The Use of a Modified Semantic Features Analysis Approach in Aphasia
ERIC Educational Resources Information Center
Hashimoto, Naomi; Frome, Amber
2011-01-01
Several studies have reported improved naming using the semantic feature analysis (SFA) approach in individuals with aphasia. Whether the SFA can be modified and still produce naming improvements in aphasia is unknown. The present study was designed to address this question by using a modified version of the SFA approach. Three, rather than the…
Role of Cigarette Sensory Cues in Modifying Puffing Topography
Rees, Vaughan W.; Kreslake, Jennifer M.; Wayne, Geoffrey Ferris; O Connor, Richard J.; Cummings, K. Michael; Connolly, Gregory N.
2012-01-01
Background Human puffing topography promotes tobacco dependence by ensuring nicotine delivery, but the factors that determine puffing behavior are not well explained by existing models. Chemosensory cues generated by variations in cigarette product design features may serve as conditioned cues to allow the smoker to optimize nicotine delivery by adjusting puffing topography. Internal tobacco industry research documents were reviewed to understand the influence of sensory cues on puffing topography, and to examine how the tobacco industry has designed cigarettes, including modified risk tobacco products (MRTPs), to enhance puffing behavior to optimize nicotine delivery and product acceptability. Methods Relevant internal tobacco industry documents were identified using systematic searching with key search terms and phrases, and then snowball sampling method was applied to establish further search terms. Results Modern cigarettes are designed by cigarette manufacturers to provide sensory characteristics that not only maintain appeal, but provide cues which inform puffing intensity. Alterations in the chemosensory cues provided in tobacco smoke play an important role in modifying smoking behavior independently of the central effects of nicotine. Conclusions An associative learning model is proposed to explain the influence of chemosensory cues on variation in puffing topography. These cues are delivered via tobacco smoke and are moderated by design features and additives used in cigarettes. The implications for regulation of design features of modified risk tobacco products, which may act to promote intensive puffing while lowering risk perceptions, are discussed. PMID:22365895
The use of semantic- and phonological-based feature approaches to treat naming deficits in aphasia.
Hashimoto, Naomi
2012-06-01
The aim of the study was to compare approaches highlighting either semantic or phonological features to treat naming deficits in aphasia. Treatment focused on improving picture naming. An alternating treatments design was used with a multiple baseline design across stimuli to examine effects of both approaches in two participants with varying degrees of anomia. The features approaches were modified in that three, rather than six, features were used. Significant differential effects were found across participants; this appeared to be a function of each participant's strengths or preferences over the course of treatment. Modest generalization effects were obtained for one participant. Naming error analyses revealed patterns suggestive of increased lexical access for both participants. These findings provide evidence that using a modified features-based protocol can improve naming when incorporating both semantic and phonological feature cues. Naming error patterns can provide additional evidence of improved naming during treatment.
Design of prototype charged particle fog dispersal unit
NASA Technical Reports Server (NTRS)
Collins, F. G.; Frost, W.; Kessel, P.
1981-01-01
The unit was designed to be easily modified so that certain features that influence the output current and particle size distribution could be examined. An experimental program was designed to measure the performance of the unit. The program described includes measurements in a fog chamber and in the field. Features of the nozzle and estimated nozzle characteristics are presented.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-09
... A330- 200 airplane. This airplane as modified by TTF Aerospace LLC will have a novel or unusual design... airworthiness regulations do not contain adequate or appropriate safety standards for this design feature. These... novel or unusual design feature, special conditions are prescribed under the provisions of Sec. 21.16...
1991-01-01
plan. The Fabrication Planning Module automatically creates a plan using information from the Feature Based Design Environment (FBDE) of the RDS. It...llll By using the user Interface, the final process plan can be modified in many different ways. The translation of a design feature to a more...for the review and modification of a process plan. The Fabrication Planning Module automatically creates a plan using information from the Feature Based
Cigarette Design Features: Effects on Emission Levels, User Perception, and Behavior.
Talhout, Reinskje; Richter, Patricia A; Stepanov, Irina; Watson, Christina V; Watson, Clifford H
2018-01-01
This paper describes the effects of non-tobacco, physical cigarette design features on smoke emissions, product appeal, and smoking behaviors - 3 factors that determine smoker's exposure and related health risks. We reviewed available evidence for the impact of filter ventilation, new filter types, and cigarettes dimensions on toxic emissions, smoker's perceptions, and behavior. For evidence sources we used scientific literature and websites providing product characteristics and marketing information. Whereas filter ventilation results in lower machine-generated emissions, it also leads to perceptions of lighter taste and relative safety in smokers who can unwittingly employ more intense smoking behavior to obtain the desired amount of nicotine and sensory appeal. Filter additives that modify smoke emissions can also modify sensory cues, resulting in changes in smoking behavior. Flavor capsules increase the cigarette's appeal and novelty, and lead to misperceptions of reduced harm. Slim cigarettes have lower yields of some smoke emissions, but smoking behavior can be more intense than with standard cigarettes. Physical design features significantly impact machine-measured emission yields in cigarette smoke, product appeal, smoking behaviors, and exposures in smokers. The influence of current and emerging design features is important in understanding the effectiveness of regulatory actions to reduce smoking-related harm.
The Structured Intuitive Model for Product Line Economics (SIMPLE)
2005-02-01
units are features and use cases. A feature is just as nebulous as a requirement, but techniques such as feature-oriented domain analysis ( FODA ) [Kang 90...cost avoidance DM design modified DOCU degree of documentation GQM Goal Question Metric FODA feature-oriented domain analysis IM integration effort...Hess, J.; Novak, W.; & Peterson, A. Feature- Oriented Domain Analysis ( FODA ) Feasibility Study (CMU/SEI- 90-TR-02 1, ADA235785). Pittsburgh, PA
76 FR 10269 - AP1000 Design Certification Amendment
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-24
... design control document proposals. For the final rule, the NRC will complete the review of the CIs and... control requirement includes the descriptions of the design features and functional capabilities... objective of the change controls is to determine whether the design of the facility, as changed or modified...
NASA Astrophysics Data System (ADS)
Bashashati, Ali; Mason, Steve; Ward, Rabab K.; Birch, Gary E.
2006-06-01
The low-frequency asynchronous switch design (LF-ASD) has been introduced as a direct brain interface (BI) for asynchronous control applications. Asynchronous interfaces, as opposed to synchronous interfaces, have the advantage of being operational at all times and not only at specific system-defined periods. This paper modifies the LF-ASD design by incorporating into the system more knowledge about the attempted movements. Specifically, the history of feature values extracted from the EEG signal is used to detect a right index finger movement attempt. Using data collected from individuals with high-level spinal cord injuries and able-bodied subjects, it is shown that the error characteristics of the modified design are significantly better than the previous LF-ASD design. The true positive rate percentage increased by up to 15 which corresponds to 50% improvement when the system is operating with false positive rates in the 1-2% range.
Dobson ozone spectrophotometer modification.
NASA Technical Reports Server (NTRS)
Komhyr, W. D.; Grass, R. D.
1972-01-01
Description of a modified version of the Dobson ozone spectrophotometer in which several outdated electronic design features have been replaced by circuitry embodying more modern design concepts. The resulting improvement in performance characteristics has been obtained without changing the principle of operation of the original instrument.
NASA Astrophysics Data System (ADS)
Yong, Kilyuk; Jo, Sujang; Bang, Hyochoong
This paper presents a modified Rodrigues parameter (MRP)-based nonlinear observer design to estimate bias, scale factor and misalignment of gyroscope measurements. A Lyapunov stability analysis is carried out for the nonlinear observer. Simulation is performed and results are presented illustrating the performance of the proposed nonlinear observer under the condition of persistent excitation maneuver. In addition, a comparison between the nonlinear observer and alignment Kalman filter (AKF) is made to highlight favorable features of the nonlinear observer.
The use of a modified semantic features analysis approach in aphasia.
Hashimoto, Naomi; Frome, Amber
2011-01-01
Several studies have reported improved naming using the semantic feature analysis (SFA) approach in individuals with aphasia. Whether the SFA can be modified and still produce naming improvements in aphasia is unknown. The present study was designed to address this question by using a modified version of the SFA approach. Three, rather than the typical six, features were used, and written along with verbal responses were allowed in an individual with both aphasia and apraxia of speech. A single-subject multiple-baseline design across behaviors was used to treat naming of single objects across three different semantic categories in a 72-year-old individual with aphasia and apraxia of speech. Stimulus generalization of training was measured by using photographs of trained items presented in natural contexts. Training of the three different categories resulted in improved naming. At a 6-week follow-up session, naming remained above pre-treatment levels but declines were noted compared to treatment levels. Generalization to the same trained items presented in different contexts was also demonstrated although declines in performance were also noted over time. Results of the study provide qualified support for the use of three features in promoting long-term improvement of naming in an individual with both aphasia and apraxia of speech. Future SFA studies should focus on whether it is the number or types of features used, aphasia severity, or length of treatment that are critical factors in rehabilitating naming deficits in aphasia. Copyright © 2011 Elsevier Inc. All rights reserved.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-13
... the system design integrity, system design environmental, and test and analysis requirements) of these... novel or unusual design features when modified by installing the Hoh Aeronautics, Inc. (Hoh) complex..., Regulations and Policy Group (ASW-111), 2601 Meacham Blvd., Fort Worth, Texas 76137; telephone (817) 222-5167...
Vegetation and other development options for mitigating urban air pollution impacts
Richard Baldauf; David J. Nowak
2014-01-01
While air pollution control devices and programs are the primary method of reducing emissions, urban air pollution can be further mitigated through planning and design strategies, including vegetation preservation and planting, building design and development, installing roadside and near-source structures, and modifying surrounding terrain features.
30 CFR 18.61 - Final inspection of complete machine.
Code of Federal Regulations, 2011 CFR
2011-07-01
... substantially modified design of a previously approved one shall be inspected by a qualified representative(s... requirements of this part with respect to joints, lead entrances, and other pertinent features. (2) Wiring...
Jiang, Long; Li, Yu
2016-04-15
In this study, the properties of AhR binding affinity, bio-concentration factor, half-life and vapor pressure were selected as the typical indicators of biological toxicity, bio-concentration, persistence and atmospheric long-range transport potential for polybrominated diphenyl ethers (PBDEs), respectively. A three-dimensional pharmacophore modeling assistant with a full factor experimental design for each property was used to reveal the significant pharmacophore features and the substituent effects to obtain reasonable modified schemes for the selected target PBDEs. Finally, the performances of the persistent organic pollutant (POP) properties, the synthesis feasibility and the fire resistance of the modified compounds were evaluated. The most influential pharmacophore feature for all POP properties was the hydrophobic group, especially the vinyl and propyl groups. Modified compounds with two additional hydrophobic groups exhibited a better regulatory performance. The average reduction in the proportions of the four POP properties for the modified compounds (except for 3-phenyl-BDE-15) was 70.60%, 52.44%, 47.04% and 70.88%. In addition, the energy and the C-Br bond dissociation enthalpy of the four typical PBDEs were higher than those of the modified compounds (except for 3-phenyl-BDE-15), indicating the synthesis feasibility and the lower energy barrier of the modified compounds to release Br free radicals to provide fire resistance. Copyright © 2015 Elsevier B.V. All rights reserved.
Modified-BRISQUE as no reference image quality assessment for structural MR images.
Chow, Li Sze; Rajagopal, Heshalini
2017-11-01
An effective and practical Image Quality Assessment (IQA) model is needed to assess the image quality produced from any new hardware or software in MRI. A highly competitive No Reference - IQA (NR - IQA) model called Blind/Referenceless Image Spatial Quality Evaluator (BRISQUE) initially designed for natural images were modified to evaluate structural MR images. The BRISQUE model measures the image quality by using the locally normalized luminance coefficients, which were used to calculate the image features. The modified-BRISQUE model trained a new regression model using MR image features and Difference Mean Opinion Score (DMOS) from 775 MR images. Two types of benchmarks: objective and subjective assessments were used as performance evaluators for both original and modified-BRISQUE models. There was a high correlation between the modified-BRISQUE with both benchmarks, and they were higher than those for the original BRISQUE. There was a significant percentage improvement in their correlation values. The modified-BRISQUE was statistically better than the original BRISQUE. The modified-BRISQUE model can accurately measure the image quality of MR images. It is a practical NR-IQA model for MR images without using reference images. Copyright © 2017 Elsevier Inc. All rights reserved.
Coventry, Joe; Andraka, Charles
2017-03-22
Parabolic dish technology, for concentrating solar power (CSP) applications, has been continuously modified and improved since the pioneering work in the 1970s. Best practice dishes now have features such as lightweight structure, balanced design, high-quality, low-cost mirror panels, and can be deployed rapidly with little in-field labour. This review focuses on the evolution of dish design, by examining features such as mode of tracking, structure and mirror design, for a wide selection of CSP dish examples. Finally, the review includes a brief summary of power generation options – both on-dish and central plant – as well as a discussion aboutmore » options for storage and hybridisation.« less
Etien, Erik
2013-05-01
This paper deals with the design of a speed soft sensor for induction motor. The sensor is based on the physical model of the motor. Because the validation step highlight the fact that the sensor cannot be validated for all the operating points, the model is modified in order to obtain a fully validated sensor in the whole speed range. An original feature of the proposed approach is that the modified model is derived from stability analysis using automatic control theory. Copyright © 2012 ISA. Published by Elsevier Ltd. All rights reserved.
A learning flight control system for the F8-DFBW aircraft. [Digital Fly-By-Wire
NASA Technical Reports Server (NTRS)
Montgomery, R. C.; Mekel, R.; Nachmias, S.
1978-01-01
This report contains a complete description of a learning control system designed for the F8-DFBW aircraft. The system is parameter-adaptive with the additional feature that it 'learns' the variation of the control system gains needed over the flight envelope. It, thus, generates and modifies its gain schedule when suitable data are available. The report emphasizes the novel learning features of the system: the forms of representation of the flight envelope and the process by which identified parameters are used to modify the gain schedule. It contains data taken during piloted real-time 6 degree-of-freedom simulations that were used to develop and evaluate the system.
A Sparsity-Promoted Method Based on Majorization-Minimization for Weak Fault Feature Enhancement
Hao, Yansong; Song, Liuyang; Tang, Gang; Yuan, Hongfang
2018-01-01
Fault transient impulses induced by faulty components in rotating machinery usually contain substantial interference. Fault features are comparatively weak in the initial fault stage, which renders fault diagnosis more difficult. In this case, a sparse representation method based on the Majorzation-Minimization (MM) algorithm is proposed to enhance weak fault features and extract the features from strong background noise. However, the traditional MM algorithm suffers from two issues, which are the choice of sparse basis and complicated calculations. To address these challenges, a modified MM algorithm is proposed in which a sparse optimization objective function is designed firstly. Inspired by the Basis Pursuit (BP) model, the optimization function integrates an impulsive feature-preserving factor and a penalty function factor. Second, a modified Majorization iterative method is applied to address the convex optimization problem of the designed function. A series of sparse coefficients can be achieved through iterating, which only contain transient components. It is noteworthy that there is no need to select the sparse basis in the proposed iterative method because it is fixed as a unit matrix. Then the reconstruction step is omitted, which can significantly increase detection efficiency. Eventually, envelope analysis of the sparse coefficients is performed to extract weak fault features. Simulated and experimental signals including bearings and gearboxes are employed to validate the effectiveness of the proposed method. In addition, comparisons are made to prove that the proposed method outperforms the traditional MM algorithm in terms of detection results and efficiency. PMID:29597280
A Sparsity-Promoted Method Based on Majorization-Minimization for Weak Fault Feature Enhancement.
Ren, Bangyue; Hao, Yansong; Wang, Huaqing; Song, Liuyang; Tang, Gang; Yuan, Hongfang
2018-03-28
Fault transient impulses induced by faulty components in rotating machinery usually contain substantial interference. Fault features are comparatively weak in the initial fault stage, which renders fault diagnosis more difficult. In this case, a sparse representation method based on the Majorzation-Minimization (MM) algorithm is proposed to enhance weak fault features and extract the features from strong background noise. However, the traditional MM algorithm suffers from two issues, which are the choice of sparse basis and complicated calculations. To address these challenges, a modified MM algorithm is proposed in which a sparse optimization objective function is designed firstly. Inspired by the Basis Pursuit (BP) model, the optimization function integrates an impulsive feature-preserving factor and a penalty function factor. Second, a modified Majorization iterative method is applied to address the convex optimization problem of the designed function. A series of sparse coefficients can be achieved through iterating, which only contain transient components. It is noteworthy that there is no need to select the sparse basis in the proposed iterative method because it is fixed as a unit matrix. Then the reconstruction step is omitted, which can significantly increase detection efficiency. Eventually, envelope analysis of the sparse coefficients is performed to extract weak fault features. Simulated and experimental signals including bearings and gearboxes are employed to validate the effectiveness of the proposed method. In addition, comparisons are made to prove that the proposed method outperforms the traditional MM algorithm in terms of detection results and efficiency.
Controller design via structural reduced modeling by FETM
NASA Technical Reports Server (NTRS)
Yousuff, A.
1986-01-01
The Finite Element - Transfer Matrix (FETM) method has been developed to reduce the computations involved in analysis of structures. This widely accepted method, however, has certain limitations, and does not directly produce reduced models for control design. To overcome these shortcomings, a modification of FETM method has been developed. The modified FETM method easily produces reduced models that are tailored toward subsequent control design. Other features of this method are its ability to: (1) extract open loop frequencies and mode shapes with less computations, (2) overcome limitations of the original FETM method, and (3) simplify the procedures for output feedback, constrained compensation, and decentralized control. This semi annual report presents the development of the modified FETM, and through an example, illustrates its applicability to an output feedback and a decentralized control design.
Improved word comprehension in Global aphasia using a modified semantic feature analysis treatment.
Munro, Philippa; Siyambalapitiya, Samantha
2017-01-01
Limited research has investigated treatment of single word comprehension in people with aphasia, despite numerous studies examining treatment of naming deficits. This study employed a single case experimental design to examine efficacy of a modified semantic feature analysis (SFA) therapy in improving word comprehension in an individual with Global aphasia, who presented with a semantically based comprehension impairment. Ten treatment sessions were conducted over a period of two weeks. Following therapy, the participant demonstrated improved comprehension of treatment items and generalisation to control items, measured by performance on a spoken word picture matching task. Improvements were also observed on other language assessments (e.g. subtests of WAB-R; PALPA subtest 47) and were largely maintained over a period of 12 weeks without further therapy. This study provides support for the efficacy of a modified SFA therapy in remediating single word comprehension in individuals with aphasia with a semantically based comprehension deficit.
ERIC Educational Resources Information Center
Nisiyatussani; Ayuningtyas, Vidya; Fathurrohman, Maman; Anriani, Nurul
2018-01-01
This design and development research was motivated by the rapid expansion and use of GeoGebra by mathematics educators (teachers and lecturers) in Indonesia. One of GeoGebra features is GeoGebra Applet that can be used, modified, and/or developed by educators for dynamic and interactive mathematics teaching and learning. At the time of research…
Health physics aspects of advanced reactor licensing reviews
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hinson, C.S.
1995-03-01
The last Construction Permit to be issued by the U.S. Nuclear Regulatory Commission (NRC) for a U.S. light water reactor (LWR) was granted in the late 1970s. In 1989 the NRC issued 10 CFR Part 52 which is intended to serve as a framework for the licensing of future reactor designs. The NRC is currently reviewing four different future on {open_quotes}next-generation{close_quotes} reactor designs. Two of these designs are classified as evolutionary designs (modified versions of current generation LWRs) and two are advanced designs (reactors incorporating simplified designs and passive means for accident mitigation). These {open_quotes}next-generation{close_quotes} reactor designs incorporate many innovativemore » design features which are intended to maintain personnel doses ALARA and ensure that the annual average collective dose at these reactors does not exceed 100 person-rems (1 person-sievert) per year. This paper discusses some of the ALARA design features which are incorporated in the four {open_quotes}next-generation{close_quotes} reactor designs incorporate many innovative design features which are intended to maintain personnel doses ALARA and ensure that the annual average collective dose at these reactors does not exceed 100 person-rems (1 person-sievert) per year. This paper discusses some of the ALARA design features which are incorporated in the four {open_quotes}next-generation{close_quotes} reactor designs currently being reviewed by the NRC.« less
Design for waste-management system
NASA Technical Reports Server (NTRS)
Guarneri, C. A.; Reed, A.; Renman, R.
1973-01-01
Study was made and system defined for water-recovery and solid-waste processing for low-rise apartment complexes. System can be modified to conform with unique requirements of community, including hydrology, geology, and climate. Reclamation is accomplished by treatment process that features reverse-osmosis membranes.
Bennour, Sami; Ulrich, Baptiste; Legrand, Thomas; Jolles, Brigitte M; Favre, Julien
2018-01-03
Improving lower-limb flexion/extension angles during walking is important for the treatment of numerous pathologies. Currently, these gait retraining procedures are mostly qualitative, often based on visual assessment and oral instructions. This study aimed to propose an alternative method combining motion capture and display of target footprints on the floor. The second objectives were to determine the error in footprint modifications and the effects of footprint modifications on lower-limb flexion/extension angles. An augmented-reality system made of an optoelectronic motion capture device and video projectors displaying target footprints on the floor was designed. 10 young healthy subjects performed a series of 27 trials, consisting of increased and decreased amplitudes in stride length, step width and foot progression angle. 11 standard features were used to describe and compare lower-limb flexion/extension angles among footprint modifications. Subjects became accustomed to walk on target footprints in less than 10 min, with mean (± SD) precision of 0.020 ± 0.002 m in stride length, 0.022 ± 0.006 m in step width, and 2.7 ± 0.6° in progression angle. Modifying stride length had significant effects on 3/3 hip, 2/4 knee and 4/4 ankle features. Similarly, step width and progression angle modifications affected 2/3 and 1/3 hip, 2/4 and 1/4 knee as well as 3/4 and 2/4 ankle features, respectively. In conclusion, this study introduced an augmented-reality method allowing healthy subjects to modify their footprint parameters rapidly and precisely. Walking with modified footprints changed lower-limb sagittal-plane kinematics. Further research is needed to design rehabilitation protocols for specific pathologies. Copyright © 2017 Elsevier Ltd. All rights reserved.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-13
... and CL- 604. This airplane, as modified by Atlantic Aero, Inc., will have a novel or unusual design... airworthiness regulations do not contain adequate or appropriate safety standards for this design feature. These... documents or comments received may be read at http://www.regulations.gov/ at any time. Follow the online...
Distributed operating system for NASA ground stations
NASA Technical Reports Server (NTRS)
Doyle, John F.
1987-01-01
NASA ground stations are characterized by ever changing support requirements, so application software is developed and modified on a continuing basis. A distributed operating system was designed to optimize the generation and maintenance of those applications. Unusual features include automatic program generation from detailed design graphs, on-line software modification in the testing phase, and the incorporation of a relational database within a real-time, distributed system.
Ant Homes under the Ground. Teacher's Guide.
ERIC Educational Resources Information Center
Echols, Jean C.; And Others
This teacher's guide features step-by-step instructions for activities that use easily-obtained and inexpensive materials as well as background information, literature connections, and assessment ideas. The activities are designed for children in preschool through first grade. Lesson descriptions include suggestions for modifying the activities to…
Valve technology: A compilation
NASA Technical Reports Server (NTRS)
1971-01-01
A technical compilation on the types, applications and modifications to certain valves is presented. Data cover the following: (1) valves that feature automatic response to stimuli (thermal, electrical, fluid pressure, etc.), (2) modified valves changed by redesign of components to increase initial design effectiveness or give the item versatility beyond its basic design capability, and (3) special purpose valves with limited application as presented, but lending themselves to other uses with minor changes.
Chen, Xiaozhong; He, Kunjin; Chen, Zhengming
2017-01-01
The present study proposes an integrated computer-aided approach combining femur surface modeling, fracture evidence recover plate creation, and plate modification in order to conduct a parametric investigation of the design of custom plate for a specific patient. The study allows for improving the design efficiency of specific plates on the patients' femur parameters and the fracture information. Furthermore, the present approach will lead to exploration of plate modification and optimization. The three-dimensional (3D) surface model of a detailed femur and the corresponding fixation plate were represented with high-level feature parameters, and the shape of the specific plate was recursively modified in order to obtain the optimal plate for a specific patient. The proposed approach was tested and verified on a case study, and it could be helpful for orthopedic surgeons to design and modify the plate in order to fit the specific femur anatomy and the fracture information.
NASA Astrophysics Data System (ADS)
Karakas, Ahmet Sertac; Bozkurt, Tarik Serhat; Sayin, Baris; Ortes, Faruk
2017-07-01
In passenger and freight traffic on the roads, which has the largest share of the hot mix asphalt (HMA) prepared asphalt concrete pavement is one of the most preferred type of flexible superstructure. During the service life of the road, they must provide the performance which is expected to show. HMA must be high performance mix design, comfortable, safe and resistance to degradation. In addition, it becomes a critical need to use various additives materials for roads to be able to serve long-term against environmental conditions such as traffic and climate due to the fact that the way of raw materials is limited. Styrene Butadiene Styrene (SBS) polymers are widely used among additives. In this study, the numerical analysis of SBS modified HMA designed asphalt concrete coatings prepared with different thicknesses with SBS modified HMA is performed. After that, stress and deformation values of the three pavement models are compared and evaluated.
Measurements with an airborne, autotracking, external-head sunphotometer
NASA Technical Reports Server (NTRS)
Russell, P. B.; Matsumoto, T.; Banta, V. J.; Mina, C.; Colburn, D. S.; Pueschel, R. F.; Livingston, J. M.
1986-01-01
Design and performance features and sample results from use of a NASA airborne tracking sunphotometer (ATS) are described. The ATS was devised to obtain continuous vertical profiles of the optical depth and transmissivity, first from a CV-990 aircraft and then from a modified DC-8 aircraft. Sample results are presented from a 1985 flight as part of the SAGE-II calibration mission, which featured detectors frequencies of 380, 450, 600, 860, 940, and 1020 microns and covered flight altitudes from ground to 10 km.
NASA Technical Reports Server (NTRS)
1979-01-01
An array deployment assembly, power regulation and control assembly, the necessary interface, and display and control equipment comprise the power extension package (PEP) which is designed to provide increased power and duration, as well as reduce fuel cell cryogen consumption during Spacelab missions. Compatible with all currently defined missions and payloads, PEP imposes minimal weight and volume penalties on sortie missions, and can be installed and removed as needed at the launch site within the normal Orbiter turnaround cycle. The technology on which it is based consists of a modified solar electric propulsion array, standard design regulator and control equipment, and a minimally modified Orbiter design. The requirements from which PEP was derived, and the system and its performance capabilities are described. Features of the recommended project are presented.
NASA Technical Reports Server (NTRS)
Kolecki, J. C.; Riley, T. J.
1980-01-01
The suitability of commercial (terrestrial) solar arrays for use in low Earth orbit is examined. It is shown that commercial solar arrays degrade under thermal cycling because of material flexure, and that certain types of silicones used in the construction of these arrays outgas severely. Based on the results, modifications were made. The modified array retains the essential features of typical commercial arrays and can be easily built by commercial fabrication techniques at low cost. The modified array uses a metal tray for containment, but eliminates the high outgassing potting materials and glass cover sheets. Cells are individually mounted with an adhesive and individually covered with glass cover slips, or clear plastic tape. The modified array is found to withstand severe thermal cycling for long intervals of time.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-18
... modified by the Boeing Company, will have novel or unusual design features associated with the architecture..., and fiber-optic avionics networks. The proposed architecture is novel or unusual for commercial... material did not anticipate this type of system architecture or electronic access to aircraft systems...
Whirl Flutter Studies for a SSTOL Transport Demonstrator
NASA Technical Reports Server (NTRS)
Acree, C. W., Jr.; Hoffman, Krishna
2004-01-01
A proposed new class of aircraft - the Advanced Theater Transport (ATT) will combine strategic range and high payload with 'Super-STOL' (short take-off and landing) capability. It is also proposed to modify a YC-15 into a technology demonstrator with a 20-deg tilt wing; four, eight-bladed propellers; cross-shafted gearboxes and V-22 engines. These constitute a unique combination of design features that potentially affect performance, loads and whirl-mode stability (whirl flutter). NASA Ames Research Center is working with Boeing and Hamilton Sundstrand on technology challenges presented by the concept; the purpose of NASA involvement is to establish requirements for the demonstrator and for early design guidance, with emphasis on whirl flutter. CAMRAD II is being used to study the effects of various design features on whirl flutter, with special attention to areas where such features differ from existing aircraft, notably tiltrotors. Although the stability margins appear to be more than adequate, the concept requires significantly different analytical methods, principally including far more blade modes, than typically used for tiltrotors.
Modeling OPC complexity for design for manufacturability
NASA Astrophysics Data System (ADS)
Gupta, Puneet; Kahng, Andrew B.; Muddu, Swamy; Nakagawa, Sam; Park, Chul-Hong
2005-11-01
Increasing design complexity in sub-90nm designs results in increased mask complexity and cost. Resolution enhancement techniques (RET) such as assist feature addition, phase shifting (attenuated PSM) and aggressive optical proximity correction (OPC) help in preserving feature fidelity in silicon but increase mask complexity and cost. Data volume increase with rise in mask complexity is becoming prohibitive for manufacturing. Mask cost is determined by mask write time and mask inspection time, which are directly related to the complexity of features printed on the mask. Aggressive RET increase complexity by adding assist features and by modifying existing features. Passing design intent to OPC has been identified as a solution for reducing mask complexity and cost in several recent works. The goal of design-aware OPC is to relax OPC tolerances of layout features to minimize mask cost, without sacrificing parametric yield. To convey optimal OPC tolerances for manufacturing, design optimization should drive OPC tolerance optimization using models of mask cost for devices and wires. Design optimization should be aware of impact of OPC correction levels on mask cost and performance of the design. This work introduces mask cost characterization (MCC) that quantifies OPC complexity, measured in terms of fracture count of the mask, for different OPC tolerances. MCC with different OPC tolerances is a critical step in linking design and manufacturing. In this paper, we present a MCC methodology that provides models of fracture count of standard cells and wire patterns for use in design optimization. MCC cannot be performed by designers as they do not have access to foundry OPC recipes and RET tools. To build a fracture count model, we perform OPC and fracturing on a limited set of standard cells and wire configurations with all tolerance combinations. Separately, we identify the characteristics of the layout that impact fracture count. Based on the fracture count (FC) data from OPC and mask data preparation runs, we build models of FC as function of OPC tolerances and layout parameters.
Investigation of REST-Class Hypersonic Inlet Designs
NASA Technical Reports Server (NTRS)
Gollan, Rowan; Ferlemann, Paul G.
2011-01-01
Rectangular-to-elliptical shape-transition (REST) inlets are of interest for use on scramjet engines because they are efficient and integrate well with the forebody of a planar vehicle. The classic design technique by Smart for these inlets produces an efficient inlet but the complex three-dimensional viscous effects are only approximately included. Certain undesirable viscous features often occur in these inlets. In the present work, a design toolset has been developed which allows for rapid design of REST-class inlet geometries and the subsequent Navier-Stokes analysis of the inlet performance. This gives the designer feedback on the complex viscous effects at each design iteration. This new tool is applied to design an inlet for on-design operation at Mach 8. The tool allows for rapid investigation of design features that was previously not possible. The outcome is that the inlet shape can be modified to affect aspects of the flow field in a positive way. In one particular example, the boundary layer build-up on the bodyside of the inlet was reduced by 20% of the thickness associated with the classically designed inlet shape.
Irizarry, Julissa I.; Collazo, Jaime A.; Dinsmore, Stephen J.
2016-01-01
AimAvian communities in human-modified landscapes exhibit varying patterns of local colonization and extinction rates, determinants of species occurrence. Our objective was to model these processes to identify habitat features that might enable movements and account for occupancy patterns in habitat matrices between the Guanica and Susua forest reserves. This knowledge is central to conservation design, particularly in ever changing insular landscapes.LocationSouth-western Puerto Rico.MethodsWe used a multiseason occupancy modelling approach to quantify seasonal estimates of occupancy, and colonization and extinction rates of seven resident avian species surveyed over five seasons from January 2010 to June 2011. We modelled parameters by matrix type, expressions of survey station isolation, quality, amount of forest cover and context (embedded in forest patch).ResultsSeasonal occupancy remained stable throughout the study for all species, consistent with seasonally constant colonization and extinction probabilities. Occupancy was mediated by matrix type, higher in reserves and forested matrix than in the urban and agricultural matrices. This pattern is in accord with the forest affinities of all but an open-habitat specialist. Puerto Rican Spindalis (Spindalis portoricensis) exhibited high occupancy in the urban matrix, highlighting the adaptability of some insular species to novel environments. Highest colonization rates occurred when perching structures were at ≤ 500 m. Survey stations with at least three fruiting tree species and 61% forest cover exhibited lowest seasonal extinction rates.Main conclusionsOur work identified habitat features that influenced seasonal probabilities of colonization and extinction in a human-modified landscape. Conservation design decisions are better informed with increased knowledge about interpatch distances to improve matrix permeability, and habitat features that increase persistence or continued use of habitat stepping stones. A focus on dynamic processes is valuable because conservation actions directly influence colonization and extinction rates, and thus, a quantitative means to gauge their benefit.
Siuly; Li, Yan; Paul Wen, Peng
2014-03-01
Motor imagery (MI) tasks classification provides an important basis for designing brain-computer interface (BCI) systems. If the MI tasks are reliably distinguished through identifying typical patterns in electroencephalography (EEG) data, a motor disabled people could communicate with a device by composing sequences of these mental states. In our earlier study, we developed a cross-correlation based logistic regression (CC-LR) algorithm for the classification of MI tasks for BCI applications, but its performance was not satisfactory. This study develops a modified version of the CC-LR algorithm exploring a suitable feature set that can improve the performance. The modified CC-LR algorithm uses the C3 electrode channel (in the international 10-20 system) as a reference channel for the cross-correlation (CC) technique and applies three diverse feature sets separately, as the input to the logistic regression (LR) classifier. The present algorithm investigates which feature set is the best to characterize the distribution of MI tasks based EEG data. This study also provides an insight into how to select a reference channel for the CC technique with EEG signals considering the anatomical structure of the human brain. The proposed algorithm is compared with eight of the most recently reported well-known methods including the BCI III Winner algorithm. The findings of this study indicate that the modified CC-LR algorithm has potential to improve the identification performance of MI tasks in BCI systems. The results demonstrate that the proposed technique provides a classification improvement over the existing methods tested. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Modifiable Neighborhood Features Associated With Adolescent Homicide
Culyba, Alison J.; Jacoby, Sara F.; Richmond, Therese S.; Fein, Joel A.; Hohl, Bernadette C.; Branas, Charles C.
2016-01-01
IMPORTANCE Homicide is a leading cause of adolescent mortality. To our knowledge, relatively little has been studied in terms of the association between environmental neighborhood features, such as streets, buildings, and natural surroundings, and severe violent injury among youth. OBJECTIVE To assess associations between environmental neighborhood features and adolescent homicide in order to identify targets for future place-based interventions. DESIGN, SETTING, AND PARTICIPANTS Population-based case-control study conducted in Philadelphia, Pennsylvania, from April 15, 2008, to March 31, 2014. We identified adolescents who died by homicide at 13 to 20 years of age from 2010 to 2012 while residing in Philadelphia. We used incidence-density sampling and random-digit dialing to recruit control participants ages 13 to 20 years matched on sex and indoor-outdoor location at the time of each index case participant’s homicide. EXPOSURES To obtain environmental data about modifiable features that were present in the immediate surroundings of our case and control participants, blinded field researchers used standardized techniques to photograph case and control participant outdoor locations. Photographic data were stitched together to create 360° panoramic images that were coded for 60 elements of the visible environment. MAIN OUTCOME AND MEASURE Adolescent homicide. RESULTS We enrolled 143 homicide case participants (mean [SD] age, 18.4 [1.5] years) and 155 matched control participants (mean [SD] age, 17.2 [2.1] years) who were both outdoors at the time of the homicide. In adjusted analyses, multiple features of Philadelphia streets, buildings, and natural surroundings were associated with adolescent homicide. The presence of street lighting (odds ratio [OR], 0.24; 95% CI, 0.09-0.70), illuminated walk/don’t walk signs (OR, 0.16; 95% CI, 0.03-0.92), painted marked crosswalks (OR, 0.17; 95% CI, 0.04-0.63), public transportation (OR, 0.13; 95% CI, 0.03-0.49), parks (OR, 0.09; 95% CI, 0.01-0.88), and maintained vacant lots (OR, 0.17; 95% CI, 0.03-0.81) were significantly associated with decreased odds of homicide. The odds of homicide were significantly higher in locations with stop signs (OR, 4.34; 95% CI, 1.40-13.45), security bars/gratings on houses (OR, 9.23; 95% CI, 2.45-34.80), and private bushes/plantings (OR, 3.44; 95% CI, 1.18-10.01). CONCLUSIONS AND RELEVANCE Using a population-based case-control design, we identified multiple modifiable environmental features that might be targeted in future randomized intervention trials designed to reduce youth violence by improving neighborhood context. PMID:26954939
SUBOPT: A CAD program for suboptimal linear regulators
NASA Technical Reports Server (NTRS)
Fleming, P. J.
1985-01-01
An interactive software package which provides design solutions for both standard linear quadratic regulator (LQR) and suboptimal linear regulator problems is described. Intended for time-invariant continuous systems, the package is easily modified to include sampled-data systems. LQR designs are obtained by established techniques while the large class of suboptimal problems containing controller and/or performance index options is solved using a robust gradient minimization technique. Numerical examples demonstrate features of the package and recent developments are described.
Black, Maureen M.; Saavedra, Jose M.
2016-01-01
Interventions targeting parenting focused modifiable factors to prevent obesity and promote healthy growth in the first 1000 days of life are needed. Scale-up of interventions to global populations is necessary to reverse trends in weight status among infants and toddlers, and large scale dissemination will require understanding of effective strategies. Utilizing nutrition education theories, this paper describes the design of a digital-based nutrition guidance system targeted to first-time mothers to prevent obesity during the first two years. The multicomponent system consists of scientifically substantiated content, tools, and telephone-based professional support delivered in an anticipatory and sequential manner via the internet, email, and text messages, focusing on educational modules addressing the modifiable factors associated with childhood obesity. Digital delivery formats leverage consumer media trends and provide the opportunity for scale-up, unavailable to previous interventions reliant on resource heavy clinic and home-based counseling. Designed initially for use in the United States, this system's core features are applicable to all contexts and constitute an approach fostering healthy growth, not just obesity prevention. The multicomponent features, combined with a global concern for optimal growth and positive trends in mobile internet use, represent this system's future potential to affect change in nutrition practice in developing countries. PMID:27635257
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-07
..., Type Certificate Number H2SW. This AP/SAS performs non- critical control functions, since this model... helicopters. These model helicopters will have novel or unusual design features when modified by installing..., Aviation Safety Engineer, FAA, Rotorcraft Directorate, Regulations and Policy Group (ASW-111), 2601 Meacham...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-14
... appropriate safety standards for the 767-400ER series airplanes because of a novel or unusual design feature...-1106; Special Conditions No. 25-448-SC] Special Conditions: Boeing Model 767-400ER Series Airplanes...- 400ER series airplane. These airplanes, as modified by Continental Airlines, will have a novel or...
New capacities and modifications for NASTRAN level 17.5 at DTNSRDC
NASA Technical Reports Server (NTRS)
Hurwitz, M. M.
1980-01-01
Since 1970 DTNSRDC has been modifying NASTRAN to suite various Navy requirements. These modifications include capabilities as well as user conveniences and error corrections. The new features added to NASTRAN Level 17.5 are described. The subject areas of the additions include magnetostatics, piezoelectricity, fluid structure interactions, isoparametric finite elements, and shock design for shipboard equipment.
VLSI Design of SVM-Based Seizure Detection System With On-Chip Learning Capability.
Feng, Lichen; Li, Zunchao; Wang, Yuanfa
2018-02-01
Portable automatic seizure detection system is very convenient for epilepsy patients to carry. In order to make the system on-chip trainable with high efficiency and attain high detection accuracy, this paper presents a very large scale integration (VLSI) design based on the nonlinear support vector machine (SVM). The proposed design mainly consists of a feature extraction (FE) module and an SVM module. The FE module performs the three-level Daubechies discrete wavelet transform to fit the physiological bands of the electroencephalogram (EEG) signal and extracts the time-frequency domain features reflecting the nonstationary signal properties. The SVM module integrates the modified sequential minimal optimization algorithm with the table-driven-based Gaussian kernel to enable efficient on-chip learning. The presented design is verified on an Altera Cyclone II field-programmable gate array and tested using the two publicly available EEG datasets. Experiment results show that the designed VLSI system improves the detection accuracy and training efficiency.
Supporting Scientific Analysis within Collaborative Problem Solving Environments
NASA Technical Reports Server (NTRS)
Watson, Velvin R.; Kwak, Dochan (Technical Monitor)
2000-01-01
Collaborative problem solving environments for scientists should contain the analysis tools the scientists require in addition to the remote collaboration tools used for general communication. Unfortunately, most scientific analysis tools have been designed for a "stand-alone mode" and cannot be easily modified to work well in a collaborative environment. This paper addresses the questions, "What features are desired in a scientific analysis tool contained within a collaborative environment?", "What are the tool design criteria needed to provide these features?", and "What support is required from the architecture to support these design criteria?." First, the features of scientific analysis tools that are important for effective analysis in collaborative environments are listed. Next, several design criteria for developing analysis tools that will provide these features are presented. Then requirements for the architecture to support these design criteria are listed. Sonic proposed architectures for collaborative problem solving environments are reviewed and their capabilities to support the specified design criteria are discussed. A deficiency in the most popular architecture for remote application sharing, the ITU T. 120 architecture, prevents it from supporting highly interactive, dynamic, high resolution graphics. To illustrate that the specified design criteria can provide a highly effective analysis tool within a collaborative problem solving environment, a scientific analysis tool that contains the specified design criteria has been integrated into a collaborative environment and tested for effectiveness. The tests were conducted in collaborations between remote sites in the US and between remote sites on different continents. The tests showed that the tool (a tool for the visual analysis of computer simulations of physics) was highly effective for both synchronous and asynchronous collaborative analyses. The important features provided by the tool (and made possible by the specified design criteria) are: 1. The tool provides highly interactive, dynamic, high resolution, 3D graphics. 2. All remote scientists can view the same dynamic, high resolution, 3D scenes of the analysis as the analysis is being conducted. 3. The responsiveness of the tool is nearly identical to the responsiveness of the tool in a stand-alone mode. 4. The scientists can transfer control of the analysis between themselves. 5. Any analysis session or segment of an analysis session, whether done individually or collaboratively, can be recorded and posted on the Web for other scientists or students to download and play in either a collaborative or individual mode. 6. The scientist or student who downloaded the session can, individually or collaboratively, modify or extend the session with his/her own "what if" analysis of the data and post his/her version of the analysis back onto the Web. 7. The peak network bandwidth used in the collaborative sessions is only 1K bit/second even though the scientists at all sites are viewing high resolution (1280 x 1024 pixels), dynamic, 3D scenes of the analysis. The links between the specified design criteria and these performance features are presented.
Lamsal, Nirmal; Angel, S Michael
2017-06-01
In earlier works, we demonstrated a high-resolution spatial heterodyne Raman spectrometer (SHRS) for deep-ultraviolet (UV) Raman measurements, and showed its ability to measure UV light-sensitive compounds using a large laser spot size. We recently modified the SHRS by replacing the cube beam splitter (BS) with a custom plate beam splitter with higher light transmission, an optimized reflectance/transmission ratio, higher surface flatness, and better refractive index homogeneity than the cube beam splitter. Ultraviolet Raman measurements were performed using a SHRS modified to use the plate beam splitter and a matching compensator plate and compared to the previously described cube beam splitter setup. Raman spectra obtained using the modified SHRS exhibit much higher signals and signal-to-noise (S/N) ratio and show fewer spectral artifacts. In this paper, we discuss the plate beam splitter SHRS design features, the advantages over previous designs, and discuss some general SHRS issues such as spectral bandwidth, S/N ratio characteristics, and optical efficiency.
Modified independent modal space control method for active control of flexible systems
NASA Technical Reports Server (NTRS)
Baz, A.; Poh, S.
1987-01-01
A modified independent modal space control (MIMSC) method is developed for designing active vibration control systems for large flexible structures. The method accounts for the interaction between the controlled and residual modes. It incorporates also optimal placement procedures for selecting the optimal locations of the actuators in the structure in order to minimize the structural vibrations as well as the actuation energy. The MIMSC method relies on an important feature which is based on time sharing of a small number of actuators, in the modal space, to control effectively a large number of modes. Numerical examples are presented to illustrate the application of the method to generic flexible systems. The results obtained suggest the potential of the devised method in designing efficient active control systems for large flexible structures.
Results of acoustic testing of the JT8D-109 refan engines
NASA Technical Reports Server (NTRS)
Burdsall, E. A.; Brochu, F. P.; Scaramella, V. M.
1975-01-01
A JT8D engine was modified to reduce jet noise levels by 6-8 PNdB at takeoff power without increasing fan generated noise levels. Designated the JT8D-109, the modified engines featured a larger single stage fan, and acoustic treatment in the fan discharge ducts. Noise levels were measured on an outdoor test facility for eight engine/acoustic treatment configurations. Compared to the baseline JT8D, the fully treated JT8D-109 showed reductions of 6 PNdB at takeoff, and 11 PNdB at a typical approach power setting.
High-rate lithium/manganese dioxide batteries; the double cell concept
NASA Astrophysics Data System (ADS)
Drews, Jürgen; Wolf, Rüdiger; Fehrmann, Gerd; Staub, Roland
An implantable defibrillator battery has to provide pulse-power capabilities as well as high energy density. Low self-discharge rates are mandatory and an ability to check the state of charge is required. To accomplish these requirements, a lithium/manganese dioxide battery with a modified active cathode mass has been developed. Usage of a double cell design increases significantly the battery performance within an implantable defibrillator. The design features of a high-rate, pulse-power, manganese dioxide double cell are described.
NASA Technical Reports Server (NTRS)
Hofmann, R.
1980-01-01
The STEALTH code system, which solves large strain, nonlinear continuum mechanics problems, was rigorously structured in both overall design and programming standards. The design is based on the theoretical elements of analysis while the programming standards attempt to establish a parallelism between physical theory, programming structure, and documentation. These features have made it easy to maintain, modify, and transport the codes. It has also guaranteed users a high level of quality control and quality assurance.
Karst database development in Minnesota: Design and data assembly
Gao, Y.; Alexander, E.C.; Tipping, R.G.
2005-01-01
The Karst Feature Database (KFD) of Minnesota is a relational GIS-based Database Management System (DBMS). Previous karst feature datasets used inconsistent attributes to describe karst features in different areas of Minnesota. Existing metadata were modified and standardized to represent a comprehensive metadata for all the karst features in Minnesota. Microsoft Access 2000 and ArcView 3.2 were used to develop this working database. Existing county and sub-county karst feature datasets have been assembled into the KFD, which is capable of visualizing and analyzing the entire data set. By November 17 2002, 11,682 karst features were stored in the KFD of Minnesota. Data tables are stored in a Microsoft Access 2000 DBMS and linked to corresponding ArcView applications. The current KFD of Minnesota has been moved from a Windows NT server to a Windows 2000 Citrix server accessible to researchers and planners through networked interfaces. ?? Springer-Verlag 2005.
14 CFR Appendix F to Part 60 - Definitions and Abbreviations for Flight Simulation Training Devices
Code of Federal Regulations, 2014 CFR
2014-01-01
... of the various types of data used to design, program, manufacture, modify, and test the FSTD... approaches to Runway 22L and 22R”), those features that may be incomplete or inaccurate may not be able to be... visual model of an airport that is a collection of “non-real world” terrain, instrument approach...
14 CFR Appendix F to Part 60 - Definitions and Abbreviations for Flight Simulation Training Devices
Code of Federal Regulations, 2012 CFR
2012-01-01
... of the various types of data used to design, program, manufacture, modify, and test the FSTD... approaches to Runway 22L and 22R”), those features that may be incomplete or inaccurate may not be able to be... visual model of an airport that is a collection of “non-real world” terrain, instrument approach...
14 CFR Appendix F to Part 60 - Definitions and Abbreviations for Flight Simulation Training Devices
Code of Federal Regulations, 2010 CFR
2010-01-01
... of the various types of data used to design, program, manufacture, modify, and test the FSTD... approaches to Runway 22L and 22R”), those features that may be incomplete or inaccurate may not be able to be... visual model of an airport that is a collection of “non-real world” terrain, instrument approach...
14 CFR Appendix F to Part 60 - Definitions and Abbreviations for Flight Simulation Training Devices
Code of Federal Regulations, 2011 CFR
2011-01-01
... of the various types of data used to design, program, manufacture, modify, and test the FSTD... approaches to Runway 22L and 22R”), those features that may be incomplete or inaccurate may not be able to be... visual model of an airport that is a collection of “non-real world” terrain, instrument approach...
14 CFR Appendix F to Part 60 - Definitions and Abbreviations for Flight Simulation Training Devices
Code of Federal Regulations, 2013 CFR
2013-01-01
... of the various types of data used to design, program, manufacture, modify, and test the FSTD... approaches to Runway 22L and 22R”), those features that may be incomplete or inaccurate may not be able to be... visual model of an airport that is a collection of “non-real world” terrain, instrument approach...
A high performance normally closed solenoid-actuated cold valve.
Taminiau, I A J; Benningshof, O W B; Jochemsen, R
2009-08-01
An electromagnetically driven normally closed valve for liquid helium is presented, which is meant to regulate the input flow to a 1 K pot. An earlier design is modified to be normally closed (not actuated) and tuned for durability and reliability. A new feature is presented which prevents seat deformation at room temperature and provides comfort and durability for intensive use.
Simbrain 3.0: A flexible, visually-oriented neural network simulator.
Tosi, Zachary; Yoshimi, Jeffrey
2016-11-01
Simbrain 3.0 is a software package for neural network design and analysis, which emphasizes flexibility (arbitrarily complex networks can be built using a suite of basic components) and a visually rich, intuitive interface. These features support both students and professionals. Students can study all of the major classes of neural networks in a familiar graphical setting, and can easily modify simulations, experimenting with networks and immediately seeing the results of their interventions. With the 3.0 release, Simbrain supports models on the order of thousands of neurons and a million synapses. This allows the same features that support education to support research professionals, who can now use the tool to quickly design, run, and analyze the behavior of large, highly customizable simulations. Copyright © 2016 Elsevier Ltd. All rights reserved.
Axelrod, Vadim; Yovel, Galit
2010-08-15
Most studies of face identity have excluded external facial features by either removing them or covering them with a hat. However, external facial features may modify the representation of internal facial features. Here we assessed whether the representation of face identity in the fusiform face area (FFA), which has been primarily studied for internal facial features, is modified by differences in external facial features. We presented faces in which external and internal facial features were manipulated independently. Our findings show that the FFA was sensitive to differences in external facial features, but this effect was significantly larger when the external and internal features were aligned than misaligned. We conclude that the FFA generates a holistic representation in which the internal and the external facial features are integrated. These results indicate that to better understand real-life face recognition both external and internal features should be included. Copyright (c) 2010 Elsevier Inc. All rights reserved.
Loving Nature From the Inside Out: A Biophilia Matrix Identification Strategy for Designers.
McGee, Beth; Marshall-Baker, Anna
2015-01-01
The development of the Biophilic Design Matrix (BDM) was to aid designers or other specialists in identifying and quantifying biophilic features through a visual inventory of interior spaces. With mounting evidence to support the healing attributes of biophilic environments, we propose a method to identify biophilic content within interior spaces. Such a strategy offers much promise to the advancement of restorative environments. The BDM was based on Stephen Kellert's biophilic design attribute list and modified to be appropriate for interior environments, specifically children's healthcare spaces. A photo-ethnographic documentation method of 24 child life play spaces within a South Atlantic state was used to determine whether the BDM could reliably reveal biophilic features (listed as attributes by Kellert in 2008). This matrix appears useful in documenting biophilia within the pediatric healthcare context, attesting to the usability and functionality of the BDM for this special population. Specifically, the BDM revealed that biophilic attributes were constantly present in some spaces while others were completely absent. When a biophilic attribute was present, the BDM indicated that they varied considerably in type and occurrence. Thus, use of the BDM in the hospital areas designed for patient recreation and play successfully provided a visual inventory of biophilic features as well as the frequency of application. Further use of the BDM as a tool for strategizing biophilic feature inclusion can thus increase the connections available with nature in the interior, beneficial for optimizing health and wellness. © The Author(s) 2015.
NASA Astrophysics Data System (ADS)
Chen, Po-Hao; Botzolakis, Emmanuel; Mohan, Suyash; Bryan, R. N.; Cook, Tessa
2016-03-01
In radiology, diagnostic errors occur either through the failure of detection or incorrect interpretation. Errors are estimated to occur in 30-35% of all exams and contribute to 40-54% of medical malpractice litigations. In this work, we focus on reducing incorrect interpretation of known imaging features. Existing literature categorizes cognitive bias leading a radiologist to an incorrect diagnosis despite having correctly recognized the abnormal imaging features: anchoring bias, framing effect, availability bias, and premature closure. Computational methods make a unique contribution, as they do not exhibit the same cognitive biases as a human. Bayesian networks formalize the diagnostic process. They modify pre-test diagnostic probabilities using clinical and imaging features, arriving at a post-test probability for each possible diagnosis. To translate Bayesian networks to clinical practice, we implemented an entirely web-based open-source software tool. In this tool, the radiologist first selects a network of choice (e.g. basal ganglia). Then, large, clearly labeled buttons displaying salient imaging features are displayed on the screen serving both as a checklist and for input. As the radiologist inputs the value of an extracted imaging feature, the conditional probabilities of each possible diagnosis are updated. The software presents its level of diagnostic discrimination using a Pareto distribution chart, updated with each additional imaging feature. Active collaboration with the clinical radiologist is a feasible approach to software design and leads to design decisions closely coupling the complex mathematics of conditional probability in Bayesian networks with practice.
Zuhtuogullari, Kursat; Allahverdi, Novruz; Arikan, Nihat
2013-01-01
The systems consisting high input spaces require high processing times and memory usage. Most of the attribute selection algorithms have the problems of input dimensions limits and information storage problems. These problems are eliminated by means of developed feature reduction software using new modified selection mechanism with middle region solution candidates adding. The hybrid system software is constructed for reducing the input attributes of the systems with large number of input variables. The designed software also supports the roulette wheel selection mechanism. Linear order crossover is used as the recombination operator. In the genetic algorithm based soft computing methods, locking to the local solutions is also a problem which is eliminated by using developed software. Faster and effective results are obtained in the test procedures. Twelve input variables of the urological system have been reduced to the reducts (reduced input attributes) with seven, six, and five elements. It can be seen from the obtained results that the developed software with modified selection has the advantages in the fields of memory allocation, execution time, classification accuracy, sensitivity, and specificity values when compared with the other reduction algorithms by using the urological test data.
Zuhtuogullari, Kursat; Allahverdi, Novruz; Arikan, Nihat
2013-01-01
The systems consisting high input spaces require high processing times and memory usage. Most of the attribute selection algorithms have the problems of input dimensions limits and information storage problems. These problems are eliminated by means of developed feature reduction software using new modified selection mechanism with middle region solution candidates adding. The hybrid system software is constructed for reducing the input attributes of the systems with large number of input variables. The designed software also supports the roulette wheel selection mechanism. Linear order crossover is used as the recombination operator. In the genetic algorithm based soft computing methods, locking to the local solutions is also a problem which is eliminated by using developed software. Faster and effective results are obtained in the test procedures. Twelve input variables of the urological system have been reduced to the reducts (reduced input attributes) with seven, six, and five elements. It can be seen from the obtained results that the developed software with modified selection has the advantages in the fields of memory allocation, execution time, classification accuracy, sensitivity, and specificity values when compared with the other reduction algorithms by using the urological test data. PMID:23573172
The Department of Defense and Climate Change: Initiating the Dialogue
2012-01-01
that might be impacted: such as for wetlands, endangered species, and protected marine ecosystems and species. In addition, the rapid implementation...their adaptive capacity. As a result, continued improvements are needed in the representation of biotic and abiotic components of environmental...resilience? 3) What design features of DoD’s built infrastructure should be assessed and modified for improving their adaptive capacity to a
Double axis, two-crystal x-ray spectrometer.
Erez, G; Kimhi, D; Livnat, A
1978-05-01
A two-crystal double axis x-ray spectrometer, capable of goniometric accuracy on the order of 0.1", has been developed. Some of its unique design features are presented. These include (1) a modified commercial thrust bearing which furnishes a precise, full circle theta:2theta coupling, (2) a new tangent drive system design in which a considerable reduction of the lead screw effective pitch is achieved, and (3) an automatic step scanning control which eliminates most of the mechanical deficiencies of the tangent drive by directly reading the tangent arm displacement.
Spreadsheet macros for coloring sequence alignments.
Haygood, M G
1993-12-01
This article describes a set of Microsoft Excel macros designed to color amino acid and nucleotide sequence alignments for review and preparation of visual aids. The colored alignments can then be modified to emphasize features of interest. Procedures for importing and coloring sequences are described. The macro file adds a new menu to the menu bar containing sequence-related commands to enable users unfamiliar with Excel to use the macros more readily. The macros were designed for use with Macintosh computers but will also run with the DOS version of Excel.
Design complexity in termite-fishing tools of chimpanzees (Pan troglodytes)
Sanz, Crickette; Call, Josep; Morgan, David
2009-01-01
Adopting the approach taken with New Caledonian crows (Corvus moneduloides), we present evidence of design complexity in one of the termite-fishing tools of chimpanzees (Pan troglodytes) in the Goualougo Triangle, Republic of Congo. Prior to termite fishing, chimpanzees applied a set of deliberate, distinguishable actions to modify herb stems to fashion a brush-tipped probe, which is different from the form of fishing tools used by chimpanzees in East and West Africa. This means that ‘brush-tipped fishing probes’, unlike ‘brush sticks’, are not a by-product of use but a deliberate design feature absent in other chimpanzee populations. The specialized modifications to prepare the tool for termite fishing, measures taken to repair non-functional brushes and appropriate orientation of the modified end suggest that these wild chimpanzees are attentive to tool modifications. We also conducted experimental trials that showed that a brush-tipped probe is more effective in gathering insects than an unmodified fishing probe. Based on these findings, we suggest that chimpanzees in the Congo Basin have developed an improved fishing probe design. PMID:19324641
NASA Astrophysics Data System (ADS)
Lu, Qianbo; Bai, Jian; Wang, Kaiwei; Lou, Shuqi; Jiao, Xufen; Han, Dandan
2016-10-01
Cross-sensitivity is a crucial parameter since it detrimentally affect the performance of an accelerometer, especially for a high resolution accelerometer. In this paper, a suite of analytical and finite-elements-method (FEM) models for characterizing the mechanism and features of the cross-sensitivity of a single-axis MOEMS accelerometer composed of a diffraction grating and a micromachined mechanical sensing chip are presented, which have not been systematically investigated yet. The mechanism and phenomena of the cross-sensitivity of this type MOEMS accelerometer based on diffraction grating differ quite a lot from the traditional ones owing to the identical sensing principle. By analyzing the models, some ameliorations and the modified design are put forward to suppress the cross-sensitivity. The modified design, achieved by double sides etching on a specific double-substrate-layer silicon-on-insulator (SOI) wafer, is validated to have a far smaller cross-sensitivity compared with the design previously reported in the literature. Moreover, this design can suppress the cross-sensitivity dramatically without compromising the acceleration sensitivity and resolution.
Kulinowski, Piotr; Woyna-Orlewicz, Krzysztof; Rappen, Gerd-Martin; Haznar-Garbacz, Dorota; Węglarz, Władysław P; Dorożyński, Przemysław P
2015-04-30
Motivation for the study was the lack of dedicated and effective research and development (R&D) in vitro methods for oral, generic, modified release formulations. The purpose of the research was to assess multimodal in vitro methodology for further bioequivalence study risk minimization. Principal results of the study are as follows: (i) Pharmaceutically equivalent quetiapine fumarate extended release dosage form of Seroquel XR was developed using a quality by design/design of experiment (QbD/DoE) paradigm. (ii) The developed formulation was then compared with originator using X-ray microtomography, magnetic resonance imaging and texture analysis. Despite similarity in terms of compendial dissolution test, developed and original dosage forms differed in micro/meso structure and consequently in mechanical properties. (iii) These differences were found to be the key factors of failure of biorelevant dissolution test using the stress dissolution apparatus. Major conclusions are as follows: (i) Imaging methods allow to assess internal features of the hydrating extended release matrix and together with the stress dissolution test allow to rationalize the design of generic formulations at the in vitro level. (ii) Technological impact on formulation properties e.g., on pore formation in hydrating matrices cannot be overlooked when designing modified release dosage forms. Copyright © 2015 Elsevier B.V. All rights reserved.
Discovering body site and severity modifiers in clinical texts
Dligach, Dmitriy; Bethard, Steven; Becker, Lee; Miller, Timothy; Savova, Guergana K
2014-01-01
Objective To research computational methods for discovering body site and severity modifiers in clinical texts. Methods We cast the task of discovering body site and severity modifiers as a relation extraction problem in the context of a supervised machine learning framework. We utilize rich linguistic features to represent the pairs of relation arguments and delegate the decision about the nature of the relationship between them to a support vector machine model. We evaluate our models using two corpora that annotate body site and severity modifiers. We also compare the model performance to a number of rule-based baselines. We conduct cross-domain portability experiments. In addition, we carry out feature ablation experiments to determine the contribution of various feature groups. Finally, we perform error analysis and report the sources of errors. Results The performance of our method for discovering body site modifiers achieves F1 of 0.740–0.908 and our method for discovering severity modifiers achieves F1 of 0.905–0.929. Discussion Results indicate that both methods perform well on both in-domain and out-domain data, approaching the performance of human annotators. The most salient features are token and named entity features, although syntactic dependency features also contribute to the overall performance. The dominant sources of errors are infrequent patterns in the data and inability of the system to discern deeper semantic structures. Conclusions We investigated computational methods for discovering body site and severity modifiers in clinical texts. Our best system is released open source as part of the clinical Text Analysis and Knowledge Extraction System (cTAKES). PMID:24091648
Discovering body site and severity modifiers in clinical texts.
Dligach, Dmitriy; Bethard, Steven; Becker, Lee; Miller, Timothy; Savova, Guergana K
2014-01-01
To research computational methods for discovering body site and severity modifiers in clinical texts. We cast the task of discovering body site and severity modifiers as a relation extraction problem in the context of a supervised machine learning framework. We utilize rich linguistic features to represent the pairs of relation arguments and delegate the decision about the nature of the relationship between them to a support vector machine model. We evaluate our models using two corpora that annotate body site and severity modifiers. We also compare the model performance to a number of rule-based baselines. We conduct cross-domain portability experiments. In addition, we carry out feature ablation experiments to determine the contribution of various feature groups. Finally, we perform error analysis and report the sources of errors. The performance of our method for discovering body site modifiers achieves F1 of 0.740-0.908 and our method for discovering severity modifiers achieves F1 of 0.905-0.929. Results indicate that both methods perform well on both in-domain and out-domain data, approaching the performance of human annotators. The most salient features are token and named entity features, although syntactic dependency features also contribute to the overall performance. The dominant sources of errors are infrequent patterns in the data and inability of the system to discern deeper semantic structures. We investigated computational methods for discovering body site and severity modifiers in clinical texts. Our best system is released open source as part of the clinical Text Analysis and Knowledge Extraction System (cTAKES).
Modified Sierpenski Antenna With Metamaterial For Wireless Applications
NASA Astrophysics Data System (ADS)
Aggarwal, Ishita; Pandey, Sujata
2017-08-01
This paper presents a multiband antenna based on modified sierpenski fractal structure along with metamaterials for wireless applications. Multi bands are obtained at 2.1 GHz, 5.73 GHz, 7.6 GHz and 8.4 GHz with return losses -21.49 dB,-36.36 dB,-45dB, and -23.46 dBrespectively. The dimension of the substrate used for this antenna is 52 x 60 x 1.6 mm3 and dielectric constant is 4.4 with tanδ of 0.002. The peak gain of 6.6 dB, return loss of -45 dB and VSWR of 1 are obtained at 7.6 GHz. Metamaterial unit cells are loaded on ground to improve the antenna parameters. This is a simple and compact design and has multiband features suitable for WIMAX, WLAN, C-band and X-band applications. This design is simulated by using HFSS 14.
Modifiable Neighborhood Features Associated With Adolescent Homicide.
