NASA Astrophysics Data System (ADS)
Suparmi, A.; Cari, C.; Pratiwi, B. N.
2016-04-01
D-dimensional Dirac equation of q-deformed modified Poschl-Teller plus Manning Rosen non-central potential was solved using supersymmetric quantum mechanics (SUSY QM). The relativistic energy spectra were analyzed by using SUSY QM and shape invariant properties from radial part of D dimensional Dirac equation and the angular quantum numbers were obtained from angular part of D dimensional Dirac equation. The SUSY operators was used to generate the D dimensional relativistic wave functions both for radial and angular parts. In the non-relativistic limit, the relativistic energy equation was reduced to the non-relativistic energy. In the classical limit, the partition function of vibrational, the specific heat of vibrational, and the mean energy of vibrational of some diatomic molecules were calculated from the equation of non-relativistic energy with the help of error function and Mat-lab 2011.
Dirac equation in noncommutative space for hydrogen atom
NASA Astrophysics Data System (ADS)
Adorno, T. C.; Baldiotti, M. C.; Chaichian, M.; Gitman, D. M.; Tureanu, A.
2009-11-01
We consider the energy levels of a hydrogen-like atom in the framework of θ-modified, due to space noncommutativity, Dirac equation with Coulomb field. It is shown that on the noncommutative (NC) space the degeneracy of the levels 2S1 / 2, 2P1 / 2 and 2P3 / 2 is lifted completely, such that new transition channels are allowed.
Statistical Entropy of Dirac Field Outside RN Black Hole and Modified Density Equation
NASA Astrophysics Data System (ADS)
Cao, Fei; He, Feng
2012-02-01
Statistical entropy of Dirac field in Reissner-Nordstrom black hole space-time is computed by state density equation corrected by the generalized uncertainty principle to all orders in Planck length and WKB approximation. The result shows that the statistical entropy is proportional to the horizon area but the present result is convergent without any artificial cutoff.
NASA Astrophysics Data System (ADS)
Sargolzaeipor, S.; Hassanabadi, H.; Chung, W. S.
2018-04-01
The Klein-Gordon equation is extended in the presence of an Aharonov-Bohm magnetic field for the Cornell potential and the corresponding wave functions as well as the spectra are obtained. After introducing the superstatistics in the statistical mechanics, we first derived the effective Boltzmann factor in the deformed formalism with modified Dirac delta distribution. We then use the concepts of the superstatistics to calculate the thermodynamics properties of the system. The well-known results are recovered by the vanishing of deformation parameter and some graphs are plotted for the clarity of our results.
NASA Astrophysics Data System (ADS)
Wei, Gao-Feng; Dong, Shi-Hai
2010-11-01
By applying a Pekeris-type approximation to the pseudo-centrifugal term, we study the pseudospin symmetry of a Dirac nucleon subjected to scalar and vector modified Rosen-Morse (MRM) potentials. A complicated quartic energy equation and spinor wave functions with arbitrary spin-orbit coupling quantum number k are presented. The pseudospin degeneracy is checked numerically. Pseudospin symmetry is discussed theoretically and numerically in the limit case α rightarrow 0 . It is found that the relativistic MRM potential cannot trap a Dirac nucleon in this limit.
On the synchrotron radiation reaction in external magnetic field
NASA Astrophysics Data System (ADS)
Tursunov, Arman; Kološ, Martin
2017-12-01
We study the dynamics of point electric charges undergoing radiation reaction force due to synchrotron radiation in the presence of external uniform magnetic field. The radiation reaction force cannot be neglected in many physical situations and its presence modifies the equations of motion significantly. The exact form of the equation of motion known as the Lorentz-Dirac equation contains higher order Schott term which leads to the appearance of the runaway solutions. We demonstrate effective computational ways to avoid such unphysical solutions and perform numerical integration of the dynamical equations. We show that in the ultrarelativistic case the Schott term is small and does not have considerable effect to the trajectory of a particle. We compare results with the covariant Landau-Lifshitz equation which is the first iteration of the Lorentz-Dirac equation. Even though the Landau-Lifshitz equation is thought to be approximative solution, we show that in realistic scenarios both approaches lead to identical results.
Hidden symmetries of Eisenhart-Duval lift metrics and the Dirac equation with flux
NASA Astrophysics Data System (ADS)
Cariglia, Marco
2012-10-01
The Eisenhart-Duval lift allows embedding nonrelativistic theories into a Lorentzian geometrical setting. In this paper we study the lift from the point of view of the Dirac equation and its hidden symmetries. We show that dimensional reduction of the Dirac equation for the Eisenhart-Duval metric in general gives rise to the nonrelativistic Lévy-Leblond equation in lower dimension. We study in detail in which specific cases the lower dimensional limit is given by the Dirac equation, with scalar and vector flux, and the relation between lift, reduction, and the hidden symmetries of the Dirac equation. While there is a precise correspondence in the case of the lower dimensional massive Dirac equation with no flux, we find that for generic fluxes it is not possible to lift or reduce all solutions and hidden symmetries. As a by-product of this analysis, we construct new Lorentzian metrics with special tensors by lifting Killing-Yano and closed conformal Killing-Yano tensors and describe the general conformal Killing-Yano tensor of the Eisenhart-Duval lift metrics in terms of lower dimensional forms. Last, we show how, by dimensionally reducing the higher dimensional operators of the massless Dirac equation that are associated with shared hidden symmetries, it is possible to recover hidden symmetry operators for the Dirac equation with flux.
Wave Functions for Time-Dependent Dirac Equation under GUP
NASA Astrophysics Data System (ADS)
Zhang, Meng-Yao; Long, Chao-Yun; Long, Zheng-Wen
2018-04-01
In this work, the time-dependent Dirac equation is investigated under generalized uncertainty principle (GUP) framework. It is possible to construct the exact solutions of Dirac equation when the time-dependent potentials satisfied the proper conditions. In (1+1) dimensions, the analytical wave functions of the Dirac equation under GUP have been obtained for the two kinds time-dependent potentials. Supported by the National Natural Science Foundation of China under Grant No. 11565009
Optical analogue of relativistic Dirac solitons in binary waveguide arrays
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tran, Truong X., E-mail: truong.tran@mpl.mpg.de; Max Planck Institute for the Science of Light, Günther-Scharowsky str. 1, 91058 Erlangen; Longhi, Stefano
2014-01-15
We study analytically and numerically an optical analogue of Dirac solitons in binary waveguide arrays in the presence of Kerr nonlinearity. Pseudo-relativistic soliton solutions of the coupled-mode equations describing dynamics in the array are analytically derived. We demonstrate that with the found soliton solutions, the coupled mode equations can be converted into the nonlinear relativistic 1D Dirac equation. This paves the way for using binary waveguide arrays as a classical simulator of quantum nonlinear effects arising from the Dirac equation, something that is thought to be impossible to achieve in conventional (i.e. linear) quantum field theory. -- Highlights: •An opticalmore » analogue of Dirac solitons in nonlinear binary waveguide arrays is suggested. •Analytical solutions to pseudo-relativistic solitons are presented. •A correspondence of optical coupled-mode equations with the nonlinear relativistic Dirac equation is established.« less
Radiation reaction on a classical charged particle: a modified form of the equation of motion.
Alcaine, Guillermo García; Llanes-Estrada, Felipe J
2013-09-01
We present and numerically solve a modified form of the equation of motion for a charged particle under the influence of an external force, taking into account the radiation reaction. This covariant equation is integro-differential, as Dirac-Röhrlich's, but has several technical improvements. First, the equation has the form of Newton's second law, with acceleration isolated on the left hand side and the force depending only on positions and velocities: Thus, the equation is linear in the highest derivative. Second, the total four-force is by construction perpendicular to the four-velocity. Third, if the external force vanishes for all future times, the total force and the acceleration automatically vanish at the present time. We show the advantages of this equation by solving it numerically for several examples of external force.
Radiation reaction on a classical charged particle: A modified form of the equation of motion
NASA Astrophysics Data System (ADS)
Alcaine, Guillermo García; Llanes-Estrada, Felipe J.
2013-09-01
We present and numerically solve a modified form of the equation of motion for a charged particle under the influence of an external force, taking into account the radiation reaction. This covariant equation is integro-differential, as Dirac-Röhrlich's, but has several technical improvements. First, the equation has the form of Newton's second law, with acceleration isolated on the left hand side and the force depending only on positions and velocities: Thus, the equation is linear in the highest derivative. Second, the total four-force is by construction perpendicular to the four-velocity. Third, if the external force vanishes for all future times, the total force and the acceleration automatically vanish at the present time. We show the advantages of this equation by solving it numerically for several examples of external force.
The GUP effect on Hawking radiation of the 2 + 1 dimensional black hole
NASA Astrophysics Data System (ADS)
Gecim, Ganim; Sucu, Yusuf
2017-10-01
We investigate the Generalized Uncertainty Principle (GUP) effect on the Hawking radiation of the 2 + 1 dimensional Martinez-Zanelli black hole by using the Hamilton-Jacobi method. In this connection, we discuss the tunneling probabilities and Hawking temperature of the spin-1/2 and spin-0 particles for the black hole. Therefore, we use the modified Klein-Gordon and Dirac equations based on the GUP. Then, we observe that the Hawking temperature of the scalar and Dirac particles depend on not only the black hole properties, but also the properties of the tunneling particle, such as angular momentum, energy and mass. And, in this situation, we see that the tunneling probability and the Hawking radiation of the Dirac particle is different from that of the scalar particle.
NASA Astrophysics Data System (ADS)
Finster, Felix; Smoller, Joel; Yau, Shing-Tung
2000-04-01
It is shown analytically that the Dirac equation has no normalizable, time-periodic solutions in a Reissner-Nordström black hole background; in particular, there are no static solutions of the Dirac equation in such a background metric. The physical interpretation is that Dirac particles can either disappear into the black hole or escape to infinity, but they cannot stay on a periodic orbit around the black hole.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cari, C., E-mail: carinln@yahoo.com; Suparmi, A., E-mail: carinln@yahoo.com
2014-09-30
Dirac equation of 3D harmonics oscillator plus trigonometric Scarf non-central potential for spin symmetric case is solved using supersymmetric quantum mechanics approach. The Dirac equation for exact spin symmetry reduces to Schrodinger like equation. The relativistic energy and wave function for spin symmetric case are simply obtained using SUSY quantum mechanics method and idea of shape invariance.
Dirac-Kähler particle in Riemann spherical space: boson interpretation
NASA Astrophysics Data System (ADS)
Ishkhanyan, A. M.; Florea, O.; Ovsiyuk, E. M.; Red'kov, V. M.
2015-11-01
In the context of the composite boson interpretation, we construct the exact general solution of the Dirac--K\\"ahler equation for the case of the spherical Riemann space of constant positive curvature, for which due to the geometry itself one may expect to have a discrete energy spectrum. In the case of the minimal value of the total angular momentum, $j=0$, the radial equations are reduced to second-order ordinary differential equations, which are straightforwardly solved in terms of the hypergeometric functions. For non-zero values of the total angular momentum, however, the radial equations are reduced to a pair of complicated fourth-order differential equations. Employing the factorization approach, we derive the general solution of these equations involving four independent fundamental solutions written in terms of combinations of the hypergeometric functions. The corresponding discrete energy spectrum is then determined via termination of the involved hypergeometric series, resulting in quasi-polynomial wave-functions. The constructed solutions lead to notable observations when compared with those for the ordinary Dirac particle. The energy spectrum for the Dirac-K\\"ahler particle in spherical space is much more complicated. Its structure substantially differs from that for the Dirac particle since it consists of two paralleled energy level series each of which is twofold degenerate. Besides, none of the two separate series coincides with the series for the Dirac particle. Thus, the Dirac--K\\"ahler field cannot be interpreted as a system of four Dirac fermions. Additional arguments supporting this conclusion are discussed.
Nonlinear modes of the tensor Dirac equation and CPT violation
NASA Technical Reports Server (NTRS)
Reifler, Frank J.; Morris, Randall D.
1993-01-01
Recently, it has been shown that Dirac's bispinor equation can be expressed, in an equivalent tensor form, as a constrained Yang-Mills equation in the limit of an infinitely large coupling constant. It was also shown that the free tensor Dirac equation is a completely integrable Hamiltonian system with Lie algebra type Poisson brackets, from which Fermi quantization can be derived directly without using bispinors. The Yang-Mills equation for a finite coupling constant is investigated. It is shown that the nonlinear Yang-Mills equation has exact plane wave solutions in one-to-one correspondence with the plane wave solutions of Dirac's bispinor equation. The theory of nonlinear dispersive waves is applied to establish the existence of wave packets. The CPT violation of these nonlinear wave packets, which could lead to new observable effects consistent with current experimental bounds, is investigated.
Relativistic effects due to gravimagnetic moment of a rotating body
NASA Astrophysics Data System (ADS)
Ramírez, Walberto Guzmán; Deriglazov, Alexei A.
2017-12-01
We compute the exact Hamiltonian (and corresponding Dirac brackets) for a spinning particle with gravimagnetic moment κ in an arbitrary gravitational background. The case κ =0 corresponds to the Mathisson-Papapetrou-Tulczyjew-Dixon (MPTD) equations. κ =1 leads to modified MPTD equations with improved behavior in the ultrarelativistic limit. So we study the modified equations in the leading post-Newtonian approximation. The rotating body with unit gravimagnetic moment has qualitatively different behavior as compared with the MPTD body: (A) If a number of gyroscopes with various rotation axes are freely traveling together, the angles between the axes change with time. (B) For specific binary systems, gravimagnetic moment gives a contribution to the frame-dragging effect with the magnitude that turns out to be comparable with that of Schiff frame dragging.
The causal perturbation expansion revisited: Rescaling the interacting Dirac sea
NASA Astrophysics Data System (ADS)
Finster, Felix; Grotz, Andreas
2010-07-01
The causal perturbation expansion defines the Dirac sea in the presence of a time-dependent external field. It yields an operator whose image generalizes the vacuum solutions of negative energy and thus gives a canonical splitting of the solution space into two subspaces. After giving a self-contained introduction to the ideas and techniques, we show that this operator is, in general, not idempotent. We modify the standard construction by a rescaling procedure giving a projector on the generalized negative-energy subspace. The resulting rescaled causal perturbation expansion uniquely defines the fermionic projector in terms of a series of distributional solutions of the Dirac equation. The technical core of the paper is to work out the combinatorics of the expansion in detail. It is also shown that the fermionic projector with interaction can be obtained from the free projector by a unitary transformation. We finally analyze the consequences of the rescaling procedure on the light-cone expansion.
Digital quantum simulation of Dirac equation with a trapped ion
NASA Astrophysics Data System (ADS)
Shen, Yangchao; Zhang, Xiang; Zhang, Junhua; Casanova, Jorge; Lamata, Lucas; Solano, Enrique; Yung, Man-Hong; Zhang, Jingning; Kim, Kihwan; Department Of Physical Chemistry Collaboration
2014-05-01
Recently there has been growing interest in simulating relativistic effects in controllable physical system. We digitally simulate the Dirac equation in 3 +1 dimensions with a single trapped ion. We map four internal levels of 171Yb+ ion to the Dirac bispinor. The time evolution of the Dirac equation is implemented by trotter expansion. In the 3 +1 dimension, we can observe a helicoidal motion of a free Dirac particle which reduces to Zitterbewegung in 1 +1 dimension. This work was supported in part by the National Basic Research Program of China Grant 2011CBA00300, 2011CBA00301, the National Natural Science Foundation of China Grant 61033001, 61061130540. KK acknowledge the support from the recruitment program of global youth experts.
NASA Astrophysics Data System (ADS)
Cariglia, Marco; Krtouš, Pavel; Kubizňák, David
2011-07-01
We intrinsically characterize separability of the Dirac equation in Kerr-NUT-(A)dS spacetimes in all dimensions. Namely, we explicitly demonstrate that, in such spacetimes, there exists a complete set of first-order mutually commuting operators, one of which is the Dirac operator, that allows for common eigenfunctions which can be found in a separated form and correspond precisely to the general solution of the Dirac equation found by Oota and Yasui [Phys. Lett. BPYLBAJ0370-2693 659, 688 (2008)10.1016/j.physletb.2007.11.057]. Since all the operators in the set can be generated from the principal conformal Killing-Yano tensor, this establishes the (up-to-now) missing link among the existence of hidden symmetry, presence of a complete set of commuting operators, and separability of the Dirac equation in these spacetimes.
On the spring and mass of the Dirac oscillator
NASA Technical Reports Server (NTRS)
Crawford, James P.
1993-01-01
The Dirac oscillator is a relativistic generalization of the quantum harmonic oscillator. In particular, the square of the Hamiltonian for the Dirac oscillator yields the Klein-Gordon equation with a potential of the form: (ar(sub 2) + b(L x S)), where a and b are constants. To obtain the Dirac oscillator, a 'minimal substitution' is made in the Dirac equation, where the ordinary derivative is replaced with a covariant derivative. However, an unusual feature of the covariant derivative in this case is that the potential is a non-trivial element of the Clifford algebra. A theory which naturally gives rise to gage potentials which are non-trivial elements of the Clifford algebra is that based on local automorphism invariance. An exact solution of the automorphism gage field equations which reproduces both the potential term and the mass term of the Dirac oscillator is presented.
The Dirac equation in Schwarzschild black hole coupled to a stationary electromagnetic field
NASA Astrophysics Data System (ADS)
Al-Badawi, A.; Owaidat, M. Q.
2017-08-01
We study the Dirac equation in a spacetime that represents the nonlinear superposition of the Schwarzschild solution to an external, stationary electromagnetic field. The set of equations representing the uncharged Dirac particle in the Newman-Penrose formalism is decoupled into a radial and an angular parts. We obtain exact analytical solutions of the angular equations. We manage to obtain the radial wave equations with effective potentials. Finally, we study the potentials by plotting them as a function of radial distance and examine the effect of the twisting parameter and the frequencies on the potentials.
Role of four-fermion interaction and impurity in the states of two-dimensional semi-Dirac materials.
Wang, Jing
2018-03-28
We study the effects of four-fermion interaction and impurity on the low-energy states of 2D semi-Dirac materials by virtue of the unbiased renormalization group approach. The coupled flow equations that govern the energy-dependent evolutions of all correlated interaction parameters are derived after taking into account one-loop corrections from the interplay between four-fermion interaction and impurity. Whether and how four-fermion interaction and impurity influence the low-energy properties of 2D semi-Dirac materials are discreetly explored and addressed attentively. After carrying out the standard renormalization group analysis, we find that both trivial insulating and nontrivial semimetal states are qualitatively stable against all four kinds of four-fermion interactions. However, while switching on both four-fermion interaction and impurity, certain insulator-semimetal phase transitions and the distance of Dirac nodal points can be respectively induced and modified due to their strong interplay and intimate competition. Moreover, several non-Fermi liquid behaviors that deviate from the conventional Fermi liquids are exhibited at the lowest-energy limit.
Role of four-fermion interaction and impurity in the states of two-dimensional semi-Dirac materials
NASA Astrophysics Data System (ADS)
Wang, Jing
2018-03-01
We study the effects of four-fermion interaction and impurity on the low-energy states of 2D semi-Dirac materials by virtue of the unbiased renormalization group approach. The coupled flow equations that govern the energy-dependent evolutions of all correlated interaction parameters are derived after taking into account one-loop corrections from the interplay between four-fermion interaction and impurity. Whether and how four-fermion interaction and impurity influence the low-energy properties of 2D semi-Dirac materials are discreetly explored and addressed attentively. After carrying out the standard renormalization group analysis, we find that both trivial insulating and nontrivial semimetal states are qualitatively stable against all four kinds of four-fermion interactions. However, while switching on both four-fermion interaction and impurity, certain insulator-semimetal phase transitions and the distance of Dirac nodal points can be respectively induced and modified due to their strong interplay and intimate competition. Moreover, several non-Fermi liquid behaviors that deviate from the conventional Fermi liquids are exhibited at the lowest-energy limit.
NASA Astrophysics Data System (ADS)
Pais, Abraham; Jacob, Maurice; Olive, David I.; Atiyah, Michael F.
2005-09-01
Preface Peter Goddard; Dirac memorial address Stephen Hawking; 1. Paul Dirac: aspects of his life and work Abraham Pais; 2. Antimatter Maurice Jacob; 3. The monopole David Olive; 4. The Dirac equation and geometry Michael F. Atiyah.
NASA Astrophysics Data System (ADS)
Pais, Abraham; Jacob, Maurice; Olive, David I.; Atiyah, Michael F.
1998-02-01
Preface Peter Goddard; Dirac memorial address Stephen Hawking; 1. Paul Dirac: aspects of his life and work Abraham Pais; 2. Antimatter Maurice Jacob; 3. The monopole David Olive; 4. The Dirac equation and geometry Michael F. Atiyah.
Fierz bilinear formulation of the Maxwell–Dirac equations and symmetry reductions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Inglis, Shaun, E-mail: sminglis@utas.edu.au; Jarvis, Peter, E-mail: Peter.Jarvis@utas.edu.au
We study the Maxwell–Dirac equations in a manifestly gauge invariant presentation using only the spinor bilinear scalar and pseudoscalar densities, and the vector and pseudovector currents, together with their quadratic Fierz relations. The internally produced vector potential is expressed via algebraic manipulation of the Dirac equation, as a rational function of the Fierz bilinears and first derivatives (valid on the support of the scalar density), which allows a gauge invariant vector potential to be defined. This leads to a Fierz bilinear formulation of the Maxwell tensor and of the Maxwell–Dirac equations, without any reference to gauge dependent quantities. We showmore » how demanding invariance of tensor fields under the action of a fixed (but arbitrary) Lie subgroup of the Poincaré group leads to symmetry reduced equations. The procedure is illustrated, and the reduced equations worked out explicitly for standard spherical and cylindrical cases, which are coupled third order nonlinear PDEs. Spherical symmetry necessitates the existence of magnetic monopoles, which do not affect the coupled Maxwell–Dirac system due to magnetic terms cancelling. In this paper we do not take up numerical computations. As a demonstration of the power of our approach, we also work out the symmetry reduced equations for two distinct classes of dimension 4 one-parameter families of Poincaré subgroups, one splitting and one non-splitting. The splitting class yields no solutions, whereas for the non-splitting class we find a family of formal exact solutions in closed form. - Highlights: • Maxwell–Dirac equations derived in manifestly gauge invariant tensor form. • Invariant scalar and four vector fields for four Poincaré subgroups derived, including two unusual cases. • Symmetry reduction imposed on Maxwell–Dirac equations under example subgroups. • Magnetic monopole arises for spherically symmetric case, consistent with charge quantization condition.« less
Dirac equation on a curved surface
NASA Astrophysics Data System (ADS)
Brandt, F. T.; Sánchez-Monroy, J. A.
2016-09-01
The dynamics of Dirac particles confined to a curved surface is examined employing the thin-layer method. We perform a perturbative expansion to first-order and split the Dirac field into normal and tangential components to the surface. In contrast to the known behavior of second order equations like Schrödinger, Maxwell and Klein-Gordon, we find that there is no geometric potential for the Dirac equation on a surface. This implies that the non-relativistic limit does not commute with the thin-layer method. Although this problem can be overcome when second-order terms are retained in the perturbative expansion, this would preclude the decoupling of the normal and tangential degrees of freedom. Therefore, we propose to introduce a first-order term which rescues the non-relativistic limit and also clarifies the effect of the intrinsic and extrinsic curvatures on the dynamics of the Dirac particles.
The interaction of Dirac particles with non-abelian gauge fields and gravity - bound states
NASA Astrophysics Data System (ADS)
Finster, Felix; Smoller, Joel; Yau, Shing-Tung
2000-09-01
We consider a spherically symmetric, static system of a Dirac particle interacting with classical gravity and an SU(2) Yang-Mills field. The corresponding Einstein-Dirac-Yang-Mills equations are derived. Using numerical methods, we find different types of soliton-like solutions of these equations and discuss their properties. Some of these solutions are stable even for arbitrarily weak gravitational coupling.
Lorentz-violating modification of Dirac theory based on spin-nondegenerate operators
NASA Astrophysics Data System (ADS)
Reis, J. A. A. S.; Schreck, M.
2017-04-01
The Standard Model extension (SME) parametrizes all possible Lorentz-violating contributions to the Standard Model and general relativity. It can be considered as an effective framework to describe possible quantum-gravity effects for energies much below the Planck energy. In the current paper, the spin-nondegenerate operators of the SME fermion sector are the focus. The propagators, energies, and solutions to the modified Dirac equation are obtained for several families of coefficients including nonminimal ones. The particle energies and spinors are computed at first order in Lorentz violation and, with the optical theorem, they are shown to be consistent with the propagators. The optical theorem is then also used to derive the matrices formed from a spinor and its Dirac conjugate at all orders in Lorentz violation. The results are the first explicit ones derived for the spin-nondegenerate operators. They will prove helpful for future phenomenological calculations in the SME that rely on the footing of quantum field theory.
Heun Polynomials and Exact Solutions for the Massless Dirac Particle in the C-Metric
NASA Astrophysics Data System (ADS)
Kar, Priyasri; Singh, Ritesh K.; Dasgupta, Ananda; Panigrahi, Prasanta K.
2018-03-01
The equation of motion of a massless Dirac particle in the C-metric leads to the general Heun equation (GHE) for the radial and the polar variables. The GHE, under certain parametric conditions, is cast in terms of a new set of su(1, 1) generators involving differential operators of degrees ±1/2 and 0. Additional Heun polynomials are obtained using this new algebraic structure and are used to construct some exact solutions for the radial and the polar parts of the Dirac equation.
Fermi field and Dirac oscillator in a Som-Raychaudhuri space-time
NASA Astrophysics Data System (ADS)
de Montigny, Marc; Zare, Soroush; Hassanabadi, Hassan
2018-05-01
We investigate the relativistic dynamics of a Dirac field in the Som-Raychaudhuri space-time, which is described by a Gödel-type metric and a stationary cylindrical symmetric solution of Einstein field equations for a charged dust distribution in rigid rotation. In order to analyze the effect of various physical parameters of this space-time, we solve the Dirac equation in the Som-Raychaudhuri space-time and obtain the energy levels and eigenfunctions of the Dirac operator by using the Nikiforov-Uvarov method. We also examine the behaviour of the Dirac oscillator in the Som-Raychaudhuri space-time, in particular, the effect of its frequency and the vorticity parameter.
NASA Astrophysics Data System (ADS)
Finster, Felix; Smoller, Joel; Yau, Shing-Tung
We consider for j=1/2, 3/2,... a spherically symmetric, static system of (2j+1) Dirac particles, each having total angular momentum j. The Dirac particles interact via a classical gravitational and electromagnetic field. The Einstein-Dirac-Maxwell equations for this system are derived. It is shown that, under weak regularity conditions on the form of the horizon, the only black hole solutions of the EDM equations are the Reissner-Nordstrom solutions. In other words, the spinors must vanish identically. Applied to the gravitational collapse of a "cloud" of spin-1/2-particles to a black hole, our result indicates that the Dirac particles must eventually disappear inside the event horizon.
Dirac and Klein-Gordon-Fock equations in Grumiller’s spacetime
NASA Astrophysics Data System (ADS)
Al-Badawi, A.; Sakalli, I.
We study the Dirac and the chargeless Klein-Gordon-Fock equations in the geometry of Grumiller’s spacetime that describes a model for gravity of a central object at large distances. The Dirac equation is separated into radial and angular equations by adopting the Newman-Penrose formalism. The angular part of the both wave equations are analytically solved. For the radial equations, we managed to reduce them to one dimensional Schrödinger-type wave equations with their corresponding effective potentials. Fermions’s potentials are numerically analyzed by serving their some characteristic plots. We also compute the quasinormal frequencies of the chargeless and massive scalar waves. With the aid of those quasinormal frequencies, Bekenstein’s area conjecture is tested for the Grumiller black hole. Thus, the effects of the Rindler acceleration on the waves of fermions and scalars are thoroughly analyzed.
A Short Biography of Paul A. M. Dirac and Historical Development of Dirac Delta Function
ERIC Educational Resources Information Center
Debnath, Lokenath
2013-01-01
This paper deals with a short biography of Paul Dirac, his first celebrated work on quantum mechanics, his first formal systematic use of the Dirac delta function and his famous work on quantum electrodynamics and quantum statistics. Included are his first discovery of the Dirac relativistic wave equation, existence of positron and the intrinsic…
Dirac Equation in (1 +1 )-Dimensional Curved Spacetime and the Multiphoton Quantum Rabi Model
NASA Astrophysics Data System (ADS)
Pedernales, J. S.; Beau, M.; Pittman, S. M.; Egusquiza, I. L.; Lamata, L.; Solano, E.; del Campo, A.
2018-04-01
We introduce an exact mapping between the Dirac equation in (1 +1 )-dimensional curved spacetime (DCS) and a multiphoton quantum Rabi model (QRM). A background of a (1 +1 )-dimensional black hole requires a QRM with one- and two-photon terms that can be implemented in a trapped ion for the quantum simulation of Dirac particles in curved spacetime. We illustrate our proposal with a numerical analysis of the free fall of a Dirac particle into a (1 +1 )-dimensional black hole, and find that the Zitterbewegung effect, measurable via the oscillatory trajectory of the Dirac particle, persists in the presence of gravity. From the duality between the squeezing term in the multiphoton QRM and the metric coupling in the DCS, we show that gravity generates squeezing of the Dirac particle wave function.
Fierz bilinear formulation of the Maxwell-Dirac equations and symmetry reductions
NASA Astrophysics Data System (ADS)
Inglis, Shaun; Jarvis, Peter
2014-09-01
We study the Maxwell-Dirac equations in a manifestly gauge invariant presentation using only the spinor bilinear scalar and pseudoscalar densities, and the vector and pseudovector currents, together with their quadratic Fierz relations. The internally produced vector potential is expressed via algebraic manipulation of the Dirac equation, as a rational function of the Fierz bilinears and first derivatives (valid on the support of the scalar density), which allows a gauge invariant vector potential to be defined. This leads to a Fierz bilinear formulation of the Maxwell tensor and of the Maxwell-Dirac equations, without any reference to gauge dependent quantities. We show how demanding invariance of tensor fields under the action of a fixed (but arbitrary) Lie subgroup of the Poincaré group leads to symmetry reduced equations. The procedure is illustrated, and the reduced equations worked out explicitly for standard spherical and cylindrical cases, which are coupled third order nonlinear PDEs. Spherical symmetry necessitates the existence of magnetic monopoles, which do not affect the coupled Maxwell-Dirac system due to magnetic terms cancelling. In this paper we do not take up numerical computations. As a demonstration of the power of our approach, we also work out the symmetry reduced equations for two distinct classes of dimension 4 one-parameter families of Poincaré subgroups, one splitting and one non-splitting. The splitting class yields no solutions, whereas for the non-splitting class we find a family of formal exact solutions in closed form.
D-Dimensional Dirac Equation for Energy-Dependent Pseudoharmonic and Mie-type Potentials via SUSYQM
NASA Astrophysics Data System (ADS)
A. N., Ikot; Hassanabadi, H.; Maghsoodi, E.; Zarrinkamar, S.
2014-04-01
We investigate the approximate solution of the Dirac equation for energy-dependent pseudoharmonic and Mie-type potentials under the pseudospin and spin symmetries using the supersymmetry quantum mechanics. We obtain the bound-state energy equation in an analytical manner and comment on the system behavior via various figures and tables.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu Shuangqing
We continue to investigate the separability of massive field equations for spin-0 and spin-1/2 charged particles in the general, nonextremal, rotating, charged, Chong-Cvetic-Lue-Pope black holes with two independent angular momenta and a nonzero cosmological constant in minimal D=5 gauged supergravity theory. We show that the complex Klein-Gordon equation and the modified Dirac equation with the inclusion of an extra counterterm can be separated by variables into purely radial and purely angular parts in this general Einstein-Maxwell-Chern-Simons background spacetime. A second-order symmetry operator that commutes with the complex Laplacian operator is constructed from the separated solutions and expressed compactly in termsmore » of a rank-2 Staeckel-Killing tensor which admits a simple diagonal form in the chosen pentad one-forms so that it can be understood as the square of a rank-3 totally antisymmetric tensor. A first-order symmetry operator that commutes with the modified Dirac operator is expressed in terms of a rank-3 generalized Killing-Yano tensor and its covariant derivative. The Hodge dual of this generalized Killing-Yano tensor is a generalized principal conformal Killing-Yano tensor of rank-2, which can generate a 'tower' of generalized (conformal) Killing-Yano and Staeckel-Killing tensors that are responsible for the whole hidden symmetries of this general, rotating, charged, Kerr-anti-de Sitter black hole geometry. In addition, the first laws of black hole thermodynamics have been generalized to the case that the cosmological constant can be viewed as a thermodynamical variable.« less
NASA Astrophysics Data System (ADS)
Resita Arum, Sari; A, Suparmi; C, Cari
2016-01-01
The Dirac equation for Eckart potential and trigonometric Manning Rosen potential with exact spin symmetry is obtained using an asymptotic iteration method. The combination of the two potentials is substituted into the Dirac equation, then the variables are separated into radial and angular parts. The Dirac equation is solved by using an asymptotic iteration method that can reduce the second order differential equation into a differential equation with substitution variables of hypergeometry type. The relativistic energy is calculated using Matlab 2011. This study is limited to the case of spin symmetry. With the asymptotic iteration method, the energy spectra of the relativistic equations and equations of orbital quantum number l can be obtained, where both are interrelated between quantum numbers. The energy spectrum is also numerically solved using the Matlab software, where the increase in the radial quantum number nr causes the energy to decrease. The radial part and the angular part of the wave function are defined as hypergeometry functions and visualized with Matlab 2011. The results show that the disturbance of a combination of the Eckart potential and trigonometric Manning Rosen potential can change the radial part and the angular part of the wave function. Project supported by the Higher Education Project (Grant No. 698/UN27.11/PN/2015).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bisio, Alessandro; D’Ariano, Giacomo Mauro; Tosini, Alessandro, E-mail: alessandro.tosini@unipv.it
We present a quantum cellular automaton model in one space-dimension which has the Dirac equation as emergent. This model, a discrete-time and causal unitary evolution of a lattice of quantum systems, is derived from the assumptions of homogeneity, parity and time-reversal invariance. The comparison between the automaton and the Dirac evolutions is rigorously set as a discrimination problem between unitary channels. We derive an exact lower bound for the probability of error in the discrimination as an explicit function of the mass, the number and the momentum of the particles, and the duration of the evolution. Computing this bound withmore » experimentally achievable values, we see that in that regime the QCA model cannot be discriminated from the usual Dirac evolution. Finally, we show that the evolution of one-particle states with narrow-band in momentum can be efficiently simulated by a dispersive differential equation for any regime. This analysis allows for a comparison with the dynamics of wave-packets as it is described by the usual Dirac equation. This paper is a first step in exploring the idea that quantum field theory could be grounded on a more fundamental quantum cellular automaton model and that physical dynamics could emerge from quantum information processing. In this framework, the discretization is a central ingredient and not only a tool for performing non-perturbative calculation as in lattice gauge theory. The automaton model, endowed with a precise notion of local observables and a full probabilistic interpretation, could lead to a coherent unification of a hypothetical discrete Planck scale with the usual Fermi scale of high-energy physics. - Highlights: • The free Dirac field in one space dimension as a quantum cellular automaton. • Large scale limit of the automaton and the emergence of the Dirac equation. • Dispersive differential equation for the evolution of smooth states on the automaton. • Optimal discrimination between the automaton evolution and the Dirac equation.« less
Quantum singularities in (2+1) dimensional matter coupled black hole spacetimes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Unver, O.; Gurtug, O.
2010-10-15
Quantum singularities considered in the 3D Banados-Teitelboim-Zanelli (BTZ) spacetime by Pitelli and Letelier [Phys. Rev. D 77, 124030 (2008)] is extended to charged BTZ and 3D Einstein-Maxwell-dilaton gravity spacetimes. The occurrence of naked singularities in the Einstein-Maxwell extension of the BTZ spacetime both in linear and nonlinear electrodynamics as well as in the Einstein-Maxwell-dilaton gravity spacetimes are analyzed with the quantum test fields obeying the Klein-Gordon and Dirac equations. We show that with the inclusion of the matter fields, the conical geometry near r=0 is removed and restricted classes of solutions are admitted for the Klein-Gordon and Dirac equations. Hence,more » the classical central singularity at r=0 turns out to be quantum mechanically singular for quantum particles obeying the Klein-Gordon equation but nonsingular for fermions obeying the Dirac equation. Explicit calculations reveal that the occurrence of the timelike naked singularities in the considered spacetimes does not violate the cosmic censorship hypothesis as far as the Dirac fields are concerned. The role of horizons that clothes the singularity in the black hole cases is replaced by repulsive potential barrier against the propagation of Dirac fields.« less
Reduced Dirac equation and Lamb shift as off-mass-shell effect in quantum electrodynamics
NASA Astrophysics Data System (ADS)
Ni, Guang-Jiong; Xu, Jian-Jun; Lou, Sen-Yue
2011-02-01
Based on the accurate experimental data of energy-level differences in hydrogen-like atoms, especially the 1S—2S transitions of hydrogen and deuterium, the necessity of introducing a reduced Dirac equation with reduced mass as the substitution of original electron mass is stressed. Based on new cognition about the essence of special relativity, we provide a reasonable argument for the reduced Dirac equation to have two symmetries, the invariance under the (newly defined) space-time inversion and that under the pure space inversion, in a noninertial frame. By using the reduced Dirac equation and within the framework of quantum electrodynamics in covariant form, the Lamb shift can be evaluated (at one-loop level) as the radiative correction on a bound electron staying in an off-mass-shell state—-a new approach eliminating the infrared divergence. Hence the whole calculation, though with limited accuracy, is simplified, getting rid of all divergences and free of ambiguity.
Particlelike solutions of the Einstein-Dirac equations
NASA Astrophysics Data System (ADS)
Finster, Felix; Smoller, Joel; Yau, Shing-Tung
1999-05-01
The coupled Einstein-Dirac equations for a static, spherically symmetric system of two fermions in a singlet spinor state are derived. Using numerical methods, we construct an infinite number of solitonlike solutions of these equations. The stability of the solutions is analyzed. For weak coupling (i.e., small rest mass of the fermions), all the solutions are linearly stable (with respect to spherically symmetric perturbations), whereas for stronger coupling, both stable and unstable solutions exist. For the physical interpretation, we discuss how the energy of the fermions and the (ADM) mass behave as functions of the rest mass of the fermions. Although gravitation is not renormalizable, our solutions of the Einstein-Dirac equations are regular and well behaved even for strong coupling.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suparmi, A., E-mail: soeparmi@staff.uns.ac.id; Cari, C., E-mail: cari@staff.uns.ac.id; Pratiwi, B. N., E-mail: namakubetanurpratiwi@gmail.com
2016-02-08
The analytical solution of D-dimensional Dirac equation for hyperbolic tangent potential is investigated using Nikiforov-Uvarov method. In the case of spin symmetry the D dimensional Dirac equation reduces to the D dimensional Schrodinger equation. The D dimensional relativistic energy spectra are obtained from D dimensional relativistic energy eigen value equation by using Mat Lab software. The corresponding D dimensional radial wave functions are formulated in the form of generalized Jacobi polynomials. The thermodynamically properties of materials are generated from the non-relativistic energy eigen-values in the classical limit. In the non-relativistic limit, the relativistic energy equation reduces to the non-relativistic energy.more » The thermal quantities of the system, partition function and specific heat, are expressed in terms of error function and imaginary error function which are numerically calculated using Mat Lab software.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Tsung-Wei; Chiou, Dah-Wei; Department of Physics and Center for Theoretical Sciences, National Taiwan University, Taipei 106, Taiwan
The classical dynamics for a charged point particle with intrinsic spin is governed by a relativistic Hamiltonian for the orbital motion and by the Thomas-Bargmann-Michel-Telegdi equation for the precession of the spin. It is natural to ask whether the classical Hamiltonian (with both the orbital and spin parts) is consistent with that in the relativistic quantum theory for a spin-1/2 charged particle, which is described by the Dirac equation. In the low-energy limit, up to terms of the seventh order in 1/E{sub g} (E{sub g}=2mc{sup 2} and m is the particle mass), we investigate the Foldy-Wouthuysen (FW) transformation of themore » Dirac Hamiltonian in the presence of homogeneous and static electromagnetic fields and show that it is indeed in agreement with the classical Hamiltonian with the gyromagnetic ratio being equal to 2. Through electromagnetic duality, this result can be generalized for a spin-1/2 dyon, which has both electric and magnetic charges and thus possesses both intrinsic electric and magnetic dipole moments. Furthermore, the relativistic quantum theory for a spin-1/2 dyon with arbitrary values of the gyromagnetic and gyroelectric ratios can be described by the Dirac-Pauli equation, which is the Dirac equation with augmentation for the anomalous electric and anomalous magnetic dipole moments. The FW transformation of the Dirac-Pauli Hamiltonian is shown, up to the seventh-order again, to be in accord with the classical Hamiltonian as well.« less
NASA Astrophysics Data System (ADS)
Iyer, B. R.; Kamran, N.
1991-09-01
The question of the separability of the Dirac equation in metrics with local rotational symmetry is reexamined by adapting the analysis of Kamran and McLenaghan [J. Math. Phys. 25, 1019 (1984)] for the metrics admitting a two-dimensional Abelian local isometry group acting orthogonally transitively. This generalized treatment, which involves the choice of a suitable system of local coordinates and spinor frame, allows one to establish the separability of the Dirac equation within the class of metrics for which the previous analysis of Iyer and Vishveshwara [J. Math. Phys. 26, 1034 (1985)] had left the question of separability open.
On the Poincare noninvariance of a recent alternative to the Dirac equation.
NASA Technical Reports Server (NTRS)
Madan, R. N.
1972-01-01
Explicit construction of the infinitesimal generators of the Poincare group, demonstrating that the algebra of commutators closes only for the case of zero mass. Hence, the so-called Stigma equation proposed by Biedenharn et al. (1971) as an alternative to the Dirac equation (1928) for spin one-half, finite mass particles is not Poincare invariant except when the leptonic mass is zero.
Spin eigen-states of Dirac equation for quasi-two-dimensional electrons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eremko, Alexander, E-mail: eremko@bitp.kiev.ua; Brizhik, Larissa, E-mail: brizhik@bitp.kiev.ua; Loktev, Vadim, E-mail: vloktev@bitp.kiev.ua
Dirac equation for electrons in a potential created by quantum well is solved and the three sets of the eigen-functions are obtained. In each set the wavefunction is at the same time the eigen-function of one of the three spin operators, which do not commute with each other, but do commute with the Dirac Hamiltonian. This means that the eigen-functions of Dirac equation describe three independent spin eigen-states. The energy spectrum of electrons confined by the rectangular quantum well is calculated for each of these spin states at the values of energies relevant for solid state physics. It is shownmore » that the standard Rashba spin splitting takes place in one of such states only. In another one, 2D electron subbands remain spin degenerate, and for the third one the spin splitting is anisotropic for different directions of 2D wave vector.« less
DOE R&D Accomplishments Database
Chamberlain, Owen; Segre, Emilio; Wiegand, Clyde; Ypsilantis, Thomas
1955-10-19
One of the striking features of Dirac's theory of the electron was the appearance of solutions to his equations which required the existence of an antiparticle, later identified as the positron. The extension of the Dirac theory to the proton requires the existence of an antiproton, a particle which bears to the proton the same relationship as the positron to the electron. However, until experimental proof of the existence of the antiproton was obtained, it might be questioned whether a proton is a Dirac particle in the same sense as is the electron. For instance, the anomalous magnetic moment of the proton indicates that the simple Dirac equation does not give a complete description of the proton.
Solution of the relativistic asymptotic equations in electron-ion scattering
NASA Astrophysics Data System (ADS)
Young, I. G.; Norrington, P. H.
1994-12-01
Two asymptotic expansions are suggested for the solution of the coupled equations for the radial channel wavefunctions arising from the treament of electron-ion scattering using the Dirac Hamiltonian. The recurrence relations obtained for the expansions coefficients are given. A method is suggested for calculation of the one-electron Dirac-Coulomb functions used in the second expansion using solutions of the non-relativistic Coulomb equation with complex arguments.
Particle-like solutions of the Einstein-Dirac-Maxwell equations
NASA Astrophysics Data System (ADS)
Finster, Felix; Smoller, Joel; Yau, Shing-Tung
1999-08-01
We consider the coupled Einstein-Dirac-Maxwell equations for a static, spherically symmetric system of two fermions in a singlet spinor state. Soliton-like solutions are constructed numerically. The stability and the properties of the ground state solutions are discussed for different values of the electromagnetic coupling constant. We find solutions even when the electromagnetic coupling is so strong that the total interaction is repulsive in the Newtonian limit. Our solutions are regular and well-behaved; this shows that the combined electromagnetic and gravitational self-interaction of the Dirac particles is finite.
Scattering of Dirac waves off Kerr black holes
NASA Astrophysics Data System (ADS)
Chakrabarti, Sandip K.; Mukhopadhyay, Banibrata
2000-10-01
Chandrasekhar separated the Dirac equation for spinning and massive particles in Kerr geometry into radial and angular parts. Here we solve the complete wave equation and find out how the Dirac wave scatters off Kerr black holes. The eigenfunctions, eigenvalues and reflection and transmission co-efficients are computed. We compare the solutions with several parameters to show how a spinning black hole recognizes the mass and energy of incoming waves. Very close to the horizon the solutions become independent of the particle parameters, indicating the universality of the behaviour.
Manipulating type-I and type-II Dirac polaritons in cavity-embedded honeycomb metasurfaces.
Mann, Charlie-Ray; Sturges, Thomas J; Weick, Guillaume; Barnes, William L; Mariani, Eros
2018-06-06
Pseudorelativistic Dirac quasiparticles have emerged in a plethora of artificial graphene systems that mimic the underlying honeycomb symmetry of graphene. However, it is notoriously difficult to manipulate their properties without modifying the lattice structure. Here we theoretically investigate polaritons supported by honeycomb metasurfaces and, despite the trivial nature of the resonant elements, we unveil rich Dirac physics stemming from a non-trivial winding in the light-matter interaction. The metasurfaces simultaneously exhibit two distinct species of massless Dirac polaritons, namely type-I and type-II. By modifying only the photonic environment via an enclosing cavity, one can manipulate the location of the type-II Dirac points, leading to qualitatively different polariton phases. This enables one to alter the fundamental properties of the emergent Dirac polaritons while preserving the lattice structure-a unique scenario which has no analog in real or artificial graphene systems. Exploiting the photonic environment will thus give rise to unexplored Dirac physics at the subwavelength scale.
NASA Astrophysics Data System (ADS)
Akpan, N. Ikot; Zarrinkamar, S.; Eno, J. Ibanga; Maghsoodi, E.; Hassanabadi, H.
2014-01-01
We investigate the approximate solution of the Dirac equation for a combination of Möbius square and Mie type potentials under the pseudospin symmetry limit by using supersymmetry quantum mechanics. We obtain the bound-state energy equation and the corresponding spinor wave functions in an approximate analytical manner. We comment on the system via various useful figures and tables.
Magnonic analog of relativistic Zitterbewegung in an antiferromagnetic spin chain
NASA Astrophysics Data System (ADS)
Wang, Weiwei; Gu, Chenjie; Zhou, Yan; Fangohr, Hans
2017-07-01
We theoretically investigate the spin-wave (magnon) excitations in a classical antiferromagnetic spin chain with easy-axis anisotropy. We obtain a Dirac-like equation by linearizing the Landau-Lifshitz-Gilbert equation in this antiferromagnetic system, in contrast to the ferromagnetic system in which a Schrödinger-type equation is derived. The Hamiltonian operator in the Dirac-like equation is a pseudo-Hermitian. We compute and demonstrate relativistic Zitterbewegung (trembling motion) in the antiferromagnetic spin chain by measuring the expectation values of the wave-packet position.
Spin-curvature interaction from curved Dirac equation: Application to single-wall carbon nanotubes
NASA Astrophysics Data System (ADS)
Zhang, Kai; Zhang, Erhu; Chen, Huawei; Zhang, Shengli
2017-06-01
The spin-curvature interaction (SCI) and its effects are investigated based on curved Dirac equation. Through the low-energy approximation of curved Dirac equation, the Hamiltonian of SCI is obtained and depends on the geometry and spinor structure of manifold. We find that the curvature can be considered as field strength and couples with spin through Zeeman-like term. Then, we use dimension reduction to derive the local Hamiltonian of SCI for cylinder surface, which implies that the effective Hamiltonian of single-wall carbon nanotubes results from the geometry and spinor structure of lattice and includes two types of interactions: one does not break any symmetries of the lattice and only shifts the Dirac points for all nanotubes, while the other one does and opens the gaps except for armchair nanotubes. At last, analytical expressions of the band gaps and the shifts of their positions induced by curvature are given for metallic nanotubes. These results agree well with experiments and can be verified experimentally.
Galerkin method for unsplit 3-D Dirac equation using atomically/kinetically balanced B-spline basis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fillion-Gourdeau, F., E-mail: filliong@CRM.UMontreal.ca; Centre de Recherches Mathématiques, Université de Montréal, Montréal, H3T 1J4; Lorin, E., E-mail: elorin@math.carleton.ca
2016-02-15
A Galerkin method is developed to solve the time-dependent Dirac equation in prolate spheroidal coordinates for an electron–molecular two-center system. The initial state is evaluated from a variational principle using a kinetic/atomic balanced basis, which allows for an efficient and accurate determination of the Dirac spectrum and eigenfunctions. B-spline basis functions are used to obtain high accuracy. This numerical method is used to compute the energy spectrum of the two-center problem and then the evolution of eigenstate wavefunctions in an external electromagnetic field.
Photoconductivity in Dirac materials
NASA Astrophysics Data System (ADS)
Shao, J. M.; Yang, G. W.
2015-11-01
Two-dimensional (2D) Dirac materials including graphene and the surface of a three-dimensional (3D) topological insulator, and 3D Dirac materials including 3D Dirac semimetal and Weyl semimetal have attracted great attention due to their linear Dirac nodes and exotic properties. Here, we use the Fermi's golden rule and Boltzmann equation within the relaxation time approximation to study and compare the photoconductivity of Dirac materials under different far- or mid-infrared irradiation. Theoretical results show that the photoconductivity exhibits the anisotropic property under the polarized irradiation, but the anisotropic strength is different between 2D and 3D Dirac materials. The photoconductivity depends strongly on the relaxation time for different scattering mechanism, just like the dark conductivity.
Hidden symmetry in the presence of fluxes
NASA Astrophysics Data System (ADS)
Kubizňák, David; Warnick, Claude M.; Krtouš, Pavel
2011-03-01
We derive the most general first-order symmetry operator for the Dirac equation coupled to arbitrary fluxes. Such an operator is given in terms of an inhomogeneous form ω which is a solution to a coupled system of first-order partial differential equations which we call the generalized conformal Killing-Yano system. Except trivial fluxes, solutions of this system are subject to additional constraints. We discuss various special cases of physical interest. In particular, we demonstrate that in the case of a Dirac operator coupled to the skew symmetric torsion and U(1) field, the system of generalized conformal Killing-Yano equations decouples into the homogeneous conformal Killing-Yano equations with torsion introduced in D. Kubiznak et al. (2009) [8] and the symmetry operator is essentially the one derived in T. Houri et al. (2010) [9]. We also discuss the Dirac field coupled to a scalar potential and in the presence of 5-form and 7-form fluxes.
Notes on oscillator-like interactions of various spin relativistic particles
NASA Technical Reports Server (NTRS)
Dvoeglazov, Valeri V.; Delsolmesa, Antonio
1995-01-01
The equations for various spin particles with oscillator-like interactions are discussed in this talk. Topics discussed include: (1) comment on 'The Klein-Gordon Oscillator'; (2) the Dirac oscillator in quaternion form; (3) the Dirac-Dowker oscillator; (4) the Weinberg oscillator; and (5) note on the two-body Dirac oscillator.
Final Report: Subcontract B623868 Algebraic Multigrid solvers for coupled PDE systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brannick, J.
The Pennsylvania State University (“Subcontractor”) continued to work on the design of algebraic multigrid solvers for coupled systems of partial differential equations (PDEs) arising in numerical modeling of various applications, with a main focus on solving the Dirac equation arising in Quantum Chromodynamics (QCD). The goal of the proposed work was to develop combined geometric and algebraic multilevel solvers that are robust and lend themselves to efficient implementation on massively parallel heterogeneous computers for these QCD systems. The research in these areas built on previous works, focusing on the following three topics: (1) the development of parallel full-multigrid (PFMG) andmore » non-Galerkin coarsening techniques in this frame work for solving the Wilson Dirac system; (2) the use of these same Wilson MG solvers for preconditioning the Overlap and Domain Wall formulations of the Dirac equation; and (3) the design and analysis of algebraic coarsening algorithms for coupled PDE systems including Stokes equation, Maxwell equation and linear elasticity.« less
Density functional theory for d- and f-electron materials and compounds
Mattson, Ann E.; Wills, John M.
2016-02-12
Here, the fundamental requirements for a computationally tractable Density Functional Theory-based method for relativistic f- and (nonrelativistic) d-electron materials and compounds are presented. The need for basing the Kohn–Sham equations on the Dirac equation is discussed. The full Dirac scheme needs exchange-correlation functionals in terms of four-currents, but ordinary functionals, using charge density and spin-magnetization, can be used in an approximate Dirac treatment. The construction of a functional that includes the additional confinement physics needed for these materials is illustrated using the subsystem-functional scheme. If future studies show that a full Dirac, four-current based, exchange-correlation functional is needed, the subsystemmore » functional scheme is one of the few schemes that can still be used for constructing functional approximations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Surdoval, Wayne A.; Berry, David A.; Shultz, Travis R.
A set of equations are presented for calculating atomic principal spectral lines and fine-structure energy splits for single and multi-electron atoms. Calculated results are presented and compared to the National Institute of Science and Technology database demonstrating very good accuracy. The equations do not require fitted parameters. The only experimental parameter required is the Ionization energy for the electron of interest. The equations have comparable accuracy and broader applicability than the single electron Dirac equation. Three Appendices discuss the origin of the new equations and present calculated results. New insights into the special relativistic nature of the Dirac equation andmore » its relationship to the new equations are presented.« less
NASA Astrophysics Data System (ADS)
Yahya, W. A.; Falaye, B. J.; Oluwadare, O. J.; Oyewumi, K. J.
2013-08-01
By using the Nikiforov-Uvarov method, we give the approximate analytical solutions of the Dirac equation with the shifted Deng-Fan potential including the Yukawa-like tensor interaction under the spin and pseudospin symmetry conditions. After using an improved approximation scheme, we solved the resulting schr\\"{o}dinger-like equation analytically. Numerical results of the energy eigenvalues are also obtained, as expected, the tensor interaction removes degeneracies between spin and pseudospin doublets.
Clifford Algebra Implying Three Fermion Generations Revisited
NASA Astrophysics Data System (ADS)
Krolikowski, Wojciech
2002-09-01
The author's idea of algebraic compositeness of fundamental particles, allowing to understand the existence in Nature of three fermion generations, is revisited. It is based on two postulates. Primo, for all fundamental particles of matter the Dirac square-root procedure √ {p2} → {Γ }(N)p works, leading to a sequence N = 1,2,3, ... of Dirac-type equations, where four Dirac-type matrices {Γ }(N)μ are embedded into a Clifford algebra via a Jacobi definition introducing four ``centre-of-mass'' and (N-1)× four ``relative'' Dirac-type matrices. These define one ``centre-of-mass'' and (N-1) ``relative'' Dirac bispinor indices. Secundo, the ``centre-of-mass'' Dirac bispinor index is coupled to the Standard Model gauge fields, while (N-1) ``relative'' Dirac bispinor indices are all free indistinguishable physical objects obeying Fermi statistics along with the Pauli principle which requires the full antisymmetry with respect to ``relative'' Dirac indices. This allows only for three Dirac-type equations with N = 1,3,5 in the case of N odd, and two with N = 2,4 in the case of N even. The first of these results implies unavoidably the existence of three and only three generations of fundamental fermions, namely leptons and quarks, as labelled by the Standard Model signature. At the end, a comment is added on the possible shape of Dirac 3x3 mass matrices for four sorts of spin-1/2 fundamental fermions appearing in three generations. For charged leptons a prediction is mτ = 1776.80 MeV, when the input of experimental me and mμ is used.
Field equations from Killing spinors
NASA Astrophysics Data System (ADS)
Açık, Özgür
2018-02-01
From the Killing spinor equation and the equations satisfied by their bilinears, we deduce some well-known bosonic and fermionic field equations of mathematical physics. Aside from the trivially satisfied Dirac equation, these relativistic wave equations in curved spacetimes, respectively, are Klein-Gordon, Maxwell, Proca, Duffin-Kemmer-Petiau, Kähler, twistor, and Rarita-Schwinger equations. This result shows that, besides being special kinds of Dirac fermions, Killing fermions can be regarded as physically fundamental. For the Maxwell case, the problem of motion is analysed in a reverse manner with respect to the studies of Einstein-Groemer-Infeld-Hoffmann and Jean Marie Souriau. In the analysis of the gravitino field, a generalised 3-ψ rule is found which is termed the vanishing trace constraint.
Effective distributions of quasiparticles for thermal photons
NASA Astrophysics Data System (ADS)
Monnai, Akihiko
2015-07-01
It has been found in recent heavy-ion experiments that the second and the third flow harmonics of direct photons are larger than most theoretical predictions. In this study, I construct effective parton phase-space distributions with in-medium interaction using quasiparticle models so that they are consistent with a lattice QCD equation of state. Then I investigate their effects on thermal photons using a hydrodynamic model. Numerical results indicate that elliptic flow and transverse momentum spectra are modified by the corrections to Fermi-Dirac and Bose-Einstein distributions.
NASA Astrophysics Data System (ADS)
Libarir, K.; Zerarka, A.
2018-05-01
Exact eigenspectra and eigenfunctions of the Dirac quantum equation are established using the semi-inverse variational method. This method improves of a considerable manner the efficiency and accuracy of results compared with the other usual methods much argued in the literature. Some applications for different state configurations are proposed to concretize the method.
Geometrization of the Dirac theory of the electron
NASA Technical Reports Server (NTRS)
Fock, V.
1977-01-01
Using the concept of parallel displacement of a half vector, the Dirac equations are generally written in invariant form. The energy tensor is formed and both the macroscopic and quantum mechanic equations of motion are set up. The former have the usual form: divergence of the energy tensor equals the Lorentz force and the latter are essentially identical with those of the geodesic line.
First Experimental Realization of the Dirac Oscillator
NASA Astrophysics Data System (ADS)
Franco-Villafañe, J. A.; Sadurní, E.; Barkhofen, S.; Kuhl, U.; Mortessagne, F.; Seligman, T. H.
2013-10-01
We present the first experimental microwave realization of the one-dimensional Dirac oscillator, a paradigm in exactly solvable relativistic systems. The experiment relies on a relation of the Dirac oscillator to a corresponding tight-binding system. This tight-binding system is implemented as a microwave system by a chain of coupled dielectric disks, where the coupling is evanescent and can be adjusted appropriately. The resonances of the finite microwave system yield the spectrum of the one-dimensional Dirac oscillator with and without a mass term. The flexibility of the experimental setup allows the implementation of other one-dimensional Dirac-type equations.
Counter-diabatic driving for Dirac dynamics
NASA Astrophysics Data System (ADS)
Fan, Qi-Zhen; Cheng, Xiao-Hang; Chen, Xi
2018-03-01
In this paper, we investigate the fast quantum control of Dirac equation dynamics by counter-diabatic driving, sharing the concept of shortcut to adiabaticity. We systematically calculate the counter-diabatic terms in different Dirac systems, like graphene and trapped ions. Specially, the fast and robust population inversion processes are achieved in Dirac system, taking into account the quantum simulation with trapped ions. In addition, the population transfer between two bands can be suppressed by counter-diabatic driving in graphene system, which might have potential applications in opt-electric devices.
