the first- and second-order semirational solutions. Through such solutions, dark-bright-bright soliton, breather-breather-bright soliton, breather soliton and rogue waves are analyzed. It is found that the rogue waves in the three components are mutually proportional. Moreover, three types of the semirational rogue waves consisting of the rogue waves and solitons are presented: (1) consisting of the first-order rogue wave and one soliton; (2) consisting of the first-order rogue wave and two solitons; (3) consisting of the second-order rogue wave and two solitons.
Serlin, B S; Roux, S J
1984-01-01
The Ca2+ ionophore A23187 can induce chloroplast rotation within a single nonirradiated Mougeotia cell. The induced turning was dependent on the position of ionophore application and Ca2+ in the external medium. The role of calmodulin in mediating light-induced chloroplast rotation in the alga Mougeotia was investigated by using the paired calmodulin-antagonist drugs W5-W7 and W12-W13. In each pair, the antagonist with the greater affinity for calmodulin had the greater inhibitor effect on the phytochrome-controlled light response. These results support the hypothesis that calcium functions as a chemical messenger to couple the stimulus of phytochrome photoactivation with physiological responses in plants. Images PMID:11536594
NASA Astrophysics Data System (ADS)
Gültekin, Ö.; Gürcan, Ö. D.
2018-02-01
Basic, local kinetic theory of ion temperature gradient driven (ITG) mode, with adiabatic electrons is reconsidered. Standard unstable, purely oscillating as well as damped solutions of the local dispersion relation are obtained using a bracketing technique that uses the argument principle. This method requires computing the plasma dielectric function and its derivatives, which are implemented here using modified plasma dispersion functions with curvature and their derivatives, and allows bracketing/following the zeros of the plasma dielectric function which corresponds to different roots of the ITG dispersion relation. We provide an open source implementation of the derivatives of modified plasma dispersion functions with curvature, which are used in this formulation. Studying the local ITG dispersion, we find that near the threshold of instability the unstable branch is rather asymmetric with oscillating solutions towards lower wave numbers (i.e. drift waves), and damped solutions toward higher wave numbers. This suggests a process akin to inverse cascade by coupling to the oscillating branch towards lower wave numbers may play a role in the nonlinear evolution of the ITG, near the instability threshold. Also, using the algorithm, the linear wave diffusion is estimated for the marginally stable ITG mode.
High speed preamplifier circuit, detection electronics, and radiation detection systems therefrom
Riedel, Richard A [Knoxville, TN; Wintenberg, Alan L [Knoxville, TN; Clonts, Lloyd G [Knoxville, TN; Cooper, Ronald G [Oak Ridge, TN
2010-09-21
A preamplifier circuit for processing a signal provided by a radiation detector includes a transimpedance amplifier coupled to receive a current signal from a detector and generate a voltage signal at its output. A second amplification stage has an input coupled to an output of the transimpedance amplifier for providing an amplified voltage signal. Detector electronics include a preamplifier circuit having a first and second transimpedance amplifier coupled to receive a current signal from a first and second location on a detector, respectively, and generate a first and second voltage signal at respective outputs. A second amplification stage has an input coupled to an output of the transimpedance amplifiers for amplifying the first and said second voltage signals to provide first and second amplified voltage signals. A differential output stage is coupled to the second amplification stage for receiving the first and second amplified voltage signals and providing a pair of outputs from each of the first and second amplified voltage signals. Read out circuitry has an input coupled to receive both of the pair of outputs, the read out circuitry having structure for processing each of the pair of outputs, and providing a single digital output having a time-stamp therefrom.
Riedel, Richard A [Knoxville, TN; Wintenberg, Alan L [Knoxville, TN; Clonts, Lloyd G [Knoxville, TN; Cooper, Ronald G [Oak Ridge, TN
2012-02-14
A preamplifier circuit for processing a signal provided by a radiation detector includes a transimpedance amplifier coupled to receive a current signal from a detector and generate a voltage signal at its output. A second amplification stage has an input coupled to an output of the transimpedance amplifier for providing an amplified voltage signal. Detector electronics include a preamplifier circuit having a first and second transimpedance amplifier coupled to receive a current signal from a first and second location on a detector, respectively, and generate a first and second voltage signal at respective outputs. A second amplification stage has an input coupled to an output of the transimpedance amplifiers for amplifying the first and said second voltage signals to provide first and second amplified voltage signals. A differential output stage is coupled to the second amplification stage for receiving the first and second amplified voltage signals and providing a pair of outputs from each of the first and second amplified voltage signals. Read out circuitry has an input coupled to receive both of the pair of outputs, the read out circuitry having structure for processing each of the pair of outputs, and providing a single digital output having a time-stamp therefrom.
Influence of super-horizon modes on correlation functions during inflation
NASA Astrophysics Data System (ADS)
Deutsch, Anne-Sylvie
2018-05-01
Coupling between sub- and super-Hubble modes can affect the locally observed statistics of our universe. In the context of Quasi-Single Field Inflation, we can compute correlation functions and derive the influence of those unobservable modes on observed correlation functions as well as on the inferred cosmological parameters. We study how different classes of diagrams affect the bispectrum in the squeezed limit; in particular, while contact-like diagrams leave the scaling between the long and short modes unchanged, exchange-like diagrams do modify the shape of the bispectrum. We show that the mass of the hidden sector field can hence be biased by an unavoidable cosmic variance that can reach a 1-σ uncertainty of Script O(10%) for a weakly non-Gaussian universe. Finally, we go beyond the bispectrum and show how couplings between unobservable and observable modes can affect generic correlation functions with arbitrary order non-derivative self-interactions.
Interlayer excitons in a bulk van der Waals semiconductor.
Arora, Ashish; Drüppel, Matthias; Schmidt, Robert; Deilmann, Thorsten; Schneider, Robert; Molas, Maciej R; Marauhn, Philipp; Michaelis de Vasconcellos, Steffen; Potemski, Marek; Rohlfing, Michael; Bratschitsch, Rudolf
2017-09-21
Bound electron-hole pairs called excitons govern the electronic and optical response of many organic and inorganic semiconductors. Excitons with spatially displaced wave functions of electrons and holes (interlayer excitons) are important for Bose-Einstein condensation, superfluidity, dissipationless current flow, and the light-induced exciton spin Hall effect. Here we report on the discovery of interlayer excitons in a bulk van der Waals semiconductor. They form due to strong localization and spin-valley coupling of charge carriers. By combining high-field magneto-reflectance experiments and ab initio calculations for 2H-MoTe 2 , we explain their salient features: the positive sign of the g-factor and the large diamagnetic shift. Our investigations solve the long-standing puzzle of positive g-factors in transition metal dichalcogenides, and pave the way for studying collective phenomena in these materials at elevated temperatures.Excitons, quasi-particles of bound electron-hole pairs, are at the core of the optoelectronic properties of layered transition metal dichalcogenides. Here, the authors unveil the presence of interlayer excitons in bulk van der Waals semiconductors, arising from strong localization and spin-valley coupling of charge carriers.
Wagner, Sean R.; Feng, Jiagui; Yoon, Mina; ...
2015-08-25
Using scanning tunneling microscopy and density functional theory, we show that the molecular ordering and orientation of metal phthalocyanine molecules on the deactivated Si surface display a strong dependency on the central transition-metal ion, driven by the degree of orbital hybridization at the heterointerface via selective p – d orbital coupling. As a result, this Letter identifies a selective mechanism for modifying the molecule-substrate interaction which impacts the growth behavior of transition-metal-incorporated organic molecules on a technologically relevant substrate for silicon-based devices.
Resonant photonic States in coupled heterostructure photonic crystal waveguides.
Cox, Jd; Sabarinathan, J; Singh, Mr
2010-02-09
In this paper, we study the photonic resonance states and transmission spectra of coupled waveguides made from heterostructure photonic crystals. We consider photonic crystal waveguides made from three photonic crystals A, B and C, where the waveguide heterostructure is denoted as B/A/C/A/B. Due to the band structure engineering, light is confined within crystal A, which thus act as waveguides. Here, photonic crystal C is taken as a nonlinear photonic crystal, which has a band gap that may be modified by applying a pump laser. We have found that the number of bound states within the waveguides depends on the width and well depth of photonic crystal A. It has also been found that when both waveguides are far away from each other, the energies of bound photons in each of the waveguides are degenerate. However, when they are brought close to each other, the degeneracy of the bound states is removed due to the coupling between them, which causes these states to split into pairs. We have also investigated the effect of the pump field on photonic crystal C. We have shown that by applying a pump field, the system may be switched between a double waveguide to a single waveguide, which effectively turns on or off the coupling between degenerate states. This reveals interesting results that can be applied to develop new types of nanophotonic devices such as nano-switches and nano-transistors.
Spin-correlated doublet pairs as intermediate states in charge separation processes
NASA Astrophysics Data System (ADS)
Kraffert, Felix; Behrends, Jan
2017-10-01
Spin-correlated charge-carrier pairs play a crucial role as intermediate states in charge separation both in natural photosynthesis as well as in solar cells. Using transient electron paramagnetic resonance (trEPR) spectroscopy in combination with spectral simulations, we study spin-correlated polaron pairs in polymer:fullerene blends as organic solar cells materials. The semi-analytical simulations presented here are based on the well-established theoretical description of spin-correlated radical pairs in biological systems, however, explicitly considering the disordered nature of polymer:fullerene blends. The large degree of disorder leads to the fact that many different relative orientations between both polarons forming the spin-correlated pairs have to be taken into account. This has important implications for the spectra, which differ significantly from those of spin-correlated radical pairs with a fixed relative orientation. We systematically study the influence of exchange and dipolar couplings on the trEPR spectra and compare the simulation results to measured X- and Q-band trEPR spectra. Our results demonstrate that assuming dipolar couplings alone does not allow us to reproduce the experimental spectra. Due to the rather delocalised nature of polarons in conjugated organic semiconductors, a significant isotropic exchange coupling needs to be included to achieve good agreement between experiments and simulations.
High spectral purity silicon ring resonator photon-pair source
NASA Astrophysics Data System (ADS)
Steidle, Jeffrey A.; Fanto, Michael L.; Tison, Christopher C.; Wang, Zihao; Preble, Stefan F.; Alsing, Paul M.
2015-05-01
Here we present the experimental demonstration of a Silicon ring resonator photon-pair source. The crystalline Silicon ring resonator (radius of 18.5μm) was designed to realize low dispersion across multiple resonances, which allows for operation with a high quality factor of Q~50k. In turn, the source exhibits very high brightness of >3x105 photons/s/mW2/GHz since the produced photon pairs have a very narrow bandwidth. Furthermore, the waveguidefiber coupling loss was minimized to <1.5dB using an inverse tapered waveguide (tip width of ~150nm over a 300μm length) that is butt-coupled to a high-NA fiber (Nufern UHNA-7). This ensured minimal loss of photon pairs to the detectors, which enabled very high purity photon pairs with minimal noise, as exhibited by a very high Coincidental-Accidental Ratio of >1900. The low coupling loss (3dB fiber-fiber) also allowed for operation with very low off-chip pump power of <200μW. In addition, the zero dispersion of the ring resonator resulted in the production of a photon-pair comb across multiple resonances symmetric about the pump resonance (every ~5nm spanning >20nm), which could be used in future wavelength division multiplexed quantum networks.
NASA Astrophysics Data System (ADS)
Banerjee, Tanmoy; Biswas, Debabrata
2013-12-01
We explore and experimentally demonstrate the phenomena of amplitude death (AD) and the corresponding transitions through synchronized states that lead to AD in coupled intrinsic time-delayed hyperchaotic oscillators interacting through mean-field diffusion. We identify a novel synchronization transition scenario leading to AD, namely transitions among AD, generalized anticipatory synchronization (GAS), complete synchronization (CS), and generalized lag synchronization (GLS). This transition is mediated by variation of the difference of intrinsic time-delays associated with the individual systems and has no analogue in non-delayed systems or coupled oscillators with coupling time-delay. We further show that, for equal intrinsic time-delays, increasing coupling strength results in a transition from the unsynchronized state to AD state via in-phase (complete) synchronized states. Using Krasovskii-Lyapunov theory, we derive the stability conditions that predict the parametric region of occurrence of GAS, GLS, and CS; also, using a linear stability analysis, we derive the condition of occurrence of AD. We use the error function of proper synchronization manifold and a modified form of the similarity function to provide the quantitative support to GLS and GAS. We demonstrate all the scenarios in an electronic circuit experiment; the experimental time-series, phase-plane plots, and generalized autocorrelation function computed from the experimental time series data are used to confirm the occurrence of all the phenomena in the coupled oscillators.
Ionic structures and transport properties of hot dense W and U plasmas
NASA Astrophysics Data System (ADS)
Hou, Yong; Yuan, Jianmin
2016-10-01
We have combined the average-atom model with the hyper-netted chain approximation (AAHNC) to describe the electronic and ionic structure of uranium and tungsten in the hot dense matter regime. When the electronic structure is described within the average-atom model, the effects of others ions on the electronic structure are considered by the correlation functions. And the ionic structure is calculated though using the hyper-netted chain (HNC) approximation. The ion-ion pair potential is calculated using the modified Gordon-Kim model based on the electronic density distribution in the temperature-depended density functional theory. And electronic and ionic structures are determined self-consistently. On the basis of the ion-ion pair potential, we perform the classical (CMD) and Langevin (LMD) molecular dynamics to simulate the ionic transport properties, such as ionic self-diffusion and shear viscosity coefficients, through the ionic velocity correlation functions. Due that the free electrons become more and more with increasing the plasma temperature, the influence of the electron-ion collisions on the transport properties become more and more important.
Pervushin, Konstantin; Ono, Akira; Fernández, César; Szyperski, Thomas; Kainosho, Masatsune; Wüthrich, Kurt
1998-01-01
This paper describes the NMR observation of 15N—15N and 1H—15N scalar couplings across the hydrogen bonds in Watson–Crick base pairs in a DNA duplex, hJNN and hJHN. These couplings represent new parameters of interest for both structural studies of DNA and theoretical investigations into the nature of the hydrogen bonds. Two dimensional [15N,1H]-transverse relaxation-optimized spectroscopy (TROSY) with a 15N-labeled 14-mer DNA duplex was used to measure hJNN, which is in the range 6–7 Hz, and the two-dimensional hJNN-correlation-[15N,1H]-TROSY experiment was used to correlate the chemical shifts of pairs of hydrogen bond-related 15N spins and to observe, for the first time, hJHN scalar couplings, with values in the range 2–3.6 Hz. TROSY-based studies of scalar couplings across hydrogen bonds should be applicable for large molecular sizes, including protein-bound nucleic acids. PMID:9826668
Microscopic analysis of shape transition in neutron-deficient Yb isotopes
NASA Astrophysics Data System (ADS)
Fu, Y.; Tong, H.; Wang, X. F.; Wang, H.; Wang, D. Q.; Wang, X. Y.; Yao, J. M.
2018-01-01
The development of nuclear collectivity in even-even Yb-170152 is studied with three types of mean-field calculations: the nonrelativistic Hartree-Fock plus BCS calculation using the Skyrme SLy4 force plus a density-dependent δ pairing force and the relativistic mean-field calculation using a point-coupling energy functional supplemented with either a density-independent δ pairing force or a separable pairing force. The low-lying states are obtained by solving a five-dimensional collective Hamiltonian with parameters determined from the three mean-field solutions. The energy surfaces, excitation energies, electric multiple transition strengths, and differential isotope shifts are presented in comparison with available data. Our results show that different treatments of pairing correlations have a significant influence on the speed of developing collectivity as the increase of neutron number. All the calculations demonstrate the important role of dynamic shape-mixing effects in resolving the puzzle in the dramatic increase of charge radius from 152Yb to 154Yb and the role of triaxiality in
NASA Astrophysics Data System (ADS)
Riplinger, Christoph; Pinski, Peter; Becker, Ute; Valeev, Edward F.; Neese, Frank
2016-01-01
Domain based local pair natural orbital coupled cluster theory with single-, double-, and perturbative triple excitations (DLPNO-CCSD(T)) is a highly efficient local correlation method. It is known to be accurate and robust and can be used in a black box fashion in order to obtain coupled cluster quality total energies for large molecules with several hundred atoms. While previous implementations showed near linear scaling up to a few hundred atoms, several nonlinear scaling steps limited the applicability of the method for very large systems. In this work, these limitations are overcome and a linear scaling DLPNO-CCSD(T) method for closed shell systems is reported. The new implementation is based on the concept of sparse maps that was introduced in Part I of this series [P. Pinski, C. Riplinger, E. F. Valeev, and F. Neese, J. Chem. Phys. 143, 034108 (2015)]. Using the sparse map infrastructure, all essential computational steps (integral transformation and storage, initial guess, pair natural orbital construction, amplitude iterations, triples correction) are achieved in a linear scaling fashion. In addition, a number of additional algorithmic improvements are reported that lead to significant speedups of the method. The new, linear-scaling DLPNO-CCSD(T) implementation typically is 7 times faster than the previous implementation and consumes 4 times less disk space for large three-dimensional systems. For linear systems, the performance gains and memory savings are substantially larger. Calculations with more than 20 000 basis functions and 1000 atoms are reported in this work. In all cases, the time required for the coupled cluster step is comparable to or lower than for the preceding Hartree-Fock calculation, even if this is carried out with the efficient resolution-of-the-identity and chain-of-spheres approximations. The new implementation even reduces the error in absolute correlation energies by about a factor of two, compared to the already accurate previous implementation.
Tsiaousis, D; Munn, R W
2004-04-15
Calculations for the acetanilide crystal yield the effective polarizability (16.6 A(3)), local electric field tensor, effective dipole moment (5.41 D), and dipole-dipole energy (-12.8 kJ/mol). Fourier-transform techniques are used to calculate the polarization energy P for a single charge in the perfect crystal (-1.16 eV); the charge-dipole energy W(D) is zero if the crystal carries no bulk dipole moment. Polarization energies for charge-transfer (CT) pairs combine with the Coulomb energy E(C) to give the screened Coulomb energy E(scr); screening is nearly isotropic, with E(scr) approximately E(C)/2.7. For CT pairs W(D) reduces to a term deltaW(D) arising from the interaction of the charge on each ion with the change in dipole moment on the other ion relative to the neutral molecule. The dipole moments calculated by density-functional theory methods with the B3LYP functional at the 6-311++G(**) level are 3.62 D for the neutral molecule, changing to 7.13 D and 4.38 D for the anion and cation, relative to the center of mass. Because of the large change in the anion, deltaW(D) reaches -0.9 eV and modifies the sequence of CT energies markedly from that of E(scr), giving the lowest two CT pairs at -1.98 eV and -1.41 eV. The changes in P and W(D) near a vacancy are calculated; W(D) changes for the individual charges because the vacancy removes a dipole moment and modifies the crystal dielectric response, but deltaW(D) and E(C) do not change. A vacancy yields a positive change DeltaP that scatters a charge or CT pair, but the change DeltaW(D) can be negative and large enough to outweigh DeltaP, yielding traps with depths that can exceed 150 meV for single charges and for CT pairs. Divacancies yield traps with depths nearly equal to the sum of those produced by the separate vacancies and so they can exceed 300 meV. These results are consistent with a mechanism of optical damage in which vacancies trap optically generated CT pairs that recombine and release energy; this can disrupt the lattice around the vacancy, thereby favoring trapping and recombination of CT pairs generated by subsequent photon absorption, leading to further lattice disruption. Revisions to previous calculations on trapping of CT pairs in anthracene are reported. (c) 2004 American Institute of Physics.
Distressed Couples and Marriage Education
ERIC Educational Resources Information Center
DeMaria, Rita M.
2005-01-01
Professionals generally believe that couples who choose to attend marriage education programs are not as distressed as are clinical couples and that distressed couples are not good candidates for marriage education. We examined these assumptions in 129 married couples who enrolled in a PAIRS, Practical Application of Intimate Relationship Skills…
Wang, Jingwen; Zhao, Yuqi; Wang, Yanjie; Huang, Jingfei
2013-01-16
Coevolution between proteins is crucial for understanding protein-protein interaction. Simultaneous changes allow a protein complex to maintain its overall structural-functional integrity. In this study, we combined statistical coupling analysis (SCA) and molecular dynamics simulations on the CDK6-CDKN2A protein complex to evaluate coevolution between proteins. We reconstructed an inter-protein residue coevolution network, consisting of 37 residues and 37 interactions. It shows that most of the coevolved residue pairs are spatially proximal. When the mutations happened, the stable local structures were broken up and thus the protein interaction was decreased or inhibited, with a following increased risk of melanoma. The identification of inter-protein coevolved residues in the CDK6-CDKN2A complex can be helpful for designing protein engineering experiments. Copyright © 2012 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Lindh, Roland; Rice, Julia E.; Lee, Timothy J.
1991-01-01
The energy separation between the classical and nonclassical forms of protonated acetylene has been reinvestigated in light of the recent experimentally deduced lower bound to this value of 6.0 kcal/mol. The objective of the present study is to use state-of-the-art ab initio quantum mechanical methods to establish this energy difference to within chemical accuracy (i.e., about 1 kcal/mol). The one-particle basis sets include up to g-type functions and the electron correlation methods include single and double excitation coupled-cluster (CCSD), the CCSD(T) extension, multireference configuration interaction, and the averaged coupled-pair functional methods. A correction for zero-point vibrational energies has also been included, yielding a best estimate for the energy difference between the classical and nonclassical forms of 3.7 + or - 1.3 kcal/mol.