Culyba, Alison J; Jacoby, Sara F; Richmond, Therese S; Fein, Joel A; Hohl, Bernadette C; Branas, Charles C
2016-05-01
Homicide is a leading cause of adolescent mortality. To our knowledge, relatively little has been studied in terms of the association between environmental neighborhood features, such as streets, buildings, and natural surroundings, and severe violent injury among youth. To assess associations between environmental neighborhood features and adolescent homicide in order to identify targets for future place-based interventions. Population-based case-control study conducted in Philadelphia, Pennsylvania, from April 15, 2008, to March 31, 2014. We identified adolescents who died by homicide at 13 to 20 years of age from 2010 to 2012 while residing in Philadelphia. We used incidence-density sampling and random-digit dialing to recruit control participants ages 13 to 20 years matched on sex and indoor-outdoor location at the time of each index case participant's homicide. To obtain environmental data about modifiable features that were present in the immediate surroundings of our case and control participants, blinded field researchers used standardized techniques to photograph case and control participant outdoor locations. Photographic data were stitched together to create 360° panoramic images that were coded for 60 elements of the visible environment. Adolescent homicide. We enrolled 143 homicide case participants (mean [SD] age, 18.4 [1.5] years) and 155 matched control participants (mean [SD] age, 17.2 [2.1] years) who were both outdoors at the time of the homicide. In adjusted analyses, multiple features of Philadelphia streets, buildings, and natural surroundings were associated with adolescent homicide. The presence of street lighting (odds ratio [OR], 0.24; 95% CI, 0.09-0.70), illuminated walk/don't walk signs (OR, 0.16; 95% CI, 0.03-0.92), painted marked crosswalks (OR, 0.17; 95% CI, 0.04-0.63), public transportation (OR, 0.13; 95% CI, 0.03-0.49), parks (OR, 0.09; 95% CI, 0.01-0.88), and maintained vacant lots (OR, 0.17; 95% CI, 0.03-0.81) were significantly associated with decreased odds of homicide. The odds of homicide were significantly higher in locations with stop signs (OR, 4.34; 95% CI, 1.40-13.45), security bars/gratings on houses (OR, 9.23; 95% CI, 2.45-34.80), and private bushes/plantings (OR, 3.44; 95% CI, 1.18-10.01). Using a population-based case-control design, we identified multiple modifiable environmental features that might be targeted in future randomized intervention trials designed to reduce youth violence by improving neighborhood context.
Wong, Kam Cheong
2016-04-06
Clinicians use various clinical reasoning tools such as Ishikawa diagram to enhance their clinical experience and reasoning skills. Failure mode and effects analysis, which is an engineering methodology in origin, can be modified and applied to provide inputs into an Ishikawa diagram. The human biliary system is used to illustrate a modified failure mode and effects analysis. The anatomical and physiological processes of the biliary system are reviewed. Failure is defined as an abnormality caused by infective, inflammatory, obstructive, malignancy, autoimmune and other pathological processes. The potential failures, their effect(s), main clinical features, and investigation that can help a clinician to diagnose at each anatomical part and physiological process are reviewed and documented in a modified failure mode and effects analysis table. Relevant medical and surgical cases are retrieved from the medical literature and weaved into the table. A total of 80 clinical cases which are relevant to the modified failure mode and effects analysis for the human biliary system have been reviewed and weaved into a designated table. The table is the backbone and framework for further expansion. Reviewing and updating the table is an iterative and continual process. The relevant clinical features in the modified failure mode and effects analysis are then extracted and included in the relevant Ishikawa diagram. This article illustrates an application of engineering methodology in medicine, and it sows the seeds of potential cross-pollination between engineering and medicine. Establishing a modified failure mode and effects analysis can be a teamwork project or self-directed learning process, or a mix of both. Modified failure mode and effects analysis can be deployed to obtain inputs for an Ishikawa diagram which in turn can be used to enhance clinical experiences and clinical reasoning skills for clinicians, medical educators, and students.
Noise and autism spectrum disorder in children: An exploratory survey.
Kanakri, Shireen M; Shepley, Mardelle; Varni, James W; Tassinary, Louis G
2017-04-01
With more students being educated in schools for Autism Spectrum Disorder (ASD) than ever before, architects and interior designers need to consider the environmental features that may be modified to enhance the academic and social success of autistic students in school. This study explored existing empirical research on the impact of noise on children with ASD and provides recommendations regarding design features that can contribute to noise reduction. A survey, which addressed the impact of architectural design elements on autism-related behavior, was developed for teachers of children with ASD and distributed to three schools. Most teachers found noise control to be an important issue for students with autism and many observed children using ear defenders. In terms of managing issues related to noise, most teachers agreed that thick or soundproof walls and carpet in the classroom were the most important issues for children with ASD. Suggested future research should address architectural considerations for building an acoustically friendly environment for children with autism, identifying patterns of problematic behaviors in response to acoustical features of the built environment of the classroom setting, and ways to manage maladaptive behaviors in acoustically unfriendly environments. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Goldsack, Stephen J.; Holzbach-Valero, A. A.; Waldrop, Raymond S.; Volz, Richard A.
1991-01-01
This paper describes how the main features of the proposed Ada language extensions intended to support distribution, and offered as possible solutions for Ada9X can be implemented by transformation into standard Ada83. We start by summarizing the features proposed in a paper (Gargaro et al, 1990) which constitutes the definition of the extensions. For convenience we have called the language in its modified form AdaPT which might be interpreted as Ada with partitions. These features were carefully chosen to provide support for the construction of executable modules for execution in nodes of a network of loosely coupled computers, but flexibly configurable for different network architectures and for recovery following failure, or adapting to mode changes. The intention in their design was to provide extensions which would not impact adversely on the normal use of Ada, and would fit well in style and feel with the existing standard. We begin by summarizing the features introduced in AdaPT.
Defining competency-based evaluation objectives in family medicine
Lawrence, Kathrine; Allen, Tim; Brailovsky, Carlos; Crichton, Tom; Bethune, Cheri; Donoff, Michel; Laughlin, Tom; Wetmore, Stephen; Carpentier, Marie-Pierre; Visser, Shaun
2011-01-01
Abstract Objective To develop key features for priority topics previously identified by the College of Family Physicians of Canada that, together with skill dimensions and phases of the clinical encounter, broadly describe competence in family medicine. Design Modified nominal group methodology, which was used to develop key features for each priority topic through an iterative process. Setting The College of Family Physicians of Canada. Participants An expert group of 7 family physicians and 1 educational consultant, all of whom had experience in assessing competence in family medicine. Group members represented the Canadian family medicine context with respect to region, sex, language, community type, and experience. Methods The group used a modified Delphi process to derive a detailed operational definition of competence, using multiple iterations until consensus was achieved for the items under discussion. The group met 3 to 4 times a year from 2000 to 2007. Main findings The group analyzed 99 topics and generated 773 key features. There were 2 to 20 (average 7.8) key features per topic; 63% of the key features focused on the diagnostic phase of the clinical encounter. Conclusion This project expands previous descriptions of the process of generating key features for assessment, and removes this process from the context of written examinations. A key-features analysis of topics focuses on higher-order cognitive processes of clinical competence. The project did not define all the skill dimensions of competence to the same degree, but it clearly identified those requiring further definition. This work generates part of a discipline-specific, competency-based definition of family medicine for assessment purposes. It limits the domain for assessment purposes, which is an advantage for the teaching and assessment of learners. A validation study on the content of this work would ensure that it truly reflects competence in family medicine. PMID:21998245
IMAGE 100: The interactive multispectral image processing system
NASA Technical Reports Server (NTRS)
Schaller, E. S.; Towles, R. W.
1975-01-01
The need for rapid, cost-effective extraction of useful information from vast quantities of multispectral imagery available from aircraft or spacecraft has resulted in the design, implementation and application of a state-of-the-art processing system known as IMAGE 100. Operating on the general principle that all objects or materials possess unique spectral characteristics or signatures, the system uses this signature uniqueness to identify similar features in an image by simultaneously analyzing signatures in multiple frequency bands. Pseudo-colors, or themes, are assigned to features having identical spectral characteristics. These themes are displayed on a color CRT, and may be recorded on tape, film, or other media. The system was designed to incorporate key features such as interactive operation, user-oriented displays and controls, and rapid-response machine processing. Owing to these features, the user can readily control and/or modify the analysis process based on his knowledge of the input imagery. Effective use can be made of conventional photographic interpretation skills and state-of-the-art machine analysis techniques in the extraction of useful information from multispectral imagery. This approach results in highly accurate multitheme classification of imagery in seconds or minutes rather than the hours often involved in processing using other means.
A Circular Polarizer with Beamforming Feature Based on Frequency Selective Surfaces
NASA Astrophysics Data System (ADS)
Yin, Jia Yuan; Wan, Xiang; Ren, Jian; Cui, Tie Jun
2017-01-01
We propose a circular polarizer with beamforming features based on frequency selective surface (FSS), in which a modified anchor-shaped unit cell is used to reach the circular polarizer function. The beamforming characteristic is realized by a particular design of the unit-phase distribution, which is obtained by varying the scale of the unit cell. Instead of using plane waves, a horn antenna is designed to feed the phase-variant FSS. The proposed two-layer FSS is fabricated and measured to verify the design. The measured results show that the proposed structure can convert the linearly polarized waves to circularly polarized waves. Compared with the feeding horn antenna, the transmitted beam of the FSS-added horn is 14.43° broader in one direction, while 3.77° narrower in the orthogonal direction. To our best knowledge, this is the first time to realize circular polarizer with beamforming as the extra function based on FSS, which is promising in satellite and communication systems for potential applications due to its simple design and good performance.
SBOL Visual: A Graphical Language for Genetic Designs.
Quinn, Jacqueline Y; Cox, Robert Sidney; Adler, Aaron; Beal, Jacob; Bhatia, Swapnil; Cai, Yizhi; Chen, Joanna; Clancy, Kevin; Galdzicki, Michal; Hillson, Nathan J; Le Novère, Nicolas; Maheshwari, Akshay J; McLaughlin, James Alastair; Myers, Chris J; P, Umesh; Pocock, Matthew; Rodriguez, Cesar; Soldatova, Larisa; Stan, Guy-Bart V; Swainston, Neil; Wipat, Anil; Sauro, Herbert M
2015-12-01
Synthetic Biology Open Language (SBOL) Visual is a graphical standard for genetic engineering. It consists of symbols representing DNA subsequences, including regulatory elements and DNA assembly features. These symbols can be used to draw illustrations for communication and instruction, and as image assets for computer-aided design. SBOL Visual is a community standard, freely available for personal, academic, and commercial use (Creative Commons CC0 license). We provide prototypical symbol images that have been used in scientific publications and software tools. We encourage users to use and modify them freely, and to join the SBOL Visual community: http://www.sbolstandard.org/visual.
A Design Rationale Capture Tool to Support Design Verification and Re-use
NASA Technical Reports Server (NTRS)
Hooey, Becky Lee; Da Silva, Jonny C.; Foyle, David C.
2012-01-01
A design rationale tool (DR tool) was developed to capture design knowledge to support design verification and design knowledge re-use. The design rationale tool captures design drivers and requirements, and documents the design solution including: intent (why it is included in the overall design); features (why it is designed the way it is); information about how the design components support design drivers and requirements; and, design alternatives considered but rejected. For design verification purposes, the tool identifies how specific design requirements were met and instantiated within the final design, and which requirements have not been met. To support design re-use, the tool identifies which design decisions are affected when design drivers and requirements are modified. To validate the design tool, the design knowledge from the Taxiway Navigation and Situation Awareness (T-NASA; Foyle et al., 1996) system was captured and the DR tool was exercised to demonstrate its utility for validation and re-use.
Crashworthy airframe design concepts: Fabrication and testing
NASA Technical Reports Server (NTRS)
Cronkhite, J. D.; Berry, V. L.
1982-01-01
Crashworthy floor concepts applicable to general aviation aircraft metal airframe structures were investigated. Initially several energy absorbing lower fuselage structure concepts were evaluated. Full scale floor sections representative of a twin engine, general aviation airplane lower fuselage structure were designed and fabricated. The floors featured an upper high strength platform with an energy absorbing, crushable structure underneath. Eighteen floors were fabricated that incorporated five different crushable subfloor concepts. The floors were then evaluated through static and dynamic testing. Computer programs NASTRAN and KRASH were used for the static and dynamic analysis of the floor section designs. Two twin engine airplane fuselages were modified to incorporate the most promising crashworthy floor sections for test evaluation.
Turbine blade profile design method based on Bezier curves
NASA Astrophysics Data System (ADS)
Alexeev, R. A.; Tishchenko, V. A.; Gribin, V. G.; Gavrilov, I. Yu.
2017-11-01
In this paper, the technique of two-dimensional parametric blade profile design is presented. Bezier curves are used to create the profile geometry. The main feature of the proposed method is an adaptive approach of curve fitting to given geometric conditions. Calculation of the profile shape is produced by multi-dimensional minimization method with a number of restrictions imposed on the blade geometry.The proposed method has been used to describe parametric geometry of known blade profile. Then the baseline geometry was modified by varying some parameters of the blade. The numerical calculation of obtained designs has been carried out. The results of calculations have shown the efficiency of chosen approach.
Automatic structured grid generation using Gridgen (some restrictions apply)
NASA Technical Reports Server (NTRS)
Chawner, John R.; Steinbrenner, John P.
1995-01-01
The authors have noticed in the recent grid generation literature an emphasis on the automation of structured grid generation. The motivation behind such work is clear; grid generation is easily the most despised task in the grid-analyze-visualize triad of computational analysis (CA). However, because grid generation is closely coupled to both the design and analysis software and because quantitative measures of grid quality are lacking, 'push button' grid generation usually results in a compromise between speed, control, and quality. Overt emphasis on automation obscures the substantive issues of providing users with flexible tools for generating and modifying high quality grids in a design environment. In support of this paper's tongue-in-cheek title, many features of the Gridgen software are described. Gridgen is by no stretch of the imagination an automatic grid generator. Despite this fact, the code does utilize many automation techniques that permit interesting regenerative features.
Further developments in the controlled growth approach for optimal structural synthesis
NASA Technical Reports Server (NTRS)
Hajela, P.
1982-01-01
It is pointed out that the use of nonlinear programming methods in conjunction with finite element and other discrete analysis techniques have provided a powerful tool in the domain of optimal structural synthesis. The present investigation is concerned with new strategies which comprise an extension to the controlled growth method considered by Hajela and Sobieski-Sobieszczanski (1981). This method proposed an approach wherein the standard nonlinear programming (NLP) methodology of working with a very large number of design variables was replaced by a sequence of smaller optimization cycles, each involving a single 'dominant' variable. The current investigation outlines some new features. Attention is given to a modified cumulative constraint representation which is defined in both the feasible and infeasible domain of the design space. Other new features are related to the evaluation of the 'effectiveness measure' on which the choice of the dominant variable and the linking strategy is based.
Sano, Akane; Taylor, Sara; McHill, Andrew W; Phillips, Andrew Jk; Barger, Laura K; Klerman, Elizabeth; Picard, Rosalind
2018-06-08
Wearable and mobile devices that capture multimodal data have the potential to identify risk factors for high stress and poor mental health and to provide information to improve health and well-being. We developed new tools that provide objective physiological and behavioral measures using wearable sensors and mobile phones, together with methods that improve their data integrity. The aim of this study was to examine, using machine learning, how accurately these measures could identify conditions of self-reported high stress and poor mental health and which of the underlying modalities and measures were most accurate in identifying those conditions. We designed and conducted the 1-month SNAPSHOT study that investigated how daily behaviors and social networks influence self-reported stress, mood, and other health or well-being-related factors. We collected over 145,000 hours of data from 201 college students (age: 18-25 years, male:female=1.8:1) at one university, all recruited within self-identified social groups. Each student filled out standardized pre- and postquestionnaires on stress and mental health; during the month, each student completed twice-daily electronic diaries (e-diaries), wore two wrist-based sensors that recorded continuous physical activity and autonomic physiology, and installed an app on their mobile phone that recorded phone usage and geolocation patterns. We developed tools to make data collection more efficient, including data-check systems for sensor and mobile phone data and an e-diary administrative module for study investigators to locate possible errors in the e-diaries and communicate with participants to correct their entries promptly, which reduced the time taken to clean e-diary data by 69%. We constructed features and applied machine learning to the multimodal data to identify factors associated with self-reported poststudy stress and mental health, including behaviors that can be possibly modified by the individual to improve these measures. We identified the physiological sensor, phone, mobility, and modifiable behavior features that were best predictors for stress and mental health classification. In general, wearable sensor features showed better classification performance than mobile phone or modifiable behavior features. Wearable sensor features, including skin conductance and temperature, reached 78.3% (148/189) accuracy for classifying students into high or low stress groups and 87% (41/47) accuracy for classifying high or low mental health groups. Modifiable behavior features, including number of naps, studying duration, calls, mobility patterns, and phone-screen-on time, reached 73.5% (139/189) accuracy for stress classification and 79% (37/47) accuracy for mental health classification. New semiautomated tools improved the efficiency of long-term ambulatory data collection from wearable and mobile devices. Applying machine learning to the resulting data revealed a set of both objective features and modifiable behavioral features that could classify self-reported high or low stress and mental health groups in a college student population better than previous studies and showed new insights into digital phenotyping. ©Akane Sano, Sara Taylor, Andrew W McHill, Andrew JK Phillips, Laura K Barger, Elizabeth Klerman, Rosalind Picard. Originally published in the Journal of Medical Internet Research (http://www.jmir.org), 08.06.2018.
Mitigating Motion Base Safety Issues: The NASA LaRC CMF Implementation
NASA Technical Reports Server (NTRS)
Bryant, Richard B., Jr.; Grupton, Lawrence E.; Martinez, Debbie; Carrelli, David J.
2005-01-01
The NASA Langley Research Center (LaRC), Cockpit Motion Facility (CMF) motion base design has taken advantage of inherent hydraulic characteristics to implement safety features using hardware solutions only. Motion system safety has always been a concern and its implementation is addressed differently by each organization. Some approaches rely heavily on software safety features. Software which performs safety functions is subject to more scrutiny making its approval, modification, and development time consuming and expensive. The NASA LaRC's CMF motion system is used for research and, as such, requires that the software be updated or modified frequently. The CMF's customers need the ability to update the simulation software frequently without the associated cost incurred with safety critical software. This paper describes the CMF engineering team's approach to achieving motion base safety by designing and implementing all safety features in hardware, resulting in applications software (including motion cueing and actuator dynamic control) being completely independent of the safety devices. This allows the CMF safety systems to remain intact and unaffected by frequent research system modifications.
Gait recognition based on Gabor wavelets and modified gait energy image for human identification
NASA Astrophysics Data System (ADS)
Huang, Deng-Yuan; Lin, Ta-Wei; Hu, Wu-Chih; Cheng, Chih-Hsiang
2013-10-01
This paper proposes a method for recognizing human identity using gait features based on Gabor wavelets and modified gait energy images (GEIs). Identity recognition by gait generally involves gait representation, extraction, and classification. In this work, a modified GEI convolved with an ensemble of Gabor wavelets is proposed as a gait feature. Principal component analysis is then used to project the Gabor-wavelet-based gait features into a lower-dimension feature space for subsequent classification. Finally, support vector machine classifiers based on a radial basis function kernel are trained and utilized to recognize human identity. The major contributions of this paper are as follows: (1) the consideration of the shadow effect to yield a more complete segmentation of gait silhouettes; (2) the utilization of motion estimation to track people when walkers overlap; and (3) the derivation of modified GEIs to extract more useful gait information. Extensive performance evaluation shows a great improvement of recognition accuracy due to the use of shadow removal, motion estimation, and gait representation using the modified GEIs and Gabor wavelets.
Biomimetics: determining engineering opportunities from nature
NASA Astrophysics Data System (ADS)
Fish, Frank E.
2009-08-01
The biomimetic approach seeks to incorporate designs based on biological organisms into engineered technologies. Biomimetics can be used to engineer machines that emulate the performance of organisms, particularly in instances where the organism's performance exceeds current mechanical technology or provides new directions to solve existing problems. For biologists, an adaptationist program has allowed for the identification of novel features of organisms based on engineering principles; whereas for engineers, identification of such novel features is necessary to exploit them for biomimetic development. Adaptations (leading edge tubercles to passively modify flow and high efficiency oscillatory propulsive systems) from marine animals demonstrate potential utility in the development of biomimetic products. Nature retains a store of untouched knowledge, which would be beneficial in advancing technology.
Engineered feature used to enhance gardening at a 3800-year-old site on the Pacific Northwest Coast
Hoffmann, Tanja; Lyons, Natasha; Miller, Debbie; Diaz, Alejandra; Homan, Amy; Huddlestan, Stephanie; Leon, Roma
2016-01-01
Humans use a variety of deliberate means to modify biologically rich environs in pursuit of resource stability and predictability. Empirical evidence suggests that ancient hunter-gatherer populations engineered ecological niches to enhance the productivity and availability of economically significant resources. An archaeological excavation of a 3800-year-old wetland garden in British Columbia, Canada, provides the first direct evidence of an engineered feature designed to facilitate wild plant food production among mid-to-late Holocene era complex fisher-hunter-gatherers of the Northwest Coast. This finding provides an example of environmental, economic, and sociopolitical coevolutionary relationships that are triggered when humans manipulate niche environs. PMID:28028536
Game On, Science - How Video Game Technology May Help Biologists Tackle Visualization Challenges
Da Silva, Franck; Empereur-mot, Charly; Chavent, Matthieu; Baaden, Marc
2013-01-01
The video games industry develops ever more advanced technologies to improve rendering, image quality, ergonomics and user experience of their creations providing very simple to use tools to design new games. In the molecular sciences, only a small number of experts with specialized know-how are able to design interactive visualization applications, typically static computer programs that cannot easily be modified. Are there lessons to be learned from video games? Could their technology help us explore new molecular graphics ideas and render graphics developments accessible to non-specialists? This approach points to an extension of open computer programs, not only providing access to the source code, but also delivering an easily modifiable and extensible scientific research tool. In this work, we will explore these questions using the Unity3D game engine to develop and prototype a biological network and molecular visualization application for subsequent use in research or education. We have compared several routines to represent spheres and links between them, using either built-in Unity3D features or our own implementation. These developments resulted in a stand-alone viewer capable of displaying molecular structures, surfaces, animated electrostatic field lines and biological networks with powerful, artistic and illustrative rendering methods. We consider this work as a proof of principle demonstrating that the functionalities of classical viewers and more advanced novel features could be implemented in substantially less time and with less development effort. Our prototype is easily modifiable and extensible and may serve others as starting point and platform for their developments. A webserver example, standalone versions for MacOS X, Linux and Windows, source code, screen shots, videos and documentation are available at the address: http://unitymol.sourceforge.net/. PMID:23483961
Game on, science - how video game technology may help biologists tackle visualization challenges.
Lv, Zhihan; Tek, Alex; Da Silva, Franck; Empereur-mot, Charly; Chavent, Matthieu; Baaden, Marc
2013-01-01
The video games industry develops ever more advanced technologies to improve rendering, image quality, ergonomics and user experience of their creations providing very simple to use tools to design new games. In the molecular sciences, only a small number of experts with specialized know-how are able to design interactive visualization applications, typically static computer programs that cannot easily be modified. Are there lessons to be learned from video games? Could their technology help us explore new molecular graphics ideas and render graphics developments accessible to non-specialists? This approach points to an extension of open computer programs, not only providing access to the source code, but also delivering an easily modifiable and extensible scientific research tool. In this work, we will explore these questions using the Unity3D game engine to develop and prototype a biological network and molecular visualization application for subsequent use in research or education. We have compared several routines to represent spheres and links between them, using either built-in Unity3D features or our own implementation. These developments resulted in a stand-alone viewer capable of displaying molecular structures, surfaces, animated electrostatic field lines and biological networks with powerful, artistic and illustrative rendering methods. We consider this work as a proof of principle demonstrating that the functionalities of classical viewers and more advanced novel features could be implemented in substantially less time and with less development effort. Our prototype is easily modifiable and extensible and may serve others as starting point and platform for their developments. A webserver example, standalone versions for MacOS X, Linux and Windows, source code, screen shots, videos and documentation are available at the address: http://unitymol.sourceforge.net/.
NASA Astrophysics Data System (ADS)
Jung, Timothy Paul
Commercial supersonic travel has strong business potential; however, in order for the Federal Aviation Administration to lift its ban on supersonic flight overland, designers must reduce aircraft sonic boom strength to an acceptable level. An efficient methodology and associated tools for designing aircraft for minimized sonic booms are presented. The computer-based preliminary design tool, RapidF, based on modified linear theory, enables quick assessment of an aircraft's sonic boom with run times less than 30 seconds on a desktop computer. A unique feature of RapidF is that it tracks where on the aircraft each segment of the of the sonic boom came from, enabling precise modifications, speeding the design process. Sonic booms from RapidF are compared to flight test data, showing that it is capability of predicting a sonic boom duration, overpressure, and interior shock locations. After the preliminary design is complete, scaled flight tests should be conducted to validate the low boom design. When conducting such tests, it is insufficient to just scale the length; thus, equations to scale the weight and propagation distance are derived. Using RapidF, a conceptual supersonic business jet design is presented that uses F-function lobe balancing to create a frozen sonic boom using lifting surfaces. The leading shock is reduced from 1.4 to 0.83 psf, and the trailing shock from 1.2 to 0.87 psf, 41% and 28% reductions respectfully. By changing the incidence angle of the surfaces, different sonic boom shapes can be created, and allowing the lobes to be re-balanced for new flight conditions. Computational fluid dynamics is conducted to validate the sonic boom predictions. Off-design analysis is presented that varies weight, altitude, Mach number, and propagation angle, demonstrating that lobe-balance is robust. Finally, the Perceived Level of Loudness metric is analyzed, resulting in a modified design that incorporates other boom minimization techniques to further reduce the sonic boom.
NASA Astrophysics Data System (ADS)
Werdiningsih, Indah; Zaman, Badrus; Nuqoba, Barry
2017-08-01
This paper presents classification of brain cancer using wavelet transformation and Adaptive Neighborhood Based Modified Backpropagation (ANMBP). Three stages of the processes, namely features extraction, features reduction, and classification process. Wavelet transformation is used for feature extraction and ANMBP is used for classification process. The result of features extraction is feature vectors. Features reduction used 100 energy values per feature and 10 energy values per feature. Classifications of brain cancer are normal, alzheimer, glioma, and carcinoma. Based on simulation results, 10 energy values per feature can be used to classify brain cancer correctly. The correct classification rate of proposed system is 95 %. This research demonstrated that wavelet transformation can be used for features extraction and ANMBP can be used for classification of brain cancer.
Transonic rotor tip design using numerical optimization
NASA Technical Reports Server (NTRS)
Tauber, Michael E.; Langhi, Ronald G.
1985-01-01
The aerodynamic design procedure for a new blade tip suitable for operation at transonic speeds is illustrated. For the first time, 3 dimensional numerical optimization was applied to rotor tip design, using the recent derivative of the ROT22 code, program R22OPT. Program R22OPT utilized an efficient quasi-Newton optimization algorithm. Multiple design objectives were specified. The delocalization of the shock wave was to be eliminated in forward flight for an advance ratio of 0.41 and a tip Mach number of 0.92 at psi = 90 deg. Simultaneously, it was sought to reduce torque requirements while maintaining effective restoring pitching moments. Only the outer 10 percent of the blade span was modified; the blade area was not to be reduced by more than 3 percent. The goal was to combine the advantages of both sweptback and sweptforward blade tips. A planform that featured inboard sweepback was combined with a sweptforward tip and a taper ratio of 0.5. Initially, the ROT22 code was used to find by trial and error a planform geometry which met the design goals. This configuration had an inboard section with a leading edge sweep of 20 deg and a tip section swept forward at 25 deg; in addition, the airfoils were modified.
Visualizing Uncertainty of Point Phenomena by Redesigned Error Ellipses
NASA Astrophysics Data System (ADS)
Murphy, Christian E.
2018-05-01
Visualizing uncertainty remains one of the great challenges in modern cartography. There is no overarching strategy to display the nature of uncertainty, as an effective and efficient visualization depends, besides on the spatial data feature type, heavily on the type of uncertainty. This work presents a design strategy to visualize uncertainty con-nected to point features. The error ellipse, well-known from mathematical statistics, is adapted to display the uncer-tainty of point information originating from spatial generalization. Modified designs of the error ellipse show the po-tential of quantitative and qualitative symbolization and simultaneous point based uncertainty symbolization. The user can intuitively depict the centers of gravity, the major orientation of the point arrays as well as estimate the ex-tents and possible spatial distributions of multiple point phenomena. The error ellipse represents uncertainty in an intuitive way, particularly suitable for laymen. Furthermore it is shown how applicable an adapted design of the er-ror ellipse is to display the uncertainty of point features originating from incomplete data. The suitability of the error ellipse to display the uncertainty of point information is demonstrated within two showcases: (1) the analysis of formations of association football players, and (2) uncertain positioning of events on maps for the media.
Rangan, Aaditya V; McGrouther, Caroline C; Kelsoe, John; Schork, Nicholas; Stahl, Eli; Zhu, Qian; Krishnan, Arjun; Yao, Vicky; Troyanskaya, Olga; Bilaloglu, Seda; Raghavan, Preeti; Bergen, Sarah; Jureus, Anders; Landen, Mikael
2018-05-14
A common goal in data-analysis is to sift through a large data-matrix and detect any significant submatrices (i.e., biclusters) that have a low numerical rank. We present a simple algorithm for tackling this biclustering problem. Our algorithm accumulates information about 2-by-2 submatrices (i.e., 'loops') within the data-matrix, and focuses on rows and columns of the data-matrix that participate in an abundance of low-rank loops. We demonstrate, through analysis and numerical-experiments, that this loop-counting method performs well in a variety of scenarios, outperforming simple spectral methods in many situations of interest. Another important feature of our method is that it can easily be modified to account for aspects of experimental design which commonly arise in practice. For example, our algorithm can be modified to correct for controls, categorical- and continuous-covariates, as well as sparsity within the data. We demonstrate these practical features with two examples; the first drawn from gene-expression analysis and the second drawn from a much larger genome-wide-association-study (GWAS).
Klemp, Kerstin; Zwart, Dorien; Hansen, Jørgen; Hellebek, Torben; Luettel, Dagmar; Verstappen, Wim; Beyer, Martin; Gerlach, Ferdin M.; Hoffmann, Barbara; Esmail, Aneez
2015-01-01
Background: Incident reporting is widely used in both patient safety improvement programmes, and in research on patient safety. Objective: To identify the key requirements for incident reporting systems in primary care; to develop an Internet-based incident reporting and learning system for primary care. Methods: A literature review looking at the purpose, design and requirements of an incident reporting system (IRS) was used to update an existing incident reporting system, widely used in Germany. Then, an international expert panel with knowledge on IRS developed the criteria for the design of a new web-based incident reporting system for European primary care. A small demonstration project was used to create a web-based reporting system, to be made freely available for practitioners and researchers. The expert group compiled recommendations regarding the desirable features of an incident reporting system for European primary care. These features covered the purpose of reporting, who should be involved in reporting, the mode of reporting, design considerations, feedback mechanisms and preconditions necessary for the implementation of an IRS. Results: A freely available web-based reporting form was developed, based on these criteria. It can be modified for local contexts. Practitioners and researchers can use this system as a means of recording patient safety incidents in their locality and use it as a basis for learning from errors. Conclusion: The LINNEAUS collaboration has provided a freely available incident reporting system that can be modified for a local context and used throughout Europe. PMID:26339835
Synthesis of laughter by modifying excitation characteristics.
Thati, Sathya Adithya; Kumar K, Sudheer; Yegnanarayana, B
2013-05-01
In this paper, a method to synthesize laughter by modifying the excitation source information is presented. The excitation source information is derived by extracting epoch locations and instantaneous fundamental frequency using zero frequency filtering approach. The zero frequency filtering approach is modified to capture the rapidly varying instantaneous fundamental frequency in natural laugh signals. The nature of variation of excitation features in natural laughter is examined to determine the features to be incorporated in the synthesis of a laugh signal. Features such as pitch period and strength of excitation are modified in the utterance of vowel /a/ or /i/ to generate the laughter signal. Frication is also incorporated wherever appropriate. Laugh signal is generated by varying parameters at both call level and bout level. Experiments are conducted to determine the significance of different features in the perception of laughter. Subjective evaluation is performed to determine the level of acceptance and quality of synthesis of the synthesized laughter signal for different choices of parameter values and for different input types.
A PC-based single-ADC multi-parameter data acquisition system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Woodring, M.; Kegel, G.H.R.; Egan, J.J.
1995-10-01
A personal computer (PC) based mult parameter data acquisition system using the Microsoft Window operating environment has been designed and constructed. An IBI AT compatible personal computer with an Intel 486DX5 microprocessor was combined with a National Instruments ATIDIO 32 digital I/O card, a single Canberra 8713 ADC with 13-bit resolution and a modified Canberra 8223 8-input analog multiplexer to acquil data from experiments carried out at the UML Van de Graa accelerator. The accelerator data acquisition (ADAC) computer environment was programmed in Microsoft Visual BASIC for use i Windows. ADAC allows event-mode data acquisition with up to eight parametersmore » (modifiable to 64) and the simultaneous display parameters during acquisition. Additional features of ADAC include replay of event-mode data and graphical analysis/display of data. TV ADAC environment is easy to upgrade or expand, inexpensive 1 implement, and is specifically designed to meet the needs of nuclei spectroscopy.« less
An expert system for simulating electric loads aboard Space Station Freedom
NASA Technical Reports Server (NTRS)
Kukich, George; Dolce, James L.
1990-01-01
Space Station Freedom will provide an infrastructure for space experimentation. This environment will feature regulated access to any resources required by an experiment. Automated systems are being developed to manage the electric power so that researchers can have the flexibility to modify their experiment plan for contingencies or for new opportunities. To define these flexible power management characteristics for Space Station Freedom, a simulation is required that captures the dynamic nature of space experimentation; namely, an investigator is allowed to restructure his experiment and to modify its execution. This changes the energy demands for the investigator's range of options. An expert system competent in the domain of cryogenic fluid management experimentation was developed. It will be used to help design and test automated power scheduling software for Freedom's electric power system. The expert system allows experiment planning and experiment simulation. The former evaluates experimental alternatives and offers advice on the details of the experiment's design. The latter provides a real-time simulation of the experiment replete with appropriate resource consumption.
Nanofabricated Collagen-Inspired Synthetic Elastomers for Primary Rat Hepatocyte Culture
Bettinger, Christopher J.; Kulig, Katherine M.; Vacanti, Joseph P.
2009-01-01
Synthetic substrates that mimic the properties of extracellular matrix proteins hold significant promise for use in systems designed for tissue engineering applications. In this report, we designed a synthetic polymeric substrate that is intended to mimic chemical, mechanical, and topological characteristics of collagen. We found that elastomeric poly(ester amide) substrates modified with replica-molded nanotopographic features enhanced initial attachment, spreading, and adhesion of primary rat hepatocytes. Further, hepatocytes cultured on nanotopographic substrates also demonstrated reduced albumin secretion and urea synthesis, which is indicative of strongly adherent hepatocytes. These results suggest that these engineered substrates can function as synthetic collagen analogs for in vitro cell culture. PMID:18847357
SBOL Visual: A Graphical Language for Genetic Designs
Quinn, Jacqueline Y.; Cox, Robert Sidney; Adler, Aaron; ...
2015-12-03
Synthetic Biology Open Language (SBOL) Visual is a graphical standard for genetic engineering. We report that it consists of symbols representing DNA subsequences, including regulatory elements and DNA assembly features. These symbols can be used to draw illustrations for communication and instruction, and as image assets for computer-aided design. SBOL Visual is a community standard, freely available for personal, academic, and commercial use (Creative Commons CC0 license). We provide prototypical symbol images that have been used in scientific publications and software tools. We encourage users to use and modify them freely, and to join the SBOL Visual community: http://www.sbolstandard.org/visual.
SBOL Visual: A Graphical Language for Genetic Designs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Quinn, Jacqueline Y.; Cox, Robert Sidney; Adler, Aaron
Synthetic Biology Open Language (SBOL) Visual is a graphical standard for genetic engineering. We report that it consists of symbols representing DNA subsequences, including regulatory elements and DNA assembly features. These symbols can be used to draw illustrations for communication and instruction, and as image assets for computer-aided design. SBOL Visual is a community standard, freely available for personal, academic, and commercial use (Creative Commons CC0 license). We provide prototypical symbol images that have been used in scientific publications and software tools. We encourage users to use and modify them freely, and to join the SBOL Visual community: http://www.sbolstandard.org/visual.
SBOL Visual: A Graphical Language for Genetic Designs
Adler, Aaron; Beal, Jacob; Bhatia, Swapnil; Cai, Yizhi; Chen, Joanna; Clancy, Kevin; Galdzicki, Michal; Hillson, Nathan J.; Le Novère, Nicolas; Maheshwari, Akshay J.; McLaughlin, James Alastair; Myers, Chris J.; P, Umesh; Pocock, Matthew; Rodriguez, Cesar; Soldatova, Larisa; Stan, Guy-Bart V.; Swainston, Neil; Wipat, Anil; Sauro, Herbert M.
2015-01-01
Synthetic Biology Open Language (SBOL) Visual is a graphical standard for genetic engineering. It consists of symbols representing DNA subsequences, including regulatory elements and DNA assembly features. These symbols can be used to draw illustrations for communication and instruction, and as image assets for computer-aided design. SBOL Visual is a community standard, freely available for personal, academic, and commercial use (Creative Commons CC0 license). We provide prototypical symbol images that have been used in scientific publications and software tools. We encourage users to use and modify them freely, and to join the SBOL Visual community: http://www.sbolstandard.org/visual. PMID:26633141
Tigges, P; Kathmann, N; Engel, R R
1997-07-01
Though artificial neural networks (ANN) are excellent tools for pattern recognition problems when signal to noise ratio is low, the identification of decision relevant features for ANN input data is still a crucial issue. The experience of the ANN designer and the existing knowledge and understanding of the problem seem to be the only links for a specific construction. In the present study a backpropagation ANN based on modified raw data inputs showed encouraging results. Investigating the specific influences of prototypical input patterns on a specially designed ANN led to a new sparse and efficient input data presentation. This data coding obtained by a semiautomatic procedure combining existing expert knowledge and the internal representation structures of the raw data based ANN yielded a list of feature vectors, each representing the relevant information for saccade identification. The feature based ANN produced a reduction of the error rate of nearly 40% compared with the raw data ANN. An overall correct classification of 92% of so far unknown data was realized. The proposed method of extracting internal ANN knowledge for the production of a better input data representation is not restricted to EOG recordings, and could be used in various fields of signal analysis.
Effective Fingerprint Quality Estimation for Diverse Capture Sensors
Xie, Shan Juan; Yoon, Sook; Shin, Jinwook; Park, Dong Sun
2010-01-01
Recognizing the quality of fingerprints in advance can be beneficial for improving the performance of fingerprint recognition systems. The representative features to assess the quality of fingerprint images from different types of capture sensors are known to vary. In this paper, an effective quality estimation system that can be adapted for different types of capture sensors is designed by modifying and combining a set of features including orientation certainty, local orientation quality and consistency. The proposed system extracts basic features, and generates next level features which are applicable for various types of capture sensors. The system then uses the Support Vector Machine (SVM) classifier to determine whether or not an image should be accepted as input to the recognition system. The experimental results show that the proposed method can perform better than previous methods in terms of accuracy. In the meanwhile, the proposed method has an ability to eliminate residue images from the optical and capacitive sensors, and the coarse images from thermal sensors. PMID:22163632
Steerable dyadic wavelet transform and interval wavelets for enhancement of digital mammography
NASA Astrophysics Data System (ADS)
Laine, Andrew F.; Koren, Iztok; Yang, Wuhai; Taylor, Fred J.
1995-04-01
This paper describes two approaches for accomplishing interactive feature analysis by overcomplete multiresolution representations. We show quantitatively that transform coefficients, modified by an adaptive non-linear operator, can make more obvious unseen or barely seen features of mammography without requiring additional radiation. Our results are compared with traditional image enhancement techniques by measuring the local contrast of known mammographic features. We design a filter bank representing a steerable dyadic wavelet transform that can be used for multiresolution analysis along arbitrary orientations. Digital mammograms are enhanced by orientation analysis performed by a steerable dyadic wavelet transform. Arbitrary regions of interest (ROI) are enhanced by Deslauriers-Dubuc interpolation representations on an interval. We demonstrate that our methods can provide radiologists with an interactive capability to support localized processing of selected (suspicion) areas (lesions). Features extracted from multiscale representations can provide an adaptive mechanism for accomplishing local contrast enhancement. By improving the visualization of breast pathology can improve changes of early detection while requiring less time to evaluate mammograms for most patients.
Evaluating Zeolite-Modified Sensors: towards a faster set of chemical sensors
NASA Astrophysics Data System (ADS)
Berna, A. Z.; Vergara, A.; Trincavelli, M.; Huerta, R.; Afonja, A.; Parkin, I. P.; Binions, R.; Trowell, S.
2011-09-01
The responses of zeolite-modified sensors, prepared by screen printing layers of chromium titanium oxide (CTO), were compared to unmodified tin oxide sensors using amplitude and transient responses. For transient responses we used a family of features, derived from the exponential moving average (EMA), to characterize chemo-resistive responses. All sensors were tested simultaneously against 20 individual volatile compounds from four chemical groups. The responses of the two types of sensors showed some independence. The zeolite-modified CTO sensors discriminated compounds better using either amplitude response or EMA features and CTO-modified sensors also responded three times faster.
Bishop, Gregory W.; Satterwhite, Jennifer E.; Bhakta, Snehasis; Kadimisetty, Karteek; Gillette, Kelsey M.; Chen, Eric; Rusling, James F.
2015-01-01
A consumer-grade fused filament fabrication (FFF) 3D printer was used to construct fluidic devices for nanoparticle preparation and electrochemical sensing. Devices were printed using poly(ethylene terephthalate) and featured threaded ports to connect polyetheretherketone (PEEK) tubing via printed fittings prepared from acrylonitrile butadiene styrene (ABS). These devices included channels designed to have 800 × 800 µm2 square cross sections and were semitransparent to allow visualization of the solution-filled channels. A 3D-printed device with a Y-shaped mixing channel was used to prepare Prussian blue nanoparticles (PBNPs) under flow rates of 100 to 2000 µL min−1. PBNPs were then attached to gold electrodes for hydrogen peroxide sensing. 3D-printed devices used for electrochemical measurements featured threaded access ports into which a fitting equipped with reference, counter, and PBNP-modified working electrodes could be inserted. PBNP-modified electrodes enabled amperometric detection of H2O2 in the 3D-printed channel by flow-injection analysis, exhibiting a detection limit of 100 nM and linear response up to 20 µM. These experiments show that a consumer-grade FFF printer can be used to fabricate low-cost fluidic devices for applications similar to those that have been reported with more expensive 3D-printing methods. PMID:25901660
Nickel-cadmium battery system for electric vehicles
NASA Astrophysics Data System (ADS)
Klein, M.; Charkey, A.
A nickel-cadmium battery system has been developed and is being evaluated for electric vehicle propulsion applications. The battery system design features include: (1) air circulation through gaps between cells for thermal management, (2) a metal-gas coulometric fuel gauge for state-of-charge and charge control, and (3) a modified constant current ac/dc power supply for the charger. The battery delivers one and a half to two times the energy density of comparable lead-acid batteries depending on operating conditions.
U.S. Space Station platform - Configuration technology for customer servicing
NASA Technical Reports Server (NTRS)
Dezio, Joseph A.; Walton, Barbara A.
1987-01-01
Features of the Space Station coorbiting and polar orbiting platforms (COP and POP, respectively) are described that will allow them to be configured optimally to meet mission requirements and to be assembled, serviced, and modified on-orbit. Both of these platforms were designed to permit servicing at the Shuttle using the remote manipulator system with teleoperated end effectors; EVA was planned as a backup and for unplanned payload failure modes. Station-based servicing is discussed as well as expendable launch vehicle-based servicing concepts.
Self-organizing neural networks--an alternative way of cluster analysis in clinical chemistry.
Reibnegger, G; Wachter, H
1996-04-15
Supervised learning schemes have been employed by several workers for training neural networks designed to solve clinical problems. We demonstrate that unsupervised techniques can also produce interesting and meaningful results. Using a data set on the chemical composition of milk from 22 different mammals, we demonstrate that self-organizing feature maps (Kohonen networks) as well as a modified version of error backpropagation technique yield results mimicking conventional cluster analysis. Both techniques are able to project a potentially multi-dimensional input vector onto a two-dimensional space whereby neighborhood relationships remain conserved. Thus, these techniques can be used for reducing dimensionality of complicated data sets and for enhancing comprehensibility of features hidden in the data matrix.
Vivekanandan, T; Sriman Narayana Iyengar, N Ch
2017-11-01
Enormous data growth in multiple domains has posed a great challenge for data processing and analysis techniques. In particular, the traditional record maintenance strategy has been replaced in the healthcare system. It is vital to develop a model that is able to handle the huge amount of e-healthcare data efficiently. In this paper, the challenging tasks of selecting critical features from the enormous set of available features and diagnosing heart disease are carried out. Feature selection is one of the most widely used pre-processing steps in classification problems. A modified differential evolution (DE) algorithm is used to perform feature selection for cardiovascular disease and optimization of selected features. Of the 10 available strategies for the traditional DE algorithm, the seventh strategy, which is represented by DE/rand/2/exp, is considered for comparative study. The performance analysis of the developed modified DE strategy is given in this paper. With the selected critical features, prediction of heart disease is carried out using fuzzy AHP and a feed-forward neural network. Various performance measures of integrating the modified differential evolution algorithm with fuzzy AHP and a feed-forward neural network in the prediction of heart disease are evaluated in this paper. The accuracy of the proposed hybrid model is 83%, which is higher than that of some other existing models. In addition, the prediction time of the proposed hybrid model is also evaluated and has shown promising results. Copyright © 2017 Elsevier Ltd. All rights reserved.
Dip-Coating Process Engineering and Performance Optimization for Three-State Electrochromic Devices
NASA Astrophysics Data System (ADS)
Wu, Lu; Yang, Dejiang; Fei, Lixun; Huang, Yue; Wu, Fang; Sun, Yiling; Shi, Jiayuan; Xiang, Yong
2017-06-01
Titanium dioxide (TiO2) nanoparticles were modified onto fluorine-doped tin oxide (FTO) via dip-coating technique with different nanoparticle sizes, lifting speeds, precursor concentrations, and dipping numbers. Electrodeposition-based electrochromic device with reversible three-state optical transformation (transparent, mirror, and black) was fabricated subsequently by sandwiching a suitable amount of gel electrolyte between modified FTO electrode and flat FTO electrode. Correlation between dip-coating process engineering, morphological features of TiO2 thin films, i.e., thickness and roughness, as well as performance of electrochromic devices, i.e., optical contrast, switching time, and cycling stability, were investigated. The modified device exhibits high optical contrast of 57%, the short coloration/bleaching switching time of 6 and 20 s, and excellent cycling stability after 1500 cycles of only 27% decrement rate by adjusting dip-coating processes engineering. The results in this study will provide valuable guidance for rational design of the electrochromic device with satisfactory performance.
Progression of motor and nonmotor features of Parkinson's disease and their response to treatment
Vu, Thuy C.; Nutt, John G.; Holford, Nicholas H. G.
2012-01-01
AIMS (i) To describe the progression of the cardinal features of Parkinson's disease (PD); (ii) to investigate whether baseline PD subtypes explain disease progression; and (iii) to quantify the symptomatic and disease-modifying effects of anti-parkinsonian treatments. METHODS Data were available for 795 PD subjects, initially untreated, followed for up to 8 years. Cardinal features [tremor, rigidity, bradykinesia, and postural instability and gait disorder (PIGD)] were derived from the total unified Parkinson's disease rating scale (total UPDRS), cognitive status from the mini-mental status exam score (MMSE) and depression status from the Hamilton depression scale (HAM-D). Analysis was performed using a nonlinear mixed effects approach with an asymptotic model for natural disease progression. Treatment effects (i.e. symptomatic and disease modifying) were evaluated by describing changes in the natural history model parameters. RESULTS Tremor progressed more slowly (half-time of 3.9 years) than all other motor features (half-time 2–3 years). The MMSE progression was negligible, while HAM-D progressed with a half-time of 5 years. Levodopa had marked symptomatic effects on all features, but low potency for effect on PIGD (ED50 of 1237 mg day−1 compared with 7–24 mg day−1 for other motor and nonmotor features). Other anti-parkinsonian treatments had much smaller symptomatic effects. All treatments had disease-modifying effects on the cardinal features of PD. Baseline PD subtypes only explained small differences in disease progression. CONCLUSIONS This analysis indicates that tremor progresses more slowly than other cardinal features and that PIGD is less treatment responsive in early PD patients. There was no evidence of baseline PD subtypes as a clinically useful predictor of disease progression rate. Anti-parkinsonian treatments have symptomatic and disease-modifying effects on all major features of PD. PMID:22283961
Actively cooled plate fin sandwich structural panels for hypersonic aircraft
NASA Technical Reports Server (NTRS)
Smith, L. M.; Beuyukian, C. S.
1979-01-01
An unshielded actively cooled structural panel was designed for application to a hypersonic aircraft. The design was an all aluminum stringer-stiffened platefin sandwich structure which used a 60/40 mixture of ethylene glycol/water as the coolant. Eight small test specimens of the basic platefin sandwich concept and three fatigue specimens from critical areas of the panel design was fabricated and tested (at room temperature). A test panel representative of all features of the panel design was fabricated and tested to determine the combined thermal/mechanical performance and structural integrity of the system. The overall findings are that; (1) the stringer-stiffened platefin sandwich actively cooling concept results in a low mass design that is an excellent contender for application to a hypersonic vehicle, and (2) the fabrication processes are state of the art but new or modified facilities are required to support full scale panel fabrication.
Accessing files in an Internet: The Jade file system
NASA Technical Reports Server (NTRS)
Peterson, Larry L.; Rao, Herman C.
1991-01-01
Jade is a new distribution file system that provides a uniform way to name and access files in an internet environment. It makes two important contributions. First, Jade is a logical system that integrates a heterogeneous collection of existing file systems, where heterogeneous means that the underlying file systems support different file access protocols. Jade is designed under the restriction that the underlying file system may not be modified. Second, rather than providing a global name space, Jade permits each user to define a private name space. These private name spaces support two novel features: they allow multiple file systems to be mounted under one directory, and they allow one logical name space to mount other logical name spaces. A prototype of the Jade File System was implemented on Sun Workstations running Unix. It consists of interfaces to the Unix file system, the Sun Network File System, the Andrew File System, and FTP. This paper motivates Jade's design, highlights several aspects of its implementation, and illustrates applications that can take advantage of its features.
Accessing files in an internet - The Jade file system
NASA Technical Reports Server (NTRS)
Rao, Herman C.; Peterson, Larry L.
1993-01-01
Jade is a new distribution file system that provides a uniform way to name and access files in an internet environment. It makes two important contributions. First, Jade is a logical system that integrates a heterogeneous collection of existing file systems, where heterogeneous means that the underlying file systems support different file access protocols. Jade is designed under the restriction that the underlying file system may not be modified. Second, rather than providing a global name space, Jade permits each user to define a private name space. These private name spaces support two novel features: they allow multiple file systems to be mounted under one directory, and they allow one logical name space to mount other logical name spaces. A prototype of the Jade File System was implemented on Sun Workstations running Unix. It consists of interfaces to the Unix file system, the Sun Network File System, the Andrew File System, and FTP. This paper motivates Jade's design, highlights several aspects of its implementation, and illustrates applications that can take advantage of its features.
Jeyasingh, Suganthi; Veluchamy, Malathi
2017-05-01
Early diagnosis of breast cancer is essential to save lives of patients. Usually, medical datasets include a large variety of data that can lead to confusion during diagnosis. The Knowledge Discovery on Database (KDD) process helps to improve efficiency. It requires elimination of inappropriate and repeated data from the dataset before final diagnosis. This can be done using any of the feature selection algorithms available in data mining. Feature selection is considered as a vital step to increase the classification accuracy. This paper proposes a Modified Bat Algorithm (MBA) for feature selection to eliminate irrelevant features from an original dataset. The Bat algorithm was modified using simple random sampling to select the random instances from the dataset. Ranking was with the global best features to recognize the predominant features available in the dataset. The selected features are used to train a Random Forest (RF) classification algorithm. The MBA feature selection algorithm enhanced the classification accuracy of RF in identifying the occurrence of breast cancer. The Wisconsin Diagnosis Breast Cancer Dataset (WDBC) was used for estimating the performance analysis of the proposed MBA feature selection algorithm. The proposed algorithm achieved better performance in terms of Kappa statistic, Mathew’s Correlation Coefficient, Precision, F-measure, Recall, Mean Absolute Error (MAE), Root Mean Square Error (RMSE), Relative Absolute Error (RAE) and Root Relative Squared Error (RRSE). Creative Commons Attribution License
NASA Technical Reports Server (NTRS)
Heinemann, K.; Poppa, H.
1986-01-01
A commercial transmission electron microscope (TEM), with flat-plate upper pole piece configuration of the objective lens, and top-entry specimen introduction was modified by introducing an ultrahigh vacuum (UHV) specimen chamber for in situ TEM experimentation. The pumping and design principles and special features of this UHV chamber, which makes it possible to obtain 5 x 10 to the -10th mbar pressure at the site of the specimen, while maintaining the airlock system that allows operation in the 10 to the -10th mbar range within 15 min after specimen change, are described. Design operating pressures and image quality (resolution of metal particles smaller than 1 nm in size) were achieved. Schematic drawings and design dimensions are included.
NASA Astrophysics Data System (ADS)
Manzanares-Filho, N.; Albuquerque, R. B. F.; Sousa, B. S.; Santos, L. G. C.
2018-06-01
This article presents a comparative study of some versions of the controlled random search algorithm (CRSA) in global optimization problems. The basic CRSA, originally proposed by Price in 1977 and improved by Ali et al. in 1997, is taken as a starting point. Then, some new modifications are proposed to improve the efficiency and reliability of this global optimization technique. The performance of the algorithms is assessed using traditional benchmark test problems commonly invoked in the literature. This comparative study points out the key features of the modified algorithm. Finally, a comparison is also made in a practical engineering application, namely the inverse aerofoil shape design.
Hamilton, Lei; McConley, Marc; Angermueller, Kai; Goldberg, David; Corba, Massimiliano; Kim, Louis; Moran, James; Parks, Philip D; Sang Chin; Widge, Alik S; Dougherty, Darin D; Eskandar, Emad N
2015-08-01
A fully autonomous intracranial device is built to continually record neural activities in different parts of the brain, process these sampled signals, decode features that correlate to behaviors and neuropsychiatric states, and use these features to deliver brain stimulation in a closed-loop fashion. In this paper, we describe the sampling and stimulation aspects of such a device. We first describe the signal processing algorithms of two unsupervised spike sorting methods. Next, we describe the LFP time-frequency analysis and feature derivation from the two spike sorting methods. Spike sorting includes a novel approach to constructing a dictionary learning algorithm in a Compressed Sensing (CS) framework. We present a joint prediction scheme to determine the class of neural spikes in the dictionary learning framework; and, the second approach is a modified OSort algorithm which is implemented in a distributed system optimized for power efficiency. Furthermore, sorted spikes and time-frequency analysis of LFP signals can be used to generate derived features (including cross-frequency coupling, spike-field coupling). We then show how these derived features can be used in the design and development of novel decode and closed-loop control algorithms that are optimized to apply deep brain stimulation based on a patient's neuropsychiatric state. For the control algorithm, we define the state vector as representative of a patient's impulsivity, avoidance, inhibition, etc. Controller parameters are optimized to apply stimulation based on the state vector's current state as well as its historical values. The overall algorithm and software design for our implantable neural recording and stimulation system uses an innovative, adaptable, and reprogrammable architecture that enables advancement of the state-of-the-art in closed-loop neural control while also meeting the challenges of system power constraints and concurrent development with ongoing scientific research designed to define brain network connectivity and neural network dynamics that vary at the individual patient level and vary over time.
Lewandowski, Zdzisław
2015-09-01
The project aimed at finding the answers to the following two questions: to what extent does a change in size, height or width of the selected facial features influence the assessment of likeness between an original female composite portrait and a modified one? And how does the sex of the person who judges the images have an impact on the perception of likeness of facial features? The first stage of the project consisted of creating the image of the averaged female faces. Then the basic facial features like eyes, nose and mouth were cut out of the averaged face and each of these features was transformed in three ways: its size was changed by reduction or enlargement, its height was modified through reduction or enlargement of the above-mentioned features and its width was altered through widening or narrowing. In each out of six feature alternation methods, intensity of modification reached up to 20% of the original size with changes every 2%. The features altered in such a way were again stuck onto the original faces and retouched. The third stage consisted of the assessment, performed by the judges of both sexes, of the extent of likeness between the averaged composite portrait (without any changes) and the modified portraits. The results indicate that there are significant differences in the assessment of likeness of the portraits with some features modified to the original ones. The images with changes in the size and height of the nose received the lowest scores on the likeness scale, which indicates that these changes were perceived by the subjects as the most important. The photos with changes in the height of lip vermillion thickness (the lip height), lip width and the height and width of eye slit, in turn, received high scores of likeness, in spite of big changes, which signifies that these modifications were perceived as less important when compared to the other features investigated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Amano, Masayuki; Salcedo-Gómez, Pedro Miguel; Zhao, Rui
We here report that GRL-10413, a novel non-peptidic HIV-1 protease inhibitor (PI) containing a modified P1 moiety and a sulfonamide isostere, is highly active against laboratory HIV-1 strains and primary clinical isolates (EC 50: 0.00035 - 0.0018 μM) with minimal cytotoxicity (CC 50: 35.7 μM). GRL-10413 blocked the infectivity and replication of HIV-1 NL4-3variants selected by up to 5 μM concentrations of atazanavir, lopinavir, or amprenavir (EC 50: 0.0021 - 0.0023 μM). GRL-10413 also maintained its strong antiviral activity against multi-drug-resistant clinical HIV-1 variants isolated from patients, who no longer responded to various antiviral regimens after long-term antiretroviral therapy. Themore » development of resistance against GRL-10413 was significantly delayed compared to that of APV. In addition, GRL-10413 showed a favorable central nervous system (CNS) penetration property as assessed with anin vitroblood brain barrier (BBB) reconstruction system. Analysis of the crystal structure of HIV-1 protease in complex with GRL-10413 demonstrated that the modified P1 moiety of GRL-10413 has a greater hydrophobic surface area and makes greater van der Waals contacts with active-site amino acids of protease than in the case of darunavir. Moreover, the chlorine substituent in the P1 moiety interacts with protease in two distinct configurations. The present data demonstrate that GRL-10413 has desirable features for treating patients infected with wild-type and/or multi-drug-resistant HIV-1 variants with favorable CNS-penetration capability and that the newly modified P1-moiety may confer desirable features in designing novel anti-HIV-1 PIs.« less
Implant retained auricular prosthesis with a modified hader bar: a case report.
Lovely, M; Dathan, Pradeep C; Gopal, Dinesh; George, Biji Thomas; Chandrasekharan Nair, K
2014-06-01
Auricular prostheses for defects of external ear are retained either by mechanical means or implants. All implant retained prostheses are retained by various means such as bar and clip, magnetic attachments or a combination of bar, clip and magnets. The commonest problem encountered with the bar and clip system is loosening of the clip after 3-4 months. When magnets are used as retaining component they tend to corrode over a period of time. So various alternative retention methods which possess good retentive qualities, ease of reparability and patient friendly were tried. In the present case a newly modified Hader bar design which can act as an additional retentive feature apart from the clip is employed to increase retention. The major advantages in the modified Hader bar system were that only two implants were employed, the additional loops in the Hader bar prevented micro movements and the retentive acrylic locks were easy to repair if broken. The modified Hader bar has anti-rotational slots which prevents the sliding or rotation of the prosthesis which gave new confidence to the patient who was otherwise worried of inadvertent displacement of the ear prosthesis while playing.
NASA Astrophysics Data System (ADS)
Song, B.; Antoun, B. R.; Boston, M.
2012-05-01
We modified the design originally developed by Kuokkala's group to develop an automated high-temperature Kolsky compression bar for characterizing high-rate properties of 304L stainless steel at elevated temperatures. Additional features have been implemented to this high-temperature Kolsky compression bar for recrystallization investigation. The new features ensure a single loading on the specimen and precise time and temperature control for quenching to the specimen after dynamic loading. Dynamic compressive stress-strain curves of 304L stainless steel were obtained at 21, 204, 427, 649, and 871 °C (or 70, 400, 800, 1200, and 1600 °F) at the same constant strain rate of 332 s-1. The specimen subjected to specific time and temperature control for quenching after a single dynamic loading was preserved for investigating microstructure recrystallization.
A modified Bitter-type electromagnet and control system for cold atom experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luan, Tian; Zhou, Tianwei; Chen, Xuzong, E-mail: xuzongchen@pku.edu.cn
2014-02-15
We present a modified Bitter-type electromagnet which features high magnetic field, fine electronic properties and efficient heat removal. The electromagnet is constructed from a stack of copper layers separated by mica layers that have the same shape. A distinctive design of cooling channels on the insulating layers and the parallel ducts between the layers ensures low resistance for cooling water to flow. A continuous current control system is also made to regulate the current through the electromagnet. In our experiment, versatile electromagnets are applied to generate magnetic field and gradient field. From our measurements, a peak magnetic field of 1000more » G and a peak gradient field of 80 G/cm are generated in the center of the apparatuses which are 7 cm and 5 cm away from the edge of each electromagnet with a current of 230 A and 120 A, respectively. With the effective feedback design in the current control system and cooling water flow of 3.8 l/min, the stability of the current through the electromagnets can reach 10{sup −5}.« less
A modified adjoint-based grid adaptation and error correction method for unstructured grid
NASA Astrophysics Data System (ADS)
Cui, Pengcheng; Li, Bin; Tang, Jing; Chen, Jiangtao; Deng, Youqi
2018-05-01
Grid adaptation is an important strategy to improve the accuracy of output functions (e.g. drag, lift, etc.) in computational fluid dynamics (CFD) analysis and design applications. This paper presents a modified robust grid adaptation and error correction method for reducing simulation errors in integral outputs. The procedure is based on discrete adjoint optimization theory in which the estimated global error of output functions can be directly related to the local residual error. According to this relationship, local residual error contribution can be used as an indicator in a grid adaptation strategy designed to generate refined grids for accurately estimating the output functions. This grid adaptation and error correction method is applied to subsonic and supersonic simulations around three-dimensional configurations. Numerical results demonstrate that the sensitive grids to output functions are detected and refined after grid adaptation, and the accuracy of output functions is obviously improved after error correction. The proposed grid adaptation and error correction method is shown to compare very favorably in terms of output accuracy and computational efficiency relative to the traditional featured-based grid adaptation.
Design of fluidic self-assembly bonds for precise component positioning
NASA Astrophysics Data System (ADS)
Ramadoss, Vivek; Crane, Nathan B.
2008-02-01
Self Assembly is a promising alternative to conventional pick and place robotic assembly of micro components. Its benefits include parallel integration of parts with low equipment costs. Various approaches to self assembly have been demonstrated, yet demanding applications like assembly of micro-optical devices require increased positioning accuracy. This paper proposes a new method for design of self assembly bonds that addresses this need. Current methods have zero force at the desired assembly position and low stiffness. This allows small disturbance forces to create significant positioning errors. The proposed method uses a substrate assembly feature to provide a high accuracy alignment guide to the part. The capillary bond region of the part and substrate are then modified to create a non-zero positioning force to maintain the part in the desired assembly position. Capillary force models show that this force aligns the part to the substrate assembly feature and reduces sensitivity of part position to process variation. Thus, the new configuration can substantially improve positioning accuracy of capillary self-assembly. This will result in a dramatic decrease in positioning errors in the micro parts. Various binding site designs are analyzed and guidelines are proposed for the design of an effective assembly bond using this new approach.
New Finger Biometric Method Using Near Infrared Imaging
Lee, Eui Chul; Jung, Hyunwoo; Kim, Daeyeoul
2011-01-01
In this paper, we propose a new finger biometric method. Infrared finger images are first captured, and then feature extraction is performed using a modified Gaussian high-pass filter through binarization, local binary pattern (LBP), and local derivative pattern (LDP) methods. Infrared finger images include the multimodal features of finger veins and finger geometries. Instead of extracting each feature using different methods, the modified Gaussian high-pass filter is fully convolved. Therefore, the extracted binary patterns of finger images include the multimodal features of veins and finger geometries. Experimental results show that the proposed method has an error rate of 0.13%. PMID:22163741
NASA Technical Reports Server (NTRS)
Abbott, David; Ables, Jon; Batten, Adam; Carpenter, David; Collings, Tony; Doyle, Briony; Dunlop, John; Edwards, Graeme; Farmer, Tony; Gaffney, Bruce;
2008-01-01
This report provides an outline of the essential features of a Structural Health Monitoring Concept Demonstrator (CD) that will be constructed during the next eight months. It is emphasized that the design cannot be considered to be complete, and that design work will continue in parallel with construction and testing. A major advantage of the modular design is that small modules of the system can be developed, tested and modified before a commitment is made to full system development. The CD is expected to develop and evolve for a number of years after its initial construction. This first stage will, of necessity, be relatively simple and have limited capabilities. Later developments will improve all aspects of the functionality of the system, including sensing, processing, communications, intelligence and response. The report indicates the directions this later development will take.
