Sample records for modified dispersion relation

  1. Getting super-excited with modified dispersion relations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ashoorioon, Amjad; Casadio, Roberto; Geshnizjani, Ghazal

    We demonstrate that in some regions of parameter space, modified dispersion relations can lead to highly populated excited states, which we dub as 'super-excited' states. In order to prepare such super-excited states, we invoke dispersion relations that have negative slope in an interim sub-horizon phase at high momenta. This behaviour of quantum fluctuations can lead to large corrections relative to the Bunch-Davies power spectrum, which mimics highly excited initial conditions. We identify the Bogolyubov coefficients that can yield these power spectra. In the course of this computation, we also point out the shortcomings of the gluing method for evaluating themore » power spectrum and the Bogolyubov coefficients. As we discuss, there are other regions of parameter space, where the power spectrum does not get modified. Therefore, modified dispersion relations can also lead to so-called 'calm excited states'. We conclude by commenting on the possibility of obtaining these modified dispersion relations within the Effective Field Theory of Inflation.« less

  2. Redshift and lateshift from homogeneous and isotropic modified dispersion relations

    NASA Astrophysics Data System (ADS)

    Pfeifer, Christian

    2018-05-01

    Observables which would indicate a modified vacuum dispersion relations, possibly caused by quantum gravity effects, are a four momentum dependence of the cosmological redshift and the existence of a so called lateshift effect for massless or very light particles. Existence or non-existence of the latter is currently analyzed on the basis of the available observational data from gamma-ray bursts and compared to predictions of specific modified dispersion relation models. We consider the most general perturbation of the general relativistic dispersion relation of freely falling particles on homogeneous and isotropic spacetimes and derive the red- and lateshift to first order in the perturbation. Our result generalizes the existing formulae in the literature and we find that there exist modified dispersion relations causing both, one or none of the two effects to first order.

  3. Correction of Cardy–Verlinde formula for Fermions and Bosons with modified dispersion relation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sadatian, S. Davood, E-mail: sd-sadatian@um.ac.ir; Dareyni, H.

    Cardy–Verlinde formula links the entropy of conformal symmetry field to the total energy and its Casimir energy in a D-dimensional space. To correct black hole thermodynamics, modified dispersion relation can be used which is proposed as a general feature of quantum gravity approaches. In this paper, the thermodynamics of Schwarzschild four-dimensional black hole is corrected using the modified dispersion relation for Fermions and Bosons. Finally, using modified thermodynamics of Schwarzschild four-dimensional black hole, generalization for Cardy–Verlinde formula is obtained. - Highlights: • The modified Cardy–Verlinde formula obtained using MDR for Fermions and Bosons. • The modified entropy of the blackmore » hole used to correct the Cardy–Verlinde formula. • The modified entropy of the CFT has been obtained.« less

  4. Dispersion relations for circular single and double dusty plasma chains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tkachenko, D. V.; Misko, V. R.; Sheridan, T. E.

    2011-10-15

    We derive dispersion relations for a system of identical particles confined in a two-dimensional annular harmonic well and which interact through a Yukawa potential, e.g., a dusty plasma ring. When the particles are in a single chain (i.e., a one-dimensional ring), we find a longitudinal acoustic mode and a transverse optical mode which show approximate agreement with the dispersion relation for a straight configuration for large radii of the ring. When the radius decreases, the dispersion relations modify: there appears an anticrossing of the modes near the crossing point resulting in a frequency gap between the lower and upper branchesmore » of the modified dispersion relations. For the double chain (i.e., a two-dimensional zigzag configuration), the dispersion relation has four branches: longitudinal acoustic and optical and transverse acoustic and optical.« less

  5. Dispersion relations for circular single and double dusty plasma chains

    NASA Astrophysics Data System (ADS)

    Tkachenko, D. V.; Sheridan, T. E.; Misko, V. R.

    2011-10-01

    We derive dispersion relations for a system of identical particles confined in a two-dimensional annular harmonic well and which interact through a Yukawa potential, e.g., a dusty plasma ring. When the particles are in a single chain (i.e., a one-dimensional ring), we find a longitudinal acoustic mode and a transverse optical mode which show approximate agreement with the dispersion relation for a straight configuration for large radii of the ring. When the radius decreases, the dispersion relations modify: there appears an anticrossing of the modes near the crossing point resulting in a frequency gap between the lower and upper branches of the modified dispersion relations. For the double chain (i.e., a two-dimensional zigzag configuration), the dispersion relation has four branches: longitudinal acoustic and optical and transverse acoustic and optical.

  6. Rainbows without unicorns: metric structures in theories with modified dispersion relations

    NASA Astrophysics Data System (ADS)

    Lobo, Iarley P.; Loret, Niccoló; Nettel, Francisco

    2017-07-01

    Rainbow metrics are a widely used approach to the metric formalism for theories with modified dispersion relations. They have had a huge success in the quantum gravity phenomenology literature, since they allow one to introduce momentum-dependent space-time metrics into the description of systems with a modified dispersion relation. In this paper, we introduce the reader to some realizations of this general idea: the original rainbow metrics proposal, the momentum-space-inspired metric and a Finsler geometry approach. As the main result of this work we also present an alternative definition of a four-velocity dependent metric which allows one to handle the massless limit. This paper aims to highlight some of their properties and how to properly describe their relativistic realizations.

  7. Dissolution-modulating mechanism of pH modifiers in solid dispersion containing weakly acidic or basic drugs with poor water solubility.

    PubMed

    Tran, Phuong Ha-Lien; Tran, Thao Truong-Dinh; Lee, Kyoung-Ho; Kim, Dong-Jin; Lee, Beom-Jin

    2010-05-01

    Although the solid dispersion method has been known to increase the dissolution rate of poorly water-soluble drugs by dispersing them in hydrophilic carriers, one obstacle of the solid dispersion method is its limited solubilization capacity, especially for pH-dependent soluble drugs. pH-modified solid dispersion, in which pH modifiers are incorporated, may be a useful method for increasing the dissolution rate of weakly acidic or basic drugs. Sufficient research, including the most recent reports, was undertaken in this review. How could the inclusion of the pH the pH modifiers in the solid dispersion system change drug structural behaviors, molecular interactions, microenvironmental pH, and/or release rate of pH modifiers, relating with the enhanced dissolution of weakly acidic or weakly basic drugs with poor water solubility? These questions have been investigated to determine the dissolution-modulating mechanism of pH modifiers in solid dispersion containing weakly acidic or basic drugs. It is believed that step-by-step mechanistic approaches could provide the ultimate solution for solubilizing several poorly water-soluble drugs with pH-dependent solubility from a solid dispersion system, as well as provide ideas for developing future dosage systems.

  8. Black hole radiation with modified dispersion relation in tunneling paradigm: Static frame

    NASA Astrophysics Data System (ADS)

    Tao, Jun; Wang, Peng; Yang, Haitang

    2017-09-01

    To study possible deviations from the Hawking's prediction, we assume that the dispersion relations of matter fields are modified at high energies and use the Hamilton-Jacobi method to investigate the corresponding effects on the Hawking radiation in this paper. The preferred frame is the static frame of the black hole. The dispersion relation adopted agrees with the relativistic one at low energies but is modified near the Planck mass mp. We calculate the corrections to the Hawking temperature for massive and charged particles to O (mp-2) and massless and neutral particles to all orders. Our results suggest that the thermal spectrum of radiations near horizon is robust, e.g. corrections to the Hawking temperature are suppressed by mp. After the spectrum of radiations near the horizon is obtained, we use the brick wall model to compute the thermal entropy of a massless scalar field near the horizon of a 4D spherically symmetric black hole. We find that the subleading logarithmic term of the entropy does not depend on how the dispersion relations of matter fields are modified. Finally, the luminosities of black holes are computed by using the geometric optics approximation.

  9. Dispersion-engineered and highly nonlinear microstructured polymer optical fibres

    NASA Astrophysics Data System (ADS)

    Frosz, Michael H.; Nielsen, Kristian; Hlubina, Petr; Stefani, Alessio; Bang, Ole

    2009-05-01

    We demonstrate dispersion-engineering of microstructured polymer optical fibres (mPOFs) made of poly(methyl methacrylate) (PMMA). A significant shift of the total dispersion from the material dispersion is confirmed through measurement of the mPOF dispersion using white-light spectral interferometry. The influence of strong loss peaks on the dispersion (through the Kramers-Kronig relations) is investigated theoretically. It is found that the strong loss peaks of PMMA above 1100 nm can significantly modify the dispersion, while the losses below 1100 nm only modify the dispersion slightly. To increase the nonlinearity of the mPOFs we investigated doping of PMMA with the highly-nonlinear dye Disperse Red 1. Both doping of a PMMA cane and direct doping of a PMMA mPOF was performed.

  10. Modified dispersion relations, inflation, and scale invariance

    NASA Astrophysics Data System (ADS)

    Bianco, Stefano; Friedhoff, Victor Nicolai; Wilson-Ewing, Edward

    2018-02-01

    For a certain type of modified dispersion relations, the vacuum quantum state for very short wavelength cosmological perturbations is scale-invariant and it has been suggested that this may be the source of the scale-invariance observed in the temperature anisotropies in the cosmic microwave background. We point out that for this scenario to be possible, it is necessary to redshift these short wavelength modes to cosmological scales in such a way that the scale-invariance is not lost. This requires nontrivial background dynamics before the onset of standard radiation-dominated cosmology; we demonstrate that one possible solution is inflation with a sufficiently large Hubble rate, for this slow roll is not necessary. In addition, we also show that if the slow-roll condition is added to inflation with a large Hubble rate, then for any power law modified dispersion relation quantum vacuum fluctuations become nearly scale-invariant when they exit the Hubble radius.

  11. Stable and unstable roots of ion temperature gradient driven mode using curvature modified plasma dispersion functions

    NASA Astrophysics Data System (ADS)

    Gültekin, Ö.; Gürcan, Ö. D.

    2018-02-01

    Basic, local kinetic theory of ion temperature gradient driven (ITG) mode, with adiabatic electrons is reconsidered. Standard unstable, purely oscillating as well as damped solutions of the local dispersion relation are obtained using a bracketing technique that uses the argument principle. This method requires computing the plasma dielectric function and its derivatives, which are implemented here using modified plasma dispersion functions with curvature and their derivatives, and allows bracketing/following the zeros of the plasma dielectric function which corresponds to different roots of the ITG dispersion relation. We provide an open source implementation of the derivatives of modified plasma dispersion functions with curvature, which are used in this formulation. Studying the local ITG dispersion, we find that near the threshold of instability the unstable branch is rather asymmetric with oscillating solutions towards lower wave numbers (i.e. drift waves), and damped solutions toward higher wave numbers. This suggests a process akin to inverse cascade by coupling to the oscillating branch towards lower wave numbers may play a role in the nonlinear evolution of the ITG, near the instability threshold. Also, using the algorithm, the linear wave diffusion is estimated for the marginally stable ITG mode.

  12. The effect of finite Larmor radius corrections on Jeans instability of quantum plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, Prerana; Chhajlani, R. K.

    2013-09-15

    The influence of finite Larmor radius (FLR) effects on the Jeans instability of infinitely conducting homogeneous quantum plasma is investigated. The quantum magnetohydrodynamic (QMHD) model is used to formulate the problem. The contribution of FLR is incorporated to the QMHD set of equations in the present analysis. The general dispersion relation is obtained analytically using the normal mode analysis technique which is modified due to the contribution of FLR corrections. From general dispersion relation, the condition of instability is obtained and it is found that Jeans condition is modified due to quantum effect. The general dispersion relation is reduced formore » both transverse and longitudinal mode of propagations. The condition of gravitational instability is modified due to the presence of both FLR and quantum corrections in the transverse mode of propagation. In longitudinal case, it is found to be unaffected by the FLR effects but modified due to the quantum corrections. The growth rate of Jeans instability is discussed numerically for various values of quantum and FLR corrections of the medium. It is found that the quantum parameter and FLR effects have stabilizing influence on the growth rate of instability of the system.« less

  13. Nonlinear beat excitation of low frequency wave in degenerate plasmas

    NASA Astrophysics Data System (ADS)

    Mir, Zahid; Shahid, M.; Jamil, M.; Rasheed, A.; Shahbaz, A.

    2018-03-01

    The beat phenomenon due to the coupling of two signals at slightly different frequencies that generates the low frequency signal is studied. The linear dispersive properties of the pump and sideband are analyzed. The modified nonlinear dispersion relation through the field coupling of linear modes against the beat frequency is derived in the homogeneous quantum dusty magnetoplasmas. The dispersion relation is used to derive the modified growth rate of three wave parametric instability. Moreover, significant quantum effects of electrons through the exchange-correlation potential, the Bohm potential, and the Fermi pressure evolved in macroscopic three wave interaction are presented. The analytical results are interpreted graphically describing the significance of the work. The applications of this study are pointed out at the end of introduction.

  14. Stabilized soliton self-frequency shift and 0.1- PHz sideband generation in a photonic-crystal fiber with an air-hole-modified core.

    PubMed

    Liu, Bo-Wen; Hu, Ming-Lie; Fang, Xiao-Hui; Li, Yan-Feng; Chai, Lu; Wang, Ching-Yue; Tong, Weijun; Luo, Jie; Voronin, Aleksandr A; Zheltikov, Aleksei M

    2008-09-15

    Fiber dispersion and nonlinearity management strategy based on a modification of a photonic-crystal fiber (PCF) core with an air hole is shown to facilitate optimization of PCF components for a stable soliton frequency shift and subpetahertz sideband generation through four-wave mixing. Spectral recoil of an optical soliton by a red-shifted dispersive wave, generated through a soliton instability induced by high-order fiber dispersion, is shown to stabilize the soliton self-frequency shift in a highly nonlinear PCF with an air-hole-modified core relative to pump power variations. A fiber with a 2.3-microm-diameter core modified with a 0.9-microm-diameter air hole is used to demonstrate a robust soliton self-frequency shift of unamplified 50-fs Ti: sapphire laser pulses to a central wavelength of about 960 nm, which remains insensitive to variations in the pump pulse energy within the range from 60 to at least 100 pJ. In this regime of frequency shifting, intense high- and low-frequency branches of dispersive wave radiation are simultaneously observed in the spectrum of PCF output. An air-hole-modified-core PCF with appropriate dispersion and nonlinearity parameters is shown to provide efficient four-wave mixing, giving rise to Stokes and anti-Stokes sidebands whose frequency shift relative to the pump wavelength falls within the subpetahertz range, thus offering an attractive source for nonlinear Raman microspectroscopy.

  15. Effects of Hall current and electrical resistivity on the stability of gravitating anisotropic quantum plasma

    NASA Astrophysics Data System (ADS)

    Bhakta, S.; Prajapati, R. P.

    2018-02-01

    The effects of Hall current and finite electrical resistivity are studied on the stability of uniformly rotating and self-gravitating anisotropic quantum plasma. The generalized Ohm's law modified by Hall current and electrical resistivity is used along with the quantum magnetohydrodynamic fluid equations. The general dispersion relation is derived using normal mode analysis and discussed in the parallel and perpendicular propagations. In the parallel propagation, the Jeans instability criterion, expression of critical Jeans wavenumber, and Jeans length are found to be independent of non-ideal effects and uniform rotation but in perpendicular propagation only rotation affects the Jeans instability criterion. The unstable gravitating mode modified by Bohm potential and the stable Alfven mode modified by non-ideal effects are obtained separately. The criterion of firehose instability remains unaffected due to the presence of non-ideal effects. In the perpendicular propagation, finite electrical resistivity and quantum pressure anisotropy modify the dispersion relation, whereas no effect of Hall current was observed in the dispersion characteristics. The Hall current, finite electrical resistivity, rotation, and quantum corrections stabilize the growth rate. The stability of the dynamical system is analyzed using the Routh-Hurwitz criterion.

  16. Studying the Impact of Modified Saccharides on the Molecular Dynamics and Crystallization Tendencies of Model API Nifedipine.

    PubMed

    Kaminska, E; Tarnacka, M; Wlodarczyk, P; Jurkiewicz, K; Kolodziejczyk, K; Dulski, M; Haznar-Garbacz, D; Hawelek, L; Kaminski, K; Wlodarczyk, A; Paluch, M

    2015-08-03

    Molecular dynamics of pure nifedipine and its solid dispersions with modified carbohydrates as well as the crystallization kinetics of active pharmaceutical ingredient (API) above and below the glass transition temperature were studied in detail by means of broadband dielectric spectroscopy (BDS), differential scanning calorimetry (DSC), and X-ray diffraction method. It was found that the activation barrier of crystallization increases in molecular dispersions composed of acetylated disaccharides, whereas it slightly decreases in those consisting of modified monocarbohydrates for the experiments carried out above the glass transition temperature. As shown by molecular dynamics simulations it can be related to the strength, character, and structure of intermolecular interactions between API and saccharides, which vary dependently on the excipient. Long-term physical stability studies showed that, in solid dispersions consisting of acetylated maltose and acetylated sucrose, the crystallization of nifedipine is dramatically slowed down, although it is still observable for a low concentration of excipients. With increasing content of modified carbohydrates, the crystallization of API becomes completely suppressed. This is most likely due to additional barriers relating to the intermolecular interactions and diffusion of nifedipine that must be overcome to trigger the crystallization process.

  17. A modified Brownian force for ultrafine particle penetration through building crack modeling

    NASA Astrophysics Data System (ADS)

    Chen, Chen; Zhao, Bin

    2017-12-01

    Combustion processes related to industry, traffic, agriculture, and waste treatment and disposal increase the amount of outdoor ultrafine particles (UFPs), which have adverse effects on human health. Given that people spend the majority of their time indoors, it is critical to understand the penetration of outdoor UFPs through building cracks in order to estimate human exposure to outdoor-originated UFPs. Lagrangian tracking is an efficient approach for modeling particle penetration. However, the Brownian motion for Lagrangian tracking in ANSYS Fluent®, a widely used software for particle dispersion modeling, is not able to model UFP dispersion accurately. In this study, we modified the Brownian force by rewriting the Brownian diffusion coefficient and particle integration time step with a user-defined function in ANSYS Fluent® to model particle penetration through building cracks. The results obtained using the modified model agree much better with the experimental results, with the averaged relative error less than 14% for the smooth crack cases and 21% for the rough crack case. We expect the modified Brownian force model proposed herein to be applied for UFP dispersion modeling in more indoor air quality studies.

  18. Modified Dispersion Relations: from Black-Hole Entropy to the Cosmological Constant

    NASA Astrophysics Data System (ADS)

    Garattini, Remo

    2012-07-01

    Quantum Field Theory is plagued by divergences in the attempt to calculate physical quantities. Standard techniques of regularization and renormalization are used to keep under control such a problem. In this paper we would like to use a different scheme based on Modified Dispersion Relations (MDR) to remove infinities appearing in one loop approximation in contrast to what happens in conventional approaches. In particular, we apply the MDR regularization to the computation of the entropy of a Schwarzschild black hole from one side and the Zero Point Energy (ZPE) of the graviton from the other side. The graviton ZPE is connected to the cosmological constant by means of of the Wheeler-DeWitt equation.

  19. Modified transverse phonon-helicon interaction in colloids laden semiconductor plasmas due to Bohm potential and Fermi degenerate pressure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, Aartee, E-mail: aartee.sharma08@gmail.com; Yadav, N.; Ghosh, S.

    2015-07-31

    A detailed study of the quantum modification of acousto-helicon wave spectra due to Bohm potential and Fermi degenerate pressure in colloids laden semiconductor plasma has been presented. We have used quantum hydrodynamic model of plasmas to arrive at most general dispersion relation in presence of magnetic field. This dispersion relation has been analyzed in three different velocity regimes and the expressions for gain constants have been obtained. From the present study it has been concluded that the quantum effect and the magnetic field significantly modify the wave characteristics particularly in high doping regime in semiconductor plasma medium in presence ofmore » colloids in it.« less

  20. Process for preparing organoclays for aqueous and polar-organic systems

    DOEpatents

    Chaiko, David J.

    2001-01-01

    A process for preparing organoclays as thixotropic agents to control the rheology of water-based paints and other aqueous and polar-organic systems. The process relates to treating low-grade clay ores to achieve highly purified organoclays and/or to incorporate surface modifying agents onto the clay by adsorption and/or to produce highly dispersed organoclays without excessive grinding or high shear dispersion. The process involves the treatment of impure, or run-of-mine, clay using an aqueous biphasic extraction system to produce a highly dispersed clay, free of mineral impurities and with modified surface properties brought about by adsorption of the water-soluble polymers used in generating the aqueous biphasic extraction system. This invention purifies the clay to greater than 95%.

  1. The serpentine optical waveguide: engineering the dispersion relations and the stopped light points.

    PubMed

    Scheuer, Jacob; Weiss, Ori

    2011-06-06

    We present a study a new type of optical slow-light structure comprising a serpentine shaped waveguide were the loops are coupled. The dispersion relation, group velocity and GVD are studied analytically using a transfer matrix method and numerically using finite difference time domain simulations. The structure exhibits zero group velocity points at the ends of the Brillouin zone, but also within the zone. The position of mid-zone zero group velocity point can be tuned by modifying the coupling coefficient between adjacent loops. Closed-form analytic expressions for the dispersion relations, group velocity and the mid-zone zero v(g) points are found and presented.

  2. [Literature review of the dispersal of transgenes from genetically modified maize].

    PubMed

    Ricroch, Agnès; Bergé, Jean Baptiste; Messéan, Antoine

    2009-10-01

    This article aims at reviewing the theoretical and experimental data published in 562 publications referring to genetically modified (GM) maize dispersal. Our choice was limited to this since in the European Union (EU), GM maize is the only GM crop currently grown commercially. The pollen dispersal of transgenic maize is due to two factors: (i) pollen-mediated gene flow; (ii) seed admixture during harvest and post-harvest processes. The pollen dispersal decreases rapidly with the distance from GM plots. Climatic and topographic factors and factors of relative density between GM and non-GM maize plots impact on the pollen dispersal. The combination of both isolation distance and flowering date between source plots and sink plots limits the adventitious presence of transgenes in non-GM plots. All publications we reviewed demonstrate that the EU 0.9% threshold is technically manageable if the measures of isolation distances as well as harvesting and post harvesting processes and fully synchronous flowering are implemented.

  3. Dispersion of bamboo type multi-wall carbon nanotubes in calf-thymus double stranded DNA.

    PubMed

    Primo, Emiliano N; Cañete-Rosales, Paulina; Bollo, Soledad; Rubianes, María D; Rivas, Gustavo A

    2013-08-01

    We report for the first time the use of double stranded calf-thymus DNA (dsDNA) to successfully disperse bamboo-like multi-walled carbon nanotubes (bCNT). The dispersion and the modified electrodes were studied by different spectroscopic, microscopic and electrochemical techniques. The drastic treatment for dispersing the bCNT (45min sonication in a 50% (v/v) ethanol:water solution), produces a partial denaturation and a decrease in the length of dsDNA that facilitates the dispersion of CNT and makes possible an efficient electron transfer of guanine residues to the electrode. A critical analysis of the influence of different experimental conditions on the efficiency of the dispersion and on the performance of glassy carbon electrodes (GCE) modified with bCNT-dsDNA dispersion is also reported. The electron transfer of redox probes and guanine residues was more efficient at GCE modified with bCNT dispersed in dsDNA than at GCE modified with hollow CNT (hCNT) dispersed in dsDNA, demonstrating the importance of the presence of bCNT. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Jeans instability of rotating magnetized quantum plasma: Influence of radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joshi, H., E-mail: hjoshi8525@yahoo.com; Pensia, R. K.

    2015-07-31

    The effect of radiative heat-loss function and rotation on the Jeans instability of quantum plasma is investigated. The basic set of equations for this problem is constructed by considering quantum magnetohydrodynamic (QMHD) model. Using normal mode analysis, the general dispersion relation is obtained. This dispersion relation is studied in both, longitudinal and transverse direction of propagations. In both case of longitudinal and transverse direction of propagation, the Jeans instability criterion is modified due to presence of radiative heat-loss function and quantum correction.

  5. Composite materials with improved phyllosilicate dispersion

    DOEpatents

    Chaiko, David J.

    2004-09-14

    The present invention provides phyllosilicates edge modified with anionic surfactants, composite materials made from the edge modified phyllosilicates, and methods for making the same. In various embodiments the phyllosilicates are also surface-modified with hydrophilic lipophilic balance (HLB) modifying agents, polymeric hydrotropes, and antioxidants. The invention also provides blends of edge modified phyllosilicates and semicrystalline waxes. The composite materials are made by dispersing the edge modified phyllosilicates with polymers, particularly polyolefins and elastomers.

  6. Migration of dispersive GPR data

    USGS Publications Warehouse

    Powers, M.H.; Oden, C.P.; ,

    2004-01-01

    Electrical conductivity and dielectric and magnetic relaxation phenomena cause electromagnetic propagation to be dispersive in earth materials. Both velocity and attenuation may vary with frequency, depending on the frequency content of the propagating energy and the nature of the relaxation phenomena. A minor amount of velocity dispersion is associated with high attenuation. For this reason, measuring effects of velocity dispersion in ground penetrating radar (GPR) data is difficult. With a dispersive forward model, GPR responses to propagation through materials with known frequency-dependent properties have been created. These responses are used as test data for migration algorithms that have been modified to handle specific aspects of dispersive media. When either Stolt or Gazdag migration methods are modified to correct for just velocity dispersion, the results are little changed from standard migration. For nondispersive propagating wavefield data, like deep seismic, ensuring correct phase summation in a migration algorithm is more important than correctly handling amplitude. However, the results of migrating model responses to dispersive media with modified algorithms indicate that, in this case, correcting for frequency-dependent amplitude loss has a much greater effect on the result than correcting for proper phase summation. A modified migration is only effective when it includes attenuation recovery, performing deconvolution and migration simultaneously.

  7. Environmental and spatial drivers of taxonomic, functional, and phylogenetic characteristics of bat communities in human-modified landscapes.

    PubMed

    Cisneros, Laura M; Fagan, Matthew E; Willig, Michael R

    2016-01-01

    Assembly of species into communities following human disturbance (e.g., deforestation, fragmentation) may be governed by spatial (e.g., dispersal) or environmental (e.g., niche partitioning) mechanisms. Variation partitioning has been used to broadly disentangle spatial and environmental mechanisms, and approaches utilizing functional and phylogenetic characteristics of communities have been implemented to determine the relative importance of particular environmental (or niche-based) mechanisms. Nonetheless, few studies have integrated these quantitative approaches to comprehensively assess the relative importance of particular structuring processes. We employed a novel variation partitioning approach to evaluate the relative importance of particular spatial and environmental drivers of taxonomic, functional, and phylogenetic aspects of bat communities in a human-modified landscape in Costa Rica. Specifically, we estimated the amount of variation in species composition (taxonomic structure) and in two aspects of functional and phylogenetic structure (i.e., composition and dispersion) along a forest loss and fragmentation gradient that are uniquely explained by landscape characteristics (i.e., environment) or space to assess the importance of competing mechanisms. The unique effects of space on taxonomic, functional and phylogenetic structure were consistently small. In contrast, landscape characteristics (i.e., environment) played an appreciable role in structuring bat communities. Spatially-structured landscape characteristics explained 84% of the variation in functional or phylogenetic dispersion, and the unique effects of landscape characteristics significantly explained 14% of the variation in species composition. Furthermore, variation in bat community structure was primarily due to differences in dispersion of species within functional or phylogenetic space along the gradient, rather than due to differences in functional or phylogenetic composition. Variation among bat communities was related to environmental mechanisms, especially niche-based (i.e., environmental) processes, rather than spatial mechanisms. High variation in functional or phylogenetic dispersion, as opposed to functional or phylogenetic composition, suggests that loss or gain of niche space is driving the progressive loss or gain of species with particular traits from communities along the human-modified gradient. Thus, environmental characteristics associated with landscape structure influence functional or phylogenetic aspects of bat communities by effectively altering the ways in which species partition niche space.

  8. Environmental and spatial drivers of taxonomic, functional, and phylogenetic characteristics of bat communities in human-modified landscapes

    PubMed Central

    Fagan, Matthew E.; Willig, Michael R.

    2016-01-01

    Background Assembly of species into communities following human disturbance (e.g., deforestation, fragmentation) may be governed by spatial (e.g., dispersal) or environmental (e.g., niche partitioning) mechanisms. Variation partitioning has been used to broadly disentangle spatial and environmental mechanisms, and approaches utilizing functional and phylogenetic characteristics of communities have been implemented to determine the relative importance of particular environmental (or niche-based) mechanisms. Nonetheless, few studies have integrated these quantitative approaches to comprehensively assess the relative importance of particular structuring processes. Methods We employed a novel variation partitioning approach to evaluate the relative importance of particular spatial and environmental drivers of taxonomic, functional, and phylogenetic aspects of bat communities in a human-modified landscape in Costa Rica. Specifically, we estimated the amount of variation in species composition (taxonomic structure) and in two aspects of functional and phylogenetic structure (i.e., composition and dispersion) along a forest loss and fragmentation gradient that are uniquely explained by landscape characteristics (i.e., environment) or space to assess the importance of competing mechanisms. Results The unique effects of space on taxonomic, functional and phylogenetic structure were consistently small. In contrast, landscape characteristics (i.e., environment) played an appreciable role in structuring bat communities. Spatially-structured landscape characteristics explained 84% of the variation in functional or phylogenetic dispersion, and the unique effects of landscape characteristics significantly explained 14% of the variation in species composition. Furthermore, variation in bat community structure was primarily due to differences in dispersion of species within functional or phylogenetic space along the gradient, rather than due to differences in functional or phylogenetic composition. Discussion Variation among bat communities was related to environmental mechanisms, especially niche-based (i.e., environmental) processes, rather than spatial mechanisms. High variation in functional or phylogenetic dispersion, as opposed to functional or phylogenetic composition, suggests that loss or gain of niche space is driving the progressive loss or gain of species with particular traits from communities along the human-modified gradient. Thus, environmental characteristics associated with landscape structure influence functional or phylogenetic aspects of bat communities by effectively altering the ways in which species partition niche space. PMID:27761338

  9. Testing modified gravity with globular clusters: the case of NGC 2419

    NASA Astrophysics Data System (ADS)

    Llinares, Claudio

    2018-05-01

    The dynamics of globular clusters has been studied in great detail in the context of general relativity as well as with modifications of gravity that strongly depart from the standard paradigm such as Modified Newtonian Dynamics. However, at present there are no studies that aim to test the impact that less extreme modifications of gravity (e.g. models constructed as alternatives to dark energy) have on the behaviour of globular clusters. This Letter presents fits to the velocity dispersion profile of the cluster NGC 2419 under the symmetron-modified gravity model. The data show an increase in the velocity dispersion towards the centre of the cluster which could be difficult to explain within general relativity. By finding the best-fitting solution associated with the symmetron model, we show that this tension does not exist in modified gravity. However, the best-fitting parameters give a model that is inconsistent with the dynamics of the Solar system. Exploration of different screening mechanisms should give us the chance to understand if it is possible to maintain the appealing properties of the symmetron model when it comes to globular clusters and at the same time recover the Solar system dynamics properly.

  10. Dispersing surface-modified imogolite nanotubes in polar and non-polar solvents

    NASA Astrophysics Data System (ADS)

    Li, Ming; Brant, Jonathan A.

    2018-02-01

    Furthering the development of nanocomposite structures, namely membranes for water treatment applications, requires that methods be developed to ensure nanoparticle dispersion in polar and non-polar solvents, as both are widely used in associated synthesis techniques. Here, we report on a two-step method to graft polyvinylpyrrolidone (PVP), and a one-step method for octadecylphosphonic acid (OPA), onto the outer surfaces of imogolite nanotubes. The goal of these approaches was to improve and maintain nanotube dispersion in polymer compatible polar and non-polar solvents. The PVP coating modified the imogolite surface charge from positive to weakly negative at pH ≤ 9; the OPA made it weakly positive at acidic pH values to negative at pH ≥ 7. The PVP surface coating stabilized the nanotubes through steric hindrance in polar protic, dipolar aprotic, and chloroform. In difference to the PVP, the OPA surface coating allowed the nanotubes to be dispersed in n-hexane and chloroform, but not in the polar solvents. The lack of miscibility in the polar solvents, as well as the better dispersion in n-hexane, was attributed to the stronger hydrophobicity of the OPA polymer relative to the PVP. [Figure not available: see fulltext.

  11. Clear and Measurable Signature of Modified Gravity in the Galaxy Velocity Field

    NASA Astrophysics Data System (ADS)

    Hellwing, Wojciech A.; Barreira, Alexandre; Frenk, Carlos S.; Li, Baojiu; Cole, Shaun

    2014-06-01

    The velocity field of dark matter and galaxies reflects the continued action of gravity throughout cosmic history. We show that the low-order moments of the pairwise velocity distribution v12 are a powerful diagnostic of the laws of gravity on cosmological scales. In particular, the projected line-of-sight galaxy pairwise velocity dispersion σ12(r) is very sensitive to the presence of modified gravity. Using a set of high-resolution N-body simulations, we compute the pairwise velocity distribution and its projected line-of-sight dispersion for a class of modified gravity theories: the chameleon f(R) gravity and Galileon gravity (cubic and quartic). The velocities of dark matter halos with a wide range of masses would exhibit deviations from general relativity at the (5-10)σ level. We examine strategies for detecting these deviations in galaxy redshift and peculiar velocity surveys. If detected, this signature would be a "smoking gun" for modified gravity.

  12. Low-VOC wood floor varnishes from waterborne oil-modified urethanes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ingle, D.M.; Petschke, G.H.

    Varnishes protect wood flooring and enhance its beauty. Varnish compositions have varied from drying oils and alkyds to more durable systems (moisture-cured urethanes, oil-modified urethanes, epoxies and UV-curable coatings). Some chemistries are better suited for professional or factory applied situations. Oils, alkyds and oil-modified urethanes (OMU) are suitable for onsite professional application or even refinish application by homeowners (DIY market). These materials traditionally have been high in VOC. Recently, waterborne (WB) systems (such as polyurethane dispersions) with greatly reduced VOC have been used; high costs and relatively poor durability are drawbacks. A new generation of high performance waterborne oil-modified urethanemore » is now available with extended shelf-stability required for contractor and consumer markets. Formulated varnishes are coming onto the market that offer performance similar to conventional OMU, but with significant reductions in VOC. For example, a typical formulation for a conventional solvent-borne oil-modified urethane can be supplied at 1.6 lb/gal (less water). This represents a VOC reduction of 70-75% at equal application coating weight. Furthermore, waterborne oil-modified urethane offers advantages over polyurethane dispersions in performance areas such as durability and mar resistance.« less

  13. Surface nucleation and independent growth of Ce(OH)4 within confinement space on modified carbon black surface to prepare nano-CeO2 without agglomeration

    NASA Astrophysics Data System (ADS)

    Zhang, Xinyue; Xia, Chunhui; Li, Kaitao; Lin, Yanjun

    2018-06-01

    Highly dispersed negative carboxyl groups can be formed on carbon black (CB) surface modified with strong nitric acid. Therefore positive cations can be uniformly absorbed by carboxyl groups and precipitated within a confinement space on modified CB surface to prepare highly dispersed nanomaterials. In this paper, the formation and dispersion status of surface negative carboxyl groups, adsorption status of Ce3+, surface confinement nucleation, crystallization and calcination process were studied by EDS, SEM, and laser particle size analysis. The results show that the carboxyl groups formed on modified CB surface are highly dispersed, and Ce3+ cations can be uniformly anchored by carboxyl groups. Therefore, highly dispersed Ce3+ can react with OH- within a confinement surface region to form positive nano-Ce(OH)4 nuclei which also can be adsorbed by electrostatic attraction. After independent growth of Ce(OH)4 without agglomeration, highly dispersed CeO2 nanoparticles without agglomeration can be prepared together with the help of effectively isolates by CO2 released in the combustion of CB.

  14. Surface nucleation and independent growth of Ce(OH)4 within confinement space on modified carbon black surface to prepare nano-CeO2 without agglomeration

    NASA Astrophysics Data System (ADS)

    Zhang, Xinyue; Xia, Chunhui; Li, Kaitao; Lin, Yanjun

    2018-04-01

    Highly dispersed negative carboxyl groups can be formed on carbon black (CB) surface modified with strong nitric acid. Therefore positive cations can be uniformly absorbed by carboxyl groups and precipitated within a confinement space on modified CB surface to prepare highly dispersed nanomaterials. In this paper, the formation and dispersion status of surface negative carboxyl groups, adsorption status of Ce3+, surface confinement nucleation, crystallization and calcination process were studied by EDS, SEM, and laser particle size analysis. The results show that the carboxyl groups formed on modified CB surface are highly dispersed, and Ce3+ cations can be uniformly anchored by carboxyl groups. Therefore, highly dispersed Ce3+ can react with OH- within a confinement surface region to form positive nano-Ce(OH)4 nuclei which also can be adsorbed by electrostatic attraction. After independent growth of Ce(OH)4 without agglomeration, highly dispersed CeO2 nanoparticles without agglomeration can be prepared together with the help of effectively isolates by CO2 released in the combustion of CB.

  15. Dope dyeing of lyocell fiber with NMMO-based carbon black dispersion.

    PubMed

    Zhang, Liping; Sun, Weize; Xu, Dan; Li, Min; Agbo, Christiana; Fu, Shaohai

    2017-10-15

    NMMO-based carbon black (CB) dispersion was prepared and its properties as well as its compatibility with lyocell spinning solution were further investigated. Modified lignosulfonate (SP) was verified to be the preeminent dispersant for the preparation of NMMO-based CB dispersion with mass ratio of SP to CB 20% and water to NMMO 13%. The compatibility of NMMO-based CB dispersion with lyocell spinning solution had close relation with dispersant structure and CB content. Mass ratio of CB to cellulose affects the mechanical properties, color strength and crystallinity of lyocell fiber. 0.5% CB increased the breaking strength and elongation of lyocell fiber, whiles breaking strength and elongation of the lyocell fiber were reduced slightly when 2.0% CB was used. The dope dyed fiber showed excellent rubbing and washing fastness as well as migration resistance to water, ethanol and acetone. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. CONTRIBUTIONS OF CHEMICAL EXCHANGE TO T1ρ DISPERSION IN A TISSUE MODEL

    PubMed Central

    Cobb, Jared G.; Xie, Jingping; Gore, John C.

    2015-01-01

    Variations in T1ρ with locking-field strength (T1ρ dispersion) may be used to estimate proton exchange rates. We developed a novel approach utilizing the second derivative of the dispersion curve to measure exchange in a model system of cross-linked polyacrylamide gels. These gels were varied in relative composition of co-monomers, increasing stiffness, and in pH, modifying exchange rates. MR images were recorded with a spin-locking sequence as described by Sepponen et al. These measurements were fit to a mono-exponential decay function yielding values for T1ρ at each locking-field measured. These values were then fit to a model by Chopra et al. for estimating exchange rates. For low stiffness gels, the calculated exchange values increased by a factor of 4 as pH increased, consistent with chemical exchange being the dominant contributor to T1ρ dispersion. Interestingly, calculated chemical exchange rates also increased with stiffness, likely due to modified side-chain exchange kinetics as the composition varied. This paper demonstrates a new method to assess the structural and chemical effects on T1ρ relaxation dispersion with a suitable model. These phenomena may be exploited in an imaging context to emphasize the presence of nuclei of specific exchange rates, rather than chemical shifts. PMID:21590720

  17. Interference between wave modes may contribute to the apparent negative dispersion observed in cancellous bone

    PubMed Central

    Anderson, Christian C.; Marutyan, Karen R.; Holland, Mark R.; Wear, Keith A.; Miller, James G.

    2008-01-01

    Previous work has shown that ultrasonic waves propagating through cancellous bone often exhibit a linear-with-frequency attenuation coefficient, but a decrease in phase velocity with frequency (negative dispersion) that is inconsistent with the causality-imposed Kramers–Kronig relations. In the current study, interfering wave modes similar to those observed in bone are shown to potentially contribute to the observed negative dispersion. Biot theory, the modified Biot–Attenborogh model, and experimental results are used to aid in simulating multiple-mode wave propagation through cancellous bone. Simulations entail constructing individual wave modes exhibiting a positive dispersion using plausible velocities and amplitudes, and then summing the individual modes to create mixed-mode output wave forms. Results of the simulations indicate that mixed-mode wave forms can exhibit negative dispersion when analyzed conventionally under the assumption that only one wave is present, even when the individual interfering waves exhibit positive dispersions in accordance with the Kramers–Kronig relations. Furthermore, negative dispersion is observed when little or no visual evidence of interference exists in the time-domain data. Understanding the mechanisms responsible for the observed negative dispersion could aid in determining the true material properties of cancellous bone, as opposed to the apparent properties measured using conventional data analysis techniques. PMID:19045668

  18. Water repellent properties of dispersed metals containing low-dimensional forms of ammonium compounds on the surface

    NASA Astrophysics Data System (ADS)

    Syrkov, A. G.; Kabirov, V. R.; Silivanov, M. O.

    2017-07-01

    For the first time the change of the water repellent properties of dispersed copper, modified using quaternary ammonium compounds on 24 h time scale in saturated water vapours was studied. Exponential time dependences of the water repellent properties of dispersed copper with adsopted QAC were derived and characterized. It was established that the samples modified in mixed and consistent modes by both modifiers reach the saturation state faster than others, due to the small number of hydrophilic centers on the surface of metals. The last conclusion was confirmed by the distribution spectra of centers of adsorption, which were obtained by the adsorption of acid-base indicators for more dispersed samples based on aluminum powder.

  19. Dispersive micro-solid-phase extraction of benzoylurea insecticides in honey samples with a β-cyclodextrin-modified attapulgite composite as sorbent.

    PubMed

    Zhang, Panjie; Cui, Xiangqian; Yang, Xiaoling; Zhang, Sanbing; Zhou, Wenfeng; Gao, Haixiang; Lu, Runhua

    2016-01-01

    A β-cyclodextrin-modified attapulgite composite was prepared and used as a dispersive micro-solid-phase extraction sorbent for the determination of benzoylurea insecticides in honey samples. Parameters that may influence the extraction efficiency, such as the type and volume of the eluent, the amount of the sorbent, the extraction time and the ionic strength were investigated and optimized using batch and column procedures. Under optimized conditions, good linearity was obtained for all of the tested compounds, with R(2) values of at least 0.9834. The limits of detection were determined in the range of 0.2-1.0 μg/L. The recoveries of the four benzoylurea insecticides in vitex honey and acacia honey increased from 15.2 to 81.4% and from 14.2 to 82.0%, respectively. Although the β-cyclodextrin-modified attapulgite composite did not show a brilliant adsorption capacity for the selected benzoylurea insecticides, it exhibited a higher adsorption capacity toward relatively hydrophobic compounds, such as chlorfluazuron and hexaflumuron (recoveries in vitex honey samples ranged from 70.0 to 81.4% with a precision of 1.0-3.7%). It seemed that the logPow of the benzoylurea insecticides is related to their recoveries. The results confirmed the possibility of using cyclodextrin-modified palygorskite in the determination of relatively hydrophobic trace pharmaceutical residues. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Improved Measurement of Dispersion in an Optical Fiber

    NASA Technical Reports Server (NTRS)

    Huang, Shouhua; Le, Thanh; Maleki, Lute

    2004-01-01

    An improved method of measuring chromatic dispersion in an optical fiber or other device affords a lower (relative to prior such methods) limit of measurable dispersion. This method is a modified version of the amplitude-modulation (AM) method, which is one of the prior methods. In comparison with the other prior methods, the AM method is less complex. However, the AM method is limited to dispersion levels . 160 ps/nm and cannot be used to measure the symbol of the dispersion. In contrast, the present modified version of the AM method can be used to measure the symbol of the symbol of the dispersion and affords a measurement range from about 2 ps/nm to several thousand ps/nm with a resolution of 0.27 ps/nm or finer. The figure schematically depicts the measurement apparatus. The source of light for the measurement is a laser, the wavelength of which is monitored by an optical spectrum analyzer. A light-component analyzer amplitude-modulates the light with a scanning radio-frequency signal. The modulated light is passed through a buffer (described below) and through the device under test (e.g., an optical fiber, the dispersion of which one seeks to measure), then back to the light-component analyzer for spectrum analysis. Dispersion in the device under test gives rise to phase shifts among the carrier and the upper and lower sideband components of the modulated signal. These phase shifts affect the modulation-frequency component of the output of a photodetector exposed to the signal that emerges from the device under test. One of the effects is that this component goes to zero periodically as the modulation frequency is varied.

  1. Effect of fine dust particles and finite electron inertia of rotating magnetized plasma

    NASA Astrophysics Data System (ADS)

    Kumar, V.; Sutar, D. L.; Pensia, R. K.; Sharma, S.

    2018-05-01

    A theoretical investigation has been made of the effect of fine dust particles, viscosity and electron inertia on Jeans instability in a self-gravitating magnetized rotating plasma. The MHD model is used to formulate the problem in which a general dispersion relation. A general dispersion relation is obtained from the linearized perturbation equations using the normal mode analysis method. The analytical expressions of the growth rate of Jeans instability are obtained for the longitudinal and transverse mode of propagation. The present result shows that the Jeans criterion of instability is modified due to the presence of viscosity, rotation, and magnetic field.

  2. Gravitational instability in isotropic MHD plasma waves

    NASA Astrophysics Data System (ADS)

    Cherkos, Alemayehu Mengesha

    2018-04-01

    The effect of compressive viscosity, thermal conductivity and radiative heat-loss functions on the gravitational instability of infinitely extended homogeneous MHD plasma has been investigated. By taking in account these parameters we developed the six-order dispersion relation for magnetohydrodynamic (MHD) waves propagating in a homogeneous and isotropic plasma. The general dispersion relation has been developed from set of linearized basic equations and solved analytically to analyse the conditions of instability and instability of self-gravitating plasma embedded in a constant magnetic field. Our result shows that the presence of viscosity and thermal conductivity in a strong magnetic field substantially modifies the fundamental Jeans criterion of gravitational instability.

  3. Mimicking glide symmetry dispersion with coupled slot metasurfaces

    NASA Astrophysics Data System (ADS)

    Camacho, Miguel; Mitchell-Thomas, Rhiannon C.; Hibbins, Alastair P.; Sambles, J. Roy; Quevedo-Teruel, Oscar

    2017-09-01

    In this letter, we demonstrate that the dispersion properties associated with glide symmetry can be achieved in systems that only possess reflection symmetry by balancing the influence of two sublattices. We apply this approach to a pair of coupled slots cut into an infinite perfectly conducting plane. Each slot is notched on either edge, with the complete two-slot system having only mirror symmetry. By modifying the relative size of the notches on either side of the slots, we show that a linear dispersion relation with a degeneracy with non-zero group velocity at the Brillouin zone boundary can be achieved. These properties, until now, only found in systems with glide symmetry are numerically and experimentally validated. We also show that these results can be used for the design of ultra-wideband one-dimensional leaky wave antennas in coplanar waveguide technology.

  4. The Hall-induced stability of gravitating fluids

    NASA Astrophysics Data System (ADS)

    Karmakar, P. K.; Goutam, H. P.

    2018-05-01

    We analyze the stability behavior of low-density partially ionized self-gravitating magnetized unbounded dusty plasma fluid in the presence of the Hall diffusion effects (HDEs) in the non-ideal magnetohydrodynamic (MHD) equilibrium framework. The effects of inhomogeneous self-gravity are methodically included in the basic model tapestry. Application of the Fourier plane-wave perturbative treatment decouples the structuration representative parameters into a linear generalized dispersion relation (sextic) in a judicious mean-fluid approximation. The dispersion analysis shows that the normal mode, termed as the gravito-magneto-acoustic (GMA) mode, is drastically modified due to the HDEs. This mode is highly dispersive, and driven unstable by the Hall current resulting from the symmetry-breaking of electrons and ions relative to the magnetic field. The mode feature, which is derived from a modified induction with the positive Hall, is against the ideal MHD. It is further demonstrated that the HDEs play stabilizing roles by supporting the cloud against gravitational collapse. Provided that the HDEs are concurrently switched off, the collapse occurs on the global spatial scale due to enhanced inward accretion of the gravitating dust constituents. It is seen explicitly that the enhanced dust-charge leads to stabilizing effects. Besides, the Hall-induced fluctuations, as propagatory wave modes, exhibit both normal and anomalous dispersions. The reliability checkup of the entailed results as diverse corollaries and special cases are illustratively discussed in the panoptic light of the earlier paradigmatic predictions available in the literature.

  5. Contributions of chemical exchange to T1ρ dispersion in a tissue model.

    PubMed

    Cobb, Jared G; Xie, Jingping; Gore, John C

    2011-12-01

    Variations in T(1ρ) with locking-field strength (T(1ρ) dispersion) may be used to estimate proton exchange rates. We developed a novel approach utilizing the second derivative of the dispersion curve to measure exchange in a model system of cross-linked polyacrylamide gels. These gels were varied in relative composition of comonomers, increasing stiffness, and in pH, modifying exchange rates. Magnetic resonance images were recorded with a spin-locking sequence as described by Sepponen et al. These measurements were fit to a mono-exponential decay function yielding values for T(1ρ) at each locking-field measured. These values were then fit to a model by Chopra et al. for estimating exchange rates. For low stiffness gels, the calculated exchange values increased by a factor of 4 as pH increased, consistent with chemical exchange being the dominant contributor to T(1ρ) dispersion. Interestingly, calculated chemical exchange rates also increased with stiffness, likely due to modified side-chain exchange kinetics as the composition varied. This article demonstrates a new method to assess the structural and chemical effects on T(1ρ) relaxation dispersion with a suitable model. These phenomena may be exploited in an imaging context to emphasize the presence of nuclei of specific exchange rates, rather than chemical shifts. Copyright © 2011 Wiley Periodicals, Inc.

  6. The link between behavioural type and natal dispersal propensity reveals a dispersal syndrome in a large herbivore

    PubMed Central

    Debeffe, L.; Morellet, N.; Bonnot, N.; Gaillard, J. M.; Cargnelutti, B.; Verheyden-Tixier, H.; Vanpé, C.; Coulon, A.; Clobert, J.; Bon, R.; Hewison, A. J. M.