NASA Astrophysics Data System (ADS)
Wang, Hai-Xiao; Chen, Yige; Hang, Zhi Hong; Kee, Hae-Young; Jiang, Jian-Hua
2017-09-01
The Dirac equation for relativistic electron waves is the parent model for Weyl and Majorana fermions as well as topological insulators. Simulation of Dirac physics in three-dimensional photonic crystals, though fundamentally important for topological phenomena at optical frequencies, encounters the challenge of synthesis of both Kramers double degeneracy and parity inversion. Here we show how type-II Dirac points—exotic Dirac relativistic waves yet to be discovered—are robustly realized through the nonsymmorphic screw symmetry. The emergent type-II Dirac points carry nontrivial topology and are the mother states of type-II Weyl points. The proposed all-dielectric architecture enables robust cavity states at photonic-crystal—air interfaces and anomalous refraction, with very low energy dissipation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Toyama, F.M.; Nogami, Y.; Zhao, Z.
1993-02-01
For the Dirac equation in one space dimension with a potential of the Lorentz scalar type, we present a complete solution for the problem of constructing a transparent potential. This is a relativistic extension of the Kay-Moses method which was developed for the nonrelativistic Schroedinger equation. There is an infinite family of transparent potentials. The potentials are all related to solutions of a class of coupled, nonlinear Dirac equations. In addition, it is argued that an admixture of a Lorentz vector component in the potential impairs perfect transparency.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cari, C., E-mail: cari@staff.uns.ac.id; Suparmi, A., E-mail: soeparmi@staff.uns.ac.id; Yunianto, M., E-mail: muhtaryunianto@staff.uns.ac.id
2016-02-08
The analytical solution of Ddimensional Dirac equation for Coulombic potential is investigated using Nikiforov-Uvarov method. The D dimensional relativistic energy spectra are obtained from relativistic energy eigenvalue equation by using Mat Lab software.The corresponding D dimensional radial wave functions are formulated in the form of generalized Jacobi and Laguerre Polynomials. In the non-relativistic limit, the relativistic energy equation reduces to the non-relativistic energy which will be applied to determine some thermodynamical properties of the system. The thermodynamical properties of the system are expressed in terms of error function and imaginary error function.
Spin Nernst effect and intrinsic magnetization in two-dimensional Dirac materials
NASA Astrophysics Data System (ADS)
Gusynin, V. P.; Sharapov, S. G.; Varlamov, A. A.
2015-05-01
We begin with a brief description of the role of the Nernst-Ettingshausen effect in the studies of the high-temperature superconductors and Dirac materials such as graphene. The theoretical analysis of the NE effect is involved because the standard Kubo formalism has to be modified by the presence of magnetization currents in order to satisfy the third law of thermodynamics. A new generation of the low-buckled Dirac materials is expected to have a strong spin Nernst effect that represents the spintronics analog of the NE effect. These Dirac materials can be considered as made of two independent electron subsystems of the two-component gapped Dirac fermions. For each subsystem the gap breaks a time-reversal symmetry and thus plays a role of an effective magnetic field. We explicitly demonstrate how the correct thermoelectric coefficient emerges both by the explicit calculation of the magnetization and by a formal cancelation in the modified Kubo formula. We conclude by showing that the nontrivial dependences of the spin Nersnt signal on the carrier concentration and electric field applied are expected in silicene and other low-buckled Dirac materials.
NASA Astrophysics Data System (ADS)
Pötz, Walter
2017-11-01
A single-cone finite-difference lattice scheme is developed for the (2+1)-dimensional Dirac equation in presence of general electromagnetic textures. The latter is represented on a (2+1)-dimensional staggered grid using a second-order-accurate finite difference scheme. A Peierls-Schwinger substitution to the wave function is used to introduce the electromagnetic (vector) potential into the Dirac equation. Thereby, the single-cone energy dispersion and gauge invariance are carried over from the continuum to the lattice formulation. Conservation laws and stability properties of the formal scheme are identified by comparison with the scheme for zero vector potential. The placement of magnetization terms is inferred from consistency with the one for the vector potential. Based on this formal scheme, several numerical schemes are proposed and tested. Elementary examples for single-fermion transport in the presence of in-plane magnetization are given, using material parameters typical for topological insulator surfaces.
On scattering from the one-dimensional multiple Dirac delta potentials
NASA Astrophysics Data System (ADS)
Erman, Fatih; Gadella, Manuel; Uncu, Haydar
2018-05-01
In this paper, we propose a pedagogical presentation of the Lippmann–Schwinger equation as a powerful tool, so as to obtain important scattering information. In particular, we consider a one-dimensional system with a Schrödinger-type free Hamiltonian decorated with a sequence of N attractive Dirac delta interactions. We first write the Lippmann–Schwinger equation for the system and then solve it explicitly in terms of an N × N matrix. Then, we discuss the reflection and the transmission coefficients for an arbitrary number of centres and study the threshold anomaly for the N = 2 and N = 4 cases. We also study further features like the quantum metastable states and resonances, including their corresponding Gamow functions and virtual or antibound states. The use of the Lippmann–Schwinger equation simplifies our analysis enormously and gives exact results for an arbitrary number of Dirac delta potentials.
NASA Astrophysics Data System (ADS)
Chicurel-Uziel, Enrique
2007-08-01
A pair of closed parametric equations are proposed to represent the Heaviside unit step function. Differentiating the step equations results in two additional parametric equations, that are also hereby proposed, to represent the Dirac delta function. These equations are expressed in algebraic terms and are handled by means of elementary algebra and elementary calculus. The proposed delta representation complies exactly with the values of the definition. It complies also with the sifting property and the requisite unit area and its Laplace transform coincides with the most general form given in the tables. Furthermore, it leads to a very simple method of solution of impulsive vibrating systems either linear or belonging to a large class of nonlinear problems. Two example solutions are presented.
Dirac equation in 2-dimensional curved spacetime, particle creation, and coupled waveguide arrays
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koke, Christian, E-mail: christian.koke@stud.uni-heidelberg.de; Noh, Changsuk, E-mail: changsuk@kias.re.kr; Angelakis, Dimitris G., E-mail: dimitris.angelakis@gmail.com
When quantum fields are coupled to gravitational fields, spontaneous particle creation may occur similarly to when they are coupled to external electromagnetic fields. A gravitational field can be incorporated as a background spacetime if the back-action of matter on the field can be neglected, resulting in modifications of the Dirac or Klein–Gordon equations for elementary fermions and bosons respectively. The semi-classical description predicts particle creation in many situations, including the expanding-universe scenario, near the event horizon of a black hole (the Hawking effect), and an accelerating observer in flat spacetime (the Unruh effect). In this work, we give a pedagogicalmore » introduction to the Dirac equation in a general 2D spacetime and show examples of spinor wave packet dynamics in flat and curved background spacetimes. In particular, we cover the phenomenon of particle creation in a time-dependent metric. Photonic analogs of these effects are then proposed, where classical light propagating in an array of coupled waveguides provides a visualisation of the Dirac spinor propagating in a curved 2D spacetime background. The extent to which such a single-particle description can be said to mimic particle creation is discussed.« less
Dirac relaxation of the Israel junction conditions: Unified Randall-Sundrum brane theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davidson, Aharon; Gurwich, Ilya
2006-08-15
Following Dirac's brane variation prescription, the brane must not be deformed during the variation process, or else the linearity of the variation may be lost. Alternatively, the variation of the brane is done, in a special Dirac frame, by varying the bulk coordinate system itself. Imposing appropriate Dirac-style boundary conditions on the constrained 'sandwiched' gravitational action, we show how Israel junction conditions get relaxed, but remarkably, all solutions of the original Israel equations are still respected. The Israel junction conditions are traded, in the Z{sub 2}-symmetric case, for a generalized Regge-Teitelboim type equation (plus a local conservation law), and inmore » the generic Z{sub 2}-asymmetric case, for a pair of coupled Regge-Teitelboim equations. The Randall-Sundrum model and its derivatives, such as the Dvali-Gabadadze-Porrati and the Collins-Holdom models, get generalized accordingly. Furthermore, Randall-Sundrum and Regge-Teitelboim brane theories appear now to be two different faces of the one and the same unified brane theory. Within the framework of unified brane cosmology, we examine the dark matter/energy interpretation of the effective energy/momentum deviations from general relativity.« less
Adjunctation and Scalar Product in the Dirac Equation - II
NASA Astrophysics Data System (ADS)
Dima, M.
2017-02-01
Part-I Dima (Int. J. Theor. Phys. 55, 949, 2016) of this paper showed in a representation independent way that γ 0 is the Bergmann-Pauli adjunctator of the Dirac { γ μ } set. The distiction was made between similarity (MATH) transformations and PHYS transformations - related to the (covariant) transformations of physical quantities. Covariance is due solely to the gauging of scalar products between systems of reference and not to the particular action of γ 0 on Lorentz boosts - a matter that in the past led inadvertently to the definition of a second scalar product (the Dirac-bar product). Part-II shows how two scalar products lead to contradictions and eliminates this un-natural duality in favour of the canonical scalar product and its gauge between systems of reference. What constitutes a proper observable is analysed and for instance spin is revealed not to embody one (except as projection on the boost direction - helicity). A thorough investigation into finding a proper-observable current for the theory shows that the Dirac equation does not possess one in operator form. A number of problems with the Dirac current operator are revealed - its Klein-Gordon counterpart being significantly more physical. The alternative suggested is finding a current for the Dirac theory in scalar form j^{μ } = < ρ rangle _{_{ψ }}v^{μ }_{ψ }.
Numeric Solutions of Dirac-Gursey Spinor Field Equation Under External Gaussian White Noise
NASA Astrophysics Data System (ADS)
Aydogmus, Fatma
2016-06-01
In this paper, we consider the Dirac-Gursey spinor field equation that has particle-like solutions derived classical field equations so-called instantons, formed by using Heisenberg ansatz, under the effect of an additional Gaussian white noise term. Our purpose is to understand how the behavior of spinor-type excited instantons in four dimensions can be affected by noise. Thus, we simulate the phase portraits and Poincaré sections of the obtained system numerically both with and without noise. Recurrence plots are also given for more detailed information regarding the system.
Analytical solutions of the Dirac equation under Hellmann–Frost–Musulin potential
DOE Office of Scientific and Technical Information (OSTI.GOV)
Onate, C.A., E-mail: oaclems14@physicist.net; Onyeaju, M.C.; Ikot, A.N.
2016-12-15
The approximate analytical solutions of the Dirac equation with Hellmann–Frost–Musulin potential have been studied by using the generalized parametric Nikiforov–Uvarov (NU) method for arbitrary spin–orbit quantum number k under the spin and pseudospin symmetries. The Hellmann–Frost–Musulin potential is a superposition potential that consists of Yukawa potential, Coulomb potential, and Frost–Musulin potential. As a particular case, we found the energy levels of the non-relativistic limit of the spin symmetry. The energy equation of Yukawa potential, Coulomb potential, Hellmann potential and Frost–Musulin potential are obtained. Energy values are generated for some diatomic molecules.
NASA Astrophysics Data System (ADS)
Finster, F.; Kamran, N.; Smoller, J.; Yau, S.-T.
The Cauchy problem is considered for the massive Dirac equation in the non-extreme Kerr-Newman geometry, for smooth initial data with compact support outside the event horizon and bounded angular momentum. We prove that the Dirac wave function decays in L∞ {loc} at least at the rate t-5/6. For generic initial data, this rate of decay is sharp. We derive a formula for the probability p that the Dirac particle escapes to infinity. For various conditions on the initial data, we show that p = 0, 1 or 0 < p < 1. The proofs are based on a refined analysis of the Dirac propagator constructed in [4].
Classical electromagnetic radiation of the Dirac electron
NASA Technical Reports Server (NTRS)
Lanyi, G.
1973-01-01
A wave-function-dependent four-vector potential is added to the Dirac equation in order to achieve conservation of energy and momentum for a Dirac electron and its emitted electromagnetic field. The resultant equation contains solutions which describe transitions between different energy states of the electron. As a consequence it is possible to follow the space-time evolution of such a process. This evolution is shown in the case of the spontaneous emission of an electromagnetic field by an electron bound in a hydrogen-like atom. The intensity of the radiation and the spectral distribution are calculated for transitions between two eigenstates. The theory gives a self-consistent deterministic description of some simple radiation processes without using quantum electrodynamics or the correspondence principle.
Dynamical centrosymmetry breaking — A novel mechanism for second harmonic generation in graphene
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carvalho, David N.; Marini, Andrea; Biancalana, Fabio, E-mail: f.biancalana@hw.ac.uk
2017-03-15
We discover an unusual phenomenon that occurs when a graphene monolayer is illuminated by a short and intense pulse at normal incidence. Due to the pulse-induced oscillations of the Dirac cones, a dynamical breaking of the layer’s centrosymmetry takes place, leading to the generation of second harmonic waves. We prove that this result can only be found by using the full Dirac equation and show that the widely used semiconductor Bloch equations fail to reproduce this and some other important physics of graphene. Our results open new windows in the understanding of nonlinear light-matter interactions in a wide variety ofmore » new 2D materials with a gapped or ungapped Dirac-like dispersion.« less
NASA Astrophysics Data System (ADS)
Salam, Abdus; Wigner, E. P.
2010-03-01
Preface; List of contributors; Bibliography of P. A. M. Dirac; 1. Dirac in Cambridge R. J. Eden and J. C. Polkinghorne; 2. Travels with Dirac in the Rockies J. H. Van Vleck; 3. 'The golden age of theoretical physics': P. A. M. Dirac's scientific work from 1924 to 1933 Jagdish Mehra; 4. Foundation of quantum field theory Res Jost; 5. The early history of the theory of electron: 1897-1947 A. Pais; 6. The Dirac equation A. S. Wightman; 7. Fermi-Dirac statistics Rudolph Peierls; 8. Indefinite metric in state space W. Heisenberg; 9. On bras and kets J. M. Jauch; 10. The Poisson bracket C. Lanczos; 11. La 'fonction' et les noyaux L. Schwartz; 12. On the Dirac magnetic poles Edoardo Amadli and Nicola Cabibbo; 13. The fundamental constants and their time variation Freeman J. Dyson; 14. On the time-energy uncertainty relation Eugene P. Wigner; 15. The path-integral quantisation of gravity Abdus Salam and J. Strathdee; Index; Plates.
NASA Astrophysics Data System (ADS)
Dvoeglazov, V. V.
2017-05-01
We present three explicit examples of generalizations in relativistic quantum mechanics. First of all, we discuss the generalized spin-1/2 equations for neutrinos. They have been obtained by means of the Gersten-Sakurai method for derivations of arbitrary-spin relativistic equations. Possible physical consequences are discussed. Next, it is easy to check that both Dirac algebraic equation {Det}(\\hat{p}-m)=0 and {Det}(\\hat{p}+m)=0 for u- and v- 4-spinors have solutions with {p}0=+/- {E}p=+/- \\sqrt{{p}2+{m}2}. The same is true for higher-spin equations. Meanwhile, every book considers the equality p0 = Ep for both u- and v- spinors of the (1/2, 0) ⊕ (0, 1/2)) representation only, thus applying the Dirac-Feynman-Stueckelberg procedure for elimination of the negative-energy solutions. The recent Ziino works (and, independently, the articles of several others) show that the Fock space can be doubled. We re-consider this possibility on the quantum field level for both S = 1/2 and higher spin particles. The third example is: we postulate the non-commutativity of 4-momenta, and we derive the mass splitting in the Dirac equation. Some applications are discussed.
NASA Astrophysics Data System (ADS)
Farrell, Patricio; Koprucki, Thomas; Fuhrmann, Jürgen
2017-10-01
We compare three thermodynamically consistent numerical fluxes known in the literature, appearing in a Voronoï finite volume discretization of the van Roosbroeck system with general charge carrier statistics. Our discussion includes an extension of the Scharfetter-Gummel scheme to non-Boltzmann (e.g. Fermi-Dirac) statistics. It is based on the analytical solution of a two-point boundary value problem obtained by projecting the continuous differential equation onto the interval between neighboring collocation points. Hence, it serves as a reference flux. The exact solution of the boundary value problem can be approximated by computationally cheaper fluxes which modify certain physical quantities. One alternative scheme averages the nonlinear diffusion (caused by the non-Boltzmann nature of the problem), another one modifies the effective density of states. To study the differences between these three schemes, we analyze the Taylor expansions, derive an error estimate, visualize the flux error and show how the schemes perform for a carefully designed p-i-n benchmark simulation. We present strong evidence that the flux discretization based on averaging the nonlinear diffusion has an edge over the scheme based on modifying the effective density of states.
Exact solutions for coupled Einstein, Dirac, Maxwell, and zero-mass scalar fields
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patra, A.C.; Ray, D.
1987-12-01
Coupled equations for Einstein, Maxwell, Dirac, and zero-mass scalar fields studied by Krori, Bhattacharya, and Nandi are integrated for plane-symmetric time-independent case. It is shown that solutions do not exist for the plane-symmetric time-dependent case.
Hamiltonian structure of Dubrovin's equation of associativity in 2-d topological field theory
NASA Astrophysics Data System (ADS)
Galvão, C. A. P.; Nutku, Y.
1996-12-01
A third order Monge-Ampère type equation of associativity that Dubrovin has obtained in 2-d topological field theory is formulated in terms of a variational principle subject to second class constraints. Using Dirac's theory of constraints this degenerate Lagrangian system is cast into Hamiltonian form and the Hamiltonian operator is obtained from the Dirac bracket. There is a new type of Kac-Moody algebra that corresponds to this Hamiltonian operator. In particular, it is not a W-algebra.
Nonstandard Dirac equations for nonstandard spinors
NASA Astrophysics Data System (ADS)
Nikitin, A. G.
2014-11-01
Generalized Dirac equation with operator mass term is presented. Its solutions are nonstandard spinors (NSS) which, like eigenspinoren des Ladungskonjugationsoperators (ELKO), are eigenvectors of the charge conjugation and dual-helicity operators. It is demonstrated that in spite of their noncovariant nature the NSS can serve as a carrier space of a representation of Poincaré group. However, the corresponding boost generators are not manifestly covariant and generate nonlocal momentum dependent transformations, which are presented explicitly. These results can present a new look on group-theoretical grounds of ELKO theories.
Quantum transport through 3D Dirac materials
NASA Astrophysics Data System (ADS)
Salehi, M.; Jafari, S. A.
2015-08-01
Bismuth and its alloys provide a paradigm to realize three dimensional materials whose low-energy effective theory is given by Dirac equation in 3+1 dimensions. We study the quantum transport properties of three dimensional Dirac materials within the framework of Landauer-Büttiker formalism. Charge carriers in normal metal satisfying the Schrödinger equation, can be split into four-component with appropriate matching conditions at the boundary with the three dimensional Dirac material (3DDM). We calculate the conductance and the Fano factor of an interface separating 3DDM from a normal metal, as well as the conductance through a slab of 3DDM. Under certain circumstances the 3DDM appears transparent to electrons hitting the 3DDM. We find that electrons hitting the metal-3DDM interface from metallic side can enter 3DDM in a reversed spin state as soon as their angle of incidence deviates from the direction perpendicular to interface. However the presence of a second interface completely cancels this effect.
Spinor matter fields in SL(2,C) gauge theories of gravity: Lagrangian and Hamiltonian approaches
NASA Astrophysics Data System (ADS)
Antonowicz, Marek; Szczyrba, Wiktor
1985-06-01
We consider the SL(2,C)-covariant Lagrangian formulation of gravitational theories with the presence of spinor matter fields. The invariance properties of such theories give rise to the conservation laws (the contracted Bianchi identities) having in the presence of matter fields a more complicated form than those known in the literature previously. A general SL(2,C) gauge theory of gravity is cast into an SL(2,C)-covariant Hamiltonian formulation. Breaking the SL(2,C) symmetry of the system to the SU(2) symmetry, by introducing a spacelike slicing of spacetime, we get an SU(2)-covariant Hamiltonian picture. The qualitative analysis of SL(2,C) gauge theories of gravity in the SU(2)-covariant formulation enables us to define the dynamical symplectic variables and the gauge variables of the theory under consideration as well as to divide the set of field equations into the dynamical equations and the constraints. In the SU(2)-covariant Hamiltonian formulation the primary constraints, which are generic for first-order matter Lagrangians (Dirac, Weyl, Fierz-Pauli), can be reduced. The effective matter symplectic variables are given by SU(2)-spinor-valued half-forms on three-dimensional slices of spacetime. The coupled Einstein-Cartan-Dirac (Weyl, Fierz-Pauli) system is analyzed from the (3+1) point of view. This analysis is complete; the field equations of the Einstein-Cartan-Dirac theory split into 18 gravitational dynamical equations, 8 dynamical Dirac equations, and 7 first-class constraints. The system has 4+8=12 independent degrees of freedom in the phase space.
Investigation of the Dirac Equation by Using the Conformable Fractional Derivative
NASA Astrophysics Data System (ADS)
Mozaffari, F. S.; Hassanabadi, H.; Sobhani, H.; Chung, W. S.
2018-05-01
In this paper,the Dirac equation is constructed using the conformable fractional derivative so that in its limit for the fractional parameter, the normal version is recovered. Then, the Cornell potential is considered as the interaction of the system. In this case, the wave function and the energy eigenvalue equation are derived with the aim of the bi-confluent Heun functions. use of the conformable fractional derivative is proven to lead to a branching treatment for the energy of the system. Such a treatment is obvious for small values of the fractional parameter, and a united value as the fractional parameter approaches unity.
Dirac structures in nonequilibrium thermodynamics
NASA Astrophysics Data System (ADS)
Gay-Balmaz, François; Yoshimura, Hiroaki
2018-01-01
Dirac structures are geometric objects that generalize both Poisson structures and presymplectic structures on manifolds. They naturally appear in the formulation of constrained mechanical systems. In this paper, we show that the evolution equations for nonequilibrium thermodynamics admit an intrinsic formulation in terms of Dirac structures, both on the Lagrangian and the Hamiltonian settings. In the absence of irreversible processes, these Dirac structures reduce to canonical Dirac structures associated with canonical symplectic forms on phase spaces. Our geometric formulation of nonequilibrium thermodynamic thus consistently extends the geometric formulation of mechanics, to which it reduces in the absence of irreversible processes. The Dirac structures are associated with the variational formulation of nonequilibrium thermodynamics developed in the work of Gay-Balmaz and Yoshimura, J. Geom. Phys. 111, 169-193 (2017a) and are induced from a nonlinear nonholonomic constraint given by the expression of the entropy production of the system.
Tuning the Fermi velocity in Dirac materials with an electric field.
Díaz-Fernández, A; Chico, Leonor; González, J W; Domínguez-Adame, F
2017-08-14
Dirac materials are characterized by energy-momentum relations that resemble those of relativistic massless particles. Commonly denominated Dirac cones, these dispersion relations are considered to be their essential feature. These materials comprise quite diverse examples, such as graphene and topological insulators. Band-engineering techniques should aim to a full control of the parameter that characterizes the Dirac cones: the Fermi velocity. We propose a general mechanism that enables the fine-tuning of the Fermi velocity in Dirac materials in a readily accessible way for experiments. By embedding the sample in a uniform electric field, the Fermi velocity is substantially modified. We first prove this result analytically, for the surface states of a topological insulator/semiconductor interface, and postulate its universality in other Dirac materials. Then we check its correctness in carbon-based Dirac materials, namely graphene nanoribbons and nanotubes, thus showing the validity of our hypothesis in different Dirac systems by means of continuum, tight-binding and ab-initio calculations.
SU(N) affine Toda solitons and breathers from transparent Dirac potentials
NASA Astrophysics Data System (ADS)
Thies, Michael
2017-05-01
Transparent scalar and pseudoscalar potentials in the one-dimensional Dirac equation play an important role as self-consistent mean fields in 1 + 1 dimensional four-fermion theories (Gross-Neveu, Nambu-Jona Lasinio models) and quasi-one dimensional superconductors (Bogoliubov-de Gennes equation). Here, we show that they also serve as seed to generate a large class of classical multi-soliton and multi-breather solutions of su(N) affine Toda field theories, including the Lax representation and the corresponding vector. This generalizes previous findings about the relationship between real kinks in the Gross-Neveu model and classical solitons of the sinh-Gordon equation to complex twisted kinks.
Playing relativistic billiards beyond graphene
NASA Astrophysics Data System (ADS)
Sadurní, E.; Seligman, T. H.; Mortessagne, F.
2010-05-01
The possibility of using hexagonal structures in general, and graphene in particular, to emulate the Dirac equation is the topic under consideration here. We show that Dirac oscillators with or without rest mass can be emulated by distorting a tight-binding model on a hexagonal structure. In the quest to make a toy model for such relativistic equations, we first show that a hexagonal lattice of attractive potential wells would be a good candidate. Firstly, we consider the corresponding one-dimensional (1D) model giving rise to a 1D Dirac oscillator and then construct explicitly the deformations needed in the 2D case. Finally, we discuss how such a model can be implemented as an electromagnetic billiard using arrays of dielectric resonators between two conducting plates that ensure evanescent modes outside the resonators for transversal electric modes, and we describe a feasible experimental setup.
Relativistic quantum chaos-An emergent interdisciplinary field.
Lai, Ying-Cheng; Xu, Hong-Ya; Huang, Liang; Grebogi, Celso
2018-05-01
Quantum chaos is referred to as the study of quantum manifestations or fingerprints of classical chaos. A vast majority of the studies were for nonrelativistic quantum systems described by the Schrödinger equation. Recent years have witnessed a rapid development of Dirac materials such as graphene and topological insulators, which are described by the Dirac equation in relativistic quantum mechanics. A new field has thus emerged: relativistic quantum chaos. This Tutorial aims to introduce this field to the scientific community. Topics covered include scarring, chaotic scattering and transport, chaos regularized resonant tunneling, superpersistent currents, and energy level statistics-all in the relativistic quantum regime. As Dirac materials have the potential to revolutionize solid-state electronic and spintronic devices, a good understanding of the interplay between chaos and relativistic quantum mechanics may lead to novel design principles and methodologies to enhance device performance.
Relativistic quantum chaos—An emergent interdisciplinary field
NASA Astrophysics Data System (ADS)
Lai, Ying-Cheng; Xu, Hong-Ya; Huang, Liang; Grebogi, Celso
2018-05-01
Quantum chaos is referred to as the study of quantum manifestations or fingerprints of classical chaos. A vast majority of the studies were for nonrelativistic quantum systems described by the Schrödinger equation. Recent years have witnessed a rapid development of Dirac materials such as graphene and topological insulators, which are described by the Dirac equation in relativistic quantum mechanics. A new field has thus emerged: relativistic quantum chaos. This Tutorial aims to introduce this field to the scientific community. Topics covered include scarring, chaotic scattering and transport, chaos regularized resonant tunneling, superpersistent currents, and energy level statistics—all in the relativistic quantum regime. As Dirac materials have the potential to revolutionize solid-state electronic and spintronic devices, a good understanding of the interplay between chaos and relativistic quantum mechanics may lead to novel design principles and methodologies to enhance device performance.
Dirac structures in vakonomic mechanics
NASA Astrophysics Data System (ADS)
Jiménez, Fernando; Yoshimura, Hiroaki
2015-08-01
In this paper, we explore dynamics of the nonholonomic system called vakonomic mechanics in the context of Lagrange-Dirac dynamical systems using a Dirac structure and its associated Hamilton-Pontryagin variational principle. We first show the link between vakonomic mechanics and nonholonomic mechanics from the viewpoints of Dirac structures as well as Lagrangian submanifolds. Namely, we clarify that Lagrangian submanifold theory cannot represent nonholonomic mechanics properly, but vakonomic mechanics instead. Second, in order to represent vakonomic mechanics, we employ the space TQ ×V∗, where a vakonomic Lagrangian is defined from a given Lagrangian (possibly degenerate) subject to nonholonomic constraints. Then, we show how implicit vakonomic Euler-Lagrange equations can be formulated by the Hamilton-Pontryagin variational principle for the vakonomic Lagrangian on the extended Pontryagin bundle (TQ ⊕T∗ Q) ×V∗. Associated with this variational principle, we establish a Dirac structure on (TQ ⊕T∗ Q) ×V∗ in order to define an intrinsic vakonomic Lagrange-Dirac system. Furthermore, we also establish another construction for the vakonomic Lagrange-Dirac system using a Dirac structure on T∗ Q ×V∗, where we introduce a vakonomic Dirac differential. Finally, we illustrate our theory of vakonomic Lagrange-Dirac systems by some examples such as the vakonomic skate and the vertical rolling coin.
Commuting symmetry operators of the Dirac equation, Killing-Yano and Schouten-Nijenhuis brackets
NASA Astrophysics Data System (ADS)
Cariglia, Marco; Krtouš, Pavel; Kubizňák, David
2011-07-01
In this paper we derive the most general first-order symmetry operator commuting with the Dirac operator in all dimensions and signatures. Such an operator splits into Clifford even and Clifford odd parts which are given in terms of odd Killing-Yano and even closed conformal Killing-Yano inhomogeneous forms, respectively. We study commutators of these symmetry operators and give necessary and sufficient conditions under which they remain of the first-order. In this specific setting we can introduce a Killing-Yano bracket, a bilinear operation acting on odd Killing-Yano and even closed conformal Killing-Yano forms, and demonstrate that it is closely related to the Schouten-Nijenhuis bracket. An important nontrivial example of vanishing Killing-Yano brackets is given by Dirac symmetry operators generated from the principal conformal Killing-Yano tensor [hep-th/0612029]. We show that among these operators one can find a complete subset of mutually commuting operators. These operators underlie separability of the Dirac equation in Kerr-NUT-(A)dS spacetimes in all dimensions [arXiv:0711.0078].
NASA Astrophysics Data System (ADS)
Wang, Mengjie; Herdeiro, Carlos; Jing, Jiliang
2017-11-01
We study Dirac quasinormal modes of Schwarzschild-anti-de Sitter (Schwarzschild-AdS) black holes, following the generic principle for allowed boundary conditions proposed in [M. Wang, C. Herdeiro, and M. O. P. Sampaio, Phys. Rev. D 92, 124006 (2015)., 10.1103/PhysRevD.92.124006]. After deriving the equations of motion for Dirac fields on the aforementioned background, we impose vanishing energy flux boundary conditions to solve these equations. We find a set of two Robin boundary conditions are allowed. These two boundary conditions are used to calculate Dirac normal modes on empty AdS and quasinormal modes on Schwarzschild-AdS black holes. In the former case, we recover the known normal modes of empty AdS; in the latter case, the two sets of Robin boundary conditions lead to two different branches of quasinormal modes. The impact on these modes of the black hole size, the angular momentum quantum number and the overtone number are discussed. Our results show that vanishing energy flux boundary conditions are a robust principle, applicable not only to bosonic fields but also to fermionic fields.
Some Consequences of a Time Dependent Speed of Light
NASA Astrophysics Data System (ADS)
Smith, Felix T.
2007-06-01
For reasons connected with both cosmology (the flatness and horizon problems) and atomic physics (n-body Dirac equation, etc.), various proposals have been made to modify general or special relativity(SR) to accommodate a cosmologically decreasing light speed [J. Magueijo, Rep. Prog. Phys. 66, 2025 (2003)]. Two such theories, projective SR [S.N. Manida, gr-qc/9905046; S. S. Stepanov, physics/9909009 and Phys. Rev. D, 62, 023507 (2000)] and symmetric SR [F.T. Smith, Ann. Fond. L. de Broglie, 30, 179 (2005)] adapt special relativity to in different ways to an expanding, hyperbolically curved position space and predict time-dependences of c within reach of measurement but differing by a factor of two. Both theories bring in a new constant λ-1=σ=c^2H0-1. As Magueijo points, out the role of c in physics and cosmology is so profound that many deep changes must follow if is not absolutely invariant in space and time. In particular, symmetric SR brings a new light to the Dirac large-number relationship between the constants of gravitation and atomic physics.
NASA Astrophysics Data System (ADS)
Wong, Dillon
Graphene, a two-dimensional (2D) honeycomb lattice of sp 2-bonded carbon atoms, is renowned for its many extraordinary properties. Not only does it have an extremely high carrier mobility, exceptional mechanical strength, and fascinating optical behavior, graphene additionally has an interesting energy-momentum relationship that is emergent from its space group symmetry. Graphene's low-energy electronic excitations consist of quasiparticles whose energies disperse linearly with wavevector and obey a 2D massless Dirac equation with a modified speed of light. This fortuitous circumstance allows for the exploration of ultra-relativistic phenomena using conventional tabletop techniques common to solid state physics and material science. Here I discuss experiments that probe these ultra-relativistic effects via application of scanning tunneling microscopy (STM) and spectroscopy (STS) to graphene field-effect transistors (FETs) in proximity with charged impurities. The first part of this dissertation focuses on the ultra-relativistic Coulomb problem. Depending on the strength of the potential, the Coulomb problem for massless Dirac particles is divided into two regimes: the subcritical and the supercritical. The subcritical regime is characterized by an electron-hole asymmetry in the local density of states (LDOS) and, unlike in nonrelativistic quantum mechanics, does not support bound states. In contrast, the supercritical regime hosts quasi-bound states that are analogous to "atomic collapse" orbits predicted to occur in atoms with nuclear charge Z > 170. By using an STM tip to directly position calcium (Ca) impurities on a graphene surface, we assembled "artificial nuclei" and observed a transition between the subcritical and supercritical regimes with increasing nuclear charge. We also investigated the screening of these charged impurities by massless Dirac fermions while varying the graphene carrier concentration with an electrostatic gate. The second part of this dissertation focuses on the ultra-relativistic harmonic oscillator. We developed a method for manipulating charged defects inside the boron nitride (BN) substrate underneath graphene to construct circular graphene p-n junctions. These p-n junctions were effectively quantum dots that electrostatically trapped graphene's relativistic charge carriers, and we imaged the interference patterns corresponding to this quantum confinement. The observed energy-level spectra in our p-n junctions closely matched a theoretical spectrum obtained by solving the 2D massless Dirac equation with a quadratic potential, allowing us to identify each observed state with principal and angular momentum quantum numbers. The results discussed here provide insight into fundamental aspects of relativistic quantum mechanics and into graphene properties pertinent to technological applications. In particular, graphene's response to electrostatic potentials determines the scope in which its charge carriers can be directed and harnessed for useful purposes. Furthermore, many of the results contained in this dissertation are expected to generalize to other Dirac materials.
NASA Astrophysics Data System (ADS)
Li, Shuai; Wang, Chen; Zheng, Shi-Han; Wang, Rui-Qiang; Li, Jun; Yang, Mou
2018-04-01
The impurity effect is studied in three-dimensional Dirac semimetals in the framework of a T-matrix method to consider the multiple scattering events of Dirac electrons off impurities. It has been found that a strong impurity potential can significantly restructure the energy dispersion and the density of states of Dirac electrons. An impurity-induced resonant state emerges and significantly modifies the pristine optical response. It is shown that the impurity state disturbs the common longitudinal optical conductivity by creating either an optical conductivity peak or double absorption jumps, depending on the relative position of the impurity band and the Fermi level. More importantly, these conductivity features appear in the forbidden region between the Drude and interband transition, completely or partially filling the Pauli block region of optical response. The underlying physics is that the appearance of resonance states as well as the broadening of the bands leads to a more complicated selection rule for the optical transitions, making it possible to excite new electron-hole pairs in the forbidden region. These features in optical conductivity provide valuable information to understand the impurity behaviors in 3D Dirac materials.
Manipulation of Dirac cones in metal-intercalated epitaxial graphene
NASA Astrophysics Data System (ADS)
Wang, Cai-Zhuang; Kim, Minsung; Tringides, Michael; Ho, Kai-Ming
Graphene is one of the most attractive materials from both fundamental and practical points of view due to its characteristic Dirac cones. The electronic property of graphene can be modified through the interaction with substrate or another graphene layer as illustrated in few-layer epitaxial graphene. Recently, metal intercalation became an effective method to manipulate the electronic structure of graphene by modifying the coupling between the constituent layers. In this work, we show that the Dirac cones of epitaxial graphene can be manipulated by intercalating rare-earth metals. We demonstrate that rare-earth metal intercalated epitaxial graphene has tunable band structures and the energy levels of Dirac cones as well as the linear or quadratic band dispersion can be controlled depending on the location of the intercalation layer and density. Our results could be important for applications and characterizations of the intercalated epitaxial graphene. Supported by the U.S. DOE-BES under Contract No. DE-AC02-07CH11358.
Berry Curvature and Chiral Plasmons in Massive Dirac Materials
NASA Astrophysics Data System (ADS)
Song, Justin; Rudner, Mark
2015-03-01
In the semiclassical model of carrier dynamics, quasiparticles are described as nearly free electrons with modified characteristics modified characteristics such as effective masses which may differ significantly from those of an electron in vacuum. In addition to being influenced by external electric and magnetic fields, the trajectories of electrons in topological materials are also affected by the presence of an interesting quantum mechanical field - the Berry curvature - which is responsible for a number of anomalous transport phenomena recently observed in Dirac materials including G/hBN, and MoS2. Here we discuss how Berry curvature can affect the collective behavior of electrons in these systems. In particular, we show that the collective electronic excitations in metallic massive Dirac materials can feature a chirality even in the absence of an applied magnetic field. The chirality of these plasmons arises from the Berry curvature of the massive Dirac bands. The corresponding dispersion is split between left- and right-handed modes. We also discuss experimental manifestations.
NASA Astrophysics Data System (ADS)
Varró, Sándor
2014-03-01
Exact solutions are presented of the Dirac and Klein-Gordon equations of a charged particle propagating in a classical monochromatic electromagnetic plane wave in a medium of index of refraction nm<1. In the Dirac case the solutions are expressed in terms of new complex polynomials, and in the Klein-Gordon case the found solutions are expressed in terms of Ince polynomials. In each case they form a doubly infinite set, labeled by two integer quantum numbers. These integer numbers represent quantized momentum components of the charged particle along the polarization vector and along the propagation direction of the electromagnetic radiation. Since this radiation may represent a plasmon wave of arbitrary high amplitude, propagating in an underdense plasma, the solutions obtained may have relevance in describing possible quantum features of novel acceleration mechanisms.
Mass spectra of the particle-antiparticle system with a Dirac oscillator interaction
NASA Technical Reports Server (NTRS)
Moshinsky, M.; Loyola, G.
1993-01-01
The present view about the structure of mesons is that they are a quark-antiquark system. The mass spectrum corresponding to this system should, in principle, be given by chromodynamics, but this turns out to be a complex affair. Thus it is of some interest to consider relativistic systems of particle-antiparticle, with a simple type of interaction, which could give some insight on the spectra we can expect for mesons. This analysis is carried out when the interaction is of the Dirac oscillator type. It is shown that the Dirac equation of the antiparticle can be obtained from that of the particle by just changing the frequency omega into -omega. Following a procedure suggested by Barut, the equation for the particle-antiparticle system is derived and it is solved by a perturbation procedure. Thus, explicit expressions for the square of the mass spectra are obtained and its implications in the meson case is discussed.
A Route to Dirac Liquid Theory: A Fermi Liquid Description for Dirac Materials
NASA Astrophysics Data System (ADS)
Gochan, Matthew; Bedell, Kevin
Since the pioneering work developed by L.V. Landau sixty years ago, Fermi Liquid Theory has seen great success in describing interacting Fermi systems. While much interest has been generated over the study of non-Fermi Liquid systems, Fermi Liquid theory serves as a formidable model for many systems and offers a rich amount of of results and insight. The recent classification of Dirac Materials, and the lack of a unifying theoretical framework for them, has motivated our study. Dirac materials are a versatile class of materials in which an abundance of unique physical phenomena can be observed. Such materials are found in all dimensions, with the shared property that their low-energy fermionic excitations behave as massless Dirac fermions and are therefore governed by the Dirac equation. The most popular Dirac material, graphene, is the focus of this work. We present our Fermi Liquid description of Graphene. We find many interesting results, specifically in the transport and dynamics of the system. Additionally, we expand on previous work regarding the Virial Theorem and its impact on the Fermi Liquid parameters in graphene. Finally, we remark on viscoelasticity of Dirac Materials and other unusual results that are consequences of AdS-CFT.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghoumaid, A.; Benamira, F.; Guechi, L.
2016-02-15
It is shown that the application of the Nikiforov-Uvarov method by Ikhdair for solving the Dirac equation with the radial Rosen-Morse potential plus the spin-orbit centrifugal term is inadequate because the required conditions are not satisfied. The energy spectra given is incorrect and the wave functions are not physically acceptable. We clarify the problem and prove that the spinor wave functions are expressed in terms of the generalized hypergeometric functions {sub 2}F{sub 1}(a, b, c; z). The energy eigenvalues for the bound states are given by the solution of a transcendental equation involving the hypergeometric function.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Galvao, C.A.; Nutku, Y.
1996-12-01
mA third order Monge-Amp{grave e}re type equation of associativity that Dubrovin has obtained in 2-d topological field theory is formulated in terms of a variational principle subject to second class constraints. Using Dirac{close_quote}s theory of constraints this degenerate Lagrangian system is cast into Hamiltonian form and the Hamiltonian operator is obtained from the Dirac bracket. There is a new type of Kac-Moody algebra that corresponds to this Hamiltonian operator. In particular, it is not a W-algebra. {copyright} {ital 1996 American Institute of Physics.}
How the Klein–Nishina formula was derived: Based on the Sangokan Nishina Source Materials
YAZAKI, Yuji
2017-01-01
In 1928, Klein and Nishina investigated Compton scattering based on the Dirac equation just proposed in the same year, and derived the Klein–Nishina formula for the scattering cross section of a photon. At that time the Dirac equation had the following unsettled conceptual questions: the negative energy states, its four-component wave functions, and the spin states of an electron. Hence, during their investigation struggles, they encountered various difficulties. In this article, we describe their struggles to derive the formula using the “Sangokan Nishina Source Materials” retained in the the Nishina Memorial Foundation. PMID:28603211
NASA Astrophysics Data System (ADS)
Finster, Felix; Reintjes, Moritz
2009-05-01
We set up the Dirac equation in a Friedmann-Robertson-Walker geometry and separate the spatial and time variables. In the case of a closed universe, the spatial dependence is solved explicitly, giving rise to a discrete set of solutions. We compute the probability integral and analyze a spacetime normalization integral. This analysis allows us to introduce the fermionic projector in a closed Friedmann-Robertson-Walker geometry and to specify its global normalization as well as its local form. First author supported in part by the Deutsche Forschungsgemeinschaft.
Quantum probe of Hořava-Lifshitz gravity
NASA Astrophysics Data System (ADS)
Gurtug, O.; Mangut, M.
2018-04-01
Particle probe analysis of the Kehagias-Sfetsos black hole spacetime of Hořava-Lifshitz gravity is extended to wave probe analysis within the framework of quantum mechanics. The time-like naked singularity that develops when ωM2 < 1/2 is probed with quantum fields obeying Klein-Gordon and Chandrasekhar-Dirac equations. The quantum field probe of the naked singularity has revealed that both the spatial part of the wave and the Hamiltonian operators of Klein-Gordon and Chandrasekhar-Dirac equations are essentially self-adjoint, and thus, the naked singularity in the Kehagias-Sfetsos spacetime becomes quantum mechanically non-singular.
Dirac cones in isogonal hexagonal metallic structures
NASA Astrophysics Data System (ADS)
Wang, Kang
2018-03-01
A honeycomb hexagonal metallic lattice is equivalent to a triangular atomic one and cannot create Dirac cones in its electromagnetic wave spectrum. We study in this work the low-frequency electromagnetic band structures in isogonal hexagonal metallic lattices that are directly related to the honeycomb one and show that such structures can create Dirac cones. The band formation can be described by a tight-binding model that allows investigating, in terms of correlations between local resonance modes, the condition for the Dirac cones and the consequence of the third structure tile sustaining an extra resonance mode in the unit cell that induces band shifts and thus nonlinear deformation of the Dirac cones following the wave vectors departing from the Dirac points. We show further that, under structure deformation, the deformations of the Dirac cones result from two different correlation mechanisms, both reinforced by the lattice's metallic nature, which directly affects the resonance mode correlations. The isogonal structures provide new degrees of freedom for tuning the Dirac cones, allowing adjustment of the cone shape by modulating the structure tiles at the local scale without modifying the lattice periodicity and symmetry.
NASA Astrophysics Data System (ADS)
Kononets, Yu. V.
2016-12-01
The presented enhanced version of Eriksen's theorem defines an universal transform of the Foldy-Wouthuysen type and in any external static electromagnetic field (ESEMF) reveals a discrete symmetry of Dirac's equation (DE), responsible for existence of a highly influential conserved quantum number—the charge index distinguishing two branches of DE spectrum. It launches the charge-index formalism (CIF) obeying the charge-index conservation law (CICL). Via its unique ability to manipulate each spectrum branch independently, the CIF creates a perfect charge-symmetric architecture of Dirac's quantum mechanics (DQM), which resolves all the riddles of the standard DE theory (SDET). Besides the abstract CIF algebra, the paper discusses: (1) the novel accurate charge-symmetric definition of the electric-current density; (2) DE in the true-particle representation, where electrons and positrons coexist on equal footing; (3) flawless "natural" scheme of second quantization; and (4) new physical grounds for the Fermi-Dirac statistics. As a fundamental quantum law, the CICL originates from the kinetic-energy sign conservation and leads to a novel single-particle physics in strong-field situations. Prohibiting Klein's tunneling (KT) in Klein's zone via the CICL, the precise CIF algebra defines a new class of weakly singular DE solutions, strictly confined in the coordinate space and experiencing the total reflection from the potential barrier.
Tunable superlattice in graphene to control the number of Dirac points.
Dubey, Sudipta; Singh, Vibhor; Bhat, Ajay K; Parikh, Pritesh; Grover, Sameer; Sensarma, Rajdeep; Tripathi, Vikram; Sengupta, K; Deshmukh, Mandar M
2013-09-11
Superlattice in graphene generates extra Dirac points in the band structure and their number depends on the superlattice potential strength. Here, we have created a lateral superlattice in a graphene device with a tunable barrier height using a combination of two gates. In this Letter, we demonstrate the use of lateral superlattice to modify the band structure of graphene leading to the emergence of new Dirac cones. This controlled modification of the band structure persists up to 100 K.
Auxiliary-Field Quantum Monte Carlo Simulations of Strongly-Correlated Systems, the Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, C.
In this final report, we present preliminary results of ground state phases of interacting spinless Dirac fermions. The name "Dirac fermion" originates from the fact that low-energy excitations of electrons hopping on the honeycomb lattice are described by a relativistic Dirac equation. Dirac fermions have received much attention particularly after the seminal work of Haldale1 which shows that the quantum Hall physics can be realized on the honeycomb lattice without magnetic fields. Haldane's work later becomes the foundation of topological insulators (TIs). While the physics of TIs is based largely on spin-orbit coupled non-interacting electrons, it was conjectured that topologicalmore » insulators can be induced by strong correlations alone.« less
NASA Astrophysics Data System (ADS)
Thylwe, Karl-Erik; McCabe, Patrick
2012-04-01
The classical amplitude-phase method due to Milne, Wilson, Young and Wheeler in the 1930s is known to be a powerful computational tool for determining phase shifts and energy eigenvalues in cases where a sufficiently slowly varying amplitude function can be found. The key for the efficient computations is that the original single-state radial Schrödinger equation is transformed to a nonlinear equation, the Milne equation. Such an equation has solutions that may or may not oscillate, depending on boundary conditions, which then requires a robust recipe for locating the (optimal) ‘almost constant’ solutions for its use in the method. For scattering problems the solutions of the amplitude equations always approach constants as the radial distance r tends to infinity, and there is no problem locating the ‘optimal’ amplitude functions from a low-order semiclassical approximation. In the present work, the amplitude-phase approach is generalized to two coupled Schrödinger equations similar to an earlier generalization to radial Dirac equations. The original scalar amplitude then becomes a vector quantity, and the original Milne equation is generalized accordingly. Numerical applications to resonant electron-atom scattering are illustrated.
Canonical quantization of constrained systems and coadjoint orbits of Diff(S sup 1 )
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scherer, W.M.
It is shown that Dirac's treatment of constrained Hamiltonian systems and Schwinger's action principle quantization lead to identical commutations relations. An explicit relation between the Lagrange multipliers in the action principle approach and the additional terms in the Dirac bracket is derived. The equivalence of the two methods is demonstrated in the case of the non-linear sigma model. Dirac's method is extended to superspace and this extension is applied to the chiral superfield. The Dirac brackets of the massive interacting chiral superfluid are derived and shown to give the correct commutation relations for the component fields. The Hamiltonian of themore » theory is given and the Hamiltonian equations of motion are computed. They agree with the component field results. An infinite sequence of differential operators which are covariant under the coadjoint action of Diff(S{sup 1}) and analogues to Hill's operator is constructed. They map conformal fields of negative integer and half-integer weight to their dual space. Some properties of these operators are derived and possible applications are discussed. The Korteweg-de Vries equation is formulated as a coadjoint orbit of Diff(S{sup 1}).« less
NASA Astrophysics Data System (ADS)
Aguirregabiria, J. M.; Chamorro, A.; Valle, M. A.
1982-05-01
A new heuristic derivation of the Mo-Papas equation for charged particles is given. It is shown that this equation cannot be derived for a point particle by closely following Dirac's classical treatment of the problem. The Mo-Papas theory and the Bonnor-Rowe-Marx variable mass dynamics are not compatible.
Parente, Vincenzo; Campagnano, Gabriele; Giuliano, Domenico; Tagliacozzo, Arturo; Guinea, Francisco
2014-01-01
The scattering of Dirac electrons by topological defects could be one of the most relevant sources of resistance in graphene and at the boundary surfaces of a three-dimensional topological insulator (3D TI). In the long wavelength, continuous limit of the Dirac equation, the topological defect can be described as a distortion of the metric in curved space, which can be accounted for by a rotation of the Gamma matrices and by a spin connection inherited with the curvature. These features modify the scattering properties of the carriers. We discuss the self-energy of defect formation with this approach and the electron cross-section for intra-valley scattering at an edge dislocation in graphene, including corrections coming from the local stress. The cross-section contribution to the resistivity, ρ, is derived within the Boltzmann theory of transport. On the same lines, we discuss the scattering of a screw dislocation in a two-band 3D TI, like Bi1−xSbx, and we present the analytical simplified form of the wavefunction for gapless helical states bound at the defect. When a 3D TI is sandwiched between two even-parity superconductors, Dirac boundary states acquire superconductive correlations by proximity. In the presence of a magnetic vortex piercing the heterostructure, two Majorana states are localized at the two interfaces and bound to the vortex core. They have a half integer total angular momentum each, to match with the unitary orbital angular momentum of the vortex charge. PMID:28788537
Parente, Vincenzo; Campagnano, Gabriele; Giuliano, Domenico; Tagliacozzo, Arturo; Guinea, Francisco
2014-03-04
The scattering of Dirac electrons by topological defects could be one of the most relevant sources of resistance in graphene and at the boundary surfaces of a three-dimensional topological insulator (3D TI). In the long wavelength, continuous limit of the Dirac equation, the topological defect can be described as a distortion of the metric in curved space, which can be accounted for by a rotation of the Gamma matrices and by a spin connection inherited with the curvature. These features modify the scattering properties of the carriers. We discuss the self-energy of defect formation with this approach and the electron cross-section for intra-valley scattering at an edge dislocation in graphene, including corrections coming from the local stress. The cross-section contribution to the resistivity, ρ, is derived within the Boltzmann theory of transport. On the same lines, we discuss the scattering of a screw dislocation in a two-band 3D TI, like Bi 1-x Sb x , and we present the analytical simplified form of the wavefunction for gapless helical states bound at the defect. When a 3D TI is sandwiched between two even-parity superconductors, Dirac boundary states acquire superconductive correlations by proximity. In the presence of a magnetic vortex piercing the heterostructure, two Majorana states are localized at the two interfaces and bound to the vortex core. They have a half integer total angular momentum each, to match with the unitary orbital angular momentum of the vortex charge.
Quantum work statistics of charged Dirac particles in time-dependent fields
Deffner, Sebastian; Saxena, Avadh
2015-09-28
The quantum Jarzynski equality is an important theorem of modern quantum thermodynamics. We show that the Jarzynski equality readily generalizes to relativistic quantum mechanics described by the Dirac equation. After establishing the conceptual framework we solve a pedagogical, yet experimentally relevant, system analytically. As a main result we obtain the exact quantum work distributions for charged particles traveling through a time-dependent vector potential evolving under Schrödinger as well as under Dirac dynamics, and for which the Jarzynski equality is verified. Thus, special emphasis is put on the conceptual and technical subtleties arising from relativistic quantum mechanics.
Relativistic Gurzhi effect in channels of Dirac materials
NASA Astrophysics Data System (ADS)
Kashuba, Oleksiy; Trauzettel, Björn; Molenkamp, Laurens W.
2018-05-01
Charge transport in channel-shaped 2D Dirac systems is studied employing the Boltzmann equation. The dependence of the resistivity on temperature and chemical potential is investigated. An accurate understanding of the influence of electron-electron interaction and material disorder allows us to identify a parameter regime, where the system reveals hydrodynamic transport behavior. We point out the conditions for three Dirac fermion specific features: heat flow hydrodynamics, pseudodiffusive transport, and the electron-hole scattering dominated regime. It is demonstrated that for clean samples the relativistic Gurzhi effect, a definite indicator of hydrodynamic transport, can be observed.
Feng, Ya; Wang, Zhijun; Chen, Chaoyu; Shi, Youguo; Xie, Zhuojin; Yi, Hemian; Liang, Aiji; He, Shaolong; He, Junfeng; Peng, Yingying; Liu, Xu; Liu, Yan; Zhao, Lin; Liu, Guodong; Dong, Xiaoli; Zhang, Jun; Chen, Chuangtian; Xu, Zuyan; Dai, Xi; Fang, Zhong; Zhou, X. J.
2014-01-01
The Dirac materials, such as graphene and three-dimensional topological insulators, have attracted much attention because they exhibit novel quantum phenomena with their low energy electrons governed by the relativistic Dirac equations. One particular interest is to generate Dirac cone anisotropy so that the electrons can propagate differently from one direction to the other, creating an additional tunability for new properties and applications. While various theoretical approaches have been proposed to make the isotropic Dirac cones of graphene into anisotropic ones, it has not yet been met with success. There are also some theoretical predictions and/or experimental indications of anisotropic Dirac cone in novel topological insulators and AMnBi2 (A = Sr and Ca) but more experimental investigations are needed. Here we report systematic high resolution angle-resolved photoemission measurements that have provided direct evidence on the existence of strongly anisotropic Dirac cones in SrMnBi2 and CaMnBi2. Distinct behaviors of the Dirac cones between SrMnBi2 and CaMnBi2 are also observed. These results have provided important information on the strong anisotropy of the Dirac cones in AMnBi2 system that can be governed by the spin-orbital coupling and the local environment surrounding the Bi square net. PMID:24947490
A B-spline Galerkin method for the Dirac equation
NASA Astrophysics Data System (ADS)
Froese Fischer, Charlotte; Zatsarinny, Oleg
2009-06-01
The B-spline Galerkin method is first investigated for the simple eigenvalue problem, y=-λy, that can also be written as a pair of first-order equations y=λz, z=-λy. Expanding both y(r) and z(r) in the B basis results in many spurious solutions such as those observed for the Dirac equation. However, when y(r) is expanded in the B basis and z(r) in the dB/dr basis, solutions of the well-behaved second-order differential equation are obtained. From this analysis, we propose a stable method ( B,B) basis for the Dirac equation and evaluate its accuracy by comparing the computed and exact R-matrix for a wide range of nuclear charges Z and angular quantum numbers κ. When splines of the same order are used, many spurious solutions are found whereas none are found for splines of different order. Excellent agreement is obtained for the R-matrix and energies for bound states for low values of Z. For high Z, accuracy requires the use of a grid with many points near the nucleus. We demonstrate the accuracy of the bound-state wavefunctions by comparing integrals arising in hyperfine interaction matrix elements with exact analytic expressions. We also show that the Thomas-Reiche-Kuhn sum rule is not a good measure of the quality of the solutions obtained by the B-spline Galerkin method whereas the R-matrix is very sensitive to the appearance of pseudo-states.
Remark on the scattering operator for the cubic nonlinear Dirac equation in three space dimensions
NASA Astrophysics Data System (ADS)
Sasaki, Hironobu
2015-10-01
This paper is concerned with the scattering operator S for the three-dimensional Dirac equation with a cubic nonlinearity. It follows from known results that S is well-defined on a neighborhood of 0 in the Sobolev space Hκ (R3 ;C4) for any κ > 1. In the present paper, we prove that for any M ∈ N and s ≥ max { κ , M }, there exists some neighborhood U of 0 in the weighted Sobolev space H s , M (R3 ;C4) such that S (U) ⊂H s , M (R3 ;C4).
A new length scale for quantum gravity: A resolution of the black hole information loss paradox
NASA Astrophysics Data System (ADS)
Singh, Tejinder P.
We show why and how Compton wavelength and Schwarzschild radius should be combined into one single new length scale, which we call the Compton-Schwarzschild length. Doing so offers a resolution of the black hole information loss paradox, and suggests Planck mass remnant black holes as candidates for dark matter. It also compels us to introduce torsion, and identify the Dirac field with a complex torsion field. Dirac equation and Einstein equations, are shown to be mutually dual limiting cases of an underlying gravitation theory which involves the Compton-Schwarzschild length scale, and includes a complex torsion field.
NASA Technical Reports Server (NTRS)
Dyall, Kenneth G.; Faegri, Knut, Jr.
1990-01-01
The paper investigates bounds failure in calculations using Gaussian basis sets for the solution of the one-electron Dirac equation for the 2p1/2 state of Hg(79+). It is shown that bounds failure indicates inadequacies in the basis set, both in terms of the exponent range and the number of functions. It is also shown that overrepresentation of the small component space may lead to unphysical results. It is concluded that it is important to use matched large and small component basis sets with an adequate size and exponent range.
Quasiclassical theory for the superconducting proximity effect in Dirac materials
NASA Astrophysics Data System (ADS)
Hugdal, Henning G.; Linder, Jacob; Jacobsen, Sol H.
2017-06-01
We derive the quasiclassical nonequilibrium Eilenberger and Usadel equations to first order in quantities small compared to the Fermi energy, valid for Dirac edge and surface electrons with spin-momentum locking p .σ ¯ , as relevant for topological insulators. We discuss in detail several of the key technical points and assumptions of the derivation, and provide a Riccati parametrization of the equations. Solving first the equilibrium equations for S/N and S/F bilayers and Josephson junctions, we study the superconducting proximity effect in Dirac materials. Similarly to related works, we find that the effect of an exchange field depends strongly on the direction of the field. Only components normal to the transport direction lead to attenuation of the Cooper pair wave function inside the F. Fields parallel to the transport direction lead to phase shifts in the dependence on the superconducting phase difference for both the charge current and density of states in an S/F/S junction. Moreover, we compute the differential conductance in S/N and S/F bilayers with an applied voltage bias and determine the dependence on the length of the N and F regions and the exchange field.
A novel quantum-mechanical interpretation of the Dirac equation
NASA Astrophysics Data System (ADS)
K-H Kiessling, M.; Tahvildar-Zadeh, A. S.
2016-04-01
A novel interpretation is given of Dirac’s ‘wave equation for the relativistic electron’ as a quantum-mechanical one-particle equation. In this interpretation the electron and the positron are merely the two different ‘topological spin’ states of a single more fundamental particle, not distinct particles in their own right. The new interpretation is backed up by the existence of such ‘bi-particle’ structures in general relativity, in particular the ring singularity present in any spacelike section of the spacetime singularity of the maximal-analytically extended, topologically non-trivial, electromagnetic Kerr-Newman (KN)spacetime in the zero-gravity limit (here, ‘zero-gravity’ means the limit G\\to 0, where G is Newton’s constant of universal gravitation). This novel interpretation resolves the dilemma that Dirac’s wave equation seems to be capable of describing both the electron and the positron in ‘external’ fields in many relevant situations, while the bi-spinorial wave function has only a single position variable in its argument, not two—as it should if it were a quantum-mechanical two-particle wave equation. A Dirac equation is formulated for such a ring-like bi-particle which interacts with a static point charge located elsewhere in the topologically non-trivial physical space associated with the moving ring particle, the motion being governed by a de Broglie-Bohm type law extracted from the Dirac equation. As an application, the pertinent general-relativistic zero-gravity hydrogen problem is studied in the usual Born-Oppenheimer approximation. Its spectral results suggest that the zero-G KN magnetic moment be identified with the so-called ‘anomalous magnetic moment of the physical electron,’ not with the Bohr magneton, so that the ring radius is only a tiny fraction of the electron’s reduced Compton wavelength.