A VLSI implementation of DCT using pass transistor technology
NASA Technical Reports Server (NTRS)
Kamath, S.; Lynn, Douglas; Whitaker, Sterling
1992-01-01
A VLSI design for performing the Discrete Cosine Transform (DCT) operation on image blocks of size 16 x 16 in a real time fashion operating at 34 MHz (worst case) is presented. The process used was Hewlett-Packard's CMOS26--A 3 metal CMOS process with a minimum feature size of 0.75 micron. The design is based on Multiply-Accumulate (MAC) cells which make use of a modified Booth recoding algorithm for performing multiplication. The design of these cells is straight forward, and the layouts are regular with no complex routing. Two versions of these MAC cells were designed and their layouts completed. Both versions were simulated using SPICE to estimate their performance. One version is slightly faster at the cost of larger silicon area and higher power consumption. An improvement in speed of almost 20 percent is achieved after several iterations of simulation and re-sizing.
Rational Design of a Green-Light-Mediated Unimolecular Platform for Fast Switchable Acidic Sensing.
Zhou, Yunyun; Zou, Qi; Qiu, Jing; Wang, Linjun; Zhu, Liangliang
2018-02-01
A controllable sensing ability strongly connects to complex and precise events in diagnosis and treatment. However, imposing visible light into the molecular-scale mediation of sensing processes is restricted by the lack of structural relevance. To address this critical challenge, we present the rational design, synthesis, and in vitro studies of a novel cyanostyryl-modified azulene system for green-light-mediated fast switchable acidic sensing. The advantageous features of the design include a highly efficient green-light-driven Z/E-isomerization (a quantum yield up to 61.3%) for fast erasing chromatic and luminescent expressions and a superior compatibility with control of ratiometric protonation. Significantly, these merits of the design enable the development of a microfluidic system to perform a green-light-mediated reusable sensing function toward a gastric acid analyte in a miniaturized platform. The results may provide new insights for building future integrated green materials.
Key Aspects of Nucleic Acid Library Design for in Vitro Selection
Vorobyeva, Maria A.; Davydova, Anna S.; Vorobjev, Pavel E.; Pyshnyi, Dmitrii V.; Venyaminova, Alya G.
2018-01-01
Nucleic acid aptamers capable of selectively recognizing their target molecules have nowadays been established as powerful and tunable tools for biospecific applications, be it therapeutics, drug delivery systems or biosensors. It is now generally acknowledged that in vitro selection enables one to generate aptamers to almost any target of interest. However, the success of selection and the affinity of the resulting aptamers depend to a large extent on the nature and design of an initial random nucleic acid library. In this review, we summarize and discuss the most important features of the design of nucleic acid libraries for in vitro selection such as the nature of the library (DNA, RNA or modified nucleotides), the length of a randomized region and the presence of fixed sequences. We also compare and contrast different randomization strategies and consider computer methods of library design and some other aspects. PMID:29401748
Yelk, Joseph; Sukharev, Maxim; Seideman, Tamar
2008-08-14
An optimal control approach based on multiple parameter genetic algorithms is applied to the design of plasmonic nanoconstructs with predetermined optical properties and functionalities. We first develop nanoscale metallic lenses that focus an incident plane wave onto a prespecified, spatially confined spot. Our results illustrate the mechanism of energy flow through wires and cavities. Next we design a periodic array of silver particles to modify the polarization of an incident, linearly polarized plane wave in a desired fashion while localizing the light in space. The results provide insight into the structural features that determine the birefringence properties of metal nanoparticles and their arrays. Of the variety of potential applications that may be envisioned, we note the design of nanoscale light sources with controllable coherence and polarization properties that could serve for coherent control of molecular, electronic, or electromechanical dynamics in the nanoscale.
Encell, Lance P; Friedman Ohana, Rachel; Zimmerman, Kris; Otto, Paul; Vidugiris, Gediminas; Wood, Monika G; Los, Georgyi V; McDougall, Mark G; Zimprich, Chad; Karassina, Natasha; Learish, Randall D; Hurst, Robin; Hartnett, James; Wheeler, Sarah; Stecha, Pete; English, Jami; Zhao, Kate; Mendez, Jacqui; Benink, Hélène A; Murphy, Nancy; Daniels, Danette L; Slater, Michael R; Urh, Marjeta; Darzins, Aldis; Klaubert, Dieter H; Bulleit, Robert F; Wood, Keith V
2012-01-01
Our fundamental understanding of proteins and their biological significance has been enhanced by genetic fusion tags, as they provide a convenient method for introducing unique properties to proteins so that they can be examinedin isolation. Commonly used tags satisfy many of the requirements for applications relating to the detection and isolation of proteins from complex samples. However, their utility at low concentration becomes compromised if the binding affinity for a detection or capture reagent is not adequate to produce a stable interaction. Here, we describe HaloTag® (HT7), a genetic fusion tag based on a modified haloalkane dehalogenase designed and engineered to overcome the limitation of affinity tags by forming a high affinity, covalent attachment to a binding ligand. HT7 and its ligand have additional desirable features. The tag is relatively small, monomeric, and structurally compatible with fusion partners, while the ligand is specific, chemically simple, and amenable to modular synthetic design. Taken together, the design features and molecular evolution of HT7 have resulted in a superior alternative to common tags for the overexpression, detection, and isolation of target proteins. PMID:23248739
Research Update: Programmable tandem repeat proteins inspired by squid ring teeth
NASA Astrophysics Data System (ADS)
Pena-Francesch, Abdon; Domeradzka, Natalia E.; Jung, Huihun; Barbu, Benjamin; Vural, Mert; Kikuchi, Yusuke; Allen, Benjamin D.; Demirel, Melik C.
2018-01-01
Cephalopods have evolved many interesting features that can serve as inspiration. Repetitive squid ring teeth (SRT) proteins from cephalopods exhibit properties such as strength, self-healing, and biocompatibility. These proteins have been engineered to design novel adhesives, self-healing textiles, and the assembly of 2d-layered materials. Compared to conventional polymers, repetitive proteins are easy to modify and can assemble in various morphologies and molecular architectures. This research update discusses the molecular biology and materials science of polypeptides inspired by SRT proteins, their properties, and perspectives for future applications.
Effect of Pressure in Thermoplastic Ribbon Thermal Welding
NASA Technical Reports Server (NTRS)
Hinkley, J. A.; Messier, B. C.; Marchello, J. M.
1996-01-01
An inexpensive apparatus was designed to simulate some features of on-the-fly thermal welding in heated-head tow placement. Previous studies have shown how ply/ply weld strength depends on weld time/temperature history. The apparatus has been modified recently to apply higher contact forces. Welding at pressures up to 1.7MPa (250psi) produced more consistent welds and fewer intra-ply voids, This has permitted a study of the conditions required for achieving the limiting ply/ply cohesive strength in simulated tow placement of a polyimide oligomer.
NASA Technical Reports Server (NTRS)
Ahmadian, M.; Inman, D. J.
1982-01-01
Systems described by the matrix differental equation are considered. An interactive design routine is presented for positive definite mass, damping, and stiffness matrices. Designing is accomplished by adjusting the mass, damping, and stiffness matrices to obtain a desired oscillation behavior. The algorithm also features interactively modifying the physical structure of the system, obtaining the matrix structure and a number of other system properties. In case of a general system, where the M, C, and K matrices lack any special properties, a routine for the eigenproblem solution of the system is developed. The latent roots are obtained by computing the characteristic polynomial of the system and solving for its roots. The above routines are prepared in FORTRAN IV and prove to be usable for the machines with low core memory.
An automated methodology development. [software design for combat simulation
NASA Technical Reports Server (NTRS)
Hawley, L. R.
1985-01-01
The design methodology employed in testing the applicability of Ada in large-scale combat simulations is described. Ada was considered as a substitute for FORTRAN to lower life cycle costs and ease the program development efforts. An object-oriented approach was taken, which featured definitions of military targets, the capability of manipulating their condition in real-time, and one-to-one correlation between the object states and real world states. The simulation design process was automated by the problem statement language (PSL)/problem statement analyzer (PSA). The PSL/PSA system accessed the problem data base directly to enhance the code efficiency by, e.g., eliminating non-used subroutines, and provided for automated report generation, besides allowing for functional and interface descriptions. The ways in which the methodology satisfied the responsiveness, reliability, transportability, modifiability, timeliness and efficiency goals are discussed.
Reeder, Blaine; Hills, Rebecca A.; Turner, Anne M.; Demiris, George
2014-01-01
Objectives The objectives of the study were to use persona-driven and scenario-based design methods to create a conceptual information system design to support public health nursing. Design and Sample We enrolled 19 participants from two local health departments to conduct an information needs assessment, create a conceptual design, and conduct a preliminary design validation. Measures Interviews and thematic analysis were used to characterize information needs and solicit design recommendations from participants. Personas were constructed from participant background information, and scenario-based design was used to create a conceptual information system design. Two focus groups were conducted as a first iteration validation of information needs, personas, and scenarios. Results Eighty-nine information needs were identified. Two personas and 89 scenarios were created. Public health nurses and nurse managers confirmed the accuracy of information needs, personas, scenarios, and the perceived usefulness of proposed features of the conceptual design. Design artifacts were modified based on focus group results. Conclusion Persona-driven design and scenario-based design are feasible methods to design for common work activities in different local health departments. Public health nurses and nurse managers should be engaged in the design of systems that support their work. PMID:24117760
Reeder, Blaine; Hills, Rebecca A; Turner, Anne M; Demiris, George
2014-01-01
The objectives of the study were to use persona-driven and scenario-based design methods to create a conceptual information system design to support public health nursing. We enrolled 19 participants from two local health departments to conduct an information needs assessment, create a conceptual design, and conduct a preliminary design validation. Interviews and thematic analysis were used to characterize information needs and solicit design recommendations from participants. Personas were constructed from participant background information, and scenario-based design was used to create a conceptual information system design. Two focus groups were conducted as a first iteration validation of information needs, personas, and scenarios. Eighty-nine information needs were identified. Two personas and 89 scenarios were created. Public health nurses and nurse managers confirmed the accuracy of information needs, personas, scenarios, and the perceived usefulness of proposed features of the conceptual design. Design artifacts were modified based on focus group results. Persona-driven design and scenario-based design are feasible methods to design for common work activities in different local health departments. Public health nurses and nurse managers should be engaged in the design of systems that support their work. © 2013 Wiley Periodicals, Inc.
Modification of the surfaces of medical devices to prevent microbial adhesion and biofilm formation.
Desrousseaux, C; Sautou, V; Descamps, S; Traoré, O
2013-10-01
The development of devices with surfaces that have an effect against microbial adhesion or viability is a promising approach to the prevention of device-related infections. To review the strategies used to design devices with surfaces able to limit microbial adhesion and/or growth. A PubMed search of the published literature. One strategy is to design medical devices with a biocidal agent. Biocides can be incorporated into the materials or coated or covalently bonded, resulting either in release of the biocide or in contact killing without release of the biocide. The use of biocides in medical devices is debated because of the risk of bacterial resistance and potential toxicity. Another strategy is to modify the chemical or physical surface properties of the materials to prevent microbial adhesion, a complex phenomenon that also depends directly on microbial biological structure and the environment. Anti-adhesive chemical surface modifications mostly target the hydrophobicity features of the materials. Topographical modifications are focused on roughness and nanostructures, whose size and spatial organization are controlled. The most effective physical parameters to reduce bacterial adhesion remain to be determined and could depend on shape and other bacterial characteristics. A prevention strategy based on reducing microbial attachment rather than on releasing a biocide is promising. Evidence of the clinical efficacy of these surface-modified devices is lacking. Additional studies are needed to determine which physical features have the greatest potential for reducing adhesion and to assess the usefulness of antimicrobial coatings other than antibiotics. Copyright © 2013 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.
Latex modified fibrous concrete : experimental feature : final report.
DOT National Transportation Integrated Search
1985-03-01
In November 1980, a contractor requested permission to use a 1.5 inch thick Latex Modified Fibrous Concrete (LMFC) overlay in lieu of a 2.5 inch low slump concrete (Iowa System) or a 2.5 inch unreinforced latex modified concrete. The overlays were to...
The status of ABWR-II development
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hiroyuki, Okada; Hideya Kitamura; Kumiaki, Moriya
This paper reports on the current development status of the ABWR-II project, a next generation reactor design based on the ABWR. In the early 90's, a program to develop the next generation reactor for the 21. century was launched, at a time when the first ABWR was still under construction. At the initial stage of this project, development of a 'user friendly' plant design was the primary objective. Thus, the main focus was placed on selecting a design with features promoting ease of operation and maintenance. Meanwhile, the circumstances surrounding the Japanese nuclear power industry changed. The delay of FBRmore » development and the deregulation of the power generation market have significantly boosted the role of light water reactors, and accelerated the need to improve LWR economics. For these reasons, economic competitiveness became an overriding objective in the development of the ABWR-II, with no less importance placed on achieving the highest standards of safety. Several new features were adopted to enhance economic performance: 1700 MW electric output, large fuel bundles, simplified MSIV, large capacity SRV. An output of 1700 MWe was selected for compatibility with the Japanese power grid, and with consideration of current reactor pressure vessel manufacturing capability. Large fuel bundles will contribute to a shortened refueling outage period and a reduction of CRDs. For enhanced safety, the reference design implements a modified ECCS with four subdivision RHR, a diversified power source incorporating gas turbine generators (GTG), an advanced RCIC (ARCIC) and passive heat removal systems consisting of a passive containment cooling system (PCCS) and a passive reactor cooling system (PRCS). The modified ECCS configuration also enables on-line maintenance. While current reactors rely on complex accident management (AM) procedures, implemented by operators in the event of a serious accident, the ABWR-II incorporated severe accident countermeasures at the design stage, to eliminate the need of operator induced AM procedures. The ABWR-II represents one of the most promising and reliable options for the future replacement of older units, without incurring excessive R and D costs. (authors)« less
Three-D CFD Analysis of Hydrostatic Bearings
NASA Technical Reports Server (NTRS)
Lin, Shyi-Jang; Hibbs, Robert I., Jr.
1993-01-01
The hydrostatic bearing promises life and speed characteristics currently unachievable with rolling element bearings alone. In order to achieve the speed and life requirements of the next generation of rocket engines, turbopump manufacturers are proposing hydrostatic bearings to be used in place of, or in series with, rolling element bearings. The design of a hydrostatic bearing is dependent on accurate pressure in the bearing. The stiffness and damping of the hydrostatic bearing is very sensitive to the bearing recess pressure ratio. In the conventional approach, usually ad hoc assumptions were made in determining the bearing pressure of this approach is inherently incorrect. In the present paper, a more elaborate approach to obtain bearing pressure is used. The bearing pressure and complete flow features of the bearing are directly computed by solving the complete 3-D Navier Stokes equation. The code used in the present calculation is a modified version of REACT3D code. Several calculations have been performed for the hydrostatic bearing designed and tested at Texas A&M. Good agreement has been obtained between computed and test results. Detailed flow features in the bearing will also be described and discussed.
MAPA: an interactive accelerator design code with GUI
NASA Astrophysics Data System (ADS)
Bruhwiler, David L.; Cary, John R.; Shasharina, Svetlana G.
1999-06-01
The MAPA code is an interactive accelerator modeling and design tool with an X/Motif GUI. MAPA has been developed in C++ and makes full use of object-oriented features. We present an overview of its features and describe how users can independently extend the capabilities of the entire application, including the GUI. For example, a user can define a new model for a focusing or accelerating element. If the appropriate form is followed, and the new element is "registered" with a single line in the specified file, then the GUI will fully support this user-defined element type after it has been compiled and then linked to the existing application. In particular, the GUI will bring up windows for modifying any relevant parameters of the new element type. At present, one can use the GUI for phase space tracking, finding fixed points and generating line plots for the Twiss parameters, the dispersion and the accelerator geometry. The user can define new types of simulations which the GUI will automatically support by providing a menu option to execute the simulation and subsequently rendering line plots of the resulting data.
Investigating a memory-based account of negative priming: support for selection-feature mismatch.
MacDonald, P A; Joordens, S
2000-08-01
Using typical and modified negative priming tasks, the selection-feature mismatch account of negative priming was tested. In the modified task, participants performed selections on the basis of a semantic feature (e.g., referent size). This procedure has been shown to enhance negative priming (P. A. MacDonald, S. Joordens, & K. N. Seergobin, 1999). Across 3 experiments, negative priming occurred only when the repeated item mismatched in terms of the feature used as the basis for selections. When the repeated item was congruent on the selection feature across the prime and probe displays, positive priming arose. This pattern of results appeared in both the ignored- and the attended-repetition conditions. Negative priming does not result from previously ignoring an item. These findings strongly support the selection-feature mismatch account of negative priming and refute both the distractor inhibition and the episodic-retrieval explanations.
Swedish materials science experiment equipment
NASA Astrophysics Data System (ADS)
Jonsson, R.
1982-09-01
Details of the apparatus and experimentation performed with the Swedish MURMEC (multi-purpose Rocket-borne Materials science Experiment Carrier) and other materials science equipment for sounding rocket and airborne trials are presented. The MURMEC science modules contain four isothermal furnaces, 12 pore formation experiment furnaces, and two gradient furnaces. The modules feature a power system, experimental control, and monitoring sensors. Design details and operational features of each of the furnaces are provided, and results of the first MURMEC flight on-board a Swedish sounding rocket with the PIRAT (Pointed IR Astronomical Telescope) are discussed. Additional tests were performed using a modified NASA F-104 aircraft flown in a parabolic trajectory to produce a 0.3-0.1 g environment for 50-60 sec. Films were made of melting and resolidification processes during nine different flights using three different samples.
Zhang, Xiong; Zhao, Yacong; Zhang, Yu; Zhong, Xuefei; Fan, Zhaowen
2018-01-01
The novel human-computer interface (HCI) using bioelectrical signals as input is a valuable tool to improve the lives of people with disabilities. In this paper, surface electromyography (sEMG) signals induced by four classes of wrist movements were acquired from four sites on the lower arm with our designed system. Forty-two features were extracted from the time, frequency and time-frequency domains. Optimal channels were determined from single-channel classification performance rank. The optimal-feature selection was according to a modified entropy criteria (EC) and Fisher discrimination (FD) criteria. The feature selection results were evaluated by four different classifiers, and compared with other conventional feature subsets. In online tests, the wearable system acquired real-time sEMG signals. The selected features and trained classifier model were used to control a telecar through four different paradigms in a designed environment with simple obstacles. Performance was evaluated based on travel time (TT) and recognition rate (RR). The results of hardware evaluation verified the feasibility of our acquisition systems, and ensured signal quality. Single-channel analysis results indicated that the channel located on the extensor carpi ulnaris (ECU) performed best with mean classification accuracy of 97.45% for all movement’s pairs. Channels placed on ECU and the extensor carpi radialis (ECR) were selected according to the accuracy rank. Experimental results showed that the proposed FD method was better than other feature selection methods and single-type features. The combination of FD and random forest (RF) performed best in offline analysis, with 96.77% multi-class RR. Online results illustrated that the state-machine paradigm with a 125 ms window had the highest maneuverability and was closest to real-life control. Subjects could accomplish online sessions by three sEMG-based paradigms, with average times of 46.02, 49.06 and 48.08 s, respectively. These experiments validate the feasibility of proposed real-time wearable HCI system and algorithms, providing a potential assistive device interface for persons with disabilities. PMID:29543737
Son, JoonGon; Kim, GeunHyung
2009-01-01
Various mechanical techniques have been used to fabricate biomedical scaffolds, including rapid prototyping (RP) devices that operate from CAD files of the target feature information. The three-dimensional (3-D) bio-plotter is one RP system that can produce design-based scaffolds with good mechanical properties for mimicking cartilage and bones. However, the scaffolds fabricated by RP have very smooth surfaces, which tend to discourage initial cell attachment. Initial cell attachment, migration, differentiation and proliferation are strongly dependent on the chemical and physical characteristics of the scaffold surface. In this study, we propose a new 3-D plotting method supplemented with a piezoelectric system for fabricating surface-modified scaffolds. The effects of the physically-modified surface on the mechanical and hydrophilic properties were investigated, and the results of cell culturing of chondrocytes indicate that this technique is a feasible new method for fabricating high-quality 3-D polymeric scaffolds.
Abnormal cardiac response to exercise in a murine model of familial hypertrophic cardiomyopathy.
Nguyen, Lan; Chung, Jessica; Lam, Lien; Tsoutsman, Tatiana; Semsarian, Christopher
2007-07-10
Clinical outcome in familial hypertrophic cardiomyopathy (FHC) may be influenced by modifying factors such as exercise. Transgenic mice which overexpress the human disease-causing cTnI gene mutation, Gly203Ser (designated cTnI-G203S), develop all the characteristic phenotypic features of FHC. To study the modifying effect of exercise in early disease, mice underwent swimming exercise at an early age prior to the development of the FHC phenotype. In non-transgenic and cTnI-wt mice, swimming resulted in a significant increase in left ventricular wall thickness and contractility on echocardiography, consistent with a physiological hypertrophic response to exercise. In contrast, cTnI-G203S mice showed no increase in these parameters, indicating an abnormal response to exercise. The lack of a physiological response to exercise may indicate an important novel mechanistic insight into the role of exercise in triggering adverse events in FHC.
Retarding field energy analyzer for the Saskatchewan Torus-Modified plasma boundary
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dreval, M.; Rohraff, D.; Xiao, C.
2009-10-15
The retarding field energy analyzer (RFA) is a simple and reliable diagnostic technique to measure the ion temperature in the scrape-off layer and edge of magnetic fusion devices. Design and operation features of a single-sided (facing the ion flow) RFA for ion temperature measurements in the Saskatchewan Torus-Modified (STOR-M) tokamak are described. Its compact size (21x15x20 mm{sup 3}) allows RFA measurements without perturbing plasma significantly. Both ion and electron temperature have been measured by RFA in the STOR-M tokamak. A method is proposed to correct the effects of ion flow on the ion temperature using the simultaneously measured Mach number.more » The measured electron temperature is consistent with the previously reported Langmuir probe data. Abnormal behavior of the RFA has been observed in both ion and electron modes when RFA is inserted deep into the plasma.« less
Content Analysis of Mobile Health Applications on Diabetes Mellitus.
Izahar, Syarafina; Lean, Qi Ying; Hameed, Mohammed Abdul; Murugiah, Muthu Kumar; Patel, Rahul P; Al-Worafi, Yaser Mohammed; Wong, Tin Wui; Ming, Long Chiau
2017-01-01
Diabetes self-management offers an opportunity to patients to be actively involved in managing their conditions and modifying lifestyle behaviors to attain positive health outcomes. With the unprecedented growth of mobile technology, smartphone plays a role in supporting diabetes self-management. Nonetheless, selecting appropriate mobile applications (apps) is challenging for patients. Thus, this study aimed to evaluate and compare the contents and features of mobile medical apps for diabetes self-management. Of 346 commercial apps, 16 (16%) and 19 (7.72%) of the diabetes apps found in Apple and Google Play stores, respectively, were included based on the selection criteria and individually scored for the availability of 8 main features of diabetes self-management. The apps supported self-management by offering features such as free installation, less than 50 MB space used, offline use, automated data entry, data export and sharing, educational tool, and advice. Of the 8 evaluated features, only 11 (31.4%) apps had a score of 5 whereas 7 (20%) apps scored the lowest, with a score of 3. The majority of apps were free, required no Internet connectivity to use and were less than 50 MB in size. Our findings showed that the design of diabetes mobile apps focused on reporting and setting reminders, rather than providing personalized education or therapeutic support. In the future, the design of apps could be improved to integrate patients' needs, usability for disease management, and lifestyle modifications.
Content Analysis of Mobile Health Applications on Diabetes Mellitus
Izahar, Syarafina; Lean, Qi Ying; Hameed, Mohammed Abdul; Murugiah, Muthu Kumar; Patel, Rahul P.; Al-Worafi, Yaser Mohammed; Wong, Tin Wui; Ming, Long Chiau
2017-01-01
Diabetes self-management offers an opportunity to patients to be actively involved in managing their conditions and modifying lifestyle behaviors to attain positive health outcomes. With the unprecedented growth of mobile technology, smartphone plays a role in supporting diabetes self-management. Nonetheless, selecting appropriate mobile applications (apps) is challenging for patients. Thus, this study aimed to evaluate and compare the contents and features of mobile medical apps for diabetes self-management. Of 346 commercial apps, 16 (16%) and 19 (7.72%) of the diabetes apps found in Apple and Google Play stores, respectively, were included based on the selection criteria and individually scored for the availability of 8 main features of diabetes self-management. The apps supported self-management by offering features such as free installation, less than 50 MB space used, offline use, automated data entry, data export and sharing, educational tool, and advice. Of the 8 evaluated features, only 11 (31.4%) apps had a score of 5 whereas 7 (20%) apps scored the lowest, with a score of 3. The majority of apps were free, required no Internet connectivity to use and were less than 50 MB in size. Our findings showed that the design of diabetes mobile apps focused on reporting and setting reminders, rather than providing personalized education or therapeutic support. In the future, the design of apps could be improved to integrate patients’ needs, usability for disease management, and lifestyle modifications. PMID:29230195
Cheng, Xuemin; Hao, Qun; Xie, Mengdi
2016-04-07
Video stabilization is an important technology for removing undesired motion in videos. This paper presents a comprehensive motion estimation method for electronic image stabilization techniques, integrating the speeded up robust features (SURF) algorithm, modified random sample consensus (RANSAC), and the Kalman filter, and also taking camera scaling and conventional camera translation and rotation into full consideration. Using SURF in sub-pixel space, feature points were located and then matched. The false matched points were removed by modified RANSAC. Global motion was estimated by using the feature points and modified cascading parameters, which reduced the accumulated errors in a series of frames and improved the peak signal to noise ratio (PSNR) by 8.2 dB. A specific Kalman filter model was established by considering the movement and scaling of scenes. Finally, video stabilization was achieved with filtered motion parameters using the modified adjacent frame compensation. The experimental results proved that the target images were stabilized even when the vibrating amplitudes of the video become increasingly large.
Sequential infiltration synthesis for advanced lithography
Darling, Seth B.; Elam, Jeffrey W.; Tseng, Yu-Chih; Peng, Qing
2015-03-17
A plasma etch resist material modified by an inorganic protective component via sequential infiltration synthesis (SIS) and methods of preparing the modified resist material. The modified resist material is characterized by an improved resistance to a plasma etching or related process relative to the unmodified resist material, thereby allowing formation of patterned features into a substrate material, which may be high-aspect ratio features. The SIS process forms the protective component within the bulk resist material through a plurality of alternating exposures to gas phase precursors which infiltrate the resist material. The plasma etch resist material may be initially patterned using photolithography, electron-beam lithography or a block copolymer self-assembly process.
Nutrition in primary health care: using a Delphi process to design new interdisciplinary services.
Brauer, Paula; Dietrich, Linda; Davidson, Bridget
2006-01-01
A modified Delphi process was used to identify key features of interdisciplinary nutrition services, including provider roles and responsibilities for Ontario Family Health Networks (FHNs), a family physician-based type of primary care. Twenty-three representatives from interested professional organizations, including three FHN demonstration sites, completed a modified Delphi process. Participants reviewed evidence from a systematic literature review, a patient survey, a costing analysis, and key informant interview results before undertaking the Delphi process. Statements describing various options for services were developed at an in-person meeting, which was followed by two rounds of e-mail questionnaires. Teleconference discussions were held between rounds. An interdisciplinary model with differing and complementary roles for health care providers emerged from the process. Additional key features addressing screening for nutrition problems, health promotion and disease prevention, team collaboration, planning and evaluation, administrative support, access to care, and medical directives/delegated acts were identified. Under the proposed model, the registered dietitian is the team member responsible for managing all aspects of nutrition services, from needs assessment to program delivery, as well as for supporting all providers' nutrition services. The proposed interdisciplinary nutrition services model merits evaluation of cost, effectiveness, applicability, and sustainability in team-based primary care service settings.
Brahmachari, Sayanti; Paul, Ashim; Segal, Daniel; Gazit, Ehud
2017-05-01
Protein misfolding and aggregation have been associated with several human disorders, including Alzheimer's, Parkinson's and Huntington's diseases, as well as senile systemic amyloidosis and Type II diabetes. However, there is no current disease-modifying therapy available for the treatment of these disorders. In spite of extensive academic, pharmaceutical, medicinal and clinical research, a complete mechanistic model for this family of diseases is still lacking. In this review, we primarily discuss the different types of small molecular entities which have been used for the inhibition of the aggregation process of different amyloidogenic proteins under diseased conditions. These include small peptides, polyphenols, inositols, quinones and their derivatives, and metal chelator molecules. In recent years, these groups of molecules have been extensively studied using in vitro, in vivo and computational models to understand their mechanism of action and common structural features underlying the process of inhibition. A salient feature found to be instrumental in the process of inhibition is the balance between the aromatic unit that functions as the amyloid recognition unit and the hydrophilic amyloid breaker unit. The establishment of structure-function relationship for amyloid-modifying therapies by the various functional entities should serve as an important step toward the development of efficient therapeutics.
Automated Structural Optimization System (ASTROS). Volume 2. User’s Manual
1988-04-07
preparation and on the use of advanced features that permit the user to modify the standard execution of ASTROS. f^Q^S*. ) I I J...software in considera- ble detail to direct the procedure to perform these alternative functions. The mechanisms by which these more advanced features are...grossly modify the existing capabilities of the system. These more advanced topics are treated in the Programmer’s and Application Manuals which
NASA Astrophysics Data System (ADS)
Price, D. C.; Greenhill, L. J.; Fialkov, A.; Bernardi, G.; Garsden, H.; Barsdell, B. R.; Kocz, J.; Anderson, M. M.; Bourke, S. A.; Craig, J.; Dexter, M. R.; Dowell, J.; Eastwood, M. W.; Eftekhari, T.; Ellingson, S. W.; Hallinan, G.; Hartman, J. M.; Kimberk, R.; Lazio, T. Joseph W.; Leiker, S.; MacMahon, D.; Monroe, R.; Schinzel, F.; Taylor, G. B.; Tong, E.; Werthimer, D.; Woody, D. P.
2018-05-01
The Large-Aperture Experiment to Detect the Dark Age (LEDA) was designed to detect the predicted O(100) mK sky-averaged absorption of the Cosmic Microwave Background by Hydrogen in the neutral pre- and intergalactic medium just after the cosmological Dark Age. The spectral signature would be associated with emergence of a diffuse Lyα background from starlight during `Cosmic Dawn'. Recently, Bowman et al. (2018) have reported detection of this predicted absorption feature, with an unexpectedly large amplitude of 530 mK, centered at 78 MHz. Verification of this result by an independent experiment, such as LEDA, is pressing. In this paper, we detail design and characterization of the LEDA radiometer systems, and a first-generation pipeline that instantiates a signal path model. Sited at the Owens Valley Radio Observatory Long Wavelength Array, LEDA systems include the station correlator, five well-separated redundant dual polarization radiometers and backend electronics. The radiometers deliver a 30-85 MHz band (16 < z < 34) and operate as part of the larger interferometric array, for purposes ultimately of in situ calibration. Here, we report on the LEDA system design, calibration approach, and progress in characterization as of January 2016. The LEDA systems are currently being modified to improve performance near 78 MHz in order to verify the purported absorption feature.
Simulating Colour Vision Deficiency from a Spectral Image.
Shrestha, Raju
2016-01-01
People with colour vision deficiency (CVD) have difficulty seeing full colour contrast and can miss some of the features in a scene. As a part of universal design, researcher have been working on how to modify and enhance the colour of images in order to make them see the scene with good contrast. For this, it is important to know how the original colour image is seen by different individuals with CVD. This paper proposes a methodology to simulate accurate colour deficient images from a spectral image using cone sensitivity of different cases of deficiency. As the method enables generation of accurate colour deficient image, the methodology is believed to help better understand the limitations of colour vision deficiency and that in turn leads to the design and development of more effective imaging technologies for better and wider accessibility in the context of universal design.
The new color of money: safer, smarter, more secure
NASA Astrophysics Data System (ADS)
DiNunzio, Lisa A.; Clarke, Lenore
2004-06-01
Approximately 60% of U.S. currency notes circulate abroad. As the most widely used currency in the world, U.S. notes are the most likely to be counterfeited. Since 1996, the United States has been issuing currency with new security features. These features make U.S. currency easier to recognize as genuine and more secure against advancing computer technology that could be used for counterfeiting. Currency counterfeiters are increasingly turning to digital methods, as advances in technology make digital counterfeiting of currency easier and cheaper. In 1995, for example, less than one percent of counterfeit notes detected in the U.S. were digitally produced. By 2002, that number had grown to nearly 40 percent, according to the Secret Service. Yet despite the efforts of counterfeiters, U.S. currency counterfeiting has been kept at low levels. According to current estimates, between 0.01 and 0.02 percent of notes in circulation are counterfeit, or about 1-2 notes in every 10,000 genuine notes. The strategy for maintaining the security of Federal Reserve notes is to enhance the design of U.S. currency every seven to ten years. One objective of introducing the new currency is to emphasize the number of features available to the public for authenticating bills. The most-talked-about aspect of the redesigned currency is the subtle introduction of background colors to the bills. While color itself is not a security feature, the use of color provides the opportunity to add features that could assist in deterring counterfeiting. Color will also help people to better distinguish their notes. Security features for the newly designed currency include a security thread, a watermark, and a more distinct color-shifting ink. The new 20 note was issued in fall 2003, with the 50 and 100 notes scheduled to follow 12 to 18 months later. Plans to redesign the 10 and 5 are still under consideration, but there are no plans to redesign the 2 and 1 notes. As was the case with the redesigned 20 note issued in 1998, the new design will co-circulate with the current design. As notes return to the Federal Reserve from depository institutions, the Federal Reserve will only destroy the unfit notes introduced since 1998. Designs older than the Series 1996 are destroyed when returned to the Federal Reserve regardless of condition. To ensure a smooth introduction of the new currency, a five-year international public education effort was launched in 2002 to inform the public and target audiences, including financial institutions, law enforcement, and the vending industry of the transition to the new design. The public is the first line of defense against counterfeiting. So, it's important the public has the tools to recognize the new and modified security features in the redesigned notes.
Modifiers: Increasing Richness and Nuance of Design Pattern Languages
NASA Astrophysics Data System (ADS)
Kolfschoten, Gwendolyn L.; Briggs, Robert O.; Lukosch, Stephan
One of the challenges when establishing and maintaining a pattern language is to balance richness with simplicity. On the one hand, designers need a variety of useful design patterns to increase the speed of their design efforts and to reduce design risk. On the other hand, the greater the variety of design patterns in a language, the higher the cognitive load to remember and select among them. One solution to this problem is the concept of a modifier design pattern, a design pattern for pattern languages. A modifier pattern is a named, documented variation that can be applied to some set of other design patterns. They create similar, useful changes and refinements to the solutions derived from any pattern to which they are applied. The modifier concept, described in this paper emerged in a relatively new design pattern language for collaborative work practices in which the design patterns are called thinkLets. When analyzing the thinkLet pattern language, we found that many of the patterns we knew were variations and refinements of other patterns. However, we also found patterns in these variations; we found variations that could be applied to different patterns, with similar effects. We document these variations as modifiers. In this paper, we introduce the concept of modifier design patterns and illustrate the use of modifiers with two case studies.
Electronic cigarettes: product characterisation and design considerations.
Brown, Christopher J; Cheng, James M
2014-05-01
To review the available evidence regarding electronic cigarette (e-cigarette) product characterisation and design features in order to understand their potential impact on individual users and on public health. Systematic literature searches in 10 reference databases were conducted through October 2013. A total of 14 articles and documents and 16 patents were included in this analysis. Numerous disposable and reusable e-cigarette product options exist, representing wide variation in product configuration and component functionality. Common e-cigarette components include an aerosol generator, a flow sensor, a battery and a nicotine-containing solution storage area. e-cigarettes currently include many interchangeable parts, enabling users to modify the character of the delivered aerosol and, therefore, the product's 'effectiveness' as a nicotine delivery product. Materials in e-cigarettes may include metals, rubber and ceramics. Some materials may be aerosolised and have adverse health effects. Several studies have described significant performance variability across and within e-cigarette brands. Patent applications include novel product features designed to influence aerosol properties and e-cigarette efficiency at delivering nicotine. Although e-cigarettes share a basic design, engineering variations and user modifications result in differences in nicotine delivery and potential product risks. e-cigarette aerosols may include harmful and potentially harmful constituents. Battery explosions and the risks of exposure to the e-liquid (especially for children) are also concerns. Additional research will enhance the current understanding of basic e-cigarette design and operation, aerosol production and processing, and functionality. A standardised e-cigarette testing regime should be developed to allow product comparisons.
Embedded feature ranking for ensemble MLP classifiers.
Windeatt, Terry; Duangsoithong, Rakkrit; Smith, Raymond
2011-06-01
A feature ranking scheme for multilayer perceptron (MLP) ensembles is proposed, along with a stopping criterion based upon the out-of-bootstrap estimate. To solve multi-class problems feature ranking is combined with modified error-correcting output coding. Experimental results on benchmark data demonstrate the versatility of the MLP base classifier in removing irrelevant features.
A programmable nonlinear acoustic metamaterial
NASA Astrophysics Data System (ADS)
Yang, Tianzhi; Song, Zhi-Guang; Clerkin, Eoin; Zhang, Ye-Wei; Sun, Jia-He; Su, Yi-Shu; Chen, Li-Qun; Hagedorn, Peter
2017-09-01
Acoustic metamaterials with specifically designed lattices can manipulate acoustic/elastic waves in unprecedented ways. Whereas there are many studies that focus on passive linear lattice, with non-reconfigurable structures. In this letter, we present the design, theory and experimental demonstration of an active nonlinear acoustic metamaterial, the dynamic properties of which can be modified instantaneously with reversibility. By incorporating active and nonlinear elements in a single unit cell, a real-time tunability and switchability of the band gap is achieved. In addition, we demonstrate a dynamic "editing" capability for shaping transmission spectra, which can be used to create the desired band gap and resonance. This feature is impossible to achieve in passive metamaterials. These advantages demonstrate the versatility of the proposed device, paving the way toward smart acoustic devices, such as logic elements, diode and transistor.
The preliminary design of a lift-cruise fan airplane flight control system
NASA Technical Reports Server (NTRS)
Gotlieb, P.
1977-01-01
This paper presents the preliminary design of a stability augmentation system for a NASA V/STOL research and technology airplane. This stability augmentation system is postulated as the simplest system that meets handling-quality levels for research and technology missions flown by NASA test pilots. The airplane studied in this report is a modified T-39 fitted with tilting lift/cruise fan nacelles and a nose fan. The propulsion system features a shaft that interconnects three variable-pitch fans and three powerplants. The mathematical modeling is based on pre-wind tunnel test estimated data. The selected stability augmentation system uses variable gains scheduled with airspeed. Failure analysis of the system illustrates the benign effect of engine failure. Airplane rate sensor failure must be solved with redundancy.
Improved silencing properties using small internally segmented interfering RNAs
Bramsen, Jesper B.; Laursen, Maria B.; Damgaard, Christian K.; Lena, Suzy W.; Ravindra Babu, B.; Wengel, Jesper; Kjems, Jørgen
2007-01-01
RNA interference is mediated by small interfering RNAs (siRNAs) that upon incorporation into the RNA-induced silencing complex (RISC) can target complementary mRNA for degradation. Standard siRNA design usually feature a 19–27 base pair contiguous double-stranded region that is believed to be important for RISC incorporation. Here, we describe a novel siRNA design composed of an intact antisense strand complemented with two shorter 10–12 nt sense strands. This three-stranded construct, termed small internally segmented interfering RNA (sisiRNA), is highly functional demonstrating that an intact sense strand is not a prerequisite for RNA interference. Moreover, when using the sisiRNA design only the antisense strand is functional in activated RISC thereby completely eliminating unintended mRNA targeting by the sense strand. Interestingly, the sisiRNA design supports the function of chemically modified antisense strands, which are non-functional within the context of standard siRNA designs. This suggests that the sisiRNA design has a clear potential of improving the pharmacokinetic properties of siRNA in vivo. PMID:17726057
Digital robust active control law synthesis for large order systems using constrained optimization
NASA Technical Reports Server (NTRS)
Mukhopadhyay, Vivek
1987-01-01
This paper presents a direct digital control law synthesis procedure for a large order, sampled data, linear feedback system using constrained optimization techniques to meet multiple design requirements. A linear quadratic Gaussian type cost function is minimized while satisfying a set of constraints on the design loads and responses. General expressions for gradients of the cost function and constraints, with respect to the digital control law design variables are derived analytically and computed by solving a set of discrete Liapunov equations. The designer can choose the structure of the control law and the design variables, hence a stable classical control law as well as an estimator-based full or reduced order control law can be used as an initial starting point. Selected design responses can be treated as constraints instead of lumping them into the cost function. This feature can be used to modify a control law, to meet individual root mean square response limitations as well as minimum single value restrictions. Low order, robust digital control laws were synthesized for gust load alleviation of a flexible remotely piloted drone aircraft.
Design Protocols and Analytical Strategies that Incorporate Structural Reliability Models
NASA Technical Reports Server (NTRS)
Duffy, Stephen F.
1995-01-01
The general goal of this project is to establish design protocols that enable the engineer to analyze and predict certain types of behavior in ceramic composites. Sections of the final report addresses the following: Description of the Problem that Motivated the Technology Development, Description of the New Technology that was Developed, Unique and Novel Features of the Technology and Results/Benefits of Application (year by year accomplishments), and Utilization of New Technology in Non-Aerospace Applications. Activities for this reporting period included the development of a design analysis as part of a cooperative agreement with general Electric Aircraft Engines. The effort focused on modifying the Toughened Ceramics Analysis and Reliability Evaluation of Structures (TCARES) algorithm for use in the design of engine components fabricated from NiAl. Other activities related to the development of an ASTM standard practice for estimating Weibull parameters. The standard focuses on the evaluation and reporting of uniaxial strength data, and the estimation of probability distribution parameters for ceramics which fail in a brittle fashion.
Variations in algorithm implementation among quantitative texture analysis software packages
NASA Astrophysics Data System (ADS)
Foy, Joseph J.; Mitta, Prerana; Nowosatka, Lauren R.; Mendel, Kayla R.; Li, Hui; Giger, Maryellen L.; Al-Hallaq, Hania; Armato, Samuel G.
2018-02-01
Open-source texture analysis software allows for the advancement of radiomics research. Variations in texture features, however, result from discrepancies in algorithm implementation. Anatomically matched regions of interest (ROIs) that captured normal breast parenchyma were placed in the magnetic resonance images (MRI) of 20 patients at two time points. Six first-order features and six gray-level co-occurrence matrix (GLCM) features were calculated for each ROI using four texture analysis packages. Features were extracted using package-specific default GLCM parameters and using GLCM parameters modified to yield the greatest consistency among packages. Relative change in the value of each feature between time points was calculated for each ROI. Distributions of relative feature value differences were compared across packages. Absolute agreement among feature values was quantified by the intra-class correlation coefficient. Among first-order features, significant differences were found for max, range, and mean, and only kurtosis showed poor agreement. All six second-order features showed significant differences using package-specific default GLCM parameters, and five second-order features showed poor agreement; with modified GLCM parameters, no significant differences among second-order features were found, and all second-order features showed poor agreement. While relative texture change discrepancies existed across packages, these differences were not significant when consistent parameters were used.
Tan, Bingyao; Wong, Alexander; Bizheva, Kostadinka
2018-01-01
A novel image processing algorithm based on a modified Bayesian residual transform (MBRT) was developed for the enhancement of morphological and vascular features in optical coherence tomography (OCT) and OCT angiography (OCTA) images. The MBRT algorithm decomposes the original OCT image into multiple residual images, where each image presents information at a unique scale. Scale selective residual adaptation is used subsequently to enhance morphological features of interest, such as blood vessels and tissue layers, and to suppress irrelevant image features such as noise and motion artefacts. The performance of the proposed MBRT algorithm was tested on a series of cross-sectional and enface OCT and OCTA images of retina and brain tissue that were acquired in-vivo. Results show that the MBRT reduces speckle noise and motion-related imaging artefacts locally, thus improving significantly the contrast and visibility of morphological features in the OCT and OCTA images. PMID:29760996
A feature refinement approach for statistical interior CT reconstruction
NASA Astrophysics Data System (ADS)
Hu, Zhanli; Zhang, Yunwan; Liu, Jianbo; Ma, Jianhua; Zheng, Hairong; Liang, Dong
2016-07-01
Interior tomography is clinically desired to reduce the radiation dose rendered to patients. In this work, a new statistical interior tomography approach for computed tomography is proposed. The developed design focuses on taking into account the statistical nature of local projection data and recovering fine structures which are lost in the conventional total-variation (TV)—minimization reconstruction. The proposed method falls within the compressed sensing framework of TV minimization, which only assumes that the interior ROI is piecewise constant or polynomial and does not need any additional prior knowledge. To integrate the statistical distribution property of projection data, the objective function is built under the criteria of penalized weighed least-square (PWLS-TV). In the implementation of the proposed method, the interior projection extrapolation based FBP reconstruction is first used as the initial guess to mitigate truncation artifacts and also provide an extended field-of-view. Moreover, an interior feature refinement step, as an important processing operation is performed after each iteration of PWLS-TV to recover the desired structure information which is lost during the TV minimization. Here, a feature descriptor is specifically designed and employed to distinguish structure from noise and noise-like artifacts. A modified steepest descent algorithm is adopted to minimize the associated objective function. The proposed method is applied to both digital phantom and in vivo Micro-CT datasets, and compared to FBP, ART-TV and PWLS-TV. The reconstruction results demonstrate that the proposed method performs better than other conventional methods in suppressing noise, reducing truncated and streak artifacts, and preserving features. The proposed approach demonstrates its potential usefulness for feature preservation of interior tomography under truncated projection measurements.
A feature refinement approach for statistical interior CT reconstruction.
Hu, Zhanli; Zhang, Yunwan; Liu, Jianbo; Ma, Jianhua; Zheng, Hairong; Liang, Dong
2016-07-21
Interior tomography is clinically desired to reduce the radiation dose rendered to patients. In this work, a new statistical interior tomography approach for computed tomography is proposed. The developed design focuses on taking into account the statistical nature of local projection data and recovering fine structures which are lost in the conventional total-variation (TV)-minimization reconstruction. The proposed method falls within the compressed sensing framework of TV minimization, which only assumes that the interior ROI is piecewise constant or polynomial and does not need any additional prior knowledge. To integrate the statistical distribution property of projection data, the objective function is built under the criteria of penalized weighed least-square (PWLS-TV). In the implementation of the proposed method, the interior projection extrapolation based FBP reconstruction is first used as the initial guess to mitigate truncation artifacts and also provide an extended field-of-view. Moreover, an interior feature refinement step, as an important processing operation is performed after each iteration of PWLS-TV to recover the desired structure information which is lost during the TV minimization. Here, a feature descriptor is specifically designed and employed to distinguish structure from noise and noise-like artifacts. A modified steepest descent algorithm is adopted to minimize the associated objective function. The proposed method is applied to both digital phantom and in vivo Micro-CT datasets, and compared to FBP, ART-TV and PWLS-TV. The reconstruction results demonstrate that the proposed method performs better than other conventional methods in suppressing noise, reducing truncated and streak artifacts, and preserving features. The proposed approach demonstrates its potential usefulness for feature preservation of interior tomography under truncated projection measurements.
Planning Future Clinical Trials for Machado-Joseph Disease.
Saute, Jonas Alex Morales; Jardim, Laura Bannach
2018-01-01
Spinocerebellar ataxia type 3/Machado-Joseph disease (SCA3/MJD) is an autosomal dominant multiple neurological systems degenerative disorder caused by a CAG repeat expansion at ATXN3 gene. Only a few treatments were evaluated in randomized clinical trials (RCT) in SCA3/MJD patients, with a lack of evidence for both disease-modifying and symptomatic therapies. The present chapter discuss in detail major methodological issues for planning future RCT for SCA3/MJD. There are several potential therapies for SCA3/MJD with encouraging preclinical results. Route of treatment, dosage titration and potential therapy biomarkers might differ among candidate drugs; however, the core study design and protocol will be mostly the same. RCT against placebo group is the best study design to test a disease-modifying therapy; the same cannot be stated for some symptomatic treatments. Main outcomes for future RCT are clinical scales: the Scale for the Assessment and Rating of ataxia (SARA) is currently the instrument of choice to prove efficacy of disease-modifying or symptomatic treatments against ataxia, the most important disease feature. Ataxia quantitative scales or its composite scores can be used as primary outcomes to provide preliminary evidence of efficacy in phase 2 RCT, due to a greater sensitivity to change. Details regarding eligibility criteria, randomization, sample size estimation, duration and type of analysis for both disease modifying and symptomatic treatment trials, were also discussed. Finally, a section anticipates the methodological issues for testing novel drugs when an effective treatment is already available. We conclude emphasizing four points, the first being the need of RCT for a number of different aims in the care of SCA3/MJD. Due to large sample sizes needed to warrant power, RCT for disease-modifying therapies should be multicenter enterprises. There is an urge need for surrogate markers validated for several drug classes. Finally, engagement of at risk or presymptomatic individuals in future trials will enable major advances on treatment research for SCA3/MJD.
Li, Shaobo; Liu, Guokai; Tang, Xianghong; Lu, Jianguang; Hu, Jianjun
2017-07-28
Intelligent machine health monitoring and fault diagnosis are becoming increasingly important for modern manufacturing industries. Current fault diagnosis approaches mostly depend on expert-designed features for building prediction models. In this paper, we proposed IDSCNN, a novel bearing fault diagnosis algorithm based on ensemble deep convolutional neural networks and an improved Dempster-Shafer theory based evidence fusion. The convolutional neural networks take the root mean square (RMS) maps from the FFT (Fast Fourier Transformation) features of the vibration signals from two sensors as inputs. The improved D-S evidence theory is implemented via distance matrix from evidences and modified Gini Index. Extensive evaluations of the IDSCNN on the Case Western Reserve Dataset showed that our IDSCNN algorithm can achieve better fault diagnosis performance than existing machine learning methods by fusing complementary or conflicting evidences from different models and sensors and adapting to different load conditions.
Li, Shaobo; Liu, Guokai; Tang, Xianghong; Lu, Jianguang
2017-01-01
Intelligent machine health monitoring and fault diagnosis are becoming increasingly important for modern manufacturing industries. Current fault diagnosis approaches mostly depend on expert-designed features for building prediction models. In this paper, we proposed IDSCNN, a novel bearing fault diagnosis algorithm based on ensemble deep convolutional neural networks and an improved Dempster–Shafer theory based evidence fusion. The convolutional neural networks take the root mean square (RMS) maps from the FFT (Fast Fourier Transformation) features of the vibration signals from two sensors as inputs. The improved D-S evidence theory is implemented via distance matrix from evidences and modified Gini Index. Extensive evaluations of the IDSCNN on the Case Western Reserve Dataset showed that our IDSCNN algorithm can achieve better fault diagnosis performance than existing machine learning methods by fusing complementary or conflicting evidences from different models and sensors and adapting to different load conditions. PMID:28788099
Supramolecular assembly/reassembly processes: molecular motors and dynamers operating at surfaces.
Ciesielski, Artur; Samorì, Paolo
2011-04-01
Among the many significant advances within the field of supramolecular chemistry over the past decades, the development of the so-called "dynamers" features a direct relevance to materials science. Defined as "combinatorial dynamic polymers", dynamers are constitutional dynamic systems and materials resulting from the application of the principles of supramolecular chemistry to polymer science. Like supramolecular materials in general, dynamers are reversible dynamic multifunctional architectures, capable of modifying their constitution by exchanging, recombining, incorporating components. They may exhibit a variety of novel properties and behave as adaptive materials. In this review we focus on the design of responsive switchable monolayers, i.e. monolayers capable to undergo significant changes in their physical or chemical properties as a result of external stimuli. Scanning tunneling microscopy studies provide direct evidence with a sub-nanometre resolution, on the formation and dynamic response of these self-assembled systems featuring controlled geometries and properties.
Suzuki, M; Nakamura, Y; Ozaki, S; Yokota, M; Murakami, S
2017-08-01
Although organised haematoma often induces bone thinning and destruction similar to malignant diseases, the aetiology of organised haematoma and the optimal treatment remain unclear. This paper presents the clinical features of individuals with organised haematoma, and describes cases in which a novel modified approach was successfully applied for resection of organised haematoma in the maxillary sinus. Pre-operative examination data were evaluated retrospectively. Modified transnasal endoscopic medial maxillectomy was employed. Fourteen patients with organised haematoma were treated. Contrast-enhanced computed tomography showed heterogeneous enhancement in all patients. Eight patients underwent modified transnasal endoscopic medial maxillectomy, without complications such as facial numbness, tooth numbness, facial tingling, lacrimation and eye discharge. Dissection of the apertura piriformis and anterior maxillary wall was not necessary for any of these eight patients. No recurrence was observed. Pre-operative examinations can be helpful in determining the likelihood of organised haematoma. Modified transnasal endoscopic medial maxillectomy appears to be a safe and effective method for organised haematoma resection.
Sequential infiltration synthesis for advanced lithography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Darling, Seth B.; Elam, Jeffrey W.; Tseng, Yu-Chih
A plasma etch resist material modified by an inorganic protective component via sequential infiltration synthesis (SIS) and methods of preparing the modified resist material. The modified resist material is characterized by an improved resistance to a plasma etching or related process relative to the unmodified resist material, thereby allowing formation of patterned features into a substrate material, which may be high-aspect ratio features. The SIS process forms the protective component within the bulk resist material through a plurality of alternating exposures to gas phase precursors which infiltrate the resist material. The plasma etch resist material may be initially patterned usingmore » photolithography, electron-beam lithography or a block copolymer self-assembly process.« less
Constraints on modified gravity models from white dwarfs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Banerjee, Srimanta; Singh, Tejinder P.; Shankar, Swapnil, E-mail: srimanta.banerjee@tifr.res.in, E-mail: swapnil.shankar@cbs.ac.in, E-mail: tpsingh@tifr.res.in
Modified gravity theories can introduce modifications to the Poisson equation in the Newtonian limit. As a result, we expect to see interesting features of these modifications inside stellar objects. White dwarf stars are one of the most well studied stars in stellar astrophysics. We explore the effect of modified gravity theories inside white dwarfs. We derive the modified stellar structure equations and solve them to study the mass-radius relationships for various modified gravity theories. We also constrain the parameter space of these theories from observations.
Effectiveness evaluation of a modified right-turn lane design at intersections.
DOT National Transportation Integrated Search
2016-06-01
From 2006 to 2014, ten rightturn approaches in the Peoria, Illinois, area were selected and reconstructed with a modified rightturn lane design. The major purpose of the modified design was to improve the line of sight for passenger vehicles at...
Electromagnetic Smart Valves for Cryogenic Applications
NASA Astrophysics Data System (ADS)
Traum, M. J.; Smith, J. L.; Brisson, J. G.; Gerstmann, J.; Hannon, C. L.
2004-06-01
Electromagnetic valves with smart control capability have been developed and demonstrated for use in the cold end of a Collins-style cryocooler. The toroidal geometry of the valves was developed utilizing a finite-element code and optimized for maximum opening force with minimum input current. Electromagnetic smart valves carry two primary benefits in cryogenic applications: 1) magnetic actuation eliminates the need for mechanical linkages and 2) valve timing can be modified during system cool down and in regular operation for cycle optimization. The smart feature of these electromagnetic valves resides in controlling the flow of current into the magnetic coil. Electronics have been designed to shape the valve actuation current, limiting the residence time of magnetic energy in the winding. This feature allows control of flow through the expander via an electrical signal while dissipating less than 0.0071 J/cycle as heat into the cold end. The electromagnetic smart valves have demonstrated reliable, controllable dynamic cycling. After 40 hours of operation, they suffered no perceptible mechanical degradation. These features enable the development of a miniaturized Collins-style cryocooler capable of removing 1 Watt of heat at 10 K.
Speech enhancement based on modified phase-opponency detectors
NASA Astrophysics Data System (ADS)
Deshmukh, Om D.; Espy-Wilson, Carol Y.
2005-09-01
A speech enhancement algorithm based on a neural model was presented by Deshmukh et al., [149th meeting of the Acoustical Society America, 2005]. The algorithm consists of a bank of Modified Phase Opponency (MPO) filter pairs tuned to different center frequencies. This algorithm is able to enhance salient spectral features in speech signals even at low signal-to-noise ratios. However, the algorithm introduces musical noise and sometimes misses a spectral peak that is close in frequency to a stronger spectral peak. Refinement in the design of the MPO filters was recently made that takes advantage of the falling spectrum of the speech signal in sonorant regions. The modified set of filters leads to better separation of the noise and speech signals, and more accurate enhancement of spectral peaks. The improvements also lead to a significant reduction in musical noise. Continuity algorithms based on the properties of speech signals are used to further reduce the musical noise effect. The efficiency of the proposed method in enhancing the speech signal when the level of the background noise is fluctuating will be demonstrated. The performance of the improved speech enhancement method will be compared with various spectral subtraction-based methods. [Work supported by NSF BCS0236707.
Flight Simulation of ARES in the Mars Environment
NASA Technical Reports Server (NTRS)
Kenney, P. Sean; Croom, Mark A.
2011-01-01
A report discusses using the Aerial Regional- scale Environmental Survey (ARES) light airplane as an observation platform on Mars in order to gather data. It would have to survive insertion into the atmosphere, fly long enough to meet science objectives, and provide a stable platform. The feasibility of such a platform was tested using the Langley Standard Real- Time Simulation in C++. The unique features of LaSRS++ are: full, six-degrees- of-freedom flight simulation that can be used to evaluate the performance of the aircraft in the Martian environment; capability of flight analysis from start to finish; support of Monte Carlo analysis of aircraft performance; and accepting initial conditions from POST results for the entry and deployment of the entry body. Starting with a general aviation model, the design was tweaked to maintain a stable aircraft under expected Martian conditions. Outer mold lines were adjusted based on experience with the Martian atmosphere. Flight control was modified from a vertical acceleration control law to an angle-of-attack control law. Navigation was modified from a vertical acceleration control system to an alpha control system. In general, a pattern of starting with simple models with well-understood behaviors was selected and modified during testing.
Xie, Yang; Ying, Jinyong; Xie, Dexuan
2017-03-30
SMPBS (Size Modified Poisson-Boltzmann Solvers) is a web server for computing biomolecular electrostatics using finite element solvers of the size modified Poisson-Boltzmann equation (SMPBE). SMPBE not only reflects ionic size effects but also includes the classic Poisson-Boltzmann equation (PBE) as a special case. Thus, its web server is expected to have a broader range of applications than a PBE web server. SMPBS is designed with a dynamic, mobile-friendly user interface, and features easily accessible help text, asynchronous data submission, and an interactive, hardware-accelerated molecular visualization viewer based on the 3Dmol.js library. In particular, the viewer allows computed electrostatics to be directly mapped onto an irregular triangular mesh of a molecular surface. Due to this functionality and the fast SMPBE finite element solvers, the web server is very efficient in the calculation and visualization of electrostatics. In addition, SMPBE is reconstructed using a new objective electrostatic free energy, clearly showing that the electrostatics and ionic concentrations predicted by SMPBE are optimal in the sense of minimizing the objective electrostatic free energy. SMPBS is available at the URL: smpbs.math.uwm.edu © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
77 FR 2543 - Upromise, Inc.; Analysis of Proposed Consent Order to Aid Public Comment
Federal Register 2010, 2011, 2012, 2013, 2014
2012-01-18
... involves the advertising, marketing, and operation of an optional feature of that Toolbar, the ``personalized offers'' feature. That feature modified the Toolbar to provide targeted advertising to the... available, low-cost measures to assess and address the risks to consumer information; (3) failed to ensure...
Secured Hash Based Burst Header Authentication Design for Optical Burst Switched Networks
NASA Astrophysics Data System (ADS)
Balamurugan, A. M.; Sivasubramanian, A.; Parvathavarthini, B.
2017-12-01
The optical burst switching (OBS) is a promising technology that could meet the fast growing network demand. They are featured with the ability to meet the bandwidth requirement of applications that demand intensive bandwidth. OBS proves to be a satisfactory technology to tackle the huge bandwidth constraints, but suffers from security vulnerabilities. The objective of this proposed work is to design a faster and efficient burst header authentication algorithm for core nodes. There are two important key features in this work, viz., header encryption and authentication. Since the burst header is an important in optical burst switched network, it has to be encrypted; otherwise it is be prone to attack. The proposed MD5&RC4-4S based burst header authentication algorithm runs 20.75 ns faster than the conventional algorithms. The modification suggested in the proposed RC4-4S algorithm gives a better security and solves the correlation problems between the publicly known outputs during key generation phase. The modified MD5 recommended in this work provides 7.81 % better avalanche effect than the conventional algorithm. The device utilization result also shows the suitability of the proposed algorithm for header authentication in real time applications.
NASA Astrophysics Data System (ADS)
Selva Bhuvaneswari, K.; Geetha, P.
2017-05-01
Magnetic resonance imaging segmentation refers to a process of assigning labels to set of pixels or multiple regions. It plays a major role in the field of biomedical applications as it is widely used by the radiologists to segment the medical images input into meaningful regions. In recent years, various brain tumour detection techniques are presented in the literature. The entire segmentation process of our proposed work comprises three phases: threshold generation with dynamic modified region growing phase, texture feature generation phase and region merging phase. by dynamically changing two thresholds in the modified region growing approach, the first phase of the given input image can be performed as dynamic modified region growing process, in which the optimisation algorithm, firefly algorithm help to optimise the two thresholds in modified region growing. After obtaining the region growth segmented image using modified region growing, the edges can be detected with edge detection algorithm. In the second phase, the texture feature can be extracted using entropy-based operation from the input image. In region merging phase, the results obtained from the texture feature-generation phase are combined with the results of dynamic modified region growing phase and similar regions are merged using a distance comparison between regions. After identifying the abnormal tissues, the classification can be done by hybrid kernel-based SVM (Support Vector Machine). The performance analysis of the proposed method will be carried by K-cross fold validation method. The proposed method will be implemented in MATLAB with various images.
Hsieh, Chi-Hsuan; Chiu, Yu-Fang; Shen, Yi-Hsiang; Chu, Ta-Shun; Huang, Yuan-Hao
2016-02-01
This paper presents an ultra-wideband (UWB) impulse-radio radar signal processing platform used to analyze human respiratory features. Conventional radar systems used in human detection only analyze human respiration rates or the response of a target. However, additional respiratory signal information is available that has not been explored using radar detection. The authors previously proposed a modified raised cosine waveform (MRCW) respiration model and an iterative correlation search algorithm that could acquire additional respiratory features such as the inspiration and expiration speeds, respiration intensity, and respiration holding ratio. To realize real-time respiratory feature extraction by using the proposed UWB signal processing platform, this paper proposes a new four-segment linear waveform (FSLW) respiration model. This model offers a superior fit to the measured respiration signal compared with the MRCW model and decreases the computational complexity of feature extraction. In addition, an early-terminated iterative correlation search algorithm is presented, substantially decreasing the computational complexity and yielding negligible performance degradation. These extracted features can be considered the compressed signals used to decrease the amount of data storage required for use in long-term medical monitoring systems and can also be used in clinical diagnosis. The proposed respiratory feature extraction algorithm was designed and implemented using the proposed UWB radar signal processing platform including a radar front-end chip and an FPGA chip. The proposed radar system can detect human respiration rates at 0.1 to 1 Hz and facilitates the real-time analysis of the respiratory features of each respiration period.
NASA Technical Reports Server (NTRS)
Cotariu, Steven S.
1991-01-01
Pattern recognition may supplement or replace certain navigational aids on spacecraft in docking or landing activities. The need to correctly identify terrain features remains critical in preparation of autonomous planetary landing. One technique that may solve this problem is optical correlation. Correlation has been successfully demonstrated under ideal conditions; however, noise significantly affects the ability of the correlator to accurately identify input signals. Optical correlation in the presence of noise must be successfully demonstrated before this technology can be incorporated into system design. An optical correlator is designed and constructed using a modified 2f configuration. Liquid crystal televisions (LCTV) are used as the spatial light modulators (SLM) for both the input and filter devices. The filter LCTV is characterized and an operating curve is developed. Determination of this operating curve is critical for reduction of input noise. Correlation of live input with a programmable filter is demonstrated.
NASA Astrophysics Data System (ADS)
Cotariu, Steven S.
1991-12-01
Pattern recognition may supplement or replace certain navigational aids on spacecraft in docking or landing activities. The need to correctly identify terrain features remains critical in preparation of autonomous planetary landing. One technique that may solve this problem is optical correlation. Correlation has been successfully demonstrated under ideal conditions; however, noise significantly affects the ability of the correlator to accurately identify input signals. Optical correlation in the presence of noise must be successfully demonstrated before this technology can be incorporated into system design. An optical correlator is designed and constructed using a modified 2f configuration. Liquid crystal televisions (LCTV) are used as the spatial light modulators (SLM) for both the input and filter devices. The filter LCTV is characterized and an operating curve is developed. Determination of this operating curve is critical for reduction of input noise. Correlation of live input with a programmable filter is demonstrated.