    2014-01-01

    When individuals disperse, they modify the physical and social composition of their reproductive environment, potentially impacting their fitness. The choice an individual makes between dispersal and philopatry is thus critical, hence a better understanding of the mechanisms involved in the decision to leave the natal area is crucial. We explored how combinations of behavioural (exploration, mobility, activity and stress response) and morphological (body mass) traits measured prior to dispersal were linked to the subsequent dispersal decision in 77 roe deer Capreolus capreolus fawns. Using an unusually detailed multi-trait approach, we identified two independent behavioural continuums related to dispersal. First, a continuum of energetic expenditure contrasted individuals of low mobility, low variability in head activity and low body temperature with those that displayed opposite traits. Second, a continuum of neophobia contrasted individuals that explored more prior to dispersal and were more tolerant of capture with those that displayed opposite traits. While accounting for possible confounding effects of condition-dependence (body mass), we showed that future dispersers were less neophobic and had higher energetic budgets than future philopatric individuals, providing strong support for a dispersal syndrome in this species. PMID:25030983

  7. Study on photonic angular momentum states in coaxial magneto-optical waveguides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Mu; Wu, Li-Ting; Guo, Tian-Jing

    2014-10-21

    By rigorously solving Maxwell's equations, we develop a full-wave electromagnetic theory for the study of photonic angular momentum states (PAMSs) in coaxial magneto-optical (MO) waveguides. Paying attention to a metal-MO-metal coaxial configuration, we show that the dispersion curves of the originally degenerated PAMSs experience a splitting, which are determined by the off-diagonal permittivity tensor element of the MO medium. We emphasize that this broken degeneracy in dispersion relation is accompanied by modified distributions of field component and transverse energy flux. A qualitative analysis about the connection between the split dispersion behavior and the field distribution is provided. Potential applications aremore » discussed.« less

  8. Air-mediated pollen flow from genetically modified to conventional crops.

    PubMed

    Kuparinen, Anna; Schurr, Frank; Tackenberg, Oliver; O'Hara, Robert B

    2007-03-01

    Tools for estimating pollen dispersal and the resulting gene flow are necessary to assess the risk of gene flow from genetically modified (GM) to conventional fields, and to quantify the effectiveness of measures that may prevent such gene flow. A mechanistic simulation model is presented and used to simulate pollen dispersal by wind in different agricultural scenarios over realistic pollination periods. The relative importance of landscape-related variables such as isolation distance, topography, spatial configuration of the fields, GM field size and barrier, and environmental variation are examined in order to find ways to minimize gene flow and to detect possible risk factors. The simulations demonstrated a large variation in pollen dispersal and in the predicted amount of contamination between different pollination periods. This was largely due to variation in vertical wind. As this variation in wind conditions is difficult to control through management measures, it should be carefully considered when estimating the risk of gene flow from GM crops. On average, the predicted level of gene flow decreased with increasing isolation distance and with increasing depth of the conventional field, and increased with increasing GM field size. Therefore, at a national scale and over the long term these landscape properties should be accounted for when setting regulations for controlling gene flow. However, at the level of an individual field the level of gene flow may be dominated by uncontrollable variation. Due to the sensitivity of pollen dispersal to the wind, we conclude that gene flow cannot be summarized only by the mean contamination; information about the frequency of extreme events should also be considered. The modeling approach described in this paper offers a way to predict and compare pollen dispersal and gene flow in varying environmental conditions, and to assess the effectiveness of different management measures.

  9. Dilatant effect enhancers for silica dispersions in poly(propylene glycols).

    PubMed

    Orawiec, Marcin; Kaczorowski, Marcin; Rokicki, Gabriel

    2018-05-29

    Shear thickening fluids have found many applications in energy damping materials such as sports guards and liquid body armors. Therefore, an additive which could tailor the dilatant properties of such fluids without significantly affecting other properties, especially zero shear viscosity, could significantly increase the versatility of protective materials based on shear thickening fluids. In this paper, poly(propylene glycols) (PPGs) diacetates are investigated as dilatant effect enhancers for nano-silica dispersions in poly(propylene glycols). The influence of the modifiers on rheological properties of the dispersion is studied and discussed. Additionally, FTIR and rheological properties measurements are conducted in order to determine relative interactions strength between hydroxyl groups of PPGs and silica and carbonyl groups of PPG diacetates. Our findings suggest that the relative attractive interaction strength in studied systems can be arranged in the following order: COCO < COOH < OHOH. Therefore, the addition of PPG diacetate hinders the attractive interactions between liquid and solid. We report that the addition of diacetates can lead both to enhancement and deterioration of dilatant effect depending on the concentration of the modifier and its chain length. Based on conducted measurements and literature data, mechanism explaining that phenomenon is suggested. As a result, we propose an easy to make and cheap dilatant effect enhancer for widely used shear thickening fluids which, when used in small amounts (1-2.5%), raises the viscosity jump drastically. Additionally, the presence of the modifier does not significantly affect the zero shear viscosity of the shear thickening fluid. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. Synthesis, characterization, and reactivity of cellulose modified nano zero-valent iron for dye discoloration

    NASA Astrophysics Data System (ADS)

    Wang, Xiangyu; Wang, Pei; Ma, Jun; Liu, Huiling; Ning, Ping

    2015-08-01

    Nano zero-valent iron (NZVI) was innovatively and successfully modified by using hydroxyethyl cellulose (HEC) and hydroxypropylmethyl cellulose (HPMC) as dispersants. The systematic characterization observations (including XRD, SEM and TEM) illustrate that, compared with bare nano zero-valent iron particles (BNZVI), the particle sizes of hydroxyethyl cellulose modified (ENZVI) and hydroxypropylmethyl cellulose modified (PNZVI) were decreased, while the dispersity and antioxidizability of ENZVI and PNZVI particles were increased. The discoloration efficiencies of ENZVI, PNZVI, and BNZVI were compared by using dyes (including orange II, methyl orange, methyl blue, and methylene blue) as target pollutant. The results show that both the discoloration efficiency and reaction rate of ENZVI and PNZVI are higher than that of BNZVI. In addition, effects of dispersant content, dye type, pH value, initial dye concentration, iron dosage, and reaction temperature on discoloration efficiencies were studied. The results show that discoloration efficiency was decreased by increasing initial pH value and dye concentration, and it was increased with the increase the iron dosage and reaction temperature. Under optimized NZVI addition of 0.7 g L-1, the discoloration efficiencies of ENZVI and PNZVI were increased to 96.33% and 98.62%, respectively. And the possible discoloration pathway and dispersant modification mechanism of NZVI were discussed. This study suggests hydroxyethyl cellulose and hydroxypropylmethyl cellulose dispersed NZVI can be utilized as a promising modified nano-material for degradation of dye wastewater.

  11. Digital backpropagation accounting for polarization-mode dispersion.

    PubMed

    Czegledi, Cristian B; Liga, Gabriele; Lavery, Domaniç; Karlsson, Magnus; Agrell, Erik; Savory, Seb J; Bayvel, Polina

    2017-02-06

    Digital backpropagation (DBP) is a promising digital-domain technique to mitigate Kerr-induced nonlinear interference. While it successfully removes deterministic signal-signal interactions, the performance of ideal DBP is limited by stochastic effects, such as polarization-mode dispersion (PMD). In this paper, we consider an ideal full-field DBP implementation and modify it to additionally account for PMD; reversing the PMD effects in the backward propagation by passing the reverse propagated signal also through PMD sections, which concatenated equal the inverse of the PMD in the forward propagation. These PMD sections are calculated analytically at the receiver based on the total accumulated PMD of the link estimated from channel equalizers. Numerical simulations show that, accounting for nonlinear polarization-related interactions in the modified DBP algorithm, additional signal-to-noise ratio gains of 1.1 dB are obtained for transmission over 1000 km.

  12. Dispersive solitary wave solutions of Kadomtsev-Petviashvili and modified Kadomtsev-Petviashvili dynamical equations in unmagnetized dust plasma

    NASA Astrophysics Data System (ADS)

    Seadawy, A. R.; El-Rashidy, K.

    2018-03-01

    The Kadomtsev-Petviashvili (KP) and modified KP equations are two of the most universal models in nonlinear wave theory, which arises as a reduction of system with quadratic nonlinearity which admit weakly dispersive waves. The generalized extended tanh method and the F-expansion method are used to derive exact solitary waves solutions of KP and modified KP equations. The region of solutions are displayed graphically.

  13. Dispersion stability in carbon nanotube modified polymers and its effect on the fracture toughness

    NASA Astrophysics Data System (ADS)

    Mirjalili, Vahid; Yourdkhani, Mostafa; Hubert, Pascal

    2012-08-01

    In this paper, the dispersion stability of multiwall carbon nanotubes (MWNTs) mixed with an epoxy resin is studied. An instrumented optical microscope with a hot stage was used to study the evolution of the carbon nanotubes (CNTs) dispersion during the cure of the resin. A new image processing approach is then introduced to quantify dispersion and identify the source of dispersion degradation during the cure. The results showed that the reduction of the resin viscosity at temperatures greater than 100 °C caused an irreversible re-agglomeration of the CNTs in the matrix. It was shown that the fine-tuning of the ratio and type of curing agent as well as the curing temperature directly affect the dispersion stability of MWNTs in the epoxy polymer. The dispersion quality was then directly correlated to the fracture toughness of the modified resin and a maximum of 20% improvement was achieved.

  14. Surface plasmon oscillations in a semi-bounded semiconductor plasma

    NASA Astrophysics Data System (ADS)

    M, SHAHMANSOURI; A, P. MISRA

    2018-02-01

    We study the dispersion properties of surface plasmon (SP) oscillations in a semi-bounded semiconductor plasma with the effects of the Coulomb exchange (CE) force associated with the spin polarization of electrons and holes as well as the effects of the Fermi degenerate pressure and the quantum Bohm potential. Starting from a quantum hydrodynamic model coupled to the Poisson equation, we derive the general dispersion relation for surface plasma waves. Previous results in this context are recovered. The dispersion properties of the surface waves are analyzed in some particular cases of interest and the relative influence of the quantum forces on these waves are also studied for a nano-sized GaAs semiconductor plasma. It is found that the CE effects significantly modify the behaviors of the SP waves. The present results are applicable to understand the propagation characteristics of surface waves in solid density plasmas.

  15. Organically Modified Nanoclay-Reinforced Rigid Polyurethane Films

    NASA Astrophysics Data System (ADS)

    Park, Yong Tae; Qian, Yuqiang; Lindsay, Chris; Stein, Andreas; Macosko, Christopher

    2012-02-01

    The nanodispersion of vermiculite in polyurethanes was investigated to produce organoclay-reinforced rigid gas barrier films. Reducing gas transport can improve the insulation performance of closed cell polyurethane foam. In a previous study, the dispersion of vermiculite in polyurethanes without organic modification was not sufficient due to the non-uniform dispersion morphology. When vermiculite was modified by cation exchange with long-chain quaternary ammonium cations, the dispersion in methylene diphenyl diisocyanate (MDI) was significantly improved. Dispersion was improved by combining high intensity dispersive mixing with efficient distributive mixing. Polymerization conditions were also optimized in order to provide a high state of nanodispersion in the polyurethane nanocomposite. The dispersions were characterized using rheological, microscopic and scattering/diffraction techniques. The final nanocomposites showed enhancement of mechanical properties and reduction in permeability to carbon dioxide at low clay concentration (around 2 wt percent).

  16. Screen-printed electrode modified with carbon black and chitosan: a novel platform for acetylcholinesterase biosensor development.

    PubMed

    Talarico, Daria; Arduini, Fabiana; Amine, Aziz; Cacciotti, Ilaria; Moscone, Danila; Palleschi, Giuseppe

    2016-10-01

    We report a screen-printed electrode (SPE) modified with a dispersion of carbon black (CB) and chitosan by drop casting. A cyclic voltammetry technique towards ferricyanide, caffeic acid, hydroquinone, and thiocholine was performed and an improvement of the electrochemical response with respect to bare SPE as well as SPE modified only with chitosan was observed. The possibility to detect thiocholine at a low applied potential with high sensitivity was exploited and an acetylcholinesterase (AChE) biosensor was developed. A dispersion of CB, chitosan, and AChE was used to fabricate this biosensor in one step by drop casting. The enzymatic activity of the immobilized AChE was determined measuring the enzymatic product thiocholine at +300 mV. Owing to the capability of organophosphorus pesticides to inhibit AChE, this biosensor was used to detect these pollutants, and paraoxon was taken as model compound. The enzyme inhibition was linearly related to the concentration of paraoxon up to 0.5 μg L(-1), and a low detection limit equal to 0.05 μg L(-1) (calculated as 10% of inhibition) was achieved. This biosensor was challenged for paraoxon detection in drinking waters with satisfactory recovery values. The use of AChE embedded in a dispersion of CB and chitosan allowed an easy and fast production of a sensitive biosensor suitable for paraoxon detection in drinking waters at legal limit levels. Graphical Abstract Biosensors based on screen-printed electrodes modified with Acetylcholinesterase, Carbon Black, and Chitosan for organophosphorus pesticide detection.

  17. Production and stability of mechanochemically exfoliated graphene in water and culture media

    NASA Astrophysics Data System (ADS)

    León, V.; González-Domínguez, J. M.; Fierro, J. L. G.; Prato, M.; Vázquez, E.

    2016-07-01

    The preparation of graphene suspensions in water, without detergents or any other additives is achieved using freeze-dried graphene powders, produced by mechanochemical exfoliation of graphite. These powders of graphene can be safely stored or shipped, and promptly dissolved in aqueous media. The suspensions are relatively stable in terms of time, with a maximum loss of ~25% of the initial concentration at 2 h. This work provides an easy and general access to aqueous graphene suspensions of chemically non-modified graphene samples, an otherwise (almost) impossible task to achieve by other means. A detailed study of the stability of the relative dispersions is also reported.The preparation of graphene suspensions in water, without detergents or any other additives is achieved using freeze-dried graphene powders, produced by mechanochemical exfoliation of graphite. These powders of graphene can be safely stored or shipped, and promptly dissolved in aqueous media. The suspensions are relatively stable in terms of time, with a maximum loss of ~25% of the initial concentration at 2 h. This work provides an easy and general access to aqueous graphene suspensions of chemically non-modified graphene samples, an otherwise (almost) impossible task to achieve by other means. A detailed study of the stability of the relative dispersions is also reported. Electronic supplementary information (ESI) available: A video showing the dispersion process, the N 1s XPS spectrum of BMG, image of the graphite test in CCM, and the characterization of the GO employed. See DOI: 10.1039/c6nr03246j

  18. Open Field Release of Genetically Engineered Sterile Male Aedes aegypti in Malaysia

    PubMed Central

    Raduan, Norzahira; Kwee Wee, Lim; Hong Ming, Wong; Guat Ney, Teoh; Rahidah A.A., Siti; Salman, Sawaluddin; Subramaniam, Selvi; Nordin, Oreenaiza; Hanum A.T., Norhaida; Angamuthu, Chandru; Marlina Mansor, Suria; Lees, Rosemary S.; Naish, Neil; Scaife, Sarah; Gray, Pam; Labbé, Geneviève; Beech, Camilla; Nimmo, Derric; Alphey, Luke; Vasan, Seshadri S.; Han Lim, Lee; Wasi A., Nazni; Murad, Shahnaz

    2012-01-01

    Background Dengue is the most important mosquito-borne viral disease. In the absence of specific drugs or vaccines, control focuses on suppressing the principal mosquito vector, Aedes aegypti, yet current methods have not proven adequate to control the disease. New methods are therefore urgently needed, for example genetics-based sterile-male-release methods. However, this requires that lab-reared, modified mosquitoes be able to survive and disperse adequately in the field. Methodology/Principal Findings Adult male mosquitoes were released into an uninhabited forested area of Pahang, Malaysia. Their survival and dispersal was assessed by use of a network of traps. Two strains were used, an engineered ‘genetically sterile’ (OX513A) and a wild-type laboratory strain, to give both absolute and relative data about the performance of the modified mosquitoes. The two strains had similar maximum dispersal distances (220 m), but mean distance travelled of the OX513A strain was lower (52 vs. 100 m). Life expectancy was similar (2.0 vs. 2.2 days). Recapture rates were high for both strains, possibly because of the uninhabited nature of the site. Conclusions/Significance After extensive contained studies and regulatory scrutiny, a field release of engineered mosquitoes was safely and successfully conducted in Malaysia. The engineered strain showed similar field longevity to an unmodified counterpart, though in this setting dispersal was reduced relative to the unmodified strain. These data are encouraging for the future testing and implementation of genetic control strategies and will help guide future field use of this and other engineered strains. PMID:22970102

  19. Comparison of sample preparation methods combined with fast gas chromatography-mass spectrometry for ultratrace analysis of pesticide residues in baby food.

    PubMed

    Hercegová, Andrea; Dömötörová, Milena; Kruzlicová, Dása; Matisová, Eva

    2006-05-01

    Four sample preparation techniques were compared for the ultratrace analysis of pesticide residues in baby food: (a) modified Schenck's method based on ACN extraction with SPE cleaning; (b) quick, easy, cheap, effective, rugged, and safe (QuEChERS) method based on ACN extraction and dispersive SPE; (c) modified QuEChERS method which utilizes column-based SPE instead of dispersive SPE; and (d) matrix solid phase dispersion (MSPD). The methods were combined with fast gas chromatographic-mass spectrometric analysis. The effectiveness of clean-up of the final extract was determined by comparison of the chromatograms obtained. Time consumption, laboriousness, demands on glassware and working place, and consumption of chemicals, especially solvents, increase in the following order QuEChERS < modified QuEChERS < MSPD < modified Schenck's method. All methods offer satisfactory analytical characteristics at the concentration levels of 5, 10, and 100 microg/kg in terms of recoveries and repeatability. Recoveries obtained for the modified QuEChERS method were lower than for the original QuEChERS. In general the best LOQs were obtained for the modified Schenck's method. Modified QuEChERS method provides 21-72% better LOQs than the original method.

  20. When time affects space: Dispersal ability and extreme weather events determine metacommunity organization in marine sediments.

    PubMed

    Corte, Guilherme N; Gonçalves-Souza, Thiago; Checon, Helio H; Siegle, Eduardo; Coleman, Ross A; Amaral, A Cecília Z

    2018-05-01

    Community ecology has traditionally assumed that the distribution of species is mainly influenced by environmental processes. There is, however, growing evidence that environmental (habitat characteristics and biotic interactions) and spatial processes (factors that affect a local assemblage regardless of environmental conditions - typically related to dispersal and movement of species) interactively shape biological assemblages. A metacommunity, which is a set of local assemblages connected by dispersal of individuals, is spatial in nature and can be used as a straightforward approach for investigating the interactive and independent effects of both environmental and spatial processes. Here, we examined (i) how environmental and spatial processes affect the metacommunity organization of marine macroinvertebrates inhabiting the intertidal sediments of a biodiverse coastal ecosystem; (ii) whether the influence of these processes is constant through time or is affected by extreme weather events (storms); and (iii) whether the relative importance of these processes depends on the dispersal abilities of organisms. We found that macrobenthic assemblages are influenced by each of environmental and spatial variables; however, spatial processes exerted a stronger role. We also found that this influence changes through time and is modified by storms. Moreover, we observed that the influence of environmental and spatial processes varies according to the dispersal capabilities of organisms. More effective dispersers (i.e., species with planktonic larvae) are more affected by spatial processes whereas environmental variables had a stronger effect on weaker dispersers (i.e. species with low motility in larval and adult stages). These findings highlight that accounting for spatial processes and differences in species life histories is essential to improve our understanding of species distribution and coexistence patterns in intertidal soft-sediments. Furthermore, it shows that storms modify the structure of coastal assemblages. Given that the influence of spatial and environmental processes is not consistent through time, it is of utmost importance that future studies replicate sampling over different periods so the influence of temporal and stochastic factors on macrobenthic metacommunities can be better understood. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Electrochemical Detection of p-Aminophenol by Flexible Devices Based on Multi-Wall Carbon Nanotubes Dispersed in Electrochemically Modified Nafion

    PubMed Central

    Scandurra, Graziella; Antonella, Arena; Ciofi, Carmine; Saitta, Gaetano; Lanza, Maurizio

    2014-01-01

    A conducting composite prepared by dispersing multi-walled carbon nanotubes (MWCNTs) into a host matrix consisting of Nafion, electrochemically doped with copper, has been prepared, characterized and used to modify one of the gold electrodes of simply designed electrochemical cells having copier grade transparency sheets as substrates. Electrical measurements performed in deionized water show that the Au/Nafion/Au-MWCNTs–Nafion:Cu cells can be successfully used in order to detect the presence of p-aminophenol (PAP) in water, without the need for any supporting electrolyte. The intensity of the redox peaks arising when PAP is added to deionized water is found to be linearly related to the analyte in the range from 0.2 to 1.6 μM, with a detection limit of 90 nM and a sensitivity of 7 μA·(μM−1)·cm−2. PMID:24854357

  2. Energy scale of Lorentz violation in Rainbow Gravity

    NASA Astrophysics Data System (ADS)

    Nilsson, Nils A.; Dąbrowski, Mariusz P.

    2017-12-01

    We modify the standard relativistic dispersion relation in a way which breaks Lorentz symmetry-the effect is predicted in a high-energy regime of some modern theories of quantum gravity. We show that it is possible to realise this scenario within the framework of Rainbow Gravity which introduces two new energy-dependent functions f1(E) and f2(E) into the dispersion relation. Additionally, we assume that the gravitational constant G and the cosmological constant Λ also depend on energy E and introduce the scaling function h(E) in order to express this dependence. For cosmological applications we specify the functions f1 and f2 in order to fit massless particles which allows us to derive modified cosmological equations. Finally, by using Hubble+SNIa+BAO(BOSS+Lyman α)+CMB data, we constrain the energy scale ELV to be at least of the order of 1016 GeV at 1 σ which is the GUT scale or even higher 1017 GeV at 3 σ. Our claim is that this energy can be interpreted as the decoupling scale of massless particles from spacetime Lorentz violating effects.

  3. Dispersive effects on multicomponent transport through porous media

    NASA Astrophysics Data System (ADS)

    Dutta, Sourav; Daripa, Prabir

    2017-11-01

    We use a hybrid numerical method to solve a global pressure based porous media flow model of chemical enhanced oil recovery. This is an extension of our recent work. The numerical method is based on the use of a discontinuous finite element method and the modified method of characteristics. The impact of molecular diffusion and mechanical dispersion on the evolution of scalar concentration distributions are studied through numerical simulations of various flooding schemes. The relative importance of the advective, capillary diffusive and dispersive fluxes are compared over different flow regimes defined in the parameter space of Capillary number, Peclet number, longitudinal and transverse dispersion coefficients. Such studies are relevant for the design of effective injection policies and determining optimal combinations of chemical components for improving recovery. This work has been possible due to financial support from the U.S. National Science Foundation Grant DMS-1522782.

  4. Analysis of Jeans instability of optically thick quantum plasma under the effect of modified Ohms law

    NASA Astrophysics Data System (ADS)

    Pensia, R. K.; Sutar, D. L.; Sharma, S.

    2018-05-01

    The Jeans instability of self-gravitating optically thick quantum plasma is reanalyzed in the framework of viscosity, black body radiation and modify ohms law. The usual magnetohydrodynamic (MHD) equation is used for the present configuration with black body radiation, viscosity, electrical resistivity and quantum corrections. A general dispersion relation is obtained with the help of linearized perturbation equations. It is found that the quantum correction has stabilizing effect on the system. The instability of system is discussed for various cases as our interest.

  5. Using population genetic analyses to understand seed dispersal patterns

    NASA Astrophysics Data System (ADS)

    Hamrick, J. L.; Trapnell, Dorset W.

    2011-11-01

    Neutral genetic markers have been employed in several ways to understand seed dispersal patterns in natural and human modified landscapes. Genetic differentiation among spatially separated populations, using biparentally and maternally inherited genetic markers, allows determination of the relative historical effectiveness of pollen and seed dispersal. Genetic relatedness among individuals, estimated as a function of spatial separation between pairs of individuals, has also been used to indirectly infer seed dispersal distances. Patterns of genetic relatedness among plants in recently colonized populations provide insights into the role of seed dispersal in population colonization and expansion. High genetic relatedness within expanding populations indicates original colonization by a few individuals and population expansion by the recruitment of the original colonists' progeny; low relatedness should occur if population growth results primarily from continuous seed immigration from multiple sources. Parentage analysis procedures can identify maternal parents of dispersed fruits, seeds, or seedlings providing detailed descriptions of contemporary seed dispersal patterns. With standard parent-pair analyses of seeds or seedlings, problems can arise in distinguishing the maternal parent. However, the use of maternal DNA from dispersed fruits or seed coats allows direct identification of maternal individuals and, as a consequence, the distance and patterns of seed dispersal and deposition. Application of combinations of these approaches provides additional insights into the role seed dispersal plays in the genetic connectivity between populations in natural and disturbed landscapes.

  6. Relevance of Crop Biology for Environmental Risk Assessment of Genetically Modified Crops in Africa.

    PubMed

    Akinbo, Olalekan; Hancock, James F; Makinde, Diran

    2015-01-01

    Knowledge about the crop biology of economic crops in Africa is needed for regulators to accurately review dossiers and conduct comprehensive environmental risk assessments (ERAs). This information allows regulators to decide whether biotech crops present a risk to biodiversity, since crossing between domesticated crops and their wild relatives could affect the adaptations of the wild species. The criteria that should be used in the evaluation of African crops for ERA include growth habit, center of origin, center of genetic diversity, proximity of wild relatives, inter-fertility, mode of pollen dispersal, length of pollen viability, mating system, invasiveness, weediness, mode of propagation, mode of seed dispersal, and length of seed dormancy. In this paper, we discuss the crops being genetic engineered in Africa and describe the crop biology of those with native relatives.

  7. Magnetohydrodynamic waves with relativistic electrons and positrons in degenerate spin-1/2 astrophysical plasmas

    NASA Astrophysics Data System (ADS)

    Maroof, R.; Ali, S.; Mushtaq, A.; Qamar, A.

    2015-11-01

    Linear properties of high and low frequency waves are studied in an electron-positron-ion (e-p-i) dense plasma with spin and relativity effects. In a low frequency regime, the magnetohydrodynamic (MHD) waves, namely, the magnetoacoustic and Alfven waves are presented in a magnetized plasma, in which the inertial ions are taken as spinless and non-degenerate, whereas the electrons and positrons are treated quantum mechanically due to their smaller mass. Quantum corrections associated with the spin magnetization and density correlations for electrons and positrons are re-considered and a generalized dispersion relation for the low frequency MHD waves is derived to account for relativistic degeneracy effects. On the basis of angles of propagation, the dispersion relations of different modes are discussed analytically in a degenerate relativistic plasma. Numerical results reveal that electron and positron relativistic degeneracy effects significantly modify the dispersive properties of MHD waves. Our present analysis should be useful for understanding the collective interactions in dense astrophysical compact objects, like, the white dwarfs and in atmosphere of neutron stars.

  8. Attachment of a hydrophobically modified biopolymer at the oil-water interface in the treatment of oil spills.

    PubMed

    Venkataraman, Pradeep; Tang, Jingjian; Frenkel, Etham; McPherson, Gary L; He, Jibao; Raghavan, Srinivasa R; Kolesnichenko, Vladimir; Bose, Arijit; John, Vijay T

    2013-05-01

    The stability of crude oil droplets formed by adding chemical dispersants can be considerably enhanced by the use of the biopolymer, hydrophobically modified chitosan. Turbidimetric analyses show that emulsions of crude oil in saline water prepared using a combination of the biopolymer and the well-studied chemical dispersant (Corexit 9500A) remain stable for extended periods in comparison to emulsions stabilized by the dispersant alone. We hypothesize that the hydrophobic residues from the polymer preferentially anchor in the oil droplets, thereby forming a layer of the polymer around the droplets. The enhanced stability of the droplets is due to the polymer layer providing an increase in electrostatic and steric repulsions and thereby a large barrier to droplet coalescence. Our results show that the addition of hydrophobically modified chitosan following the application of chemical dispersant to an oil spill can potentially reduce the use of chemical dispersants. Increasing the molecular weight of the biopolymer changes the rheological properties of the oil-in-water emulsion to that of a weak gel. The ability of the biopolymer to tether the oil droplets in a gel-like matrix has potential applications in the immobilization of surface oil spills for enhanced removal.

  9. Dispersion of acoustic surface waves by velocity gradients

    NASA Astrophysics Data System (ADS)

    Kwon, S. D.; Kim, H. C.

    1987-10-01

    The perturbation theory of Auld [Acoustic Fields and Waves in Solids (Wiley, New York, 1973), Vol. II, p. 294], which describes the effect of a subsurface gradient on the velocity dispersion of surface waves, has been modified to a simpler form by an approximation using a newly defined velocity gradient for the case of isotropic materials. The modified theory is applied to nitrogen implantation in AISI 4140 steel with a velocity gradient of Gaussian profile, and compared with dispersion data obtained by the ultrasonic right-angle technique in the frequency range from 2.4 to 14.8 MHz. The good agreement between experiments and our theory suggests that the compound layer in the subsurface region plays a dominant role in causing the dispersion of acoustic surface waves.

  10. Quantum dust magnetosonic waves with spin and exchange correlation effects

    NASA Astrophysics Data System (ADS)

    Maroof, R.; Mushtaq, A.; Qamar, A.

    2016-01-01

    Dust magnetosonic waves are studied in degenerate dusty plasmas with spin and exchange correlation effects. Using the fluid equations of magnetoplasma with quantum corrections due to the Bohm potential, temperature degeneracy, spin magnetization energy, and exchange correlation, a generalized dispersion relation is derived. Spin effects are incorporated via spin force and macroscopic spin magnetization current. The exchange-correlation potentials are used, based on the adiabatic local-density approximation, and can be described as a function of the electron density. For three different values of angle, the dispersion relation is reduced to three different modes under the low frequency magnetohydrodynamic assumptions. It is found that the effects of quantum corrections in the presence of dust concentration significantly modify the dispersive properties of these modes. The results are useful for understanding numerous collective phenomena in quantum plasmas, such as those in compact astrophysical objects (e.g., the cores of white dwarf stars and giant planets) and in plasma-assisted nanotechnology (e.g., quantum diodes, quantum free-electron lasers, etc.).

  11. Preparation of Transparent Bulk TiO2/PMMA Hybrids with Improved Refractive Indices via an in Situ Polymerization Process Using TiO2 Nanoparticles Bearing PMMA Chains Grown by Surface-Initiated Atom Transfer Radical Polymerization.

    PubMed

    Maeda, Satoshi; Fujita, Masato; Idota, Naokazu; Matsukawa, Kimihiro; Sugahara, Yoshiyuki

    2016-12-21

    Transparent TiO 2 /PMMA hybrids with a thickness of 5 mm and improved refractive indices were prepared by in situ polymerization of methyl methacrylate (MMA) in the presence of TiO 2 nanoparticles bearing poly(methyl methacrylate) (PMMA) chains grown using surface-initiated atom transfer radical polymerization (SI-ATRP), and the effect of the chain length of modified PMMA on the dispersibility of modified TiO 2 nanoparticles in the bulk hybrids was investigated. The surfaces of TiO 2 nanoparticles were modified with both m-(chloromethyl)phenylmethanoyloxymethylphosphonic acid bearing a terminal ATRP initiator and isodecyl phosphate with a high affinity for common organic solvents, leading to sufficient dispersibility of the surface-modified particles in toluene. Subsequently, SI-ATRP of MMA was achieved from the modified surfaces of the TiO 2 nanoparticles without aggregation of the nanoparticles in toluene. The molecular weights of the PMMA chains cleaved from the modified TiO 2 nanoparticles increased with increases in the prolonging of the polymerization period, and these exhibited a narrow distribution, indicating chain growth controlled by SI-ATRP. The nanoparticles bearing PMMA chains were well-dispersed in MMA regardless of the polymerization period. Bulk PMMA hybrids containing modified TiO 2 nanoparticles with a thickness of 5 mm were prepared by in situ polymerization of the MMA dispersion. The transparency of the hybrids depended significantly on the chain length of the modified PMMA on the nanoparticles, because the modified PMMA of low molecular weight induced aggregation of the TiO 2 nanoparticles during the in situ polymerization process. The refractive indices of the bulk hybrids could be controlled by adjusting the TiO 2 content and could be increased up to 1.566 for 6.3 vol % TiO 2 content (1.492 for pristine PMMA).

  12. Development of alternative sulfur dioxide control strategies for a metropolitan area and its environs, utilizing a modified climatological dispersion model

    Treesearch

    K. J. Skipka; D. B. Smith

    1977-01-01

    Alternative control strategies were developed for achieving compliance with ambient air quality standards in Portland, Maine, and its environs, using a modified climatological dispersion model (CDM) and manipulating the sulfur content of the fuel oil consumed in four concentric zones. Strategies were evaluated for their impact on ambient air quality, economics, and...

  13. ANDROMEDA DWARFS IN LIGHT OF MODIFIED NEWTONIAN DYNAMICS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McGaugh, Stacy; Milgrom, Mordehai

    We compare the recently published velocity dispersions for 17 Andromeda dwarf spheroidals with estimates of the modified Newtonian dynamics predictions, based on the luminosities of these dwarfs, with reasonable stellar mass-to-light values and no dark matter. We find that the two are consistent within the uncertainties. We further predict the velocity dispersions of another 10 dwarfs for which only photometric data are currently available.

  14. EVALUATION OF ALTERNATIVE GAUSSIAN PLUME DISPERSION MODELING TECHNIQUES IN ESTIMATING SHORT-TERM SULFUR DIOXIDE CONCENTRATIONS

    EPA Science Inventory

    A routinely applied atmospheric dispersion model was modified to evaluate alternative modeling techniques which allowed for more detailed source data, onsite meteorological data, and several dispersion methodologies. These were evaluated with hourly SO2 concentrations measured at...

  15. Influence of sodium polyacrylate on the rheology of aqueous Laponite dispersions.

    PubMed

    Labanda, Jordi; Llorens, Joan

    2005-09-01

    Aqueous Laponite dispersions containing a sodium polyacrylate were analyzed, at fixed ionic strength and pH, by rheometric and electroacoustic (for zeta-potential determinations) techniques at 7 days after their preparation. The rheological behavior of these dispersions was determined by oscillatory and flow experiments. Addition of sodium polyacrylate modifies the interactions between Laponite particles and therefore the physical state of the dispersion. The phase diagram of Laponite dispersion as a function of sodium polyacrylate concentration shows different sol-gel transitions for a specific Laponite concentration as a function of the polyacrylate concentration. Under equilibrium flow conditions the Laponite dispersions fit the pseudoplastic Oswald-de Waele power law model. At the same time, these dispersions show thixotropy, which was analyzed using a second-order kinetic equation. The kinetic processes were characterized by breakdown and build-up parameters, which were found to depend on shear rate. This kinetic equation was modified by a power law exponent of viscosity with shear rate that takes into account the viscosity variations when the shear rates are suddenly changed, in order to fit the hysteresis loops.

  16. Preparation and dyeing of super hydrophilic polyethylene terephthalate fabric

    NASA Astrophysics Data System (ADS)

    Zheng, D. D.; Zhou, J. F.; Xu, F.; Zhang, F. X.; Zhang, G. X.

    2016-07-01

    In this study, the dyeing properties of PET fabrics modified with sulfuric acid was investigated using disperse red E-4B and disperse blue 2BLNG-L at high temperature and high pressure. The results revealed that the sulfuric acid modification improved the K/S value of dyeing PET fabrics, and the modified PET fabric could be dyed uniformly. The a, b, C, L and H of modified PET fabric were almost the same as that of original PET fabric. The water contact angles were still 0o after 10s, indicating that the hydrophilic property of modified PET fabrics still kept excellent. The wash fastness of dyed PET fabrics after modification was generally good.

  17. Environmental heterogeneity blurs the signature of dispersal syndromes on spatial patterns of woody species in a moist tropical forest

    PubMed Central

    Velázquez, Eduardo; Escudero, Adrián; de la Cruz, Marcelino

    2018-01-01

    We assessed the relative importance of dispersal limitation, environmental heterogeneity and their joint effects as determinants of the spatial patterns of 229 species in the moist tropical forest of Barro Colorado Island (Panama). We differentiated five types of species according to their dispersal syndrome; autochorous, anemochorous, and zoochorous species with small, medium-size and large fruits. We characterized the spatial patterns of each species and we checked whether they were best fitted by Inhomogeneous Poisson (IPP), Homogeneous Poisson cluster (HPCP) and Inhomogeneous Poisson cluster processes (IPCP) by means of the Akaike Information Criterion. We also assessed the influence of species’ dispersal mode in the average cluster size. We found that 63% of the species were best fitted by IPCP regardless of their dispersal syndrome, although anemochorous species were best described by HPCP. Our results indicate that spatial patterns of tree species in this forest cannot be explained only by dispersal limitation, but by the joint effects of dispersal limitation and environmental heterogeneity. The absence of relationships between dispersal mode and degree of clustering suggests that several processes modify the original spatial pattern generated by seed dispersal. These findings emphasize the importance of fitting point process models with a different biological meaning when studying the main determinants of spatial structure in plant communities. PMID:29451871

  18. Coupled modes in magnetized dense plasma with relativistic-degenerate electrons

    NASA Astrophysics Data System (ADS)

    Khan, S. A.

    2012-01-01

    Low frequency electrostatic and electromagnetic waves are investigated in ultra-dense quantum magnetoplasma with relativistic-degenerate electron and non-degenerate ion fluids. The dispersion relation is derived for mobile as well as immobile ions by employing hydrodynamic equations for such plasma under the influence of electromagnetic forces and pressure gradient of relativistic-degenerate Fermi gas of electrons. The result shows the coexistence of shear Alfven and ion modes with relativistically modified dispersive properties. The relevance of results to the dense degenerate plasmas of astrophysical origin (for instance, white dwarf stars) is pointed out with brief discussion on ultra-relativistic and non-relativistic limits.

  19. Numerical analysis of THz radiation wave using upper hybrid wave wiggler

    NASA Astrophysics Data System (ADS)

    Malik, Pratibha; Sharma, Suresh C.; Panwar, Jyotsna; Sharma, Rinku

    2018-03-01

    A theory for upper hybrid wave induced by relativistic electron beam in magnetized plasma emits tuneable and coherent terahertz radiation. The nonlinear interaction with REB is used to generate terahertz radiation. The enhancement in the amplitude of THz wave is also observed when pre-bunched REB is used. The ponderomotive force applied on beam electrons due to radiation wave and upper wave wiggler modifies the dispersion relation. By solving the dispersion relation, we have derived the growth rate of the radiation wave. Numerical studies indicate that by increasing the beam energy the growth rate of the radiation wave decreases, while it increases with wiggler frequency. Besides this, the growth rate of the radiation wave increases with beam density and decreases with radiation frequency and static magnetic field.

  20. Catchment Dispersion Mechanisms in an Urban Context

    NASA Astrophysics Data System (ADS)

    Gironas, J. A.; Mejia, A.; Rossel, F.; Rinaldo, A.; Rodriguez, F.

    2014-12-01

    Dispersion mechanisms have been examined in-depth in natural catchments in previous studies. However, these dispersion mechanisms have been studied little in urban catchments, where artificial transport elements and morphological arrangements are expected to modify travel times and mobilize excess rainfall from spatially distributed impervious sites. Thus, these features can modify the variance of the catchment's travel times and hence the total dispersion. This work quantifies the dispersion mechanisms in an urban catchment using the theory of transport by travel times as represented by the Urban Morpho-climatic Instantaneous Unit Hydrograph (U-McIUH) model. This model computes travel times based on kinematic wave theory and accounts explicitly for the path heterogeneities and altered connectivity patterns characteristic of an urban drainage network. The analysis is illustrated using the Aubinière urban catchment (France) as a case study. We found that kinematic dispersion is dominant for small rainfall intensities, whereas geomorphologic dispersion becomes more dominant for larger intensities. The total dispersion scales with the drainage area in a power law fashion. The kinematic dispersion is dominant across spatial scales up to a threshold of approximately 2-3 km2, after which the geomorphologic dispersion becomes more dominant. Overall, overland flow is responsible for most of the dispersion, while conduits tend to counteract the increase of the geomorphologic dispersion with a negative kinematic dispersion. Further studies with other catchments are needed to assess whether the latter is a general feature of urban drainage networks.

  1. Spatial characterization of catchment dispersion mechanisms in an urban context

    NASA Astrophysics Data System (ADS)

    Rossel, Florian; Gironás, Jorge; Mejía, Alfonso; Rinaldo, Andrea; Rodriguez, Fabrice

    2014-12-01

    Previous studies have examined in-depth the dispersion mechanisms in natural catchments. In contrast, these dispersion mechanisms have been studied little in urban catchments, where artificial transport elements and morphological arrangements are expected to modify travel times and mobilize excess rainfall from spatially distributed impervious sites. This has the ability to modify the variance of the catchment's travel times and hence the total dispersion. This work quantifies the dispersion mechanisms in an urban catchment using the theory of transport by travel times as represented by the Urban Morpho-climatic Instantaneous Unit Hydrograph (U-McIUH) model. The U-McIUH computes travel times based on kinematic wave theory and accounts explicitly for the path heterogeneities and altered connectivity patterns characteristic of an urban drainage network. The analysis is illustrated using the Aubinière urban catchment in France as a case study. We found that kinematic dispersion is dominant for small rainfall intensities, whereas geomorphologic dispersion becomes more dominant for larger intensities. The total dispersion scales with the drainage area in a power law fashion. The kinematic dispersion is dominant across spatial scales up to a threshold of approximately 2-3 km2, after which the geomorphologic dispersion becomes more dominant. Overall, overland flow is responsible for most of the dispersion in the catchment, while conduits tend to counteract the increase of the geomorphologic dispersion with a negative kinematic dispersion. Further study with other catchments is needed to asses if the latter is a general feature of urban drainage networks.

  2. Condensation Dynamics on Mimicked Metal Matrix Hydrophobic Nanoparticle-Composites

    NASA Astrophysics Data System (ADS)

    Damle, Viraj; Sun, Xiaoda; Rykaczewski, Konrad

    2014-11-01

    Use of hydrophobic surfaces promotes condensation in the dropwise mode, which is significantly more efficient than the common filmwise mode. However, limited longevity of hydrophobic surface modifiers has prevented their wide spread use in industry. Recently, metal matrix composites (MMCs) having microscale hydrophobic heterogeneities dispersed in hydrophilic metal matrix have been proposed as durable and self-healing alternative to hydrophobic surface coatings interacting with deposited water droplets. While dispersion of hydrophobic microparticles in MMC is likely to lead to surface flooding during condensation, the effect of dispersion of hydrophobic nanoparticles (HNPs) with size comparable to water nuclei critical radii and spacing is not obvious. To this end, we fabricated highly ordered arrays of Teflon nanospheres on silicon substrates that mimic the top surface of the MMCs with dispersed HNPs. We used light and electron microscopy to observe breath figures resulting from condensation on these surfaces at varied degrees of subcooling. Here, we discuss the relation between the droplet size distribution, Teflon nanosphere diameter and spacing, and condensation mode. KR acknowledges startup funding from ASU.

  3. Reynolds number scaling to predict droplet size distribution in dispersed and undispersed subsurface oil releases.

    PubMed

    Li, Pu; Weng, Linlu; Niu, Haibo; Robinson, Brian; King, Thomas; Conmy, Robyn; Lee, Kenneth; Liu, Lei

    2016-12-15

    This study was aimed at testing the applicability of modified Weber number scaling with Alaska North Slope (ANS) crude oil, and developing a Reynolds number scaling approach for oil droplet size prediction for high viscosity oils. Dispersant to oil ratio and empirical coefficients were also quantified. Finally, a two-step Rosin-Rammler scheme was introduced for the determination of droplet size distribution. This new approach appeared more advantageous in avoiding the inconsistency in interfacial tension measurements, and consequently delivered concise droplet size prediction. Calculated and observed data correlated well based on Reynolds number scaling. The relation indicated that chemical dispersant played an important role in reducing the droplet size of ANS under different seasonal conditions. The proposed Reynolds number scaling and two-step Rosin-Rammler approaches provide a concise, reliable way to predict droplet size distribution, supporting decision making in chemical dispersant application during an offshore oil spill. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Turbulent Plume Dispersion over Two-dimensional Idealized Urban Street Canyons

    NASA Astrophysics Data System (ADS)

    Wong, C. C. C.; Liu, C. H.

    2012-04-01

    Human activities are the primary pollutant sources which degrade the living quality in the current era of dense and compact cities. A simple and reasonably accurate pollutant dispersion model is helpful to reduce pollutant concentrations in city or neighborhood scales by refining architectural design or urban planning. The conventional method to estimate the pollutant concentration from point/line sources is the Gaussian plume model using empirical dispersion coefficients. Its accuracy is pretty well for applying to rural areas. However, the dispersion coefficients only account for the atmospheric stability and streamwise distance that often overlook the roughness of urban surfaces. Large-scale buildings erected in urban areas significantly modify the surface roughness that in turn affects the pollutant transport in the urban canopy layer (UCL). We hypothesize that the aerodynamic resistance is another factor governing the dispersion coefficient in the UCL. This study is thus conceived to study the effects of urban roughness on pollutant dispersion coefficients and the plume behaviors. Large-eddy simulations (LESs) are carried out to examine the plume dispersion from a ground-level pollutant source over idealized 2D street canyons in neutral stratification. Computations with a wide range of aspect ratios (ARs), including skimming flow to isolated flow regimes, are conducted. The vertical profiles of pollutant distribution for different values of friction factor are compared that all reach a self-similar Gaussian shape. Preliminary results show that the pollutant dispersion is closely related to the friction factor. For relatively small roughness, the factors of dispersion coefficient vary linearly with the friction factor until the roughness is over a certain level. When the friction factor is large, its effect on the dispersion coefficient is less significant. Since the linear region covers at least one-third of the full range of friction factor in our empirical analysis, urban roughness is a major factor for dispersion coefficient. The downstream air quality could then be a function of both atmospheric stability and urban roughness.

  5. Application of hot melt extrusion for improving bioavailability of artemisinin a thermolabile drug.

    PubMed

    Kulkarni, C; Kelly, A L; Gough, T; Jadhav, V; Singh, K K; Paradkar, A

    2018-02-01

    Hot melt extrusion has been used to produce a solid dispersion of the thermolabile drug artemisinin. Formulation and process conditions were optimized prior to evaluation of dissolution and biopharmaceutical performance. Soluplus ® , a low T g amphiphilic polymer especially designed for solid dispersions enabled melt extrusion at 110 °C although some drug-polymer incompatibility was observed. Addition of 5% citric acid as a pH modifier was found to suppress the degradation. The area under plasma concentration time curve (AUC 0-24h ) and peak plasma concentration (C max ) were four times higher for the modified solid dispersion compared to that of pure artemisinin.

  6. Silicone-containing aqueous polymer dispersions with hybrid particle structure.

    PubMed

    Kozakiewicz, Janusz; Ofat, Izabela; Trzaskowska, Joanna

    2015-09-01

    In this paper the synthesis, characterization and application of silicone-containing aqueous polymer dispersions (APD) with hybrid particle structure are reviewed based on available literature data. Advantages of synthesis of dispersions with hybrid particle structure over blending of individual dispersions are pointed out. Three main processes leading to silicone-containing hybrid APD are identified and described in detail: (1) emulsion polymerization of organic unsaturated monomers in aqueous dispersions of silicone polymers or copolymers, (2) emulsion copolymerization of unsaturated organic monomers with alkoxysilanes or polysiloxanes with unsaturated functionality and (3) emulsion polymerization of alkoxysilanes (in particular with unsaturated functionality) and/or cyclic siloxanes in organic polymer dispersions. The effect of various factors on the properties of such hybrid APD and films as well as on hybrid particles composition and morphology is presented. It is shown that core-shell morphology where silicones constitute either the core or the shell is predominant in hybrid particles. Main applications of silicone-containing hybrid APD and related hybrid particles are reviewed including (1) coatings which show specific surface properties such as enhanced water repellency or antisoiling or antigraffiti properties due to migration of silicone to the surface, and (2) impact modifiers for thermoplastics and thermosets. Other processes in which silicone-containing particles with hybrid structure can be obtained (miniemulsion polymerization, polymerization in non-aqueous media, hybridization of organic polymer and polysiloxane, emulsion polymerization of silicone monomers in silicone polymer dispersions and physical methods) are also discussed. Prospects for further developments in the area of silicone-containing hybrid APD and related hybrid particles are presented. Copyright © 2015. Published by Elsevier B.V.

  7. Novel Signal-Amplified Fenitrothion Electrochemical Assay, Based on Glassy Carbon Electrode Modified with Dispersed Graphene Oxide

    NASA Astrophysics Data System (ADS)

    Wang, Limin; Dong, Jinbo; Wang, Yulong; Cheng, Qi; Yang, Mingming; Cai, Jia; Liu, Fengquan

    2016-03-01

    A novel signal-amplified electrochemical assay for the determination of fenitrothion was developed, based on the redox behaviour of organophosphorus pesticides on a glassy carbon working electrode. The electrode was modified using graphene oxide dispersion. The electrochemical response of fenitrothion at the modified electrode was investigated using cyclic voltammetry, current-time curves, and square-wave voltammetry. Experimental parameters, namely the accumulation conditions, pH value, and volume of dispersed material, were optimised. Under the optimum conditions, a good linear relationship was obtained between the oxidation peak current and the fenitrothion concentration. The linear range was 1-400 ng·mL-1, with a detection limit of 0.1 ng·mL-1 (signal-to-nose ratio = 3). The high sensitivity of the sensor was demonstrated by determining fenitrothion in pakchoi samples.

  8. Chemical Sharpening, Shortening, and Unzipping of Boron Nitride Nanotubes

    NASA Technical Reports Server (NTRS)

    Liao, Yunlong; Chen, Zhongfang; Connell, John W.; Fay, Catharine C.; Park, Cheol; Kim, Jae-Woo; Lin, Yi

    2014-01-01

    Boron nitride nanotubes (BNNTs), the one-dimensional member of the boron nitride nanostructure family, are generally accepted to be highly inert to oxidative treatments and can only be covalently modifi ed by highly reactive species. Conversely, it is discovered that the BNNTs can be chemically dispersed and their morphology modifi ed by a relatively mild method: simply sonicating the nanotubes in aqueous ammonia solution. The dispersed nanotubes are significantly corroded, with end-caps removed, tips sharpened, and walls thinned. The sonication treatment in aqueous ammonia solution also removes amorphous BN impurities and shortened BNNTs, resembling various oxidative treatments of carbon nanotubes. Importantly, the majority of BNNTs are at least partially longitudinally cut, or "unzipped". Entangled and freestanding BN nanoribbons (BNNRs), resulting from the unzipping, are found to be approximately 5-20 nm in width and up to a few hundred nanometers in length. This is the fi rst chemical method to obtain BNNRs from BNNT unzipping. This method is not derived from known carbon nanotube unzipping strategies, but is unique to BNNTs because the use of aqueous ammonia solutions specifi cally targets the B-N bond network. This study may pave the way for convenient processing of BNNTs, previously thought to be highly inert, toward controlling their dispersion, purity, lengths, and electronic properties.