NASA Astrophysics Data System (ADS)
Zhu, Chang; Yun, Jiena; Wang, Qian; Yang, Gang
2018-03-01
Although cations and anions are two integral constituents for all electrolytes, adsorption of ion pairs onto carbonaceous materials gains obviously less attention than adsorption of only cations or anions. Here DFT calculations are employed finding that four adsorption configurations emerge for KI onto graphene flakes (GF) instead of three for the other ion pairs. Reservation of ionic bonds is critical to their stabilities, and the bilateral configurations, where GFs couple with both cations and anions, are disfavored due to rupture of ionic bonds. Relative stabilities of two vertical configurations can be regulated and even reversed through edge-functionalization. Surprisingly, the horizontal adsorption configurations, which are global energy minima as long as present, are non-existent for a majority of ion pairs, and their existence or not is determined by the adsorption differences between halide ions and alkali ions (△Ead). Counterions effects for both cations and anions increase with the atomic electronegativities and cations correspond to stronger counterion effects; e.g., Li+ added on the other side of GFs promotes the adsorption of F- more pronouncedly than edge-functionalization. Mechanisms of electron transfers are also discussed, and three alteration patterns by counterions are observed for each type of adsorption configurations. Furthermore, addition of counterions causes band gaps to vary within a wider range that may be useful to design electronic devices.
Apoferritin fibers: a new template for 1D fluorescent hybrid nanostructures
NASA Astrophysics Data System (ADS)
Jurado, Rocío; Castello, Fabio; Bondia, Patricia; Casado, Santiago; Flors, Cristina; Cuesta, Rafael; Domínguez-Vera, José M.; Orte, Angel; Gálvez, Natividad
2016-05-01
Recently, research in the field of protein amyloid fibers has gained great attention due to the use of these materials as nanoscale templates for the construction of functional hybrid materials. The formation of apoferritin amyloid-like protein fibers is demonstrated herein for the first time. The morphology, size and stiffness of these one-dimensional structures are comparable to the fibers formed by β-lactoglobulin, a protein frequently used as a model in the study of amyloid-like fibrillar proteins. Nanometer-sized globular apoferritin is capable of self-assembling to form 1D micrometer-sized structures after being subjected to a heating process. Depending on the experimental conditions, fibers with different morphologies and sizes are obtained. The wire-like protein structure is rich in functional groups and allows chemical functionalization with diverse quantum dots (QD), as well as with different Alexa Fluor (AF) dyes, leading to hybrid fluorescent fibers with variable emission wavelengths, from green to near infrared, depending on the QD and AFs coupled. For fibers containing the pair AF488 and AF647, efficient fluorescence energy transfer from the covalently coupled donor (AF488) to acceptor tags (AF647) takes place. Apoferritin fibers are proposed here as a new promising template for obtaining hybrid functional materials.Recently, research in the field of protein amyloid fibers has gained great attention due to the use of these materials as nanoscale templates for the construction of functional hybrid materials. The formation of apoferritin amyloid-like protein fibers is demonstrated herein for the first time. The morphology, size and stiffness of these one-dimensional structures are comparable to the fibers formed by β-lactoglobulin, a protein frequently used as a model in the study of amyloid-like fibrillar proteins. Nanometer-sized globular apoferritin is capable of self-assembling to form 1D micrometer-sized structures after being subjected to a heating process. Depending on the experimental conditions, fibers with different morphologies and sizes are obtained. The wire-like protein structure is rich in functional groups and allows chemical functionalization with diverse quantum dots (QD), as well as with different Alexa Fluor (AF) dyes, leading to hybrid fluorescent fibers with variable emission wavelengths, from green to near infrared, depending on the QD and AFs coupled. For fibers containing the pair AF488 and AF647, efficient fluorescence energy transfer from the covalently coupled donor (AF488) to acceptor tags (AF647) takes place. Apoferritin fibers are proposed here as a new promising template for obtaining hybrid functional materials. Electronic supplementary information (ESI) available: TEM images of ferritin protein fiber formation, and apoferritin after 18 days of heat treatment; FLIM-PIE technique details; fluorescence emission spectra of apoferritin and β-lactoglobulin fibers functionalized with different QDs. See DOI: 10.1039/c6nr01044j
The p-wave superconductivity in the presence of Rashba interaction in 2DEG
Weng, Ke-Chuan; Hu, C. D.
2016-01-01
We investigate the effect of the Rashba interaction on two dimensional superconductivity. The presence of the Rashba interaction lifts the spin degeneracy and gives rise to the spectrum of two bands. There are intraband and interband pairs scattering which result in the coupled gap equations. We find that there are isotropic and anisotropic components in the gap function. The latter has the form of cos φk where . The former is suppressed because the intraband and the interband scatterings nearly cancel each other. Hence, −the system should exhibit the p-wave superconductivity. We perform a detailed study of electron-phonon interaction for 2DEG and find that, if only normal processes are considered, the effective coupling strength constant of this new superconductivity is about one-half of the s-wave case in the ordinary 2DEG because of the angular average of the additional in the anisotropic gap function. By taking into account of Umklapp processes, we find they are the major contribution in the electron-phonon coupling in superconductivity and enhance the transition temperature Tc. PMID:27459677
A coupled analytical model for hydrostatic response of 1-3 piezocomposites.
Rajapakse, Nimal; Chen, Yue
2008-08-01
This study presents a fully coupled analysis of a unit cell of a 1-3 piezocomposite under hydrostatic loading. The governing equations for coupled axisymmetric electroelastic field of a transversely isotropic piezoelectric medium and a transversely isotropic elastic medium are used. A reduced form of the analytical general solutions expressed in terms of series of modified Bessel functions of the first and second kind are used. The solution of the boundary-value problem corresponding to a unit cell is presented. The effective properties of a 1-3 piezocomposite are obtained for different fiber volume fractions, polymer and piezoceramic properties, and fiber aspect ratios. Comparisons with previously reported simplified and uncoupled models are made.
Chemoselective covalent coupling of oligonucleotide probes to self-assembled monolayers.
Devaraj, Neal K; Miller, Gregory P; Ebina, Wataru; Kakaradov, Boyko; Collman, James P; Kool, Eric T; Chidsey, Christopher E D
2005-06-22
A chemoselective route to routinely and rapidly attach oligonucleotide probes to well-defined surfaces is presented. Cu(I) tris(benzyltriazolylmethyl)amine-catalyzed coupling of terminal acetylenes to azides on a self-assembled monolayer is used instead of traditional nucleophilic-electrophilic coupling reactions. The reaction proceeds well even in the presence of purposely introduced nucleophilic and electrophilic impurities. The density of oligonucleotide probes can be controlled by controlling the amount of azide functionality. Although most of our work was done on gold surfaces, this technique should be readily applicable to any surface on which an azide-containing monolayer can be assembled as we have preliminarily demonstrated by derivatizing azidotrimethoxysilane-modified glass slides with fluorescein-containing oligonucleotides.
Topological Transformation of a Metal–Organic Framework Triggered by Ligand Exchange
Miera, Greco Gonzalez; Gomez, Antonio Bermejo; Chupas, Peter J.; ...
2017-04-06
Metal-organic frameworks (MOFs) have shown to be unsuspectedly dynamic. Here we describe the topological interconversion of a new framework in the bio-MOF-100 family (dia-c) into the known isomer (lcs) by doubling the pore volume, which occurs during post-synthesis modifications. During this transformation, re-assembling of the MOF building blocks into a completely different framework occurs, involving breaking/forming of metal-ligand bonds. MOF crystallinity and local structure are retained, as determined by powder X-ray diffraction (PXRD) and pair distribution function (PDF) analyses, respectively. We have exploited the inherent dynamism of bio-MOF-100 by coupling chemical decorations of the framework using solvent-assisted ligand exchange (SALE)more » to the topological change. Following this method and starting from the pristine dense dia-c phase, open lcs-bio-MOF-100 was prepared and functionalized in-situ with an iridium complex (IrL). Alternatively, the dia-c MOF could be modified with wide-ranging amounts of IrL up to ca. 50 mol%, as determined by solution 1H Nuclear Magnetic Resonance (NMR) spectroscopy, by tuning the concentration of the solutions used and with no evidence for isomer interconversion. The single-site nature of the iridium complexes within the MOFs was assessed by X-ray absorption spectroscopy (XAS) and PDF analyses. As a result, ligand exchanges occurred quantitatively at room temperature, with no need of excess of the iridium metallolinker.« less
Topological Transformation of a Metal–Organic Framework Triggered by Ligand Exchange
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miera, Greco Gonzalez; Gomez, Antonio Bermejo; Chupas, Peter J.
Metal-organic frameworks (MOFs) have shown to be unsuspectedly dynamic. Here we describe the topological interconversion of a new framework in the bio-MOF-100 family (dia-c) into the known isomer (lcs) by doubling the pore volume, which occurs during post-synthesis modifications. During this transformation, re-assembling of the MOF building blocks into a completely different framework occurs, involving breaking/forming of metal-ligand bonds. MOF crystallinity and local structure are retained, as determined by powder X-ray diffraction (PXRD) and pair distribution function (PDF) analyses, respectively. We have exploited the inherent dynamism of bio-MOF-100 by coupling chemical decorations of the framework using solvent-assisted ligand exchange (SALE)more » to the topological change. Following this method and starting from the pristine dense dia-c phase, open lcs-bio-MOF-100 was prepared and functionalized in-situ with an iridium complex (IrL). Alternatively, the dia-c MOF could be modified with wide-ranging amounts of IrL up to ca. 50 mol%, as determined by solution 1H Nuclear Magnetic Resonance (NMR) spectroscopy, by tuning the concentration of the solutions used and with no evidence for isomer interconversion. The single-site nature of the iridium complexes within the MOFs was assessed by X-ray absorption spectroscopy (XAS) and PDF analyses. As a result, ligand exchanges occurred quantitatively at room temperature, with no need of excess of the iridium metallolinker.« less
Implicit Multisensory Associations Influence Voice Recognition
von Kriegstein, Katharina; Giraud, Anne-Lise
2006-01-01
Natural objects provide partially redundant information to the brain through different sensory modalities. For example, voices and faces both give information about the speech content, age, and gender of a person. Thanks to this redundancy, multimodal recognition is fast, robust, and automatic. In unimodal perception, however, only part of the information about an object is available. Here, we addressed whether, even under conditions of unimodal sensory input, crossmodal neural circuits that have been shaped by previous associative learning become activated and underpin a performance benefit. We measured brain activity with functional magnetic resonance imaging before, while, and after participants learned to associate either sensory redundant stimuli, i.e. voices and faces, or arbitrary multimodal combinations, i.e. voices and written names, ring tones, and cell phones or brand names of these cell phones. After learning, participants were better at recognizing unimodal auditory voices that had been paired with faces than those paired with written names, and association of voices with faces resulted in an increased functional coupling between voice and face areas. No such effects were observed for ring tones that had been paired with cell phones or names. These findings demonstrate that brief exposure to ecologically valid and sensory redundant stimulus pairs, such as voices and faces, induces specific multisensory associations. Consistent with predictive coding theories, associative representations become thereafter available for unimodal perception and facilitate object recognition. These data suggest that for natural objects effective predictive signals can be generated across sensory systems and proceed by optimization of functional connectivity between specialized cortical sensory modules. PMID:17002519
Exotic s-wave superconductivity in alkali-doped fullerides.
Nomura, Yusuke; Sakai, Shiro; Capone, Massimo; Arita, Ryotaro
2016-04-20
Alkali-doped fullerides (A3C60 with A = K, Rb, Cs) show a surprising phase diagram, in which a high transition-temperature (Tc) s-wave superconducting state emerges next to a Mott insulating phase as a function of the lattice spacing. This is in contrast with the common belief that Mott physics and phonon-driven s-wave superconductivity are incompatible, raising a fundamental question on the mechanism of the high-Tc superconductivity. This article reviews recent ab initio calculations, which have succeeded in reproducing comprehensively the experimental phase diagram with high accuracy and elucidated an unusual cooperation between the electron-phonon coupling and the electron-electron interactions leading to Mott localization to realize an unconventional s-wave superconductivity in the alkali-doped fullerides. A driving force behind the exotic physics is unusual intramolecular interactions, characterized by the coexistence of a strongly repulsive Coulomb interaction and a small effectively negative exchange interaction. This is realized by a subtle energy balance between the coupling with the Jahn-Teller phonons and Hund's coupling within the C60 molecule. The unusual form of the interaction leads to a formation of pairs of up- and down-spin electrons on the molecules, which enables the s-wave pairing. The emergent superconductivity crucially relies on the presence of the Jahn-Teller phonons, but surprisingly benefits from the strong correlations because the correlations suppress the kinetic energy of the electrons and help the formation of the electron pairs, in agreement with previous model calculations. This confirms that the alkali-doped fullerides are a new type of unconventional superconductors, where the unusual synergy between the phonons and Coulomb interactions drives the high-Tc superconductivity.
Klapilová, Kateřina; Cobey, Kelly D; Wells, Timothy; Roberts, S Craig; Weiss, Petr; Havlíček, Jan
2014-01-10
Data from 1155 Czech women (493 using oral contraception, 662 non-users), obtained from the Czech National Survey of Sexual Behavior, were used to investigate evolutionary-based hypotheses concerning the predictive value of current oral contraceptive (OC) use on extra-pair and dyadic (in-pair) sexual behavior of coupled women. Specifically, the aim was to determine whether current OC use was associated with lower extra-pair and higher in-pair sexual interest and behavior, because OC use suppresses cyclical shifts in mating psychology that occur in normally cycling women. Zero-inflated Poisson (ZIP) regression and negative binomial models were used to test associations between OC use and these sexual measures, controlling for other relevant predictors (e.g., age, parity, in-pair sexual satisfaction, relationship length). The overall incidence of having had an extra-pair partner or one-night stand in the previous year was not related to current OC use (the majority of the sample had not). However, among the women who had engaged in extra-pair sexual behavior, OC users had fewer one-night stands than non-users, and tended to have fewer partners, than non-users. OC users also had more frequent dyadic intercourse than non-users, potentially indicating higher commitment to their current relationship. These results suggest that suppression of fertility through OC use may alter important aspects of female sexual behavior, with potential implications for relationship functioning and stability.
Guo, Longhua; Yang, Huanghao; Qiu, Bin; Xiao, Xueyang; Xue, Linlin; Kim, Donghwan; Chen, Guonan
2009-12-01
A capillary electrophoresis coupled with electrochemiluminescent detection system (CE-ECL) was developed for the detection of polymerase chain reaction (PCR) amplicons. The ECL luminophore, tris(1,10-phenanthroline) ruthenium(II) (Ru(phen)(3)(2+)), was labeled to the PCR primers before amplification. Ru(phen)(3)(2+) was then introduced to PCR amplicons by PCR amplification. Eventually, the PCR amplicons were separated and detected by the homemade CE-ECL system. The detection of a typical genetically modified organism (GMO), Roundup Ready Soy (RRS), was shown as an example to demonstrate the reliability of the proposed approach. Four pairs of primers were amplified by multiple PCR (MPCR) simultaneously, three of which were targeted on the specific sequence of exogenous genes of RRS, and another was targeted on the endogenous reference gene of soybean. Both the conditions for PCR amplification and CE-ECL separation and detection were investigated in detail. Results showed that, under the optimal conditions, the proposed method can accurately identifying RRS. The corresponding limit of detection (LOD) was below 0.01% with 35 PCR cycles.
An {alpha}-cluster model for {sub {Lambda}}{sup 9}Be spectroscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Filikhin, I. N., E-mail: ifilikhin@nccu.edu; Suslov, V. M.; Vlahovic, B.
An {alpha}-cluster model is applied to study low-lying spectrum of the {sub {Lambda}}{sup 9}Be hypernucleus. The three-body {alpha}{alpha}{Lambda} problem is numerically solved by the Faddeev equations in configuration space using phenomenological pair potentials. We found a set of the potentials that reproduces experimental data for the ground state (1/2{sup +}) binding energy and excitation energy of the 5/2{sup +} and 3/2{sup +} states, simultaneously. This set includes the Ali-Bodmer potential of the version 'e' for {alpha}{alpha} and modified Tang-Herndon potential for {alpha}{Lambda} interactions. The spin-orbit {alpha}{Lambda} interaction is given by modified Scheerbaum potential. Low-lying energy levels are evaluated applying amore » variant of the analytical continuation method in the coupling constant. It is shown that the spectral properties of {sub {Lambda}}{sup 9}Be can be classified as an analog of {sup 9}Be spectrum with the exception of several 'genuine hypernuclear states'. This agrees qualitatively with previous studies. The results are compared with experimental data and new interpretation of the spectral structure is discussed.« less
Efficient creation of dipolar coupled nitrogen-vacancy spin qubits in diamond
NASA Astrophysics Data System (ADS)
Jakobi, I.; Momenzadeh, S. A.; Fávaro de Oliveira, F.; Michl, J.; Ziem, F.; Schreck, M.; Neumann, P.; Denisenko, A.; Wrachtrup, J.
2016-09-01
Coherently coupled pairs or multimers of nitrogen-vacancy defect electron spins in diamond have many promising applications especially in quantum information processing (QIP) but also in nanoscale sensing applications. Scalable registers of spin qubits are essential to the progress of QIP. Ion implantation is the only known technique able to produce defect pairs close enough to allow spin coupling via dipolar interaction. Although several competing methods have been proposed to increase the resulting resolution of ion implantation, the reliable creation of working registers is still to be demonstrated. The current limitation are residual radiation-induced defects, resulting in degraded qubit performance as trade-off for positioning accuracy. Here we present an optimized estimation of nanomask implantation parameters that are most likely to produce interacting qubits under standard conditions. We apply our findings to a well-established technique, namely masks written in electron-beam lithography, to create coupled defect pairs with a reasonable probability. Furthermore, we investigate the scaling behavior and necessary improvements to efficiently engineer interacting spin architectures.
All-optical switching based on optical fibre long period gratings modified bacteriorhodopsin
NASA Astrophysics Data System (ADS)
Korposh, S.; James, S.; Partridge, M.; Sichka, M.; Tatam, R.
2018-05-01
All-optical switching using an optical fibre long-period gating (LPG) modified with bacteriorhodopsin (bR) is demonstrated. The switching process is based on the photo-induced RI change of bR, which in turn changes the phase matching conditions of the mode coupling by the LPG, leading to modulation of the propagating light. The effect was studied with an LPG immersed into a bR solution and with LPGs coated with the bR films, deposited onto the LPGs using the layer-by-layer electrostatic self-assembly (LbL) method. The dependence of the all-optical switching efficiency upon the concentration of the bR solution and on the grating period of the LPG was also studied. In addition, an in-fibre Mach-Zehnder interferometer (MZI) composed of a cascaded LPG pair separated by 30 mm and modified with bR was used to enhance the wavelength range of all-optical switching. The switching wavelength is determined by the grating period of the LPG. Switching efficiencies of 16% and 35% were observed when an LPG and an MZI were immersed into bR solutions, respectively. The switching time for devices coated with bR-films was within 1 s, 10 times faster than that observed for devices immersed into bR solution.
NASA Astrophysics Data System (ADS)
Sadeghipour, Negar; Davis, Scott C.; Tichauer, Kenneth M.
2018-02-01
Dynamic fluorescence imaging approaches can be used to estimate the concentration of cell surface receptors in vivo. Kinetic models are used to generate the final estimation by taking the targeted imaging agent concentration as a function of time. However, tissue absorption and scattering properties cause the final readout signal to be on a different scale than the real fluorescent agent concentration. In paired-agent imaging approaches, simultaneous injection of a suitable control imaging agent with a targeted one can account for non-specific uptake and retention of the targeted agent. Additionally, the signal from the control agent can be a normalizing factor to correct for tissue optical property differences. In this study, the kinetic model used for paired-agent imaging analysis (i.e., simplified reference tissue model) is modified and tested in simulation and experimental data in a way that accounts for the scaling correction within the kinetic model fit to the data to ultimately extract an estimate of the targeted biomarker concentration.
Solid-propellant rocket motor internal ballistic performance variation analysis, phase 2
NASA Technical Reports Server (NTRS)
Sforzini, R. H.; Foster, W. A., Jr.
1976-01-01
The Monte Carlo method was used to investigate thrust imbalance and its first time derivative throughtout the burning time of pairs of solid rocket motors firing in parallel. Results obtained compare favorably with Titan 3 C flight performance data. Statistical correlations of the thrust imbalance at various times with corresponding nominal trace slopes suggest several alternative methods of predicting thrust imbalance. The effect of circular-perforated grain deformation on internal ballistics is discussed, and a modified design analysis computer program which permits such an evaluation is presented. Comparisons with SRM firings indicate that grain deformation may account for a portion of the so-called scale factor on burning rate between large motors and strand burners or small ballistic test motors. Thermoelastic effects on burning rate are also investigated. Burning surface temperature is calculated by coupling the solid phase energy equation containing a strain rate term with a model of gas phase combustion zone using the Zeldovich-Novozhilov technique. Comparisons of solutions with and without the strain rate term indicate a small but possibly significant effect of the thermoelastic coupling.
Application of Weighted Gene Co-expression Network Analysis for Data from Paired Design.