Microfluidic vascular channels in gels using commercial 3D printers
NASA Astrophysics Data System (ADS)
Selvaganapathy, P. Ravi; Attalla, Rana
2016-03-01
This paper details the development of a three dimensional (3D) printing system with a modified microfluidic printhead used for the generation of complex vascular tissue scaffolds. The print-head features an integrated coaxial nozzle that allows the fabrication of hollow, calcium-polymerized alginate tubes that can easily be patterned using 3Dbioprinting techniques. This microfluidic design allows the incorporation of a wide range of scaffold materials as well as biological constituents such as cells, growth factors, and ECM material. With this setup, gel constructs with embedded arrays of hollow channels can be created and used as a potential substitute for blood vessel networks.
Fuzzy control of burnout of multilayer ceramic actuators
NASA Astrophysics Data System (ADS)
Ling, Alice V.; Voss, David; Christodoulou, Leo
1996-08-01
To improve the yield and repeatability of the burnout process of multilayer ceramic actuators (MCAs), an intelligent processing of materials (IPM-based) control system has been developed for the manufacture of MCAs. IPM involves the active (ultimately adaptive) control of a material process using empirical or analytical models and in situ sensing of critical process states (part features and process parameters) to modify the processing conditions in real time to achieve predefined product goals. Thus, the three enabling technologies for the IPM burnout control system are process modeling, in situ sensing and intelligent control. This paper presents the design of an IPM-based control strategy for the burnout process of MCAs.
Research flight-control system development for the F-18 high alpha research vehicle
NASA Technical Reports Server (NTRS)
Pahle, Joseph W.; Powers, Bruce; Regenie, Victoria; Chacon, Vince; Degroote, Steve; Murnyak, Steven
1991-01-01
The F-18 high alpha research vehicle was recently modified by adding a thrust vectoring control system. A key element in the modification was the development of a research flight control system integrated with the basic F-18 flight control system. Discussed here are design requirements, system development, and research utility of the resulting configuration as an embedded system for flight research in the high angle of attack regime. Particular emphasis is given to control system modifications and control law features required for high angle of attack flight. Simulation results are used to illustrate some of the thrust vectoring control system capabilities and predicted maneuvering improvements.
Hendricks, Alison Eisel; Adlof, Suzanne M
2017-07-26
We compared outcomes from 2 measures of language ability in children who displayed a range of dialect variation: 1 using features that do not contrast between mainstream American English (MAE) and nonmainstream dialects (NMAE), and 1 using contrastive features. We investigated how modified scoring procedures affected the diagnostic accuracy of the measure with contrastive features. Second-grade students (N = 299; 167 White, 106 African American, 26 other) completed measures of language variation and ability (the Diagnostic Evaluation of Language Variation-Screening Test and the Clinical Evaluation of Language Fundamentals-Fourth Edition [CELF-4]). The CELF-4 was scored with and without the recommended scoring modifications for children who spoke African American English. Partial correlations controlling for socioeconomic status revealed small to moderate correlations between measures of language ability and the use of NMAE features. Modified scoring yielded higher scores for children who spoke African American English and a reduced association between the use of NMAE features and CELF-4 scores. Modified scoring also affected the diagnostic accuracy of the CELF-4, resulting in a lower positive likelihood ratio and a higher negative likelihood ratio. The decision to apply scoring modifications affects both the false positive and false negative rates. Implications for language assessment for children who speak NMAE dialects are discussed, including the need for further investigation.
Development of highly porous crystalline titania photocatalysts
NASA Astrophysics Data System (ADS)
Marszewski, Michal
The objectives of this dissertation are the design, synthesis, and characterization of titania materials with surface area, porosity, crystallinity and doping tailored toward photocatalytic applications. Ultimately, the research should result in a strategy allowing the synthesis of titania with all these important features. The synthetic methods investigated in this research will include: i) soft-templating, ii) hard-templating, and iii) modified precursor strategy. Soft-templating strategy uses organic templates--either block copolymers or surfactants--that under specific conditions assemble into micelles, and later, these micelles are used to template the desired material around them. The resulting organic-inorganic composite is then calcined in air to remove the organic template and recover the final material with high surface area and large pore volume. This work explores 1) synthesis of titania materials in the presence of polymer templates, and the effects of different synthetic conditions on the structure of the resulting materials. Hard-templating, in contrast to soft-templating, uses inorganic templates. The hard template is introduced during the synthesis to cast its shape onto the fabricated material and removed afterwards, when the material has formed. The final material is an inverse replica of the hard template used, typically with a well-developed mesostructure. This work explores 1) hard templating synthesis of titania materials using silica and alumina, and 2) the effects of the template amount and type. The modified precursor strategy is a novel synthetic method, developed in this research, and designed specifically to achieve titania material with high surface area, large pore volume, high crystallinity, and possibly doping. The modified precursors are prepared by reacting generic titania precursors, such as titanium isopropoxide (TIPO), with organic acids, which results in substitution of some or all alkoxide groups in TIPO structure. The goal is to introduce new, easily carbonizable groups in TIPO structure so that the modified precursor can serve as titania and carbon precursor simultaneously. Subsequently, during carbonization in inert atmosphere, a carbon framework is formed that works as a scaffold, protecting titania during its crystallization. Afterwards, the carbon scaffold is removed by calcination in air. This work explores the modified precursor strategy by 1) preparing titania materials from TIPO modified with different carboxylic acids and 2) investigating the effect of the modifying acid on the properties of the carbon-titania composites and the final titania materials.
Advanced Gas Turbine (AGT) technology development
NASA Technical Reports Server (NTRS)
1983-01-01
A 74.5 kW (100 hp) automotive gas turbine was evaluated. The engine structure, bearings, oil system, and electronics were demonstrated and no shaft dynamics or other vibration problem were encountered. Areas identified during the five tests are the scroll retention features, and transient thermal deflection of turbine backplates. Modifications were designed. Seroll retention is addressed by modifying the seal arrangement in front of the gasifier turbine assembly, which will increase the pressure load on the scroll in the forward direction and thereby increase the retention forces. the backplate thermal deflection is addressed by geometric changes and thermal insulation to reduce heat input. Combustor rig proof testing of two ceramic combustor assemblies was completed. The combustor was modified to incorporate slots and reduce sharp edges, which should reduce thermal stresses. The development work focused on techniques to sinter these barrier materials onto the ceramic rotors with successes for both material systems. Silicon carbide structural parts, including engine configuration gasifier rotors (ECRs), preliminary gasifier scroll parts, and gasifier and power turbine vanes are fabricated.
Antiplasmodial activity of new 4-aminoquinoline derivatives against chloroquine resistant strain.
Sinha, Manish; Dola, Vasanth R; Agarwal, Pooja; Srivastava, Kumkum; Haq, Wahajul; Puri, Sunil K; Katti, Seturam B
2014-07-15
Emergence and spread of multidrug resistant strains of Plasmodium falciparum has severely limited the antimalarial chemotherapeutic options. In order to overcome the obstacle, a set of new side-chain modified 4-aminoquinolines were synthesized and screened against chloroquine-sensitive (3D7) and chloroquine-resistant (K1) strains of P. falciparum. The key feature of the designed molecules is the use of methylpiperazine linked α, β(3)- and γ-amino acids to generate novel side chain modified 4-aminoquinoline analogues. Among the evaluated compounds, 20c and 30 were found more potent than CQ against K1 and displayed a four-fold and a three-fold higher activity respectively, with a good selectivity index (SI=5846 and 11,350). All synthesized compounds had resistance index between 1.06 and >14.13 as against 47.2 for chloroquine. Biophysical studies suggested that this series of compounds act on heme polymerization target. Copyright © 2014 Elsevier Ltd. All rights reserved.
Dosta, Pere; Segovia, Nathaly; Cascante, Anna; Ramos, Victor; Borrós, Salvador
2015-07-01
Here we present an extended family of pBAEs that incorporate terminal oligopeptide moieties synthesized from both positive and negative amino acids. Polymer formulations of mixtures of negative and positive oligopeptide-modified pBAEs are capable of condensing siRNA into discrete nanoparticles. We have demonstrated that efficient delivery of nucleic acids in a cell-type dependent manner can be achieved by careful control of the pBAE formulation. In addition, our approach of adding differently charged oligopeptides to the termini of poly(β-amino ester)s is of great interest for the design of tailored complexes having specific features, such as tuneable zeta potential. We anticipate that this surface charge tunability may be a powerful strategy to control unwanted electrostatic interactions, while preserving high silencing efficiency and reduced toxicity. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Modeling of substrate and inhibitor binding to phospholipase A2.
Sessions, R B; Dauber-Osguthorpe, P; Campbell, M M; Osguthorpe, D J
1992-09-01
Molecular graphics and molecular mechanics techniques have been used to study the mode of ligand binding and mechanism of action of the enzyme phospholipase A2. A substrate-enzyme complex was constructed based on the crystal structure of the apoenzyme. The complex was minimized to relieve initial strain, and the structural and energetic features of the resultant complex analyzed in detail, at the molecular and residue level. The minimized complex was then used as a basis for examining the action of the enzyme on modified substrates, binding of inhibitors to the enzyme, and possible reaction intermediate complexes. The model is compatible with the suggested mechanism of hydrolysis and with experimental data about stereoselectivity, efficiency of hydrolysis of modified substrates, and inhibitor potency. In conclusion, the model can be used as a tool in evaluating new ligands as possible substrates and in the rational design of inhibitors, for the therapeutic treatment of diseases such as rheumatoid arthritis, atherosclerosis, and asthma.
Response of Phlebotomus papatasi to visual, physical and chemical attraction features in the field.
USDA-ARS?s Scientific Manuscript database
In this study, 27 CDC traps were modified with various attractive features and compared with a CDC trap with no light source or baits to evaluate the effects on attraction to Phlebotomus papatasi (Scopoli). Attractive features included CO2, lights, colored trap bodies, heat, moisture, chemical lures...
Validation test of advanced technology for IPV nickel-hydrogen flight cells - Update
NASA Technical Reports Server (NTRS)
Smithrick, John J.; Hall, Stephen W.
1992-01-01
Individual pressure vessel (IPV) nickel-hydrogen technology was advanced at NASA Lewis and under Lewis contracts with the intention of improving cycle life and performance. One advancement was to use 26 percent potassium hydroxide (KOH) electrolyte to improve cycle life. Another advancement was to modify the state-of-the-art cell design to eliminate identified failure modes. The modified design is referred to as the advanced design. A breakthrough in the LEO cycle life of IPV nickel-hydrogen cells has been previously reported. The cycle life of boiler plate cells containing 26 percent KOH electrolyte was about 40,000 LEO cycles compared to 3,500 cycles for cells containing 31 percent KOH. The boiler plate test results are in the process of being validated using flight hardware and real time LEO testing. The primary function of the advanced cell is to store and deliver energy for long-term, LEO spacecraft missions. The new features of this design are: (1) use of 26 percent rather than 31 percent KOH electrolyte; (2) use of a patented catalyzed wall wick; (3) use of serrated-edge separators to facilitate gaseous oxygen and hydrogen flow within the cell, while still maintaining physical contact with the wall wick for electrolyte management; and (4) use of a floating rather than a fixed stack (state-of-the-art) to accommodate nickel electrode expansion due to charge/discharge cycling. The significant improvements resulting from these innovations are: extended cycle life; enhanced thermal, electrolyte, and oxygen management; and accommodation of nickel electrode expansion.
Mieszawska, Aneta J; Gianella, Anita; Cormode, David P; Zhao, Yiming; Meijerink, Andries; Langer, Robert; Farokhzad, Omid C; Fayad, Zahi A; Mulder, Willem J M
2012-06-14
Polylactic-co-glycolic acid (PLGA) based nanoparticles are biocompatible and biodegradable and therefore have been extensively investigated as therapeutic carriers. Here, we engineered diagnostically active PLGA nanoparticles that incorporate high payloads of nanocrystals into their core for tunable bioimaging features. We accomplished this through esterification reactions of PLGA to generate polymers modified with nanocrystals. The PLGA nanoparticles formed from modified PLGA polymers that were functionalized with either gold nanocrystals or quantum dots exhibited favorable features for computed tomography and optical imaging, respectively.
46 CFR 52.01-95 - Design (modifies PG-16 through PG-31 and PG-100).
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 2 2013-10-01 2013-10-01 false Design (modifies PG-16 through PG-31 and PG-100). 52.01-95 Section 52.01-95 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING POWER BOILERS General Requirements § 52.01-95 Design (modifies PG-16 through PG-31 and PG-100). (a) Requirements. Boilers required to be designe...
46 CFR 52.01-95 - Design (modifies PG-16 through PG-31 and PG-100).
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 2 2014-10-01 2014-10-01 false Design (modifies PG-16 through PG-31 and PG-100). 52.01-95 Section 52.01-95 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING POWER BOILERS General Requirements § 52.01-95 Design (modifies PG-16 through PG-31 and PG-100). (a) Requirements. Boilers required to be designe...
Georgiadis, Pantelis; Cavouras, Dionisis; Kalatzis, Ioannis; Glotsos, Dimitris; Athanasiadis, Emmanouil; Kostopoulos, Spiros; Sifaki, Koralia; Malamas, Menelaos; Nikiforidis, George; Solomou, Ekaterini
2009-01-01
Three-dimensional (3D) texture analysis of volumetric brain magnetic resonance (MR) images has been identified as an important indicator for discriminating among different brain pathologies. The purpose of this study was to evaluate the efficiency of 3D textural features using a pattern recognition system in the task of discriminating benign, malignant and metastatic brain tissues on T1 postcontrast MR imaging (MRI) series. The dataset consisted of 67 brain MRI series obtained from patients with verified and untreated intracranial tumors. The pattern recognition system was designed as an ensemble classification scheme employing a support vector machine classifier, specially modified in order to integrate the least squares features transformation logic in its kernel function. The latter, in conjunction with using 3D textural features, enabled boosting up the performance of the system in discriminating metastatic, malignant and benign brain tumors with 77.14%, 89.19% and 93.33% accuracy, respectively. The method was evaluated using an external cross-validation process; thus, results might be considered indicative of the generalization performance of the system to "unseen" cases. The proposed system might be used as an assisting tool for brain tumor characterization on volumetric MRI series.
Research on sparse feature matching of improved RANSAC algorithm
NASA Astrophysics Data System (ADS)
Kong, Xiangsi; Zhao, Xian
2018-04-01
In this paper, a sparse feature matching method based on modified RANSAC algorithm is proposed to improve the precision and speed. Firstly, the feature points of the images are extracted using the SIFT algorithm. Then, the image pair is matched roughly by generating SIFT feature descriptor. At last, the precision of image matching is optimized by the modified RANSAC algorithm,. The RANSAC algorithm is improved from three aspects: instead of the homography matrix, this paper uses the fundamental matrix generated by the 8 point algorithm as the model; the sample is selected by a random block selecting method, which ensures the uniform distribution and the accuracy; adds sequential probability ratio test(SPRT) on the basis of standard RANSAC, which cut down the overall running time of the algorithm. The experimental results show that this method can not only get higher matching accuracy, but also greatly reduce the computation and improve the matching speed.
Satlin, Andrew; Wang, Jinping; Logovinsky, Veronika; Berry, Scott; Swanson, Chad; Dhadda, Shobha; Berry, Donald A
2016-01-01
Recent failures in phase 3 clinical trials in Alzheimer's disease (AD) suggest that novel approaches to drug development are urgently needed. Phase 3 risk can be mitigated by ensuring that clinical efficacy is established before initiating confirmatory trials, but traditional phase 2 trials in AD can be lengthy and costly. We designed a Bayesian adaptive phase 2, proof-of-concept trial with a clinical endpoint to evaluate BAN2401, a monoclonal antibody targeting amyloid protofibrils. The study design used dose response and longitudinal modeling. Simulations were used to refine study design features to achieve optimal operating characteristics. The study design includes five active treatment arms plus placebo, a clinical outcome, 12-month primary endpoint, and a maximum sample size of 800. The average overall probability of success is ≥80% when at least one dose shows a treatment effect that would be considered clinically meaningful. Using frequent interim analyses, the randomization ratios are adapted based on the clinical endpoint, and the trial can be stopped for success or futility before full enrollment. Bayesian statistics can enhance the efficiency of analyzing the study data. The adaptive randomization generates more data on doses that appear to be more efficacious, which can improve dose selection for phase 3. The interim analyses permit stopping as soon as a predefined signal is detected, which can accelerate decision making. Both features can reduce the size and duration of the trial. This study design can mitigate some of the risks associated with advancing to phase 3 in the absence of data demonstrating clinical efficacy. Limitations to the approach are discussed.
NASA Astrophysics Data System (ADS)
Sun, Yun-Hsiang; Sun, Yuming; Wu, Christine Qiong; Sepehri, Nariman
2018-04-01
Parameters of friction model identified for a specific control system development are not constants. They vary over time and have a significant effect on the control system stability. Although much research has been devoted to the stability analysis under parametric uncertainty, less attention has been paid to incorporating a realistic friction model into their analysis. After reviewing the common friction models for controller design, a modified LuGre friction model is selected to carry out the stability analysis in this study. Two parameters of the LuGre model, namely σ0 and σ1, are critical to the demonstration of dynamic friction features, yet the identification of which is difficult to carry out, resulting in a high level of uncertainties in their values. Aiming at uncovering the effect of the σ0 and σ1 variations on the control system stability, a servomechanism with modified LuGre friction model is investigated. Two set-point position controllers are synthesised based on the servomechanism model to form two case studies. Through Lyapunov exponents, it is clear that the variation of σ0 and σ1 has an obvious effect on the stabiltiy of the studied systems and should not be overlooked in the design phase.
Designing polymers with sugar-based advantages for bioactive delivery applications.
Zhang, Yingyue; Chan, Jennifer W; Moretti, Alysha; Uhrich, Kathryn E
2015-12-10
Sugar-based polymers have been extensively explored as a means to increase drug delivery systems' biocompatibility and biodegradation. Here,we review he use of sugar-based polymers for drug delivery applications, with a particular focus on the utility of the sugar component(s) to provide benefits for drug targeting and stimuli responsive systems. Specifically, numerous synthetic methods have been developed to reliably modify naturally-occurring polysaccharides, conjugate sugar moieties to synthetic polymer scaffolds to generate glycopolymers, and utilize sugars as a multifunctional building block to develop sugar-linked polymers. The design of sugar-based polymer systems has tremendous implications on both the physiological and biological properties imparted by the saccharide units and are unique from synthetic polymers. These features include the ability of glycopolymers to preferentially target various cell types and tissues through receptor interactions, exhibit bioadhesion for prolonged residence time, and be rapidly recognized and internalized by cancer cells. Also discussed are the distinct stimuli-sensitive properties of saccharide-modified polymers to mediate drug release under desired conditions. Saccharide-based systems with inherent pH- and temperature-sensitive properties, as well as enzyme-cleavable polysaccharides for targeted bioactive delivery, are covered. Overall, this work emphasizes inherent benefits of sugar-containing polymer systems for bioactive delivery.
Elwassif, Maged M.; Datta, Abhishek; Rahman, Asif; Bikson, Marom
2012-01-01
There is a growing interest in the use of Deep Brain Stimulation for the treatment of medically refractory movement disorders and other neurological and psychiatric conditions. The extent of temperature increases around DBS electrodes during normal operation (joule heating and increased metabolic activity) or coupling with an external source (e.g. MRI) remains poorly understood and methods to mitigate temperature increases are being actively investigated. We developed a heat transfer finite element method simulation of DBS incorporating the realistic architecture of Medtronic 3389 leads. The temperature changes were analyzed considering different electrode configurations, stimulation protocols, and tissue properties. The heat-transfer model results were then validated using micro-thermocouple measurements during DBS lead stimulation in a saline bath. FEM results indicate that lead design (materials and geometry) may have a central role in controlling temperature rise by conducting heat. We show how modifying lead design can effectively control temperature increases. The robustness of this heat-sink approach over complimentary heat-mitigation technologies follows from several features: 1) it is insensitive to the mechanisms of heating (e.g. nature of magnetic coupling); 2) does not interfere with device efficacy; and 3) can be practically implemented in a broad range of implanted devices without modifying the normal device operations or the implant procedure. PMID:22764359
Environmental analysis Waste Isolation Pilot Plant (WIPP) cost reduction proposals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
The Waste Isolation Pilot Plant (WIPP) is a research and development facility to demonstrate the safe disposal of radioactive wastes resulting from the defense activities and programs of the United States government. The facility is planned to be developed in bedded salt at the Los Medanos site in southeastern New Mexico. The environmental consequences of contruction and operation of the WIPP facility are documented in ''Final Environmental Impact Statement, Waste Isolation Pilot Plant''. The proposed action addressed by this environmental analysis is to simplify and reduce the scope of the WIPP facility as it is currently designed. The proposed changesmore » to the existing WIPP design are: limit the waste storage rate to 500,000 cubic feet per year; eliminate one shaft and revise the underground ventilation system; eliminate the underground conveyor system; combine the Administration Building, the Underground Personnel Building and the Waste Handling Building office area; simplify the central monitoring system; simplify the security control systems; modify the Waste Handling Building; simplify the storage exhaust system; modify the above ground salt handling logistics; simplify the power system; reduce overall site features; simplify the Warehouse/Shops Building and eliminate the Vehicle Maintenance Building; and allow resource recovery in Control Zone IV.« less
NASA Astrophysics Data System (ADS)
Berdalovic, I.; Bates, R.; Buttar, C.; Cardella, R.; Egidos Plaja, N.; Hemperek, T.; Hiti, B.; van Hoorne, J. W.; Kugathasan, T.; Mandic, I.; Maneuski, D.; Marin Tobon, C. A.; Moustakas, K.; Musa, L.; Pernegger, H.; Riedler, P.; Riegel, C.; Schaefer, D.; Schioppa, E. J.; Sharma, A.; Snoeys, W.; Solans Sanchez, C.; Wang, T.; Wermes, N.
2018-01-01
The upgrade of the ATLAS tracking detector (ITk) for the High-Luminosity Large Hadron Collider at CERN requires the development of novel radiation hard silicon sensor technologies. Latest developments in CMOS sensor processing offer the possibility of combining high-resistivity substrates with on-chip high-voltage biasing to achieve a large depleted active sensor volume. We have characterised depleted monolithic active pixel sensors (DMAPS), which were produced in a novel modified imaging process implemented in the TowerJazz 180 nm CMOS process in the framework of the monolithic sensor development for the ALICE experiment. Sensors fabricated in this modified process feature full depletion of the sensitive layer, a sensor capacitance of only a few fF and radiation tolerance up to 1015 neq/cm2. This paper summarises the measurements of charge collection properties in beam tests and in the laboratory using radioactive sources and edge TCT. The results of these measurements show significantly improved radiation hardness obtained for sensors manufactured using the modified process. This has opened the way to the design of two large scale demonstrators for the ATLAS ITk. To achieve a design compatible with the requirements of the outer pixel layers of the tracker, a charge sensitive front-end taking 500 nA from a 1.8 V supply is combined with a fast digital readout architecture. The low-power front-end with a 25 ns time resolution exploits the low sensor capacitance to reduce noise and analogue power, while the implemented readout architectures minimise power by reducing the digital activity.
37 CFR 1.822 - Symbols and format to be used for nucleotide and/or amino acid sequence data.
Code of Federal Regulations, 2014 CFR
2014-07-01
... base or modified or unusual amino acid may be presented in a given sequence as the corresponding unmodified base or amino acid if the modified base or modified or unusual amino acid is one of those listed... the Feature section. Otherwise, each occurrence of a base or amino acid not appearing in WIPO Standard...
Bjune, Caroline K; Marinis, Thomas F; Brady, Jeanne M; Moran, James; Wheeler, Jesse; Sriram, Tirunelveli S; Parks, Philip D; Widge, Alik S; Dougherty, Darin D; Eskandar, Emad N
2015-08-01
An implanted neural stimulator with closed loop control requires electrodes for stimulation pulses and recording neuron activity. Our system features arrays of 64 electrodes. Each electrode can be addressed through a cross bar switch, to enable it to be used for stimulation or recording. This electrode switch, a bank of low noise amplifiers with an integrated analog to digital converter, power conditioning electronics, and a communications and control gate array are co-located with the electrode array in a 14 millimeter diameter satellite package that is designed to be flush mounted in a skull burr hole. Our system features five satellite packages connected to a central hub processor-controller via ten conductor cables that terminate in a custom designed, miniaturized connector. The connector incorporates features of high reliability, military grade devices and utilizes three distinct seals to isolate the contacts from fluid permeation. The hub system is comprised of a connector header, hermetic electronics package, and rechargeable battery pack, which are mounted on and electrically interconnected by a flexible circuit board. The assembly is over molded with a compliant silicone rubber. The electronics package contains two antennas, a large coil, used for recharging the battery and a high bandwidth antenna that is used to download data and update software. The package is assembled from two machined alumina pieces, a flat base with brazed in, electrical feed through pins and a rectangular cover with rounded corners. Titanium seal rings are brazed onto these two pieces so that they can be sealed by laser welding. A third system antenna is incorporated in the flexible circuit board. It is used to communicate with an externally worn control package, which monitors the health of the system and allows both the user and clinician to control or modify various system function parameters.
MARBLE: A system for executing expert systems in parallel
NASA Technical Reports Server (NTRS)
Myers, Leonard; Johnson, Coe; Johnson, Dean
1990-01-01
This paper details the MARBLE 2.0 system which provides a parallel environment for cooperating expert systems. The work has been done in conjunction with the development of an intelligent computer-aided design system, ICADS, by the CAD Research Unit of the Design Institute at California Polytechnic State University. MARBLE (Multiple Accessed Rete Blackboard Linked Experts) is a system of C Language Production Systems (CLIPS) expert system tool. A copied blackboard is used for communication between the shells to establish an architecture which supports cooperating expert systems that execute in parallel. The design of MARBLE is simple, but it provides support for a rich variety of configurations, while making it relatively easy to demonstrate the correctness of its parallel execution features. In its most elementary configuration, individual CLIPS expert systems execute on their own processors and communicate with each other through a modified blackboard. Control of the system as a whole, and specifically of writing to the blackboard is provided by one of the CLIPS expert systems, an expert control system.
Operator-coached machine vision for space telerobotics
NASA Technical Reports Server (NTRS)
Bon, Bruce; Wilcox, Brian; Litwin, Todd; Gennery, Donald B.
1991-01-01
A prototype system for interactive object modeling has been developed and tested. The goal of this effort has been to create a system which would demonstrate the feasibility of high interactive operator-coached machine vision in a realistic task environment, and to provide a testbed for experimentation with various modes of operator interaction. The purpose for such a system is to use human perception where machine vision is difficult, i.e., to segment the scene into objects and to designate their features, and to use machine vision to overcome limitations of human perception, i.e., for accurate measurement of object geometry. The system captures and displays video images from a number of cameras, allows the operator to designate a polyhedral object one edge at a time by moving a 3-D cursor within these images, performs a least-squares fit of the designated edges to edge data detected with a modified Sobel operator, and combines the edges thus detected to form a wire-frame object model that matches the Sobel data.
A concept ideation framework for medical device design.
Hagedorn, Thomas J; Grosse, Ian R; Krishnamurty, Sundar
2015-06-01
Medical device design is a challenging process, often requiring collaboration between medical and engineering domain experts. This collaboration can be best institutionalized through systematic knowledge transfer between the two domains coupled with effective knowledge management throughout the design innovation process. Toward this goal, we present the development of a semantic framework for medical device design that unifies a large medical ontology with detailed engineering functional models along with the repository of design innovation information contained in the US Patent Database. As part of our development, existing medical, engineering, and patent document ontologies were modified and interlinked to create a comprehensive medical device innovation and design tool with appropriate properties and semantic relations to facilitate knowledge capture, enrich existing knowledge, and enable effective knowledge reuse for different scenarios. The result is a Concept Ideation Framework for Medical Device Design (CIFMeDD). Key features of the resulting framework include function-based searching and automated inter-domain reasoning to uniquely enable identification of functionally similar procedures, tools, and inventions from multiple domains based on simple semantic searches. The significance and usefulness of the resulting framework for aiding in conceptual design and innovation in the medical realm are explored via two case studies examining medical device design problems. Copyright © 2015 Elsevier Inc. All rights reserved.
Retaining both discrete and smooth features in 1D and 2D NMR relaxation and diffusion experiments
NASA Astrophysics Data System (ADS)
Reci, A.; Sederman, A. J.; Gladden, L. F.
2017-11-01
A new method of regularization of 1D and 2D NMR relaxation and diffusion experiments is proposed and a robust algorithm for its implementation is introduced. The new form of regularization, termed the Modified Total Generalized Variation (MTGV) regularization, offers a compromise between distinguishing discrete and smooth features in the reconstructed distributions. The method is compared to the conventional method of Tikhonov regularization and the recently proposed method of L1 regularization, when applied to simulated data of 1D spin-lattice relaxation, T1, 1D spin-spin relaxation, T2, and 2D T1-T2 NMR experiments. A range of simulated distributions composed of two lognormally distributed peaks were studied. The distributions differed with regard to the variance of the peaks, which were designed to investigate a range of distributions containing only discrete, only smooth or both features in the same distribution. Three different signal-to-noise ratios were studied: 2000, 200 and 20. A new metric is proposed to compare the distributions reconstructed from the different regularization methods with the true distributions. The metric is designed to penalise reconstructed distributions which show artefact peaks. Based on this metric, MTGV regularization performs better than Tikhonov and L1 regularization in all cases except when the distribution is known to only comprise of discrete peaks, in which case L1 regularization is slightly more accurate than MTGV regularization.
2010-01-01
Background Change blindness refers to a failure to detect changes between consecutively presented images separated by, for example, a brief blank screen. As an explanation of change blindness, it has been suggested that our representations of the environment are sparse outside focal attention and even that changed features may not be represented at all. In order to find electrophysiological evidence of neural representations of changed features during change blindness, we recorded event-related potentials (ERPs) in adults in an oddball variant of the change blindness flicker paradigm. Methods ERPs were recorded when subjects performed a change detection task in which the modified images were infrequently interspersed (p = .2) among the frequently (p = .8) presented unmodified images. Responses to modified and unmodified images were compared in the time window of 60-100 ms after stimulus onset. Results ERPs to infrequent modified images were found to differ in amplitude from those to frequent unmodified images at the midline electrodes (Fz, Pz, Cz and Oz) at the latency of 60-100 ms even when subjects were unaware of changes (change blindness). Conclusions The results suggest that the brain registers changes very rapidly, and that changed features in images are neurally represented even without participants' ability to report them. PMID:20181126
Mars Pathfinder Landing Site: Evidence for a Change in Wind Regime from Lander and Orbiter Data
NASA Technical Reports Server (NTRS)
Greeley, Ronald; Kraft, Michael D.; Kuzmin, Ruslan O.; Bridges, Nathan T.
2000-01-01
Surface features related to the wind are observed in the vicinity of the Mars Pathfinder (MPR landing site data from the lander and in data from orbit by the Viking Orbiter and Mars Global Surveyor missions. Features seen from the surface include wind tails associated with small rocks, barchanoid duneforms, ripplelike patterns, and ventifact flutes cut into some rocks. Features seen from orbit include wind tails associated with impact craters, ridges inferred to be duneforms, and modified crater rims interpreted to have been eroded and mantled by windblown material. The orientations of these features show two prevailing directions. One is inferred to represent winds from the northeast, which is consistent with strongest winds predicted by a general circulation model to occur during the Martian northern winter under current conditions. A second wind blowing from the ESE was responsible for modifying the crater rims and cutting some of the ventifacts. The two wind regimes could reflect a change in climate related to Mars' obliquity or some other, unknown factor. Regardless of the cause, the MPF area has been subjected to a complex pattern of winds and supply of small particles, and the original surface formed by sedimentary processes from Tiu and Ares Vallis flooding events has been modified by repeated burial and exhumation.
Piloted simulation of one-on-one helicopter air combat at NOE flight levels
NASA Technical Reports Server (NTRS)
Lewis, M. S.; Aiken, E. W.
1985-01-01
A piloted simulation designed to examine the effects of terrain proximity and control system design on helicopter performance during one-on-one air combat maneuvering (ACM) is discussed. The NASA Ames vertical motion simulator (VMS) and the computer generated imagery (CGI) systems were modified to allow two aircraft to be independently piloted on a single CGI data base. Engagements were begun with the blue aircraft already in a tail-chase position behind the red, and also with the two aircraft originating from positions unknown to each other. Maneuvering was very aggressive and safety requirements for minimum altitude, separation, and maximum bank angles typical of flight test were not used. Results indicate that the presence of terrain features adds an order of complexiaty to the task performed over clear air ACM and that mix of attitude and rate command-type stability and control augmentation system (SCAS) design may be desirable. The simulation system design, the flight paths flown, and the tactics used were compared favorably by the evaluation pilots to actual flight test experiments.
Automatic programming of arc welding robots
NASA Astrophysics Data System (ADS)
Padmanabhan, Srikanth
Automatic programming of arc welding robots requires the geometric description of a part from a solid modeling system, expert weld process knowledge and the kinematic arrangement of the robot and positioner automatically. Current commercial solid models are incapable of storing explicitly product and process definitions of weld features. This work presents a paradigm to develop a computer-aided engineering environment that supports complete weld feature information in a solid model and to create an automatic programming system for robotic arc welding. In the first part, welding features are treated as properties or attributes of an object, features which are portions of the object surface--the topological boundary. The structure for representing the features and attributes is a graph called the Welding Attribute Graph (WAGRAPH). The method associates appropriate weld features to geometric primitives, adds welding attributes, and checks the validity of welding specifications. A systematic structure is provided to incorporate welding attributes and coordinate system information in a CSG tree. The specific implementation of this structure using a hybrid solid modeler (IDEAS) and an object-oriented programming paradigm is described. The second part provides a comprehensive methodology to acquire and represent weld process knowledge required for the proper selection of welding schedules. A methodology of knowledge acquisition using statistical methods is proposed. It is shown that these procedures did little to capture the private knowledge of experts (heuristics), but helped in determining general dependencies, and trends. A need was established for building the knowledge-based system using handbook knowledge and to allow the experts further to build the system. A methodology to check the consistency and validity for such knowledge addition is proposed. A mapping shell designed to transform the design features to application specific weld process schedules is described. A new approach using fixed path modified continuation methods is proposed in the final section to plan continuously the trajectory of weld seams in an integrated welding robot and positioner environment. The joint displacement, velocity, and acceleration histories all along the path as a function of the path parameter for the best possible welding condition are provided for the robot and the positioner to track various paths normally encountered in arc welding.
Imitation-tumor targeting based on continuous-wave near-infrared tomography.
Liu, Dan; Liu, Xin; Zhang, Yan; Wang, Qisong; Lu, Jingyang; Sun, Jinwei
2017-12-01
Continuous-wave Near-Infrared (NIR) optical spectroscopy has shown great diagnostic capability in the early tumor detection with advantages of low-cost, portable, non-invasive, and non-radiative. In this paper, Modified Lambert-Beer Theory is deployed to address the low-resolution issues of the NIR technique and to design the tumor detecting and imaging system. Considering that tumor tissues have features such as high blood flow and hypoxia, the proposed technique can detect the location, size, and other information of the tumor tissues by comparing the absorbance between pathological and normal tissues. Finally, the tumor tissues can be imaged through tomographic method. The simulation experiments prove that the proposed technique and designed system can efficiently detect the tumor tissues, achieving imaging precision within 1 mm. The work of the paper has shown great potential in the diagnosis of tumor close to body surface.
Design and Development of a Web-Based Self-Monitoring System to Support Wellness Coaching.
Zarei, Reza; Kuo, Alex
2017-01-01
We analyzed, designed and deployed a web-based, self-monitoring system to support wellness coaching. A wellness coach can plan for clients' exercise and diet through the system and is able to monitor the changes in body dimensions and body composition that the client reports. The system can also visualize the client's data in form of graphs for both the client and the coach. Both parties can also communicate through the messaging feature embedded in the application. A reminder system is also incorporated into the system and sends reminder messages to the clients when their reporting is due. The web-based self-monitoring application uses Oracle 11g XE as the backend database and Application Express 4.2 as user interface development tool. The system allowed users to access, update and modify data through web browser anytime, anywhere, and on any device.
Modified kernel-based nonlinear feature extraction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, J.; Perkins, S. J.; Theiler, J. P.
2002-01-01
Feature Extraction (FE) techniques are widely used in many applications to pre-process data in order to reduce the complexity of subsequent processes. A group of Kernel-based nonlinear FE ( H E ) algorithms has attracted much attention due to their high performance. However, a serious limitation that is inherent in these algorithms -- the maximal number of features extracted by them is limited by the number of classes involved -- dramatically degrades their flexibility. Here we propose a modified version of those KFE algorithms (MKFE), This algorithm is developed from a special form of scatter-matrix, whose rank is not determinedmore » by the number of classes involved, and thus breaks the inherent limitation in those KFE algorithms. Experimental results suggest that MKFE algorithm is .especially useful when the training set is small.« less
Patient-Specific Deep Architectural Model for ECG Classification
Luo, Kan; Cuschieri, Alfred
2017-01-01
Heartbeat classification is a crucial step for arrhythmia diagnosis during electrocardiographic (ECG) analysis. The new scenario of wireless body sensor network- (WBSN-) enabled ECG monitoring puts forward a higher-level demand for this traditional ECG analysis task. Previously reported methods mainly addressed this requirement with the applications of a shallow structured classifier and expert-designed features. In this study, modified frequency slice wavelet transform (MFSWT) was firstly employed to produce the time-frequency image for heartbeat signal. Then the deep learning (DL) method was performed for the heartbeat classification. Here, we proposed a novel model incorporating automatic feature abstraction and a deep neural network (DNN) classifier. Features were automatically abstracted by the stacked denoising auto-encoder (SDA) from the transferred time-frequency image. DNN classifier was constructed by an encoder layer of SDA and a softmax layer. In addition, a deterministic patient-specific heartbeat classifier was achieved by fine-tuning on heartbeat samples, which included a small subset of individual samples. The performance of the proposed model was evaluated on the MIT-BIH arrhythmia database. Results showed that an overall accuracy of 97.5% was achieved using the proposed model, confirming that the proposed DNN model is a powerful tool for heartbeat pattern recognition. PMID:29065597
ViA: a perceptual visualization assistant
NASA Astrophysics Data System (ADS)
Healey, Chris G.; St. Amant, Robert; Elhaddad, Mahmoud S.
2000-05-01
This paper describes an automated visualized assistant called ViA. ViA is designed to help users construct perceptually optical visualizations to represent, explore, and analyze large, complex, multidimensional datasets. We have approached this problem by studying what is known about the control of human visual attention. By harnessing the low-level human visual system, we can support our dual goals of rapid and accurate visualization. Perceptual guidelines that we have built using psychophysical experiments form the basis for ViA. ViA uses modified mixed-initiative planning algorithms from artificial intelligence to search of perceptually optical data attribute to visual feature mappings. Our perceptual guidelines are integrated into evaluation engines that provide evaluation weights for a given data-feature mapping, and hints on how that mapping might be improved. ViA begins by asking users a set of simple questions about their dataset and the analysis tasks they want to perform. Answers to these questions are used in combination with the evaluation engines to identify and intelligently pursue promising data-feature mappings. The result is an automatically-generated set of mappings that are perceptually salient, but that also respect the context of the dataset and users' preferences about how they want to visualize their data.
Style-independent document labeling: design and performance evaluation
NASA Astrophysics Data System (ADS)
Mao, Song; Kim, Jong Woo; Thoma, George R.
2003-12-01
The Medical Article Records System or MARS has been developed at the U.S. National Library of Medicine (NLM) for automated data entry of bibliographical information from medical journals into MEDLINE, the premier bibliographic citation database at NLM. Currently, a rule-based algorithm (called ZoneCzar) is used for labeling important bibliographical fields (title, author, affiliation, and abstract) on medical journal article page images. While rules have been created for medical journals with regular layout types, new rules have to be manually created for any input journals with arbitrary or new layout types. Therefore, it is of interest to label any journal articles independent of their layout styles. In this paper, we first describe a system (called ZoneMatch) for automated generation of crucial geometric and non-geometric features of important bibliographical fields based on string-matching and clustering techniques. The rule based algorithm is then modified to use these features to perform style-independent labeling. We then describe a performance evaluation method for quantitatively evaluating our algorithm and characterizing its error distributions. Experimental results show that the labeling performance of the rule-based algorithm is significantly improved when the generated features are used.
Zhang, Xinzheng; Rad, Ahmad B; Wong, Yiu-Kwong
2012-01-01
This paper presents a sensor fusion strategy applied for Simultaneous Localization and Mapping (SLAM) in dynamic environments. The designed approach consists of two features: (i) the first one is a fusion module which synthesizes line segments obtained from laser rangefinder and line features extracted from monocular camera. This policy eliminates any pseudo segments that appear from any momentary pause of dynamic objects in laser data. (ii) The second characteristic is a modified multi-sensor point estimation fusion SLAM (MPEF-SLAM) that incorporates two individual Extended Kalman Filter (EKF) based SLAM algorithms: monocular and laser SLAM. The error of the localization in fused SLAM is reduced compared with those of individual SLAM. Additionally, a new data association technique based on the homography transformation matrix is developed for monocular SLAM. This data association method relaxes the pleonastic computation. The experimental results validate the performance of the proposed sensor fusion and data association method.
NASA Technical Reports Server (NTRS)
Solarna, David; Moser, Gabriele; Le Moigne-Stewart, Jacqueline; Serpico, Sebastiano B.
2017-01-01
Because of the large variety of sensors and spacecraft collecting data, planetary science needs to integrate various multi-sensor and multi-temporal images. These multiple data represent a precious asset, as they allow the study of targets spectral responses and of changes in the surface structure; because of their variety, they also require accurate and robust registration. A new crater detection algorithm, used to extract features that will be integrated in an image registration framework, is presented. A marked point process-based method has been developed to model the spatial distribution of elliptical objects (i.e. the craters) and a birth-death Markov chain Monte Carlo method, coupled with a region-based scheme aiming at computational efficiency, is used to find the optimal configuration fitting the image. The extracted features are exploited, together with a newly defined fitness function based on a modified Hausdorff distance, by an image registration algorithm whose architecture has been designed to minimize the computational time.
Target scattering characteristics for OAM-based radar
NASA Astrophysics Data System (ADS)
Liu, Kang; Gao, Yue; Li, Xiang; Cheng, Yongqiang
2018-02-01
The target scattering characteristics are crucial for radar systems. However, there is very little study conducted for the recently developed orbital angular momentum (OAM) based radar system. To illustrate the role of OAM-based radar cross section (ORCS), conventional radar equation is modified by taking characteristics of the OAM waves into account. Subsequently, the ORCS is defined in analogy to classical radar cross section (RCS). The unique features of the incident OAM-carrying field are analyzed. The scattered field is derived, and the analytical expressions of ORCSs for metal plate and cylinder targets are obtained. Furthermore, the ORCS and RCS are compared to illustrate the influences of OAM mode number, target size and signal frequency on the ORCS. Analytical studies demonstrate that the mirror-reflection phenomenon disappears and peak values of ORCS are in the non-specular direction. Finally, the ORCS features are summarized to show its advantages in radar target detection. This work can provide theoretical guidance to the design of OAM-based radar as well as the target detection and identification applications.
Passive range estimation for rotorcraft low-altitude flight
NASA Technical Reports Server (NTRS)
Sridhar, B.; Suorsa, R.; Hussien, B.
1991-01-01
The automation of rotorcraft low-altitude flight presents challenging problems in control, computer vision and image understanding. A critical element in this problem is the ability to detect and locate obstacles, using on-board sensors, and modify the nominal trajectory. This requirement is also necessary for the safe landing of an autonomous lander on Mars. This paper examines some of the issues in the location of objects using a sequence of images from a passive sensor, and describes a Kalman filter approach to estimate the range to obstacles. The Kalman filter is also used to track features in the images leading to a significant reduction of search effort in the feature extraction step of the algorithm. The method can compute range for both straight line and curvilinear motion of the sensor. A laboratory experiment was designed to acquire a sequence of images along with sensor motion parameters under conditions similar to helicopter flight. Range estimation results using this imagery are presented.
A third-order silicon racetrack add-drop filter with a moderate feature size
NASA Astrophysics Data System (ADS)
Wang, Ying; Zhou, Xin; Chen, Qian; Shao, Yue; Chen, Xiangning; Huang, Qingzhong; Jiang, Wei
2018-01-01
In this work, we design and fabricate a highly compact third-order racetrack add-drop filter consisting of silicon waveguides with modified widths on a silicon-on-insulator (SOI) wafer. Compared to the previous approach that requires an exceedingly narrow coupling gap less than 100nm, we propose a new approach that enlarges the minimum feature size of the whole device to be 300 nm to reduce the process requirement. The three-dimensional finite-difference time-domain (3D-FDTD) method is used for simulation. Experiment results show good agreement with simulation results in property. In the experiment, the filter shows a nearly box-like channel dropping response, which has a large flat 3-dB bandwidth ({3 nm), relatively large FSR ({13.3 nm) and out-of-band rejection larger than 14 dB at the drop port with a footprint of 0.0006 mm2 . The device is small and simple enough to have a wide range of applications in large scale on-chip photonic integration circuits.
Effectiveness of glucose monitoring systems modified for the visually impaired.
Bernbaum, M; Albert, S G; Brusca, S; McGinnis, J; Miller, D; Hoffmann, J W; Mooradian, A D
1993-10-01
To compare three glucose meters modified for use by individuals with diabetes and visual impairment regarding accuracy, precision, and clinical reliability. Ten subjects with diabetes and visual impairment performed self-monitoring of blood glucose using each of the three commercially available blood glucose meters modified for visually impaired users (the AccuChek Freedom [Boehringer Mannheim, Indianapolis, IN], the Diascan SVM [Home Diagnostics, Eatontown, NJ], and the One Touch [Lifescan, Milpitas, CA]). The meters were independently evaluated by a laboratory technologist for precision and accuracy determinations. Only two meters were acceptable with regard to laboratory precision (coefficient of variation < 10%)--the Accuchek and the One Touch. The Accuchek and the One Touch did not differ significantly with regard to laboratory estimates of accuracy. A great discrepancy of the clinical reliability results was observed between these two meters. The Accuchek maintained a high degree of reliability (y = 0.99X + 0.44, r = 0.97, P = 0.001). The visually impaired subjects were unable to perform reliable testing using the One Touch system because of a lack of appropriate tactile landmarks and auditory signals. In addition to laboratory assessments of glucose meters, monitoring systems designed for the visually impaired must include adequate tactile and audible feedback features to allow for the acquisition and placement of appropriate blood samples.
Chaudhry, Jehanzeb Hameed; Comer, Jeffrey; Aksimentiev, Aleksei; Olson, Luke N.
2013-01-01
The conventional Poisson-Nernst-Planck equations do not account for the finite size of ions explicitly. This leads to solutions featuring unrealistically high ionic concentrations in the regions subject to external potentials, in particular, near highly charged surfaces. A modified form of the Poisson-Nernst-Planck equations accounts for steric effects and results in solutions with finite ion concentrations. Here, we evaluate numerical methods for solving the modified Poisson-Nernst-Planck equations by modeling electric field-driven transport of ions through a nanopore. We describe a novel, robust finite element solver that combines the applications of the Newton's method to the nonlinear Galerkin form of the equations, augmented with stabilization terms to appropriately handle the drift-diffusion processes. To make direct comparison with particle-based simulations possible, our method is specifically designed to produce solutions under periodic boundary conditions and to conserve the number of ions in the solution domain. We test our finite element solver on a set of challenging numerical experiments that include calculations of the ion distribution in a volume confined between two charged plates, calculations of the ionic current though a nanopore subject to an external electric field, and modeling the effect of a DNA molecule on the ion concentration and nanopore current. PMID:24363784
Westinghouse Small Modular Reactor nuclear steam supply system design
DOE Office of Scientific and Technical Information (OSTI.GOV)
Memmott, M. J.; Harkness, A. W.; Van Wyk, J.
2012-07-01
The Westinghouse Small Modular Reactor (SMR) is an 800 MWt (>225 MWe) integral pressurized water reactor (iPWR), in which all of the components typically associated with the nuclear steam supply system (NSSS) of a nuclear power plant are incorporated within a single reactor pressure vessel. This paper is the first in a series of four papers which describe the design and functionality of the Westinghouse SMR. Also described in this series are the key drivers influencing the design of the Westinghouse SMR and the unique passive safety features of the Westinghouse SMR. Several critical motivators contributed to the development andmore » integration of the Westinghouse SMR design. These design driving motivators dictated the final configuration of the Westinghouse SMR to varying degrees, depending on the specific features under consideration. These design drivers include safety, economics, AP1000{sup R} reactor expertise and experience, research and development requirements, functionality of systems and components, size of the systems and vessels, simplicity of design, and licensing requirements. The Westinghouse SMR NSSS consists of an integral reactor vessel within a compact containment vessel. The core is located in the bottom of the reactor vessel and is composed of 89 modified Westinghouse 17x17 Robust Fuel Assemblies (RFA). These modified fuel assemblies have an active core length of only 2.4 m (8 ft) long, and the entirety of the core is encompassed by a radial reflector. The Westinghouse SMR core operates on a 24 month fuel cycle. The reactor vessel is approximately 24.4 m (80 ft) long and 3.7 m (12 ft) in diameter in order to facilitate standard rail shipping to the site. The reactor vessel houses hot and cold leg channels to facilitate coolant flow, control rod drive mechanisms (CRDM), instrumentation and cabling, an intermediate flange to separate flow and instrumentation and facilitate simpler refueling, a pressurizer, a straight tube, recirculating steam generator, and eight reactor coolant pumps (RCP). The containment vessel is 27.1 m (89 ft) long and 9.8 m (32 ft) in diameter, and is designed to withstand pressures up to 1.7 MPa (250 psi). It is completely submerged in a pool of water serving as a heat sink and radiation shield. Housed within the containment are four combined core makeup tanks (CMT)/passive residual heat removal (PRHR) heat exchangers, two in-containment pools (ICP), two ICP tanks and four valves which function as the automatic depressurization system (ADS). The PRHR heat exchangers are thermally connected to two different ultimate heat sink (UHS) tanks which provide transient cooling capabilities. (authors)« less
Horizontal ichthyoplankton tow-net system with unobstructed net opening
Nester, Robert T.
1987-01-01
The larval fish sampler described here consists of a modified bridle, frame, and net system with an obstruction-free net opening and is small enough for use on boats 10 m or less in length. The tow net features a square net frame attached to a 0.5-m-diameter cylinder-on-cone plankton net with a bridle designed to eliminate all obstructions forward of the net opening, significantly reducing currents and vibrations in the water directly preceding the net. This system was effective in collecting larvae representing more than 25 species of fish at sampling depths ranging from surface to 10 m and could easily be used at greater depths.
Seeman, Neil; Seeman, Bob
2017-01-01
Reaching the recipient of online health messages is necessary to Web-based health promotion applications. To measure willingness to adhere to a health-related Web message, we explored the frequency with which more than 13 million Web users ignored or opted to receive a random inbound message. The findings suggest declining curiosity among Web users about online messages, and that certain days may be more propitious than others for communicating with users. This approach can be modified to gather more granular insights into how messages, including timing and design features, can be tailored to promote improved public health messaging.
Biomimetic design in microparticulate vaccines.
Keegan, Mark E; Whittum-Hudson, Judith A; Mark Saltzman, W
2003-11-01
Current efforts to improve the effectiveness of microparticle vaccines include incorporating biomimetic features into the particles. Many pathogens use surface molecules to target specific cell types in the gut for host invasion. This observation has inspired efforts to chemically conjugate cell-type targeting ligands to the surfaces of microparticles in order to increase the efficiency of uptake, and therefore the effectiveness, of orally administered microparticles. Bio-mimicry is not limited to the exterior surface of the microparticles. Anti-idiotypic antibodies, cytokines or other biological modifiers can be encapsulated for delivery to sites of interest as vaccines or other therapeutics. Direct mucosal delivery of microparticle vaccines or immunomodulatory agents may profoundly enhance mucosal and systemic immune responses compared to other delivery routes.
Improving Large-Scale Testing Capability by Modifying the 40- by 80-ft Wind Tunnel
NASA Technical Reports Server (NTRS)
Mort, Kenneth W.; Soderman, Paul T.; Eckert, William T.
1979-01-01
Interagency studies conducted during the last several years have indicated the need to Improve full-scale testing capabilities. The studies showed that the most effective trade between test capability and facility cost was provided by re-powering the existing Ames Research Center 40- by 80-ft Wind Tunnel to Increase the maximum speed from about 100 m/s (200 knots) lo about 150 m/s (300 knots) and by adding a new 24- by 37-m (80- by 120-ft) test section powered for about a 50-m/s (100-knot) maximum speed. This paper reviews the design of the facility, a few or its capabilities, and some of its unique features.
NASA Technical Reports Server (NTRS)
Kalu, Alex
1990-01-01
The increasing load density in the LC-39 area of Kennedy Space Center (KSC) can be met by either modifying the existing substation and increasing its capacity or by planning an additional new substation. Evidence that the later approach is more economical, enhances the system reliability, and would produce more satisfactory performance indices is provided. Network theory is the basis for the optimal location determination of the proposed substation. A load reallocation plan which minimizes investment cost and power losses and meets other desirable system features is drafted. The report should be useful to the system designer and can be a useful guideline for future facility planners.
Program manual for ASTOP, an Arbitrary space trajectory optimization program
NASA Technical Reports Server (NTRS)
Horsewood, J. L.
1974-01-01
The ASTOP program (an Arbitrary Space Trajectory Optimization Program) designed to generate optimum low-thrust trajectories in an N-body field while satisfying selected hardware and operational constraints is presented. The trajectory is divided into a number of segments or arcs over which the control is held constant. This constant control over each arc is optimized using a parameter optimization scheme based on gradient techniques. A modified Encke formulation of the equations of motion is employed. The program provides a wide range of constraint, end conditions, and performance index options. The basic approach is conducive to future expansion of features such as the incorporation of new constraints and the addition of new end conditions.
Gill, Simrone K; Roohpour, Nima; Topham, Paul D; Tighe, Brian J
2017-11-01
Nature provides many interesting examples of adhesive strategies. Of particular note, the protein glue secreted by marine mussels delivers high adhesion in wet and dynamic environments owing to existence of catechol moieties. As such, this study focuses on denture fixatives, where a non-zinc-containing commercial-based formulation has been judiciously modified by a biomimetic catechol-inspired polymer, poly(3,4-dihydroxystyrene/styrene-alt-maleic acid) in a quest to modulate adhesive performance. In vitro studies, in a lap-shear configuration, revealed that the catechol-modified components were able to enhance adhesion to both the denture base and hydrated, functional oral tissue mimic, with the resulting mode of failure prominently being adhesive rather than cohesive. These characteristics are desirable in prosthodontic fixative applications, for which temporary adhesion must be maintained, with ultimately an adhesive failure from the mucosal tissue surface preferred. These insights provide an experimental platform in the design of future biomimetic adhesive systems. Mussel adhesive proteins have proven to be promising biomimetic adhesive candidates for soft tissues and here for the first time we have adapted marine adhesive technology into a denture fixative application. Importantly, we have incorporated a soft tissue mimic in our in vitro adhesion technique that more closely resembles the oral mucosa than previously studied substrates. The novel biomimetic-modified adhesives showed the ability to score the highest adhesive bonding out of all the formulations included in this study, across all moisture levels. This paper will be of major interest to the Acta Biomaterialia readership since the study has illustrated the potential of biomimetic principles in the design of effective prosthodontic tissue adhesives in a series of purpose-designed in vitro experiments in the context of the challenging features of the oral environment. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Choi, Michael K.
1999-01-01
A heritage wine-rack thermal/mechanical design for the nickel-hydrogen batteries was the baseline at the Landsat-7 Preliminary Design Review. An integrated thermal and power analysis of the batteries performed by the author in 1994 revealed that the maximum cell-to-cell gradient was 6.6 C. The author proposed modifying the heritage wine-rack design by enhancing heat conduction from cells to cells, and from cells to battery frame. At the 1995 Intersociety Energy Conversion Engineering Conference (IECEC), the author presented a paper on methods of modifying the wine-rack design. It showed that the modified wine-rack option, which uses a metallic filler, could reduce the maximum cell-to-cell temperature gradient to 1.30 C, and could also reduce the maximum cell temperature by as much as 80 C. That design concept was adopted by the Landsat7 Project Office, and a design change was made at the Critical Design Review. Results of the spacecraft thermal vacuum and thermal balance tests, and temperature data in flight show that the temperatures of the battery cells are very uniform. The maximum cell-to-cell gradient is 1.50 C. They validate the modified wine-rack thermal design.
Peer-Based Social Media Features in Behavior Change Interventions: Systematic Review
Weal, Mark; Morrison, Leanne; Yardley, Lucy
2018-01-01
Background Incorporating social media features into digital behavior change interventions (DBCIs) has the potential to contribute positively to their success. However, the lack of clear design principles to describe and guide the use of these features in behavioral interventions limits cross-study comparisons of their uses and effects. Objective The aim of this study was to provide a systematic review of DBCIs targeting modifiable behavioral risk factors that have included social media features as part of their intervention infrastructure. A taxonomy of social media features is presented to inform the development, description, and evaluation of behavioral interventions. Methods Search terms were used in 8 databases to identify DBCIs that incorporated social media features and targeted tobacco smoking, diet and nutrition, physical activities, or alcohol consumption. The screening and review process was performed by 2 independent researchers. Results A total of 5264 articles were screened, and 143 articles describing a total of 134 studies were retained for full review. The majority of studies (70%) reported positive outcomes, followed by 28% finding no effects with regard to their respective objectives and hypothesis, and 2% of the studies found that their interventions had negative outcomes. Few studies reported on the association between the inclusion of social media features and intervention effect. A taxonomy of social media features used in behavioral interventions has been presented with 36 social media features organized under 7 high-level categories. The taxonomy has been used to guide the analysis of this review. Conclusions Although social media features are commonly included in DBCIs, there is an acute lack of information with respect to their effect on outcomes and a lack of clear guidance to inform the selection process based on the features’ suitability for the different behaviors. The proposed taxonomy along with the set of recommendations included in this review will support future research aimed at isolating and reporting the effects of social media features on DBCIs, cross-study comparisons, and evaluations. PMID:29472174
Changes in selected features of a male face and assessment of their influence on facial recognition.
Lewandowski, Zdzisław
2011-01-01
The project aimed at finding the answers to the following two research questions: --To what extent does a change in size, height or width of the selected face feature influence the assessment of likeness between an original composite portrait and a modified one? --How does the sex of a person who judges the images have an impact on the perception of likeness of the face features? The results indicate that there are significant differences in the assessment of likeness of the portraits with some features modified to the original ones. The images with changes in size and height of the nose received the lowest scores on the likeness scale, which indicates that these changes were perceived by the subjects as the most important. The photos with changes in height and width of the lips, and height and width of the eye slit, in turn, received high scores of likeness, in spite of big changes. This signifies that these modifications were perceived to be of the least importance (compared to the other features investigated).
Yarn-dyed fabric defect classification based on convolutional neural network
NASA Astrophysics Data System (ADS)
Jing, Junfeng; Dong, Amei; Li, Pengfei
2017-07-01
Considering that the manual inspection of the yarn-dyed fabric can be time consuming and less efficient, a convolutional neural network (CNN) solution based on the modified AlexNet structure for the classification of the yarn-dyed fabric defect is proposed. CNN has powerful ability of feature extraction and feature fusion which can simulate the learning mechanism of the human brain. In order to enhance computational efficiency and detection accuracy, the local response normalization (LRN) layers in AlexNet are replaced by the batch normalization (BN) layers. In the process of the network training, through several convolution operations, the characteristics of the image are extracted step by step, and the essential features of the image can be obtained from the edge features. And the max pooling layers, the dropout layers, the fully connected layers are also employed in the classification model to reduce the computation cost and acquire more precise features of fabric defect. Finally, the results of the defect classification are predicted by the softmax function. The experimental results show the capability of defect classification via the modified Alexnet model and indicate its robustness.
ANZSoilML: An Australian - New Zealand standard for exchange of soil data
NASA Astrophysics Data System (ADS)
Simons, Bruce; Wilson, Peter; Ritchie, Alistair; Cox, Simon
2013-04-01
The Australian-New Zealand soil information exchange standard (ANZSoilML) is a GML-based standard designed to allow the discovery, query and delivery of soil and landscape data via standard Open Geospatial Consortium (OGC) Web Feature Services. ANZSoilML modifies the Australian soil exchange standard (OzSoilML), which is based on the Australian Soil Information Transfer and Evaluation System (SITES) database design and exchange protocols, to meet the New Zealand National Soils Database requirements. The most significant change was the removal of the lists of CodeList terms in OzSoilML, which were based on the field methods specified in the 'Australian Soil and Land Survey Field Handbook'. These were replaced with empty CodeLists as placeholders to external vocabularies to allow the use of New Zealand vocabularies without violating the data model. Testing of the use of these separately governed Australian and New Zealand vocabularies has commenced. ANZSoilML attempts to accommodate the proposed International Organization for Standardization ISO/DIS 28258 standard for soil quality. For the most part, ANZSoilML is consistent with the ISO model, although major differences arise as a result of: • The need to specify the properties appropriate for each feature type; • The inclusion of soil-related 'Landscape' features; • Allowing the mapping of soil surfaces, bodies, layers and horizons, independent of the soil profile; • Allowing specifying the relationships between the various soil features; • Specifying soil horizons as specialisations of soil layers; • Removing duplication of features provided by the ISO Observation & Measurements standard. The International Union of Soil Sciences (IUSS) Working Group on Soil Information Standards (WG-SIS) aims to develop, promote and maintain a standard to facilitate the exchange of soils data and information. Developing an international exchange standard that is compatible with existing and emerging national and regional standards is a considerable challenge. ANZSoilML is proposed as a profile of the more generalised SoilML model being progressed through the IUSS Working Group.
The conception of life in synthetic biology.
Deplazes-Zemp, Anna
2012-12-01
The phrase 'synthetic biology' is used to describe a set of different scientific and technological disciplines, which share the objective to design and produce new life forms. This essay addresses the following questions: What conception of life stands behind this ambitious objective? In what relation does this conception of life stand to that of traditional biology and biotechnology? And, could such a conception of life raise ethical concerns? Three different observations that provide useful indications for the conception of life in synthetic biology will be discussed in detail: 1. Synthetic biologists focus on different features of living organisms in order to design new life forms, 2. Synthetic biologists want to contribute to the understanding of life, and 3. Synthetic biologists want to modify life through a rational design, which implies the notions of utilising, minimising/optimising, varying and overcoming life. These observations indicate a tight connection between science and technology, a focus on selected aspects of life, a production-oriented approach to life, and a design-oriented understanding of life. It will be argued that through this conception of life synthetic biologists present life in a different light. This conception of life will be illustrated by the metaphor of a toolbox. According to the notion of life as a toolbox, the different features of living organisms are perceived as various rationally designed instruments that can be used for the production of the living organism itself or secondary products made by the organism. According to certain ethical positions this conception of life might raise ethical concerns related to the status of the organism, the motives of the scientists and the role of technology in our society.
A sit-ski design aimed at controlling centre of mass and inertia.
Langelier, Eve; Martel, Stéphane; Millot, Anne; Lessard, Jean-Luc; Smeesters, Cécile; Rancourt, Denis
2013-01-01
This article introduces a sit-ski developed for the Canadian Alpine Ski Team in view of the Vancouver 2010 Paralympic games. The design is predominantly based on controlling the mass distribution of the sit-ski, a critical factor in skiing performance and control. Both the antero-posterior location of the centre of mass and the sit-ski moment of inertia were addressed in our design. Our design provides means to adjust the antero-posterior centre of mass location of a sit-ski to compensate for masses that would tend to move the antero-posterior centre of mass location away from the midline of the binding area along the ski axis. The adjustment range provided is as large as 140 mm, thereby providing sufficient adaptability for most situations. The suspension mechanism selected is a four-bar linkage optimised to limit antero-posterior seat movement, due to suspension compression, to 7 mm maximum. This is about 5% of the maximum antero-posterior centre of mass control capacity (151 mm) of a human participant. Foot rest inclination was included in the design to modify the sit-ski inertia by as much as 11%. Together, these mass adjustment features were shown to drastically help athletes' skiing performance.