  9. Low power generation of equalized broadband CW supercontinua using a novel technique incorporating modulation instability of line broadened pump

    NASA Astrophysics Data System (ADS)

    Prakash, Roopa; Choudhury, Vishal; Arun, S.; Supradeepa, V. R.

    2018-02-01

    Continuous-wave(CW) supercontinuum sources find applications in various domains such as imaging, spectroscopy, test and measurement. They are generated by pumping an optical fiber with a CW laser in the anomalous-dispersion region close to its zero-dispersion wavelength. Modulation instability(MI) sidebands are created, and further broadened and equalized by additional nonlinear processes generating the supercontinuum. This necessitates high optical powers and at lower powers, only MI sidebands can be seen without the formation of the supercontinuum. Obtaining a supercontinuum at low, easily manageable optical powers is attractive for many applications, but current techniques cannot achieve this. In this work, we propose a new mechanism for low power supercontinuum generation utilizing the modified MI gain spectrum for a line-broadened, decorrelated pump. A novel two-stage generation mechanism is demonstrated, where the first stage constituting standard telecom fiber slightly broadens the input pump linewidth. However, this process in the presence of dispersion, acts to de-correlate the different spectral components of the pump signal. When this is sent through highly nonlinear fiber near its zero-dispersion wavelength, the shape of the MI gain spectrum is modified, and this process naturally results in the generation of a broadband, equalized supercontinuum source at much lower powers than possible using conventional single stage spectral broadening. Here, we demonstrate a 0.5W supercontinuum source pumped using a 4W Erbium-Ytterbium co-doped fiber laser with a bandwidth spanning from 1300nm to 2000nm. We also demonstrate an interesting behaviour of this technique of relative insensitivity to the pump wavelength vis-a-vis zero-dispersion wavelength of the fiber.

  10. Dielectric Relaxation Study of Multiferroic BiFe0.95(Ni0.5Ti0.5)0.05O3

    NASA Astrophysics Data System (ADS)

    Abdelkafi, Z.; Khasskhoussi, G.; Abdelmoula, N.

    2018-03-01

    The doping of BiFeO3 (BFO) with 5% of Ni and Ti to form the composition BiFe0.95(Ni0.5Ti0.5)0.05O3 (BFNT05) was prepared via a solid state reaction technique. X-ray diffraction (XRD) shows that the prepared ceramic has a pure-phase perovskite structure with rhombohedral symmetry. Thermal evolution of the permittivity reveals a large value of permittivity accompanied by a strong dispersion. This evolution indicates a dielectric anomaly at around 520 K near the Néel temperature ( T N), which supports a strong magneto-dielectric coupling. The dielectric dispersion in BFNT05 was studied by the measurement of the permittivity over a wide frequency range from 20 Hz to 1 MHz at different temperatures 300-700 K. The experimental dielectric data was described by the Cole-Cole relaxation equation modified by introducing the conductivity. Modified impedance and modulus expressions were used successfully as tools to separate the contribution from grains and grain boundaries of BFNT05. The calculated bulk grain conductivity indicated an anomalous behavior near the temperature related to the antiferro-paramagnetic phase transition of the corresponding BFNT05 ceramic. In contrast, this ceramic exhibited a predominant grain boundaries behavior at the studied temperature and frequency range. In this case, they were the elements responsible for dielectric dispersion, and also they played an important role in the improvement of the dielectric behavior of this ceramic. The ac conductivity study confirmed the modified impedance and modulus expressions.

  11. Dielectric Relaxation Study of Multiferroic BiFe0.95(Ni0.5Ti0.5)0.05O3

    NASA Astrophysics Data System (ADS)

    Abdelkafi, Z.; Khasskhoussi, G.; Abdelmoula, N.

    2017-12-01

    The doping of BiFeO3 (BFO) with 5% of Ni and Ti to form the composition BiFe0.95(Ni0.5Ti0.5)0.05O3 (BFNT05) was prepared via a solid state reaction technique. X-ray diffraction (XRD) shows that the prepared ceramic has a pure-phase perovskite structure with rhombohedral symmetry. Thermal evolution of the permittivity reveals a large value of permittivity accompanied by a strong dispersion. This evolution indicates a dielectric anomaly at around 520 K near the Néel temperature (T N), which supports a strong magneto-dielectric coupling. The dielectric dispersion in BFNT05 was studied by the measurement of the permittivity over a wide frequency range from 20 Hz to 1 MHz at different temperatures 300-700 K. The experimental dielectric data was described by the Cole-Cole relaxation equation modified by introducing the conductivity. Modified impedance and modulus expressions were used successfully as tools to separate the contribution from grains and grain boundaries of BFNT05. The calculated bulk grain conductivity indicated an anomalous behavior near the temperature related to the antiferro-paramagnetic phase transition of the corresponding BFNT05 ceramic. In contrast, this ceramic exhibited a predominant grain boundaries behavior at the studied temperature and frequency range. In this case, they were the elements responsible for dielectric dispersion, and also they played an important role in the improvement of the dielectric behavior of this ceramic. The ac conductivity study confirmed the modified impedance and modulus expressions.

  12. A novel glycyrrhetinic acid-modified oxaliplatin liposome for liver-targeting and in vitro/vivo evaluation

    PubMed Central

    Chen, Jingde; Jiang, Hong; Wu, Yin; Li, Yandong; Gao, Yong

    2015-01-01

    In this study, oxaliplatin (OX) liposomes surface-modified with glycyrrhetinic acid (GA) were developed by the film-dispersion method. Their morphology, physical and chemical properties, and in vitro release performance were investigated. The transmission electron microscope (TEM) image showed that most liposomes were spherical particles with similar size and uniform dispersion. Both OX-liposomes and GA-OX-liposomes had an average size of 90 nm. They were negatively charged, with zeta potentials of −20.6 and −21.3 mV, respectively, and the entrapment efficiency values of both were higher than 94%. In vitro data showed that the application of liposomes could prolong the OX release. The relatively high correlation coefficient values obtained from analyzing the amount of drug released versus the square root of time depicted that release followed the Weibull model. No significant changes were observed after the addition of GA to the liposomes. In vivo, the relatively long time to reach the maximum plasma concentration of OX-liposomes suggested a sustained-release profile of liposomes, which was consistent with the results of the in vitro release study. The increased area under the curve and maximum plasma concentration of OX-liposomes and GA-OX-liposomes demonstrated an increased absorption. The drug concentration in tissues indicated that the GA-modified liposomes delivered OX mainly to liver after intravenous administration. In addition, no severe signs, such as appearance of epithelial necrosis or sloughing of epithelial cells, were detected in histology studies. PMID:25945038

  13. Refractive index of colloidal dispersions of spheroidal particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meeten, G.H.

    1980-09-01

    The effect of particle shape on the refractive index of a colloidal dispersion of spheroidal particles is investigated theoretically, using the Rayleigh, Rayleigh- Gans-Debye, and the anomalous diffraction light-scattering approximations. It is shown that departure from particle sphericity modify the dispersion refractive index, both size and shape being of importance.

  14. Casimir effect in the rainbow Einstein's universe

    NASA Astrophysics Data System (ADS)

    Bezerra, V. B.; Mota, H. F.; Muniz, C. R.

    2017-10-01

    In the present paper we investigate the effects caused by the modification of the dispersion relation obtained by solving the Klein-Gordon equation in the closed Einstein's universe in the context of rainbow's gravity models. Thus, we analyse how the quantum vacuum fluctuations of the scalar field are modified when compared with the results obtained in the usual General Relativity scenario. The regularization, and consequently the renormalization, of the vacuum energy is performed adopting the Epstein-Hurwitz and Riemann's zeta functions.

  15. Study of RE-garnets using BPW method

    NASA Astrophysics Data System (ADS)

    Goveas, Neena; Mukhopadhyay, P.; Mukhopadhyay, G.

    1995-02-01

    The magnetic susceptibility of rare-earth (Y and Lu) iron garnets is studied using a modified Bethe-Peierls-Weiss (BPW) approximation. The modifications enable us to incorporate the three exchange parameters Jad, Jaa and Jdd necessary to describe the systems. We get excellent fits to the experimental susceptibilities from which we determined the J-values. These also give excellent agreement with the spin wave dispersion relation constant D.

  16. Exact solutions for (1 + 1)-dimensional nonlinear dispersive modified Benjamin-Bona-Mahony equation and coupled Klein-Gordon equations.

    PubMed

    Khan, Kamruzzaman; Akbar, M Ali; Islam, S M Rayhanul

    2014-01-01

    In this work, recently developed modified simple equation (MSE) method is applied to find exact traveling wave solutions of nonlinear evolution equations (NLEEs). To do so, we consider the (1 + 1)-dimensional nonlinear dispersive modified Benjamin-Bona-Mahony (DMBBM) equation and coupled Klein-Gordon (cKG) equations. Two classes of explicit exact solutions-hyperbolic and trigonometric solutions of the associated equations are characterized with some free parameters. Then these exact solutions correspond to solitary waves for particular values of the parameters. 02.30.Jr; 02.70.Wz; 05.45.Yv; 94.05.Fg.

  17. [Application of negative binomial regression and modified Poisson regression in the research of risk factors for injury frequency].

    PubMed

    Cao, Qingqing; Wu, Zhenqiang; Sun, Ying; Wang, Tiezhu; Han, Tengwei; Gu, Chaomei; Sun, Yehuan

    2011-11-01

    To Eexplore the application of negative binomial regression and modified Poisson regression analysis in analyzing the influential factors for injury frequency and the risk factors leading to the increase of injury frequency. 2917 primary and secondary school students were selected from Hefei by cluster random sampling method and surveyed by questionnaire. The data on the count event-based injuries used to fitted modified Poisson regression and negative binomial regression model. The risk factors incurring the increase of unintentional injury frequency for juvenile students was explored, so as to probe the efficiency of these two models in studying the influential factors for injury frequency. The Poisson model existed over-dispersion (P < 0.0001) based on testing by the Lagrangemultiplier. Therefore, the over-dispersion dispersed data using a modified Poisson regression and negative binomial regression model, was fitted better. respectively. Both showed that male gender, younger age, father working outside of the hometown, the level of the guardian being above junior high school and smoking might be the results of higher injury frequencies. On a tendency of clustered frequency data on injury event, both the modified Poisson regression analysis and negative binomial regression analysis can be used. However, based on our data, the modified Poisson regression fitted better and this model could give a more accurate interpretation of relevant factors affecting the frequency of injury.

  18. Controllable pt nanoparticle deposition on carbon nanotubes as an anode catalyst for direct methanol fuel cells.

    PubMed

    Mu, Yongyan; Liang, Hanpu; Hu, Jinsong; Jiang, Li; Wan, Lijun

    2005-12-01

    We report a novel process to prepare well-dispersed Pt nanoparticles on CNTs. Pt nanoparticles, which were modified by the organic molecule triphenylphosphine, were deposited on multiwalled carbon nanotubes by the organic molecule, which acts as a cross linker. By manipulating the relative ratio of Pt nanoparticles and multiwalled carbon nanotubes in solution, Pt/CNT composites with different Pt content were achieved. The so-prepared Pt/CNT composite materials show higher electrocatalytic activity and better tolerance to poisoning species in methanol oxidation than the commercial E-TEK catalyst, which can be ascribed to the high dispersion of Pt nanoparticles on the multiwalled carbon nanotube surface.

  19. Predicting the Velocity Dispersions of the Dwarf Satellite Galaxies of Andromeda

    NASA Astrophysics Data System (ADS)

    McGaugh, Stacy S.

    2016-05-01

    Dwarf Spheroidal galaxies in the Local Group are the faintest and most diffuse stellar systems known. They exhibit large mass discrepancies, making them popular laboratories for studying the missing mass problem. The PANDAS survey of M31 revealed dozens of new examples of such dwarfs. As these systems were discovered, it was possible to use the observed photometric properties to predict their stellar velocity dispersions with the modified gravity theory MOND. These predictions, made in advance of the observations, have since been largely confirmed. A unique feature of MOND is that a structurally identical dwarf will behave differently when it is or is not subject to the external field of a massive host like Andromeda. The role of this "external field effect" is critical in correctly predicting the velocity dispersions of dwarfs that deviate from empirical scaling relations. With continued improvement in the observational data, these systems could provide a test of the strong equivalence principle.

  20. Application of GIS to modified models of vehicle emission dispersion

    NASA Astrophysics Data System (ADS)

    Jin, Taosheng; Fu, Lixin

    This paper reports on a preliminary study of the forecast and evaluation of transport-related air pollution dispersion in urban areas. Some modifications of the traditional Gauss dispersion models are provided, and especially a crossroad model is built, which considers the great variation of vehicle emission attributed to different driving patterns at the crossroad. The above models are combined with a self-developed geographic information system (GIS) platform, and a simulative system with graphical interfaces is built. The system aims at visually describing the influences on the urban environment by urban traffic characteristics and therefore gives a reference to the improvement of urban air quality. Due to the introduction of a self-developed GIS platform and a creative crossroad model, the system is more effective, flexible and accurate. Finally, a comparison of the simulated (predicted) and observed hourly concentration is given, which indicates a good simulation.

  1. Temperature dependent structural and vibrational properties of liquid indium

    NASA Astrophysics Data System (ADS)

    Patel, A. B.; Bhatt, N. K.

    2018-05-01

    The influence of the temperature effect on both the structure factor and the phonon dispersion relation of liquid indium have been investigated by means of pseudopotential theory. The Percus-Yevick Hard Sphere reference system is applied to describe the structural calculation. The effective electron-ion interaction is explained by using modified empty core potential due to Hasegawa et al. along with a local field correction function due to Ichimaru-Utsumi (IU). The temperature dependence of pair potential needed at higher temperatures was achieved by multiplying the damping factor exp(- π/kBT2k F r ) in the pair potential. Very close agreement of static structure factor, particularly, at elevated temperatures confirms the validity of the local potential. A positive dispersion is found in low-q region and the correct trend of phonon dispersion branches like the experimental; shows all broad features of collective excitations in liquid metals.

  2. Synthesis of water-dispersed magnetic nanoparticles (H2O-DMNPs) of β-cyclodextrin modified Fe3O4 and its catalytic application in Kabachnik-Fields multicomponent reaction

    NASA Astrophysics Data System (ADS)

    Rostamnia, Sadegh; Doustkhah, Esmail

    2015-07-01

    Water-dispersed magnetic nanoparticles (H2O-DMNPs) of β-cyclodextrin modified Fe3O4 were successfully synthesized. β-Cyclodextrin acts as stabilizer and structure directing agent of Fe3O4. Subsequently, the dispersion of Fe3O4@β-CD was applied for the Kabachnik-Fields multicomponent reaction through three-component synthesis of an amine, aldehyde, and dimethylphosphonate. β-CD had also a drastic effect in accelerating the catalysis of phosphonate synthesis. By this protocol, phosphonate derivatives were synthesized in high yields and the catalyst was recycled for 10 successful runs.

  3. Phonon dispersion and local density of states in NiPd alloy using modified embedded atom method potential

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joshi, Subodh, E-mail: subodhssgk@gmail.com; Chand, Manesh, E-mail: maneshchand@gmail.com; Dabral, Krishna, E-mail: kmkrishna.dabral@gmail.com

    2016-05-06

    A modified embedded atom method (MEAM) potential model up to second neighbours has been used to calculate the phonon dispersions for Ni{sub 0.55}Pd{sub 0.45} alloy in which Pd is introduced as substitutional impurity. Using the force-constants obtained from MEAM potential, the local vibrational density of states in host Ni and substitutional Pd atoms using Green’s function method has been calculated. The calculation of phonon dispersions of NiPd alloy shows a good agreement with the experimental results. Condition of resonance mode has also been investigated and resonance mode in the frequency spectrum of impurity atom at low frequency is observed.

  4. Anthropogenic Habitats Facilitate Dispersal of an Early Successional Obligate: Implications for Restoration of an Endangered Ecosystem.

    PubMed

    Amaral, Katrina E; Palace, Michael; O'Brien, Kathleen M; Fenderson, Lindsey E; Kovach, Adrienne I

    2016-01-01

    Landscape modification and habitat fragmentation disrupt the connectivity of natural landscapes, with major consequences for biodiversity. Species that require patchily distributed habitats, such as those that specialize on early successional ecosystems, must disperse through a landscape matrix with unsuitable habitat types. We evaluated landscape effects on dispersal of an early successional obligate, the New England cottontail (Sylvilagus transitionalis). Using a landscape genetics approach, we identified barriers and facilitators of gene flow and connectivity corridors for a population of cottontails in the northeastern United States. We modeled dispersal in relation to landscape structure and composition and tested hypotheses about the influence of habitat fragmentation on gene flow. Anthropogenic and natural shrubland habitats facilitated gene flow, while the remainder of the matrix, particularly development and forest, impeded gene flow. The relative influence of matrix habitats differed between study areas in relation to a fragmentation gradient. Barrier features had higher explanatory power in the more fragmented site, while facilitating features were important in the less fragmented site. Landscape models that included a simultaneous barrier and facilitating effect of roads had higher explanatory power than models that considered either effect separately, supporting the hypothesis that roads act as both barriers and facilitators at all spatial scales. The inclusion of LiDAR-identified shrubland habitat improved the fit of our facilitator models. Corridor analyses using circuit and least cost path approaches revealed the importance of anthropogenic, linear features for restoring connectivity between the study areas. In fragmented landscapes, human-modified habitats may enhance functional connectivity by providing suitable dispersal conduits for early successional specialists.

  5. Anthropogenic Habitats Facilitate Dispersal of an Early Successional Obligate: Implications for Restoration of an Endangered Ecosystem

    PubMed Central

    Amaral, Katrina E.; Palace, Michael; O’Brien, Kathleen M.; Fenderson, Lindsey E.; Kovach, Adrienne I.

    2016-01-01

    Landscape modification and habitat fragmentation disrupt the connectivity of natural landscapes, with major consequences for biodiversity. Species that require patchily distributed habitats, such as those that specialize on early successional ecosystems, must disperse through a landscape matrix with unsuitable habitat types. We evaluated landscape effects on dispersal of an early successional obligate, the New England cottontail (Sylvilagus transitionalis). Using a landscape genetics approach, we identified barriers and facilitators of gene flow and connectivity corridors for a population of cottontails in the northeastern United States. We modeled dispersal in relation to landscape structure and composition and tested hypotheses about the influence of habitat fragmentation on gene flow. Anthropogenic and natural shrubland habitats facilitated gene flow, while the remainder of the matrix, particularly development and forest, impeded gene flow. The relative influence of matrix habitats differed between study areas in relation to a fragmentation gradient. Barrier features had higher explanatory power in the more fragmented site, while facilitating features were important in the less fragmented site. Landscape models that included a simultaneous barrier and facilitating effect of roads had higher explanatory power than models that considered either effect separately, supporting the hypothesis that roads act as both barriers and facilitators at all spatial scales. The inclusion of LiDAR-identified shrubland habitat improved the fit of our facilitator models. Corridor analyses using circuit and least cost path approaches revealed the importance of anthropogenic, linear features for restoring connectivity between the study areas. In fragmented landscapes, human-modified habitats may enhance functional connectivity by providing suitable dispersal conduits for early successional specialists. PMID:26954014

  6. Influences of modified bacterial cellulose nanofibers (BCNs) on structural, thermophysical, optical, and barrier properties of poly ethylene-co-vinyl acetate (EVA) nanocomposite.

    PubMed

    Ghadikolaei, Shila Shirdel; Omrani, Abdollah; Ehsani, Morteza

    2018-04-14

    The BCNs were chemically modified using acetic anhydride with the aim of improving its dispersion and interfacial adhesion. Acetylation of BCNs was confirmed by FT-IR spectroscopy. Morphology studies using TEM and SEM revealed that a reasonable dispersion of the modified BCNs in the EVA matrix was accomplished. The DSC data displayed a little shift in the T g to higher temperatures with the incorporation of both modified and unmodified BCNs. Increased thermal stability of the nanocomposites consisting acetylated BCNs was confirmed by TGA technique. DMA measurements highlighted that the storage modulus increased and the damping properties decreased for the nanocomposites with regard to the neat EVA. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Constructing a Multiple Covalent Interface and Isolating a Dispersed Structure in Silica/Rubber Nanocomposites with Excellent Dynamic Performance.

    PubMed

    Zheng, Junchi; Han, Dongli; Zhao, Suhe; Ye, Xin; Wang, Yiqing; Wu, Youping; Dong, Dong; Liu, Jun; Wu, Xiaohui; Zhang, Liqun

    2018-06-13

    Realizing and manipulating a fine dispersion of silica nanoparticles (NPs) in the polymer matrix is always a great challenge. In this work, we first successfully synthesized N, N'-bis[3-(triethoxysilyl)propyl-isopropanol]-propane-1,3-diamine (TSPD), which was a new interface modifier, aiming to promote the dispersion of silica NPs. Through Fourier transform infrared spectroscopy, nuclear magnetic resonance analysis, and mass spectroscopy, we verified that TSPD contains together six ethoxy groups at its two ends. Then, we used this TSPD to modify the pure silica NPs, and this modified silica was abbreviated as D-MS, which is realized by the thermal gravimetric analysis examination, scanning electron microscopy analysis, and dynamic light scattering results. It was clearly observed that D-MS NPs are connected to one another but are not conglutinated tightly, exhibiting a novel predispersed structure with around 1-2 nm certain extent of interparticle distance. Next, we fabricated the following four elastomer nanocomposites such as pure silica/natural rubber (NR) composite (PS-NR), D-MS/NR composite (DMS-NR), bis-(γ-triethoxysilylpropyl)-tetrasulfide (TESPT)-modified silica/NR composite (TS-NR), and TESPT-modified D-MS/NR composite (T&DMS-NR) and found that the Payne effect is the smallest for T&DMS-NR via the combination use of the D-MS and the traditional coupling agent TESPT, which is attributed to its best dispersion state evidenced by the transmission electron microscopy results. Moreover, by measuring a series of other important mechanical performances such as the stress-strain curve, the dynamic strain dependence of the loss factor, and the heat build-up, we concluded that the T&DMS-NR system greatly exceeds those of the three other rubber composites. In general, this new approach provides a good opportunity to prepare a silica/rubber composite with excellent properties in mechanical strength and dynamic behavior by tailoring the fine dispersion of NPs.

  8. Effect of valence state and particle size on NO oxidation in fresh and aged Pt-based diesel oxidation catalysts

    NASA Astrophysics Data System (ADS)

    Liang, Yanli; Ding, Xinmei; Zhao, Ming; Wang, Jianli; Chen, Yaoqiang

    2018-06-01

    To stabilize Pt, Magnesium-modified SiO2-Al2O3 materials was used to impregnate with Pt, which could strengthen the bonding effect between Pt and Mg. Before and after aging, both showed a higher dispersion. High valence state of Pt in fresh modified catalyst was unfavorable of NO oxidation, indicating that the valence state of Pt was the leader factor in fresh catalytic performance. While for the aged Mg-modified sample, its reaction temperature of 30% NO conversion lowered by around 30 °C. The Pt stabilization via interacting with Mg derives a relation that the variation of Pt valence state and its exposed sites played a significant role in fresh and aged catalytic NO activity, respectively.

  9. Dispersion-optimized optical fiber for high-speed long-haul dense wavelength division multiplexing transmission

    NASA Astrophysics Data System (ADS)

    Wu, Jindong; Chen, Liuhua; Li, Qingguo; Wu, Wenwen; Sun, Keyuan; Wu, Xingkun

    2011-07-01

    Four non-zero-dispersion-shifted fibers with almost the same large effective area (Aeff) and optimized dispersion properties are realized by novel index profile designing and modified vapor axial deposition and modified chemical vapor deposition processes. An Aeff of greater than 71 μm2 is obtained for the designed fibers. Three of the developed fibers with positive dispersion are improved by reducing the 1550nm dispersion slope from 0.072ps/nm2/km to 0.063ps/nm2/km or 0.05ps/nm2/km, increasing the 1550nm dispersion from 4.972ps/nm/km to 5.679ps/nm/km or 7.776ps/nm/km, and shifting the zero-dispersion wavelength from 1500nm to 1450nm. One of these fibers is in good agreement with G655D and G.656 fibers simultaneously, and another one with G655E and G.656 fibers; both fibers are beneficial to high-bit long-haul dense wavelength division multiplexing systems over S-, C-, and L-bands. The fourth developed fiber with negative dispersion is also improved by reducing the 1550nm dispersion slope from 0.12ps/nm2/km to 0.085ps/nm2/km, increasing the 1550nm dispersion from -4ps/nm/km to -6.016ps/nm/km, providing facilities for a submarine transmission system. Experimental measurements indicate that the developed fibers all have excellent optical transmission and good macrobending and splice performances.

  10. Influence of the silane modifiers on the surface thermodynamic characteristics and dispersion of the silica into elastomer compounds.

    PubMed

    Castellano, Maila; Conzatti, Lucia; Turturro, Antonio; Costa, Giovanna; Busca, Guido

    2007-05-03

    A good dispersion of silica into elastomers, typically used in tire tread production, is obtained by grafting of the silica with multifunctional organosilanes. In this study, the influence of the chemical structure of a triethoxysilane (TES), octadecyltriethoxysilane (ODTES), and ODTES/bistriethoxysilylpropyltetrasulfane (TESPT) mixture was investigated by inverse gas chromatography (IGC) at infinite dilution. Thermodynamic results indicate a higher polarity of the silica surface modified with TES as compared to that of the unmodified silica due to new OH groups deriving from the hydrolysis of ethoxy groups of the silane; the long hydrocarbon substituent of the ODTES lies on the surface of silica and reduces the dispersive component of the silica surface tension. A comparison with silica modified with TESPT is discussed. An accurate morphological investigation by transmission electron microscopy (TEM) and automated image analysis (AIA) was carried out on aggregates of silica dispersed into a SBR compound loaded with 35 phr (per hundred rubber) of untreated and TESPT-treated silica. Morphological descriptors such as the projected area/perimeter ratio (A/P) and roundness (P2/4piA) provided direct and quantitative indications about the distribution of the filler into the rubber matrix.

  11. Stability of GO Modified by Different Dispersants in Cement Paste and Its Related Mechanism.

    PubMed

    Long, Wu-Jian; Fang, Changle; Wei, Jingjie; Li, Haodao

    2018-05-18

    Graphene oxide (GO) is a potential material to be used as a nano-reinforcement in cement matrix. However, a prerequisite for GO to fulfill its function in the cement matrix is homogeneous dispersion. In this study, the effects of three different dispersing agents (DAs), including polycarboxylate-based high range water reducer (P-HRWR), naphthalene-based high range water reducer (N-HRWR), and air entraining agent (AEA) on the dispersion of GO in aqueous solution, simulated concrete pore solution (SCPS), and suspension of cement pastes were sequentially investigated. Results showed that the dispersion effect of GO in aqueous solutions was improved with different DAs. However, the homogeneous dispersion of GO in aqueous solution re-agglomerated in SCPS and suspension of cement pastes. It was concluded that as the cement content and pH of aqueous solutions increased, GOs re-agglomerated and precipitated in an alkaline solution. A possible mechanism was proposed in this study and it was believed that electrostatic interactions and steric hindrance provided by the P-HRWR further made GOs stable in aqueous solutions. The ions and pH of cement pastes increased with the increasing amount of cement, which caused the separation of P-HRWR from GOs. Therefore, GOs were re-agglomerated and absorbed on the surface of the cement particles, resulting in GOs sedimentation.

  12. Coordinated Dispersal and Pre-Isthmian Assembly of the Central American Ichthyofauna

    PubMed Central

    Tagliacollo, Victor A.; Duke-Sylvester, Scott M.; Matamoros, Wilfredo A.; Chakrabarty, Prosanta

    2017-01-01

    Abstract We document patterns of coordinated dispersal over evolutionary time frames in heroine cichlids and poeciliine live-bearers, the two most species-rich clades of freshwater fishes in the Caribbean basin. Observed dispersal rate (DO) values were estimated from time-calibrated molecular phylogenies in Lagrange+, a modified version of the ML-based parametric biogeographic program Lagrange. DO is measured in units of “wallaces” (wa) as the number of biogeographic range-expansion events per million years. DO estimates were generated on a dynamic paleogeographic landscape of five areas over three time intervals from Upper Cretaceous to Recent. Expected dispersal rate (DE) values were generated from alternative paleogeographic models, with dispersal rates proportional to target area and source-river discharge volume, and inversely proportional to paleogeographic distance. Correlations between DO and DE were used to assess the relative contributions of these three biogeographic parameters. DO estimates imply a persistent dispersal corridor across the Eastern (Antillean) margin of the Caribbean plate, under the influence of prevailing and perennial riverine discharge vectors such as the Proto–Orinoco–Amazon river. Ancestral area estimation places the earliest colonizations of the Greater Antilles and Central America during the Paleocene–Eocene (ca. 58–45 Ma), potentially during the existence of an incomplete Paleogene Arc (∼59 Ma) or Lesser Antilles Arc (∼45 Ma), but predating the GAARlandia land bridge (∼34–33 Ma). Paleogeographic distance is the single best predictor of DO. The Western (Central American) plate margin did not serve as a dispersal corridor until the Late Neogene (12–0 Ma), and contributed relatively little to the formation of modern distributions. PMID:26370565

  13. A dispersion model for predicting the extent of starch liquefaction by Bacillus licheniformis alpha-amylase during reactive extrusion.

    PubMed

    Komolprasert, V; Ofoli, R Y

    1991-03-25

    A Baker-Perkins corotating twin screw extruder was used as a bioreactor to hydrolyze pregelantinized corn starch by themophilic Bacillus licheniformis alpha-amylase. The extruder was modeled as a tube, and characterized as a closed system. This characterization is not in the thermodynamic sense; rather, it relates to the profile of a tracer fluid upon entry to and exit from the reaction zone. The reaction kinetics were modeled by a modified first-order equation, which allowed the dispersion equation to be solved analytically with the Danckwerts boundary condition. Data from several extrusion runs were super-imposed to obtain a profile to evaluate the model. The dispersion number, determined from the first and second moments of the RTD curve, was primarily a function of the length of the reaction zone. There was good agreement between predictions and experimental data, especially at low dispersion numbers. In general, the axial dispersion model appears to be suitable for analysis of enzymatic reactions of up to 30% conversion. At a fixed flow rate and constant temperature, the extent of starch conversion depends significantly on moisture content, residence time and enzyme dosage, but not on screw speed.

  14. Modifying sulfomethylated alkali lignin by horseradish peroxidase to improve the dispersibility and conductivity of polyaniline

    NASA Astrophysics Data System (ADS)

    Yang, Dongjie; Huang, Wenjing; Qiu, Xueqing; Lou, Hongming; Qian, Yong

    2017-12-01

    Pine and wheat straw alkali lignin (PAL and WAL) were sulfomethylated to improve water solubility, polymerized with horseradish peroxidase (HRP) to improve the molecular weight (Mw) and applied to dope and disperse polyaniline (PANI). The structural effect of lignin from different origins on the reactivities of sulfomethylation and HRP polymerization was investigated. The results show that WAL with less methoxyl groups and lower Mw have higher reactivity in sulfomethylation (SWAL). More phenolic hydroxyl groups and lower Mw benefit the HRP polymerization of sulfomethylated PAL (SPAL). Due to the natural three-dimensional aromatic structure and introduced sulfonic groups, SPAL and SWAL could effectively dope and disperse PANI in water by π-π stacking and electrostatic interaction. HRP modified SPAL (HRP-SPAL) with much higher sulfonation degree and larger Mw significantly increased the conductivity and dispersibility of lignin/PANI composites.

  15. Variable Gene Dispersal Conditions and Spatial Deforestation Patterns Can Interact to Affect Tropical Tree Conservation Outcomes

    PubMed Central

    Kashimshetty, Yamini; Pelikan, Stephan; Rogstad, Steven H.

    2015-01-01

    Tropical lowland rain forest (TLRF) biodiversity is under threat from anthropogenic factors including deforestation which creates forest fragments of different sizes that can further undergo various internal patterns of logging. Such interventions can modify previous equilibrium abundance and spatial distribution patterns of offspring recruitment and/or pollen dispersal. Little is known about how these aspects of deforestation and fragmentation might synergistically affect TLRF tree recovery demographics and population genetics in newly formed forest fragments. To investigate these TLRF anthropogenic disturbance processes we used the computer program NEWGARDEN (NG), which models spatially-explicit, individual-based plant populations, to simulate 10% deforestation in six different spatial logging patterns for the plant functional type of a long-lived TLRF canopy tree species. Further, each logging pattern was analyzed under nine varying patterns of offspring versus pollen dispersal distances that could have arisen post-fragmentation. Results indicated that gene dispersal condition (especially via offspring) had a greater effect on population growth and genetic diversity retention (explaining 98.5% and 88.8% of the variance respectively) than spatial logging pattern (0.2% and 4.7% respectively), with ‘Near’ distance dispersal maximizing population growth and genetic diversity relative to distant dispersal. Within logged regions of the fragment, deforestation patterns closer to fragment borders more often exhibited lower population recovery rates and founding genetic diversity retention relative to more centrally located logging. These results suggest newly isolated fragments have populations that are more sensitive to the way in which their offspring and pollen dispersers are affected than the spatial pattern in which subsequent logging occurs, and that large variation in the recovery rates of different TLRF tree species attributable to altered gene dispersal regimens will be a likely outcome of fragmentation. Conservation implications include possible manual interventions (manual manipulations of offspring dispersers and/or pollinators) in forest fragments to increase population recovery and genetic diversity retention. PMID:26000951

  16. Variable gene dispersal conditions and spatial deforestation patterns can interact to affect tropical tree conservation outcomes.

    PubMed

    Kashimshetty, Yamini; Pelikan, Stephan; Rogstad, Steven H

    2015-01-01

    Tropical lowland rain forest (TLRF) biodiversity is under threat from anthropogenic factors including deforestation which creates forest fragments of different sizes that can further undergo various internal patterns of logging. Such interventions can modify previous equilibrium abundance and spatial distribution patterns of offspring recruitment and/or pollen dispersal. Little is known about how these aspects of deforestation and fragmentation might synergistically affect TLRF tree recovery demographics and population genetics in newly formed forest fragments. To investigate these TLRF anthropogenic disturbance processes we used the computer program NEWGARDEN (NG), which models spatially-explicit, individual-based plant populations, to simulate 10% deforestation in six different spatial logging patterns for the plant functional type of a long-lived TLRF canopy tree species. Further, each logging pattern was analyzed under nine varying patterns of offspring versus pollen dispersal distances that could have arisen post-fragmentation. Results indicated that gene dispersal condition (especially via offspring) had a greater effect on population growth and genetic diversity retention (explaining 98.5% and 88.8% of the variance respectively) than spatial logging pattern (0.2% and 4.7% respectively), with 'Near' distance dispersal maximizing population growth and genetic diversity relative to distant dispersal. Within logged regions of the fragment, deforestation patterns closer to fragment borders more often exhibited lower population recovery rates and founding genetic diversity retention relative to more centrally located logging. These results suggest newly isolated fragments have populations that are more sensitive to the way in which their offspring and pollen dispersers are affected than the spatial pattern in which subsequent logging occurs, and that large variation in the recovery rates of different TLRF tree species attributable to altered gene dispersal regimens will be a likely outcome of fragmentation. Conservation implications include possible manual interventions (manual manipulations of offspring dispersers and/or pollinators) in forest fragments to increase population recovery and genetic diversity retention.

  17. Thermodynamic phase transition in the rainbow Schwarzschild black hole

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gim, Yongwan; Kim, Wontae, E-mail: yongwan89@sogang.ac.kr, E-mail: wtkim@sogang.ac.kr

    2014-10-01

    We study the thermodynamic phase transition in the rainbow Schwarzschild black hole where the metric depends on the energy of the test particle. Identifying the black hole temperature with the energy from the modified dispersion relation, we obtain the modified entropy and thermodynamic energy along with the modified local temperature in the cavity to provide well defined black hole states. It is found that apart from the conventional critical temperature related to Hawking-Page phase transition there appears an additional critical temperature which is of relevance to the existence of a locally stable tiny black hole; however, the off-shell free energymore » tells us that this black hole should eventually tunnel into the stable large black hole. Finally, we discuss the reason why the temperature near the horizon is finite in the rainbow black hole by employing the running gravitational coupling constant, whereas it is divergent near the horizon in the ordinary Schwarzschild black hole.« less

  18. Process for the preparation of organoclays

    DOEpatents

    Chaiko, David J.

    2004-11-23

    A method for preparing organoclays for use as rheological control agents and in the preparation of nanocomposites. Typically, the clay is dispersed in water, and a specific amount of polymeric hydrotrope, ranging from 0.1 to 15 weight percent relative to the weight of the clay, is adsorbed onto the clay surface. Quaternary amine exchange is also performed on the clay to modify the surface hydrophilic/lipophilic balance (HLB) of the clay.

  19. Efficient anisotropic quasi-P wavefield extrapolation using an isotropic low-rank approximation

    NASA Astrophysics Data System (ADS)

    Zhang, Zhen-dong; Liu, Yike; Alkhalifah, Tariq; Wu, Zedong

    2018-04-01

    The computational cost of quasi-P wave extrapolation depends on the complexity of the medium, and specifically the anisotropy. Our effective-model method splits the anisotropic dispersion relation into an isotropic background and a correction factor to handle this dependency. The correction term depends on the slope (measured using the gradient) of current wavefields and the anisotropy. As a result, the computational cost is independent of the nature of anisotropy, which makes the extrapolation efficient. A dynamic implementation of this approach decomposes the original pseudo-differential operator into a Laplacian, handled using the low-rank approximation of the spectral operator, plus an angular dependent correction factor applied in the space domain to correct for anisotropy. We analyse the role played by the correction factor and propose a new spherical decomposition of the dispersion relation. The proposed method provides accurate wavefields in phase and more balanced amplitudes than a previous spherical decomposition. Also, it is free of SV-wave artefacts. Applications to a simple homogeneous transverse isotropic medium with a vertical symmetry axis (VTI) and a modified Hess VTI model demonstrate the effectiveness of the approach. The Reverse Time Migration applied to a modified BP VTI model reveals that the anisotropic migration using the proposed modelling engine performs better than an isotropic migration.

  20. Dispersive traveling wave solutions of the Equal-Width and Modified Equal-Width equations via mathematical methods and its applications

    NASA Astrophysics Data System (ADS)

    Lu, Dianchen; Seadawy, Aly R.; Ali, Asghar

    2018-06-01

    The Equal-Width and Modified Equal-Width equations are used as a model in partial differential equations for the simulation of one-dimensional wave transmission in nonlinear media with dispersion processes. In this article we have employed extend simple equation method and the exp(-varphi(ξ)) expansion method to construct the exact traveling wave solutions of equal width and modified equal width equations. The obtained results are novel and have numerous applications in current areas of research in mathematical physics. It is exposed that our method, with the help of symbolic computation, provides a effective and powerful mathematical tool for solving different kind nonlinear wave problems.

  1. Timing is everything: priority effects alter community invasibility after disturbance.

    PubMed

    Symons, Celia C; Arnott, Shelley E

    2014-02-01

    Theory suggests that communities should be more open to the establishment of regional species following disturbance because disturbance may make more resources available to dispersers. However, after an initial period of high invasibility, growth of the resident community may lead to the monopolization of local resources and decreased probability of successful colonist establishment. During press disturbances (i.e., directional environmental change), it remains unclear what effect regional dispersal will have on local community structure if the establishment of later arriving species is affected by early arriving species (i.e., if priority effects are important). To determine the relationship between time-since-disturbance and invasibility, we conducted a fully factorial field mesocosm experiment that exposed tundra zooplankton communities to two emerging stressors - nutrient and salt addition, and manipulated the arrival timing of regional dispersers. Our results demonstrate that invasibility decreases with increasing time-since-disturbance as abundance (nutrient treatments) or species richness (salt treatments) increases in the resident community. Results suggest that the relative timing of dispersal and environmental change will modify the importance of priority effects in determining species composition after a press disturbance.

  2. Evaluation of the recrystallization kinetics of hot-melt extruded polymeric solid dispersions using an improved Avrami equation

    PubMed Central

    Feng, Xin; Ye, Xingyou; Park, Jun-Bom; Lu, Wenli; Morott, Joe; Beissner, Brad; Lian, Zhuoyang John; Pinto, Elanor; Bi, Vivian; Porter, Stu; Durig, Tom; Majumdar, Soumyajit; Repka, Michael A.

    2017-01-01

    The recrystallization of an amorphous drug in a solid dispersion system could lead to a loss in the drug solubility and bioavailability. The primary objective of the current research was to use an improved kinetic model to evaluate the recrystallization kinetics of amorphous structures and to further understand the factors influencing the physical stability of amorphous solid dispersions. Amorphous solid dispersions of fenofibrate with different molecular weights of hydroxypropylcellulose, HPC (Klucel™ LF, EF, ELF) were prepared utilizing hot-melt extrusion technology. Differential scanning calorimetry was utilized to quantitatively analyze the extent of recrystallization in the samples stored at different temperatures and relative humidity (RH) conditions. The experimental data were fitted into the improved kinetics model of a modified Avrami equation to calculate the recrystallization rate constants. Klucel LF, the largest molecular weight among the HPCs used, demonstrated the greatest inhibition of fenofibrate recrystallization. Additionally, the recrystallization rate (k) decreased with increasing polymer content, however exponentially increased with higher temperature. Also k increased linearly rather than exponentially over the range of RH studied. PMID:25224341

  3. Evaluation of the recrystallization kinetics of hot-melt extruded polymeric solid dispersions using an improved Avrami equation.

    PubMed

    Feng, Xin; Ye, Xingyou; Park, Jun-Bom; Lu, Wenli; Morott, Joe; Beissner, Brad; Lian, Zhuoyang John; Pinto, Elanor; Bi, Vivian; Porter, Stu; Durig, Tom; Majumdar, Soumyajit; Repka, Michael A

    2015-01-01

    The recrystallization of an amorphous drug in a solid dispersion system could lead to a loss in the drug solubility and bioavailability. The primary objective of the current research was to use an improved kinetic model to evaluate the recrystallization kinetics of amorphous structures and to further understand the factors influencing the physical stability of amorphous solid dispersions. Amorphous solid dispersions of fenofibrate with different molecular weights of hydroxypropylcellulose, HPC (Klucel™ LF, EF, ELF) were prepared utilizing hot-melt extrusion technology. Differential scanning calorimetry was utilized to quantitatively analyze the extent of recrystallization in the samples stored at different temperatures and relative humidity (RH) conditions. The experimental data were fitted into the improved kinetics model of a modified Avrami equation to calculate the recrystallization rate constants. Klucel LF, the largest molecular weight among the HPCs used, demonstrated the greatest inhibition of fenofibrate recrystallization. Additionally, the recrystallization rate (k) decreased with increasing polymer content, however exponentially increased with higher temperature. Also k increased linearly rather than exponentially over the range of RH studied.

  4. Modified two-photon absorption and dispersion of ultrafast third-order polarization beats via twin noisy driving fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang Yanpeng; Department of Electronic Science and Technology, Xi'an Jiaotong University, Xi'an 710049; Gan Chenli

    2006-05-15

    We investigate the color-locked twin-noisy-field correlation effects in third-order nonlinear absorption and dispersion of ultrafast polarization beats. We demonstrate a phase-sensitive method for studying the two-photon nondegenerate four-wave mixing (NDFWM) due to atomic coherence in a multilevel system. The reference signal is another one-photon degenerate four-wave-mixing signal, which propagates along the same optical path as the NDFWM signal. This method is used for studying the phase dispersion of the third-order susceptibility and for the optical heterodyne detection of the NDFWM signal. The third-order nonlinear response can be controlled and modified through the color-locked correlation of twin noisy fields.

  5. Highly selective determination of dopamine in the presence of ascorbic acid and serotonin at glassy carbon electrodes modified with carbon nanotubes dispersed in polyethylenimine.

    PubMed

    Rodríguez, Marcela C; Rubianes, María D; Rivas, Gustavo A

    2008-11-01

    We report the highly selective and sensitive voltammetric dopamine quantification in the presence of ascorbic acid and serotonin by using glassy carbon electrodes modified with a dispersion of multi-wall carbon nanotubes (MWCNT) in polyethylenimine, PEI (GCE/MWCNT-PEI). The electrocatalytic activity of the MWCNT deposited on the glassy carbon electrode has allowed an important decrease in the overvoltages for the oxidation of ascorbic acid and dopamine, making possible a clear definition of dopamine, serotonin and ascorbic acid oxidation processes. The sensitivities for dopamine in the presence and absence of 1.0 mM ascorbic acid and serotonin were (2.18 +/- 0.03) x 10(5) microAM(-1) (r = 0.9998); and (2.10 +/- 0.07) x 10(5) miroAM(-1) (r=0.9985), respectively, demonstrating the excellent performance of the GCE/MWCNT-PEI. The detection limit for dopamine in the mixture was 9.2 x 10(-7) M. The R. S. D. for the determination of 50 microM dopamine using four different electrodes was 3.9% when modified with the same MWCNT/PEI dispersion, and 4.6% when using four different dispersions. The modified electrode has been successfully applied for recovery assays of dopamine in human blood serum. Therefore, the new sensor represents an interesting and promising alternative for the electrochemical quantification of neurotransmitters and other analytes of clinical interest.

  6. Particle-hole symmetry and composite fermions in fractional quantum Hall states

    NASA Astrophysics Data System (ADS)

    Nguyen, Dung Xuan; Golkar, Siavash; Roberts, Matthew M.; Son, Dam Thanh

    2018-05-01

    We study fractional quantum Hall states at filling fractions in the Jain sequences using the framework of composite Dirac fermions. Synthesizing previous work, we write an effective field theory consistent with all symmetry requirements, including Galilean invariance and particle-hole symmetry. Employing a Fermi-liquid description, we demonstrate the appearance of the Girvin-Macdonald-Platzman algebra and compute the dispersion relation of neutral excitations and various response functions. Our results satisfy requirements of particle-hole symmetry. We show that while the dispersion relation obtained from the modified random-phase approximation (MRPA) of the Halperin-Lee-Read (HLR) theory is particle-hole symmetric, correlation functions obtained from this scheme are not. The results of the Dirac theory are shown to be consistent with the Haldane bound on the projected structure factor, while those of the MPRA of the HLR theory violate it.

  7. Strong Broadband Terahertz Optical Activity through Control of the Blaschke Phase with Chiral Metasurfaces

    NASA Astrophysics Data System (ADS)

    Cole, Michael A.; Chen, Wen-chen; Liu, Mingkai; Kruk, Sergey S.; Padilla, Willie J.; Shadrivov, Ilya V.; Powell, David A.

    2017-07-01

    We demonstrate terahertz chiral metamaterials that achieve resonant transmission and strong optical activity. This response is realized in a metasurface coupled to its Babinet complement, with additional twist. Uniquely, the optical activity achieved in this type of metamaterial is weakly dispersive around the resonant transmission maxima, but it can be highly dispersive around the transmission minima. It has recently been shown that this unique optical activity response is closely related to zeros in the transmission spectra of circular polarizations through the Kramers-Kronig relations and strong resonant features in the optical activity spectrum corresponding to the Blaschke phase terms. Here we demonstrate how modifying the meta-atom geometry greatly affects the location and magnitude of these Blaschke phase terms. We study three different meta-atoms, which are variations on the simple cross structure. Their responses are measured using terahertz time-domain spectroscopy and analyzed via numerical simulations.

  8. Aspects of the Fracture Toughness of Carbon Nanotube Modified Epoxy Polymer Composites

    NASA Astrophysics Data System (ADS)

    Mirjalili, Vahid

    Epoxy resins used in fibre reinforced composites exhibit a brittle fracture behaviour, because they show no sign of damage prior to a catastrophic failure. Rubbery materials and micro-particles have been added to epoxy resins to improve their fracture toughness, which reduces strength and elastic properties. In this research, carbon nanotubes (CNTs) are investigated as a potential toughening agent for epoxy resins and carbon fibre reinforced composites, which can also enhance strength and elastic properties. More specifically, the toughening mechanisms of CNTs are investigated theoretically and experimentally. The effect of aligned and randomly oriented carbon nanotubes (CNTs) on the fracture toughness of polymers was modelled using Elastic Plastic Fracture Mechanics. Toughening from CNT pull-out and rupture were considered, depending on the CNTs critical length. The model was used to identify the effect of CNTs geometrical and mechanical properties on the fracture toughness of CNT-modified epoxies. The modelling results showed that a uniform dispersion and alignment of a high volume fraction of CNTs normal to the crack growth plane would lead to the maximum fracture toughness enhancement. To achieve a uniform dispersion, the effect of processing on the dispersion of single walled and multi walled CNTs in epoxy resins was investigated. An instrumented optical microscope with a hot stage was used to quantify the evolution of the CNT dispersion during cure. The results showed that the reduction of the resin viscosity at temperatures greater than 100 °C caused an irreversible re-agglomeration of the CNTs in the matrix. The dispersion quality was then directly correlated to the fracture toughness of the modified resin. It was shown that the fine tuning of the ratio of epoxy resin, curing agent and CNT content was paramount to the improvement of the base resin fracture toughness. For the epoxy resin (MY0510 from Hexcel), an improvement of 38% was achieved with 0.3 wt.% of Single Walled CNT (SWNT). Finally, the CNT-modified epoxy resin was used to manufacture carbon fibre laminates by resin film infusion and prepreg technologies. The Mode I and Mode II delamination properties of the CNT-modified composite increased by 140% and 127%, respectively. In contrast, this improvement was not observed for the base CNT-modified polymers, used to manufacture the composite laminates. A qualitative analysis of the fractured surface using a Scanning Electron Microscope revealed a good dispersion in the composites samples, confirming the importance of processing to harness the full potential of carbon nanotubes for toughening polymer composites.

  9. Nonturbulent dispersion processes in complex terrain

    Treesearch

    Michael A. Fosberg; Douglas G. Fox; E.A. Howard; Jack D. Cohen

    1976-01-01

    Mass divergence influences on plume dispersion modify classic Gaussian calculations by as much as a factor of two in complex terrain. The Gaussian plume was derived in flux form to include this process.Authors' response to comments and criticism received following this publication:

  10. Dispersion-compensating photonic crystal fiber with wavelength tunability based on a modified dual concentric core structure

    NASA Astrophysics Data System (ADS)

    Chen, Nan; Zhang, Xuedian; Nie, Fukun; Lu, Xinglian; Chang, Min

    2018-07-01

    We present a 5-layer air-hole dispersion-compensating photonic crystal fiber (PCF) with a modified dual concentric core structure, based on central rod doping. The finite element method (FEM) was used to investigate the structure numerically. If the structural parameters remain unchanged, a high degree of linear correlation between the central rod refractive index and the operating wavelength can be achieved in the wavelength range of 1.5457-1.5857 μm, which suggests that the operating wavelength can be determined by the refractive index of the centre rod. A negative dispersion coefficient between -5765.2 ps/km/nm and -6115.8 ps/km/nm was obtained by calculation and within the bandwidth of 108 nm (1.515-1.623 μm) around 1.55 μm, a dispersion coefficient of -3000 ps/km/nm can be ensured for compensation. In addition, this proposed PCF also has the advantage of low confinement loss, between 0.00011 and 0.00012 dB/m, and ease of fabrication with existing technology. The proposed PCF has good prospects in dispersion-compensating applications.