Li, Jianqiang; Zhou, Doudou; Qiu, Weiliang; Shi, Yuliang; Yang, Ji-Jiang; Chen, Shi; Wang, Qing; Pan, Hui
2018-01-12
Investigating how genes jointly affect complex human diseases is important, yet challenging. The network approach (e.g., weighted gene co-expression network analysis (WGCNA)) is a powerful tool. However, genomic data usually contain substantial batch effects, which could mask true genomic signals. Paired design is a powerful tool that can reduce batch effects. However, it is currently unclear how to appropriately apply WGCNA to genomic data from paired design. In this paper, we modified the current WGCNA pipeline to analyse high-throughput genomic data from paired design. We illustrated the modified WGCNA pipeline by analysing the miRNA dataset provided by Shiah et al. (2014), which contains forty oral squamous cell carcinoma (OSCC) specimens and their matched non-tumourous epithelial counterparts. OSCC is the sixth most common cancer worldwide. The modified WGCNA pipeline identified two sets of novel miRNAs associated with OSCC, in addition to the existing miRNAs reported by Shiah et al. (2014). Thus, this work will be of great interest to readers of various scientific disciplines, in particular, genetic and genomic scientists as well as medical scientists working on cancer.
NASA Astrophysics Data System (ADS)
Feng, Yan; Lin, Wei; Murillo, M. S.
2017-11-01
Transport properties of two-dimensional (2D) strongly coupled dusty plasmas have been investigated in detail, but never for viscosity with a strong perpendicular magnetic field; here, we examine this scenario using Langevin dynamics simulations of 2D liquids with a binary Yukawa interparticle interaction. The shear viscosity η of 2D liquid dusty plasma is estimated from the simulation data using the Green-Kubo relation, which is the integration of the shear stress autocorrelation function. It is found that, when a perpendicular magnetic field is applied, the shear viscosity of 2D liquid dusty plasma is modified substantially. When the magnetic field is increased, its viscosity increases at low temperatures, while at high temperatures its viscosity diminishes. It is determined that these different variational trends of η arise from the different behaviors of the kinetic and potential parts of the shear stress under external magnetic fields.
ZHONG, BO; CARLTON, ELIZABETH J.; SPEAR, ROBERT C.
2009-01-01
The environmental determinants of vector- and host-borne diseases include time-varying components that modify key transmission parameters, resulting in transient couplings between environmental phenomena and transmission processes. While some time-varying drivers are periodic in nature, some are aperiodic, such as those that involve episodic events or complex patterns of human behavior. Understanding these couplings can allow for prediction of periods of peak infection risk, and ultimately presents opportunities for optimizing intervention selection and timing. Schistosome macroparasites of humans exhibit multiple free-living stages as well as intermediate hosts, and are thus model organisms for illustrating the influence of environmental forcing on transmission. Time-varying environmental factors, termed gating functions, for schistosomes include larval response to temperature and rainfall, seasonal water contact patterns and snail population dynamics driven by weather variables. The biological bases for these modifiers are reviewed, and their values are estimated and incorporated into a transmission model that simulates a multi-year period in two schistosomiasis endemic regions. Modeling results combined with a scale dependent correlation analysis indicate the end effect of these site-specific gating functions is to strongly govern worm burden in these communities, in a manner particularly sensitive to the hydrological differences between sites. Two classes of gating functions were identified, those that act in concert to modify human infection (and determine worm acquisition late in the season), and those that act on snail infection (and determine early season worm acquisition). The importance of these factors for control programs and surveillance is discussed. PMID:20454601
Lee, Ji-Hyun; Kim, Su-Jin; Lee, Sul; Rhee, Jin-Kyu; Lee, Soo Young; Na, Yun-Cheol
2017-09-01
A sensitive and selective capillary electrophoresis-mass spectrometry (CE-MS) method for determination of saturated fatty acids (FAs) was developed by using dicationic ion-pairing reagents forming singly charged complexes with anionic FAs. For negative ESI detection, 21 anionic FAs at pH 10 were separated using ammonium formate buffer containing 40% acetonitrile modifier in normal polarity mode in CE by optimizing various parameters. This method showed good separation efficiency, but the sensitivity of the method to short-chain fatty acids was quite low, causing acetic and propionic acids to be undetectable even at 100 mgL -1 in negative ESI-MS detection. Out of the four dicationic ion-pairing reagents tested, N,N'-dibutyl 1,1'-pentylenedipyrrolidium infused through a sheath-liquid ion source during CE separation was the best reagent regarding improved sensitivity and favorably complexed with anionic FAs for detection in positive ion ESI-MS. The monovalent complex showed improved ionization efficiency, providing the limits of detection (LODs) for 15 FAs ranging from 0.13 to 2.88 μg/mL and good linearity (R 2 > 0.99) up to 150 μg/mL. Compared to the negative detection results, the effect was remarkable for the detection of short- and medium-chain fatty acids. The optimized CE-paired ion electrospray (PIESI)-MS method was utilized for the determination of FAs in cheese and coffee with simple pretreatment. This method may be extended for sensitive analysis of unsaturated fatty acids. Copyright © 2017 Elsevier B.V. All rights reserved.
Computational studies of metal-metal and metal-ligand interactions
NASA Technical Reports Server (NTRS)
Barnes, Leslie A.
1992-01-01
The geometric structure of Cr(CO)6 is optimized at the modified coupled-pair functional (MCPF), single and double excitation coupled-cluster (CCSD) and CCSD(T) levels of theory (including a perturbational estimate for connected triple excitations), and the force constants for the totally symmetric representation are determined. The geometry of Cr(CO)5 is partially optimized at the MCPF, CCSD and CCSD(T) levels of theory. Comparison with experimental data shows that the CCSD(T) method gives the best results for the structures and force constants, and that remaining errors are probably due to deficiencies in the one-particle basis sets used for CO. A detailed comparison of the properties of free CO is therefore given, at both the MCPF and CCSD/CCSD(T) levels of treatment, using a variety of basis sets. With very large one-particle basis sets, the SSCD(T) method gives excellent results for the bond distance, dipole moment and harmonic frequency of free CO. The total binding energies of Cr(CO)6 and Cr(CO)5 are also determined at the MCPF, CCSD and CCSD(T) levels of theory. The CCSD(T) method gives a much larger total binding energy than either the MCPF or CCSD methods. An analysis of the basis set superposition error (BSSE) at the MCPF level of treatment points out limitations in the one-particle basis used here and in a previous study. Calculations using larger basis sets reduced the BSSE, but the total binding energy of Cr(CO)6 is still significantly smaller than the experimental value, although the first CO bond dissociation energy of Cr(CO)6 is well described. An investigation of 3s3p correlation reveals only a small effect. The remaining discrepancy between the experimental and theoretical total binding energy of Cr(CO)6 is probably due to limitations in the one-particle basis, rather than limitations in the correlation treatment. In particular an additional d function and an f function on each C and O are needed to obtain quantitative results. This is underscored by the fact that even using a very large primitive se (1042 primitive functions contracted to 300 basis functions), the superposition error for the total binding energy of Cr(CO)6 is 22 kcal/mol at the MCPF level of treatment.
Negative coupled inductors for polyphase choppers
NASA Technical Reports Server (NTRS)
Jamieson, Robert S. (Inventor)
1984-01-01
A technique for negatively coupling the outputs of polyphase choppers is disclosed, wherein the output inductance of each phase is divided into two windings, and each winding is negatively coupled to a corresponding winding of a neighboring phase. In a preferred embodiment for a three-phase chopper circuit, the output inductance of phase A is divided into windings 100 and 102, the output inductance of phase B is divided into windings 110 and 112, and the output inductance of phase C is divided into windings 120 and 122. Pairs of windings 100 and 110, 112 and 120, and 102 and 122 are respectively disposed in transformers arranged for negatively coupling the windings of each pair.
Employing conservation of co-expression to improve functional inference
Daub, Carsten O; Sonnhammer, Erik LL
2008-01-01
Background Observing co-expression between genes suggests that they are functionally coupled. Co-expression of orthologous gene pairs across species may improve function prediction beyond the level achieved in a single species. Results We used orthology between genes of the three different species S. cerevisiae, D. melanogaster, and C. elegans to combine co-expression across two species at a time. This led to increased function prediction accuracy when we incorporated expression data from either of the other two species and even further increased when conservation across both of the two other species was considered at the same time. Employing the conservation across species to incorporate abundant model organism data for the prediction of protein interactions in poorly characterized species constitutes a very powerful annotation method. Conclusion To be able to employ the most suitable co-expression distance measure for our analysis, we evaluated the ability of four popular gene co-expression distance measures to detect biologically relevant interactions between pairs of genes. For the expression datasets employed in our co-expression conservation analysis above, we used the GO and the KEGG PATHWAY databases as gold standards. While the differences between distance measures were small, Spearman correlation showed to give most robust results. PMID:18808668
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chaiboonchoe, Amphun; Ghamsari, Lila; Dohai, Bushra
Metabolic networks, which are mathematical representations of organismal metabolism, are reconstructed to provide computational platforms to guide metabolic engineering experiments and explore fundamental questions on metabolism. Systems level analyses, such as interrogation of phylogenetic relationships within the network, can provide further guidance on the modification of metabolic circuitries. Chlamydomonas reinhardtii, a biofuel relevant green alga that has retained key genes with plant, animal, and protist affinities, serves as an ideal model organism to investigate the interplay between gene function and phylogenetic affinities at multiple organizational levels. Here, using detailed topological and functional analyses, coupled with transcriptomics studies on a metabolicmore » network that we have reconstructed for C. reinhardtii, we show that network connectivity has a significant concordance with the co-conservation of genes; however, a distinction between topological and functional relationships is observable within the network. Dynamic and static modes of co-conservation were defined and observed in a subset of gene-pairs across the network topologically. In contrast, genes with predicted synthetic interactions, or genes involved in coupled reactions, show significant enrichment for both shorter and longer phylogenetic distances. Based on our results, we propose that the metabolic network of C. reinhardtii is assembled with an architecture to minimize phylogenetic profile distances topologically, while it includes an expansion of such distances for functionally interacting genes. This arrangement may increase the robustness of C. reinhardtii's network in dealing with varied environmental challenges that the species may face. As a result, the defined evolutionary constraints within the network, which identify important pairings of genes in metabolism, may offer guidance on synthetic biology approaches to optimize the production of desirable metabolites.« less
Chaiboonchoe, Amphun; Ghamsari, Lila; Dohai, Bushra; Ng, Patrick; Khraiwesh, Basel; Jaiswal, Ashish; Jijakli, Kenan; Koussa, Joseph; Nelson, David R; Cai, Hong; Yang, Xinping; Chang, Roger L; Papin, Jason; Yu, Haiyuan; Balaji, Santhanam; Salehi-Ashtiani, Kourosh
2016-07-19
Metabolic networks, which are mathematical representations of organismal metabolism, are reconstructed to provide computational platforms to guide metabolic engineering experiments and explore fundamental questions on metabolism. Systems level analyses, such as interrogation of phylogenetic relationships within the network, can provide further guidance on the modification of metabolic circuitries. Chlamydomonas reinhardtii, a biofuel relevant green alga that has retained key genes with plant, animal, and protist affinities, serves as an ideal model organism to investigate the interplay between gene function and phylogenetic affinities at multiple organizational levels. Here, using detailed topological and functional analyses, coupled with transcriptomics studies on a metabolic network that we have reconstructed for C. reinhardtii, we show that network connectivity has a significant concordance with the co-conservation of genes; however, a distinction between topological and functional relationships is observable within the network. Dynamic and static modes of co-conservation were defined and observed in a subset of gene-pairs across the network topologically. In contrast, genes with predicted synthetic interactions, or genes involved in coupled reactions, show significant enrichment for both shorter and longer phylogenetic distances. Based on our results, we propose that the metabolic network of C. reinhardtii is assembled with an architecture to minimize phylogenetic profile distances topologically, while it includes an expansion of such distances for functionally interacting genes. This arrangement may increase the robustness of C. reinhardtii's network in dealing with varied environmental challenges that the species may face. The defined evolutionary constraints within the network, which identify important pairings of genes in metabolism, may offer guidance on synthetic biology approaches to optimize the production of desirable metabolites.
Chaiboonchoe, Amphun; Ghamsari, Lila; Dohai, Bushra; ...
2016-06-14
Metabolic networks, which are mathematical representations of organismal metabolism, are reconstructed to provide computational platforms to guide metabolic engineering experiments and explore fundamental questions on metabolism. Systems level analyses, such as interrogation of phylogenetic relationships within the network, can provide further guidance on the modification of metabolic circuitries. Chlamydomonas reinhardtii, a biofuel relevant green alga that has retained key genes with plant, animal, and protist affinities, serves as an ideal model organism to investigate the interplay between gene function and phylogenetic affinities at multiple organizational levels. Here, using detailed topological and functional analyses, coupled with transcriptomics studies on a metabolicmore » network that we have reconstructed for C. reinhardtii, we show that network connectivity has a significant concordance with the co-conservation of genes; however, a distinction between topological and functional relationships is observable within the network. Dynamic and static modes of co-conservation were defined and observed in a subset of gene-pairs across the network topologically. In contrast, genes with predicted synthetic interactions, or genes involved in coupled reactions, show significant enrichment for both shorter and longer phylogenetic distances. Based on our results, we propose that the metabolic network of C. reinhardtii is assembled with an architecture to minimize phylogenetic profile distances topologically, while it includes an expansion of such distances for functionally interacting genes. This arrangement may increase the robustness of C. reinhardtii's network in dealing with varied environmental challenges that the species may face. As a result, the defined evolutionary constraints within the network, which identify important pairings of genes in metabolism, may offer guidance on synthetic biology approaches to optimize the production of desirable metabolites.« less
NASA Astrophysics Data System (ADS)
Ghorbani, Elaheh; Shahbazi, Farhad; Mosadeq, Hamid
2016-10-01
Using the modified spin wave method, we study the {{J}1}-{{J}2} Heisenberg model with first and second neighbor antiferromagnetic exchange interactions. For a symmetric S = 1/2 model, with the same couplings for all the equivalent neighbors, we find three phases in terms of the frustration parameter \\barα={{J}2}/{{J}1} : (1) a commensurate collinear ordering with staggered magnetization (Néel.I state) for 0≤slant \\barα≲ 0.207 , (2) a magnetically gapped disordered state for 0.207≲ \\barα≲ 0.369 , preserving all the symmetries of the Hamiltonian and lattice, which by definition is a quantum spin liquid (QSL) state and (3) a commensurate collinear ordering in which two out of the three nearest neighbor magnetizations are antiparallel and the remaining pair are parallel (Néel.II state), for 0.396≲ \\barα≤slant 1 . We also explore the phase diagram of a distorted {{J}1}-{{J}2} model with S = 1/2. Distortion is introduced as an inequality of one nearest neighbor coupling with the other two. This yields a richer phase diagram by the appearance of a new gapped QSL, a gapless QSL and also a valence bond crystal phase in addition to the previous three phases found for the undistorted model.
Superconductivity in three-dimensional spin-orbit coupled semimetals
NASA Astrophysics Data System (ADS)
Savary, Lucile; Ruhman, Jonathan; Venderbos, Jörn W. F.; Fu, Liang; Lee, Patrick A.
2017-12-01
Motivated by the experimental detection of superconductivity in the low-carrier density half-Heusler compound YPtBi, we study the pairing instabilities of three-dimensional strongly spin-orbit coupled semimetals with a quadratic band touching point. In these semimetals the electronic structure at the Fermi energy is described by spin j =3/2 quasiparticles, which are fundamentally different from those in ordinary metals with spin j =1/2 . For both local and nonlocal pairing channels in j =3/2 materials we develop a general approach to analyzing pairing instabilities, thereby providing the computational tools needed to investigate the physics of these systems beyond phenomenological considerations. Furthermore, applying our method to a generic density-density interaction, we establish that: (i) The pairing strengths in the different symmetry channels uniquely encode the j =3/2 nature of the Fermi surface band structure—a manifestation of the fundamental difference with ordinary metals. (ii) The leading odd-parity pairing instabilities are different for electron doping and hole doping. Finally, we argue that polar phonons, i.e., Coulomb interactions mediated by the long-ranged electric polarization of the optical phonon modes, provide a coupling strength large enough to account for a Kelvin-range transition temperature in the s -wave channel, and are likely to play an important role in the overall attraction in non-s -wave channels. Moreover, the explicit calculation of the coupling strengths allows us to conclude that the two largest non-s -wave contributions occur in nonlocal channels, in contrast with what has been commonly assumed.
NASA Technical Reports Server (NTRS)
Goldowsky, Michael P. (Inventor)
1987-01-01
A reciprocating linear motor is formed with a pair of ring-shaped permanent magnets having opposite radial polarizations, held axially apart by a nonmagnetic yoke, which serves as an axially displaceable armature assembly. A pair of annularly wound coils having axial lengths which differ from the axial lengths of the permanent magnets are serially coupled together in mutual opposition and positioned with an outer cylindrical core in axial symmetry about the armature assembly. One embodiment includes a second pair of annularly wound coils serially coupled together in mutual opposition and an inner cylindrical core positioned in axial symmetry inside the armature radially opposite to the first pair of coils. Application of a potential difference across a serial connection of the two pairs of coils creates a current flow perpendicular to the magnetic field created by the armature magnets, thereby causing limited linear displacement of the magnets relative to the coils.
Xu, Junyi; Zheng, Qiuyue; Yu, Ling; Liu, Ran; Zhao, Xin; Wang, Gang; Wang, Qinghua; Cao, Jijuan
2013-11-01
The loop-mediated isothermal amplification (LAMP) assay indicates a potential and valuable means for genetically modified organism (GMO) detection especially for its rapidity, simplicity, and low cost. We developed and evaluated the specificity and sensitivity of the LAMP method for rapid detection of the genetically modified (GM) maize T25. A set of six specific primers was successfully designed to recognize six distinct sequences on the target gene, including a pair of inner primers, a pair of outer primers, and a pair of loop primers. The optimum reaction temperature and time were verified to be 65°C and 45 min, respectively. The detection limit of this LAMP assay was 5 g kg(-1) GMO component. Comparative experiments showed that the LAMP assay was a simple, rapid, accurate, and specific method for detecting the GM maize T25.
Loop-mediated isothermal amplification (LAMP) method for detection of genetically modified maize T25
Xu, Junyi; Zheng, Qiuyue; Yu, Ling; Liu, Ran; Zhao, Xin; Wang, Gang; Wang, Qinghua; Cao, Jijuan
2013-01-01
The loop-mediated isothermal amplification (LAMP) assay indicates a potential and valuable means for genetically modified organism (GMO) detection especially for its rapidity, simplicity, and low cost. We developed and evaluated the specificity and sensitivity of the LAMP method for rapid detection of the genetically modified (GM) maize T25. A set of six specific primers was successfully designed to recognize six distinct sequences on the target gene, including a pair of inner primers, a pair of outer primers, and a pair of loop primers. The optimum reaction temperature and time were verified to be 65°C and 45 min, respectively. The detection limit of this LAMP assay was 5 g kg−1 GMO component. Comparative experiments showed that the LAMP assay was a simple, rapid, accurate, and specific method for detecting the GM maize T25. PMID:24804053
Magnetic exchange coupling through superconductors: A trilayer study
NASA Astrophysics Data System (ADS)
Sá de Melo, C. A.
2000-11-01
The possibility of magnetic exchange coupling between two ferromagnets (F) separated by a superconductor (S) spacer is analyzed using the functional integral method. For this coupling to occur three prima facie conditions need to be satisfied. First, an indirect exchange coupling between the ferromagnets must exist when the superconductor is in its normal state. Second, superconductivity must not be destroyed due to the proximity to ferromagnetic boundaries. Third, roughness of the F/S interfaces must be small. Under these conditions, when the superconductor is cooled to below its critical temperature, the magnetic coupling changes. The appearance of the superconducting gap introduces a new length scale (the coherence length of the superconductor) and modifies the temperature dependence of the indirect exchange coupling existent in the normal state. The magnetic coupling is oscillatory both above and below the the critical temperature of the superconductor, as well as strongly temperature-dependent. However, at low temperatures the indirect exchange coupling decay length is controlled by the coherence length of the superconductor, while at temperatures close to and above the critical temperature of the superconductor the magnetic coupling decay length is controlled by the thermal length.
Palamiuc, Lavinia; Noble, Tallie; Witham, Emily; Ratanpal, Harkaranveer; Vaughan, Megan; Srinivasan, Supriya
2017-01-01
Serotonin, a central neuromodulator with ancient ties to feeding and metabolism, is a major driver of body fat loss. However, mechanisms by which central serotonin action leads to fat loss remain unknown. Here, we report that the FLP-7 neuropeptide and its cognate receptor, NPR-22, function as the ligand-receptor pair that defines the neuroendocrine axis of serotonergic body fat loss in Caenorhabditis elegans. FLP-7 is secreted as a neuroendocrine peptide in proportion to fluctuations in neural serotonin circuit functions, and its release is regulated from secretory neurons via the nutrient sensor AMPK. FLP-7 acts via the NPR-22/Tachykinin2 receptor in the intestine and drives fat loss via the adipocyte triglyceride lipase ATGL-1. Importantly, this ligand-receptor pair does not alter other serotonin-dependent behaviours including food intake. For global modulators such as serotonin, the use of distinct neuroendocrine peptides for each output may be one means to achieve phenotypic selectivity. PMID:28128367
Quantifying Environmental Effects on the Decay of Hole Transfer Couplings in Biosystems.
Ramos, Pablo; Pavanello, Michele
2014-06-10
In the past two decades, many research groups worldwide have tried to understand and categorize simple regimes in the charge transfer of such biological systems as DNA. Theoretically speaking, the lack of exact theories for electron-nuclear dynamics on one side and poor quality of the parameters needed by model Hamiltonians and nonadiabatic dynamics alike (such as couplings and site energies) on the other are the two main difficulties for an appropriate description of the charge transfer phenomena. In this work, we present an application of a previously benchmarked and linear-scaling subsystem density functional theory (DFT) method for the calculation of couplings, site energies, and superexchange decay factors (β) of several biological donor-acceptor dyads, as well as double stranded DNA oligomers composed of up to five base pairs. The calculations are all-electron and provide a clear view of the role of the environment on superexchange couplings in DNA-they follow experimental trends and confirm previous semiempirical calculations. The subsystem DFT method is proven to be an excellent tool for long-range, bridge-mediated coupling and site energy calculations of embedded molecular systems.