Creative Interpretations of Novel Conceptual Combinations in Aging
ERIC Educational Resources Information Center
Mashal, Nira; Coblentz, Shoshana
2014-01-01
Conceptual combinations may be interpreted by 3 main strategies: by attributing a feature of the modifying (head) noun into the modified noun (property interpretation); by establishing a relation between the 2 concepts (relational interpretation); or by combining properties of both nouns into a concept with new identity (hybridization). There…
Kistler, Christine E; Crutchfield, Trisha M; Sutfin, Erin L; Ranney, Leah M; Berman, Micah L; Zarkin, Gary A; Goldstein, Adam O
2017-06-07
To inform potential governmental regulations, we aimed to develop a list of electronic nicotine delivery system (ENDS) product features important to U.S. consumers by age and gender. We employed qualitative data methods. Participants were eligible if they had used an ENDS at least once. Groups were selected by age and gender (young adult group aged 18-25, n = 11; middle-age group aged 26-64, n = 9; and women's group aged 26-64, n = 9). We conducted five individual older adult interviews (aged 68-80). Participants discussed important ENDS features. We conducted a structured content analysis of the group and interview responses. Of 34 participants, 68% were white and 56% were female. Participants mentioned 12 important ENDS features, including: (1) user experience; (2) social acceptability; (3) cost; (4) health risks/benefits; (5) ease of use; (6) flavors; (7) smoking cessation aid; (8) nicotine content; (9) modifiability; (10) ENDS regulation; (11) bridge between tobacco cigarettes; (12) collectability. The most frequently mentioned ENDS feature was modifiability for young adults, user experience for middle-age and older adults, and flavor for the women's group. This study identified multiple features important to ENDS consumers. Groups differed in how they viewed various features by age and gender. These results can inform ongoing regulatory efforts.
Kistler, Christine E.; Crutchfield, Trisha M.; Sutfin, Erin L.; Ranney, Leah M.; Berman, Micah L.; Zarkin, Gary A.; Goldstein, Adam O.
2017-01-01
To inform potential governmental regulations, we aimed to develop a list of electronic nicotine delivery system (ENDS) product features important to U.S. consumers by age and gender. We employed qualitative data methods. Participants were eligible if they had used an ENDS at least once. Groups were selected by age and gender (young adult group aged 18–25, n = 11; middle-age group aged 26–64, n = 9; and women’s group aged 26–64, n = 9). We conducted five individual older adult interviews (aged 68–80). Participants discussed important ENDS features. We conducted a structured content analysis of the group and interview responses. Of 34 participants, 68% were white and 56% were female. Participants mentioned 12 important ENDS features, including: (1) user experience; (2) social acceptability; (3) cost; (4) health risks/benefits; (5) ease of use; (6) flavors; (7) smoking cessation aid; (8) nicotine content; (9) modifiability; (10) ENDS regulation; (11) bridge between tobacco cigarettes; (12) collectability. The most frequently mentioned ENDS feature was modifiability for young adults, user experience for middle-age and older adults, and flavor for the women’s group. This study identified multiple features important to ENDS consumers. Groups differed in how they viewed various features by age and gender. These results can inform ongoing regulatory efforts. PMID:28590444
Physical stability enhancement of theophylline via cocrystallization.
Trask, Andrew V; Motherwell, W D Sam; Jones, William
2006-08-31
The crystal form adopted by the respiratory drug theophylline was modified using a crystal engineering strategy in order to search for a solid material with improved physical stability. Cocrystals, also referred to as crystalline molecular complexes, were prepared with theophylline and one of several dicarboxylic acids. Four cocrystals of theophylline are reported, one each with oxalic, malonic, maleic and glutaric acids. Crystal structures were obtained for each cocrystal material, allowing an examination of the hydrogen bonding and crystal packing features. The cocrystal design scheme was partly based upon a series of recently reported cocrystals of the molecular analogue, caffeine, and comparisons in packing features are drawn between the two cocrystal series. The theophylline cocrystals were subjected to relative humidity challenges in order to assess their stability in relation to crystalline theophylline anhydrate and the equivalent caffeine cocrystals. None of the cocrystals in this study converted into a hydrated cocrystal upon storage at high relative humidity. Furthermore, the theophylline:oxalic acid cocrystal demonstrated superior humidity stability to theophylline anhydrate under the conditions examined, while the other cocrystals appeared to offer comparable stability to that of theophylline anhydrate. The results demonstrate the feasibility of pharmaceutical cocrystal design based upon the crystallization preferences of a molecular analogue, and furthermore show that avoidance of hydrate formation and improvement in physical stability is possible via pharmaceutical cocrystallization.
Design Rules for Tailoring Antireflection Properties of Hierarchical Optical Structures
Leon, Juan J. Diaz; Hiszpanski, Anna M.; Bond, Tiziana C.; ...
2017-05-18
Hierarchical structures consisting of small sub-wavelength features stacked atop larger structures have been demonstrated as an effective means of reducing the reflectance of surfaces. However, optical devices require different antireflective properties depending on the application, and general unifying guidelines on hierarchical structures' design to attain a desired antireflection spectral response are still lacking. The type of reflectivity (diffuse, specular, or total/hemispherical) and its angular- and spectral-dependence are all dictated by the structural parameters. Through computational and experimental studies, guidelines have been devised to modify these various aspects of reflectivity across the solar spectrum by proper selection of the features ofmore » hierarchical structures. In this wavelength regime, micrometer-scale substructures dictate the long-wavelength spectral response and effectively reduce specular reflectance, whereas nanometer-scale substructures dictate primarily the visible wavelength spectral response and reduce diffuse reflectance. Coupling structures having these two length scales into hierarchical arrays impressively reduces surfaces' hemispherical reflectance across a broad spectrum of wavelengths and angles. Furthermore, such hierarchical structures in silicon are demonstrated having an average total reflectance across the solar spectrum of 1.1% (average weighted reflectance of 1% in the 280–2500 nm range of the AM 1.5 G spectrum) and specular reflectance <1% even at angles of incidence as high as 67°.« less
Leunisse, C; van Weissenbruch, R; Busscher, H J; van der Mei, H C; Dijk, F; Albers, F W
2001-01-01
After total laryngectomy, voice can be restored with a silicone rubber tracheoesophageal voice prosthesis. However, biofilm formation and subsequent deterioration of the silicone material of the prosthesis will limit device life by impairing valve function. To simulate the natural process of biofilm development under dynamic nutrient conditions, a modified Robbins device was used to evaluate the biofilm-related valve dysfunction of the Groningen, Provox2, Blom-Singer indwelling, and VoiceMaster voice prostheses. Obstruction of the semicircular slit-valved Groningen prosthesis leading to increased airway resistance was caused not only by a buildup of deposits on the esophageal flange and valve hat, but also by accumulation of deposits on the semicircular valve seating. The hinged flap valved Provox2 and indwelling Blom-Singer prostheses failed to close sufficiently because of biofilm formation on the valve seating. The esophageal flange of the VoiceMaster prosthesis was affected, but the tripod structure of the ball valve was fully colonized up to the titanium sleeve, which interfered with proper valve opening and closure. These findings on biofilm formation could be used for the further development and modification of critical design features of voice prostheses to facilitate tracheoesophageal speech. Copyright 2001 John Wiley & Sons, Inc.
Supporting 64-bit global indices in Epetra and other Trilinos packages :
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jhurani, Chetan; Austin, Travis M.; Heroux, Michael Allen
The Trilinos Project is an effort to facilitate the design, development, integration and ongoing support of mathematical software libraries within an object-oriented framework. It is intended for large-scale, complex multiphysics engineering and scientific applications [2, 4, 3]. Epetra is one of its basic packages. It provides serial and parallel linear algebra capabilities. Before Trilinos version 11.0, released in 2012, Epetra used the C++ int data-type for storing global and local indices for degrees of freedom (DOFs). Since int is typically 32-bit, this limited the largest problem size to be smaller than approximately two billion DOFs. This was true even ifmore » a distributed memory machine could handle larger problems. We have added optional support for C++ long long data-type, which is at least 64-bit wide, for global indices. To save memory, maintain the speed of memory-bound operations, and reduce further changes to the code, the local indices are still 32-bit. We document the changes required to achieve this feature and how the new functionality can be used. We also report on the lessons learned in modifying a mature and popular package from various perspectives design goals, backward compatibility, engineering decisions, C++ language features, effects on existing users and other packages, and build integration.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stillwell, B.; Billett, B.; Brajuskovic, B.
2017-06-20
Recent work on the design of the storage ring vacuum system for the Advanced Photon Source Upgrade project (APS-U) includes: revising the vacuum system design to accommodate a new lattice with reverse bend magnets, modifying the designs of vacuum chambers in the FODO sections for more intense incident synchrotron radiation power, modifying the design of rf-shielding bellows liners for better performance and reliability, modifying photon absorber designs to make better use of available space, and integrated planning of components needed in the injection, extraction and rf cavity straight sections. An overview of progress in these areas is presented.
NASA Technical Reports Server (NTRS)
Saiyed, Naseem H.; Mikkelsen, Kevin L.; Bridges, James E.
2000-01-01
The NASA Glenn Research Center recently completed an experimental study to reduce the jet noise from modern turbofan engines. The study concentrated on exhaust nozzle designs for high-bypass-ratio engines. These designs modified the core and fan nozzles individually and simultaneously. Several designs provided an ideal jet noise reduction of over 2.5 EPNdB for the effective perceived noise level (EPNL) metric. Noise data, after correcting for takeoff thrust losses, indicated over a 2.0-EPNdB reduction for nine designs. Individually modifying the fan nozzle did not provide attractive EPNL reductions. Designs in which only the core nozzle was modified provided greater EPNL reductions. Designs in which core and fan nozzles were modified simultaneously provided the greatest EPNL reduction. The best nozzle design had a 2.7-EPNdB reduction (corrected for takeoff thrust loss) with a 0.06-point cruise thrust loss. This design simultaneously employed chevrons on the core and fan nozzles. In comparison with chevrons, tabs appeared to be an inefficient method for reducing jet noise. Data trends indicate that the sum of the thrust losses from individually modifying core and fan nozzles did not generally equal the thrust loss from modifying them simultaneously. Flow blockage from tabs did not scale directly with cruise thrust loss and the interaction between fan flow and the core nozzle seemed to strongly affect noise and cruise performance. Finally, the nozzle configuration candidates for full-scale engine demonstrations are identified.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-13
... featuring outer soles of rubber or plastic to which a layer of textile material has been added. DATES: May... the HTSUS relating to certain footwear featuring outer soles of rubber or plastics to which a layer of...
Solid polymer electrolyte compositions
Garbe, James E.; Atanasoski, Radoslav; Hamrock, Steven J.; Le, Dinh Ba
2001-01-01
An electrolyte composition is featured that includes a solid, ionically conductive polymer, organically modified oxide particles that include organic groups covalently bonded to the oxide particles, and an alkali metal salt. The electrolyte composition is free of lithiated zeolite. The invention also features cells that incorporate the electrolyte composition.
Closed-Loop Process Control for Electron Beam Freeform Fabrication and Deposition Processes
NASA Technical Reports Server (NTRS)
Taminger, Karen M. (Inventor); Hofmeister, William H. (Inventor); Martin, Richard E. (Inventor); Hafley, Robert A. (Inventor)
2013-01-01
A closed-loop control method for an electron beam freeform fabrication (EBF(sup 3)) process includes detecting a feature of interest during the process using a sensor(s), continuously evaluating the feature of interest to determine, in real time, a change occurring therein, and automatically modifying control parameters to control the EBF(sup 3) process. An apparatus provides closed-loop control method of the process, and includes an electron gun for generating an electron beam, a wire feeder for feeding a wire toward a substrate, wherein the wire is melted and progressively deposited in layers onto the substrate, a sensor(s), and a host machine. The sensor(s) measure the feature of interest during the process, and the host machine continuously evaluates the feature of interest to determine, in real time, a change occurring therein. The host machine automatically modifies control parameters to the EBF(sup 3) apparatus to control the EBF(sup 3) process in a closed-loop manner.
Correction of Cardy–Verlinde formula for Fermions and Bosons with modified dispersion relation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sadatian, S. Davood, E-mail: sd-sadatian@um.ac.ir; Dareyni, H.
Cardy–Verlinde formula links the entropy of conformal symmetry field to the total energy and its Casimir energy in a D-dimensional space. To correct black hole thermodynamics, modified dispersion relation can be used which is proposed as a general feature of quantum gravity approaches. In this paper, the thermodynamics of Schwarzschild four-dimensional black hole is corrected using the modified dispersion relation for Fermions and Bosons. Finally, using modified thermodynamics of Schwarzschild four-dimensional black hole, generalization for Cardy–Verlinde formula is obtained. - Highlights: • The modified Cardy–Verlinde formula obtained using MDR for Fermions and Bosons. • The modified entropy of the blackmore » hole used to correct the Cardy–Verlinde formula. • The modified entropy of the CFT has been obtained.« less
Validation test of advanced technology for IPV nickel-hydrogen flight cells: Update
NASA Technical Reports Server (NTRS)
Smithrick, John J.; Hall, Stephen W.
1992-01-01
Individual pressure vessel (IPV) nickel-hydrogen technology was advanced at NASA Lewis and under Lewis contracts with the intention of improving cycle life and performance. One advancement was to use 26 percent potassium hydroxide (KOH) electrolyte to improve cycle life. Another advancement was to modify the state-of-the-art cell design to eliminate identified failure modes. The modified design is referred to as the advanced design. A breakthrough in the low-earth-orbit (LEO) cycle life of IPV nickel-hydrogen cells has been previously reported. The cycle life of boiler plate cells containing 26 percent KOH electrolyte was about 40,000 LEO cycles compared to 3,500 cycles for cells containing 31 percent KOH. The boiler plate test results are in the process of being validated using flight hardware and real time LEO testing at the Naval Weapons Support Center (NWSC), Crane, Indiana under a NASA Lewis Contract. An advanced 125 Ah IPV nickel-hydrogen cell was designed. The primary function of the advanced cell is to store and deliver energy for long-term, LEO spacecraft missions. The new features of this design are: (1) use of 26 percent rather than 31 percent KOH electrolyte; (2) use of a patented catalyzed wall wick; (3) use of serrated-edge separators to facilitate gaseous oxygen and hydrogen flow within the cell, while still maintaining physical contact with the wall wick for electrolyte management; and (4) use of a floating rather than a fixed stack (state-of-the-art) to accommodate nickel electrode expansion due to charge/discharge cycling. The significant improvements resulting from these innovations are: extended cycle life; enhanced thermal, electrolyte, and oxygen management; and accommodation of nickel electrode expansion. The advanced cell design is in the process of being validated using real time LEO cycle life testing of NWSC, Crane, Indiana. An update of validation test results confirming this technology is presented.
MERRF Classification: Implications for Diagnosis and Clinical Trials.
Finsterer, Josef; Zarrouk-Mahjoub, Sinda; Shoffner, John M
2018-03-01
Given the etiologic heterogeneity of disease classification using clinical phenomenology, we employed contemporary criteria to classify variants associated with myoclonic epilepsy with ragged-red fibers (MERRF) syndrome and to assess the strength of evidence of gene-disease associations. Standardized approaches are used to clarify the definition of MERRF, which is essential for patient diagnosis, patient classification, and clinical trial design. Systematic literature and database search with application of standardized assessment of gene-disease relationships using modified Smith criteria and of variants reported to be associated with MERRF using modified Yarham criteria. Review of available evidence supports a gene-disease association for two MT-tRNAs and for POLG. Using modified Smith criteria, definitive evidence of a MERRF gene-disease association is identified for MT-TK. Strong gene-disease evidence is present for MT-TL1 and POLG. Functional assays that directly associate variants with oxidative phosphorylation impairment were critical to mtDNA variant classification. In silico analysis was of limited utility to the assessment of individual MT-tRNA variants. With the use of contemporary classification criteria, several mtDNA variants previously reported as pathogenic or possibly pathogenic are reclassified as neutral variants. MERRF is primarily an MT-TK disease, with pathogenic variants in this gene accounting for ~90% of MERRF patients. Although MERRF is phenotypically and genotypically heterogeneous, myoclonic epilepsy is the clinical feature that distinguishes MERRF from other categories of mitochondrial disorders. Given its low frequency in mitochondrial disorders, myoclonic epilepsy is not explained simply by an impairment of cellular energetics. Although MERRF phenocopies can occur in other genes, additional data are needed to establish a MERRF disease-gene association. This approach to MERRF emphasizes standardized classification rather than clinical phenomenology, thus improving patient diagnosis and clinical trial design. Copyright © 2017 Elsevier Inc. All rights reserved.
Data-driven directions for effective footwear provision for the high-risk diabetic foot.
Arts, M L J; de Haart, M; Waaijman, R; Dahmen, R; Berendsen, H; Nollet, F; Bus, S A
2015-06-01
Custom-made footwear is used to offload the diabetic foot to prevent plantar foot ulcers. This prospective study evaluates the offloading effects of modifying custom-made footwear and aims to provide data-driven directions for the provision of effectively offloading footwear in clinical practice. Eighty-five people with diabetic neuropathy and a recently healed plantar foot ulcer, who participated in a clinical trial on footwear effectiveness, had their custom-made footwear evaluated with in-shoe plantar pressure measurements at three-monthly intervals. Footwear was modified when peak pressure was ≥ 200 kPa. The effect of single and combined footwear modifications on in-shoe peak pressure at these high-pressure target locations was assessed. All footwear modifications significantly reduced peak pressure at the target locations compared with pre-modification levels (range -6.7% to -24.0%, P < 0.001). The metatarsal heads were most frequently targeted. Repositioning an existing (trans-)metatarsal pad in the shoe insole (-15.9% peak pressure relief), applying local cushioning to the insole (-15.0%) and replacing the insole top cover with Plastazote (-14.2%) were the most effective single modifications. Combining a new Plastazote top cover with a trans-metatarsal bar (-24.0% peak pressure relief) or with local cushioning (-22.0%) were the most effective combined modifications. In people with diabetic neuropathy and a recently healed plantar foot ulcer, significant offloading can be achieved at high-risk foot regions by modifying custom-made footwear. These results provide data-driven directions for the design and evaluation of custom-made footwear for high-risk people with diabetes, and essentially mean that each shoe prescribed should incorporate those design features that effectively offload the foot. © 2015 The Authors. Diabetic Medicine © 2015 Diabetes UK.
NASA Technical Reports Server (NTRS)
Greeley, R.; Kraft, M. D.; Kuzmin, R. O.; Bridges, N. T.
1999-01-01
Surface features related to the wind are observed in data from the Mars Pathfinder lander and from orbit by the Viking Orbiter and Mars Global Surveyor missions. Features seen from the surface include wind tails associated with small rocks, barchanoid duneforms, ripplelike patterns, and ventifact flutes cut into some rocks. Features seen from orbit include wind tails associated with impact craters, ridges inferred to be duneforms, and modified crater rims interpreted to have been eroded and mantled by windblown material. The orientations of these features show two prevailing directions, one inferred to represent winds from the northeast which is consistent with strongest winds predicted by a general circulation model to occur during the Martian northern winter under current conditions, and a second wind pattern oriented approx. 90 degrees to the first. This latter wind could be from the W-NW or from the E-SE and was responsible for cutting the ventifacts and modifying the crater rims. The two wind regimes could reflect a change in climate related to Mars' obliquity or some other, unknown factor. Regardless of the cause, the MPF area has been subjected to a complex pattern of winds and supply of small particles, in which the original surface formed by sedimentary processes from Tiu and Ares Vallis events has been modified by repeated burial and exhumation.
Adaptive runtime for a multiprocessing API
Antao, Samuel F.; Bertolli, Carlo; Eichenberger, Alexandre E.; O'Brien, John K.
2016-11-15
A computer-implemented method includes selecting a runtime for executing a program. The runtime includes a first combination of feature implementations, where each feature implementation implements a feature of an application programming interface (API). Execution of the program is monitored, and the execution uses the runtime. Monitor data is generated based on the monitoring. A second combination of feature implementations are selected, by a computer processor, where the selection is based at least in part on the monitor data. The runtime is modified by activating the second combination of feature implementations to replace the first combination of feature implementations.
Adaptive runtime for a multiprocessing API
Antao, Samuel F.; Bertolli, Carlo; Eichenberger, Alexandre E.; O'Brien, John K.
2016-10-11
A computer-implemented method includes selecting a runtime for executing a program. The runtime includes a first combination of feature implementations, where each feature implementation implements a feature of an application programming interface (API). Execution of the program is monitored, and the execution uses the runtime. Monitor data is generated based on the monitoring. A second combination of feature implementations are selected, by a computer processor, where the selection is based at least in part on the monitor data. The runtime is modified by activating the second combination of feature implementations to replace the first combination of feature implementations.
NASA Astrophysics Data System (ADS)
Tian, Lin; Xian, Xiaozhai; Cui, Xingkai; Tang, Hua; Yang, Xiaofei
2018-02-01
Semiconductor-based photocatalysis has been considered as one of the most effective techniques to achieve the conversion of clean and sustainable sunlight to solar fuel, in which the construction of novel solar-driven photocatalytic systems is the key point. Here, we report initially the synthesis of modified graphitic carbon nitride (g-C3N4) nanorods via the calcination of intermediates obtained from the co-polymerization of precursors, and the in-situ hybridization of Ag3PO4 with as-prepared modified g-C3N4 to produce g-C3N4 nanorod/Ag3PO4 composite materials. The diameter of modified rod-like g-C3N4 materials is determined to be around 1 μm. Subsequently the morphological features, crystal and chemical structures of the assembled g-C3N4 nanorod/Ag3PO4 composites were systematically investigated by SEM, XRD, XPS, UV-vis diffuse reflectance spectra (DRS). Furthermore, the use of as-prepared composite materials as the catalyst for photocatalytic oxygen evolution from water splitting was studied. The oxygen-generating results showed that the composite photocatalyst modified with 600 mg rod-like g-C3N4 demonstrates 2.5 times higher efficiency than that of bulk Ag3PO4. The mechanism behind the enhancement in the oxygen-evolving activity is proposed on the basis of in-situ electron spin resonance (ESR) measurement as well as theoretical analysis. The study provides new insights into the design and development of new photocatalytic composite materials for energy and environmental applications.
Playground usage and physical activity levels of children based on playground spatial features.
Reimers, Anne K; Knapp, Guido
2017-01-01
Being outdoors is one of the strongest correlates of physical activity in children. Playgrounds are spaces especially designed to enable and foster physical activity in children. This study aimed to analyze the relationship between the spatial features of public playgrounds and the usage and physical activity levels of children playing in them. A quantitative, observational study was conducted of ten playgrounds in one district of a middle-sized town in Germany. Playground spatial features were captured using an audit instrument and the playground manual of the town. Playground usage and physical activity levels of children were assessed using a modified version of the System for Observing Play and Leisure Activity in Youth. Negative binomial models were used to analyze the count data. The number of children using the playgrounds and the number of children actively playing in them were higher in those with more varied facilities and without naturalness. Girls played more actively in playgrounds without multi-purpose areas. Cleanliness, esthetics, play facility quality, division of functional areas and playground size were not related to any outcome variable. Playground spatial features are related to playground usage and activity levels of the children in the playgrounds. Playgrounds should offer a wide variety of play facilities and provide spaces for diverse play activities to respond to the needs of large numbers of different children and to provide activity-friendly areas enabling their healthy development.
Beyond Correlation: Do Color Features Influence Attention in Rainforest?
Frey, Hans-Peter; Wirz, Kerstin; Willenbockel, Verena; Betz, Torsten; Schreiber, Cornell; Troscianko, Tomasz; König, Peter
2011-01-01
Recent research indicates a direct relationship between low-level color features and visual attention under natural conditions. However, the design of these studies allows only correlational observations and no inference about mechanisms. Here we go a step further to examine the nature of the influence of color features on overt attention in an environment in which trichromatic color vision is advantageous. We recorded eye-movements of color-normal and deuteranope human participants freely viewing original and modified rainforest images. Eliminating red–green color information dramatically alters fixation behavior in color-normal participants. Changes in feature correlations and variability over subjects and conditions provide evidence for a causal effect of red–green color-contrast. The effects of blue–yellow contrast are much smaller. However, globally rotating hue in color space in these images reveals a mechanism analyzing color-contrast invariant of a specific axis in color space. Surprisingly, in deuteranope participants we find significantly elevated red–green contrast at fixation points, comparable to color-normal participants. Temporal analysis indicates that this is due to compensatory mechanisms acting on a slower time scale. Taken together, our results suggest that under natural conditions red–green color information contributes to overt attention at a low-level (bottom-up). Nevertheless, the results of the image modifications and deuteranope participants indicate that evaluation of color information is done in a hue-invariant fashion. PMID:21519395
Iris double recognition based on modified evolutionary neural network
NASA Astrophysics Data System (ADS)
Liu, Shuai; Liu, Yuan-Ning; Zhu, Xiao-Dong; Huo, Guang; Liu, Wen-Tao; Feng, Jia-Kai
2017-11-01
Aiming at multicategory iris recognition under illumination and noise interference, this paper proposes a method of iris double recognition based on a modified evolutionary neural network. An equalization histogram and Laplace of Gaussian operator are used to process the iris to suppress illumination and noise interference and Haar wavelet to convert the iris feature to binary feature encoding. Calculate the Hamming distance for the test iris and template iris , and compare with classification threshold, determine the type of iris. If the iris cannot be identified as a different type, there needs to be a secondary recognition. The connection weights in back-propagation (BP) neural network use modified evolutionary neural network to adaptively train. The modified neural network is composed of particle swarm optimization with mutation operator and BP neural network. According to different iris libraries in different circumstances of experimental results, under illumination and noise interference, the correct recognition rate of this algorithm is higher, the ROC curve is closer to the coordinate axis, the training and recognition time is shorter, and the stability and the robustness are better.
Rounds, Stewart A.; Buccola, Norman L.
2015-01-01
Water-quality models allow water resource professionals to examine conditions under an almost unlimited variety of potential future scenarios. The two-dimensional (longitudinal, vertical) water-quality model CE-QUAL-W2, version 3.7, was enhanced and augmented with new features to help dam operators and managers explore and optimize potential solutions for temperature management downstream of thermally stratified reservoirs. Such temperature management often is accomplished by blending releases from multiple dam outlets that access water of different temperatures at different depths. The modified blending algorithm in version 3.7 of CE-QUAL-W2 allows the user to specify a time-series of target release temperatures, designate from 2 to 10 floating or fixed-elevation outlets for blending, impose minimum and maximum head and flow constraints for any blended outlet, and set priority designations for each outlet that allow the model to choose which outlets to use and how to balance releases among them. The modified model was tested with a variety of examples and against a previously calibrated model of Detroit Lake on the North Santiam River in northwestern Oregon, and the results compared well. These updates to the blending algorithms will allow more complicated dam-operation scenarios to be evaluated somewhat automatically with the model, with decreased need for multiple model runs or preprocessing of model inputs to fully characterize the operational constraints.
Elwassif, Maged M; Datta, Abhishek; Rahman, Asif; Bikson, Marom
2012-08-01
There is a growing interest in the use of deep brain stimulation (DBS) for the treatment of medically refractory movement disorders and other neurological and psychiatric conditions. The extent of temperature increases around DBS electrodes during normal operation (joule heating and increased metabolic activity) or coupling with an external source (e.g. magnetic resonance imaging) remains poorly understood and methods to mitigate temperature increases are being actively investigated. We developed a heat transfer finite element method (FEM) simulation of DBS incorporating the realistic architecture of Medtronic 3389 leads. The temperature changes were analyzed considering different electrode configurations, stimulation protocols and tissue properties. The heat-transfer model results were then validated using micro-thermocouple measurements during DBS lead stimulation in a saline bath. FEM results indicate that lead design (materials and geometry) may have a central role in controlling temperature rise by conducting heat. We show how modifying lead design can effectively control temperature increases. The robustness of this heat-sink approach over complimentary heat-mitigation technologies follows from several features: (1) it is insensitive to the mechanisms of heating (e.g. nature of magnetic coupling); (2) it does not interfere with device efficacy; and (3) can be practically implemented in a broad range of implanted devices without modifying the normal device operations or the implant procedure.
Bio-orthogonal coupling on PEG-modified quantum dots (Conference Presentation)
NASA Astrophysics Data System (ADS)
Zhan, Naiqian; Palui, Goutam; Mattoussi, Hedi
2017-02-01
We have designed two sets of aldehyde- and azide-modified ligands; these ligands also present lipoic acid anchors and PEG hydrophilic moieties (LA-PEG-CHO and LA-PEG-azide). We combined this design with a photoligation strategy to prepare QDs with good control over the fraction of intact reactive groups per nanocrystal. We first applied the extremely efficient hydrazone coupling ligation to react the QD with hydrozinopyridine, which produces a well-defined absorption feature at 354 nm ascribed to the hydrazone chromophore. We exploited this signature to measure the number of aldehyde groups per QD when the fraction of LA-PEG-CHO per nanocrystal was varied, by comparing the optical signature at 354 with the molar extinction coefficient of the chromophore. This allowed us to extract an estimate for the number of LA-PEG ligand per QDs for a few distinct size nanocrystals. We further complemented these findings with the use of NMR spectroscopy to estimate of the ligand density using well defined signatures of the terminal protons of the ligands, and found a good agreement between the two techniques. We then showed that bio-orthogonal reactions based on CLICK and hydrazone coupling can be achieved using QDs presenting a mixture of azide and CHO functions. We anticipate that this strategy could be applied other nanoparticles such as those of Au and metals and semiconductor nanocrystals.
NASA Astrophysics Data System (ADS)
Elwassif, Maged M.; Datta, Abhishek; Rahman, Asif; Bikson, Marom
2012-08-01
There is a growing interest in the use of deep brain stimulation (DBS) for the treatment of medically refractory movement disorders and other neurological and psychiatric conditions. The extent of temperature increases around DBS electrodes during normal operation (joule heating and increased metabolic activity) or coupling with an external source (e.g. magnetic resonance imaging) remains poorly understood and methods to mitigate temperature increases are being actively investigated. We developed a heat transfer finite element method (FEM) simulation of DBS incorporating the realistic architecture of Medtronic 3389 leads. The temperature changes were analyzed considering different electrode configurations, stimulation protocols and tissue properties. The heat-transfer model results were then validated using micro-thermocouple measurements during DBS lead stimulation in a saline bath. FEM results indicate that lead design (materials and geometry) may have a central role in controlling temperature rise by conducting heat. We show how modifying lead design can effectively control temperature increases. The robustness of this heat-sink approach over complimentary heat-mitigation technologies follows from several features: (1) it is insensitive to the mechanisms of heating (e.g. nature of magnetic coupling); (2) it does not interfere with device efficacy; and (3) can be practically implemented in a broad range of implanted devices without modifying the normal device operations or the implant procedure.
Guaresti, O; García-Astrain, C; Palomares, T; Alonso-Varona, A; Eceiza, A; Gabilondo, N
2017-09-01
A chemically cross-linked chitosan-based hydrogel was successfully synthesized through Diels-Alder (DA) reaction and characterized. The final product was obtained after different steps; on the one hand, furan-modified chitosan (Cs-Fu) was synthesized by the reaction of furfural with the free amino groups of chitosan. On the other hand, highlighting the novelty of the present research, maleimide-functionalized chitosan (Cs-AMI) was prepared by the reaction of a maleimide-modified aminoacid with the amino groups of chitosan through amide coupling. The two complementary chitosan derivatives were cross-linked to the final hydrogel network. Both modification reactions were confirmed by FTIR and 1 H NMR, obtaining a degree of substitution (DS) of 31% and 26% for Cs-Fu and Cs-AMI, respectively. The as-designed hydrogel was analyzed in terms of microstructure, swelling capacity and rheological behaviour. The hydrogel showed pH-sensitivity, biocompatibility and inhibitory bacterial activity, promising features for biomedical applications, particularly for targeted-drug delivery. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Cok, Keith E.
1989-01-01
The Orbital Maneuvering Vehicle (OMV) will be remotely piloted during rendezvous, docking, or proximity operations with target spacecraft from a ground control console (GCC). The real-time mission simulator and graphics being used to design a console pilot-machine interface are discussed. A real-time orbital dynamics simulator drives the visual displays. The dynamics simulator includes a J2 oblate earth gravity model and a generalized 1962 rotating atmospheric and drag model. The simulator also provides a variable-length communication delay to represent use of the Tracking and Data Relay Satellite System (TDRSS) and NASA Communications (NASCOM). Input parameter files determine the graphics display. This feature allows rapid prototyping since displays can be easily modified from pilot recommendations. A series of pilot reviews are being held to determine an effective pilot-machine interface. Pilots fly missions with nominal to 3-sigma dispersions in translational or rotational axes. Console dimensions, switch type and layout, hand controllers, and graphic interfaces are evaluated by the pilots and the GCC simulator is modified for subsequent runs. Initial results indicate a pilot preference for analog versus digital displays and for two 3-degree-of-freedom hand controllers.
Genetically engineered pigs as models for human disease
Perleberg, Carolin; Kind, Alexander
2018-01-01
ABSTRACT Genetically modified animals are vital for gaining a proper understanding of disease mechanisms. Mice have long been the mainstay of basic research into a wide variety of diseases but are not always the most suitable means of translating basic knowledge into clinical application. The shortcomings of rodent preclinical studies are widely recognised, and regulatory agencies around the world now require preclinical trial data from nonrodent species. Pigs are well suited to biomedical research, sharing many similarities with humans, including body size, anatomical features, physiology and pathophysiology, and they already play an important role in translational studies. This role is set to increase as advanced genetic techniques simplify the generation of pigs with precisely tailored modifications designed to replicate lesions responsible for human disease. This article provides an overview of the most promising and clinically relevant genetically modified porcine models of human disease for translational biomedical research, including cardiovascular diseases, cancers, diabetes mellitus, Alzheimer's disease, cystic fibrosis and Duchenne muscular dystrophy. We briefly summarise the technologies involved and consider the future impact of recent technical advances. PMID:29419487
Construction of an electrode modified with gallium(III) for voltammetric detection of ovalbumin.
Sugawara, Kazuharu; Okusawa, Makoto; Takano, Yusaku; Kadoya, Toshihiko
2014-01-01
Electrodes modified with gallium(III) complexes were constructed to detect ovalbumin (OVA). For immobilization of a gallium(III)-nitrilotriacetate (NTA) complex, the electrode was first covered with collagen film. After the amino groups of the film had reacted with isothiocyanobenzyl-NTA, the gallium(III) was then able to combine with the NTA moieties. Another design featured an electrode cast with a gallium(III)-acetylacetonate (AA) complex. The amount of gallium(III) in the NTA complex was equivalent to one-quarter of the gallium(III) that could be utilized from an AA complex. However, the calibration curves of OVA using gallium(III)-NTA and gallium(III)-AA complexes were linear in the ranges of 7.0 × 10(-11) - 3.0 × 10(-9) M and 5.0 × 10(-10) - 8.0 × 10(-9) M, respectively. The gallium(III) on the electrode with NTA complex had high flexibility due to the existence of a spacer between the NTA and the collagen film, and, therefore, the reactivity of the gallium(III) to OVA was superior to that of the gallium(III)-AA complex with no spacer.
Szatmari, I; Tókés, S; Dunn, C B; Bardos, T J; Aradi, J
2000-06-15
A polymerase chain reaction (PCR)-based radioactive telomerase assay was developed in our laboratory which is quantitative and does not require electrophoretic evaluation (designated as TP-TRAP; it utilizes two reverse primers). The main steps of the assay include (1) extension of a 20-mer oligonucleotide substrate (MTS) by telomerase, (2) amplification of the telomerase products in the presence of [(3)H]dTTP using the substrate oligonucleotide and two reverse primers (RPC3, 38 mer; RP, 20 mer), (3) isolation of the amplified radioactive dsDNA by precipitation and filtration, (4) determination of the radioactivity of the acid-insoluble DNA. The length of the telomerase products does not increase on amplification. This valuable feature of the assay is achieved by utilization of the two reverse primers and a highly specific PCR protocol. The assay is linear, accurate, and suitable for cell-biological studies where slight quantitative differences in telomerase activity must be detected. The assay is also suitable for screening and characterization of telomerase inhibitors, as shown with a chemically modified oligonucleotide reverse transcriptase inhibitor [(s(4)dU)(35)]. Copyright 2000 Academic Press.
Strenkowska, Malwina; Grzela, Renata; Majewski, Maciej; Wnek, Katarzyna; Kowalska, Joanna; Lukaszewicz, Maciej; Zuberek, Joanna; Darzynkiewicz, Edward; Kuhn, Andreas N.; Sahin, Ugur; Jemielity, Jacek
2016-01-01
Along with a growing interest in mRNA-based gene therapies, efforts are increasingly focused on reaching the full translational potential of mRNA, as a major obstacle for in vivo applications is sufficient expression of exogenously delivered mRNA. One method to overcome this limitation is chemically modifying the 7-methylguanosine cap at the 5′ end of mRNA (m7Gppp-RNA). We report a novel class of cap analogs designed as reagents for mRNA modification. The analogs carry a 1,2-dithiodiphosphate moiety at various positions along a tri- or tetraphosphate bridge, and thus are termed 2S analogs. These 2S analogs have high affinities for translation initiation factor 4E, and some exhibit remarkable resistance against the SpDcp1/2 decapping complex when introduced into RNA. mRNAs capped with 2S analogs combining these two features exhibit high translation efficiency in cultured human immature dendritic cells. These properties demonstrate that 2S analogs are potentially beneficial for mRNA-based therapies such as anti-cancer immunization. PMID:27903882
Advanced piloted aircraft flight control system design methodology. Volume 1: Knowledge base
NASA Technical Reports Server (NTRS)
Mcruer, Duane T.; Myers, Thomas T.
1988-01-01
The development of a comprehensive and electric methodology for conceptual and preliminary design of flight control systems is presented and illustrated. The methodology is focused on the design stages starting with the layout of system requirements and ending when some viable competing system architectures (feedback control structures) are defined. The approach is centered on the human pilot and the aircraft as both the sources of, and the keys to the solution of, many flight control problems. The methodology relies heavily on computational procedures which are highly interactive with the design engineer. To maximize effectiveness, these techniques, as selected and modified to be used together in the methodology, form a cadre of computational tools specifically tailored for integrated flight control system preliminary design purposes. While theory and associated computational means are an important aspect of the design methodology, the lore, knowledge and experience elements, which guide and govern applications are critical features. This material is presented as summary tables, outlines, recipes, empirical data, lists, etc., which encapsulate a great deal of expert knowledge. Much of this is presented in topical knowledge summaries which are attached as Supplements. The composite of the supplements and the main body elements constitutes a first cut at a a Mark 1 Knowledge Base for manned-aircraft flight control.
Improving mixing efficiency of a polymer micromixer by use of a plastic shim divider
NASA Astrophysics Data System (ADS)
Li, Lei; Lee, L. James; Castro, Jose M.; Yi, Allen Y.
2010-03-01
In this paper, a critical modification to a polymer based affordable split-and-recombination static micromixer is described. To evaluate the improvement, both the original and the modified design were carefully investigated using an experimental setup and numerical modeling approach. The structure of the micromixer was designed to take advantage of the process capabilities of both ultraprecision micromachining and microinjection molding process. Specifically, the original and the modified design were numerically simulated using commercial finite element method software ANSYS CFX to assist the re-designing of the micromixers. The simulation results have shown that both designs are capable of performing mixing while the modified design has a much improved performance. Mixing experiments with two different fluids were carried out using the original and the modified mixers again showed a significantly improved mixing uniformity by the latter. The measured mixing coefficient for the original design was 0.11, and for the improved design it was 0.065. The developed manufacturing process based on ultraprecision machining and microinjection molding processes for device fabrication has the advantage of high-dimensional precision, low cost and manufacturing flexibility.
A comparative study of two shovel designs.
Degani, A; Asfour, S S; Waly, S M; Koshy, J G
1993-10-01
In the present study a modified shovel design with two perpendicular shafts is presented. This modified, two-shaft shovel was compared with a regular shovel. The modified shovel was evaluated and tested in a controlled laboratory environment using surface electromyography recorded from the lumbar paraspinal muscles. The new shovel design was also tested in a field study using ratings of perceived exertion. The results indicate that there was a significant reduction in EMG values of the lumbar paraspinal muscles and a consistent reduction in perceived exertion ratings while the modified shovel was being used for removing dirt in digging trenches up to 90 cm in depth.
Molybdenum-99 production calculation analysis of SAMOP reactor based on thorium nitrate fuel
NASA Astrophysics Data System (ADS)
Syarip; Togatorop, E.; Yassar
2018-03-01
SAMOP (Subcritical Assembly for Molybdenum-99 Production) has the potential to use thorium as fuel to produce 99Mo after modifying the design, but the production performance has not been discovered yet. A study needs to be done to obtain the correlation between 99Mo production with the mixed fuel composition of uranium and with SAMOP power on the modified SAMOP design. The study aims to obtain the production of 99Mo based thorium nitrate fuel on SAMOP’s modified designs. Monte Carlo N-Particle eXtended (MCNPX) is required to simulate the operation of the assembly by varying the composition of the uranium-thorium nitrate mixed fuel, geometry and power fraction on the SAMOP modified designs. The burnup command on the MCNPX is used to confirm the 99Mo production result. The assembly is simulated to operate for 6 days with subcritical neutron multiplication factor (keff = 0.97-0.99). The neutron multiplication factor of the modified design (keff) is 0.97, the activity obtained from 99Mo is 18.58 Ci at 1 kW power operation.
Modifier genes in Mendelian disorders: the example of cystic fibrosis
Cutting, Garry R.
2011-01-01
In the past three decades, scientists have had immense success in identifying genes and their variants that contribute to an array of diseases. While the identification of such genetic variants has informed our knowledge of the etiologic bases of diseases, there continues to be a substantial gap in our understanding of the factors that modify disease severity. Monogenic diseases provide an opportunity to identify modifiers as they have uniform etiology, detailed phenotyping of affected individuals, and familial clustering. Cystic fibrosis (CF) is among the more common life-shortening recessive disorders that displays wide variability in clinical features and survival. Considerable progress has been made in elucidating the contribution of genetic and nongenetic factors to CF. Allelic variation in CFTR, the gene responsible for CF, correlates with some aspects of the disease. However, lung function, neonatal intestinal obstruction, diabetes, and anthropometry display strong genetic control independent of CFTR, and candidate gene studies have revealed genetic modifiers underlying these traits. The application of genome-wide techniques holds great promise for the identification of novel genetic variants responsible for the heritable features and complications of CF. Since the genetic modifiers are known to alter the course of disease, their protein products become immediate targets for therapeutic intervention. PMID:21175684
DOT National Transportation Integrated Search
2008-11-01
The Texas Department of Transportation (TxDOT) uses the modified triaxial design procedure to check : pavement designs from the flexible pavement system program. Since its original development more than : 50 years ago, little modification has been ma...
Coupling Network Computing Applications in Air-cooled Turbine Blades Optimization
NASA Astrophysics Data System (ADS)
Shi, Liang; Yan, Peigang; Xie, Ming; Han, Wanjin
2018-05-01
Through establishing control parameters from blade outside to inside, the parametric design of air-cooled turbine blade based on airfoil has been implemented. On the basis of fast updating structure features and generating solid model, a complex cooling system has been created. Different flow units are modeled into a complex network topology with parallel and serial connection. Applying one-dimensional flow theory, programs have been composed to get pipeline network physical quantities along flow path, including flow rate, pressure, temperature and other parameters. These inner units parameters set as inner boundary conditions for external flow field calculation program HIT-3D by interpolation, thus to achieve full field thermal coupling simulation. Referring the studies in literatures to verify the effectiveness of pipeline network program and coupling algorithm. After that, on the basis of a modified design, and with the help of iSIGHT-FD, an optimization platform had been established. Through MIGA mechanism, the target of enhancing cooling efficiency has been reached, and the thermal stress has been effectively reduced. Research work in this paper has significance for rapid deploying the cooling structure design.
Xie, Qiong; Zheng, Zhaoxi; Shao, Biyun; Fu, Wei; Xia, Zheng; Li, Wei; Sun, Jian; Zheng, Wei; Zhang, Weiwei; Sheng, Wei; Zhang, Qihong; Chen, Hongzhuan; Wang, Hao; Qiu, Zhuibai
2017-12-01
Multifunctional carbamate-type acetylcholinesterase (AChE) inhibitors with anti-amyloidogenic properties like phenserine are potential therapeutic agents for Alzheimer's disease (AD). We reported here the design of new carbamates using pharmacophore model strategy to modulate both cholinesterase and amyloidogenesis. A five-feature pharmacophore model was generated based on 25 carbamate-type training set compounds. (-)-Meptazinol carbamates that superimposed well upon the model were designed and synthesized, which exhibited nanomolar AChE inhibitory potency and good anti-amyloidogenic properties in in vitro test. The phenylcarbamate 43 was highly potent (IC 50 31.6 nM) and slightly selective for AChE, and showed low acute toxicity. In enzyme kinetics assay, 43 exhibited uncompetitive inhibition and reacted by pseudo-irreversible mechanism. 43 also showed amyloid-β (Aβ) lowering effects (51.9% decrease of Aβ 42 ) superior to phenserine (31% decrease of total Aβ) in SH-SY5Y-APP 695 cells at 50 µM. The dual actions of 43 on cholinergic and amyloidogenic pathways indicated potential uses as symptomatic and disease-modifying agents.
NASA Astrophysics Data System (ADS)
Nuthanakanti, Ashok; Srivatsan, Seergazhi G.
2016-02-01
Exquisite recognition and folding properties have rendered nucleic acids as useful supramolecular synthons for the construction of programmable architectures. Despite their proven applications in nanotechnology, scalability and fabrication of nucleic acid nanostructures still remain a challenge. Here, we describe a novel design strategy to construct new supramolecular nucleolipid synthons by using environmentally-sensitive fluorescent nucleoside analogs, based on 5-(benzofuran-2-yl)uracil and 5-(benzo[b]thiophen-2-yl)uracil cores, as the head group and fatty acids, attached to the ribose sugar, as the lipophilic group. These modified nucleoside-lipid hybrids formed organogels driven by hierarchical structures such as fibers, twisted ribbons, helical ribbons and nanotubes, which depended on the nature of fatty acid chain and nucleobase modification. NMR, single crystal X-ray and powder X-ray diffraction studies revealed the coordinated interplay of various non-covalent interactions invoked by modified nucleobase, sugar and fatty acid chains in setting up the pathway for the gelation process. Importantly, these nucleolipid gels retained or displayed aggregation-induced enhanced emission and their gelation behavior and photophysical properties could be reversibly switched by external stimuli such as temperature, ultrasound and chemicals. Furthermore, the switchable nature of nucleolipid gels to chemical stimuli enabled the selective two channel recognition of fluoride and Hg2+ ions through visual phase transition and fluorescence change. Fluorescent organogels exhibiting such a combination of useful features is rare, and hence, we expect that this innovative design of fluorescent nucleolipid supramolecular synthons could lead to the emergence of a new family of smart optical materials and probes.Exquisite recognition and folding properties have rendered nucleic acids as useful supramolecular synthons for the construction of programmable architectures. Despite their proven applications in nanotechnology, scalability and fabrication of nucleic acid nanostructures still remain a challenge. Here, we describe a novel design strategy to construct new supramolecular nucleolipid synthons by using environmentally-sensitive fluorescent nucleoside analogs, based on 5-(benzofuran-2-yl)uracil and 5-(benzo[b]thiophen-2-yl)uracil cores, as the head group and fatty acids, attached to the ribose sugar, as the lipophilic group. These modified nucleoside-lipid hybrids formed organogels driven by hierarchical structures such as fibers, twisted ribbons, helical ribbons and nanotubes, which depended on the nature of fatty acid chain and nucleobase modification. NMR, single crystal X-ray and powder X-ray diffraction studies revealed the coordinated interplay of various non-covalent interactions invoked by modified nucleobase, sugar and fatty acid chains in setting up the pathway for the gelation process. Importantly, these nucleolipid gels retained or displayed aggregation-induced enhanced emission and their gelation behavior and photophysical properties could be reversibly switched by external stimuli such as temperature, ultrasound and chemicals. Furthermore, the switchable nature of nucleolipid gels to chemical stimuli enabled the selective two channel recognition of fluoride and Hg2+ ions through visual phase transition and fluorescence change. Fluorescent organogels exhibiting such a combination of useful features is rare, and hence, we expect that this innovative design of fluorescent nucleolipid supramolecular synthons could lead to the emergence of a new family of smart optical materials and probes. Electronic supplementary information (ESI) available: Supplementary figures, tables, experimental procedures, crystallography data and NMR spectra. See DOI: 10.1039/c5nr07490h
NASA Astrophysics Data System (ADS)
Li, Yongbo; Li, Guoyan; Yang, Yuantao; Liang, Xihui; Xu, Minqiang
2018-05-01
The fault diagnosis of planetary gearboxes is crucial to reduce the maintenance costs and economic losses. This paper proposes a novel fault diagnosis method based on adaptive multi-scale morphological filter (AMMF) and modified hierarchical permutation entropy (MHPE) to identify the different health conditions of planetary gearboxes. In this method, AMMF is firstly adopted to remove the fault-unrelated components and enhance the fault characteristics. Second, MHPE is utilized to extract the fault features from the denoised vibration signals. Third, Laplacian score (LS) approach is employed to refine the fault features. In the end, the obtained features are fed into the binary tree support vector machine (BT-SVM) to accomplish the fault pattern identification. The proposed method is numerically and experimentally demonstrated to be able to recognize the different fault categories of planetary gearboxes.
Learning representative features for facial images based on a modified principal component analysis
NASA Astrophysics Data System (ADS)
Averkin, Anton; Potapov, Alexey
2013-05-01
The paper is devoted to facial image analysis and particularly deals with the problem of automatic evaluation of the attractiveness of human faces. We propose a new approach for automatic construction of feature space based on a modified principal component analysis. Input data sets for the algorithm are the learning data sets of facial images, which are rated by one person. The proposed approach allows one to extract features of the individual subjective face beauty perception and to predict attractiveness values for new facial images, which were not included into a learning data set. The Pearson correlation coefficient between values predicted by our method for new facial images and personal attractiveness estimation values equals to 0.89. This means that the new approach proposed is promising and can be used for predicting subjective face attractiveness values in real systems of the facial images analysis.
NASA Astrophysics Data System (ADS)
Li, Yongbo; Yang, Yuantao; Li, Guoyan; Xu, Minqiang; Huang, Wenhu
2017-07-01
Health condition identification of planetary gearboxes is crucial to reduce the downtime and maximize productivity. This paper aims to develop a novel fault diagnosis method based on modified multi-scale symbolic dynamic entropy (MMSDE) and minimum redundancy maximum relevance (mRMR) to identify the different health conditions of planetary gearbox. MMSDE is proposed to quantify the regularity of time series, which can assess the dynamical characteristics over a range of scales. MMSDE has obvious advantages in the detection of dynamical changes and computation efficiency. Then, the mRMR approach is introduced to refine the fault features. Lastly, the obtained new features are fed into the least square support vector machine (LSSVM) to complete the fault pattern identification. The proposed method is numerically and experimentally demonstrated to be able to recognize the different fault types of planetary gearboxes.
Identification of a motor to auditory pathway important for vocal learning
Roberts, Todd F.; Hisey, Erin; Tanaka, Masashi; Kearney, Matthew; Chattree, Gaurav; Yang, Cindy F.; Shah, Nirao M.; Mooney, Richard
2017-01-01
Summary Learning to vocalize depends on the ability to adaptively modify the temporal and spectral features of vocal elements. Neurons that convey motor-related signals to the auditory system are theorized to facilitate vocal learning, but the identity and function of such neurons remain unknown. Here we identify a previously unknown neuron type in the songbird brain that transmits vocal motor signals to the auditory cortex. Genetically ablating these neurons in juveniles disrupted their ability to imitate features of an adult tutor’s song. Ablating these neurons in adults had little effect on previously learned songs, but interfered with their ability to adaptively modify the duration of vocal elements and largely prevented the degradation of song’s temporal features normally caused by deafening. These findings identify a motor to auditory circuit essential to vocal imitation and to the adaptive modification of vocal timing. PMID:28504672
Bacteriophage lambda: The path from biology to theranostic agent.
Catalano, Carlos E
2018-03-13
Viral particles provide an attractive platform for the engineering of semisynthetic therapeutic nanoparticles. They can be modified both genetically and chemically in a defined manner to alter their surface characteristics, for targeting specific cell types, to improve their pharmacokinetic features and to attenuate (or enhance) their antigenicity. These advantages derive from a detailed understanding of virus biology, gleaned from decades of fundamental genetic, biochemical, and structural studies that have provided mechanistic insight into virus assembly pathways. In particular, bacteriophages offer significant advantages as nanoparticle platforms and several have been adapted toward the design and engineering of "designer" nanoparticles for therapeutic and diagnostic (theranostic) applications. The present review focuses on one such virus, bacteriophage lambda; I discuss the biology of lambda, the tools developed to faithfully recapitulate the lambda assembly reactions in vitro and the observations that have led to cooptation of the lambda system for nanoparticle design. This discussion illustrates how a fundamental understanding of virus assembly has allowed the rational design and construction of semisynthetic nanoparticles as potential theranostic agents and illustrates the concept of benchtop to bedside translational research. This article is categorized under: Biology-Inspired Nanomaterials> Protein and Virus-Based Structures Biology-Inspired Nanomaterials> Nucleic Acid-Based Structures. © 2018 Wiley Periodicals, Inc.
Computerized structural mechanics for 1990's: Advanced aircraft needs
NASA Technical Reports Server (NTRS)
Viswanathan, A. V.; Backman, B. F.
1989-01-01
The needs for computerized structural mechanics (CSM) as seen from the standpoint of the aircraft industry are discussed. These needs are projected into the 1990's with special focus on the new advanced materials. Preliminary design/analysis, research, and detail design/analysis are identified as major areas. The role of local/global analyses in these different areas is discussed. The lessons learned in the past are used as a basis for the design of a CSM framework that could modify and consolidate existing technology and include future developments in a rational and useful way. A philosophy is stated, and a set of analyses needs driven by the emerging advanced composites is enumerated. The roles of NASA, the universities, and the industry are identified. Finally, a set of rational research targets is recommended based on both the new types of computers and the increased complexity the industry faces. Computerized structural mechanics should be more than new methods in structural mechanics and numerical analyses. It should be a set of engineering applications software products that combines innovations in structural mechanics, numerical analysis, data processing, search and display features, and recent hardware advances and is organized in a framework that directly supports the design process.
Silk-based delivery systems of bioactive molecules
Numata, Keiji; Kaplan, David L
2010-01-01
Silks are biodegradable, biocompatible, self-assemblying proteins that can also be tailored via genetic engineering to contain specific chemical features, offering utility for drug and gene delivery. Silkworm silk has been used in biomedical sutures for decades and has recently achieved Food and Drug Administration approval for expanded biomaterials device utility. With the diversity and control of size, structure and chemistry, modified or recombinant silk proteins can be designed and utilized in various biomedical application, such as for the delivery of bioactive molecules. This review focuses on the biosynthesis and applications of silk-based multi-block copolymer systems and related silk protein drug delivery systems. The utility of these systems for the delivery of small molecule drugs, proteins and genes are reviewed. PMID:20298729
Geometry modeling and multi-block grid generation for turbomachinery configurations
NASA Technical Reports Server (NTRS)
Shih, Ming H.; Soni, Bharat K.
1992-01-01
An interactive 3D grid generation code, Turbomachinery Interactive Grid genERation (TIGER), was developed for general turbomachinery configurations. TIGER features the automatic generation of multi-block structured grids around multiple blade rows for either internal, external, or internal-external turbomachinery flow fields. Utilization of the Bezier's curves achieves a smooth grid and better orthogonality. TIGER generates the algebraic grid automatically based on geometric information provided by its built-in pseudo-AI algorithm. However, due to the large variation of turbomachinery configurations, this initial grid may not always be as good as desired. TIGER therefore provides graphical user interactions during the process which allow the user to design, modify, as well as manipulate the grid, including the capability of elliptic surface grid generation.
The Spring of Systems Biology-Driven Breeding.
Lavarenne, Jérémy; Guyomarc'h, Soazig; Sallaud, Christophe; Gantet, Pascal; Lucas, Mikaël
2018-05-12
Genetics and molecular biology have contributed to the development of rationalized plant breeding programs. Recent developments in both high-throughput experimental analyses of biological systems and in silico data processing offer the possibility to address the whole gene regulatory network (GRN) controlling a given trait. GRN models can be applied to identify topological features helping to shortlist potential candidate genes for breeding purposes. Time-series data sets can be used to support dynamic modelling of the network. This will enable a deeper comprehension of network behaviour and the identification of the few elements to be genetically rewired to push the system towards a modified phenotype of interest. This paves the way to design more efficient, systems biology-based breeding strategies. Copyright © 2018 Elsevier Ltd. All rights reserved.
TIGGERC: Turbomachinery Interactive Grid Generator for 2-D Grid Applications and Users Guide
NASA Technical Reports Server (NTRS)
Miller, David P.
1994-01-01
A two-dimensional multi-block grid generator has been developed for a new design and analysis system for studying multiple blade-row turbomachinery problems. TIGGERC is a mouse driven, interactive grid generation program which can be used to modify boundary coordinates and grid packing and generates surface grids using a hyperbolic tangent or algebraic distribution of grid points on the block boundaries. The interior points of each block grid are distributed using a transfinite interpolation approach. TIGGERC can generate a blocked axisymmetric H-grid, C-grid, I-grid or O-grid for studying turbomachinery flow problems. TIGGERC was developed for operation on Silicon Graphics workstations. Detailed discussion of the grid generation methodology, menu options, operational features and sample grid geometries are presented.
Ensemble training to improve recognition using 2D ear
NASA Astrophysics Data System (ADS)
Middendorff, Christopher; Bowyer, Kevin W.
2009-05-01
The ear has gained popularity as a biometric feature due to the robustness of the shape over time and across emotional expression. Popular methods of ear biometrics analyze the ear as a whole, leaving these methods vulnerable to error due to occlusion. Many researchers explore ear recognition using an ensemble, but none present a method for designing the individual parts that comprise the ensemble. In this work, we introduce a method of modifying the ensemble shapes to improve performance. We determine how different properties of an ensemble training system can affect overall performance. We show that ensembles built from small parts will outperform ensembles built with larger parts, and that incorporating a large number of parts improves the performance of the ensemble.
Electrochemical sensing of heavy metal ions with inorganic, organic and bio-materials.
Cui, Lin; Wu, Jie; Ju, Huangxian
2015-01-15
As heavy metal ions severely harm human health, it is important to develop simple, sensitive and accurate methods for their detection in environment and food. Electrochemical detection featured with short analytical time, low power cost, high sensitivity and easy adaptability for in-situ measurement is one of the most developed methods. This review introduces briefly the recent achievements in electrochemical sensing of heavy metal ions with inorganic, organic and bio-materials modified electrodes. In particular, the unique properties of inorganic nanomaterials, organic small molecules or their polymers, enzymes and nucleic acids for detection of heavy metal ions are highlighted. By employing some representative examples, the design and sensing mechanisms of these electrodes are discussed. Copyright © 2014 Elsevier B.V. All rights reserved.
Anisotropic thermal conductivity of thin polycrystalline oxide samples
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tiwari, A., E-mail: abhishektiwariiitr@gmail.com; Department of Mechanical and Aerospace Engineering, Monash University, Melbourne, VIC 3800; Boussois, K.
2013-11-15
This paper reports about the development of a modified laser-flash technique and relation to measure the in-plane thermal diffusivity of thin polycrystalline oxide samples. Thermal conductivity is then calculated with the product of diffusivity, specific heat and density. Design and operating features for evaluating in-plane thermal conductivities are described. The technique is advantageous as thin samples are not glued together to measure in-plane thermal conductivities like earlier methods reported in literature. The approach was employed to study anisotropic thermal conductivity in alumina sheet, textured kaolin ceramics and montmorillonite. Since it is rare to find in-plane thermal conductivity values for suchmore » anisotropic thin samples in literature, this technique offers a useful variant to existing techniques.« less
Development of a ground signal processor for digital synthetic array radar data
NASA Technical Reports Server (NTRS)
Griffin, C. R.; Estes, J. M.
1981-01-01
A modified APQ-102 sidelooking array radar (SLAR) in a B-57 aircraft test bed is used, with other optical and infrared sensors, in remote sensing of Earth surface features for various users at NASA Johnson Space Center. The video from the radar is normally recorded on photographic film and subsequently processed photographically into high resolution radar images. Using a high speed sampling (digitizing) system, the two receiver channels of cross-and co-polarized video are recorded on wideband magnetic tape along with radar and platform parameters. These data are subsequently reformatted and processed into digital synthetic aperture radar images with the image data available on magnetic tape for subsequent analysis by investigators. The system design and results obtained are described.
A classification of morphoseismic features in the New Madrid seismic zone
DOE Office of Scientific and Technical Information (OSTI.GOV)
Knox, R.; Stewart, D.
1993-03-01
The New Madrid Seismic Zone (NMSZ) contains thousands of surface features distributed over 5,000 square miles in four states. These are attributable to some combination of (1) seismically-induced liquefaction (SIL), (2) secondary deformation, and (3) seismically-induced slope failures. Most of these features were produced by the 1811--12 series of great earthquakes, but some predate and some postdate 1811--12. Subsequent non-seismic factors, such as hydrologically-induced liquefaction (HIL), mechanically-induced liquefaction (MIL), human activities, mass wasting, eolian and fluvial processes have modified all of these features. Morphoseismic features are new landforms produced by earthquakes, or are pre-existing landforms modified by them. Involved aremore » complex interrelationships among several variables, including: (1) intensity and duration of seismic ground motion, (2) surface wave harmonics, (3) depth to water table, (4) depth to basement, (5) particle size, composition, and sorting of sediment making up the liquefied (LZ) and non-liquefied zones (NLZ), (6) topographic parameters, and (7) attitudes of beds and lenses susceptible to liquefaction. Morphoseismic features are depicted as results of a time-flow sequence initiated by primary basement disturbances which produce three major categories of surface response: secondary deformation, liquefaction and slope failure. Nine subcategories incorporate features produced by or resulting in: extruded sand, intruded sand, lateral spreading, faulting, subsidence of large areas, uplift of large areas, altered streams, coherent landslides, and incoherent landslides. The total morphoseismic features identified by this classification are 34 in number.« less
Turbulent Boundary Layer Flow over Superhydrophobic Surfaces
2013-05-10
DATES COVERED (From - To) 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Turbulent Boundary Layer Flow over Superhydrophobic ...modified surfaces. This study encompassed the testing of four different surfaces: 1) Teflon SLIP, 2) Aluminum SLIP, 3) Honeycomb Superhydrophobic and 4...Polydimethylsiloxane elastomer (PDMSe) Superhydrophobic . Each of these surfaces uses specific geometrical surface features to modify the original
A scale space feature based registration technique for fusion of satellite imagery
NASA Technical Reports Server (NTRS)
Raghavan, Srini; Cromp, Robert F.; Campbell, William C.
1997-01-01
Feature based registration is one of the most reliable methods to register multi-sensor images (both active and passive imagery) since features are often more reliable than intensity or radiometric values. The only situation where a feature based approach will fail is when the scene is completely homogenous or densely textural in which case a combination of feature and intensity based methods may yield better results. In this paper, we present some preliminary results of testing our scale space feature based registration technique, a modified version of feature based method developed earlier for classification of multi-sensor imagery. The proposed approach removes the sensitivity in parameter selection experienced in the earlier version as explained later.
Wu, Wenting; Bot, Brian; Hu, Yan; Geyer, Susan M; Sargent, Daniel J
2013-07-01
Sargent and Goldberg [1] proposed a randomized phase II flexible screening design (SG design) which took multiple characteristics of candidate regimens into consideration in selecting a regimen for further phase III testing. In this paper, we extend the SG design by including provisions for an interim analysis and/or a comparison to a historical control. By including a comparison with a historical control, a modified SG design not only identifies a more promising treatment but also assures that the regimen has a clinically meaningful level of efficacy as compared to a historical control. By including an interim analysis, a modified SG design could reduce the number of patients exposed to inferior treatment regimens. When compared to the original SG design, the modified designs increase the sample size moderately, but expand the utility of the flexible screening design substantially. Copyright © 2013 Elsevier Inc. All rights reserved.
A novel continuous toxicity test system using a luminously modified freshwater bacterium.
Cho, Jang-Cheon; Park, Kyung-Je; Ihm, Hyuk-Soon; Park, Ji-Eun; Kim, Se-Young; Kang, Ilnam; Lee, Kyu-Ho; Jahng, Deokjin; Lee, Dong-Hun; Kim, Sang-Jong
2004-09-15
An automated continuous toxicity test system was developed using a recombinant bioluminescent freshwater bacterium. The groundwater-borne bacterium, Janthinobacterium lividum YH9-RC, was modified with luxAB and optimized for toxicity tests using different kinds of organic carbon compounds and heavy metals. luxAB-marked YH9-RC cells were much more sensitive (average 7.3-8.6 times) to chemicals used for toxicity detection than marine Vibrio fischeri cells used in the Microtox assay. Toxicity tests for wastewater samples using the YH9-RC-based toxicity assay showed that EC50-5 min values in an untreated raw wastewater sample (23.9 +/- 12.8%) were the lowest, while those in an effluent sample (76.7 +/- 14.9%) were the highest. Lyophilization conditions were optimized in 384-multiwell plates containing bioluminescent bacteria that were pre-incubated for 15 min in 0.16 M of trehalose prior to freeze-drying, increasing the recovery of bioluminescence and viability by 50%. Luminously modified cells exposed to continuous phenol or wastewater stream showed a rapid decrease in bioluminescence, which fell below detectable range within 1 min. An advanced toxicity test system, featuring automated real-time toxicity monitoring and alerting functions, was designed and finely tuned. This novel continuous toxicity test system can be used for real-time biomonitoring of water toxicity, and can potentially be used as a biological early warning system.