  11. Sensitising potential of four textile dyes and some of their metabolites in a modified local lymph node assay.

    PubMed

    Stahlmann, Ralf; Wegner, Matthias; Riecke, Kai; Kruse, Matthias; Platzek, Thomas

    2006-02-15

    We studied the sensitising and allergenic potentials of the textile dyes disperse yellow 3, disperse orange 30, disperse red 82, disperse yellow 211 and two metabolites of disperse yellow 3, 4-aminoacetanilide and 2-amino-p-cresol, using modified protocols of the murine "local lymph node assay" (LLNA). Test substances were applied either to the dorsum of the mice ears (sensitisation protocol) or they were first applied to the skin of their backs and 2 weeks later to their ears (sensitisation-challenge protocol). In addition to the endpoints weight and cell number of the draining ear lymph nodes we analysed lymphocyte subpopulations by flow cytometry. In the sensitisation protocol, disperse yellow 3 and its metabolite 4-aminoacetanilide did not induce significant effects, whereas in the sensitisation-challenge protocol cell number and lymph node weight increased significantly indicating a sensitising potential in NMRI mice. Hence, two-phase treatment (skin of the back, ear) increased the sensitivity of this assay. The second metabolite of disperse yellow 3, 2-amino-p-cresol, showed distinct effects in both treatment protocols; this applied mainly to the parameters cell number and lymph node weight. The dye disperse red 82 caused ambiguous increases in lymph node weight and cell number in the sensitisation protocol which were not reproduced in the sensitisation-challenge protocol, ruling out a relevant sensitising potential for this dye in NMRI mice. Disperse yellow 211 and disperse orange 30 did not induce relevant changes under our experimental conditions. Phenotyping of lymphocytes did not influence the assessment of these dyes.

  12. Coating and dispersion of ceramic nanoparticles by UV-ozone etching assisted surface-initiated living radical polymerization.

    PubMed

    Arita, Toshihiko

    2010-10-01

    Commercially available unmodified ceramic nanoparticles (NPs) in dry powder state were surface-modified and dispersed in almost single-crystal size. The surface-initiated living radical polymerization after just UV-ozone soft etching enables one to graft polymers onto the surface of ceramic NPs and disperse them in solvents. Furthermore, a number of NPs were dispersed with single-crystal sizes. The technique developed here could be applied to almost all ceramic NPs including metal nitrides.

  13. PMR-15/Layered Silicate Nanocomposites For Improved Thermal Stability And Mechanical Properties

    NASA Technical Reports Server (NTRS)

    Campbell, Sandi; Scheiman, Daniel; Faile, Michael; Papadopoulos, Demetrios; Gray, Hugh R. (Technical Monitor)

    2002-01-01

    Montmorillonite clay was organically modified by co-exchange of an aromatic diamine and a primary alkyl amine. The clay was dispersed into a PMR (Polymerization of Monomer Reactants)-15 matrix and the glass transition temperature and thermal oxidative stability of the resulting nanocomposites were evaluated. PMR-15/ silicate nanocomposites were also investigated as a matrix material for carbon fabric reinforced composites. Dispersion of the organically modified silicate into the PMR-15 matrix enhanced the thermal oxidative stability, the flexural strength, flexural modulus, and interlaminar shear strength of the polymer matrix composite.

  14. Oxidation resistant, thoria-dispersed nickel-chromium-aluminum alloy

    NASA Technical Reports Server (NTRS)

    Baranow, S.; Klingler, L. J.

    1973-01-01

    Modified thoria-dispersed nickel-chromium alloy has been developed that exhibits greatly improved resistance to high-temperature oxidation. Additions of aluminum have been made to change nature of protective oxide scale entirely and to essentially inhibit oxidation at temperatures up to 1260 C.

  15. Timing matters: the interval between acute stressors within chronic mild stress modifies behavioral and physiologic stress responses in male rats.

    PubMed

    Cavigelli, Sonia A; Bao, Alexander D; Bourne, Rebecca A; Caruso, Michael J; Caulfield, Jasmine I; Chen, Mary; Smyth, Joshua M

    2018-04-12

    Chronic mild stress can lead to negative health outcomes. Frequency, duration, and intensity of acute stressors can affect health-related processes. We tested whether the temporal pattern of daily acute stressors (clustered or dispersed across the day) affects depression-related physiology. We used a rodent model to keep stressor frequency, duration, and intensity constant, and experimentally manipulated the temporal pattern of acute stressors delivered during the active phase of the day. Adult male Sprague-Dawley rats were exposed to one of three chronic mild stress groups: Clustered: stressors that occurred within 1 hour of each other (n = 21), Dispersed: stressors that were spread out across the active phase (n = 21), and Control: no stressors presented (n = 21). Acute mild stressors included noise, strobe lights, novel cage, cage tilt, wet bedding, and water immersion. Depression-related outcomes included: sucrose preference, body weight, circulating glucocorticoid (corticosterone) concentration after a novel acute stressor and during basal morning and evening times, and endotoxin-induced circulating interleukin-6 concentrations. Compared to control rats, those in the Clustered group gained less weight, consumed less sucrose, had a blunted acute corticosterone response, and an accentuated acute interleukin-6 response. Rats in the Dispersed group had an attenuated corticosterone decline during the active period and after an acute stressor compared to the Control group. During a chronic mild stress experience, the temporal distribution of daily acute stressors affected health-related physiologic processes. Regular exposure to daily stressors in rapid succession may predict more depression-related symptoms, whereas exposure to stressors dispersed throughout the day may predict diminished glucocorticoid negative feedback.

  16. Modification of Einstein A Coefficient in Dissipative Gas Medium

    NASA Technical Reports Server (NTRS)

    Cao, Chang-Qi; Cao, Hui; Qin, Ke-Cheng

    1996-01-01

    Spontaneous radiation in dissipative gas medium such as plasmas is investigated by Langevin equations and the modified Weisskopf-Wigner approximation. Since the refractive index of gas medium is expected to be nearly unity, we shall first neglect the medium polarization effect. We show that absorption in plasmas may in certain case modify the Einstein A coefficient significantly and cause a pit in the A coefficient-density curves for relatively low temperature plasmas and also a pit in the A coefficient-temperature curves. In the next, the effect of medium polarization is taken into account in addition. To our surprise, its effect in certain case is quite significant. The dispersive curves show different behaviors in different region of parameters.

  17. Nonlocal Symmetries, Conservation Laws and Interaction Solutions of the Generalised Dispersive Modified Benjamin-Bona-Mahony Equation

    NASA Astrophysics Data System (ADS)

    Yan, Xue-Wei; Tian, Shou-Fu; Dong, Min-Jie; Wang, Xiu-Bin; Zhang, Tian-Tian

    2018-05-01

    We consider the generalised dispersive modified Benjamin-Bona-Mahony equation, which describes an approximation status for long surface wave existed in the non-linear dispersive media. By employing the truncated Painlevé expansion method, we derive its non-local symmetry and Bäcklund transformation. The non-local symmetry is localised by a new variable, which provides the corresponding non-local symmetry group and similarity reductions. Moreover, a direct method can be provided to construct a kind of finite symmetry transformation via the classic Lie point symmetry of the normal prolonged system. Finally, we find that the equation is a consistent Riccati expansion solvable system. With the help of the Jacobi elliptic function, we get its interaction solutions between solitary waves and cnoidal periodic waves.

  18. Gas dispersion and immobile gas volume in solid and porous particle biofilter materials at low air flow velocities.

    PubMed

    Sharma, Prabhakar; Poulsen, Tjalfe G

    2010-07-01

    Gas-phase dispersion in granular biofilter materials with a wide range of particle sizes was investigated using atmospheric air and nitrogen as tracer gases. Two types of materials were used: (1) light extended clay aggregates (LECA), consisting of highly porous particles, and (2) gravel, consisting of solid particles. LECA is a commercial material that is used for insulation, as a soil conditioner, and as a carrier material in biofilters for air cleaning. These two materials were selected to have approximately the same particle shape. Column gas transport experiments were conducted for both materials using different mean particle diameters, different particle size ranges, and different gas flow velocities. Measured breakthrough curves were modeled using the advection-dispersion equation modified for mass transfer between mobile and immobile gas phases. The results showed that gas dispersivity increased with increasing mean particle diameter for LECA but was independent of mean particle diameter for gravel. Gas dispersivity also increased with increasing particle size range for both media. Dispersivities in LECA were generally higher than for gravel. The mobile gas content in both materials increased with increasing gas flow velocity but it did not show any strong dependency on mean particle diameter or particle size range. The relative fraction of mobile gas compared with total porosity was highest for gravel and lowest for LECA likely because of its high internal porosity.

  19. Synthesis of bi-phase dispersible core-shell FeAu@ZnO magneto-opto-fluorescent nanoparticles

    PubMed Central

    Li, Xue-Mei; Liu, Hong-Ling; Liu, Xiao; Fang, Ning; Wang, Xian-Hong; Wu, Jun-Hua

    2015-01-01

    Bi-phase dispersible core-shell FeAu@ZnO magneto-opto-fluorescent nanoparticles were synthesized by a modified nanoemulsion process using poly(ethylene glycol)-block-poly(propylene glycol)-block-poly(ethylene glycol) (PEO-PPO-PEO) as the surfactant. The morphology and crystal structure of the nanoparticles were studied by TEM/HRTEM and XRD. The nanoparticles manifest soft ferromagnetic and/or near superparamagnetic behavior with a small coercivity of ~19 Oe at room temperature. The corresponding magnetic hysteresis curves were elucidated by the modified Langevin equation. The FTIR study confirms the PEO-PPO-PEO molecules on the surface of the nanoparticles. The UV-vis and PL results reveal the well-behaved absorption bands including surface plasmon resonance and multiple visible fingerprint photoluminescent emissions of the nanoparticles dispersed in both hydrophilic and hydrophobic solvents. Moreover, the processes of solvent dispersion-collection of the nanoparticles were demonstrated for application readiness of such core-shell nanostructures. PMID:26548369

  20. Synthesis of bi-phase dispersible core-shell FeAu@ZnO magneto-opto-fluorescent nanoparticles

    NASA Astrophysics Data System (ADS)

    Li, Xue-Mei; Liu, Hong-Ling; Liu, Xiao; Fang, Ning; Wang, Xian-Hong; Wu, Jun-Hua

    2015-11-01

    Bi-phase dispersible core-shell FeAu@ZnO magneto-opto-fluorescent nanoparticles were synthesized by a modified nanoemulsion process using poly(ethylene glycol)-block-poly(propylene glycol)-block-poly(ethylene glycol) (PEO-PPO-PEO) as the surfactant. The morphology and crystal structure of the nanoparticles were studied by TEM/HRTEM and XRD. The nanoparticles manifest soft ferromagnetic and/or near superparamagnetic behavior with a small coercivity of ~19 Oe at room temperature. The corresponding magnetic hysteresis curves were elucidated by the modified Langevin equation. The FTIR study confirms the PEO-PPO-PEO molecules on the surface of the nanoparticles. The UV-vis and PL results reveal the well-behaved absorption bands including surface plasmon resonance and multiple visible fingerprint photoluminescent emissions of the nanoparticles dispersed in both hydrophilic and hydrophobic solvents. Moreover, the processes of solvent dispersion-collection of the nanoparticles were demonstrated for application readiness of such core-shell nanostructures.

  1. Synthesis of water dispersible boron core silica shell (B@SiO2) nanoparticles

    NASA Astrophysics Data System (ADS)

    Walton, Nathan I.; Gao, Zhe; Eygeris, Yulia; Ghandehari, Hamidreza; Zharov, Ilya

    2018-04-01

    Water dispersible boron nanoparticles have great potential as materials for boron neutron capture therapy of cancer and magnetic resonance imaging, if they are prepared on a large scale with uniform size and shape and hydrophilic modifiable surface. We report the first method to prepare spherical, monodisperse, water dispersible boron core silica shell nanoparticles (B@SiO2 NPs) suitable for aforementioned biomedical applications. In this method, 40 nm elemental boron nanoparticles, easily prepared by mechanical milling and carrying 10-undecenoic acid surface ligands, are hydrosilylated using triethoxysilane, followed by base-catalyzed hydrolysis of tetraethoxysilane, which forms a 10-nm silica shell around the boron core. This simple two-step process converts irregularly shaped hydrophobic boron particles into the spherically shaped uniform nanoparticles. The B@SiO2 NPs are dispersible in water and the silica shell surface can be modified with primary amines that allow for the attachment of a fluorophore and, potentially, of targeting moieties. [Figure not available: see fulltext.

  2. General virial theorem for modified-gravity MOND

    NASA Astrophysics Data System (ADS)

    Milgrom, Mordehai

    2014-01-01

    An important and useful relation is known to hold in two specific MOND theories. It pertains to low-acceleration, isolated systems of pointlike masses, mp, at positions rp, subject to gravitational forces Fp. It reads ∑prp·Fp=-(2/3)(Ga0)1/2 [(∑pmp)3/2-∑p mp3/2]; a0 is the MOND acceleration constant. Here I show that this relation holds in the nonrelativistic limit of any modified-gravity MOND theory. It follows from only the basic tenets of MOND, which include departure from standard dynamics at accelerations below a0, and space-time scale invariance in the nonrelativistic, low-acceleration limit. This implies space-dilatation invariance of the static, gravitational-field equations, which, in turn, leads to the above point-mass virial relation. Thus, the various MOND predictions and tests based on this relation hold in any modified-gravity MOND theory. Since we do not know that any of the existing MOND theories point in the right direction, it is important to identify such predictions that hold in a much larger class of theories. Among these predictions are the MOND two-body force for arbitrary masses, and a general mass-velocity-dispersion relation of the form σ2=(2/3)(MGa0)1/2[1-∑p(mp/M)3/2], where M = ∑p mp.

  3. Seed dispersal of Diospyros virginiana in the past and the present: Evidence for a generalist evolutionary strategy.

    PubMed

    Rebein, Mimi; Davis, Charli N; Abad, Helena; Stone, Taylor; Del Sol, Jillian; Skinner, Natalie; Moran, Matthew D

    2017-06-01

    Several North American trees are hypothesized to have lost their co-evolved seed disperser during the late-Pleistocene extinction and are therefore considered anachronistic. We tested this hypothesis for the American persimmon ( Diospyros virginiana ) by studying the effects of gut passage of proposed seed dispersers on seedling survival and growth, natural fruiting characteristics, and modern animal consumption patterns. We tested gut passage effects on persimmon seeds using three native living species, the raccoon ( Procyon lotor ), Virginia opossum ( Didelphis virginiana ), and coyote ( Canis latrans ), and two Pleistocene analogs; the Asian elephant ( Elephas maximus ) and alpaca ( Vicugna pacos ). Persimmon seeds excreted by raccoons, coyotes, and elephants survived gut transit. Gut passage did not affect sprouting success, but did tend to decrease time to sprout and increase seedling quality. Under field conditions, persimmon fruits were palatable on the parent tree and on the ground for an equal duration, but most fruits were consumed on the ground. Seven vertebrate species fed upon persimmon fruits, with the white-tailed deer ( Odocoileus virginianus )-a species not capable of dispersing persimmon seeds-comprising over 90% of detections. Conversely, potential living seed dispersers were rarely detected. Our results suggest the American persimmon evolved to attract a variety of seed dispersers and thus is not anachronistic. However, human-induced changes in mammal communities could be affecting successful seed dispersal. We argue that changes in the relative abundance of mammals during the Anthropocene may be modifying seed dispersal patterns, leading to potential changes in forest community composition.

  4. Enzymatic Synthesis of Lignin-Based Concrete Dispersing Agents.

    PubMed

    Jankowska, Dagmara; Heck, Tobias; Schubert, Mark; Yerlikaya, Alpaslan; Weymuth, Christophe; Rentsch, Daniel; Schober, Irene; Richter, Michael

    2018-03-15

    Lignin is the most abundant aromatic biopolymer, functioning as an integral component of woody materials. In its unmodified form it shows limited water solubility and is relatively unreactive, so biotechnological lignin valorisation for high-performance applications is greatly underexploited. Lignin can be obtained from the pulp and paper industry as a by-product. To expand its application, a new synthesis route to new dispersing agents for use as concrete additives was developed. The route is based on lignin functionalisation by enzymatic transformation. Screening of lignin-modifying systems resulted in functionalised lignin polymers with improved solubility in aqueous systems. Through grafting of sulfanilic acid or p-aminobenzoic acid by fungal laccases, lignin became soluble in water at pH≤4 or pH≤7, respectively. Products were analysed and evaluated in miniaturised application tests in cement paste and mortar. Their dispersing properties match the performance criteria of commercially available lignosulfonates. The study provides examples of new perspectives for the use of lignin. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Water adsorption on surface-modified cellulose nanocrystals

    NASA Astrophysics Data System (ADS)

    Wei, Zonghui; Sinko, Robert; Keten, Sinan; Luijten, Erik

    Cellulose nanocrystals (CNCs) have attracted much attention as a filler phase for polymer nanocomposites due to their impressive mechanical properties, low cost, and environmental sustainability. Despite their promise for this application, there are still numerous obstacles that prevent optimal performance of CNC-polymer nanocomposites, such as poor filler dispersion and high levels of water absorption. One way to mitigate these negative effects is to modify CNC surfaces. Computational approaches can be utilized to obtain direct insight into the properties of modified CNC surfaces and probe the interactions of CNCs with other materials to facilitate the experimental design of nanocomposites. We use atomistic grand-canonical Monte Carlo simulations to study how surface modification of ion-exchanged sulfated cellulose nanocrystals (Na-CNCs) impacts water adsorption. We find that methyl(triphenyl)phosphonium-exchanged CNCs adsorb less water than Na-CNCs at the same relative humidity, supporting recent experimental dynamic vapor sorption measurements. By characterizing the distribution and configuration of water molecules near the modified CNC surfaces we determine how surface modifications disrupt CNC-water interactions.

  6. A strategy to synthesize graphene-incorporated lignin polymer composite materials with uniform graphene dispersion and covalently bonded interface engineering

    NASA Astrophysics Data System (ADS)

    Wang, Mei; Duong, Le Dai; Ma, Yifei; Sun, Yan; Hong, Sung Yong; Kim, Ye Chan; Suhr, Jonghwan; Nam, Jae-Do

    2017-08-01

    Graphene-incorporated polymer composites have been demonstrated to have excellent mechanical and electrical properties. In the field of graphene-incorporated composite material synthesis, there are two main obstacles: Non-uniform dispersion of graphene filler in the matrix and weak interface bonding between the graphene filler and polymer matrix. To overcome these problems, we develop an in-situ polymerization strategy to synthesize uniformly dispersed and covalently bonded graphene/lignin composites. Graphene oxide (GO) was chemically modified by 4,4'-methylene diphenyl diisocyanate (MDI) to introduce isocyanate groups and form the urethane bonds with lignin macromonomers. Subsequential polycondensation reactions of lignin groups with caprolactone and sebacoyl chloride bring about a covalent network of modified GO and lignin-based polymers. The flexible and robust lignin polycaprolactone polycondensate/modified GO (Lig-GOm) composite membranes are achieved after vacuum filtration, which have tunable hydrophilicity and electrical resistance according to the contents of GOm. This research transforms lignin from an abundant biomass into film-state composite materials, paving a new way for the utilization of biomass wastes.

  7. Preparation and encapsulation of white/yellow dual colored suspensions for electrophoretic displays

    NASA Astrophysics Data System (ADS)

    Han, Jingjing; Li, Xiaoxu; Feng, Yaqing; Zhang, Bao

    2014-11-01

    C.I. Pigment Yellow 181 (PY181) composite particles encapsulated by polyethylene (PE) were prepared by dispersion polymerization method, and C.I. Pigment Yellow 110 (PY110) composite particles encapsulated by polystyrene (PS) with mini-emulsion polymerization method were achieved, respectively. The modified pigments were characterized by fourier transform infrared spectroscopy, scanning electron microscope and transmission electron microscope. Compared with the PE-coated PY 181 pigments, the PS-coated PY-110 particles had a narrow particle size distribution, regular spherical and average particle size of 450 nm. Suspension 1 and suspension 3 were prepared by the two composite particles dispersed in isopar M. A chromatic electrophoretic display cell consisting of yellow particles was successfully fabricated using dispersions of yellow ink particles in a mixed dielectric solvent with white particles as contrast. The response behavior and the contrast ratio to the electric voltage were also examined. The contrast ratio of pigments modified by polystyrene was 1.48, as well as the response time was 2 s, which were better than those of pigments modified by polyethylene.

  8. Research on surface modification of nano-zirconia

    NASA Astrophysics Data System (ADS)

    Chen, Wen; Zhang, Cun-Lin; Yang, Xiao-Yi

    2005-02-01

    The mechanisms about the aggregation and dispersibility of nano-zirconia were analyzed in detail. And nano-zirconia powders which were surface-modified with silane coupling reagent WD70 were prepared in order to disperse homogeneously in ethanol in this investigation. The grain size and grain phase of nano-zirconia were obtained by XRD. Research and characterization on the structure and surface characteristic of surface-modified nano-zirconia were achieved by XPS, TG-DSC, TEM and FT-IR. The results given by FT-IR and XPS showed WD70 was jointed on the surface of nano-zirconia through both physical adsorption and chemical binding after the de-methanol reaction between the methoxyl groups of WD70 and the hydroxy groups on the surface of nano-zirconia. And the corresponding model of surface-modified nano-zirconia was given. The images provided by TEM presented intuitionistic effect of surface modification on the dispersibility of nano-zirconia in ethanol. And TG-DSC analysis ascertained the amount of WD70 that was jointed on the surface of nano-zirconia and the amount was about 6.21 percent.

  9. Silica Fume Functionalized With Amine-Based Additives as a Modifier to Enhance Asphalt Resistance to Oxidation

    NASA Astrophysics Data System (ADS)

    Abutalib, Nader Turki

    This dissertation investigates the practical feasibility of functionalizing silica fume particles with the amine groups in Bio-binder and pure APTES chemical to disperse silica fume in asphalt binder matrix to produce silica-fume-modified binder (SFMB). Dispersed silica fume was then introduced to asphalt to reduce oxidative aging. It has been widely reported that asphalt binder oxidation is one of the phenomena that reduces the service life of asphalt pavement by negatively affecting its rheological properties. This in turn can lead to a more brittle pavement, which is more prone to cracks due to thermal stress and traffic loading. It has been shown that the introduction of 4% silica fume to asphalt can reduce asphalt oxidative aging. However, the challenge with a higher percentage of silica fume was found to be the agglomeration of nano- particles to form micro-size clusters, which can reduce the effectiveness of silica fume while making asphalt binder more susceptible to shear. Therefore, this dissertation studies the effectiveness of functionalizing the SFMB to reduce asphalt oxidative aging while alleviating the agglomeration effect. To do so, various percentages of bio-binder (BB) and bio-char (BC) were introduced to SFMB, and the rheological properties and high-temperature performance of each specimen were evaluated by measuring the rotational viscosity and complex shear modulus before and after oxidative aging. It is hypothesized that fine-graded BC and BB with nano- to micro-level particles can be used to reduce asphalt oxidation and create a new generation of low- agglomeration SFMB with higher resistance to oxidative aging. To further study the effects of functionalization on dispersion of silica fume, silica fume particles were produced with different functional groups: amine (APTES) groups and phosphonate (THPMP) groups. Agglomeration studies using a scanning electron microscope and zeta potential analysis indicate that modifying asphalt binder with amine-modified silica fume particles can reduce the agglomeration of the silica fume particles. The performance characteristics of functionalized silica fume particles and non-functionalized silica fume particles are compared with those of base asphalt. The following research hypotheses were investigated: 1) Functionalized and well-dispersed silica fume will enhance asphalt's aging resistance. 2) The amine groups in functionalizing agent interact with silica fume particles and promote their dispersion. To test these hypotheses, a rotational viscometer was used to study the effect of functionalized-silica-fume-modified binder on the high-temperature properties of the asphalt binder. Fourier transform infrared spectroscopy analysis was used to determine the chemical compounds of the amine-group silica-fume- modified binder matrix. Scanning electron microscopy was used to observe the surface morphology and analyze the microstructure characteristics of materials. The positive effect of amine groups on the rheological properties of SFMB could be attributed to the high surface area of the silica fume and its granular particles with high polarity, factors that could improve the blending properties of the bio-modified silica fume and result in a uniformly distributed silica- fume-modified matrix with enhanced oxidative aging resistance. Surface adsorption of amines on silica fume particles helps promote repulsive forces between them to enhance dispersion.

  10. Development and testing of meteorology and air dispersion models for Mexico City

    NASA Astrophysics Data System (ADS)

    Williams, M. D.; Brown, M. J.; Cruz, X.; Sosa, G.; Streit, G.

    Los Alamos National Laboratory and Instituto Mexicano del Petróleo are completing a joint study of options for improving air quality in Mexico City. We have modified a three-dimensional, prognostic, higher-order turbulence model for atmospheric circulation (HOTMAC) and a Monte Carlo dispersion and transport model (RAPTAD) to treat domains that include an urbanized area. We used the meteorological model to drive models which describe the photochemistry and air transport and dispersion. The photochemistry modeling is described in a separate paper. We tested the model against routine measurements and those of a major field program. During the field program, measurements included: (1) lidar measurements of aerosol transport and dispersion, (2) aircraft measurements of winds, turbulence, and chemical species aloft, (3) aircraft measurements of skin temperatures, and (4) Tethersonde measurements of winds and ozone. We modified the meteorological model to include provisions for time-varying synoptic-scale winds, adjustments for local wind effects, and detailed surface-coverage descriptions. We developed a new method to define mixing-layer heights based on model outputs. The meteorology and dispersion models were able to provide reasonable representations of the measurements and to define the sources of some of the major uncertainties in the model-measurement comparisons.

  11. Modified screening interaction potential on dust lattice waves in dusty plasma ring

    NASA Astrophysics Data System (ADS)

    He, Kerong; Chen, Hui; Liu, Sanqiu

    2017-05-01

    In the present paper, the modified screening interaction potential was adopted to investigate the dust lattice waves in dusty ring. Firstly, the influence of parameter ε on the modified screening interaction potential was analyzed; and it was found that the parameter ε has a long-range effect on the pairwise interaction between the particles. Secondly, the dispersion relations of longitudinal and transverse waves are obtained, and the effect of long-range action parameter ε, dimensionless lattice parameter α and dimensionless shielding parameter \\tilde{κ } on the dust lattice waves propagation in dusty ring are studied. Some interesting phenomena, such as the coupling of longitudinal and transverse waves, and instabilities of transverse waves are found, which are in good agreement with some previous works. Finally, the transverse wave instabilities and the relevant critical lattice parameter αc are presented and discussed.

  12. The returns and risks of investment portfolio in stock market crashes

    NASA Astrophysics Data System (ADS)

    Li, Jiang-Cheng; Long, Chao; Chen, Xiao-Dan

    2015-06-01

    The returns and risks of investment portfolio in stock market crashes are investigated by considering a theoretical model, based on a modified Heston model with a cubic nonlinearity, proposed by Spagnolo and Valenti. Through numerically simulating probability density function of returns and the mean escape time of the model, the results indicate that: (i) the maximum stability of returns is associated with the maximum dispersion of investment portfolio and an optimal stop-loss position; (ii) the maximum risks are related with a worst dispersion of investment portfolio and the risks of investment portfolio are enhanced by increasing stop-loss position. In addition, the good agreements between the theoretical result and real market data are found in the behaviors of the probability density function and the mean escape time.

  13. Autothermal reforming of propane over Mg-Al hydrotalcite-like catalysts.

    PubMed

    Lim, You-Soon; Park, Nam-Cook; Shin, Jae-Soon; Kim, Jong-Ho; Moon, Dong-Ju; Kim, Young-Chul

    2008-10-01

    The performance of hydrotalcite-like catalysts in propane autothermal reforming for hydrogen production was studied in fixed-bed flow reactor. Hydrotalcite-like catalysts were synthesized by coprecipitation and modified co-precipitation by the impregnation method and those were promoted by the addition of noble metals. Reaction test results indicated that hydrotalcite-like catalysts of modified method were showed higher H2-yield than co-precipitation method because surface Ni particles of catalysts by modified method were more abundant. When added noble metals, the activity was enhanced because the size of nickel particles was decreased and degree of dispersion was increased. Also the carbon deposit is low after the reaction. When solvent of solution was changed, activity was increased. It is because degree of dispersion was increased.

  14. Managing heat phenomena in epoxy composites production via graphenic derivatives: synthesis, properties and industrial production simulation of graphene and graphene oxide containing composites

    NASA Astrophysics Data System (ADS)

    Mazzocchetti, Laura; Benelli, Tiziana; D'Angelo, Emanuele; Ligi, Simone; Minak, Giangiacomo; Poodts, Ezequiel; Tarterini, Fabrizio; Palermo, Vincenzo; Giorgini, Loris

    2017-03-01

    A commercial two-components epoxy resin formulation was successfully modified by adding graphene and related materials (GRMs) and the effect of these nanofillers was assessed on their thermomechanical properties as well as on the simulation of their industrial application for the production of thick composites objects with interesting results. GMRs were added in different concentrations in order to improve thermo-mechanical properties of the nano-composite thermoset. Different dispersion methods were taken into account in order to produce stable long-lasting dispersion of the GRMs, that can withstand a commercial shelf life. Addition of the GRMs improves the glass transition temperature of the nanocomposite up to 20 °C with respect to the plain commercial formulation, and both stress and elongation at break increase up to almost 4 times the original values. Moreover, the industrial curing of some of the more promising modified resins was computer-simulated when the two-components resins are used to produce a carbon-fibre reinforced thick composite beam. Simulation results show that some of the applied GRMs helps reducing or even completely preventing the overheat phenomena that are well renown to induce significant thermal stresses negatively affecting the final object performances. These interesting effects would contribute reducing the time required for a single industrial production cycle, since no time for overheat dispersion is required, thus helping increasing the production rate.

  15. Dispersion of electron Bernstein waves including weakly relativistic and electromagnetic effects. Part 2. Extraordinary modes

    NASA Astrophysics Data System (ADS)

    Robinson, P. A.

    1987-06-01

    Extraordinary solutions of the weakly relativistic, electromagnetic dispersion relation are investigated for waves propagating perpendicular to a uniform magnetic field in a Maxwellian plasma. As in a companion paper, which treated ordinary modes, weakly relativistic effects are found to modify dramatically the dispersion predicted by strictly non-relativistic ‘classical’ theory in the neighbourhood of harmonics of the cyclotron frequency Ωe. The infinite families of classical Gross-Bernstein and Dnestrovskii-Kostomarov modes are truncated to include only harmonics s satisfying s (ω2p mc2/4kB TΩ2e)⅓ and s (ωp/Ωe)⅔/8 respectively where ωp is the plasma frequency and T the temperature. All classical cut-offs and resonances are removed apart from the x- and z- mode cut-offs. The only coupling between large- and small-wave-vector modes is between the z mode and a Gross-Bernstein mode near the upper-hybrid frequency and between the x mode and the second Gross-Bernstein mode near 2Ωe. Dispersion of the weakly relativistic counterpart of the x mode departs only slightly from that predicted by cold plasma theory except near Ωe and 2Ωe.

  16. MOND Calculations of Bulk Dispersions and Radial Dispersion Profiles of Milky Way and Andromeda Dwarf Spheroidal Galaxies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alexander, S. G.; Walentosky, M. J.; Messinger, Justin

    We present a new computational method for calculating the motion of stars in a dwarf spheroidal galaxy (dSph) that can use either Newtonian gravity or Modified Newtonian Dynamics (MOND). In our model, we explicitly calculate the motion of several thousand stars in a spherically symmetric gravitational potential, and we statistically obtain both the line-of-sight bulk velocity dispersion and dispersion profile. Our results for MOND calculated bulk dispersions for Local Group dSph’s agree well with previous calculations and observations. Our MOND calculated dispersion profiles are compared with the observations of Walker et al. for Milky Way dSph’s, and we present calculatedmore » dispersion profiles for a selection of Andromeda dSph’s.« less

  17. Thickness resonances dispersion characteristics of a lossy piezoceramic plate with electrodes of arbitrary conductivity.

    PubMed

    Mezheritsky, Alex A; Mezheritsky, Alex V

    2007-12-01

    A theoretical description of the dissipative phenomena in the wave dispersion related to the "energytrap" effect in a thickness-vibrating, infinite thicknesspolarized piezoceramic plate with resistive electrodes is presented. The three-dimensional (3-D) equations of linear piezoelectricity were used to obtain symmetric and antisymmetric solutions of plane harmonic waves and investigate the eigen-modes of thickness longitudinal (TL) up to third harmonic and shear (TSh) up to ninth harmonic vibrations of odd- and even-orders. The effects of internal and electrode energy dissipation parameters on the wave propagation under regimes ranging from a short-circuit (sc) condition through RC-type relaxation dispersion to an opencircuit (oc) condition are examined in detail for PZT piezoceramics with three characteristic T -mode energy-trap figure-of-merit c-(D)(33)/c-(E)(44) values - less, near equal and higher 4 - when the second harmonic spurious TSh resonance lies below, inside, and above the fundamental TL resonanceantiresonance frequency interval. Calculated complex lateral wave number dispersion dependences on frequency and electrode resistance are found to follow the universal scaling formula similar to those for dielectrics characterization. Formally represented as a Cole-Cole diagram, the dispersion branches basically exhibit Debye-like and modified Davidson Cole dependences. Varying the dissipation parameters of internal loss and electrode conductivity, the interaction of different branches was demonstrated by analytical and numerical analysis. For the purposes of dispersion characterization of at least any thickness resonance, the following theorem was stated: the ratio of two characteristic determinants, specifically constructed from the oc and sc boundary conditions, in the limit of zero lateral wave number, is equal to the basic elementary-mode normalized admittance. As was found based on the theorem, the dispersion near the basic and nonbasic TL and TSh resonances reveal some simple representations related to the respective elementary admittance and showing the connection between the propagation and excitation problems in a continuous piezoactive medium.

  18. Bioelectrochemical sensing of promethazine with bamboo-type multiwalled carbon nanotubes dispersed in calf-thymus double stranded DNA.

    PubMed

    Primo, Emiliano N; Oviedo, M Belén; Sánchez, Cristián G; Rubianes, María D; Rivas, Gustavo A

    2014-10-01

    We report the quantification of promethazine (PMZ) using glassy carbon electrodes (GCE) modified with bamboo-like multi-walled carbon nanotubes (bCNT) dispersed in double stranded calf-thymus DNA (dsDNA) (GCE/bCNT-dsDNA). Cyclic voltammetry measurements demonstrated that PMZ presents a thin film-confined redox behavior at GCE/bCNT-dsDNA, opposite to the irreversibly-adsorbed behavior obtained at GCE modified with bCNT dispersed in ethanol (GCE/bCNT). Differential pulse voltammetry-adsorptive stripping with medium exchange experiments performed with GCE/bCNT-dsDNA and GCE modified with bCNTs dispersed in single-stranded calf-thymus DNA (ssDNA) confirmed that the interaction between PMZ and bCNT-dsDNA is mainly hydrophobic. These differences are due to the intercalation of PMZ within the dsDNA that supports the bCNTs, as evidenced from the bathochromic displacement of UV-Vis absorption spectra of PMZ and quantum dynamics calculations at DFTB level. The efficient accumulation of PMZ at GCE/bCNT-dsDNA made possible its sensitive quantification at nanomolar levels (sensitivity: (3.50±0.05)×10(8) μA·cm(-2)·M(-1) and detection limit: 23 nM). The biosensor was successfully used for the determination of PMZ in a pharmaceutical product with excellent correlation. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Effervescence-assisted dispersive solid-phase extraction using ionic-liquid-modified magnetic β-cyclodextrin/attapulgite coupled with high-performance liquid chromatography for fungicide detection in honey and juice.

    PubMed

    Wu, Xiaoling; Yang, Miyi; Zeng, Haozhe; Xi, Xuefei; Zhang, Sanbing; Lu, Runhua; Gao, Haixiang; Zhou, Wenfeng

    2016-11-01

    In this study, a simple effervescence-assisted dispersive solid-phase extraction method was developed to detect fungicides in honey and juice. Most significantly, an innovative ionic-liquid-modified magnetic β-cyclodextrin/attapulgite sorbent was used because its large specific surface area enhanced the extraction capacity and also led to facile separation. A one-factor-at-a-time approach and orthogonal design were employed to optimize the experimental parameters. Under the optimized conditions, the entire extraction procedure was completed within 3 min. In addition, the calibration curves exhibited good linearity, and high enrichment factors were achieved for pure water and honey samples. For the honey samples, the extraction efficiencies for the target fungicides ranged from 77.0 to 94.3% with relative standard deviations of 2.3-5.44%. The detection and quantitation limits were in the ranges of 0.07-0.38 and 0.23-1.27 μg/L, respectively. Finally, the developed technique was successfully applied to real samples, and satisfactory results were achieved. This analytical technique is cost-effective, environmentally friendly, and time-saving. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Silica nanoparticles and biological dispersants: genotoxic effects on A549 lung epithelial cells

    NASA Astrophysics Data System (ADS)

    Brown, David M.; Varet, Julia; Johnston, Helinor; Chrystie, Alison; Stone, Vicki

    2015-10-01

    Silica nanoparticle exposure could be intentional (e.g. medical application or food) or accidental (e.g. occupational inhalation). On entering the body, particles become coated with specific proteins depending on the route of entry. The ability of silica particles of different size and charge (non-functionalized 50 and 200 nm and aminated 50 and 200 nm) to cause genotoxic effects in A549 lung epithelial cells was investigated. Using the modified comet assay and the micronucleus assay, we examined the effect of suspending the particles in different dispersion media [RPMI or Hanks' balanced salt solution (HBSS), supplemented with bovine serum albumin (BSA), lung lining fluid (LLF) or serum] to determine if this influenced the particle's activity. Particle characterisation suggested that the particles were reasonably well dispersed in the different media, with the exception of aminated 50 nm particles which showed evidence of agglomeration. Plain 50, 200 nm and aminated 50 nm particles caused significant genotoxic effects in the presence of formamidopyrimidine-DNA glycosylase when dispersed in HBSS or LLF. These effects were reduced when the particles were dispersed in BSA and serum. There was no significant micronucleus formation produced by any of the particles when suspended in any of the dispersants. The data suggest that silica particles can produce a significant genotoxic effect according to the comet assay in A549 cells, possibly driven by an oxidative stress-dependent mechanism which may be modified depending on the choice of dispersant employed.

  1. Finsler-type modification of the Coulomb law

    NASA Astrophysics Data System (ADS)

    Itin, Yakov; Lämmerzahl, Claus; Perlick, Volker

    2014-12-01

    Finsler geometry is a natural generalization of pseudo-Riemannian geometry. It can be motivated e.g. by a modified version of the Ehlers-Pirani-Schild axiomatic approach to space-time theory. Also, some scenarios of quantum gravity suggest a modified dispersion relation which could be phrased in terms of Finsler geometry. On a Finslerian space-time, the universality of free fall is still satisfied but local Lorentz invariance is violated in a way not covered by standard Lorentz invariance violation schemes. In this paper we consider a Finslerian modification of Maxwell's equations. The corrections to the Coulomb potential and to the hydrogen energy levels are computed. We find that the Finsler metric corrections yield a splitting of the energy levels. Experimental data provide bounds for the Finsler parameters.

  2. Laccase modification of the physical properties of bark and pulp of loblolly pine and spruce pulp

    Treesearch

    William Kenealy; John Klungness; Mandla Tshabalala; Eric Horn; Masood Akhtar; Roland Gleisner; Gisela Buschle-Diller

    2004-01-01

    Pine bark, pine pulp, and spruce pulp were reacted with laccase in the presence of phenolic laccase substrates to modify the fiber surface properties. The acid-base and dispersive characteristics of these modified steam-treated thermomechanical loblolly pine pulps were determined by inverse gas chromatography. Different combinations of substrates with laccase modified...

  3. Highly sensitive and selective detection of dopamine based on hollow gold nanoparticles-graphene nanocomposite modified electrode.

    PubMed

    Zhu, Wencai; Chen, Ting; Ma, Xuemei; Ma, Houyi; Chen, Shenhao

    2013-11-01

    Highly dispersed hollow gold-graphene (HAu-G) nanocomposites were synthesized by a two-step method. The immobilization of hollow gold nanoparticles (HAu NPs) onto the surface of graphene sheets was achieved by mixing an aqueous solution of HAu NPs with a poly(N-vinylpyrrolidone)-functionalized graphene dispersion at room temperature. A glassy carbon electrode (GCE) was modified with the nanocomposites, and the as-prepared modified electrode displayed high electrocatalytic activity and extraordinary electronic transport properties. Amperometric detection of dopamine (DA) performed with the HAu-G modified electrode exhibits a good linearity between 0.08 and 600 μM with a low detection limit of 0.05 μM (S/N=3) and also possesses good reproducibility and operational stability. The interference of ascorbic acid (AA) and uric acid (UA) can be excluded when using differential pulse voltammetric technique. In addition, this type of modified electrode can also be applied to the determination of DA content in dopamine hydrochloride injection. It is obvious that the HAu-G modified electrode provides a new way to detect dopamine sensitively and selectively. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Wear-resistant and electromagnetic absorbing behaviors of oleic acid post-modified ferrite-filled epoxy resin composite coating

    NASA Astrophysics Data System (ADS)

    Wang, Wenjie; Zang, Chongguang; Jiao, Qingjie

    2015-03-01

    The post-modified Mn-Zn ferrite was prepared by grafting oleic acid on the surface of Mn-Zn ferrite to inhibit magnetic nanoparticle aggregation. Fourier Transform Infrared (FT-IR) spectroscopy was used to characterize the particle surfaces. The friction and electromagnetic absorbing properties of a thin coating fabricated by dispersing ferrite into epoxy resin (EP) were investigated. The roughness of the coating and water contact angle were measured using the VEECO and water contact angle meter. Friction tests were conducted using a stainless-steel bearing ball and a Rockwell diamond tip, respectively. The complex permittivity and complex permeability of the composite coating were studied in the low frequency (10 MHz-1.5 GHz). Surface modified ferrites are found to improve magnetic particles dispersion in EP resulting in significant compatibility between inorganic and organic materials. Results also indicate that modified ferrite/EP coatings have a lower roughness average value and higher water contact angle than original ferrite/EP coatings. The enhanced tribological properties of the modified ferrite/EP coatings can be seen from the increased coefficient value. The composite coatings with modified ferrite are observed to exhibit better reflection loss compared with the coatings with original ferrite.

  5. Forest fragmentation and selective logging have inconsistent effects on multiple animal-mediated ecosystem processes in a tropical forest.

    PubMed

    Schleuning, Matthias; Farwig, Nina; Peters, Marcell K; Bergsdorf, Thomas; Bleher, Bärbel; Brandl, Roland; Dalitz, Helmut; Fischer, Georg; Freund, Wolfram; Gikungu, Mary W; Hagen, Melanie; Garcia, Francisco Hita; Kagezi, Godfrey H; Kaib, Manfred; Kraemer, Manfred; Lung, Tobias; Naumann, Clas M; Schaab, Gertrud; Templin, Mathias; Uster, Dana; Wägele, J Wolfgang; Böhning-Gaese, Katrin

    2011-01-01

    Forest fragmentation and selective logging are two main drivers of global environmental change and modify biodiversity and environmental conditions in many tropical forests. The consequences of these changes for the functioning of tropical forest ecosystems have rarely been explored in a comprehensive approach. In a Kenyan rainforest, we studied six animal-mediated ecosystem processes and recorded species richness and community composition of all animal taxa involved in these processes. We used linear models and a formal meta-analysis to test whether forest fragmentation and selective logging affected ecosystem processes and biodiversity and used structural equation models to disentangle direct from biodiversity-related indirect effects of human disturbance on multiple ecosystem processes. Fragmentation increased decomposition and reduced antbird predation, while selective logging consistently increased pollination, seed dispersal and army-ant raiding. Fragmentation modified species richness or community composition of five taxa, whereas selective logging did not affect any component of biodiversity. Changes in the abundance of functionally important species were related to lower predation by antbirds and higher decomposition rates in small forest fragments. The positive effects of selective logging on bee pollination, bird seed dispersal and army-ant raiding were direct, i.e. not related to changes in biodiversity, and were probably due to behavioural changes of these highly mobile animal taxa. We conclude that animal-mediated ecosystem processes respond in distinct ways to different types of human disturbance in Kakamega Forest. Our findings suggest that forest fragmentation affects ecosystem processes indirectly by changes in biodiversity, whereas selective logging influences processes directly by modifying local environmental conditions and resource distributions. The positive to neutral effects of selective logging on ecosystem processes show that the functionality of tropical forests can be maintained in moderately disturbed forest fragments. Conservation concepts for tropical forests should thus include not only remaining pristine forests but also functionally viable forest remnants.

  6. Forest Fragmentation and Selective Logging Have Inconsistent Effects on Multiple Animal-Mediated Ecosystem Processes in a Tropical Forest

    PubMed Central

    Schleuning, Matthias; Farwig, Nina; Peters, Marcell K.; Bergsdorf, Thomas; Bleher, Bärbel; Brandl, Roland; Dalitz, Helmut; Fischer, Georg; Freund, Wolfram; Gikungu, Mary W.; Hagen, Melanie; Garcia, Francisco Hita; Kagezi, Godfrey H.; Kaib, Manfred; Kraemer, Manfred; Lung, Tobias; Schaab, Gertrud; Templin, Mathias; Uster, Dana; Wägele, J. Wolfgang; Böhning-Gaese, Katrin

    2011-01-01

    Forest fragmentation and selective logging are two main drivers of global environmental change and modify biodiversity and environmental conditions in many tropical forests. The consequences of these changes for the functioning of tropical forest ecosystems have rarely been explored in a comprehensive approach. In a Kenyan rainforest, we studied six animal-mediated ecosystem processes and recorded species richness and community composition of all animal taxa involved in these processes. We used linear models and a formal meta-analysis to test whether forest fragmentation and selective logging affected ecosystem processes and biodiversity and used structural equation models to disentangle direct from biodiversity-related indirect effects of human disturbance on multiple ecosystem processes. Fragmentation increased decomposition and reduced antbird predation, while selective logging consistently increased pollination, seed dispersal and army-ant raiding. Fragmentation modified species richness or community composition of five taxa, whereas selective logging did not affect any component of biodiversity. Changes in the abundance of functionally important species were related to lower predation by antbirds and higher decomposition rates in small forest fragments. The positive effects of selective logging on bee pollination, bird seed dispersal and army-ant raiding were direct, i.e. not related to changes in biodiversity, and were probably due to behavioural changes of these highly mobile animal taxa. We conclude that animal-mediated ecosystem processes respond in distinct ways to different types of human disturbance in Kakamega Forest. Our findings suggest that forest fragmentation affects ecosystem processes indirectly by changes in biodiversity, whereas selective logging influences processes directly by modifying local environmental conditions and resource distributions. The positive to neutral effects of selective logging on ecosystem processes show that the functionality of tropical forests can be maintained in moderately disturbed forest fragments. Conservation concepts for tropical forests should thus include not only remaining pristine forests but also functionally viable forest remnants. PMID:22114695

  7. Extensive Diminution of Particle Size and Amorphization of a Crystalline Drug Attained by Eminent Technology of Solid Dispersion: A Comparative Study.

    PubMed

    Singh, Gurjeet; Sharma, Shailesh; Gupta, Ghanshyam Das

    2017-07-01

    The present study emphasized on the use of solid dispersion technology to triumph over the drawbacks associated with the highly effective antihypertensive drug telmisartan using different polymers (poloxamer 188 and locust bean gum) and methods (modified solvent evaporation and lyophilization). It is based on the comparison between selected polymers and methods for enhancing solubility through particle size reduction. The results showed different profiles for particle size, solubility, and dissolution of formulated amorphous systems depicting the great influence of polymer/method used. The resulting amorphous solid dispersions were characterized using x-ray diffraction (XRD), differential scanning calorimetry, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and particle size analysis. The optimized solid dispersion (TEL 19) prepared with modified locust bean gum using lyophilization technique showed reduced particle size of 184.5 ± 3.7 nm and utmost solubility of 702 ± 5.47 μg/mL in water, which is quite high as compared to the pure drug (≤1 μg/mL). This study showed that the appropriate selection of carrier may lead to the development of solid dispersion formulation with desired solubility and dissolution profiles. The optimized dispersion was later formulated into fast-dissolving tablets, and further optimization was done to obtain the tablets with desired properties.

  8. Effect of micro-structural modifier on the morphology of silicon rich secondary phase and strain hardening behavior of eutectic Al-Si alloy

    NASA Astrophysics Data System (ADS)

    Mansoor, M.; Salam, I.; Tauqir, A.

    2016-08-01

    Eutectic Al-Si alloys find their applications in moderate to severe tribological conditions, for example: pistons, casings of high speed pumps and slide sleeves. The higher hardness, so the better tribological properties, are originated by the formation of a silicon rich secondary phase, however, the morphology of the secondary phase drastically influence the toughness of the alloy. Microstructural modifiers are used to control the toughness which modifies the Si rich secondary phase into dispersed spherical structure instead of needle-like network. In the present study, a mixture of chemical fluxes was used to modify the Si phase. The alloy was cast into a sand mold and characterized by scanning electron microscopy, energy dispersive spectroscopy, hardness testing and tensile testing. It was found that the morphology of the Si phase was altered to acicular structure due to the modification process. In comparison, the un-modified alloy contained Si phase in needle-like structure. The effect of modifier was also pronounced on the mechanical properties, where increase of 50% in yield strength, 56% in tensile strength and 200% in elongation occurred. A discernable raise in strain hardening component indicated the improved strain harden ability and formability of the modified alloy.