Anomalous transport phenomena in Weyl metal beyond the Drude model for Landau's Fermi liquids.
Kim, Ki-Seok; Kim, Heon-Jung; Sasaki, M; Wang, J-F; Li, L
2014-12-01
Landau's Fermi-liquid theory is the standard model for metals, characterized by the existence of electron quasiparticles near a Fermi surface as long as Landau's interaction parameters lie below critical values for instabilities. Recently this fundamental paradigm has been challenged by the physics of strong spin-orbit coupling, although the concept of electron quasiparticles remains valid near the Fermi surface, where Landau's Fermi-liquid theory fails to describe the electromagnetic properties of this novel metallic state, referred to as Weyl metal. A novel ingredient is that such a Fermi surface encloses a Weyl point with definite chirality, referred to as a chiral Fermi surface, which can arise from breaking of either time reversal or inversion symmetry in systems with strong spin-orbit coupling, responsible for both the Berry curvature and the chiral anomaly. As a result, electromagnetic properties of the Weyl metallic state are described not by conventional Maxwell equations but by axion electrodynamics, where Maxwell equations are modified with a topological-in-origin spatially modulated [Formula: see text] term. This novel metallic state was realized recently in Bi[Formula: see text]Sb x around [Formula: see text] under magnetic fields, where the Dirac spectrum appears around the critical point between the normal semiconducting ([Formula: see text]) and topological semiconducting phases ([Formula: see text]) and the time reversal symmetry breaking perturbation causes the Dirac point to split into a pair of Weyl points along the direction of the applied magnetic field for a very strong spin-orbit coupled system. In this review article, we discuss how the topological structure of both the Berry curvature and the chiral anomaly (axion electrodynamics) gives rise to anomalous transport phenomena in [Formula: see text]Sb x around [Formula: see text] under magnetic fields, thus modifying the Drude model of Landau's Fermi liquids.
NASA Astrophysics Data System (ADS)
Chen, Zhanbin
2018-05-01
The process of excitation of highly charged Fe XXIV ion embedded in weakly coupled plasmas by electron impact is studied, together with the subsequent radiative decay. For the target structure, the calculation is performed using the multiconfiguration Dirac-Hartree-Fock method incorporating the Debye-Hückel potential for the electron-nucleus interaction. Fine-structure levels of the 1s22p and 1s2s2p configurations and the transition properties among these levels are presented over a wide range of screening parameters. For the collision dynamics, the distorted-wave method in the relativistic frame is adopted to include the effect of plasma background, in which the interparticle interactions in the system are described by screened interactions of the Debye-Hückel type. The continuum wave function of the projectile electron is obtained by solving the modified Dirac equations. The influence of plasma strength on the cross section, the linear polarization, and the angular distribution of x-ray photon emission are investigated in detail. Comparison of the present results with experimental data and other theoretical predictions, when available, is made.
How to construct self/anti-self charge conjugate states?
NASA Astrophysics Data System (ADS)
Dvoeglazov, V. V.
2014-03-01
We construct self/anti-self charge conjugate (Majorana-like) states for the (1/2, 0)⊕(0, 1/2) representation of the Lorentz group, and their analogs for higher spins within the quantum field theory. The problem of the basis rotations and that of the selection of phases in the Dirac-like and Majorana-like field operators are considered. The discrete symmetries properties (P, C, T) are studied. The corresponding dynamical equations are presented. In the (1/2, 0) ⊕ (0, 1/2) representation they obey the Dirac-like equation with eight components, which has been first introduced by Markov. Thus, the Fock space for corresponding quantum fields is doubled (as shown by Ziino). The particular attention has been paid to the questions of chirality and helicity (two concepts which are frequently confused in the literature) for Dirac and Majorana states. We further review several experimental consequences which follow from the previous works of M. Kirchbach et al. on neutrinoless double beta decay, and G. J. Ni et al. on meson lifetimes.
How to Construct the Anti-Self Charge Conjugate States?
NASA Astrophysics Data System (ADS)
Dvoeglazov, Valeriy V.
2015-01-01
We construct self/anti-self charge conjugate (Majorana-like) states in the (1/2, 0) ⊕ (0, 1/2) representation of the Lorentz group, and their analogs for higher spins within the quantum field theory. The problem of the basis rotations and that of the selection of phases in the Dirac-like and Majorana-like field operators are considered. The discrete symmetries properties (P, C, T) are studied. The corresponding dynamical equations are presented. In the (1/2, 0) ⊕ (0, 1/2) representation they obey the Dirac-like equation with eight components, which has been first introduced by Markov. Thus, the Fock space for corresponding quantum fields is doubled (as shown by Ziino). The particular attention has been paid to the questions of chirality and helicity (two concepts which are frequently confused in the literature) for Dirac and Majorana states. We further review several experimental consequences which follow from the previous works of M.Kirchbach et al. on neutrinoless double beta decay, and G.J.Ni et al. on meson lifetimes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Salehi, M.; Jafari, S.A., E-mail: jafari@physics.sharif.edu; Center of Excellence for Complex Systems and Condensed Matter
Bismuth and its alloys provide a paradigm to realize three dimensional materials whose low-energy effective theory is given by Dirac equation in 3+1 dimensions. We study the quantum transport properties of three dimensional Dirac materials within the framework of Landauer–Büttiker formalism. Charge carriers in normal metal satisfying the Schrödinger equation, can be split into four-component with appropriate matching conditions at the boundary with the three dimensional Dirac material (3DDM). We calculate the conductance and the Fano factor of an interface separating 3DDM from a normal metal, as well as the conductance through a slab of 3DDM. Under certain circumstances themore » 3DDM appears transparent to electrons hitting the 3DDM. We find that electrons hitting the metal-3DDM interface from metallic side can enter 3DDM in a reversed spin state as soon as their angle of incidence deviates from the direction perpendicular to interface. However the presence of a second interface completely cancels this effect.« less
Dispersive estimates for massive Dirac operators in dimension two
NASA Astrophysics Data System (ADS)
Erdoğan, M. Burak; Green, William R.; Toprak, Ebru
2018-05-01
We study the massive two dimensional Dirac operator with an electric potential. In particular, we show that the t-1 decay rate holds in the L1 →L∞ setting if the threshold energies are regular. We also show these bounds hold in the presence of s-wave resonances at the threshold. We further show that, if the threshold energies are regular then a faster decay rate of t-1(log t) - 2 is attained for large t, at the cost of logarithmic spatial weights. The free Dirac equation does not satisfy this bound due to the s-wave resonances at the threshold energies.
A Formulation of Quantum Field Theory Realizing a Sea of Interacting Dirac Particles
NASA Astrophysics Data System (ADS)
Finster, Felix
2011-08-01
In this survey article, we explain a few ideas behind the fermionic projector approach and summarize recent results which clarify the connection to quantum field theory. The fermionic projector is introduced, which describes the physical system by a collection of Dirac states, including the states of the Dirac sea. Formulating the interaction by an action principle for the fermionic projector, we obtain a consistent description of interacting quantum fields which reproduces the results of perturbative quantum field theory. We find a new mechanism for the generation of boson masses and obtain small corrections to the field equations which violate causality.
Zero-bias photocurrent in ferromagnetic topological insulator.
Ogawa, N; Yoshimi, R; Yasuda, K; Tsukazaki, A; Kawasaki, M; Tokura, Y
2016-07-20
Magnetic interactions in topological insulators cause essential modifications in the originally mass-less surface states. They offer a mass gap at the Dirac point and/or largely deform the energy dispersion, providing a new path towards exotic physics and applications to realize dissipation-less electronics. The nonequilibrium electron dynamics at these modified Dirac states unveil additional functions, such as highly efficient photon to spin-current conversion. Here we demonstrate the generation of large zero-bias photocurrent in magnetic topological insulator thin films on mid-infrared photoexcitation, pointing to the controllable band asymmetry in the momentum space. The photocurrent spectra with a maximal response to the intra-Dirac-band excitations can be a sensitive measure for the correlation between Dirac electrons and magnetic moments.
NASA Astrophysics Data System (ADS)
Horn, Martin Erik
2014-10-01
It is still a great riddle to me why Wolfgang Pauli and P.A.M. Dirac had not fully grasped the meaning of their own mathematical constructions. They invented magnificent, fantastic and very important mathematical features of modern physics, but they only delivered half of the interpretations of their own inventions. Of course, Pauli matrices and Dirac matrices represent operators, which Pauli and Dirac discussed in length. But this is only part of the true meaning behind them, as the non-commutative ideas of Grassmann, Clifford, Hamilton and Cartan allow a second, very far reaching interpretation of Pauli and Dirac matrices. An introduction to this alternative interpretation will be discussed. Some applications of this view on Pauli and Dirac matrices are given, e.g. a geometric algebra picture of the plane wave solution of the Maxwell equation, a geometric algebra picture of special relativity, a toy model of SU(3) symmetry, and some only very preliminary thoughts about a possible geometric meaning of quantum mechanics.
Analytical study of mode degeneracy in non-Hermitian photonic crystals with TM-like polarization
NASA Astrophysics Data System (ADS)
Yin, Xuefan; Liang, Yong; Ni, Liangfu; Wang, Zhixin; Peng, Chao; Li, Zhengbin
2017-08-01
We present a study of the mode degeneracy in non-Hermitian photonic crystals (PC) with TM-like polarization and C4 v symmetry from the perspective of the coupled-wave theory (CWT). The CWT framework is extended to include TE-TM coupling terms which are critical for modeling the accidental triple degeneracy within non-Hermitian PC systems. We derive the analytical form of the wave function and the condition of Dirac-like-cone dispersion when radiation loss is relatively small. We find that, similar to a real Dirac cone, the Dirac-like cone in non-Hermitian PCs possesses good linearity and isotropy, even with a ring of exceptional points (EPs) inevitably existing in the vicinity of the second-order Γ point. However, the Berry phase remains zero at the Γ point, indicating the cone does not obey the Dirac equation and is only a Dirac-like cone. The topological modal interchange phenomenon and nonzero Berry phase of the EPs are also discussed.
Bohr-Sommerfeld quantization condition for Dirac states derived from an Ermakov-type invariant
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thylwe, Karl-Erik; McCabe, Patrick
2013-05-15
It is shown that solutions of the second-order decoupled radial Dirac equations satisfy Ermakov-type invariants. These invariants lead to amplitude-phase-type representations of the radial spinor solutions, with exact relations between their amplitudes and phases. Implications leading to a Bohr-Sommerfeld quantization condition for bound states, and a few particular atomic/ionic and nuclear/hadronic bound-state situations are discussed.
Absence of Dirac states in BaZnBi 2 induced by spin-orbit coupling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ren, Weijun; Wang, Aifeng; Graf, D.
We report magnetotransport properties of BaZnBi 2 single crystals. Whereas electronic structure features Dirac states, such states are removed from the Fermi level by spin-orbit coupling (SOC) and consequently electronic transport is dominated by the small hole and electron pockets. Our results are consistent with not only three-dimensional, but also with quasi-two-dimensional portions of the Fermi surface. The SOC-induced gap in Dirac states is much larger when compared to isostructural SrMnBi 2. This suggests that not only long-range magnetic order, but also mass of the alkaline-earth atoms A in ABX 2 ( A = alkaline-earth, B = transition-metal, and Xmore » = Bi/Sb) are important for the presence of low-energy states obeying the relativistic Dirac equation at the Fermi surface.« less
Absence of Dirac states in BaZnBi 2 induced by spin-orbit coupling
Ren, Weijun; Wang, Aifeng; Graf, D.; ...
2018-01-22
We report magnetotransport properties of BaZnBi 2 single crystals. Whereas electronic structure features Dirac states, such states are removed from the Fermi level by spin-orbit coupling (SOC) and consequently electronic transport is dominated by the small hole and electron pockets. Our results are consistent with not only three-dimensional, but also with quasi-two-dimensional portions of the Fermi surface. The SOC-induced gap in Dirac states is much larger when compared to isostructural SrMnBi 2. This suggests that not only long-range magnetic order, but also mass of the alkaline-earth atoms A in ABX 2 ( A = alkaline-earth, B = transition-metal, and Xmore » = Bi/Sb) are important for the presence of low-energy states obeying the relativistic Dirac equation at the Fermi surface.« less
Gauge Gravity and Electroweak Theory
NASA Astrophysics Data System (ADS)
Hestenes, David
2008-09-01
Reformulation of the Dirac equation in terms of the real Spacetime Algebra (STA) reveals hidden geometric structure, including a geometric role for the unit imaginary as generator of rotations in a spacelike plane. The STA and the real Dirac equation play essential roles in a new Gauge Theory Gravity (GTG) version of General Relativity (GR). Besides clarifying the conceptual foundations of GR and facilitating complex computations, GTG opens up new possibilities for a unified gauge theory of gravity and quantum mechanics, including spacetime geometry of electroweak interactions. The Weinberg-Salam model fits perfectly into this geometric framework, and a promising variant that replaces chiral states with Majorana states is formulated to incorporate zitterbewegung in electron states.
Exact Solution of Klein-Gordon and Dirac Equations with Snyder-de Sitter Algebra
NASA Astrophysics Data System (ADS)
Merad, M.; Hadj Moussa, M.
2018-01-01
In this paper, we present the exact solution of the (1+1)-dimensional relativistic Klein-Gordon and Dirac equations with linear vector and scalar potentials in the framework of deformed Snyder-de Sitter model. We introduce some changes of variables, we show that a one-dimensional linear potential for the relativistic system in a space deformed can be equivalent to the trigonometric Rosen-Morse potential in a regular space. In both cases, we determine explicitly the energy eigenvalues and their corresponding eigenfunctions expressed in terms of Romonovski polynomials. The limiting cases are analyzed for α 1 and α 2 → 0 and are compared with those of literature.
Semiconductor spintronics: The full matrix approach
NASA Astrophysics Data System (ADS)
Rossani, A.
2015-12-01
A new model, based on an asymptotic procedure for solving the spinor kinetic equations of electrons and phonons is proposed, which gives naturally the displaced Fermi-Dirac distribution function at the leading order. The balance equations for the electron number, energy density and momentum, plus the Poisson’s equation, constitute now a system of six equations. Moreover, two equations for the evolution of the spin densities are added, which account for a general dispersion relation.
Lagrangian geometrical optics of nonadiabatic vector waves and spin particles
Ruiz, D. E.; Dodin, I. Y.
2015-07-29
Linear vector waves, both quantum and classical, experience polarization-driven bending of ray trajectories and polarization dynamics that can be interpreted as the precession of the "wave spin". Here, both phenomena are governed by an effective gauge Hamiltonian vanishing in leading-order geometrical optics. This gauge Hamiltonian can be recognized as a generalization of the Stern-Gerlach Hamiltonian that is commonly known for spin-1/2 quantum particles. The corresponding reduced Lagrangians for continuous nondissipative waves and their geometrical-optics rays are derived from the fundamental wave Lagrangian. The resulting Euler-Lagrange equations can describe simultaneous interactions of N resonant modes, where N is arbitrary, and leadmore » to equations for the wave spin, which happens to be an (N 2 - 1)-dimensional spin vector. As a special case, classical equations for a Dirac particle (N = 2) are deduced formally, without introducing additional postulates or interpretations, from the Dirac quantum Lagrangian with the Pauli term. The model reproduces the Bargmann-Michel-Telegdi equations with added Stern-Gerlach force.« less
Model Prediction of Self-Rotating Excitons in Two-Dimensional Transition-Metal Dichalcogenides
NASA Astrophysics Data System (ADS)
Trushin, Maxim; Goerbig, Mark Oliver; Belzig, Wolfgang
2018-05-01
Using the quasiclassical concept of Berry curvature we demonstrate that a Dirac exciton—a pair of Dirac quasiparticles bound by Coulomb interactions—inevitably possesses an intrinsic angular momentum making the exciton effectively self-rotating. The model is applied to excitons in two-dimensional transition metal dichalcogenides, in which the charge carriers are known to be described by a Dirac-like Hamiltonian. We show that the topological self-rotation strongly modifies the exciton spectrum and, as a consequence, resolves the puzzle of the overestimated two-dimensional polarizability employed to fit earlier spectroscopic measurements.
A new approximation of Fermi-Dirac integrals of order 1/2 for degenerate semiconductor devices
NASA Astrophysics Data System (ADS)
AlQurashi, Ahmed; Selvakumar, C. R.
2018-06-01
There had been tremendous growth in the field of Integrated circuits (ICs) in the past fifty years. Scaling laws mandated both lateral and vertical dimensions to be reduced and a steady increase in doping densities. Most of the modern semiconductor devices have invariably heavily doped regions where Fermi-Dirac Integrals are required. Several attempts have been devoted to developing analytical approximations for Fermi-Dirac Integrals since numerical computations of Fermi-Dirac Integrals are difficult to use in semiconductor devices, although there are several highly accurate tabulated functions available. Most of these analytical expressions are not sufficiently suitable to be employed in semiconductor device applications due to their poor accuracy, the requirement of complicated calculations, and difficulties in differentiating and integrating. A new approximation has been developed for the Fermi-Dirac integrals of the order 1/2 by using Prony's method and discussed in this paper. The approximation is accurate enough (Mean Absolute Error (MAE) = 0.38%) and easy enough to be used in semiconductor device equations. The new approximation of Fermi-Dirac Integrals is applied to a more generalized Einstein Relation which is an important relation in semiconductor devices.
Jang, Woosun; Lee, Jiwoo; In, Chihun; Choi, Hyunyong; Soon, Aloysius
2017-12-06
Despite the ubiquitous nature of the Peltier effect in low-dimensional thermoelectric devices, the influence of finite temperature on the electronic structure and transport in the Dirac heterointerfaces of the few-layer graphene and layered tetradymite, Sb 2 Te 3 (which coincidently have excellent thermoelectric properties) are not well understood. In this work, using the first-principles density-functional theory calculations, we investigate the detailed atomic and electronic structure of these Dirac heterointerfaces of graphene and Sb 2 Te 3 and further re-examine the effect of finite temperature on the electronic band structures using a phenomenological temperature-broadening model based on Fermi-Dirac statistics. We then proceed to understand the underlying charge redistribution process in this Dirac heterointerfaces and through solving the Boltzmann transport equation, we present the theoretical evidence of electron-hole asymmetry in its electrical conductivity as a consequence of this charge redistribution mechanism. We finally propose that the hexagonal-stacked Dirac heterointerfaces are useful as efficient p-n junction building blocks in the next-generation thermoelectric devices where the electron-hole asymmetry promotes the thermoelectric transport by "hot" excited charge carriers.
Singular solution of the Feller diffusion equation via a spectral decomposition.
Gan, Xinjun; Waxman, David
2015-01-01
Feller studied a branching process and found that the distribution for this process approximately obeys a diffusion equation [W. Feller, in Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability (University of California Press, Berkeley and Los Angeles, 1951), pp. 227-246]. This diffusion equation and its generalizations play an important role in many scientific problems, including, physics, biology, finance, and probability theory. We work under the assumption that the fundamental solution represents a probability density and should account for all of the probability in the problem. Thus, under the circumstances where the random process can be irreversibly absorbed at the boundary, this should lead to the presence of a Dirac delta function in the fundamental solution at the boundary. However, such a feature is not present in the standard approach (Laplace transformation). Here we require that the total integrated probability is conserved. This yields a fundamental solution which, when appropriate, contains a term proportional to a Dirac delta function at the boundary. We determine the fundamental solution directly from the diffusion equation via spectral decomposition. We obtain exact expressions for the eigenfunctions, and when the fundamental solution contains a Dirac delta function at the boundary, every eigenfunction of the forward diffusion operator contains a delta function. We show how these combine to produce a weight of the delta function at the boundary which ensures the total integrated probability is conserved. The solution we present covers cases where parameters are time dependent, thereby greatly extending its applicability.
Singular solution of the Feller diffusion equation via a spectral decomposition
NASA Astrophysics Data System (ADS)
Gan, Xinjun; Waxman, David
2015-01-01
Feller studied a branching process and found that the distribution for this process approximately obeys a diffusion equation [W. Feller, in Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability (University of California Press, Berkeley and Los Angeles, 1951), pp. 227-246]. This diffusion equation and its generalizations play an important role in many scientific problems, including, physics, biology, finance, and probability theory. We work under the assumption that the fundamental solution represents a probability density and should account for all of the probability in the problem. Thus, under the circumstances where the random process can be irreversibly absorbed at the boundary, this should lead to the presence of a Dirac delta function in the fundamental solution at the boundary. However, such a feature is not present in the standard approach (Laplace transformation). Here we require that the total integrated probability is conserved. This yields a fundamental solution which, when appropriate, contains a term proportional to a Dirac delta function at the boundary. We determine the fundamental solution directly from the diffusion equation via spectral decomposition. We obtain exact expressions for the eigenfunctions, and when the fundamental solution contains a Dirac delta function at the boundary, every eigenfunction of the forward diffusion operator contains a delta function. We show how these combine to produce a weight of the delta function at the boundary which ensures the total integrated probability is conserved. The solution we present covers cases where parameters are time dependent, thereby greatly extending its applicability.
Hamiltonian formulation of the KdV equation
NASA Astrophysics Data System (ADS)
Nutku, Y.
1984-06-01
We consider the canonical formulation of Whitham's variational principle for the KdV equation. This Lagrangian is degenerate and we have found it necessary to use Dirac's theory of constrained systems in constructing the Hamiltonian. Earlier discussions of the Hamiltonian structure of the KdV equation were based on various different decompositions of the field which is avoided by this new approach.
NASA Astrophysics Data System (ADS)
Wills, John M.; Mattsson, Ann E.
2012-02-01
Density functional theory (DFT) provides a formally predictive base for equation of state properties. Available approximations to the exchange/correlation functional provide accurate predictions for many materials in the periodic table. For heavy materials however, DFT calculations, using available functionals, fail to provide quantitative predictions, and often fail to be even qualitative. This deficiency is due both to the lack of the appropriate confinement physics in the exchange/correlation functional and to approximations used to evaluate the underlying equations. In order to assess and develop accurate functionals, it is essential to eliminate all other sources of error. In this talk we describe an efficient first-principles electronic structure method based on the Dirac equation and compare the results obtained with this method with other methods generally used. Implications for high-pressure equation of state of relativistic materials are demonstrated in application to Ce and the light actinides. Sandia National Laboratories is a multi-program laboratory managed andoperated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Gradients and Non-Adiabatic Derivative Coupling Terms for Spin-Orbit Wavefunctions
2011-06-01
derivative, symmetric to the first time derivative. Solutions to the Dirac equation simultaneously satisfy the simple relativistic wave equation, the...For Pooki vi Acknowledgments I would like to thank the members of my committee for their time and...Theorem..............................................................................191 Appendix J. The Symmetric Group
Hydrogenated arsenenes as planar magnet and Dirac material
NASA Astrophysics Data System (ADS)
Zhang, Shengli; Hu, Yonghong; Hu, Ziyu; Cai, Bo; Zeng, Haibo
2015-07-01
Arsenene and antimonene are predicted to have 2.49 and 2.28 eV band gaps, which have aroused intense interest in the two-dimensional (2D) semiconductors for nanoelectronic and optoelectronic devices. Here, the hydrogenated arsenenes are reported to be planar magnet and 2D Dirac materials based on comprehensive first-principles calculations. The semi-hydrogenated (SH) arsenene is found to be a quasi-planar magnet, while the fully hydrogenated (FH) arsenene is a planar Dirac material. The buckling height of pristine arsenene is greatly decreased by the hydrogenation, resulting in a planar and relatively low-mass-density sheet. The electronic structures of arsenene are also evidently altered after hydrogenating from wide-band-gap semiconductor to metallic material for SH arsenene, and then to Dirac material for FH arsenene. The SH arsenene has an obvious magnetism, mainly contributed by the p orbital of the unsaturated As atom. Such magnetic and Dirac materials modified by hydrogenation of arsenene may have potential applications in future optoelectronic and spintronic devices.
Strain-Mediated Modification of Phagraphene Dirac Cones
Lopez-Bezanilla, Alejandro
2016-07-07
We present a first-principles study on the electronic and dynamical properties of phagraphene [Nano Lett., 2015, 15 (9), pp 6182]. This carbon allotrope exhibits a square unit cell, Dirac cones, and robustness against uniaxial deformation. By analyzing the contribution of each carbon atom orbital in the formation of the electronic states, we conclude that only the pz orbitals of eight out of the twenty atoms in the square unit cell are responsible of the formation of the nano-structure Dirac cones. Spatial symmetry breaking of the underlying honeycomb-like network upon shear stress application leads to a band gap opening. The analysismore » of the phonon spectra demonstrates that the dynamical stability of phagraphene is guaranteed for small distortion angles. Phagraphene is identified here as the first all-C graphitic monolayer with Dirac cones modifiable by a small and realistic physical deformation. The analysis and conclusions of this study can be applied to other monolayered materials exhibiting Dirac cones in square lattices.« less
Atomic and Excitonic Stability in Dirac Materials: A White Dwarf Perspective
NASA Astrophysics Data System (ADS)
Velizhanin, Kirill
2014-03-01
Dirac materials - systems where the low-energy spectrum of electronic excitations can be understood via solving the Dirac equation - draw a great amount of attention of the scientific community lately due to their enormous application potential and interesting basic physics. Examples of such materials include carbon nanotubes, graphene and, more recently, single-layer transition metal dichalcogenides. One surprising application of Dirac materials is their use as a platform to simulate various atomic and high-energy physics ``on a chip.'' For example, graphene has been recently used to ``mimic'' an atomic collapse of superheavy atoms [Y. Wang et al, Science, 340, 734, 2013]. In this talk I will discuss an unexpected similarity between atomic and excitonic collapse in Dirac materials and the limit of stability of such exotic astrophysical objects as degenerate stars (e.g., white dwarfs, neutron stars). Various aspects of this similarity, e.g., an application of the concept of the Chandrasekhar limit to the exciton stability in transition metal dichalcogenides, will be discussed. This work was performed under the NNSA of the U.S. DOE at LANL under Contract No. DE-AC52-06NA25396.
Analytic algorithms for determining radiative transfer optical properties of ocean waters.
Kaskas, Ayse; Güleçyüz, Mustafa C; Tezcan, Cevdet; McCormick, Norman J
2006-10-10
A synthetic model for the scattering phase function is used to develop simple algebraic equations, valid for any water type, for evaluating the ratio of the backscattering to absorption coefficients of spatially uniform, very deep waters with data from upward and downward planar irradiances and the remotely sensed reflectance. The phase function is a variable combination of a forward-directed Dirac delta function plus isotropic scattering, which is an elementary model for strongly forward scattering such as that encountered in oceanic optics applications. The incident illumination at the surface is taken to be diffuse plus a collimated beam. The algorithms are compared with other analytic correlations that were previously derived from extensive numerical simulations, and they are also numerically tested with forward problem results computed with a modified FN method.
Casimir force in a Lorentz violating theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frank, Mariana; Turan, Ismail
2006-08-01
We study the effects of the minimal extension of the standard model including Lorentz violation on the Casimir force between two parallel conducting plates in the vacuum. We provide explicit solutions for the electromagnetic field using scalar field analogy, for both the cases in which the Lorentz violating terms come from the CPT-even or CPT-odd terms. We also calculate the effects of the Lorentz violating terms for a fermion field between two parallel conducting plates and analyze the modifications of the Casimir force due to the modifications of the Dirac equation. In all cases under consideration, the standard formulas formore » the Casimir force are modified by either multiplicative or additive correction factors, the latter case exhibiting different dependence on the distance between the plates.« less
Fermions tunneling from a general static Riemann black hole
NASA Astrophysics Data System (ADS)
Chen, Ge-Rui; Huang, Yong-Chang
2015-05-01
In this paper we investigate the tunneling of fermions from a general static Riemann black hole by following Kerner and Mann (Class Quantum Gravit 25:095014, 2008a; Phys Lett B 665:277-283, 2008b) methods. By applying the WKB approximation and the Hamilton-Jacobi ansatz to the Dirac equation, we obtain the standard Hawking temperature. Furthermore, Kerner and Mann (Class Quantum Gravit 25:095014, 2008a; Phys Lett B 665:277-283, 2008b) only calculated the tunneling spectrum of the Dirac particles with spin-up, and we extend the methods to investigate the tunneling of Dirac particles with arbitrary spin directions and also obtain the expected Hawking temperature. Our result provides further evidence for the universality of black hole radiation.
Magnetic monopole in noncommutative space-time and Wu-Yang singularity-free gauge transformations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Laangvik, Miklos; Salminen, Tapio; Tureanu, Anca
2011-04-15
We investigate the validity of the Dirac quantization condition for magnetic monopoles in noncommutative space-time. We use an approach which is based on an extension of the method introduced by Wu and Yang. To study the effects of noncommutativity of space-time, we consider the gauge transformations of U{sub *}(1) gauge fields and use the corresponding deformed Maxwell's equations. Using a perturbation expansion in the noncommutativity parameter {theta}, we show that the Dirac quantization condition remains unmodified up to the first order in the expansion parameter. The result is obtained for a class of noncommutative source terms, which reduce to themore » Dirac delta function in the commutative limit.« less
NASA Astrophysics Data System (ADS)
Sameer, M. Ikhdair; Majid, Hamzavi
2013-09-01
Approximate analytical solutions of the Dirac equation for Tietz—Hua (TH) potential including Coulomb-like tensor (CLT) potential with arbitrary spin—orbit quantum number κ are obtained within the Pekeris approximation scheme to deal with the spin—orbit coupling terms κ(κ ± 1)r-2. Under the exact spin and pseudospin symmetric limitation, bound state energy eigenvalues and associated unnormalized two-component wave functions of the Dirac particle in the field of both attractive and repulsive TH potential with tensor potential are found using the parametric Nikiforov—Uvarov (NU) method. The cases of the Morse oscillator with tensor potential, the generalized Morse oscillator with tensor potential, and the non-relativistic limits have been investigated.
NASA Astrophysics Data System (ADS)
Ikot, Akpan N.; Maghsoodi, Elham; Hassanabadi, Hassan; Obu, Joseph A.
2014-05-01
In this paper, we obtain the approximate analytical bound-state solutions of the Dirac particle with the generalized Yukawa potential within the framework of spin and pseudospin symmetries for the arbitrary к state with a generalized tensor interaction. The generalized parametric Nikiforov-Uvarov method is used to obtain the energy eigenvalues and the corresponding wave functions in closed form. We also report some numerical results and present figures to show the effect of the tensor interaction.
Robust state preparation in quantum simulations of Dirac dynamics
NASA Astrophysics Data System (ADS)
Song, Xue-Ke; Deng, Fu-Guo; Lamata, Lucas; Muga, J. G.
2017-02-01
A nonrelativistic system such as an ultracold trapped ion may perform a quantum simulation of a Dirac equation dynamics under specific conditions. The resulting Hamiltonian and dynamics are highly controllable, but the coupling between momentum and internal levels poses some difficulties to manipulate the internal states accurately in wave packets. We use invariants of motion to inverse engineer robust population inversion processes with a homogeneous, time-dependent simulated electric field. This exemplifies the usefulness of inverse-engineering techniques to improve the performance of quantum simulation protocols.
Effect of Fourier transform on the streaming in quantum lattice gas algorithms
NASA Astrophysics Data System (ADS)
Oganesov, Armen; Vahala, George; Vahala, Linda; Soe, Min
2018-04-01
All our previous quantum lattice gas algorithms for nonlinear physics have approximated the kinetic energy operator by streaming sequences to neighboring lattice sites. Here, the kinetic energy can be treated to all orders by Fourier transforming the kinetic energy operator with interlaced Dirac-based unitary collision operators. Benchmarking against exact solutions for the 1D nonlinear Schrodinger equation shows an extended range of parameters (soliton speeds and amplitudes) over the Dirac-based near-lattice-site streaming quantum algorithm.
Hydrodynamics of the Dirac spectrum
Liu, Yizhuang; Warchoł, Piotr; Zahed, Ismail
2015-12-15
We discuss a hydrodynamical description of the eigenvalues of the Dirac spectrum in even dimensions in the vacuum and in the large N (volume) limit. The linearized hydrodynamics supports sound waves. The hydrodynamical relaxation of the eigenvalues is captured by a hydrodynamical (tunneling) minimum configuration which follows from a pertinent form of Euler equation. As a result, the relaxation from a phase of unbroken chiral symmetry to a phase of broken chiral symmetry occurs over a time set by the speed of sound.
One-dimensional Coulomb problem in Dirac materials
NASA Astrophysics Data System (ADS)
Downing, C. A.; Portnoi, M. E.
2014-11-01
We investigate the one-dimensional Coulomb potential with application to a class of quasirelativistic systems, so-called Dirac-Weyl materials, described by matrix Hamiltonians. We obtain the exact solution of the shifted and truncated Coulomb problems, with the wave functions expressed in terms of special functions (namely, Whittaker functions), while the energy spectrum must be determined via solutions to transcendental equations. Most notably, there are critical band gaps below which certain low-lying quantum states are missing in a manifestation of atomic collapse.
Exactly solvable relativistic model with the anomalous interaction
NASA Astrophysics Data System (ADS)
Ferraro, Elena; Messina, Antonino; Nikitin, A. G.
2010-04-01
A special class of Dirac-Pauli equations with time-like vector potentials of an external field is investigated. An exactly solvable relativistic model describing the anomalous interaction of a neutral Dirac fermion with a cylindrically symmetric external electromagnetic field is presented. The related external field is a superposition of the electric field generated by a charged infinite filament and the magnetic field generated by a straight line current. In the nonrelativistic approximation the considered model is reduced to the integrable Pron’ko-Stroganov model.
NASA Astrophysics Data System (ADS)
Filatov, Michael; Cremer, Dieter
2005-02-01
The regular approximation to the normalized elimination of the small component (NESC) in the modified Dirac equation has been developed and presented in matrix form. The matrix form of the infinite-order regular approximation (IORA) expressions, obtained in [Filatov and Cremer, J. Chem. Phys. 118, 6741 (2003)] using the resolution of the identity, is the exact matrix representation and corresponds to the zeroth-order regular approximation to NESC (NESC-ZORA). Because IORA (=NESC-ZORA) is a variationally stable method, it was used as a suitable starting point for the development of the second-order regular approximation to NESC (NESC-SORA). As shown for hydrogenlike ions, NESC-SORA energies are closer to the exact Dirac energies than the energies from the fifth-order Douglas-Kroll approximation, which is much more computationally demanding than NESC-SORA. For the application of IORA (=NESC-ZORA) and NESC-SORA to many-electron systems, the number of the two-electron integrals that need to be evaluated (identical to the number of the two-electron integrals of a full Dirac-Hartree-Fock calculation) was drastically reduced by using the resolution of the identity technique. An approximation was derived, which requires only the two-electron integrals of a nonrelativistic calculation. The accuracy of this approach was demonstrated for heliumlike ions. The total energy based on the approximate integrals deviates from the energy calculated with the exact integrals by less than 5×10-9hartree units. NESC-ZORA and NESC-SORA can easily be implemented in any nonrelativistic quantum chemical program. Their application is comparable in cost with that of nonrelativistic methods. The methods can be run with density functional theory and any wave function method. NESC-SORA has the advantage that it does not imply a picture change.
Analytical solutions of the two-dimensional Dirac equation for a topological channel intersection
NASA Astrophysics Data System (ADS)
Anglin, J. R.; Schulz, A.
2017-01-01
Numerical simulations in a tight-binding model have shown that an intersection of topologically protected one-dimensional chiral channels can function as a beam splitter for noninteracting fermions on a two-dimensional lattice [Qiao, Jung, and MacDonald, Nano Lett. 11, 3453 (2011), 10.1021/nl201941f; Qiao et al., Phys. Rev. Lett. 112, 206601 (2014), 10.1103/PhysRevLett.112.206601]. Here we confirm this result analytically in the corresponding continuum k .p model, by solving the associated two-dimensional Dirac equation, in the presence of a "checkerboard" potential that provides a right-angled intersection between two zero-line modes. The method by which we obtain our analytical solutions is systematic and potentially generalizable to similar problems involving intersections of one-dimensional systems.
Lattice Boltzmann method for bosons and fermions and the fourth-order Hermite polynomial expansion.
Coelho, Rodrigo C V; Ilha, Anderson; Doria, Mauro M; Pereira, R M; Aibe, Valter Yoshihiko
2014-04-01
The Boltzmann equation with the Bhatnagar-Gross-Krook collision operator is considered for the Bose-Einstein and Fermi-Dirac equilibrium distribution functions. We show that the expansion of the microscopic velocity in terms of Hermite polynomials must be carried to the fourth order to correctly describe the energy equation. The viscosity and thermal coefficients, previously obtained by Yang et al. [Shi and Yang, J. Comput. Phys. 227, 9389 (2008); Yang and Hung, Phys. Rev. E 79, 056708 (2009)] through the Uehling-Uhlenbeck approach, are also derived here. Thus the construction of a lattice Boltzmann method for the quantum fluid is possible provided that the Bose-Einstein and Fermi-Dirac equilibrium distribution functions are expanded to fourth order in the Hermite polynomials.
Coulomb Problem for Z > Zcr in Doped Graphene
NASA Astrophysics Data System (ADS)
Kuleshov, V. M.; Mur, V. D.; Fedotov, A. M.; Lozovik, Yu. E.
2017-12-01
The dynamics of charge carriers in doped graphene, i.e., graphene with a gap in the energy spectrum depending on the substrate, in the presence of a Coulomb impurity with charge Z is considered within the effective two-dimensional Dirac equation. The wave functions of carriers with conserved angular momentum J = M + 1/2 are determined for a Coulomb potential modified at small distances. This case, just as any two-dimensional physical system, admits both integer and half-integer quantization of the orbital angular momentum in plane, M = 0, ±1, ±2, …. For J = 0, ±1/2, ±1, critical values of the effective charge Z cr( J, n) are calculated for which a level with angular momentum J and radial quantum numbers n = 0 and n = 1 reaches the upper boundary of the valence band. For Z < Z cr ( J, n = 0), the energy of a level is presented as a function of charge Z for the lowest values of orbital angular momentum M, the level with J = 0 being the first to descend to the band edge. For Z > Z cr ( J, n = 0), scattering phases are calculated as a function of hole energy for several values of supercriticality, as well as the positions ɛ0 and widths γ of quasistationary states as a function of supercriticality. The values of ɛ0* and width γ* are pointed out for which quasidiscrete levels may show up as Breit-Wigner resonances in the scattering of holes by a supercritical impurity. Since the phases are real, the partial scattering matrix is unitary, so that the radial Dirac equation is consistent even for Z > Z cr. In this single-particle approximation, there is no spontaneous creation of electron-hole pairs, and the impurity charge cannot be screened by this mechanism.
Relativistic particle in a box: Klein-Gordon versus Dirac equations
NASA Astrophysics Data System (ADS)
Alberto, Pedro; Das, Saurya; Vagenas, Elias C.
2018-03-01
The problem of a particle in a box is probably the simplest problem in quantum mechanics which allows for significant insight into the nature of quantum systems and thus is a cornerstone in the teaching of quantum mechanics. In relativistic quantum mechanics this problem allows also to highlight the implications of special relativity for quantum physics, namely the effect that spin has on the quantised energy spectra. To illustrate this point, we solve the problem of a spin zero relativistic particle in a one- and three-dimensional box using the Klein-Gordon equation in the Feshbach-Villars formalism. We compare the solutions and the energy spectra obtained with the corresponding ones from the Dirac equation for a spin one-half relativistic particle. We note the similarities and differences, in particular the spin effects in the relativistic energy spectrum. As expected, the non-relativistic limit is the same for both kinds of particles, since, for a particle in a box, the spin contribution to the energy is a relativistic effect.
Renormalization of Coulomb interactions in a system of two-dimensional tilted Dirac fermions
NASA Astrophysics Data System (ADS)
Lee, Yu-Wen; Lee, Yu-Li
2018-01-01
We investigate the effects of long-ranged Coulomb interactions in a tilted Dirac semimetal in two dimensions by using the perturbative renormalization-group (RG) method. Depending on the magnitude of the tilting parameter, the undoped system can have either Fermi points (type I) or Fermi lines (type II). Previous studies usually performed the renormalization-group transformations by integrating out the modes with large momenta. This is problematic when the Fermi surface is open, like type-II Dirac fermions. In this work we study the effects of Coulomb interactions, following the spirit of Shankar [Rev. Mod. Phys. 66, 129 (1994), 10.1103/RevModPhys.66.129], by introducing a cutoff in the energy scale around the Fermi surface and integrating out the high-energy modes. For type-I Dirac fermions, our result is consistent with that of the previous work. On the other hand, we find that for type-II Dirac fermions, the magnitude of the tilting parameter increases monotonically with lowering energies. This implies the stability of type-II Dirac fermions in the presence of Coulomb interactions, in contrast with previous results. Furthermore, for type-II Dirac fermions, the velocities in different directions acquire different renormalization even if they have the same bare values. By taking into account the renormalization of the tilting parameter and the velocities due to the Coulomb interactions, we show that while the presence of a charged impurity leads only to charge redistribution around the impurity for type-I Dirac fermions, for type-II Dirac fermions, the impurity charge is completely screened, albeit with a very long screening length. The latter indicates that the temperature dependence of physical observables are essentially determined by the RG equations we derived. We illustrate this by calculating the temperature dependence of the compressibility and specific heat of the interacting tilted Dirac fermions.
NASA Astrophysics Data System (ADS)
Matsushita, Taiki; Liu, Tianyu; Mizushima, Takeshi; Fujimoto, Satoshi
2018-04-01
It has been predicted that emergent chiral magnetic fields can be generated by crystal deformation in Weyl/Dirac metals and superconductors. The emergent fields give rise to chiral anomaly phenomena as in the case of Weyl semimetals with usual electromagnetic fields. Here, we clarify effects of the chiral magnetic field on Cooper pairs in Weyl/Dirac superconductors on the basis of the Ginzburg-Landau equation microscopically derived from the quasiclassical Eilenberger formalism. It is found that Cooper pairs are affected by the emergent chiral magnetic field in a dramatic way, and the pseudo-Lorentz force due to the chiral magnetic field stabilizes the Fulde-Ferrell state and causes a charge/spin supercurrent, which flows parallel to the chiral magnetic field in the case of Weyl/Dirac superconductors. This effect is in analogy with the chiral magnetic effect of Weyl semimetals. In addition, we elucidate that neither Meissner effect nor vortex state due to chiral magnetic fields occurs.
An integrable family of Monge-Ampère equations and their multi-Hamiltonian structure
NASA Astrophysics Data System (ADS)
Nutku, Y.; Sarioǧlu, Ö.
1993-02-01
We have identified a completely integrable family of Monge-Ampère equations through an examination of their Hamiltonian structure. Starting with a variational formulation of the Monge-Ampère equations we have constructed the first Hamiltonian operator through an application of Dirac's theory of constraints. The completely integrable class of Monge-Ampère equations are then obtained by solving the Jacobi identities for a sufficiently general form of the second Hamiltonian operator that is compatible with the first.
Dirac field and gravity in NC SO(2,3)_\\star model
NASA Astrophysics Data System (ADS)
Gočanin, Dragoljub; Radovanović, Voja
2018-03-01
Action for the Dirac spinor field coupled to gravity on noncommutative (NC) Moyal-Weyl spacetime is obtained without prior knowledge of the metric tensor. We emphasize gauge origins of gravity and its interaction with fermions by demonstrating that a classical action invariant under SO(2, 3) gauge transformations can be exactly reduced to the Dirac action in curved spacetime after breaking the original symmetry down to the local Lorentz SO(1, 3) symmetry. The commutative SO(2, 3) invariant action can be straightforwardly deformed via Moyal-Weyl \\star -product to its NC SO(2,3)_\\star invariant version which can be expanded perturbatively in powers of the deformation parameter using the Seiberg-Witten map. The NC gravity-matter couplings in the expansion arise as an effect of the gauge symmetry breaking. We calculate in detail the first order NC correction to the classical Dirac action in curved spacetime and show that it does not vanish. Moreover, linear NC effects are apparent even in flat spacetime. We analyse NC deformation of the Dirac equation, Feynman propagator and dispersion relation for electrons in Minkowski spacetime and conclude that constant NC background acts as a birefringent medium for electrons propagating in it.
Hydrodynamic & Transport Properties of Dirac Materials in the Quantum Limit
NASA Astrophysics Data System (ADS)
Gochan, Matthew; Bedell, Kevin
Dirac materials are a versatile class of materials in which an abundance of unique physical phenomena can be observed. Such materials are found in all dimensions, with the shared property that their low-energy fermionic excitations behave as massless Dirac fermions and are therefore governed by the Dirac equation. The most popular Dirac material, its two dimensional version in graphene, is the focus of this work. We seek a deeper understanding of the interactions in the quantum limit within graphene. Specifically, we derive hydrodynamic and transport properties, such as the conductivity, viscosity, and spin diffusion, in the low temperature regime where electron-electron scattering is dominant. To conclude, we look at the so-called universal lower bound conjectured by the anti-de Sitter/conformal field theory (AdS/CFT) correspondence for the ratio of shear viscosity to entropy density ratio. The lower bound, given by η / s >= ℏ / (4 πkB) , is supposedly obeyed by all quantum fluids. This leads us to ask whether or not graphene can be considered a quantum fluid and perhaps a ''nearly perfect fluid''(NPF) if this is the case, is it possible to find a violation of this bound at low temperatures.
Relativistic space-charge-limited transport in Dirac semiconductor
NASA Astrophysics Data System (ADS)
Ang, Yee Sin; Zubair, M.; Ang, L. K.; Lavoie, Philippe
The theory of space-charge-limited (SCL) current was first formulated by Mott and Gurney more than 70 years ago based on the semiclassical transport of quasi-free electron in dielectric solids. Its validity for recently fabricated 2D materials, which can host different classes of exotic quasiparticles, remains questionable. Recently, SCL transport measurements in 2D Dirac semiconductor, such as MoS2 and hBN monolayers, revealed anomalous current-voltage scaling of J V 1 . 7 which cannot be satisfactorily explained by conventional theories. In this work, we propose a theory of space-charge-limited transport that takes into account the relativistic quasiparticle dynamics in 2D Dirac semiconductor based on semiclassical Boltzmann transport equation. Our relativistic SCL model reveals an unconventional scaling relation of J Vα with 3 / 2 < α < 2 in the trap-free (or trap-filled) regime, which is in stark contrast to the Mott-Gurney relation of α = 2 and the Mark-Helfrich relation of α > 2 . The α < 2 scaling is a unique manifestation of the massive Dirac quasiparticles and is supported by the experimental data of MoS2. The relativistic SCL model proposed here shall provide a physical basis for the modelling of Dirac-material-based devices
Inertial Mass from Spin Nonlinearity
NASA Astrophysics Data System (ADS)
Cohen, Marcus
The inertial mass of a Fermion shows up as chiral cross-coupling in its Dirac system. No scalar term can invariantly couple left and right chirality fields; the Dirac matrices must be spin tensors of mixed chirality. We show how such tensor couplings could arise from nonlinear mixing of four spinor fields, two representing the local electron fields and two inertial spinor fields sourced in the distant masses. We thus give a model that implements Mach's principle. Following Mendel Sachs,1 we let the inertial spinors factor the moving spacetime tetrads qα(x) and bar {q}α (x) that appear in the Dirac operator. The inertial spinors do more than set the spacetime "stage;" they are players in the chiral dynamics. Specifically, we show how the massive Dirac system arises as the envelope modulation equations coupling left and right chirality electron fields on a Friedmann universe via nonlinear "spin gratings" with the inertial spinor fields. These gratings implement Penrose's "mass-scatterings," which keep the null zig-zags of the bispinor wave function confined to a timelike world tube. Local perturbations to the inertial spinor fields appear in the Dirac system as Abelian and non-Abelian vector potentials.
From Rational Numbers to Dirac's Bra and Ket: Symbolic Representation of Physical Laws
NASA Astrophysics Data System (ADS)
D'Agostino, Salvo
2002-05-01
Beginning at least in the nineteenth century, symbols used by physicists in their equations interacted with their physical concepts. In the 1850s, Wilhelm Eduard Weber introduced a more rational order into symbolization by adopting an absolute system of units, and thus expressing electrodynamic laws in the form of algebraic equations instead of proportionality relationships, the formerly accepted representation of physical laws. In the 1860s, James Clerk Maxwell made a further advance by using dimensional quantities, and more complex symbolic forms such as gradient, convergence, rotor, and the like, in his electromagnetic and kinetic theories. In the twentieth century, Werner Heisenberg, Max Born, Erwin Schrödinger, and others introduced new symbols for complex numbers, operators, and matrices, thus passing from the representation of metrical properties of physical systems to higher-level mathematical objects. This process was enhanced in modern theoretical physics through the introduction of matrices, creation and destruction operators, Paul A. M. Dirac's q and c numbers, and so on. In the 1930s, Dirac radicalized this transformation of symbols, being aware of the profound modification in the method and scope of the mathematical-physical relationship it entailed.
Spinning particle and gauge theories as integrability conditions
NASA Astrophysics Data System (ADS)
Eisenberg, Yeshayahu
1992-02-01
Starting from a new four dimensional spinning point particle we obtain new representations of the standard four dimensional gauge field equations in terms of a generalized space (Minkowski + light cone). In terms of this new formulation we define linear systems whose integrability conditions imply the massive Dirac-Maxwell and the Yang-Mills equations. Research supported by the Rothschild Fellowship.
Accurate wavelengths for X-ray spectroscopy and the NIST hydrogen-like ion database
NASA Astrophysics Data System (ADS)
Kotochigova, S. A.; Kirby, K. P.; Brickhouse, N. S.; Mohr, P. J.; Tupitsyn, I. I.
2005-06-01
We have developed an ab initio multi-configuration Dirac-Fock-Sturm method for the precise calculation of X-ray emission spectra, including energies, transition wavelengths and transition probabilities. The calculations are based on non-orthogonal basis sets, generated by solving the Dirac-Fock and Dirac-Fock-Sturm equations. Inclusion of Sturm functions into the basis set provides an efficient description of correlation effects in highly charged ions and fast convergence of the configuration interaction procedure. A second part of our study is devoted to developing a theoretical procedure and creating an interactive database to generate energies and transition frequencies for hydrogen-like ions. This procedure is highly accurate and based on current knowledge of the relevant theory, which includes relativistic, quantum electrodynamic, recoil, and nuclear size effects.
Shortcuts to adiabaticity. Suppression of pair production in driven Dirac dynamics
Deffner, Sebastian
2015-12-21
By achieving effectively adiabatic dynamics in finite time, we have found that it is our ubiquitous goal in virtually all areas of modern physics. So-called shortcuts to adiabaticity refer to a set of methods and techniques that allow us to produce in a short time the same final state that would result from an adiabatic, infinitely slow process. In this paper we generalize one of these methods—the fast-forward technique—to driven Dirac dynamics. We find that our main result shortcuts to adiabaticity for the (1+1)-dimensional Dirac equation are facilitated by a combination of both scalar and pseudoscalar potentials. Our findings aremore » illustrated for two analytically solvable examples, namely charged particles driven in spatially homogeneous and linear vector fields.« less
PADÉ APPROXIMANTS FOR THE EQUATION OF STATE FOR RELATIVISTIC HYDRODYNAMICS BY KINETIC THEORY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsai, Shang-Hsi; Yang, Jaw-Yen, E-mail: shanghsi@gmail.com
2015-07-20
A two-point Padé approximant (TPPA) algorithm is developed for the equation of state (EOS) for relativistic hydrodynamic systems, which are described by the classical Maxwell–Boltzmann statistics and the semiclassical Fermi–Dirac statistics with complete degeneracy. The underlying rational function is determined by the ratios of the macroscopic state variables with various orders of accuracy taken at the extreme relativistic limits. The nonunique TPPAs are validated by Taub's inequality for the consistency of the kinetic theory and the special theory of relativity. The proposed TPPA is utilized in deriving the EOS of the dilute gas and in calculating the specific heat capacity,more » the adiabatic index function, and the isentropic sound speed of the ideal gas. Some general guidelines are provided for the application of an arbitrary accuracy requirement. The superiority of the proposed TPPA is manifested in manipulating the constituent polynomials of the approximants, which avoids the arithmetic complexity of struggling with the modified Bessel functions and the hyperbolic trigonometric functions arising from the relativistic kinetic theory.« less
Influence of dense plasma on the energy levels and transition properties in highly charged ions
NASA Astrophysics Data System (ADS)
Chen, Zhan-Bin; Hu, Hong-Wei; Ma, Kun; Liu, Xiao-Bin; Guo, Xue-Ling; Li, Shuang; Zhu, Bo-Hong; Huang, Lian; Wang, Kai
2018-03-01
The studies of the influence of plasma environments on the level structures and transition properties for highly charged ions are presented. For the relativistic treatment, we implemented the multiconfiguration Dirac-Fock method incorporating the ion sphere (IS) model potential, in which the plasma screening is taken into account as a modified interaction potential between the electron and the nucleus. For the nonrelativistic treatment, analytical solutions of the Schrödinger equation with two types of the IS screened potential are proposed. The Ritz variation method is used with hydrogenic wave function as a trial wave function that contains two unknown variational parameters. Bound energies are derived from an energy equation, and the variational parameters are obtained from the minimisation condition of the expectation value of the energy. Numerical results for hydrogen-like ions in dense plasmas are presented as examples. A detailed analysis of the influence of relativistic effects on the energy levels and transition properties is also reported. Our results are compared with available results in the literature showing a good quantitative agreement.
A convergent 2D finite-difference scheme for the Dirac–Poisson system and the simulation of graphene
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brinkman, D., E-mail: Daniel.Brinkman@asu.edu; School of Mathematical and Statistical Sciences, Arizona State University, Tempe, AZ 85287; Heitzinger, C., E-mail: Clemens.Heitzinger@asu.edu
2014-01-15
We present a convergent finite-difference scheme of second order in both space and time for the 2D electromagnetic Dirac equation. We apply this method in the self-consistent Dirac–Poisson system to the simulation of graphene. The model is justified for low energies, where the particles have wave vectors sufficiently close to the Dirac points. In particular, we demonstrate that our method can be used to calculate solutions of the Dirac–Poisson system where potentials act as beam splitters or Veselago lenses.
Wigner functions for fermions in strong magnetic fields
NASA Astrophysics Data System (ADS)
Sheng, Xin-li; Rischke, Dirk H.; Vasak, David; Wang, Qun
2018-02-01
We compute the covariant Wigner function for spin-(1/2) fermions in an arbitrarily strong magnetic field by exactly solving the Dirac equation at non-zero fermion-number and chiral-charge densities. The Landau energy levels as well as a set of orthonormal eigenfunctions are found as solutions of the Dirac equation. With these orthonormal eigenfunctions we construct the fermion field operators and the corresponding Wigner-function operator. The Wigner function is obtained by taking the ensemble average of the Wigner-function operator in global thermodynamical equilibrium, i.e., at constant temperature T and non-zero fermion-number and chiral-charge chemical potentials μ and μ_5, respectively. Extracting the vector and axial-vector components of the Wigner function, we reproduce the currents of the chiral magnetic and separation effect in an arbitrarily strong magnetic field.
Fully adaptive propagation of the quantum-classical Liouville equation
NASA Astrophysics Data System (ADS)
Horenko, Illia; Weiser, Martin; Schmidt, Burkhard; Schütte, Christof
2004-05-01
In mixed quantum-classical molecular dynamics few but important degrees of freedom of a dynamical system are modeled quantum-mechanically while the remaining ones are treated within the classical approximation. Rothe methods established in the theory of partial differential equations are used to control both temporal and spatial discretization errors on grounds of a global tolerance criterion. The TRAIL (trapezoidal rule for adaptive integration of Liouville dynamics) scheme [I. Horenko and M. Weiser, J. Comput. Chem. 24, 1921 (2003)] has been extended to account for nonadiabatic effects in molecular dynamics described by the quantum-classical Liouville equation. In the context of particle methods, the quality of the spatial approximation of the phase-space distributions is maximized while the numerical condition of the least-squares problem for the parameters of particles is minimized. The resulting dynamical scheme is based on a simultaneous propagation of moving particles (Gaussian and Dirac deltalike trajectories) in phase space employing a fully adaptive strategy to upgrade Dirac to Gaussian particles and, vice versa, downgrading Gaussians to Dirac-type trajectories. This allows for the combination of Monte-Carlo-based strategies for the sampling of densities and coherences in multidimensional problems with deterministic treatment of nonadiabatic effects. Numerical examples demonstrate the application of the method to spin-boson systems in different dimensionality. Nonadiabatic effects occurring at conical intersections are treated in the diabatic representation. By decreasing the global tolerance, the numerical solution obtained from the TRAIL scheme are shown to converge towards exact results.
Fully adaptive propagation of the quantum-classical Liouville equation.
Horenko, Illia; Weiser, Martin; Schmidt, Burkhard; Schütte, Christof
2004-05-15
In mixed quantum-classical molecular dynamics few but important degrees of freedom of a dynamical system are modeled quantum-mechanically while the remaining ones are treated within the classical approximation. Rothe methods established in the theory of partial differential equations are used to control both temporal and spatial discretization errors on grounds of a global tolerance criterion. The TRAIL (trapezoidal rule for adaptive integration of Liouville dynamics) scheme [I. Horenko and M. Weiser, J. Comput. Chem. 24, 1921 (2003)] has been extended to account for nonadiabatic effects in molecular dynamics described by the quantum-classical Liouville equation. In the context of particle methods, the quality of the spatial approximation of the phase-space distributions is maximized while the numerical condition of the least-squares problem for the parameters of particles is minimized. The resulting dynamical scheme is based on a simultaneous propagation of moving particles (Gaussian and Dirac deltalike trajectories) in phase space employing a fully adaptive strategy to upgrade Dirac to Gaussian particles and, vice versa, downgrading Gaussians to Dirac-type trajectories. This allows for the combination of Monte-Carlo-based strategies for the sampling of densities and coherences in multidimensional problems with deterministic treatment of nonadiabatic effects. Numerical examples demonstrate the application of the method to spin-boson systems in different dimensionality. Nonadiabatic effects occurring at conical intersections are treated in the diabatic representation. By decreasing the global tolerance, the numerical solution obtained from the TRAIL scheme are shown to converge towards exact results.
How electronic dynamics with Pauli exclusion produces Fermi-Dirac statistics.
Nguyen, Triet S; Nanguneri, Ravindra; Parkhill, John
2015-04-07
It is important that any dynamics method approaches the correct population distribution at long times. In this paper, we derive a one-body reduced density matrix dynamics for electrons in energetic contact with a bath. We obtain a remarkable equation of motion which shows that in order to reach equilibrium properly, rates of electron transitions depend on the density matrix. Even though the bath drives the electrons towards a Boltzmann distribution, hole blocking factors in our equation of motion cause the electronic populations to relax to a Fermi-Dirac distribution. These factors are an old concept, but we show how they can be derived with a combination of time-dependent perturbation theory and the extended normal ordering of Mukherjee and Kutzelnigg for a general electronic state. The resulting non-equilibrium kinetic equations generalize the usual Redfield theory to many-electron systems, while ensuring that the orbital occupations remain between zero and one. In numerical applications of our equations, we show that relaxation rates of molecules are not constant because of the blocking effect. Other applications to model atomic chains are also presented which highlight the importance of treating both dephasing and relaxation. Finally, we show how the bath localizes the electron density matrix.