Melnikov, Sergey V.; Söll, Dieter; Steitz, Thomas A.
2016-01-01
Abstract Cisplatin is a widely prescribed anticancer drug, which triggers cell death by covalent binding to a broad range of biological molecules. Among cisplatin targets, cellular RNAs remain the most poorly characterized molecules. Although cisplatin was shown to inactivate essential RNAs, including ribosomal, spliceosomal and telomeric RNAs, cisplatin binding sites in most RNA molecules are unknown, and therefore it remains challenging to study how modifications of RNA by cisplatin contributes to its toxicity. Here we report a 2.6Å-resolution X-ray structure of cisplatin-modified 70S ribosome, which describes cisplatin binding to the ribosome and provides the first nearly atomic model of cisplatin–RNA complex. We observe nine cisplatin molecules bound to the ribosome and reveal consensus structural features of the cisplatin-binding sites. Two of the cisplatin molecules modify conserved functional centers of the ribosome—the mRNA-channel and the GTPase center. In the mRNA-channel, cisplatin intercalates between the ribosome and the messenger RNA, suggesting that the observed inhibition of protein synthesis by cisplatin is caused by impaired mRNA-translocation. Our structure provides an insight into RNA targeting and inhibition by cisplatin, which can help predict cisplatin-binding sites in other cellular RNAs and design studies to elucidate a link between RNA modifications by cisplatin and cisplatin toxicity. PMID:27079977
Infrared video based gas leak detection method using modified FAST features
NASA Astrophysics Data System (ADS)
Wang, Min; Hong, Hanyu; Huang, Likun
2018-03-01
In order to detect the invisible leaking gas that is usually dangerous and easily leads to fire or explosion in time, many new technologies have arisen in the recent years, among which the infrared video based gas leak detection is widely recognized as a viable tool. However, all the moving regions of a video frame can be detected as leaking gas regions by the existing infrared video based gas leak detection methods, without discriminating the property of each detected region, e.g., a walking person in a video frame may be also detected as gas by the current gas leak detection methods.To solve this problem, we propose a novel infrared video based gas leak detection method in this paper, which is able to effectively suppress strong motion disturbances.Firstly, the Gaussian mixture model(GMM) is used to establish the background model.Then due to the observation that the shapes of gas regions are different from most rigid moving objects, we modify the Features From Accelerated Segment Test (FAST) algorithm and use the modified FAST (mFAST) features to describe each connected component. In view of the fact that the statistical property of the mFAST features extracted from gas regions is different from that of other motion regions, we propose the Pixel-Per-Points (PPP) condition to further select candidate connected components.Experimental results show that the algorithm is able to effectively suppress most strong motion disturbances and achieve real-time leaking gas detection.
Chatterjee, Sankhadeep; Dey, Nilanjan; Shi, Fuqian; Ashour, Amira S; Fong, Simon James; Sen, Soumya
2018-04-01
Dengue fever detection and classification have a vital role due to the recent outbreaks of different kinds of dengue fever. Recently, the advancement in the microarray technology can be employed for such classification process. Several studies have established that the gene selection phase takes a significant role in the classifier performance. Subsequently, the current study focused on detecting two different variations, namely, dengue fever (DF) and dengue hemorrhagic fever (DHF). A modified bag-of-features method has been proposed to select the most promising genes in the classification process. Afterward, a modified cuckoo search optimization algorithm has been engaged to support the artificial neural (ANN-MCS) to classify the unknown subjects into three different classes namely, DF, DHF, and another class containing convalescent and normal cases. The proposed method has been compared with other three well-known classifiers, namely, multilayer perceptron feed-forward network (MLP-FFN), artificial neural network (ANN) trained with cuckoo search (ANN-CS), and ANN trained with PSO (ANN-PSO). Experiments have been carried out with different number of clusters for the initial bag-of-features-based feature selection phase. After obtaining the reduced dataset, the hybrid ANN-MCS model has been employed for the classification process. The results have been compared in terms of the confusion matrix-based performance measuring metrics. The experimental results indicated a highly statistically significant improvement with the proposed classifier over the traditional ANN-CS model.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peeters, Stephanie; Hoogeman, Mischa S.; Heemsbergen, Wilma D.
2006-09-01
Purpose: To analyze whether inclusion of predisposing clinical features in the Lyman-Kutcher-Burman (LKB) normal tissue complication probability (NTCP) model improves the estimation of late gastrointestinal toxicity. Methods and Materials: This study includes 468 prostate cancer patients participating in a randomized trial comparing 68 with 78 Gy. We fitted the probability of developing late toxicity within 3 years (rectal bleeding, high stool frequency, and fecal incontinence) with the original, and a modified LKB model, in which a clinical feature (e.g., history of abdominal surgery) was taken into account by fitting subset specific TD50s. The ratio of these TD50s is the dose-modifyingmore » factor for that clinical feature. Dose distributions of anorectal (bleeding and frequency) and anal wall (fecal incontinence) were used. Results: The modified LKB model gave significantly better fits than the original LKB model. Patients with a history of abdominal surgery had a lower tolerance to radiation than did patients without previous surgery, with a dose-modifying factor of 1.1 for bleeding and of 2.5 for fecal incontinence. The dose-response curve for bleeding was approximately two times steeper than that for frequency and three times steeper than that for fecal incontinence. Conclusions: Inclusion of predisposing clinical features significantly improved the estimation of the NTCP. For patients with a history of abdominal surgery, more severe dose constraints should therefore be used during treatment plan optimization.« less
Peer-Based Social Media Features in Behavior Change Interventions: Systematic Review.
Elaheebocus, Sheik Mohammad Roushdat Ally; Weal, Mark; Morrison, Leanne; Yardley, Lucy
2018-02-22
Incorporating social media features into digital behavior change interventions (DBCIs) has the potential to contribute positively to their success. However, the lack of clear design principles to describe and guide the use of these features in behavioral interventions limits cross-study comparisons of their uses and effects. The aim of this study was to provide a systematic review of DBCIs targeting modifiable behavioral risk factors that have included social media features as part of their intervention infrastructure. A taxonomy of social media features is presented to inform the development, description, and evaluation of behavioral interventions. Search terms were used in 8 databases to identify DBCIs that incorporated social media features and targeted tobacco smoking, diet and nutrition, physical activities, or alcohol consumption. The screening and review process was performed by 2 independent researchers. A total of 5264 articles were screened, and 143 articles describing a total of 134 studies were retained for full review. The majority of studies (70%) reported positive outcomes, followed by 28% finding no effects with regard to their respective objectives and hypothesis, and 2% of the studies found that their interventions had negative outcomes. Few studies reported on the association between the inclusion of social media features and intervention effect. A taxonomy of social media features used in behavioral interventions has been presented with 36 social media features organized under 7 high-level categories. The taxonomy has been used to guide the analysis of this review. Although social media features are commonly included in DBCIs, there is an acute lack of information with respect to their effect on outcomes and a lack of clear guidance to inform the selection process based on the features' suitability for the different behaviors. The proposed taxonomy along with the set of recommendations included in this review will support future research aimed at isolating and reporting the effects of social media features on DBCIs, cross-study comparisons, and evaluations. ©Sheik Mohammad Roushdat Ally Elaheebocus, Mark Weal, Leanne Morrison, Lucy Yardley. Originally published in the Journal of Medical Internet Research (http://www.jmir.org), 22.02.2018.
Development and in vivo evaluation of self-microemulsion as delivery system for α-mangostin.
Xu, Wen-Ke; Jiang, Hui; Yang, Kui; Wang, Ya-Qin; Zhang, Qian; Zuo, Jian
2017-03-01
α-Mangostin (MG) is a versatile bioactive compound isolated from mangosteen and possesses significant pharmacokinetic shortages. To augment the potential clinical efficacy, MG-loaded self-microemulsion (MG-SME) was designed and prepared in this study, and its potential as a drug loading system was evaluated based on the pharmacokinetic performance and tissue distribution feature. The formula of MG-SME was optimized by an orthogonal test under the guidance of ternary phase diagram, and the prepared MG-SME was characterized by encapsulation efficiency, size distribution, and morphology. Optimized high performance liquid chromatography method was employed to determine concentrations of MG and characterize the pharmacokinetic and tissue distribution features of MG in rodents. It was found that diluted MG-SME was characterized as spherical particles with a mean diameter of 24.6 nm and an encapsulation efficiency of 87.26%. The delivery system enhanced the area under the curve of MG by 4.75 times and increased the distribution in lymphatic organs. These findings suggested that SME as a nano-sized delivery system efficiently promoted the digestive tract absorption of MG and modified its distribution in tissues. The targeting feature and high oral bioavailability of MG-SME promised a good clinical efficacy, especially for immune diseases. Copyright © 2017. Published by Elsevier Taiwan.
Prediction of subjective ratings of emotional pictures by EEG features
NASA Astrophysics Data System (ADS)
McFarland, Dennis J.; Parvaz, Muhammad A.; Sarnacki, William A.; Goldstein, Rita Z.; Wolpaw, Jonathan R.
2017-02-01
Objective. Emotion dysregulation is an important aspect of many psychiatric disorders. Brain-computer interface (BCI) technology could be a powerful new approach to facilitating therapeutic self-regulation of emotions. One possible BCI method would be to provide stimulus-specific feedback based on subject-specific electroencephalographic (EEG) responses to emotion-eliciting stimuli. Approach. To assess the feasibility of this approach, we studied the relationships between emotional valence/arousal and three EEG features: amplitude of alpha activity over frontal cortex; amplitude of theta activity over frontal midline cortex; and the late positive potential over central and posterior mid-line areas. For each feature, we evaluated its ability to predict emotional valence/arousal on both an individual and a group basis. Twenty healthy participants (9 men, 11 women; ages 22-68) rated each of 192 pictures from the IAPS collection in terms of valence and arousal twice (96 pictures on each of 4 d over 2 weeks). EEG was collected simultaneously and used to develop models based on canonical correlation to predict subject-specific single-trial ratings. Separate models were evaluated for the three EEG features: frontal alpha activity; frontal midline theta; and the late positive potential. In each case, these features were used to simultaneously predict both the normed ratings and the subject-specific ratings. Main results. Models using each of the three EEG features with data from individual subjects were generally successful at predicting subjective ratings on training data, but generalization to test data was less successful. Sparse models performed better than models without regularization. Significance. The results suggest that the frontal midline theta is a better candidate than frontal alpha activity or the late positive potential for use in a BCI-based paradigm designed to modify emotional reactions.
Designing action games for appealing to buyers.
Hsu, Shang Hwa; Lee, Feng-Liang; Wu, Muh-Cherng
2005-12-01
This study aims to identify design features for action games that would appeal to game-buyers, rather than game-players. Sixteen frequent-buyers of computer games identified 39 design features that appeal to buyers by contrasting different versions of Pacman games. Twenty-eight versions of Pacman were then evaluated in terms of the identified design features by 45 participants (27 male and 18 female college students). Qnet2000 neural network software was used to determine the relative importance of these design features. The results indicated that the top 10 most important design features could account for more than 50% of "perceived fun" among these 39 design features. The feature of avatar is important to game-buyers, yet not revealed in previous player-oriented studies. Moreover, six design factors underlying the 39 features were identified through factor analysis. These factors included "novelty and powerfulness," "appealing presentation," "interactivity," "challenging," "sense of control," and "rewarding," and could account for 54% of total variance. Among these six factors, appealing presentation has not been emphasized by player-oriented research. Implications of the findings were discussed.
Optical character recognition with feature extraction and associative memory matrix
NASA Astrophysics Data System (ADS)
Sasaki, Osami; Shibahara, Akihito; Suzuki, Takamasa
1998-06-01
A method is proposed in which handwritten characters are recognized using feature extraction and an associative memory matrix. In feature extraction, simple processes such as shifting and superimposing patterns are executed. A memory matrix is generated with singular value decomposition and by modifying small singular values. The method is optically implemented with two liquid crystal displays. Experimental results for the recognition of 25 handwritten alphabet characters clearly shows the effectiveness of the method.
Modification of spectral features by nonhuman primates
Weiss, Daniel J.; Hotchkin, Cara F.; Parks, Susan E.
2017-01-01
Ackermann et al. discuss the lack of evidence for vocal control in nonhuman primates. We suggest that nonhuman primates may be capable of achieving greater vocal control than previously supposed. In support of this assertion, we discuss new evidence that nonhuman primates are capable of modifying spectral features in their vocalizations. PMID:25514964
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-21
... new relays having a GFI feature, performing certain bonding resistance measurements, and modifying... with new relays having a GFI feature, Doing certain bonding resistance measurements to verify certain... relay module assemblies and bond resistance measurements. In addition, we have reviewed Section 9 of...
Differential memory in the earth's magnetotail
NASA Technical Reports Server (NTRS)
Burkhart, G. R.; Chen, J.
1991-01-01
The process of 'differential memory' in the earth's magnetotail is studied in the framework of the modified Harris magnetotail geometry. It is verified that differential memory can generate non-Maxwellian features in the modified Harris field model. The time scales and the potentially observable distribution functions associated with the process of differential memory are investigated, and it is shown that non-Maxwelllian distributions can evolve as a test particle response to distribution function boundary conditions in a Harris field magnetotail model. The non-Maxwellian features which arise from distribution function mapping have definite time scales associated with them, which are generally shorter than the earthward convection time scale but longer than the typical Alfven crossing time.
Protein classification using modified n-grams and skip-grams.
Islam, S M Ashiqul; Heil, Benjamin J; Kearney, Christopher Michel; Baker, Erich J
2018-05-01
Classification by supervised machine learning greatly facilitates the annotation of protein characteristics from their primary sequence. However, the feature generation step in this process requires detailed knowledge of attributes used to classify the proteins. Lack of this knowledge risks the selection of irrelevant features, resulting in a faulty model. In this study, we introduce a supervised protein classification method with a novel means of automating the work-intensive feature generation step via a Natural Language Processing (NLP)-dependent model, using a modified combination of n-grams and skip-grams (m-NGSG). A meta-comparison of cross-validation accuracy with twelve training datasets from nine different published studies demonstrates a consistent increase in accuracy of m-NGSG when compared to contemporary classification and feature generation models. We expect this model to accelerate the classification of proteins from primary sequence data and increase the accessibility of protein characteristic prediction to a broader range of scientists. m-NGSG is freely available at Bitbucket: https://bitbucket.org/sm_islam/mngsg/src. A web server is available at watson.ecs.baylor.edu/ngsg. erich_baker@baylor.edu. Supplementary data are available at Bioinformatics online.
46 CFR 56.07-10 - Design conditions and criteria (modifies 101-104.7).
Code of Federal Regulations, 2010 CFR
2010-10-01
... ENGINEERING PIPING SYSTEMS AND APPURTENANCES Design § 56.07-10 Design conditions and criteria (modifies 101... system must not be greater than the internal design pressure defined in 104.1.2 of ASME B31.1 (incorporated by reference; see 46 CFR 56.01-2). (2) Where the maximum allowable working pressure of a system...
Automating the generation of finite element dynamical cores with Firedrake
NASA Astrophysics Data System (ADS)
Ham, David; Mitchell, Lawrence; Homolya, Miklós; Luporini, Fabio; Gibson, Thomas; Kelly, Paul; Cotter, Colin; Lange, Michael; Kramer, Stephan; Shipton, Jemma; Yamazaki, Hiroe; Paganini, Alberto; Kärnä, Tuomas
2017-04-01
The development of a dynamical core is an increasingly complex software engineering undertaking. As the equations become more complete, the discretisations more sophisticated and the hardware acquires ever more fine-grained parallelism and deeper memory hierarchies, the problem of building, testing and modifying dynamical cores becomes increasingly complex. Here we present Firedrake, a code generation system for the finite element method with specialist features designed to support the creation of geoscientific models. Using Firedrake, the dynamical core developer writes the partial differential equations in weak form in a high level mathematical notation. Appropriate function spaces are chosen and time stepping loops written at the same high level. When the programme is run, Firedrake generates high performance C code for the resulting numerics which are executed in parallel. Models in Firedrake typically take a tiny fraction of the lines of code required by traditional hand-coding techniques. They support more sophisticated numerics than are easily achieved by hand, and the resulting code is frequently higher performance. Critically, debugging, modifying and extending a model written in Firedrake is vastly easier than by traditional methods due to the small, highly mathematical code base. Firedrake supports a wide range of key features for dynamical core creation: A vast range of discretisations, including both continuous and discontinuous spaces and mimetic (C-grid-like) elements which optimally represent force balances in geophysical flows. High aspect ratio layered meshes suitable for ocean and atmosphere domains. Curved elements for high accuracy representations of the sphere. Support for non-finite element operators, such as parametrisations. Access to PETSc, a world-leading library of programmable linear and nonlinear solvers. High performance adjoint models generated automatically by symbolically reasoning about the forward model. This poster will present the key features of the Firedrake system, as well as those of Gusto, an atmospheric dynamical core, and Thetis, a coastal ocean model, both of which are written in Firedrake.
A modified artificial neural network based prediction technique for tropospheric radio refractivity
Javeed, Shumaila; Javed, Wajahat; Atif, M.; Uddin, Mueen
2018-01-01
Radio refractivity plays a significant role in the development and design of radio systems for attaining the best level of performance. Refractivity in the troposphere is one of the features affecting electromagnetic waves, and hence the communication system interrupts. In this work, a modified artificial neural network (ANN) based model is applied to predict the refractivity. The suggested ANN model comprises three modules: the data preparation module, the feature selection module, and the forecast module. The first module applies pre-processing to make the data compatible for the feature selection module. The second module discards irrelevant and redundant data from the input set. The third module uses ANN for prediction. The ANN model applies a sigmoid activation function and a multi-variate auto regressive model to update the weights during the training process. In this work, the refractivity is predicted and estimated based on ten years (2002–2011) of meteorological data, such as the temperature, pressure, and humidity, obtained from the Pakistan Meteorological Department (PMD), Islamabad. The refractivity is estimated using the method suggested by the International Telecommunication Union (ITU). The refractivity is predicted for the year 2012 using the database of the previous ten years, with the help of ANN. The ANN model is implemented in MATLAB. Next, the estimated and predicted refractivity levels are validated against each other. The predicted and actual values (PMD data) of the atmospheric parameters agree with each other well, and demonstrate the accuracy of the proposed ANN method. It was further found that all parameters have a strong relationship with refractivity, in particular the temperature and humidity. The refractivity values are higher during the rainy season owing to a strong association with the relative humidity. Therefore, it is important to properly cater the signal communication system during hot and humid weather. Based on the results, the proposed ANN method can be used to develop a refractivity database, which is highly important in a radio communication system. PMID:29494609
Designing using manufacturing features
NASA Astrophysics Data System (ADS)
Szecsi, T.; Hoque, A. S. M.
2012-04-01
This paper presents a design system that enables the composition of a part using manufacturing features. Features are selected from feature libraries. Upon insertion, the system ensures that the feature does not contradict the design-for-manufacture rules. This helps eliminating costly manufacturing problems. The system is developed as an extension to a commercial CAD/CAM system Pro/Engineer.
Redesigning the specificity of protein-DNA interactions with Rosetta.
Thyme, Summer; Baker, David
2014-01-01
Building protein tools that can selectively bind or cleave specific DNA sequences requires efficient technologies for modifying protein-DNA interactions. Computational design is one method for accomplishing this goal. In this chapter, we present the current state of protein-DNA interface design with the Rosetta macromolecular modeling program. The LAGLIDADG endonuclease family of DNA-cleaving enzymes, under study as potential gene therapy reagents, has been the main testing ground for these in silico protocols. At this time, the computational methods are most useful for designing endonuclease variants that can accommodate small numbers of target site substitutions. Attempts to engineer for more extensive interface changes will likely benefit from an approach that uses the computational design results in conjunction with a high-throughput directed evolution or screening procedure. The family of enzymes presents an engineering challenge because their interfaces are highly integrated and there is significant coordination between the binding and catalysis events. Future developments in the computational algorithms depend on experimental feedback to improve understanding and modeling of these complex enzymatic features. This chapter presents both the basic method of design that has been successfully used to modulate specificity and more advanced procedures that incorporate DNA flexibility and other properties that are likely necessary for reliable modeling of more extensive target site changes.
A modified siphon sampler for shallow water
Diehl, Timothy H.
2008-01-01
A modified siphon sampler (or 'single-stage sampler') was developed to sample shallow water at closely spaced vertical intervals. The modified design uses horizontal rather than vertical sample bottles. Previous siphon samplers are limited to water about 20 centimeters (cm) or more in depth; the modified design can sample water 10 cm deep. Several mounting options were used to deploy the modified siphon sampler in shallow bedrock streams of Middle Tennessee, while minimizing alteration of the stream bed. Sampling characteristics and limitations of the modified design are similar to those of the original design. Testing showed that the modified sampler collects unbiased samples of suspended silt and clay. Similarity of the intake to the original siphon sampler suggests that the modified sampler would probably take downward-biased samples of suspended sand. Like other siphon samplers, it does not sample isokinetically, and the efficiency of sand sampling can be expected to change with flow velocity. The sampler needs to be located in the main flow of the stream, and is subject to damage from rapid flow and floating debris. Water traps were added to the air vents to detect the flow of water through the sampler, which can cause a strong upward bias in sampled suspended-sediment concentration. Water did flow through the sampler, in some cases even when the top of the air vent remained above water. Air vents need to be extended well above maximum water level to prevent flow through the sampler.
An inverse method for the aerodynamic design of three-dimensional aircraft engine nacelles
NASA Technical Reports Server (NTRS)
Bell, R. A.; Cedar, R. D.
1991-01-01
A fast, efficient and user friendly inverse design system for 3-D nacelles was developed. The system is a product of a 2-D inverse design method originally developed at NASA-Langley and the CFL3D analysis code which was also developed at NASA-Langley and modified for nacelle analysis. The design system uses a predictor/corrector design approach in which an analysis code is used to calculate the flow field for an initial geometry, the geometry is then modified based on the difference between the calculated and target pressures. A detailed discussion of the design method, the process of linking it to the modified CFL3D solver and its extension to 3-D is presented. This is followed by a number of examples of the use of the design system for the design of both axisymmetric and 3-D nacelles.
Chan, Chetwyn C H; Wong, Alex W K; Lee, Tatia M C; Chi, Iris
2009-03-01
The goal of this study was to enhance an existing automated teller machine (ATM) human-machine interface in order to accommodate the needs of older adults. Older adults were involved in the design and field test of the modified ATM prototype. The design of the user interface and functionality took the cognitive and physical abilities of older adults into account. The modified ATM system included only "cash withdrawal" and "transfer" functions based on the task demands and needs for services of older adults. One hundred and forty-one older adults (aged 60 or above) participated in the field test by operating modified or existing ATM systems. Those who operated the modified system were found to have significantly higher success rates than those who operated the existing system. The enhancement was most significant among older adults who had lower ATM-related abilities, a lower level of education, and no prior experience of using ATMs. This study demonstrates the usefulness of using a universal design and participatory approach to modify the existing ATM system for use by older adults. However, it also leads to a reduction in functionality of the enhanced system. Future studies should explore ways to develop a universal design ATM system which can satisfy the abilities and needs of all users in the entire population.
Limitations and requirements of content-based multimedia authentication systems
NASA Astrophysics Data System (ADS)
Wu, Chai W.
2001-08-01
Recently, a number of authentication schemes have been proposed for multimedia data such as images and sound data. They include both label based systems and semifragile watermarks. The main requirement for such authentication systems is that minor modifications such as lossy compression which do not alter the content of the data preserve the authenticity of the data, whereas modifications which do modify the content render the data not authentic. These schemes can be classified into two main classes depending on the model of image authentication they are based on. One of the purposes of this paper is to look at some of the advantages and disadvantages of these image authentication schemes and their relationship with fundamental limitations of the underlying model of image authentication. In particular, we study feature-based algorithms which generate an authentication tag based on some inherent features in the image such as the location of edges. The main disadvantage of most proposed feature-based algorithms is that similar images generate similar features, and therefore it is possible for a forger to generate dissimilar images that have the same features. On the other hand, the class of hash-based algorithms utilizes a cryptographic hash function or a digital signature scheme to reduce the data and generate an authentication tag. It inherits the security of digital signatures to thwart forgery attacks. The main disadvantage of hash-based algorithms is that the image needs to be modified in order to be made authenticatable. The amount of modification is on the order of the noise the image can tolerate before it is rendered inauthentic. The other purpose of this paper is to propose a multimedia authentication scheme which combines some of the best features of both classes of algorithms. The proposed scheme utilizes cryptographic hash functions and digital signature schemes and the data does not need to be modified in order to be made authenticatable. Several applications including the authentication of images on CD-ROM and handwritten documents will be discussed.
NASA Astrophysics Data System (ADS)
Holness, F. Benjamin; Price, Aaron D.
2017-04-01
The intractable nature of the conjugated polymer (CP) polyaniline (PANI) has largely limited PANI-based transducers to monolithic geometries derived from thin-film deposition techniques. To address this limitation, we have previously reported additive manufacturing processes for the direct ink writing of three-dimensional electroactive PANI structures. This technology incorporates a modified delta robot having an integrated polymer paste extrusion system in conjunction with a counter-ion induced thermal doping process to achieve these 3D structures. In this study, we employ an improved embodiment of this methodology for the fabrication of functional PANI devices with increasingly complex geometries and enhanced electroactive functionality. Advances in manufacturing capabilities achieved through the integration of a precision pneumatic fluid dispenser and redesigned high-pressure end-effector enable extrusion of viscous polymer formulations, improving the realizable resolutions of features and deposition layers. The integration of a multi-material dual-extrusion end-effector has further aided the fabrication of these devices, enabling the concurrent assembly of passive and active structures, which reduces the limitations on device geometry. Subsequent characterization of these devices elucidates the relationships between polymer formulation, process parameters, and device design such that electromechanical properties can be tuned according to application requirements. This methodology ultimately leads to the improved manufacturing of electroactive polymer-enabled devices with high-resolution 3D features and enhanced electroactive performance.
Camera calibration for multidirectional flame chemiluminescence tomography
NASA Astrophysics Data System (ADS)
Wang, Jia; Zhang, Weiguang; Zhang, Yuhong; Yu, Xun
2017-04-01
Flame chemiluminescence tomography (FCT), which combines computerized tomography theory and multidirectional chemiluminescence emission measurements, can realize instantaneous three-dimensional (3-D) diagnostics for flames with high spatial and temporal resolutions. One critical step of FCT is to record the projections by multiple cameras from different view angles. For high accuracy reconstructions, it requires that extrinsic parameters (the positions and orientations) and intrinsic parameters (especially the image distances) of cameras be accurately calibrated first. Taking the focus effect of the camera into account, a modified camera calibration method was presented for FCT, and a 3-D calibration pattern was designed to solve the parameters. The precision of the method was evaluated by reprojections of feature points to cameras with the calibration results. The maximum root mean square error of the feature points' position is 1.42 pixels and 0.0064 mm for the image distance. An FCT system with 12 cameras was calibrated by the proposed method and the 3-D CH* intensity of a propane flame was measured. The results showed that the FCT system provides reasonable reconstruction accuracy using the camera's calibration results.
Quantum Dynamics in the HMF Model
NASA Astrophysics Data System (ADS)
Plestid, Ryan; O'Dell, Duncan
2017-04-01
The Hamiltonian Mean Field (HMF) model represents a paradigm in the study of long-range interactions but has never been realized in a lab. Recently Shutz and Morigi (PRL 113) have come close but ultimately fallen short. Their proposal relied on cavity-induced interactions between atoms. If a design using cold atoms is to be successful, an understanding of quantum effects is essential. I will outline the natural quantum generalization of the HMF assuming a BEC by using a generalized Gross-Pitaevskii equation (gGPE). I will show how quantum effects modify features which are well understood in the classical model. More specifically, by working in the semi-classical regime (strong interparticle interactions) we can identify the universal features predicted by catastrophe theory dressed with quantum interference effects. The stationary states of gGPE can be solved exactly and are found to be described by self-consistent Mathieu functions. Finally, I will discuss the connection between the classical description of the dynamics in terms of the Vlassov equation, and the gGPE. We would like to thank the Government of Ontario's OGS program, NSERC, and the Perimeter Institute of Theoretical Physics.
LISP as an Environment for Software Design: Powerful and Perspicuous
Blum, Robert L.; Walker, Michael G.
1986-01-01
The LISP language provides a useful set of features for prototyping knowledge-intensive, clinical applications software that is not found In most other programing environments. Medical computer programs that need large medical knowledge bases, such as programs for diagnosis, therapeutic consultation, education, simulation, and peer review, are hard to design, evolve continually, and often require major revisions. They necessitate an efficient and flexible program development environment. The LISP language and programming environments bullt around it are well suited for program prototyping. The lingua franca of artifical intelligence researchers, LISP facllitates bullding complex systems because it is simple yet powerful. Because of its simplicity, LISP programs can read, execute, modify and even compose other LISP programs at run time. Hence, it has been easy for system developers to create programming tools that greatly speed the program development process, and that may be easily extended by users. This has resulted in the creation of many useful graphical interfaces, editors, and debuggers, which facllitate the development of knowledge-intensive medical applications.
NASA Astrophysics Data System (ADS)
Li, Yun-Mei; Zhou, Xiaoying; Zhang, Yan-Yang; Zhang, Dong; Chang, Kai
2017-07-01
We investigate theoretically the electronic properties of two-dimensional electron gases (2DEGs) with regular and distorted triangular antidot lattices. We show that the triangular antidot lattices embedded in 2DEGs behave like artificial graphene and host Dirac fermions. By introducing the Wannier representation, we obtain a tight-binding Hamiltonian including the second-nearest-neighboring hopping, which agrees well with the numerically exact solutions. Based on the tight-binding model, we find that spatially nonuniform distortions of the antidot lattices strongly modify the electronic structures, generate pseudomagnetic fields and the well-defined Landau levels. In contrast to graphene, we can design the nonuniform distortions to generate various configurations of pseudomagnetic fields. We show that the snake orbital states arise by designing the ±B pseudomagnetic field configuration. We find that the disorders of antidot lattices during fabrication would not affect the basic feature of the Dirac electrons, but they lead to a reduction in conductance in strong disorder cases.
X-ray optics for WHIMex: the Warm Hot Intergalactic Medium Explorer
NASA Astrophysics Data System (ADS)
Cash, W.; McEntaffer, R.; Zhang, W.; Casement, S.; Lillie, C.; Schattenburg, M.; Bautz, M.; Holland, A.; Tsunemi, H.; O'Dell, S.
2011-09-01
The x-ray astronomy community has never flown a celestial source spectrograph that can resolve natural line widths in absorption the way the ultraviolet community did with OAO-3 Copernicus back in 1972. Yet there is important science to be mined there, and right now, the large flagship missions like the International X-ray Observatory are not progressing toward launch. WHIMEx is an Explorer concept proposed earlier this year to open up that science regime in the next few years. The concept features a modified off-plane grating spectrograph design that will support high resolution (λ/δλ ~ 4000) in the soft x-ray band with a high packing density that will enable a modest cost space mission. We discuss the design and capabilities for the WHIMEx mission. Its prime science goal is detecting high temperature oxygen in the Intergalactic Medium, but it has a broad range of science potential cutting across all of x-ray astronomy and should give us a new window on the Universe.
Development status of a 125 horsepower superconducting motor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schiferl, R.F.; Zhang, B.X.; Driscoll, D.I.
1997-06-01
The current development status of an air core synchronous motor with high-temperature superconducting field coils is presented. The work described is part of a U.S. DoE Superconductivity Partnership Initiative award. The motor design features a topology with a combination of a modified conventional armature and a rotating four-pole superconducting field winding operating at a nominal temperature of 27 K. For testing purposes, an open-loop cryogenic system is adopted to supply helium gas to the rotor cryostat for maintaining the operating temperature of the superconducting field winding. The exhaust helium gas intercepts heat leak into the rotor cryostat before being vented.more » The motor is expected to deliver 125 horsepower (hp) at 1,800 rpm. Successful demonstration of the 125 hp motor will represent a major milestone in the process of developing commercial superconducting motors with integrated closed-loop cryogenic systems. Design objectives and results as well as current project status are discussed.« less
Novel strategy to improve the Li-storage performance of micro silicon anodes
NASA Astrophysics Data System (ADS)
Choi, Min-Jae; Xiao, Ying; Hwang, Jang-Yeon; Belharouak, Ilias; Sun, Yang-Kook
2017-04-01
Silicon (Si)-based materials have attracted significant research as an outstanding candidate for the anode material of lithium-ion batteries. However, the tremendous volume change and poor electron conductivity of bulk silicon result in inferior capacity retention and low Coulombic efficiency. Designing special Si with high energy density and good stability in a bulk electrode remains a significant challenge. In this work, we introduce an ingenious strategy to modify micro silicon by designing a porous structure, constructing nanoparticle blocks, and introducing carbon nanotubes as wedges. A disproportion reaction, coupled with a chemical etching process and a ball-milling reaction, are applied to generate the desired material. The as-prepared micro silicon material features porosity, small primary particles, and effective CNT-wedging, which combine to endow the resultant anode with a high reversible specific capacity of up to 2028.6 mAh g-1 after 100 cycles and excellent rate capability. The superior electrochemical performance is attributed to the unique architecture and optimized composition.
The MCNP-DSP code for calculations of time and frequency analysis parameters for subcritical systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Valentine, T.E.; Mihalczo, J.T.
1995-12-31
This paper describes a modified version of the MCNP code, the MCNP-DSP. Variance reduction features were disabled to have strictly analog particle tracking in order to follow fluctuating processes more accurately. Some of the neutron and photon physics routines were modified to better represent the production of particles. Other modifications are discussed.
B. Kristoffer Segerholm; Rebecca E. Ibach; Mats Westin
2012-01-01
Biological durability is an important feature for wood-plastic composites (WPC) intended for outdoor applications. One route to achieving WPC products with increased biological durability is to use wood preservative agents in the formulation of the WPC. Another option could be to use a chemically modified wood component that already exhibits increased resistance to...
ERIC Educational Resources Information Center
Scahill, Lawrence; Sukhodolsky, Denis G.; Anderberg, Emily; Dimitropoulos, Anastasia; Dziura, James; Aman, Michael G.; McCracken, James; Tierney, Elaine; Hallett, Victoria; Katz, Karol; Vitiello, Benedetto; McDougle, Christopher
2016-01-01
Repetitive behavior is a core feature of autism spectrum disorder. We used 8-week data from two federally funded, multi-site, randomized trials with risperidone conducted by the Research Units on Pediatric Psychopharmacology Autism Network to evaluate the sensitivity of the Children's Yale-Brown Obsessive Compulsive Scale modified for autism…
Consolo, Filippo; Valerio, Lorenzo; Brizzola, Stefano; Rota, Paolo; Marazzato, Giulia; Vincoli, Valentina; Reggiani, Stefano; Redaelli, Alberto; Fiore, Gianfranco
2016-10-01
We designed an experimental setup to characterize the thrombogenic potential associated with blood recirculating devices (BRDs) used in extracorporeal circulation (ECC). Our methodology relies on in vitro flow loop platelet recirculation experiments combined with the modified-prothrombinase platelet activity state (PAS) assay to quantify the bulk thrombin production rate of circulated platelets, which correlates to the platelet activation (PA) level. The method was applied to a commercial neonatal hollow fiber membrane oxygenator. In analogous hemodynamic environment, we compared the PA level resulting from multiple passes of platelets within devices provided with phosphorylcholine (PC)-coated and noncoated (NC) fibers to account for flow-related mechanical factors (i.e., fluid-induced shear stress) together with surface contact activation phenomena. We report for the first time that PAS assay is not significantly sensitive to the effect of material coating under clinically pertinent flow conditions (500 mL/min), while providing straightforward information on shear-mediated PA dynamics in ECC devices. Being that the latter is intimately dependent on local flow dynamics, according to our results, the rate of thrombin production as measured by the PAS assay is a valuable biochemical marker of the selective contribution of PA in BRDs induced by device design features. Thus, we recommend the use of PAS assay as a means of evaluating the effect of modification of specific device geometrical features and/or different design solutions for developing ECC devices providing flow conditions with reduced thrombogenic impact. Copyright © 2016 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.
Enhancing On-Task Behavior in Fourth-Grade Students Using a Modified Color Wheel System
ERIC Educational Resources Information Center
Blondin, Carolyn; Skinner, Christopher; Parkhurst, John; Wood, Allison; Snyder, Jamie
2012-01-01
The authors used a withdrawal design to evaluate the effects of a modified Color Wheel System (M-CWS) on the on-task behavior of 7 students enrolled in the 4th grade. Standard CWS procedures were modified to include a 4th set of rules designed to set behavioral expectation for cooperative learning activities. Mean data showed that immediately…
Dynamics of High Temperature Plasmas.
1985-10-01
25 VI. > LASER BEAT WAVE PARTICLE ACCELERATION-.. ..... .. 27 ,, VII. ORBITRON MASER DESIGN .. ..... ............. 30 0 VIIM> ELECTRON BEAM STABILITY...IN THE MODIFIED BETATRON .... ............ 32 IX. * RELATIVISTIC ELECTRON BEAM DIODE DESIGN . . . . 35 X. FREE ELECTRON LASER APPLICATION TO XUV...Accelerators (B), VI. Laser Beat Wave Particle Acceleration, VII. Orbitron Maser Design , VIII. Electron Beam Stability in the Modified Betatron, IX
USDA-ARS?s Scientific Manuscript database
A posteriori and modified granddaughter designs were applied to determine haplotype effects for Holstein bulls and cows with BovineSNP50 genotypes. The a posteriori granddaughter design was applied to 52 sire families, each with '100 genotyped sons with genetic evaluations based on progeny tests. Fo...
USDA-ARS?s Scientific Manuscript database
A posteriori and modified granddaughter designs were applied to determine haplotype effects for Holstein bulls and cows with BovineSNP50 genotypes. The a posteriori granddaughter design was applied to 52 sire families, each with >100 genotyped sons with genetic evaluations based on progeny tests. Fo...
NASA Astrophysics Data System (ADS)
Mikhailov, M.; Neschimenko, V.; Sokolovskiy, A.
2018-04-01
The effect of electron irradiation with energy of 30 keV and fluence up to 7 × 1016 cm-2 on diffuse reflection spectra in situ of coatings based on ZnO powders unmodified and modified with zirconium dioxide and aluminum oxide nanopowders was investigated. The higher radiation stability of coatings based on modified pigments in comparison to unmodified pigments has been established. A significant recovery of the reflection spectra of irradiated coatings after exposure to residual vacuum and air was shown.
Xiong, Chengjie; van Belle, Gerald; Miller, J Philip; Morris, John C
2011-02-01
Therapeutic trials of disease-modifying agents on Alzheimer's disease (AD) require novel designs and analyses involving switch of treatments for at least a portion of subjects enrolled. Randomized start and randomized withdrawal designs are two examples of such designs. Crucial design parameters such as sample size and the time of treatment switch are important to understand in designing such clinical trials. The purpose of this article is to provide methods to determine sample sizes and time of treatment switch as well as optimum statistical tests of treatment efficacy for clinical trials of disease-modifying agents on AD. A general linear mixed effects model is proposed to test the disease-modifying efficacy of novel therapeutic agents on AD. This model links the longitudinal growth from both the placebo arm and the treatment arm at the time of treatment switch for these in the delayed treatment arm or early withdrawal arm and incorporates the potential correlation on the rate of cognitive change before and after the treatment switch. Sample sizes and the optimum time for treatment switch of such trials as well as optimum test statistic for the treatment efficacy are determined according to the model. Assuming an evenly spaced longitudinal design over a fixed duration, the optimum treatment switching time in a randomized start or a randomized withdrawal trial is half way through the trial. With the optimum test statistic for the treatment efficacy and over a wide spectrum of model parameters, the optimum sample size allocations are fairly close to the simplest design with a sample size ratio of 1:1:1 among the treatment arm, the delayed treatment or early withdrawal arm, and the placebo arm. The application of the proposed methodology to AD provides evidence that much larger sample sizes are required to adequately power disease-modifying trials when compared with those for symptomatic agents, even when the treatment switch time and efficacy test are optimally chosen. The proposed method assumes that the only and immediate effect of treatment switch is on the rate of cognitive change. Crucial design parameters for the clinical trials of disease-modifying agents on AD can be optimally chosen. Government and industry officials as well as academia researchers should consider the optimum use of the clinical trials design for disease-modifying agents on AD in their effort to search for the treatments with the potential to modify the underlying pathophysiology of AD.
Application of an enhanced fuzzy algorithm for MR brain tumor image segmentation
NASA Astrophysics Data System (ADS)
Hemanth, D. Jude; Vijila, C. Kezi Selva; Anitha, J.
2010-02-01
Image segmentation is one of the significant digital image processing techniques commonly used in the medical field. One of the specific applications is tumor detection in abnormal Magnetic Resonance (MR) brain images. Fuzzy approaches are widely preferred for tumor segmentation which generally yields superior results in terms of accuracy. But most of the fuzzy algorithms suffer from the drawback of slow convergence rate which makes the system practically non-feasible. In this work, the application of modified Fuzzy C-means (FCM) algorithm to tackle the convergence problem is explored in the context of brain image segmentation. This modified FCM algorithm employs the concept of quantization to improve the convergence rate besides yielding excellent segmentation efficiency. This algorithm is experimented on real time abnormal MR brain images collected from the radiologists. A comprehensive feature vector is extracted from these images and used for the segmentation technique. An extensive feature selection process is performed which reduces the convergence time period and improve the segmentation efficiency. After segmentation, the tumor portion is extracted from the segmented image. Comparative analysis in terms of segmentation efficiency and convergence rate is performed between the conventional FCM and the modified FCM. Experimental results show superior results for the modified FCM algorithm in terms of the performance measures. Thus, this work highlights the application of the modified algorithm for brain tumor detection in abnormal MR brain images.
A modified varying-stage adaptive phase II/III clinical trial design.
Dong, Gaohong; Vandemeulebroecke, Marc
2016-07-01
Conventionally, adaptive phase II/III clinical trials are carried out with a strict two-stage design. Recently, a varying-stage adaptive phase II/III clinical trial design has been developed. In this design, following the first stage, an intermediate stage can be adaptively added to obtain more data, so that a more informative decision can be made. Therefore, the number of further investigational stages is determined based upon data accumulated to the interim analysis. This design considers two plausible study endpoints, with one of them initially designated as the primary endpoint. Based on interim results, another endpoint can be switched as the primary endpoint. However, in many therapeutic areas, the primary study endpoint is well established. Therefore, we modify this design to consider one study endpoint only so that it may be more readily applicable in real clinical trial designs. Our simulations show that, the same as the original design, this modified design controls the Type I error rate, and the design parameters such as the threshold probability for the two-stage setting and the alpha allocation ratio in the two-stage setting versus the three-stage setting have a great impact on the design characteristics. However, this modified design requires a larger sample size for the initial stage, and the probability of futility becomes much higher when the threshold probability for the two-stage setting gets smaller. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Understanding Evolutionary Potential in Virtual CPU Instruction Set Architectures
Bryson, David M.; Ofria, Charles
2013-01-01
We investigate fundamental decisions in the design of instruction set architectures for linear genetic programs that are used as both model systems in evolutionary biology and underlying solution representations in evolutionary computation. We subjected digital organisms with each tested architecture to seven different computational environments designed to present a range of evolutionary challenges. Our goal was to engineer a general purpose architecture that would be effective under a broad range of evolutionary conditions. We evaluated six different types of architectural features for the virtual CPUs: (1) genetic flexibility: we allowed digital organisms to more precisely modify the function of genetic instructions, (2) memory: we provided an increased number of registers in the virtual CPUs, (3) decoupled sensors and actuators: we separated input and output operations to enable greater control over data flow. We also tested a variety of methods to regulate expression: (4) explicit labels that allow programs to dynamically refer to specific genome positions, (5) position-relative search instructions, and (6) multiple new flow control instructions, including conditionals and jumps. Each of these features also adds complication to the instruction set and risks slowing evolution due to epistatic interactions. Two features (multiple argument specification and separated I/O) demonstrated substantial improvements in the majority of test environments, along with versions of each of the remaining architecture modifications that show significant improvements in multiple environments. However, some tested modifications were detrimental, though most exhibit no systematic effects on evolutionary potential, highlighting the robustness of digital evolution. Combined, these observations enhance our understanding of how instruction architecture impacts evolutionary potential, enabling the creation of architectures that support more rapid evolution of complex solutions to a broad range of challenges. PMID:24376669
Code of Federal Regulations, 2012 CFR
2012-01-01
.... Critical assembly means special nuclear devices designed and used to sustain nuclear reactions, which may... reaction becomes self-sustaining. Design features means the design features of a nuclear facility specified..., or the environment, including (1) Physical, design, structural, and engineering features; (2) Safety...
Code of Federal Regulations, 2011 CFR
2011-01-01
.... Critical assembly means special nuclear devices designed and used to sustain nuclear reactions, which may... reaction becomes self-sustaining. Design features means the design features of a nuclear facility specified..., or the environment, including (1) Physical, design, structural, and engineering features; (2) Safety...
Research and development of a digital design system for hull structures
NASA Astrophysics Data System (ADS)
Zhan, Yi-Ting; Ji, Zhuo-Shang; Liu, Yin-Dong
2007-06-01
Methods used for digital ship design were studied and formed the basis of a proposed frame model suitable for ship construction modeling. Based on 3-D modeling software, a digital design system for hull structures was developed. Basic software systems for modeling, modifying, and assembly simulation were developed. The system has good compatibility, and models created by it can be saved in different 3-D file formats, and 2D engineering drawings can be output directly. The model can be modified dynamically, overcoming the necessity of repeated modifications during hull structural design. Through operations such as model construction, intervention inspection, and collision detection, problems can be identified and modified during the hull structural design stage. Technologies for centralized control of the system, database management, and 3-D digital design are integrated into this digital model in the preliminary design stage of shipbuilding.
ERIC Educational Resources Information Center
Hendricks, Alison Eisel; Adlof, Suzanne M.
2017-01-01
Purpose: We compared outcomes from 2 measures of language ability in children who displayed a range of dialect variation: 1 using features that do not contrast between mainstream American English (MAE) and nonmainstream dialects (NMAE), and 1 using contrastive features. We investigated how modified scoring procedures affected the diagnostic…
NASA Technical Reports Server (NTRS)
Hubbard, R.
1974-01-01
The radially-streaming particle model for broad quasar and Seyfert galaxy emission features is modified to include sources of time dependence. The results are suggestive of reported observations of multiple components, variability, and transient features in the wings of Seyfert and quasi-stellar emission lines.
Chien, Yu-Tai; Chen, Yu-Jen; Hsiung, Hsiao-Fang; Chen, Hsiao-Jung; Hsieh, Meng-Hua; Wu, Wen-Jie
2017-01-01
Background Physical activity is important for middle-agers to maintain health both in middle age and in old age. Although thousands of exercise-promotion mobile phone apps are available for download, current literature offers little understanding regarding which design features can enhance middle-aged adults’ quality perception toward exercise-promotion apps and which factor may influence such perception. Objectives The aims of this study were to understand (1) which design features of exercise-promotion apps can enhance quality perception of middle-agers, (2) whether their needs are matched by current functions offered in app stores, and (3) whether physical activity (PA) and mobile phone self-efficacy (MPSE) influence quality perception. Methods A total of 105 middle-agers participated and filled out three scales: the International Physical Activity Questionnaire (IPAQ), the MPSE scale, and the need for design features questionnaire. The design features were developed based on the Coventry, Aberdeen, and London—Refined (CALO-RE) taxonomy. Following the Kano quality model, the need for design features questionnaire asked participants to classify design features into five categories: attractive, one-dimensional, must-be, indifferent, and reverse. The quality categorization was conducted based on a voting approach and the categorization results were compared with the findings of a prevalence study to realize whether needs match current availability. In total, 52 multinomial logistic regression models were analyzed to evaluate the effects of PA level and MPSE on quality perception of design features. Results The Kano analysis on the total sample revealed that visual demonstration of exercise instructions is the only attractive design feature, whereas the other 51 design features were perceived with indifference. Although examining quality perception by PA level, 21 features are recommended to low level, 6 features to medium level, but none to high-level PA. In contrast, high-level MPSE is recommended with 14 design features, medium level with 6 features, whereas low-level participants are recommended with 1 feature. The analysis suggests that the implementation of demanded features could be low, as the average prevalence of demanded design features is 20% (4.3/21). Surprisingly, social comparison and social support, most implemented features in current apps, were categorized into the indifferent category. The magnitude of effect is larger for MPSE because it effects quality perception of more design features than PA. Delving into the 52 regression models revealed that high MPSE more likely induces attractive or one- dimensional categorization, suggesting the importance of technological self-efficacy on eHealth care promotion. Conclusions This study is the first to propose middle-agers’ needs in relation to mobile phone exercise-promotion. In addition to the tailor-made recommendations, suggestions are offered to app designers to enhance the performance of persuasive features. An interesting finding on change of quality perception attributed to MPSE is proposed as future research. PMID:28546140
Jacques, Christopher N.; Zweep, James S.; Scheihing, Mary E.; Rechkemmer, Will T.; Jenkins, Sean E.; Klaver, Robert W.; Dubay, Shelli A.
2017-01-01
Sherman traps are the most commonly used live traps in studies of small mammals and have been successfully used in the capture of arboreal species such as the southern flying squirrel (Glaucomys volans). However, southern flying squirrels spend proportionately less time foraging on the ground, which necessitates above-ground trapping methods and modifications of capture protocols. Further, quantitative estimates of the factors affecting capture success of flying squirrel populations have focused solely on effects of trapping methodologies. We developed and evaluated the efficacy of a portable Sherman trap design for capturing southern flying squirrels during 2015–2016 at the Alice L. Kibbe Field Station, Illinois, USA. Additionally, we used logistic regression to quantify potential effects of time-dependent (e.g., weather) and time-independent (e.g., habitat, extrinsic) factors on capture success of southern flying squirrels. We recorded 165 capture events (119 F, 44 M, 2 unknown) using our modified Sherman trap design. Probability of capture success decreased 0.10/1° C increase in daily maximum temperature and by 0.09/unit increase (km/hr) in wind speed. Conversely, probability of capture success increased by 1.2/1° C increase in daily minimum temperature. The probability of capturing flying squirrels was negatively associated with trap orientation. When tree-mounted traps are required, our modified trap design is a safe, efficient, and cost-effective method of capturing animals when moderate weather (temp and wind speed) conditions prevail. Further, we believe that strategic placement of traps (e.g., northeast side of tree) and quantitative information on site-specific (e.g., trap location) characteristics (e.g., topographical features, slope, aspect, climatologic factors) could increase southern flying squirrel capture success. © 2017 The Wildlife Society.
Martinho, Nuno; Silva, Liana C; Florindo, Helena F; Brocchini, Steve; Zloh, Mire; Barata, Teresa S
2017-01-01
Dendrimers are hyperbranched polymers with a multifunctional architecture that can be tailored for the use in various biomedical applications. Peptide dendrimers are particularly relevant for drug delivery applications due to their versatility and safety profile. The overall lack of knowledge of their three-dimensional structure, conformational behavior and structure–activity relationship has slowed down their development. Fluorophores are often conjugated to dendrimers to study their interaction with biomolecules and provide information about their mechanism of action at the molecular level. However, these probes can change dendrimer surface properties and have a direct impact on their interactions with biomolecules and with lipid membranes. In this study, we have used computer-aided molecular design and molecular dynamics simulations to identify optimal topology of a poly(l-glutamic acid) (PG) backbone dendrimer that allows incorporation of fluorophores in the core with minimal availability for undesired interactions. Extensive all-atom molecular dynamic simulations with the CHARMM force field were carried out for different generations of PG dendrimers with the core modified with a fluorophore (nitrobenzoxadiazole and Oregon Green 488) and various surface groups (glutamic acid, lysine and tryptophan). Analysis of structural and topological features of all designed dendrimers provided information about their size, shape, internal distribution and dynamic behavior. We have found that four generations of a PG dendrimer are needed to ensure minimal exposure of a core-conjugated fluorophore to external environment and absence of undesired interactions regardless of the surface terminal groups. Our findings suggest that NBD-PG-G4 can provide a suitable scaffold to be used for biophysical studies of surface-modified dendrimers to provide a deeper understanding of their intermolecular interactions, mechanisms of action and trafficking in a biological system. PMID:29026301
Martinho, Nuno; Silva, Liana C; Florindo, Helena F; Brocchini, Steve; Zloh, Mire; Barata, Teresa S
2017-01-01
Dendrimers are hyperbranched polymers with a multifunctional architecture that can be tailored for the use in various biomedical applications. Peptide dendrimers are particularly relevant for drug delivery applications due to their versatility and safety profile. The overall lack of knowledge of their three-dimensional structure, conformational behavior and structure-activity relationship has slowed down their development. Fluorophores are often conjugated to dendrimers to study their interaction with biomolecules and provide information about their mechanism of action at the molecular level. However, these probes can change dendrimer surface properties and have a direct impact on their interactions with biomolecules and with lipid membranes. In this study, we have used computer-aided molecular design and molecular dynamics simulations to identify optimal topology of a poly(l-glutamic acid) (PG) backbone dendrimer that allows incorporation of fluorophores in the core with minimal availability for undesired interactions. Extensive all-atom molecular dynamic simulations with the CHARMM force field were carried out for different generations of PG dendrimers with the core modified with a fluorophore (nitrobenzoxadiazole and Oregon Green 488) and various surface groups (glutamic acid, lysine and tryptophan). Analysis of structural and topological features of all designed dendrimers provided information about their size, shape, internal distribution and dynamic behavior. We have found that four generations of a PG dendrimer are needed to ensure minimal exposure of a core-conjugated fluorophore to external environment and absence of undesired interactions regardless of the surface terminal groups. Our findings suggest that NBD-PG-G4 can provide a suitable scaffold to be used for biophysical studies of surface-modified dendrimers to provide a deeper understanding of their intermolecular interactions, mechanisms of action and trafficking in a biological system.
NASA Technical Reports Server (NTRS)
Clark, Roger N.; Swayze, Gregg A.
1995-01-01
One of the challenges of Imaging Spectroscopy is the identification, mapping and abundance determination of materials, whether mineral, vegetable, or liquid, given enough spectral range, spectral resolution, signal to noise, and spatial resolution. Many materials show diagnostic absorption features in the visual and near infrared region (0.4 to 2.5 micrometers) of the spectrum. This region is covered by the modern imaging spectrometers such as AVIRIS. The challenge is to identify the materials from absorption bands in their spectra, and determine what specific analyses must be done to derive particular parameters of interest, ranging from simply identifying its presence to deriving its abundance, or determining specific chemistry of the material. Recently, a new analysis algorithm was developed that uses a digital spectral library of known materials and a fast, modified-least-squares method of determining if a single spectral feature for a given material is present. Clark et al. made another advance in the mapping algorithm: simultaneously mapping multiple minerals using multiple spectral features. This was done by a modified-least-squares fit of spectral features, from data in a digital spectral library, to corresponding spectral features in the image data. This version has now been superseded by a more comprehensive spectral analysis system called Tricorder.
Kamath, Padmaja; Fernandez, Alberto; Giralt, Francesc; Rallo, Robert
2015-01-01
Nanoparticles are likely to interact in real-case application scenarios with mixtures of proteins and biomolecules that will absorb onto their surface forming the so-called protein corona. Information related to the composition of the protein corona and net cell association was collected from literature for a library of surface-modified gold and silver nanoparticles. For each protein in the corona, sequence information was extracted and used to calculate physicochemical properties and statistical descriptors. Data cleaning and preprocessing techniques including statistical analysis and feature selection methods were applied to remove highly correlated, redundant and non-significant features. A weighting technique was applied to construct specific signatures that represent the corona composition for each nanoparticle. Using this basic set of protein descriptors, a new Protein Corona Structure-Activity Relationship (PCSAR) that relates net cell association with the physicochemical descriptors of the proteins that form the corona was developed and validated. The features that resulted from the feature selection were in line with already published literature, and the computational model constructed on these features had a good accuracy (R(2)LOO=0.76 and R(2)LMO(25%)=0.72) and stability, with the advantage that the fingerprints based on physicochemical descriptors were independent of the specific proteins that form the corona.
Roop, Hunter J.; Poudyal, Neelam C.; Jennings, Cecil A.
2018-01-01
Creel surveys are valuable tools in recreational fisheries management. However, multiple‐impoundment fisheries of complex spatial structure can complicate survey designs and pose logistical challenges for management agencies. Marben Public Fishing Area in Mansfield, GA is a multi‐impoundment fishery with many access points, and these features prevent or complicate use of traditional on‐site contact methods such as standard roving‐ or access‐point designs because many anglers may be missed during the survey process. Therefore, adaptation of a traditional survey method is often required for sampling this special case of multi‐lake fisheries to develop an accurate fishery profile. Accordingly, a modified non‐uniform probability roving creel survey was conducted at the Marben PFA during 2013 to estimate fishery characteristics relating to fishing effort, catch, and fish harvest. Monthly fishing effort averaged 7,523 angler‐hours (h) (SD = 5,956) and ranged from 1,301 h (SD = 562) in December to 21,856 h (SD = 5909) in May. A generalized linear mixed model was used to determine that angler catch and harvest rates were significantly higher in the spring and summer (all p < 0.05) than in the other seasons, but did not vary by fishing location. Our results demonstrate the utility of modifying existing creel methodology for monitoring small, spatially complex, intensely managed impoundments that support quality recreational fisheries and provide a template for the assessment and management of similar regional fisheries.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gaponov, Yu.A.; Igarashi, N.; Hiraki, M.
2004-05-12
An integrated controlling system and a unified database for high throughput protein crystallography experiments have been developed. Main features of protein crystallography experiments (purification, crystallization, crystal harvesting, data collection, data processing) were integrated into the software under development. All information necessary to perform protein crystallography experiments is stored (except raw X-ray data that are stored in a central data server) in a MySQL relational database. The database contains four mutually linked hierarchical trees describing protein crystals, data collection of protein crystal and experimental data processing. A database editor was designed and developed. The editor supports basic database functions to view,more » create, modify and delete user records in the database. Two search engines were realized: direct search of necessary information in the database and object oriented search. The system is based on TCP/IP secure UNIX sockets with four predefined sending and receiving behaviors, which support communications between all connected servers and clients with remote control functions (creating and modifying data for experimental conditions, data acquisition, viewing experimental data, and performing data processing). Two secure login schemes were designed and developed: a direct method (using the developed Linux clients with secure connection) and an indirect method (using the secure SSL connection using secure X11 support from any operating system with X-terminal and SSH support). A part of the system has been implemented on a new MAD beam line, NW12, at the Photon Factory Advanced Ring for general user experiments.« less
ERIC Educational Resources Information Center
Cheng, Ming-Chang; Chou, Pei-I; Wang, Ya-Ting; Lin, Chih-Ho
2015-01-01
This study investigates how the illustrations in a science textbook, with their design modified according to cognitive process principles, affected students' learning performance. The quasi-experimental design recruited two Grade 5 groups (N?=?58) as the research participants. The treatment group (n?=?30) used the modified version of the textbook,…
23 CFR 636.210 - What requirements apply to projects which use the modified design-build procedure?
Code of Federal Regulations, 2011 CFR
2011-04-01
... 23 Highways 1 2011-04-01 2011-04-01 false What requirements apply to projects which use the modified design-build procedure? 636.210 Section 636.210 Highways FEDERAL HIGHWAY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION ENGINEERING AND TRAFFIC OPERATIONS DESIGN-BUILD CONTRACTING Selection Procedures, Award Criteria § 636.210 What requirements...
Sweidan, Michelle; Williamson, Margaret; Reeve, James F; Harvey, Ken; O'Neill, Jennifer A; Schattner, Peter; Snowdon, Teri
2010-04-15
Electronic prescribing is increasingly being used in primary care and in hospitals. Studies on the effects of e-prescribing systems have found evidence for both benefit and harm. The aim of this study was to identify features of e-prescribing software systems that support patient safety and quality of care and that are useful to the clinician and the patient, with a focus on improving the quality use of medicines. Software features were identified by a literature review, key informants and an expert group. A modified Delphi process was used with a 12-member multidisciplinary expert group to reach consensus on the expected impact of the features in four domains: patient safety, quality of care, usefulness to the clinician and usefulness to the patient. The setting was electronic prescribing in general practice in Australia. A list of 114 software features was developed. Most of the features relate to the recording and use of patient data, the medication selection process, prescribing decision support, monitoring drug therapy and clinical reports. The expert group rated 78 of the features (68%) as likely to have a high positive impact in at least one domain, 36 features (32%) as medium impact, and none as low or negative impact. Twenty seven features were rated as high positive impact across 3 or 4 domains including patient safety and quality of care. Ten features were considered "aspirational" because of a lack of agreed standards and/or suitable knowledge bases. This study defines features of e-prescribing software systems that are expected to support safety and quality, especially in relation to prescribing and use of medicines in general practice. The features could be used to develop software standards, and could be adapted if necessary for use in other settings and countries.
2010-01-01
Background Electronic prescribing is increasingly being used in primary care and in hospitals. Studies on the effects of e-prescribing systems have found evidence for both benefit and harm. The aim of this study was to identify features of e-prescribing software systems that support patient safety and quality of care and that are useful to the clinician and the patient, with a focus on improving the quality use of medicines. Methods Software features were identified by a literature review, key informants and an expert group. A modified Delphi process was used with a 12-member multidisciplinary expert group to reach consensus on the expected impact of the features in four domains: patient safety, quality of care, usefulness to the clinician and usefulness to the patient. The setting was electronic prescribing in general practice in Australia. Results A list of 114 software features was developed. Most of the features relate to the recording and use of patient data, the medication selection process, prescribing decision support, monitoring drug therapy and clinical reports. The expert group rated 78 of the features (68%) as likely to have a high positive impact in at least one domain, 36 features (32%) as medium impact, and none as low or negative impact. Twenty seven features were rated as high positive impact across 3 or 4 domains including patient safety and quality of care. Ten features were considered "aspirational" because of a lack of agreed standards and/or suitable knowledge bases. Conclusions This study defines features of e-prescribing software systems that are expected to support safety and quality, especially in relation to prescribing and use of medicines in general practice. The features could be used to develop software standards, and could be adapted if necessary for use in other settings and countries. PMID:20398294
The 1991 3rd NASA Symposium on VLSI Design
NASA Technical Reports Server (NTRS)
Maki, Gary K.
1991-01-01
Papers from the symposium are presented from the following sessions: (1) featured presentations 1; (2) very large scale integration (VLSI) circuit design; (3) VLSI architecture 1; (4) featured presentations 2; (5) neural networks; (6) VLSI architectures 2; (7) featured presentations 3; (8) verification 1; (9) analog design; (10) verification 2; (11) design innovations 1; (12) asynchronous design; and (13) design innovations 2.
NASA Astrophysics Data System (ADS)
Feng, Guixiang; Ming, Dongping; Wang, Min; Yang, Jianyu
2017-06-01
Scale problems are a major source of concern in the field of remote sensing. Since the remote sensing is a complex technology system, there is a lack of enough cognition on the connotation of scale and scale effect in remote sensing. Thus, this paper first introduces the connotations of pixel-based scale and summarizes the general understanding of pixel-based scale effect. Pixel-based scale effect analysis is essentially important for choosing the appropriate remote sensing data and the proper processing parameters. Fractal dimension is a useful measurement to analysis pixel-based scale. However in traditional fractal dimension calculation, the impact of spatial resolution is not considered, which leads that the scale effect change with spatial resolution can't be clearly reflected. Therefore, this paper proposes to use spatial resolution as the modified scale parameter of two fractal methods to further analyze the pixel-based scale effect. To verify the results of two modified methods (MFBM (Modified Windowed Fractal Brownian Motion Based on the Surface Area) and MDBM (Modified Windowed Double Blanket Method)); the existing scale effect analysis method (information entropy method) is used to evaluate. And six sub-regions of building areas and farmland areas were cut out from QuickBird images to be used as the experimental data. The results of the experiment show that both the fractal dimension and information entropy present the same trend with the decrease of spatial resolution, and some inflection points appear at the same feature scales. Further analysis shows that these feature scales (corresponding to the inflection points) are related to the actual sizes of the geo-object, which results in fewer mixed pixels in the image, and these inflection points are significantly indicative of the observed features. Therefore, the experiment results indicate that the modified fractal methods are effective to reflect the pixel-based scale effect existing in remote sensing data and it is helpful to analyze the observation scale from different aspects. This research will ultimately benefit for remote sensing data selection and application.