  9. Modelling drug degradation in a spray dried polymer dispersion using a modified Arrhenius equation.

    PubMed

    Patterson, Adele; Ferreira, Ana P; Banks, Elizabeth; Skeene, Kirsty; Clarke, Graham; Nicholson, Sarah; Rawlinson-Malone, Clare

    2015-01-15

    The Pharmaceutical industry is increasingly utilizing amorphous technologies to overcome solubility challenges. A common approach is the use of drug in polymer dispersions to prevent recrystallization of the amorphous drug. Understanding the factors affecting chemical and physical degradation of the drug within these complex systems, e.g., temperature and relative humidity, is an important step in the selection of a lead formulation, and development of appropriate packaging/storage control strategies. The Arrhenius equation has been used as the basis of a number of models to predict the chemical stability of formulated product. In this work, we investigate the increase in chemical degradation seen for one particular spray dried dispersion formulation using hydroxypropyl methylcellulose acetate succinate (HPMC-AS). Samples, prepared using polymers with different substitution levels, were placed on storage for 6 months under a range of different temperature and relative humidity conditions and the degradant level monitored using high-performance liquid chromatography (HPLC). While the data clearly illustrates the impact of temperature and relative humidity on the degradant levels detected, it also highlighted that these terms do not account for all the variability in the data. An extension of the Arrhenius equation to include a term for the polymer chemistry, specifically the degree of succinoyl substitution on the polymer backbone, was shown to improve the fit of the model to the data. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Optimization of nanolime solvent for the consolidation of coarse porous limestone

    NASA Astrophysics Data System (ADS)

    Borsoi, Giovanni; Lubelli, Barbara; van Hees, Rob; Veiga, Rosário; Silva, António Santos

    2016-09-01

    The potentialities of nanomaterials for application in the field of conservation have been widely investigated in the last two decades. Among nanomaterials, nanolimes, i.e., dispersions of lime nanoparticles in alcohols are promising consolidating products for calcareous materials. Nanolimes are effective in recovering the very superficial loss of cohesion of decayed materials, but they do not always provide sufficient mass consolidation. This limitation is mainly related to the deposition of the nanoparticles nearby the surface of the material. Experimental research has been set up with the aim of improving the in-depth deposition of lime nanoparticles. Previous research by the authors has shown that nanolime deposition within a substrate can be controlled by adapting the nanolimes properties (kinetic stability and evaporation rate) to the moisture transport behavior of the substrate. Nanolime properties can be modified by the use of different solvents. In this research, nanolime dispersions have been further optimized for application on Maastricht limestone, a coarse porous limestone. Firstly, nanolimes were synthesized and dispersed in ethanol and/or water, both pure and mixed in different percentages. Subsequently, based on the kinetic stability of the nanolime dispersions, the most promising solvent mixtures were selected and applied on the limestone. The deposition of lime nanoparticles within the limestone was studied by phenolphthalein test, optical microscopy and scanning electron microscopy. The results confirm that nanolime dispersed in a mixture of ethanol (95 %) and water (5 %) can guarantee a better nanoparticles in-depth deposition within coarse porous substrates, when compared to dispersions in pure ethanol.

  11. Reassessment of Resuspension Factor Following Radionuclide Dispersal: Toward a General-purpose Rate Constant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marshall, Shaun; Potter, Charles; Medich, David

    A recent analysis of historical radionuclide resuspension datasets con rmed the general applicability of the Anspaugh and modified Anspaugh models of resuspension factors following both controlled and disastrous releases. The observations appear to increase in variance earlier in time, however all points were equally weighted in statistical fit calculations, inducing a positive skewing of resuspension coeffcients. Such data are extracted from the available deposition experiments spanning 2900 days. Measurements within a 3-day window are grouped into singular sample sets to construct standard deviations. A refitting is performed using a relative instrumental weighting of the observations. The resulting best-fit equations producesmore » tamer exponentials which give decreased integrated resuspension factor values relative to those reported by Anspaugh. As expected, the fits attenuate greater error amongst the data at earlier time. The reevaluation provides a sharper contrast between the empirical models, and reafirms their deficiencies in the short-lived timeframe wherein the dynamics of particulate dispersion dominate the resuspension process.« less

  12. Site-Selective Modification of Cellulose Nanocrystals with Isophorone Diisocyanate and Formation of Polyurethane-CNC Composites.

    PubMed

    Girouard, Natalie M; Xu, Shanhong; Schueneman, Gregory T; Shofner, Meisha L; Meredith, J Carson

    2016-01-20

    The unequal reactivity of the two isocyanate groups in an isophorone diisocyante (IPDI) monomer was exploited to yield modified cellulose nanocrystals (CNCs) with both urethane and isocyanate functionality. The chemical functionality of the modified CNCs was verified with ATR-FTIR analysis and elemental analysis. The selectivity for the secondary isocyanate group using dibutyl tin dilaurate (DBTDL) as the reaction catalyst was confirmed with (13)C NMR. The modified CNCs showed improvements in the onset of thermal degradation by 35 °C compared to the unmodified CNCs. Polyurethane composites based on IPDI and a trifunctional polyether alcohol were synthesized using unmodified (um-CNC) and modified CNCs (m-CNC). The degree of nanoparticle dispersion was qualitatively assessed with polarized optical microscopy. It was found that the modification step facilitated superior nanoparticle dispersion compared to the um-CNCs, which resulted in increases in the tensile strength and work of fracture of over 200% compared to the neat matrix without degradation of elongation at break.

  13. Comment on "Electromagnetic convective cells in a nonuniform dusty plasma".

    PubMed

    Shukla, P K; Stenflo, L; Pokhotelov, O A; Onishchenko, O G

    2001-04-01

    Recently, Saleem and Haque [Phys. Rev. E 60, 7612 (1999)] concluded that in the presence of a perturbed electron current parallel to an external magnetic field, the dispersion relation of the electrostatic convective cell and the magnetostatic modes is not modified. In the present Comment, the properties of electromagnetic as well as electrostatic waves in a nonuniform dusty magnetoplasma are reexamined, to demonstrate that Eq. (13) of the paper by Saleem and Haque as well as their conclusions are erroneous.

  14. Jeans instability of rotating magnetized dusty plasma

    NASA Astrophysics Data System (ADS)

    Sharma, S.; Sutar, D. L.; Kumar, V.; Pensia, R. K.

    2018-05-01

    It has been shown that rotation has to play a predominant important role in the formation of many astrophysical objects and the stability of molecular clouds. In this paper the theoretical investigation of the presence of rotation in the magnetized dusty plasma. The general dispersion relation is obtained normal mode analysis technique, and we found the Alfven mode is modified due to the presence of rotation and magnetic field. The graphical presentation shows that rotation and Alfven wave velocity have a stabilizing in the system.

  15. Freeze-drying synthesis of three-dimensional porous LiFePO4 modified with well-dispersed nitrogen-doped carbon nanotubes for high-performance lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Tu, Xiaofeng; Zhou, Yingke; Song, Yijie

    2017-04-01

    The three-dimensional porous LiFePO4 modified with uniformly dispersed nitrogen-doped carbon nanotubes has been successfully prepared by a freeze-drying method. The morphology and structure of the porous composites are characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS), and the electrochemical performances are evaluated using the constant current charge/discharge tests, cyclic voltammetry and electrochemical impedance spectroscopy. The nitrogen-doped carbon nanotubes are uniformly dispersed inside the porous LiFePO4 to construct a superior three-dimensional conductive network, which remarkably increases the electronic conductivity and accelerates the diffusion of lithium ion. The porous composite displays high specific capacity, good rate capability and excellent cycling stability, rendering it a promising positive electrode material for high-performance lithium-ion batteries.

  16. Eye Movements of Patients with Tunnel Vision while Walking

    PubMed Central

    Vargas-Martín, Fernando; Peli, Eli

    2006-01-01

    Purpose To determine how severe peripheral field loss (PFL) affects the dispersion of eye movements relative to the head, while walking in real environments. This information should help to better define the visual field and clearance requirements for head-mounted mobility visual aids. Methods Eye positions relative to the head were recorded in five retinitis pigmentosa patients with less than 15° of visual field and three normally-sighted people, each walking in varied environments for more than 30 minutes. The eye position recorder was made portable by modifying a head-mounted ISCAN system. Custom data processing was implemented to reject unreliable data. Sample standard deviations of eye position (dispersion) were compared across subject groups and environments. Results PFL patients exhibited narrower horizontal eye position dispersions than normally-sighted subjects (9.4° vs. 14.2°, p < 0.0001) and PFL patients’ vertical dispersions were smaller when walking indoors than outdoors (8.2° vs. 10.3°, p = 0.048). Conclusions When walking, the PFL patients did not increase their scanning eye movements to compensate for missing peripheral vision information. Their horizontal scanning was actually reduced, possibly because saccadic amplitude is limited by a lack of peripheral stimulation. The results suggest that a field-of-view as wide as 40° may be needed for closed (immersive) head-mounted mobility aids, while a much narrower display, perhaps as narrow as 20°, might be sufficient with an open design. PMID:17122116

  17. Eye movements of patients with tunnel vision while walking.

    PubMed

    Vargas-Martín, Fernando; Peli, Eli

    2006-12-01

    To determine how severe peripheral field loss (PFL) affects the dispersion of eye movements relative to the head in patients walking in real environments. This information should help to define the visual field and clearance requirements for head-mounted mobility visual aids. Eye positions relative to the head were recorded in five patients with retinitis pigmentosa who had less than 15 degrees of visual field and in three normally sighted people, each walking in varied environments for more than 30 minutes. The eye-position recorder was made portable by modifying a head-mounted system (ISCAN, Burlington, MA). Custom data processing was implemented, to reject unreliable data. Sample standard deviations of eye position (dispersion) were compared across subject groups and environments. The patients with PFL exhibited narrower horizontal eye-position dispersions than did the normally sighted subjects (9.4 degrees vs. 14.2 degrees , P < 0.0001), and the vertical dispersions of patients with PFL were smaller when they were walking indoors than when walking outdoors (8.2 degrees vs. 10.3 degrees ; P = 0.048). When walking, the patients with PFL did not increase their scanning eye movements to compensate for missing peripheral vision information. Their horizontal scanning was actually reduced, possibly because of lack of peripheral stimulation. The results suggest that a field of view as wide as 40 degrees may be needed for closed (immersive) head-mounted mobility aids, whereas a much narrower display, perhaps as narrow as 20 degrees , may be sufficient with an open design.

  18. Forest tree pollen dispersal via the water cycle.

    PubMed

    Williams, Claire G

    2013-06-01

    Pine pollen (Pinus spp.), along with other atmospheric particles, is dispersed by the water cycle, but this mode of dispersal requires cloud-pollen interactions that depend on taxon-specific biological properties. In the simplest form of this dispersal, pine pollen ascends vertically to altitudes of 2 to 6 km, where a fraction is captured by mixed-phase cloud formation. Captured pollen accretes into frozen droplets, which ultimately descend as rain, snow, or hail. Whether Pinus pollen can still germinate after its exposure to high-altitude freezing is pertinent to (1) how forests adapt to climate change and (2) potential gene flow between genetically modified plantation species and their conspecific relatives. • To address this question, pollen from four Old World and two New World Pinus species were subjected to immersion freezing, a common cloud formation mode, under laboratory conditions. • Some pollen grains immersed at -20°C for 15, 60, or 120 min in either a dehydrated or a water-saturated state were still capable of germination. After exposure, dehydrated pine pollen had higher germination (43.3%) than water-saturated pollen (7.6%). • Pine pollen exposed to freezing during cloud formation can still germinate, raising the question of whether rain-delivered live pollen might be linked to rain-facilitated pollination. Dispersal of live pine pollen via cloud formation and the water cycle itself deserves closer study.

  19. Efficient simulations of large-scale structure in modified gravity cosmologies with comoving Lagrangian acceleration

    NASA Astrophysics Data System (ADS)

    Valogiannis, Georgios; Bean, Rachel

    2017-05-01

    We implement an adaptation of the cola approach, a hybrid scheme that combines Lagrangian perturbation theory with an N-body approach, to model nonlinear collapse in chameleon and symmetron modified gravity models. Gravitational screening is modeled effectively through the attachment of a suppression factor to the linearized Klein-Gordon equations. The adapted cola approach is benchmarked, with respect to an N-body code both for the Λ cold dark matter (Λ CDM ) scenario and for the modified gravity theories. It is found to perform well in the estimation of the dark matter power spectra, with consistency of 1% to k ˜2.5 h /Mpc . Redshift space distortions are shown to be effectively modeled through a Lorentzian parametrization with a velocity dispersion fit to the data. We find that cola performs less well in predicting the halo mass functions but has consistency, within 1 σ uncertainties of our simulations, in the relative changes to the mass function induced by the modified gravity models relative to Λ CDM . The results demonstrate that cola, proposed to enable accurate and efficient, nonlinear predictions for Λ CDM , can be effectively applied to a wider set of cosmological scenarios, with intriguing properties, for which clustering behavior needs to be understood for upcoming surveys such as LSST, DESI, Euclid, and WFIRST.

  20. Graphite fiber surface treatment to improve char retention and increase fiber clumping

    NASA Technical Reports Server (NTRS)

    Paul, J. T., Jr.; Weldy, W. E.

    1980-01-01

    Composites containing carbon and graphite fibers can release fibers into the atmosphere during a fire. This release can potentially cause failure in some types of electrical equipment. Reduced fiber dispersion during and after combustion will reduce risks. Epoxidized char forming systems were synthesized which will react with commercially available surface treated carbon fiber. Fibers modified with these char formers retained adhesion in a specific epoxy matrix resin. Small scale combustion testing indicates that using these char former modified fibers in laminates will help to reduce the dispersement of fibers resulting from exposure to fire without sacrificing resin to fiber adhesion.

  1. Comparative Population Genetic Structure of the Endangered Southern Brown Bandicoot, Isoodon obesulus, in Fragmented Landscapes of Southern Australia

    PubMed Central

    Li, You; Cooper, Steven J. B.; Lancaster, Melanie L.; Packer, Jasmin G.; Carthew, Susan M.

    2016-01-01

    Genetic connectivity is a key factor for maintaining the persistence of populations in fragmented landscapes. In highly modified landscapes such us peri-urban areas, organisms’ dispersal among fragmented habitat patches can be reduced due to the surrounding matrix, leading to subsequent decreased gene flow and increased potential extinction risk in isolated sub-populations. However, few studies have compared within species how dispersal/gene flow varies between regions and among different forms of matrix that might be encountered. In the current study, we investigated gene flow and dispersal in an endangered marsupial, the southern brown bandicoot (Isoodon obesulus) in a heavily modified peri-urban landscape in South Australia, Australia. We used 14 microsatellite markers to genotype 254 individuals which were sampled from 15 sites. Analyses revealed significant genetic structure. Our analyses also indicated that dispersal was mostly limited to neighbouring sites. Comparisons of these results with analyses of a different population of the same species revealed that gene flow/dispersal was more limited in this peri-urban landscape than in a pine plantation landscape approximately 400 km to the south-east. These findings increase our understanding of how the nature of fragmentation can lead to profound differences in levels of genetic connectivity among populations of the same species. PMID:27096952

  2. Photonic band structures of two-dimensional magnetized plasma photonic crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qi, L.

    By using modified plane wave method, photonic band structures of the transverse electric polarization for two types of two-dimensional magnetized plasma photonic crystals are obtained, and influences of the external magnetic field, plasma density, and dielectric materials on the dispersion curves are studied, respectively. Results show that two areas of flat bands appear in the dispersion curves due to the role of external magnetic field, and the higher frequencies of the up and down flat bands are corresponding to the right-circled and left-circled cutoff frequencies, respectively. Adjusting external magnetic field and plasma density can not only control positions of themore » flat bands, but also can control the location and width of the local gap; increasing relative dielectric constant of the dielectric materials makes omni-direction gaps appear.« less

  3. Novel one-pot facile technique for preparing nanoparticles modified with hydrophilic polymers on the surface via block polymer-assisted emulsification/evaporation process.

    PubMed

    Kanakubo, Yurie; Ito, Fuminori; Murakami, Yoshihiko

    2010-06-15

    In this paper, we describe the novel facile technique for preparing surface-modified nanoparticles via newly developed amphiphilic block polymer-assisted emulsification/evaporation process. The effects of both organic solvents (the dispersed phase) and stabilizer in the external continuous phase on the stability of o/w emulsion was firstly investigated to clarify the optimal conditions for stable emulsification/evaporation processes. We found that the organic solvent mixture having a density adjusted to be 1.00 g/cm(3) gave the highly stable o/w emulsion. Under the optimal conditions, the relatively monodisperse poly(ethylene glycol) (PEG)-modified poly(lactide-co-glycolide) (PLGA) nanoparticle was obtained and characterized. The introduction of PEG to the particle surface was suggested by the fact that the diameter and zeta potential of the particle increased as the amount of added block polymer increased. The facile method presented in this paper can be a universal tool for modifying the surface of nanoparticles, even though reactive groups are not present on the surface. Copyright 2010 Elsevier B.V. All rights reserved.

  4. The effect of spin induced magnetization on Jeans instability of viscous and resistive quantum plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, Prerana, E-mail: preranaiitd@rediffmail.com; Chhajlani, R. K.

    2014-03-15

    The effect of spin induced magnetization and electrical resistivity incorporating the viscosity of the medium is examined on the Jeans instability of quantum magnetoplasma. Formulation of the system is done by using the quantum magnetohydrodynamic model. The analysis of the problem is carried out by normal mode analysis theory. The general dispersion relation is derived from set of perturbed equations to analyse the growth rate and condition of self-gravitational Jeans instability. To discuss the influence of resistivity, magnetization, and viscosity parameters on Jeans instability, the general dispersion relation is reduced for both transverse and longitudinal mode of propagations. In themore » case of transverse propagation, the gravitating mode is found to be affected by the viscosity, magnetization, resistivity, and magnetic field strength whereas Jeans criterion of instability is modified by the magnetization and quantum parameter. In the longitudinal mode of propagation, the gravitating mode is found to be modified due to the viscosity and quantum correction in which the Jeans condition of instability is influenced only by quantum parameter. The other non-gravitating Alfven mode in this direction is affected by finite electrical resistivity, spin induced magnetization, and viscosity. The numerical study for the growth rate of Jeans instability is carried out for both in the transverse and longitudinal direction of propagation to the magnetic field. The effect of various parameters on the growth rate of Jeans instability in quantum plasma is analysed.« less

  5. Dispersion Engineering of Bose-Einstein Condensates

    NASA Astrophysics Data System (ADS)

    Khamehchi, Mohammad Amin

    The subject of this dissertation is engineering the dispersion relation for dilute Bose-Einstein condensates (BECs). When a BEC is immersed into suitably tailored laser fields its dispersion can be strongly modified. Prominent examples for such laser fields include optical lattice geometries and Raman dressing fields. The ability to engineer the dispersion of a BEC allows for the investigation of a range of phenomena related to quantum hydrodynamics and condensed matter. In the first context, this dissertation studies the excitation spectrum of a spin-orbit coupled (SOC) BEC. The spin-orbit coupling is generated by " dressing" the atoms with two Raman laser fields. The excitation spectrum has a Roton-like feature that can be altered by tuning the Raman laser parameters. It is demonstrated that the Roton mode can be softened, but it does not reach the ground state energy for the experimental conditions we had. Furthermore, the expansion of SOC BECs in 1D is studied by relaxing the trap allowing the BEC to expand in the SOC direction. Contrary to the findings for optical lattices, it is observed that the condensate partially occupies quasimomentum states with negative effective mass, and therefore an abrupt deceleration is observed although the mean field force is along the direction of expansion. In condensed-matter systems, a periodic lattice structure often plays an important role. In this context, an alternative to the Raman dressing scheme can be realized by coupling the s- and p- bands of a static optical lattice via a weak moving lattice. The bands can be treated as pseudo-spin states. It is shown that similar to the dispersion relation of a Raman dressed SOC, the quasimomentum of the ground state is different from zero. Coherent coupling of the SOC dispersion minima can lead to the realization of the stripe phase even though it is not the thermodynamic ground state of the system. Along the lines of studying the hydrodynamics of BECs, three novel multicomponent solitonic states are realized. It is shown that the solitons are structurally stable and the oscillation of vector dark-anti-dark solitons is studied in a weak harmonic trap.

  6. Spatial and temporal pulse propagation for dispersive paraxial optical systems.

    PubMed

    Marcus, G

    2016-04-04

    The formalism for pulse propagation through dispersive paraxial optical systems first presented by Kostenbauder (IEEE J. Quant. Elec.261148-1157 (1990)) using 4 × 4 ray-pulse matrices is extended to 6 × 6 matrices and includes non-separable spatial-temporal couplings in both transverse dimensions as well as temporal dispersive effects up to a quadratic phase. The eikonal in a modified Huygens integral in the Fresnell approximation is derived and can be used to propagate pulses through complicated dispersive optical systems within the paraxial approximation. In addition, a simple formula for the propagation of ultrashort pulses having a Gaussian profile both spatially and temporally is presented.

  7. Radiative decay of keV-mass sterile neutrino in magnetized electron plasma

    NASA Astrophysics Data System (ADS)

    Dobrynina, Alexandra; Mikheev, Nicolay; Raffelt, Georg

    2017-10-01

    The radiative decay of sterile neutrinos with typical masses of 10 keV is investigated in the presence of an external magnetic field and degenerate electron plasma. Full account is taken of the modified photon dispersion relation relative to vacuum. The limiting cases of relativistic and nonrelativistic plasma are analyzed. The decay rate calculated in a strongly magnetized plasma, as a function of the electron number density, is compared with the unmagnetized plasma limit. It is found that the presence of the strong magnetic field in the electron plasma suppresses the catalyzing influence of the plasma by itself on the sterile-neutrino decay rate.

  8. Static and Dynamic Mechanical Characteristics of Ionic Liquid Modified MWCNT-SBR Composites: Theoretical Perspectives for the Nanoscale Reinforcement Mechanism.

    PubMed

    Abraham, Jiji; Thomas, Jince; Kalarikkal, Nandakumar; George, Soney C; Thomas, Sabu

    2018-02-01

    Well-dispersed, robust, mechanicaly long-term stable functionalized multiwalled carbon nanotube (f-MWCNT)-styrene butadiene rubber (SBR) nanocomposites were fabricated via a melt mixing route with the assistance of ionic liquid as a dispersing agent. The mechanical properties of f-MWCNT/SBR vulcanizates were compared over a range of loadings, and it was found that the network morphology was highly favorable for mechanical performance with enlarged stiffness. A comparative investigation of composite models found that modified Kelly-Tyson theory gave an excellent fit to tensile strength data of the composites considering the effect of the interphase between polymer and f-MWCNT. Dynamic mechanical analysis highlighted the mechanical reinforcement due to the improved filler-polymer interactions which were the consequence of proper dispersion of the nanotubes in the SBR matrix. Effectiveness of filler, entanglement density, and adhesion factor were evaluated to get an in depth understanding of the reinforcing mechanism of modified MWCNT. The amount of polymer chains immobilized by the filler surface computed from dynamic mechanical analysis further supports a substantial boost up in mechanics. The Cole-Cole plot shows an imperfect semicircular curve representing the heterogeneity of the system and moderately worthy filler polymer bonding. The combined results of structural characterizatrion by Raman spectroscopy, cure characteristics, mechanical properties, and scanning and transmission electron microscopy (SEM, TEM) confirm the role of ionic liquid modified MWCNT as a reinforcing agent in the present system.

  9. An analytical formulation of two‐dimensional groundwater dispersion induced by surficial recharge variability

    USGS Publications Warehouse

    Swain, Eric D.; Chin, David A.

    2003-01-01

    A predominant cause of dispersion in groundwater is advective mixing due to variability in seepage rates. Hydraulic conductivity variations have been extensively researched as a cause of this seepage variability. In this paper the effect of variations in surface recharge to a shallow surficial aquifer is investigated as an important additional effect. An analytical formulation has been developed that relates aquifer parameters and the statistics of recharge variability to increases in the dispersivity. This is accomplished by solving Fourier transforms of the small perturbation forms of the groundwater flow equations. Two field studies are presented in this paper to determine the statistics of recharge variability for input to the analytical formulation. A time series of water levels at a continuous groundwater recorder is used to investigate the temporal statistics of hydraulic head caused by recharge, and a series of infiltrometer measurements are used to define the spatial variability in the recharge parameters. With these field statistics representing head fluctuations due to recharge, the analytical formulation can be used to compute the dispersivity without an explicit representation of the recharge boundary. Results from a series of numerical experiments are used to define the limits of this analytical formulation and to provide some comparison. A sophisticated model has been developed using a particle‐tracking algorithm (modified to account for temporal variations) to estimate groundwater dispersion. Dispersivity increases of 9 percent are indicated by the analytical formulation for the aquifer at the field site. A comparison with numerical model results indicates that the analytical results are reasonable for shallow surficial aquifers in which two‐dimensional flow can be assumed.

  10. A modified symplectic PRK scheme for seismic wave modeling

    NASA Astrophysics Data System (ADS)

    Liu, Shaolin; Yang, Dinghui; Ma, Jian

    2017-02-01

    A new scheme for the temporal discretization of the seismic wave equation is constructed based on symplectic geometric theory and a modified strategy. The ordinary differential equation in terms of time, which is obtained after spatial discretization via the spectral-element method, is transformed into a Hamiltonian system. A symplectic partitioned Runge-Kutta (PRK) scheme is used to solve the Hamiltonian system. A term related to the multiplication of the spatial discretization operator with the seismic wave velocity vector is added into the symplectic PRK scheme to create a modified symplectic PRK scheme. The symplectic coefficients of the new scheme are determined via Taylor series expansion. The positive coefficients of the scheme indicate that its long-term computational capability is more powerful than that of conventional symplectic schemes. An exhaustive theoretical analysis reveals that the new scheme is highly stable and has low numerical dispersion. The results of three numerical experiments demonstrate the high efficiency of this method for seismic wave modeling.

  11. Organic amaranth starch: A study of its technological properties after heat-moisture treatment.

    PubMed

    Bet, Camila Delinski; de Oliveira, Cristina Soltovski; Colman, Tiago André Denck; Marinho, Marina Tolentino; Lacerda, Luiz Gustavo; Ramos, Augusto Pumacahua; Schnitzler, Egon

    2018-10-30

    Organic amaranth starch (Amaranthus caudatus) was studied after heat-moisture treatment (HMT) using different moisture contents and different times. The starch extracted by the aqueous method presented low lipid and protein content. After HMT, an increase in the thermal stability was identified. The onset and peak temperatures were higher with an increase in moisture content and the times used in the modification. The gelatinisation enthalpy varied due to the heterogeneity of the crystals formed after the structural reorganisation caused by HMT. The relative crystallinity was lower for the physically modified starches. An increase in the pasting temperature was accompanied by a decrease in the viscosity, setback and breakdown, which were proportional to the moisture and time used. The morphology of the HMT-modified samples was not altered; however, agglomerations were noted. Low levels of dispersion homogeneity and suspension stability were observed for the modified samples due to the strong presence of agglomerates. Published by Elsevier Ltd.

  12. Piloting a Dispersed and Inter-Professional Lesson Study Using Technology to Link Team Members at a Distance

    ERIC Educational Resources Information Center

    Koutsouris, George; Norwich, Brahm; Fujita, Taro; Ralph, Thomas; Adlam, Anna; Milton, Fraser

    2017-01-01

    This article presents an evaluation of distance technology used in a novel Lesson Study (LS) approach involving a dispersed LS team for inter-professional purposes. A typical LS model with only school teachers as team members was modified by including university-based lecturers with the school-based teachers, using video-conferencing and online…

  13. Surface-modified Ba(Zr0.3Ti0.7)O3 nanofibers by polyvinylpyrrolidone filler for poly(vinylidene fluoride) composites with enhanced dielectric constant and energy storage density.

    PubMed

    Liu, Shaohui; Xue, Shuangxi; Xiu, Shaomei; Shen, Bo; Zhai, Jiwei

    2016-05-17

    Ferroelectric-relaxor behavior of Ba(Zr0.3Ti0.7)O3 nanofibers (BZT NF) with a large aspect ratio were prepared via electrospinning and surface modified by PVP as dielectric fillers. The nanocomposite flexible films based on surface modified BZT NF and polyvinylidene fluoride (PVDF) were fabricated via a solution casting. The results show that the surface-modified BZT NF fillers are highly dispersed and well integrated in the PVDF nanocomposites. The nanocomposites exhibit enhanced dielectric constant and reduced loss tangents at a low volume fraction of surface-modified BZT NF. The polymer nanocomposites maintain a relatively high breakdown strength, which is favorable for enhancing energy storage density in the nanocomposites. The nanocomposite containing of 2.5 vol. % of PVP modified BZT NF exhibits energy density as high as 6.3 J/cm(3) at 3800 kV/cm, which is more than doubled that of the pure PVDF of 2.8 J/cm(3) at 4000 kV/cm. Such significant enhancement could be attributed to the combined effects of the surface modification and large aspect ratio of the BZT NF. This work may provide a route for using the surface modified ferroelectric-relaxor behavior of ceramic nanofibers to enhance the dielectric energy density in ceramic-polymer nanocomposites.

  14. Improving the reliability of road materials based on micronized sulfur composites

    NASA Astrophysics Data System (ADS)

    Abdrakhmanova, K. K.

    2015-01-01

    The work contains the results of a nano-structural modification of sulfur that prevents polymorphic transformations from influencing the properties of sulfur composites where sulfur is present in a thermodynamic stable condition that precludes destruction when operated. It has been established that the properties of sulfur-based composite materials can be significantly improved by modifying sulfur and structuring sulfur binder by nano-dispersed fiber particles and ultra-dispersed state filler. The paper shows the possibility of modifying Tengiz sulfur by its fragmenting which ensures that the structured sulfur is structurally changed and stabilized through reinforcement by ultra-dispersed fiber particles allowing the phase contact area to be multiplied. Interaction between nano-dispersed fibers of chrysotile asbestos and sulfur ensures the implementation of the mechanical properties of chrysotile asbestos tubes in reinforced composite and its integrity provided that the surface of chrysotile asbestos tubes are highly moistened with molten sulfur and there is high adhesion between the tubes and the matrix that, in addition to sulfur, contains limestone microparticles. Ability to apply materials in severe operation conditions and possibility of exposure in both aggressive medium and mechanical loads makes produced sulfur composites required by the road construction industry.

  15. Modification of gellan gum films by halloysite: physicochemical evaluation and drug permeation properties.

    PubMed

    Sakloetsakun, Duangkamon; Pongjanyakul, Thaned

    2017-03-01

    The aim of this study was to determine the potential of gellan gum (GG) and halloysite (HS) dispersions at different mixing ratios and to investigate the potential of GG-HS dispersions in film formation. To this end, the dispersions and films were characterized. The dispersions formed films with large particles ranging from 3 to 4 μm in size, with a zeta potential of ∼-35 mV. The GG-HS films were fabricated using a solvent-casting technique, which generated films with a white opaque appearance and rough surface. The GG-HS films were formed via hydrogen bonding and electrostatic interactions at the inner cavity and outer surface, as confirmed by ATR-FTIR spectroscopy and X-ray diffractometry. The %water uptake and erosion of the GG-HS film decreased with increasing HS content, whereas both puncture strength and elongation were increased in the GG-HS ratios of 1:0.4 and 1:1.2. Moreover, addition of HS into the GG films could possibly decrease drug permeability coefficient when using higher HS ratio in acidic and neutral media. These results suggested that HS modifies the characteristics of the GG used to coat modified-release tablets.

  16. Excitation of dust kinetic Alfven waves by semi-relativistic ion beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rubab, N.; Jaffer, G.

    2016-05-15

    The growth rates for dust kinetic Alfvén wave (DKAW) based on semi-relativistic Maxwellian distribution function are investigated in a hot and magnetized plasma. The dispersion relation of DKAW is obtained on a dust acoustic velocity branch, and the kinetic instability due to cross-field semi-relativistic ion flow is examined by the effect of dust parameters. Analytical expressions are derived for various modes as a natural consequence of the form of the solution, and is shown through graphical representation that the presence of dust particles and the cross-field semi-relativistic ions sensibly modify the dispersion characteristics of low-frequency DKAW. The results are validmore » for a frequency regime well below the dust cyclotron frequency. We suggest that semi-relativistic particles are an important factor in the growth/damping of DKAWs. It is also found that relativistic effects appear with the dust lower hybrid frequency are more effective for dust kinetic Alfvén waves in the perpendicular component as compared to the parallel one. In particular, the relativistic effects associated with electrons suppress the instability while ions enhance the growth rates. The growth rates are significantly modified with dust parameters and streaming velocity of cross-field ions.« less

  17. Structure-property and composition-property relationships for poly(ethylene terephthalate) surfaces modified by helium plasma-based ion implantation

    NASA Astrophysics Data System (ADS)

    Tóth, A.; Veres, M.; Kereszturi, K.; Mohai, M.; Bertóti, I.; Szépvölgyi, J.

    2011-10-01

    The surfaces of untreated and helium plasma-based ion implantation (He PBII) treated poly(ethylene terephthalate) (PET) samples were characterised by reflectance colorimetry, contact angle studies and measurements of surface electrical resistance. The results were related to the structural and compositional data obtained by the authors earlier on parallel samples by XPS and Raman spectroscopy. Inverse correlations between lightness and ID/ IG ratio and between chroma and ID/ IG ratio were obtained, suggesting that the PBII-treated PET samples darken and their colourfulness decreases with the increase of the portion of aromatic sp 2 carbon rings in the chemical structure of the modified layer. Direct correlation between water contact angle and the ID/ IG ratio and inverse correlations between surface energy and ID/ IG ratio and between dispersive component of surface energy and ID/ IG ratio were found, reflecting that surface wettability, surface energy and its dispersive component decrease with the formation of surface structure, characterised again by enhanced portion of aromatic sp 2 carbon rings. The surface electrical resistance decreased with the increase of the surface C-content determined by XPS and also with the increase of the surface concentration of conjugated double bonds, reflected by the increase of the π → π* shake-up satellite of the C 1s peak.

  18. Degradation of modified carbon black/epoxy nanocomposite coatings under ultraviolet exposure

    NASA Astrophysics Data System (ADS)

    Ghasemi-Kahrizsangi, Ahmad; Shariatpanahi, Homeira; Neshati, Jaber; Akbarinezhad, Esmaeil

    2015-10-01

    Degradation of epoxy coatings with and without Carbon Black (CB) nanoparticles under ultraviolet (UV) radiation were investigated using electrochemical impedance spectroscopy (EIS). Sodium dodecyl sulfate (SDS) was used to obtain a good dispersion of CB nanoparticles in a polymer matrix. TEM analysis proved a uniform dispersion of modified CB nanoparticles in epoxy coating. The coatings were subjected to UV radiation to study the degradation behavior and then immersed in 3.5 wt% NaCl. The results showed that the electrochemical behavior of neat epoxy coating was related to the formation and development of microcracks on the surface. The occurrence of microcracks on the surface of the coatings and consequently the penetration of ionic species reduced by adding CB nanoparticles into the formulation of the coatings. CB nanoparticles decreased degradation of CB coatings by absorbing UV irradiation. The ATR-FTIR results showed that decrease in the intensity of methyl group as main peak in presence of 2.5 wt% CB was lower than neat epoxy. In addition, the reduction in impedance of neat epoxy coating under corrosive environment was larger than CB coatings. The CB coating with 2.5 wt% nanoparticles had the highest impedance to corrosive media after 2000 h UV irradiation and 24 h immersion in 3.5 wt% NaCl.

  19. Effects of pollen load, parasitoids and the environment on pre-dispersal seed predation in the cleistogamous Ruellia nudiflora.

    PubMed

    Munguía-Rosas, Miguel A; Abdala-Roberts, Luis; Parra-Tabla, Víctor

    2013-11-01

    Few studies have simultaneously addressed the effects of biotic and abiotic factors on pre-dispersal seed predation (PSP). Plant-seed predator interactions may be influenced by natural enemies and pollinators (the latter through changes in fruit or seed traits), and the activity of pre-dispersal seed predators and their natural enemies may both be affected by the abiotic environment. Additionally, in the case of cleistogamous plants with fruit dimorphism, PSP may be biased towards larger and more seeded chasmogamous (CH) fruits [relative to the smaller cleistogamous (CL) fruits], and the effects of biotic and abiotic factors may be contingent upon this fruit dimorphism. We studied PSP in the cleistogamous Ruellia nudiflora using a split-plot experimental design and asked the following: (1) is PSP biased towards CH fruits and is there an effect of pollen load on PSP? (2) Do parasitoids influence PSP and is their effect influenced by pollen load or fruit type? And (3) do light and water availability modify PSP and parasitoid effects? PSP was higher for CH relative to CL fruits, and under low water availability it was lower for pollen-supplemented CH fruits relative to open-pollinated CH fruits. Parasitoids were not influenced by abiotic conditions, but their negative effect on PSP was stronger for pollen-supplemented CH fruits. Overall, we show that fruit dimorphism, abiotic factors and natural enemies affect PSP, and that these effects can be non-additive.

  20. Effect of exchange correlation potential on dispersion properties of lower hybrid wave in degenerate plasma

    NASA Astrophysics Data System (ADS)

    Rimza, Tripti; Sharma, Prerana

    2017-05-01

    The dispersion properties of lower hybrid wave are studied in electron-iondegenerate plasma with exchange effect in non-relativistic regime. It is found that the combined effect of Bohm potential and exchange correlation potential significantly modifies the dispersion properties of lower hybrid wave. The graphical results explicitly show the influence of degeneracy pressure, Bohm force and exchange correlation potential on the frequency of the lower hybrid mode. Present work should be of relevance for the dense astrophysical environments like white dwarfs and for laboratory experiments.

  1. Molecular simulation of dispersion and mechanical stability of organically modified layered silicates in polymer matrices

    NASA Astrophysics Data System (ADS)

    Fu, Yao-Tsung

    The experimental analysis of nanometer-scale separation processes and mechanical properties at buried interfaces in nanocomposites has remained difficult. We have employed molecular dynamics simulation in relation to available experimental data to alleviate such limitations and gain insight into the dispersion and mechanical stability of organically modified layered silicates in hydrophobic polymer matrices. We analyzed cleavage energies of various organically modified silicates as a function of the cation exchange capacity, surfactant head group chemistry, and chain length using MD simulations with the PCFF-PHYLLOSILICATE force field. The range of the cleavage energy is between 25 and 210 mJ/m2 upon the molecular structures and packing of surfactants. As a function of chain length, the cleavage energy indicates local minima for interlayer structures comprised of loosely packed layers of alkyl chains and local maxima for interlayer structures comprised of densely packed layers of alkyl chains between the layers. In addition, the distribution of cationic head groups between the layers in the equilibrium state determines whether large increases in cleavage energy due to Coulomb attraction. We have also examined mechanical bending and failure mechanisms of layered silicates on the nanometer scale using molecular dynamics simulation in comparison to a library of TEM data of polymer nanocomposites. We investigated the energy of single clay lamellae as a function of bending radius and different cation density. The layer energy increases particularly for bending radii below 20 nm and is largely independent of cation exchange capacity. The analysis of TEM images of agglomerated and exfoliated aluminosilicates of different CEC in polymer matrices at small volume fractions showed bending radii in excess of 100 nm due to free volumes in the polymer matrix. At a volume fraction >5%, however, bent clay layers were found with bending radii <20 nm and kinks as a failure mechanism in good agreement with simulation results. We have examined thermal conductivity of organically modified layered silicates using molecular dynamics simulation in comparison to experimental results by laser measurement. The thermal conductivity slightly increased from 0.08 to 0.14 Wm-1K-1 with increasing chain length, related to the gallery spacing and interlayer density of the organic material.

  2. Low-energy Lorentz violation from high-energy modified dispersion in inertial and circular motion

    NASA Astrophysics Data System (ADS)

    Louko, Jorma; Upton, Samuel D.

    2018-01-01

    We consider an Unruh-DeWitt detector in inertial and circular motion in Minkowski spacetime of arbitrary dimension, coupled to a quantized scalar field with the Lorentz-violating dispersion relation ω =|k |f (|k |/M⋆) , where M⋆ is the Lorentz-breaking scale. Assuming that f dips below unity somewhere, we show that an inertial detector experiences large low-energy Lorentz violations in all spacetime dimensions greater than two, generalizing previous results in four dimensions. For a detector in circular motion, we show that a similar low-energy Lorentz violation occurs in three spacetime dimensions, and we lay the analytic groundwork for examining circular motion in all dimensions greater than three, generalizing previous work by Stargen, Kajuri and Sriramkumar in four dimensions. The circular motion results may be relevant for the prospects of observing the circular motion Unruh effect in analogue laboratory systems.

  3. A systematic approach to numerical dispersion in Maxwell solvers

    NASA Astrophysics Data System (ADS)

    Blinne, Alexander; Schinkel, David; Kuschel, Stephan; Elkina, Nina; Rykovanov, Sergey G.; Zepf, Matt

    2018-03-01

    The finite-difference time-domain (FDTD) method is a well established method for solving the time evolution of Maxwell's equations. Unfortunately the scheme introduces numerical dispersion and therefore phase and group velocities which deviate from the correct values. The solution to Maxwell's equations in more than one dimension results in non-physical predictions such as numerical dispersion or numerical Cherenkov radiation emitted by a relativistic electron beam propagating in vacuum. Improved solvers, which keep the staggered Yee-type grid for electric and magnetic fields, generally modify the spatial derivative operator in the Maxwell-Faraday equation by increasing the computational stencil. These modified solvers can be characterized by different sets of coefficients, leading to different dispersion properties. In this work we introduce a norm function to rewrite the choice of coefficients into a minimization problem. We solve this problem numerically and show that the minimization procedure leads to phase and group velocities that are considerably closer to c as compared to schemes with manually set coefficients available in the literature. Depending on a specific problem at hand (e.g. electron beam propagation in plasma, high-order harmonic generation from plasma surfaces, etc.), the norm function can be chosen accordingly, for example, to minimize the numerical dispersion in a certain given propagation direction. Particle-in-cell simulations of an electron beam propagating in vacuum using our solver are provided.

  4. Modification of carbon nanotube's dispersion using cetyltrimethyl ammonium bromide (CTAB) as cancer drug delivery

    NASA Astrophysics Data System (ADS)

    Wulan, Praswati PDK.; Wulandari, Hanifia; Ulwan, Sekar H.; Purwanto, Widodo W.; Mulia, Kamarza

    2018-02-01

    Cancer is a disease that causes many deaths globally. Cancer treatments have side effects that can danger the human body. Carbon nanotube (CNT) becomes drug (anti-cancer) delivery towards cancer cells that have been targeted. Yet, CNT tends to aggregate. It could be overcome by functionalization (modification) of CNT using Cetyltrimethyl Ammonium Bromide (CTAB). The variations we use were CNT-CTAB with a dose of CNT 100 mg and CTAB varied between 80, 90, 100, 110, and 120 mg. There were several stages of CNT modification process: dispersion, filtration, washing, and drying. The optimum condition obtained was on CNT-110 mg CTAB because it could be dispersed up to 70 hours better than pure CNT, Zeta Potential (ZP) ≥16 mV, and absorbance Uv-vis 1.05. Both the ZP value and the absorbance of Uv-vis showed the CNT dispersion modified to be better than the pure CNT. Furthermore, SEM-EDX did not produce structural damage to CNT modified surfaces, the percentage of the mass of Oxygen (O) elements as characteristic of increased hydrophilic properties, and Ni elements as toxic impurities become reduced. FTIR spectrum results showed the highest intensity occurred at CTAB CNT-110mg at 1221 m-1. This strong C-N vibration interaction suggests that CNTs CNT modification become readily dispersed in water.

  5. Encapsulation of Naproxen in Lipid-Based Matrix Microspheres: Characterization and Release Kinetics

    PubMed Central

    Bhoyar, PK; Morani, DO; Biyani, DM; Umekar, MJ; Mahure, JG; Amgaonkar, YM

    2011-01-01

    The objective of this study was to microencapsulate the anti-inflammatory drug (naproxen) to provide controlled release and minimizing or eliminating local side effect by avoiding the drug release in the upper gastrointestinal track. Naproxen was microencapsulated with lipid-like carnauba wax, hydrogenated castor oil using modified melt dispersion (modified congealable disperse phase encapsulation) technique. Effect of various formulation and process variables such as drug-lipid ratio, concentration of modifier, concentration of dispersant, stirring speed, stirring time, temperature of external phase, on evaluatory parameters such as size, entrapment efficiency, and in vitro release of naproxen were studied. The microspheres were characterized for particle size, scanning electron microscopy (SEM), FT-IR spectroscopy, drug entrapment efficiency, in vitro release studies, for in vitro release kinetics. The shape of microspheres was found to be spherical by SEM. The drug entrapment efficiency of various batches of microspheres was found to be ranging from 60 to 90 %w/w. In vitro drug release studies were carried out up to 24 h in pH 7.4 phosphate buffer showing 50-65% drug release. In vitro drug release from all the batches showed better fitting with the Korsmeyer-Peppas model, indicating the possible mechanism of drug release to be by diffusion and erosion of the lipid matrix. PMID:21731354

  6. Encapsulation of naproxen in lipid-based matrix microspheres: characterization and release kinetics.

    PubMed

    Bhoyar, P K; Morani, D O; Biyani, D M; Umekar, M J; Mahure, J G; Amgaonkar, Y M

    2011-04-01

    The objective of this study was to microencapsulate the anti-inflammatory drug (naproxen) to provide controlled release and minimizing or eliminating local side effect by avoiding the drug release in the upper gastrointestinal track. Naproxen was microencapsulated with lipid-like carnauba wax, hydrogenated castor oil using modified melt dispersion (modified congealable disperse phase encapsulation) technique. Effect of various formulation and process variables such as drug-lipid ratio, concentration of modifier, concentration of dispersant, stirring speed, stirring time, temperature of external phase, on evaluatory parameters such as size, entrapment efficiency, and in vitro release of naproxen were studied. The microspheres were characterized for particle size, scanning electron microscopy (SEM), FT-IR spectroscopy, drug entrapment efficiency, in vitro release studies, for in vitro release kinetics. The shape of microspheres was found to be spherical by SEM. The drug entrapment efficiency of various batches of microspheres was found to be ranging from 60 to 90 %w/w. In vitro drug release studies were carried out up to 24 h in pH 7.4 phosphate buffer showing 50-65% drug release. In vitro drug release from all the batches showed better fitting with the Korsmeyer-Peppas model, indicating the possible mechanism of drug release to be by diffusion and erosion of the lipid matrix.

  7. Gluon transport equation with effective mass and dynamical onset of Bose–Einstein condensation

    DOE PAGES

    Blaizot, Jean-Paul; Jiang, Yin; Liao, Jinfeng

    2016-05-01

    In this paper we study the transport equation describing a dense system of gluons, in the small scattering angle approximation, taking into account medium-generated effective masses of the gluons. We focus on the case of overpopulated systems that are driven to Bose–Einstein condensation on their way to thermalization. Lastly, the presence of a mass modifies the dispersion relation of the gluon, as compared to the massless case, but it is shown that this does not change qualitatively the scaling behavior in the vicinity of the onset.

  8. Gluon transport equation with effective mass and dynamical onset of Bose–Einstein condensation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blaizot, Jean-Paul; Jiang, Yin; Liao, Jinfeng

    In this paper we study the transport equation describing a dense system of gluons, in the small scattering angle approximation, taking into account medium-generated effective masses of the gluons. We focus on the case of overpopulated systems that are driven to Bose–Einstein condensation on their way to thermalization. Lastly, the presence of a mass modifies the dispersion relation of the gluon, as compared to the massless case, but it is shown that this does not change qualitatively the scaling behavior in the vicinity of the onset.

  9. Quantization of Space-like States in Lorentz-Violating Theories

    NASA Astrophysics Data System (ADS)

    Colladay, Don

    2018-01-01

    Lorentz violation frequently induces modified dispersion relations that can yield space-like states that impede the standard quantization procedures. In certain cases, an extended Hamiltonian formalism can be used to define observer-covariant normalization factors for field expansions and phase space integrals. These factors extend the theory to include non-concordant frames in which there are negative-energy states. This formalism provides a rigorous way to quantize certain theories containing space-like states and allows for the consistent computation of Cherenkov radiation rates in arbitrary frames and avoids singular expressions.

  10. Nonsingular rainbow universes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Awad, Adel; Ali, Ahmed Farag; Majumder, Barun, E-mail: aawad@zewailcity.edu.eg, E-mail: ahmed.ali@fsc.bu.edu.eg, E-mail: barunbasanta@iitgn.ac.in

    2013-10-01

    In this work, we study FRW cosmologies in the context of gravity rainbow. We discuss the general conditions for having a nonsingular FRW cosmology in gravity rainbow. We propose that gravity rainbow functions can be fixed using two known modified dispersion relation (MDR), which have been proposed in literature. The first MDR was introduced by Amelino-Camelia, et el. in [9] and the second was introduced by Magueijo and Smolin in [24]. Studying these FRW-like cosmologies, after fixing the gravity rainbow functions, leads to nonsingular solutions which can be expressed in exact forms.

  11. Nonlinear DC Conduction Behavior in Graphene Nanoplatelets/Epoxy Resin Composites

    NASA Astrophysics Data System (ADS)

    Yuan, Yang; Wang, Qingguo; Qu, Zhaoming

    2018-01-01

    Graphene nanoplatelets (GNPs)/Epoxy resin (ER) with a low percolation threshold were fabricated. Then the nonlinear DC conduction behavior of GNPs/ER composites was investigated, which indicates that dispersion, exfoliation level and conductivity of GNPs in specimens are closely related to the conduction of composites. Moreover, it could be seen that the modified graphene nanoplatelets made in this paper could be successfully used for increasing the electric conductivity of the epoxy resin, and the GNPs/ER composites with nonlinear conduction behavior have a good application prospects in the field of intelligent electromagnetic protection.

  12. Jeans instability of magnetized quantum plasma: Effect of viscosity, rotation and finite Larmor radius corrections

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jain, Shweta, E-mail: jshweta09@gmail.com; Sharma, Prerana; Chhajlani, R. K.

    2015-07-31

    The Jeans instability of self-gravitating quantum plasma is examined considering the effects of viscosity, finite Larmor radius (FLR) corrections and rotation. The analysis is done by normal mode analysis theory with the help of relevant linearized perturbation equations of the problem. The general dispersion relation is obtained using the quantum magneto hydrodynamic model. The modified condition of Jeans instability is obtained and the numerical calculations have been performed to show the effects of various parameters on the growth rate of Jeans instability.

  13. Surface modification of zinc oxide nanoparticle by PMAA and its dispersion in aqueous system

    NASA Astrophysics Data System (ADS)

    Tang, Erjun; Cheng, Guoxiang; Ma, Xiaolu; Pang, Xingshou; Zhao, Qiang

    2006-05-01

    Commercial zinc oxide nanoparticles were modified by polymethacrylic acid (PMAA) in aqueous system. The hydroxyl groups of nano-ZnO particle surface can interact with carboxyl groups (COO-) of PMAA and form poly(zinc methacrylate) complex on the surface of nano-ZnO. The formation of poly(zinc methacrylate) complex was testified by Fourier-transform infrared spectra (FT-IR). Thermogravimetric analysis (TGA) indicated that PMAA molecules were absorbed or anchored on the surface of nano-ZnO particle, which facilitated to hinder the aggregation of nano-ZnO particles. Through particle size analysis and transmission electron micrograph (TEM) observation, it was found that PMAA enhanced the dispersibility of nano-ZnO particles in water. The dispersion stabilization of modified ZnO nanoparticles in aqueous system was significantly improved due to the introduction of grafted polymer on the surface of nanoparticles. The modification did not alter the crystalline structure of the ZnO nanoparticles according to the X-ray diffraction patterns.