NASA Astrophysics Data System (ADS)
Sangiovanni, D. G.; Alling, B.; Steneteg, P.; Hultman, L.; Abrikosov, I. A.
2015-02-01
We use ab initio and classical molecular dynamics (AIMD and CMD) based on the modified embedded-atom method (MEAM) potential to simulate diffusion of N vacancy and N self-interstitial point defects in B 1 TiN. TiN MEAM parameters are optimized to obtain CMD nitrogen point-defect jump rates in agreement with AIMD predictions, as well as an excellent description of Ti Nx(˜0.7
TSKS concentrates in spermatid centrioles during flagellogenesis.
Xu, Bingfang; Hao, Zhonglin; Jha, Kula N; Zhang, Zhibing; Urekar, Craig; Digilio, Laura; Pulido, Silvia; Strauss, Jerome F; Flickinger, Charles J; Herr, John C
2008-07-15
Centrosomal coiled-coil proteins paired with kinases play critical roles in centrosomal functions within somatic cells, however knowledge regarding gamete centriolar proteins is limited. In this study, the substrate of TSSK1 and 2, TSKS, was localized during spermiogenesis to the centrioles of post-meiotic spermatids, where it reached its greatest concentration during the period of flagellogenesis. This centriolar localization persisted in ejaculated human spermatozoa, while centriolar TSKS diminished in mouse sperm, where centrioles are known to undergo complete degeneration. In addition to the centriolar localization during flagellogenesis, mouse TSKS and the TSSK2 kinase localized in the tail and acrosomal regions of mouse epididymal sperm, while TSSK2 was found in the equatorial segment, neck and the midpiece of human spermatozoa. TSSK2/TSKS is the first kinase/substrate pair localized to the centrioles of spermatids and spermatozoa. Coupled with the infertility due to haploinsufficiency noted in chimeric mice with deletion of Tssk1 and 2 (companion paper) this centriolar kinase/substrate pair is predicted to play an indispensable role during spermiogenesis.
High-Precision Differential Predictions for Top-Quark Pairs at the LHC
NASA Astrophysics Data System (ADS)
Czakon, Michal; Heymes, David; Mitov, Alexander
2016-02-01
We present the first complete next-to-next-to-leading order (NNLO) QCD predictions for differential distributions in the top-quark pair production process at the LHC. Our results are derived from a fully differential partonic Monte Carlo calculation with stable top quarks which involves no approximations beyond the fixed-order truncation of the perturbation series. The NNLO corrections improve the agreement between existing LHC measurements [V. Khachatryan et al. (CMS Collaboration), Eur. Phys. J. C 75, 542 (2015)] and standard model predictions for the top-quark transverse momentum distribution, thus helping alleviate one long-standing discrepancy. The shape of the top-quark pair invariant mass distribution turns out to be stable with respect to radiative corrections beyond NLO which increases the value of this observable as a place to search for physics beyond the standard model. The results presented here provide essential input for parton distribution function fits, implementation of higher-order effects in Monte Carlo generators, as well as top-quark mass and strong coupling determination.
High-Precision Differential Predictions for Top-Quark Pairs at the LHC.
Czakon, Michal; Heymes, David; Mitov, Alexander
2016-02-26
We present the first complete next-to-next-to-leading order (NNLO) QCD predictions for differential distributions in the top-quark pair production process at the LHC. Our results are derived from a fully differential partonic Monte Carlo calculation with stable top quarks which involves no approximations beyond the fixed-order truncation of the perturbation series. The NNLO corrections improve the agreement between existing LHC measurements [V. Khachatryan et al. (CMS Collaboration), Eur. Phys. J. C 75, 542 (2015)] and standard model predictions for the top-quark transverse momentum distribution, thus helping alleviate one long-standing discrepancy. The shape of the top-quark pair invariant mass distribution turns out to be stable with respect to radiative corrections beyond NLO which increases the value of this observable as a place to search for physics beyond the standard model. The results presented here provide essential input for parton distribution function fits, implementation of higher-order effects in Monte Carlo generators, as well as top-quark mass and strong coupling determination.
A bioinspired redox relay that mimics radical interactions of the Tyr-His pairs of photosystem II
NASA Astrophysics Data System (ADS)
Megiatto, Jackson D., Jr.; Méndez-Hernández, Dalvin D.; Tejeda-Ferrari, Marely E.; Teillout, Anne-Lucie; Llansola-Portolés, Manuel J.; Kodis, Gerdenis; Poluektov, Oleg G.; Rajh, Tijana; Mujica, Vladimiro; Groy, Thomas L.; Gust, Devens; Moore, Thomas A.; Moore, Ana L.
2014-05-01
In water-oxidizing photosynthetic organisms, light absorption generates a powerfully oxidizing chlorophyll complex (P680•+) in the photosystem II reaction centre. This is reduced via an electron transfer pathway from the manganese-containing water-oxidizing catalyst, which includes an electron transfer relay comprising a tyrosine (Tyr)-histidine (His) pair that features a hydrogen bond between a phenol group and an imidazole group. By rapidly reducing P680•+, the relay is thought to mitigate recombination reactions, thereby ensuring a high quantum yield of water oxidation. Here, we show that an artificial reaction centre that features a benzimidazole-phenol model of the Tyr-His pair mimics both the short-internal hydrogen bond in photosystem II and, using electron paramagnetic resonance spectroscopy, the thermal relaxation that accompanies proton-coupled electron transfer. Although this artificial system is much less complex than the natural one, theory suggests that it captures the essential features that are important in the function of the relay.
NASA Astrophysics Data System (ADS)
de Oliveira, Marcos; Wiegand, Thomas; Elmer, Lisa-Maria; Sajid, Muhammad; Kehr, Gerald; Erker, Gerhard; Magon, Claudio José; Eckert, Hellmut
2015-03-01
Anisotropic interactions present in three new nitroxide radicals prepared by N,N addition of NO to various borane-phosphane frustrated Lewis pairs (FLPs) have been characterized by continuous-wave (cw) and pulsed X-band EPR spectroscopies in solid FLP-hydroxylamine matrices at 100 K. Anisotropic g-tensor values and 11B, 14N, and 31P hyperfine coupling tensor components have been extracted from continuous-wave lineshape analyses, electron spin echo envelope modulation (ESEEM), and hyperfine sublevel correlation spectroscopy (HYSCORE) experiments with the help of computer simulation techniques. Suitable fitting constraints are developed on the basis of density functional theory (DFT) calculations. These calculations reveal that different from the situation in standard nitroxide radicals (TEMPO), the g-tensors are non-coincident with any of the nuclear hyperfine interaction tensors. The determination of these interaction parameters turns out to be successful, as the cw- and pulse EPR experiments are highly complementary in informational content. While the continuous-wave lineshape is largely influenced by the anisotropic hyperfine coupling to 14N and 31P, the ESEEM and HYSCORE spectra contain important information about the 11B hyperfine coupling and nuclear electric quadrupolar interaction. The set of cw- and pulsed EPR experiments, with fitting constraints developed by DFT calculations, defines an efficient strategy for the structural analysis of paramagnetic FLP adducts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oliveira, Marcos de; Magon, Claudio José; Wiegand, Thomas
2015-03-28
Anisotropic interactions present in three new nitroxide radicals prepared by N,N addition of NO to various borane-phosphane frustrated Lewis pairs (FLPs) have been characterized by continuous-wave (cw) and pulsed X-band EPR spectroscopies in solid FLP-hydroxylamine matrices at 100 K. Anisotropic g-tensor values and {sup 11}B, {sup 14}N, and {sup 31}P hyperfine coupling tensor components have been extracted from continuous-wave lineshape analyses, electron spin echo envelope modulation (ESEEM), and hyperfine sublevel correlation spectroscopy (HYSCORE) experiments with the help of computer simulation techniques. Suitable fitting constraints are developed on the basis of density functional theory (DFT) calculations. These calculations reveal that differentmore » from the situation in standard nitroxide radicals (TEMPO), the g-tensors are non-coincident with any of the nuclear hyperfine interaction tensors. The determination of these interaction parameters turns out to be successful, as the cw- and pulse EPR experiments are highly complementary in informational content. While the continuous-wave lineshape is largely influenced by the anisotropic hyperfine coupling to {sup 14}N and {sup 31}P, the ESEEM and HYSCORE spectra contain important information about the {sup 11}B hyperfine coupling and nuclear electric quadrupolar interaction. The set of cw- and pulsed EPR experiments, with fitting constraints developed by DFT calculations, defines an efficient strategy for the structural analysis of paramagnetic FLP adducts.« less
Lineshapes of Dipole-Dipole Resonances in a Cold Rydberg Gas
NASA Astrophysics Data System (ADS)
Richards, B. G.; Jones, R. R.
2015-05-01
We have examined the lineshapes associated with Stark tuned, dipole-dipole resonances involving Rydberg atoms in a cold gas. Rb atoms in a MOT are laser excited from the 5 p level to 32p3 / 2 in the presence of a weak electric field. A fast rising electric field pulse Stark tunes the total energy of two 32 p atom pairs so it is (nearly) degenerate with that of the 32s1 / 2+33s1 / 2 states. Because of the dipole-dipole coupling, atom pairs separated by a distance R, develop 32s1 / 2+33s1 / 2 character. The maximum probability for finding atoms in s-states depends on the detuning from degeneracy and on the dipole-dipole coupling. We obtain the ``resonance'' lineshape by measuring, via state-selective field ionization, the s-state population as a function of the tuning field. The resonance width decreases with density due to R-3 dependence of the dipole-dipole coupling. In principle, the lineshape provides information about the distribution of Rydberg atom spacings in the sample. For equally spaced atoms, the lineshape should be Lorentzian while for a random nearest neighbor distribution it appears as a cusp. At low densities nearly Gaussian lineshapes are observed with widths that are too large to be the result of inhomogeneous electric or magnetic fields. Supported by the NSF.
Kim, Yang-Rae; Bong, Sungyool; Kang, Yeon-Joo; Yang, Yongtak; Mahajan, Rakesh Kumar; Kim, Jong Seung; Kim, Hasuck
2010-06-15
Dopamine plays a significant role in the function of human metabolism. It is important to develop sensitive sensor for the determination of dopamine without the interference by ascorbic acid. This paper reports the synthesis of graphene using a modified Hummer's method and its application for the electrochemical detection of dopamine. Electrochemical measurements were performed at glassy carbon electrode modified with graphene via drop-casting method. Cyclic voltammogram of ferri/ferrocyanide redox couple at graphene modified electrode showed an increased current intensity compared with glassy carbon electrode and graphite modified electrode. The decrease of charge transfer resistance was also analyzed by electrochemical impedance spectroscopy. The capacity of graphene modified electrode for selective detection of dopamine was confirmed in a sufficient amount of ascorbic acid (1 mM). The observed linear range for the determination of dopamine concentration was from 4 microM to 100 microM. The detection limit was estimated to be 2.64 microM. Copyright 2010 Elsevier B.V. All rights reserved.
Warncke, Kurt
2005-03-08
Molecular structural features of the product radical in the Co(II)-product radical pair catalytic intermediate state in coenzyme B(12)- (adenosylcobalamin-) dependent ethanolamine deaminase from Salmonella typhimurium have been characterized by using X-band three-pulse electron spin-echo envelope modulation (ESEEM) spectroscopy in the disordered solid state. The Co(II)-product radical pair state was prepared by cryotrapping holoenzyme during steady-state turnover on excess 1,1,2,2-(2)H(4)-aminoethanol or natural abundance, (1)H(4)-aminoethanol. Simulation of the (2)H/(1)H quotient ESEEM (obtained at two microwave frequencies, 8.9 and 10.9 GHz) from the interaction of the unpaired electron localized at C2 of the product radical with nearby (2)H nuclei requires four types of coupled (2)H, which are assigned as follows: (a) a single strongly coupled (effective dipole distance, r(eff) = 2.3 A) (2)H in the C5' methyl group of 5'-deoxyadenosine, (b) two weakly coupled (r(eff) = 4.2 A) (2)H in the C5' methyl group, (c) one (2)H coupling from a beta-(2)H bonded to C1 of the product radical (isotropic hyperfine coupling, A(iso) = 4.7 MHz), and (d) a second type of C1 beta-(2)H coupling (A(iso) = 7.7 MHz). The two beta-(2)H couplings are proposed to arise from two C1-C2 rotamer states of the product radical that are present in approximately equal proportion. A model is presented, in which C5' is positioned at a distance of 3.3 A from C2, which is comparable with the C1-C5' distance in the Co(II)-substrate radical pair intermediate. Therefore, the C5'methyl group remains in close (van der Waals) contact with the substrate and product radical species during the radical rearrangement step of the catalytic cycle, and the C5' center is the sole mediator of radical pair recombination in ethanolamine deaminase.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martins, D. E.; Vilela Pereira, A.; Sá Borges, J.
We study the W and Z pair production from two-photon exchange in proton-proton collisions at the LHC in order to evaluate the contributions of anomalous photon-gauge boson couplings, that simulates new particles and couplings predicted in many Standard Model (SM) extensions. The experimental results of W{sup +} W{sup −} exclusive production (pp → pW{sup +}W{sup −} p) at 7 TeV from the CMS collaboration [1] updates the experimental limits on anomalous couplings obtained at the Large Electron-Positron Collider (LEP). This motivates our present analysis hopefully anticipating the expected results using the Precision Proton Spectrometer (PPS) to be installed as partmore » of CMS. In this work, we consider the W{sup +}W{sup −} exclusive production to present the p{sub T} distribution of the lepton pair corresponding to the SM signal with p{sub T} (e, μ) > 10 GeV. Next, we consider the photon-gauge boson anomalous couplings by calculating, from the FPMC and MadGraph event generators, the process γγ → W{sup +}W{sup −} from a model with gauge boson quartic couplings, by considering a 1 TeV scale for new physical effects. We present our results for an integrated luminosity of 5 fb{sup −1} at center-of-mass energy of 7 TeV and for an integrated luminosity of 100 fb{sup −1} at 13 TeV. We present our preliminary results for Z pair exclusive production from two-photon exchange with anomalous couplings, where the ZZγγ quartic coupling is absent in the SM. We calculate the total cross section for the exclusive process and present the four lepton invariant mass distribution. Finally we present an outlook for the present analysis.« less
Super-Chelators for Advanced Protein Labeling in Living Cells.
Gatterdam, Karl; Joest, Eike F; Dietz, Marina S; Heilemann, Mike; Tampé, Robert
2018-05-14
Live-cell labeling, super-resolution microscopy, single-molecule applications, protein localization, or chemically induced assembly are emerging approaches, which require specific and very small interaction pairs. The minimal disturbance of protein function is essential to derive unbiased insights into cellular processes. Herein, we define a new class of hexavalent N-nitrilotriacetic acid (hexaNTA) chelators, displaying the highest affinity and stability of all NTA-based small interaction pairs described so far. Coupled to bright organic fluorophores with fine-tuned photophysical properties, the super-chelator probes were delivered into human cells by chemically gated nanopores. These super-chelators permit kinetic profiling, multiplexed labeling of His 6 - and His 12 -tagged proteins as well as single-molecule-based super-resolution imaging. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Unternährer, Manuel; Bessire, Bänz; Gasparini, Leonardo; Stoppa, David; Stefanov, André
2016-12-12
We demonstrate coincidence measurements of spatially entangled photons by means of a multi-pixel based detection array. The sensor, originally developed for positron emission tomography applications, is a fully digital 8×16 silicon photomultiplier array allowing not only photon counting but also per-pixel time stamping of the arrived photons with an effective resolution of 265 ps. Together with a frame rate of 500 kfps, this property exceeds the capabilities of conventional charge-coupled device cameras which have become of growing interest for the detection of transversely correlated photon pairs. The sensor is used to measure a second-order correlation function for various non-collinear configurations of entangled photons generated by spontaneous parametric down-conversion. The experimental results are compared to theory.
Universal relations for spin-orbit-coupled Fermi gas near an s -wave resonance
NASA Astrophysics Data System (ADS)
Zhang, Pengfei; Sun, Ning
2018-04-01
Synthetic spin-orbit-coupled quantum gases have been widely studied both experimentally and theoretically in the past decade. As shown in previous studies, this modification of single-body dispersion will in general couple different partial waves of the two-body scattering and thus distort the wave function of few-body bound states which determines the short-distance behavior of many-body wave function. In this work, we focus on the two-component Fermi gas with one-dimensional or three-dimensional spin-orbit coupling (SOC) near an s -wave resonance. Using the method of effective field theory and the operator product expansion, we derive universal relations for both systems, including the adiabatic theorem, viral theorem, and pressure relation, and obtain the momentum distribution matrix 〈ψa†(q ) ψb(q ) 〉 at large q (a ,b are spin indices). The momentum distribution matrix shows both spin-dependent and spatial anisotropic features. And the large momentum tail is modified at the subleading order thanks to the SOC. We also discuss the experimental implication of these results depending on the realization of the SOC.
A facile method to modify bentonite nanoclay with silane
NASA Astrophysics Data System (ADS)
Abeywardena, Sujani B. Y.; Perera, Srimala; Nalin de Silva, K. M.; Tissera, Nadeeka P.
2017-07-01
Immobilization of smectite clay onto a desirable surface has received much attention, since its nanospace can be utilized for many applications in material science. Here, we present an efficient method to functionalize surface of bentonite nanoclay (BNC) through the grafting of 3-aminotriethoxysilane (APTES). Infrared spectroscopy and elemental analysis confirmed the presence of organic chains and amine groups in modified nanoclay. XRD analysis confirmed grafting of APTES on the surface of bentonite nanoclay without intercalation. The accomplishment of the surface modification was quantitatively proved by TGA analysis. Modified BNC can covalently couple with different material surfaces, allowing its nanospace to be utilized for intercalation of cations, bio-molecules, and polymeric materials, to be used in advanced military aerospace, pharmaceuticals, and many other commercial applications.
A Genome-Wide RNAi Screen for Modifiers of the Circadian Clock in Human Cells
Zhang, Eric E.; Liu, Andrew C.; Hirota, Tsuyoshi; Miraglia, Loren J.; Welch, Genevieve; Pongsawakul, Pagkapol Y.; Liu, Xianzhong; Atwood, Ann; Huss, Jon W.; Janes, Jeff; Su, Andrew I.; Hogenesch, John B.; Kay, Steve A.
2009-01-01
Summary Two decades of research identified more than a dozen clock genes and defined a biochemical feedback mechanism of circadian oscillator function. To identify additional clock genes and modifiers, we conducted a genome-wide siRNA screen in a human cellular clock model. Knockdown of nearly a thousand genes reduced rhythm amplitude. Potent effects on period length or increased amplitude were less frequent; we found hundreds of these and confirmed them in secondary screens. Characterization of a subset of these genes demonstrated a dosage-dependent effect on oscillator function. Protein interaction network analysis showed that dozens of gene products directly or indirectly associate with known clock components. Pathway analysis revealed these genes are overrepresented for components of insulin and hedgehog signaling, the cell cycle, and the folate metabolism. Coupled with data showing many of these pathways are clock-regulated, we conclude the clock is interconnected with many aspects of cellular function. PMID:19765810
Protonic transport through solitons in hydrogen-bonded systems
NASA Astrophysics Data System (ADS)
Kavitha, L.; Jayanthi, S.; Muniyappan, A.; Gopi, D.
2011-09-01
We offer an alternative route for investigating soliton solutions in hydrogen-bonded (HB) chains. We invoke the modified extended tangent hyperbolic function method coupled with symbolic computation to solve the governing equation of motion for proton dynamics. We investigate the dynamics of proton transfer in HB chains through bell-shaped soliton excitations, which trigger the bio-energy transport in most biological systems. This solitonic mechanism of proton transfer could play functional roles in muscular contraction, enzymatic activity and oxidative phosphorylation.
Delplanque, Aleksandra; Wawrzynczyk, Dominika; Jaworski, Pawel; Matczyszyn, Katarzyna; Pawlik, Krzysztof; Buckle, Malcolm; Nyk, Marcin; Nogues, Claude; Samoc, Marek
2015-01-01
Lanthanide-doped nanoparticles are of considerable interest for biodetection and bioimaging techniques thanks to their unique chemical and optical properties. As a sensitive luminescence material, they can be used as (bio) probes in Förster Resonance Energy Transfer (FRET) where trivalent lanthanide ions (La3+) act as energy donors. In this paper we present an efficient method to transfer ultrasmall (ca. 8 nm) NaYF4 nanoparticles dispersed in organic solvent to an aqueous solution via oxidation of the oleic acid ligand. Nanoparticles were then functionalized with single strand DNA oligomers (ssDNA) by inducing covalent bonds between surface carboxylic groups and a 5' amine modified-ssDNA. Hybridization with the 5' fluorophore (Cy5) modified complementary ssDNA strand demonstrated the specificity of binding and allowed the fine control over the distance between Eu3+ ions doped nanoparticle and the fluorophore by varying the number of the dsDNA base pairs. First, our results confirmed nonradiative resonance energy transfer and demonstrate the dependence of its efficiency on the distance between the donor (Eu3+) and the acceptor (Cy5) with sensitivity at a nanometre scale.
Greenwood, Julian R.; Bencivenga, Stefano; Cockram, James; Cavanagh, Colin; Swain, Steve M.