Modified femoral pressuriser generates a longer lasting high pressure during cement pressurisation
2011-01-01
Background The strength of the cement-bone interface in hip arthroplasty is strongly related to cement penetration into the bone. A modified femoral pressuriser has been investigated, designed for closer fitting into the femoral opening to generate higher and more constant cement pressure compared to a commercial (conventional) design. Methods Femoral cementation was performed in 10 Sawbones® models, five using the modified pressuriser and five using a current commercial pressuriser as a control. Pressure during the cementation was recorded at the proximal and distal regions of the femoral implant. The peak pressure and the pressure-time curves were analysed by student's t-test and Two way ANOVA. Results The modified pressuriser showed significantly and substantially longer durations at higher cementation pressures and slightly, although not statistically, higher peak pressures compared to the conventional pressuriser. The modified pressuriser also produced more controlled cement leakage. Conclusion The modified pressuriser generates longer higher pressure durations in the femoral model. This design modification may enhance cement penetration into cancellous bone and could improve femoral cementation. PMID:22004662
Silk-based delivery systems of bioactive molecules.
Numata, Keiji; Kaplan, David L
2010-12-30
Silks are biodegradable, biocompatible, self-assembling proteins that can also be tailored via genetic engineering to contain specific chemical features, offering utility for drug and gene delivery. Silkworm silk has been used in biomedical sutures for decades and has recently achieved Food and Drug Administration approval for expanded biomaterials device utility. With the diversity and control of size, structure and chemistry, modified or recombinant silk proteins can be designed and utilized in various biomedical application, such as for the delivery of bioactive molecules. This review focuses on the biosynthesis and applications of silk-based multi-block copolymer systems and related silk protein drug delivery systems. The utility of these systems for the delivery of small molecule drugs, proteins and genes is reviewed. Copyright © 2010 Elsevier B.V. All rights reserved.
Fragments of the Bacterial Toxin Microcin B17 as Gyrase Poisons
Collin, Frédéric; Thompson, Robert E.; Jolliffe, Katrina A.; Payne, Richard J.; Maxwell, Anthony
2013-01-01
Fluoroquinolones are very important drugs in the clinical antibacterial arsenal; their success is principally due to their mode of action: the stabilisation of a gyrase-DNA intermediate (the cleavage complex), which triggers a chain of events leading to cell death. Microcin B17 (MccB17) is a modified peptide bacterial toxin that acts by a similar mode of action, but is unfortunately unsuitable as a therapeutic drug. However, its structure and mechanism could inspire the design of new antibacterial compounds that are needed to circumvent the rise in bacterial resistance to current antibiotics. Here we describe the investigation of the structural features responsible for MccB17 activity and the identification of fragments of the toxin that retain the ability to stabilise the cleavage complex. PMID:23593482
Fragments of the bacterial toxin microcin B17 as gyrase poisons.
Collin, Frédéric; Thompson, Robert E; Jolliffe, Katrina A; Payne, Richard J; Maxwell, Anthony
2013-01-01
Fluoroquinolones are very important drugs in the clinical antibacterial arsenal; their success is principally due to their mode of action: the stabilisation of a gyrase-DNA intermediate (the cleavage complex), which triggers a chain of events leading to cell death. Microcin B17 (MccB17) is a modified peptide bacterial toxin that acts by a similar mode of action, but is unfortunately unsuitable as a therapeutic drug. However, its structure and mechanism could inspire the design of new antibacterial compounds that are needed to circumvent the rise in bacterial resistance to current antibiotics. Here we describe the investigation of the structural features responsible for MccB17 activity and the identification of fragments of the toxin that retain the ability to stabilise the cleavage complex.
NASA Astrophysics Data System (ADS)
Brandon, Simon; Derby, Jeffrey J.; Atherton, L. Jeffrey; Roberts, David H.; Vital, Russel L.
1993-09-01
A novel process modification, the simultaneous growth of three cylindrical Cr:LiCaAlf 6 (Cr:LiCAF) crystals grown from a common seed in a vertical Bridgman furnace of rectangular cross section, is assessed using computational modeling. The analysis employs the FIDAP finite-element package and accounts for three-dimensional, steady-state, conductive heat transfer throughout the system. The induction heating system is rigorously simulated via solution of Maxwell's equations. The implementation of realistic thermal boundary conditions and furnace details is shown to be important. Furnace design features are assessed through calculations, and simulations indicate expected growth conditions to be favorable. In addition, the validity of using ampoules containing "dummy" charges for experimental furnace characterization measurements is examined through test computations.
Micromachined devices: the impact of controlled geometry from cell-targeting to bioavailability.
Tao, Sarah L; Desai, Tejal A
2005-12-05
Advances in microelectomechanical systems (MEMS) have allowed the microfabrication of polymeric substrates and the development of a novel class of controlled delivery devices. These vehicles have specifically tailored three-dimensional physical and chemical features which, together, provide the capacity to target cells, promote unidirectional controlled release, and enhance permeation across the intestinal epithelial barrier. Examining the biological response at the microdevice biointerface may provide insight into the benefits of customized surface chemistry and structure in terms of complex drug delivery vehicle design. Therefore, the aim of this work was to determine the interfacial effects of selective surface chemistry and architecture of tomato lectin (TL)-modified poly(methyl methacrylate) (PMMA) drug delivery microdevices on the Caco-2 cell line, a model of the gastrointestinal tract.
Luciferase-Specific Coelenterazine Analogues for Optical Contamination-Free Bioassays.
Nishihara, Ryo; Abe, Masahiro; Nishiyama, Shigeru; Citterio, Daniel; Suzuki, Koji; Kim, Sung Bae
2017-04-19
Spectral overlaps among the multiple optical readouts commonly cause optical contamination in fluorescence and bioluminescence. To tackle this issue, we created five-different lineages of coelenterazine (CTZ) analogues designed to selectively illuminate a specific luciferase with unique luciferase selectivity. In the attempt, we found that CTZ analogues with ethynyl or styryl groups display dramatically biased bioluminescence to specific luciferases and pHs by modifying the functional groups at the C-2 and C-6 positions of the imidazopyradinone backbone of CTZ. The optical contamination-free feature was exemplified with the luciferase-specific CTZ analogues, which illuminated anti-estrogenic and rapamycin activities in a mixture of optical probes. This unique bioluminescence platform has great potential for specific and high throughput imaging of multiple optical readouts in bioassays without optical contamination.
Krajczyk, Anna; Zeidler, Joanna; Januszczyk, Piotr; Dawadi, Surendra; Boshoff, Helena I.; Barry, Clifton E.; Ostrowski, Tomasz; Aldrich, Courtney C.
2016-01-01
A series of 5’-O-[N-(salicyl)sulfamoyl]-2-aryl-8-aza-3-deazaadenosines were designed to block mycobactin biosynthesis in Mycobacterium tuberculosis (Mtb) through inhibition of the essential adenylating enzyme MbtA. The synthesis of the 2-aryl-8-aza-3-deazaadenosine nucleosides featured sequential copper-free palladium-catalyzed Sonogashira coupling of a precursor 4-cyano-5-iodo-1,2,3-triazolonucleoside with terminal alkynes and Minakawa-Matsuda annulation reaction. These modified nucleosides were shown to inhibit MbtA with apparent Ki values ranging from 6.1 to 25 nM and to inhibit Mtb growth under iron-deficient conditions with minimum inhibitory concentrations ranging from 12.5 to >50 μM. PMID:27265685
Acceptance of genetically modified foods: the relation between technology and evaluation.
Tenbült, Petra; De Vries, Nanne K; van Breukelen, Gerard; Dreezens, Ellen; Martijn, Carolien
2008-07-01
This study investigates why consumers accept different genetically modified food products to different extents. The study shows that whether food products are genetically modified or not and whether they are processed or not are the two important features that affect the acceptance of food products and their evaluation (in terms of perceived healthiness, naturalness, necessity and tastiness). The extent to which these evaluation attributes and acceptance of a product are affected by genetic modification or processing depends on whether the product is negatively affected by the other technology: Any technological change to a 'natural' product (when nonprocessed products are genetically modified or when non-genetically modified products are processed) affect evaluation and acceptance stronger than a change to an technologically adapted product (when processed products are also genetically modified or vice versa). Furthermore, evaluation attributes appear to mediate the effects of genetic modification and processing on acceptance.
NASA Astrophysics Data System (ADS)
Houle, Meredith
2008-10-01
This multiple case study examined how three urban science teachers used curriculum materials designed educatively. Educative curriculum materials have been suggested as one way to support science teacher learning, particularly around new innovations and new pedagogies and to support teachers in evaluating and modifying materials to meet the needs of their students (Davis & Krajcik, 2005). While not a substitute for professional development, educative curriculum materials may provide an opportunity to support teachers' enactment and learning in the classroom context (Davis & Krajcik, 2005; Remillard, 2005; Schneider & Krajcik, 2002). However, little work has examined how science teachers interact with written curriculum materials to design classroom instruction. Grounded in sociocultural analysis, this study takes the theoretical stance that teachers and curriculum materials are engaged in a dynamic and participatory relationship from which the planned and enacted curriculum emerges (Remillard, 2005). Teaching is therefore a design activity where teachers rely on their personal resources and the curricular resources to construct and shape their students' learning experiences (Brown, 2002). Specifically this study examines how teacher beliefs influence their reading and use of curriculum and how educative features in the written curriculum inform teachers' pedagogical decisions. Data sources included classroom observation and video, teacher interviews, and classroom artifacts. To make sense how teachers' make curricular decisions, video were analyzed using Brown's (2002) Pedagogical Design for Enactment Framework. These coded units were examined in light of the teacher interviews, classroom notes and artifacts to examine how teachers' beliefs influenced these decisions. Data sources were then reexamined for evidence of teachers' use of specific educative features. My analyses revealed that teachers' beliefs about curriculum influenced the degree to which teachers relied on their own personal resources or the curricular resources in designing the taught curriculum. Teacher experience was also found to influence the degree to which teachers relied on their personal resources. Implications for teacher learning, professional development and curriculum development are discussed.
Choi, J.; Seong, J.C.; Kim, B.; Usery, E.L.
2008-01-01
A feature relies on three dimensions (space, theme, and time) for its representation. Even though spatiotemporal models have been proposed, they have principally focused on the spatial changes of a feature. In this paper, a feature-based temporal model is proposed to represent the changes of both space and theme independently. The proposed model modifies the ISO's temporal schema and adds new explicit temporal relationship structure that stores temporal topological relationship with the ISO's temporal primitives of a feature in order to keep track feature history. The explicit temporal relationship can enhance query performance on feature history by removing topological comparison during query process. Further, a prototype system has been developed to test a proposed feature-based temporal model by querying land parcel history in Athens, Georgia. The result of temporal query on individual feature history shows the efficiency of the explicit temporal relationship structure. ?? Springer Science+Business Media, LLC 2007.
NASA Technical Reports Server (NTRS)
Ferlemann, Paul G.; Gollan, Rowan J.
2010-01-01
Computational design and analysis of three-dimensional hypersonic inlets with shape transition has been a significant challenge due to the complex geometry and grid required for three-dimensional viscous flow calculations. Currently, the design process utilizes an inviscid design tool to produce initial inlet shapes by streamline tracing through an axisymmetric compression field. However, the shape is defined by a large number of points rather than a continuous surface and lacks important features such as blunt leading edges. Therefore, a design system has been developed to parametrically construct true CAD geometry and link the topology of a structured grid to the geometry. The Adaptive Modeling Language (AML) constitutes the underlying framework that is used to build the geometry and grid topology. Parameterization of the CAD geometry allows the inlet shapes produced by the inviscid design tool to be generated, but also allows a great deal of flexibility to modify the shape to account for three-dimensional viscous effects. By linking the grid topology to the parametric geometry, the GridPro grid generation software can be used efficiently to produce a smooth hexahedral multiblock grid. To demonstrate the new capability, a matrix of inlets were designed by varying four geometry parameters in the inviscid design tool. The goals of the initial design study were to explore inviscid design tool geometry variations with a three-dimensional analysis approach, demonstrate a solution rate which would enable the use of high-fidelity viscous three-dimensional CFD in future design efforts, process the results for important performance parameters, and perform a sample optimization.
Artificially modified magnetic anisotropy in interconnected nanowire networks.
Araujo, Elsie; Encinas, Armando; Velázquez-Galván, Yenni; Martínez-Huerta, Juan Manuel; Hamoir, Gaël; Ferain, Etienne; Piraux, Luc
2015-01-28
Interconnected or crossed magnetic nanowire networks have been fabricated by electrodeposition into a polycarbonate template with crossed cylindrical nanopores oriented ±30° with respect to the surface normal. Tailor-made nanoporous polymer membranes have been designed by performing a double energetic heavy ion irradiation with fixed incidence angles. The Ni and Ni/NiFe nanowire networks have been characterized by magnetometry as well as ferromagnetic resonance and compared with parallel nanowire arrays of the same diameter and density. The most interesting feature of these nanostructured materials is a significant reduction of the magnetic anisotropy when the external field is applied perpendicular and parallel to the plane of the sample. This effect is attributed to the relative orientation of the nanowire axes with the applied field. Moreover, the microwave transmission spectra of these nanowire networks display an asymmetric linewidth broadening, which may be interesting for the development of low-pass filters. Nanoporous templates made of well-defined nanochannel network constitute an interesting approach to fabricate materials with controlled anisotropy and microwave absorption properties that can be easily modified by adjusting the relative orientation of the nanochannels, pore sizes and material composition along the length of the nanowire.
Zhan, Xiaohui; Yi, Qiangying; Cai, Shuang; Zhou, Xiaoxi; Ma, Shaohua; Lan, Fang; Gu, Zhongwei; Wu, Yao
2017-12-15
In this study, we report a facile and versatile strategy for preparing a type of pH-responsive superparamagnetic hybrid coassemblies featuring a series of controls over the morphology and multi-functionalization simultaneously and efficiently. Via the entanglement interactions, the combine of fixed PEG-b-P4VP modified Fe 3 O 4 NPs (D-Fe 3 O 4 @mPEG-b-P4VP) and different well-designed free PEG-b-P4VP, which are analogous to two amphiphiles, contributes these hybrid superstructures with multiple, well-defined morphologies and targeted fluorescent properties. In contrast to other studies, our work overcame several defects (e.g., interior NPs' randomness, cumbersome assembly parameter adjustment and functionalization) of the conventional assembly of modified inorganic NPs and demonstrated that this coassembly strategy can be used as a versatile tool for the controllable assembly of other NPs or polymers. Finally, taking the coassembly C1 as a desirable drug delivery carrier, good biocompatibility and pH-triggered drug release were successfully verified. The current study indicated that these magnetic coassemblies are promising as multifunctional and multipurpose carriers in biological, medical, catalytic, and coating applications. Copyright © 2017. Published by Elsevier Inc.
NASA Astrophysics Data System (ADS)
Yi, Jin; Li, Xinyu; Xiao, Mi; Xu, Junnan; Zhang, Lin
2017-01-01
Engineering design often involves different types of simulation, which results in expensive computational costs. Variable fidelity approximation-based design optimization approaches can realize effective simulation and efficiency optimization of the design space using approximation models with different levels of fidelity and have been widely used in different fields. As the foundations of variable fidelity approximation models, the selection of sample points of variable-fidelity approximation, called nested designs, is essential. In this article a novel nested maximin Latin hypercube design is constructed based on successive local enumeration and a modified novel global harmony search algorithm. In the proposed nested designs, successive local enumeration is employed to select sample points for a low-fidelity model, whereas the modified novel global harmony search algorithm is employed to select sample points for a high-fidelity model. A comparative study with multiple criteria and an engineering application are employed to verify the efficiency of the proposed nested designs approach.
NASA Astrophysics Data System (ADS)
Gunduz, Mustafa Emre
Many government agencies and corporations around the world have found the unique capabilities of rotorcraft indispensable. Incorporating such capabilities into rotorcraft design poses extra challenges because it is a complicated multidisciplinary process. The concept of applying several disciplines to the design and optimization processes may not be new, but it does not currently seem to be widely accepted in industry. The reason for this might be the lack of well-known tools for realizing a complete multidisciplinary design and analysis of a product. This study aims to propose a method that enables engineers in some design disciplines to perform a fairly detailed analysis and optimization of a design using commercially available software as well as codes developed at Georgia Tech. The ultimate goal is when the system is set up properly, the CAD model of the design, including all subsystems, will be automatically updated as soon as a new part or assembly is added to the design; or it will be updated when an analysis and/or an optimization is performed and the geometry needs to be modified. Designers and engineers will be involved in only checking the latest design for errors or adding/removing features. Such a design process will take dramatically less time to complete; therefore, it should reduce development time and costs. The optimization method is demonstrated on an existing helicopter rotor originally designed in the 1960's. The rotor is already an effective design with novel features. However, application of the optimization principles together with high-speed computing resulted in an even better design. The objective function to be minimized is related to the vibrations of the rotor system under gusty wind conditions. The design parameters are all continuous variables. Optimization is performed in a number of steps. First, the most crucial design variables of the objective function are identified. With these variables, Latin Hypercube Sampling method is used to probe the design space of several local minima and maxima. After analysis of numerous samples, an optimum configuration of the design that is more stable than that of the initial design is reached. The above process requires several software tools: CATIA as the CAD tool, ANSYS as the FEA tool, VABS for obtaining the cross-sectional structural properties, and DYMORE for the frequency and dynamic analysis of the rotor. MATLAB codes are also employed to generate input files and read output files of DYMORE. All these tools are connected using ModelCenter.
Do Particular Design Features Assist People with Aphasia to Comprehend Text? An Exploratory Study
ERIC Educational Resources Information Center
Wilson, Lucy; Read, Jennifer
2016-01-01
Background: Much of the evidence underlying guidelines for producing accessible information for people with aphasia focuses on client preference for particular design features. There is limited evidence regarding the effects of these features on comprehension. Aims: To examine the effects of specific design features on text comprehension. It was…
Escalator Design Features Evaluation
DOT National Transportation Integrated Search
1982-05-01
This study provides an evaluation of the effectiveness of several special design features associated with escalators in rail transit systems. The objective of the study was to evaluate the effectiveness of three escalator design features: (1) mat ope...
Characterization of Particle Combustion in a Rijke Burner
1988-11-01
Rijke Burner 14 3.1 Introduction 14 3.2 Acoustics 14 3.3 Eperimental Procedure 17 3.3.1 Apparatus 17 3.3.2 Data Reduction 19 3.4 Burner...response of the modified Rijke burner, 2) The experimental procedures, including design modifications of the burner and data reduction, and 3...have been modified and improved significantly. The following sections describe the major design changes made in the modified Rijke burner and its
Pekkan, Kerem; Whited, Brian; Kanter, Kirk; Sharma, Shiva; de Zelicourt, Diane; Sundareswaran, Kartik; Frakes, David; Rossignac, Jarek; Yoganathan, Ajit P
2008-11-01
The first version of an anatomy editing/surgical planning tool (SURGEM) targeting anatomical complexity and patient-specific computational fluid dynamics (CFD) analysis is presented. Novel three-dimensional (3D) shape editing concepts and human-shape interaction technologies have been integrated to facilitate interactive surgical morphology alterations, grid generation and CFD analysis. In order to implement "manual hemodynamic optimization" at the surgery planning phase for patients with congenital heart defects, these tools are applied to design and evaluate possible modifications of patient-specific anatomies. In this context, anatomies involve complex geometric topologies and tortuous 3D blood flow pathways with multiple inlets and outlets. These tools make it possible to freely deform the lumen surface and to bend and position baffles through real-time, direct manipulation of the 3D models with both hands, thus eliminating the tedious and time-consuming phase of entering the desired geometry using traditional computer-aided design (CAD) systems. The 3D models of the modified anatomies are seamlessly exported and meshed for patient-specific CFD analysis. Free-formed anatomical modifications are quantified using an in-house skeletization based cross-sectional geometry analysis tool. Hemodynamic performance of the systematically modified anatomies is compared with the original anatomy using CFD. CFD results showed the relative importance of the various surgically created features such as pouch size, vena cave to pulmonary artery (PA) flare and PA stenosis. An interactive surgical-patch size estimator is also introduced. The combined design/analysis cycle time is used for comparing and optimizing surgical plans and improvements are tabulated. The reduced cost of patient-specific shape design and analysis process, made it possible to envision large clinical studies to assess the validity of predictive patient-specific CFD simulations. In this paper, model anatomical design studies are performed on a total of eight different complex patient specific anatomies. Using SURGEM, more than 30 new anatomical designs (or candidate configurations) are created, and the corresponding user times presented. CFD performances for eight of these candidate configurations are also presented.
Liao, Gen-Yih; Chien, Yu-Tai; Chen, Yu-Jen; Hsiung, Hsiao-Fang; Chen, Hsiao-Jung; Hsieh, Meng-Hua; Wu, Wen-Jie
2017-05-25
Physical activity is important for middle-agers to maintain health both in middle age and in old age. Although thousands of exercise-promotion mobile phone apps are available for download, current literature offers little understanding regarding which design features can enhance middle-aged adults' quality perception toward exercise-promotion apps and which factor may influence such perception. The aims of this study were to understand (1) which design features of exercise-promotion apps can enhance quality perception of middle-agers, (2) whether their needs are matched by current functions offered in app stores, and (3) whether physical activity (PA) and mobile phone self-efficacy (MPSE) influence quality perception. A total of 105 middle-agers participated and filled out three scales: the International Physical Activity Questionnaire (IPAQ), the MPSE scale, and the need for design features questionnaire. The design features were developed based on the Coventry, Aberdeen, and London-Refined (CALO-RE) taxonomy. Following the Kano quality model, the need for design features questionnaire asked participants to classify design features into five categories: attractive, one-dimensional, must-be, indifferent, and reverse. The quality categorization was conducted based on a voting approach and the categorization results were compared with the findings of a prevalence study to realize whether needs match current availability. In total, 52 multinomial logistic regression models were analyzed to evaluate the effects of PA level and MPSE on quality perception of design features. The Kano analysis on the total sample revealed that visual demonstration of exercise instructions is the only attractive design feature, whereas the other 51 design features were perceived with indifference. Although examining quality perception by PA level, 21 features are recommended to low level, 6 features to medium level, but none to high-level PA. In contrast, high-level MPSE is recommended with 14 design features, medium level with 6 features, whereas low-level participants are recommended with 1 feature. The analysis suggests that the implementation of demanded features could be low, as the average prevalence of demanded design features is 20% (4.3/21). Surprisingly, social comparison and social support, most implemented features in current apps, were categorized into the indifferent category. The magnitude of effect is larger for MPSE because it effects quality perception of more design features than PA. Delving into the 52 regression models revealed that high MPSE more likely induces attractive or one- dimensional categorization, suggesting the importance of technological self-efficacy on eHealth care promotion. This study is the first to propose middle-agers' needs in relation to mobile phone exercise-promotion. In addition to the tailor-made recommendations, suggestions are offered to app designers to enhance the performance of persuasive features. An interesting finding on change of quality perception attributed to MPSE is proposed as future research. ©Gen-Yih Liao, Yu-Tai Chien, Yu-Jen Chen, Hsiao-Fang Hsiung, Hsiao-Jung Chen, Meng-Hua Hsieh, Wen-Jie Wu. Originally published in JMIR Mhealth and Uhealth (http://mhealth.jmir.org), 25.05.2017.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-16
... design intake volume of 680,000 gpm [gallons per minute] (42,840 L/s), with a combined condenser flow... licensee in 2007 and the cooling tower design was subsequently modified to meet PM emission thresholds by reducing the flow rate through the tower. The predicted emissions from the modified design are 91.2 tons PM...
NASA Astrophysics Data System (ADS)
Medland, A. J.; Zhu, Guowang; Gao, Jian; Sun, Jian
1996-03-01
Feature conversion, also called feature transformation and feature mapping, is defined as the process of converting features from one view of an object to another view of the object. In a relatively simple implementation, for each application the design features are automatically converted into features specific for that application. All modifications have to be made via the design features. This is the approach that has attracted most attention until now. In the ideal situation, however, conversions directly from application views to the design view, and to other applications views, are also possible. In this paper, some difficulties faced in feature conversion are discussed. A new representation scheme of feature-based parts models has been proposed for the purpose of one-way feature conversion. The parts models consist of five different levels of abstraction, extending from an assembly level and its attributes, single parts and their attributes, single features and their attributes, one containing the geometric reference element and finally one for detailed geometry. One implementation of feature conversion for rotational components within GT (Group Technology) has already been undertaken using an automated coding procedure operating on a design-feature database. This database has been generated by a feature-based design system, and the GT coding scheme used in this paper is a specific scheme created for a textile machine manufacturing plant. Such feature conversion techniques presented here are only in their early stages of development and further research is underway.
Morphological Effect of Non-targeted Biomolecule-Modified MNPs on Reticuloendothelial System
NASA Astrophysics Data System (ADS)
Li, Xiao; Hu, Yan; Xiao, Jie; Cheng, Dengfeng; Xiu, Yan; Shi, Hongcheng
2015-09-01
Magnetic nanoparticles (MNPs) with special morphology were commonly used as biomaterials, while morphological effects of non-targeted biomolecule-modified MNPs on biological behaviors were still unclear. In this research, spherical and rod-like Fe3O4 in a comparable size were synthesized and then surface-modified by bovine serum albumin (BSA) as a model of non-targeted biomolecule-modified MNPs. Morphological effects were featured by TEM and quantification of in vitro phagocytic uptake, as well as the in vivo quantification of particles in reticuloendothelial system (RES)-related organs of normal Kunming mice. For these non-targeted BSA-modified MNPs, intracellular distributions were the same, but the rod-like MNPs were more likely to be uptake by macrophages; furthermore, the BSA-modified MNPs gathered in RES-related organs soon after intravenous injection, but the rod-like ones were expelled from the lung more quickly and expelled from the spleen more slowly. These preliminary results may be referable if MNPs or other similar biomolecule-modified nanoparticles were used.
Model Predictive Control of Type 1 Diabetes: An in Silico Trial
Magni, Lalo; Raimondo, Davide M.; Bossi, Luca; Man, Chiara Dalla; De Nicolao, Giuseppe; Kovatchev, Boris; Cobelli, Claudio
2007-01-01
Background The development of artificial pancreas has received a new impulse from recent technological advancements in subcutaneous continuous glucose monitoring and subcutaneous insulin pump delivery systems. However, the availability of innovative sensors and actuators, although essential, does not guarantee optimal glycemic regulation. Closed-loop control of blood glucose levels still poses technological challenges to the automatic control expert, most notable of which are the inevitable time delays between glucose sensing and insulin actuation. Methods A new in silico model is exploited for both design and validation of a linear model predictive control (MPC) glucose control system. The starting point is a recently developed meal glucose–insulin model in health, which is modified to describe the metabolic dynamics of a person with type 1 diabetes mellitus. The population distribution of the model parameters originally obtained in healthy 204 patients is modified to describe diabetic patients. Individual models of virtual patients are extracted from this distribution. A discrete-time MPC is designed for all the virtual patients from a unique input–output-linearized approximation of the full model based on the average population values of the parameters. The in silico trial simulates 4 consecutive days, during which the patient receives breakfast, lunch, and dinner each day. Results Provided that the regulator undergoes some individual tuning, satisfactory results are obtained even if the control design relies solely on the average patient model. Only the weight on the glucose concentration error needs to be tuned in a quite straightforward and intuitive way. The ability of the MPC to take advantage of meal announcement information is demonstrated. Imperfect knowledge of the amount of ingested glucose causes only marginal deterioration of performance. In general, MPC results in better regulation than proportional integral derivative, limiting significantly the oscillation of glucose levels. Conclusions The proposed in silico trial shows the potential of MPC for artificial pancreas design. The main features are a capability to consider meal announcement information, delay compensation, and simplicity of tuning and implementation. PMID:19885152
NASA Astrophysics Data System (ADS)
Abtew, M. A.; Bruniaux, P.; Boussu, F.
2017-10-01
The traditional two dimensional (2D) pattern making method for developing female body armour has a negative effect on the ballistic protective performance as well as the comfort of the wearer. This is due to, unlike the male body armour, the female body armour manufacturing involves different darts to accommodate the natural curvature of the female body, i.e. bust area, which will reveals the weak parts at the seam and stitch area while ballistic impact. Moreover, the proper bra size also plays an important role not only in bra design but also in the design of a women’s ballistic vest. The present research study tried to propose the novel 3D designing approach for developing different volumes of breast using feature points (both bust surface and outline points) in the specific 3D adaptive mannequin. Later the flattened 3D bra patterns of this method has been also compare with the 2D standard pattern making in order to modify and match with 2D traditional method. The result indicated that the proposed method which conceives the 3D patterns on the 3D bust is easier to implement and can generate patterns with satisfactory fit and comfort as compared to 2D patterns.
Detailed design of the large-bore 8 T superconducting magnet for the NAFASSY test facility
NASA Astrophysics Data System (ADS)
Corato, V.; Affinito, L.; Anemona, A.; Besi Vetrella, U.; Di Zenobio, A.; Fiamozzi Zignani, C.; Freda, R.; Messina, G.; Muzzi, L.; Perrella, M.; Reccia, L.; Tomassetti, G.; Turtù, S.; della Corte, A.
2015-03-01
The ‘NAFASSY’ (NAtional FAcility for Superconducting SYstems) facility is designed to test wound conductor samples under high-field conditions at variable temperatures. Due to its unique features, it is reasonable to assume that in the near future NAFASSY will have a preeminent role at the international level in the qualification of long coiled cables in operative conditions. The magnetic system consists of a large warm bore background solenoid, made up of three series-connected grading sections obtained by winding three different Nb3Sn Cable-in-Conduit Conductors. Thanks to the financial support of the Italian Ministry for University and Research the low-field coil is currently under production. The design has been properly modified to allow the system to operate also as a stand-alone facility, with an inner bore diameter of 1144 mm. This magnet is able to provide about 7 T on its axis and about 8 T close to the insert inner radius, giving the possibility of performing a test relevant for large-sized NbTi or medium-field Nb3Sn conductors. The detailed design of the 8 T magnet, including the electro-magnetic, structural and thermo-hydraulic analysis, is here reported, as well as the production status.
Fluid-Dynamic Optimal Design of Helical Vascular Graft for Stenotic Disturbed Flow
Ha, Hojin; Hwang, Dongha; Choi, Woo-Rak; Baek, Jehyun; Lee, Sang Joon
2014-01-01
Although a helical configuration of a prosthetic vascular graft appears to be clinically beneficial in suppressing thrombosis and intimal hyperplasia, an optimization of a helical design has yet to be achieved because of the lack of a detailed understanding on hemodynamic features in helical grafts and their fluid dynamic influences. In the present study, the swirling flow in a helical graft was hypothesized to have beneficial influences on a disturbed flow structure such as stenotic flow. The characteristics of swirling flows generated by helical tubes with various helical pitches and curvatures were investigated to prove the hypothesis. The fluid dynamic influences of these helical tubes on stenotic flow were quantitatively analysed by using a particle image velocimetry technique. Results showed that the swirling intensity and helicity of the swirling flow have a linear relation with a modified Germano number (Gn*) of the helical pipe. In addition, the swirling flow generated a beneficial flow structure at the stenosis by reducing the size of the recirculation flow under steady and pulsatile flow conditions. Therefore, the beneficial effects of a helical graft on the flow field can be estimated by using the magnitude of Gn*. Finally, an optimized helical design with a maximum Gn* was suggested for the future design of a vascular graft. PMID:25360705
NASA Astrophysics Data System (ADS)
Li, Xin; Deng, Jinchuan; Yuan, Shuheng; Wang, Juan; Luo, Rifang; Chen, Si; Wang, Jin; Huang, Nan
2016-11-01
Endothelial progenitor cells (EPCs) are mainly located in bone marrow and circulate, and play a crucial role in repairmen of injury endothelium. One of the most promising strategies of stents designs were considered to make in-situ endothelialization in vivo via EPC-capture biomolecules on a vascular graft to capture EPCs directly from circulatory blood. In this work, an EPC specific aptamer with a 34 bases single strand DNA sequence was conjugated onto the stent surface via dopamine/polyethyleneimine copolymer film as a platform and linker. The assembled density of DNA aptamer could be regulated by controlling dopamine percentage in this copolymer film. X-ray photoelectron spectroscopy (XPS), water contact angle (WCA) and fluorescence test confirmed the successful immobilization of DNA aptamer. To confirm its biofunctionality and cytocompatibility, the capturing cells ability of the aptamer modified surface and the effects on the growth behavior of human umbilical vein endothelial cells (HUVECs), smooth muscle cells (SMCs) were investigated. The aptamer functionalized sample revealed a good EPC-capture ability, and had a cellular friendly feature for both EPC and EC growth, while not stimulated the hyperplasia of SMCs. And, the co-culture experiment of three types of cells confirmed the specificity capturing of EPCs to aptamer modified surface, rather than ECs and SMCs. These data suggested that this aptamer functionalized surface may have a large potentiality for the application of vascular grafts with targeted endothelialization.
Adaptable Computing Environment/Self-Assembling Software
DOE Office of Scientific and Technical Information (OSTI.GOV)
Osbourn, Gordon C.; Bouchard, Ann M.; Bartholomew, John W.
Complex software applications are difficult to learn to use and to remember how to use. Further, the user has no control over the functionality available in a given application. The software we use can be created and modified only by a relatively small group of elite, highly skilled artisans known as programmers. "Normal users" are powerless to create and modify software themselves, because the tools for software development, designed by and for programmers, are a barrier to entry. This software, when completed, will be a user-adaptable computing environment in which the user is really in control of his/her own software,more » able to adapt the system, make new parts of the system interactive, and even modify the behavior of the system itself. Som key features of the basic environment that have been implemented are (a) books in bookcases, where all data is stored, (b) context-sensitive compass menus (compass, because the buttons are located in compass directions relative to the mouose cursor position), (c) importing tabular data and displaying it in a book, (d) light-weight table querying/sorting, (e) a Reach&Get capability (sort of a "smart" copy/paste that prevents the user from copying invalid data), and (f) a LogBook that automatically logs all user actions that change data or the system itself. To bootstrap toward full end-user adaptability, we implemented a set of development tools. With the development tools, compass menus can be made and customized.« less
Overview of the 1986 free-piston Stirling SP-100 activities at the NASA Lewis Research Center
NASA Technical Reports Server (NTRS)
Slaby, J. G.
1986-01-01
An overview of the NASA Lewis Research Center SP-100 free-piston Stirling engine activities is presented. These activities include a free-piston Stirling space-power technology feasibility demonstration project as part of the SP-100 program being conducted in support of the Department of Defennse (DOD), Department of Energy (DOE), and NASA. The space-power Stirling advanced technology effort, under SP-100, addresses the status of the 25 kWe Space Power Demonstrator Engine (SPDE) including test results. Future space-power projections are presented along with a description of a study that will investigate the feasibility of scaling a single-cylinder free-piston Stirling space-power module to the 150 kW power range. Design parameters and conceptual design features will be presented for a 25 kWe, single-cylinder free-piston Stirling space-power converter. A description of a hydrodynamic gas bearing concept is presented whereby the displacer of a 1 kWe free-piston Stirling engine is modified to demonstrate the bearing concept. And finally the goals of a conceptual design for a 25 kWe Solar Advanced Stirling Conversion System capable of delivering electric power to an electric utility grid are discussed.
Scognamiglio, Viviana; Antonacci, Amina; Lambreva, Maya D; Litescu, Simona C; Rea, Giuseppina
2015-12-15
Biosensors are powerful tunable systems able to switch between an ON/OFF status in response to an external stimulus. This extraordinary property could be engineered by adopting synthetic biology or biomimetic chemistry to obtain tailor-made biosensors having the desired requirements of robustness, sensitivity and detection range. Recent advances in both disciplines, in fact, allow to re-design the configuration of the sensing elements - either by modifying toggle switches and gene networks, or by producing synthetic entities mimicking key properties of natural molecules. The present review considered the role of synthetic biology in sustaining biosensor technology, reporting examples from the literature and reflecting on the features that make it a useful tool for designing and constructing engineered biological systems for sensing application. Besides, a section dedicated to bioinspired synthetic molecules as powerful tools to enhance biosensor potential is reported, and treated as an extension of the concept of biomimetic chemistry, where organic synthesis is used to generate artificial molecules that mimic natural molecules. Thus, the design of synthetic molecules, such as aptamers, biomimetics, molecular imprinting polymers, peptide nucleic acids, and ribozymes were encompassed as "products" of biomimetic chemistry. Copyright © 2015 Elsevier B.V. All rights reserved.
Overview of the 1986 free-piston Stirling SP-100 activities at the NASA Lewis Research Center
NASA Technical Reports Server (NTRS)
Slaby, J. G.
1986-01-01
An overview of the NASA Lewis Research Center SP-100 free-piston Stirling engine activities is presented. These activities include a free-piston Stirling space-power technology feasibility demonstration project as part of the SP-100 program being conducted in support of the Department of Defense (DOD), Department of Energy (DOE), and NASA. The space-power Stirling advanced technology effort, under SP-100, addresses the status of the 25 kWe Space Power Demonstrator Engine (SPDE) including test results. Future space-power projections are presented along with a description of a study that will investigate the feasibility of scaling a single-cylinder free-piston Stirling space-power module to the 150 kW power range. Design parameters and conceptual design features will be presented for a 25 kWe, single-cylinder free-piston Stirling space-power converter. A description of a hydrodynamic gas bearing concept is presented whereby the displacer of a 1 kWe free-piston Stirling engine is modified to demonstrate the bearing concept. And finally the goals of a conceptual design for a 25 kWe Solar Advanced Stirling Conversion System capable of delivering electric power to an electric utility grid are discussed.
Development of Tasks and Evaluation of a Prototype Forceps for NOTES
Addis, Matthew; Aguirre, Milton; Haluck, Randy; Matthew, Abraham; Pauli, Eric; Gopal, Jegan
2012-01-01
Background and Objectives: Few standardized testing procedures exist for instruments intended for Natural Orifice Translumenal Endoscopic Surgery. These testing procedures are critical for evaluating surgical skills and surgical instruments to ensure sufficient quality. This need is widely recognized by endoscopic surgeons as a major hurdle for the advancement of Natural Orifice Translumenal Endoscopic Surgery. Methods: Beginning with tasks currently used to evaluate laparoscopic surgeons and instruments, new tasks were designed to evaluate endoscopic surgical forceps instruments. Results: Six tasks have been developed from existing tasks, adapted and modified for use with endoscopic instruments, or newly designed to test additional features of endoscopic forceps. The new tasks include the Fuzzy Ball Task, Cup Drop Task, Ring Around Task, Material Pull Task, Simulated Biopsy Task, and the Force Gauge Task. These tasks were then used to evaluate the performance of a new forceps instrument designed at Pennsylvania State University. Conclusions: The need for testing procedures for the advancement of Natural Orifice Translumenal Endoscopic Surgery has been addressed in this work. The developed tasks form a basis for not only testing new forceps instruments, but also for evaluating individual performance of surgical candidates with endoscopic forceps instruments. PMID:22906337
Asymmetries in visual search for conjunctive targets.
Cohen, A
1993-08-01
Asymmetry is demonstrated between conjunctive targets in visual search with no detectable asymmetries between the individual features that compose these targets. Experiment 1 demonstrated this phenomenon for targets composed of color and shape. Experiment 2 and 4 demonstrate this asymmetry for targets composed of size and orientation and for targets composed of contrast level and orientation, respectively. Experiment 3 demonstrates that search rate of individual features cannot predict search rate for conjunctive targets. These results demonstrate the need for 2 levels of representations: one of features and one of conjunction of features. A model related to the modified feature integration theory is proposed to account for these results. The proposed model and other models of visual search are discussed.
Modified Standard Penetration Test–based Drilled Shaft Design Method for Weak Rocks (Phase 2 Study)
DOT National Transportation Integrated Search
2017-12-15
In this project, Illinois-specific design procedures were developed for drilled shafts founded in weak shale or rock. In particular, a modified standard penetration test was developed and verified to characterize the in situ condition of weak shales ...
NASA Technical Reports Server (NTRS)
Nickol, Craig L.; Frederic, Peter
2013-01-01
A conceptual design and cost estimate for a subsonic flight research vehicle designed to support NASA's Environmentally Responsible Aviation (ERA) project goals is presented. To investigate the technical and economic feasibility of modifying an existing aircraft, a highly modified Boeing 717 was developed for maturation of technologies supporting the three ERA project goals of reduced fuel burn, noise, and emissions. This modified 717 utilizes midfuselage mounted modern high bypass ratio engines in conjunction with engine exhaust shielding structures to provide a low noise testbed. The testbed also integrates a natural laminar flow wing section and active flow control for the vertical tail. An eight year program plan was created to incrementally modify and test the vehicle, enabling the suite of technology benefits to be isolated and quantified. Based on the conceptual design and programmatic plan for this testbed vehicle, a full cost estimate of $526M was developed, representing then-year dollars at a 50% confidence level.
Modified Y-TZP Core Design Improves All-ceramic Crown Reliability
Silva, N.R.F.A.; Bonfante, E.A.; Rafferty, B.T.; Zavanelli, R.A.; Rekow, E.D.; Thompson, V.P.; Coelho, P.G.
2011-01-01
This study tested the hypothesis that all-ceramic core-veneer system crown reliability is improved by modification of the core design. We modeled a tooth preparation by reducing the height of proximal walls by 1.5 mm and the occlusal surface by 2.0 mm. The CAD-based tooth preparation was replicated and positioned in a dental articulator for core and veneer fabrication. Standard (0.5 mm uniform thickness) and modified (2.5 mm height lingual and proximal cervical areas) core designs were produced, followed by the application of veneer porcelain for a total thickness of 1.5 mm. The crowns were cemented to 30-day-aged composite dies and were either single-load-to-failure or step-stress-accelerated fatigue-tested. Use of level probability plots showed significantly higher reliability for the modified core design group. The fatigue fracture modes were veneer chipping not exposing the core for the standard group, and exposing the veneer core interface for the modified group. PMID:21057036
[Interaction of chaotropically modified immunoglobulins with protein and glicolipid antigens].
Gordienko, A I; Khimich, N V
2006-01-01
The features of interaction of native and chaotropically modified immunoglobulins with proteins (ovalbumin) and glicolipids (lipopolysaccharides, LPS) enterobacteria Escherichia coli K235, Salmonella minnesota and Salmonella enteritidis have been investigated. It has been established, that after processing of native antibodies with 3.5 M KSCN their ability to contact to the specified antigenes repeatedly grows. Besides the intensity of interaction of modified immunoglobulins with the mentioned above antigenes was various, that is determined by the presence of structural distinctions between antigen determinants of proteins and glycolipid antigens, and also between O-polysaccharide chains of LPS in different species of enterobacteria.
Physical activity and exercise attenuate neuroinflammation in neurological diseases.
Spielman, Lindsay Joy; Little, Jonathan Peter; Klegeris, Andis
2016-07-01
Major depressive disorder (MDD), schizophrenia (SCH), Alzheimer's disease (AD), and Parkinson's disease (PD) are devastating neurological disorders, which increasingly contribute to global morbidity and mortality. Although the pathogenic mechanisms of these conditions are quite diverse, chronic neuroinflammation is one underlying feature shared by all these diseases. Even though the specific root causes of these diseases remain to be identified, evidence indicates that the observed neuroinflammation is initiated by unique pathological features associated with each specific disease. If the initial acute inflammation is not resolved, a chronic neuroinflammatory state develops and ultimately contributes to disease progression. Chronic neuroinflammation is characterized by adverse and non-specific activation of glial cells, which can lead to collateral damage of nearby neurons and other glia. This misdirected neuroinflammatory response is hypothesized to contribute to neuropathology in MDD, SCH, AD, and PD. Physical activity (PA), which is critical for maintenance of whole body and brain health, may also beneficially modify neuroimmune responses. Since PA has neuroimmune-modifying properties, and the common underlying feature of MDD, SCH, AD, and PD is chronic neuroinflammation, we hypothesize that PA could minimize brain diseases by modifying glia-mediated neuroinflammation. This review highlights current evidence supporting the disease-altering potential of PA and exercise through modifications of neuroimmune responses, specifically in MDD, SCH, AD and PD. Copyright © 2016 Elsevier Inc. All rights reserved.
Multi-Scale Peak and Trough Detection Optimised for Periodic and Quasi-Periodic Neuroscience Data.
Bishop, Steven M; Ercole, Ari
2018-01-01
The reliable detection of peaks and troughs in physiological signals is essential to many investigative techniques in medicine and computational biology. Analysis of the intracranial pressure (ICP) waveform is a particular challenge due to multi-scale features, a changing morphology over time and signal-to-noise limitations. Here we present an efficient peak and trough detection algorithm that extends the scalogram approach of Scholkmann et al., and results in greatly improved algorithm runtime performance. Our improved algorithm (modified Scholkmann) was developed and analysed in MATLAB R2015b. Synthesised waveforms (periodic, quasi-periodic and chirp sinusoids) were degraded with white Gaussian noise to achieve signal-to-noise ratios down to 5 dB and were used to compare the performance of the original Scholkmann and modified Scholkmann algorithms. The modified Scholkmann algorithm has false-positive (0%) and false-negative (0%) detection rates identical to the original Scholkmann when applied to our test suite. Actual compute time for a 200-run Monte Carlo simulation over a multicomponent noisy test signal was 40.96 ± 0.020 s (mean ± 95%CI) for the original Scholkmann and 1.81 ± 0.003 s (mean ± 95%CI) for the modified Scholkmann, demonstrating the expected improvement in runtime complexity from [Formula: see text] to [Formula: see text]. The accurate interpretation of waveform data to identify peaks and troughs is crucial in signal parameterisation, feature extraction and waveform identification tasks. Modification of a standard scalogram technique has produced a robust algorithm with linear computational complexity that is particularly suited to the challenges presented by large, noisy physiological datasets. The algorithm is optimised through a single parameter and can identify sub-waveform features with minimal additional overhead, and is easily adapted to run in real time on commodity hardware.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stevens, K; Huang, T; Buttler, D
We present the C-Cat Wordnet package, an open source library for using and modifying Wordnet. The package includes four key features: an API for modifying Synsets; implementations of standard similarity metrics, implementations of well known Word Sense Disambiguation algorithms, and an implementation of the Castanet algorithm. The library is easily extendible and usable in many runtime environments. We demonstrate it's use on two standard Word Sense Disambiguation tasks and apply the Castanet algorithm to a corpus.
Electrochemical Corrosion Behavior of Spray-Formed Boron-Modified Supermartensitic Stainless Steel
NASA Astrophysics Data System (ADS)
Zepon, Guilherme; Nogueira, Ricardo P.; Kiminami, Claudio S.; Botta, Walter J.; Bolfarini, Claudemiro
2017-04-01
Spray-formed boron-modified supermartensitic stainless steel (SMSS) grades are alloys developed to withstand severe wear conditions. The addition of boron to the conventional chemical composition of SMSS, combined with the solidification features promoted by the spray forming process, leads to a microstructure composed of low carbon martensitic matrix reinforced by an eutectic network of M2B-type borides, which considerably increases the wear resistance of the stainless steel. Although the presence of borides in the microstructure has a very beneficial effect on the wear properties of the alloy, their effect on the corrosion resistance of the stainless steel was not comprehensively evaluated. The present work presents a study of the effect of boron addition on the corrosion resistance of the spray-formed boron-modified SMSS grades by means of electrochemical techniques. The borides fraction seems to have some influence on the repassivation kinetics of the spray-formed boron-modified SMSS. It was shown that the Cr content of the martensitic matrix is the microstructural feature deciding the corrosion resistance of this sort of alloys. Therefore, if the Cr content in the alloy is increased to around 14 wt pct to compensate for the boron consumed by the borides formation, the corrosion resistance of the alloy is kept at the same level of the alloy without boron addition.
Inward-Turning Streamline-Traced Inlet Design Method for Low-Boom, Low-Drag Applications
NASA Technical Reports Server (NTRS)
Otto, Samuel; Trefny, Charles J.; Slater, John W.
2015-01-01
A new design method for inward-turning, streamline-traced inlets is presented. Resulting designs are intended for moderate supersonic, low-drag, low-boom applications such as that required for NASA's proposed low-boom flight demonstration aircraft. A critical feature of these designs is the internal cowl lip angle that allows for little or no flow turning on the outer nacelle. Present methods using conical-flow Busemann parent flowfields have simply truncated, or otherwise modified the stream-traced contours to include this internal cowl angle. Such modifications disrupt the parent flowfield, reducing inlet performance and flow uniformity. The method presented herein merges a conical flowfield that includes a leading shock with a truncated Busemann flowfield in a manner that minimizes unwanted interactions. A leading internal cowl angle is now inherent in the parent flowfield, and inlet contours traced from this flowfield retain its high performance and good flow uniformity. CFD analysis of a candidate inlet design is presented that verifies the design technique, and reveals a starting issue with the basic geometry. A minor modification to the cowl lip region is shown to eliminate this phenomenon, thereby allowing starting and smooth transition to sub-critical operation as back-pressure is increased. An inlet critical-point total pressure recovery of 96 is achieved based on CFD results for a Mach 1.7 freestream design. Correction for boundary-layer displacement thickness, and sizing for a given engine airflow requirement are also discussed.
Alici, Ibrahim Onur; Yılmaz Demirci, Nilgün; Yılmaz, Aydın; Karakaya, Jale; Özaydın, Esra
2016-09-01
There are several papers on the sonographic features of mediastinal lymph nodes affected by several diseases, but none gives the importance and clinical utility of the features. In order to find out which lymph node should be sampled in a particular nodal station during endobronchial ultrasound, we investigated the diagnostic performances of certain sonographic features and proposed an algorithmic approach. We retrospectively analyzed 1051 lymph nodes and randomly assigned them into a preliminary experimental and a secondary study group. The diagnostic performances of the sonographic features (gray scale, echogeneity, shape, size, margin, presence of necrosis, presence of calcification and absence of central hilar structure) were calculated, and an algorithm for lymph node sampling was obtained with decision tree analysis in the experimental group. Later, a modified algorithm was applied to the patients in the study group to give the accuracy. The demographic characteristics of the patients were not statistically significant between the primary and the secondary groups. All of the features were discriminative between malignant and benign diseases. The modified algorithm sensitivity, specificity, and positive and negative predictive values and diagnostic accuracy for detecting metastatic lymph nodes were 100%, 51.2%, 50.6%, 100% and 67.5%, respectively. In this retrospective analysis, the standardized sonographic classification system and the proposed algorithm performed well in choosing the node that should be sampled in a particular station during endobronchial ultrasound. © 2015 John Wiley & Sons Ltd.
Chen, Chin-Sheng; Chen, Po-Chun; Hsu, Chih-Ming
2016-01-01
This paper presents a novel 3D feature descriptor for object recognition and to identify poses when there are six-degrees-of-freedom for mobile manipulation and grasping applications. Firstly, a Microsoft Kinect sensor is used to capture 3D point cloud data. A viewpoint feature histogram (VFH) descriptor for the 3D point cloud data then encodes the geometry and viewpoint, so an object can be simultaneously recognized and registered in a stable pose and the information is stored in a database. The VFH is robust to a large degree of surface noise and missing depth information so it is reliable for stereo data. However, the pose estimation for an object fails when the object is placed symmetrically to the viewpoint. To overcome this problem, this study proposes a modified viewpoint feature histogram (MVFH) descriptor that consists of two parts: a surface shape component that comprises an extended fast point feature histogram and an extended viewpoint direction component. The MVFH descriptor characterizes an object’s pose and enhances the system’s ability to identify objects with mirrored poses. Finally, the refined pose is further estimated using an iterative closest point when the object has been recognized and the pose roughly estimated by the MVFH descriptor and it has been registered on a database. The estimation results demonstrate that the MVFH feature descriptor allows more accurate pose estimation. The experiments also show that the proposed method can be applied in vision-guided robotic grasping systems. PMID:27886080
Two-dimensional wavelet transform feature extraction for porous silicon chemical sensors.
Murguía, José S; Vergara, Alexander; Vargas-Olmos, Cecilia; Wong, Travis J; Fonollosa, Jordi; Huerta, Ramón
2013-06-27
Designing reliable, fast responding, highly sensitive, and low-power consuming chemo-sensory systems has long been a major goal in chemo-sensing. This goal, however, presents a difficult challenge because having a set of chemo-sensory detectors exhibiting all these aforementioned ideal conditions are still largely un-realizable to-date. This paper presents a unique perspective on capturing more in-depth insights into the physicochemical interactions of two distinct, selectively chemically modified porous silicon (pSi) film-based optical gas sensors by implementing an innovative, based on signal processing methodology, namely the two-dimensional discrete wavelet transform. Specifically, the method consists of using the two-dimensional discrete wavelet transform as a feature extraction method to capture the non-stationary behavior from the bi-dimensional pSi rugate sensor response. Utilizing a comprehensive set of measurements collected from each of the aforementioned optically based chemical sensors, we evaluate the significance of our approach on a complex, six-dimensional chemical analyte discrimination/quantification task problem. Due to the bi-dimensional aspects naturally governing the optical sensor response to chemical analytes, our findings provide evidence that the proposed feature extractor strategy may be a valuable tool to deepen our understanding of the performance of optically based chemical sensors as well as an important step toward attaining their implementation in more realistic chemo-sensing applications. Copyright © 2013 Elsevier B.V. All rights reserved.
Caridi, Gianluca; Gigante, Maddalena; Ravani, Pietro; Trivelli, Antonella; Barbano, Giancarlo; Scolari, Francesco; Dagnino, Monica; Murer, Luisa; Murtas, Corrado; Edefonti, Alberto; Allegri, Landino; Amore, Alessandro; Coppo, Rosanna; Emma, Francesco; De Palo, Tommaso; Penza, Rosa; Gesualdo, Loreto; Ghiggeri, Gian Marco
2009-01-01
Background and objectives: Mutations in nephrin (NPHS1) and podocin (NPHS2) genes represent a major cause of idiopathic nephrotic syndrome (NS) in children. It is not yet clear whether the presence of a single mutation acts as a modifier of the clinical course of NS. Design, setting, participants, & measurements: We reviewed the clinical features of 40 patients with NS associated with heterozygous mutations or variants in NPHS1 (n = 7) or NPHS2 (n = 33). Long-term renal survival probabilities were compared with those of a concurrent cohort with idiopathic NS. Results: Patients with a single mutation in NPHS1 received a diagnosis before those with potentially nongenetic NS and had a good response to therapies. Renal function was normal in all cases. For NPHS2, six patients had single heterozygous mutations, six had a p.P20L variant, and 21 had a p.R229Q variant. Age at diagnosis and the response to drugs were comparable in all NS subgroups. Overall, they had similar renal survival probabilities as non-NPHS1/NPHS2 cases (log-rank χ2 0.84, P = 0.656) that decreased in presence of resistance to therapy (P < 0.001) and in cases with renal lesions of glomerulosclerosis and IgM deposition (P < 0.001). Cox regression confirmed that the only significant predictor of dialysis was resistance to therapy. Conclusions: Our data indicate that single mutation or variant in NPHS1 and NPHS2 does not modify the outcome of primary NS. These patients should be treated following consolidated schemes and have good chances for a good long-term outcome. PMID:19406966
Zavareh, Siamak; Farrokhzad, Zahra; Darvishi, Farshad
2018-07-15
The aim of this work was to design a low cost adsorbent for efficient and selective removal of glyphosate from water at neutral pH conditions. For this purpose, zeolite 4A, a locally abundant and cheap mineral material, was ion-exchanged with Cu 2+ to produce Cu-zeolite 4A. The FTIR results revealed that the modification has no important effect on chemical structure of zeolite 4A. After modification, highly crystalline zeolite 4A was converted to amorphous Cu-zeolite 4A according to XRD studies. The SEM images showed spherical-like particles with porous surfaces for Cu-zeolite 4A compared to cubic particles with smooth surfaces for zeolite 4A. Adsorption equilibrium data were well fitted with non-linear forms of Langmuir, Freundlich and Temkin isotherms. The maximum adsorption capacity for Cu-zeolite 4A was calculated to be 112.7 mg g -1 based on the Langmuir model. The adsorption of glyphosate by the modified adsorbent had fast kinetics fitted both pseudo-first-order and pseudo-second-order models. A mechanism based on chemical adsorption was proposed for the removal process. The modified adsorbent had a good selectivity to glyphosate over natural waters common cations and anions. It also showed desired regeneration ability as an important feature for practical uses. The potential use of the developed material as antibacterial agent for water disinfection filters was also investigated by MIC method. Relatively strong antibacterial activity was observed for Cu-zeolite 4A against Gram-positive and Gram-negative model bacteria while zeolite 4A had no antibacterial properties. No release of Cu 2+ to aqueous solutions was detected as unique feature of the developed material. Copyright © 2018 Elsevier Inc. All rights reserved.
Kwiatek, K; Mazur, M; Sieradzki, Z
2008-01-01
Progress, which is brought by new advances in modern molecular biology, allowed interference in the genome of live organisms and gene manipulation. Introducing new genes to the recipient organism enables to give them new features, absent before. Continuous increase in the area of the biotech crops triggers continuous discussion about safety of genetically modified (GM) crops, including food and feed derived from them. Important issue connected with cultivation of genetically modified crops is a horizontal gene transfer and a bacterial antibiotic resistance. Discussion about safety of GM crops concerns also food allergies caused by eating genetically modified food. The problem of genetic modifications of GM crops used for livestock feeding is widely discussed, taking into account Polish feed law.
Designing Pulse Laser Surface Modification of H13 Steel Using Response Surface Method
NASA Astrophysics Data System (ADS)
Aqida, S. N.; Brabazon, D.; Naher, S.
2011-01-01
This paper presents a design of experiment (DOE) for laser surface modification process of AISI H13 tool steel in achieving the maximum hardness and minimum surface roughness at a range of modified layer depth. A Rofin DC-015 diffusion-cooled CO2 slab laser was used to process AISI H13 tool steel samples. Samples of 10 mm diameter were sectioned to 100 mm length in order to process a predefined circumferential area. The parameters selected for examination were laser peak power, overlap percentage and pulse repetition frequency (PRF). The response surface method with Box-Behnken design approach in Design Expert 7 software was used to design the H13 laser surface modification process. Metallographic study and image analysis were done to measure the modified layer depth. The modified surface roughness was measured using two-dimensional surface profilometer. The correlation of the three laser processing parameters and the modified surface properties was specified by plotting three-dimensional graph. The hardness properties were tested at 981 mN force. From metallographic study, the laser modified surface depth was between 37 μm and 150 μm. The average surface roughness recorded from the 2D profilometry was at a minimum value of 1.8 μm. The maximum hardness achieved was between 728 and 905 HV0.1. These findings are significant to modern development of hard coatings for wear resistant applications.
Identification of Transgenic Organisms Based on Terahertz Spectroscopy and Hyper Sausage Neuron
NASA Astrophysics Data System (ADS)
Liu, J.; Li, Zh.; Hu, F.; Chen, T.; Du, Y.; Xin, H.
2015-03-01
This paper presents a novel approach for identifi cation of terahertz (THz) spectra of genetically modifi ed organisms (GMOs) based on hyper sausage neuron (HSN), and THz transmittance spectra of some typical transgenic sugarbeet samples are investigated to demonstrate its feasibility. Principal component analysis (PCA) is applied to extract features of the spectrum data, and instead of the original spectrum data, the feature signals are fed into the HSN pattern recognition, a new multiple weights neural network (MWNN). The experimental result shows that the HSN model not only can correctly classify different types of transgenic sugar-beets, but also can reject nonsimilar samples of the same type. The proposed approach provides a new effective method for detection and identification of genetically modified organisms by using THz spectroscopy.
Designing attractive gamification features for collaborative storytelling websites.
Hsu, Shang Hwa; Chang, Jen-Wei; Lee, Chun-Chia
2013-06-01
Gamification design is considered as the predictor of collaborative storytelling websites' success. Although aforementioned studies have mentioned a broad range of factors that may influence gamification, they neither depicted the actual design features nor relative attractiveness among them. This study aims to identify attractive gamification features for collaborative storytelling websites. We first constructed a hierarchical system structure of gamification design of collaborative storytelling websites and conducted a focus group interview with eighteen frequent users to identify 35gamification features. After that, this study determined the relative attractiveness of these gamification features by administrating an online survey to 6333 collaborative storytelling websites users. The results indicated that the top 10 most attractive gamification features could account for more than 50% of attractiveness among these 35 gamification features. The feature of unpredictable time pressure is important to website users, yet not revealed in previous relevant studies. Implications of the findings were discussed.
Design and implementation of adoptive therapy with chimeric antigen receptor-modified T cells.
Jensen, Michael C; Riddell, Stanley R
2014-01-01
A major advance in adoptive T-cell therapy (ACT) is the ability to efficiently endow patient's T cells with reactivity for tumor antigens through the stable or regulated introduction of genes that encode high affinity tumor-targeting T-cell receptors (TCRs) or synthetic chimeric antigen receptors (CARs). Case reports and small series of patients treated with TCR- or CAR-modified T cells have shown durable responses in a subset of patients, particularly with B-cell malignancies treated with T cells modified to express a CAR that targets the CD19 molecule. However, many patients do not respond to therapy and serious on and off-target toxicities have been observed with TCR- and CAR-modified T cells. Thus, challenges remain to make ACT with gene-modified T cells a reproducibly effective and safe therapy and to expand the breadth of patients that can be treated to include those with common epithelial malignancies. This review discusses research topics in our laboratories that focus on the design and implementation of ACT with CAR-modified T cells. These include cell intrinsic properties of distinct T-cell subsets that may facilitate preparing therapeutic T-cell products of defined composition for reproducible efficacy and safety, the design of tumor targeting receptors that optimize signaling of T-cell effector functions and facilitate tracking of migration of CAR-modified T cells in vivo, and novel CAR designs that have alternative ligand binding domains or confer regulated function and/or survival of transduced T cells. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Designing and Evaluating Interventions to Eliminate Racial and Ethnic Disparities in Health Care
Cooper, Lisa A; Hill, Martha N; Powe, Neil R
2002-01-01
A large number of factors contribute to racial and ethnic disparities in health status. Health care professionals, researchers, and policymakers have believed for some time that access to care is the centerpiece in the elimination of these health disparities. The Institute of Medicine's (IOM) model of access to health services includes personal, financial, and structural barriers, health service utilization, and mediators of care. This model can be used to describe the interactions among these factors and their impact on health outcomes and equity of services among racial and ethnic groups. We present a modified version of the IOM model that incorporates the features of other access models and highlights barriers and mediators that are relevant for interventions designed to eliminate disparities in U.S. health care. We also suggest that interventions to eliminate disparities and achieve equity in health care services be considered within the broader context of improving quality of care. Some health service intervention studies have shown improvements in the health of disadvantaged groups. If properly designed and implemented, these interventions could be used to reduce health disparities. Successful features of interventions include the use of multifaceted, intense approaches, culturally and linguistically appropriate methods, improved access to care, tailoring, the establishment of partnerships with stakeholders, and community involvement. However, in order to be effective in reducing disparities in health care and health status, important limitations of previous studies need to be addressed, including the lack of control groups, nonrandom assignment of subjects to experimental interventions, and use of health outcome measures that are not validated. Interventions might be improved by targeting high-risk populations, focusing on the most important contributing factors, including measures of appropriateness and quality of care and health outcomes, and prioritizing dissemination efforts. PMID:12133164
DOE Office of Scientific and Technical Information (OSTI.GOV)
Antoni, V.; Agostinetti, P.; Brombin, M.