  14. De-agglomeration and homogenisation of nanoparticles in coal tar pitch-based carbon materials

    NASA Astrophysics Data System (ADS)

    Gubernat, Maciej; Tomala, Janusz; Frohs, Wilhelm; Fraczek-Szczypta, Aneta; Blazewicz, Stanislaw

    2016-03-01

    The aim of the work was to characterise coal tar pitch (CTP) modified with selected nanoparticles as a binder precursor for the manufacture of synthetic carbon materials. Different factors influencing the preliminary preparative steps in the preparation of homogenous nanoparticle/CTP composition were studied. Graphene flakes, carbon black and nano-sized silicon carbide were used to modify CTP. Prior to introducing them into liquid CTP, nanoparticles were subjected to sonication. Various dispersants were used to prepare the suspensions, i.e. water, ethanol, dimethylformamide (DMF) and N-methylpyrrolidone (NMP).The results showed that proper dispersant selection is one of the most important factors influencing the de-agglomeration process of nanoparticles. DMF and NMP were found to be effective dispersants for the preparation of homogenous nanoparticle-containing suspensions. The presence of SiC and carbon black nanoparticles in the liquid pitch during heat treatment up to 2000 °C leads to the inhibition of crystallite growth in carbon residue.

  15. Multifunctional PLA-PHB/cellulose nanocrystal films: processing, structural and thermal properties.

    PubMed

    Arrieta, M P; Fortunati, E; Dominici, F; Rayón, E; López, J; Kenny, J M

    2014-07-17

    Cellulose nanocrystals (CNCs) synthesized from microcrystalline cellulose by acid hydrolysis were added into poly(lactic acid)-poly(hydroxybutyrate) (PLA-PHB) blends to improve the final properties of the multifunctional systems. CNC were also modified with a surfactant (CNCs) to increase the interfacial adhesion in the systems maintaining the thermal stability. Firstly, masterbatch pellets were obtained for each formulation to improve the dispersion of the cellulose structures in the PLA-PHB and then nanocomposite films were processed. The thermal stability as well as the morphological and structural properties of nanocomposites was investigated. While PHB increased the PLA crystallinity due to its nucleation effect, well dispersed CNC and CNCs not only increased the crystallinity but also improved the processability, the thermal stability and the interaction between both polymers especially in the case of the modified CNCs based PLA-PHB formulation. Likewise, CNCs were better dispersed in PLA-CNCs and PLA-PHB-CNCs, than CNC. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Structured copolymers and their use as absorbents, gels and carriers of metal ions

    DOEpatents

    Hedstrand, David M.; Helmer, Bradley J.; Tomalia, Donald A.

    1996-01-01

    Dense star polymers or dendrimers having a highly branched interior structure capable of associating or chelating with metal ions are modified by capping with a hydrophobic group capable of providing a hydrophobic outer shell. The modified dendrimers are useful for dispersing metal ions in a non-aqueous polymer matrix. Also dense star polymers or dendrimers having a highly branched hydrophilic interior structure are modified by capping with a hydrophobic group capable of providing a hydrophobic outer shell, which modified polymers are useful as gels and surfactants.

  17. Structured copolymers and their use as absorbents, gels and carriers of metal ions

    DOEpatents

    Hedstrand, D.M.; Helmer, B.J.; Tomalia, D.A.

    1996-10-01

    Dense star polymers or dendrimers having a highly branched interior structure capable of associating or chelating with metal ions are modified by capping with a hydrophobic group capable of providing a hydrophobic outer shell. The modified dendrimers are useful for dispersing metal ions in a non-aqueous polymer matrix. Also dense star polymers or dendrimers having a highly branched hydrophilic interior structure are modified by capping with a hydrophobic group capable of providing a hydrophobic outer shell, which modified polymers are useful as gels and surfactants.

  18. Acute dermal toxicity and sensitization studies of novel nano-enhanced UV absorbers.

    PubMed

    Piasecka-Zelga, Joanna; Zelga, Piotr; Górnicz, Magdalena; Strzelczyk, Paweł; Sójka-Ledakowicz, Jadwiga

    2015-01-01

    Many employees working outside are exposed to the harmful effects of UV radiation. A growing problem is also sensitization to textile materials and allergic reactions to active compounds. Groups of inorganic UV blockers with nanoparticles may provide superior properties over organic UV absorbers with relatively less potential of provoking dermatitis. To assess acute dermal irritation and sensitization of nano UV absorbers. Five UV absorbers with nano-sized particles (Z11, TiO2 - SiO2 [TDPK], TK44, TK11, A8G) and 2 vehicles (paste-based on 10% PEG, and dispersion with 1% HEC) were tested. Acute dermal irritation was tested using group of 3 rabbits for each absorber. The sensitization study was carried out on groups of 15 guinea pigs for each tested textile with a UV absorber showing an Ultraviolet Protection Factor (UPF)>40. This research was designed according to OECD Test Guideline No. 404 and 406, and 21 rabbits and 60 guinea pigs were used in the study. In acute dermal irritation, Z11 and A8G modifiers and the analyzed paste gave results of 0.047 to 0.33 which classifies them as barely perceptible irritants, whereas the other analyzed modifiers and dispersion gave results of 0.00 and were classified as nonirritating. Only the textile with TK 11 did not have UPF>40. The analyzed barrier materials were classified as nonsenitizers (TDPK, A8G) or mild sensitizers (TK44, Z11). None of the analyzed materials or modifiers induced major skin reactions in animals. Therefore, they present low risk of provoking skin reactions in humans.

  19. Reynolds number dependence of relative dispersion statistics in isotropic turbulence

    NASA Astrophysics Data System (ADS)

    Sawford, Brian L.; Yeung, P. K.; Hackl, Jason F.

    2008-06-01

    Direct numerical simulation results for a range of relative dispersion statistics over Taylor-scale Reynolds numbers up to 650 are presented in an attempt to observe and quantify inertial subrange scaling and, in particular, Richardson's t3 law. The analysis includes the mean-square separation and a range of important but less-studied differential statistics for which the motion is defined relative to that at time t =0. It seeks to unambiguously identify and quantify the Richardson scaling by demonstrating convergence with both the Reynolds number and initial separation. According to these criteria, the standard compensated plots for these statistics in inertial subrange scaling show clear evidence of a Richardson range but with an imprecise estimate for the Richardson constant. A modified version of the cube-root plots introduced by Ott and Mann [J. Fluid Mech. 422, 207 (2000)] confirms such convergence. It has been used to yield more precise estimates for Richardson's constant g which decrease with Taylor-scale Reynolds numbers over the range of 140-650. Extrapolation to the large Reynolds number limit gives an asymptotic value for Richardson's constant in the range g =0.55-0.57, depending on the functional form used to make the extrapolation.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ko, L.F.

    Calculations for the two-point correlation functions in the scaling limit for two statistical models are presented. In Part I, the Ising model with a linear defect is studied for T < T/sub c/ and T > T/sub c/. The transfer matrix method of Onsager and Kaufman is used. The energy-density correlation is given by functions related to the modified Bessel functions. The dispersion expansion for the spin-spin correlation functions are derived. The dominant behavior for large separations at T not equal to T/sub c/ is extracted. It is shown that these expansions lead to systems of Fredholm integral equations. Inmore » Part II, the electric correlation function of the eight-vertex model for T < T/sub c/ is studied. The eight vertex model decouples to two independent Ising models when the four spin coupling vanishes. To first order in the four-spin coupling, the electric correlation function is related to a three-point function of the Ising model. This relation is systematically investigated and the full dispersion expansion (to first order in four-spin coupling) is obtained. The results is a new kind of structure which, unlike those of many solvable models, is apparently not expressible in terms of linear integral equations.« less

  1. Spatial and temporal pulse propagation for dispersive paraxial optical systems

    DOE PAGES

    Marcus, G.

    2016-04-01

    The formalism for pulse propagation through dispersive paraxial optical systems first presented by Kostenbauder (IEEE J. Quant. Elec. 261148–1157 (1990)) using 4 × 4 ray-pulse matrices is extended to 6 × 6 matrices and includes non-separable spatial-temporal couplings in both transverse dimensions as well as temporal dispersive effects up to a quadratic phase. The eikonal in a modified Huygens integral in the Fresnell approximation is derived and can be used to propagate pulses through complicated dispersive optical systems within the paraxial approximation. Additionally, a simple formula for the propagation of ultrashort pulses having a Gaussian profile both spatially and temporallymore » is presented.« less

  2. Spatial and temporal pulse propagation for dispersive paraxial optical systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marcus, G.

    The formalism for pulse propagation through dispersive paraxial optical systems first presented by Kostenbauder (IEEE J. Quant. Elec. 261148–1157 (1990)) using 4 × 4 ray-pulse matrices is extended to 6 × 6 matrices and includes non-separable spatial-temporal couplings in both transverse dimensions as well as temporal dispersive effects up to a quadratic phase. The eikonal in a modified Huygens integral in the Fresnell approximation is derived and can be used to propagate pulses through complicated dispersive optical systems within the paraxial approximation. Additionally, a simple formula for the propagation of ultrashort pulses having a Gaussian profile both spatially and temporallymore » is presented.« less

  3. An efficient method for supercontinuum generation in dispersion-tailored Lead-silicate fiber taper

    NASA Astrophysics Data System (ADS)

    Chen, Z.; Ma, S.; Dutta, N. K.

    2010-08-01

    In this paper we theoretically study the broadband mid-IR supercontinuum generation (SCG) in a lead-silicate microstructured fiber (the glass for simulation is SF57). The total dispersion of the fiber can be tailored by changing the core diameter of the fiber so that dispersion profiles with two zero dispersion wavelengths (ZDWs) can be obtained. Numerical simulations of the SCG process in a 4 cm long SF57 fiber/fiber taper seeded by femto-second pulses at telecommunications wavelength of 1.55 µm are presented. The results show that a fiber taper features a continuous shift of the longer zero dispersion wavelength. This extends the generated continuum to a longer wavelength region compared to fibers with fixed ZDWs. The phase-matching condition (PMC) is continuously modified in the fiber taper and the bandwidth of the generated dispersive waves (DWs) is significantly broadened.

  4. Ab Initio Molecular Dynamics and Lattice Dynamics-Based Force Field for Modeling Hexagonal Boron Nitride in Mechanical and Interfacial Applications.

    PubMed

    Govind Rajan, Ananth; Strano, Michael S; Blankschtein, Daniel

    2018-04-05

    Hexagonal boron nitride (hBN) is an up-and-coming two-dimensional material, with applications in electronic devices, tribology, and separation membranes. Herein, we utilize density-functional-theory-based ab initio molecular dynamics (MD) simulations and lattice dynamics calculations to develop a classical force field (FF) for modeling hBN. The FF predicts the crystal structure, elastic constants, and phonon dispersion relation of hBN with good accuracy and exhibits remarkable agreement with the interlayer binding energy predicted by random phase approximation calculations. We demonstrate the importance of including Coulombic interactions but excluding 1-4 intrasheet interactions to obtain the correct phonon dispersion relation. We find that improper dihedrals do not modify the bulk mechanical properties and the extent of thermal vibrations in hBN, although they impact its flexural rigidity. Combining the FF with the accurate TIP4P/Ice water model yields excellent agreement with interaction energies predicted by quantum Monte Carlo calculations. Our FF should enable an accurate description of hBN interfaces in classical MD simulations.

  5. Iron oxide nanoparticles modified with silanes for hyperthermia applications

    NASA Astrophysics Data System (ADS)

    Storozhuk, Liudmyla; Iukhymenko, Natalia

    2018-04-01

    Fe3O4-HDTMS nanocomposites were prepared and studied using Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy, X-ray analysis, thermal analysis (TGA), dynamic light scattering analysis, magnetic and specific loss power (SLP) measurements. FTIR results showed that during the modification, the formation of the silane coating occurs due to the appearance of the magnetite-O-Si-R bond. According to TGA results, the mass loss in the range of temperatures 410-650 °C is due to the destruction of covalent bonds Fe-O-Si. The Si-O-R coating leads to the decrease in the absolute value of the effective saturation magnetization due to the presence of a non-magnetic phase (coating) in the sample, but the coercivity increases with the coating thickness due to higher effective values of the magnetic anisotropy of the magnetostrictive nature. The thermal response of NP-based dispersions in silicone and oleic acid was shown that SLP value is higher for magnetic material dispersions in Lipiodol and oleic acid compared to silicone-based dispersions. This can be explained by the contribution of both Neel and Brownian relaxation processes. However, in the case of silicone-based dispersion, Brownian relaxation is negligible because of NP immobilization in viscous silicone matrix. As it is to the effect of coating on SLP, this is clearly evident in the case of silicone dispersions. The study of the heating ability of dispersions based on HDTMS-modified Fe3O4 NPs showed that the coating does not significantly decrease the SLP values.

  6. A Dispersion-Dominated Chromogenic Strategy for Colorimetric Sensing of Glutathione at the Nanomolar Level Using Gold Nanoparticles.

    PubMed

    Xianyu, Yunlei; Xie, Yangzhouyun; Wang, Nuoxin; Wang, Zhuo; Jiang, Xingyu

    2015-11-04

    A dispersion-dominated chromogenic strategy for glutathione sensing is developed. Glutathione prevents the aggregation of arginine-modified gold nanoparticles via mercury-thiol interaction, which allows for glutathione sensing at the nanomolar level (10.9 × 10(-9) m) with facile operation and naked-eye readout. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Development of test methodology for dynamic mechanical analysis instrumentation

    NASA Technical Reports Server (NTRS)

    Allen, V. R.

    1982-01-01

    Dynamic mechanical analysis instrumentation was used for the development of specific test methodology in the determination of engineering parameters of selected materials, esp. plastics and elastomers, over a broad range of temperature with selected environment. The methodology for routine procedures was established with specific attention given to sample geometry, sample size, and mounting techniques. The basic software of the duPont 1090 thermal analyzer was used for data reduction which simplify the theoretical interpretation. Clamps were developed which allowed 'relative' damping during the cure cycle to be measured for the fiber-glass supported resin. The correlation of fracture energy 'toughness' (or impact strength) with the low temperature (glassy) relaxation responses for a 'rubber-modified' epoxy system was negative in result because the low-temperature dispersion mode (-80 C) of the modifier coincided with that of the epoxy matrix, making quantitative comparison unrealistic.

  8. Internal dispersal of seeds by waterfowl: effect of seed size on gut passage time and germination patterns

    NASA Astrophysics Data System (ADS)

    Figuerola, Jordi; Charalambidou, Iris; Santamaria, Luis; Green, Andy J.

    2010-06-01

    Long distance dispersal may have important consequences for gene flow and community structure. The dispersal of many plants depends on transport by vertebrate seed dispersers. The shapes of seed shadows produced by vertebrates depend both on movement patterns of the dispersers and on the dynamics and effects of passage through the disperser’s gut (i.e. the retention time, survival and germination of ingested seeds). A combination of experiments with captive waterbirds and aquatic plant seeds was used to analyse the following: (a) the effects of inter- and intra-specific variation in seed size and duck species on seed retention time in the gut and (b) the relationship between retention time and the percent germination and germination rates of seeds. Among the three Scirpus species used, those with smaller seeds showed higher survival after ingestion by birds and longer retention times inside their guts than those with larger seeds. For Potamogeton pectinatus, only seeds from the smaller size class (<8 mg) survived ingestion. Retention time affected the percent germination and germination rate of Scirpus seeds but in a manner that varied for the different plant and bird species studied. We recorded both linear and non-linear effects of retention time on percent germination. In addition, germination rate was positively correlated with retention time in Scirpus litoralis but negatively correlated in Scirpus lacustris. Small seed size can favour dispersal over larger distances. However, the effects of retention time on percent germination can modify the seed shadows produced by birds due to higher percent germination of seeds retained for short or intermediate periods. The changes in dispersal quality associated with dispersal distance (which is expected to be positively related to retention time) will affect the probability of seedling establishment over longer distances and, thus, the spatial characteristics of the effective seed shadow.

  9. Fiber optic sensor and method for making

    DOEpatents

    Vartuli, James Scott; Bousman, Kenneth Sherwood; Deng, Kung-Li; McEvoy, Kevin Paul; Xia, Hua

    2010-05-18

    A fiber optic sensor including a fiber having a modified surface integral with the fiber wherein the modified surface includes an open pore network with optical agents dispersed within the open pores of the open pore network. Methods for preparing the fiber optic sensor are also provided. The fiber optic sensors can withstand high temperatures and harsh environments.

  10. Strong attachment of circadian pacemaker neurons on modified ultrananocrystalline diamond surfaces.

    PubMed

    Voss, Alexandra; Wei, HongYing; Zhang, Yi; Turner, Stuart; Ceccone, Giacomo; Reithmaier, Johann Peter; Stengl, Monika; Popov, Cyril

    2016-07-01

    Diamond is a promising material for a number of bio-applications, including the fabrication of platforms for attachment and investigation of neurons and of neuroprostheses, such as retinal implants. In the current work ultrananocrystalline diamond (UNCD) films were deposited by microwave plasma chemical vapor deposition, modified by UV/O3 treatment or NH3 plasma, and comprehensively characterized with respect to their bulk and surface properties, such as crystallinity, topography, composition and chemical bonding nature. The interactions of insect circadian pacemaker neurons with UNCD surfaces with H-, O- and NH2-terminations were investigated with respect to cell density and viability. The fast and strong attachment achieved without application of adhesion proteins allowed for advantageous modification of dispersion protocols for the preparation of primary cell cultures. Centrifugation steps, which are employed for pelletizing dispersed cells to separate them from dispersing enzymes, easily damage neurons. Now centrifugation can be avoided since dispersed neurons quickly and strongly attach to the UNCD surfaces. Enzyme solutions can be easily washed off without losing many of the dispersed cells. No adverse effects on the cell viability and physiological responses were observed as revealed by calcium imaging. Furthermore, the enhanced attachment of the neurons, especially on the modified UNCD surfaces, was especially advantageous for the immunocytochemical procedures with the cell cultures. The cell losses during washing steps were significantly reduced by one order of magnitude in comparison to controls. In addition, the integration of a titanium grid structure under the UNCD films allowed for individual assignment of physiologically characterized neurons to immunocytochemically stained cells. Thus, employing UNCD surfaces free of foreign proteins improves cell culture protocols and immunocytochemistry with cultured cells. The fast and strong attachment of neurons was attributed to a favorable combination of topography, surface chemistry and wettability. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Surface modification of boron nitride nanosheets by polyelectrolytes via atom transfer radical polymerization

    NASA Astrophysics Data System (ADS)

    Wu, Yuanpeng; Guo, Meiling; Liu, Guanfei; Xue, Shishan; Xia, Yuanmeng; Liu, Dan; Lei, Weiwei

    2018-04-01

    In this study, the surface modification of boron nitride nanosheets (BNNSs) with poly 2-acrylamido-2-methyl- propanesulfonate (PAMPS) brushes is achieved through electron transfer atom transfer radical polymerization (ARGET ATRP). BNNSs surface was first modified with α-bromoisobutyryl bromide (BIBB) via hydroxyl groups, then PAMPS brushes were grown on the surface through ARGET ATRP. Polyelectrolyte brushes modified BNNSs were further characterized by Fourier transform infrared spectroscopy (FTIR), thermogravimetric analyses (TGA), x-ray powder diffraction (XRD) and scanning electron microscopy (SEM). The concentraction of water-dispersion of BNNSs have been enhanced significantly by PAMPS and the high water-dispersible functional BNNSs/PAMPS composites are expected to have potential applications in biomedical and thermal management in electronics.

  12. Novel surface modification of polymer-based separation media controlling separation selectivity, retentivity and generation of electroosmotic flow.

    PubMed

    Hosoya, Ken; Kubo, Takuya; Takahashi, Katsuo; Ikegami, Tohru; Tanaka, Nobuo

    2002-12-06

    Uniformly sized packing materials based on synthetic polymer particles for high-performance liquid chromatography (HPLC) and capillary electrochromatography (CEC) have been prepared from polymerization mixtures containing methacrylic acid (MAA) as a functional monomer and by using a novel surface modification method. This "dispersion method" affords effectively modified separation media. Both the amount of MAA utilized in the preparation and reaction time affect the selectivity of chromatographic separation in both the HPLC and the CEC mode and electroosmotic flow. This detailed study revealed that the dispersion method effectively modified internal surface of macroporous separation media and, based on the amount of MAA introduced, exclusion mechanism for the separation of certain solutes could be observed.

  13. Conservation laws and rogue waves for a higher-order nonlinear Schrödinger equation with variable coefficients in the inhomogeneous fiber

    NASA Astrophysics Data System (ADS)

    Du, Zhong; Tian, Bo; Wu, Xiao-Yu; Liu, Lei; Sun, Yan

    2017-07-01

    Subpicosecond or femtosecond optical pulse propagation in the inhomogeneous fiber can be described by a higher-order nonlinear Schrödinger equation with variable coefficients, which is investigated in the paper. Via the Ablowitz-Kaup-Newell-Segur system and symbolic computation, the Lax pair and infinitely-many conservation laws are deduced. Based on the Lax pair and a modified Darboux transformation technique, the first- and second-order rogue wave solutions are constructed. Effects of the groupvelocity dispersion and third-order dispersion on the properties of the first- and second-order rouge waves are graphically presented and analyzed: The groupvelocity dispersion and third-order dispersion both affect the ranges and shapes of the first- and second-order rogue waves: The third-order dispersion can produce a skew angle of the first-order rogue wave and the skew angle rotates counterclockwise with the increase of the groupvelocity dispersion, when the groupvelocity dispersion and third-order dispersion are chosen as the constants; When the groupvelocity dispersion and third-order dispersion are taken as the functions of the propagation distance, the linear, X-shaped and parabolic trajectories of the rogue waves are obtained.

  14. Composite TiO2/clays materials for photocatalytic NOx oxidation

    NASA Astrophysics Data System (ADS)

    Todorova, N.; Giannakopoulou, T.; Karapati, S.; Petridis, D.; Vaimakis, T.; Trapalis, C.

    2014-11-01

    TiO2 photocatalyst received much attention for air purification applications especially for removal of air pollutants like NOx, VOCs etc. It has been established that the activity of the photocatalyst can be significantly enhanced by its immobilization onto suitable substrates like inorganic minerals, porous silica, hydroxyapatite, adsorbent materials like activated carbon, various co-catalysts such as semiconductors, graphene, reduced graphite oxide, etc. In the present work, photocatalytic composite materials consisted of mineral substrate and TiO2 in weight ratio 1:1 were manufactured and examined for oxidation and removal of nitric oxides NOx (NO and NO2). Commercial titania P25 (Evonik-Degussa) and urea-modified P25 were used as photocatalytically active components. Inorganic minerals, namely kunipia, talk and hydrotalcite were selected as supporting materials due to their layered structure and expected high NOx adsorption capability. Al3+ and Ca2+ intercalation was applied in order to improve the dispersion of TiO2 and its loading into the supporting matrix. The X-ray diffraction analysis and Scanning Electron Microscopy revealed the binary structure of the composites and homogeneous dispersion of the photocatalyst into the substrates. The photocatalytic behavior of the materials in NOx oxidation and removal was investigated under UV and visible light irradiation. The composite materials exhibited superior photocatalytic activity than the bare titania under both types of irradiation. Significant visible light activity was recorded for the composites containing urea-modified titania that was accredited to the N-doping of the semiconductor. Among the different substrates, the hydrotalcite caused highest increase in the NOx removal, while among the intercalation ions the Ca2+ was more efficient. The results were related to the improved dispersion of the TiO2 and the synergetic activity of the substrates as NOx adsorbers.

  15. [Adsorption mechanism of furfural onto modified rice husk charcoals].

    PubMed

    Deng, Yong; Wang, Xianhua; Li, Yunchao; Shao, Jing'ai; Yang, Haiping; Chen, Hanping

    2015-10-01

    To evaluate the absorptive characteristics of furfural onto biomass charcoals derived from rice husk pyrolysis, we studied the information of the structure and surface chemistry properties of the rice husk charcoals modified by thermal treatment under nitrogen and carbon dioxide flow and adsorption mechanism of furfural. The modified samples are labeled as RH-N2 and RH-CO2. Fresh rice husk charcoal sample (RH-450) and modified samples were characterized by elemental analysis, nitrogen adsorption-desorption isotherms, Fourier-transform infrared spectroscopy and Boehm titration. The results show that fresh rice husk charcoal obtained at 450 degrees C had a large number of organic groups on its surface and poor pore structure. After the modification under nitrogen and carbon dioxide flow, oxygenic organics in rice husk charcoals decompose further, leading to the reduction of acidic functional groups on charcoals surface, and the increase of the pyrone structures of the basic groups. Meanwhile, pore structure was improved significantly and the surface area was increased, especially for the micropores. This resulted in the increase of π-π dispersion between the surfaces of rice husk charcoals and furfural molecular. With making comprehensive consideration of π-π dispersion and pore structure, the best removal efficiency of furfural was obtained by rice husk charcoal modified under carbon dioxide flow.

  16. Molecular systematic and historical biogeography of the armored Neotropical catfishes Hypoptopomatinae and Neoplecostominae (Siluriformes: Loricariidae).

    PubMed

    Chiachio, Márcio Cesar; Oliveira, Claudio; Montoya-Burgos, Juan I

    2008-11-01

    The Neotropics possess the greatest freshwater fish diversity of the world, rendering the study of their evolutionary history extremely challenging. Loricariidae catfishes are one of the most diverse components of the Neotropical ichthyofauna and despite a long history of classification, major issues still need elucidation. Based on a nuclear gene, we present a robust phylogeny of two former loricariid subfamilies: Hypoptopomatinae and Neoplecostominae. Our results show that Neoplecostominae is nested within Hypoptopomatinae, and is the sister group to the former Otothyrini tribe. According to our results, supplemented by morphological observations, we erect two new subfamilies, the Otothyrinae and a new Hypoptopomatinae, and modify the Neoplecostominae by including the genus Pseudotocinclus. The uncovered evolutionary relationships allow a detailed analysis of their historical biogeography. We tested two Dispersal-Extinction-Cladogenesis models for inferring the distribution range evolution of the new subfamilies, and show that the model having no constrains performs better than a model constraining long-range dispersal. The Maximum Likelihood reconstructions of ancestral ranges showed a marked division between the Amazonian origin of the Hypoptopomatinae and the eastern coastal Brazil+Upper Paraná origin of the Neoplecostominae and Otothyrinae. Markedly few instances of dispersal across the border separating the Amazon basin and the Paraná-Paraguay+eastern coastal Brazil+Uruguay were reconstructed. This result is in clear contrast with the historical biogeography of many Neotropical fishes, including other Loricariidae. Part of the dispersal limitation may be explained by divergent ecological specialization: lowland rivers versus mountain streams habitats. Moreover, because most species of the new subfamilies are small, we hypothesize that body size-related effects might limit their dispersal, like predation and energetic cost to migration. Finally, morphological and anatomical features are presented that limit or, to the contrary, enhance dispersal capability in these small and fascinating catfishes.

  17. Influence of boundary-layer dynamics on pollen dispersion and viability

    NASA Astrophysics Data System (ADS)

    Arritt, Raymond W.; Viner, Brian J.; Westgate, Mark E.

    2013-04-01

    Adoption of genetically modified (GM) crops has raised concerns that GM traits can accidentally cross into conventional crops or wild relatives through the transport of wind-borne pollen. In order to evaluate this risk it is necessary to account both for dispersion of the pollen grains and environmental influences on pollen viability. The Lagrangian approach is suited to this problem because it allows tracking the environmental temperature and moisture that pollen grains experience as they travel. Taking advantage of this capability we have combined a high-resolution version of the WRF meteorological model with a Lagrangian particle dispersion model to predict maize pollen dispersion and viability. WRF is used to obtain fields of wind, turbulence kinetic energy, temperature, and humidity which are then used as input to the Lagrangian dispersion model. The dispersion model in turn predicts transport of a statistical sample of a pollen cloud from source plants to receptors. We also use the three-dimensional temperature and moisture fields from WRF to diagnose changes in moisture content of the pollen grains and consequent loss of viability. Results show that turbulent motions in the convective boundary layer counteract the large terminal velocity of maize pollen grains and lift them to heights of several hundred meters, so that they can be transported long distances before settling to the ground. We also found that pollen lifted into the upper part of the boundary layer remains more viable than has been inferred using surface observations of temperature and humidity. This is attributed to the thermal and moisture structure that typifies the daytime atmospheric boundary layer, producing an environment of low vapor pressure deficit in the upper boundary layer which helps maintain pollen viability.

  18. Rice husk ash (RHA) as a partial cement replacement in modifying peat soil properties

    NASA Astrophysics Data System (ADS)

    Daud, Nik Norsyahariati Nik; Daud, Mohd Nazrin Mohd; Muhammed, Abubakar Sadiq

    2018-02-01

    This paper describes the effect of rice husk ash (RHA) and ordinary Portland cement (OPC) as a potential binder for modifying the properties of peat soil. The amounts RHA and OPC added to the peat soil sample, as percentage of the dry soil mass were in the range of 10-15% and 15%, respectively. Observations were made for the changes in the properties of the soil such as maximum dry density (MDD), optimum moisture content (OMC) and shear strength. Scanning Electron Micrograph-Energy Dispersive X-Ray (SEM-EDX) test were also conducted to observe the microstructure of treated and untreated peat soil. The results show that the modified soil of MDD and OMC values are increased due to the increment amount of binder material. Shear strength values of modified peat showing a good result by assuming that it is relative to the formation of major reaction products such as calcium silicate hydrate (C-S-H). The presence of C-S-H formation is indicated by the results produced from microstructural analysis of peat before and after modification process. This depicts the potential usage of RHA as a partial cement replacement in peat soil which is also improving its engineering properties.

  19. Long-Term Monitoring of Field Trial Sites with Genetically Modified Oilseed Rape (Brassica napus L.) in Saxony-Anhalt, Germany. Fifteen Years Persistence to Date but No Spatial Dispersion

    PubMed Central

    Belter, Anke

    2016-01-01

    Oilseed rape is known to persist in arable fields because of its ability to develop secondary seed dormancy in certain agronomic and environmental conditions. If conditions change, rapeseeds are able to germinate up to 10 years later to build volunteers in ensuing crops. Extrapolations of experimental data acted on the assumption of persistence periods for more than 20 years after last harvest of rapeseed. Genetically-modified oilseed rape—cultivated widely in Northern America since 1996—is assumed not to differ from its conventional form in this property. Here, experimental data are reported from official monitoring activities that verify these assumptions. At two former field trial sites in Saxony-Anhalt genetically-modified herbicide-resistant oilseed rape volunteers are found up to fifteen years after harvest. Nevertheless, spatial dispersion or establishment of GM plants outside of the field sites was not observed within this period. PMID:26784233

  20. Carbon black reinforced polymethyl methacrylate (PMMA)-based composite particles: preparation, characterization, and application

    NASA Astrophysics Data System (ADS)

    Liang, Tian; Yan, Chunjie; Zhou, Sen; Zhang, Yonghan; Yang, Bipeng

    2017-10-01

    Carbon black (CB) is an excellent filler to reinforce polymers because of its unique thermal and mechanical properties. Thus, a type of modified carbon black (MCB) was developed, which led to reduced filler aggregation in methyl methacrylate (MMA) monomers and resulted in homogeneous dispersion in the polymethyl methacrylate (PMMA) substrate. The PMMA-MCB composite particles that were prepared in this work possessed remarkable and stable properties. Therefore, they can be used as an ultra-lightweight proppant (ULWP). Fourier transform infrared spectroscopy showed that CB was successfully modified and the MCB was well dispersed in the PMMA matrix. Results of crushing rate and differential scanning calorimetry demonstrated that MCB could significantly enhance the thermal and mechanical performance of the ULWP. Heat treatment of the ULWP under a nitrogen atmosphere could also clearly enhance its performance in various aspects. The process of modifying CB, the approach of synthesizing PMMA-MCB composite particles, and their mechanism were systematically investigated in this work.

  1. Structure of Hydrophobically Modified Phytoglycogen Nanoparticles

    NASA Astrophysics Data System (ADS)

    Atkinson, John; Nickels, Jonathan; Dutcher, John; Katsaras, John

    Phytoglycogen is a highly branched, polysaccharide nanoparticle produced by some varieties of plants including sweet corn. These particles are attractive candidates for cosmetic, industrial and biomedical applications. Many of these applications result from phytoglycogen's unique interaction with water: (1) high solubility; (2) low viscosity and high stability in aqueous dispersions; and (3) a remarkable capacity to sequester and retain water. Neutron scattering measurements of native phytoglycogen revealed that the particles have uniform size, uniform radial particle density, and a high level of hydration. Hydrophobically modifying the outer surface of the hydrophilic nanoparticles opens up new applications in food and biomedicine, such as solubilizing and stabilizing bioactive compounds. One such modification is octenyl succinate anhydride (OSA), where the hydrophobicity can be tuned by adjusting the degree of substitution. I will present the results of small angle neutron scattering (SANS) measurements of aqueous dispersions of OSA-modified phytoglycogen with two different degrees of modification. Contrast series SANS measurements have yielded information about the radial density profile, providing insight into the nature of the chemical modification of the particles.

  2. Photon polarizability and its effect on the dispersion of plasma waves

    NASA Astrophysics Data System (ADS)

    Dodin, I. Y.; Ruiz, D. E.

    2017-04-01

    High-frequency photons travelling in plasma exhibit a linear polarizability that can influence the dispersion of linear plasma waves. We present a detailed calculation of this effect for Langmuir waves as a characteristic example. Two alternative formulations are given. In the first formulation, we calculate the modified dispersion of Langmuir waves by solving the governing equations for the electron fluid, where the photon contribution enters as a ponderomotive force. In the second formulation, we provide a derivation based on the photon polarizability. Then, the calculation of ponderomotive forces is not needed, and the result is more general.

  3. Photon polarizability and its effect on the dispersion of plasma waves

    DOE PAGES

    Dodin, I. Y.; Ruiz, D. E.

    2017-03-06

    High-frequency photons travelling in plasma exhibit a linear polarizability that can influence the dispersion of linear plasma waves. We present a detailed calculation of this effect for Langmuir waves as a characteristic example. Here, two alternative formulations are given. In the first formulation, we calculate the modified dispersion of Langmuir waves by solving the governing equations for the electron fluid, where the photon contribution enters as a ponderomotive force. In the second formulation, we provide a derivation based on the photon polarizability. Then, the calculation of ponderomotive forces is not needed, and the result is more general.

  4. A Change in SHATTERPROOF Protein Lies at the Origin of a Fruit Morphological Novelty and a New Strategy for Seed Dispersal in Medicago Genus1[C][W

    PubMed Central

    Fourquin, Chloé; del Cerro, Carolina; Victoria, Filipe C.; Vialette-Guiraud, Aurélie; de Oliveira, Antonio C.; Ferrándiz, Cristina

    2013-01-01

    Angiosperms are the most diverse and numerous group of plants, and it is generally accepted that this evolutionary success owes in part to the diversity found in fruits, key for protecting the developing seeds and ensuring seed dispersal. Although studies on the molecular basis of morphological innovations are few, they all illustrate the central role played by transcription factors acting as developmental regulators. Here, we show that a small change in the protein sequence of a MADS-box transcription factor correlates with the origin of a highly modified fruit morphology and the change in seed dispersal strategies that occurred in Medicago, a genus belonging to the large legume family. This protein sequence modification alters the functional properties of the protein, affecting the affinities for other protein partners involved in high-order complexes. Our work illustrates that variation in coding regions can generate evolutionary novelties not based on gene duplication/subfunctionalization but by interactions in complex networks, contributing also to the current debate on the relative importance of changes in regulatory or coding regions of master regulators in generating morphological novelties. PMID:23640757

  5. Cross-phase-modulation-induced temporal reflection and waveguiding of optical pulses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Plansinis, Brent W.; Donaldson, William R.; Agrawal, Govind P.

    Cross-phase modulation (XPM) is commonly viewed as a nonlinear process that chirps a probe pulse and modifies its spectrum when an intense pump pulse overlaps with it. Here we present an alternative view of XPM in which the pump pulse creates a moving refractive-index boundary that splits the probe pulse into two parts with distinct optical spectra through temporal reflection and refraction inside a dispersive nonlinear medium. The probe even undergoes a temporal version of total internal reflection for sufficiently intense pump pulses, a phenomenon that can be exploited for making temporal waveguides. In this paper we investigate the practicalmore » conditions under which XPM can be exploited for temporal reflection and waveguiding. The width and shape of pump pulses as well as the nature of medium dispersion at the pump and probe wavelength (normal versus anomalous) play important roles. A super-Gaussian shape of pump pulses is particularly helpful because of its relatively sharp edges. When the pump wavelength lies in the anomalous-dispersion regime, the pump pulse can form a soliton,whose unique properties can be exploited to advantage. We also discuss a potential application of XPM-induced temporal waveguides for compensating timing jitter.« less

  6. Cross-phase-modulation-induced temporal reflection and waveguiding of optical pulses

    DOE PAGES

    Plansinis, Brent W.; Donaldson, William R.; Agrawal, Govind P.

    2018-01-31

    Cross-phase modulation (XPM) is commonly viewed as a nonlinear process that chirps a probe pulse and modifies its spectrum when an intense pump pulse overlaps with it. Here we present an alternative view of XPM in which the pump pulse creates a moving refractive-index boundary that splits the probe pulse into two parts with distinct optical spectra through temporal reflection and refraction inside a dispersive nonlinear medium. The probe even undergoes a temporal version of total internal reflection for sufficiently intense pump pulses, a phenomenon that can be exploited for making temporal waveguides. In this paper we investigate the practicalmore » conditions under which XPM can be exploited for temporal reflection and waveguiding. The width and shape of pump pulses as well as the nature of medium dispersion at the pump and probe wavelength (normal versus anomalous) play important roles. A super-Gaussian shape of pump pulses is particularly helpful because of its relatively sharp edges. When the pump wavelength lies in the anomalous-dispersion regime, the pump pulse can form a soliton,whose unique properties can be exploited to advantage. We also discuss a potential application of XPM-induced temporal waveguides for compensating timing jitter.« less

  7. The temperature dependent collective dynamics of liquid sodium

    NASA Astrophysics Data System (ADS)

    Patel, A. B.; Khambholja, S. G.; Bhatt, N. K.; Thakore, B. Y.; Vyas, P. R.; Jani, A. R.

    2012-06-01

    Liquid alkali metals show, near the melting point, an upward bending of the dispersion relation at small momentum transfer values. This so-called positive dispersion can be described within generalized hydrodynamics as a visco-elastic reaction of the liquid. There is a speculation that long-living clusters could be the physical reason behind this phenomenon. To shed light on this question a treatment of pseudopotential theory on liquid sodium was performed at different temperatures starting at the melting point. In the present study, we used the modified empty core potential due to Hasegawa et al. (J. Non-Cryst. Solids, 117/118 (1990) 300) along with a local field correction due to Ichimaru-Utsumi (IU) to explain electron-ion interaction. The potential used is composed of a full electron-ion interaction and a repulsive delta function, which represents the orthogonalisation effect due to the s core states. The temperature dependence of pair potential is calculated by using the damping term exp(-πkBTr/2kF). While the expression for phonon dispersions are derived within the memory function formalism. Results thus obtained are well compared with the other theoretical and experimental results.

  8. Combination of cathodic reduction with adsorption for accelerated removal of Cr(VI) through reticulated vitreous carbon electrodes modified with sulfuric acid-glycine co-doped polyaniline.

    PubMed

    Mo, Xi; Yang, Zhao-hui; Xu, Hai-yin; Zeng, Guang-ming; Huang, Jing; Yang, Xia; Song, Pei-pei; Wang, Li-ke

    2015-04-09

    Improving the reduction kinetics is crucial in the electroreduction process of Cr(VI). In this study, we developed a novel adsorption-electroreduction system for accelerated removal of Cr(VI) by employing reticulated vitreous carbon electrode modified with sulfuric acid-glycine co-doped polyaniline (RVC/PANI-SA-GLY). Firstly, response surface methodology confirmed the optimum polymerization condition of co-doped polyaniline for modifying electrodes (Aniline, sulfuric acid and glycine, respectively, of 0.2 mol/L, 0.85 mol/L, 0.93 mol/L) when untraditional dopant glycine was added. Subsequently, RVC/PANI-SA-GLY showed higher Cr(VI) removal percentages in electroreduction experiments over RVC electrode modified with sulfuric acid doped polyaniline (RVC/PANI-SA) and bare RVC electrode. In contrast to RVC/PANI-SA, the improvement by RVC/PANI-SA-GLY was more significant and especially obvious at more negative potential, lower initial Cr(VI) concentration, relatively less acidic solution and higher current densities, best achieving 7.84% higher removal efficiency with entire Cr(VI) eliminated after 900 s. Current efficiencies were likewise enhanced by RVC/PANI-SA-GLY under quite negative potentials. Fourier transform infrared (FTIR) and energy dispersive spectrometer (EDS) analysis revealed a possible adsorption-reduction mechanism of RVC/PANI-SA-GLY, which greatly contributed to the faster reduction kinetics and was probably relative to the absorption between protonated amine groups of glycine and HCrO4(-). Eventually, the stability of RVC/PANI-SA-GLY was proven relatively satisfactory. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Modified ensemble Kalman filter for nuclear accident atmospheric dispersion: prediction improved and source estimated.

    PubMed

    Zhang, X L; Su, G F; Yuan, H Y; Chen, J G; Huang, Q Y

    2014-09-15

    Atmospheric dispersion models play an important role in nuclear power plant accident management. A reliable estimation of radioactive material distribution in short range (about 50 km) is in urgent need for population sheltering and evacuation planning. However, the meteorological data and the source term which greatly influence the accuracy of the atmospheric dispersion models are usually poorly known at the early phase of the emergency. In this study, a modified ensemble Kalman filter data assimilation method in conjunction with a Lagrangian puff-model is proposed to simultaneously improve the model prediction and reconstruct the source terms for short range atmospheric dispersion using the off-site environmental monitoring data. Four main uncertainty parameters are considered: source release rate, plume rise height, wind speed and wind direction. Twin experiments show that the method effectively improves the predicted concentration distribution, and the temporal profiles of source release rate and plume rise height are also successfully reconstructed. Moreover, the time lag in the response of ensemble Kalman filter is shortened. The method proposed here can be a useful tool not only in the nuclear power plant accident emergency management but also in other similar situation where hazardous material is released into the atmosphere. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Magnetic dispersive solid-phase extraction based on modified magnetic nanoparticles for the detection of cocaine and cocaine metabolites in human urine by high-performance liquid chromatography-mass spectrometry.

    PubMed

    Yang, Feiyu; Zou, Yun; Ni, Chunfang; Wang, Rong; Wu, Min; Liang, Chen; Zhang, Jiabin; Yuan, Xiaoliang; Liu, Wenbin

    2017-11-01

    An easy-to-handle magnetic dispersive solid-phase extraction procedure was developed for preconcentration and extraction of cocaine and cocaine metabolites in human urine. Divinyl benzene and vinyl pyrrolidone functionalized silanized Fe 3 O 4 nanoparticles were synthesized and used as adsorbents in this procedure. Scanning electron microscopy, vibrating sample magnetometry, and infrared spectroscopy were employed to characterize the modified adsorbents. A high-performance liquid chromatography with mass spectrometry method for determination of cocaine and its metabolites in human urine sample has been developed with pretreatment of the samples by magnetic dispersive solid-phase extraction. The obtained results demonstrated the higher extraction capacity of the prepared nanoparticles with recoveries between 75.1 to 105.7% and correlation coefficients higher than 0.9971. The limits of detection for the cocaine and cocaine metabolites were 0.09-1.10 ng/mL. The proposed magnetic dispersive solid-phase extraction method provided a rapid, environmentally friendly and magnetic stuff recyclable approach and it was confirmed that the prepared adsorbents material was a kind of highly effective extraction materials for the trace cocaine and cocaine metabolites analyses in human urine. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Effect of Montmorillonite Nanogel Composite Fillers on the Protection Performance of Epoxy Coatings on Steel Pipelines.

    PubMed

    Atta, Ayman M; El-Saeed, Ashraf M; Al-Lohedan, Hamad A; Wahby, Mohamed

    2017-06-02

    Montmorillonite (MMT) clay mineral is widely used as filler for several organic coatings. Its activity is increased by exfoliation via chemical modification to produce nanomaterials. In the present work, the modification of MMT to form nanogel composites is proposed to increase the dispersion of MMT into epoxy matrices used to fill cracks and holes produced by the curing exotherms of epoxy resins. The dispersion of MMT in epoxy improved both the mechanical and anti-corrosion performance of epoxy coatings in aggressive marine environments. In this respect, the MMT surfaces were chemically modified with different types of 2-acrylamido-2-methyl propane sulfonic acid (AMPS) nanogels using a surfactant-free dispersion polymerization technique. The effect of the chemical structure, nanogel content and the interaction with MMT surfaces on the surface morphology, surface charges and dispersion in the epoxy matrix were investigated for use as nano-filler for epoxy coatings. The modified MMT nanogel epoxy composites showed excellent resistance to mechanical damage and salt spray resistance up to 1000 h. The interaction of MMT nanogel composites with the epoxy matrix and good response of AMPS nanogel to sea water improve their ability to act as self-healing materials for epoxy coatings for steel.

  12. Distant star clusters of the Milky Way in MOND

    NASA Astrophysics Data System (ADS)

    Haghi, H.; Baumgardt, H.; Kroupa, P.

    2011-03-01

    We determine the mean velocity dispersion of six Galactic outer halo globular clusters, AM 1, Eridanus, Pal 3, Pal 4, Pal 15, and Arp 2 in the weak acceleration regime to test classical vs. modified Newtonian dynamics (MOND). Owing to the nonlinearity of MOND's Poisson equation, beyond tidal effects, the internal dynamics of clusters is affected by the external field in which they are immersed. For the studied clusters, particle accelerations are much lower than the critical acceleration a0 of MOND, but the motion of stars is neither dominated by internal accelerations (ai ≫ ae) nor external accelerations (ae ≫ ai). We use the N-body code N-MODY in our analysis, which is a particle-mesh-based code with a numerical MOND potential solver developed by Ciotti et al. (2006, ApJ, 640, 741) to derive the line-of-sight velocity dispersion by adding the external field effect. We show that Newtonian dynamics predicts a low-velocity dispersion for each cluster, while in modified Newtonian dynamics the velocity dispersion is much higher. We calculate the minimum number of measured stars necessary to distinguish between Newtonian gravity and MOND with the Kolmogorov-Smirnov test. We also show that for most clusters it is necessary to measure the velocities of between 30 to 80 stars to distinguish between both cases. Therefore the observational measurement of the line-of-sight velocity dispersion of these clusters will provide a test for MOND.

  13. BisGMA/TEGDMA dental nanocomposites containing glyoxylic acid modified high-aspect ratio hydroxyapatite nanofibers with enhanced dispersion

    PubMed Central

    Chen, Liang; Xu, Changqi; Wang, Yong; Shi, Jian; Yu, Qingsong

    2012-01-01

    The purpose of this research was to investigate the influence of the glyoxylic acid (GA) modification of hydroxyapatite (HAP) nanofibers on their dispersion in bisphenol A glycidyl methacrylate (BisGMA)/triethylene glycol dimethacrylate (TEGDMA) dental composites and also investigate the mechanical properties, water absorption, and water solubility of the resulting dental resins and composites. Scanning/Transmission electron microscopy (STEM) images showed that microsized HAP nanofiber bundles could be effectively broken down to individual HAP nanofibers with an average length of ~15 μm after the surface modification process. Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS) and thermal gravimetric analysis (TGA) characterization confirmed glyoxylic acid was chemically grafted on the HAP nanofiber surface, hypothetically by reacting with the amine group on HAP nanofiber surface. The enhanced dispersion of HAP nanofibers in dental matrix led to increased biaxial flexural strength (BFS) compared with the corresponding dental resins and composites filled with untreated HAP nanofibers. In addition, impregnation of small mass fractions of the glyoxylic acid modified HAP nanofibers into the BisGMA/TEGDMA dental resins (5wt%, 10wt%) or composites (2wt%, 3wt%) could also substantially improve the BFS in comparison with the controls(pure resins or dental composites filled with silica particles alone). Larger mass fractions could not further increase the mechanical property or even degrade the BFS values. Water behavior testing results indicated that the addition of glyoxylic acid modified HAP nanofibers resulted in higher water absorption and water solubility values which is not preferred for clinical application. In summary, well dispersed HAP nanofibers and their dental composites with enhanced mechanical property have been successfully fabricated but the water absorption and water solubility of such dental composites need to be further improved. PMID:22689264

  14. Tulane/Xavier Vaccine Peptide Program

    DTIC Science & Technology

    2014-09-01

    liposomes, and hydrophobically modified chitosan (HMC) coated liposomes. The oil-in-water (O/W) microemulsions are composed of isopropyl myristate...vesicles. To prepare the hydrophobically modified chitosan (HMC) coated liposomes, chitosan is added drop by drop to the liposome dispersion with...continuous stirring for 2 hours to ensure chitosan has been evenly attached on the liposome surface. A representative electron micrograph of the

  15. Method for producing hydrophobic aerogels

    DOEpatents

    Hrubesh, Lawrence W.; Poco, John F.; Coronado, Paul R.

    1999-01-01

    A method for treating a dried monolithic aerogel containing non-dispersed particles, with an organometallic surface modifying agent to produce hydrophobic aerogels. The dried, porous hydrophobic aerogels contain a protective layer of alkyl groups, such as methyl groups, on the modified surfaces of the pores of the aerogel. The alkyl groups at the aerogel surface typically contain at least one carbon-metal bond per group.

  16. Tribology of Ceramics

    DTIC Science & Technology

    1988-01-01

    Surface crystallography must be studied as modified by friction. Toughening and embrittling phase transformations have been discovered and modify the...2) dispersed ceramic whiskers, (3) long fiber rein- forcement, (4) precipitation , and (5) ductile metal phase . Each of these results in a...structure. Metastable structures of certain ceramics (Kingery et al., 1976) such as ZrO 2 allow a martensitic transformation under stress, which confers

  17. Interfacial characterization and supercapacitive properties of polyaniline-Gum arabic nanocomposite/graphene oxide LbL modified electrodes

    NASA Astrophysics Data System (ADS)

    Oliveira, Rafaela D.; Santos, Cleverson S.; Ferreira, Rodolfo T.; Marciniuk, Gustavo; Marchesi, Luís F.; Garcia, Jarem R.; Vidotti, Marcio; Pessoa, Christiana A.