2018-01-01
The flowers of major cereals are arranged on reproductive branches known as spikelets, which group together to form an inflorescence. Diversity for inflorescence architecture has been exploited during domestication to increase crop yields, and genetic variation for this trait has potential to further boost grain production. Multiple genes that regulate inflorescence architecture have been identified by studying alleles that modify gene activity or dosage; however, little is known in wheat. Here, we show TEOSINTE BRANCHED1 (TB1) regulates inflorescence architecture in bread wheat (Triticum aestivum) by investigating lines that display a form of inflorescence branching known as “paired spikelets.” We show that TB1 interacts with FLOWERING LOCUS T1 and that increased dosage of TB1 alters inflorescence architecture and growth rate in a process that includes reduced expression of meristem identity genes, with allelic diversity for TB1 found to associate genetically with paired spikelet development in modern cultivars. We propose TB1 coordinates formation of axillary spikelets during the vegetative to floral transition and that alleles known to modify dosage or function of TB1 could help increase wheat yields. PMID:29444813
Dixon, Laura E; Greenwood, Julian R; Bencivenga, Stefano; Zhang, Peng; Cockram, James; Mellers, Gregory; Ramm, Kerrie; Cavanagh, Colin; Swain, Steve M; Boden, Scott A
2018-03-01
The flowers of major cereals are arranged on reproductive branches known as spikelets, which group together to form an inflorescence. Diversity for inflorescence architecture has been exploited during domestication to increase crop yields, and genetic variation for this trait has potential to further boost grain production. Multiple genes that regulate inflorescence architecture have been identified by studying alleles that modify gene activity or dosage; however, little is known in wheat. Here, we show TEOSINTE BRANCHED1 ( TB1 ) regulates inflorescence architecture in bread wheat ( Triticum aestivum ) by investigating lines that display a form of inflorescence branching known as "paired spikelets." We show that TB1 interacts with FLOWERING LOCUS T1 and that increased dosage of TB1 alters inflorescence architecture and growth rate in a process that includes reduced expression of meristem identity genes, with allelic diversity for TB1 found to associate genetically with paired spikelet development in modern cultivars. We propose TB1 coordinates formation of axillary spikelets during the vegetative to floral transition and that alleles known to modify dosage or function of TB1 could help increase wheat yields. © 2018 American Society of Plant Biologists. All rights reserved.
Thermodynamic Identities and Symmetry Breaking in Short-Range Spin Glasses
NASA Astrophysics Data System (ADS)
Arguin, L.-P.; Newman, C. M.; Stein, D. L.
2015-10-01
We present a technique to generate relations connecting pure state weights, overlaps, and correlation functions in short-range spin glasses. These are obtained directly from the unperturbed Hamiltonian and hold for general coupling distributions. All are satisfied in phases with simple thermodynamic structure, such as the droplet-scaling and chaotic pairs pictures. If instead nontrivial mixed-state pictures hold, the relations suggest that replica symmetry is broken as described by a Derrida-Ruelle cascade, with pure state weights distributed as a Poisson-Dirichlet process.
Quantum fluctuations of the superconducting cosmic string
NASA Technical Reports Server (NTRS)
Zhang, Shoucheng
1987-01-01
Quantum fluctuations of the proposed superconducting string with Bose charge carriers are studied in terms of the vortices on the string world sheet. In the thermodynamical limit, it is found that they appear in the form of free vortices rather than as bound pairs. This fluctuation mode violates the topological conservation law on which superconductivity is based. However, this limit may not be reached. The critical size of the superconducting string is estimated as a function of the coupling constants involved.
Condensate statistics in interacting and ideal dilute bose gases
Kocharovsky; Kocharovsky; Scully
2000-03-13
We obtain analytical formulas for the statistics, in particular, for the characteristic function and all cumulants, of the Bose-Einstein condensate in dilute weakly interacting and ideal equilibrium gases in the canonical ensemble via the particle-number-conserving operator formalism of Girardeau and Arnowitt. We prove that the ground-state occupation statistics is not Gaussian even in the thermodynamic limit. We calculate the effect of Bogoliubov coupling on suppression of ground-state occupation fluctuations and show that they are governed by a pair-correlation, squeezing mechanism.
Comparative study of the dissociation energies of Ni2 and Ni2(+)
NASA Technical Reports Server (NTRS)
Bauschlicher, Charles W., Jr.; Partridge, Harry; Langhoff, Stephen R.
1992-01-01
Computations at the internally contracted averaged coupled-pair-functional level of theory yield a dissociation energy (Do) for Ni2(+) that is 0.17 eV larger than that of Ni2. This finding is consistent with the collision-induced dissociation experiments of Lian, Su, and Armentrout, but rules out the results from the resonant two-photon dissociation experiments of Lessen and Brucat, which predict that the Do value of Ni2(+) is about 1 eV larger than that of Ni2.
Coupled tapering/uptapering of Thirring type soliton pair in nonlinear media
NASA Astrophysics Data System (ADS)
Prasad, Shraddha; Dutta, Manoj Kumar; Sarkar, Ram Krishna
2018-03-01
The paper investigates coupled tapering/uptapering of Thirring type soliton pair, employing Beam Propagation Method. It is seen that, the pair uptapers in presence of losses and tapers in presence of gain. When the first beam has gain and the second one has losses in the nonlinear medium, the second beam induces uptapering in the first beam, while, first beam induces tapering in the second beam. When the medium provides gain/losses to only one of the two beams, the beam undergoes tapering/uptapering and also induces tapering/uptapering to the other loss less beam; however, magnitude of tapering/uptapering are different.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Olsen, Jeppe, E-mail: jeppe@chem.au.dk
2014-07-21
A novel algorithm is introduced for the transformation of wave functions between the bases of Slater determinants (SD) and configuration state functions (CSF) in the genealogical coupling scheme. By modifying the expansion coefficients as each electron is spin-coupled, rather than performing a single many-electron transformation, the large transformation matrix that plagues previous approaches is avoided and the required number of operations is drastically reduced. As an example of the efficiency of the algorithm, the transformation for a configuration with 30 unpaired electrons and singlet spin is discussed. For this case, the 10 × 10{sup 6} coefficients in the CSF basismore » is obtained from the 150 × 10{sup 6} coefficients in the SD basis in 1 min, which should be compared with the seven years that the previously employed method is estimated to require.« less
Strain coupling of oxygen non-stoichiometry in perovskite thin films
NASA Astrophysics Data System (ADS)
Herklotz, Andreas; Lee, Dongkyu; Guo, Er-Jia; Meyer, Tricia L.; Petrie, Jonathan R.; Lee, Ho Nyung
2017-12-01
The effects of strain and oxygen vacancies on perovskite thin films have been studied in great detail over the past decades and have been treated separately from each other. While epitaxial strain has been realized as a tuning knob to tailor the functional properties of correlated oxides, oxygen vacancies are usually regarded as undesirable and detrimental. In transition metal oxides, oxygen defects strongly modify the properties and functionalities via changes in oxidation states of the transition metals. However, such coupling is not well understood in epitaxial films, but rather deemed as cumbersome or experimental artifact. Only recently it has been recognized that lattice strain and oxygen non-stoichiometry are strongly correlated in a vast number of perovskite systems and that this coupling can be beneficial for information and energy technologies. Recent experimental and theoretical studies have focused on understanding the correlated phenomena between strain and oxygen vacancies for a wide range of perovskite systems. These correlations not only include the direct relationship between elastic strain and the formation energy of oxygen vacancies, but also comprise highly complex interactions such as strain-induced phase transitions due to oxygen vacancy ordering. Therefore, we aim in this review to give a comprehensive overview on the coupling between strain and oxygen vacancies in perovskite oxides and point out the potential applications of the emergent functionalities strongly coupled to oxygen vacancies.
NASA Astrophysics Data System (ADS)
Yang, S. J.; Hu, L.; Wang, L.; Wei, B.
2018-06-01
The liquid structures of undercooled Zr90Nb10, Zr70Nb30 and Zr50Nb50 alloys were studied by molecular dynamics simulation combined with electrostatic levitation experiments. The densities of three alloys were measured by electrostatic levitation to modify the Zr-Nb potential functions by adjusting parameters in potential functions. In simulation, the atomic packing in Zr-Nb alloys was more ordered at lower temperatures. The Voronoi tessellation analyses indicated Nb-centered clusters were easier to form than Zr-centered clusters although the Nb content was less than 50%. The partial pair distribution functions showed that the interactions among Zr atoms are quite different to that among Nb atoms.
Magnetically Coupled Magnet-Spring Oscillators
ERIC Educational Resources Information Center
Donoso, G.; Ladera, C. L.; Martin, P.
2010-01-01
A system of two magnets hung from two vertical springs and oscillating in the hollows of a pair of coils connected in series is a new, interesting and useful example of coupled oscillators. The electromagnetically coupled oscillations of these oscillators are experimentally and theoretically studied. Its coupling is electromagnetic instead of…
Space Shuttle critical function audit
NASA Technical Reports Server (NTRS)
Sacks, Ivan J.; Dipol, John; Su, Paul
1990-01-01
A large fault-tolerance model of the main propulsion system of the US space shuttle has been developed. This model is being used to identify single components and pairs of components that will cause loss of shuttle critical functions. In addition, this model is the basis for risk quantification of the shuttle. The process used to develop and analyze the model is digraph matrix analysis (DMA). The DMA modeling and analysis process is accessed via a graphics-based computer user interface. This interface provides coupled display of the integrated system schematics, the digraph models, the component database, and the results of the fault tolerance and risk analyses.
An age dependent model for radium metabolism in man.
Johnson, J R
1983-01-01
The model developed by a Task Group of Committee 2 of ICRP to describe Alkaline Earth Metabolism in Adult Man (ICRP Publication 20) has been modified so that recycling is handled explicitly, and retention in mineral bone is represented by second compartments rather than by the product of a power function and an exponential. This model has been extended to include all ages from birth to adult man, and has been coupled with modified "ICRP" lung and G.I. tract models so that activity in organs can be calculated as functions of time during or after exposures. These activities, and age dependent "specific effective energy" factors, are then used to calculate age dependent dose rates, and dose commitments. This presentation describes this work, with emphasis on the model parameters and results obtained for radium.
Chen, Fei; Yang, Qi; Zhong, Yu; An, Hongxue; Zhao, Jianwei; Xie, Ting; Xu, Qiuxiang; Li, Xiaoming; Wang, Dongbo; Zeng, Guangming
2016-09-15
Bromate (BrO3(-)), an oxyhalide disinfection by-product (DBP) in drinking water, has been demonstrated to be carcinogenic and genotoxic. In the current work, metallic Ag and reduced graphene oxide (RGO) co-modified BiVO4 was successfully synthesized by a stepwise chemical method coupling with a photo-deposition process and applied in the photo-reduction of BrO3(-) under visible light irradiation. In this composite, metallic Ag acted as an electron donor or mediator and RGO enhanced the BrO3(-) adsorption onto the surface of catalysts as well as an electron acceptor to restrict the recombination of photo-generated electron-hole pairs. The Ag@BiVO4@RGO composite exhibited greater photo-reduction BrO3(-) performance than pure BiVO4, Ag@BiVO4 and RGO@BiVO4 under identical experimental conditions: initial BrO3(-) concentration 150 μg/L, catalyst dosage 0.5 g/L, pH 7.0 and visible light (λ > 420 nm). The photoluminescence spectra (PL), electron-spin resonance (ESR), photocurrent density (PC) and electrochemical impedance spectroscopy (EIS) measurements indicated that the modified BiVO4 enhanced the photo-generated electrons and separated the electron-hole pairs. The photocatalytic reduction efficiency for BrO3(-) removal decreased with the addition of electron quencher K2S2O8, suggesting that electrons were the primary factor in this photo-reduction process. The declining photo-reduction efficiency of BrO3(-) in tap water should attribute to the consumption of photo-generated electrons by coexisting anions and the adsorption of dissolved organic matter (DOM) on graphene surface. The overall results indicate a promising application potential for photo-reduction in the DBPs removal from drinking water. Copyright © 2016 Elsevier Ltd. All rights reserved.
Crossing of the phantom divide using tachyon-Gauss-Bonnet gravity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sadeghi, J.; Banijamali, A.; Milani, F.
2009-06-15
In this paper we consider two models. First, we study tachyon-Gauss-Bonnet gravity and obtain the condition of the equation of state crossing -1. Second, we discuss the modified Gauss-Bonnet gravity with the tachyon field and show the condition of {omega} crossing -1. Also, we plot figures for {omega} numerically in special potential and coupling function.
Tao, Ze; Chen, F J; Zhou, L Y; Li, Bin; Tao, Y C; Wang, J
2018-06-06
The interedge coupling is the cardinal characteristic of the narrow quantum spin Hall (QSH) insulator, and thus could bring about exotic transport phenomena. Herein, we present a theoretical investigation of the spin-resolved Andreev reflection (AR) in a QSH insulator strip touching on two neighbouring ferromagnetic insulators and one s-wave superconductor. It is demonstrated that, due to the interplay of the interedge coupling and ferromagnetic configuration, there could be not only usual local ARs leading to the spin-singlet pairing with the incident electron and Andreev-reflected hole from different spin subbands, but also novel local ARs giving rise to the spin-triplet pairing from the same spin subband. However, only the latter exists in the absence of the interedge coupling, and therefore the two pairings in turn testify the helical spin texture of the edge states. By proper tuning of the band structures of the ferromagnetic layers, under the resonance bias voltage, the usual and novel local ARs of [Formula: see text] can be all exhibited, resulting in fully spin-polarized pure spin-singlet superconductivity and pure spin-triplet superconductivity, respectively, which suggests a superconductivity switch from spin-singlet to -triplet pairing by electrical control. The results can be experimentally confirmed by the tunneling conductance and the noise power.
NASA Astrophysics Data System (ADS)
Tao, Ze; Chen, F. J.; Zhou, L. Y.; Li, Bin; Tao, Y. C.; Wang, J.
2018-06-01
The interedge coupling is the cardinal characteristic of the narrow quantum spin Hall (QSH) insulator, and thus could bring about exotic transport phenomena. Herein, we present a theoretical investigation of the spin-resolved Andreev reflection (AR) in a QSH insulator strip touching on two neighbouring ferromagnetic insulators and one s-wave superconductor. It is demonstrated that, due to the interplay of the interedge coupling and ferromagnetic configuration, there could be not only usual local ARs leading to the spin-singlet pairing with the incident electron and Andreev-reflected hole from different spin subbands, but also novel local ARs giving rise to the spin-triplet pairing from the same spin subband. However, only the latter exists in the absence of the interedge coupling, and therefore the two pairings in turn testify the helical spin texture of the edge states. By proper tuning of the band structures of the ferromagnetic layers, under the resonance bias voltage, the usual and novel local ARs of can be all exhibited, resulting in fully spin-polarized pure spin-singlet superconductivity and pure spin-triplet superconductivity, respectively, which suggests a superconductivity switch from spin-singlet to -triplet pairing by electrical control. The results can be experimentally confirmed by the tunneling conductance and the noise power.
A Dyadic Analysis of Relationships and Health: Does Couple-Level Context Condition Partner Effects?
Barr, Ashley B.; Simons, Ronald L.
2014-01-01
Adding to the growing literature explicating the links between romantic relationships and health, this study examined how both couple-level characteristics, particularly union type (e.g. dating, cohabiting, or marriage) and interracial pairing, and interpersonal characteristics (e.g. partner strain and support) predicted young adults’ physical and mental health. Using dyadic data from a sample of 249 young, primarily African American couples, we hypothesized and found support for the importance of couple-level context, partner behavior, and their interaction in predicting health. Interracial couples (all Black/non-Black pairings) reported worse health than monoracial Black couples. Union type, however, did not directly predict health but was a significant moderator of partner strain. That is, the negative association between partner strain and self-reported health was stronger for cohabiting and married couples versus their dating counterparts, suggesting that coresidence more so than marital status may be important for understanding partner effects on physical health. For psychological distress, however, partner support proved equally beneficial across union types. PMID:25090254
A dyadic analysis of relationships and health: does couple-level context condition partner effects?
Barr, Ashley B; Simons, Ronald L
2014-08-01
Adding to the growing literature explicating the links between romantic relationships and health, this study examined how both couple-level characteristics, particularly union type (e.g., dating, cohabiting, or marriage) and interracial pairing, and interpersonal characteristics (e.g., partner strain and support), predicted young adults' physical and mental health. Using dyadic data from a sample of 249 young, primarily Black couples, we hypothesized and found support for the importance of couple-level context, partner behavior, and their interaction in predicting health. Interracial couples (all Black/non-Black pairings) reported worse health than monoracial Black couples. Union type, however, did not directly predict health but was a significant moderator of partner strain. That is, the negative association between partner strain and self-reported health was stronger for cohabiting and married couples versus their dating counterparts, suggesting that coresidence, more so than marital status, may be important for understanding partner effects on physical health. For psychological distress, however, partner support proved equally beneficial across union types.
Quantum Phases of Matter in Optical Lattices
2015-06-30
doi: 10.1103/PhysRevA.89.013625 Hyungwon Kim, David A. Huse. Ballistic Spreading of Entanglement in a Diffusive Nonintegrable System, Physical...Review B, (07 2013): 0. doi: 10.1103/PhysRevB.88.014206 Lin Dong, Lei Jiang, Han Pu. Fulde–Ferrell pairing instability in spin–orbit coupled Fermi...PhysRevA.87.051603 Kuei Sun, C. J. Bolech. Pair tunneling, phase separation, and dimensional crossover in imbalanced fermionic superfluids in a coupled
NASA Astrophysics Data System (ADS)
Ghadiri, Majid; Shafiei, Navvab; Alireza Mousavi, S.
2016-09-01
Due to having difficulty in solving governing nonlinear differential equations of a non-uniform microbeam, a few numbers of authors have studied such fields. In the present study, for the first time, the size-dependent vibration behavior of a rotating functionally graded (FG) tapered microbeam based on the modified couple stress theory is investigated using differential quadrature element method (DQEM). It is assumed that physical and mechanical properties of the FG microbeam are varying along the thickness that will be defined as a power law equation. The governing equations are determined using Hamilton's principle, and DQEM is presented to obtain the results for cantilever and propped cantilever boundary conditions. The accuracy and validity of the results are shown in several numerical examples. In order to display the influence of size on the first two natural frequencies and consequently changing of some important microbeam parameters such as material length scale, rate of cross section, angular velocity and gradient index of the FG material, several diagrams and tables are represented. The results of this article can be used in designing and optimizing elastic and rotary-type micro-electro-mechanical systems like micro-motors and micro-robots including rotating parts.
NASA Astrophysics Data System (ADS)
Ali, Mubarak; Bayer, Veronika; Schiedt, Birgitta; Neumann, Reinhard; Ensinger, Wolfgang
2008-12-01
We have developed a facile and reproducible method for surfactant-controlled track-etching and chemical functionalization of single asymmetric nanochannels in PET (polyethylene terephthalate) membranes. Carboxyl groups present on the channel surface were converted into pentafluorophenyl esters using EDC/PFP (N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride/pentafluorophenol) coupling chemistry. The resulting amine-reactive esters were further covalently coupled with ethylenediamine or propylamine in order to manipulate the charge polarity and hydrophilicity of the nanochannels, respectively. Characterization of the modified channels was done by measuring their current-voltage (I-V) curves as well as their permselectivity before and after the chemical modification. The electrostatic/hydrophobic association of bovine serum albumin on the channel surface was observed through the change in rectification behaviour upon the variation of pH values.
NASA Astrophysics Data System (ADS)
Liu, J.; Wang, Z. A.; Wu, X. W.; Yuan, X. H.; Hu, J. P.; Zhou, Q. M.; Liu, Z. H.; Wu, Y. P.
2015-12-01
Functional porous carbon (PC) derived from bio-friendly shaddock peel has been firstly explored as catalyst for vanadium redox flow battery (VRB). The prepared PC is micro-mesoporous with high BET surface area of 882.7 m2 g-1, has some surface oxygen-containing functional groups, and is doped with N and P heteroatoms. These three factors greatly favor the electrochemical reactions of VO2+/VO2+ on the PC modified glass carbon (PC-GC). Compared with the naked GC and graphite modified GC, the PC-GC presents a lower peak separation (66 mV), higher anodic current density (17.1 mA cm-2) and cathodic current density (15.0 mA cm-2). The VRB using PC modified graphite felt (GF) as positive electrode demonstrates an enhanced voltage efficiency of 82.7% at the current density of 60 mA cm-2, and a better rate performance than that from the virginal GF.
Dinh, Thanh-Chung; Renger, Thomas
2016-07-21
In pigment-protein complexes, often the excited states are partially delocalized and the exciton-vibrational coupling in the basis of delocalized states contains large diagonal and small off-diagonal elements. This inequality may be used to introduce potential energy surfaces (PESs) of exciton states and to treat the inter-PES coupling in Markov and secular approximations. The resulting lineshape function consists of a Lorentzian peak that is broadened by the finite lifetime of the exciton states caused by the inter-PES coupling and a vibrational sideband that results from the mutual displacement of the excitonic PESs with respect to that of the ground state. So far analytical expressions have been derived that relate the exciton relaxation-induced lifetime broadening to the Redfield [T. Renger and R. A. Marcus, J. Chem. Phys. 116, 9997 (2002)] or modified Redfield [M. Schröder, U. Kleinekathöfer, and M. Schreiber, J. Chem. Phys. 124, 084903 (2006)] rate constants of exciton relaxation, assuming that intra-PES nuclear relaxation is fast compared to inter-PES transfer. Here, we go beyond this approximation and provide an analytical expression, termed Non-equilibrium Modified Redfield (NeMoR) theory, for the lifetime broadening that takes into account the finite nuclear relaxation time. In an application of the theory to molecular dimers, we find that, for a widely used experimental spectral density of the exciton-vibrational coupling of pigment-protein complexes, the NeMoR spectrum at low-temperatures (T < 150 K) is better approximated by Redfield than by modified Redfield theory. At room temperature, the lifetime broadening obtained with Redfield theory underestimates the NeMoR broadening, whereas modified Redfield theory overestimates it by a similar amount. A fortuitous error compensation in Redfield theory is found to explain the good performance of this theory at low temperatures. Since steady state spectra of PPCs are often measured at low temperatures, Redfield theory still provides a numerically efficient alternative to NeMoR theory. At higher temperatures, we suggest to use NeMoR theory, because it has the same numerical costs as modified Redfield theory, but is more accurate.