The relativistic Black-Scholes model
NASA Astrophysics Data System (ADS)
Trzetrzelewski, Maciej
2017-02-01
The Black-Scholes equation, after a certain coordinate transformation, is equivalent to the heat equation. On the other hand the relativistic extension of the latter, the telegraphers equation, can be derived from the Euclidean version of the Dirac equation. Therefore, the relativistic extension of the Black-Scholes model follows from relativistic quantum mechanics quite naturally. We investigate this particular model for the case of European vanilla options. Due to the notion of locality incorporated in this way, one finds that the volatility frown-like effect appears when comparing to the original Black-Scholes model.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Shengli; Cai, Bo; Zeng, Haibo, E-mail: Huziyu@csrc.ac.cn, E-mail: zeng.haibo@njust.edu.cn
Arsenene and antimonene are predicted to have 2.49 and 2.28 eV band gaps, which have aroused intense interest in the two-dimensional (2D) semiconductors for nanoelectronic and optoelectronic devices. Here, the hydrogenated arsenenes are reported to be planar magnet and 2D Dirac materials based on comprehensive first-principles calculations. The semi-hydrogenated (SH) arsenene is found to be a quasi-planar magnet, while the fully hydrogenated (FH) arsenene is a planar Dirac material. The buckling height of pristine arsenene is greatly decreased by the hydrogenation, resulting in a planar and relatively low-mass-density sheet. The electronic structures of arsenene are also evidently altered after hydrogenating frommore » wide-band-gap semiconductor to metallic material for SH arsenene, and then to Dirac material for FH arsenene. The SH arsenene has an obvious magnetism, mainly contributed by the p orbital of the unsaturated As atom. Such magnetic and Dirac materials modified by hydrogenation of arsenene may have potential applications in future optoelectronic and spintronic devices.« less
Solution of the Dirac Coulomb equation for helium-like ions in the Poet-Temkin model
NASA Astrophysics Data System (ADS)
Tang, Li-Yan; Tang, Yong-Bo; Shi, Ting-Yun; Mitroy, J.
2013-10-01
The Dirac-Coulomb equation for the helium atom is studied under the restrictions of the Poet-Temkin model which replaces the 1/r12 interaction by the simplified 1/r> form. The effective reduction in the dimensionality made it possible to obtain binding energies for the singlet and triplet states in this model problem with a relative precision from 10-8 to 10-10. The energies for the singlet state were consistent with a previous configuration interaction calculation [H. Tatewaki and Y. Watanabe, Chem. Phys. 389, 58 (2011)]. Manifestations of Brown-Ravenhall disease were noted at higher values of nuclear charge and ultimately limited the accuracy of the Poet-Temkin model energy. The energies from a no-pair configuration interaction (CI) calculation (the negative-energy states for the appropriate hydrogen-like ion were excluded from the CI expansion) were found to be different from the unrestricted B-spline calculation.
Solution of the Dirac Coulomb equation for helium-like ions in the Poet-Temkin model.
Tang, Li-Yan; Tang, Yong-Bo; Shi, Ting-Yun; Mitroy, J
2013-10-07
The Dirac-Coulomb equation for the helium atom is studied under the restrictions of the Poet-Temkin model which replaces the 1/r12 interaction by the simplified 1/r> form. The effective reduction in the dimensionality made it possible to obtain binding energies for the singlet and triplet states in this model problem with a relative precision from 10(-8) to 10(-10). The energies for the singlet state were consistent with a previous configuration interaction calculation [H. Tatewaki and Y. Watanabe, Chem. Phys. 389, 58 (2011)]. Manifestations of Brown-Ravenhall disease were noted at higher values of nuclear charge and ultimately limited the accuracy of the Poet-Temkin model energy. The energies from a no-pair configuration interaction (CI) calculation (the negative-energy states for the appropriate hydrogen-like ion were excluded from the CI expansion) were found to be different from the unrestricted B-spline calculation.
Dirac(-Pauli), Fokker-Planck equations and exceptional Laguerre polynomials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ho, Choon-Lin, E-mail: hcl@mail.tku.edu.tw
2011-04-15
Research Highlights: > Physical examples involving exceptional orthogonal polynomials. > Exceptional polynomials as deformations of classical orthogonal polynomials. > Exceptional polynomials from Darboux-Crum transformation. - Abstract: An interesting discovery in the last two years in the field of mathematical physics has been the exceptional X{sub l} Laguerre and Jacobi polynomials. Unlike the well-known classical orthogonal polynomials which start with constant terms, these new polynomials have lowest degree l = 1, 2, and ..., and yet they form complete set with respect to some positive-definite measure. While the mathematical properties of these new X{sub l} polynomials deserve further analysis, it ismore » also of interest to see if they play any role in physical systems. In this paper we indicate some physical models in which these new polynomials appear as the main part of the eigenfunctions. The systems we consider include the Dirac equations coupled minimally and non-minimally with some external fields, and the Fokker-Planck equations. The systems presented here have enlarged the number of exactly solvable physical systems known so far.« less
Monopoles for gravitation and for higher spin fields
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bunster, Claudio; Portugues, Ruben; Cnockaert, Sandrine
2006-05-15
We consider massless higher spin gauge theories with both electric and magnetic sources, with a special emphasis on the spin two case. We write the equations of motion at the linear level (with conserved external sources) and introduce Dirac strings so as to derive the equations from a variational principle. We then derive a quantization condition that generalizes the familiar Dirac quantization condition, and which involves the conserved charges associated with the asymptotic symmetries for higher spins. Next we discuss briefly how the result extends to the nonlinear theory. This is done in the context of gravitation, where the Taub-NUTmore » solution provides the exact solution of the field equations with both types of sources. We rederive, in analogy with electromagnetism, the quantization condition from the quantization of the angular momentum. We also observe that the Taub-NUT metric is asymptotically flat at spatial infinity in the sense of Regge and Teitelboim (including their parity conditions). It follows, in particular, that one can consistently consider in the variational principle configurations with different electric and magnetic masses.« less
Too hot to handle? Analytic solutions for massive neutrino or warm dark matter cosmologies
NASA Astrophysics Data System (ADS)
Slepian, Zachary; Portillo, Stephen K. N.
2018-05-01
We obtain novel closed-form solutions to the Friedmann equation for cosmological models containing a component whose equation of state is that of radiation (w = 1/3) at early times and that of cold pressureless matter (w = 0) at late times. The equation of state smoothly transitions from the early to late-time behavior and exactly describes the evolution of a species with a Dirac Delta function distribution in momentum magnitudes |p_0| (i.e. all particles have the same |p_0|). Such a component, here termed "hot matter", is an approximate model for both neutrinos and warm dark matter. We consider it alone and in combination with cold matter and with radiation, also obtaining closed-form solutions for the growth of super-horizon perturbations in each case. The idealized model recovers t(a) to better than 1.5% accuracy for all a relative to a Fermi-Dirac distribution (as describes neutrinos). We conclude by adding the second moment of the distribution to our exact solution and then generalizing to include all moments of an arbitrary momentum distribution in a closed-form solution.
Too hot to handle? Analytic solutions for massive neutrino or warm dark matter cosmologies
NASA Astrophysics Data System (ADS)
Slepian, Zachary; Portillo, Stephen K. N.
2018-07-01
We obtain novel closed-form solutions to the Friedmann equation for cosmological models containing a component whose equation of state is that of radiation (w = 1/3) at early times and that of cold pressureless matter (w= 0) at late times. The equation of state smoothly transitions from the early- to late-time behaviour and exactly describes the evolution of a species with a Dirac delta function distribution in momentum magnitudes |{p}_0| (i.e. all particles have the same |{p}_0|). Such a component, here termed `hot matter', is an approximate model for both neutrinos and warm dark matter. We consider it alone and in combination with cold matter and with radiation, also obtaining closed-form solutions for the growth of superhorizon perturbations in each case. The idealized model recovers t(a) to better than 1.5 per cent accuracy for all a relative to a Fermi-Dirac distribution (as describes neutrinos). We conclude by adding the second moment of the distribution to our exact solution and then generalizing to include all moments of an arbitrary momentum distribution in a closed-form solution.
Dirac potential in the Doebner-Goldin equation
NASA Astrophysics Data System (ADS)
Jia, Wei; Ma, Yi Rong; Hu, Fang Qi; Zhao, Qing
2018-01-01
We study a dissipative quantum system which is described by the Doebner-Goldin equation (DGE) model. For time-independent states, the new three-dimensional analytical solutions of the DGE are obtained by binding the vertical relation of velocity and the gradient of density in the system, when the form of a central potential such as hard core or harmonic oscillator is suggested. Through the gauge-invariant parameters which characterize the physical nature of the dissipation, we find a novel set of gauge-invariant parameters which show that the Galilean invariance is broken in this system. Moreover, a subfamily of the DGE can be obtained after a gauge transformation, which describes a dissipative quantum system with the conserved Galilean invariance. It is interesting that this dissipative quantum system is completely equivalent to a charge-monopole system, in which the Dirac potential is supplied with the nonlinear terms and two cases of the velocity potential. Especially, the two gauge potentials given by Wu and Yang emerge from solving the DGE as two cases in our approach. The results not only present some new physical comprehension of the dissipative quantum system, but also might shed light on the Dirac monopole potential, in the sense that the partition into south and north hemisphere is avoided in our new solutions.
Relativistic Photoionization Computations with the Time Dependent Dirac Equation
2016-10-12
fields often occurs in the relativistic regime. A complete description of this phenomenon requires both relativistic and quantum mechanical treatment...photoionization, or other relativis- tic quantum electronics problems. While the Klein-Gordon equation captures much of the relevant physics, especially...for moderately heavy ions (Z 137), it does neglect the spin polarization of the electron. This memo parallels [1], but replaces the Klein-Gordon
Interdimensional effects in systems with quasirelativistic fermions
NASA Astrophysics Data System (ADS)
Zulkoskey, A. C.; Dick, R.; Tanaka, K.
2017-07-01
We examine the Green function and the density of states for fermions moving in three-dimensional Dirac materials with interfaces which affect the propagation properties of particles. Motivation for our research comes from interest in materials that exhibit quasirelativistic dispersion relations. By modifying Dirac-type contributions to the Hamiltonian in an interface we are able to calculate the Green function and the density of states. The density of states inside the interface exhibits interpolating behavior between two and three dimensions, with two-dimensional behavior at high energies and three-dimensional behavior at low energies, provided that the shift in the mass parameter in the interface is small. We also discuss the impact of the interpolating density of states on optical absorption in Dirac materials with a two-dimensional substructure.
Proximity-induced superconductivity in Landau-quantized graphene monolayers
NASA Astrophysics Data System (ADS)
Cohnitz, Laura; De Martino, Alessandro; Häusler, Wolfgang; Egger, Reinhold
2017-10-01
We consider massless Dirac fermions in a graphene monolayer in the ballistic limit, subject to both a perpendicular magnetic field B and a proximity-induced pairing gap Δ . When the chemical potential is at the Dirac point, our exact solution of the Bogoliubov-de Gennes equation yields Δ -independent relativistic Landau levels. Since eigenstates depend on Δ , many observables nevertheless are sensitive to pairing, e.g., the local density of states or the edge state spectrum. By solving the problem with an additional in-plane electric field, we also discuss how snake states are influenced by a pairing gap.
NASA Astrophysics Data System (ADS)
Kozhedub, Y. S.; Bondarev, A. I.; Cai, X.; Gumberidze, A.; Hagmann, S.; Kozhuharov, C.; Maltsev, I. A.; Plunien, G.; Shabaev, V. M.; Shao, C.; Stöhlker, Th.; Tupitsyn, I. I.; Yang, B.; Yu, D.
2017-10-01
Non-perturbative calculations of the relativistic quantum dynamics of electrons in the Bi83+-Xe collisions at 70 AMeV are performed. A method of calculation employs an independent particle model with effective single-electron Dirac-Kohn-Sham operator. Solving of the single-electron equations is based on the coupled-channel approach with atomic-like Dirac-Sturm-Fock orbitals, localized at the ions (atoms). Special attention is paid to the inner-shell processes. Intensities of the K satellite and hypersatellite target radiation are evaluated. The role of the relativistic effects is studied.
NASA Astrophysics Data System (ADS)
Ikot, Akpan N.; Hassanabadi, Hassan; Obong, Hillary Patrick; Mehraban, H.; Yazarloo, Bentol Hoda
2015-07-01
The effects of Coulomb-like tensor (CLT), Yukawa-like tensor (YLT) and generalized tensor (GLT) interactions are investigated in the Dirac theory with Schiöberg and Manning-Rosen potentials within the framework of spin and pseudospin symmetries using the Nikiforov-Uvarov method. The bound state energy spectra and the radial wave functions have been approximately obtained in the case of spin and pseudospin symmetries. We have also reported some numerical results and figures to show the effects these tensor interactions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lima, Jonas R. F., E-mail: jonas.iasd@gmail.com
We study the electronic and transport properties of a graphene-based superlattice theoretically by using an effective Dirac equation. The superlattice consists of a periodic potential applied on a single-layer graphene deposited on a substrate that opens an energy gap of 2Δ in its electronic structure. We find that extra Dirac points appear in the electronic band structure under certain conditions, so it is possible to close the gap between the conduction and valence minibands. We show that the energy gap E{sub g} can be tuned in the range 0 ≤ E{sub g} ≤ 2Δ by changing the periodic potential. We analyze the low energymore » electronic structure around the contact points and find that the effective Fermi velocity in very anisotropic and depends on the energy gap. We show that the extra Dirac points obtained here behave differently compared to previously studied systems.« less
EPR & Klein Paradoxes in Complex Hamiltonian Dynamics and Krein Space Quantization
NASA Astrophysics Data System (ADS)
Payandeh, Farrin
2015-07-01
Negative energy states are applied in Krein space quantization approach to achieve a naturally renormalized theory. For example, this theory by taking the full set of Dirac solutions, could be able to remove the propagator Green function's divergences and automatically without any normal ordering, to vanish the expected value for vacuum state energy. However, since it is a purely mathematical theory, the results are under debate and some efforts are devoted to include more physics in the concept. Whereas Krein quantization is a pure mathematical approach, complex quantum Hamiltonian dynamics is based on strong foundations of Hamilton-Jacobi (H-J) equations and therefore on classical dynamics. Based on complex quantum Hamilton-Jacobi theory, complex spacetime is a natural consequence of including quantum effects in the relativistic mechanics, and is a bridge connecting the causality in special relativity and the non-locality in quantum mechanics, i.e. extending special relativity to the complex domain leads to relativistic quantum mechanics. So that, considering both relativistic and quantum effects, the Klein-Gordon equation could be derived as a special form of the Hamilton-Jacobi equation. Characterizing the complex time involved in an entangled energy state and writing the general form of energy considering quantum potential, two sets of positive and negative energies will be realized. The new states enable us to study the spacetime in a relativistic entangled “space-time” state leading to 12 extra wave functions than the four solutions of Dirac equation for a free particle. Arguing the entanglement of particle and antiparticle leads to a contradiction with experiments. So, in order to correct the results, along with a previous investigation [1], we realize particles and antiparticles as physical entities with positive energy instead of considering antiparticles with negative energy. As an application of modified descriptions for entangled (space-time) states, the original version of EPR paradox can be discussed and the correct answer can be verified based on the strong rooted complex quantum Hamilton-Jacobi theory [2-27] and as another example we can use the negative energy states, to remove the Klein's paradox without the need of any further explanations or justifications like backwardly moving electrons. Finally, comparing the two approaches, we can point out to the existence of a connection between quantum Hamiltonian dynamics, standard quantum field theory, and Krein space quantization [28-43].
Einstein-Yang-Mills-Dirac systems from the discretized Kaluza-Klein theory
NASA Astrophysics Data System (ADS)
Wali, Kameshwar; Viet, Nguyen Ali
2017-01-01
A unified theory of the non-Abelian gauge interactions with gravity in the framework of a discretized Kaluza-Klein theory is constructed with a modified Dirac operator and wedge product. All the couplings of chiral spinors to the non-Abelian gauge fields emerge naturally as components of the coupling of the chiral spinors in the generalized gravity together with some new interactions. In particular, the currently prevailing gravity-QCD quark and gravity-electroweak-quark and lepton models are shown to follow as special cases of the general framework.
Natural Higgs mass in supersymmetry from nondecoupling effects.
Lu, Xiaochuan; Murayama, Hitoshi; Ruderman, Joshua T; Tobioka, Kohsaku
2014-05-16
The Higgs mass implies fine-tuning for minimal theories of weak-scale supersymmetry (SUSY). Nondecoupling effects can boost the Higgs mass when new states interact with the Higgs boson, but new sources of SUSY breaking that accompany such extensions threaten naturalness. We show that two singlets with a Dirac mass can increase the Higgs mass while maintaining naturalness in the presence of large SUSY breaking in the singlet sector. We explore the modified Higgs phenomenology of this scenario, which we call the "Dirac next-to-minimal supersymmetric standard model."
Solitary waves in the nonlinear Dirac equation in the presence of external driving forces
Mertens, Franz G.; Cooper, Fred; Quintero, Niurka R.; ...
2016-01-05
In this paper, we consider the nonlinear Dirac (NLD) equation in (1 + 1) dimensions with scalar–scalar self interaction g 2/κ + 1 (Ψ¯Ψ) κ + 1 in the presence of external forces as well as damping of the form f(x) - iμγ 0Ψ, where both f and Ψ are two-component spinors. We develop an approximate variational approach using collective coordinates (CC) for studying the time dependent response of the solitary waves to these external forces. This approach predicts intrinsic oscillations of the solitary waves, i.e. the amplitude, width and phase all oscillate with the same frequency. The translational motionmore » is also affected, because the soliton position oscillates around a mean trajectory. For κ = 1 we solve explicitly the CC equations of the variational approximation for slow moving solitary waves in a constant external force without damping and find reasonable agreement with solving numerically the CC equations. Finally, we then compare the results of the variational approximation with no damping with numerical simulations of the NLD equation for κ = 1, when the components of the external force are of the form f j = r j exp(–iΚx) and again find agreement if we take into account a certain linear excitation with specific wavenumber that is excited together with the intrinsic oscillations such that the momentum in a transformed NLD equation is conserved.« less
On the dynamics of a semitransparent moving mirror
NASA Astrophysics Data System (ADS)
Nicolaevici, Nistor
2011-01-01
Perfectly reflecting mirrors in the two-dimensional Minkowski space subjected to the reaction force due to the radiated quantum flux evoluate according to the Abraham-Lorentz-Dirac equation, which admits unphysical solutions. We investigate the non-relativistic equation of motion of a semitransparent mirror and show that the unphysical solutions are absent, provided that the energy which characterizes the reflectivity of the mirror is sufficiently small compared to the mirror's mass.
Particle localization, spinor two-valuedness, and Fermi quantization of tensor systems
NASA Technical Reports Server (NTRS)
Reifler, Frank; Morris, Randall
1994-01-01
Recent studies of particle localization shows that square-integrable positive energy bispinor fields in a Minkowski space-time cannot be physically distinguished from constrained tensor fields. In this paper we generalize this result by characterizing all classical tensor systems, which admit Fermi quantization, as those having unitary Lie-Poisson brackets. Examples include Euler's tensor equation for a rigid body and Dirac's equation in tensor form.
Erratum: Nonlinear Dirac equation solitary waves in external fields [Phys. Rev. E 86, 046602 (2012)
Mertens, Franz G.; Quintero, Niurka R.; Cooper, Fred; ...
2016-05-10
In Sec. IV of our original paper, we assumed a particular conservation law Eq. (4.6), which was true in the absence of external potentials, to derive some particular potentials for which we obtained solutions to the nonlinear Dirac equation (NLDE). Because the conservation law of Eq. (4.6) for the component T 11 of the energy-momentum tensor is not true in the presence of these external potentials, the solutions we found do not satisfy the NLDEs in the presence of these potentials. Thus all the equations from Eq. (4.6) through Eq. (4.44) are not correct, since the exact solutions that followedmore » in that section presumed Eq. (4.6) was true. Also Eqs. (A3)–(A5) are a restatement of Eq. (4.6) and also are not correct. These latter equations are also not used in Sec. V and beyond. The rest of our original paper (starting with Sec. V) was not concerned with exact solutions, rather it was concerned with how the exact solitary-wave solutions to the NLDE in the absence of an external potential responded to being in the presence of various external potentials. This Erratum corrects this mistake.« less
NASA Astrophysics Data System (ADS)
Tarasenko, S. A.; Durnev, M. V.; Nestoklon, M. O.; Ivchenko, E. L.; Luo, Jun-Wei; Zunger, Alex
2015-02-01
HgTe is a band-inverted compound which forms a two-dimensional topological insulator if sandwiched between CdTe barriers for a HgTe layer thickness above the critical value. We describe the fine structure of Dirac states in the HgTe/CdTe quantum wells of critical and close-to-critical thicknesses and show that the necessary creation of interfaces brings in another important physical effect: the opening of a significant anticrossing gap between the tips of the Dirac cones. The level repulsion driven by the natural interface inversion asymmetry of zinc-blende heterostructures considerably modifies the electron states and dispersion but preserves the topological transition at the critical thickness. By combining symmetry analysis, atomistic calculations, and extended k .p theory with interface terms, we obtain a quantitative description of the energy spectrum and extract the interface mixing coefficient. We discuss how the fingerprints of the predicted zero-magnetic-field splitting of the Dirac cones could be detected experimentally by studying magnetotransport phenomena, cyclotron resonance, Raman scattering, and THz radiation absorption.
Direct simulation Monte Carlo method for the Uehling-Uhlenbeck-Boltzmann equation.
Garcia, Alejandro L; Wagner, Wolfgang
2003-11-01
In this paper we describe a direct simulation Monte Carlo algorithm for the Uehling-Uhlenbeck-Boltzmann equation in terms of Markov processes. This provides a unifying framework for both the classical Boltzmann case as well as the Fermi-Dirac and Bose-Einstein cases. We establish the foundation of the algorithm by demonstrating its link to the kinetic equation. By numerical experiments we study its sensitivity to the number of simulation particles and to the discretization of the velocity space, when approximating the steady-state distribution.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krtous, Pavel; Frolov, Valeri P.; Kubiznak, David
We prove that the most general solution of the Einstein equations with the cosmological constant which admits a principal conformal Killing-Yano tensor is the Kerr-NUT-(A)dS metric. Even when the Einstein equations are not imposed, any spacetime admitting such hidden symmetry can be written in a canonical form which guarantees the following properties: it is of the Petrov type D, it allows the separation of variables for the Hamilton-Jacobi, Klein-Gordon, and Dirac equations, the geodesic motion in such a spacetime is completely integrable. These results naturally generalize the results obtained earlier in four dimensions.
Tuning the Fano factor of graphene via Fermi velocity modulation
NASA Astrophysics Data System (ADS)
Lima, Jonas R. F.; Barbosa, Anderson L. R.; Bezerra, C. G.; Pereira, Luiz Felipe C.
2018-03-01
In this work we investigate the influence of a Fermi velocity modulation on the Fano factor of periodic and quasi-periodic graphene superlattices. We consider the continuum model and use the transfer matrix method to solve the Dirac-like equation for graphene where the electrostatic potential, energy gap and Fermi velocity are piecewise constant functions of the position x. We found that in the presence of an energy gap, it is possible to tune the energy of the Fano factor peak and consequently the location of the Dirac point, by a modulation in the Fermi velocity. Hence, the peak of the Fano factor can be used experimentally to identify the Dirac point. We show that for higher values of the Fermi velocity the Fano factor goes below 1/3 at the Dirac point. Furthermore, we show that in periodic superlattices the location of Fano factor peaks is symmetric when the Fermi velocity vA and vB is exchanged, however by introducing quasi-periodicity the symmetry is lost. The Fano factor usually holds a universal value for a specific transport regime, which reveals that the possibility of controlling it in graphene is a notable result.
Relativistic Definition of Spin Operators
NASA Astrophysics Data System (ADS)
Ryder, Lewis H.
2002-12-01
Some years ago Mashhoon [1] made the highly interesting suggestion that there existed a coupling of spin with rotations, just as there exists such a coupling with orbital angular momentum, as seen in the Sagnac effect, for example. Spin being essentially a quantum phenomenon, the obvious place to look for this was by studying the Dirac equation, and Hehl and Ni, in such an investigation [2], indeed found a coupling term of just the type Mashhoon had envisaged. Part of their procedure, however, was to take the nonrelativistic limit, and this was done by performing appropriate Foldy-Wouthuysen (FW) transformations. In the nonrelativistic limit, it is well-known that the spin operators for Dirac particles are in essence the Pauli matrices; but it is also well-known, and indeed was part of the motivation for Foldy and Wouthuysen's paper, that for fully-fledged Dirac particles the (4×4 generalisation of the) Pauli matrices do not yield satisfactory spin operators, since spin defined in this way would not be conserved. The question therefore presented itself: is there a relativistic spin operator for Dirac particles, such that in the relativistic, as well as the nonrelativistic, régime a Mashhoon spin-rotation coupling exists?...
Dirac fields in flat FLRW cosmology: Uniqueness of the Fock quantization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cortez, Jerónimo, E-mail: jacq@ciencias.unam.mx; Elizaga Navascués, Beatriz, E-mail: beatriz.elizaga@iem.cfmac.csic.es; Martín-Benito, Mercedes, E-mail: m.martin@hef.ru.nl
We address the issue of the infinite ambiguity that affects the construction of a Fock quantization of a Dirac field propagating in a cosmological spacetime with flat compact sections. In particular, we discuss a physical criterion that restricts to a unique possibility (up to unitary equivalence) the infinite set of available vacua. We prove that this desired uniqueness is guaranteed, for any possible choice of spin structure on the spatial sections, if we impose two conditions. The first one is that the symmetries of the classical system must be implemented quantum mechanically, so that the vacuum is invariant under themore » symmetry transformations. The second and more important condition is that the constructed theory must have a quantum dynamics that is implementable as a (non-trivial) unitary operator in Fock space. Actually, this unitarity of the quantum dynamics leads us to identify as explicitly time dependent some very specific contributions of the Dirac field. In doing that, we essentially characterize the part of the dynamics governed by the Dirac equation that is unitarily implementable. The uniqueness of the Fock vacuum is attained then once a physically motivated convention for the concepts of particles and antiparticles is fixed.« less
Finger-gate manipulated quantum transport in Dirac materials
NASA Astrophysics Data System (ADS)
Kleftogiannis, Ioannis; Tang, Chi-Shung; Cheng, Shun-Jen
2015-05-01
We investigate the quantum transport properties of multichannel nanoribbons made of materials described by the Dirac equation, under an in-plane magnetic field. In the low energy regime, positive and negative finger-gate potentials allow the electrons to make intra-subband transitions via hole-like or electron-like quasibound states (QBS), respectively, resulting in dips in the conductance. In the high energy regime, double dip structures in the conductance are found, attributed to spin-flip or spin-nonflip inter-subband transitions through the QBSs. Inverting the finger-gate polarity offers the possibility to manipulate the spin polarized electronic transport to achieve a controlled spin-switch.
Generalized time-dependent Schrödinger equation in two dimensions under constraints
NASA Astrophysics Data System (ADS)
Sandev, Trifce; Petreska, Irina; Lenzi, Ervin K.
2018-01-01
We investigate a generalized two-dimensional time-dependent Schrödinger equation on a comb with a memory kernel. A Dirac delta term is introduced in the Schrödinger equation so that the quantum motion along the x-direction is constrained at y = 0. The wave function is analyzed by using Green's function approach for several forms of the memory kernel, which are of particular interest. Closed form solutions for the cases of Dirac delta and power-law memory kernels in terms of Fox H-function, as well as for a distributed order memory kernel, are obtained. Further, a nonlocal term is also introduced and investigated analytically. It is shown that the solution for such a case can be represented in terms of infinite series in Fox H-functions. Green's functions for each of the considered cases are analyzed and plotted for the most representative ones. Anomalous diffusion signatures are evident from the presence of the power-law tails. The normalized Green's functions obtained in this work are of broader interest, as they are an important ingredient for further calculations and analyses of some interesting effects in the transport properties in low-dimensional heterogeneous media.
Schrödinger and Dirac solutions to few-body problems
NASA Astrophysics Data System (ADS)
Muolo, Andrea; Reiher, Markus
We elaborate on the variational solution of the Schrödinger and Dirac equations for small atomic and molecular systems without relying on the Born-Oppenheimer approximation. The all-particle equations of motion are solved in a numerical procedure that relies on the variational principle, Cartesian coordinates and parametrized explicitly correlated Gaussians functions. A stochastic optimization of the variational parameters allows the calculation of accurate wave functions for ground and excited states. Expectation values such as the radial and angular distribution functions or the dipole moment can be calculated. We developed a simple strategy for the elimination of the global translation that allows to generally adopt laboratory-fixed cartesian coordinates. Simple expressions for the coordinates and operators are then preserved throughout the formalism. For relativistic calculations we devised a kinetic-balance condition for explicitly correlated basis functions. We demonstrate that the kinetic-balance condition can be obtained from the row reduction process commonly applied to solve systems of linear equations. The resulting form of kinetic balance establishes a relation between all components of the spinor of an N-fermion system. ETH Zürich, Laboratorium für Physikalische Chemie, CH-8093 Zürich, Switzerland.
On the solutions of fractional order of evolution equations
NASA Astrophysics Data System (ADS)
Morales-Delgado, V. F.; Taneco-Hernández, M. A.; Gómez-Aguilar, J. F.
2017-01-01
In this paper we present a discussion of generalized Cauchy problems in a diffusion wave process, we consider bi-fractional-order evolution equations in the Riemann-Liouville, Liouville-Caputo, and Caputo-Fabrizio sense. Through Fourier transforms and Laplace transform we derive closed-form solutions to the Cauchy problems mentioned above. Similarly, we establish fundamental solutions. Finally, we give an application of the above results to the determination of decompositions of Dirac type for bi-fractional-order equations and write a formula for the moments for the fractional vibration of a beam equation. This type of decomposition allows us to speak of internal degrees of freedom in the vibration of a beam equation.
The Coupling of Gravity to Spin and Electromagnetism
NASA Astrophysics Data System (ADS)
Finster, Felix; Smoller, Joel; Yau, Shing-Tung
The coupled Einstein-Dirac-Maxwell equations are considered for a static, spherically symmetric system of two fermions in a singlet spinor state. Stable soliton-like solutions are shown to exist, and we discuss the regularizing effect of gravity from a Feynman diagram point of view.
NASA Astrophysics Data System (ADS)
Hu, Chia-Ren
2004-03-01
We present classical macroscopic, microscopic, and quantum mechanical arguments to show that in a metallic or electron/hole-doped semiconducting sheet thinner than the screening length, a displacement current applied normal to it can induce a spinomotive force along it. The magnitude is weak but clearly detectable. The classical arguments are purely electromagnetic. The quantum argument, based on the Dirac equation, shows that the predicted effect originates from the spin-orbit interaction, but not of the usual kind. That is, it relies on an external electric field, whereas the usual S-O interaction involves the electric field generated by the ions. Because the Dirac equation incorporatesThomas precession, which is due to relativistic kinematics, the quantum prediction is a factor of two smaller than the classical prediction. Replacing the displacement current by a charge current, and one obtains a new source for the spin-Hall effect. Classical macroscopic argument also predicts its existence, but the other two views are controversial.
NASA Astrophysics Data System (ADS)
Borzdov, G. N.
2017-10-01
The family of solutions to the Dirac equation for an electron moving in an electromagnetic lattice with the chiral structure created by counterpropagating circularly polarized plane electromagnetic waves is obtained. At any nonzero quasimomentum, the dispersion equation has two solutions which specify bispinor wave functions describing electron states with different energies and mean values of momentum and spin operators. The inversion of the quasimomentum results in two other linearly independent solutions. These four basic wave functions are uniquely defined by eight complex scalar functions (structural functions), which serve as convenient building blocks of the relations describing the electron properties. These properties are illustrated in graphical form over a wide range of quasimomenta. The superpositions of two basic wave functions describing different spin states and corresponding to (i) the same quasimomentum (unidirectional electron states with the spin precession) and (ii) the two equal-in-magnitude but oppositely directed quasimomenta (bidirectional electron states) are also treated.
How to construct self/anti-self charge conjugate states for higher spins
NASA Astrophysics Data System (ADS)
Dvoeglazov, Valeriy V.
2012-10-01
We construct self/anti-self charge conjugate (Majorana-like) states for the (1/2,0)⊕(0,1/2) representation of the Lorentz group, and their analogs for higher spins within the quantum field theory. The problem of the basis rotations and that of the selection of phases in the Diraclike and Majorana-like field operators are considered. The discrete symmetries properties (P, C, T) are studied. The corresponding dynamical equations are presented. In the (1/2,0)⊕(0,1/2) representation they obey the Dirac-like equation with eight components, which has been first introduced by Markov. Thus, the Fock space for corresponding quantum fields is doubled (as shown by Ziino). The particular attention has been paid to the questions of chirality and helicity (two concepts which are frequently confused in the literature) for Dirac and Majorana states. We further review several experimental consequences which follow from the previous works of M. Kirchbach et al. on neutrinoless double beta decay, and G.J.Ni et al. on meson lifetimes.
Solving lattice QCD systems of equations using mixed precision solvers on GPUs
NASA Astrophysics Data System (ADS)
Clark, M. A.; Babich, R.; Barros, K.; Brower, R. C.; Rebbi, C.
2010-09-01
Modern graphics hardware is designed for highly parallel numerical tasks and promises significant cost and performance benefits for many scientific applications. One such application is lattice quantum chromodynamics (lattice QCD), where the main computational challenge is to efficiently solve the discretized Dirac equation in the presence of an SU(3) gauge field. Using NVIDIA's CUDA platform we have implemented a Wilson-Dirac sparse matrix-vector product that performs at up to 40, 135 and 212 Gflops for double, single and half precision respectively on NVIDIA's GeForce GTX 280 GPU. We have developed a new mixed precision approach for Krylov solvers using reliable updates which allows for full double precision accuracy while using only single or half precision arithmetic for the bulk of the computation. The resulting BiCGstab and CG solvers run in excess of 100 Gflops and, in terms of iterations until convergence, perform better than the usual defect-correction approach for mixed precision.
On Correspondence of BRST-BFV, Dirac, and Refined Algebraic Quantizations of Constrained Systems
NASA Astrophysics Data System (ADS)
Shvedov, O. Yu.
2002-11-01
The correspondence between BRST-BFV, Dirac, and refined algebraic (group averaging, projection operator) approaches to quantizing constrained systems is analyzed. For the closed-algebra case, it is shown that the component of the BFV wave function corresponding to maximal (minimal) value of number of ghosts and antighosts in the Schrodinger representation may be viewed as a wave function in the refined algebraic (Dirac) quantization approach. The Giulini-Marolf group averaging formula for the inner product in the refined algebraic quantization approach is obtained from the Batalin-Marnelius prescription for the BRST-BFV inner product, which should be generally modified due to topological problems. The considered prescription for the correspondence of states is observed to be applicable to the open-algebra case. The refined algebraic quantization approach is generalized then to the case of nontrivial structure functions. A simple example is discussed. The correspondence of observables for different quantization methods is also investigated.
Canonical structures for dispersive waves in shallow water
NASA Astrophysics Data System (ADS)
Neyzi, Fahrünisa; Nutku, Yavuz
1987-07-01
The canonical Hamiltonian structure of the equations of fluid dynamics obtained in the Boussinesq approximation are considered. New variational formulations of these equations are proposed and it is found that, as in the case of the KdV equation and the equations governing long waves in shallow water, they are degenerate Lagrangian systems. Therefore, in order to cast these equations into canonical form it is again necessary to use Dirac's theory of constraints. It is found that there are primary and secondary constraints which are second class and it is possible to construct the Hamiltonian in terms of canonical variables. Among the examples of Boussinesq equations that are discussed are the equations of Whitham-Broer-Kaup which Kupershmidt has recently expressed in symmetric form and shown to admit tri-Hamiltonian structure.
Dynamic optimization and its relation to classical and quantum constrained systems
NASA Astrophysics Data System (ADS)
Contreras, Mauricio; Pellicer, Rely; Villena, Marcelo
2017-08-01
We study the structure of a simple dynamic optimization problem consisting of one state and one control variable, from a physicist's point of view. By using an analogy to a physical model, we study this system in the classical and quantum frameworks. Classically, the dynamic optimization problem is equivalent to a classical mechanics constrained system, so we must use the Dirac method to analyze it in a correct way. We find that there are two second-class constraints in the model: one fix the momenta associated with the control variables, and the other is a reminder of the optimal control law. The dynamic evolution of this constrained system is given by the Dirac's bracket of the canonical variables with the Hamiltonian. This dynamic results to be identical to the unconstrained one given by the Pontryagin equations, which are the correct classical equations of motion for our physical optimization problem. In the same Pontryagin scheme, by imposing a closed-loop λ-strategy, the optimality condition for the action gives a consistency relation, which is associated to the Hamilton-Jacobi-Bellman equation of the dynamic programming method. A similar result is achieved by quantizing the classical model. By setting the wave function Ψ(x , t) =e iS(x , t) in the quantum Schrödinger equation, a non-linear partial equation is obtained for the S function. For the right-hand side quantization, this is the Hamilton-Jacobi-Bellman equation, when S(x , t) is identified with the optimal value function. Thus, the Hamilton-Jacobi-Bellman equation in Bellman's maximum principle, can be interpreted as the quantum approach of the optimization problem.
Approximate analytic solutions to coupled nonlinear Dirac equations
Khare, Avinash; Cooper, Fred; Saxena, Avadh
2017-01-30
Here, we consider the coupled nonlinear Dirac equations (NLDEs) in 1+11+1 dimensions with scalar–scalar self-interactions g 1 2/2(more » $$\\bar{ψ}$$ψ) 2 + g 2 2/2($$\\bar{Φ}$$Φ) 2 + g 2 3($$\\bar{ψ}$$ψ)($$\\bar{Φ}$$Φ) as well as vector–vector interactions g 1 2/2($$\\bar{ψ}$$γμψ)($$\\bar{ψ}$$γμψ) + g 2 2/2($$\\bar{Φ}$$γμΦ)($$\\bar{Φ}$$γμΦ) + g 2 3($$\\bar{ψ}$$γμψ)($$\\bar{Φ}$$γμΦ). Writing the two components of the assumed rest frame solution of the coupled NLDE equations in the form ψ=e –iω1tR 1cosθ,R 1sinθΦ=e –iω2tR 2cosη,R 2sinη, and assuming that θ(x),η(x) have the same functional form they had when g3 = 0, which is an approximation consistent with the conservation laws, we then find approximate analytic solutions for Ri(x) which are valid for small values of g 3 2/g 2 2 and g 3 2/g 1 2. In the nonrelativistic limit we show that both of these coupled models go over to the same coupled nonlinear Schrödinger equation for which we obtain two exact pulse solutions vanishing at x → ±∞.« less
Discrete spacetime, quantum walks, and relativistic wave equations
NASA Astrophysics Data System (ADS)
Mlodinow, Leonard; Brun, Todd A.
2018-04-01
It has been observed that quantum walks on regular lattices can give rise to wave equations for relativistic particles in the continuum limit. In this paper, we define the three-dimensional discrete-time walk as a product of three coined one-dimensional walks. The factor corresponding to each one-dimensional walk involves two projection operators that act on an internal coin space; each projector is associated with either the "forward" or "backward" direction in that physical dimension. We show that the simple requirement that there is no preferred axis or direction along an axis—that is, that the walk be symmetric under parity transformations and steps along different axes of the cubic lattice be uncorrelated—leads, in the case of the simplest solution, to the requirement that the continuum limit of the walk is fully Lorentz-invariant. We show further that, in the case of a massive particle, this symmetry requirement necessitates the use of a four-dimensional internal space (as in the Dirac equation). The "coin flip" operation is generated by the parity transformation on the internal coin space, while the differences of the projection operators associated with each dimension must all anticommute. Finally, we discuss the leading correction to the continuum limit, and the possibility of distinguishing through experiment between the discrete random walk and the continuum-based Dirac equation as a description of fermion dynamics.
Approximate analytic solutions to coupled nonlinear Dirac equations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khare, Avinash; Cooper, Fred; Saxena, Avadh
Here, we consider the coupled nonlinear Dirac equations (NLDEs) in 1+11+1 dimensions with scalar–scalar self-interactions g 1 2/2(more » $$\\bar{ψ}$$ψ) 2 + g 2 2/2($$\\bar{Φ}$$Φ) 2 + g 2 3($$\\bar{ψ}$$ψ)($$\\bar{Φ}$$Φ) as well as vector–vector interactions g 1 2/2($$\\bar{ψ}$$γμψ)($$\\bar{ψ}$$γμψ) + g 2 2/2($$\\bar{Φ}$$γμΦ)($$\\bar{Φ}$$γμΦ) + g 2 3($$\\bar{ψ}$$γμψ)($$\\bar{Φ}$$γμΦ). Writing the two components of the assumed rest frame solution of the coupled NLDE equations in the form ψ=e –iω1tR 1cosθ,R 1sinθΦ=e –iω2tR 2cosη,R 2sinη, and assuming that θ(x),η(x) have the same functional form they had when g3 = 0, which is an approximation consistent with the conservation laws, we then find approximate analytic solutions for Ri(x) which are valid for small values of g 3 2/g 2 2 and g 3 2/g 1 2. In the nonrelativistic limit we show that both of these coupled models go over to the same coupled nonlinear Schrödinger equation for which we obtain two exact pulse solutions vanishing at x → ±∞.« less
Hamiltonian structure of real Monge - Ampère equations
NASA Astrophysics Data System (ADS)
Nutku, Y.
1996-06-01
The variational principle for the real homogeneous Monge - Ampère equation in two dimensions is shown to contain three arbitrary functions of four variables. There exist two different specializations of this variational principle where the Lagrangian is degenerate and furthermore contains an arbitrary function of two variables. The Hamiltonian formulation of these degenerate Lagrangian systems requires the use of Dirac's theory of constraints. As in the case of most completely integrable systems the constraints are second class and Dirac brackets directly yield the Hamiltonian operators. Thus the real homogeneous Monge - Ampère equation in two dimensions admits two classes of infinitely many Hamiltonian operators, namely a family of local, as well as another family non-local Hamiltonian operators and symplectic 2-forms which depend on arbitrary functions of two variables. The simplest non-local Hamiltonian operator corresponds to the Kac - Moody algebra of vector fields and functions on the unit circle. Hamiltonian operators that belong to either class are compatible with each other but between classes there is only one compatible pair. In the case of real Monge - Ampère equations with constant right-hand side this compatible pair is the only pair of Hamiltonian operators that survives. Then the complete integrability of all these real Monge - Ampère equations follows by Magri's theorem. Some of the remarkable properties we have obtained for the Hamiltonian structure of the real homogeneous Monge - Ampère equation in two dimensions turn out to be generic to the real homogeneous Monge - Ampère equation and the geodesic flow for the complex homogeneous Monge - Ampère equation in arbitrary number of dimensions. Hence among all integrable nonlinear evolution equations in one space and one time dimension, the real homogeneous Monge - Ampère equation is distinguished as one that retains its character as an integrable system in multiple dimensions.
Nanophysics in graphene: neutrino physics in quantum rings and superlattices.
Fertig, H A; Brey, Luis
2010-12-13
Electrons in graphene at low energy obey a two-dimensional Dirac equation, closely analogous to that of neutrinos. As a result, quantum mechanical effects when the system is confined or subjected to potentials at the nanoscale may be quite different from what happens in conventional electronic systems. In this article, we review recent progress on two systems where this is indeed the case: quantum rings and graphene electrons in a superlattice potential. In the former case, we demonstrate that the spectrum reveals signatures of 'effective time-reversal symmetry breaking', in which the spectra are most naturally interpreted in terms of effective magnetic flux contained in the ring, even when no real flux is present. A one-dimensional superlattice potential is shown to induce strong band-structure changes, allowing the number of Dirac points at zero energy to be manipulated by the strength and/or period of the potential. The emergence of new Dirac points is shown to be accompanied by strong signatures in the conduction properties of the system.
Kinklike structures in models of the Dirac-Born-Infeld type
NASA Astrophysics Data System (ADS)
Bazeia, D.; Lima, Elisama E. M.; Losano, L.
2018-01-01
The present work investigates several models of a single real scalar field, engendering kinetic term of the Dirac-Born- Infeld type. Such theories introduce nonlinearities to the kinetic part of the Lagrangian, which presents a square root restricting the field evolution and including additional powers in derivatives of the scalar field, controlled by a real parameter. In order to obtain topological solutions analytically, we propose a first-order framework that simplifies the equation of motion ensuring solutions that are linearly stable. This is implemented using the deformation method, and we introduce examples presenting two categories of potentials, one having polynomial interactions and the other with nonpolynomial interactions. We also explore how the Dirac-Born-Infeld kinetic term affects the properties of the solutions. In particular, we note that the kinklike solutions are similar to the ones obtained through models with standard kinetic term and canonical potential, but their energy densities and stability potentials vary according to the parameter introduced to control the new models.
Relativistic ponderomotive Hamiltonian of a Dirac particle in a vacuum laser field
Ruiz, D. E.; Ellison, C. L.; Dodin, I. Y.
2015-12-16
Here, we report a point-particle ponderomotive model of a Dirac electron oscillating in a high-frequency field. Starting from the Dirac Lagrangian density, we derive a reduced phase-space Lagrangian that describes the relativistic time-averaged dynamics of such a particle in a geometrical-optics laser pulse propagating in vacuum. The pulse is allowed to have an arbitrarily large amplitude provided that radiation damping and pair production are negligible. The model captures the Bargmann-Michel-Telegdi (BMT) spin dynamics, the Stern-Gerlach spin-orbital coupling, the conventional ponderomotive forces, and the interaction with large-scale background fields (if any). Agreement with the BMT spin precession equation is shown numerically.more » The commonly known theory in which ponderomotive effects are incorporated in the particle effective mass is reproduced as a special case when the spin-orbital coupling is negligible. This model could be useful for studying laser-plasma interactions in relativistic spin-1/2 plasmas.« less
Size-Dependent Materials Properties Toward a Universal Equation
2010-01-01
Due to the lack of experimental values concerning some material properties at the nanoscale, it is interesting to evaluate this theoretically. Through a “top–down” approach, a universal equation is developed here which is particularly helpful when experiments are difficult to lead on a specific material property. It only requires the knowledge of the surface area to volume ratio of the nanomaterial, its size as well as the statistic (Fermi–Dirac or Bose–Einstein) followed by the particles involved in the considered material property. Comparison between different existing theoretical models and the proposed equation is done. PMID:20596422
NASA Technical Reports Server (NTRS)
Baumeister, K. J.
1983-01-01
A time-dependent finite difference formulation to the inhomogeneous wave equation is derived for plane wave propagation with harmonic noise sources. The difference equation and boundary conditions are developed along with the techniques to simulate the Dirac delta function associated with a concentrated noise source. Example calculations are presented for the Green's function and distributed noise sources. For the example considered, the desired Fourier transformed acoustic pressures are determined from the transient pressures by use of a ramping function and an integration technique, both of which eliminates the nonharmonic pressure associated with the initial transient.
NASA Technical Reports Server (NTRS)
Baumeiste, K. J.
1983-01-01
A time-dependent finite difference formulation to the inhomogeneous wave equation is derived for plane wave propagation with harmonic noise sources. The difference equation and boundary conditions are developed along with the techniques to simulate the Dirac delta function associated with a concentrated noise source. Example calculations are presented for the Green's function and distributed noise sources. For the example considered, the desired Fourier transformed acoustic pressures are determined from the transient pressures by use of a ramping function and an integration technique, both of which eliminates the nonharmonic pressure associated with the initial transient.
Quantum gravitational collapse as a Dirac particle on the half line
NASA Astrophysics Data System (ADS)
Hassan, Syed Moeez; Husain, Viqar; Ziprick, Jonathan
2018-05-01
We show that the quantum dynamics of a thin spherical shell in general relativity is equivalent to the Coulomb-Dirac equation on the half line. The Hamiltonian has a one-parameter family of self-adjoint extensions with a discrete energy spectrum |E |
Dirac-Born-Infeld actions and tachyon monopoles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Calo, Vincenzo; Tallarita, Gianni; Thomas, Steven
2010-04-15
We investigate magnetic monopole solutions of the non-Abelian Dirac-Born-Infeld (DBI) action describing two coincident non-BPS D9-branes in flat space. Just as in the case of kink and vortex solitonic tachyon solutions of the full DBI non-BPS actions, as previously analyzed by Sen, these monopole configurations are singular in the first instance and require regularization. We discuss a suitable non-Abelian ansatz that describes a pointlike magnetic monopole and show it solves the equations of motion to leading order in the regularization parameter. Fluctuations are studied and shown to describe a codimension three BPS D6-brane, and a formula is derived for itsmore » tension.« less
Scattering of massless fermions by Schwarzschild and Reissner-Nordström black holes
NASA Astrophysics Data System (ADS)
Sporea, Ciprian A.
2017-12-01
We study the scattering of massless Dirac fermions by Schwarzschild and Reissner-Nordström black holes. This is done by applying partial wave analysis to the scattering modes obtained after solving the massless Dirac equation in the asymptotic regions of the two black hole geometries. We successfully obtain analytic phase shifts, with the help of which the scattering cross section is computed. The glory and spiral scattering phenomena are shown to be present, as in the case of massive fermion scattering by black holes. Supported by a grant of the Ministry of National Education and Scientific Research, RDI Programme for Space Technology and Advanced Research - STAR, project number 181/20.07.2017
Universal linear and nonlinear electrodynamics of a Dirac fluid
NASA Astrophysics Data System (ADS)
Sun, Zhiyuan; Basov, Dmitry N.; Fogler, Michael M.
2018-03-01
A general relation is derived between the linear and second-order nonlinear ac conductivities of an electron system in the hydrodynamic regime of frequencies below the interparticle scattering rate. The magnitude and tensorial structure of the hydrodynamic nonlinear conductivity are shown to differ from their counterparts in the more familiar kinetic regime of higher frequencies. Due to universality of the hydrodynamic equations, the obtained formulas are valid for systems with an arbitrary Dirac-like dispersion, ranging from solid-state electron gases to free-space plasmas, either massive or massless, at any temperature, chemical potential, or space dimension. Predictions for photon drag and second-harmonic generation in graphene are presented as one application of this theory.
Motions in Taub-NUT-de Sitter spinning spacetime
NASA Astrophysics Data System (ADS)
Banu, Akhtara
2012-09-01
We investigate the geodesic motion of pseudo-classical spinning particles in the Taub-NUT-de Sitter spacetime. We obtain the conserved quantities from the solutions of the generalized Killing equations for spinning spaces. Applying the formalism the motion of a pseudo-classical Dirac fermion is analyzed on a cone and plane.
Discriminating Majorana neutrino textures in light of the baryon asymmetry
NASA Astrophysics Data System (ADS)
Borah, Manikanta; Borah, Debasish; Das, Mrinal Kumar
2015-06-01
We study all possible texture zeros in the Majorana neutrino mass matrix which are allowed from neutrino oscillation as well as cosmology data when the charged lepton mass matrix is assumed to take the diagonal form. In the case of one-zero texture, we write down the Majorana phases which are assumed to be equal and the lightest neutrino mass as a function of the Dirac C P phase. In the case of two-zero texture, we numerically evaluate all the three C P phases and lightest neutrino mass by solving four real constraint equations. We then constrain texture zero mass matrices from the requirement of producing correct baryon asymmetry through the mechanism of leptogenesis by assuming the Dirac neutrino mass matrix to be diagonal. Adopting a type I seesaw framework, we consider the C P -violating out of equilibrium decay of the lightest right-handed neutrino as the source of lepton asymmetry. Apart from discriminating between the texture zero mass matrices and light neutrino mass hierarchy, we also constrain the Dirac and Majorana C P phases so that the observed baryon asymmetry can be produced. In two-zero texture, we further constrain the diagonal form of the Dirac neutrino mass matrix from the requirement of producing correct baryon asymmetry.
Dirac δ -function potential in quasiposition representation of a minimal-length scenario
NASA Astrophysics Data System (ADS)
Gusson, M. F.; Gonçalves, A. Oakes O.; Francisco, R. O.; Furtado, R. G.; Fabris, J. C.; Nogueira, J. A.
2018-03-01
A minimal-length scenario can be considered as an effective description of quantum gravity effects. In quantum mechanics the introduction of a minimal length can be accomplished through a generalization of Heisenberg's uncertainty principle. In this scenario, state eigenvectors of the position operator are no longer physical states and the representation in momentum space or a representation in a quasiposition space must be used. In this work, we solve the Schroedinger equation with a Dirac δ -function potential in quasiposition space. We calculate the bound state energy and the coefficients of reflection and transmission for the scattering states. We show that leading corrections are of order of the minimal length ({ O}(√{β })) and the coefficients of reflection and transmission are no longer the same for the Dirac delta well and barrier as in ordinary quantum mechanics. Furthermore, assuming that the equivalence of the 1s state energy of the hydrogen atom and the bound state energy of the Dirac {{δ }}-function potential in the one-dimensional case is kept in a minimal-length scenario, we also find that the leading correction term for the ground state energy of the hydrogen atom is of the order of the minimal length and Δx_{\\min } ≤ 10^{-25} m.
Alternative bi-Hamiltonian structures for WDVV equations of associativity
NASA Astrophysics Data System (ADS)
Kalayci, J.; Nutku, Y.
1998-01-01
The WDVV equations of associativity in two-dimensional topological field theory are completely integrable third-order Monge-Ampère equations which admit bi-Hamiltonian structure. The time variable plays a distinguished role in the discussion of Hamiltonian structure, whereas in the theory of WDVV equations none of the independent variables merits such a distinction. WDVV equations admit very different alternative Hamiltonian structures under different possible choices of the time variable, but all these various Hamiltonian formulations can be brought together in the framework of the covariant theory of symplectic structure. They can be identified as different components of the covariant Witten-Zuckerman symplectic 2-form current density where a variational formulation of the WDVV equation that leads to the Hamiltonian operator through the Dirac bracket is available.
Combinatorial interpretation of Haldane-Wu fractional exclusion statistics.
Aringazin, A K; Mazhitov, M I
2002-08-01
Assuming that the maximal allowed number of identical particles in a state is an integer parameter, q, we derive the statistical weight and analyze the associated equation that defines the statistical distribution. The derived distribution covers Fermi-Dirac and Bose-Einstein ones in the particular cases q=1 and q--> infinity (n(i)/q-->1), respectively. We show that the derived statistical weight provides a natural combinatorial interpretation of Haldane-Wu fractional exclusion statistics, and present exact solutions of the distribution equation.
Covariant approach of perturbations in Lovelock type brane gravity
NASA Astrophysics Data System (ADS)
Bagatella-Flores, Norma; Campuzano, Cuauhtemoc; Cruz, Miguel; Rojas, Efraín
2016-12-01
We develop a covariant scheme to describe the dynamics of small perturbations on Lovelock type extended objects propagating in a flat Minkowski spacetime. The higher-dimensional analogue of the Jacobi equation in this theory becomes a wave type equation for a scalar field Φ . Whithin this framework, we analyse the stability of membranes with a de Sitter geometry where we find that the Jacobi equation specializes to a Klein-Gordon (KG) equation for Φ possessing a tachyonic mass. This shows that, to some extent, these types of extended objects share the symmetries of the Dirac-Nambu-Goto (DNG) action which is by no means coincidental because the DNG model is the simplest included in this type of gravity.
The special theory of relativity as applied to the Born-Oppenheimer-Huang approach
NASA Astrophysics Data System (ADS)
Baer, Michael
2017-07-01
In two recent publications (Int. J. Quant. Chem. 114, 1645 (2014) and Mole. Phys. 114, 227 (2016)) it was shown that the Born-Hwang (BH) treatment of a molecular system perturbed by an external field yields a set of decoupled vectorial wave equations, just like in electro-magnetism. This finding led us to declare on the existence of a new type of Fields, which were termed Molecular Fields. The fact that such fields exist implies that at the vicinity of conical intersections exist a mechanism that transforms a passing-by electric beam into a field which differs from the original electric field. This situation is reminiscent of what is encountered in astronomy where Black Holes formed by massive stars may affect the nature of a near-by beam of light. Thus, if the non-adiabatic-coupling-terms (NACT) with their singular points may affect the nature of such a beam (see the above two publications), then it would be interesting to know to what extend NACTs (and consequently also the BH equation) will be affected by the special theory of relativity as introduced by Dirac. Indeed, while applying the Dirac approach we derived the relativistic affected NACTs as well as the corresponding BH equation.
The Gravitational Analogue to the Hydrogen Atom
ERIC Educational Resources Information Center
Kober, Martin; Koch, Ben; Bleicher, Marcus
2007-01-01
This paper reports on a student summer project performed in 2006 at the University of Frankfurt. It is addressed to undergraduate students familiar with the basic principles of relativistic quantum mechanics and general relativity. The aim of the project was to study the Dirac equation in curved spacetime. To obtain the general relativistic Dirac…
NASA Astrophysics Data System (ADS)
Taylor, Tomasz R.
2017-05-01
This a pedagogical introduction to scattering amplitudes in gauge theories. It proceeds from Dirac equation and Weyl fermions to the two pivot points of current developments: the recursion relations of Britto, Cachazo, Feng and Witten, and the unitarity cut method pioneered by Bern, Dixon, Dunbar and Kosower. In ten lectures, it covers the basic elements of on-shell methods.
On harmonic oscillators and their Kemmer relativistic forms
NASA Technical Reports Server (NTRS)
Debergh, Nathalie; Beckers, Jules
1993-01-01
It is shown that Dirac (Kemmer) equations are intimately connected with (para)supercharges coming from (para)supersymmetric quantum mechanics, a nonrelativistic theory. The dimensions of the irreducible representations of Clifford (Kemmer) algebras play a fundamental role in such an analysis. These considerations are illustrated through oscillator like interactions, leading to (para)relativistic oscillators.
Particle creation phenomenology, Dirac sea and the induced Weyl and Einstein-dilaton gravity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berezin, V.A.; Dokuchaev, V.I.; Eroshenko, Yu.N., E-mail: berezin@inr.ac.ru, E-mail: dokuchaev@inr.ac.ru, E-mail: eroshenko@inr.ac.ru
We constructed the conformally invariant model for scalar particle creation induced by strong gravitational fields. Starting from the 'usual' hydrodynamical description of the particle motion written in the Eulerian coordinates we substituted the particle number conservation law (which enters the formalism) by 'the particle creation law', proportional to the square of the Weyl tensor (following the famous result by Ya.B. Zel'dovich and A.A. Starobinsky). Then, demanding the conformal invariance of the whole dynamical system, we have got both the (Weyl)-conformal gravity and the Einstein-Hilbert gravity action integral with dilaton field. Thus, we obtained something like the induced gravity suggested firstmore » by A.D. Sakharov. It is shown that the resulting system is self-consistent. We considered also the vacuum equations. It is shown that, beside the 'empty vacuum', there may exist the 'dynamical vacuum', which is nothing more but the Dirac sea. The latter is described by the unexpectedly elegant equation which includes both the Bach and Einstein tensors and the cosmological terms.« less
Nonlinear propagation of light in Dirac matter.
Eliasson, Bengt; Shukla, P K
2011-09-01
The nonlinear interaction between intense laser light and a quantum plasma is modeled by a collective Dirac equation coupled with the Maxwell equations. The model is used to study the nonlinear propagation of relativistically intense laser light in a quantum plasma including the electron spin-1/2 effect. The relativistic effects due to the high-intensity laser light lead, in general, to a downshift of the laser frequency, similar to a classical plasma where the relativistic mass increase leads to self-induced transparency of laser light and other associated effects. The electron spin-1/2 effects lead to a frequency upshift or downshift of the electromagnetic (EM) wave, depending on the spin state of the plasma and the polarization of the EM wave. For laboratory solid density plasmas, the spin-1/2 effects on the propagation of light are small, but they may be significant in superdense plasma in the core of white dwarf stars. We also discuss extensions of the model to include kinetic effects of a distribution of the electrons on the nonlinear propagation of EM waves in a quantum plasma.
Landau level splitting due to graphene superlattices
NASA Astrophysics Data System (ADS)
Pal, G.; Apel, W.; Schweitzer, L.