    2017-12-01

    In this manuscript, we describe the synthesis and electrochemical characterization of polyaniline-gum arabic nanocomposites and graphene oxide (PANI-GA/GO) modified electrodes with a detailed study concerning their supercapacitive properties. The electrode modification was carried out by using the Layer-by-Layer technique (LbL), where the PANI-GA nanocomposite dispersion was used as polycation and the GO colloidal dispersion as polyanion. The bilayer growth was followed by both UV-vis spectroscopy and cyclic voltammetry, and an increase in the characteristic PANI absorption and in the electrochemical signal was verified, confirming the electrode build up. Galvanostatic charge-discharge curves (GCDC) were performed to evaluate the supercapacitive properties of the modified electrodes, these results showed the dependence of the specific capacitance with the number of bilayers, where values of CS around 15 mF cm-2 (i = 0.1 mA cm-2) were found. Electrochemical impedance spectroscopy confirmed the pseudocapacitive properties of the modified electrodes, showing an increase in the low-frequency capacitance with the number of bilayers. Hereby the (PANI-GA/GO)-LbL electrodes were shown to be good candidates for active materials in supercapacitors.

  18. Elastomeric photo-actuators and their investigation by confocal laser scanning microscopy

    NASA Astrophysics Data System (ADS)

    Czaniková, Klaudia; Ilčíková, Markéta; Krupa, Igor; Mičušík, Matej; Kasák, Peter; Pavlova, Ewa; Mosnáček, Jaroslav; Chorvát, Dušan, Jr.; Omastová, Mária

    2013-10-01

    The photo-actuation behavior of nanocomposites based on ethylene-vinylacetate copolymer (EVA) and styrene-isoprene-styrene (SIS) block copolymer filled with well-dispersed and modified multiwalled carbon nanotubes (MWCNTs) is discussed in this paper. The nanocomposites were prepared by casting from solution. To improve the dispersion of the MWCNTs in EVA, the MWCNT surface was modified with a non-covalent surfactant, cholesteryl 1-pyrenecarboxylate (PyChol). To prepare SIS nanocomposites, the MWCNT surface was covalently modified with polystyrene chains. The good dispersion of the filler was confirmed by transmission electron microscopy (TEM). Special, custom-made punch/die molds were used to create a Braille element (BE)-like shape, which under shear forces induces a uniaxial orientation of the MWCNTs within the matrix. The uniaxial orientation of MWCNTs is an essential precondition to ensure the photo-actuating behavior of MWCNTs in polymeric matrices. The orientation of the MWCNTs within the matrices was examined by scanning electron microscopy (SEM). Nanocomposite BEs were illuminated from the bottom by a red light-emitting diode (LED), and the photo-actuation was investigated by confocal laser scanning microscopy (CLSM). When the BEs were exposed to light, a temporary increase in the height of the element was detected. This process was observed to be reversible: after switching off the light, the BEs returned to their original shape and height.

  19. The study of poly(L-lactide) grafted silica nanoparticles on the film blowing of poly(L-lactide)

    NASA Astrophysics Data System (ADS)

    Wu, Feng; Liu, Zhengying; Yang, Mingbo

    2015-05-01

    PLA nanocomposites are prepared by us, and to better develop the function of silica nanoparticle, the surface of silica nanoparticles are modified by introducing PLA chains via "grafting to" method in our research. According to the results of 1H NMR and TGA, it shows that the PLA grafted Silica nanoparticles are successfully synthesized by controlling the reaction condition, and the molecular weight of the grafted PLA chains is relatively as high as 22 400 g/mol. PLA Nanocomposites with modified nanoparticles are prepared using a convenient melt blending method to guarantee well-distribution of the particles. The well-dispersion state of silica nanospheres is confirmed by Scan Electrical Micrograph (SEM) technology. From the dynamic shear rheology tests, the strain and time sweep both reveal that stability networks are formed in these nanocomposites. And the frequency sweep shows that the nanoparticles with long grafted chains dramatically enhanced the storage and viscosity of the pure PLA. The rheology testing suggests that strong particle-matrix interactions between molecularly/nano-level dispersed grafted silica and PLA chains formed; and the elongational viscosity of PLA has been markedly improved with the addition of the nanoparticle. The effect of modified nanoparticles on the thermal properties of PLA has also been studied by us using Differential Scanning Calorimetry (DSC). It reveals that the crystallization rate of PLA has been improved as the long grafted chains play as the nucleation sites for PLA. Finally based on these rheology and crystallization researches, the nanocomposites are used to prepare PLA blowing films. Compared to pure PLA and PLA/unmodified silica nanocomposites, the results show that the stability of the film blowing has been greatly improved and the blow-up ratio has been increased with the addition of PLA grafted nanoparticles. The modified nanoparticles hold significant candidates to improve the thermal stability and the processability of pure PLA, especially used as special processing agent in the field of PLA stretch shaping process.

  20. Cell penetrating peptide-modified poly(lactic-co-glycolic acid) nanoparticles with enhanced cell internalization.

    PubMed

    Steinbach, Jill M; Seo, Young-Eun; Saltzman, W Mark

    2016-01-01

    The surface modification of nanoparticles (NPs) can enhance the intracellular delivery of drugs, proteins, and genetic agents. Here we studied the effect of different surface ligands, including cell penetrating peptides (CPPs), on the cell binding and internalization of poly(lactic-co-glycolic) (PLGA) NPs. Relative to unmodified NPs, we observed that surface-modified NPs greatly enhanced cell internalization. Using one CPP, MPG (unabbreviated notation), that achieved the highest degree of internalization at both low and high surface modification densities, we evaluated the effect of two different NP surface chemistries on cell internalization. After 2h, avidin-MPG NPs enhanced cellular internalization by 5 to 26-fold relative to DSPE-MPG NP formulations. Yet, despite a 5-fold increase in MPG density on DSPE compared to Avidin NPs, both formulations resulted in similar internalization levels (48 and 64-fold, respectively) after 24h. Regardless of surface modification, all NPs were internalized through an energy-dependent, clathrin-mediated process, and became dispersed throughout the cell. Overall both Avidin- and DSPE-CPP modified NPs significantly increased internalization and offer promising delivery options for applications in which internalization presents challenges to efficacious delivery. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  1. Gene flow rise with habitat fragmentation in the bog fritillary butterfly (Lepidoptera: Nymphalidae)

    PubMed Central

    2008-01-01

    Background The main components of the spatial genetic structure of the populations are neighbourhood size and isolation by distance. These may be inferred from the allele frequencies across a series of populations within a region. Here, the spatial population structure of Proclossiana eunomia was investigated in two mountainous areas of southern Europe (Asturias, Spain and Pyrenees, France) and in two areas of intermediate elevation (Morvan, France and Ardennes, Belgium). Results A total of eight polymorphic loci were scored by allozyme electrophoresis, revealing a higher polymorphism in the populations of southern Europe than in those of central Europe. Isolation by distance effect was much stronger in the two mountain ranges (Pyrenees and Asturias) than in the two areas of lower elevation (Ardennes and Morvan). By contrast, the neighbourhood size estimates were smaller in the Ardennes and in the Morvan than in the two high mountain areas, indicating more common movements between neighbouring patches in the mountains than in plains. Conclusion Short and long dispersal events are two phenomena with distinct consequences in the population genetics of natural populations. The differences in level of population differentiation within each the four regions may be explained by change in dispersal in lowland recently fragmented landscapes: on average, butterflies disperse to a shorter distance but the few ones which disperse long distance do so more efficiently. Habitat fragmentation has evolutionary consequences exceeding by far the selection of dispersal related traits: the balance between local specialisation and gene flow would be perturbed, which would modify the extent to which populations are adapted to heterogeneous environments. PMID:18366652

  2. Ionic liquids as lubricants of metal-polymer contacts. Preparation and properties of the first dispersions of ionic liquids and nanoparticles in polymers

    NASA Astrophysics Data System (ADS)

    Sanes Molina, Jose

    Room-temperature ionic liquids (ILs) are high performance fluids that stand out because of a wide range of functional properties and exhibit a great potential for engineering applications. Although they have been employed as lubricants in metal-metal, metal-ceramic and ceramic-ceramic contacts, in this thesis we present the first study about the use of ILs as pure lubricants in polymer/steel contacts. The tests have established the efficacy of the ILs to reduce friction coefficient and wear rates in a variety of kinds of contacts, and criogenic to high temperature performance. Novel dispersions of ILs in polymers have been obtained with epoxy resin and thermoplastics as matrix. Therefore, the thermal, mechanical and tribological properties of the materials have studied and are discussed in the present thesis. Furthermore, the contents of ILs in the polymer matrix have been studied in relation to the tribological properties using Scanning Electron Microscopy (SEM) and Energy Dispersive X-Ray Spectrometry (EDS), the wear mechanisms that operated in the contacts were established. The novel dispersions showed a reduction in the friction coefficient and wear in comparison with neat polymers, reaching in some cases a decrease of 79%. In the case of thermoplastics such as polystyrene and polyamide 6, the new dispersions showed a reduction in friction coefficient and wear in the same range as that of the ILs when used as external lubricants in the steel/polymer contact. In addition nanoparticles of zinc oxide were used to obtain polycarbonate based nanohybrids with the purpose of improving the tribological properties. Novel nanohybrids of zinc oxide and modified zinc oxide were obtained. The mechanical, thermal and tribological properties were studied. The results of experiments clearly demonstrated that the use of ILs modifies the shape and size of the ZnO nanoparticles, increasing the tribological properties of the novel nanohybrids. Different techniques such as EDS, Transmission Electron Microscopy (TEM), X-Ray Diffraction (XRD) and X-Ray Photoelectron Spectrometry (XPS) were used to examine and establish the surface interactions and mechanism that operated between ILs and ZnO. In summary, the results reveal the importance of the processing parameters on the stability of the nature of the anion in the ILs.

  3. Thiolated citrus low-methoxyl pectin: Synthesis, characterization and rheological and oxidation-responsive gelling properties.

    PubMed

    Chen, Jinfeng; Ye, Fayin; Zhou, Yun; Zhao, Guohua

    2018-02-01

    In the present study, citrus low-methoxyl pectin was modified by conjugating cysteine via amide bonds, and the resultant polymer (CYS-PEC) was characterized. CYS-PEC conjugates with thiol contents varying from 77.8μmol/g to 296μmol/g were synthesized, and the successful conjugation was evidenced by elemental, and FT-IR analyses. The sulfur in CYS-PEC is predominately in the thiol form, with a minor fraction forming disulfide bonds (∼15%), which occur when thiol/disulfide interchange interrupts the intended thiolation. Both native and modified pectin dispersions exhibited strong pseudoplastic properties, and the frequency sweeps revealed them to be dispersions containing microgel particles. Dynamic viscoelastic analysis was used to determine the oxidation-response gelling capacities of polymer dispersions containing H 2 O 2 , especially those that are highly thiolated and have cross-linked gel properties. For oxidation-induced CYS-PEC gels, their gelation time, hardness, viscosity and elastic moduli and swelling-disintegration ratio are dependent on the thiol group content, H 2 O 2 concentration and polymer concentration. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. A critical evaluation of the enhancement of mechanical properties of epoxy modified using CNTs

    NASA Astrophysics Data System (ADS)

    Bedsole, Robert W.; Park, Cheol; Bogert, Philip B.; Tippur, Hareesh V.

    2015-09-01

    Carbon nanotubes (CNTs) have been widely shown in the literature to improve mechanical properties of epoxy, such as tensile strength, elastic modulus, strain to failure, and fracture toughness. These improvements in nanocomposite properties have been attributed to the extraordinary properties of the nanotubes, as well as the quality of their dispersion within and adhesion to the epoxy matrix. However, many authors have also struggled to show significant mechanical improvements using similar methodologies and despite, in some cases, showing qualitative improvements in dispersion with optical microscopy. These authors have frequently resorted to other methods for improving the mechanical properties of CNT/epoxy, such as electrically aligning CNTs, using different types of CNTs, or modifying the stoichiometry. The current work examines many different dispersion techniques, types of CNTs, types of epoxies, curing cycles, and other variables in an attempt to improve the mechanical properties of neat epoxy with CNTs. Despite seeing significant changes in the microscopy, no significant improvements in tensile or fracture properties have been attributed to CNTs in this work.

  5. High-performance polymer/layered silicate nanocomposites

    NASA Astrophysics Data System (ADS)

    Heidecker, Matthew J.

    High-performance layered-silicate nanocomposites of Polycarbonate (PC), poly(ethylene terephthalate) (PET), and their blends were produced via conventional melt-blending techniques. The focus of this thesis was on the fundamentals of dispersion, control of thermal stability, maintenance of melt-blending processing conditions, and on optimization of the composites' mechanical properties via the design of controlled and thermodynamically favorable nano-filler dispersions within the polymer matrices. PET and PC require high temperatures for melt-processing, rendering impractical the use of conventional/commercial organically-modified layered-silicates, since the thermal degradation temperatures of their ammonium surfactants lies below the typical processing temperatures. Thus, different surfactant chemistries must be employed in order to develop melt-processable nanocomposites, also accounting for polymer matrix degradation due to water (PET) or amine compounds (PC). Novel high thermal-stability surfactants were developed and employed in montmorillonite nanocomposites of PET, PC, and PC/PET blends, and were compared to the respective nanocomposites based on conventional quaternary-ammonium modified montmorillonites. Favorable dispersion was achieved in all cases, however, the overall material behavior -- i.e., the combination of crystallization, mechanical properties, and thermal degradation -- was better for the nanocomposites based on the thermally-stable surfactant fillers. Studies were also done to trace, and ultimately limit, the matrix degradation of Polycarbonate/montmorillonite nanocomposites, through varying the montmorillonite surfactant chemistry, processing conditions, and processing additives. Molecular weight degradation was, maybe surprisingly, better controlled in the conventional quaternary ammonium based nanocomposites -- even though the thermal stability of the organically modified montmorillonites was in most cases the lowest. Dependence of the resultant nanocomposites' mechanical properties on the preferential alignment of the montmorillonite nano-platelet was also evaluated. Highly aligned filler platelets did not result in an additional enhancement in mechanical properties. PC/PET blends and their respective PC/PET/montmorillonite nanocomposites were synthesized and compared. The dispersion of the organically modified nano-fillers in the PC/PET blends was controlled via thermodynamic considerations, realized through proper surfactant choice: Nanocomposites in which the layered silicate was preferentially sequestered in the PET phase were designed and synthesized. This preferential dispersion of the nano-filler in the PET phase of the PC/PET blend was insensitive to processing conditions, including approaches employing a master-batch (filler concentrate); regardless of the master-batch matrix, both PC and PET were employed, thermodynamics drove the layered silicate to preferentially migrate to the PET phase of the PC/PET blend. In a second approach, the development of a nanocomposite with controlled PC/PET compatibilization near the montmorillonite platelets, in absence of appreciable transesterification reactions, led to the formation of very high performance nanocomposites. These latter systems, point to an exciting new avenue of future considerations for nanocomposite blends with selective nano-filler dispersions, where performance can be tailored via the controlled preferential dispersion of nano-fillers in one phase, or by filler-induced polymer compatibilization.

  6. Epoxy composites coating with Fe3O4 decorated graphene oxide: Modified bio-inspired surface chemistry, synergistic effect and improved anti-corrosion performance

    NASA Astrophysics Data System (ADS)

    Zhan, Yingqing; Zhang, Jieming; Wan, Xinyi; Long, Zhihang; He, Shuangjiang; He, Yi

    2018-04-01

    To obtain graphene or graphene derivatives based epoxy composite coatings with high anti-corrosion performance, the morphology of nanostructures, dispersion, and interfacial adhesion are key factors that need to be considered. We here demonstrated the bio-inspired co-modification of graphene oxide/Fe3O4 hybrid (GO-Fe3O4@ poly (DA+KH550)) and its synergistic effect on the anti-corrosion performance of epoxy coating. For this purpose, graphene oxide/Fe3O4 hybrid obtained from hydrothermal route was modified by self-polymerization between dopamine and secondary functional monomer (KH550), which led to the modified bio-inspired surface functionalization. This novel modified bio-inspired functionalization was quite distinct from conventional surface modification or decoration. Namely, abundant amino groups were introduced by modified bio-inspired functionalization, which allowed the graphene oxide/Fe3O4 hybrid to disperse well in epoxy resin and enhanced the interfacial adhesion between modified nanofiller and epoxy resin through chemical crosslinking reaction. The electrochemical impedance spectroscopy (EIS) test revealed that anti-corrosive performance of epoxy coatings was significantly enhanced by addition of 0.5 wt% modified bio-inspired functionalized GO-Fe3O4 hybrid compared with neat epoxy and other nanofillers/epoxy composite coatings. Moreover, the micro-hardness of epoxy coating was enhanced by 71.8% compared with pure epoxy coating at the same loading content. In addition, the anticorrosion mechanism of GO-Fe3O4@poly (DA+KH550) was tentatively discussed.

  7. Structural, optical and dielectric properties of graphene oxide

    NASA Astrophysics Data System (ADS)

    Bhargava, Richa; Khan, Shakeel

    2018-05-01

    The Modified Hummers method has been used to synthesize Graphene oxide nanoparticles. Microstructural analyses were carried out by X-ray diffraction and Fourier transform infrared spectroscopy. Optical properties were studied by UV-visible spectroscopy in the range of 200-700 nm. The energy band gap was calculated with the help of Tauc relation. The frequency dependence of dielectric constant and dielectric loss were studied over a range of the frequency 75Hz to 5MHz at room temperature. The dispersion in dielectric constant can be explained with the help of Maxwell-Wagner model in studied nanoparticles.

  8. Direct Assembly of Modified Proteins on Carbon Nanotubes in an Aqueous Solution

    NASA Technical Reports Server (NTRS)

    Kim, Jae-Woo; Lillehei, Peter T.; Park, Cheol; Harrison, Joycelyn S.

    2007-01-01

    Carbon nanotubes (CNTs) have superior mechanical and electrical properties that have opened up many potential applications. However, poor dispersibility and solubility, due to the substantial van der Waals attraction between tubes, have prevented the use of CNTs in practical applications, especially biotechnology applications. Effective dispersion of CNTs into small bundles or individual tubes in solvents is crucial to ensure homogeneous properties and enable practical applications. In addition to dispersion of CNTs into a solvent, the selection of appropriate solvent, which is compatible with a desired matrix, is an important factor to improve the mechanical, thermal, optical, and electrical properties of CNT-based fibers and composites. In particular, dispersion of CNTs into an aqueous system has been a challenge due to the hydrophobic nature of CNTs. Here we show an effective method for dispersion of both single wall CNTs (SWCNTs) and few wall CNTs (FWCNTs) in an aqueous buffer solution. We also show an assembly of cationized Pt-cored ferritins on the well dispersed CNTs in an aqueous buffer solution.

  9. Rapid determination of 9 aromatic amines in mainstream cigarette smoke by modified dispersive liquid liquid microextraction and ultraperformance convergence chromatography tandem mass spectrometry.

    PubMed

    Deng, Huimin; Yang, Fei; Li, Zhonghao; Bian, Zhaoyang; Fan, Ziyan; Wang, Ying; Liu, Shanshan; Tang, Gangling

    2017-07-21

    Aromatic amines in mainstream cigarette smoke have long been monitored due to their carcinogenic toxicity. In this work, a reliable and rapid method was developed for the simultaneous determination of 9 aromatic amines in mainstream cigarette smoke by modified dispersive liquid liquid microextraction (DLLME) and ultraperformance convergence chromatography tandem mass spectrometry (UPC 2 -MS/MS). Briefly, the particulate phase of the cigarette smoke was captured by a Cambridge filter pad, and diluted hydrogen chloride aqueous solution is employed to extract the aromatic amines under mechanical shaking. After alkalization with sodium hydroxide solution, small amount of toluene was introduced to further extract and enrich aromatic amines by modified DLLME under vortexing. After centrifugation, toluene phase was purified by a universal QuEChERS cleanup kit and was finally analyzed by UPC 2 -MS/MS. Attributing to the superior performance of UPC 2 -MS/MS, this novel approach allowed the separation and determination of 9 aromatic amines within 5.0min with satisfactory resolution and sensitivity. The proposed method was finally validated using Kentucky reference cigarette 3R4F, and emission levels of targeted aromatic amines determined were comparable to previously reported methods At three different spiked levels, the recoveries of most analytes were ranged from 74.01% to 120.50% with relative standard deviation (RSD) less than 12%, except that the recovery of p-toluidine at low spiked level and 3-aminobiphenyl at medium spiked level was 62.77% and 69.37% respectively. Thus, this work provides a novel alternative method for the simultaneous analysis of 9 aromatic amines in mainstream cigarette smoke. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Research of the Dispersity of the Functional Sericite/Methylphenyl- Silicone Resin

    PubMed Central

    Jiang, B.; Zhu, C. C.; Huang, Y. D.

    2015-01-01

    In order to improve the homogeneity and dispersity of the sericite in methylphenyl-silicone resin, the agglomerate state of the sericites was controlled effectively. The dispersive model of the sericite in methylphenyl-silicone resin was designed also. First, the modified sericite was prepared using hexadecyl trimethyl ammonium bromide as the intercalating agent. Then, functional sericite was incorporated into methylphenyl-silicone by terminal hydroxyl. The structure and dispersive performance of the hybrid polymers was charactered by analytical instruments. Scanning electron microscopy and Transmission electron microscope, Laser scanning confocal microscope and X-ray diffraction analysis showed that functional sericite was dispersed homogeneously in methylphenyl-silicone resin matrix. X-ray photoelectron spectroscopy analysis showed that the absorption peaks of the Si-OH band of methylphenyl-silicone resin were decreased and the Si-O-Si band was increased. This change evidently showed a significant role to enhance the reaction degree of the functional sericite in methylphenyl-silicone resin. PMID:26061002

  11. Modeling of dispersion near roadways based on the vehicle-induced turbulence concept

    NASA Astrophysics Data System (ADS)

    Sahlodin, Ali M.; Sotudeh-Gharebagh, Rahmat; Zhu, Yifang

    A mathematical model is developed for dispersion near roadways by incorporating vehicle-induced turbulence (VIT) into Gaussian dispersion modeling using computational fluid dynamics (CFD). The model is based on the Gaussian plume equation in which roadway is regarded as a series of point sources. The Gaussian dispersion parameters are modified by simulation of the roadway using CFD in order to evaluate turbulent kinetic energy (TKE) as a measure of VIT. The model was evaluated against experimental carbon monoxide concentrations downwind of two major freeways reported in the literature. Good agreements were achieved between model results and the literature data. A significant difference was observed between the model results with and without considering VIT. The difference is rather high for data very close to the freeways. This model, after evaluation with additional data, may be used as a framework for predicting dispersion and deposition from any roadway for different traffic (vehicle type and speed) conditions.

  12. Modified Monte Carlo method for study of electron transport in degenerate electron gas in the presence of electron-electron interactions, application to graphene

    NASA Astrophysics Data System (ADS)

    Borowik, Piotr; Thobel, Jean-Luc; Adamowicz, Leszek

    2017-07-01

    Standard computational methods used to take account of the Pauli Exclusion Principle into Monte Carlo (MC) simulations of electron transport in semiconductors may give unphysical results in low field regime, where obtained electron distribution function takes values exceeding unity. Modified algorithms were already proposed and allow to correctly account for electron scattering on phonons or impurities. Present paper extends this approach and proposes improved simulation scheme allowing including Pauli exclusion principle for electron-electron (e-e) scattering into MC simulations. Simulations with significantly reduced computational cost recreate correct values of the electron distribution function. Proposed algorithm is applied to study transport properties of degenerate electrons in graphene with e-e interactions. This required adapting the treatment of e-e scattering in the case of linear band dispersion relation. Hence, this part of the simulation algorithm is described in details.

  13. Combined effects of zooplankton grazing and dispersal on the diversity and assembly mechanisms of bacterial metacommunities.

    PubMed

    Berga, Mercè; Östman, Örjan; Lindström, Eva S; Langenheder, Silke

    2015-07-01

    Effects of dispersal and the presence of predators on diversity, assembly and functioning of bacterial communities are well studied in isolation. In reality, however, dispersal and trophic interactions act simultaneously and can therefore have combined effects, which are poorly investigated. We performed an experiment with aquatic metacommunities consisting of three environmentally different patches and manipulated dispersal rates among them as well as the presence or absence of the keystone species Daphnia magna. Daphnia magna reduced both local and regional diversity, whereas dispersal increased local diversity but decreased beta-diversity having no net effect on regional diversity. Dispersal modified the assembly mechanisms of bacterial communities by increasing the degree of determinism. Additionally, the combination of the D. magna and dispersal increased the importance of deterministic processes, presumably because predator-tolerant taxa were spread in the metacommunity via dispersal. Moreover, the presence of D. magna affected community composition, increased community respiration rates but did not affect bacterial production or abundance, whereas dispersal slightly increased bacterial production. In conclusion, our study suggests that predation by a keystone species such as D. magna and dispersal additively influence bacterial diversity, assembly processes and ecosystem functioning. © 2014 Society for Applied Microbiology and John Wiley & Sons Ltd.

  14. Influence of nano-dispersive modified additive on cement activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sazonova, Natalya, E-mail: n.a.sazonova@mail.ru; Badenikov, Artem, E-mail: rector@agta.ru; Ivanova, Elizaveta, E-mail: lisik-iva@mail.ru

    2016-01-15

    In the work the influence of single-walled carbon nanotubes (SWCNT) on the cement activity and the processes of structure formation of the hardened cement paste in different periods of hydration are studied. The changes in the kinetic curves of the sample strength growth modified with SWCNT in amount of 0.01 and 0.0005 % are stipulated by the results of differential scanning colorimetry, scanning electronic and ionic microscopy, X-ray-phase analysis. It was found that the nano-modified additive may increase in the axis compressive strength of the system by 1.4–6.3 fold relatively to the reference samples and may reach 179.6 MPa. It maymore » intensify the hydration process of calcium silicates as well as influence on the matrix of hardened cement paste. The studies are conducted on the structural changes in the hardened cement paste, the time periods of increase and decrease of the compressive strength of the samples, the amount of the calcium hydroxide and tobermorite-like gel as well as the degree of hydration C{sub 3}S and β-C{sub 2}S.« less

  15. Inkjet-printed microelectrodes on PDMS as biosensors for functionalized microfluidic systems.

    PubMed

    Wu, Jianwei; Wang, Ridong; Yu, Haixia; Li, Guijun; Xu, Kexin; Tien, Norman C; Roberts, Robert C; Li, Dachao

    2015-02-07

    Microfluidic systems based on polydimethylsiloxane (PDMS) have gained popularity in recent years. However, microelectrode patterning on PDMS to form biosensors in microchannels remains a worldwide technical issue due to the hydrophobicity of PDMS and its weak adhesion to metals. In this study, an additive technique using inkjet-printed silver nanoparticles to form microelectrodes on PDMS is presented. (3-Mercaptopropyl)trimethoxysilane (MPTMS) was used to modify the surface of PDMS to improve its surface wettability and its adhesion to silver. The modified surface of PDMS is rendered relatively hydrophilic, which is beneficial for the silver droplets to disperse and thus effectively avoids the coalescence of adjacent droplets. Additionally, a multilevel matrix deposition (MMD) method is used to further avoid the coalescence and yield a homogeneous pattern on the MPTMS-modified PDMS. A surface wettability comparison and an adhesion test were conducted. The resulting silver pattern exhibited good uniformity, conductivity and excellent adhesion to PDMS. A three-electrode electrochemical biosensor was fabricated successfully using this method and sealed in a PDMS microchannel, forming a lab-on-a-chip glucose biosensing system.

  16. Solubility and precipitation of nicotinic acid in supercritical carbon dioxide.

    PubMed

    Rehman, M; Shekunov, B Y; York, P; Colthorpe, P

    2001-10-01

    Solubilities of a model compound (nicotinic acid) in pure supercritical carbon dioxide (SC-CO(2)) and SC-CO(2) modified with methanol have been measured in the pressure range of 80-200 bar and between temperatures of 35 and 90 degrees C. On-line ultraviolet detection enabled a simple and relatively fast measurement of very low levels of solubility (10(-7) mol fraction) with good accuracy in pure and modified SC-CO(2). The solute solubility in both pure SC-CO(2) and SC-CO(2) modified with methanol increased with pressure at all investigated temperatures. A retrograde solubility behavior was observed in that, at pressures below 120 bar, a solubility decrease on temperature increase occurred. Solubility data were used to calculate supersaturation values and to define optimum operating conditions to obtain crystalline particles 1-5 microm in diameter using the solution-enhanced dispersion by supercritical fluids (SEDS) process, thereby demonstrating the feasibility of a one-step production process for particulate pharmaceuticals suitable for respiratory drug delivery. Copyright 2001 Wiley-Liss, Inc. and the American Pharmaceutical Association J Pharm Sci 90:1570-1582, 2001

  17. Graphene-coated polystyrene-divinylbenzene dispersive solid-phase extraction coupled with supercritical fluid chromatography for the rapid determination of 10 allergenic disperse dyes in industrial wastewater samples.

    PubMed

    Lou, Chaoyan; Wu, Can; Zhang, Kai; Guo, Dandan; Jiang, Lei; Lu, Yang; Zhu, Yan

    2018-05-18

    Allergenic disperse dyes are a group of environmental contaminants, which are toxic and mutagenic to human beings. In this work, a method of dispersive solid-phase extraction (d-SPE) using graphene-coated polystyrene-divinylbenzene (G@PS-DVB) microspheres coupled with supercritical fluid chromatography (SFC) was proposed for the rapid determination of 10 allergenic disperse dyes in industrial wastewater samples. G@PS-DVB microspheres were synthesized by coating graphene (G) sheets onto polystyrene-divinylbenzene (PS-DVB) polymers. Such novel sorbents were employed in d-SPE for the purification and concentration of allergenic disperse dyes in wastewater samples prior to the determination by SFC with UV detection. To achieve the maximum extraction efficiency for the target dyes, several parameters influencing d-SPE process such as sorbent dosage, extraction time, desorption conditions were investigated. SFC conditions including stationary phase, modifier composition and percentage, column temperature, backpressure and flow rate were optimized to well separate the allergenic disperse dyes. Under the optimum conditions, satisfactory linear relationship (R ≥ 0.9989) was observed with the concentration of dyes ranging from 0.02 to 10.0 μg/mL. The limits of detection (LOD, S/N = 3) for the ten dyes were in the range of 1.1-15.6 ng/mL. Recoveries for the spiked samples were between 89.1% and 99.7% with relative standard deviations (RSD) lower than 10.5% in all cases. The proposed method is time-saving, green, precise and repeatable for the analysis of the target dyes. Furthermore, the application of G@PS-DVB based d-SPE process can be potentially expanded to isolate and concentrate other aromatic compounds in various matrices and supercritical fluid chromatography methodology featuring rapidity, accuracy and green will be an ideal candidate for the analysis of these compounds. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Preparation, characterization and application of dispersible and spherical Nano-SiO2@Copolymer nanocomposite in leather tanning

    NASA Astrophysics Data System (ADS)

    Pan, Hui; Li, Guang-Long; Liu, Rui-Qi; Wang, Su-Xia; Wang, Xiao-Dong

    2017-12-01

    Dispersible and spherical silica nanoparticles (nano-SiO2) were prepared with tetraethyl silicate and different surface-modifiers via a simple method. The silica nanoparticles surface-modified with methacryloxy (propyl) trimethoxysilane (denoted as MPS-SiO2), dimethyl diallyl ammoniumchloride (denoted as DMDAAC-SiO2) and poly (methacrylic acid) (denoted as PMAA-SiO2) which are known as hydrophobic, amphiphilic and hydrophilic modifiers, respectively, exhibited excellent dispersibility in various solvents or polymer matrix. The obtained bare silica nanoparticles, MPS-SiO2, DMDAAC-SiO2 and PMAA-SiO2 were characterized by Fourier transform infrared spectra (FTIR), thermogravimetric analysis (TGA), transmission electron microscope (TEM) and scanning electron microscope (SEM). A series of nanocomposites (denoted as SiO2/P, MPS-SiO2/P, DMDAAC-SiO2/P and PMAA-SiO2/P, respectively) were also prepared with the bare or surface-modified silica nanoparticles and methacrylic acid-co-acrylamide-co-acrylonitrile-co-salicylic acid tetrabasic copolymer (denoted as PMAAS) and applied in leather tanning. Compared with those of the leather tanned with the commercial acrylic resin (CHINATAN OM) and pure tetrabasic copolymer tanning agents, the physical and mechanical properties, rheological properties and thermal stabilities of the leather treated with SiO2/P, MPS-SiO2/P, DMDAAC-SiO2/P or PMAA-SiO2/P founded to be improved in a significant way. Moreover, the highest shrinkage temperature of the wet-white sheepskin tanned with PMAA-SiO2/P reached to 76 °C and the thickness increase reached to 105%.

  19. Cationic polymer brush-modified cellulose nanocrystals for high-affinity virus binding

    NASA Astrophysics Data System (ADS)

    Rosilo, Henna; McKee, Jason R.; Kontturi, Eero; Koho, Tiia; Hytönen, Vesa P.; Ikkala, Olli; Kostiainen, Mauri A.

    2014-09-01

    Surfaces capable of high-affinity binding of biomolecules are required in several biotechnological applications, such as purification, transfection, and sensing. Therein, the rod-shaped, colloidal cellulose nanocrystals (CNCs) are appealing due to their large surface area available for functionalization. In order to exploit electrostatic binding, their intrinsically anionic surfaces have to be cationized as biological supramolecules are predominantly anionic. Here we present a facile way to prepare cationic CNCs by surface-initiated atom-transfer radical polymerization of poly(N,N-dimethylaminoethyl methacrylate) and subsequent quaternization of the polymer pendant amino groups. The cationic polymer brush-modified CNCs maintained excellent dispersibility and colloidal stability in water and showed a ζ-potential of +38 mV. Dynamic light scattering and electron microscopy showed that the modified CNCs electrostatically bind cowpea chlorotic mottle virus and norovirus-like particles with high affinity. Addition of only a few weight percent of the modified CNCs in water dispersions sufficed to fully bind the virus capsids to form micrometer-sized assemblies. This enabled the concentration and extraction of the virus particles from solution by low-speed centrifugation. These results show the feasibility of the modified CNCs in virus binding and concentrating, and pave the way for their use as transduction enhancers for viral delivery applications.Surfaces capable of high-affinity binding of biomolecules are required in several biotechnological applications, such as purification, transfection, and sensing. Therein, the rod-shaped, colloidal cellulose nanocrystals (CNCs) are appealing due to their large surface area available for functionalization. In order to exploit electrostatic binding, their intrinsically anionic surfaces have to be cationized as biological supramolecules are predominantly anionic. Here we present a facile way to prepare cationic CNCs by surface-initiated atom-transfer radical polymerization of poly(N,N-dimethylaminoethyl methacrylate) and subsequent quaternization of the polymer pendant amino groups. The cationic polymer brush-modified CNCs maintained excellent dispersibility and colloidal stability in water and showed a ζ-potential of +38 mV. Dynamic light scattering and electron microscopy showed that the modified CNCs electrostatically bind cowpea chlorotic mottle virus and norovirus-like particles with high affinity. Addition of only a few weight percent of the modified CNCs in water dispersions sufficed to fully bind the virus capsids to form micrometer-sized assemblies. This enabled the concentration and extraction of the virus particles from solution by low-speed centrifugation. These results show the feasibility of the modified CNCs in virus binding and concentrating, and pave the way for their use as transduction enhancers for viral delivery applications. Electronic supplementary information (ESI) available: CNC surface chain fraction and degree of substitution after BriBBr modification, NMR spectra of the SI-ATRP reaction mixture at 0 and 120 min, conversion of the DMAEMA monomer during SI-ATRP, DLS size distribution profiles of CNCs and CNC-g-P(QDMAEMA), TEM images of NoV-VLPs and their complexes with CNC-g-P(QDMAEMA) at 0 mM NaCl. See DOI: 10.1039/c4nr03584d

  20. Nanophosphor composite scintillator with a liquid matrix

    DOEpatents

    McKigney, Edward Allen; Burrell, Anthony Keiran; Bennett, Bryan L.; Cooke, David Wayne; Ott, Kevin Curtis; Bacrania, Minesh Kantilal; Del Sesto, Rico Emilio; Gilbertson, Robert David; Muenchausen, Ross Edward; McCleskey, Thomas Mark

    2010-03-16

    An improved nanophosphor scintillator liquid comprises nanophosphor particles in a liquid matrix. The nanophosphor particles are optionally surface modified with an organic ligand. The surface modified nanophosphor particle is essentially surface charge neutral, thereby preventing agglomeration of the nanophosphor particles during dispersion in a liquid scintillator matrix. The improved nanophosphor scintillator liquid may be used in any conventional liquid scintillator application, including in a radiation detector.

  1. Multi-walled carbon nanotubes/polymer composites in absence and presence of acrylic elastomer (ACM).

    PubMed

    Kumar, S; Rath, T; Mahaling, R N; Mukherjee, M; Khatua, B B; Das, C K

    2009-05-01

    Polyetherimide/Multiwall carbon nanotube (MWNTs) nanocomposites containing as-received and modified (COOH-MWNT) carbon nanotubes were prepared through melt process in extruder and then compression molded. Thermal properties of the composites were characterized by thermo-gravimetric analysis (TGA). Field emission scanning electron microscopy (FESEM) images showed that the MWNTs were well dispersed and formed an intimate contact with the polymer matrix without any agglomeration. However the incorporation of modified carbon nanotubes formed fascinating, highly crosslinked, and compact network structure throughout the polymer matrix. This showed the increased adhesion of PEI with modified MWNTs. Scanning electron microscopy (SEM) also showed high degree of dispersion of modified MWNTs along with broken ends. Dynamic mechanical analysis (DMA) results showed a marginal increase in storage modulus (E') and glass transition temperature (T(g)) with the addition of MWNTs. Increase in tensile strength and impact strength of composites confirmed the use the MWNTs as possible reinforcement agent. Both thermal and electrical conductivity of composites increased, but effect is more pronounced on modification due to formation of network of carbon nanotubes. Addition of acrylic elastomer to developed PEI/MWNTs (modified) nanocomposites resulted in the further increase in thermal and electrical properties due to the formation of additional bond between MWNTs and acrylic elastomers at the interface. All the results presented are well corroborated by SEM and FESEM studies.

  2. Comparative Plasma Exposure of Albendazole after Administration of Rapidly Disintegrating Tablets in Dogs

    PubMed Central

    Castro, Silvina G.; Dib, Alicia; Suarez, Gonzalo; Allemandi, Daniel; Lanusse, Carlos; Sanchez Bruni, Sergio; Palma, Santiago D.

    2013-01-01

    The main objectives of this study were (a) to evaluate the in vitro performance of the rapid disintegration tablets as a way to improve the solid dispersions and (b) to study the in vivo pharmacokinetics of the albendazole modified formulation in dogs. Rapid disintegration of tablets seems to be a key factor for efficiency of solid dispersions with regard to improvement of the albendazole bioavailability. The in vivo assays performed on dogs showed a marked increase in drug plasma exposure when albendazole was given in solid dispersions incorporated into rapid disintegration tablets compared with conventional solid dosage form. PMID:24063016

  3. Carbon Nanotube Composites from Modified Plant Oils

    NASA Astrophysics Data System (ADS)

    McAninch, Ian; Wool, Richard

    2006-03-01

    Carbon nanotubes (CNTs) with their impressive mechanical properties are ideal reinforcement material. Acrylated epoxidized soy oil (AESO) has been previously shown to have favorable interactions with carbon nanotubes. CNTs mixed into AESO, both with and without styrene as a co-monomer, using mechanical shear mixing showed dispersion only on the micron level, resulting in modest mechanical property improvements. Greater improvements were seen, especially in the rubbery modulus, when the resin's viscosity was kept high, either through a reduction of the styrene content, or by curing at a lower temperature. CNTs were also dispersed via sonication in methyl methacrylate. The resulting dispersion was then mixed with AESO. The resulting composites showed better CNT dispersion, with no micron-sized aggregates, as verified using SEM and optical microscopy. The mechanical properties also showed greater improvement.

  4. Klein tunneling and electron optics in Dirac-Weyl fermion systems with tilted energy dispersion

    NASA Astrophysics Data System (ADS)

    Nguyen, V. Hung; Charlier, J.-C.

    2018-06-01

    The transport properties of relativisticlike fermions have been extensively studied in solid-state systems with isotropic energy dispersions. Recently, several two-dimensional and three-dimensional Dirac-Weyl (DW) materials exhibiting tilted energy dispersions around their DW cones have been explored. Here, we demonstrate that such a tilt character could induce drastically different transport phenomena, compared to the isotropic-dispersion cases. Indeed, the Klein tunneling of DW fermions of opposite chiralities is predicted to appear along two separated oblique directions. In addition, valley filtering and beam splitting effects are easily tailored by dopant engineering techniques whereas the refraction of electron waves at a (p -n )-doped interface is dramatically modified by the tilt, thus paving the way for emerging applications in electron optics and valleytronics.

  5. Thermodynamics and luminosities of rainbow black holes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mu, Benrong; Wang, Peng; Yang, Haitang, E-mail: mubenrong@uestc.edu.cn, E-mail: pengw@scu.edu.cn, E-mail: hyanga@scu.edu.cn

    2015-11-01

    Doubly special relativity (DSR) is an effective model for encoding quantum gravity in flat spacetime. As result of the nonlinearity of the Lorentz transformation, the energy-momentum dispersion relation is modified. One simple way to import DSR to curved spacetime is ''Gravity's rainbow'', where the spacetime background felt by a test particle would depend on its energy. Focusing on the ''Amelino-Camelia dispersion relation'' which is E{sup 2} = m{sup 2}+p{sup 2}[1−η(E/m{sub p}){sup n}] with n > 0, we investigate the thermodynamical properties of a Schwarzschild black hole and a static uncharged black string for all possible values of η and n in the framework ofmore » rainbow gravity. It shows that there are non-vanishing minimum masses for these two black holes in the cases with η < 0 and n ≥ 2. Considering effects of rainbow gravity on both the Hawking temperature and radius of the event horizon, we use the geometric optics approximation to compute luminosities of a 2D black hole, a Schwarzschild one and a static uncharged black string. It is found that the luminosities can be significantly suppressed or boosted depending on the values of η and n.« less

  6. The phenomenology of squeezing and its status in non-inflationary theories

    NASA Astrophysics Data System (ADS)

    Gubitosi, Giulia; Magueijo, João

    2017-11-01

    In this paper we skim the true phenomenological requirements behind the concept of inflationary squeezing. We argue that all that is required is that at horizon re-entry the fluctuations form standing waves with the correct temporal phase (specifically, sine waves). We quantify this requirement and relate it to the initial conditions fed into the radiation dominated epoch by whatever phase of the Universe produced the fluctuations. The only relevant quantity turns out to be the degree of suppression of the momentum, p, of the fluctuations, y, which we measure by σ~ ω2 |y|2/|p|2. Even though σ equals the squeezing parameter, s, in the case of inflation and bimetric varying speed of light scenarios, this is not true in general, specifically in some bouncing Universe models. It is also not necessary to produce a large σ at the end of the primordial phase: it is enough that σ be not too small. This is the case with scenarios based on modified dispersion relations (MDR) emulating the dispersion relations of Horava-Lifshitz theory, which produce σ~ 1, enough to comply with the observational requirements. Scenarios based on MDR leading to a slightly red spectrum are also examined, and shown to satisfy the observational constraints.

  7. Modifying Silicates for Better Dispersion in Nanocomposites

    NASA Technical Reports Server (NTRS)

    Campbell, Sandi

    2005-01-01

    An improved chemical modification has been developed to enhance the dispersion of layered silicate particles in the formulation of a polymer/silicate nanocomposite material. The modification involves, among other things, the co-exchange of an alkyl ammonium ion and a monoprotonated diamine with interlayer cations of the silicate. The net overall effects of the improved chemical modification are to improve processability of the nanocomposite and maximize the benefits of dispersing the silicate particles into the polymer. Some background discussion is necessary to give meaning to a description of this development. Polymer/silicate nanocomposites are also denoted polymer/clay composites because the silicate particles in them are typically derived from clay particles. Particles of clay comprise layers of silicate platelets separated by gaps called "galleries." The platelet thickness is 1 nm. The length varies from 30 nm to 1 m, depending on the silicate. In order to fully realize the benefits of polymer/silicate nanocomposites, it is necessary to ensure that the platelets become dispersed in the polymer matrices. Proper dispersion can impart physical and chemical properties that make nanocomposites attractive for a variety of applications. In order to achieve nanometer-level dispersion of a layered silicate into a polymer matrix, it is typically necessary to modify the interlayer silicate surfaces by attaching organic functional groups. This modification can be achieved easily by ion exchange between the interlayer metal cations found naturally in the silicate and protonated organic cations - typically protonated amines. Long-chain alkyl ammonium ions are commonly chosen as the ion-exchange materials because they effectively lower the surface energies of the silicates and ease the incorporation of organic monomers or polymers into the silicate galleries. This completes the background discussion. In the present improved modification of the interlayer silicate surfaces, the co-ion exchange strengthens the polymer/silicate interface and ensures irreversible separation of the silicate layers. One way in which it does this is to essentially tether one amine of each diamine molecule to a silicate surface, leaving the second amine free for reaction with monomers during the synthesis of a polymer. In addition, the incorporation of alkyl ammonium ions into the galleries at low concentration helps to keep low the melt viscosity of the oligomer formed during synthesis of the polymer and associated processing - a consideration that is particularly important in the case of a highly cross-linked, thermosetting polymer. Because of the chemical bonding between the surface-modifying amines and the monomers, even when the alkyl ammonium ions become degraded at high processing temperature, the silicate layers do not aggregate and, hence, nanometer-level dispersion is maintained.

  8. Tough and Reinforced Polypropylene/Kaolin Composites using Modified Kaolin

    NASA Astrophysics Data System (ADS)

    Yao, J. L.; Zhu, H. X.; Qi, Y. B.; Guo, M. J.; Hu, Q.; Gao, L.

    2018-05-01

    Polypropylene (PP)/kaolin composites have been prepared by filling modified kaolin with diethylenetriaminepentaacetic acid (DTPA) into the PP matrix. The surface modification of kaolin particles effectively improves the compatibility between kaolin and PP matrix. It is conducive for uniform dispersion of inorganic particles in the matrix, and enhances the mechanical performance of the composites. Compared with plain kaolin, the mechanical properties of the modified composites exhibit higher tensile strength, bending strength, impact strength and melt index simultaneously. The DTPA modification of kaolin overall enhances the mechanical properties of PP composites. It meets the requirements in various applications, and makes the modified experiment interesting in modern teaching.

  9. Palladium and platinum-based nanoparticle functional sensor layers for selective H2 sensing

    DOEpatents

    Ohodnicki, Jr., Paul R.; Baltrus, John P.; Brown, Thomas D.

    2017-07-04

    The disclosure relates to a plasmon resonance-based method for H.sub.2 sensing in a gas stream utilizing a hydrogen sensing material. The hydrogen sensing material is comprises Pd-based or Pt-based nanoparticles having an average nanoparticle diameter of less than about 100 nanometers dispersed in an inert matrix having a bandgap greater than or equal to 5 eV, and an oxygen ion conductivity less than approximately 10.sup.-7 S/cm at a temperature of 700.degree. C. Exemplary inert matrix materials include SiO.sub.2, Al.sub.2O.sub.3, and Si.sub.3N.sub.4 as well as modifications to modify the effective refractive indices through combinations and/or doping of such materials. The hydrogen sensing material utilized in the method of this disclosure may be prepared using means known in the art for the production of nanoparticles dispersed within a supporting matrix including sol-gel based wet chemistry techniques, impregnation techniques, implantation techniques, sputtering techniques, and others.

  10. Three-dimensional phonon population anisotropy in silicon nanomembranes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McElhinny, Kyle M.; Gopalakrishnan, Gokul; Holt, Martin V.

    Nanoscale single crystals possess modified phonon dispersions due to the truncation of the crystal. The introduction of surfaces alters the population of phonons relative to the bulk and introduces anisotropy arising from the breaking of translational symmetry. Such modifications exist throughout the Brillouin zone, even in structures with dimensions of several nanometers, posing a challenge to the characterization of vibrational properties and leading to uncertainty in predicting the thermal, optical, and electronic properties of nanomaterials. Synchrotron x-ray thermal diffuse scattering studies find that freestanding Si nanomembranes with thicknesses as large as 21 nm exhibit a higher scattering intensity per unitmore » thickness than bulk silicon. In addition, the anisotropy arising from the finite thickness of these membranes produces particularly intense scattering along reciprocal-space directions normal to the membrane surface compared to corresponding in-plane directions. These results reveal the dimensions at which calculations of materials properties and device characteristics based on bulk phonon dispersions require consideration of the nanoscale size of the crystal.« less

  11. Effect of preparation methods on dispersion stability and electrochemical performance of graphene sheets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Li, E-mail: chenli1981@lut.cn; Li, Na; Zhang, Mingxia

    Chemical exfoliation is one of the most important strategies for preparing graphene. The aggregation of graphene sheets severely prevents graphene from exhibiting excellent properties. However, there are no attempts to investigate the effect of preparation methods on the dispersity of graphene sheets. In this study, three chemical exfoliation methods, including Hummers method, modified Hummers method, and improved method, were used to prepare graphene sheets. The influence of preparation methods on the structure, dispersion stability in organic solvents, and electrochemical properties of graphene sheets were investigated. Fourier transform infrared microscopy, Raman spectra, transmission electron microscopy, and UV–vis spectrophotometry were employed tomore » analyze the structure of the as-prepared graphene sheets. The results showed that graphene prepared by improved method exhibits excellent dispersity and stability in organic solvents without any additional stabilizer or modifier, which is attributed to the completely exfoliation and regular structure. Moreover, cyclic voltammetric and electrochemical impedance spectroscopy measurements showed that graphene prepared by improved method exhibits superior electrochemical properties than that prepared by the other two methods. - Graphical abstract: Graphene oxides with different oxidation degree were obtained via three methods, and then graphene with different crystal structures were created by chemical reduction of exfoliated graphene oxides. - Highlights: • Graphene oxides with different oxidation degree were obtained via three oxidation methods. • The influence of oxidation methods on microstructure of graphene was investigated. • The effect of oxidation methods on dispersion stability of graphene was investigated. • The effect of oxidation methods on electrochemical properties of graphene was discussed.« less

  12. Changes in the Relative Abundance and Movement of Insect Pollinators During the Flowering Cycle of Brassica rapa Crops: Implications for Gene Flow

    PubMed Central

    Mesa, Laura A.; Howlett, Bradley G.; Grant, Jan E.; Didham, Raphael K.