Fix my child: The importance of including siblings in clinical assessments.
Farnfield, Steve
2017-07-01
This study examined concordance in the attachment strategies of school-aged siblings with reference to environmental risk in terms of poverty and maltreatment. It also investigated the effect of child maltreatment and maternal mental illness on children's psychosocial functioning in terms of the Dynamic-Maturational Model of Attachment and Adaptation (DMM) including unresolved trauma and the DMM Depressed modifier. The attachment strategies of 30 sibling pairs, aged 5-14 years, were assessed using the School-age Assessment of Attachment (SAA). Unlike most previous studies, this study included siblings from large families of two to six children. The main finding was that as environmental risk increases, the diversity of sibling attachment strategies decreases with greater recourse to the DMM Type A3-6 and A/C strategies. Unlike previous studies, the highest level of concordance was found in sibling pairs with the opposite gender. Boys whose mothers had a history of mental illness were significantly more likely than girls to be assessed with the DMM-depression modifier. As danger increases, children in the same family experience more of the same childhood. Further research should focus on single case, intra-familial studies to build a systemic model of the shared environment. Research should also evaluate the effects of environmental risk compared with size of the sibling group on children's attachment strategies. The clinical implications point to the importance of assessing all children in the family using a model built around functional formulation rather than diagnosing the symptoms of a particular child.
Properties of isoscalar-pair condensates
Van Isacker, P.; Macchiavelli, A. O.; Fallon, P.; ...
2016-08-17
In this work, it is pointed out that the ground state of $n$ neutrons and n protons in a single-$j$ shell, interacting through an isoscalar ($T=0$) pairing force, is not paired, $J=0$, but rather spin aligned, $J=n$. This observation is explained in the context of a model of isoscalar $P(J=1)$ pairs, which is mapped onto a system of $p$ bosons, leading to an approximate analytic solution of the isoscalar-pairing limit in $jj$ coupling.
Gopalappa, Ramu; Song, Myungjae; Chandrasekaran, Arun Pandian; Das, Soumyadip; Haq, Saba; Koh, Hyun Chul; Ramakrishna, Suresh
2018-05-31
Targeted genome editing by clustered regularly interspaced short palindromic repeats (CRISPR-Cas9) raised concerns over off-target effects. The use of double-nicking strategy using paired Cas9 nickase has been developed to minimize off-target effects. However, it was reported that the efficiency of paired nickases were comparable or lower than that of either corresponding nuclease alone. Recently, we conducted a systematic comparison of the efficiencies of several paired Cas9 with their corresponding Cas9 nucleases and showed that paired D10A Cas9 nickases are sometimes more efficient than individual nucleases for gene disruption. However, sometimes the designed paired Cas9 nickases exhibited significantly lower mutation frequencies than nucleases, hampering the generation of cells containing paired Cas9 nickase-induced mutations. Here we implemented IRES peptide-conjugation of fluorescent protein to Cas9 nickase and subjected for fluorescence-activated cell sorting. The sorted cell populations are highly enriched with cells containing paired Cas9 nickase-induced mutations, by a factor of up to 40-fold as compared with the unsorted population. Furthermore, gene-disrupted single cell clones using paired nickases followed by FACS sorting strategy were generated highly efficiently, without compromising with its low off-target effects. We envision that our fluorescent protein coupled paired nickase-mediated gene disruption, facilitating efficient and highly specific genome editing in medical research.
NASA Astrophysics Data System (ADS)
Garza, Alejandro J.
Perhaps the most important approximations to the electronic structure problem in quantum chemistry are those based on coupled cluster and density functional theories. Coupled cluster theory has been called the ``gold standard'' of quantum chemistry due to the high accuracy that it achieves for weakly correlated systems. Kohn-Sham density functionals based on semilocal approximations are, without a doubt, the most widely used methods in chemistry and material science because of their high accuracy/cost ratio. The root of the success of coupled cluster and density functionals is their ability to efficiently describe the dynamic part of the electron correlation. However, both traditional coupled cluster and density functional approximations may fail catastrophically when substantial static correlation is present. This severely limits the applicability of these methods to a plethora of important chemical and physical problems such as, e.g., the description of bond breaking, transition states, transition metal-, lanthanide- and actinide-containing compounds, and superconductivity. In an attempt to tackle this problem, nonstandard (single-reference) coupled cluster-based techniques that aim to describe static correlation have been recently developed: pair coupled cluster doubles (pCCD) and singlet-paired coupled cluster doubles (CCD0). The ability to describe static correlation in pCCD and CCD0 comes, however, at the expense of important amounts of dynamic correlation so that the high accuracy of standard coupled cluster becomes unattainable. Thus, the reliable and efficient description of static and dynamic correlation in a simultaneous manner remains an open problem for quantum chemistry and many-body theory in general. In this thesis, different ways to combine pCCD and CCD0 with density functionals in order to describe static and dynamic correlation simultaneously (and efficiently) are explored. The combination of wavefunction and density functional methods has a long history in quantum chemistry (practical implementations have appeared in the literature since the 1970s). However, this kind of techniques have not achieved widespread use due to problems such as double counting of correlation and the symmetry dilemma--the fact that wavefunction methods respect the symmetries of Hamiltonian, while modern functionals are designed to work with broken symmetry densities. Here, particular mathematical features of pCCD and CCD0 are exploited to avoid these problems in an efficient manner. The two resulting families of approximations, denoted as pCCD+DFT and CCD0+DFT, are shown to be able to describe static and dynamic correlation in standard benchmark calculations. Furthermore, it is also shown that CCD0+DFT lends itself to combination with correlation from the direct random phase approximation (dRPA). Inclusion of dRPA in the long-range via the technique of range-separation allows for the description of dispersion correlation, the remaining part of the correlation. Thus, when combined with the dRPA, CCD0+DFT can account for all three-types of electron correlation that are necessary to accurately describe molecular systems. Lastly, applications of CCD0+DFT to actinide chemistry are considered in this work. The accuracy of CCD0+DFT for predicting equilibrium geometries and vibrational frequencies of actinide molecules and ions is assessed and compared to that of well-established quantum chemical methods. For this purpose, the f0 actinyl series (UO2 2+, NpO 23+, PuO24+, the isoelectronic NUN, and Thorium (ThO, ThO2+) and Nobelium (NoO, NoO2) oxides are studied. It is shown that the CCD0+DFT description of these species agrees with available experimental data and is comparable with the results given by the highest-level calculations that are possible for such heavy compounds while being, at least, an order of magnitude lower in computational cost.
Atomic-scale properties of Ni-based FCC ternary, and quaternary alloys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tamm, Artur; Aabloo, Alvo; Klintenberg, Mattias
2015-08-26
The aim of our study is to characterize some atomic-scale properties of Ni-based FCC multicomponent alloys. For this purpose, we use Monte Carlo method combined with density functional theory calculations to study short-range order (SRO), atomic displacements, electronic density of states, and magnetic moments in equimolar ternary NiCrCo, and quaternary NiCrCoFe alloys. The salient features for the ternary alloy are a negative SRO parameter between Ni Cr and a positive between Cr Cr pairs as well as a weakly magnetic state. For the quaternary alloy we predict negative SRO parameter for Ni Cr and Ni Fe pairs and positive formore » Cr Cr and Fe Fe pairs. Atomic displacements for both ternary and quaternary alloys are negligible. In contrast to the ternary, the quaternary alloy shows a complex magnetic structure. The electronic structure of the ternary and quaternary alloys shows differences near the Fermi energy between a random solid solution and the predicted structure with SRO. Despite that, the calculated EXAFS spectra does not show enough contrast to discriminate between random and ordered structures. Finally, the predicted SRO has an impact on point-defect energetics, electron phonon coupling and thermodynamic functions and thus, SRO should not be neglected when studying properties of these two alloys.« less
NASA Astrophysics Data System (ADS)
Liu, Hongna; Li, Song; Wang, Zhifei; Li, Zhiyang; Deng, Yan; Wang, Hua; Shi, Zhiyang; He, Nongyue
2008-11-01
Single nucleotide polymorphisms (SNPs) comprise the most abundant source of genetic variation in the human genome wide codominant SNPs identification. Therefore, large-scale codominant SNPs identification, especially for those associated with complex diseases, has induced the need for completely high-throughput and automated SNP genotyping method. Herein, we present an automated detection system of SNPs based on two kinds of functional magnetic nanoparticles (MNPs) and dual-color hybridization. The amido-modified MNPs (NH 2-MNPs) modified with APTES were used for DNA extraction from whole blood directly by electrostatic reaction, and followed by PCR, was successfully performed. Furthermore, biotinylated PCR products were captured on the streptavidin-coated MNPs (SA-MNPs) and interrogated by hybridization with a pair of dual-color probes to determine SNP, then the genotype of each sample can be simultaneously identified by scanning the microarray printed with the denatured fluorescent probes. This system provided a rapid, sensitive and highly versatile automated procedure that will greatly facilitate the analysis of different known SNPs in human genome.
Constraints on black hole remnants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Giddings, S.B.
1994-01-15
One possible fate of information lost to black holes is its preservation in black hole remnants. It is argued that a type of effective field theory describes such remnants (generically referred to as informons). The general structure of such a theory is investigated and the infinite pair production problem is revisited. A toy model for remnants clarifies some of the basic issues; in particular, infinite remnant production is not suppressed simply by the large internal volumes as proposed in cornucopion scenarios. Criteria for avoiding infinite production are stated in terms of couplings in the effective theory. Such instabilities remain amore » problem barring what would be described in that theory as a strong coupling conspiracy. The relation to Euclidean calculations of cornucopion production is sketched, and potential flaws in that analysis are outlined. However, it is quite plausible that pair production of ordinary black holes (e.g., Reissner-Noerdstrom or others) is suppressed due to strong effective couplings. It also remains an open possibility that a microsopic dynamics can be found yielding an appropriate strongly coupled effective theory of neutral informons without infinite pair production.« less
Heritability of Lung Disease Severity in Cystic Fibrosis
Vanscoy, Lori L.; Blackman, Scott M.; Collaco, Joseph M.; Bowers, Amanda; Lai, Teresa; Naughton, Kathleen; Algire, Marilyn; McWilliams, Rita; Beck, Suzanne; Hoover-Fong, Julie; Hamosh, Ada; Cutler, Dave; Cutting, Garry R.
2007-01-01
Rationale: Obstructive lung disease, the major cause of mortality in cystic fibrosis (CF), is poorly correlated with mutations in the disease-causing gene, indicating that other factors determine severity of lung disease. Objectives: To quantify the contribution of modifier genes to variation in CF lung disease severity. Methods: Pulmonary function data from patients with CF living with their affected twin or sibling were converted into reference values based on both healthy and CF populations. The best measure of FEV1 within the last year was used for cross-sectional analysis. FEV1 measures collected over at least 4 years were used for longitudinal analysis. Genetic contribution to disease variation (i.e., heritability) was estimated in two ways: by comparing similarity of lung function in monozygous (MZ) twins (∼ 100% gene sharing) with that of dizygous (DZ) twins/siblings (∼ 50% gene sharing), and by comparing similarity of lung function measures for related siblings to similarity for all study subjects. Measurements and Main Results: Forty-seven MZ twin pairs, 10 DZ twin pairs, and 231 sibling pairs (of a total of 526 patients) with CF were studied. Correlations for all measures of lung function for MZ twins (0.82–0.91, p < 0.0001) were higher than for DZ twins and siblings (0.50–0.64, p < 0.001). Heritability estimates from both methods were consistent for each measure of lung function and ranged from 0.54 to 1.0. Heritability estimates generally increased after adjustment for differences in nutritional status (measured as body mass index z-score). Conclusions: Our heritability estimates indicate substantial genetic control of variation in CF lung disease severity, independent of CFTR genotype. PMID:17332481
A program code generator for multiphysics biological simulation using markup languages.
Amano, Akira; Kawabata, Masanari; Yamashita, Yoshiharu; Rusty Punzalan, Florencio; Shimayoshi, Takao; Kuwabara, Hiroaki; Kunieda, Yoshitoshi
2012-01-01
To cope with the complexity of the biological function simulation models, model representation with description language is becoming popular. However, simulation software itself becomes complex in these environment, thus, it is difficult to modify the simulation conditions, target computation resources or calculation methods. In the complex biological function simulation software, there are 1) model equations, 2) boundary conditions and 3) calculation schemes. Use of description model file is useful for first point and partly second point, however, third point is difficult to handle for various calculation schemes which is required for simulation models constructed from two or more elementary models. We introduce a simulation software generation system which use description language based description of coupling calculation scheme together with cell model description file. By using this software, we can easily generate biological simulation code with variety of coupling calculation schemes. To show the efficiency of our system, example of coupling calculation scheme with three elementary models are shown.
Anatomical connectivity influences both intra- and inter-brain synchronizations.
Dumas, Guillaume; Chavez, Mario; Nadel, Jacqueline; Martinerie, Jacques
2012-01-01
Recent development in diffusion spectrum brain imaging combined to functional simulation has the potential to further our understanding of how structure and dynamics are intertwined in the human brain. At the intra-individual scale, neurocomputational models have already started to uncover how the human connectome constrains the coordination of brain activity across distributed brain regions. In parallel, at the inter-individual scale, nascent social neuroscience provides a new dynamical vista of the coupling between two embodied cognitive agents. Using EEG hyperscanning to record simultaneously the brain activities of subjects during their ongoing interaction, we have previously demonstrated that behavioral synchrony correlates with the emergence of inter-brain synchronization. However, the functional meaning of such synchronization remains to be specified. Here, we use a biophysical model to quantify to what extent inter-brain synchronizations are related to the anatomical and functional similarity of the two brains in interaction. Pairs of interacting brains were numerically simulated and compared to real data. Results show a potential dynamical property of the human connectome to facilitate inter-individual synchronizations and thus may partly account for our propensity to generate dynamical couplings with others.
Structure of Voltage-gated Two-pore Channel TPC1 from Arabidopsis thaliana
Guo, Jiangtao; Zeng, Weizhong; Chen, Qingfeng; Lee, Changkeun; Chen, Liping; Yang, Yi; Cang, Chunlei; Ren, Dejian; Jiang, Youxing
2015-01-01
Two-pore channels (TPCs) contain two copies of a Shaker-like six-transmembrane (6-TM) domain in each subunit and are ubiquitously expressed in both animals and plants as organellar cation channels. Here, we present the first crystal structure of a vacuolar two-pore channel from Arabidopsis thaliana, AtTPC1, which functions as a homodimer. AtTPC1 activation requires both voltage and cytosolic Ca2+. Ca2+ binding to the cytosolic EF-hand domain triggers conformational changes coupled to the pair of pore-lining inner helices (IS6 helices) from the first 6-TM domains, whereas membrane potential only activates the second voltage-sensing domain (VSD2) whose conformational changes are coupled to the pair of inner helices (IIS6 helices) from the second 6-TM domains. Luminal Ca2+ or Ba2+ can modulate voltage activation by stabilizing VSD2 in the resting state and shifts voltage activation towards more positive potentials. Our Ba2+ bound AtTPC1 structure reveals a voltage sensor in the resting state, providing hitherto unseen structural insight into the general voltage-gating mechanism among voltage-gated channels. PMID:26689363
Tanaka, Shigenori
2016-12-07
Correlational and thermodynamic properties of homogeneous electron liquids at finite temperatures are theoretically analyzed in terms of dielectric response formalism with the hypernetted-chain (HNC) approximation and its modified version. The static structure factor and the local-field correction to describe the strong Coulomb-coupling effects beyond the random-phase approximation are self-consistently calculated through solution to integral equations in the paramagnetic (spin unpolarized) and ferromagnetic (spin polarized) states. In the ground state with the normalized temperature θ=0, the present HNC scheme well reproduces the exchange-correlation energies obtained by quantum Monte Carlo (QMC) simulations over the whole fluid phase (the coupling constant r s ≤100), i.e., within 1% and 2% deviations from putative best QMC values in the paramagnetic and ferromagnetic states, respectively. As compared with earlier studies based on the Singwi-Tosi-Land-Sjölander and modified convolution approximations, some improvements on the correlation energies and the correlation functions including the compressibility sum rule are found in the intermediate to strong coupling regimes. When applied to the electron fluids at intermediate Fermi degeneracies (θ≈1), the static structure factors calculated in the HNC scheme show good agreements with the results obtained by the path integral Monte Carlo (PIMC) simulation, while a small negative region in the radial distribution function is observed near the origin, which may be associated with a slight overestimation for the exchange-correlation hole in the HNC approximation. The interaction energies are calculated for various combinations of density and temperature parameters ranging from strong to weak degeneracy and from weak to strong coupling, and the HNC values are then parametrized as functions of r s and θ. The HNC exchange-correlation free energies obtained through the coupling-constant integration show reasonable agreements with earlier results including the PIMC-based fitting over the whole fluid region at finite degeneracies in the paramagnetic state. In contrast, a systematic difference between the HNC and PIMC results is observed in the ferromagnetic state, which suggests a necessity of further studies on the exchange-correlation free energies from both aspects of analytical theory and simulation.
NASA Astrophysics Data System (ADS)
Neubert, Tilmann J.; Rösicke, Felix; Sun, Guoguang; Janietz, Silvia; Gluba, Marc A.; Hinrichs, Karsten; Nickel, Norbert H.; Rappich, Jörg
2017-11-01
Electrografting of gold and graphene surfaces by functional p-(N-maleimido)phenyl groups was performed by reduction of p-(N-maleimido)phenyldiazonium tetrafluoroborate. The reduction was carried out using cyclic voltammetry coupled with micro-gravimetric measurements by means of electrochemical quartz crystal microbalance (EQCM). The overall deposited mass on gold was higher than on graphene. However, the Faradaic efficiency was lower on Au (14%) compared to graphene (22%) after the first potential scan. Subsequently, the maleimide functional groups have been tested for immobilization of terminal thiols using (4-nitrobenzyl)mercaptan for the functionalized graphene surface and a cysteine-modified peptide for the functionalized gold surface. The functionalization by p-(N-maleimido)phenyl groups and the following thiol coupling of the particular surface was proven by infrared spectroscopic ellipsometry (IRSE). In addition, the interaction of the tetrabutylammonium and tetrafluoroborate ions present in the electrolyte with the Au and graphene electrodes was investigated by EQCM and revealed less electrostatic interaction of graphene with these ions in solution compared to the metal (Au) surface.
2008-12-09
The Space Shuttle Endeavour and its modified Boeing 747 carrier aircraft are illuminated by the morning sun Tuesday after mating of the pair was completed overnight in the Mate-DeMate gantry at NASA Dryden Flight Research Center. The pair are scheduled to depart Edwards Air Force Base on their ferry flight back to the Kennedy Space Center early Wednesday morning, Dec. 10.
NASA Astrophysics Data System (ADS)
Radtke, R. J.; Levin, K.
1995-02-01
Experiments on the cuprate superconductors demonstrate that these materials may be viewed as a stack of Josephson junctions along the direction normal to the CuO 2 planes (the c-axis). In this paper, we present a model which describes this intrinsic Josephson coupling in terms of incherent quasiparticle hopping along the c-axis arising from wave-function overlap, impurity-assisted hopping, and boson-assised hopping. We use this model to compute the magnitude and temperature T dependence of the resulting Josephson critical current jc( T) for s- and d-wave superconductors. Contrary to other approaches, d-wave pairing in this model is compatible with an intrinsic Josephson effect at all hole concentrations and leads to jc( T) αT at low T. By parameterizing our theory with c-axis resistivity data from YBa 2Cu 3O 7-δ (YBCO), we estimate jc( T) for optimally doped and underdoped members of this family. jc( T) can be measured either directly or indirectly through microwave penetration depth experiments, and current measurements on Bi 2Sr 2CaCu 2O 8 and La 2- xSr xCuO 4 are found to be consistent with s-wave pairing and the dominance of assisted hopping processes. The situation in YBCO is still unclear, but our estimates suggest that further experiments on this compound would be of great help in elucidating the validity of our model in general and the pairing symmetry in particular.