2012-06-01
The Landau level spectrum of graphene superlattices is studied using a tight-binding approach. We consider noninteracting particles moving on a hexagonal lattice with an additional one-dimensional superlattice made up of periodic square potential barriers, which are oriented along the zigzag or along the armchair directions of graphene. In the presence of a perpendicular magnetic field, such systems can be described by a set of one-dimensional tight-binding equations, the Harper equations. The qualitative behavior of the energy spectrum with respect to the strength of the superlattice potential depends on the relation between the superlattice period and the magnetic length. When the potential barriers are oriented along the armchair direction of graphene, we find for strong magnetic fields that the zeroth Landau level of graphene splits into two well-separated sublevels, if the width of the barriers is smaller than the magnetic length. In this situation, which persists even in the presence of disorder, a plateau with zero Hall conductivity can be observed around the Dirac point. This Landau level splitting is a true lattice effect that cannot be obtained from the generally used continuum Dirac-fermion model.
Matter-antimatter asymmetry and dark matter from torsion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Poplawski, Nikodem J.
2011-04-15
We propose a simple scenario which explains the observed matter-antimatter imbalance and the origin of dark matter in the Universe. We use the Einstein-Cartan-Sciama-Kibble theory of gravity which naturally extends general relativity to include the intrinsic spin of matter. Spacetime torsion produced by spin generates, in the classical Dirac equation, the Hehl-Datta term which is cubic in spinor fields. We show that under a charge-conjugation transformation this term changes sign relative to the mass term. A classical Dirac spinor and its charge conjugate therefore satisfy different field equations. Fermions in the presence of torsion have higher energy levels than antifermions,more » which leads to their decay asymmetry. Such a difference is significant only at extremely high densities that existed in the very early Universe. We propose that this difference caused a mechanism, according to which heavy fermions existing in such a Universe and carrying the baryon number decayed mostly to normal matter, whereas their antiparticles decayed mostly to hidden antimatter which forms dark matter. The conserved total baryon number of the Universe remained zero.« less
General solution of the Dirac equation for quasi-two-dimensional electrons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eremko, Alexander, E-mail: eremko@bitp.kiev.ua; Brizhik, Larissa, E-mail: brizhik@bitp.kiev.ua; Loktev, Vadim, E-mail: vloktev@bitp.kiev.ua
2016-06-15
The general solution of the Dirac equation for quasi-two-dimensional electrons confined in an asymmetric quantum well, is found. The energy spectrum of such a system is exactly calculated using special unitary operator and is shown to depend on the electron spin polarization. This solution contains free parameters, whose variation continuously transforms one known particular solution into another. As an example, two different cases are considered in detail: electron in a deep and in a strongly asymmetric shallow quantum well. The effective mass renormalized by relativistic corrections and Bychkov–Rashba coefficients are analytically obtained for both cases. It is demonstrated that themore » general solution transforms to the particular solutions, found previously (Eremko et al., 2015) with the use of spin invariants. The general solution allows to establish conditions at which a specific (accompanied or non-accompanied by Rashba splitting) spin state can be realized. These results can prompt the ways to control the spin degree of freedom via the synthesis of spintronic heterostructures with the required properties.« less
Analytic drain current model for III-V cylindrical nanowire transistors
NASA Astrophysics Data System (ADS)
Marin, E. G.; Ruiz, F. G.; Schmidt, V.; Godoy, A.; Riel, H.; Gámiz, F.
2015-07-01
An analytical model is proposed to determine the drain current of III-V cylindrical nanowires (NWs). The model uses the gradual channel approximation and takes into account the complete analytical solution of the Poisson and Schrödinger equations for the Γ-valley and for an arbitrary number of subbands. Fermi-Dirac statistics are considered to describe the 1D electron gas in the NWs, being the resulting recursive Fermi-Dirac integral of order -1/2 successfully integrated under reasonable assumptions. The model has been validated against numerical simulations showing excellent agreement for different semiconductor materials, diameters up to 40 nm, gate overdrive biases up to 0.7 V, and densities of interface states up to 1013eV-1cm-2 .
NASA Astrophysics Data System (ADS)
Li, Yun-Mei; Zhou, Xiaoying; Zhang, Yan-Yang; Zhang, Dong; Chang, Kai
2017-07-01
We investigate theoretically the electronic properties of two-dimensional electron gases (2DEGs) with regular and distorted triangular antidot lattices. We show that the triangular antidot lattices embedded in 2DEGs behave like artificial graphene and host Dirac fermions. By introducing the Wannier representation, we obtain a tight-binding Hamiltonian including the second-nearest-neighboring hopping, which agrees well with the numerically exact solutions. Based on the tight-binding model, we find that spatially nonuniform distortions of the antidot lattices strongly modify the electronic structures, generate pseudomagnetic fields and the well-defined Landau levels. In contrast to graphene, we can design the nonuniform distortions to generate various configurations of pseudomagnetic fields. We show that the snake orbital states arise by designing the ±B pseudomagnetic field configuration. We find that the disorders of antidot lattices during fabrication would not affect the basic feature of the Dirac electrons, but they lead to a reduction in conductance in strong disorder cases.
NASA Astrophysics Data System (ADS)
Al-Badawi, A.
2018-02-01
The Dirac equation is considered in a spacetime that represents a Schwarzschild metric coupled to a uniform external electromagnetic field. Due to the presence of electromagnetic field from the surroundings, the interaction with the spin-1/2 massive charged particle is considered. The equations of the spin-1/2 massive charged particle are separated into radial and angular equations by adopting the Newman-Penrose formalism. The angular equations obtained are similar to the Schwarzschild geometry. For the radial equations we manage to obtain the one dimensional Schrödinger-type wave equations with effective potentials. Finally, we study the behavior of the potentials by plotting them as a function of radial distance and expose the effect of the external parameter, charge and the frequency of the particle on them.
NASA Astrophysics Data System (ADS)
Bauke, Heiko; Wen, Meng; Keitel, Christoph H.
2017-05-01
Various different classical models of electrons including their spin degree of freedom are commonly applied to describe the coupled dynamics of relativistic electron motion and spin precession in strong electromagnetic fields. The spin dynamics is usually governed by the Thomas-Bargmann-Michel-Telegdi equation [1, 2] in these models, while the electron's orbital motion follows the (modified) Lorentz force and a spin-dependent Stern-Gerlach force. Various classical models can lead to different or even contradicting predictions how the spin degree of freedom modifies the electron's orbital motion when the electron moves in strong electromagnetic fields. This discrepancy is rooted in the model-specific energy dependency of the spin induced relativistic Stern-Gerlach force acting on the electron. The Frenkel model [3, 4] and the classical Foldy-Wouthuysen model 5 are compared exemplarily against each other and against the quantum mechanical Dirac equation in order to identify parameter regimes where these classical models make different predictions [6, 7]. Our theoretical results allow for experimental tests of these models. In the setup of the longitudinal Stern-Gerlach effect, the Frenkel model and classical Foldy-Wouthuysen model lead in the relativistic limit to qualitatively different spin effects on the electron trajectory. Furthermore, it is demonstrated that in tightly focused beams in the near infrared the effect of the Stern-Gerlach force of the Frenkel model becomes sufficiently large to be potentially detectable in an experiment. Among the classical spin models, the Frenkel model is certainly prominent for its long history and its wide application. Our results, however, suggest that the classical Foldy-Wouthuysen model is superior as it is qualitatively in better agreement with the quantum mechanical Dirac equation. In ultra strong laser setups at parameter regimes where effects of the Stern-Gerlach force become relevant also radiation reaction effects are expected to set in. We incorporate radiation reaction classically via the Landau-Lifshitz equation and demonstrate that although radiation reaction effects can have a significant effect on the electron trajectory, the Frenkel model and the classical Foldy-Wouthuysen model remain distinguishable also if radiation reaction effects are taken into account. Our calculations are also suitable to verify the Landau-Lifshitz equation for the radiation reaction of electrons and other spin one-half particles. 1. Thomas, L. H., "I. The kinematics of an electron with an axis," The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 3(13), 1-22 (1927). 2. Bargmann, V., Michel, L., and Telegdi, V. L., "Precession of the polarization of particles moving in a homogeneous electromagnetic field," Phys. Rev. Lett. 2(10), 435-436 (1959). 3. Frenkel, J., "Die Elektrodynamik des rotierenden Elektrons," Z. Phys. 37(4-5), 243-262 (1926). 4. Frenkel, J., "Spinning electrons," Nature (London) 117(2949), 653-654 (1926). 5. Silenko, A. J., "Foldy-Wouthyusen transformation and semiclassical limit for relativistic particles in strong external fields," Phys. Rev. A 77(1), 012116 (2008). 6. Wen, M., Bauke, H., and Keitel, C. H., "Identifying the Stern-Gerlach force of classical electron dynamics," Sci. Rep. 6, 31624 (2016). 7. Wen, M., Keitel, C. H., and Bauke, H., "Spin one-half particles in strong electromagnetic fields: spin effects and radiation reaction," arXiv:1610.08951 (2016).
a Simpler Solution of the Non-Uniqueness Problem of the Covariant Dirac Theory
NASA Astrophysics Data System (ADS)
Arminjon, Mayeul
2013-05-01
Although the standard generally covariant Dirac equation is unique in a topologically simple spacetime, it has been shown that it leads to non-uniqueness problems for the Hamiltonian and energy operators, including the non-uniqueness of the energy spectrum. These problems should be solved by restricting the choice of the Dirac gamma field in a consistent way. Recently, we proposed to impose the value of the rotation rate of the tetrad field. This is not necessarily easy to implement and works only in a given reference frame. Here, we propose that the gamma field should change only by constant gauge transformations. To get that situation, we are naturally led to assume that the metric can be put in a space-isotropic diagonal form. When this is the case, it distinguishes a preferred reference frame. We show that by defining the gamma field from the "diagonal tetrad" in a chart in which the metric has that form, the uniqueness problems are solved at once for all reference frames. We discuss the physical relevance of the metric considered and our restriction to first-quantized theory.
Causal localizations in relativistic quantum mechanics
NASA Astrophysics Data System (ADS)
Castrigiano, Domenico P. L.; Leiseifer, Andreas D.
2015-07-01
Causal localizations describe the position of quantum systems moving not faster than light. They are constructed for the systems with finite spinor dimension. At the center of interest are the massive relativistic systems. For every positive mass, there is the sequence of Dirac tensor-localizations, which provides a complete set of inequivalent irreducible causal localizations. They obey the principle of special relativity and are fully Poincaré covariant. The boosters are determined by the causal position operator and the other Poincaré generators. The localization with minimal spinor dimension is the Dirac localization. Thus, the Dirac equation is derived here as a mere consequence of the principle of causality. Moreover, the higher tensor-localizations, not known so far, follow from Dirac's localization by a simple construction. The probability of localization for positive energy states results to be described by causal positive operator valued (PO-) localizations, which are the traces of the causal localizations on the subspaces of positive energy. These causal Poincaré covariant PO-localizations for every irreducible massive relativistic system were, all the more, not known before. They are shown to be separated. Hence, the positive energy systems can be localized within every open region by a suitable preparation as accurately as desired. Finally, the attempt is made to provide an interpretation of the PO-localization operators within the frame of conventional quantum mechanics attributing an important role to the negative energy states.
Positron Interactions with Atoms and Ions
NASA Technical Reports Server (NTRS)
Bhatia, Anand K.
2012-01-01
Dirac, in 1928, combining the ideas of quantum mechanics and the ideas of relativity invented the well-known relativistic wave equation. In his formulation, he predicted an antiparticle of the electron of spin n-bar/2. He thought that this particle must be a proton. Dirac published his interpretation in a paper 'A theory of electrons and protons.' It was shown later by the mathematician Hermann Weyl that the Dirac theory was completely symmetric between negative and positive particles and the positive particle must have the same mass as that of the electron. In his J. Robert Oppenheimer Memorial Prize Acceptance Speech, Dirac notes that 'Blackett was really the first person to obtain hard evidence for the existence of a positron but he was afraid to publish it. He wanted confirmation, he was really over cautious.' Positron, produced by the collision of cosmic rays in a cloud chamber, was detected experimentally by Anderson in 1932. His paper was published in Physical Review in 1933. The concept of the positron and its detection were the important discoveries of the 20th century. I have tried to discuss various processes involving interactions of positrons with atoms and ions. This includes scattering, bound states and resonances. It has not been possible to include the enormous work which has been carried out during the last 40 or 50 years in theory and measurements.
Relativistic proton-nucleus scattering and one-boson-exchange models
NASA Technical Reports Server (NTRS)
Maung, Khin Maung; Gross, Franz; Tjon, J. A.; Townsend, L. W.; Wallace, S. J.
1993-01-01
Relativistic p-(Ca-40) elastic scattering observables are calculated using four sets of relativistic NN amplitudes obtained from different one-boson-exchange (OBE) models. The first two sets are based upon a relativistic equation in which one particle is on mass shell and the other two sets are obtained from a quasipotential reduction of the Bethe-Salpeter equation. Results at 200, 300, and 500 MeV are presented for these amplitudes. Differences between the predictions of these models provide a study of the uncertainty in constructing Dirac optical potentials from OBE-based NN amplitudes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Băloi, Mihaela-Andreea, E-mail: mihaela.baloi88@e-uvt.ro; Crucean, Cosmin
The production of fermions in dipolar electric fields on de Sitter universe is studied. The amplitude and probability of pair production are computed using the exact solution of the Dirac equation in de Sitter spacetime. The form of the dipolar fields is established using the conformal invariance of the Maxwell equations. We obtain that the momentum conservation law is broken in the process of pair production in dipolar electric fields. Also we establish that there are nonvanishing probabilities for processes in which the helicity is conserved/nonconserved. The Minkowski limit is recovered when the expansion factor becomes zero.
Local U(2,2) symmetry in relativistic quantum mechanics
NASA Astrophysics Data System (ADS)
Finster, Felix
1998-12-01
Local gauge freedom in relativistic quantum mechanics is derived from a measurement principle for space and time. For the Dirac equation, one obtains local U(2,2) gauge transformations acting on the spinor index of the wave functions. This local U(2,2) symmetry allows a unified description of electrodynamics and general relativity as a classical gauge theory.
Covariant Conformal Decomposition of Einstein Equations
NASA Astrophysics Data System (ADS)
Gourgoulhon, E.; Novak, J.
It has been shown1,2 that the usual 3+1 form of Einstein's equations may be ill-posed. This result has been previously observed in numerical simulations3,4. We present a 3+1 type formalism inspired by these works to decompose Einstein's equations. This decomposition is motivated by the aim of stable numerical implementation and resolution of the equations. We introduce the conformal 3-``metric'' (scaled by the determinant of the usual 3-metric) which is a tensor density of weight -2/3. The Einstein equations are then derived in terms of this ``metric'', of the conformal extrinsic curvature and in terms of the associated derivative. We also introduce a flat 3-metric (the asymptotic metric for isolated systems) and the associated derivative. Finally, the generalized Dirac gauge (introduced by Smarr and York5) is used in this formalism and some examples of formulation of Einstein's equations are shown.
NASA Astrophysics Data System (ADS)
Nakatsuji, Hiroshi
Chemistry is a science of complex subjects that occupy this universe and biological world and that are composed of atoms and molecules. Its essence is diversity. However, surprisingly, whole of this science is governed by simple quantum principles like the Schrödinger and the Dirac equations. Therefore, if we can find a useful general method of solving these quantum principles under the fermionic and/or bosonic constraints accurately in a reasonable speed, we can replace somewhat empirical methodologies of this science with purely quantum theoretical and computational logics. This is the purpose of our series of studies - called ``exact theory'' in our laboratory. Some of our documents are cited below. The key idea was expressed as the free complement (FC) theory (originally called ICI theory) that was introduced to solve the Schrödinger and Dirac equations analytically. For extending this methodology to larger systems, order N methodologies are essential, but actually the antisymmetry constraints for electronic wave functions become big constraints. Recently, we have shown that the antisymmetry rule or `dogma' can be very much relaxed when our subjects are large molecular systems. In this talk, I want to present our recent progress in our FC methodology. The purpose is to construct ``predictive quantum chemistry'' that is useful in chemical and physical researches and developments in institutes and industries
Relativistic quantum Darwinism in Dirac fermion and graphene systems
NASA Astrophysics Data System (ADS)
Ni, Xuan; Huang, Liang; Lai, Ying-Cheng; Pecora, Louis
2012-02-01
We solve the Dirac equation in two spatial dimensions in the setting of resonant tunneling, where the system consists of two symmetric cavities connected by a finite potential barrier. The shape of the cavities can be chosen to yield both regular and chaotic dynamics in the classical limit. We find that certain pointer states about classical periodic orbits can exist, which are signatures of relativistic quantum Darwinism (RQD). These localized states suppress quantum tunneling, and the effect becomes less severe as the underlying classical dynamics in the cavity is chaotic, leading to regularization of quantum tunneling. Qualitatively similar phenomena have been observed in graphene. A physical theory is developed to explain relativistic quantum Darwinism and its effects based on the spectrum of complex eigenenergies of the non-Hermitian Hamiltonian describing the open cavity system.
Tunneling of Charged and Magnetized Fermions from a Rotating Dyonic Taub-NUT Black Hole
NASA Astrophysics Data System (ADS)
Sultana, Kausari
2017-12-01
We investigate tunneling of charged and magnetized Dirac particles from a rotating dyonic Taub-NUT (TN) black hole (BH) called the Kerr-Newman-KasuyaTub-NUT (KNKTN) BH endowed with electric as well as magnetic charges. We derive the tunneling probability of outgoing charged particles by using the semiclassical WKB approximation to the covariant Dirac equation and obtain the corresponding Hawking temperature. The emission spectrum deviates from the purely thermal spectrum with the leading term exactly the Boltzman factor, if energy conservation and the backreaction of particles to the spacetime are considered. The results provides a quantumcorrected radiation temperature depending on the BH background and the radiation particles energy, angular momentum, and charges. The results are consistent with those already available in literature.
NASA Astrophysics Data System (ADS)
Thibes, Ronaldo
2017-02-01
We perform the canonical and path integral quantizations of a lower-order derivatives model describing Podolsky's generalized electrodynamics. The physical content of the model shows an auxiliary massive vector field coupled to the usual electromagnetic field. The equivalence with Podolsky's original model is studied at classical and quantum levels. Concerning the dynamical time evolution, we obtain a theory with two first-class and two second-class constraints in phase space. We calculate explicitly the corresponding Dirac brackets involving both vector fields. We use the Senjanovic procedure to implement the second-class constraints and the Batalin-Fradkin-Vilkovisky path integral quantization scheme to deal with the symmetries generated by the first-class constraints. The physical interpretation of the results turns out to be simpler due to the reduced derivatives order permeating the equations of motion, Dirac brackets and effective action.
Spin polarization effects and their time evolutions
NASA Astrophysics Data System (ADS)
Vernes, A.; Weinberger, P.
2015-04-01
The time evolution of the density corresponding to the polarization operator, originally constructed to commute with the Dirac Hamiltonian in the absence of an external electromagnetic field, is investigated in terms of the time-dependent Dirac equation taking the presence of an external electromagnetic field into account. It is found that this time evolution leads to 'tensorial' and 'vectorial' particle current densities and to the interaction of the spin density with the external electromagnetic field. As the time evolution of the spin density does not refer to a constant of motion (continuity condition) it only serves as auxiliary density. By taking the non-relativistic limit, it is shown that the polarization, spin and magnetization densities are independent of electric field effects and, in addition, no preferred directions can be defined.
Symmetry Analysis of Gauge-Invariant Field Equations via a Generalized Harrison-Estabrook Formalism.
NASA Astrophysics Data System (ADS)
Papachristou, Costas J.
The Harrison-Estabrook formalism for the study of invariance groups of partial differential equations is generalized and extended to equations that define, through their solutions, sections on vector bundles of various kinds. Applications include the Dirac, Yang-Mills, and self-dual Yang-Mills (SDYM) equations. The latter case exhibits interesting connections between the internal symmetries of SDYM and the existence of integrability characteristics such as a linear ("inverse scattering") system and Backlund transformations (BT's). By "verticalizing" the generators of coordinate point transformations of SDYM, nine nonlocal, generalized (as opposed to local, point) symmetries are constructed. The observation is made that the prolongations of these symmetries are parametric BT's for SDYM. It is thus concluded that the entire point group of SDYM contributes, upon verticalization, BT's to the system.
On Parametrization of the Linear GL(4,C) and Unitary SU(4) Groups in Terms of Dirac Matrices
NASA Astrophysics Data System (ADS)
Red'Kov, Victor M.; Bogush, Andrei A.; Tokarevskaya, Natalia G.
2008-02-01
Parametrization of 4 × 4-matrices G of the complex linear group GL(4,C) in terms of four complex 4-vector parameters (k,m,n,l) is investigated. Additional restrictions separating some subgroups of GL(4,C) are given explicitly. In the given parametrization, the problem of inverting any 4 × 4 matrix G is solved. Expression for determinant of any matrix G is found: det G = F(k,m,n,l). Unitarity conditions G+ = G-1 have been formulated in the form of non-linear cubic algebraic equations including complex conjugation. Several simplest solutions of these unitarity equations have been found: three 2-parametric subgroups G1, G2, G3 - each of subgroups consists of two commuting Abelian unitary groups; 4-parametric unitary subgroup consis! ting of a product of a 3-parametric group isomorphic SU(2) and 1-parametric Abelian group. The Dirac basis of generators Λk, being of Gell-Mann type, substantially differs from the basis λi used in the literature on SU(4) group, formulas relating them are found - they permit to separate SU(3) subgroup in SU(4). Special way to list 15 Dirac generators of GL(4,C) can be used {Λk} = {μiÅνjÅ(μiVνj = KÅL ÅM )}, which permit to factorize SU(4) transformations according to S = eiaμ eibνeikKeilLeimM, where two first factors commute with each other and are isomorphic to SU(2) group, the three last ones are 3-parametric groups, each of them consisting of three Abelian commuting unitary subgroups. Besides, the structure of fifteen Dirac matrices Λk permits to separate twenty 3-parametric subgroups in SU(4) isomorphic to SU(2); those subgroups might be used as bigger elementary blocks in constructing of a general transformation SU(4). It is shown how one can specify the present approach for the pseudounitary group SU(2,2) and SU(3,1).
Nucleon-anti-nucleon intruder state of Dirac equation for nucleon in deep scalar potential well
NASA Astrophysics Data System (ADS)
Kuo, T. T. S.; Kuo, T. K.; Osnes, E.; Shu, S.
We solve the Dirac radial equation for a nucleon in a scalar Woods-Saxon potential well of depth V0 and radius r0. A sequence of values for the depth and radius are considered. For shallow potentials with -1000MeV ≤ V0 < 0 the wave functions for the positive-energy states ψ+(r) are dominated by their nucleon component f(r). But for deeper potentials with V0 ≤ -1500MeV the ψ+(r) s begin to have dominant anti-nucleon component f(r). In particular, a special intruder state enters with wave function ψ1/2(r) and energy E1/2. We have considered several r0 values between 2 and 8fm. For V0 ≤ -2000 MeV and the above r0 values. ψ1/2(r) is the only bound positive-energy state and has its g(r) closely equal to -f(r), both having a narrow wave packet shape centered around r0. The E1/2 of this state is practically independent of V0 for the above V0 range and obeys closely the relation E1/2 = ℏc/r0.
Clifford coherent state transforms on spheres
NASA Astrophysics Data System (ADS)
Dang, Pei; Mourão, José; Nunes, João P.; Qian, Tao
2018-01-01
We introduce a one-parameter family of transforms, U(m)t , t > 0, from the Hilbert space of Clifford algebra valued square integrable functions on the m-dimensional sphere, L2(Sm , dσm) ⊗Cm+1, to the Hilbert spaces, ML2(R m + 1 ∖ { 0 } , dμt) , of solutions of the Euclidean Dirac equation on R m + 1 ∖ { 0 } which are square integrable with respect to appropriate measures, dμt. We prove that these transforms are unitary isomorphisms of the Hilbert spaces and are extensions of the Segal-Bargman coherent state transform, U(1) :L2(S1 , dσ1) ⟶ HL2(C ∖ { 0 } , dμ) , to higher dimensional spheres in the context of Clifford analysis. In Clifford analysis it is natural to replace the analytic continuation from Sm to SCm as in (Hall, 1994; Stenzel, 1999; Hall and Mitchell, 2002) by the Cauchy-Kowalewski extension from Sm to R m + 1 ∖ { 0 } . One then obtains a unitary isomorphism from an L2-Hilbert space to a Hilbert space of solutions of the Dirac equation, that is to a Hilbert space of monogenic functions.
Dirac Fermions without bulk backscattering in rhombohedral topological insulators
NASA Astrophysics Data System (ADS)
Mera Acosta, Carlos; Lima, Matheus; Seixas, Leandro; da Silva, Antônio; Fazzio, Adalberto
2015-03-01
The realization of a spintronic device using topological insulators is not trivial, because there are inherent difficulties in achieving the surface transport regime. The majority of 3D topological insulators materials (3DTI) despite of support helical metallic surface states on an insulating bulk, forming topological Dirac fermions protected by the time-reversal symmetry, exhibit electronic scattering channels due to the presence of residual continuous bulk states near the Dirac-point. From ab initio calculations, we studied the microscopic origin of the continuous bulk states in rhombohedral topological insulators materials with the space group D3d 5 (R 3 m) , showing that it is possible to understand the emergence of residual continuous bulk states near the Dirac-point into a six bands effective model, where the breaking of the R3 symmetry beyond the Γ point has an important role in the hybridization of the px, py and pz atomic orbitals. Within these model, the mechanisms known to eliminate the bulk scattering, for instance: the stacking faults (SF), electric field and alloy, generated the similar effect in the effective states of the 3DTI. Finally, we show how the surface electronic transport is modified by perturbations of bulk with SF. We would like to thank the financial support by Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP).
Anisotropic transport of normal metal-barrier-normal metal junctions in monolayer phosphorene.
De Sarkar, Sangita; Agarwal, Amit; Sengupta, K
2017-07-19
We study transport properties of a phosphorene monolayer in the presence of single and multiple potential barriers of height U 0 and width d, using both continuum and microscopic lattice models, and show that the nature of electron transport along its armchair edge (x direction) is qualitatively different from its counterpart in both conventional two-dimensional electron gas with Schrödinger-like quasiparticles and graphene or surfaces of topological insulators hosting massless Dirac quasiparticles. We show that the transport, mediated by massive Dirac electrons, allows one to achieve collimated quasiparticle motion along x and thus makes monolayer phosphorene an ideal experimental platform for studying Klein paradox in the context of gapped Dirac materials. We study the dependence of the tunneling conductance [Formula: see text] as a function of d and U 0 , and demonstrate that for a given applied voltage V its behavior changes from oscillatory to decaying function of d for a range of U 0 with finite non-zero upper and lower bounds, and provide analytical expression for these bounds within which G decays with d. We contrast such behavior of G with that of massless Dirac electrons in graphene and also with that along the zigzag edge (y direction) in phosphorene where the quasiparticles obey an effective Schrödinger equation at low energy. We also study transport through multiple barriers along x and demonstrate that these properties hold for transport through multiple barriers as well. Finally, we suggest concrete experiments which may verify our theoretical predictions.
Two interacting current model of holographic Dirac fluid in graphene
NASA Astrophysics Data System (ADS)
Rogatko, Marek; Wysokinski, Karol I.
2018-02-01
The electrons in graphene for energies close to the Dirac point have been found to form strongly interacting fluid. Taking this fact into account we have extended previous work on the transport properties of graphene by taking into account possible interactions between the currents and adding the external magnetic field directed perpendicularly to the graphene sheet. The perpendicular magnetic field B severely modifies the transport parameters. In the present approach the quantization of the spectrum and formation of Landau levels is ignored. Gauge/gravity duality has been used in the probe limit. The dependence on the charge density of the Seebeck coefficient and thermoelectric parameters αi j nicely agree with recent experimental data for graphene. The holographic model allows for the interpretation of one of the fields representing the currents as resulting from the dark matter sector. For the studied geometry with electric field perpendicular to the thermal gradient the effect of the dark sector has been found to modify the transport parameters but mostly in a quantitative way only. This makes difficult the detection of this elusive component of the Universe by studying transport properties of graphene.
Domain wall fermion QCD with the exact one flavor algorithm
Jung, C.; Kelly, C.; Mawhinney, R. D.; ...
2018-03-13
Lattice QCD calculations including the effects of one or more nondegenerate sea quark flavors are conventionally performed using the rational hybrid Monte Carlo (RHMC) algorithm, which computes the square root of the determinant ofmore » $${\\mathcal{D}}^{\\dagger{}}\\mathcal{D}$$, where $$\\mathcal{D}$$ is the Dirac operator. The special case of two degenerate quark flavors with the same mass is described directly by the determinant of $${\\mathcal{D}}^{\\dagger{}}\\mathcal{D}$$—in particular, no square root is necessary—enabling a variety of algorithmic developments, which have driven down the cost of simulating the light (up and down) quarks in the isospin-symmetric limit of equal masses. As a result, the relative cost of single quark flavors—such as the strange or charm—computed with RHMC has become more expensive. This problem is even more severe in the context of our measurements of the $$\\mathrm{{\\Delta}}I=1/2$$ $$K{\\rightarrow}{\\pi}{\\pi}$$ matrix elements on lattice ensembles with $G$-parity boundary conditions, since $G$-parity is associated with a doubling of the number of quark flavors described by $$\\mathcal{D}$$ , and thus RHMC is needed for the isospin-symmetric light quarks as well. In this paper we report on our implementation of the exact one flavor algorithm (EOFA) introduced by the TWQCD Collaboration for simulations including single flavors of domain wall quarks. We have developed a new preconditioner for the EOFA Dirac equation, which both reduces the cost of solving the Dirac equation and allows us to reuse the bulk of our existing high-performance code. Coupling these improvements with careful tuning of our integrator, the time per accepted trajectory in the production of our $2+1$ flavor $G$-parity ensembles with physical pion and kaon masses has been decreased by a factor of 4.2.« less
Domain wall fermion QCD with the exact one flavor algorithm
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jung, C.; Kelly, C.; Mawhinney, R. D.
Lattice QCD calculations including the effects of one or more nondegenerate sea quark flavors are conventionally performed using the rational hybrid Monte Carlo (RHMC) algorithm, which computes the square root of the determinant ofmore » $${\\mathcal{D}}^{\\dagger{}}\\mathcal{D}$$, where $$\\mathcal{D}$$ is the Dirac operator. The special case of two degenerate quark flavors with the same mass is described directly by the determinant of $${\\mathcal{D}}^{\\dagger{}}\\mathcal{D}$$—in particular, no square root is necessary—enabling a variety of algorithmic developments, which have driven down the cost of simulating the light (up and down) quarks in the isospin-symmetric limit of equal masses. As a result, the relative cost of single quark flavors—such as the strange or charm—computed with RHMC has become more expensive. This problem is even more severe in the context of our measurements of the $$\\mathrm{{\\Delta}}I=1/2$$ $$K{\\rightarrow}{\\pi}{\\pi}$$ matrix elements on lattice ensembles with $G$-parity boundary conditions, since $G$-parity is associated with a doubling of the number of quark flavors described by $$\\mathcal{D}$$ , and thus RHMC is needed for the isospin-symmetric light quarks as well. In this paper we report on our implementation of the exact one flavor algorithm (EOFA) introduced by the TWQCD Collaboration for simulations including single flavors of domain wall quarks. We have developed a new preconditioner for the EOFA Dirac equation, which both reduces the cost of solving the Dirac equation and allows us to reuse the bulk of our existing high-performance code. Coupling these improvements with careful tuning of our integrator, the time per accepted trajectory in the production of our $2+1$ flavor $G$-parity ensembles with physical pion and kaon masses has been decreased by a factor of 4.2.« less
Domain wall fermion QCD with the exact one flavor algorithm
NASA Astrophysics Data System (ADS)
Jung, C.; Kelly, C.; Mawhinney, R. D.; Murphy, D. J.
2018-03-01
Lattice QCD calculations including the effects of one or more nondegenerate sea quark flavors are conventionally performed using the rational hybrid Monte Carlo (RHMC) algorithm, which computes the square root of the determinant of D†D , where D is the Dirac operator. The special case of two degenerate quark flavors with the same mass is described directly by the determinant of D†D —in particular, no square root is necessary—enabling a variety of algorithmic developments, which have driven down the cost of simulating the light (up and down) quarks in the isospin-symmetric limit of equal masses. As a result, the relative cost of single quark flavors—such as the strange or charm—computed with RHMC has become more expensive. This problem is even more severe in the context of our measurements of the Δ I =1 /2 K →π π matrix elements on lattice ensembles with G -parity boundary conditions, since G -parity is associated with a doubling of the number of quark flavors described by D , and thus RHMC is needed for the isospin-symmetric light quarks as well. In this paper we report on our implementation of the exact one flavor algorithm (EOFA) introduced by the TWQCD Collaboration for simulations including single flavors of domain wall quarks. We have developed a new preconditioner for the EOFA Dirac equation, which both reduces the cost of solving the Dirac equation and allows us to reuse the bulk of our existing high-performance code. Coupling these improvements with careful tuning of our integrator, the time per accepted trajectory in the production of our 2 +1 flavor G -parity ensembles with physical pion and kaon masses has been decreased by a factor of 4.2.
Spacetime representation of topological phononics
NASA Astrophysics Data System (ADS)
Deymier, Pierre A.; Runge, Keith; Lucas, Pierre; Vasseur, Jérôme O.
2018-05-01
Non-conventional topology of elastic waves arises from breaking symmetry of phononic structures either intrinsically through internal resonances or extrinsically via application of external stimuli. We develop a spacetime representation based on twistor theory of an intrinsic topological elastic structure composed of a harmonic chain attached to a rigid substrate. Elastic waves in this structure obey the Klein–Gordon and Dirac equations and possesses spinorial character. We demonstrate the mapping between straight line trajectories of these elastic waves in spacetime and the twistor complex space. The twistor representation of these Dirac phonons is related to their topological and fermion-like properties. The second topological phononic structure is an extrinsic structure composed of a one-dimensional elastic medium subjected to a moving superlattice. We report an analogy between the elastic behavior of this time-dependent superlattice, the scalar quantum field theory and general relativity of two types of exotic particle excitations, namely temporal Dirac phonons and temporal ghost (tachyonic) phonons. These phonons live on separate sides of a two-dimensional frequency space and are delimited by ghost lines reminiscent of the conventional light cone. Both phonon types exhibit spinorial amplitudes that can be measured by mapping the particle behavior to the band structure of elastic waves.
Yu, Pei; Li, Zi-Yuan; Xu, Hong-Ya; Huang, Liang; Dietz, Barbara; Grebogi, Celso; Lai, Ying-Cheng
2016-12-01
A crucial result in quantum chaos, which has been established for a long time, is that the spectral properties of classically integrable systems generically are described by Poisson statistics, whereas those of time-reversal symmetric, classically chaotic systems coincide with those of random matrices from the Gaussian orthogonal ensemble (GOE). Does this result hold for two-dimensional Dirac material systems? To address this fundamental question, we investigate the spectral properties in a representative class of graphene billiards with shapes of classically integrable circular-sector billiards. Naively one may expect to observe Poisson statistics, which is indeed true for energies close to the band edges where the quasiparticle obeys the Schrödinger equation. However, for energies near the Dirac point, where the quasiparticles behave like massless Dirac fermions, Poisson statistics is extremely rare in the sense that it emerges only under quite strict symmetry constraints on the straight boundary parts of the sector. An arbitrarily small amount of imperfection of the boundary results in GOE statistics. This implies that, for circular-sector confinements with arbitrary angle, the spectral properties will generically be GOE. These results are corroborated by extensive numerical computation. Furthermore, we provide a physical understanding for our results.
NASA Astrophysics Data System (ADS)
Yu, Pei; Li, Zi-Yuan; Xu, Hong-Ya; Huang, Liang; Dietz, Barbara; Grebogi, Celso; Lai, Ying-Cheng
2016-12-01
A crucial result in quantum chaos, which has been established for a long time, is that the spectral properties of classically integrable systems generically are described by Poisson statistics, whereas those of time-reversal symmetric, classically chaotic systems coincide with those of random matrices from the Gaussian orthogonal ensemble (GOE). Does this result hold for two-dimensional Dirac material systems? To address this fundamental question, we investigate the spectral properties in a representative class of graphene billiards with shapes of classically integrable circular-sector billiards. Naively one may expect to observe Poisson statistics, which is indeed true for energies close to the band edges where the quasiparticle obeys the Schrödinger equation. However, for energies near the Dirac point, where the quasiparticles behave like massless Dirac fermions, Poisson statistics is extremely rare in the sense that it emerges only under quite strict symmetry constraints on the straight boundary parts of the sector. An arbitrarily small amount of imperfection of the boundary results in GOE statistics. This implies that, for circular-sector confinements with arbitrary angle, the spectral properties will generically be GOE. These results are corroborated by extensive numerical computation. Furthermore, we provide a physical understanding for our results.
Symmetry operators and decoupled equations for linear fields on black hole spacetimes
NASA Astrophysics Data System (ADS)
Araneda, Bernardo
2017-02-01
In the class of vacuum Petrov type D spacetimes with cosmological constant, which includes the Kerr-(A)dS black hole as a particular case, we find a set of four-dimensional operators that, when composed off shell with the Dirac, Maxwell and linearized gravity equations, give a system of equations for spin weighted scalars associated with the linear fields, that decouple on shell. Using these operator relations we give compact reconstruction formulae for solutions of the original spinor and tensor field equations in terms of solutions of the decoupled scalar equations. We also analyze the role of Killing spinors and Killing-Yano tensors in the spin weight zero equations and, in the case of spherical symmetry, we compare our four-dimensional formulation with the standard 2 + 2 decomposition and particularize to the Schwarzschild-(A)dS black hole. Our results uncover a pattern that generalizes a number of previous results on Teukolsky-like equations and Debye potentials for higher spin fields.
A quantum analogy to the classical gravitomagnetic clock effect
NASA Astrophysics Data System (ADS)
Faruque, S. B.
2018-06-01
We present an approximation to the solution of Dirac equation in Schwarzschild field found through the use of Foldy-Wouthuysen Hamiltonian. We solve the equation for the positive energy states and found the frequencies by which the states oscillate. Difference of the periods of oscillation of the two states with two different total angular momentum quantum number j has an analogical form of the classical clock effect found in general relativity. But unlike the term that appears as clock effect in classical physics, here the term is quantized. Thus, we find a quantum analogue of the classical gravitomagnetic clock effect.
Principles of Discrete Time Mechanics
NASA Astrophysics Data System (ADS)
Jaroszkiewicz, George
2014-04-01
1. Introduction; 2. The physics of discreteness; 3. The road to calculus; 4. Temporal discretization; 5. Discrete time dynamics architecture; 6. Some models; 7. Classical cellular automata; 8. The action sum; 9. Worked examples; 10. Lee's approach to discrete time mechanics; 11. Elliptic billiards; 12. The construction of system functions; 13. The classical discrete time oscillator; 14. Type 2 temporal discretization; 15. Intermission; 16. Discrete time quantum mechanics; 17. The quantized discrete time oscillator; 18. Path integrals; 19. Quantum encoding; 20. Discrete time classical field equations; 21. The discrete time Schrodinger equation; 22. The discrete time Klein-Gordon equation; 23. The discrete time Dirac equation; 24. Discrete time Maxwell's equations; 25. The discrete time Skyrme model; 26. Discrete time quantum field theory; 27. Interacting discrete time scalar fields; 28. Space, time and gravitation; 29. Causality and observation; 30. Concluding remarks; Appendix A. Coherent states; Appendix B. The time-dependent oscillator; Appendix C. Quaternions; Appendix D. Quantum registers; References; Index.
Multiscale solvers and systematic upscaling in computational physics
NASA Astrophysics Data System (ADS)
Brandt, A.
2005-07-01
Multiscale algorithms can overcome the scale-born bottlenecks that plague most computations in physics. These algorithms employ separate processing at each scale of the physical space, combined with interscale iterative interactions, in ways which use finer scales very sparingly. Having been developed first and well known as multigrid solvers for partial differential equations, highly efficient multiscale techniques have more recently been developed for many other types of computational tasks, including: inverse PDE problems; highly indefinite (e.g., standing wave) equations; Dirac equations in disordered gauge fields; fast computation and updating of large determinants (as needed in QCD); fast integral transforms; integral equations; astrophysics; molecular dynamics of macromolecules and fluids; many-atom electronic structures; global and discrete-state optimization; practical graph problems; image segmentation and recognition; tomography (medical imaging); fast Monte-Carlo sampling in statistical physics; and general, systematic methods of upscaling (accurate numerical derivation of large-scale equations from microscopic laws).
NASA Astrophysics Data System (ADS)
Bhattacharya, D. P.; Das, J.; Basu, A.; Das, B.
2017-09-01
In compound semiconductors which lack inversion symmetry, the combined interaction of the electrons with both acoustic and piezoelectric phonons is dominant at low lattice temperatures ( 20 K). The field dependence of the effective electron temperature under these conditions, has been calculated by solving the modified energy balance equation that takes due account of the degeneracy. The traditionally used heated Fermi-Dirac (F.D.) function for the non-equilibrium distribution function is approximated by some well tested model distribution. This makes it possible to carry out the integrations quite easily and, thus to obtain some more realistic results in a closed form, without taking recourse to any oversimplified approximations. The numerical results that follow for InSb, InAs and GaN, from the present analysis, are then compared with the available theoretical and experimental data. The degeneracy and the piezoelectric interaction, both are seen to bring about significant changes in the electron temperature characteristics. The scope for further refinement is discussed.
NASA Technical Reports Server (NTRS)
Macfarlane, J. J.; Hubbard, W. B.
1983-01-01
A numerical technique for solving the Thomas-Fermi-Dirac (TED) equation in three dimensions, for an array of ions obeying periodic boundary conditions, is presented. The technique is then used to calculate deviations from ideal mixing for an alloy of hydrogen and helium at zero temperature and high presures. Results are compared with alternative models which apply perturbation theory to calculation of the electron distribution, based upon the assumption of weak response of the electron gas to the ions. The TFD theory, which permits strong electron response, always predicts smaller deviations from ideal mixing than would be predicted by perturbation theory. The results indicate that predicted phase separation curves for hydrogen-helium alloys under conditions prevailing in the metallic zones of Jupiter and Saturn are very model dependent.
Chaos in a 4D dissipative nonlinear fermionic model
NASA Astrophysics Data System (ADS)
Aydogmus, Fatma
2015-12-01
Gursey Model is the only possible 4D conformally invariant pure fermionic model with a nonlinear self-coupled spinor term. It has been assumed to be similar to the Heisenberg's nonlinear generalization of Dirac's equation, as a possible basis for a unitary description of elementary particles. Gursey Model admits particle-like solutions for the derived classical field equations and these solutions are instantonic in character. In this paper, the dynamical nature of damped and forced Gursey Nonlinear Differential Equations System (GNDES) are studied in order to get more information on spinor type instantons. Bifurcation and chaos in the system are observed by constructing the bifurcation diagrams and Poincaré sections. Lyapunov exponent and power spectrum graphs of GNDES are also constructed to characterize the chaotic behavior.
The generalized zero-mode supersymmetry scheme and the confluent algorithm
DOE Office of Scientific and Technical Information (OSTI.GOV)
Contreras-Astorga, Alonso, E-mail: aloncont@iun.edu; Schulze-Halberg, Axel, E-mail: axgeschu@iun.edu; Department of Physics, Indiana University Northwest, 3400 Broadway, Gary IN 46408
We show the relationship between the mathematical framework used in recent papers by Rosu et al. (2014) [1–3] and the second-order confluent supersymmetric quantum mechanics. In addition, we point out several immediate generalizations of the approach taken in the latter references. Furthermore, it is shown how to apply the generalized scheme to the Dirac and to the Fokker–Planck equation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vázquez-Báez, V.; Ramírez, C.
We present calculations towards obtaining a wave functions of the universe for the supersymmetric closed string tachyon cosmology. Supersymmetrization, in the superfield formalism, is performed by taking advantage of the time reparametrization invariance of the cosmological action and generalizing the transformations to include grassmannian variables. We calculate the corresponding Hamiltonian, by means of the Dirac formalism, and make use of the superalgebra to find solutions to the Wheeler-DeWitt equations indirectly.
Atomic rate coefficients in a degenerate plasma
NASA Astrophysics Data System (ADS)
Aslanyan, Valentin; Tallents, Greg
2015-11-01
The electrons in a dense, degenerate plasma follow Fermi-Dirac statistics, which deviate significantly in this regime from the usual Maxwell-Boltzmann approach used by many models. We present methods to calculate the atomic rate coefficients for the Fermi-Dirac distribution and present a comparison of the ionization fraction of carbon calculated using both models. We have found that for densities close to solid, although the discrepancy is small for LTE conditions, there is a large divergence from the ionization fraction by using classical rate coefficients in the presence of strong photoionizing radiation. We have found that using these modified rates and the degenerate heat capacity may affect the time evolution of a plasma subject to extreme ultraviolet and x-ray radiation such as produced in free electron laser irradiation of solid targets.
Klein tunneling and electron optics in Dirac-Weyl fermion systems with tilted energy dispersion
NASA Astrophysics Data System (ADS)
Nguyen, V. Hung; Charlier, J.-C.
2018-06-01
The transport properties of relativisticlike fermions have been extensively studied in solid-state systems with isotropic energy dispersions. Recently, several two-dimensional and three-dimensional Dirac-Weyl (DW) materials exhibiting tilted energy dispersions around their DW cones have been explored. Here, we demonstrate that such a tilt character could induce drastically different transport phenomena, compared to the isotropic-dispersion cases. Indeed, the Klein tunneling of DW fermions of opposite chiralities is predicted to appear along two separated oblique directions. In addition, valley filtering and beam splitting effects are easily tailored by dopant engineering techniques whereas the refraction of electron waves at a (p -n )-doped interface is dramatically modified by the tilt, thus paving the way for emerging applications in electron optics and valleytronics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heikkinen, J. A.; Nora, M.
2011-02-15
Gyrokinetic equations of motion, Poisson equation, and energy and momentum conservation laws are derived based on the reduced-phase-space Lagrangian and inverse Kruskal iteration introduced by Pfirsch and Correa-Restrepo [J. Plasma Phys. 70, 719 (2004)]. This formalism, together with the choice of the adiabatic invariant J=
Anisotropic transport of normal metal-barrier-normal metal junctions in monolayer phosphorene
NASA Astrophysics Data System (ADS)
De Sarkar, Sangita; Agarwal, Amit; Sengupta, K.
2017-07-01
We study transport properties of a phosphorene monolayer in the presence of single and multiple potential barriers of height U 0 and width d, using both continuum and microscopic lattice models, and show that the nature of electron transport along its armchair edge (x direction) is qualitatively different from its counterpart in both conventional two-dimensional electron gas with Schrödinger-like quasiparticles and graphene or surfaces of topological insulators hosting massless Dirac quasiparticles. We show that the transport, mediated by massive Dirac electrons, allows one to achieve collimated quasiparticle motion along x and thus makes monolayer phosphorene an ideal experimental platform for studying Klein paradox in the context of gapped Dirac materials. We study the dependence of the tunneling conductance G\\equiv {{G}xx} as a function of d and U 0, and demonstrate that for a given applied voltage V its behavior changes from oscillatory to decaying function of d for a range of U 0 with finite non-zero upper and lower bounds, and provide analytical expression for these bounds within which G decays with d. We contrast such behavior of G with that of massless Dirac electrons in graphene and also with that along the zigzag edge (y direction) in phosphorene where the quasiparticles obey an effective Schrödinger equation at low energy. We also study transport through multiple barriers along x and demonstrate that these properties hold for transport through multiple barriers as well. Finally, we suggest concrete experiments which may verify our theoretical predictions.
Theoretical study of the zero-gap organic conductor α-(BEDT-TTF)2I3
Kobayashi, Akito; Katayama, Shinya; Suzumura, Yoshikazu
2009-01-01
The quasi-two-dimensional molecular conductor α-(BEDT-TTF)2I3 exhibits anomalous transport phenomena where the temperature dependence of resistivity is weak but the ratio of the Hall coefficient at 10 K to that at room temperature is of the order of 104. These puzzling phenomena were solved by predicting massless Dirac fermions, whose motions are described using the tilted Weyl equation with anisotropic velocity. α-(BEDT-TTF)2I3 is a unique material among several materials with Dirac fermions, i.e. graphene, bismuth, and quantum wells such as HgTe, from the view-points of both the structure and electronic states described as follows. α-(BEDT-TTF)2I3 has the layered structure with highly two-dimensional massless Dirac fermions. The anisotropic velocity and incommensurate momenta of the contact points, ±k0, originate from the inequivalency of the BEDT-TTF sites in the unit cell, where ±k0 moves in the first Brillouin zone with increasing pressure. The massless Dirac fermions exist in the presence of the charge disproportionation and are robust against the increase in pressure. The electron densities on those inequivalent BEDT-TTF sites exhibit anomalous momentum distributions, reflecting the angular dependences of the wave functions around the contact points. Those unique electronic properties affect the spatial oscillations of the electron densities in the vicinity of an impurity. A marked behavior of the Hall coefficient, where the sign of the Hall coefficient reverses sharply but continuously at low temperatures around 5 K, is investigated by treating the interband effects of the magnetic field exactly. It is shown that such behavior is possible by assuming the existence of the extremely small amount of electron doping. The enhancement of the orbital diamagnetism is also expected. The results of the present research shed light on a new aspect of Dirac fermion physics, i.e. the emergence of unique electronic properties owing to the structure of the material. PMID:27877282
Extensions of the Einstein-Schrodinger non-symmetric theory of gravity
NASA Astrophysics Data System (ADS)
Shifflett, James A.
We modify the Einstein-Schrödinger theory to include a cosmological constant L z which multiplies the symmetric metric. The cosmological constant L z is assumed to be nearly cancelled by Schrödinger's cosmological constant L b which multiplies the nonsymmetric fundamental tensor, such that the total L = L z + L b matches measurement. The resulting theory becomes exactly Einstein-Maxwell theory in the limit as |L z | [arrow right] oo. For |L z | ~ 1/(Planck length) 2 the field equations match the ordinary Einstein and Maxwell equations except for extra terms which are < 10 -16 of the usual terms for worst-case field strengths and rates-of-change accessible to measurement. Additional fields can be included in the Lagrangian, and these fields may couple to the symmetric metric and the electromagnetic vector potential, just as in Einstein-Maxwell theory. The ordinary Lorentz force equation is obtained by taking the divergence of the Einstein equations when sources are included. The Einstein- Infeld-Hoffmann (EIH) equations of motion match the equations of motion for Einstein-Maxwell theory to Newtonian/Coulombian order, which proves the existence of a Lorentz force without requiring sources. An exact charged solution matches the Reissner-Nordström solution except for additional terms which are ~ 10 -66 of the usual terms for worst-case radii accessible to measurement. An exact electromagnetic plane-wave solution is identical to its counterpart in Einstein-Maxwell theory. Peri-center advance, deflection of light and time delay of light have a fractional difference of < 10 -56 compared to Einstein-Maxwell theory for worst-case parameters. When a spin-1/2 field is included in the Lagrangian, the theory gives the ordinary Dirac equation, and the charged solution results in fractional shifts of < 10 -50 in Hydrogen atom energy levels. Newman-Penrose methods are used to derive an exact solution of the connection equations, and to show that the charged solution is Petrov type- D like the Reissner-Nordström solution. The Newman-Penrose asymptotically flat [Special characters omitted.] (1/ r 2 ) expansion of the field equations is shown to match Einstein-Maxwell theory. Finally we generalize the theory to non-Abelian fields, and show that a special case of the resulting theory closely approximates Einstein-Weinberg-Salam theory.
NASA Astrophysics Data System (ADS)
Wazwaz, Abdul-Majid
2018-07-01
A new third-order integrable equation is constructed via combining the recursion operator of the modified KdV equation (MKdV) and its inverse recursion operator. The developed equation will be termed the modified KdV-negative order modified KdV equation (MKdV-nMKdV). The complete integrability of this equation is confirmed by showing that it nicely possesses the Painlevé property. We obtain multiple soliton solutions for the newly developed integrable equation. Moreover, this equation enjoys a variety of solutions which include solitons, peakons, cuspons, negaton, positon, complexiton and other solutions.
A time reversal algorithm in acoustic media with Dirac measure approximations
NASA Astrophysics Data System (ADS)
Bretin, Élie; Lucas, Carine; Privat, Yannick
2018-04-01
This article is devoted to the study of a photoacoustic tomography model, where one is led to consider the solution of the acoustic wave equation with a source term writing as a separated variables function in time and space, whose temporal component is in some sense close to the derivative of the Dirac distribution at t = 0. This models a continuous wave laser illumination performed during a short interval of time. We introduce an algorithm for reconstructing the space component of the source term from the measure of the solution recorded by sensors during a time T all along the boundary of a connected bounded domain. It is based at the same time on the introduction of an auxiliary equivalent Cauchy problem allowing to derive explicit reconstruction formula and then to use of a deconvolution procedure. Numerical simulations illustrate our approach. Finally, this algorithm is also extended to elasticity wave systems.
Consistency of multi-time Dirac equations with general interaction potentials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deckert, Dirk-André, E-mail: deckert@math.lmu.de; Nickel, Lukas, E-mail: nickel@math.lmu.de
In 1932, Dirac proposed a formulation in terms of multi-time wave functions as candidate for relativistic many-particle quantum mechanics. A well-known consistency condition that is necessary for existence of solutions strongly restricts the possible interaction types between the particles. It was conjectured by Petrat and Tumulka that interactions described by multiplication operators are generally excluded by this condition, and they gave a proof of this claim for potentials without spin-coupling. Under suitable assumptions on the differentiability of possible solutions, we show that there are potentials which are admissible, give an explicit example, however, show that none of them fulfills themore » physically desirable Poincaré invariance. We conclude that in this sense, Dirac’s multi-time formalism does not allow to model interaction by multiplication operators, and briefly point out several promising approaches to interacting models one can instead pursue.« less
Quantum scar and breakdown of universality in graphene: A theoretical insight
NASA Astrophysics Data System (ADS)
Iyakutti, Kombiah; Rajeswarapalanichamy, Ratnavelu; Surya, Velappa Jayaraman; Kawazoe, Yoshiyuki
2017-12-01
Graphene has brought forward a lot of new physics. One of them is the emergence of massless Dirac fermions in addition to the electrons and these features are new to physics. In this theoretical study, the signatures for quantum scar and the breakdown of universality in graphene are investigated with reference to the presence of these two types of fermions. Taking the graphene quantum dot (QD) potential as the confining potential, the radial part of Dirac equations are solved numerically. Concentrations of the two component eigen-wavefunctions about classical periodic orbits emerge as the signatures for the quantum scar. The sudden variations, in the ratio of the radial wave-functions (large and small components), R(g/f), with mass ratio κ are the signatures for breakdown of universality in graphene. The breakdown of universality occurs for the states k = -1 and k = 1, and the state k = -1 is more susceptible to the breakdown of universality.
Gaussian quadrature and lattice discretization of the Fermi-Dirac distribution for graphene.
Oettinger, D; Mendoza, M; Herrmann, H J
2013-07-01
We construct a lattice kinetic scheme to study electronic flow in graphene. For this purpose, we first derive a basis of orthogonal polynomials, using as the weight function the ultrarelativistic Fermi-Dirac distribution at rest. Later, we use these polynomials to expand the respective distribution in a moving frame, for both cases, undoped and doped graphene. In order to discretize the Boltzmann equation and make feasible the numerical implementation, we reduce the number of discrete points in momentum space to 18 by applying a Gaussian quadrature, finding that the family of representative wave (2+1)-vectors, which satisfies the quadrature, reconstructs a honeycomb lattice. The procedure and discrete model are validated by solving the Riemann problem, finding excellent agreement with other numerical models. In addition, we have extended the Riemann problem to the case of different dopings, finding that by increasing the chemical potential the electronic fluid behaves as if it increases its effective viscosity.
Atiyah-Patodi-Singer index theorem for domain-wall fermion Dirac operator
NASA Astrophysics Data System (ADS)
Fukaya, Hidenori; Onogi, Tetsuya; Yamaguchi, Satoshi
2018-03-01
Recently, the Atiyah-Patodi-Singer(APS) index theorem attracts attention for understanding physics on the surface of materials in topological phases. Although it is widely applied to physics, the mathematical set-up in the original APS index theorem is too abstract and general (allowing non-trivial metric and so on) and also the connection between the APS boundary condition and the physical boundary condition on the surface of topological material is unclear. For this reason, in contrast to the Atiyah-Singer index theorem, derivation of the APS index theorem in physics language is still missing. In this talk, we attempt to reformulate the APS index in a "physicist-friendly" way, similar to the Fujikawa method on closed manifolds, for our familiar domain-wall fermion Dirac operator in a flat Euclidean space. We find that the APS index is naturally embedded in the determinant of domain-wall fermions, representing the so-called anomaly descent equations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Christiansen, P.A.; Pitzer, K.S.
The dissociation curve for the ground state of TlH was computed using a relativistic {omega}-{omega} coupling formalism. The relativistic effects represented by the Dirac equation were introduced using effective potentials generated from atomic Dirac-Fock wave functions using a generalization of the improved effective potential formulation of Christiansen, Lee, and Pitzer. The multiconfiguration SCF treatment used is a generalization of the two-component molecular spinor formalism of Lee, Ermler, and Pitzer. Using a five configuration wave function we were able to obtain approximately 85% of the experimental dissociation energy. Our computations indicate that the bond is principally sigma in form, despite themore » large spin-orbit splitting in atomic thallium. Furthermore the bond appears to be slightly ionic (Tl{sup +}H{sup -}) with about 0.3 extra electron charge on the hydrogen.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Christiansen, P.A.; Pitzer, K.S.
The dissociation curve for the ground state of TlH was computed using a relativistic ..omega..--..omega.. coupling formalism. The relativistic effects represented by the Dirac equation were introduced using effective potentials generated from atomic Dirac--Fock wave functions using a generalization of the improved effective potential formulation of Christiansen, Lee, and Pitzer. The multiconfiguration SCF treatment used is a generalization of the two-component molecular spinor formalism of Lee, Ermler, and Pitzer. Using a five configuration wave function we were able to obtain approximately 85% of the experimental dissociation energy. Our computations indicate that the bond is principally sigma in form, despite themore » large spin--orbit splitting in atomic thallium. Furthermore the bond appears to be slightly ionic (Tl/sup +/H/sup -/) with about 0.3 extra electron charge on the hydrogen.« less
An Exact Separation of the Spin-Free and Spin-Dependent Terms of the Dirac-Coulomb-Breit Hamiltonian
NASA Technical Reports Server (NTRS)
Dyall, Kenneth G.
1994-01-01
The Dirac Hamiltonian is transformed by extracting the operator (sigma x p)/2mc from the small component of the wave function and applying it to the operators of the original Hamiltonian. The resultant operators contain products of Paull matrices that can be rearranged to give spin-free and spin-dependent operators. These operators are the ones encountered in the Breit-Pauli Hamiltonian, as well as some of higher order in alpha(sup 2). However, since the transformation of the original Dirac Hamiltonian is exact, the new Hamiltonian can be used in variational calculations, with or without the spin-dependent terms. The new small component functions have the same symmetry properties as the large component. Use of only the spin-free terms of the new Hamiltonian permits the same factorization over spin variables as in nonrelativistic theory, and therefore all the post-Self-Consistent Field (SCF) machinery of nonrelativistic calculations can be applied. However, the single-particle functions are two-component orbitals having a large and small component, and the SCF methods must be modified accordingly. Numerical examples are presented, and comparisons are made with the spin-free second-order Douglas-Kroll transformed Hamiltonian of Hess.
A premier analysis of supersymmetric closed string tachyon cosmology
NASA Astrophysics Data System (ADS)
Vázquez-Báez, V.; Ramírez, C.
2018-04-01
From a previously found worldline supersymmetric formulation for the effective action of the closed string tachyon in a FRW background, the Hamiltonian of the theory is constructed, by means of the Dirac procedure, and written in a quantum version. Using the supersymmetry algebra we are able to find solutions to the Wheeler-DeWitt equation via a more simple set of first order differential equations. Finally, for the k = 0 case, we compute the expectation value of the scale factor with a suitably potential also favored in the present literature. We give some interpretations of the results and state future work lines on this matter.