2015-04-08
In the framework of the accompanying activity for the development of the two neutral beam injectors for the ITER fusion experiment, an instrumented beam calorimeter is being designed at Consorzio RFX, to be used in the SPIDER test facility (particle energy 100keV; beam current 50A), with the aim of testing beam characteristics and to verify the source proper operation. The main components of the instrumented calorimeter are one-directional carbon-fibre-carbon composite tiles. Some prototype tiles have been used as a small-scale version of the entire calorimeter in the test stand of the neutral beam injectors of the LHD experiment, with themore » aim of characterising the beam features in various operating conditions. The extraction system of the NIFS test stand source was modified, by applying a mask to the first gridded electrode, in order to isolate only a subset of the beamlets, arranged in two 3×5 matrices, resembling the beamlet groups of the ITER beam sources. The present contribution gives a description of the design of the diagnostic system, including the numerical simulations of the expected thermal pattern. Moreover the dedicated thermocouple measurement system is presented. The beamlet monitor was successfully used for a full experimental campaign, during which the main parameters of the source, mainly the arc power and the grid voltages, were varied. This contribution describes the methods of fitting and data analysis applied to the infrared images of the camera to recover the beamlet optics characteristics, in order to quantify the response of the system to different operational conditions. Some results concerning the beamlet features are presented as a function of the source parameters.« less
Ash, Samuel Y; Harmouche, Rola; Ross, James C; Diaz, Alejandro A; Rahaghi, Farbod N; Sanchez-Ferrero, Gonzalo Vegas; Putman, Rachel K; Hunninghake, Gary M; Onieva, Jorge Onieva; Martinez, Fernando J; Choi, Augustine M; Bowler, Russell P; Lynch, David A; Hatabu, Hiroto; Bhatt, Surya P; Dransfield, Mark T; Wells, J Michael; Rosas, Ivan O; San Jose Estepar, Raul; Washko, George R
2018-06-05
Purpose To determine if interstitial features at chest CT enhance the effect of emphysema on clinical disease severity in smokers without clinical pulmonary fibrosis. Materials and Methods In this retrospective cohort study, an objective CT analysis tool was used to measure interstitial features (reticular changes, honeycombing, centrilobular nodules, linear scar, nodular changes, subpleural lines, and ground-glass opacities) and emphysema in 8266 participants in a study of chronic obstructive pulmonary disease (COPD) called COPDGene (recruited between October 2006 and January 2011). Additive differences in patients with emphysema with interstitial features and in those without interstitial features were analyzed by using t tests, multivariable linear regression, and Kaplan-Meier analysis. Multivariable linear and Cox regression were used to determine if interstitial features modified the effect of continuously measured emphysema on clinical measures of disease severity and mortality. Results Compared with individuals with emphysema alone, those with emphysema and interstitial features had a higher percentage predicted forced expiratory volume in 1 second (absolute difference, 6.4%; P < .001), a lower percentage predicted diffusing capacity of lung for carbon monoxide (DLCO) (absolute difference, 7.4%; P = .034), a 0.019 higher right ventricular-to-left ventricular (RVLV) volume ratio (P = .029), a 43.2-m shorter 6-minute walk distance (6MWD) (P < .001), a 5.9-point higher St George's Respiratory Questionnaire (SGRQ) score (P < .001), and 82% higher mortality (P < .001). In addition, interstitial features modified the effect of emphysema on percentage predicted DLCO, RVLV volume ratio, 6WMD, SGRQ score, and mortality (P for interaction < .05 for all). Conclusion In smokers, the combined presence of interstitial features and emphysema was associated with worse clinical disease severity and higher mortality than was emphysema alone. In addition, interstitial features enhanced the deleterious effects of emphysema on clinical disease severity and mortality. © RSNA, 2018 Online supplemental material is available for this article.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-01-15
... have novel or unusual design features when compared to the state of technology envisioned in the... standards. Additional special conditions will be issued for other novel or unusual design features of the... 747-8/-8F because of a novel or unusual design feature, special conditions are prescribed under the...
Multispectral Analysis of NMR Imagery
NASA Technical Reports Server (NTRS)
Butterfield, R. L.; Vannier, M. W. And Associates; Jordan, D.
1985-01-01
Conference paper discusses initial efforts to adapt multispectral satellite-image analysis to nuclear magnetic resonance (NMR) scans of human body. Flexibility of these techniques makes it possible to present NMR data in variety of formats, including pseudocolor composite images of pathological internal features. Techniques do not have to be greatly modified from form in which used to produce satellite maps of such Earth features as water, rock, or foliage.
IMPACT: The Magazine for Innovation and Change in the Helping Professions. Volume 2, Number 2.
ERIC Educational Resources Information Center
Walz, Garry, Ed.; And Others
The primary emphasis of this issue of "Impact" is on career guidance. Articles contain facts as well as comments and implications regarding this topic. A feature of interest is a modified version of the 18th century "Game of Life." Another feature in this issue is a report on the counselor survey "Counselors View Goals, the Future, and…
Moraitis, Konstantinos; Philippou, Prodromos; El-Husseiny, Tamer; Wazait, Hassan; Masood, Junaid; Buchholz, Noor
2012-02-01
To determine whether the Bart's modified lateral position is safe and effective for achieving simultaneous anterograde and retrograde access in complex upper urinary tract pathologic features. From November 2006 to September 2010, 45 procedures were performed, with the patients in the modified lateral position. The indication for these procedures was the presence of complex unilateral upper urinary tract pathologic features. The patients with muscular and/or skeletal abnormalities were excluded. All procedures were performed using simultaneous anterograde and retrograde access with the patient under general anesthesia. The preoperative investigation protocol included assessment of the stone burden and location using enhanced abdominal computed tomography. The patients were routinely examined 6 weeks after the procedure with a combination of plain abdominal radiography and renal ultrasonography. For patients treated for conditions causing upper urinary tract obstruction (pelviureteral junction obstruction and/or ureteral strictures), a mercaptoacetyltriglycine renography was performed at 4, 12, and 24 months postoperatively. The mean patient age was 51.2 years (range 17-79). Stone clearance was achieved by a single combined procedure in 36 patients (80%). Successful recanalization was achieved in all patients with pelviureteral junction obstruction and ureteral strictures. In 4 patients (8.8%), persistent hematuria was noted, and 2 patients (4.4%) developed postoperative urinary sepsis and were treated conservatively. Modification to the lateral position compares equally with contemporary percutaneous nephrolithotomy series. It provides wide exposure of the flank, allowing the choice of multiple access sites, enhanced control, and a wide angle for handling of the antegrade instruments. Two surgeons can work simultaneously, addressing complex endourologic pathologic features in high-risk patients. Copyright © 2012. Published by Elsevier Inc.
Controlling Split Attention and Redundancy in Physical Therapy Instruction
ERIC Educational Resources Information Center
Pociask, Fredrick D.; Morrison, Gary R.
2008-01-01
In this study, we examined the effectiveness of instructional materials designed to control redundancy and split attention in the teaching of complex orthopedic physical therapy skills. Participants included 41 first-year physical therapy students. The modified instruction group received a modified unit of instruction designed to reduce cognitive…
Controllable Edge Feature Sharpening for Dental Applications
2014-01-01
This paper presents a new approach to sharpen blurred edge features in scanned tooth preparation surfaces generated by structured-light scanners. It aims to efficiently enhance the edge features so that the embedded feature lines can be easily identified in dental CAD systems, and to avoid unnatural oversharpening geometry. We first separate the feature regions using graph-cut segmentation, which does not require a user-defined threshold. Then, we filter the face normal vectors to propagate the geometry from the smooth region to the feature region. In order to control the degree of the sharpness, we propose a feature distance measure which is based on normal tensor voting. Finally, the vertex positions are updated according to the modified face normal vectors. We have applied the approach to scanned tooth preparation models. The results show that the blurred edge features are enhanced without unnatural oversharpening geometry. PMID:24741376
Controllable edge feature sharpening for dental applications.
Fan, Ran; Jin, Xiaogang
2014-01-01
This paper presents a new approach to sharpen blurred edge features in scanned tooth preparation surfaces generated by structured-light scanners. It aims to efficiently enhance the edge features so that the embedded feature lines can be easily identified in dental CAD systems, and to avoid unnatural oversharpening geometry. We first separate the feature regions using graph-cut segmentation, which does not require a user-defined threshold. Then, we filter the face normal vectors to propagate the geometry from the smooth region to the feature region. In order to control the degree of the sharpness, we propose a feature distance measure which is based on normal tensor voting. Finally, the vertex positions are updated according to the modified face normal vectors. We have applied the approach to scanned tooth preparation models. The results show that the blurred edge features are enhanced without unnatural oversharpening geometry.
Lineaments of Texas - possible surface expressions of deep-seated phenomena. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Woodruff, C.M. Jr.; Caran, S.C.
1984-04-01
Lineaments were identified on 51 Landsat images covering Texas and parts of adjacent states in Mexico and the United States. A method of identifying lineaments was designed so that the findings would be consistent, uncomplicated, objective, and reproducible. Lineaments denoted on the Landsat images were traced onto 1:250,000-scale work maps and then rendered cartographically on maps representing each of the 51 Landsat images at a scale of 1:500,000. At this stage more than 31,000 lineaments were identified. It included significant areas outside of Texas. In preparing the final lineament map of Texas at 1:1,000,000-scale from the 1:500,000-scale maps, all featuresmore » that lay outside Texas and repetition among features perceived by individual workers were eliminated. Cultural features were checked for before reducing and cartographically fitting the mosaic of 51 individual map sheets to a single map base. Lineaments that were partly colinear but with different end points were modified into a single lineament trace with the combined length of the two or more colinear lineaments. Each lineament was checked to determine its validity according to our definition. The features were edited again to eliminate processing artifacts within the image itself, as well as representations of cultural features (fencelines, roads, and the like) and geomorphic patterns unrelated to bedrock structure. Thus the more than 31,000 lineaments originally perceived were reduced to the approximately 15,000 presented on the 1:1,000,000 map. Interpretations of the lineaments are presented.« less
O'Brien, Nadia; Hong, Quan Nha; Law, Susan; Massoud, Sarah; Carter, Allison; Kaida, Angela; Loutfy, Mona; Cox, Joseph; Andersson, Neil; de Pokomandy, Alexandra
2018-04-01
Women living with HIV in high-income settings continue to experience modifiable barriers to care. We sought to determine the features of care that facilitate access to comprehensive primary care, inclusive of HIV, comorbidity, and sexual and reproductive healthcare. Using a systematic mixed studies review design, we reviewed qualitative, mixed methods, and quantitative studies identified in Ovid MEDLINE, EMBASE, and CINAHL databases (January 2000 to August 2017). Eligibility criteria included women living with HIV; high-income countries; primary care; and healthcare accessibility. We performed a thematic synthesis using NVivo. After screening 3466 records, we retained 44 articles and identified 13 themes. Drawing on a social-ecological framework on engagement in HIV care, we situated the themes across three levels of the healthcare system: care providers, clinical care environments, and social and institutional factors. At the care provider level, features enhancing access to comprehensive primary care included positive patient-provider relationships and availability of peer support, case managers, and/or nurse navigators. Within clinical care environments, facilitators to care were appointment reminder systems, nonidentifying clinic signs, women and family spaces, transportation services, and coordination of care to meet women's HIV, comorbidity, and sexual and reproductive healthcare needs. Finally, social and institutional factors included healthcare insurance, patient and physician education, and dispelling HIV-related stigma. This review highlights several features of care that are particularly relevant to the care-seeking experience of women living with HIV. Improving their health through comprehensive care requires a variety of strategies at the provider, clinic, and greater social and institutional levels.
Preparation of modified semi-coke by microwave heating and adsorption kinetics of methylene blue.
Wang, Xin; Peng, Jin-Hui; Duan, Xin-Hui; Srinivasakannan, Chandrasekar
2013-01-01
Preparation of modified semi-coke has been achieved, using phosphoric acid as the modifying agent, by microwave heating from virgin semi-coke. Process optimization using a Central Composite Design (CCD) design of Response Surface Methodology (RSM) technique for the preparation of modifies semi-coke is presented in this paper. The optimum conditions for producing modified semi-coke were: concentration of phosphoric acid 2.04, heating time 20 minutes and temperature 587 degrees C, with the optimum iodine of 862 mg/g and yield of 47.48%. The textural characteristics of modified semi-coke were analyzed using scanning electron microscopy (SEM) and nitrogen adsorption isotherm. The BET surface area of modified semi-coke was estimated to be 989.60 m2/g, with the pore volume of 0.74 cm3/g and a pore diameter of 3.009 nm, with micro-pore volume contributing to 62.44%. The Methylene Blue monolayer adsorption capacity was found to be mg/g at K. The adsorption capacity of the modified semi-coke highlights its suitability for liquid phase adsorption application with a potential usage in waste water treatment.
Nicholson, Allen D; Huez, Coridon M; Sanders, James O; Liu, Raymond W; Cooperman, Daniel R
2016-03-01
In 2 recent studies, modified Oxford hip scores of 16 through 18 have been shown to predict an extremely high risk of contralateral slipping in unilateral slipped capital femoral epiphysis (SCFE). However, the modified Oxford system is not widely used. This may be due, in part, to the complexity of the scoring system, difficulty in viewing all 5 radiographic features on a single x-ray and phenotypic variation in the features. Ossification of the calcaneal apophysis provides an osteologic marker of skeletal maturation in relation to peak height velocity and has been described previously. We examine the value of the calcaneal apophyseal ossification sequence for predicting modified Oxford hip scores. We examined 279 pelvis and matching foot x-rays that were taken at the same session from 94 healthy children aged 3 to 18 years. A fellowship-trained pediatric orthopaedist determined the modified Oxford hip score for each hip radiograph. The calcaneal x-rays had been previously graded. Modified Oxford hip scores were compared with calcaneal scores for each set of matched hip and calcaneal x-rays. Stage 0 to 2 calcanei had 94% of corresponding hip radiographs rated as modified Oxford scores of 16 to 18. Stage 3 calcanei had 54% rated as 16 to 18 and 31% rated as scores 19 to 21. Stage 4 calcanei had 31% rated as scores 19 to 21, and 68% rated as scores 22 to 26. Stage 5 calcanei had 100% rated as 22 to 26. Using data from Popejoy and colleagues' study, the weighted risk of contralateral SCFE was 94% for calcaneal stage 0, 86.5% for calcaneal stage 1, 90.3% for calcaneal stage 2, 55.8% for calcaneal stage 3, 6.1% for calcaneal stage 4, and 0 for calcaneal stage 5. Calcaneal stages 0 to 3 correspond entirely to modified Oxford scores indicating elevated risk of contralateral SCFE. The calcaneal scoring system has potential for adjunctive use with the modified Oxford score for prediction of contralateral SCFE.
Nonlinear features for product inspection
NASA Astrophysics Data System (ADS)
Talukder, Ashit; Casasent, David P.
1999-03-01
Classification of real-time X-ray images of randomly oriented touching pistachio nuts is discussed. The ultimate objective is the development of a system for automated non-invasive detection of defective product items on a conveyor belt. We discuss the extraction of new features that allow better discrimination between damaged and clean items (pistachio nuts). This feature extraction and classification stage is the new aspect of this paper; our new maximum representation and discriminating feature (MRDF) extraction method computes nonlinear features that are used as inputs to a new modified k nearest neighbor classifier. In this work, the MRDF is applied to standard features (rather than iconic data). The MRDF is robust to various probability distributions of the input class and is shown to provide good classification and new ROC (receiver operating characteristic) data.
FGDC Digital Cartographic Standard for Geologic Map Symbolization (PostScript Implementation)
,
2006-01-01
PLEASE NOTE: This now-approved 'FGDC Digital Cartographic Standard for Geologic Map Symbolization (PostScript Implementation)' officially supercedes its earlier (2000) Public Review Draft version (see 'Earlier Versions of the Standard' below). In August 2006, the Digital Cartographic Standard for Geologic Map Symbolization was officially endorsed by the Federal Geographic Data Committee (FGDC) as the national standard for the digital cartographic representation of geologic map features (FGDC Document Number FGDC-STD-013-2006). Presented herein is the PostScript Implementation of the standard, which will enable users to directly apply the symbols in the standard to geologic maps and illustrations prepared in desktop illustration and (or) publishing software. The FGDC Digital Cartographic Standard for Geologic Map Symbolization contains descriptions, examples, cartographic specifications, and notes on usage for a wide variety of symbols that may be used on typical, general-purpose geologic maps and related products such as cross sections. The standard also can be used for different kinds of special-purpose or derivative map products and databases that may be focused on a specific geoscience topic (for example, slope stability) or class of features (for example, a fault map). The standard is scale-independent, meaning that the symbols are appropriate for use with geologic mapping compiled or published at any scale. It will be useful to anyone who either produces or uses geologic map information, whether in analog or digital form. Please be aware that this standard is not intended to be used inflexibly or in a manner that will limit one's ability to communicate the observations and interpretations gained from geologic mapping. In certain situations, a symbol or its usage might need to be modified in order to better represent a particular feature on a geologic map or cross section. This standard allows the use of any symbol that doesn't conflict with others in the standard, provided that it is clearly explained on the map and in the database. In addition, modifying the size, color, and (or) lineweight of an existing symbol to suit the needs of a particular map or output device also is permitted, provided that the modified symbol's appearance is not too similar to another symbol on the map. Be aware, however, that reducing lineweights below .125 mm (.005 inch) may cause symbols to plot incorrectly if output at higher resolutions (1800 dpi or higher). For guidelines on symbol usage, as well as on color design and map labeling, please refer to the standard's introductory text. Also found there are informational sections covering concepts of geologic mapping and some definitions of geologic map features, as well as sections on the newly defined concepts and terminology for the scientific confidence and locational accuracy of geologic map features. More information on both the past development and the future maintenance of the FGDC Digital Cartographic Standard for Geologic Map Symbolization can be found at the FGDC Geologic Data Subcommittee website (http://ngmdb.usgs.gov/fgdc_gds/). Earlier Versions of the Standard
NASA Astrophysics Data System (ADS)
de Araujo, Zandra; Orrill, Chandra Hawley; Jacobson, Erik
2018-04-01
While there is considerable scholarship describing principles for effective professional development, there have been few attempts to examine these principles in practice. In this paper, we identify and examine the particular design features of a mathematics professional development experience provided for middle grades teachers over 14 weeks. The professional development was grounded in a set of mathematical tasks that each had one right answer, but multiple solution paths. The facilitator engaged participants in problem solving and encouraged participants to work collaboratively to explore different solution paths. Through analysis of this collaborative learning environment, we identified five design features for supporting teacher learning of important mathematics and pedagogy in a problem-solving setting. We discuss these design features in depth and illustrate them by presenting an elaborated example from the professional development. This study extends the existing guidance for the design of professional development by examining and operationalizing the relationships among research-based features of effective professional development and the enacted features of a particular design.
Faigue Avoidance Scheduling Tool (FAST) Phase II SBIR Final Report, Part 1
2006-05-01
treatment . This lead us to modify the SAFTE model such that it could predict the slow recovery effects uncovered in the SDR Study. The SAFTE model was...features making the model more accessible and useful to users. The transmeridian phase shift algorithm was added to accommodate aircrews crossing ...sleep treatment . This lead us to modify the SAFTE model such that it could predict the slow recovery effects uncovered in the
Analyzing Sliding Stability of Structures Using the Modified Computer Program GWALL. Revision,
1983-11-01
R136 954 RNRLYZING SLIDING STRBILITY OF STRUCTURES USING THE i/i MODIFIED COMPUTER PRO..(U) ARMY ENGINEER WATERRYS EXPERIMENT STATION VICKSBURG MS...GWALL and/or the graphics software package, Graphics Compati- bility System (GCS). Input Features 4. GWALL is very easy to use because it allows the...Prepared Data File 9. Time-sharing computer systems do not always respond quickly to the userts commands, especially when there are many users
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-18
... airplanes with modification 160023 (Sharklet). These airplanes will have novel or unusual design features..., A320, and A321 series airplanes because of a novel or unusual design feature, special conditions are... model that incorporates the same novel or unusual design feature, or should any other model already...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-12
... have a novel or unusual design feature associated with an electronic flight control system that... because of a novel or unusual design feature, special conditions are prescribed under the provisions of... same or similar novel or unusual design feature, the special conditions would also apply to the other...
NASA Astrophysics Data System (ADS)
Qadi, A.; Cloutis, E.; Samson, C.; Whyte, L.; Ellery, A.; Bell, J. F.; Berard, G.; Boivin, A.; Haddad, E.; Lavoie, J.; Jamroz, W.; Kruzelecky, R.; Mack, A.; Mann, P.; Olsen, K.; Perrot, M.; Popa, D.; Rhind, T.; Sharma, R.; Stromberg, J.; Strong, K.; Tremblay, A.; Wilhelm, R.; Wing, B.; Wong, B.
2015-05-01
The Canadian Space Agency (CSA), through its Analogue Missions program, supported a microrover-based analogue mission designed to simulate a Mars rover mission geared toward identifying and characterizing methane emissions on Mars. The analogue mission included two, progressively more complex, deployments in open-pit asbestos mines where methane can be generated from the weathering of olivine into serpentine: the Jeffrey mine deployment (June 2011) and the Norbestos mine deployment (June 2012). At the Jeffrey Mine, testing was conducted over 4 days using a modified off-the-shelf Pioneer rover and scientific instruments including Raman spectrometer, Picarro methane detector, hyperspectral point spectrometer and electromagnetic induction sounder for testing rock and gas samples. At the Norbestos Mine, we used the research Kapvik microrover which features enhanced autonomous navigation capabilities and a wider array of scientific instruments. This paper describes the rover operations in terms of planning, deployment, communication and equipment setup, rover path parameters and instrument performance. Overall, the deployments suggest that a search strategy of “follow the methane” is not practical given the mechanisms of methane dispersion. Rather, identification of features related to methane sources based on image tone/color and texture from panoramic imagery is more profitable.
A new standard of visual data representation for imaging mass spectrometry.
O'Rourke, Matthew B; Padula, Matthew P
2017-03-01
MALDI imaging MS (IMS) is principally used for cancer diagnostics. In our own experience with publishing IMS data, we have been requested to modify our protocols with respect to the areas of the tissue that are imaged in order to comply with the wider literature. In light of this, we have determined that current methodologies lack effective controls and can potentially introduce bias by only imaging specific areas of the targeted tissue EXPERIMENTAL DESIGN: A previously imaged sample was selected and then cropped in different ways to show the potential effect of only imaging targeted areas. By using a model sample, we were able to effectively show how selective imaging of samples can misinterpret tissue features and by changing the areas that are acquired, according to our new standard, an effective internal control can be introduced. Current IMS sampling convention relies on the assumption that sample preparation has been performed correctly. This prevents users from checking whether molecules have moved beyond borders of the tissue due to delocalization and consequentially products of improper sample preparation could be interpreted as biological features that are of critical importance when encountered in a visual diagnostic. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Introducing improved structural properties and salt dependence into a coarse-grained model of DNA
NASA Astrophysics Data System (ADS)
Snodin, Benedict E. K.; Randisi, Ferdinando; Mosayebi, Majid; Šulc, Petr; Schreck, John S.; Romano, Flavio; Ouldridge, Thomas E.; Tsukanov, Roman; Nir, Eyal; Louis, Ard A.; Doye, Jonathan P. K.
2015-06-01
We introduce an extended version of oxDNA, a coarse-grained model of deoxyribonucleic acid (DNA) designed to capture the thermodynamic, structural, and mechanical properties of single- and double-stranded DNA. By including explicit major and minor grooves and by slightly modifying the coaxial stacking and backbone-backbone interactions, we improve the ability of the model to treat large (kilobase-pair) structures, such as DNA origami, which are sensitive to these geometric features. Further, we extend the model, which was previously parameterised to just one salt concentration ([Na+] = 0.5M), so that it can be used for a range of salt concentrations including those corresponding to physiological conditions. Finally, we use new experimental data to parameterise the oxDNA potential so that consecutive adenine bases stack with a different strength to consecutive thymine bases, a feature which allows a more accurate treatment of systems where the flexibility of single-stranded regions is important. We illustrate the new possibilities opened up by the updated model, oxDNA2, by presenting results from simulations of the structure of large DNA objects and by using the model to investigate some salt-dependent properties of DNA.
Social firms: sustainable employment for people with mental illness.
Williams, Anne; Fossey, Ellie; Harvey, Carol
2012-01-01
Social firms or enterprises aim to offer sustainable employment in supportive workplaces for people who are disadvantaged in the labour market. Therefore, this study sought to explore employees' views in one social firm about the features of their workplace that they found supportive. Seven employees were recruited, all of whom experienced persistent mental illness, and had worked in this social firm for between eleven months and six years. A semi-structured interview, the Work Environment Impact Scale (version 2.0), was used to explore participants' views of their workplace and to rate how its physical and social characteristics impacted them. Participants also rated their job satisfaction with a modified Indiana Job Satisfaction Scale. Features of the social firm workplace identified by these employees as contributing to their sustained employment and satisfaction were the rewards, task demands, work schedule, and workplace interactions with supervisors and other co-workers. From their views, guiding principles for the development of supportive workplaces and evaluation of their capacity to afford sustainable employment were derived. This study adds to current knowledge about workplace supports from an employee perspective, and is of relevance for informing future social firm development, workplace design and evaluation.
Navigating through the Jungle of Allergens: Features and Applications of Allergen Databases.
Radauer, Christian
2017-01-01
The increasing number of available data on allergenic proteins demanded the establishment of structured, freely accessible allergen databases. In this review article, features and applications of 6 of the most widely used allergen databases are discussed. The WHO/IUIS Allergen Nomenclature Database is the official resource of allergen designations. Allergome is the most comprehensive collection of data on allergens and allergen sources. AllergenOnline is aimed at providing a peer-reviewed database of allergen sequences for prediction of allergenicity of proteins, such as those planned to be inserted into genetically modified crops. The Structural Database of Allergenic Proteins (SDAP) provides a database of allergen sequences, structures, and epitopes linked to bioinformatics tools for sequence analysis and comparison. The Immune Epitope Database (IEDB) is the largest repository of T-cell, B-cell, and major histocompatibility complex protein epitopes including epitopes of allergens. AllFam classifies allergens into families of evolutionarily related proteins using definitions from the Pfam protein family database. These databases contain mostly overlapping data, but also show differences in terms of their targeted users, the criteria for including allergens, data shown for each allergen, and the availability of bioinformatics tools. © 2017 S. Karger AG, Basel.
Encoding mechano-memories in filamentous-actin networks
NASA Astrophysics Data System (ADS)
Majumdar, Sayantan; Foucard, Louis; Levine, Alex; Gardel, Margaret L.
History-dependent adaptation is a central feature of learning and memory. Incorporating such features into `adaptable materials' that can modify their mechanical properties in response to external cues, remains an outstanding challenge in materials science. Here, we study a novel mechanism of mechano-memory in cross-linked F-actin networks, the essential determinants of the mechanical behavior of eukaryotic cells. We find that the non-linear mechanical response of such networks can be reversibly programmed through induction of mechano-memories. In particular, the direction, magnitude, and duration of previously applied shear stresses can be encoded into the network architecture. The `memory' of the forcing history is long-lived, but it can be erased by force applied in the opposite direction. These results demonstrate that F-actin networks can encode analog read-write mechano-memories which can be used for adaptation to mechanical stimuli. We further show that the mechano-memory arises from changes in the nematic order of the constituent filaments. Our results suggest a new mechanism of mechanical sensing in eukaryotic cells and provide a strategy for designing a novel class of materials. S.M. acknowledges U. Chicago MRSEC for support through a Kadanoff-Rice fellowship.
Introducing improved structural properties and salt dependence into a coarse-grained model of DNA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Snodin, Benedict E. K., E-mail: benedict.snodin@chem.ox.ac.uk; Mosayebi, Majid; Schreck, John S.
2015-06-21
We introduce an extended version of oxDNA, a coarse-grained model of deoxyribonucleic acid (DNA) designed to capture the thermodynamic, structural, and mechanical properties of single- and double-stranded DNA. By including explicit major and minor grooves and by slightly modifying the coaxial stacking and backbone-backbone interactions, we improve the ability of the model to treat large (kilobase-pair) structures, such as DNA origami, which are sensitive to these geometric features. Further, we extend the model, which was previously parameterised to just one salt concentration ([Na{sup +}] = 0.5M), so that it can be used for a range of salt concentrations including thosemore » corresponding to physiological conditions. Finally, we use new experimental data to parameterise the oxDNA potential so that consecutive adenine bases stack with a different strength to consecutive thymine bases, a feature which allows a more accurate treatment of systems where the flexibility of single-stranded regions is important. We illustrate the new possibilities opened up by the updated model, oxDNA2, by presenting results from simulations of the structure of large DNA objects and by using the model to investigate some salt-dependent properties of DNA.« less
NASA Astrophysics Data System (ADS)
Paquette, Mark S.
New tools are often required to facilitate new discoveries and test new methods. Commercial offerings can be prohibitively expensive and difficult to customize. The development of ad-hoc tools provides the most flexibility and provides an opportunity to modify and refine a technology. An embossing system was developed for silk film imprinting and stamping in order to facilitate and add versatility to the efforts involving micro- and nanoscale device manufacturing in biopolymers. This system features temperature controlled embossing surfaces, adjustable embossing pressures, and variable embossing times. The device can also be fitted with interchangeable temperature controlled embossing and stamping tools. The design, development, fabrication, applications, and future improvements are explored for the system. This device may facilitate new discoveries in the realm of biopolymer micro- and nanomanufacturing and may provide a path towards high volume production of silk film based technologies.
Analysis Of FEL Optical Systems With Grazing Incidence Mirrors
NASA Astrophysics Data System (ADS)
Knapp, C. E.; Viswanathan, V. K.; Bender, S. C.; Appert, Q. D.; Lawrence, G.; Barnard, C.
1986-11-01
The use of grazing incidence optics in resonators alleviates the problem of damage to the optical elements and permits higher powers in cavities of reasonable dimensions for a free electron laser (FEL). The design and manufacture of a grazing incidence beam expander for the Los Alamos FEL mock up has been completed. In this paper, we describe the analysis of a bare cavity, grazing incidence optical beam expander for an FEL system. Since the existing geometrical and physical optics codes were inadequate for such an analysis, the GLAD code was modified to include global coordinates, exact conic representation, raytracing, and exact aberration features to determine the alignment sensitivities of laser resonators. A resonator cavity has been manufactured and experimentally setup in the Optical Evaluation Laboratory at Los Alamos. Calculated performance is compared with the laboratory measurements obtained so far.
The use of in-flight foot pressure as a countermeasure to neuromuscular degradation
NASA Technical Reports Server (NTRS)
Layne, C. S.; Mulavara, A. P.; Pruett, C. J.; McDonald, P. V.; Kozlovskaya, I. B.; Bloomberg, J. J.
1998-01-01
The purpose of this study was to determine whether applying foot pressure to unrestrained subjects during space flight could enhance the neuromuscular activation associated with rapid arm movements. Four men performed unilateral arm raises while wearing--or not wearing--specially designed boots during a 81- or 115-day space flight. Arm acceleration and surface EMG were obtained from selected lower limb and trunk muscles. Pearson r coefficients were used to evaluate similarity in phasic patterns between the two in-flight conditions. In-flight data also were magnitude normalized to the mean voltage value of the muscle activation waveforms obtained during the no-foot-pressure condition to facilitate comparison of activation amplitude between the two in-flight conditions. Foot pressure enhanced neuromuscular activation and somewhat modified the phasic features of the neuromuscular activation during the arm raises.
NASA Technical Reports Server (NTRS)
Larson, R. R.
1986-01-01
The wing on the NASA F-111 transonic aircraft technology airplane was modified to provide flexible leading and trailing edge flaps. This wing is known as the mission adaptive wing (MAW) because aerodynamic efficiency can be maintained at all speeds. Unlike a conventional wing, the MAW has no spoilers, external flap hinges, or fairings to break the smooth contour. The leading edge flaps and three-segment trailing edge flaps are controlled by a redundant fly-by-wire control system that features a dual digital primary system architecture providing roll and symmetric commands to the MAW control surfaces. A segregated analog backup system is provided in the event of a primary system failure. This paper discusses the design, development, testing, qualification, and flight test experience of the MAW primary and backup flight control systems.
NASA Astrophysics Data System (ADS)
Romain, Xavier; Baida, Fadi; Boyer, Philippe
2016-07-01
We study a polarizer-analyzer mounting for the terahertz regime with perfectly conducting metallic polarizers made of a periodic subwavelength pattern. With a renewed Jones formalism, we analytically investigate the influence of the multiple reflections, which occur between the polarizer and the analyzer, on the transmission response. We demonstrate that this interaction leads to a modified transmission response: the extended Malus law. In addition, we show that the transmission response can be controlled by the distance between the polarizer and the analyzer. For particular setups, the mounting exhibits extremely sensitive transmission responses. This interesting feature can be employed for high-precision sensing and characterization applications. We specifically propose a general design for measuring the electro-optical response of materials in the terahertz domain allowing detection of refractive index variations as small as 10-5.
Jo, Sunhwan; Cheng, Xi; Islam, Shahidul M; Huang, Lei; Rui, Huan; Zhu, Allen; Lee, Hui Sun; Qi, Yifei; Han, Wei; Vanommeslaeghe, Kenno; MacKerell, Alexander D; Roux, Benoît; Im, Wonpil
2014-01-01
CHARMM-GUI, http://www.charmm-gui.org, is a web-based graphical user interface to prepare molecular simulation systems and input files to facilitate the usage of common and advanced simulation techniques. Since it is originally developed in 2006, CHARMM-GUI has been widely adopted for various purposes and now contains a number of different modules designed to setup a broad range of simulations including free energy calculation and large-scale coarse-grained representation. Here, we describe functionalities that have recently been integrated into CHARMM-GUI PDB Manipulator, such as ligand force field generation, incorporation of methanethiosulfonate spin labels and chemical modifiers, and substitution of amino acids with unnatural amino acids. These new features are expected to be useful in advanced biomolecular modeling and simulation of proteins. © 2014 Elsevier Inc. All rights reserved.
Method for oil pipeline leak detection based on distributed fiber optic technology
NASA Astrophysics Data System (ADS)
Chen, Huabo; Tu, Yaqing; Luo, Ting
1998-08-01
Pipeline leak detection is a difficult problem to solve up to now. Some traditional leak detection methods have such problems as high rate of false alarm or missing detection, low location estimate capability. For the problems given above, a method for oil pipeline leak detection based on distributed optical fiber sensor with special coating is presented. The fiber's coating interacts with hydrocarbon molecules in oil, which alters the refractive indexed of the coating. Therefore the light-guiding properties of the fiber are modified. Thus pipeline leak location can be determined by OTDR. Oil pipeline lead detection system is designed based on the principle. The system has some features like real time, multi-point detection at the same time and high location accuracy. In the end, some factors that probably influence detection are analyzed and primary improving actions are given.
Role of conformational dynamics in the evolution of novel enzyme function.
Maria-Solano, Miguel A; Serrano-Hervás, Eila; Romero-Rivera, Adrian; Iglesias-Fernández, Javier; Osuna, Sílvia
2018-05-21
The free energy landscape concept that describes enzymes as an ensemble of differently populated conformational sub-states in dynamic equilibrium is key for evaluating enzyme activity, enantioselectivity, and specificity. Mutations introduced in the enzyme sequence can alter the populations of the pre-existing conformational states, thus strongly modifying the enzyme ability to accommodate alternative substrates, revert its enantiopreferences, and even increase the activity for some residual promiscuous reactions. In this feature article, we present an overview of the current experimental and computational strategies to explore the conformational free energy landscape of enzymes. We provide a series of recent publications that highlight the key role of conformational dynamics for the enzyme evolution towards new functions and substrates, and provide some perspectives on how conformational dynamism should be considered in future computational enzyme design protocols.
Cheng, Li-Yen; Chen, Cha-Chun; Lin, Hwang-Chi; Jeng, Chu-Hsu; Lin, Shang-Hsi; Chen, Wei-Nung Jim; Lin, Yu-Hsien; Hao, Sheng-Po
2018-07-01
Defects after total pharyngolaryngectomy for hypopharyngeal cancer often require reconstruction via free tissue transfer. Recently, anterolateral thigh (ALT) flap has become the gold standard in many centers because of its advantages with respect to versatility, minimal donor-site morbidity, good speech quality, and relatively low fistula and anastomotic leakage rates. Moreover, ALT allows 2 surgical teams to work simultaneously. However, the height of the parallelogram in the ALT design for neoesophagus reconstruction is usually set at a minimum of 9.4 cm (circumference, 2πr) for smooth food passage. Because this height exceeds 8 cm, the donor site may not be closed primarily, which highly depends on the patient's body habitus and the skin tone or quality and requires other methods, such as local flap or skin graft for wound closure, which subsequently increase operating time and donor-site complication rate. Thus, we aimed to construct a simple and modified ALT design that will not only include the advantages described earlier but also provide adequate donor-site primary closure without jeopardizing complication rates. Ten patients with hypopharyngeal cancer underwent reconstructive surgery using our modified ALT design after total pharyngolaryngectomy between 2010 and 2017. Our modified ALT design converts this "classical" shape into a parallelogram so that the height of the modified design is always less than 8 cm, thus allowing for easy primary closure of the wound. The donor-site defects of all 10 patients were closed primarily. No donor-site complications and partial or total flap loss were observed. One patient experienced persistent wound infection with dehiscence, for which debridement was performed. The stricture and fistula rates were 10% (n = 1) and 20% (n = 2), respectively. The mean follow-up time is approximately 1 year. Minimizing donor-site morbidity is an important goal in reconstructive surgery. Our modified ALT flap design is simple, enabling easy primary closure of the donor-site defect, with improved results for the patient and operators. Furthermore, this design is also suitable for ALT flaps with widths larger than 8 cm.
Contingent Attentional Capture
NASA Technical Reports Server (NTRS)
Remington, Roger; Folk, Charles L.
1994-01-01
Four experiments address the degree of top-down selectivity in attention capture by feature singletons through manipulations of the spatial relationship and featural similarity of target and distractor singletons in a modified spatial cuing paradigm. Contrary to previous studies, all four experiments show that when searching for a singleton target, an irrelevant featural singleton captures attention only when defined by the same feature value as the target. Experiments 2, 3, and 4 provide a potential explanation for this empirical discrepancy by showing that irrelevant singletons can produce distraction effects that are independent of shifts of spatial attention. The results further support the notion that attentional capture is contingent on top-down attention control settings but indicates that such settings can be instantiated at the level of feature values.
Design of SMA - 13 asphalt mixture ratio on Z3and Z18 of the capital airport
NASA Astrophysics Data System (ADS)
Tian, Shuaituan; Ye, Song; Kong, Fandong
2017-12-01
According to the demand of T2 terminal airlines to operate A380 models, to meet the smooth running of the A380 airliner at the west end of the Capital Airport, So Z3 and Z18 taxiway area of the transformation is imperative. According to the design, the upper layer of this project adopts SMA - 13 modified asphalt mastic macadam mixture. We design the SMA-13 modified asphalt mixture on Z3 and Z18 of the capital airport from any respects, including coarse and fine aggregate, filler, asphalt, fiber and anti-rutting agent, and we hope we can find the best SMA-13 modified asphalt mixture.
Lee, M-Y; Chang, C-C; Ku, Y C
2008-01-01
Fixed dental restoration by conventional methods greatly relies on the skill and experience of the dental technician. The quality and accuracy of the final product depends mostly on the technician's subjective judgment. In addition, the traditional manual operation involves many complex procedures, and is a time-consuming and labour-intensive job. Most importantly, no quantitative design and manufacturing information is preserved for future retrieval. In this paper, a new device for scanning the dental profile and reconstructing 3D digital information of a dental model based on a layer-based imaging technique, called abrasive computer tomography (ACT) was designed in-house and proposed for the design of custom dental restoration. The fixed partial dental restoration was then produced by rapid prototyping (RP) and computer numerical control (CNC) machining methods based on the ACT scanned digital information. A force feedback sculptor (FreeForm system, Sensible Technologies, Inc., Cambridge MA, USA), which comprises 3D Touch technology, was applied to modify the morphology and design of the fixed dental restoration. In addition, a comparison of conventional manual operation and digital manufacture using both RP and CNC machining technologies for fixed dental restoration production is presented. Finally, a digital custom fixed restoration manufacturing protocol integrating proposed layer-based dental profile scanning, computer-aided design, 3D force feedback feature modification and advanced fixed restoration manufacturing techniques is illustrated. The proposed method provides solid evidence that computer-aided design and manufacturing technologies may become a new avenue for custom-made fixed restoration design, analysis, and production in the 21st century.
Azoitei, M.L.; Ban, Y.A.; Kalyuzhny, O.; Guenaga, J.; Schroeter, A.; Porter, J.; Wyatt, R.; Schief, W.R.
2015-01-01
Rational design of proteins with novel binding specificities and increased affinity is one of the major goals of computational protein design. Epitope-scaffolds are a new class of antigens engineered by transplanting viral epitopes of pre-defined structure to protein scaffolds, or by building protein scaffolds around such epitopes. Epitope-scaffolds are of interest as vaccine components to attempt to elicit neutralizing antibodies targeting the specified epitope. In this study we developed a new computational protocol, MultiGraft Interface, that transplants epitopes but also designs additional scaffold features outside the epitope to enhance antibody-binding specificity and potentially influence the specificity of elicited antibodies. We employed MultiGraft Interface to engineer novel epitope-scaffolds that display the known epitope of HIV-1 neutralizing antibody 2F5 and that also interact with the functionally important CDR H3 antibody loop. MultiGraft Interface generated an epitope-scaffold that bound 2F5 with sub-nanomolar affinity (KD = 400 pM) and that interacted with the antibody CDR H3 loop through computationally designed contacts. Substantial structural modifications were necessary to engineer this antigen, with the 2F5 epitope replacing a helix in the native scaffold and with 15% of the native scaffold sequence being modified in the design stage. This epitope-scaffold represents a successful example of rational protein backbone engineering and protein-protein interface design and could prove useful in the field of HIV vaccine design. MultiGraft Interface can be generally applied to engineer novel binding partners with altered specificity and optimized affinity. PMID:25043744
Design and fabrication of asymmetric nanopores using pulsed PECVD
NASA Astrophysics Data System (ADS)
Kelkar, Sanket S.
Manipulating matter at nanometric length scales is important for many electronic, chemical and biological applications. Structures such as nanopores demonstrate a phenomenon known as hindered transport which can be exploited in analytical applications such as DNA sequencing, ionic transistors, and molecular sieving. Precisely controlling the size, geometry and surface characteristics of the nanopores is important for realizing these applications. In this work, we employ relatively large template structures (˜ 100 nm) produced by track-etching or electron beam lithography. The pore size is then reduced to the desired level by deposition of material using pulsed plasma enhanced chemical vapor deposition (PECVD). Pulsed PECVD has been developed as a high throughput alternative to atomic layer deposition (ALD) to deliver self-limiting growth of thin films. The goal of this thesis is to extend the application of pulsed PECVD to fabricate asymmetric nanopores. In contrast to ALD, pulsed PECVD does not result in perfectly conformal deposition profiles, and predicting the final nanostructure is more complicated. A two dimensional feature scale model was developed to predict film profile evolution. The model was built in COMSOL, and is based on a diffusion reaction framework with a spatially varying Knudsen diffusion coefficient to account for the molecular transport inside the features. A scaling analysis was used to account for ALD exposure limitations that commonly occur when coating these extremely high aspect ratio features. The model was verified by cross-section microscopy of deposition profiles on patterned cylinders and trenches. The model shows that it is possible to obtain unique nanopore morphologies in pulsed PECVD that are distinct from either steady state deposition processes such as physical vapor deposition (PVD) or conventional ALD. Polymeric track etched (TE) membrane supports with a nominal size of 100 nm were employed as model template structures to demonstrate the capability of pulsed PECVD for precise pore size reduction of model supports. The efficacy of pulsed PECVD for nanopore fabrication was compared to both ALD and PVD. Flux and solute rejection measurements demonstrate that the pulsed PECVD-modified TE membranes exhibit higher selectivity without compromising on the flux due to their asymmetric structure. For example, the TiO2 modified supports were demonstrated to deliver high retention (˜ 75%) of bovine serum albumin (BSA) protein while maintaining 70% of their initial pure water flux. PVD also forms asymmetric membranes that enable high flux. But due to morphological instabilities, reproducibility and control were poor in the PVD-modified membranes, and it was not possible to optimize the flux and the selectivity of the membranes simultaneously. Excellent agreement between measured flux and model predictions based on feature scale simulations provided further validation of the tool's fidelity. Since surface energetics can often dominate hindered transport, the kinetics and thermodynamics of the octadecyltrichlorosilane (OTS) attachment was investigated in-depth as an approach to convert hydrophilic metal oxides into hydrophobic surfaces. It was shown that a simple ozone treatment was a satisfactory alternative to hazardous acids to create the highly hydroxylated surface required for OTS attachment, and that using heptane as the solvent enabled the process to be conducted under ambient conditions without the need of a glovebox. The kinetics of OTS self-assembled monolayer (SAM) formation and the saturation contact angle (˜100°) on alumina are comparable to what has been observed for OTS attachment on silicon. The OTS SAMs also demonstrated excellent thermal stability, and the modified surface showed a critical surface tension of 21.4 dyne/cm.
76 FR 15798 - Special Conditions: Boeing 747-468, Installation of a Medical Lift
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-22
... a novel or unusual design feature associated with the installation of a medical lift. The applicable airworthiness regulations do not contain adequate or appropriate safety standards for this design feature. These... airworthiness regulations do not contain adequate or appropriate safety standards for this design feature. Type...
Peterson, Erin L; Carlson, Susan A; Schmid, Thomas L; Brown, David R; Galuska, Deborah A
2018-01-01
The purpose of this study was to examine the association between the presence of supportive community planning documents in US municipalities with design standards and requirements supportive of active living. Cross-sectional study using data from the 2014 National Survey of Community-Based Policy and Environmental Supports for Healthy Eating and Active Living. Nationally representative sample of US municipalities. Respondents are 2005 local officials. Assessed: (1) The presence of design standards and feature requirements and (2) the association between planning documents and design standards and feature requirements supportive of active living in policies for development. Using logistic regression, significant trends were identified in the presence of design standards and feature requirements by plan and number of supportive objectives present. Prevalence of design standards ranged from 19% (developer dedicated right-of-way for bicycle infrastructure development) to 50% (traffic-calming features in areas with high pedestrian and bicycle volume). Features required in policies for development ranged from 14% (short/medium pedestrian-scale block sizes) to 44% (minimum sidewalk widths of 5 feet) of municipalities. As the number of objectives in municipal plans increased, there was a significant and positive trend ( P < .05) in the prevalence of each design standard and requirement. Municipal planning documents containing objectives supportive of physical activity are associated with design standards and feature requirements supportive of activity-friendly communities.
Precise positioning of an ion in an integrated Paul trap-cavity system using radiofrequency signals
NASA Astrophysics Data System (ADS)
Kassa, Ezra; Takahashi, Hiroki; Christoforou, Costas; Keller, Matthias
2018-03-01
We report a novel miniature Paul ion trap design with an integrated optical fibre cavity which can serve as a building block for a fibre-linked quantum network. In such cavity quantum electrodynamic set-ups, the optimal coupling of the ions to the cavity mode is of vital importance and this is achieved by moving the ion relative to the cavity mode. The trap presented herein features an endcap-style design complemented with extra electrodes on which additional radiofrequency voltages are applied to fully control the pseudopotential minimum in three dimensions. This method lifts the need to use three-dimensional translation stages for moving the fibre cavity with respect to the ion and achieves high integrability, mechanical rigidity and scalability. Not based on modifying the capacitive load of the trap, this method leads to precise control of the pseudopotential minimum allowing the ion to be moved with precisions limited only by the ion's position spread. We demonstrate this by coupling the ion to the fibre cavity and probing the cavity mode profile.
Exercise countermeasure protocol management expert system.
Webster, L; Chen, J G; Flores, L; Tan, S
1993-04-01
Exercise will be used primarily to countermeasure against deconditioning on extended space flight. In this paper we describe the development and evaluation of an expert system for exercise countermeasure protocol management. Currently, the system includes two major subsystems: baseline prescription and prescription adjustment. The baseline prescription subsystem is designed to provide initial exercise prescriptions while prescription adjustment subsystem is designed to modify the initial prescription based on the exercised progress. The system runs under three different environments: PC, SUN workstation, and Symbolic machine. The inference engine, baseline prescription module, prescription adjustment module and explanation module are developed under the Symbolic environment by using the ART (Automated Reasoning Tool) software. The Sun environment handles database management features and interfaces with PC environment to obtain physical and physiological data from exercise units on-board during the flight. Eight subjects' data have been used to evaluate the system performance by comparing the prescription of nine experienced exercise physiologists and the one prescribed by the expert system. The results of the validation test indicated that the performance of the expert system was acceptable.
The dynamical analysis of modified two-compartment neuron model and FPGA implementation
NASA Astrophysics Data System (ADS)
Lin, Qianjin; Wang, Jiang; Yang, Shuangming; Yi, Guosheng; Deng, Bin; Wei, Xile; Yu, Haitao
2017-10-01
The complexity of neural models is increasing with the investigation of larger biological neural network, more various ionic channels and more detailed morphologies, and the implementation of biological neural network is a task with huge computational complexity and power consumption. This paper presents an efficient digital design using piecewise linearization on field programmable gate array (FPGA), to succinctly implement the reduced two-compartment model which retains essential features of more complicated models. The design proposes an approximate neuron model which is composed of a set of piecewise linear equations, and it can reproduce different dynamical behaviors to depict the mechanisms of a single neuron model. The consistency of hardware implementation is verified in terms of dynamical behaviors and bifurcation analysis, and the simulation results including varied ion channel characteristics coincide with the biological neuron model with a high accuracy. Hardware synthesis on FPGA demonstrates that the proposed model has reliable performance and lower hardware resource compared with the original two-compartment model. These investigations are conducive to scalability of biological neural network in reconfigurable large-scale neuromorphic system.
EEMCO guidance for the efficacy assessment of antiperspirants and deodorants.
Piérard, G E; Elsner, P; Marks, R; Masson, P; Paye, M
2003-01-01
Overproduction of sweat, sweaty skin and body odours are unpleasant for many social groups. Body cleansing products are designed to combat these undesirable features of skin. In addition, antiperspirant and deodorant products are more specifically used in the underarm site by a large part of the adult population. Antiperspirants are offered to control emotionally triggered sweating in the armpit. Deodorants are designed to combat malodour generated from bacteria-modified sweat. This review summarizes the physiology of eccrine, apocrine and apoeccrine sweat glands. The mechanisms of action of antiperspirants and deodorants are described as well as the factors influencing their efficacies. A series of tests using various measurement methods can be used to demonstrate the efficacy of antiperspirants. These include the gravimetric method, water evaporation quantification, electrodermal measurements, staining procedures, dye injections and cyanoacrylate skin surface strippings and casting replicas. Deodorant efficacy can be evaluated by sensory assessments performed by an expert panel. Indirect support is provided by visualization of apocrine gland excretion and collection of sweat and volatile compounds. Microbiological assessments and chromatographic analysis also provide indirect information. Copyright 2003 S. Karger AG, Basel
Exercise countermeasure protocol management expert system
NASA Technical Reports Server (NTRS)
Webster, L.; Chen, J. G.; Flores, L.; Tan, S.
1993-01-01
Exercise will be used primarily to countermeasure against deconditioning on extended space flight. In this paper we describe the development and evaluation of an expert system for exercise countermeasure protocol management. Currently, the system includes two major subsystems: baseline prescription and prescription adjustment. The baseline prescription subsystem is designed to provide initial exercise prescriptions while prescription adjustment subsystem is designed to modify the initial prescription based on the exercised progress. The system runs under three different environments: PC, SUN workstation, and Symbolic machine. The inference engine, baseline prescription module, prescription adjustment module and explanation module are developed under the Symbolic environment by using the ART (Automated Reasoning Tool) software. The Sun environment handles database management features and interfaces with PC environment to obtain physical and physiological data from exercise units on-board during the flight. Eight subjects' data have been used to evaluate the system performance by comparing the prescription of nine experienced exercise physiologists and the one prescribed by the expert system. The results of the validation test indicated that the performance of the expert system was acceptable.
Flight set 360H005 (STS-28) seals, volume 4
NASA Technical Reports Server (NTRS)
Curry, Jeffrey T.
1990-01-01
The performance is assessed of the 360H005, Fifth flight, Redesigned Solid Rocket Motors (RSMR) in respect to joint sealing issues as seen from post flight inspection of the seals and sealing surfaces. The factory joint disassembly inspections have resumed for 360H005. The new factory joint grease application is in effect and now can be assessed during the disassembly process. The RSRM is illustrated consisting of capture feature field joints as is the J-joint insulation configuration. The nozzle-to-case joint design is also illustrated, which includes 100, 7/8 inch radial bolts in conjunction with a wiper O-ring and modified insulation design. The ignition system seals and a cross section of the igniter are illustrated. The configuration of all the internal nozzle joints are also shown. The postflight inspection of both motors showed the seal components to be in excellent condition except for the indentation found on the inner primary seal of the right hand inner igniter gasket, aft face. Detailed inspection results, and inspections performed by the O-ring Inspection Team are presented.
Rosu, Cornelia; Lin, Haisheng; Jiang, Lu; Breedveld, Victor; Hess, Dennis W
2018-04-15
The economical use of water-repellent coatings on polymeric materials in commercial and industrial applications is limited by their mechanical wear robustness and long-term durability. In this study, we demonstrate that polyethylene terephthalate (PET) fabric modified with inorganic, methyltrimethoxysilane (MTMS)-based coatings shows excellent resistance against various types of wear damage, thereby mimicking superhydrophobic biological materials. These features were facilitated by the rational design of coating processing that also enabled tunable hierarchical surface structure. A series of custom and standard testing protocols revealed that coating-to-substrate adhesion was remarkably high, as was the resistance to various mechanical abradents. The most intriguing characteristic observed during aging and abrasion cycles was the enhancement in non-wettability or 'rejuvenation' reflected by water droplet roll-off behavior, a characteristic of self-cleaning materials. Water-repellent properties of coated polyester were also enhanced by prolonged thermal annealing and were maintained after custom laundry. The developed technology offers opportunities to design low cost, durable and functional textiles for both indoor and outdoor applications. Copyright © 2018 Elsevier Inc. All rights reserved.
Design of outdoor urban spaces for thermal comfort
Harriet J. Plumley
1977-01-01
Microclimates in outdoor urban spaces may be modified by controlling the wind and radiant environments in these spaces. Design guidelines were developed to specify how radiant environments may be selected or modified to provide conditions for thermal comfort. Fanger's human-thermal-comfort model was used to determine comfortable levels of radiant-heat exchange for...
Positional Accuracy in Optical Trap-Assisted Nanolithography
NASA Astrophysics Data System (ADS)
Arnold, Craig B.; McLeod, Euan
2009-03-01
The ability to directly print patterns on size scales below 100 nm is important for many applications where the production or repair of high resolution and density features are important. Laser-based direct-write methods have the benefit of quickly and easily being able to modify and create structures on existing devices, but feature sizes are conventionally limited by diffraction. In this presentation, we show how to overcome this limit with a new method of probe-based near-field nanopatterning in which we employ a CW laser to optically trap and manipulate dispersed microspheres against a substrate using a 2-d Bessel beam optical trap. A secondary, pulsed nanosecond laser at 355 nm is directed through the bead and used to modify the surface below the microsphere, taking advantage of the near-field enhancement in order to produce materials modification with feature sizes under 100 nm. Here, we analyze the 3-d positioning accuracy of the microsphere through analytic modeling as a function of experimental parameters. The model is verified in all directions for our experimental conditions and is used to predict the conditions required for improved positional accuracy.
Danforth, Jeffrey S; Doerfler, Leonard A; Connor, Daniel F
2017-08-01
The goal was to examine whether anxiety modifies the risk for, or severity of, conduct problems in children with ADHD. Assessment included both categorical and dimensional measures of ADHD, anxiety, and conduct problems. Analyses compared conduct problems between children with ADHD features alone versus children with co-occurring ADHD and anxiety features. When assessed by dimensional rating scales, results showed that compared with children with ADHD alone, those children with ADHD co-occurring with anxiety are at risk for more intense conduct problems. When assessment included a Diagnostic and Statistical Manual of Mental Disorders (4th ed.; DSM-IV) diagnosis via the Schedule for Affective Disorders and Schizophrenia for School Age Children-Epidemiologic Version (K-SADS), results showed that compared with children with ADHD alone, those children with ADHD co-occurring with anxiety neither had more intense conduct problems nor were they more likely to be diagnosed with oppositional defiant disorder or conduct disorder. Different methodological measures of ADHD, anxiety, and conduct problem features influenced the outcome of the analyses.
GATOR: Requirements capturing of telephony features
NASA Technical Reports Server (NTRS)
Dankel, Douglas D., II; Walker, Wayne; Schmalz, Mark
1992-01-01
We are developing a natural language-based, requirements gathering system called GATOR (for the GATherer Of Requirements). GATOR assists in the development of more accurate and complete specifications of new telephony features. GATOR interacts with a feature designer who describes a new feature, set of features, or capability to be implemented. The system aids this individual in the specification process by asking for clarifications when potential ambiguities are present, by identifying potential conflicts with other existing features, and by presenting its understanding of the feature to the designer. Through user interaction with a model of the existing telephony feature set, GATOR constructs a formal representation of the new, 'to be implemented' feature. Ultimately GATOR will produce a requirements document and will maintain an internal representation of this feature to aid in future design and specification. This paper consists of three sections that describe (1) the structure of GATOR, (2) POND, GATOR's internal knowledge representation language, and (3) current research issues.
NASA Astrophysics Data System (ADS)
Jordan, Jared Williams; Dvorak, Steven L.; Sternberg, Ben K.
2010-10-01
In this paper, we develop a technique for designing high-power, non-linear, transmitting rod-core antennas by using simple modified scale factors rather than running labor-intensive numerical models. By using modified scale factors, a designer can predict changes in magnetic moment, inductance, core series loss resistance, etc. We define modified scale factors as the case when all physical dimensions of the rod antenna are scaled by p, except for the cross-sectional area of the individual wires or strips that are used to construct the core. This allows one to make measurements on a scaled-down version of the rod antenna using the same core material that will be used in the final antenna design. The modified scale factors were derived from prolate spheroidal analytical expressions for a finite-length rod antenna and were verified with experimental results. The modified scaling factors can only be used if the magnetic flux densities within the two scaled cores are the same. With the magnetic flux density constant, the two scaled cores will operate with the same complex permeability, thus changing the non-linear problem to a quasi-linear problem. We also demonstrate that by holding the number of turns times the drive current constant, while changing the number of turns, the inductance and core series loss resistance change by the number of turns squared. Experimental measurements were made on rod cores made from varying diameters of black oxide, low carbon steel wires and different widths of Metglas foil. Furthermore, we demonstrate that the modified scale factors work even in the presence of eddy currents within the core material.
Gus'kov, Vladimir Yu; Gainullina, Yulia Yu; Ivanov, Sergey P; Kudasheva, Florida Kh
2014-08-22
The thermodynamic features of organic molecule adsorption from the gaseous phase of sorbents modified with 5-hydroxy-6-methyluracil (HMU) were studied. Molar internal energy and entropy of adsorption variation analyses showed that with every type surface, except for silica gel, layers of supramolecular structure have cavities equal in size with the ones revealed in HMU crystals by X-ray diffraction. Adsorption thermodynamics on HMU-modified sorbents depended on the amount of impregnated HMU and on the polarity, but not the porosity, of the initial sorbent. Polarity of the modified surface increased as a function of HMU quantity and initial sorbent mean pore size, but become appreciably lower if the initial surface is capable of hydrogen bonding. Copyright © 2014 Elsevier B.V. All rights reserved.
Gamification and Adherence to Web-Based Mental Health Interventions: A Systematic Review.
Brown, Menna; O'Neill, Noelle; van Woerden, Hugo; Eslambolchilar, Parisa; Jones, Matt; John, Ann
2016-08-24
Adherence to effective Web-based interventions for common mental disorders (CMDs) and well-being remains a critical issue, with clear potential to increase effectiveness. Continued identification and examination of "active" technological components within Web-based interventions has been called for. Gamification is the use of game design elements and features in nongame contexts. Health and lifestyle interventions have implemented a variety of game features in their design in an effort to encourage engagement and increase program adherence. The potential influence of gamification on program adherence has not been examined in the context of Web-based interventions designed to manage CMDs and well-being. This study seeks to review the literature to examine whether gaming features predict or influence reported rates of program adherence in Web-based interventions designed to manage CMDs and well-being. A systematic review was conducted of peer-reviewed randomized controlled trials (RCTs) designed to manage CMDs or well-being and incorporated gamification features. Seven electronic databases were searched. A total of 61 RCTs met the inclusion criteria and 47 different intervention programs were identified. The majority were designed to manage depression using cognitive behavioral therapy. Eight of 10 popular gamification features reviewed were in use. The majority of studies utilized only one gamification feature (n=58) with a maximum of three features. The most commonly used feature was story/theme. Levels and game leaders were not used in this context. No studies explicitly examined the role of gamification features on program adherence. Usage data were not commonly reported. Interventions intended to be 10 weeks in duration had higher mean adherence than those intended to be 6 or 8 weeks in duration. Gamification features have been incorporated into the design of interventions designed to treat CMD and well-being. Further research is needed to improve understanding of gamification features on adherence and engagement in order to inform the design of future Web-based health interventions in which adherence to treatment is of concern. Conclusions were limited by varied reporting of adherence and usage data.
Gamification and Adherence to Web-Based Mental Health Interventions: A Systematic Review
O'Neill, Noelle; van Woerden, Hugo; Eslambolchilar, Parisa; Jones, Matt; John, Ann
2016-01-01
Background Adherence to effective Web-based interventions for common mental disorders (CMDs) and well-being remains a critical issue, with clear potential to increase effectiveness. Continued identification and examination of “active” technological components within Web-based interventions has been called for. Gamification is the use of game design elements and features in nongame contexts. Health and lifestyle interventions have implemented a variety of game features in their design in an effort to encourage engagement and increase program adherence. The potential influence of gamification on program adherence has not been examined in the context of Web-based interventions designed to manage CMDs and well-being. Objective This study seeks to review the literature to examine whether gaming features predict or influence reported rates of program adherence in Web-based interventions designed to manage CMDs and well-being. Methods A systematic review was conducted of peer-reviewed randomized controlled trials (RCTs) designed to manage CMDs or well-being and incorporated gamification features. Seven electronic databases were searched. Results A total of 61 RCTs met the inclusion criteria and 47 different intervention programs were identified. The majority were designed to manage depression using cognitive behavioral therapy. Eight of 10 popular gamification features reviewed were in use. The majority of studies utilized only one gamification feature (n=58) with a maximum of three features. The most commonly used feature was story/theme. Levels and game leaders were not used in this context. No studies explicitly examined the role of gamification features on program adherence. Usage data were not commonly reported. Interventions intended to be 10 weeks in duration had higher mean adherence than those intended to be 6 or 8 weeks in duration. Conclusions Gamification features have been incorporated into the design of interventions designed to treat CMD and well-being. Further research is needed to improve understanding of gamification features on adherence and engagement in order to inform the design of future Web-based health interventions in which adherence to treatment is of concern. Conclusions were limited by varied reporting of adherence and usage data. PMID:27558893
Silber, Hanna E; Nyberg, Joakim; Hooker, Andrew C; Karlsson, Mats O
2009-06-01
Intravenous glucose tolerance test (IVGTT) provocations are informative, but complex and laborious, for studying the glucose-insulin system. The objective of this study was to evaluate, through optimal design methodology, the possibilities of more informative and/or less laborious study design of the insulin modified IVGTT in type 2 diabetic patients. A previously developed model for glucose and insulin regulation was implemented in the optimal design software PopED 2.0. The following aspects of the study design of the insulin modified IVGTT were evaluated; (1) glucose dose, (2) insulin infusion, (3) combination of (1) and (2), (4) sampling times, (5) exclusion of labeled glucose. Constraints were incorporated to avoid prolonged hyper- and/or hypoglycemia and a reduced design was used to decrease run times. Design efficiency was calculated as a measure of the improvement with an optimal design compared to the basic design. The results showed that the design of the insulin modified IVGTT could be substantially improved by the use of an optimized design compared to the standard design and that it was possible to use a reduced number of samples. Optimization of sample times gave the largest improvement followed by insulin dose. The results further showed that it was possible to reduce the total sample time with only a minor loss in efficiency. Simulations confirmed the predictions from PopED. The predicted uncertainty of parameter estimates (CV) was low in all tested cases, despite the reduction in the number of samples/subject. The best design had a predicted average CV of parameter estimates of 19.5%. We conclude that improvement can be made to the design of the insulin modified IVGTT and that the most important design factor was the placement of sample times followed by the use of an optimal insulin dose. This paper illustrates how complex provocation experiments can be improved by sequential modeling and optimal design.
New nonlinear features for inspection, robotics, and face recognition
NASA Astrophysics Data System (ADS)
Casasent, David P.; Talukder, Ashit
1999-10-01
Classification of real-time X-ray images of randomly oriented touching pistachio nuts is discussed. The ultimate objective is the development of a system for automated non- invasive detection of defective product items on a conveyor belt. We discuss the extraction of new features that allow better discrimination between damaged and clean items (pistachio nuts). This feature extraction and classification stage is the new aspect of this paper; our new maximum representation and discriminating feature (MRDF) extraction method computes nonlinear features that are used as inputs to a new modified k nearest neighbor classifier. In this work, the MRDF is applied to standard features (rather than iconic data). The MRDF is robust to various probability distributions of the input class and is shown to provide good classification and new ROC (receiver operating characteristic) data. Other applications of these new feature spaces in robotics and face recognition are also noted.
New feature extraction method for classification of agricultural products from x-ray images
NASA Astrophysics Data System (ADS)
Talukder, Ashit; Casasent, David P.; Lee, Ha-Woon; Keagy, Pamela M.; Schatzki, Thomas F.
1999-01-01
Classification of real-time x-ray images of randomly oriented touching pistachio nuts is discussed. The ultimate objective is the development of a system for automated non- invasive detection of defective product items on a conveyor belt. We discuss the extraction of new features that allow better discrimination between damaged and clean items. This feature extraction and classification stage is the new aspect of this paper; our new maximum representation and discrimination between damaged and clean items. This feature extraction and classification stage is the new aspect of this paper; our new maximum representation and discriminating feature (MRDF) extraction method computes nonlinear features that are used as inputs to a new modified k nearest neighbor classifier. In this work the MRDF is applied to standard features. The MRDF is robust to various probability distributions of the input class and is shown to provide good classification and new ROC data.