NASA Astrophysics Data System (ADS)
Datta, Dipayan; Kossmann, Simone; Neese, Frank
2016-09-01
The domain-based local pair-natural orbital coupled-cluster (DLPNO-CC) theory has recently emerged as an efficient and powerful quantum-chemical method for the calculation of energies of molecules comprised of several hundred atoms. It has been demonstrated that the DLPNO-CC approach attains the accuracy of a standard canonical coupled-cluster calculation to about 99.9% of the basis set correlation energy while realizing linear scaling of the computational cost with respect to system size. This is achieved by combining (a) localized occupied orbitals, (b) large virtual orbital correlation domains spanned by the projected atomic orbitals (PAOs), and (c) compaction of the virtual space through a truncated pair natural orbital (PNO) basis. In this paper, we report on the implementation of an analytic scheme for the calculation of the first derivatives of the DLPNO-CC energy for basis set independent perturbations within the singles and doubles approximation (DLPNO-CCSD) for closed-shell molecules. Perturbation-independent one-particle density matrices have been implemented in order to account for the response of the CC wave function to the external perturbation. Orbital-relaxation effects due to external perturbation are not taken into account in the current implementation. We investigate in detail the dependence of the computed first-order electrical properties (e.g., dipole moment) on the three major truncation parameters used in a DLPNO-CC calculation, namely, the natural orbital occupation number cutoff used for the construction of the PNOs, the weak electron-pair cutoff, and the domain size cutoff. No additional truncation parameter has been introduced for property calculation. We present benchmark calculations on dipole moments for a set of 10 molecules consisting of 20-40 atoms. We demonstrate that 98%-99% accuracy relative to the canonical CCSD results can be consistently achieved in these calculations. However, this comes with the price of tightening the threshold for the natural orbital occupation number cutoff by an order of magnitude compared to the DLPNO-CCSD energy calculations.
Song, Junqiang; Leng, Hongze; Lu, Fengshun
2014-01-01
We present a new numerical method to get the approximate solutions of fractional differential equations. A new operational matrix of integration for fractional-order Legendre functions (FLFs) is first derived. Then a modified variational iteration formula which can avoid “noise terms” is constructed. Finally a numerical method based on variational iteration method (VIM) and FLFs is developed for fractional differential equations (FDEs). Block-pulse functions (BPFs) are used to calculate the FLFs coefficient matrices of the nonlinear terms. Five examples are discussed to demonstrate the validity and applicability of the technique. PMID:24511303
High heralding-efficiency of near-IR fiber coupled photon pairs for quantum technologies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dixon, P. Ben; Murphy, Ryan; Rosenberg, Danna
We report on the development and use of a high heralding-efficiency, single-mode-fiber coupled telecom-band source of entangled photons for quantum technology applications. The source development efforts consisted of theoretical and experimental efforts and we demonstrated a correlated-mode coupling efficiency of 97% 2%, the highest efficiency yet achieved for this type of system. We then incorporated these beneficial source development techniques in a Sagnac configured telecom-band entangled photon source that generates photon pairs entangled in both time/energy and polarization degrees of freedom. We made use of these highly desirable entangled states to investigate several promising quantum technologies.
Bai, Neng; Li, Guifang
2014-02-24
The equalizer tap length requirement is investigated analytically and numerically for differential modal group delay (DMGD) compensated fiber link with weakly random mode coupling. Each span of the DMGD compensated link comprises multiple pairs of fibers which have opposite signs of DMGD. The result reveals that under weak random mode coupling, the required tap length of the equalizer is proportional to modal group delay of a single DMGD compensated pair, instead of the total modal group delay (MGD) of the entire link. By using small DMGD compensation step sizes, the required tap length (RTL) can be potentially reduced by 2 orders of magnitude.
Electrical coupling between A17 cells enhances reciprocal inhibitory feedback to rod bipolar cells.
Elgueta, Claudio; Leroy, Felix; Vielma, Alex H; Schmachtenberg, Oliver; Palacios, Adrian G
2018-02-15
A17 amacrine cells are an important part of the scotopic pathway. Their synaptic varicosities receive glutamatergic inputs from rod bipolar cells (RBC) and release GABA onto the same RBC terminal, forming a reciprocal feedback that shapes RBC depolarization. Here, using patch-clamp recordings, we characterized electrical coupling between A17 cells of the rat retina and report the presence of strongly interconnected and non-coupled A17 cells. In coupled A17 cells, evoked currents preferentially flow out of the cell through GJs and cross-synchronization of presynaptic signals in a pair of A17 cells is correlated to their coupling degree. Moreover, we demonstrate that stimulation of one A17 cell can induce electrical and calcium transients in neighboring A17 cells, thus confirming a functional flow of information through electrical synapses in the A17 coupled network. Finally, blocking GJs caused a strong decrease in the amplitude of the inhibitory feedback onto RBCs. We therefore propose that electrical coupling between A17 cells enhances feedback onto RBCs by synchronizing and facilitating GABA release from inhibitory varicosities surrounding each RBC axon terminal. GJs between A17 cells are therefore critical in shaping the visual flow through the scotopic pathway.
Universal relations of an ultracold Fermi gas with arbitrary spin-orbit coupling
NASA Astrophysics Data System (ADS)
Jie, Jianwen; Qi, Ran; Zhang, Peng
2018-05-01
We derive the universal relations for an ultracold two-component Fermi gas with a spin-orbit coupling (SOC) ∑α,β =x ,y ,zλα βσαpβ , where px ,y ,z and σx ,y ,z are the single-atom momentum and Pauli operators for pseudospin, respectively, and the SOC intensity λα β could take an arbitrary value. We consider the system with an s -wave short-range interspecies interaction, and ignore the SOC-induced modification for the value of the scattering length. Using the first-quantized approach developed by Tan [S. Tan, Phys. Rev. Lett. 107, 145302 (2011), 10.1103/PhysRevLett.107.145302], we obtain the short-range and high-momentum expansions for the one-body real-space correlation function and momentum distribution function, respectively. For our system these functions are a 2 ×2 matrix in the pseudospin basis. We find that the leading-order (1 /k4 ) behavior of the diagonal elements of the momentum distribution function, i.e., n↑↑(k ) and n↓↓(k ) , are not modified by the SOC. However, the SOC can significantly modify the large-k behaviors of the distribution difference δ n (k ) ≡n↑↑(k ) -n↓↓(k ) as well as the nondiagonal elements of the momentum distribution function, i.e., n↑↓(k ) and n↓↑(k ) . In the absence of the SOC, the leading order of δ n (k ) , n↑↓(k ) , and n↓↑(k ) is O (1 /k6) . When SOC appears, it can induce a term on the order of 1 /k5 for these elements. We further derive the adiabatic relation and the energy functional. Our results show that the SOC can induce an additional term in the energy functional, which describes the contribution from the SOC to the total energy. In addition, the form of the adiabatic relation for our system is not modified by the SOC. Our results are applicable for the systems with any type of single-atom trapping potential, which could be either diagonal or nondiagonal in the pseudospin basis.
The Crystal Structure of Non-Modified and Bipyridine-Modified PNA Duplexes
Yeh, Joanne I.; Pohl, Ehmke; Truan, Daphne; He, Wei; Sheldrick, George M.; Du, Shoucheng; Achim, Catalina
2011-01-01
Peptide nucleic acid (PNA) is a synthetic analogue of DNA that commonly has an N-aminoethlyl-glycine backbone. The crystal structure of two PNA duplexes, one containing eight standard nucleobase pairs (GGCATCGG)2 (pdb: 3MBS), and the other containing the same nucleobase pairs and a central pair of bipyridine ligands (pdb: 3MBU), has been solved with a resolution of 1.2 Å and 1.05 Å, respectively. The non-modified PNA duplex adopts a P-type helical structure s i m i l a r t o that of previously characterized PNAs. The atomic-level resolution of the structures allowed us to observe for the first time specific modes of interaction between the terminal lysines of the PNA and the backbone and nucleobases situated in the vicinity of the lysines, which are considered an important factor in the induction of a preferred handedness in PNA duplexes. These results support the notion that while PNA typically adopts a P-type helical structure, its flexibility is relatively high. For example, the base pair rise in the bipyridine-containing PNA is the largest measured to date in a PNA homoduplex. The two bipyridines are bulged out of the duplex and are aligned parallel to the minor groove of the PNA. In the case of the bipyridine-containing PNA, two bipyridines from adjacent PNA duplexes form a π-stacked pair that relates the duplexes within the crystal. The bulging out of the bipyridines causes bending of the PNA duplex, which is in contrast to the structure previously reported for biphenyl-modified DNA duplexes in solution, where the biphenyls are π-stacking with adjacent nucleobase pairs and adopt an intrahelical geometry [Johar et al., Chem. Eur. J., 2008, 14, 2080]. This difference shows that relatively small perturbations can significantly impact the relative position of nucleobase analogues in nucleic acid duplexes. PMID:20859960
Yomba, Emmanuel; Zakeri, Gholam-Ali
2016-08-01
The coupled inhomogeneous Schrödinger equations with a wide range of applications describing a field of pluses with the right and the left polarizations that take into account cross-phase modulations, stimulated Ramani scattering, and absorption effects are investigated. A combination of several different approaches is used in a novel way to obtain the explicit expressions for the rogue-pair and dark-bright-rogue waves. We study the dynamics of these structurally stable rogues and analyze the effects of a parameter that controls the region of stability that intrinsically connects the cross-phase modulation and other Kerr nonlinearity factors. The effects of the right and left polarizations on the shape of the rogue-pair and other solitary rogue waves are graphically analyzed. These rogue-pair waves are studied on periodic and non-periodic settings. We observe that rogue-pair wave from the right and left polarizations has a similar structure while the dark-bright-rogue waves have quite different intensity profiles.
Treatment of pairing correlations based on the equations of motion for zero-coupled pair operators
NASA Astrophysics Data System (ADS)
Andreozzi, F.; Covello, A.; Gargano, A.; Ye, Liu Jian; Porrino, A.
1985-07-01
The pairing problem is treated by means of the equations of motion for zero-coupled pair operators. Exact equations for the seniority-v states of N particles are derived. These equations can be solved by a step-by-step procedure which consists of progressively adding pairs of particles to a core. The theory can be applied at several levels of approximation depending on the number of core states which are taken into account. Some numerical applications to the treatment of v=0, v=1, and v=2 states in the Ni isotopes are performed. The accuracy of various approximations is tested by comparison with exact results. For the seniority-one and seniority-two problems it turns out that the results obtained from the first-order theory are very accurate, while those of higher order calculations are practically exact. Concerning the seniority-zero problem, a fifth-order calculation reproduces quite well the three lowest states.
Supercurrent in ferromagnetic Josephson junctions with heavy metal interlayers
NASA Astrophysics Data System (ADS)
Satchell, Nathan; Birge, Norman O.
2018-06-01
The length scale over which supercurrent from conventional BCS, s -wave superconductors (S ) can penetrate an adjacent ferromagnetic (F ) layer depends on the ability to convert singlet Cooper pairs into triplet Cooper pairs. Spin-aligned triplet Cooper pairs are not dephased by the ferromagnetic exchange interaction and can thus penetrate an F layer over much longer distances than singlet Cooper pairs. These triplet Cooper pairs carry a dissipationless spin current and are the fundamental building block for the fledgling field of superspintronics. Singlet-triplet conversion by inhomogeneous magnetism is well established. Here, we describe an attempt to use spin-orbit coupling as an alternative mechanism to mediate singlet-triplet conversion in S-F-S Josephson junctions. We report that the addition of thin Pt spin-orbit-coupling layers in our Josephson junctions significantly increases supercurrent transmission, however the decay length of the supercurrent is not found to increase. We attribute the increased supercurrent transmission to Pt acting as a buffer layer to improve the growth of the Co F layer.
Cao, Xu-Ni; Lin, Li; Zhou, Yu-Yan; Zhang, Wen; Shi, Guo-Yue; Yamamoto, Katsunobu; Jin, Li-Tong
2003-07-14
Microdialysis sampling coupled with liquid chromatography and electrochemical detection (LC-ECD) was developed and applied to study the interaction of 6-Mercaptopurine (6-MP) with bovine serum albumin (BSA). In the LC-ECD, the multi-wall carbon nanotubes fuctionalized with carboxylic groups modified electrode (MWNT-COOH CME) was used as the working electrode for the determination of 6-MP. The results indicated that this chemically modified electrode (CME) exhibited efficiently electrocatalytic oxidation for 6-MP with relatively high sensitivity, stability and long-life. The peak currents of 6-MP were linear to its concentrations ranging from 4.0 x 10(-7) to 1.0 x 10(-4) mol l(-1) with the calculated detection limit (S/N = 3) of 2.0 x 10(-7) mol l(-1). The method had been successfully applied to assess the association constant (K) and the number of the binding sites (n) on a BSA molecular, which calculated by Scatchard equation, were 3.97 x 10(3) mol(-1) l and 1.51, respectively. This method provided a fast, sensible and simple technique for the study of drug-protein interactions.
Lubner, Meghan G; Ziemlewicz, Tim J; Hinshaw, J Louis; Lee, Fred T; Sampson, Lisa A; Brace, Christopher L
2014-10-01
To characterize modified triaxial microwave antennas configured to produce short ablation zones. Fifty single-antenna and 27 paired-antenna hepatic ablations were performed in domestic swine (N = 11) with 17-gauge gas-cooled modified triaxial antennas powered at 65 W from a 2.45-GHz generator. Single-antenna ablations were performed at 2 (n = 16), 5 (n = 21), and 10 (n = 13) minutes. Paired-antenna ablations were performed at 1-cm and 2-cm spacing for 5 (n = 7 and n = 8, respectively) and 10 minutes (n = 7 and n = 5, respectively). Mean transverse width, length, and aspect ratio of sectioned ablation zones were measured and compared. For single antennas, mean ablation zone lengths were 2.9 cm ± 0.45, 3.5 cm ± 0.55, and 4.2 cm ± 0.40 at 2, 5, and 10 minutes, respectively. Mean widths were 1.8 cm ± 0.3, 2.0 cm ± 0.32, and 2.5 cm ± 0.25 at 2, 5, and 10 minutes, respectively. For paired antennas, mean length at 5 minutes with 1-cm and 2-cm spacing and 10 minutes with 1-cm and 2-cm spacing was 4.2 cm ± 0.9, 4.9 cm ± 1.0, 4.8 cm ± 0.5, and 4.8 cm ± 1.3, respectively. Mean width was 3.1 cm ± 1.0, 4.4 cm ± 0.7, 3.8 cm ± 0.4, and 4.5 cm ± 0.7, respectively. Paired-antenna ablations were more spherical (aspect ratios, 0.72-0.79 for 5-10 min) than single-antenna ablations (aspect ratios, 0.57-0.59). For paired-antenna ablations, 1-cm spacing appeared optimal, with improved circularity and decreased clefting compared with 2-cm spacing (circularity, 0.85 at 1 cm, 0.78 at 2 cm). Modified triaxial antennas can generate relatively short, spherical ablation zones. Paired-antenna ablations were rounder and larger in transverse dimension than single antenna ablations, with 1-cm spacing optimal for confluence of the ablation zone. Copyright © 2014 SIR. Published by Elsevier Inc. All rights reserved.
Lubner, Meghan G.; Ziemlewicz, Tim J; Hinshaw, J. Louis; Lee, Fred T.; Sampson, Lisa J.; Brace, Chris L.
2014-01-01
Purpose To characterize modified triaxial microwave antennas configured to produce short ablation zones. Materials and Methods 50 single- and 27 paired-antenna hepatic ablations were performed in domestic swine (n=11) with 17-gauge, gas-cooled modified triaxial antennas powered at 65W from a 2.45 GHz generator. Single-antenna ablations were performed at 2 (n=16), 5 (n=21), and 10 (n=13) minutes. Paired-antenna ablations were performed at 1-cm and 2-cm spacing for 5 (n=7, n=8) and 10 minutes (n=7, n=5). Mean transverse width, length and aspect ratio of sectioned ablation zones were measured and compared. Results For single antennas, mean ablation zone length was 2.9±0.45, 3.5±0.55 and 4.2±0.40 cm at 2, 5, and 10 minutes respectively. Mean width was 1.8±0.3, 2.0±0.32, 2.5±0.25 cm at 2, 5, and 10 minutes. For paired antennas, mean length at 5 min 1 and 2 cm and 10 min 1 and 2 cm spacing was 4.2±0.9, 4.4±0.9, 4.8±0.5 and 4.3±0.9 cm respectively. Mean width was 3.1±1.0, 4.0±0.8 and 3.8±0.4, 4.2±0.6 cm respectively. Paired-antenna ablations were more spherical (aspect ratios 0.72-0.79 for 5-10 min) than single-antenna ablations (0.57-0.59). For paired-antenna ablations, 1 cm spacing appeared optimal, with improved circularity and decreased clefting compared to 2 cm spacing (circ 1 cm 0.85, 2 cm 0.78). Conclusion Modified triaxial antennas can generate relatively short, spherical ablation zones. Paired-antenna ablations were rounder and larger in transverse dimension compared to single antenna ablations, with 1 cm spacing optimal for confluence of the ablation zone. PMID:25156644
Gourévitch, Boris; Mellen, Nicholas
2014-09-01
In vertebrates, respiratory control is ascribed to heterogeneous respiration-modulated neurons along the Ventral Respiratory Column (VRC) in medulla, which includes the preBötzinger Complex (preBötC), the putative respiratory rhythm generator. Here, the functional anatomy of the VRC was characterized via optical recordings in the sagittaly sectioned neonate rat hindbrain, at sampling rates permitting coupling estimation between neuron pairs, so that each neuron was described using unitary, neuron-system, and coupling attributes. Structured coupling relations in local networks, significantly oriented coupling in the peri-inspiratory interval detected in pooled data, and significant correlations between firing rate and expiratory duration in subsets of neurons revealed network regulation at multiple timescales. Spatially averaged neuronal attributes, including coupling vectors, revealed a sharp boundary at the rostral margin of the preBötC, as well as other functional anatomical features congruent with identified structures, including the parafacial respiratory group and the nucleus ambiguus. Cluster analysis of attributes identified two spatially compact, homogenous groups: the first overlapped with the preBötC, and was characterized by strong respiratory modulation and dense bidirectional coupling with itself and other groups, consistent with a central role for the preBötC in respiratory control; the second lay between preBötC and the facial nucleus, and was characterized by weak respiratory modulation and weak coupling with other respiratory neurons, which is congruent with cardiovascular regulatory networks that are found in this region. Other groups identified using cluster analysis suggested that networks along VRC regulated expiratory duration, and the transition to and from inspiration, but these groups were heterogeneous and anatomically dispersed. Thus, by recording local networks in parallel, this study found evidence for respiratory regulation at multiple timescales along the VRC, as well as a role for the preBötC in the integration of functionally disparate respiratory neurons. Copyright © 2014 Elsevier Inc. All rights reserved.
Probing the Higgs self coupling via single Higgs production at the LHC
Degrassi, G.; Giardino, P. P.; Maltoni, F.; ...
2016-12-16
Here, we propose a method to determine the trilinear Higgs self coupling that is alternative to the direct measurement of Higgs pair production total cross sections and differential distributions. Furthermore, the method relies on the effects that electroweak loops featuring an anomalous trilinear coupling would imprint on single Higgs production at the LHC. We first calculate these contributions to all the phenomenologically relevant Higgs production (ggF, VBF, WH, ZH, tmore » $$\\bar{t}$$ ) and decay (γγ,WW*/ZZ*→ 4f, b$$\\bar{b}$$,ττ) modes at the LHC and then estimate the sensitivity to the trilinear coupling via a one-parameter fit to the single Higgs measurements at the LHC 8 TeV. We also found that the bounds on the self coupling are already competitive with those from Higgs pair production and will be further improved in the current and next LHC runs.« less
Acetylcholine receptor gating at extracellular transmembrane domain interface: the "pre-M1" linker.
Purohit, Prasad; Auerbach, Anthony
2007-12-01
Charged residues in the beta10-M1 linker region ("pre-M1") are important in the expression and function of neuromuscular acetylcholine receptors (AChRs). The perturbation of a salt bridge between pre-M1 residue R209 and loop 2 residue E45 has been proposed as being a principle event in the AChR gating conformational "wave." We examined the effects of mutations to all five residues in pre-M1 (positions M207-P211) plus E45 in loop 2 in the mouse alpha(1)-subunit. M207, Q208, and P211 mutants caused small (approximately threefold) changes in the gating equilibrium constant (K(eq)), but the changes for R209, L210, and E45 were larger. Of 19 different side chain substitutions at R209 on the wild-type background, only Q, K, and H generated functional channels, with the largest change in K(eq) (67-fold) from R209Q. Various R209 mutants were functional on different E45 backgrounds: H, Q, and K (E45A), H, A, N, and Q (E45R), and K, A, and N (E45L). Phi values for R209 (on the E45A background), L210, and E45 were 0.74, 0.35, and 0.80, respectively. Phi values for R209 on the wt and three other backgrounds could not be estimated because of scatter. The average coupling energy between 209/45 side chains (six different pairs) was only -0.33 kcal/mol (for both alpha subunits, combined). Pre-M1 residues are important for expression of functional channels and participate in gating, but the relatively modest changes in closed- vs. open-state energy caused mutations, the weak coupling energy between these residues and the functional activity of several unmatched-charge pairs are not consistent with the perturbation of a salt bridge between R209 and E45 playing the principle role in gating.
NASA Astrophysics Data System (ADS)
Rosenberger, Tessa; Lindner, John F.
We study the dynamics of mechanical arrays of bistable elements coupled one-way by wind. Unlike earlier hydromechanical unidirectional arrays, our aeromechanical one-way arrays are simpler, easier to study, and exhibit a broader range of phenomena. Soliton-like waves propagate in one direction at speeds proportional to wind speeds. Periodic boundaries enable solitons to annihilate in pairs in even arrays where adjacent elements are attracted to opposite stable states. Solitons propagate indefinitely in odd arrays where pairing is frustrated. Large noise spontaneously creates soliton- antisoliton pairs, as predicted by prior computer simulations. Soliton annihilation times increase quadratically with initial separations, as expected for random walk models of soliton collisions.