The Duffin-Kemmer-Petiau oscillator
NASA Technical Reports Server (NTRS)
Nedjadi, Youcef; Barrett, Roger
1995-01-01
In view of current interest in relativistic spin-one systems and the recent work on the Dirac Oscillator, we introduce the Duffin-Kemmer-Petiau (DKP) equation obtained by using an external potential linear in r. Since, in the non-relativistic limit, the spin 1 representation leads to a harmonic oscillator with a spin-orbit coupling of the Thomas form, we call the equation the DKP oscillator. This oscillator is a relativistic generalization of the quantum harmonic oscillator for scalar and vector bosons. We show that it conserves total angular momentum and that it is exactly solvable. We calculate and discuss the eigenspectrum of the DKP oscillator in the spin 1 representation.
QCD-inspired spectra from Blue's functions
NASA Astrophysics Data System (ADS)
Nowak, Maciej A.; Papp, Gábor; Zahed, Ismail
1996-02-01
We use the law of addition in random matrix theory to analyze the spectral distributions of a variety of chiral random matrix models as inspired from QCD whether through symmetries or models. In terms of the Blue's functions recently discussed by Zee, we show that most of the spectral distributions in the macroscopic limit and the quenched approximation, follow algebraically from the discontinuity of a pertinent solution to a cubic (Cardano) or a quartic (Ferrari) equation. We use the end-point equation of the energy spectra in chiral random matrix models to argue for novel phase structures, in which the Dirac density of states plays the role of an order parameter.
Generalized elimination of the global translation from explicitly correlated Gaussian functions
NASA Astrophysics Data System (ADS)
Muolo, Andrea; Mátyus, Edit; Reiher, Markus
2018-02-01
This paper presents the multi-channel generalization of the center-of-mass kinetic energy elimination approach [B. Simmen et al., Mol. Phys. 111, 2086 (2013)] when the Schrödinger equation is solved variationally with explicitly correlated Gaussian functions. The approach has immediate relevance in many-particle systems which are handled without the Born-Oppenheimer approximation and can be employed also for Dirac-type Hamiltonians. The practical realization and numerical properties of solving the Schrödinger equation in laboratory-frame Cartesian coordinates are demonstrated for the ground rovibronic state of the H2+={p+,p+,e- } ion and the H2 = {p+, p+, e-, e-} molecule.
Generalized elimination of the global translation from explicitly correlated Gaussian functions.
Muolo, Andrea; Mátyus, Edit; Reiher, Markus
2018-02-28
This paper presents the multi-channel generalization of the center-of-mass kinetic energy elimination approach [B. Simmen et al., Mol. Phys. 111, 2086 (2013)] when the Schrödinger equation is solved variationally with explicitly correlated Gaussian functions. The approach has immediate relevance in many-particle systems which are handled without the Born-Oppenheimer approximation and can be employed also for Dirac-type Hamiltonians. The practical realization and numerical properties of solving the Schrödinger equation in laboratory-frame Cartesian coordinates are demonstrated for the ground rovibronic state of the H 2 + ={p + ,p + ,e - } ion and the H 2 = {p + , p + , e - , e - } molecule.
A nonperturbative light-front coupled-cluster method
NASA Astrophysics Data System (ADS)
Hiller, J. R.
2012-10-01
The nonperturbative Hamiltonian eigenvalue problem for bound states of a quantum field theory is formulated in terms of Dirac's light-front coordinates and then approximated by the exponential-operator technique of the many-body coupled-cluster method. This approximation eliminates any need for the usual approximation of Fock-space truncation. Instead, the exponentiated operator is truncated, and the terms retained are determined by a set of nonlinear integral equations. These equations are solved simultaneously with an effective eigenvalue problem in the valence sector, where the number of constituents is small. Matrix elements can be calculated, with extensions of techniques from standard coupled-cluster theory, to obtain form factors and other observables.
Investigation of spin-zero bosons in q-deformed relativistic quantum mechanics
NASA Astrophysics Data System (ADS)
Sobhani, H.; Chung, W. S.; Hassanabadi, H.
2018-04-01
In this article, Scattering states of Klein-Gordon equation for three scatter potentials of single and double Dirac delta and a potential well in the q-deformed formalism of relativistic quantum mechanics have been derived. At first, we discussed how q-deformed formalism can be constructed and used. Postulates of this q-deformed quantum mechanics are noted. Then scattering problems for spin-zero bosons are studied.
Relativistic Quantum Transport in Graphene Systems
2015-07-09
which is desirable in the development of nanoscale devices such as graphene-based resonant- tunneling diodes . Details of this work can be found in • L... tunneling , etc. The AFOSR support helped create a new field of interdisciplinary research: Relativistic Quantum Chaos, which studies the relativistic quantum...Objectives 2 2 List of Publications 2 3 Accomplishments and New Findings 3 3.1 Solutions of Dirac equation, relativistic quantum tunneling and
Revealing how different spinors can be: The Lounesto spinor classification
NASA Astrophysics Data System (ADS)
Hoff da Silva, J. M.; Cavalcanti, R. T.
2017-11-01
This paper aims to give a coordinate-based introduction to the so-called Lounesto spinorial classification scheme. Among other results, it has evinced classes of spinors which fail to satisfy Dirac equation. The underlying idea and the central aspects of such spinorial categorization are introduced in an argumentative basis, after which we delve into a commented account on recent results obtained from (and within) this branch of research.
WKB analysis of relativistic Stern–Gerlach measurements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Palmer, Matthew C., E-mail: m.palmer@physics.usyd.edu.au; Takahashi, Maki, E-mail: m.takahashi@physics.usyd.edu.au; Westman, Hans F., E-mail: hwestman74@gmail.com
2013-09-15
Spin is an important quantum degree of freedom in relativistic quantum information theory. This paper provides a first-principles derivation of the observable corresponding to a Stern–Gerlach measurement with relativistic particle velocity. The specific mathematical form of the Stern–Gerlach operator is established using the transformation properties of the electromagnetic field. To confirm that this is indeed the correct operator we provide a detailed analysis of the Stern–Gerlach measurement process. We do this by applying a WKB approximation to the minimally coupled Dirac equation describing an interaction between a massive fermion and an electromagnetic field. Making use of the superposition principle wemore » show that the +1 and −1 spin eigenstates of the proposed spin operator are split into separate packets due to the inhomogeneity of the Stern–Gerlach magnetic field. The operator we obtain is dependent on the momentum between particle and Stern–Gerlach apparatus, and is mathematically distinct from two other commonly used operators. The consequences for quantum tomography are considered. -- Highlights: •Derivation of the spin observable for a relativistic Stern–Gerlach measurement. •Relativistic model of spin measurement using WKB approximation of Dirac equation. •The derived spin operator is distinct from two other commonly used operators. •Consequences for quantum tomography are considered.« less
On the anisotropic advection-diffusion equation with time dependent coefficients
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hernandez-Coronado, Hector; Coronado, Manuel; Del-Castillo-Negrete, Diego B.
The advection-diffusion equation with time dependent velocity and anisotropic time dependent diffusion tensor is examined in regard to its non-classical transport features and to the use of a non-orthogonal coordinate system. Although this equation appears in diverse physical problems, particularly in particle transport in stochastic velocity fields and in underground porous media, a detailed analysis of its solutions is lacking. In order to study the effects of the time-dependent coefficients and the anisotropic diffusion on transport, we solve analytically the equation for an initial Dirac delta pulse. Here, we discuss the solutions to three cases: one based on power-law correlationmore » functions where the pulse diffuses faster than the classical rate ~t, a second case specically designed to display slower rate of diffusion than the classical one, and a third case to describe hydrodynamic dispersion in porous media« less
On the anisotropic advection-diffusion equation with time dependent coefficients
Hernandez-Coronado, Hector; Coronado, Manuel; Del-Castillo-Negrete, Diego B.
2017-02-01
The advection-diffusion equation with time dependent velocity and anisotropic time dependent diffusion tensor is examined in regard to its non-classical transport features and to the use of a non-orthogonal coordinate system. Although this equation appears in diverse physical problems, particularly in particle transport in stochastic velocity fields and in underground porous media, a detailed analysis of its solutions is lacking. In order to study the effects of the time-dependent coefficients and the anisotropic diffusion on transport, we solve analytically the equation for an initial Dirac delta pulse. Here, we discuss the solutions to three cases: one based on power-law correlationmore » functions where the pulse diffuses faster than the classical rate ~t, a second case specically designed to display slower rate of diffusion than the classical one, and a third case to describe hydrodynamic dispersion in porous media« less
Fractional-calculus diffusion equation
2010-01-01
Background Sequel to the work on the quantization of nonconservative systems using fractional calculus and quantization of a system with Brownian motion, which aims to consider the dissipation effects in quantum-mechanical description of microscale systems. Results The canonical quantization of a system represented classically by one-dimensional Fick's law, and the diffusion equation is carried out according to the Dirac method. A suitable Lagrangian, and Hamiltonian, describing the diffusive system, are constructed and the Hamiltonian is transformed to Schrodinger's equation which is solved. An application regarding implementation of the developed mathematical method to the analysis of diffusion, osmosis, which is a biological application of the diffusion process, is carried out. Schrödinger's equation is solved. Conclusions The plot of the probability function represents clearly the dissipative and drift forces and hence the osmosis, which agrees totally with the macro-scale view, or the classical-version osmosis. PMID:20492677
NASA Astrophysics Data System (ADS)
Da Rocha, Roldão; Bernardini, Alex E.; da Silva, J. M. Hoff
2011-04-01
Exotic dark spinor fields are introduced and investigated in the context of inequivalent spin structures on arbitrary curved spacetimes, which induces an additional term on the associated Dirac operator, related to a Čech cohomology class. For the most kinds of spinor fields, any exotic term in the Dirac operator can be absorbed and encoded as a shift of the electromagnetic vector potential representing an element of the cohomology group {H^1}( {M,{{Z}_2}} ) . The possibility of concealing such an exotic term does not exist in case of dark (ELKO) spinor fields, as they cannot carry electromagnetic charge, so that the full topological analysis must be evaluated. Since exotic dark spinor fields also satisfy Klein-Gordon propagators, the dynamical constraints related to the exotic term in the Dirac equation can be explicitly calculated. It forthwith implies that the non-trivial topology associated to the spacetime can drastically engender — from the dynamics of dark spinor fields — constraints in the spacetime metric structure. Meanwhile, such constraints may be alleviated, at the cost of constraining the exotic spacetime topology. Besides being prime candidates to the dark matter problem, dark spinor fields are shown to be potential candidates to probe non-trivial topologies in spacetime, as well as probe the spacetime metric structure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lienert, Matthias, E-mail: lienert@math.lmu.de
2015-04-15
The question how to Lorentz transform an N-particle wave function naturally leads to the concept of a so-called multi-time wave function, i.e., a map from (space-time){sup N} to a spin space. This concept was originally proposed by Dirac as the basis of relativistic quantum mechanics. In such a view, interaction potentials are mathematically inconsistent. This fact motivates the search for new mechanisms for relativistic interactions. In this paper, we explore the idea that relativistic interaction can be described by boundary conditions on the set of coincidence points of two particles in space-time. This extends ideas from zero-range physics to amore » relativistic setting. We illustrate the idea at the simplest model which still possesses essential physical properties like Lorentz invariance and a positive definite density: two-time equations for massless Dirac particles in 1 + 1 dimensions. In order to deal with a spatio-temporally non-trivial domain, a necessity in the multi-time picture, we develop a new method to prove existence and uniqueness of classical solutions: a generalized version of the method of characteristics. Both mathematical and physical considerations are combined to precisely formulate and answer the questions of probability conservation, Lorentz invariance, interaction, and antisymmetry.« less
Contact doping, Klein tunneling, and asymmetry of shot noise in suspended graphene
NASA Astrophysics Data System (ADS)
Laitinen, Antti; Paraoanu, G. S.; Oksanen, Mika; Craciun, Monica F.; Russo, Saverio; Sonin, Edouard; Hakonen, Pertti
2016-01-01
The inherent asymmetry of the electric transport in graphene is attributed to Klein tunneling across barriers defined by p n interfaces between positively and negatively charged regions. By combining conductance and shot noise experiments, we determine the main characteristics of the tunneling barrier (height and slope) in a high-quality suspended sample with Au/Cr/Au contacts. We observe an asymmetric resistance Rodd=100 -70 Ω across the Dirac point of the suspended graphene at carrier density | nG|=(0.3 -4 ) × 1011cm-2 , while the Fano factor displays a nonmonotonic asymmetry in the range Fodd˜0.03 -0.1. Our findings agree with analytical calculations based on the Dirac equation with a trapezoidal barrier. Comparison between the model and the data yields the barrier height for tunneling, an estimate of the thickness of the p n interface d <20 nm, and the contact region doping corresponding to a Fermi level offset of ˜-18 meV. The strength of pinning of the Fermi level under the metallic contact is characterized in terms of the contact capacitance Cc=19 ×10-6 F/cm2 . Additionally, we show that the gate voltage corresponding to the Dirac point is given by the difference in work functions between the backgate material and graphene.
Lindsay, A E; Spoonmore, R T; Tzou, J C
2016-10-01
A hybrid asymptotic-numerical method is presented for obtaining an asymptotic estimate for the full probability distribution of capture times of a random walker by multiple small traps located inside a bounded two-dimensional domain with a reflecting boundary. As motivation for this study, we calculate the variance in the capture time of a random walker by a single interior trap and determine this quantity to be comparable in magnitude to the mean. This implies that the mean is not necessarily reflective of typical capture times and that the full density must be determined. To solve the underlying diffusion equation, the method of Laplace transforms is used to obtain an elliptic problem of modified Helmholtz type. In the limit of vanishing trap sizes, each trap is represented as a Dirac point source that permits the solution of the transform equation to be represented as a superposition of Helmholtz Green's functions. Using this solution, we construct asymptotic short-time solutions of the first-passage-time density, which captures peaks associated with rapid capture by the absorbing traps. When numerical evaluation of the Helmholtz Green's function is employed followed by numerical inversion of the Laplace transform, the method reproduces the density for larger times. We demonstrate the accuracy of our solution technique with a comparison to statistics obtained from a time-dependent solution of the diffusion equation and discrete particle simulations. In particular, we demonstrate that the method is capable of capturing the multimodal behavior in the capture time density that arises when the traps are strategically arranged. The hybrid method presented can be applied to scenarios involving both arbitrary domains and trap shapes.
NASA Astrophysics Data System (ADS)
Zhang, Lian-Chang; Shi, Zhi-Wen; Yang, Rong; Huang, Jian
2014-09-01
Quasi-monolayer graphene is successfully grown by the plasma enhanced chemical vapor deposition heteroepitaxial method we reported previously. To measure its electrical properties, the prepared graphene is fabricated into Hall ball shaped devices by the routine micro-fabrication method. However, impurity molecules adsorbed onto the graphene surface will impose considerable doping effects on the one-atom-thick film material. Our experiment demonstrates that pretreatment of the device by heat radiation baking and electrical annealing can dramatically influence the doping state of the graphene and consequently modify the electrical properties. While graphene in the as-fabricated device is highly p-doped, as confirmed by the position of the Dirac point at far more than +60 V, baking treatment at temperatures around 180°C can significantly lower the doping level and reduce the conductivity. The following electrical annealing is much more efficient to desorb the extrinsic molecules, as confirmed by the in situ measurement, and as a result, further modify the doping state and electrical properties of the graphene, causing a considerable drop of the conductivity and a shifting of Dirac point from beyond +60 V to 0 V.
Squeezed Dirac and topological magnons in a bosonic honeycomb optical lattice
NASA Astrophysics Data System (ADS)
Owerre, S. A.; Nsofini, J.
2017-11-01
Quantum information storage using charge-neutral quasiparticles is expected to play a crucial role in the future of quantum computers. In this regard, magnons or collective spin-wave excitations in solid-state materials are promising candidates in the future of quantum computing. Here, we study the quantum squeezing of Dirac and topological magnons in a bosonic honeycomb optical lattice with spin-orbit interaction by utilizing the mapping to quantum spin-1/2 XYZ Heisenberg model on the honeycomb lattice with discrete Z2 symmetry and a Dzyaloshinskii-Moriya interaction. We show that the squeezed magnons can be controlled by the Z2 anisotropy and demonstrate how the noise in the system is periodically modified in the ferromagnetic and antiferromagnetic phases of the model. Our results also apply to solid-state honeycomb (anti)ferromagnetic insulators.
Squeezed Dirac and Topological Magnons in a Bosonic Honeycomb Optical Lattice.
Owerre, Solomon; Nsofini, Joachim
2017-09-20
Quantum information storage using charge-neutral quasiparticles are expected to play a crucial role in the future of quantum computers. In this regard, magnons or collective spin-wave excitations in solid-state materials are promising candidates in the future of quantum computing. Here, we study the quantum squeezing of Dirac and topological magnons in a bosonic honeycomb optical lattice with spin-orbit interaction by utilizing the mapping to quantum spin-$1/2$ XYZ Heisenberg model on the honeycomb lattice with discrete Z$_2$ symmetry and a Dzyaloshinskii-Moriya interaction. We show that the squeezed magnons can be controlled by the Z$_2$ anisotropy and demonstrate how the noise in the system is periodically modified in the ferromagnetic and antiferromagnetic phases of the model. Our results also apply to solid-state honeycomb (anti)ferromagnetic insulators. . © 2017 IOP Publishing Ltd.
Squeezed Dirac and topological magnons in a bosonic honeycomb optical lattice.
Owerre, S A; Nsofini, J
2017-10-19
Quantum information storage using charge-neutral quasiparticles is expected to play a crucial role in the future of quantum computers. In this regard, magnons or collective spin-wave excitations in solid-state materials are promising candidates in the future of quantum computing. Here, we study the quantum squeezing of Dirac and topological magnons in a bosonic honeycomb optical lattice with spin-orbit interaction by utilizing the mapping to quantum spin-[Formula: see text] XYZ Heisenberg model on the honeycomb lattice with discrete Z 2 symmetry and a Dzyaloshinskii-Moriya interaction. We show that the squeezed magnons can be controlled by the Z 2 anisotropy and demonstrate how the noise in the system is periodically modified in the ferromagnetic and antiferromagnetic phases of the model. Our results also apply to solid-state honeycomb (anti)ferromagnetic insulators.
Three-dimensional wave-induced current model equations and radiation stresses
NASA Astrophysics Data System (ADS)
Xia, Hua-yong
2017-08-01
After the approach by Mellor (2003, 2008), the present paper reports on a repeated effort to derive the equations for three-dimensional wave-induced current. Via the vertical momentum equation and a proper coordinate transformation, the phase-averaged wave dynamic pressure is well treated, and a continuous and depth-dependent radiation stress tensor, rather than the controversial delta Dirac function at the surface shown in Mellor (2008), is provided. Besides, a phase-averaged vertical momentum flux over a sloping bottom is introduced. All the inconsistencies in Mellor (2003, 2008), pointed out by Ardhuin et al. (2008) and Bennis and Ardhuin (2011), are overcome in the presently revised equations. In a test case with a sloping sea bed, as shown in Ardhuin et al. (2008), the wave-driving forces derived in the present equations are in good balance, and no spurious vertical circulation occurs outside the surf zone, indicating that Airy's wave theory and the approach of Mellor (2003, 2008) are applicable for the derivation of the wave-induced current model.
NASA Astrophysics Data System (ADS)
Plastino, A.; Rocca, M. C.
2018-05-01
We generalize several well known quantum equations to a Tsallis’ q-scenario, and provide a quantum version of some classical fields associated with them in the recent literature. We refer to the q-Schródinger, q-Klein-Gordon, q-Dirac, and q-Proca equations advanced in, respectively, Phys. Rev. Lett. 106, 140601 (2011), EPL 118, 61004 (2017) and references therein. We also introduce here equations corresponding to q-Yang-Mills fields, both in the Abelian and non-Abelian instances. We show how to define the q-quantum field theories corresponding to the above equations, introduce the pertinent actions, and obtain equations of motion via the minimum action principle. These q-fields are meaningful at very high energies (TeV scale) for q = 1.15, high energies (GeV scale) for q = 1.001, and low energies (MeV scale) for q = 1.000001 [Nucl. Phys. A 955 (2016) 16 and references therein]. (See the ALICE experiment at the LHC). Surprisingly enough, these q-fields are simultaneously q-exponential functions of the usual linear fields’ logarithms.
An Efficient Numerical Approach for Nonlinear Fokker-Planck equations
NASA Astrophysics Data System (ADS)
Otten, Dustin; Vedula, Prakash
2009-03-01
Fokker-Planck equations which are nonlinear with respect to their probability densities that occur in many nonequilibrium systems relevant to mean field interaction models, plasmas, classical fermions and bosons can be challenging to solve numerically. To address some underlying challenges in obtaining numerical solutions, we propose a quadrature based moment method for efficient and accurate determination of transient (and stationary) solutions of nonlinear Fokker-Planck equations. In this approach the distribution function is represented as a collection of Dirac delta functions with corresponding quadrature weights and locations, that are in turn determined from constraints based on evolution of generalized moments. Properties of the distribution function can be obtained by solution of transport equations for quadrature weights and locations. We will apply this computational approach to study a wide range of problems, including the Desai-Zwanzig Model (for nonlinear muscular contraction) and multivariate nonlinear Fokker-Planck equations describing classical fermions and bosons, and will also demonstrate good agreement with results obtained from Monte Carlo and other standard numerical methods.
On the time-dependent Aharonov-Bohm effect
NASA Astrophysics Data System (ADS)
Jing, Jian; Zhang, Yu-Fei; Wang, Kang; Long, Zheng-Wen; Dong, Shi-Hai
2017-11-01
The Aharonov-Bohm effect in the background of a time-dependent vector potential is re-examined for both non-relativistic and relativistic cases. Based on the solutions to the Schrodinger and Dirac equations which contain the time-dependent magnetic vector potential, we find that contrary to the conclusions in a recent paper (Singleton and Vagenas 2013 [4]), the interference pattern will be altered with respect to time because of the time-dependent vector potential.
A Quantized Metric As an Alternative to Dark Matter
NASA Astrophysics Data System (ADS)
Maker, Joel
2010-03-01
The cosmological spherical symmetry background metric coefficient (g44≡) g00= 1-2GM/c^2r should be inserted into a Dirac equation σμ(gμμγ^μψ/xμ)-φψ = 0 (1,Maker) to make it generally covariant. The spin of this cosmological Dirac object is nearly unobservable due to inertial frame dragging and has rotational L(L+1) δɛ and oscillatory ɛ interactions with external objects at distance away r>>10^10 LY. The inside and outside frequencies φ match at the boundary allowing the outside metric eigenvalues to propagate inside. To include the correct 3 lepton masses in this Dirac equation we must use ansatz goo= e^i(2ɛ+δɛ) with ɛ=.06, δɛ=.00058. For local metric effects our ansatz is goo=e^iδɛ. Here the metric coefficient goo levels off to the quantized value e^iδɛ in the galaxy halo: goo=1-2GM/rc^2-> rel(e^iδɛ) =cos(δɛ)= 1-(δɛ)^2/2 ->(δɛ)^2/2=2GM/rc^2 for this circular motion v^2/r=GM/r^2=c^2(δɛ)^2/4r ->v^2 =c^2(δɛ)^2/4 =87km/sec)^2 100km/sec)^2. So the metric acts to quantize v. Note also there is rotational energy quantization for the δɛ rotational states that goes as: (L(L+1)) .5ex1 -.1em/ -.15em.25ex2 mv^2 ->√L(L+1) v. Thus differences in v are proportional to L, L being an integer. Therefore δv = kL so v = 1k, v = 2k, v = 3k, v = 4k. v=N (the above ˜100km/sec) with dark matter then not required to give these high halo velocities. Recent nearby galaxy Doppler halo velocity data strongly support this velocity quantization result.
Semiclassical regularization of Vlasov equations and wavepackets for nonlinear Schrödinger equations
NASA Astrophysics Data System (ADS)
Athanassoulis, Agissilaos
2018-03-01
We consider the semiclassical limit of nonlinear Schrödinger equations with initial data that are well localized in both position and momentum (non-parametric wavepackets). We recover the Wigner measure (WM) of the problem, a macroscopic phase-space density which controls the propagation of the physical observables such as mass, energy and momentum. WMs have been used to create effective models for wave propagation in: random media, quantum molecular dynamics, mean field limits, and the propagation of electrons in graphene. In nonlinear settings, the Vlasov-type equations obtained for the WM are often ill-posed on the physically interesting spaces of initial data. In this paper we are able to select the measure-valued solution of the 1 + 1 dimensional Vlasov-Poisson equation which correctly captures the semiclassical limit, thus finally resolving the non-uniqueness in the seminal result of Zhang et al (2012 Comm. Pure Appl. Math. 55 582-632). The same approach is also applied to the Vlasov-Dirac-Benney equation with small wavepacket initial data, extending several known results.
Time-dependent mean-field theory for x-ray near-edge spectroscopy
NASA Astrophysics Data System (ADS)
Bertsch, G. F.; Lee, A. J.
2014-02-01
We derive equations of motion for calculating the near-edge x-ray absorption spectrum in molecules and condensed matter, based on a two-determinant approximation and Dirac's variational principle. The theory provides an exact solution for the linear response when the Hamiltonian or energy functional has only diagonal interactions in some basis. We numerically solve the equations to compare with the Mahan-Nozières-De Dominicis theory of the edge singularity in metallic conductors. Our extracted power-law exponents are similar to those of the analytic theory, but are not in quantitative agreement. The calculational method can be readily generalized to treat Kohn-Sham Hamiltonians with electron-electron interactions derived from correlation-exchange potentials.
Matrix-valued Boltzmann equation for the nonintegrable Hubbard chain.
Fürst, Martin L R; Mendl, Christian B; Spohn, Herbert
2013-07-01
The standard Fermi-Hubbard chain becomes nonintegrable by adding to the nearest neighbor hopping additional longer range hopping amplitudes. We assume that the quartic interaction is weak and investigate numerically the dynamics of the chain on the level of the Boltzmann type kinetic equation. Only the spatially homogeneous case is considered. We observe that the huge degeneracy of stationary states in the case of nearest neighbor hopping is lost and the convergence to the thermal Fermi-Dirac distribution is restored. The convergence to equilibrium is exponentially fast. However for small next-nearest neighbor hopping amplitudes one has a rapid relaxation towards the manifold of quasistationary states and slow relaxation to the final equilibrium state.
Extended hamiltonian formalism and Lorentz-violating lagrangians
NASA Astrophysics Data System (ADS)
Colladay, Don
2017-09-01
A new perspective on the classical mechanical formulation of particle trajectories in Lorentz-violating theories is presented. Using the extended hamiltonian formalism, a Legendre Transformation between the associated covariant lagrangian and hamiltonian varieties is constructed. This approach enables calculation of trajectories using Hamilton's equations in momentum space and the Euler-Lagrange equations in velocity space away from certain singular points that arise in the theory. Singular points are naturally de-singularized by requiring the trajectories to be smooth functions of both velocity and momentum variables. In addition, it is possible to identify specific sheets of the dispersion relations that correspond to specific solutions for the lagrangian. Examples corresponding to bipartite Finsler functions are computed in detail. A direct connection between the lagrangians and the field-theoretic solutions to the Dirac equation is also established for a special case.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weiss, J.
1985-09-01
We propose a method for finding the Lax pairs and rational solutions of integrable partial differential equations. That is, when an equation possesses the Painleve property, a Baecklund transformation is defined in terms of an expansion about the singular manifold. This Baecklund transformation obtains (1) a type of modified equation that is formulated in terms of Schwarzian derivatives and (2) a Miura transformation from the modified to the original equation. By linearizing the (Ricati-type) Miura transformation the Lax pair is found. On the other hand, consideration of the (distinct) Baecklund transformations of the modified equations provides a method for themore » iterative construction of rational solutions. This also obtains the Lax pairs for the modified equations. In this paper we apply this method to the Kadomtsev--Petviashvili equation and the Hirota--Satsuma equations.« less
Using Mathematical Algorithms to Modify Glomerular Filtration Rate Estimation Equations
Zhu, Bei; Wu, Jianqing; Zhu, Jin; Zhao, Weihong
2013-01-01
Background The equations provide a rapid and low-cost method of evaluating glomerular filtration rate (GFR). Previous studies indicated that the Modification of Diet in Renal Disease (MDRD), Chronic Kidney Disease-Epidemiology (CKD-EPI) and MacIsaac equations need further modification for application in Chinese population. Thus, this study was designed to modify the three equations, and compare the diagnostic accuracy of the equations modified before and after. Methodology With the use of 99 mTc-DTPA renal dynamic imaging as the reference GFR (rGFR), the MDRD, CKD-EPI and MacIsaac equations were modified by two mathematical algorithms: the hill-climbing and the simulated-annealing algorithms. Results A total of 703 Chinese subjects were recruited, with the average rGFR 77.14±25.93 ml/min. The entire modification process was based on a random sample of 80% of subjects in each GFR level as a training sample set, the rest of 20% of subjects as a validation sample set. After modification, the three equations performed significant improvement in slop, intercept, correlated coefficient, root mean square error (RMSE), total deviation index (TDI), and the proportion of estimated GFR (eGFR) within 10% and 30% deviation of rGFR (P10 and P30). Of the three modified equations, the modified CKD-EPI equation showed the best accuracy. Conclusions Mathematical algorithms could be a considerable tool to modify the GFR equations. Accuracy of all the three modified equations was significantly improved in which the modified CKD-EPI equation could be the optimal one. PMID:23472113
Switching effects and spin-valley Andreev resonant peak shifting in silicene superconductor
NASA Astrophysics Data System (ADS)
Soodchomshom, Bumned; Niyomsoot, Kittipong; Pattrawutthiwong, Eakkarat
2018-03-01
The magnetoresistance and spin-valley transport properties in a silicene-based NM/FB/SC junction are investigated, where NM, FB and SC are normal, ferromagnetic and s-wave superconducting silicene, respectively. In the FB region, perpendicular electric and staggered exchange fields are applied. The quasiparticles may be described by Dirac Bogoliubov-de Gennes equation due to Cooper pairs formed by spin-valley massive fermions. The spin-valley conductances are calculated based on the modified Blonder-Tinkham-Klapwijk formalism. We find the spin-valley dependent Andreev resonant peaks in the junction shifted by applying exchange field. Perfect conductance switch generated by interplay of intrinsic spin orbit interaction and superconducting gap has been predicted. Spin and valley polarizations are almost linearly dependent on biased voltage near zero bias and then turn into perfect switch at biased voltage approaching the superconducting gap. The perfect switching of large magnetoresistance has been also predicted at biased energy near the superconducting gap. These switching effects may be due to the presence of spin-valley Andreev resonant peak near the superconducting gap. Our work reveals potential of silicene as applications of electronic switching devices and linear control of spin and valley polarizations.
Landau quantization of Dirac fermions in graphene and its multilayers
NASA Astrophysics Data System (ADS)
Yin, Long-Jing; Bai, Ke-Ke; Wang, Wen-Xiao; Li, Si-Yu; Zhang, Yu; He, Lin
2017-08-01
When electrons are confined in a two-dimensional (2D) system, typical quantum-mechanical phenomena such as Landau quantization can be detected. Graphene systems, including the single atomic layer and few-layer stacked crystals, are ideal 2D materials for studying a variety of quantum-mechanical problems. In this article, we review the experimental progress in the unusual Landau quantized behaviors of Dirac fermions in monolayer and multilayer graphene by using scanning tunneling microscopy (STM) and scanning tunneling spectroscopy (STS). Through STS measurement of the strong magnetic fields, distinct Landau-level spectra and rich level-splitting phenomena are observed in different graphene layers. These unique properties provide an effective method for identifying the number of layers, as well as the stacking orders, and investigating the fundamentally physical phenomena of graphene. Moreover, in the presence of a strain and charged defects, the Landau quantization of graphene can be significantly modified, leading to unusual spectroscopic and electronic properties.
Particle-hole symmetry and composite fermions in fractional quantum Hall states
NASA Astrophysics Data System (ADS)
Nguyen, Dung Xuan; Golkar, Siavash; Roberts, Matthew M.; Son, Dam Thanh
2018-05-01
We study fractional quantum Hall states at filling fractions in the Jain sequences using the framework of composite Dirac fermions. Synthesizing previous work, we write an effective field theory consistent with all symmetry requirements, including Galilean invariance and particle-hole symmetry. Employing a Fermi-liquid description, we demonstrate the appearance of the Girvin-Macdonald-Platzman algebra and compute the dispersion relation of neutral excitations and various response functions. Our results satisfy requirements of particle-hole symmetry. We show that while the dispersion relation obtained from the modified random-phase approximation (MRPA) of the Halperin-Lee-Read (HLR) theory is particle-hole symmetric, correlation functions obtained from this scheme are not. The results of the Dirac theory are shown to be consistent with the Haldane bound on the projected structure factor, while those of the MPRA of the HLR theory violate it.
A new modified CKD-EPI equation for Chinese patients with type 2 diabetes.
Liu, Xun; Gan, Xiaoliang; Chen, Jinxia; Lv, Linsheng; Li, Ming; Lou, Tanqi
2014-01-01
To improve the performance of glomerular filtration rate (GFR) estimating equation in Chinese type 2 diabetic patients by modification of the CKD-EPI equation. A total of 1196 subjects were enrolled. Measured GFR was calibrated to the dual plasma sample 99mTc-DTPA-GFR. GFRs estimated by the re-expressed 4-variable MDRD equation, the CKD-EPI equation and the Asian modified CKD-EPI equation were compared in 351 diabetic/non-diabetic pairs. And a new modified CKD-EPI equation was reconstructed in a total of 589 type 2 diabetic patients. In terms of both precision and accuracy, GFR estimating equations all achieved better results in the non-diabetic cohort comparing with those in the type 2 diabetic cohort (30% accuracy, P≤0.01 for all comparisons). In the validation data set, the new modified equation showed less bias (median difference, 2.3 ml/min/1.73 m2 for the new modified equation vs. ranged from -3.8 to -7.9 ml/min/1.73 m2 for the other 3 equations [P<0.001 for all comparisons]), as was precision (IQR of the difference, 24.5 ml/min/1.73 m2 vs. ranged from 27.3 to 30.7 ml/min/1.73 m2), leading to a greater accuracy (30% accuracy, 71.4% vs. 55.2% for the re-expressed 4 variable MDRD equation and 61.0% for the Asian modified CKD-EPI equation [P = 0.001 and P = 0.02]). A new modified CKD-EPI equation for type 2 diabetic patients was developed and validated. The new modified equation improves the performance of GFR estimation.
Response Functions to Critical Shocks in Social Sciences:
NASA Astrophysics Data System (ADS)
Roehner, B. M.; Sornette, D.; Andersen, J. V.
We show that, provided one focuses on properly selected episodes, one can apply to the social sciences the same observational strategy that has proved successful in natural sciences such as astrophysics or geodynamics. For instance, in order to probe the cohesion of a society, one can, in different countries, study the reactions to some huge and sudden exogenous shocks, which we call Dirac shocks. This approach naturally leads to the notion of structural (as opposed or complementary to temporal) forecast. Although structural predictions are by far the most common way to test theories in the natural sciences, they have been much less used in the social sciences. The Dirac shock approach opens the way to testing structural predictions in the social sciences. The examples reported here suggest that critical events are able to reveal pre-existing "cracks" because they probe the social cohesion which is an indicator and predictor of future evolution of the system, and in some cases they foreshadow a bifurcation. We complement our empirical work with numerical simulations of the response function ("damage spreading") to Dirac shocks in the Sznajd model of consensus build-up. We quantify the slow relaxation of the difference between perturbed and unperturbed systems, the conditions under which the consensus is modified by the shock and the large variability from one realization to another.
A Kernel-based Lagrangian method for imperfectly-mixed chemical reactions
NASA Astrophysics Data System (ADS)
Schmidt, Michael J.; Pankavich, Stephen; Benson, David A.
2017-05-01
Current Lagrangian (particle-tracking) algorithms used to simulate diffusion-reaction equations must employ a certain number of particles to properly emulate the system dynamics-particularly for imperfectly-mixed systems. The number of particles is tied to the statistics of the initial concentration fields of the system at hand. Systems with shorter-range correlation and/or smaller concentration variance require more particles, potentially limiting the computational feasibility of the method. For the well-known problem of bimolecular reaction, we show that using kernel-based, rather than Dirac delta, particles can significantly reduce the required number of particles. We derive the fixed width of a Gaussian kernel for a given reduced number of particles that analytically eliminates the error between kernel and Dirac solutions at any specified time. We also show how to solve for the fixed kernel size by minimizing the squared differences between solutions over any given time interval. Numerical results show that the width of the kernel should be kept below about 12% of the domain size, and that the analytic equations used to derive kernel width suffer significantly from the neglect of higher-order moments. The simulations with a kernel width given by least squares minimization perform better than those made to match at one specific time. A heuristic time-variable kernel size, based on the previous results, performs on par with the least squares fixed kernel size.
Giant Faraday effect due to Pauli exclusion principle in 3D topological insulators.
Paudel, Hari P; Leuenberger, Michael N
2014-02-26
Experiments using ARPES, which is based on the photoelectric effect, show that the surface states in 3D topological insulators (TI) are helical. Here we consider Weyl interface fermions due to band inversion in narrow-bandgap semiconductors, such as Pb1-xSnxTe. The positive and negative energy solutions can be identified by means of opposite helicity in terms of the spin helicity operator in 3D TI as ĥ(TI) = (1/ |p|_ |) β (σ|_ x p|_ ) · z^, where β is a Dirac matrix and z^ points perpendicular to the interface. Using the 3D Dirac equation and bandstructure calculations we show that the transitions between positive and negative energy solutions, giving rise to electron-hole pairs, obey strict optical selection rules. In order to demonstrate the consequences of these selection rules, we consider the Faraday effect due to the Pauli exclusion principle in a pump-probe setup using a 3D TI double interface of a PbTe/Pb₀.₃₁Sn₀.₆₉Te/PbTe heterostructure. For that we calculate the optical conductivity tensor of this heterostructure, which we use to solve Maxwell's equations. The Faraday rotation angle exhibits oscillations as a function of probe wavelength and thickness of the heterostructure. The maxima in the Faraday rotation angle are of the order of mrds.
Causal localizations in relativistic quantum mechanics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Castrigiano, Domenico P. L., E-mail: castrig@ma.tum.de; Leiseifer, Andreas D., E-mail: andreas.leiseifer@tum.de
2015-07-15
Causal localizations describe the position of quantum systems moving not faster than light. They are constructed for the systems with finite spinor dimension. At the center of interest are the massive relativistic systems. For every positive mass, there is the sequence of Dirac tensor-localizations, which provides a complete set of inequivalent irreducible causal localizations. They obey the principle of special relativity and are fully Poincaré covariant. The boosters are determined by the causal position operator and the other Poincaré generators. The localization with minimal spinor dimension is the Dirac localization. Thus, the Dirac equation is derived here as a meremore » consequence of the principle of causality. Moreover, the higher tensor-localizations, not known so far, follow from Dirac’s localization by a simple construction. The probability of localization for positive energy states results to be described by causal positive operator valued (PO-) localizations, which are the traces of the causal localizations on the subspaces of positive energy. These causal Poincaré covariant PO-localizations for every irreducible massive relativistic system were, all the more, not known before. They are shown to be separated. Hence, the positive energy systems can be localized within every open region by a suitable preparation as accurately as desired. Finally, the attempt is made to provide an interpretation of the PO-localization operators within the frame of conventional quantum mechanics attributing an important role to the negative energy states.« less
Chiral Anomaly from Strain-Induced Gauge Fields in Dirac and Weyl Semimetals
NASA Astrophysics Data System (ADS)
Pikulin, D. I.; Chen, Anffany; Franz, M.
2016-10-01
Dirac and Weyl semimetals form an ideal platform for testing ideas developed in high-energy physics to describe massless relativistic particles. One such quintessentially field-theoretic idea of the chiral anomaly already resulted in the prediction and subsequent observation of the pronounced negative magnetoresistance in these novel materials for parallel electric and magnetic fields. Here, we predict that the chiral anomaly occurs—and has experimentally observable consequences—when real electromagnetic fields E and B are replaced by strain-induced pseudo-electromagnetic fields e and b . For example, a uniform pseudomagnetic field b is generated when a Weyl semimetal nanowire is put under torsion. In accordance with the chiral anomaly equation, we predict a negative contribution to the wire resistance proportional to the square of the torsion strength. Remarkably, left- and right-moving chiral modes are then spatially segregated to the bulk and surface of the wire forming a "topological coaxial cable." This produces hydrodynamic flow with potentially very long relaxation time. Another effect we predict is the ultrasonic attenuation and electromagnetic emission due to a time-periodic mechanical deformation causing pseudoelectric field e . These novel manifestations of the chiral anomaly are most striking in the semimetals with a single pair of Weyl nodes but also occur in Dirac semimetals such as Cd3 As2 and Na3Bi and Weyl semimetals with unbroken time-reversal symmetry.
Spin force and torque in non-relativistic Dirac oscillator on a sphere
NASA Astrophysics Data System (ADS)
Shikakhwa, M. S.
2018-03-01
The spin force operator on a non-relativistic Dirac oscillator (in the non-relativistic limit the Dirac oscillator is a spin one-half 3D harmonic oscillator with strong spin-orbit interaction) is derived using the Heisenberg equations of motion and is seen to be formally similar to the force by the electromagnetic field on a moving charged particle. When confined to a sphere of radius R, it is shown that the Hamiltonian of this non-relativistic oscillator can be expressed as a mere kinetic energy operator with an anomalous part. As a result, the power by the spin force and torque operators in this case are seen to vanish. The spin force operator on the sphere is calculated explicitly and its torque is shown to be equal to the rate of change of the kinetic orbital angular momentum operator, again with an anomalous part. This, along with the conservation of the total angular momentum, suggests that the spin force exerts a spin-dependent torque on the kinetic orbital angular momentum operator in order to conserve total angular momentum. The presence of an anomalous spin part in the kinetic orbital angular momentum operator gives rise to an oscillatory behavior similar to the Zitterbewegung. It is suggested that the underlying physics that gives rise to the spin force and the Zitterbewegung is one and the same in NRDO and in systems that manifest spin Hall effect.
Self-Consistent Sources Extensions of Modified Differential-Difference KP Equation
NASA Astrophysics Data System (ADS)
Gegenhasi; Li, Ya-Qian; Zhang, Duo-Duo
2018-04-01
In this paper, we investigate a modified differential-difference KP equation which is shown to have a continuum limit into the mKP equation. It is also shown that the solution of the modified differential-difference KP equation is related to the solution of the differential-difference KP equation through a Miura transformation. We first present the Grammian solution to the modified differential-difference KP equation, and then produce a coupled modified differential-difference KP system by applying the source generation procedure. The explicit N-soliton solution of the resulting coupled modified differential-difference system is expressed in compact forms by using the Grammian determinant and Casorati determinant. We also construct and solve another form of the self-consistent sources extension of the modified differential-difference KP equation, which constitutes a Bäcklund transformation for the differential-difference KP equation with self-consistent sources. Supported by the National Natural Science Foundation of China under Grant Nos. 11601247 and 11605096, the Natural Science Foundation of Inner Mongolia Autonomous Region under Grant Nos. 2016MS0115 and 2015MS0116 and the Innovation Fund Programme of Inner Mongolia University No. 20161115
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meng, Da; Zheng, Bin; Lin, Guang
2014-08-29
We have developed efficient numerical algorithms for the solution of 3D steady-state Poisson-Nernst-Planck equations (PNP) with excess chemical potentials described by the classical density functional theory (cDFT). The coupled PNP equations are discretized by finite difference scheme and solved iteratively by Gummel method with relaxation. The Nernst-Planck equations are transformed into Laplace equations through the Slotboom transformation. Algebraic multigrid method is then applied to efficiently solve the Poisson equation and the transformed Nernst-Planck equations. A novel strategy for calculating excess chemical potentials through fast Fourier transforms is proposed which reduces computational complexity from O(N2) to O(NlogN) where N is themore » number of grid points. Integrals involving Dirac delta function are evaluated directly by coordinate transformation which yields more accurate result compared to applying numerical quadrature to an approximated delta function. Numerical results for ion and electron transport in solid electrolyte for Li ion batteries are shown to be in good agreement with the experimental data and the results from previous studies.« less
Remigio, Roberto Di; Bast, Radovan; Frediani, Luca; Saue, Trond
2015-05-28
We present a formulation of four-component relativistic self-consistent field (SCF) theory for a molecular solute described within the framework of the polarizable continuum model (PCM) for solvation. The linear response function for a four-component PCM-SCF state is also derived, as well as the explicit form of the additional contributions to the first-order response equations. The implementation of such a four-component PCM-SCF model, as carried out in a development version of the DIRAC program package, is documented. In particular, we present the newly developed application programming interface PCMSolver used in the actual implementation with DIRAC. To demonstrate the applicability of the approach, we present and analyze calculations of solvation effects on the geometries, electric dipole moments, and static electric dipole polarizabilities for the group 16 dihydrides H2X (X = O, S, Se, Te, Po).
Relativistic semiempirical-core-potential calculations in Ca+,Sr+ , and Ba+ ions on Lagrange meshes
NASA Astrophysics Data System (ADS)
Filippin, Livio; Schiffmann, Sacha; Dohet-Eraly, Jérémy; Baye, Daniel; Godefroid, Michel
2018-01-01
Relativistic atomic structure calculations are carried out in alkaline-earth-metal ions using a semiempirical-core-potential approach. The systems are partitioned into frozen-core electrons and an active valence electron. The core orbitals are defined by a Dirac-Hartree-Fock calculation using the grasp2k package. The valence electron is described by a Dirac-like Hamiltonian involving a core-polarization potential to simulate the core-valence electron correlation. The associated equation is solved with the Lagrange-mesh method, which is an approximate variational approach having the form of a mesh calculation because of the use of a Gauss quadrature to calculate matrix elements. Properties involving the low-lying metastable
NASA Astrophysics Data System (ADS)
Evans, Timothy J.; Singleton, Douglas
2018-04-01
We find exact, simple solutions to the Proca version of Maxwell’s equations with magnetic sources. Several properties of these solutions differ from the usual case of magnetic charge with a massless photon: (i) the string singularities of the usual 3-vector potentials become real singularities in the magnetic fields; (ii) the different 3-vector potentials become gauge inequivalent and physically distinct solutions; (iii) the magnetic field depends on r and 𝜃 and thus is no longer rotationally symmetric; (iv) a combined system of electric and magnetic charge carries a field angular momentum even when the electric and magnetic charges are located at the same place (i.e. for dyons); (v) for these dyons, one recovers the standard Dirac condition despite the photon being massive. We discuss the reason for this. We conclude by proposing that the string singularity in the magnetic field of an isolated magnetic charge suggests a confinement mechanism for magnetic charge, similar to the flux tube confinement of quarks in QCD.
NASA Astrophysics Data System (ADS)
De Martini, Francesco; Santamato, Enrico
2017-12-01
The nature of the scalar field responsible for the cosmological inflation, the "inflaton", is found to be rooted in the most fundamental concept of the Weyl's differential geometry: the parallel displacement of vectors in curved space-time. The Euler-Lagrange theory based on a scalar-tensor Weyl-Dirac Lagrangian leads straightforwardly to the Einstein equation admitting as a source the characteristic energy-momentum tensor of the inflaton field. Within the dynamics of the inflation, e.g. in the slow roll transition from a "false" toward a "true vacuum", the inflaton's geometry implies a temperature driven symmetry change between a highly symmetrical "Weylan" to a low symmetry "Riemannian" scenario. Since the dynamics of the Weyl curvature scalar, constructed over differentials of the inflaton field, has been found to account for the quantum phenomenology at the microscopic scale, the present work suggests interesting connections between the "micro" and the "macro" aspects of our Universe.
Josephson current in ballistic graphene Corbino disk
NASA Astrophysics Data System (ADS)
Abdollahipour, Babak; Mohammadkhani, Ramin; Khalilzadeh, Mina
2018-06-01
We solve Dirac-Bogoliubov-De-Gennes (DBdG) equation in a superconductor-normal graphene-superconductor (SGS) junction with Corbino disk structure to investigate the Josephson current through this junction. We find that the critical current Ic has a nonzero value at Dirac point in which the concentration of the carriers is zero. We show this nonzero critical current depends on the system geometry and it decreases monotonically to zero by decreasing the ratio of the inner to outer radii of the Corbino disk (R1 /R2), while in the limit of R1 /R2 → 1 it scales like a diffusive Corbino disk. The product of the critical current and the normal-state resistance IcRN increases by increasing R1 /R2 and attains the same value for the wide and short rectangular structure at the limit of R1 /R2 → 1 at zero doping. These results reveals the pseudodiffusive behavior of the graphene Corbino Josephson junction similar to the rectangular structure at the zero doping.
Implication of Tsallis entropy in the Thomas–Fermi model for self-gravitating fermions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ourabah, Kamel; Tribeche, Mouloud, E-mail: mouloudtribeche@yahoo.fr
The Thomas–Fermi approach for self-gravitating fermions is revisited within the theoretical framework of the q-statistics. Starting from the q-deformation of the Fermi–Dirac distribution function, a generalized Thomas–Fermi equation is derived. It is shown that the Tsallis entropy preserves a scaling property of this equation. The q-statistical approach to Jeans’ instability in a system of self-gravitating fermions is also addressed. The dependence of the Jeans’ wavenumber (or the Jeans length) on the parameter q is traced. It is found that the q-statistics makes the Fermionic system unstable at scales shorter than the standard Jeans length. -- Highlights: •Thomas–Fermi approach for self-gravitatingmore » fermions. •A generalized Thomas–Fermi equation is derived. •Nonextensivity preserves a scaling property of this equation. •Nonextensive approach to Jeans’ instability of self-gravitating fermions. •It is found that nonextensivity makes the Fermionic system unstable at shorter scales.« less
Spinor description of D = 5 massless low-spin gauge fields
NASA Astrophysics Data System (ADS)
Uvarov, D. V.
2016-07-01
Spinor description for the curvatures of D = 5 Yang-Mills, Rarita-Schwinger and gravitational fields is elaborated. Restrictions imposed on the curvature spinors by the dynamical equations and Bianchi identities are analyzed. In the absence of sources symmetric curvature spinors with 2s indices obey first-order equations that in the linearized limit reduce to Dirac-type equations for massless free fields. These equations allow for a higher-spin generalization similarly to 4d case. Their solution in the form of the integral over Lorentz-harmonic variables parametrizing coset manifold {SO}(1,4)/({SO}(1,1)× {ISO}(3)) isomorphic to the three-sphere is considered. Superparticle model that contains such Lorentz harmonics as dynamical variables, as well as harmonics parametrizing the two-sphere {SU}(2)/U(1) is proposed. The states in its spectrum are given by the functions on S 3 that upon integrating over the Lorentz harmonics reproduce on-shell symmetric curvature spinors for various supermultiplets of D = 5 space-time supersymmetry.
NASA Astrophysics Data System (ADS)
Mondal, Ritwik; Berritta, Marco; Oppeneer, Peter M.
2018-07-01
The phenomenological Landau–Lifshitz–Gilbert (LLG) equation of motion remains as the cornerstone of contemporary magnetisation dynamics studies, wherein the Gilbert damping parameter has been attributed to first-order relativistic effects. To include magnetic inertial effects the LLG equation has previously been extended with a supplemental inertia term; the arising inertial dynamics has been related to second-order relativistic effects. Here we start from the relativistic Dirac equation and, performing a Foldy–Wouthuysen transformation, derive a generalised Pauli spin Hamiltonian that contains relativistic correction terms to any higher order. Using the Heisenberg equation of spin motion we derive general relativistic expressions for the tensorial Gilbert damping and magnetic inertia parameters, and show that these tensors can be expressed as series of higher-order relativistic correction terms. We further show that, in the case of a harmonic external driving field, these series can be summed and we provide closed analytical expressions for the Gilbert and inertial parameters that are functions of the frequency of the driving field.
Mondal, Ritwik; Berritta, Marco; Oppeneer, Peter M
2018-05-17
The phenomenological Landau-Lifshitz-Gilbert (LLG) equation of motion remains as the cornerstone of contemporary magnetisation dynamics studies, wherein the Gilbert damping parameter has been attributed to first-order relativistic effects. To include magnetic inertial effects the LLG equation has previously been extended with a supplemental inertia term; the arising inertial dynamics has been related to second-order relativistic effects. Here we start from the relativistic Dirac equation and, performing a Foldy-Wouthuysen transformation, derive a generalised Pauli spin Hamiltonian that contains relativistic correction terms to any higher order. Using the Heisenberg equation of spin motion we derive general relativistic expressions for the tensorial Gilbert damping and magnetic inertia parameters, and show that these tensors can be expressed as series of higher-order relativistic correction terms. We further show that, in the case of a harmonic external driving field, these series can be summed and we provide closed analytical expressions for the Gilbert and inertial parameters that are functions of the frequency of the driving field.
Artificial neural network methods in quantum mechanics
NASA Astrophysics Data System (ADS)
Lagaris, I. E.; Likas, A.; Fotiadis, D. I.
1997-08-01
In a previous article we have shown how one can employ Artificial Neural Networks (ANNs) in order to solve non-homogeneous ordinary and partial differential equations. In the present work we consider the solution of eigenvalue problems for differential and integrodifferential operators, using ANNs. We start by considering the Schrödinger equation for the Morse potential that has an analytically known solution, to test the accuracy of the method. We then proceed with the Schrödinger and the Dirac equations for a muonic atom, as well as with a nonlocal Schrödinger integrodifferential equation that models the n + α system in the framework of the resonating group method. In two dimensions we consider the well-studied Henon-Heiles Hamiltonian and in three dimensions the model problem of three coupled anharmonic oscillators. The method in all of the treated cases proved to be highly accurate, robust and efficient. Hence it is a promising tool for tackling problems of higher complexity and dimensionality.
Electromagnetic field computation at fractal dimensions
NASA Astrophysics Data System (ADS)
Zubair, M.; Ang, Y. S.; Ang, L. K.
According to Mandelbrot's work on fractals, many objects are in fractional dimensions that the traditional calculus or differential equations are not sufficient. Thus fractional models solving the relevant differential equations are critical to understand the physical dynamics of such objects. In this work, we develop computational electromagnetics or Maxwell equations in fractional dimensions. For a given degree of imperfection, impurity, roughness, anisotropy or inhomogeneity, we consider the complicated object can be formulated into a fractional dimensional continuous object characterized by an effective fractional dimension D, which can be calculated from a self-developed algorithm. With this non-integer value of D, we develop the computational methods to design and analyze the EM scattering problems involving rough surfaces or irregularities in an efficient framework. The fractional electromagnetic based model can be extended to other key differential equations such as Schrodinger or Dirac equations, which will be useful for design of novel 2D materials stacked up in complicated device configuration for applications in electronics and photonics. This work is supported by Singapore Temasek Laboratories (TL) Seed Grant (IGDS S16 02 05 1).
NASA Astrophysics Data System (ADS)
Khots, Boris; Khots, Dmitriy
2014-12-01
Certain results that have been predicted by Quantum Mechanics (QM) theory are not always supported by experiments. This defines a deep crisis in contemporary physics and, in particular, quantum mechanics. We believe that, in fact, the mathematical apparatus employed within today's physics is a possible reason. In particular, we consider the concept of infinity that exists in today's mathematics as the root cause of this problem. We have created Observer's Mathematics that offers an alternative to contemporary mathematics. This paper is an attempt to relay how Observer's Mathematics may explain some of the contradictions in QM theory results. We consider the Hamiltonian Mechanics, Newton equation, Schrodinger equation, two slit interference, wave-particle duality for single photons, uncertainty principle, Dirac equations for free electron in a setting of arithmetic, algebra, and topology provided by Observer's Mathematics (see www.mathrelativity.com). Certain results and communications pertaining to solution of these problems are provided.
Homogeneous quantum electrodynamic turbulence
NASA Technical Reports Server (NTRS)
Shebalin, John V.
1992-01-01
The electromagnetic field equations and Dirac equations for oppositely charged wave functions are numerically time-integrated using a spatial Fourier method. The numerical approach used, a spectral transform technique, is based on a continuum representation of physical space. The coupled classical field equations contain a dimensionless parameter which sets the strength of the nonlinear interaction (as the parameter increases, interaction volume decreases). For a parameter value of unity, highly nonlinear behavior in the time-evolution of an individual wave function, analogous to ideal fluid turbulence, is observed. In the truncated Fourier representation which is numerically implemented here, the quantum turbulence is homogeneous but anisotropic and manifests itself in the nonlinear evolution of equilibrium modal spatial spectra for the probability density of each particle and also for the electromagnetic energy density. The results show that nonlinearly interacting fermionic wave functions quickly approach a multi-mode, dynamic equilibrium state, and that this state can be determined by numerical means.
A Time-Space Symmetry Based Cylindrical Model for Quantum Mechanical Interpretations
NASA Astrophysics Data System (ADS)
Vo Van, Thuan
2017-12-01
Following a bi-cylindrical model of geometrical dynamics, our study shows that a 6D-gravitational equation leads to geodesic description in an extended symmetrical time-space, which fits Hubble-like expansion on a microscopic scale. As a duality, the geodesic solution is mathematically equivalent to the basic Klein-Gordon-Fock equations of free massive elementary particles, in particular, the squared Dirac equations of leptons. The quantum indeterminism is proved to have originated from space-time curvatures. Interpretation of some important issues of quantum mechanical reality is carried out in comparison with the 5D space-time-matter theory. A solution of lepton mass hierarchy is proposed by extending to higher dimensional curvatures of time-like hyper-spherical surfaces than one of the cylindrical dynamical geometry. In a result, the reasonable charged lepton mass ratios have been calculated, which would be tested experimentally.
DIRAC distributed secure framework
NASA Astrophysics Data System (ADS)
Casajus, A.; Graciani, R.; LHCb DIRAC Team
2010-04-01
DIRAC, the LHCb community Grid solution, provides access to a vast amount of computing and storage resources to a large number of users. In DIRAC users are organized in groups with different needs and permissions. In order to ensure that only allowed users can access the resources and to enforce that there are no abuses, security is mandatory. All DIRAC services and clients use secure connections that are authenticated using certificates and grid proxies. Once a client has been authenticated, authorization rules are applied to the requested action based on the presented credentials. These authorization rules and the list of users and groups are centrally managed in the DIRAC Configuration Service. Users submit jobs to DIRAC using their local credentials. From then on, DIRAC has to interact with different Grid services on behalf of this user. DIRAC has a proxy management service where users upload short-lived proxies to be used when DIRAC needs to act on behalf of them. Long duration proxies are uploaded by users to a MyProxy service, and DIRAC retrieves new short delegated proxies when necessary. This contribution discusses the details of the implementation of this security infrastructure in DIRAC.
Fermions tunneling from the Horowitz-Strominger Dilaton black hole
NASA Astrophysics Data System (ADS)
Li, Qiang; Zeng, Xiaoxiong
2009-06-01
Based on the work of Kerner and Mann, fermions tunneling from the Horowitz-Strominger Dilaton black hole on the membrane is studied. Owing to the coupling among electromagnetic field, matter field and gravity field, the Dirac equation of charged particles is introduced, and according to that, the expected emission temperature is obtained. After the self-gravitational interaction is considered, it is found that the tunneling rate of fermions also satisfies the underlying Unitary theory as the case of scalar particles.
Hall effect in the presence of rotation
NASA Astrophysics Data System (ADS)
Zubkov, M. A.
2018-02-01
A rotating relativistic fermion system is considered. The consideration is based on the Dirac equation written in the laboratory (non-rotating) reference frame. Rotation in this approach gives rise to the effective magnetic and electric fields that act in the same way both on positive and negative electric charges. In the presence of external electric field in the given system the electric current appears orthogonal to both the electric field and the axis of rotation. The possible applications to the physics of quark-gluon plasma are discussed.