Generalized Gibbs state with modified Redfield solution: Exact agreement up to second order
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thingna, Juzar; Wang, Jian-Sheng; Haenggi, Peter
A novel scheme for the steady state solution of the standard Redfield quantum master equation is developed which yields agreement with the exact result for the corresponding reduced density matrix up to second order in the system-bath coupling strength. We achieve this objective by use of an analytic continuation of the off-diagonal matrix elements of the Redfield solution towards its diagonal limit. Notably, our scheme does not require the provision of yet higher order relaxation tensors. Testing this modified method for a heat bath consisting of a collection of harmonic oscillators we assess that the system relaxes towards its correctmore » coupling-dependent, generalized quantum Gibbs state in second order. We numerically compare our formulation for a damped quantum harmonic system with the nonequilibrium Green's function formalism: we find good agreement at low temperatures for coupling strengths that are even larger than expected from the very regime of validity of the second-order Redfield quantum master equation. Yet another advantage of our method is that it markedly reduces the numerical complexity of the problem; thus, allowing to study efficiently large-sized system Hilbert spaces.« less
Cognitive Modifiability and Cognitive Performance of Deaf and Hearing Preschool Children.
ERIC Educational Resources Information Center
Tzuriel, David; Caspi, Naomi
1992-01-01
This study, with 26 deaf and 26 pair-matched hearing preschool children, first assessed their cognitive modifiability using dynamic and static-convention instruments, and then compared the factorial pattern of the cognitive measures in both groups. Results are interpreted according to the Structural Cognitive Modifiability and Mediated Learning…
Accurate representation of B-DNA double helical structure with implicit solvent and counterions.
Wang, Lihua; Hingerty, Brian E; Srinivasan, A R; Olson, Wilma K; Broyde, Suse
2002-01-01
High-resolution nuclear magnetic resonance (NMR) and crystallographic data have been taken to refine the force field used in the torsion angle space nucleic acids molecular mechanics program DUPLEX. The population balance deduced from NMR studies of two carcinogen-modified DNA conformers in equilibrium was used to fine tune a sigmoidal, distance-dependent dielectric function so that reasonable relative energies could be obtained. In addition, the base-pair and backbone geometry from high-resolution crystal structures of the Dickerson-Drew dodecamer was used to re-evaluate the deoxyribose pseudorotation profile and the Lennard-Jones nonbonded energy terms. With a modified dielectric function that assumes a very steep distance-dependent form, a deoxyribose pseudorotation profile with reduced energy barriers between C2'- and C3'-endo minima, and a shift of the Lennard-Jones potential energy minimum to a distance approximately 0.4 A greater than the sum of the van der Waals' radii, the sequence-dependent conformational features of the Dickerson-Drew dodecamer in both the solid state and the aqueous liquid crystalline phase are well reproduced. The robust performance of the revised force field, in conjunction with its efficiency through implicit treatment of solvent and counterions, provides a valuable tool for elucidating conformations and structure-function relationships of DNA, including those of molecules modified by carcinogens and other ligands. PMID:12080128
NASA Astrophysics Data System (ADS)
Penin, A. A.; Pivovarov, A. A.
2001-02-01
We present an analytical description of top-antitop pair production near the threshold in $e^+e^-$ annihilation and $\\g\\g$ collisions. A set of basic observables considered includes the total cross sections, forward-backward asymmetry and top quark polarization. The threshold effects relevant for the basic observables are described by three universal functions related to S wave production, P wave production and S-P interference. These functions are computed analytically up to the next-to-next-to-leading order of NRQCD. The total $e^+e^-\\to t\\bar t$ cross section near the threshold is obtained in the next-to-next-to-leading order in the closed form including the contribution due to the axial coupling of top quark and mediated by the Z-boson. The effects of the running of the strong coupling constant and of the finite top quark width are taken into account analytically for the P wave production and S-P wave interference.
NASA Astrophysics Data System (ADS)
Yang, Xu-Chen; Wang, Xin
The manipulation of coupled quantum dot devices is crucial to scalable, fault-tolerant quantum computation. We present a theoretical study of a four-electron four-quantum-dot system based on molecular orbital methods, which depicts a pair of singlet-triplet (S-T) qubits. We find that while the two S-T qubits are coupled by the capacitive interaction when they are sufficiently far away, the admixture of wave functions undergoes a substantial change as the two S-T qubits get closer. We find that in certain parameter regime the exchange interaction may only be defined in the sense of an effective one when the computational basis states no longer dominate the eigenstates. We further discuss the gate crosstalk as a consequence of this wave function mixing. This work was supported by the Research Grants Council of the Hong Kong Special Administrative Region, China (No. CityU 21300116) and the National Natural Science Foundation of China (No. 11604277).
Surface Inhomogeneities of the White Dwarf in the Binary EUVE J2013+400
NASA Astrophysics Data System (ADS)
Vennes, Stephane
We propose to study the white dwarf in the binary EUVE J2013+400. The object is paired with a dMe star and new extreme ultraviolet (EUV) observations will offer critical insights into the properties of the white dwarf. The binary behaves, in every other aspects, like its siblings EUVE J0720-317 and EUVE J1016-053 and new EUV observations will help establish their class properties; in particular, EUV photometric variations in 0720-317 and 1016-053 over a period of 11 hours and 57 minutes, respectively, are indicative of surface abundance inhomogeneities coupled with the white dwarfs rotation period. These variations and their large photospheric helium abundance are best explained by a diffusion-accretion model in which time-variable accretion and possible coupling to magnetic poles contribute to abundance variations across the surface and possibly as a function of depth. EUV spectroscopy will also enable a study of the helium abundance as a function of depth and a detailed comparison with theoretical diffusion profile.
Diffusion Monte Carlo study of strongly interacting two-dimensional Fermi gases
Galea, Alexander; Dawkins, Hillary; Gandolfi, Stefano; ...
2016-02-01
Ultracold atomic Fermi gases have been a popular topic of research, with attention being paid recently to two-dimensional (2D) gases. In this work, we perform T=0 ab initio diffusion Monte Carlo calculations for a strongly interacting two-component Fermi gas confined to two dimensions. We first go over finite-size systems and the connection to the thermodynamic limit. After that, we illustrate pertinent 2D scattering physics and properties of the wave function. We then show energy results for the strong-coupling crossover, in between the Bose-Einstein condensation (BEC) and Bardeen-Cooper-Schrieffer (BCS) regimes. Our energy results for the BEC-BCS crossover are parametrized to producemore » an equation of state, which is used to determine Tan's contact. We carry out a detailed comparison with other microscopic results. Lastly, we calculate the pairing gap for a range of interaction strengths in the strong coupling regime, following from variationally optimized many-body wave functions.« less
Chatrchyan, Serguei
2014-08-21
The inclusive cross section for top-quark pair production measured by the CMS experiment in proton-proton collisions at a center-of-mass energy of 7 TeV is compared to the QCD prediction at next-to-next-to-leading order with various parton distribution functions to determine the top-quark pole mass,more » $$m_t^{pole}$$, or the strong coupling constant, $$\\alpha_S$$. With the parton distribution function set NNPDF2.3, a pole mass of 176.7$$^{+3.0}_{-2.8}$$ GeV is obtained when constraining $$\\alpha_S$$ at the scale of the Z boson mass, $$m_Z$$, to the current world average. Alternatively, by constraining $$m_t^{pole}$$ to the latest average from direct mass measurements, a value of $$\\alpha_S(m_Z)$$ = 0.1151$$^{+0.0028}_{-0.0027}$$ is extracted. This is the first determination of $$\\alpha_S$$ using events from top-quark production.« less
NASA Astrophysics Data System (ADS)
Ebrahimi, Farzad; Barati, Mohammad Reza
2017-12-01
This paper develops a higher order refined beam model with a parabolic shear strain function for vibration analysis of porous nanocrystalline nanobeams based on nonlocal couple stress theory. Nanocrystalline nanobeam is composed from three phases which are nano-grains, nano-voids and interface. Nano-voids or porosities inside the material have a stiffness-softening impact on the nanobeam. Nonlocal elasticity theory of Eringen is applied in analysis of nanocrystalline nanobeams for the first time. Also, modified couple stress theory is employed to capture grains rigid rotations. The governing equations obtained from Hamilton's principle are solved applying an analytical approach which satisfies various boundary conditions. The reliability of present approach is verified by comparing obtained results with those provided in literature. Finally the influences of nonlocal parameter, couple stress, grain size, porosities and shear deformation on the vibration characteristics of nanocrystalline nanobeams are explored.
The possible magnetoelectric coupling induced by adsorption in SnTe films
NASA Astrophysics Data System (ADS)
Fu, Zhaoming; Liu, Meng; Zhang, Na; An, Yipeng; Yang, Zongxian
2018-01-01
Based on the recent discovery of the stable in-plane spontaneous polarization in SnTe films. We report the possible magnetoelectric (ME) coupling induced by adsorption in SnTe films by performing density functional calculations. Firstly, we investigate the adsorption-induced magnetic behaviors on the two-dimensional SnTe monolayer. Five kinds of adatoms (H, B, C, N and O) are taken into account. It is found that the SnTe with adsorbing H and B have nonzero magnetic moments and good stability. Secondly, the coexistence of the ferromagnetism and ferroelectrics (i.e. multiferroics) is observed in H-adsorbed SnTe. The magnetoelectric coupling in this system is studied by calculating the poralazition in different magnetic structures (antiferromagnetic and ferroelectric). According to our study, we propose that it is a possible method obtaining the multiferroicity and ME coupling to modify the SnTe films by chemical adsorption of single atoms.
Crossover to the anomalous quantum regime in the extrinsic spin Hall effect of graphene
NASA Astrophysics Data System (ADS)
Ferreira, Aires; Milletari, Mirco
Recent reports of spin-orbit coupling enhancement in chemically modified graphene have opened doors to studies of the spin Hall effect with massless chiral fermions. Here, we theoretically investigate the interaction and impurity density dependence of the extrinsic spin Hall effect in spin-orbit coupled graphene. We present a nonperturbative quantum diagrammatic calculation of the spin Hall response function in the strong-coupling regime that incorporates skew scattering and anomalous impurity density-independent contributions on equal footing. The spin Hall conductivity dependence on Fermi energy and electron-impurity interaction strength reveals the existence of experimentally accessible regions where anomalous quantum processes dominate. Our findings suggest that spin-orbit-coupled graphene is an ideal model system for probing the competition between semiclassical and bona fide quantum scattering mechanisms underlying the spin Hall effect. A.F. gratefully acknowledges the financial support of the Royal Society (U.K.).
NASA Astrophysics Data System (ADS)
Yavari, H.; Mokhtari, M.; Tamaddonpour, M.
2013-10-01
The combined effect of nonmagnetic and magnetic impurities on the spin susceptibility of a noncentrosymmetrical superconductor by considering a Cooper pairing model with a two-component order parameter composed of spin-singlet and spin-triplet pairing components is investigated. For clean superconductor CePt3Si, the low-temperature dependence (T →0) of spin susceptibility is linear which suggests that the gap function has line nodes, consistent with our gap model. We will show that in the presence of magnetic impurities the susceptibility does not vanish even in the absence of spin orbit coupling and in the region where the energy gap still is finite, and in the low concentration of magnetic impurities the spin susceptibility at zero temperature is proportional to impurity concentration.
Topological winding properties of spin edge states in the Kane-Mele graphene model
NASA Astrophysics Data System (ADS)
Wang, Zhigang; Hao, Ningning; Zhang, Ping
2009-09-01
We study the spin edge states in the quantum spin-Hall (QSH) effect on a single-atomic layer graphene-ribbon system with both intrinsic and Rashba spin-orbit couplings. The Harper equation for solving the energies of the spin edge states is derived. The results show that in the QSH phase, there are always two pairs of gapless spin-filtered edge states in the bulk energy gap, corresponding to two pairs of zero points of the Bloch function on the complex-energy Riemann surface (RS). The topological aspect of the QSH phase can be distinguished by the difference of the winding numbers of the spin edge states with different polarized directions cross the holes of the RS, which is equivalent to the Z2 topological invariance proposed by Kane and Mele [Phys. Rev. Lett. 95, 146802 (2005)].
Counteranion-Mediated Intrinsic Healing of Poly(ionic liquid) Copolymers.
Guo, Panlong; Zhang, Houyu; Liu, Xiaokong; Sun, Junqi
2018-01-17
Fabrication of self-healing/healable materials using reversible interactions that are governed by their inherent chemical features is highly desirable because it avoids the introduction of extra groups that may present negative effects on their functions. The present study exploits the inherently featured electrostatic interactions of the ion pairs in polymeric ionic liquids (PILs) as the driving force to fabricate healable PIL copolymers. The healable PIL copolymers are fabricated through the copolymerization of the IL monomers with ethyl acrylate followed by the replacement of Br - counteranions with bulkier ones such as bis(trifluoromethanesulfonyl)imide (TFSI - ). Without modifying the chemical structures of the PIL moieties, the healing performance of the as-prepared PIL copolymers can be effectively mediated by their counteranions. The PIL copolymers that do not possess healability when paired with Br - counteranions become healable after exchanging the Br - counteranions with larger-sized ones (e.g., TFSI - ). The PIL copolymers paired with bulky counteranions exhibit enhanced chain mobility and highly reversible ion-pair interactions, which facilitate the healing process. The PIL copolymers paired with TFSI - anions can completely heal the damage/cut upon heating at 55 °C for 7.5 h. Meanwhile, the counteranions with larger sizes not only benefit the healing performance of the PIL copolymers but also enhance their ion conductivity. The ion conductivity of the PIL copolymers paired with TFSI - is an order of magnitude higher than that of the PIL copolymers paired with Br - . Therefore, the as-prepared healable PIL copolymers are potentially useful as solid electrolytes in PIL-based energy devices to improve their safety and reliability.
Cumming, Mark J; Thompson, Madison A; McCormick, Cheryl M
2014-11-01
Adolescent social instability stress (SS; daily 1 hr isolation + new cage partners postnatal days 30-45; thereafter with original cage partner, also in the SS condition) and control (CTL) rats competed for access to a preferred food in five sessions against their cage partner. In the first session, SS pairs displayed more aggression (face whacks, p = .02; rear attacks, p = .03), were less likely to relinquish access to the food voluntarily (p = .03), spent more time at the feeder than CTL pairs (p = .06), but did not differ in latency to access the feeder (p = .41). Pairs were considered in dominant-submissive relationships (DSR) if one rat spent significantly more time at the feeder than the other; 8 of 12 SS and 8 of 12 CTL pairs displayed DSRs (remaining: no-DSR). Aggression increased from the 1st to 5th session (p < .001), was greater in no-DSR than DSR pairs (p = .04; consistent with the proposed function of DSRs to be the reduction of aggression in groups), and was higher in SS than CTL pairs (p = .05). Because the increased aggression of SS compared with CTL pairs did not result in a significant increase in their time at the feeder, the increased aggression may be considered maladaptive, and may reflect an increased motivation for food reward. These results add to evidence that SS in adolescence modifies the adult social repertoire of rats and highlight the importance of adolescent social experiences for adult behavior. © 2014 Wiley Periodicals, Inc.
Magnetic exchange coupling through superconductors : a trilayer study.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sa de Melo, C. A. R.; Materials Science Division
1997-09-08
The possibility of magnetic exchange coupling between two ferromagnets (F) separated by a superconductor (S) spacer is analyzed using the functional integral method. For this coupling to occur three prima facie conditions need to be satisfied. First, an indirect exchange coupling between the ferromagnets must exist when the superconductor is in its normal state. Second, superconductivity must not be destroyed due to the proximity to ferromagnetic boundaries. Third, roughness of the F/S interfaces must be small. Under these conditions, when the superconductor is cooled to below its critical temperature, the magnetic coupling changes. The appearance of the superconducting gap introducesmore » a new length scale (the coherence length of the superconductor) and modifies the temperature dependence of the indirect exchange coupling existent in the normal state. The magnetic coupling is oscillatory both above and below the critical temperature of the superconductor, as well as strongly temperature-dependent. However, at low temperatures the indirect exchange coupling decay length is controlled by the coherence length of the superconductor, while at temperatures close to and above the critical temperature of the superconductor the magnetic coupling decay length is controlled by the thermal length.« less
A global view on the Higgs self-coupling at lepton colliders
Di Vita, Stefano; Durieux, Gauthier; Grojean, Christophe; ...
2018-02-28
We perform a global effective-field-theory analysis to assess the precision on the determination of the Higgs trilinear self-coupling at future lepton colliders. Two main scenarios are considered, depending on whether the center-of-mass energy of the colliders is sufficient or not to access Higgs pair production processes. Low-energy machines allow for ~40% precision on the extraction of the Higgs trilinear coupling through the exploitation of next-to-leading-order effects in single Higgs measurements, provided that runs at both 240/250 GeV and 350 GeV are available with luminosities in the few attobarns range. A global fit, including possible deviations in other SM couplings, ismore » essential in this case to obtain a robust determination of the Higgs self-coupling. High-energy machines can easily achieve a ~20% precision through Higgs pair production processes. In this case, the impact of additional coupling modifications is milder, although not completely negligible.« less
A global view on the Higgs self-coupling at lepton colliders
DOE Office of Scientific and Technical Information (OSTI.GOV)
Di Vita, Stefano; Durieux, Gauthier; Grojean, Christophe
We perform a global effective-field-theory analysis to assess the precision on the determination of the Higgs trilinear self-coupling at future lepton colliders. Two main scenarios are considered, depending on whether the center-of-mass energy of the colliders is sufficient or not to access Higgs pair production processes. Low-energy machines allow for ~40% precision on the extraction of the Higgs trilinear coupling through the exploitation of next-to-leading-order effects in single Higgs measurements, provided that runs at both 240/250 GeV and 350 GeV are available with luminosities in the few attobarns range. A global fit, including possible deviations in other SM couplings, ismore » essential in this case to obtain a robust determination of the Higgs self-coupling. High-energy machines can easily achieve a ~20% precision through Higgs pair production processes. In this case, the impact of additional coupling modifications is milder, although not completely negligible.« less
Zhang, Guoqiang; Yan, Zhenya; Wen, Xiao-Yong
2017-07-01
The integrable coupled nonlinear Schrödinger equations with four-wave mixing are investigated. We first explore the conditions for modulational instability of continuous waves of this system. Secondly, based on the generalized N -fold Darboux transformation (DT), beak-shaped higher-order rogue waves (RWs) and beak-shaped higher-order rogue wave pairs are derived for the coupled model with attractive interaction in terms of simple determinants. Moreover, we derive the simple multi-dark-dark and kink-shaped multi-dark-dark solitons for the coupled model with repulsive interaction through the generalizing DT. We explore their dynamics and classifications by different kinds of spatial-temporal distribution structures including triangular, pentagonal, 'claw-like' and heptagonal patterns. Finally, we perform the numerical simulations to predict that some dark solitons and RWs are stable enough to develop within a short time. The results would enrich our understanding on nonlinear excitations in many coupled nonlinear wave systems with transition coupling effects.
NASA Astrophysics Data System (ADS)
Brax, Philippe; Davis, Anne-Christine
2012-01-01
We consider the effect of modified gravity on the peak structure of the cosmic microwave background (CMB) spectrum. We focus on simple models of modified gravity mediated by a massive scalar field coupled to both baryons and cold dark matter. This captures the features of chameleon, symmetron, dilaton, and f(R) models. We find that the CMB peaks can be affected in three independent ways provided the Compton radius of the massive scalar is not far-off the sound horizon at last scattering. When the coupling of the massive scalar to cold dark matter is large, the anomalous growth of the cold dark matter perturbation inside the Compton radius induces a change in the peak amplitudes. When the coupling to baryons is moderately large, the speed of sound is modified and the peaks shifted to higher momenta. Finally when both couplings are nonvanishing, a new contribution proportional to the Newton potential appears in the Sachs-Wolfe temperature and increases the peak amplitudes. We also show how, given any temporal evolution of the scalar field mass, one can engineer a corresponding modified gravity model of the chameleon type. This opens up the possibility of having independent constraints on modified gravity from the CMB peaks and large scale structures at low redshifts.
NASA Astrophysics Data System (ADS)
Bryant, Donald A.; Canniffe, Daniel P.
2018-02-01
Chlorophyll-based phototrophs, or chlorophototrophs, convert light energy into stored chemical potential energy using two types of photochemical reaction center (RC), denoted type-1 and type-2. After excitation with light, a so-called special pair of chlorophylls in the RC is oxidized, and an acceptor is reduced. To ensure that RCs function at maximal rates in diffuse and variable light conditions, chlorophototrophs have independently evolved diverse light-harvesting antenna systems to rapidly and efficiently transfer that energy to the RCs. Energy transfer between weakly coupled chromophores is generally believed to proceed by resonance energy transfer, a dipole-induced-dipole process that was initially described theoretically by Förster. Nature principally optimizes three parameters in antenna systems: the distance separating the donor and acceptor chromophores, the relative orientations of those chromophores, and the spectral overlap between the donor and the acceptor chromophores. However, there are other important biological parameters that nature has optimized, and some common themes emerge from comparisons of different antenna systems. This tutorial considers structural and functional characteristics of three fundamentally different light-harvesting antenna systems of chlorophotrophic bacteria: phycobilisomes of cyanobacteria, the light-harvesting complexes (LH1 and LH2) of purple bacteria, and chlorosomes of green bacteria. Phycobilisomes are generally considered to represent an antenna system in which the chromophores are weakly coupled, while the strongly coupled bacteriochlorophyll molecules in LH1 and LH2 are strongly coupled and are better described by exciton theory. Chlorosomes can contain up to 250 000 bacteriochlorophyll molecules, which are very strongly coupled and form supramolecular, nanotubular arrays. The general and specific principles that have been optimized by natural selection during the evolution of these diverse light-harvesting antenna systems are discussed.