Interpretation of Quantum Nonlocality by Conformal Quantum Geometrodynamics
NASA Astrophysics Data System (ADS)
De Martini, Francesco; Santamato, Enrico
2014-10-01
The principles and methods of the Conformal Quantum Geometrodynamics (CQG) based on the Weyl's differential geometry are presented. The theory applied to the case of the relativistic single quantum spin leads a novel and unconventional derivation of Dirac's equation. The further extension of the theory to the case of two spins in EPR entangled state and to the related violation of Bell's inequalities leads, by a non relativistic analysis, to an insightful resolution of the enigma implied by quantum nonlocality.
Matrasulov, D U; Milibaeva, G M; Salomov, U R; Sundaram, Bala
2005-07-01
Transport properties in the relativistic analog of the periodically kicked rotor are contrasted under classically and quantum mechanical dynamics. The quantum rotor is treated by solving the Dirac equation in the presence of the time-periodic delta-function potential resulting in a relativistic quantum mapping describing the evolution of the wave function. The transition from the quantum suppression behavior seen in the nonrelativistic limit to agreement between quantum and classical analyses in the relativistic regime is discussed. The absence of quantum resonances in the relativistic case is also addressed.
Regularity of Solutions of the Nonlinear Sigma Model with Gravitino
NASA Astrophysics Data System (ADS)
Jost, Jürgen; Keßler, Enno; Tolksdorf, Jürgen; Wu, Ruijun; Zhu, Miaomiao
2018-02-01
We propose a geometric setup to study analytic aspects of a variant of the super symmetric two-dimensional nonlinear sigma model. This functional extends the functional of Dirac-harmonic maps by gravitino fields. The system of Euler-Lagrange equations of the two-dimensional nonlinear sigma model with gravitino is calculated explicitly. The gravitino terms pose additional analytic difficulties to show smoothness of its weak solutions which are overcome using Rivière's regularity theory and Riesz potential theory.
Stable solitary waves in super dense plasmas at external magnetic fields
NASA Astrophysics Data System (ADS)
Ghaani, Azam; Javidan, Kurosh; Sarbishaei, Mohsen
2015-07-01
Propagation of localized waves in a Fermi-Dirac distributed super dense matter at the presence of strong external magnetic fields is studied using the reductive perturbation method. We have shown that stable solitons can be created in such non-relativistic fluids in the presence of an external magnetic field. Such solitary waves are governed by the Zakharov-Kuznetsov (ZK) equation. Properties of solitonic solutions are studied in media with different values of background mass density and strength of magnetic field.
About non standard Lagrangians in cosmology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dimitrijevic, Dragoljub D.; Milosevic, Milan
A review of non standard Lagrangians present in modern cosmological models will be considered. Well known example of non standard Lagrangian is Dirac-Born-Infeld (DBI) type Lagrangian for tachyon field. Another type of non standard Lagrangian under consideration contains scalar field which describes open p-adic string tachyon and is called p-adic string theory Lagrangian. We will investigate homogenous cases of both DBI and p-adic fields and obtain Lagrangians of the standard type which have the same equations of motions as aforementioned non standard one.
1982-02-15
function of the doping density at 300 and 77 K for the classical Boltzmann statistics or depletion approximation (solid line) and for the approximate...Fermi-Dirac statistics (equation (19) dotted line)• This comparison demonstrates that the deviation from Boltzmann statistics is quite noticeable...tunneling Schottky barriers cannot be obtained at these doping levels. The dotted lines are obtained when Boltzmann statistics are used in the Al Ga
Quantum electron levels in the field of a charged black hole
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dokuchaev, V. I.; Eroshenko, Yu. N., E-mail: eroshenko@ms2.inr.ac.ru
2015-12-15
Stationary solutions of the Dirac equation in the metric of the charged Reissner–Nordstrom black hole are found. In the case of an extremal black hole, the normalization integral of the wave functions is finite, and the regular stationary solution is physically self-consistent. The presence of quantum electron levels under the Cauchy horizon can have an impact on the final stage of the Hawking evaporation of the black hole, as well as on the particle scattering in the field of the black hole.
Nuclear magnetic shielding in boronlike ions
NASA Astrophysics Data System (ADS)
Volchkova, A. M.; Varentsova, A. S.; Zubova, N. A.; Agababaev, V. A.; Glazov, D. A.; Volotka, A. V.; Shabaev, V. M.; Plunien, G.
2017-10-01
The relativistic treatment of the nuclear magnetic shielding effect in boronlike ions is presented. The leading-order contribution of the magnetic-dipole hyperfine interaction is calculated. Along with the standard second-order perturbation theory expression, the solutions of the Dirac equation in the presence of magnetic field are employed. All methods are found to be in agreement with each other and with the previous calculations for hydrogenlike and lithiumlike ions. The effective screening potential is used to account approximately for the interelectronic interaction.
Magnetic zero-modes, vortices and Cartan geometry
NASA Astrophysics Data System (ADS)
Ross, Calum; Schroers, Bernd J.
2018-04-01
We exhibit a close relation between vortex configurations on the 2-sphere and magnetic zero-modes of the Dirac operator on R^3 which obey an additional nonlinear equation. We show that both are best understood in terms of the geometry induced on the 3-sphere via pull-back of the round geometry with bundle maps of the Hopf fibration. We use this viewpoint to deduce a manifestly smooth formula for square-integrable magnetic zero-modes in terms of two homogeneous polynomials in two complex variables.
NASA Astrophysics Data System (ADS)
Akpan, N. Ikot; Hassan, Hassanabadi; Tamunoimi, M. Abbey
2015-12-01
The Dirac equation with Hellmann potential is presented in the presence of Coulomb-like tensor (CLT), Yukawa-like tensor (YLT), and Hulthen-type tensor (HLT) interactions by using Nikiforov-Uvarov method. The bound state energy spectra and the radial wave functions are obtained approximately within the framework of spin and pseudospin symmetries limit. We have also reported some numerical results and figures to show the effects of the tensor interactions. Special cases of the potential are also discussed.
NASA Technical Reports Server (NTRS)
Chang, Sin-Chung
1987-01-01
The validity of the modified equation stability analysis introduced by Warming and Hyett was investigated. It is shown that the procedure used in the derivation of the modified equation is flawed and generally leads to invalid results. Moreover, the interpretation of the modified equation as the exact partial differential equation solved by a finite-difference method generally cannot be justified even if spatial periodicity is assumed. For a two-level scheme, due to a series of mathematical quirks, the connection between the modified equation approach and the von Neuman method established by Warming and Hyett turns out to be correct despite its questionable original derivation. However, this connection is only partially valid for a scheme involving more than two time levels. In the von Neumann analysis, the complex error multiplication factor associated with a wave number generally has (L-1) roots for an L-level scheme. It is shown that the modified equation provides information about only one of these roots.
Investigation of a Coupled Arrhenius-Type/Rossard Equation of AH36 Material.
Qin, Qin; Tian, Ming-Liang; Zhang, Peng
2017-04-13
High-temperature tensile testing of AH36 material in a wide range of temperatures (1173-1573 K) and strain rates (10 -4 -10 -2 s -1 ) has been obtained by using a Gleeble system. These experimental stress-strain data have been adopted to develop the constitutive equation. The constitutive equation of AH36 material was suggested based on the modified Arrhenius-type equation and the modified Rossard equation respectively. The results indicate that the constitutive equation is strongly influenced by temperature and strain, especially strain. Moreover, there is a good agreement between the predicted data of the modified Arrhenius-type equation and the experimental results when the strain is greater than 0.02. There is also good agreement between the predicted data of the Rossard equation and the experimental results when the strain is less than 0.02. Therefore, a coupled equation where the modified Arrhenius-type equation and Rossard equation are combined has been proposed to describe the constitutive equation of AH36 material according to the different strain values in order to improve the accuracy. The correlation coefficient between the computed and experimental flow stress data was 0.998. The minimum value of the average absolute relative error shows the high accuracy of the coupled equation compared with the two modified equations.
Constrained field theories on spherically symmetric spacetimes with horizons
NASA Astrophysics Data System (ADS)
Fernandes, Karan; Lahiri, Amitabha; Ghosh, Suman
2017-02-01
We apply the Dirac-Bergmann algorithm for the analysis of constraints to gauge theories defined on spherically symmetric black hole backgrounds. We find that the constraints for a given theory are modified on such spacetimes through the presence of additional contributions from the horizon. As a concrete example, we consider the Maxwell field on a black hole background, and determine the role of the horizon contributions on the dynamics of the theory.
FFT-split-operator code for solving the Dirac equation in 2+1 dimensions
NASA Astrophysics Data System (ADS)
Mocken, Guido R.; Keitel, Christoph H.
2008-06-01
The main part of the code presented in this work represents an implementation of the split-operator method [J.A. Fleck, J.R. Morris, M.D. Feit, Appl. Phys. 10 (1976) 129-160; R. Heather, Comput. Phys. Comm. 63 (1991) 446] for calculating the time-evolution of Dirac wave functions. It allows to study the dynamics of electronic Dirac wave packets under the influence of any number of laser pulses and its interaction with any number of charged ion potentials. The initial wave function can be either a free Gaussian wave packet or an arbitrary discretized spinor function that is loaded from a file provided by the user. The latter option includes Dirac bound state wave functions. The code itself contains the necessary tools for constructing such wave functions for a single-electron ion. With the help of self-adaptive numerical grids, we are able to study the electron dynamics for various problems in 2+1 dimensions at high spatial and temporal resolutions that are otherwise unachievable. Along with the position and momentum space probability density distributions, various physical observables, such as the expectation values of position and momentum, can be recorded in a time-dependent way. The electromagnetic spectrum that is emitted by the evolving particle can also be calculated with this code. Finally, for planning and comparison purposes, both the time-evolution and the emission spectrum can also be treated in an entirely classical relativistic way. Besides the implementation of the above-mentioned algorithms, the program also contains a large C++ class library to model the geometric algebra representation of spinors that we use for representing the Dirac wave function. This is why the code is called "Dirac++". Program summaryProgram title: Dirac++ or (abbreviated) d++ Catalogue identifier: AEAS_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEAS_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 474 937 No. of bytes in distributed program, including test data, etc.: 4 128 347 Distribution format: tar.gz Programming language: C++ Computer: Any, but SMP systems are preferred Operating system: Linux and MacOS X are actively supported by the current version. Earlier versions were also tested successfully on IRIX and AIX Number of processors used: Generally unlimited, but best scaling with 2-4 processors for typical problems RAM: 160 Megabytes minimum for the examples given here Classification: 2.7 External routines: FFTW Library [3,4], Gnu Scientific Library [5], bzip2, bunzip2 Nature of problem: The relativistic time evolution of wave functions according to the Dirac equation is a challenging numerical task. Especially for an electron in the presence of high intensity laser beams and/or highly charged ions, this type of problem is of considerable interest to atomic physicists. Solution method: The code employs the split-operator method [1,2], combined with fast Fourier transforms (FFT) for calculating any occurring spatial derivatives, to solve the given problem. An autocorrelation spectral method [6] is provided to generate a bound state for use as the initial wave function of further dynamical studies. Restrictions: The code in its current form is restricted to problems in two spatial dimensions. Otherwise it is only limited by CPU time and memory that one can afford to spend on a particular problem. Unusual features: The code features dynamically adapting position and momentum space grids to keep execution time and memory requirements as small as possible. It employs an object-oriented approach, and it relies on a Clifford algebra class library to represent the mathematical objects of the Dirac formalism which we employ. Besides that it includes a feature (typically called "checkpointing") which allows the resumption of an interrupted calculation. Additional comments: Along with the program's source code, we provide several sample configuration files, a pre-calculated bound state wave function, and template files for the analysis of the results with both MatLab and Igor Pro. Running time: Running time ranges from a few minutes for simple tests up to several days, even weeks for real-world physical problems that require very large grids or very small time steps. References:J.A. Fleck, J.R. Morris, M.D. Feit, Time-dependent propagation of high energy laser beams through the atmosphere, Appl. Phys. 10 (1976) 129-160. R. Heather, An asymptotic wavefunction splitting procedure for propagating spatially extended wavefunctions: Application to intense field photodissociation of H +2, Comput. Phys. Comm. 63 (1991) 446. M. Frigo, S.G. Johnson, FFTW: An adaptive software architecture for the FFT, in: Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing, vol. 3, IEEE, 1998, pp. 1381-1384. M. Frigo, S.G. Johnson, The design and implementation of FFTW3, in: Proceedings of the IEEE, vol. 93, IEEE, 2005, pp. 216-231. URL: http://www.fftw.org/. M. Galassi, J. Davies, J. Theiler, B. Gough, G. Jungman, M. Booth, F. Rossi, GNU Scientific Library Reference Manual, second ed., Network Theory Limited, 2006. URL: http://www.gnu.org/software/gsl/. M.D. Feit, J.A. Fleck, A. Steiger, Solution of the Schrödinger equation by a spectral method, J. Comput. Phys. 47 (1982) 412-433.
Bukhvostov-Lipatov model and quantum-classical duality
NASA Astrophysics Data System (ADS)
Bazhanov, Vladimir V.; Lukyanov, Sergei L.; Runov, Boris A.
2018-02-01
The Bukhvostov-Lipatov model is an exactly soluble model of two interacting Dirac fermions in 1 + 1 dimensions. The model describes weakly interacting instantons and anti-instantons in the O (3) non-linear sigma model. In our previous work [arxiv:arXiv:1607.04839] we have proposed an exact formula for the vacuum energy of the Bukhvostov-Lipatov model in terms of special solutions of the classical sinh-Gordon equation, which can be viewed as an example of a remarkable duality between integrable quantum field theories and integrable classical field theories in two dimensions. Here we present a complete derivation of this duality based on the classical inverse scattering transform method, traditional Bethe ansatz techniques and analytic theory of ordinary differential equations. In particular, we show that the Bethe ansatz equations defining the vacuum state of the quantum theory also define connection coefficients of an auxiliary linear problem for the classical sinh-Gordon equation. Moreover, we also present details of the derivation of the non-linear integral equations determining the vacuum energy and other spectral characteristics of the model in the case when the vacuum state is filled by 2-string solutions of the Bethe ansatz equations.
Graphene based d-character Dirac Systems
NASA Astrophysics Data System (ADS)
Li, Yuanchang; Zhang, S. B.; Duan, Wenhui
From graphene to topological insulators, Dirac material continues to be the hot topics in condensed matter physics. So far, almost all of the theoretically predicted or experimentally observed Dirac materials are composed of sp -electrons. By using first-principles calculations, we find the new Dirac system of transition-metal intercalated epitaxial graphene on SiC(0001). Intrinsically different from the conventional sp Dirac system, here the Dirac-fermions are dominantly contributed by the transition-metal d-electrons, which paves the way to incorporate correlation effect with Dirac-cone physics. Many intriguing quantum phenomena are proposed based on this system, including quantum spin Hall effect with large spin-orbital gap, quantum anomalous Hall effect, 100% spin-polarized Dirac fermions and ferromagnet-to-topological insulator transition.
The modified semi-discrete two-dimensional Toda lattice with self-consistent sources
NASA Astrophysics Data System (ADS)
Gegenhasi
2017-07-01
In this paper, we derive the Grammian determinant solutions to the modified semi-discrete two-dimensional Toda lattice equation, and then construct the semi-discrete two-dimensional Toda lattice equation with self-consistent sources via source generation procedure. The algebraic structure of the resulting coupled modified differential-difference equation is clarified by presenting its Grammian determinant solutions and Casorati determinant solutions. As an application of the Grammian determinant and Casorati determinant solution, the explicit one-soliton and two-soliton solution of the modified semi-discrete two-dimensional Toda lattice equation with self-consistent sources are given. We also construct another form of the modified semi-discrete two-dimensional Toda lattice equation with self-consistent sources which is the Bäcklund transformation for the semi-discrete two-dimensional Toda lattice equation with self-consistent sources.
NASA Astrophysics Data System (ADS)
Fransson, J.; Black-Schaffer, A. M.; Balatsky, A. V.
2016-08-01
We demonstrate how a Dirac-like magnon spectrum is generated for localized magnetic moments forming a two-dimensional honeycomb lattice. The Dirac crossing point is proven to be robust against magnon-magnon interactions, as these only shift the spectrum. Local defects induce impurity resonances near the Dirac point, as well as magnon Friedel oscillations. The energy of the Dirac point is controlled by the exchange coupling, and thus a two-dimensional array of magnetic dots is an experimentally feasible realization of Dirac magnons with tunable dispersion.
Investigation of a Coupled Arrhenius-Type/Rossard Equation of AH36 Material
Qin, Qin; Tian, Ming-Liang; Zhang, Peng
2017-01-01
High-temperature tensile testing of AH36 material in a wide range of temperatures (1173–1573 K) and strain rates (10−4–10−2 s−1) has been obtained by using a Gleeble system. These experimental stress-strain data have been adopted to develop the constitutive equation. The constitutive equation of AH36 material was suggested based on the modified Arrhenius-type equation and the modified Rossard equation respectively. The results indicate that the constitutive equation is strongly influenced by temperature and strain, especially strain. Moreover, there is a good agreement between the predicted data of the modified Arrhenius-type equation and the experimental results when the strain is greater than 0.02. There is also good agreement between the predicted data of the Rossard equation and the experimental results when the strain is less than 0.02. Therefore, a coupled equation where the modified Arrhenius-type equation and Rossard equation are combined has been proposed to describe the constitutive equation of AH36 material according to the different strain values in order to improve the accuracy. The correlation coefficient between the computed and experimental flow stress data was 0.998. The minimum value of the average absolute relative error shows the high accuracy of the coupled equation compared with the two modified equations. PMID:28772767
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chowdhury, Debashree, E-mail: debashreephys@gmail.com; Basu, B., E-mail: sribbasu@gmail.com
2013-02-15
We have studied the spin dependent force and the associated momentum space Berry curvature in an accelerating system. The results are derived by taking into consideration the non-relativistic limit of a generally covariant Dirac equation with an electromagnetic field present, where the methodology of the Foldy-Wouthuysen transformation is applied to achieve the non-relativistic limit. Spin currents appear due to the combined action of the external electric field, the crystal field and the induced inertial electric field via the total effective spin-orbit interaction. In an accelerating frame, the crucial role of momentum space Berry curvature in the spin dynamics has alsomore » been addressed from the perspective of spin Hall conductivity. For time dependent acceleration, the expression for the spin polarization has been derived. - Highlights: Black-Right-Pointing-Pointer We study the effect of acceleration on the Dirac electron in the presence of an electromagnetic field, where the acceleration induces an electric field. Black-Right-Pointing-Pointer Spin currents appear due to the total effective electric field via the total spin-orbit interaction. Black-Right-Pointing-Pointer We derive the expression for the spin dependent force and the spin Hall current, which is zero for a particular acceleration. Black-Right-Pointing-Pointer The role of the momentum space Berry curvature in an accelerating system is discussed. Black-Right-Pointing-Pointer An expression for the spin polarization for time dependent acceleration is derived.« less
Quasi-stationary states and fermion pair creation from a vacuum in supercritical Coulomb field
NASA Astrophysics Data System (ADS)
Khalilov, V. R.
2017-12-01
Creation of charged fermion pair from a vacuum in so-called supercritical Coulomb potential is examined for the case when fermions can move only in the same (one) plane. In which case, quantum dynamics of charged massive or massless fermions can be described by the two-dimensional Dirac Hamiltonians with an usual (-a/r) Coulomb potential. These Hamiltonians are singular and require the additional definition in order for them to be treated as self-adjoint quantum-mechanical operators. We construct the self-adjoint two-dimensional Dirac Hamiltonians with a Coulomb potential and determine the quantum-mechanical states for such Hamiltonians in the corresponding Hilbert spaces of square-integrable functions. We determine the scattering amplitude in which the self-adjoint extension parameter is incorporated and then obtain equations implicitly defining possible discrete energy spectra of the self-adjoint Dirac Hamiltonians with a Coulomb potential. It is shown that this quantum system becomes unstable in the presence of a supercritical Coulomb potential which manifests in the appearance of quasi-stationary states in the lower (negative) energy continuum. The energy spectrum of those states is quasi-discrete, consists of broadened levels with widths related to the inverse lifetimes of the quasi-stationary states as well as the probability of creation of charged fermion pair by a supercritical Coulomb field. Explicit analytical expressions for the creation probabilities of charged (massive or massless) fermion pair are obtained in a supercritical Coulomb field.
Electronic and geometrical properties of monoatomic and diatomic 2D honeycomb lattices. A DFT study
NASA Astrophysics Data System (ADS)
Rojas, Ángela; Rey, Rafael; Fonseca, Karen; Grupo de Óptica e Información Cuántica Team
Since the discovery of graphene by Geim and Novoselov at 2004, several analogous systems have been theoretically and experimentally studied, due to their technological interest. Both monoatomic lattices, such as silicine and germanene, and diatomic lattices (h-GaAs and h-GaN) have been studied. Using Density Functional Theory we obtain and confirm the chemical stability of these hexagonal 2D systems through the total energy curves as a function of interatomic distance. Unlike graphene, silicine and germanene, gapless materials, h-GaAs and h-GaN exhibit electronic gaps, different from that of the bulk, which could be interesting for the industry. On the other hand, the ab initio band structure calculations for graphene, silicene and germanene show a non-circular cross section around K points, at variance with the prediction of usual Tight-binding models. In fact, we have found that Dirac cones display a dihedral group symmetry. This implies that Fermi speed can change up to 30 % due to the orientation of the wave vector, for both electrons and holes. Traditional analytic studies use the Dirac equation for the electron dynamics at low energies. However, this equation assumes an isotropic, homogeneous and uniform space. Authors would like to thank the División de Investigación Sede Bogotá for their financial support at Universidad Nacional de Colombia. A. M. Rojas-Cuervo would also like to thank the Colciencias, Colombia.
Interplay of Dirac electrons and magnetism in CaMnBi 2 and SrMnBi 2
Zhang, Anmin; Liu, Changle; Yi, Changjiang; ...
2016-12-16
Dirac materials exhibit intriguing low-energy carrier dynamics that offer a fertile ground for novel physics discovery. Something of particular interest is the interplay of Dirac carriers with other quantum phenomena such as magnetism. We report on a two-magnon Raman scattering study of AMnBi 2 (A=Ca, Sr), a prototypical magnetic Dirac system comprising alternating Dirac carrier and magnetic layers. We present the first accurate determination of the exchange energies in these compounds and, by comparison with the reference compound BaMn 2Bi 2, we show that the Dirac carrier layers in AMnBi 2 significantly enhance the exchange coupling between the magnetic layers,more » which in turn drives a charge-gap opening along the Dirac locus. These findings break new grounds in unveiling the fundamental physics of magnetic Dirac materials, which offer a novel platform for probing a distinct type of spin–Fermion interaction. Our results also hold great promise for applications in magnetic Dirac devices.« less
Interplay of Dirac electrons and magnetism in CaMnBi2 and SrMnBi2
Zhang, Anmin; Liu, Changle; Yi, Changjiang; Zhao, Guihua; Xia, Tian-long; Ji, Jianting; Shi, Youguo; Yu, Rong; Wang, Xiaoqun; Chen, Changfeng; Zhang, Qingming
2016-01-01
Dirac materials exhibit intriguing low-energy carrier dynamics that offer a fertile ground for novel physics discovery. Of particular interest is the interplay of Dirac carriers with other quantum phenomena such as magnetism. Here we report on a two-magnon Raman scattering study of AMnBi2 (A=Ca, Sr), a prototypical magnetic Dirac system comprising alternating Dirac carrier and magnetic layers. We present the first accurate determination of the exchange energies in these compounds and, by comparison with the reference compound BaMn2Bi2, we show that the Dirac carrier layers in AMnBi2 significantly enhance the exchange coupling between the magnetic layers, which in turn drives a charge-gap opening along the Dirac locus. Our findings break new grounds in unveiling the fundamental physics of magnetic Dirac materials, which offer a novel platform for probing a distinct type of spin–Fermion interaction. The results also hold great promise for applications in magnetic Dirac devices. PMID:27982036
The supersymmetric method in random matrix theory and applications to QCD
NASA Astrophysics Data System (ADS)
Verbaarschot, Jacobus
2004-12-01
The supersymmetric method is a powerful method for the nonperturbative evaluation of quenched averages in disordered systems. Among others, this method has been applied to the statistical theory of S-matrix fluctuations, the theory of universal conductance fluctuations and the microscopic spectral density of the QCD Dirac operator. We start this series of lectures with a general review of Random Matrix Theory and the statistical theory of spectra. An elementary introduction of the supersymmetric method in Random Matrix Theory is given in the second and third lecture. We will show that a Random Matrix Theory can be rewritten as an integral over a supermanifold. This integral will be worked out in detail for the Gaussian Unitary Ensemble that describes level correlations in systems with broken time-reversal invariance. We especially emphasize the role of symmetries. As a second example of the application of the supersymmetric method we discuss the calculation of the microscopic spectral density of the QCD Dirac operator. This is the eigenvalue density near zero on the scale of the average level spacing which is known to be given by chiral Random Matrix Theory. Also in this case we use symmetry considerations to rewrite the generating function for the resolvent as an integral over a supermanifold. The main topic of the second last lecture is the recent developments on the relation between the supersymmetric partition function and integrable hierarchies (in our case the Toda lattice hierarchy). We will show that this relation is an efficient way to calculate superintegrals. Several examples that were given in previous lectures will be worked out by means of this new method. Finally, we will discuss the quenched QCD Dirac spectrum at nonzero chemical potential. Because of the nonhermiticity of the Dirac operator the usual supersymmetric method has not been successful in this case. However, we will show that the supersymmetric partition function can be evaluated by means of the replica limit of the Toda lattice equation.
The quantization of the chiral Schwinger model based on the BFT - BFV formalism
NASA Astrophysics Data System (ADS)
Kim, Won T.; Kim, Yong-Wan; Park, Mu-In; Park, Young-Jai; Yoon, Sean J.
1997-03-01
We apply the newly improved Batalin - Fradkin - Tyutin (BFT) Hamiltonian method to the chiral Schwinger model in the case of the regularization ambiguity a>1. We show that one can systematically construct the first class constraints by the BFT Hamiltonian method, and also show that the well-known Dirac brackets of the original phase space variables are exactly the Poisson brackets of the corresponding modified fields in the extended phase space. Furthermore, we show that the first class Hamiltonian is simply obtained by replacing the original fields in the canonical Hamiltonian by these modified fields. Performing the momentum integrations, we obtain the corresponding first class Lagrangian in the configuration space.
NASA Astrophysics Data System (ADS)
Yoshizawa, Terutaka; Zou, Wenli; Cremer, Dieter
2017-04-01
A new method for calculating nuclear magnetic resonance shielding constants of relativistic atoms based on the two-component (2c), spin-orbit coupling including Dirac-exact NESC (Normalized Elimination of the Small Component) approach is developed where each term of the diamagnetic and paramagnetic contribution to the isotropic shielding constant σi s o is expressed in terms of analytical energy derivatives with regard to the magnetic field B and the nuclear magnetic moment 𝝁 . The picture change caused by renormalization of the wave function is correctly described. 2c-NESC/HF (Hartree-Fock) results for the σiso values of 13 atoms with a closed shell ground state reveal a deviation from 4c-DHF (Dirac-HF) values by 0.01%-0.76%. Since the 2-electron part is effectively calculated using a modified screened nuclear shielding approach, the calculation is efficient and based on a series of matrix manipulations scaling with (2M)3 (M: number of basis functions).
Topological interface states in the natural heterostructure (PbSe)5(Bi2Se3 )6 with BiPb defects
NASA Astrophysics Data System (ADS)
Momida, Hiroyoshi; Bihlmayer, Gustav; Blügel, Stefan; Segawa, Kouji; Ando, Yoichi; Oguchi, Tamio
2018-01-01
We study theoretically the electronic band structure of (PbSe) 5(Bi2Se3 )6, which consists of an ordinary insulator PbSe and a topological insulator Bi2Se3 . The first-principles calculations show that this material has a gapped Dirac-cone energy dispersion inside the bulk, which originates from the topological states of Bi2Se3 layers encapsulated by PbSe layers. Furthermore, we calculate the band structures of (BixPb1 -xSe )5(Bi2Se3 )6 with BiPb antisite defects included in the PbSe layers. The result shows that a high density of BiPb defects can exist in real materials, consistent with the experimentally estimated x of more than 30%. The BiPb defects strongly modify the band alignment between Bi2Se3 and PbSe layers, while the topological interface states of Bi2Se3 are kept as a gapped Dirac-cone-like dispersion.
Granular superconductor in a honeycomb lattice as a realization of bosonic Dirac material
NASA Astrophysics Data System (ADS)
Banerjee, S.; Fransson, J.; Black-Schaffer, A. M.; Ågren, H.; Balatsky, A. V.
2016-04-01
We examine the low-energy effective theory of phase oscillations in a two-dimensional granular superconducting sheet where the grains are arranged in a honeycomb lattice structure. Using the example of graphene, we present evidence for the engineered Dirac nodes in the bosonic excitations: the spectra of the collective bosonic modes cross at the K and K' points in the Brillouin zone and form Dirac nodes. We show how two different types of collective phase oscillations are obtained and that they are analogous to the Leggett and the Bogoliubov-Anderson-Gorkov modes in a two-band superconductor. We show that the Dirac node is preserved in the presence of an intergrain interaction, despite induced changes of the qualitative features of the two collective modes. Finally, breaking the sublattice symmetry by choosing different on-site potentials for the two sublattices leads to a gap opening near the Dirac node, in analogy with fermionic Dirac materials. The Dirac node dispersion of bosonic excitations is thus expanding the discussion of the conventional Dirac cone excitations to the case of bosons. We call this case as a representative of bosonic Dirac materials (BDM), similar to the case of Fermionic Dirac materials extensively discussed in the literature.
Quasiparticle dynamics in reshaped helical Dirac cone of topological insulators
Miao, Lin; Wang, Z. F.; Ming, Wenmei; Yao, Meng-Yu; Wang, Meixiao; Yang, Fang; Song, Y. R.; Zhu, Fengfeng; Fedorov, Alexei V.; Sun, Z.; Gao, C. L.; Liu, Canhua; Xue, Qi-Kun; Liu, Chao-Xing; Liu, Feng; Qian, Dong; Jia, Jin-Feng
2013-01-01
Topological insulators and graphene present two unique classes of materials, which are characterized by spin-polarized (helical) and nonpolarized Dirac cone band structures, respectively. The importance of many-body interactions that renormalize the linear bands near Dirac point in graphene has been well recognized and attracted much recent attention. However, renormalization of the helical Dirac point has not been observed in topological insulators. Here, we report the experimental observation of the renormalized quasiparticle spectrum with a skewed Dirac cone in a single Bi bilayer grown on Bi2Te3 substrate from angle-resolved photoemission spectroscopy. First-principles band calculations indicate that the quasiparticle spectra are likely associated with the hybridization between the extrinsic substrate-induced Dirac states of Bi bilayer and the intrinsic surface Dirac states of Bi2Te3 film at close energy proximity. Without such hybridization, only single-particle Dirac spectra are observed in a single Bi bilayer grown on Bi2Se3, where the extrinsic Dirac states Bi bilayer and the intrinsic Dirac states of Bi2Se3 are well separated in energy. The possible origins of many-body interactions are discussed. Our findings provide a means to manipulate topological surface states. PMID:23382185
Quasiparticle dynamics in reshaped helical Dirac cone of topological insulators.
Miao, Lin; Wang, Z F; Ming, Wenmei; Yao, Meng-Yu; Wang, Meixiao; Yang, Fang; Song, Y R; Zhu, Fengfeng; Fedorov, Alexei V; Sun, Z; Gao, C L; Liu, Canhua; Xue, Qi-Kun; Liu, Chao-Xing; Liu, Feng; Qian, Dong; Jia, Jin-Feng
2013-02-19
Topological insulators and graphene present two unique classes of materials, which are characterized by spin-polarized (helical) and nonpolarized Dirac cone band structures, respectively. The importance of many-body interactions that renormalize the linear bands near Dirac point in graphene has been well recognized and attracted much recent attention. However, renormalization of the helical Dirac point has not been observed in topological insulators. Here, we report the experimental observation of the renormalized quasiparticle spectrum with a skewed Dirac cone in a single Bi bilayer grown on Bi(2)Te(3) substrate from angle-resolved photoemission spectroscopy. First-principles band calculations indicate that the quasiparticle spectra are likely associated with the hybridization between the extrinsic substrate-induced Dirac states of Bi bilayer and the intrinsic surface Dirac states of Bi(2)Te(3) film at close energy proximity. Without such hybridization, only single-particle Dirac spectra are observed in a single Bi bilayer grown on Bi(2)Se(3), where the extrinsic Dirac states Bi bilayer and the intrinsic Dirac states of Bi(2)Se(3) are well separated in energy. The possible origins of many-body interactions are discussed. Our findings provide a means to manipulate topological surface states.
Superstatistics with different kinds of distributions in the deformed formalism
NASA Astrophysics Data System (ADS)
Sargolzaeipor, S.; Hassanabadi, H.; Chung, W. S.
2018-03-01
In this article, after first introducing superstatistics, the effective Boltzmann factor in a deformed formalism for modified Dirac delta, uniform, two-level and Gamma distributions is derived. Then we make use of the superstatistics for four important problems in physics and the thermodynamic properties of the system are calculated. All results in the limit case are reduced to ordinary statistical mechanics. Furthermore, effects of all parameters in the problems are calculated and shown graphically.
Ab initio NMR parameters of BrCH3 and ICH3 with relativistic and vibrational corrections
NASA Astrophysics Data System (ADS)
Uhlíková, Tereza; Urban, Štěpán
2018-05-01
This study is focused on two effects identified when NMR parameters are calculated based on first principles. These effects are 1. vibrational correction of properties when using ab initio optimized equilibrium geometry; 2. relativistic effects and limits of using the Flygare equation. These effects have been investigated and determined for nuclear spin-rotation constants and nuclear magnetic shieldings for the CH3Br and CH3I molecules. The most significant result is the difference between chemical shieldings determined based on the ab initio relativistic four-component Dirac-Coulomb Hamiltonian and chemical shieldings calculated using experimental values and the Flygare equation. This difference is approximately 320 ppm and 1290 ppm for 79Br and 127I in the CH3X molecule, respectively.
Effect of collisions on photoelectron sheath in a gas
NASA Astrophysics Data System (ADS)
Sodha, Mahendra Singh; Mishra, S. K.
2016-02-01
This paper presents a study of the effect of the collision of electrons with atoms/molecules on the structure of a photoelectron sheath. Considering the half Fermi-Dirac distribution of photo-emitted electrons, an expression for the electron density in the sheath has been derived in terms of the electric potential and the structure of the sheath has been investigated by incorporating Poisson's equation in the analysis. The method of successive approximations has been used to solve Poisson's equation with the solution for the electric potential in the case of vacuum, obtained earlier [Sodha and Mishra, Phys. Plasmas 21, 093704 (2014)], being used as the zeroth order solution for the present analysis. The inclusion of collisions influences the photoelectron sheath structure significantly; a reduction in the sheath width with increasing collisions is obtained.
Spin 0 and spin 1/2 quantum relativistic particles in a constant gravitational field
NASA Astrophysics Data System (ADS)
Khorrami, M.; Alimohammadi, M.; Shariati, A.
2003-04-01
The Klein-Gordon and Dirac equations in a semi-infinite lab ( x>0), in the background metric d s2= u2( x)(-d t2+d x2)+d y2+d z2, are investigated. The resulting equations are studied for the special case u( x)=1+ gx. It is shown that in the case of zero transverse-momentum, the square of the energy eigenvalues of the spin-1/2 particles are less than the squares of the corresponding eigenvalues of spin-0 particles with same masses, by an amount of mgℏ c. Finally, for non-zero transverse-momentum, the energy eigenvalues corresponding to large quantum numbers are obtained and the results for spin-0 and spin-1/2 particles are compared to each other.
Surface structure of neutron stars with high magnetic fields
NASA Technical Reports Server (NTRS)
Fushiki, I.; Gudmundsson, E. H.; Pethick, C. J.
1989-01-01
The equation of state of cold dense matter in strong magnetic fields is calculated in the Thomas-Fermi and Thomas-Fermi-Dirac approximations. For use in the latter calculation, a new expression is derived for the exchange energy of the uniform electron gas in a strong magnetic field. Detailed calculations of the density profile in the surface region of a neutron star are described for a variety of equations of state, and these show that the surface density profile is strongly affected by the magnetic field, irrespective of whether or not matter in a magnetic field has a condensed state bound with respect to isolated atoms. It is also shown that, as a consequence of the field dependence of the screening potential, magnetic fields can significantly increase nuclear reaction rates.
Khan, Kamruzzaman; Akbar, M Ali; Islam, S M Rayhanul
2014-01-01
In this work, recently developed modified simple equation (MSE) method is applied to find exact traveling wave solutions of nonlinear evolution equations (NLEEs). To do so, we consider the (1 + 1)-dimensional nonlinear dispersive modified Benjamin-Bona-Mahony (DMBBM) equation and coupled Klein-Gordon (cKG) equations. Two classes of explicit exact solutions-hyperbolic and trigonometric solutions of the associated equations are characterized with some free parameters. Then these exact solutions correspond to solitary waves for particular values of the parameters. 02.30.Jr; 02.70.Wz; 05.45.Yv; 94.05.Fg.
Theories of Matter, Space and Time, Volume 2; Quantum theories
NASA Astrophysics Data System (ADS)
Evans, N.; King, S. F.
2018-06-01
This book and its prequel Theories of Matter Space and Time: Classical Theories grew out of courses that we have both taught as part of the undergraduate degree program in Physics at Southampton University, UK. Our goal was to guide the full MPhys undergraduate cohort through some of the trickier areas of theoretical physics that we expect our undergraduates to master. Here we teach the student to understand first quantized relativistic quantum theories. We first quickly review the basics of quantum mechanics which should be familiar to the reader from a prior course. Then we will link the Schrödinger equation to the principle of least action introducing Feynman's path integral methods. Next, we present the relativistic wave equations of Klein, Gordon and Dirac. Finally, we convert Maxwell's equations of electromagnetism to a wave equation for photons and make contact with quantum electrodynamics (QED) at a first quantized level. Between the two volumes we hope to move a student's understanding from their prior courses to a place where they are ready, beyond, to embark on graduate level courses on quantum field theory.
An Electron is the God Particle
NASA Astrophysics Data System (ADS)
Wolff, Milo
2001-04-01
Philosophers, Clifford, Mach, Einstein, Wyle, Dirac & Schroedinger, believed that only a wave structure of particles could satisfy experiment and fulfill reality. A quantum Wave Structure of Matter is described here. It predicts the natural laws more accurately and completely than classic laws. Einstein reasoned that the universe depends on particles which are "spherically, spatially extended in space." and "Hence a discrete material particle has no place as a fundamental concept in a field theory." Thus the discrete point particle was wrong. He deduced the true electron is primal because its force range is infinite. Now, it is found the electron's wave structure contains the laws of Nature that rule the universe. The electron plays the role of creator - the God particle. Electron structure is a pair of spherical outward/inward quantum waves, convergent to a center in 3D space. This wave pair creates a h/4pi quantum spin when the in-wave spherically rotates to become the out-wave. Both waves form a spinor satisfying the Dirac Equation. Thus, the universe is binary like a computer. Reference: http://members.tripod.com/mwolff
NASA Astrophysics Data System (ADS)
Beloy, Kyle; Derevianko, Andrei
2008-05-01
The dual-kinetic-balance (DKB) finite basis set method for solving the Dirac equation for hydrogen-like ions [V. M. Shabaev et al., Phys. Rev. Lett. 93, 130405 (2004)] is extended to problems with a non-local spherically-symmetric Dirac-Hartree-Fock potential. We implement the DKB method using B-spline basis sets and compare its performance with the widely- employed approach of Notre Dame (ND) group [W.R. Johnson, S.A. Blundell, J. Sapirstein, Phys. Rev. A 37, 307-15 (1988)]. We compare the performance of the ND and DKB methods by computing various properties of Cs atom: energies, hyperfine integrals, the parity-non-conserving amplitude of the 6s1/2-7s1/2 transition, and the second-order many-body correction to the removal energy of the valence electrons. We find that for a comparable size of the basis set the accuracy of both methods is similar for matrix elements accumulated far from the nuclear region. However, for atomic properties determined by small distances, the DKB method outperforms the ND approach.
NASA Astrophysics Data System (ADS)
Kundu, Arpan; Alrefae, Majed A.; Fisher, Timothy S.
2017-03-01
Using a semiclassical Boltzmann transport equation approach, we derive analytical expressions for electric and thermoelectric transport coefficients of graphene in the presence and absence of a magnetic field. Scattering due to acoustic phonons, charged impurities, and vacancies is considered in the model. Seebeck (Sxx) and Nernst (N) coefficients are evaluated as functions of carrier density, temperature, scatterer concentration, magnetic field, and induced band gap, and the results are compared to experimental data. Sxx is an odd function of Fermi energy, while N is an even function, as observed in experiments. The peak values of both coefficients are found to increase with the decreasing scatterer concentration and increasing temperature. Furthermore, opening a band gap decreases N but increases Sxx. Applying a magnetic field introduces an asymmetry in the variation of Sxx with Fermi energy across the Dirac point. The formalism is more accurate and computationally efficient than the conventional Green's function approach used to model transport coefficients and can be used to explore transport properties of other materials with Dirac cones such as Weyl semimetals.
Six-dimensional regularization of chiral gauge theories
NASA Astrophysics Data System (ADS)
Fukaya, Hidenori; Onogi, Tetsuya; Yamamoto, Shota; Yamamura, Ryo
2017-03-01
We propose a regularization of four-dimensional chiral gauge theories using six-dimensional Dirac fermions. In our formulation, we consider two different mass terms having domain-wall profiles in the fifth and the sixth directions, respectively. A Weyl fermion appears as a localized mode at the junction of two different domain walls. One domain wall naturally exhibits the Stora-Zumino chain of the anomaly descent equations, starting from the axial U(1) anomaly in six dimensions to the gauge anomaly in four dimensions. Another domain wall implies a similar inflow of the global anomalies. The anomaly-free condition is equivalent to requiring that the axial U(1) anomaly and the parity anomaly are canceled among the six-dimensional Dirac fermions. Since our formulation is based on a massive vector-like fermion determinant, a nonperturbative regularization will be possible on a lattice. Putting the gauge field at the four-dimensional junction and extending it to the bulk using the Yang-Mills gradient flow, as recently proposed by Grabowska and Kaplan, we define the four-dimensional path integral of the target chiral gauge theory.
Full utilization of semi-Dirac cones in photonics
NASA Astrophysics Data System (ADS)
Yasa, Utku G.; Turduev, Mirbek; Giden, Ibrahim H.; Kurt, Hamza
2018-05-01
In this study, realization and applications of anisotropic zero-refractive-index materials are proposed by exposing the unit cells of photonic crystals that exhibit Dirac-like cone dispersion to rotational symmetry reduction. Accidental degeneracy of two Bloch modes in the Brillouin zone center of two-dimensional C2-symmetric photonic crystals gives rise to the semi-Dirac cone dispersion. The proposed C2-symmetric photonic crystals behave as epsilon-and-mu-near-zero materials (ɛeff≈ 0 , μeff≈ 0 ) along one propagation direction, but behave as epsilon-near-zero material (ɛeff≈ 0 , μeff≠ 0 ) for the perpendicular direction at semi-Dirac frequency. By extracting the effective medium parameters of the proposed C4- and C2-symmetric periodic media that exhibit Dirac-like and semi-Dirac cone dispersions, intrinsic differences between isotropic and anisotropic materials are investigated. Furthermore, advantages of utilizing semi-Dirac cone materials instead of Dirac-like cone materials in photonic applications are demonstrated in both frequency and time domains. By using anisotropic transmission behavior of the semi-Dirac materials, photonic application concepts such as beam deflectors, beam splitters, and light focusing are proposed. Furthermore, to the best of our knowledge, semi-Dirac cone dispersion is also experimentally demonstrated for the first time by including negative, zero, and positive refraction states of the given material.
Lorentz-violating type-II Dirac fermions in transition metal dichalcogenide PtTe2.
Yan, Mingzhe; Huang, Huaqing; Zhang, Kenan; Wang, Eryin; Yao, Wei; Deng, Ke; Wan, Guoliang; Zhang, Hongyun; Arita, Masashi; Yang, Haitao; Sun, Zhe; Yao, Hong; Wu, Yang; Fan, Shoushan; Duan, Wenhui; Zhou, Shuyun
2017-08-15
Topological semimetals have recently attracted extensive research interests as host materials to condensed matter physics counterparts of Dirac and Weyl fermions originally proposed in high energy physics. Although Lorentz invariance is required in high energy physics, it is not necessarily obeyed in condensed matter physics, and thus Lorentz-violating type-II Weyl/Dirac fermions could be realized in topological semimetals. The recent realization of type-II Weyl fermions raises the question whether their spin-degenerate counterpart-type-II Dirac fermions-can be experimentally realized too. Here, we report the experimental evidence of type-II Dirac fermions in bulk stoichiometric PtTe 2 single crystal. Angle-resolved photoemission spectroscopy measurements and first-principles calculations reveal a pair of strongly tilted Dirac cones along the Γ-A direction, confirming PtTe 2 as a type-II Dirac semimetal. Our results provide opportunities for investigating novel quantum phenomena (e.g., anisotropic magneto-transport) and topological phase transition.Whether the spin-degenerate counterpart of Lorentz-violating Weyl fermions, the Dirac fermions, can be realized remains as an open question. Here, Yan et al. report experimental evidence of such type-II Dirac fermions in bulk PtTe 2 single crystal with a pair of strongly tilted Dirac cones.
Nonlocality, no-signalling, and Bellʼs theorem investigated by Weyl conformal differential geometry
NASA Astrophysics Data System (ADS)
De Martini, Francesco; Santamato, Enrico
2014-12-01
The principles and methods of conformal quantum geometrodynamics based on Weyl differential geometry are presented. The theory applied to the case of the relativistic single quantum spin-\\frac{1}{2} leads to a novel and unconventional derivation of the Dirac equation. The further extension of the theory to the case of two-spins-\\frac{1}{2} in the EPR entangled state and to the related violation of Bell inequalities leads, by an exact non-relativistic analysis, to an insightful resolution of all paradoxes implied by quantum nonlocality.
Redundancy of constraints in the classical and quantum theories of gravitation.
NASA Technical Reports Server (NTRS)
Moncrief, V.
1972-01-01
It is shown that in Dirac's version of the quantum theory of gravitation, the Hamiltonian constraints are greatly redundant. If the Hamiltonian constraint condition is satisfied at one point on the underlying, closed three-dimensional manifold, then it is automatically satisfied at every point, provided only that the momentum constraints are everywhere satisfied. This permits one to replace the usual infinity of Hamiltonian constraints by a single condition which may be taken in the form of an integral over the manifold. Analogous theorems are given for the classical Einstein Hamilton-Jacobi equations.
NASA Astrophysics Data System (ADS)
Noureen, S.; Abbas, G.; Sarfraz, M.
2018-01-01
The study of relativistic degenerate plasmas is important in many astrophysical and laboratory environments. Using linearized relativistic Vlasov-Maxwell equations, a generalized expression for the plasma conductivity tensor is derived. Employing Fermi-Dirac distribution at zero temperature, the dispersion relation of the extraordinary mode in a relativistic degenerate electron plasma is investigated. The propagation characteristics are examined in different relativistic density ranges. The shifting of cutoff points due to relativistic effects is observed analytically and graphically. Non-relativistic and ultra-relativistic limiting cases are also presented.
On thermalization of electron-positron-photon plasma
NASA Astrophysics Data System (ADS)
Siutsou, I. A.; Aksenov, A. G.; Vereshchagin, G. V.
2015-12-01
Recently a progress has been made in understanding thermalization mechanism of relativistic plasma starting from a non-equilibrium state. Relativistic Boltzmann equations were solved numerically for homogeneous isotropic plasma with collision integrals for two- and three-particle interactions calculated from the first principles by means of QED matrix elements. All particles were assumed to fulfill Boltzmann statistics. In this work we follow plasma thermalization by accounting for Bose enhancement and Pauli blocking in particle interactions. Our results show that particle in equilibrium reach Bose-Einstein distribution for photons, and Fermi-Dirac one for electrons, respectively.
Gate-tunable valley-spin filtering in silicene with magnetic barrier
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, X. Q., E-mail: xianqiangzhe@126.com; Meng, H.
2015-05-28
We theoretically study the valley- and spin-resolved scattering through magnetic barrier in a one layer thick silicene, using the mode-matching method for the Dirac equation. We show that the spin-valley filtering effect can be achieved and can also be tuned completely through both a top and bottom gate. Moreover, when reversing the sign of the staggered potential, we find the direction of the valley polarization is switched while the direction of spin polarization is unchanged. These results can provide some meaningful information to design valley valve residing on silicene.
DIRAC in Large Particle Physics Experiments
NASA Astrophysics Data System (ADS)
Stagni, F.; Tsaregorodtsev, A.; Arrabito, L.; Sailer, A.; Hara, T.; Zhang, X.; Consortium, DIRAC
2017-10-01
The DIRAC project is developing interware to build and operate distributed computing systems. It provides a development framework and a rich set of services for both Workload and Data Management tasks of large scientific communities. A number of High Energy Physics and Astrophysics collaborations have adopted DIRAC as the base for their computing models. DIRAC was initially developed for the LHCb experiment at LHC, CERN. Later, the Belle II, BES III and CTA experiments as well as the linear collider detector collaborations started using DIRAC for their computing systems. Some of the experiments built their DIRAC-based systems from scratch, others migrated from previous solutions, ad-hoc or based on different middlewares. Adaptation of DIRAC for a particular experiment was enabled through the creation of extensions to meet their specific requirements. Each experiment has a heterogeneous set of computing and storage resources at their disposal that were aggregated through DIRAC into a coherent pool. Users from different experiments can interact with the system in different ways depending on their specific tasks, expertise level and previous experience using command line tools, python APIs or Web Portals. In this contribution we will summarize the experience of using DIRAC in particle physics collaborations. The problems of migration to DIRAC from previous systems and their solutions will be presented. An overview of specific DIRAC extensions will be given. We hope that this review will be useful for experiments considering an update, or for those designing their computing models.
Realization of non-symmorphic Dirac cones in PbFCl materials
NASA Astrophysics Data System (ADS)
Schoop, Leslie
While most 3D Dirac semimetals require two bands with different orbital character to be protected, there is also the possibility to find 3D Dirac semimetals that are guaranteed to exist in certain space groups. Those are resulting from the non-symmoprhic symmetry of the space group, which forces the bands to degenerate at high symmetry points in the Brillouin zone. Non-symmorphic space groups can force three- four, six and eight fold degeneracies which led to the proposal to find 3D Dirac Semimetals as well as new quasiparticles in such space groups. Problematic for realizing this types of Dirac materials is that they require and odd band filling in order to have the Fermi level located at or also near by the band crossing points. Therefore, although the first prediction for using non-symmoprhic symmetry to create a Dirac material was made in 2012, it took almost four years for an experimental verification of this type of Dirac crossing. In this talk I will introduce the material ZrSiS that has, besides other Dirac features, a Dirac cone protected by non-symmorphic symmetry at about 0.5 eV below the Fermi level and was the first material where this type of Dirac cone was imaged with ARPES. I will then proceed to discuss ways to shift this crossing to the Fermi edge and finally show an experimental verification of a fourfold Dirac crossing, protected by non-symmorphic symmetry, at the Fermi energy.
Spectrum of the Wilson Dirac operator at finite lattice spacings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akemann, G.; Damgaard, P. H.; Splittorff, K.
2011-04-15
We consider the effect of discretization errors on the microscopic spectrum of the Wilson Dirac operator using both chiral perturbation theory and chiral random matrix theory. A graded chiral Lagrangian is used to evaluate the microscopic spectral density of the Hermitian Wilson Dirac operator as well as the distribution of the chirality over the real eigenvalues of the Wilson Dirac operator. It is shown that a chiral random matrix theory for the Wilson Dirac operator reproduces the leading zero-momentum terms of Wilson chiral perturbation theory. All results are obtained for a fixed index of the Wilson Dirac operator. The low-energymore » constants of Wilson chiral perturbation theory are shown to be constrained by the Hermiticity properties of the Wilson Dirac operator.« less
Dirac fermions in an antiferromagnetic semimetal
NASA Astrophysics Data System (ADS)
Tang, Peizhe; Zhou, Quan; Xu, Gang; Zhang, Shou-Cheng
2016-12-01
Analogues of the elementary particles have been extensively searched for in condensed-matter systems for both scientific interest and technological applications. Recently, massless Dirac fermions were found to emerge as low-energy excitations in materials now known as Dirac semimetals. All of the currently known Dirac semimetals are non-magnetic with both time-reversal symmetry and inversion symmetry . Here we show that Dirac fermions can exist in one type of antiferromagnetic system, where both and are broken but their combination is respected. We propose orthorhombic antiferromagnet CuMnAs as a candidate, analyse the robustness of the Dirac points under symmetry protections and demonstrate its distinctive bulk dispersions, as well as the corresponding surface states, by ab initio calculations. Our results provide a possible platform to study the interplay of Dirac fermion physics and magnetism.
Modified Method of Simplest Equation Applied to the Nonlinear Schrödinger Equation
NASA Astrophysics Data System (ADS)
Vitanov, Nikolay K.; Dimitrova, Zlatinka I.
2018-03-01
We consider an extension of the methodology of the modified method of simplest equation to the case of use of two simplest equations. The extended methodology is applied for obtaining exact solutions of model nonlinear partial differential equations for deep water waves: the nonlinear Schrödinger equation. It is shown that the methodology works also for other equations of the nonlinear Schrödinger kind.
Precise identification of Dirac-like point through a finite photonic crystal square matrix
Dong, Guoyan; Zhou, Ji; Yang, Xiulun; Meng, Xiangfeng
2016-01-01
The phenomena of the minimum transmittance spectrum or the maximum reflection spectrum located around the Dirac frequency have been observed to demonstrate the 1/L scaling law near the Dirac-like point through the finite ribbon structure. However, so far there is no effective way to identify the Dirac-like point accurately. In this work we provide an effective measurement method to identify the Dirac-like point accurately through a finite photonic crystal square matrix. Based on the Dirac-like dispersion achieved by the accidental degeneracy at the centre of the Brillouin zone of dielectric photonic crystal, both the simulated and experimental results demonstrate that the transmittance spectra through a finite photonic crystal square matrix not only provide the clear evidence for the existence of Dirac-like point but also can be used to identify the precise location of Dirac-like point by the characteristics of sharp cusps embedded in the extremum spectra surrounding the conical singularity. PMID:27857145
Wu, Yun; Wang, Lin -Lin; Mun, Eundeok; ...
2016-04-04
In topological quantum materials 1,2,3 the conduction and valence bands are connected at points or along lines in the momentum space. A number of studies have demonstrated that several materials are indeed Dirac/Weyl semimetals 4,5,6,7,8. However, there is still no experimental confirmation of materials with line nodes, in which the Dirac nodes form closed loops in the momentum space 2,3. Here we report the discovery of a novel topological structure—Dirac node arcs—in the ultrahigh magnetoresistive material PtSn 4 using laser-based angle-resolved photoemission spectroscopy data and density functional theory calculations. Unlike the closed loops of line nodes, the Dirac node arcmore » structure arises owing to the surface states and resembles the Dirac dispersion in graphene that is extended along a short line in the momentum space. Here, we propose that this reported Dirac node arc structure is a novel topological state that provides an exciting platform for studying the exotic properties of Dirac fermions.« less
Majorana neutrinos in the seesaw mechanism and Bogoliubov quasiparticles
NASA Astrophysics Data System (ADS)
Fujikawa, Kazuo; Tureanu, Anca
2018-03-01
The idea that the Majorana neutrino should be identified as a Bogoliubov quasiparticle is applied to the seesaw mechanism for the three generations of neutrinos in the Standard Model. A relativistic analog of the Bogoliubov transformation in the present context is a C P -preserving canonical transformation but modifies charge conjugation properties in such a way that the C-noninvariant fermion number-violating term (condensate) is converted to a Dirac mass term. Puzzling aspects associated with the charge conjugation of chiral Weyl fermions are clarified.
Controlling the Electronic Structure of Graphene Using Surface-Adsorbate Interactions
2015-07-21
after adsorption of Na the propensity of graphene bonding to Ni is much lower due to reduced overlap of atomic orbitals, which results from n- doping of...subse- quent intercalation of the Na underneath graphene. The ability to partially decouple graphene from a Ni substrate via n- doping (with or without...interactions with the substrate or adsorbates, which can modify the energy of the Dirac cone through doping , or cause a band gap to open at the K
La genèse du concept de champ quantique
NASA Astrophysics Data System (ADS)
Darrigol, O.
This is a historical study of the roots of a concept which has proved to be essential in modern particle physics : the concept of quantum field. The first steps were accomplished by two young theoreticians : Pascual Jordan quantized the free electromagnetic field in 1925 by means of the formal rules of the just discovered matrix mechanics, and Paul Dirac quantized the whole system charges + field in 1927. Using Dirac's equation for electrons (1928) and Jordan's idea of quantized matter waves (second quantization), Werner Heisenberg and Wolfgang Pauli provided in 1929-1930 an extension of Dirac's radiation theory and the proof of its relativistic invariance. Meanwhile Enrico Fermi discovered independently a more elegant and pedagogical formulation. To appreciate the degree of historical necessity of the quantization of fields, and the value of contemporaneous critics to this approach, it was necessary to investigate some of the history of the old radiation theory. We present the various arguments however provisional or naïve or wrong they could be in retrospect. So we hope to contribute to a more vivid picture of notions which, once deprived of their historical setting, might seem abstruse to the modern user. Nous présentons une étude historique des origines d'un concept devenu essentiel dans la physique moderne des particules : le concept de champ quantique. Deux jeunes théoriciens franchirent les premières étapes : Pascual Jordan quantifia le champ électromagnétique en 1925 grâce aux règles formelles de la mécanique des matrices naissante, et Paul Dirac quantifia le système complet charges + champ en 1927. Au moyen de l'équation de l'électron de Dirac (1928) et de l'idée de Jordan d'ondes de matière quantifiées (deuxième quantification), Werner Heisenberg et Wolfgang Pauli donnèrent en 1929-1930 une extension de la théorie du rayonnement de Dirac et la preuve de son invariance relativiste. Pendant ce temps Enrico Fermi découvrit indépendamment une formulation plus élégante et plus pédagogique. Pour apprécier le degré de nécessité historique de la quantification des champs et la valeur des critiques contemporaines à cette approche, nous avons dû analyser quelques points de l'histoire de l'ancienne théorie du rayonnement. Nous présentons les divers arguments quelque provisoires, naïfs ou faux qu'ils puissent sembler aujourd'hui. Ainsi nous espérons brosser un tableau plus vivant de notions menacées d'hermétisme si l'on oublie leurs fondements historiques.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khots, Boris, E-mail: bkhots@cccglobal.com; Khots, Dmitriy, E-mail: dkhots@imathconsulting.com
2014-12-10
Certain results that have been predicted by Quantum Mechanics (QM) theory are not always supported by experiments. This defines a deep crisis in contemporary physics and, in particular, quantum mechanics. We believe that, in fact, the mathematical apparatus employed within today's physics is a possible reason. In particular, we consider the concept of infinity that exists in today's mathematics as the root cause of this problem. We have created Observer's Mathematics that offers an alternative to contemporary mathematics. This paper is an attempt to relay how Observer's Mathematics may explain some of the contradictions in QM theory results. We considermore » the Hamiltonian Mechanics, Newton equation, Schrodinger equation, two slit interference, wave-particle duality for single photons, uncertainty principle, Dirac equations for free electron in a setting of arithmetic, algebra, and topology provided by Observer's Mathematics (see www.mathrelativity.com). Certain results and communications pertaining to solution of these problems are provided.« less
Tight-binding modeling and low-energy behavior of the semi-Dirac point.
Banerjee, S; Singh, R R P; Pardo, V; Pickett, W E
2009-07-03
We develop a tight-binding model description of semi-Dirac electronic spectra, with highly anisotropic dispersion around point Fermi surfaces, recently discovered in electronic structure calculations of VO2-TiO2 nanoheterostructures. We contrast their spectral properties with the well-known Dirac points on the honeycomb lattice relevant to graphene layers and the spectra of bands touching each other in zero-gap semiconductors. We also consider the lowest order dispersion around one of the semi-Dirac points and calculate the resulting electronic energy levels in an external magnetic field. In spite of apparently similar electronic structures, Dirac and semi-Dirac systems support diverse low-energy physics.
Topological Anderson insulator phase in a Dirac-semimetal thin film
NASA Astrophysics Data System (ADS)
Chen, Rui; Xu, Dong-Hui; Zhou, Bin
2017-06-01
The recently discovered topological Dirac semimetal represents a new exotic quantum state of matter. Topological Dirac semimetals can be viewed as three-dimensional analogues of graphene, in which the Dirac nodes are protected by crystalline symmetry. It has been found that the quantum confinement effect can gap out Dirac nodes and convert Dirac semimetal to a band insulator. The band insulator is either a normal insulator or quantum spin Hall insulator, depending on the thin-film thickness. We present the study of disorder effects in a thin film of Dirac semimetals. It is found that moderate Anderson disorder strength can drive a topological phase transition from a normal band insulator to a topological Anderson insulator in a Dirac-semimetal thin film. The numerical calculation based on the model parameters of Dirac semimetal Na3Bi shows that in the topological Anderson insulator phase, a quantized conductance plateau occurs in the bulk gap of the band insulator, and the distributions of local currents further confirm that the quantized conductance plateau arises from the helical edge states induced by disorder. Finally, an effective medium theory based on the Born approximation fits the numerical data.
Strong topological metal material with multiple Dirac cones
Ji, Huiwen; Valla, T.; Pletikosic, I.; ...
2016-01-25
We report a new, cleavable, strong topological metal, Zr 2Te 2P, which has the same tetradymite-type crystal structure as the topological insulator Bi 2Te 2Se. Instead of being a semiconductor, however, Zr 2Te 2P is metallic with a pseudogap between 0.2 and 0.7 eV above the Fermi energy (E F). Inside this pseudogap, two Dirac dispersions are predicted: one is a surface-originated Dirac cone protected by time-reversal symmetry (TRS), while the other is a bulk-originated and slightly gapped Dirac cone with a largely linear dispersion over a 2 eV energy range. A third surface TRS-protected Dirac cone is predicted, andmore » observed using angle-resolved photoemission spectroscopy, making Z r2Te 2P the first system, to our knowledge, to realize TRS-protected Dirac cones at M¯ points. The high anisotropy of this Dirac cone is similar to the one in the hypothetical Dirac semimetal BiO 2. As a result, we propose that if E F can be tuned into the pseudogap where the Dirac dispersions exist, it may be possible to observe ultrahigh carrier mobility and large magnetoresistance in this material.« less
A class of exact solutions for biomacromolecule diffusion-reaction in live cells.
Sadegh Zadeh, Kouroush; Montas, Hubert J
2010-06-07
A class of novel explicit analytic solutions for a system of n+1 coupled partial differential equations governing biomolecular mass transfer and reaction in living organisms are proposed, evaluated, and analyzed. The solution process uses Laplace and Hankel transforms and results in a recursive convolution of an exponentially scaled Gaussian with modified Bessel functions. The solution is developed for wide range of biomolecular binding kinetics from pure diffusion to multiple binding reactions. The proposed approach provides solutions for both Dirac and Gaussian laser beam (or fluorescence-labeled biomacromolecule) profiles during the course of a Fluorescence Recovery After Photobleaching (FRAP) experiment. We demonstrate that previous models are simplified forms of our theory for special cases. Model analysis indicates that at the early stages of the transport process, biomolecular dynamics is governed by pure diffusion. At large times, the dominant mass transfer process is effective diffusion. Analysis of the sensitivity equations, derived analytically and verified by finite difference differentiation, indicates that experimental biologists should use full space-time profile (instead of the averaged time series) obtained at the early stages of the fluorescence microscopy experiments to extract meaningful physiological information from the protocol. Such a small time frame requires improved bioinstrumentation relative to that in use today. Our mathematical analysis highlights several limitations of the FRAP protocol and provides strategies to improve it. The proposed model can be used to study biomolecular dynamics in molecular biology, targeted drug delivery in normal and cancerous tissues, motor-driven axonal transport in normal and abnormal nervous systems, kinetics of diffusion-controlled reactions between enzyme and substrate, and to validate numerical simulators of biological mass transport processes in vivo. Copyright (c) 2010 Elsevier Ltd. All rights reserved.
Non-Abelian statistics of vortices with non-Abelian Dirac fermions.
Yasui, Shigehiro; Hirono, Yuji; Itakura, Kazunori; Nitta, Muneto
2013-05-01
We extend our previous analysis on the exchange statistics of vortices having a single Dirac fermion trapped in each core to the case where vortices trap two Dirac fermions with U(2) symmetry. Such a system of vortices with non-Abelian Dirac fermions appears in color superconductors at extremely high densities and in supersymmetric QCD. We show that the exchange of two vortices having doublet Dirac fermions in each core is expressed by non-Abelian representations of a braid group, which is explicitly verified in the matrix representation of the exchange operators when the number of vortices is up to four. We find that the result contains the matrices previously obtained for the vortices with a single Dirac fermion in each core as a special case. The whole braid group does not immediately imply non-Abelian statistics of identical particles because it also contains exchanges between vortices with different numbers of Dirac fermions. However, we find that it does contain, as its subgroup, genuine non-Abelian statistics for the exchange of the identical particles, that is, vortices with the same number of Dirac fermions. This result is surprising compared with conventional understanding because all Dirac fermions are defined locally at each vortex, unlike the case of Majorana fermions for which Dirac fermions are defined nonlocally by Majorana fermions located at two spatially separated vortices.
LHCbDIRAC as Apache Mesos microservices
NASA Astrophysics Data System (ADS)
Haen, Christophe; Couturier, Benjamin
2017-10-01
The LHCb experiment relies on LHCbDIRAC, an extension of DIRAC, to drive its offline computing. This middleware provides a development framework and a complete set of components for building distributed computing systems. These components are currently installed and run on virtual machines (VM) or bare metal hardware. Due to the increased workload, high availability is becoming more and more important for the LHCbDIRAC services, and the current installation model is showing its limitations. Apache Mesos is a cluster manager which aims at abstracting heterogeneous physical resources on which various tasks can be distributed thanks to so called “frameworks” The Marathon framework is suitable for long running tasks such as the DIRAC services, while the Chronos framework meets the needs of cron-like tasks like the DIRAC agents. A combination of the service discovery tool Consul together with HAProxy allows to expose the running containers to the outside world while hiding their dynamic placements. Such an architecture brings a greater flexibility in the deployment of LHCbDirac services, allowing for easier deployment maintenance and scaling of services on demand (e..g LHCbDirac relies on 138 services and 116 agents). Higher reliability is also easier, as clustering is part of the toolset, which allows constraints on the location of the services. This paper describes the investigations carried out to package the LHCbDIRAC and DIRAC components into Docker containers and orchestrate them using the previously described set of tools.
Double Dirac point semimetal in 2D material: Ta2Se3
NASA Astrophysics Data System (ADS)
Ma, Yandong; Jing, Yu; Heine, Thomas
2017-06-01
Here, we report by first-principles calculations one new stable 2D Dirac material, Ta2Se3 monolayer. For this system, stable layered bulk phase exists, and exfoliation should be possible. Ta2Se3 monolayer is demonstrated to support two Dirac points close to the Fermi level, achieving the exotic 2D double Dirac semimetal. And like 2D single Dirac and 2D node-line semimetals, spin-orbit coupling could introduce an insulating state in this new class of 2D Dirac semimetals. Moreover, the Dirac feature in this system is layer-dependent and a metal-to-insulator transition is identified in Ta2Se3 when reducing the layer-thickness from bilayer to monolayer. These findings are of fundamental interests and of great importance for nanoscale device applications.
Dirac fermions in an antiferromagnetic semimetal
Tang, Peizhe; Zhou, Quan; Xu, Gang; ...
2016-08-08
Analogues of the elementary particles have been extensively searched for in condensed-matter systems for both scientific interest and technological applications. Recently, massless Dirac fermions were found to emerge as low-energy excitations in materials now known as Dirac semimetals. All of the currently known Dirac semimetals are non-magnetic with both time-reversal symmetry and inversion symmetry. Here in this paper, we show that Dirac fermions can exist in one type of antiferromagnetic system, where both and are broken but their combination is respected. We propose orthorhombic antiferromagnet CuMnAs as a candidate, analyse the robustness of the Dirac points under symmetry protections andmore » demonstrate its distinctive bulk dispersions, as well as the corresponding surface states, by ab initio calculations. Our results provide a possible platform to study the interplay of Dirac fermion physics and magnetism.« less
Solution of a modified fractional diffusion equation
NASA Astrophysics Data System (ADS)
Langlands, T. A. M.
2006-07-01
Recently, a modified fractional diffusion equation has been proposed [I. Sokolov, J. Klafter, From diffusion to anomalous diffusion: a century after Einstein's brownian motion, Chaos 15 (2005) 026103; A.V. Chechkin, R. Gorenflo, I.M. Sokolov, V.Yu. Gonchar, Distributed order time fractional diffusion equation, Frac. Calc. Appl. Anal. 6 (3) (2003) 259279; I.M. Sokolov, A.V. Checkin, J. Klafter, Distributed-order fractional kinetics, Acta. Phys. Pol. B 35 (2004) 1323.] for describing processes that become less anomalous as time progresses by the inclusion of a second fractional time derivative acting on the diffusion term. In this letter we give the solution of the modified equation on an infinite domain. In contrast to the solution of the traditional fractional diffusion equation, the solution of the modified equation requires an infinite series of Fox functions instead of a single Fox function.
Modified coulomb law in a strongly magnetized vacuum.
Shabad, Anatoly E; Usov, Vladimir V
2007-05-04
We study the electric potential of a charge placed in a strong magnetic field B>B(0) approximately 4.4x10(13) G, as modified by the vacuum polarization. In such a field the electron Larmour radius is much less than its Compton length. At the Larmour distances a scaling law occurs, with the potential determined by a magnetic-field-independent function. The scaling regime implies short-range interaction, expressed by the Yukawa law. The electromagnetic interaction regains its long-range character at distances larger than the Compton length, the potential decreasing across B faster than along. Correction to the nonrelativistic ground-state energy of a hydrogenlike atom is found. In the limit B = infinity, the modified potential becomes the Dirac delta function plus a regular background. With this potential the ground-state energy is finite--the best pronounced effect of the vacuum polarization.
Bosonic Dirac materials in two dimensions
NASA Astrophysics Data System (ADS)
Banerjee, Saikat; Fransson, Jonas; Black-Schaffer, Annica; Ågren, Hans; Balatsky, Alexander
We examine the low energy effective theory of phase oscillations in a two-dimensional granular superconducting sheet where the grains are arranged in honeycomb lattice structure. Two different types of collective phase oscillations are obtained, which are analogous to the massive Leggett and massless Bogoliubov-Anderson-Gorkov modes in a two-band superconductor. It is shown that the spectra of these collective bosonic modes cross each other at the K and K' points in the Brillouin zone and form a Dirac node. Dirac node dispersion of bosonic excitations is representative of Bosonic Dirac Materials (BDM). We show that the Dirac node is preserved in presence of an inter-grain interaction, despite induced changes of the qualitative features of the two collective modes. Finally, breaking the sublattice symmetry by choosing different on-site potentials for the two sublattices leads to a gap opening near the Dirac node, in analogy with Fermionic Dirac materials.
Relativistic Ionization with Intense Linearly Polarized Light
NASA Astrophysics Data System (ADS)
Crawford, Douglas Plummer
The Strong Field Approximation (SFA) method is used to derive relativistic ionization rate expressions for ground state hydrogen-like atoms in the presence of an intense electromagnetic field. The emitted particle, which is initially bound to a hydrogen nucleus, is either an electron described by the Dirac equation, with spin effects fully included, or a spinless "electron" described by the Klein-Gordon equation. The derivations and subsequent calculations for both particles are made assuming a linearly polarized electromagnetic field which is monochromatic and which exhibits neither diffraction nor temporal dependence. From each of the relativistic ionization rate expressions, the corresponding expression in the nonrelativistic limit is derived. The resultant expressions are found to be equivalent to those derived using the SFA with the nonrelativistic formalism. This comparison provides the first check of the validity for the core results of this dissertation. Intensity-dependent ionization rates are then calculated for two ultraviolet frequencies using a numerical implementation of the derived expressions. Calculations of ionization rates and related phenomena demonstrate that there are negligible differences between relativistic and nonrelativistic predictions for low intensities. In addition, the differences in behavior between linearly and circularly polarized ionizing fields and between particles with and without spin are explored. The spin comparisons provide additional confidence in the derivations by showing negligible differences between ionization rates for Dirac and Klein -Gordon particles in strong linearly-polarized fields. Also of interest are the differential transition rates which exhibit dynamic profiles as the intensity is increased. This behavior is interpreted as an indication of more atomic influence for linearly polarized electromagnetic (em) fields than for circularly polarized em fields.
Tilted Dirac Cone Effect on Interlayer Magnetoresistance in α-(BEDT-TTF)2I3
NASA Astrophysics Data System (ADS)
Tajima, Naoya; Morinari, Takao
2018-04-01
We report the effect of Dirac cone tilting on interlayer magnetoresistance in α-(BEDT-TTF)2I3, which is a Dirac semimetal under pressure. Fitting of the experimental data by the theoretical formula suggests that the system is close to a type-II Dirac semimetal.
The GridPP DIRAC project - DIRAC for non-LHC communities
NASA Astrophysics Data System (ADS)
Bauer, D.; Colling, D.; Currie, R.; Fayer, S.; Huffman, A.; Martyniak, J.; Rand, D.; Richards, A.
2015-12-01
The GridPP consortium in the UK is currently testing a multi-VO DIRAC service aimed at non-LHC VOs. These VOs (Virtual Organisations) are typically small and generally do not have a dedicated computing support post. The majority of these represent particle physics experiments (e.g. NA62 and COMET), although the scope of the DIRAC service is not limited to this field. A few VOs have designed bespoke tools around the EMI-WMS & LFC, while others have so far eschewed distributed resources as they perceive the overhead for accessing them to be too high. The aim of the GridPP DIRAC project is to provide an easily adaptable toolkit for such VOs in order to lower the threshold for access to distributed resources such as Grid and cloud computing. As well as hosting a centrally run DIRAC service, we will also publish our changes and additions to the upstream DIRAC codebase under an open-source license. We report on the current status of this project and show increasing adoption of DIRAC within the non-LHC communities.
All-Metallic Vertical Transistors Based on Stacked Dirac Materials
NASA Astrophysics Data System (ADS)
Wang, Yangyang; Ni, Zeyuan; Liu, Qihang; Quhe, Ruge; Zheng, Jiaxin; Ye, Meng; Yu, Dapeng; Shi, Junjie; Yang, Jinbo; Li, Ju; Lu, Jing; Collaborative Innovation Center of Quantum Matter, Beijing Collaboration
2015-03-01
All metallic transistor can be fabricated from pristine semimetallic Dirac materials (such as graphene, silicene, and germanene), but the on/off current ratio is very low. In a vertical heterostructure composed by two Dirac materials, the Dirac cones of the two materials survive the weak interlayer van der Waals interaction based on density functional theory method, and electron transport from the Dirac cone of one material to the one of the other material is therefore forbidden without assistance of phonon because of momentum mismatch. First-principles quantum transport simulations of the all-metallic vertical Dirac material heterostructure devices confirm the existence of a transport gap of over 0.4 eV, accompanied by a switching ratio of over 104. Such a striking behavior is robust against the relative rotation between the two Dirac materials and can be extended to twisted bilayer graphene. Therefore, all-metallic junction can be a semiconductor and novel avenue is opened up for Dirac material vertical structures in high-performance devices without opening their band gaps. A visiting student in MIT now.
Dynamical system analysis for DBI dark energy interacting with dark matter
NASA Astrophysics Data System (ADS)
Mahata, Nilanjana; Chakraborty, Subenoy
2015-01-01
A dynamical system analysis related to Dirac-Born-Infeld (DBI) cosmological model has been investigated in this present work. For spatially flat FRW spacetime, the Einstein field equation for DBI scenario has been used to study the dynamics of DBI dark energy interacting with dark matter. The DBI dark energy model is considered as a scalar field with a nonstandard kinetic energy term. An interaction between the DBI dark energy and dark matter is considered through a phenomenological interaction between DBI scalar field and the dark matter fluid. The field equations are reduced to an autonomous dynamical system by a suitable redefinition of the basic variables. The potential of the DBI scalar field is assumed to be exponential. Finally, critical points are determined, their nature have been analyzed and corresponding cosmological scenario has been discussed.
NASA Astrophysics Data System (ADS)
Casajus, A.; Ciba, K.; Fernandez, V.; Graciani, R.; Hamar, V.; Mendez, V.; Poss, S.; Sapunov, M.; Stagni, F.; Tsaregorodtsev, A.; Ubeda, M.
2012-12-01
The DIRAC Project was initiated to provide a data processing system for the LHCb Experiment at CERN. It provides all the necessary functionality and performance to satisfy the current and projected future requirements of the LHCb Computing Model. A considerable restructuring of the DIRAC software was undertaken in order to turn it into a general purpose framework for building distributed computing systems that can be used by various user communities in High Energy Physics and other scientific application domains. The CLIC and ILC-SID detector projects started to use DIRAC for their data production system. The Belle Collaboration at KEK, Japan, has adopted the Computing Model based on the DIRAC system for its second phase starting in 2015. The CTA Collaboration uses DIRAC for the data analysis tasks. A large number of other experiments are starting to use DIRAC or are evaluating this solution for their data processing tasks. DIRAC services are included as part of the production infrastructure of the GISELA Latin America grid. Similar services are provided for the users of the France-Grilles and IBERGrid National Grid Initiatives in France and Spain respectively. The new communities using DIRAC started to provide important contributions to its functionality. Among recent additions can be mentioned the support of the Amazon EC2 computing resources as well as other Cloud management systems; a versatile File Replica Catalog with File Metadata capabilities; support for running MPI jobs in the pilot based Workload Management System. Integration with existing application Web Portals, like WS-PGRADE, is demonstrated. In this paper we will describe the current status of the DIRAC Project, recent developments of its framework and functionality as well as the status of the rapidly evolving community of the DIRAC users.
Alternative to particle dark matter
NASA Astrophysics Data System (ADS)
Khoury, Justin
2015-01-01
We propose an alternative to particle dark matter that borrows ingredients of modified Newtonian dynamics (MOND) while adding new key components. The first new feature is a dark matter fluid, in the form of a scalar field with small equation of state and sound speed. This component is critical in reproducing the success of cold dark matter for the expansion history and the growth of linear perturbations, but does not cluster significantly on nonlinear scales. Instead, the missing mass problem on nonlinear scales is addressed by a modification of the gravitational force law. The force law approximates MOND at large and intermediate accelerations, and therefore reproduces the empirical success of MOND at fitting galactic rotation curves. At ultralow accelerations, the force law reverts to an inverse-square law, albeit with a larger Newton's constant. This latter regime is important in galaxy clusters and is consistent with their observed isothermal profiles, provided the characteristic acceleration scale of MOND is mildly varying with scale or mass, such that it is 12 times higher in clusters than in galaxies. We present an explicit relativistic theory in terms of two scalar fields. The first scalar field is governed by a Dirac-Born-Infeld action and behaves as a dark matter fluid on large scales. The second scalar field also has single-derivative interactions and mediates a fifth force that modifies gravity on nonlinear scales. Both scalars are coupled to matter via an effective metric that depends locally on the fields. The form of this effective metric implies the equality of the two scalar gravitational potentials, which ensures that lensing and dynamical mass estimates agree. Further work is needed in order to make both the acceleration scale of MOND and the fraction at which gravity reverts to an inverse-square law explicitly dynamical quantities, varying with scale or mass.
Kinetic effects on Alfven wave nonlinearity. II - The modified nonlinear wave equation
NASA Technical Reports Server (NTRS)
Spangler, Steven R.
1990-01-01
A previously developed Vlasov theory is used here to study the role of resonant particle and other kinetic effects on Alfven wave nonlinearity. A hybrid fluid-Vlasov equation approach is used to obtain a modified version of the derivative nonlinear Schroedinger equation. The differences between a scalar model for the plasma pressure and a tensor model are discussed. The susceptibilty of the modified nonlinear wave equation to modulational instability is studied. The modulational instability normally associated with the derivative nonlinear Schroedinger equation will, under most circumstances, be restricted to left circularly polarized waves. The nonlocal term in the modified nonlinear wave equation engenders a new modulational instability that is independent of beta and the sense of circular polarization. This new instability may explain the occurrence of wave packet steepening for all values of the plasma beta in the vicinity of the earth's bow shock.
NASA Astrophysics Data System (ADS)
Lin, Guoxing
2018-10-01
Anomalous diffusion has been investigated in many polymer and biological systems. The analysis of PFG anomalous diffusion relies on the ability to obtain the signal attenuation expression. However, the general analytical PFG signal attenuation expression based on the fractional derivative has not been previously reported. Additionally, the reported modified-Bloch equations for PFG anomalous diffusion in the literature yielded different results due to their different forms. Here, a new integral type modified-Bloch equation based on the fractional derivative for PFG anomalous diffusion is proposed, which is significantly different from the conventional differential type modified-Bloch equation. The merit of the integral type modified-Bloch equation is that the original properties of the contributions from linear or nonlinear processes remain unchanged at the instant of the combination. From the modified-Bloch equation, the general solutions are derived, which includes the finite gradient pulse width (FGPW) effect. The numerical evaluation of these PFG signal attenuation expressions can be obtained either by the Adomian decomposition, or a direct integration method that is fast and practicable. The theoretical results agree with the continuous-time random walk (CTRW) simulations performed in this paper. Additionally, the relaxation effect in PFG anomalous diffusion is found to be different from that in PFG normal diffusion. The new modified-Bloch equations and their solutions provide a fundamental tool to analyze PFG anomalous diffusion in nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI).
NASA Astrophysics Data System (ADS)
Maddix, Danielle C.; Sampaio, Luiz; Gerritsen, Margot
2018-05-01
The degenerate parabolic Generalized Porous Medium Equation (GPME) poses numerical challenges due to self-sharpening and its sharp corner solutions. For these problems, we show results for two subclasses of the GPME with differentiable k (p) with respect to p, namely the Porous Medium Equation (PME) and the superslow diffusion equation. Spurious temporal oscillations, and nonphysical locking and lagging have been reported in the literature. These issues have been attributed to harmonic averaging of the coefficient k (p) for small p, and arithmetic averaging has been suggested as an alternative. We show that harmonic averaging is not solely responsible and that an improved discretization can mitigate these issues. Here, we investigate the causes of these numerical artifacts using modified equation analysis. The modified equation framework can be used for any type of discretization. We show results for the second order finite volume method. The observed problems with harmonic averaging can be traced to two leading error terms in its modified equation. This is also illustrated numerically through a Modified Harmonic Method (MHM) that can locally modify the critical terms to remove the aforementioned numerical artifacts.
Polar phase of superfluid 3He: Dirac lines in the parameter and momentum spaces
NASA Astrophysics Data System (ADS)
Volovik, G. E.
2018-03-01
The time reversal symmetric polar phase of the spin-triplet superfluid 3He has two types of Dirac nodal lines. In addition to the Dirac loop in the spectrum of the fermionic Bogoliubov quasiparticles in the momentum space (p x , p y , p z ), the spectrum of bosons (magnons) has Dirac loop in the 3D space of parameters-the components of magnetic field (H x , H y , H z ). The bosonic Dirac system lives on the border between the type-I and type-II.
Photoinduced Chern insulating states in semi-Dirac materials
NASA Astrophysics Data System (ADS)
Saha, Kush
2016-08-01
Two-dimensional (2D) semi-Dirac materials are characterized by a quadratic dispersion in one direction and a linear dispersion along the orthogonal direction. We study the topological phase transition in such 2D systems in the presence of an electromagnetic field. We show that a Chern insulating state emerges in a semi-Dirac system with two gapless Dirac nodes in the presence of light. In particular, we show that the intensity of a circularly polarized light can be used as a knob to generate topological states with nonzero Chern number. In addition, for fixed intensity and frequency of the light, a semi-Dirac system with two gapped Dirac nodes with trivial band topology can reveal the topological transition as a function of polarization of the light.
NASA Astrophysics Data System (ADS)
Soriano, David; Ortmann, Frank; Roche, Stephan
2012-12-01
We design three-dimensional models of topological insulator thin films, showing a tunability of the odd number of Dirac cones driven by the atomic-scale geometry at the boundaries. A single Dirac cone at the Γ-point can be obtained as well as full suppression of quantum tunneling between Dirac states at geometrically differentiated surfaces. The spin texture of surface states changes from a spin-momentum-locking symmetry to a surface spin randomization upon the introduction of bulk disorder. These findings illustrate the richness of the Dirac physics emerging in thin films of topological insulators and may prove utile for engineering Dirac cones and for quantifying bulk disorder in materials with ultraclean surfaces.
Unified approach for incompressible flows
NASA Astrophysics Data System (ADS)
Chang, Tyne-Hsien
1993-12-01
An unified approach for solving both compressible and incompressible flows was investigated in this study. The difference in CFD code development between incompressible and compressible flows is due to the mathematical characteristics. However, if one can modify the continuity equation for incompressible flows by introducing pseudocompressibility, the governing equations for incompressible flows would have the same mathematical characters as compressible flows. The application of a compressible flow code to solve incompressible flows becomes feasible. Among numerical algorithms developed for compressible flows, the Centered Total Variation Diminishing (CTVD) schemes possess better mathematical properties to damp out the spurious oscillations while providing high-order accuracy for high speed flows. It leads us to believe that CTVD schemes can equally well solve incompressible flows. In this study, the governing equations for incompressible flows include the continuity equation and momentum equations. The continuity equation is modified by adding a time-derivative of the pressure term containing the artificial compressibility. The modified continuity equation together with the unsteady momentum equations forms a hyperbolic-parabolic type of time-dependent system of equations. The continuity equation is modified by adding a time-derivative of the pressure term containing the artificial compressibility. The modified continuity equation together with the unsteady momentum equations forms a hyperbolic-parabolic type of time-dependent system of equations. Thus, the CTVD schemes can be implemented. In addition, the boundary conditions including physical and numerical boundary conditions must be properly specified to obtain accurate solution. The CFD code for this research is currently in progress. Flow past a circular cylinder will be used for numerical experiments to determine the accuracy and efficiency of the code before applying this code to more specific applications.
Non-singular and cyclic universe from the modified GUP
DOE Office of Scientific and Technical Information (OSTI.GOV)
Salah, Maha; Hammad, Fayçal; Faizal, Mir
In this paper, we investigate the effects of a new version of the generalized uncertainty principle (modified GUP) on the dynamics of the Universe. As the modified GUP will modify the relation between the entropy and area of the apparent horizon, it will also deform the Friedmann equations within Jacobson's approach. We explicitly find these deformed Friedmann equations governing the modified GUP-corrected dynamics of such a Universe. It is shown that the modified GUP-deformed Jacobson's approach implies an upper bound for the density of such a Universe. The Big Bang singularity can therefore also be avoided using the modified GUP-correctionsmore » to horizons' thermodynamics. In fact, we are able to analyze the pre Big Bang state of the Universe. Furthermore, the equations imply that the expansion of the Universe will come to a halt and then will immediately be followed by a contracting phase. When the equations are extrapolated beyond the maximum rate of contraction, a cyclic Universe scenario emerges.« less
Non-singular and cyclic universe from the modified GUP
NASA Astrophysics Data System (ADS)
Salah, Maha; Hammad, Fayçal; Faizal, Mir; Farag Ali, Ahmed
2017-02-01
In this paper, we investigate the effects of a new version of the generalized uncertainty principle (modified GUP) on the dynamics of the Universe. As the modified GUP will modify the relation between the entropy and area of the apparent horizon, it will also deform the Friedmann equations within Jacobson's approach. We explicitly find these deformed Friedmann equations governing the modified GUP-corrected dynamics of such a Universe. It is shown that the modified GUP-deformed Jacobson's approach implies an upper bound for the density of such a Universe. The Big Bang singularity can therefore also be avoided using the modified GUP-corrections to horizons' thermodynamics. In fact, we are able to analyze the pre Big Bang state of the Universe. Furthermore, the equations imply that the expansion of the Universe will come to a halt and then will immediately be followed by a contracting phase. When the equations are extrapolated beyond the maximum rate of contraction, a cyclic Universe scenario emerges.
A discrete model of a modified Burgers' partial differential equation
NASA Technical Reports Server (NTRS)
Mickens, R. E.; Shoosmith, J. N.
1990-01-01
A new finite-difference scheme is constructed for a modified Burger's equation. Three special cases of the equation are considered, and the 'exact' difference schemes for the space- and time-independent forms of the equation are presented, along with the diffusion-free case of Burger's equation modeled by a difference equation. The desired difference scheme is then obtained by imposing on any difference model of the initial equation the requirement that, in the appropriate limits, its difference scheme must reduce the results of the obtained equations.
BRST Quantization of the Proca Model Based on the BFT and the BFV Formalism
NASA Astrophysics Data System (ADS)
Kim, Yong-Wan; Park, Mu-In; Park, Young-Jai; Yoon, Sean J.
The BRST quantization of the Abelian Proca model is performed using the Batalin-Fradkin-Tyutin and the Batalin-Fradkin-Vilkovisky formalism. First, the BFT Hamiltonian method is applied in order to systematically convert a second class constraint system of the model into an effectively first class one by introducing new fields. In finding the involutive Hamiltonian we adopt a new approach which is simpler than the usual one. We also show that in our model the Dirac brackets of the phase space variables in the original second class constraint system are exactly the same as the Poisson brackets of the corresponding modified fields in the extended phase space due to the linear character of the constraints comparing the Dirac or Faddeev-Jackiw formalisms. Then, according to the BFV formalism we obtain that the desired resulting Lagrangian preserving BRST symmetry in the standard local gauge fixing procedure naturally includes the Stückelberg scalar related to the explicit gauge symmetry breaking effect due to the presence of the mass term. We also analyze the nonstandard nonlocal gauge fixing procedure.
Novel Quantum Criticality in Two Dimensional Topological Phase transitions
Cho, Gil Young; Moon, Eun-Gook
2016-01-01
Topological quantum phase transitions intrinsically intertwine self-similarity and topology of many-electron wave-functions, and divining them is one of the most significant ways to advance understanding in condensed matter physics. Our focus is to investigate an unconventional class of the transitions between insulators and Dirac semimetals whose description is beyond conventional pseudo relativistic Dirac Hamiltonian. At the transition without the long-range Coulomb interaction, the electronic energy dispersion along one direction behaves like a relativistic particle, linear in momentum, but along the other direction it behaves like a non-relativistic particle, quadratic in momentum. Various physical systems ranging from TiO2-VO2 heterostructure to organic material α-(BEDT-TTF)2I3 under pressure have been proposed to have such anisotropic dispersion relation. Here, we discover a novel quantum criticality at the phase transition by incorporating the long range Coulomb interaction. Unique interplay between the Coulomb interaction and electronic critical modes enforces not only the anisotropic renormalization of the Coulomb interaction but also marginally modified electronic excitation. In connection with experiments, we investigate several striking effects in physical observables of our novel criticality. PMID:26791803
NASA Astrophysics Data System (ADS)
Wehling, T. O.; Black-Schaffer, A. M.; Balatsky, A. V.
2014-01-01
A wide range of materials, like d-wave superconductors, graphene, and topological insulators, share a fundamental similarity: their low-energy fermionic excitations behave as massless Dirac particles rather than fermions obeying the usual Schrodinger Hamiltonian. This emergent behavior of Dirac fermions in condensed matter systems defines the unifying framework for a class of materials we call "Dirac materials''. In order to establish this class of materials, we illustrate how Dirac fermions emerge in multiple entirely different condensed matter systems and we discuss how Dirac fermions have been identified experimentally using electron spectroscopy techniques (angle-resolved photoemission spectroscopy and scanning tunneling spectroscopy). As a consequence of their common low-energy excitations, this diverse set of materials shares a significant number of universal properties in the low-energy (infrared) limit. We review these common properties including nodal points in the excitation spectrum, density of states, specific heat, transport, thermodynamic properties, impurity resonances, and magnetic field responses, as well as discuss many-body interaction effects. We further review how the emergence of Dirac excitations is controlled by specific symmetries of the material, such as time-reversal, gauge, and spin-orbit symmetries, and how by breaking these symmetries a finite Dirac mass is generated. We give examples of how the interaction of Dirac fermions with their distinct real material background leads to rich novel physics with common fingerprints such as the suppression of back scattering and impurity-induced resonant states.
Excitonic gap formation in pumped Dirac materials
NASA Astrophysics Data System (ADS)
Triola, Christopher; Pertsova, Anna; Markiewicz, Robert S.; Balatsky, Alexander V.
2017-05-01
Recent pump-probe experiments demonstrate the possibility that Dirac materials may be driven into transient excited states describable by two chemical potentials, one for the electrons and one for the holes. Given the Dirac nature of the spectrum, such an inverted population allows the optical tunability of the density of states of the electrons and holes, effectively offering control of the strength of the Coulomb interaction. Here we discuss the feasibility of realizing transient excitonic instabilities in optically pumped Dirac materials. We demonstrate, theoretically, the reduction of the critical coupling leading to the formation of a transient condensate of electron-hole pairs and identify signatures of this state. Furthermore, we provide guidelines for experiments by both identifying the regimes in which such exotic many-body states are more likely to be observed and estimating the magnitude of the excitonic gap for a few important examples of existing Dirac materials. We find a set of material parameters for which our theory predicts large gaps and high critical temperatures and which could be realized in future Dirac materials. We also comment on transient excitonic instabilities in three-dimensional Dirac and Weyl semimetals. This study provides an example of a transient collective instability in driven Dirac materials.
Inverse Perovskites - A New Platform For 3D Dirac Electron Physics
NASA Astrophysics Data System (ADS)
Rost, A. W.; Kim, J.; Shota, S.; Hayama, K.; Abdolazimi, V.; Bruin, J. A. N.; Muehle, C.; Schnyder, A.; Yaresko, A. N.; Nuss, J.; Takagi, H.
3D Dirac semimetals show a wealth of phenomena including ultrahigh mobility, extreme transverse magnetoresistance and potential for negative longitudinal magnetoresistance. Furthermore, by introducing a gap these are often found to be topological crystalline insulators. Here, I will introduce our experiments on a new family of 3D Dirac materials - the inverse perovskites A3BO (A =Ca,Sr,Eu/B =Pb,Sn). These open up the possibility to chemically control the properties of Dirac electrons including (i) the anisotropy of the Dirac dispersion, (ii) role of spin orbit coupling, and (iii) magnetism. Our physical property measurements show all (Ca/Sr)3(Pb/Sn)O compounds host Dirac electrons at the Fermi energy with no other bands crossing EF. Quantum oscillations unveil small Fermi surfaces (frequencies <5 T) and light carriers (<0.02 me) only consistent with Dirac electrons. With the successful synthesis of Sr3Pb0.5Sn0.5O this group of materials therefore offers a unique chemical control over the physical properties of 3D Dirac electrons. Crucially, Eu3(Pb/Sn)O compounds allow for the introduction of magnetism. I will discuss the implications of this in particular with respect to surface states in these topological crystalline insulators.
Dirac Fermions in an Antiferromagnetic Semimetal
NASA Astrophysics Data System (ADS)
Tang, Peizhe; Zhou, Quan; Xu, Gang; Zhang, Shou-Cheng; Shou-Cheng Zhang's Group Team, Prof.
Analogues of the elementary particles have been extensively searched for in condensed matter systems for both scientific interest and technological applications. Recently, massless Dirac fermions were found to emerge as low energy excitations in materials now known as Dirac semimetals. All the currently known Dirac semimetals are nonmagnetic with both time-reversal symmetry and inversion symmetry "". Here we show that Dirac fermions can exist in one type of antiferromagnetic systems, where both and "" are broken but their combination "" is respected. We propose orthorhombic antiferromagnet CuMnAs as a candidate, analyze the robustness of the Dirac points under symmetry protections, and demonstrate its distinctive bulk dispersions as well as the corresponding surface states by ab initio calculations. Our results provide a possible platform to study the interplay of Dirac fermion physics and magnetism. We acknowledge the DOE, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, under contract DE-AC02-76SF00515, NSF under Grant No.DMR-1305677 and FAME, one of six centers of STARnet.
Three Dimensional Photonic Dirac Points in Metamaterials
NASA Astrophysics Data System (ADS)
Guo, Qinghua; Yang, Biao; Xia, Lingbo; Gao, Wenlong; Liu, Hongchao; Chen, Jing; Xiang, Yuanjiang; Zhang, Shuang
2017-11-01
Topological semimetals, representing a new topological phase that lacks a full band gap in bulk states and exhibiting nontrivial topological orders, recently have been extended to photonic systems, predominantly in photonic crystals and to a lesser extent metamaterials. Photonic crystal realizations of Dirac degeneracies are protected by various space symmetries, where Bloch modes span the spin and orbital subspaces. Here, we theoretically show that Dirac points can also be realized in effective media through the intrinsic degrees of freedom in electromagnetism under electromagnetic duality. A pair of spin-polarized Fermi-arc-like surface states is observed at the interface between air and the Dirac metamaterials. Furthermore, eigenreflection fields show the decoupling process from a Dirac point to two Weyl points. We also find the topological correlation between a Dirac point and vortex or vector beams in classical photonics. The experimental feasibility of our scheme is demonstrated by designing a realistic metamaterial structure. The theoretical proposal of the photonic Dirac point lays the foundation for unveiling the connection between intrinsic physics and global topology in electromagnetism.
Bosonic Dirac Materials in 2 dimensions
NASA Astrophysics Data System (ADS)
Banerjee, Saikat; Black-Schaffer, A. M.; Fransson, J.; Agren, H.; Balatsky, A. V.
We examine the low energy effective theory of phase oscillations in a two dimensional granular superconducting sheet where the grains are arranged in honeycomb lattice structure. Two different types of collective phase oscillations are obtained, which are analogous to the massive Leggett and massless Bogoliubov-Anderson-Gorkov modes for two-band superconductor. It is explicitly shown that the spectra of these collective Bosonic modes cross each other at K and K' points in the Brillouin zone and form a Dirac node. This Dirac node behavior in Bosonic excitations represent the case of Bosonic Dirac Materials (BDM). Dirac node is preserved in presence of an inter-grain interaction despite induced changes of the qualitative features of the two collective modes. Finally, breaking the sub lattice symmetry by choosing different on-site potentials for the two sub lattices leads to a gap opening near the Dirac node, in analogy with Fermionic Dirac material. Supported by US DOE E304, ERC DM 321031, KAW, VR2012-3447.
Self-Assembled Si(111) Surface States: 2D Dirac Material for THz Plasmonics.
Wang, Z F; Liu, Feng
2015-07-10
Graphene, the first discovered 2D Dirac material, has had a profound impact on science and technology. In the last decade, we have witnessed huge advances in graphene related fundamental and applied research. Here, based on first-principles calculations, we propose a new 2D Dirac band on the Si(111) surface with 1/3 monolayer halogen coverage. The sp(3) dangling bonds form a honeycomb superstructure on the Si(111) surface that results in an anisotropic Dirac band with a group velocity (∼10(6) m/s) comparable to that in graphene. Most remarkably, the Si-based surface Dirac band can be used to excite a tunable THz plasmon through electron-hole doping. Our results demonstrate a new way to design Dirac states on a traditional semiconductor surface, so as to make them directly compatible with Si technology. We envision this new type of Dirac material to be generalized to other semiconductor surfaces with broad applications.
Self-Assembled Si(111) Surface States: 2D Dirac Material for THz Plasmonics
NASA Astrophysics Data System (ADS)
Wang, Z. F.; Liu, Feng
2015-07-01
Graphene, the first discovered 2D Dirac material, has had a profound impact on science and technology. In the last decade, we have witnessed huge advances in graphene related fundamental and applied research. Here, based on first-principles calculations, we propose a new 2D Dirac band on the Si(111) surface with 1 /3 monolayer halogen coverage. The s p3 dangling bonds form a honeycomb superstructure on the Si(111) surface that results in an anisotropic Dirac band with a group velocity (˜106 m /s ) comparable to that in graphene. Most remarkably, the Si-based surface Dirac band can be used to excite a tunable THz plasmon through electron-hole doping. Our results demonstrate a new way to design Dirac states on a traditional semiconductor surface, so as to make them directly compatible with Si technology. We envision this new type of Dirac material to be generalized to other semiconductor surfaces with broad applications.
Zeeman splitting and dynamical mass generation in Dirac semimetal ZrTe5
Liu, Yanwen; Yuan, Xiang; Zhang, Cheng; Jin, Zhao; Narayan, Awadhesh; Luo, Chen; Chen, Zhigang; Yang, Lei; Zou, Jin; Wu, Xing; Sanvito, Stefano; Xia, Zhengcai; Li, Liang; Wang, Zhong; Xiu, Faxian
2016-01-01
Dirac semimetals have attracted extensive attentions in recent years. It has been theoretically suggested that many-body interactions may drive exotic phase transitions, spontaneously generating a Dirac mass for the nominally massless Dirac electrons. So far, signature of interaction-driven transition has been lacking. In this work, we report high-magnetic-field transport measurements of the Dirac semimetal candidate ZrTe5. Owing to the large g factor in ZrTe5, the Zeeman splitting can be observed at magnetic field as low as 3 T. Most prominently, high pulsed magnetic field up to 60 T drives the system into the ultra-quantum limit, where we observe abrupt changes in the magnetoresistance, indicating field-induced phase transitions. This is interpreted as an interaction-induced spontaneous mass generation of the Dirac fermions, which bears resemblance to the dynamical mass generation of nucleons in high-energy physics. Our work establishes Dirac semimetals as ideal platforms for investigating emerging correlation effects in topological matters. PMID:27515493
Berry phase jumps and giant nonreciprocity in Dirac quantum dots
NASA Astrophysics Data System (ADS)
Rodriguez-Nieva, Joaquin F.; Levitov, Leonid S.
2016-12-01
We predict that a strong nonreciprocity in the resonance spectra of Dirac quantum dots can be induced by the Berry phase. The nonreciprocity arises in relatively weak magnetic fields and is manifest in anomalously large field-induced splittings of quantum dot resonances which are degenerate at B =0 due to time-reversal symmetry. This exotic behavior, which is governed by field-induced jumps in the Berry phase of confined electronic states, is unique to quantum dots in Dirac materials and is absent in conventional quantum dots. The effect is strong for gapless Dirac particles and can overwhelm the B -induced orbital and Zeeman splittings. A finite Dirac mass suppresses the effect. The nonreciprocity, predicted for generic two-dimensional Dirac materials, is accessible through Faraday and Kerr optical rotation measurements and scanning tunneling spectroscopy.
The nonlinear modified equation approach to analyzing finite difference schemes
NASA Technical Reports Server (NTRS)
Klopfer, G. H.; Mcrae, D. S.
1981-01-01
The nonlinear modified equation approach is taken in this paper to analyze the generalized Lax-Wendroff explicit scheme approximation to the unsteady one- and two-dimensional equations of gas dynamics. Three important applications of the method are demonstrated. The nonlinear modified equation analysis is used to (1) generate higher order accurate schemes, (2) obtain more accurate estimates of the discretization error for nonlinear systems of partial differential equations, and (3) generate an adaptive mesh procedure for the unsteady gas dynamic equations. Results are obtained for all three areas. For the adaptive mesh procedure, mesh point requirements for equal resolution of discontinuities were reduced by a factor of five for a 1-D shock tube problem solved by the explicit MacCormack scheme.
NASA Astrophysics Data System (ADS)
Pedersen, Thomas Garm
2018-07-01
Bessel functions play an important role for quantum states in spherical and cylindrical geometries. In cases of perfect confinement, the energy of Schrödinger and massless Dirac fermions is determined by the zeros and intersections of Bessel functions, respectively. In an external electric field, standard perturbation theory therefore expresses the polarizability as a sum over these zeros or intersections. Both non-relativistic and relativistic polarizabilities can be calculated analytically, however. Hence, by equating analytical expressions to perturbation expansions, several sum rules for the zeros and intersections of Bessel functions emerge.
Nonextensive kinetic theory and H-theorem in general relativity
NASA Astrophysics Data System (ADS)
Santos, A. P.; Silva, R.; Alcaniz, J. S.; Lima, J. A. S.
2017-11-01
The nonextensive kinetic theory for degenerate quantum gases is discussed in the general relativistic framework. By incorporating nonadditive modifications in the collisional term of the relativistic Boltzmann equation and entropy current, it is shown that Tsallis entropic framework satisfies a H-theorem in the presence of gravitational fields. Consistency with the 2nd law of thermodynamics is obtained only whether the entropic q-parameter lies in the interval q ∈ [ 0 , 2 ] . As occurs in the absence of gravitational fields, it is also proved that the local collisional equilibrium is described by the extended Bose-Einstein (Fermi-Dirac) q-distributions.
Conductance of graphene based normal-superconductor junction with double magnetic barriers
NASA Astrophysics Data System (ADS)
Abdollahipour, B.; Mohebalipour, A.; Maleki, M. A.
2018-05-01
We study conductance of a graphene based normal metal-superconductor junction with two magnetic barriers. The magnetic barriers are induced via two applied magnetic fields with the same magnitudes and opposite directions accompanied by an applied electrostatic potential. We solve Dirac-Bogoliubov-De-Gennes (DBdG) equation to calculate conductance of the junction. We find that applying the magnetic field leads to suppression of the Andreev reflection and conductance for all energies. On the other hand, we observe a crossover from oscillatory to tunneling behavior of the conductance as a function of the applied potential by increasing the magnetic field.
Conformal Yano-Killing Tensors in General Relativity
NASA Astrophysics Data System (ADS)
Jezierski, Jacek
2011-09-01
How CYK tensors appear in General Relativity? Geometric definition of the asymptotic flat spacetime: strong asymptotic flatness, which guarantees well defined total angular momentum [2, 3, 4] Conserved quantities - asymptotic charges (ℐ, 𝓲0) [2, 3, 4, 5, 6, 9] Quasi-local mass and "rotational energy" for Kerr black hole [5] Constants of motion along geodesics and symmetric Killing tensors [5, 6] Spacetimes possessing CYK tensor [10]: Minkowski (quadratic polynomials) [5] (Anti-)deSitter (natural construction) [7, 8, 9] Kerr (type D spacetime) [5] Taub-NUT (new symmetric conformal Killing tensors) [6] Other applications: Symmetries of Dirac operator Symmetries of Maxwell equations
Values of the phase space factors for double beta decay
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stoica, Sabin, E-mail: stoica@theory.nipne.ro; Mirea, Mihai; Horia Hulubei National Institute of Physics and Nuclear Engineering, 30 Reactorului street, P.O. Box MG6, Magurele
2015-10-28
We report an up-date list of the experimentally most interesting phase space factors for double beta decay (DBD). The electron/positron wave functions are obtained by solving the Dirac equations with a Coulomb potential derived from a realistic proton density distribution in nucleus and with inclusion of the finite nuclear size (FNS) and electron screening (ES) effects. We build up new numerical routines which allow us a good control of the accuracy of calculations. We found several notable differences as compared with previous results reported in literature and possible sources of these discrepancies are discussed.
Accretion onto some well-known regular black holes
NASA Astrophysics Data System (ADS)
Jawad, Abdul; Shahzad, M. Umair
2016-03-01
In this work, we discuss the accretion onto static spherically symmetric regular black holes for specific choices of the equation of state parameter. The underlying regular black holes are charged regular black holes using the Fermi-Dirac distribution, logistic distribution, nonlinear electrodynamics, respectively, and Kehagias-Sftesos asymptotically flat regular black holes. We obtain the critical radius, critical speed, and squared sound speed during the accretion process near the regular black holes. We also study the behavior of radial velocity, energy density, and the rate of change of the mass for each of the regular black holes.
NASA Astrophysics Data System (ADS)
Gareev, F. A.; Zhidkova, I. E.
2007-03-01
We come to the conclusion that all atomic models based on either the Newton equation and the Kepler laws, or the Maxwell equations, or the Schrodinger and Dirac equations are in reasonable agreement with experimental data. We can only suspect that these equations are grounded on the same fundamental principle(s) which is (are) not known or these equations can be transformed into each other. We proposed a new mechanism of LENR: cooperative processes in the whole system nuclei + atoms + condensed matter - nuclear reactions in plasma - can occur at smaller threshold energies than the corresponding ones on free constituents. We were able to quantize phenomenologically the first time the differences between atomic and nuclear rest masses by the formula: δδM =n1/n2 X 0.0076294 (in MeV/ c^2), ni=1,2,3,.... Note that this quantization rule is justified for atoms and nuclei with different A, N and Z and the nuclei and atoms represent a coherent synchronized systems - a complex of coupled oscillators (resonators). The cooperative resonance synchronization mechanisms can explain how electron volt (atomic-) scale processes can induce and control nuclear MeV (nuclear-) scale processes and reactions., F.A. Gareev, I.E. Zhidkova, E-print arXiv Nucl-th/ 0610002 2006.
A quadrature based method of moments for nonlinear Fokker-Planck equations
NASA Astrophysics Data System (ADS)
Otten, Dustin L.; Vedula, Prakash
2011-09-01
Fokker-Planck equations which are nonlinear with respect to their probability densities and occur in many nonequilibrium systems relevant to mean field interaction models, plasmas, fermions and bosons can be challenging to solve numerically. To address some underlying challenges, we propose the application of the direct quadrature based method of moments (DQMOM) for efficient and accurate determination of transient (and stationary) solutions of nonlinear Fokker-Planck equations (NLFPEs). In DQMOM, probability density (or other distribution) functions are represented using a finite collection of Dirac delta functions, characterized by quadrature weights and locations (or abscissas) that are determined based on constraints due to evolution of generalized moments. Three particular examples of nonlinear Fokker-Planck equations considered in this paper include descriptions of: (i) the Shimizu-Yamada model, (ii) the Desai-Zwanzig model (both of which have been developed as models of muscular contraction) and (iii) fermions and bosons. Results based on DQMOM, for the transient and stationary solutions of the nonlinear Fokker-Planck equations, have been found to be in good agreement with other available analytical and numerical approaches. It is also shown that approximate reconstruction of the underlying probability density function from moments obtained from DQMOM can be satisfactorily achieved using a maximum entropy method.
NASA Astrophysics Data System (ADS)
Dai, Jian; Song, Xing-Chang
2001-07-01
One of the key ingredients of Connes's noncommutative geometry is a generalized Dirac operator which induces a metric (Connes's distance) on the pure state space. We generalize such a Dirac operator devised by Dimakis et al, whose Connes distance recovers the linear distance on an one-dimensional lattice, to the two-dimensional case. This Dirac operator has the local eigenvalue property and induces a Euclidean distance on this two-dimensional lattice, which is referred to as `natural'. This kind of Dirac operator can be easily generalized into any higher-dimensional lattices.
NASA Astrophysics Data System (ADS)
Parks, Helen Frances
This dissertation presents two projects related to the structured integration of large-scale mechanical systems. Structured integration uses the considerable differential geometric structure inherent in mechanical motion to inform the design of numerical integration schemes. This process improves the qualitative properties of simulations and becomes especially valuable as a measure of accuracy over long time simulations in which traditional Gronwall accuracy estimates lose their meaning. Often, structured integration schemes replicate continuous symmetries and their associated conservation laws at the discrete level. Such is the case for variational integrators, which discretely replicate the process of deriving equations of motion from variational principles. This results in the conservation of momenta associated to symmetries in the discrete system and conservation of a symplectic form when applicable. In the case of Lagrange-Dirac systems, variational integrators preserve a discrete analogue of the Dirac structure preserved in the continuous flow. In the first project of this thesis, we extend Dirac variational integrators to accommodate interconnected systems. We hope this work will find use in the fields of control, where a controlled system can be thought of as a "plant" system joined to its controller, and in the approach of very large systems, where modular modeling may prove easier than monolithically modeling the entire system. The second project of the thesis considers a different approach to large systems. Given a detailed model of the full system, can we reduce it to a more computationally efficient model without losing essential geometric structures in the system? Asked without the reference to structure, this is the essential question of the field of model reduction. The answer there has been a resounding yes, with Principal Orthogonal Decomposition (POD) with snapshots rising as one of the most successful methods. Our project builds on previous work to extend POD to structured settings. In particular, we consider systems evolving on Lie groups and make use of canonical coordinates in the reduction process. We see considerable improvement in the accuracy of the reduced model over the usual structure-agnostic POD approach.
Requirements for Predictive Density Functional Theory Methods for Heavy Materials Equation of State
NASA Astrophysics Data System (ADS)
Mattsson, Ann E.; Wills, John M.
2012-02-01
The difficulties in experimentally determining the Equation of State of actinide and lanthanide materials has driven the development of many computational approaches with varying degree of empiricism and predictive power. While Density Functional Theory (DFT) based on the Schr"odinger Equation (possibly with relativistic corrections including the scalar relativistic approach) combined with local and semi-local functionals has proven to be a successful and predictive approach for many materials, it is not giving enough accuracy, or even is a complete failure, for the actinides. To remedy this failure both an improved fundamental description based on the Dirac Equation (DE) and improved functionals are needed. Based on results obtained using the appropriate fundamental approach of DFT based on the DE we discuss the performance of available semi-local functionals, the requirements for improved functionals for actinide/lanthanide materials, and the similarities in how functionals behave in transition metal oxides. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Hydrodynamics of the Dirac fluid in graphene
NASA Astrophysics Data System (ADS)
Lucas, Andrew
Recent advances in materials physics have allowed us to observe hydrodynamic electron flow in multiple materials. A uniquely interesting possibility is the emergence of a quasi-relativistic plasma of electrons and holes appearing in Dirac semimetals such as graphene. I will briefly review the unique features of the hydrodynamics of the Dirac fluid, and then discuss the theroetical signatures for the Dirac fluid, and its observation in experiment.
On symmetries, conservation laws and exact solutions of the nonlinear Schrödinger-Hirota equation
NASA Astrophysics Data System (ADS)
Akbulut, Arzu; Taşcan, Filiz
2018-04-01
In this paper, conservation laws and exact solution are found for nonlinear Schrödinger-Hirota equation. Conservation theorem is used for finding conservation laws. We get modified conservation laws for given equation. Modified simple equation method is used to obtain the exact solutions of the nonlinear Schrödinger-Hirota equation. It is shown that the suggested method provides a powerful mathematical instrument for solving nonlinear equations in mathematical physics and engineering.
NASA Astrophysics Data System (ADS)
Shallal, Muhannad A.; Jabbar, Hawraz N.; Ali, Khalid K.
2018-03-01
In this paper, we constructed a travelling wave solution for space-time fractional nonlinear partial differential equations by using the modified extended Tanh method with Riccati equation. The method is used to obtain analytic solutions for the space-time fractional Klein-Gordon and coupled conformable space-time fractional Boussinesq equations. The fractional complex transforms and the properties of modified Riemann-Liouville derivative have been used to convert these equations into nonlinear ordinary differential equations.
NASA Astrophysics Data System (ADS)
Agresti, Juri; De Pietri, Roberto; Lusanna, Luca; Martucci, Luca
2004-05-01
In the framework of the rest-frame instant form of tetrad gravity, where the Hamiltonian is the weak ADM energy {\\hat E}ADM, we define a special completely fixed 3-orthogonal Hamiltonian gauge, corresponding to a choice of non-harmonic 4-coordinates, in which the independent degrees of freedom of the gravitational field are described by two pairs of canonically conjugate Dirac observables (DO) r_{\\bar a}(\\tau ,\\vec \\sigma ), \\pi_{\\bar a}(\\tau ,\\vec \\sigma ), \\bar a = 1,2. We define a Hamiltonian linearization of the theory, i.e. gravitational waves, without introducing any background 4-metric, by retaining only the linear terms in the DO's in the super-hamiltonian constraint (the Lichnerowicz equation for the conformal factor of the 3-metric) and the quadratic terms in the DO's in {\\hat E}ADM. We solve all the constraints of the linearized theory: this amounts to work in a well defined post-Minkowskian Christodoulou-Klainermann space-time. The Hamilton equations imply the wave equation for the DO's r_{\\bar a}(\\tau ,\\vec \\sigma ), which replace the two polarizations of the TT harmonic gauge, and that linearized Einstein's equations are satisfied. Finally we study the geodesic equation, both for time-like and null geodesics, and the geodesic deviation equation.
NASA Astrophysics Data System (ADS)
Latyshev, A. V.; Gordeeva, N. M.
2017-09-01
We obtain an analytic solution of the boundary problem for the behavior (fluctuations) of an electron plasma with an arbitrary degree of degeneracy of the electron gas in the conductive layer in an external electric field. We use the kinetic Vlasov-Boltzmann equation with the Bhatnagar-Gross-Krook collision integral and the Maxwell equation for the electric field. We use the mirror boundary conditions for the reflections of electrons from the layer boundary. The boundary problem reduces to a one-dimensional problem with a single velocity. For this, we use the method of consecutive approximations, linearization of the equations with respect to the absolute distribution of the Fermi-Dirac electrons, and the conservation law for the number of particles. Separation of variables then helps reduce the problem equations to a characteristic system of equations. In the space of generalized functions, we find the eigensolutions of the initial system, which correspond to the continuous spectrum (Van Kampen mode). Solving the dispersion equation, we then find the eigensolutions corresponding to the adjoint and discrete spectra (Drude and Debye modes). We then construct the general solution of the boundary problem by decomposing it into the eigensolutions. The coefficients of the decomposition are given by the boundary conditions. This allows obtaining the decompositions of the distribution function and the electric field in explicit form.
Unique Fock quantization of a massive fermion field in a cosmological scenario
NASA Astrophysics Data System (ADS)
Cortez, Jerónimo; Elizaga Navascués, Beatriz; Martín-Benito, Mercedes; Mena Marugán, Guillermo A.; Velhinho, José M.
2016-04-01
It is well known that the Fock quantization of field theories in general spacetimes suffers from an infinite ambiguity, owing to the inequivalent possibilities in the selection of a representation of the canonical commutation or anticommutation relations, but also owing to the freedom in the choice of variables to describe the field among all those related by linear time-dependent transformations, including the dependence through functions of the background. In this work we remove this ambiguity (up to unitary equivalence) in the case of a massive Dirac free field propagating in a spacetime with homogeneous and isotropic spatial sections of spherical topology. Two physically reasonable conditions are imposed in order to arrive at this result: (a) The invariance of the vacuum under the spatial isometries of the background, and (b) the unitary implementability of the dynamical evolution that dictates the Dirac equation. We characterize the Fock quantizations with a nontrivial fermion dynamics that satisfy these two conditions. Then, we provide a complete proof of the unitary equivalence of the representations in this class under very mild requirements on the time variation of the background, once a criterion to discern between particles and antiparticles has been set.
The μ- τ reflection symmetry of Dirac neutrinos and its breaking effect via quantum corrections
NASA Astrophysics Data System (ADS)
Xing, Zhi-zhong; Zhang, Di; Zhu, Jing-yu
2017-11-01
Given the Dirac neutrino mass term, we explore the constraint conditions which allow the corresponding mass matrix to be invariant under the μ- τ reflection transformation, leading us to the phenomenologically favored predictions θ 23 = π/4 and δ = 3 π/2 in the standard parametrization of the 3 × 3 lepton flavor mixing matrix. If such a flavor symmetry is realized at a superhigh energy scale Λ μτ , we investigate how it is spontaneously broken via the one-loop renormalization-group equations (RGEs) running from Λ μτ down to the Fermi scale ΛF. Such quantum corrections to the neutrino masses and flavor mixing parameters are derived, and an analytical link is established between the Jarlskog invariants of CP violation at Λ μτ and ΛF. Some numerical examples are also presented in both the minimal supersymmetric standard model and the type-II two-Higgs-doublet model, to illustrate how the octant of θ 23, the quadrant of δ and the neutrino mass ordering are correlated with one another as a result of the RGE-induced μ-τ reflection symmetry breaking effects.