    2013-01-01

    The potential movement of transgenes from genetically modified crops to non-genetically modified crops via insect-mediated pollen dispersal has been highlighted as one of the areas of greatest concern in regards to genetically modified crops. Pollen movement depends sensitively on spatial and temporal variation in the movement of insect pollinators between crop fields. This study tested the degree of variation in the diversity and relative abundance of flower-visiting insects entering versus leaving pak choi, Brassica rapa var. chinensis L. (Brassicales: Brassicaceae), crops throughout different stages of the flowering cycle. The relative abundance of flower-visiting insects varied significantly with Brassica crop phenology. Greater numbers of flower-visiting insects were captured inside rather than outside the crop fields, with the highest capture rates of flower-visitors coinciding with the peak of flowering in both spring-flowering and summer-flowering crops. Moreover, the ratio of flower-visiting insects entering versus leaving crop fields also varied considerably with changing crop phenology. Despite high variation in relative capture rates, the data strongly indicate non-random patterns of variation in insect movement in relation to crop phenology, with early-season aggregation of flower-visiting insects entering and remaining in the crop, and then mass emigration of flower-visiting insects leaving the crop late in the flowering season. Although pollen movement late in the flowering cycle might contribute relatively little to total seed set (and hence crop production), the findings here suggest that extensive late-season pollinator redistribution in the landscape could contribute disproportionately to long-distance gene movement between crops. PMID:23937538

  13. Colloidal behavior of goethite nanoparticles modified with humic acid and implications for aquifer reclamation

    NASA Astrophysics Data System (ADS)

    Tiraferri, Alberto; Saldarriaga Hernandez, Laura Andrea; Bianco, Carlo; Tosco, Tiziana; Sethi, Rajandrea

    2017-03-01

    Nanosized colloids of iron oxide adsorb heavy metals, enhance the biodegradation of contaminants, and represent a promising technology to clean up contaminated aquifers. Goethite particles for aquifer reclamation were recently synthesized with a coating of humic acids to reduce aggregation. This study investigates the stability and the mobility in porous media of this material as a function of aqueous chemistry, and it identifies the best practices to maximize the efficacy of the related remediation. Humic acid-coated nanogoethite (hydrodynamic diameter ˜90 nm) displays high stability in solutions of NaCl, consistent with effective electrosteric stabilization. However, particle aggregation is fast when calcium is present and, to a lesser extent, also in the presence of magnesium. This result is rationalized with complexation phenomena related to the interaction of divalent cations with humic acid, inducing rapid flocculation and sedimentation of the suspensions. The calcium dose, i.e., the amount of calcium ions with respect to solids in the dispersion, is the parameter governing stability. Therefore, more concentrated slurries may be more stable and mobile in the subsurface than dispersions of low particle concentration. Particle concentration during field injection should be thus chosen based on concentration and proportion of divalent cations in groundwater.

  14. Monitoring of dispersed smoke-plume layers by determining locations of the data-point clusters

    NASA Astrophysics Data System (ADS)

    Kovalev, Vladimir; Wold, Cyle; Petkov, Alexander; Min Hao, Wei

    2018-04-01

    A modified data-processing technique of the signals recorded by zenith-directed lidar, which operates in smoke-polluted atmosphere, is discussed. The technique is based on simple transformations of the lidar backscatter signal and the determination of the spatial location of the data point clusters. The technique allows more reliable detection of the location of dispersed smoke layering. Examples of typical results obtained with lidar in a smokepolluted atmosphere are presented.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mills, G.J.; Brown, G.G.; Waterman, D.D.

    The feasibility of prestressing commercial boron/epoxy and graphite/epoxy prepreg material to higher strengths and lower property dispersions is demonstrated. Its practical application as an on-line process for improving quality levels is possible with minor modifications to current experimental practice. The mechanics of the bendstressing method affects a controlled alteration in the fiber defect content to the extent that composite improvements can be achieved approaching the inherent fiber quality with dispersions in properties reduced to the 1 to 2% range. (Author, modified-PL)

  16. Surface modification of calcined kaolin with toluene diisocyanate based on high energy ball milling

    NASA Astrophysics Data System (ADS)

    Yuan, Yongbing; Chen, Hongling; Lin, Jinbin; Ji, Yan

    2013-11-01

    The surface of calcined kaolin particle was modified with toluene diisocyanate (TDI) by using high energy ball milling. The prepared hybrids were characterized by FT-IR, MAS NMR, thermal analysis (TGA-DSC), static water contact angle (CA), apparent viscosity and transmission electron microscopy (TEM). FT-IR and MAS NMR spectra demonstrated that TDI molecules were chemically anchored to kaolin surface after modification. The results of thermal analysis showed that the maximum grafting ratio reached up to 446.61% when the mass ratio of TDI/kaolin was 0.5:1.0, and CA measurements revealed that the resultant hybrids exhibited strong hydrophobicity (148.82°). Apparent viscosity and TEM were employed to examine the dispersion properties of blank and modified kaolin particles in poly (dimenthylsiloxane) matrix. The results illustrated that the dispersion stability depended strongly on the grafting ratio of TDI, neither too low nor too high achieved uniform and stable dispersion, and the favorable grafting ratio was obtained when the mass ratio of TDI/kaolin was 0.2:1.0. Further modification of TDI/kaolin (mass ration of TDI/kaolin, 1.0:1.0) particles with bis(aminopropyl)-terminated-poly(dimethylsiloxane) (APS) was also investigated. TEM evidenced that the dispersion properties of the obtained TDI/APS/kaolin particles were remarkably improved in octamethyl cyclotetrasiloxane compared with the original TDI/kaolin particles.

  17. 77 FR 61515 - Alkyl Amines Polyalkoxylates; Exemption From the Requirement of a Tolerance

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-10

    ... polyoxyethylene polymers and fatty acids; carriers such as clay and diatomaceous earth; thickeners such as carrageenan and modified cellulose; wetting, spreading, and dispersing agents; propellants in aerosol...

  18. A coating of silane modified silica nanoparticles on PET substrate film for inkjet printing

    NASA Astrophysics Data System (ADS)

    Wu, J.; Liu, L.; Jiang, B.; Hu, Z.; Wang, X. Q.; Huang, Y. D.; Lin, D. R.; Zhang, Q. H.

    2012-04-01

    The paper aims to design nanoporous coatings for inkjet printing and study its microstructure influence on the ink absorption. In the present work, two inkjet materials were prepared: one with unmodified nano-SiO2 (S_1), the other with silica coupling agent modified nano-SiO2 (S_2). The surface characteristic changing after modification was investigated by scanning electron microscopy (SEM), atomic force microscopy (AFM). Wetting with contact angles was determined by the dynamic contact angle analysis test (DCAT). Through measurements, the dispersion of modified nano-SiO2 particles in the coating was superior to the dispersion of unmodified nano-SiO2 particles, surface roughness value (Ra) of S_1 was significantly higher than that of S_2, dynamic contact angle of S_2 is smaller than that of S_1 and ink droplet absorption in S_2 was much faster than in S_1. These results also reveal that the modification method is effective and offers a potential way to fabricate inkjet material with the advantages of microstructure and ink absorption over traditional methods.

  19. Tetraethylorthosilicate (TEOS) applied in the surface modification of hydroxyapatite to develop polydimethylsiloxane/hydroxyapatite composites.

    PubMed

    Bareiro, O; Santos, L A

    2014-03-01

    Nanometric hydroxyapatite (HAp) particles were modified with 5 or 10 wt.% tetraethylorthosilicate (TEOS) solutions in order to prepare polydimethylsiloxane/hydroxyapatite (PDMS/HAp) composites. The surface modification of the HAp particles was studied by transmission electron spectroscopy (TEM) and by scanning electron microscopy coupled with energy dispersive spectroscopy (SEM/EDS) equipment. The dispersion state of the modified particles in the PDMS matrix was also assessed by SEM. The composite phase composition was characterized by X-ray diffraction (XRD). The composite thermodynamic parameters of cross-linking were analyzed by differential scanning calorimetry (DSC). TEM micrographs and EDS spectra indicated evidence of silica-coating formation on the surface of modified HAp particles. SEM results showed that the HAp particles formed agglomerates in the PDMS matrix. It was found that the introduction of HAp particles into the PDMS changed the enthalpy of cross-linking and the temperature of the beginning of the cross-linking reaction. EDS results indicated that the surface modification of HAp produced composites showing thermodynamic parameters that were more similar to those of unfilled PDMS. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. One-Step Extraction and Hydrolysis of Flavonoid Glycosides in Rape Bee Pollen Based on Soxhlet-Assisted Matrix Solid Phase Dispersion.

    PubMed

    Tu, Xijuan; Ma, Shuangqin; Gao, Zhaosheng; Wang, Jing; Huang, Shaokang; Chen, Wenbin

    2017-11-01

    Flavonoids are frequently found as glycosylated derivatives in plant materials. To determine contents of flavonoid aglycones in these matrices, procedures for the extraction and hydrolysis of flavonoid glycosides are required. The current sample preparation method is both labour and time consuming. Develop a modified matrix solid phase dispersion (MSPD) procedure as an alternative methodology for the one-step extraction and hydrolysis of flavonoid glycosides. HPLC-DAD was applied for demonstrating the one-step extraction and hydrolysis of flavonoids in rape bee pollen. The obtained contents of flavonoid aglycones (quercetin, kaempferol, isorhamnetin) were used for the optimisation and validation of the method. The extraction and hydrolysis were accomplished in one step. The procedure completes in 2 h with silica gel as dispersant, a 1:2 ratio of sample to dispersant, and 60% aqueous ethanol with 0.3 M hydrochloric acid as the extraction solution. The relative standard deviations (RSDs) of repeatability were less than 5%, and the recoveries at two fortified levels were between 88.3 and 104.8%. The proposed methodology is simple and highly efficient, with good repeatability and recovery. Compared with currently available methods, the present work has advantages of using less time and labour, higher extraction efficiency, and less consumption of the acid catalyst. This method may have applications for the one-step extraction and hydrolysis of bioactive compounds from plant materials. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  1. Extended depth of field imaging for high speed object analysis

    NASA Technical Reports Server (NTRS)

    Frost, Keith (Inventor); Ortyn, William (Inventor); Basiji, David (Inventor); Bauer, Richard (Inventor); Liang, Luchuan (Inventor); Hall, Brian (Inventor); Perry, David (Inventor)

    2011-01-01

    A high speed, high-resolution flow imaging system is modified to achieve extended depth of field imaging. An optical distortion element is introduced into the flow imaging system. Light from an object, such as a cell, is distorted by the distortion element, such that a point spread function (PSF) of the imaging system is invariant across an extended depth of field. The distorted light is spectrally dispersed, and the dispersed light is used to simultaneously generate a plurality of images. The images are detected, and image processing is used to enhance the detected images by compensating for the distortion, to achieve extended depth of field images of the object. The post image processing preferably involves de-convolution, and requires knowledge of the PSF of the imaging system, as modified by the optical distortion element.

  2. Dark and antidark solitons in the modified nonlinear Schrödinger equation accounting for the self-steepening effect.

    PubMed

    Li, Min; Tian, Bo; Liu, Wen-Jun; Zhang, Hai-Qiang; Wang, Pan

    2010-04-01

    In this paper, the modified nonlinear Schrödinger equation is investigated, which describes the femtosecond optical pulse propagation in a monomodal optical fiber. Based on the Wadati-Konno-Ichikawa system, another type of Lax pair and infinitely many conservation laws are derived. Dark and antidark soliton solutions in the normal dispersion regime are obtained by means of the Hirota method. Parametric regions for the existence of the dark and antidark soliton solutions are given. Asymptotic analysis of the two-soliton solution shows that collisions between two solitons (two antidark solitons, two dark solitons, and dark and antidark solitons) are elastic. In addition, collision between dark and antidark solitons reveals that dark and antidark solitons can co-exist on the same background in the normal dispersion regime.

  3. A modified hexagonal photonic crystal fiber for terahertz applications

    NASA Astrophysics Data System (ADS)

    Islam, Md. Saiful; Sultana, Jakeya; Faisal, Mohammad; Islam, Mohammad Rakibul; Dinovitser, Alex; Ng, Brian W.-H.; Abbott, Derek

    2018-05-01

    We present a Zeonex based highly birefringent and dispersion flattened porous core photonic crystal fiber (PC-PCF) for polarization preserving applications in the terahertz region. In order to facilitate birefringence, an array of elliptical shaped air holes surrounded by porous cladding is introduced. The porous cladding comprises circular air-holes in a modified hexagonal arrangement. The transmission characteristics of the proposed PCF are investigated using a full-vector finite element method with perfectly matched layer (PML) absorbing boundary conditions. Simulation results show a high birefringence of 0.086 and an ultra-flattened dispersion variation of ± 0.03 ps/THz/cm at optimal design parameters. Besides, a number of other important wave-guiding properties including frequency dependence of the effective material loss (EML), confinement loss, and effective area are also investigated to assess the fiber's effectiveness as a terahertz waveguide.

  4. Effects of carbon nanotube (CNT) dispersion and interface condition on thermo-mechanical behavior of CNT-reinforced vinyl ester

    NASA Astrophysics Data System (ADS)

    Sabet, Seyed Morteza

    In fabrication of nanoparticle-reinforced polymers, two critical factors need to be taken into account to control properties of the final product; nanoparticle dispersion/distribution in the matrix; and interfacial interactions between nanoparticles and their surrounding matrix. The focus of this thesis was to examine the role of these two factors through experimental methodologies and molecular-level simulations. Carbon nanotubes (CNTs) and vinyl ester (VE) resin were used as nanoparticles and matrix, respectively. In a parametric study, a series of CNT/VE nanocomposites with different CNT dispersion conditions were fabricated using the ultrasonication mixing method. Thermomechanical properties of nanocomposites and quality of CNT dispersion were evaluated. By correlation between nanocomposite behavior and CNT dispersion, a thermomechanical model was suggested; at a certain threshold level of sonication energy, CNT dispersion would be optimal and result in maximum enhancement in properties. This threshold energy level is also related to particle concentration. Sonication above this threshold level, leads to destruction of nanotubes and renders a negative effect on the properties of nanocomposites. In an attempt to examine the interface condition, a novel process was developed to modify CNT surface with polyhedral oligomeric silsesquioxane (POSS). In this process, a chemical reaction was allowed to occur between CNTs and POSS in the presence of an effective catalyst. The functionalized CNTs were characterized using TEM, SEM-EDS, AFM, TGA, FTIR and Raman spectroscopy techniques. Formation of amide bonds between POSS and nanotubes was established and verified. Surface modification of CNTs with POSS resulted in significant improvement in nanotube dispersion. In-depth SEM analysis revealed formation of a 3D network of well-dispersed CNTs with POSS connections to the polymer. In parallel, molecular dynamics simulation of CNT-POSS/VE system showed an effective load transfer from polymer chains to the CNT due to POSS linkages at the interface. The rigid and flexible network of CNTs is found to be responsible for enhancement in elastic modulus, strength, fracture toughness and glass transition temperature (Tg) of the final nanocomposites.

  5. Inbreeding avoidance, patch isolation and matrix permeability influence dispersal and settlement choices by male agile antechinus in a fragmented landscape.

    PubMed

    Banks, Sam C; Lindenmayer, David B

    2014-03-01

    Animal dispersal is highly non-random and has important implications for the dynamics of populations in fragmented habitat. We identified interpatch dispersal events from genetic tagging, parentage analyses and assignment tests and modelled the factors associated with apparent emigration and post-dispersal settlement choices by individual male agile antechinus (Antechinus agilis, a marsupial carnivore of south-east Australian forests). Emigration decisions were best modelled with on data patch isolation and inbreeding risk. The choice of dispersal destination by males was influenced by inbreeding risk, female abundance, patch size, patch quality and matrix permeability (variation in land cover). Males were less likely to settle in patches without highly unrelated females. Our findings highlight the importance of individual-level dispersal data for understanding how multiple processes drive non-randomness in dispersal in modified landscapes. Fragmented landscapes present novel environmental, demographic and genetic contexts in which dispersal decisions are made, so the major factors affecting dispersal decisions in fragmented habitat may differ considerably from unfragmented landscapes. We show that the spatial scale of genetic neighbourhoods can be large in fragmented habitat, such that dispersing males can potentially settle in the presence of genetically similar females after moving considerable distances, thereby necessitating both a choice to emigrate and a choice of where to settle to avoid inbreeding. © 2013 The Authors. Journal of Animal Ecology © 2013 British Ecological Society.

  6. Antimicrobial nanostructured starch based films for packaging.

    PubMed

    Abreu, Ana S; Oliveira, M; de Sá, Arsénio; Rodrigues, Rui M; Cerqueira, Miguel A; Vicente, António A; Machado, A V

    2015-09-20

    Montmorillonite modified with a quaternary ammonium salt C30B/starch nanocomposite (C30B/ST-NC), silver nanoparticles/starch nanocomposite (Ag-NPs/ST-NC) and both silver nanoparticles/C30B/starch nanocomposites (Ag-NPs/C30B/ST-NC) films were produced. The nanoclay (C30B) was dispersed in a starch solution using an ultrasonic probe. Different concentrations of Ag-NPs (0.3, 0.5, 0.8 and 1.0mM) were synthesized directly in starch and in clay/starch solutions via chemical reduction method. Dispersion of C30B silicate layers and Ag-NPs in ST films characterized by X-ray and scanning electron microscopy showed that the presence of Ag-NPs enhanced clay dispersion. Color and opacity measurements, barrier properties (water vapor and oxygen permeabilities), dynamic mechanical analysis and contact angle were evaluated and related with the incorporation of C30B and Ag-NPs. Films presented antimicrobial activity against Staphylococcus aureus, Escherichia coli and Candida albicans without significant differences between Ag-NPs concentrations. The migration of components from the nanostructured starch films, assessed by food contact tests, was minor and under the legal limits. These results indicated that the starch films incorporated with C30B and Ag-NPs have potential to be used as packaging nanostructured material. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Application of magnetic nanoparticles coated with sodium dodecyl sulfate and modified with 2-(5-bromo-2-pyridylazo)-5-diethyl aminophenol as a novel adsorbent for dispersive-magnetic solid-phase extraction and determination of palladium in soil samples.

    PubMed

    Wang, Meng; Wu, Lan; Hu, Qiufen; Yang, Yaling

    2018-03-01

    A rapid, sensitive, precise, and accurate dispersive-magnetic solid-phase extraction technique combined with flame atomic absorption spectrometry was established for pre-concentration and separation of Pd (II) in soil samples. In the developed system, 5-amine-1,10-phenanthroline was used as synergistic complexant; sodium dodecyl sulfate and 2-(5-bromo-2-pyridylazo)-5-diethyl aminophenol ligand coated on magnetic nanoparticles were synthesized by a chemical precipitation method, and then employed as the efficient magnetic adsorbent with good magnetic properties and dispersibility. Various operational parameters affecting the extraction efficiency has been studied and optimized in details. Under the optimum experimental conditions, the detection limit of the mentioned method for palladium ions was 0.12 μg/L, while the relative standard deviation was 1.8%. Finally, the developed method was applied for the analysis of palladium ions in three kinds of soil samples and quantitative recoveries were achieved over the range of 96.7-104.0%. It can be a powerful alternative applied to the determination of traces of Pd ions from various real samples in further researches.

  8. Plasmon dispersion in strongly correlated superlattices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, D.; Golden, K.I.; Kalman, G.

    The dielectric response function of a strongly correlated superlattice is calculated in the quasilocalized charge (QLC) approximation. The resulting QLC static local-field correction, which contains both intralayer and interlayer pair-correlational effects, is identical to the correlational part of the third-frequency-moment sum-rule coefficient. This approximation treats the interlayer and intralayer couplings on an equal footing. The resulting dispersion relation is first analyzed to determine the effect of intralayer coupling on the out-of-phase acoustic-mode dispersion; in this approximation the interlayer coupling is suppressed and the mutual interaction of the layers is taken into account only through the average random-phase approximation (RPA) field.more » In the resulting mode dispersion, the onset of a finite-{ital k} ({ital k} being the in-plane wave number) reentrant low-frequency excitation developing (with decreasing {ital d}/{ital a}) into a dynamical instability is indicated ({ital a} being the in-plane Wigner-Seitz radius and {ital d} the distance between adjacent lattice planes). This dynamical instability parallels a static structural instability reported earlier both for a bilayer electron system and a superlattice and presumably indicates a structural change in the electron liquid. If one takes account of interlayer correlations beyond the RPA, the acoustic excitation spectrum is dramatically modified by the appearance of an energy gap which also has a stabilizing effect on the instability. We extend a previous energy gap study at {ital k}=0 [G. Kalman, Y. Ren, and K. I. Golden, Phys Rev. B {bold 50}, 2031 (1994)] to a calculation of the dispersion of the gapped acoustic excitation spectrum in the long-wavelength domain. {copyright} {ital 1996 The American Physical Society.}« less

  9. Pore-scale and Continuum Simulations of Solute Transport Micromodel Benchmark Experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oostrom, Martinus; Mehmani, Yashar; Romero Gomez, Pedro DJ

    Four sets of micromodel nonreactive solute transport experiments were conducted with flow velocity, grain diameter, pore-aspect ratio, and flow focusing heterogeneity as the variables. The data sets were offered to pore-scale modeling groups to test their simulators. Each set consisted of two learning experiments, for which all results was made available, and a challenge experiment, for which only the experimental description and base input parameters were provided. The experimental results showed a nonlinear dependence of the dispersion coefficient on the Peclet number, a negligible effect of the pore-aspect ratio on transverse mixing, and considerably enhanced mixing due to flow focusing.more » Five pore-scale models and one continuum-scale model were used to simulate the experiments. Of the pore-scale models, two used a pore-network (PN) method, two others are based on a lattice-Boltzmann (LB) approach, and one employed a computational fluid dynamics (CFD) technique. The learning experiments were used by the PN models to modify the standard perfect mixing approach in pore bodies into approaches to simulate the observed incomplete mixing. The LB and CFD models used these experiments to appropriately discretize the grid representations. The continuum model use published non-linear relations between transverse dispersion coefficients and Peclet numbers to compute the required dispersivity input values. Comparisons between experimental and numerical results for the four challenge experiments show that all pore-scale models were all able to satisfactorily simulate the experiments. The continuum model underestimated the required dispersivity values and, resulting in less dispersion. The PN models were able to complete the simulations in a few minutes, whereas the direct models needed up to several days on supercomputers to resolve the more complex problems.« less

  10. Corresponding-states behavior of a dipolar model fluid with variable dispersion interactions and its relevance to the anomalies of hydrogen fluoride

    NASA Astrophysics Data System (ADS)

    Weiss, Volker C.; Leroy, Frédéric

    2016-06-01

    More than two decades ago, the elusiveness of a liquid-vapor equilibrium and a corresponding critical point in simulations of the supposedly simple model of dipolar hard spheres came as a surprise to many liquid matter theorists. van Leeuwen and Smit [Phys. Rev. Lett. 71, 3991 (1993)] showed that a minimum of attractive dispersion interactions among the dipolar particles may be needed to observe regular fluid behavior. Here, we adopt their approach and use an only slightly modified model, in which the original point dipole is replaced by a dipole moment produced by charges that are separated in space, to study the influence of dispersion interactions of variable strength on the coexistence and interfacial properties of a polar fluid. The thermophysical properties are discussed in terms of Guggenheim's corresponding-states approach. In this way, the coexistence curve, the critical compressibility factor, the surface tension, Guggenheim's ratio, and modifications of Guldberg's and Trouton's rules (related to the vapor pressure and the enthalpy of vaporization) are analyzed. As the importance of dispersion is decreased, a crossover from simple-fluid behavior to that characteristic of strongly dipolar systems takes place; for some properties, this transition is monotonic, but for others it occurs non-monotonically. For strongly dipolar systems, the reduced surface tension is very low, whereas Guggenheim's ratio and Guldberg's ratio are found to be high. The critical compressibility factor is smaller, and the coexistence curve is wider and more skewed than for simple fluids. For very weak dispersion, liquid-vapor equilibrium is still observable, but the interfacial tension is extremely low and may, eventually, vanish marking the end of the existence of a liquid phase. We discuss the implications of our findings for real fluids, in particular, for hydrogen fluoride.

  11. Ionic-liquid-based dispersive liquid-liquid microextraction combined with magnetic solid-phase extraction for the determination of aflatoxins B1 , B2 , G1 , and G2 in animal feeds by high-performance liquid chromatography with fluorescence detection.

    PubMed

    Zhao, Jiao; Zhu, Yan; Jiao, Yang; Ning, Jinyan; Yang, Yaling

    2016-10-01

    A novel two-step extraction technique combining ionic-liquid-based dispersive liquid-liquid microextraction with magnetic solid-phase extraction was developed for the preconcentration and separation of aflatoxins in animal feedstuffs before high-performance liquid chromatography coupled with fluorescence detection. In this work, ionic liquid 1-octyl-3-methylimidazolium hexafluorophosphate was used as the extractant in dispersive liquid-liquid microextraction, and hydrophobic pelargonic acid modified Fe 3 O 4 magnetic nanoparticles as an efficient adsorbent were applied to retrieve the aflatoxins-containing ionic liquid. Notably, the target of magnetic nanoparticles was the ionic liquid rather than the aflatoxins. Because of the rapid mass transfer associated with the dispersive liquid-liquid microextraction and magnetic solid phase steps, fast extraction could be achieved. The main parameters affecting the extraction recoveries of aflatoxins were investigated and optimized. Under the optimum conditions, vortexing at 2500 rpm for 1 min in the dispersive liquid-liquid microextraction and magnetic solid-phase extraction and then desorption by sonication for 2 min with acetonitrile as eluent. The recoveries were 90.3-103.7% with relative standard deviations of 3.2-6.4%. Good linearity was observed with correlation coefficients ranged from 0.9986 to 0.9995. The detection limits were 0.632, 0.087, 0.422 and 0.146 ng/mL for aflatoxins B 1 , B2, G1, and G2, respectively. The results were also compared with the pretreatment method carried out by conventional immunoaffinity columns. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Scalar Dispersion from Point Sources in a Realistic Urban Environment

    NASA Astrophysics Data System (ADS)

    Salesky, S.; Giometto, M. G.; Christen, A.; Parlange, M. B.

    2016-12-01

    Accurate modeling of scalar dispersion within and above urban canopies is critical to properly predict air quality and dispersion (e.g. accidental contaminant release) in urban environments. We perform large eddy simulations (LES) of scalar dispersion from point sources in a typical North American neighborhood using topography and foliage density derived from airborne LIDAR scans with 1 m resolution in Vancouver, BC, Canada. The added drag force due to trees is parameterized in the LES as a function of the leaf area density (LAD) profile. Conversely, drag from buildings is accounted for using a direct forcing approach immersed-boundary method. The scalar advection-diffusion equation is discretized in a finite-volume framework, and accurate mass conservation is enforced through a recently developed Cartesian cut cell method. Simulations are performed with trees for different values of LAD, representative of summer and winter conditions, as well as a case without trees. The effects of varying mean wind direction (derived from observed wind climatologies) on dispersion patterns are also considered. Scalar release locations in the LES are informed by spatially distributed measurements of carbon dioxide concentration; CO2 is used as a tracer for fossil fuel emissions, since source strengths are well-known and the contribution from biological processes in this setting is small (<10%). The effects of leaf area density, source height, and wind direction on scalar statistics including the growth of the mean concentration plume and the fraction that escapes the urban canopy layer will be considered. In a companion study, the presence of trees was found to strongly modify sweep and ejection patterns for the momentum flux; here we consider the related issue of how vegetation influences coherent structures responsible for scalar transport.

  13. Molecular insights into seed dispersal mutualisms driving plant population recruitment

    NASA Astrophysics Data System (ADS)

    García, Cristina; Grivet, Delphine

    2011-11-01

    Most plant species require mutualistic interactions with animals to fulfil their demographic cycle. In this regard frugivory (i.e., the intake of fruits by animals) enhances natural regeneration by mobilizing a large amount of seeds from source trees to deposition sites across the landscape. By doing so, frugivores move propagules, and the genotypes they harbour creating the spatial, ecological, and genetic environment under which subsequent recruitment proceeds. Recruitment patterns can be envisioned as the result of two density- and distance-dependent processes: seed dispersal and seed/seedling survival (the Janzen-Connell model). Population genetic studies add another layer of complexity for understanding the fate of dispersed propagules: the genetic relatedness among neighbouring seeds within a seed clump, a major outcome of frugivore activity, modifies their chances of germinating and surviving. Yet, we virtually ignore how the spatial distribution of maternal progenies and recruitment patterns relate with each other in frugivore-generated seed rains. Here we focus on the critical role of frugivore-mediated seed dispersal in shaping the spatial distribution of maternal progenies in the seed rain. We first examine which genetic mechanisms underlying recruitment are influenced by the spatial distribution of maternal progenies. Next, we examine those studies depicting the spatial distribution of maternal progenies in a frugivore-generated seed rain. In doing so, we briefly review the most suitable analytical approaches applied to track the contribution of fruiting trees to the seed rain based on molecular data. Then we look more specifically at the role of distinct frugivore guilds in determining maternal genetic correlations and their expected consequences for recruitment patterns. Finally we posit some general conclusions and suggest future research directions that would provide a more comprehensive understanding of the ecological and evolutionary consequences of dispersal mutualisms in plant populations.

  14. Functionalized Carbon Nanotubes in Modified Plant Oil Composites.

    NASA Astrophysics Data System (ADS)

    McAninch, Ian M.; Wool, Richard P.

    2007-03-01

    Carbon nanotubes (CNTs) with their impressive mechanical properties are ideal reinforcement material. Acrylated epoxidized soy oil (AESO) has been previously shown to have favorable interactions with carbon nanotubes; however a mixture of aggregates and dispersed tubes were found even at low CNT concentrations. In order to prevent re-aggregation, the CNTs were functionalized with a 10 carbon long aliphatic chain. These aliphatic chains are similar to the fatty acids that make up soy oil. Functionalization was verified using XPS and IR spectroscopy. These functionalized CNTs were dispersed by mechanical shear mixing into AESO both with and without styrene as a comonomer. No large aggregates were observed in the liquid, uncured, samples or in the final cured composites. Dispersion in the solid composites was verified using optical and electron microscopy. Better dispersion also resulted in improved mechanical properties.

  15. Dispersion of Cobalt Nanoparticles on Nanowires Grown on Silicon Carbide-Alumina Nanocomposites.

    PubMed

    Kim, Inho; Seo, Kyeong Won; Ahn, Byoung Sung; Moon, Dong Ju; Kim, Sang Woo

    2017-04-01

    Silicon carbide-alumina nanocomposite supports including a nanowire architecture for a high dispersion of cobalt nanocatalysts were fabricated using a modified sol–gel process and paste extrusion process to form cylindrical shape beads, followed by thermal treatment. Well-developed aluminosilicate nanowires were formed on a nanoporous support, which are grown from a catalytic metal seed at the nanowire growth tips during heat treatment at 1,100 °C for 1 h under nitrogen gas flow. Cobalt oxide precursors were highly dispersed on the nanowires grown on the surface of the nanoporous bodies through a supercritical carbon dioxide fluid-assisted wet-impregnation process. The highly-dispersed Co nanoparticles with size of less than 10 nm were finally obtained on the nanowires via phase transitions from Co₃O₄ to CoO and from CoO to Co during the thermal reduction.

  16. Vortex-Assisted Dispersive Micro-Solid Phase Extraction Using CTAB-Modified Zeolite NaY Sorbent Coupled with HPLC for the Determination of Carbamate Insecticides.

    PubMed

    Salisaeng, Pawina; Arnnok, Prapha; Patdhanagul, Nopbhasinthu; Burakham, Rodjana

    2016-03-16

    A vortex-assisted dispersive micro-solid phase extraction (VA-D-μ-SPE) based on cetyltrimethylammonium bromide (CTAB)-modified zeolite NaY was developed for preconcentration of carbamate pesticides in fruits, vegetables, and natural surface water prior to analysis by high performance liquid chromatography with photodiode array detection. The small amounts of solid sorbent were dispersed in a sample solution, and extraction occurred by adsorption in a short time, which was accelerated by vortex agitation. Finally, the sorbents were filtered from the solution, and the analytes were subsequently desorbed using an appropriate solvent. Parameters affecting the VA-D-μ-SPE performance including sorbent amount, sample volume, desorption solvent ,and vortex time were optimized. Under the optimum condition, linear dynamic ranges were achieved between 0.004-24.000 mg kg(-1) (R(2) > 0.9946). The limits of detection (LODs) ranged from 0.004-4.000 mg kg(-1). The applicability of the developed procedure was successfully evaluated by the determination of the carbamate residues in fruits (dragon fruit, rambutan, and watermelon), vegetables (cabbage, cauliflower, and cucumber), and natural surface water.

  17. A nano-disperse ferritin-core mimetic that efficiently corrects anemia without luminal iron redox activity

    PubMed Central

    Powell, Jonathan J.; Bruggraber, Sylvaine F.A.; Faria, Nuno; Poots, Lynsey K.; Hondow, Nicole; Pennycook, Timothy J.; Latunde-Dada, Gladys O.; Simpson, Robert J.; Brown, Andy P.; Pereira, Dora I.A.

    2014-01-01

    The 2-5 nm Fe(III) oxo-hydroxide core of ferritin is less ordered and readily bioavailable compared to its pure synthetic analogue, ferrihydrite. We report the facile synthesis of tartrate-modified, nano-disperse ferrihydrite of small primary particle size, but with enlarged or strained lattice structure (~ 2.7 Å for the main Bragg peak versus 2.6 Å for synthetic ferrihydrite). Analysis indicated that co-precipitation conditions can be achieved for tartrate inclusion into the developing ferrihydrite particles, retarding both growth and crystallization and favoring stabilization of the cross-linked polymeric structure. In murine models, gastrointestinal uptake was independent of luminal Fe(III) reduction to Fe(II) and, yet, absorption was equivalent to that of ferrous sulphate, efficiently correcting the induced anemia. This process may model dietary Fe(III) absorption and potentially provide a side effect-free form of cheap supplemental iron. From the Clinical Editor Small size tartrate-modified, nano-disperse ferrihydrite was used for efficient gastrointestinal delivery of soluble Fe(III) without the risk for free radical generation in murine models. This method may provide a potentially side effect-free form iron supplementation. PMID:24394211

  18. Highly Dispersed and Active ReOx on Alumina-Modified SBA-15 Silica for 2-Butanol Dehydration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    She, Xiaoyan; Kwak, Ja Hun; Sun, Junming

    2012-05-23

    SBA-15 silica supported rhenium catalysts were synthesized using solution-based atomic layer deposition method, and their activity and stability were studied in the acid-catalyzed 2-butanol dehydration. We find that ReOx/SBA-15 exhibited an extremely high initial activity but a fast deactivation for 2-butanol dehydration at 90-105 C. Fast deactivation was likely due to the sintering, sublimation, and reduction of rhenia as confirmed by TEM, elemental analysis, and in situ UV vis (DRS) measurements. To overcome these issues, ReOx/AlOx/SBA-15 catalysts with significantly improved stability were prepared by first modifying the surface identity of SBA-15 with alumina followed by dispersion of rhenia using atomicmore » layer deposition. The AlOx phase stabilizes the dispersion of small and uniform rhenia clusters (<2 nm) as as confirmed by TEM, STEM and UV-vis (DRS) characterizations. Additional 27Al MAS NMR characterization revealed that modification of the SBA-15 surface with alumina introduces a strong interaction between rhenia and alumina, which consequently improves the stability of supported rhenia catalysts by suppressing the sintering, sublimation, and reduction of rhenia albeit at a moderately reduced initial catalytic dehydration activity« less

  19. Modelling low-frequency volcanic earthquakes in a viscoelastic medium with topography

    NASA Astrophysics Data System (ADS)

    Jousset, Philippe; Neuberg, Jürgen; Jolly, Arthur

    2004-11-01

    Magma properties are fundamental to explain the volcanic eruption style as well as the generation and propagation of seismic waves. This study focusses on magma properties and rheology and their impact on low-frequency volcanic earthquakes. We investigate the effects of anelasticity and topography on the amplitudes and spectra of synthetic low-frequency earthquakes. Using a 2-D finite-difference scheme, we model the propagation of seismic energy initiated in a fluid-filled conduit embedded in a homogeneous viscoelastic medium with topography. We model intrinsic attenuation by linear viscoelastic theory and we show that volcanic media can be approximated by a standard linear solid (SLS) for seismic frequencies above 2 Hz. Results demonstrate that attenuation modifies both amplitudes and dispersive characteristics of low-frequency earthquakes. Low frequency volcanic earthquakes are dispersive by nature; however, if attenuation is introduced, their dispersion characteristics will be altered. The topography modifies the amplitudes, depending on the position of the seismographs at the surface. This study shows that we need to take into account attenuation and topography to interpret correctly observed low-frequency volcanic earthquakes. It also suggests that the rheological properties of magmas may be constrained by the analysis of low-frequency seismograms.

  20. Interlayer interactions in graphites.

    PubMed

    Chen, Xiaobin; Tian, Fuyang; Persson, Clas; Duan, Wenhui; Chen, Nan-xian

    2013-11-06

    Based on ab initio calculations of both the ABC- and AB-stacked graphites, interlayer potentials (i.e., graphene-graphene interaction) are obtained as a function of the interlayer spacing using a modified Möbius inversion method, and are used to calculate basic physical properties of graphite. Excellent consistency is observed between the calculated and experimental phonon dispersions of AB-stacked graphite, showing the validity of the interlayer potentials. More importantly, layer-related properties for nonideal structures (e.g., the exfoliation energy, cleave energy, stacking fault energy, surface energy, etc.) can be easily predicted from the interlayer potentials, which promise to be extremely efficient and helpful in studying van der Waals structures.

  1. Preparation, characterization and properties of polymer-layered silicate nanocomposites

    NASA Astrophysics Data System (ADS)

    Fonseca, Claudia Alencar

    Nanocomposites are a relatively new class of composites, that in the polymer area typically consist of particle-filled polymers where at least one dimension of the dispersed particles is in the nanometer range. Amongst all potential nanocomposite precursors, those based on clay and layered silicates have been more widely investigated. These nanocomposites exhibit markedly improved mechanical, thermal, optical and physico-chemical properties when compared to conventional (microscale) composites. In the present work, properties of nanocomposites of Ethylene Methacrylic Acid copolymers and organically modified Montmorillonite formed from the melt was investigated. Nanocomposites of Poly(vinyl alcohol) and Montmorillonite formed from solution was also studied.

  2. Conserving and gapless Hartree-Fock-Bogoliubov theory for the three-dimensional dilute Bose gas

    NASA Astrophysics Data System (ADS)

    Zhang, Ya-Hui; Li, Dingping

    2013-11-01

    The excitation spectrum for the three-dimensional Bose gas in the Bose-Einstein condensation phase is calculated nonperturbatively with the modified Hartree-Fock-Bogoliubov theory, which is both conserving and gapless. From improved Φ-derivable theory, the diagrams needed to preserve the Ward-Takahashi identity are re-summed in a systematic and nonperturbative way. It is valid up to the critical temperature where the dispersion relation of the low-energy excitation spectrum changes from linear to quadratic. Because including the higher-order fluctuation, the results show significant improvement on the calculation of the shift of critical temperature with other conserving and gapless theories.

  3. Study of Y and Lu iron garnets using Bethe-Peierls-Weiss method

    NASA Astrophysics Data System (ADS)

    Goveas, Neena; Mukhopadhyay, G.; Mukhopadhyay, P.

    1994-11-01

    We study here the magnetic properties of Y- and Lu- Iron Garnets using the Bethe- Peierls-Weiss method modified to suit complex systems like these Garnets. We consider these Garnets as described by Heisenberg Hamiltonian with two sublattices (a,d) and determine the exchange interaction parameters Jad, Jaa and Jdd by matching the exerimental susceptibility curves. We find Jaa and Jdd to be much smaller than those determined by Néel theory, and consistent with those obtained by the study of spin wave spectra; the spin wave dispersion relation constant obtained using these parameters gives good agreement with the experimental values.

  4. The cosmic-ray shock structure problem for relativistic shocks

    NASA Technical Reports Server (NTRS)

    Webb, G. M.

    1985-01-01

    The time asymptotic behaviour of a relativistic (parallel) shock wave significantly modified by the diffusive acceleration of cosmic-rays is investigated by means of relativistic hydrodynamical equations for both the cosmic-rays and thermal gas. The form of the shock structure equation and the dispersion relation for both long and short wavelength waves in the system are obtained. The dependence of the shock acceleration efficiency on the upstream fluid spped, long wavelength Mach number and the ratio N = P sub co/cP sub co+P sub go)(Psub co and P sub go are the upstream cosmic-ray and thermal gas pressures respectively) are studied.

  5. Dissipative nonlinear waves in a gravitating quantum fluid

    NASA Astrophysics Data System (ADS)

    Sahu, Biswajit; Sinha, Anjana; Roychoudhury, Rajkumar

    2018-02-01

    Nonlinear wave propagation is studied in a dissipative, self-gravitating Bose-Einstein condensate, starting from the Gross-Pitaevskii equation. In the absence of an exact analytical result, approximate methods like the linear analysis and perturbative approach are applied. The linear dispersion relation puts a restriction on the permissible range of the dissipation parameter. The waves get damped due to dissipation. The small amplitude analysis using reductive perturbation technique is found to yield a modified form of KdV equation, which is solved both analytically as well as numerically. Interestingly, the analytical and numerical plots match excellently with each other, in the realm of weak dissipation.

  6. Improvement of β-phase crystal formation in a BaTiO3-modified PVDF membrane

    NASA Astrophysics Data System (ADS)

    Lin, SHEN; Lei, GONG; Shuhua, CHEN; Shiping, ZHAN; Cheng, ZHANG; Tao, SHAO

    2018-04-01

    In this paper, low temperature plasma is used to modify the surface of barium titanate (BaTiO3) nanoparticles in order to enhance the interfacial compatibility between ferroelectric poly(vinylidene fluoride) (PVDF) and BaTiO3 nanoparticles. The results demonstrate that oxygenic groups are successfully attached to the BaTiO3 surface, and the quantity of the functional groups increases with the treatment voltage. Furthermore, the effect of modified BaTiO3 nanoparticles on the morphology and crystal structure of the PVDF/BaTiO3 membrane is investigated. The results reveal that the dispersion of BaTiO3 nanoparticles in the PVDF matrix was greatly improved due to the modification of the BaTiO3 nanoparticles by air plasma. It is worth noting that the formation of a β-phase in a PVDF/modified BaTiO3 membrane is observably promoted, which results from the strong interaction between PVDF chains and oxygenic groups fixed on the BaTiO3 surface and the better dispersion of BaTiO3 nanoparticles in the PVDF matrix. Besides, the PVDF/modified BaTiO3 membrane at the treatment voltage of 24 kV exhibits a lower water contact angle (≈68.4°) compared with the unmodified one (≈86.7°). Meanwhile, the dielectric constant of PVDF/BaTiO3 nanocomposites increases with the increase of working voltage.

  7. Dispersal of Male Aedes aegypti in a Coastal Village in Southern Mexico

    PubMed Central

    Valerio, Laura; Facchinelli, Luca; Ramsey, Janine M.; Scott, Thomas W.

    2012-01-01

    Most Aedes aegypti dispersal studies have focused on females because of their central role in dengue virus transmission. Only a few mark-release-recapture (MRR) studies provided insights into male Ae. aegypti dispersal. To fill this knowledge gap, we conducted five male Ae. aegypti MRR experiments in a coastal village in southern Mexico. Small and large male cohorts were marked with fluorescent dusts, released outside buildings, and recaptures were carried out by using backpack aspirators. Recapture rates ranged between 0.35% and 6.55% and median distance traveled was 12–166 meters. A statistically significant difference in median distance traveled with large males dispersing farther than small ones was detected only in one experiment (MRR5: U = 3.5, P < 0.01). Male dispersal data will be useful for constructing and estimating parameter values and validating models that will be used to plan the most effective release strategies for genetically modified male Ae. aegypti. PMID:22492152

  8. Should I Stay or Should I Go? A Habitat-Dependent Dispersal Kernel Improves Prediction of Movement

    PubMed Central

    Vinatier, Fabrice; Lescourret, Françoise; Duyck, Pierre-François; Martin, Olivier; Senoussi, Rachid; Tixier, Philippe

    2011-01-01

    The analysis of animal movement within different landscapes may increase our understanding of how landscape features affect the perceptual range of animals. Perceptual range is linked to movement probability of an animal via a dispersal kernel, the latter being generally considered as spatially invariant but could be spatially affected. We hypothesize that spatial plasticity of an animal's dispersal kernel could greatly modify its distribution in time and space. After radio tracking the movements of walking insects (Cosmopolites sordidus) in banana plantations, we considered the movements of individuals as states of a Markov chain whose transition probabilities depended on the habitat characteristics of current and target locations. Combining a likelihood procedure and pattern-oriented modelling, we tested the hypothesis that dispersal kernel depended on habitat features. Our results were consistent with the concept that animal dispersal kernel depends on habitat features. Recognizing the plasticity of animal movement probabilities will provide insight into landscape-level ecological processes. PMID:21765890

  9. Should I stay or should I go? A habitat-dependent dispersal kernel improves prediction of movement.

    PubMed

    Vinatier, Fabrice; Lescourret, Françoise; Duyck, Pierre-François; Martin, Olivier; Senoussi, Rachid; Tixier, Philippe

    2011-01-01

    The analysis of animal movement within different landscapes may increase our understanding of how landscape features affect the perceptual range of animals. Perceptual range is linked to movement probability of an animal via a dispersal kernel, the latter being generally considered as spatially invariant but could be spatially affected. We hypothesize that spatial plasticity of an animal's dispersal kernel could greatly modify its distribution in time and space. After radio tracking the movements of walking insects (Cosmopolites sordidus) in banana plantations, we considered the movements of individuals as states of a Markov chain whose transition probabilities depended on the habitat characteristics of current and target locations. Combining a likelihood procedure and pattern-oriented modelling, we tested the hypothesis that dispersal kernel depended on habitat features. Our results were consistent with the concept that animal dispersal kernel depends on habitat features. Recognizing the plasticity of animal movement probabilities will provide insight into landscape-level ecological processes.

  10. Nonautonomous characteristics of the breathers and rogue waves for a amplifier nonlinear Schrödinger Maxwell-Bloch system

    NASA Astrophysics Data System (ADS)

    Wang, Lei; Li, Xiao; Zhang, Lu Lu; Li, Min; Qi, Feng-Hua

    2015-09-01

    Under investigation in this paper is a amplifier nonlinear Schrödinger Maxwell-Bloch (NLS-MB) system which describes the propagation of optical pulses in an inhomogeneous erbium doped fiber. Nonautonomous breather and rogue wave (RW) solutions of the amplifier NLS-MB system are constructed via the modified Darboux transformation with the inhomogeneous parameters. By suitably choosing the dispersion coefficient function, several types of inhomogeneous nonlinear waves are obtained in: (1) periodically fluctuating dispersion profile; (2) exponentially increasing (or decreasing) dispersion profile; and (3) linearly decreasing (increasing) dispersion profile. The nonautonomous characteristics of the breathers and RWs are graphically investigated, including the breather accelerating and decelerating motions, boomerang breather, breather compression, breather evolution, periodic RW, boomerang RW and stationary RW. Such novel patterns as the periodic breathers and rogue-wave fission of the amplifier NLS-MB system are exhibited by properly adjusting the group velocity dispersion function and interaction parameter between silica and doped atoms.

  11. Dispersion in Fractures with Ramified Dissolution Patterns

    NASA Astrophysics Data System (ADS)

    Xu, Le; Marks, Benjy; Toussaint, Renaud; Flekkøy, Eirik G.; Måløy, Knut J.

    2018-04-01

    The injection of a reactive fluid into an open fracture may modify the fracture surface locally and create a ramified structure around the injection point. This structure will have a significant impact on the dispersion of the injected fluid due to increased permeability, which will introduce large velocity fluctuations into the fluid. Here, we have injected a fluorescent tracer fluid into a transparent artificial fracture with such a ramified structure. The transparency of the model makes it possible to follow the detailed dispersion of the tracer concentration. The experiments have been compared to two dimensional (2D) computer simulations which include both convective motion and molecular diffusion. A comparison was also performed between the dispersion from an initially ramified dissolution structure and the dispersion from an initially circular region. A significant difference was seen both at small and large length scales. At large length scales, the persistence of the anisotropy of the concentration distribution far from the ramified structure is discussed with reference to some theoretical considerations and comparison with simulations.

  12. Stochastic analysis of transverse dispersion in density‐coupled transport in aquifers

    USGS Publications Warehouse

    Welty, Claire; Kane, Allen C.; Kauffman, Leon J.

    2003-01-01

    Spectral perturbation techniques have been used previously to derive integral expressions for dispersive mixing in concentration‐dependent transport in three‐dimensional, heterogeneous porous media, where fluid density and viscosity are functions of solute concentration. Whereas earlier work focused on evaluating longitudinal dispersivity in isotropic media and incorporating the result in a mean one‐dimensional transport model, the emphasis of this paper is on evaluation of the complete dispersion tensor, including the more general case of anisotropic media. Approximate analytic expressions for all components of the macroscopic dispersivity tensor are derived, and the tensor is shown to be asymmetric. The tensor is separated into its symmetric and antisymmetric parts, where the symmetric part is used to calculate the principal components and principal directions of dispersivity, and the antisymmetric part of the tensor is shown to modify the velocity of the solute body compared to that of the background fluid. An example set of numerical simulations incorporating the tensor illustrates the effect of density‐coupled dispersivity on a sinking plume in an aquifer. The simulations show that the effective transverse vertical spreading in a sinking plume to be significantly greater than would be predicted by a standard density‐coupled transport model that does not incorporate the coupling in the dispersivity tensor.

  13. Investigation of the sensitising and cross-sensitising potential of textile dyes and beta-lactam antibiotics using a biphasic mice local lymph node assay.

    PubMed

    Ahuja, Varun; Schreiber, Clemens; Platzek, Thomas; Stahlmann, Ralf

    2009-07-01

    We used a modified protocol of the murine local lymph node assay (LLNA) to study the cross-sensitising potential of (a) textile dye disperse yellow 3 and its metabolite 2-amino-p-cresol, (b) two antibiotics, penicillin G and cefotiam. The test substances were applied in a biphasic manner, i.e. first on the shaved skin of the back followed by application on the dorsal side of the ears after 2 weeks. The end-points analysed included thickness and weight of an ear-biopsy, weight and cell number of the draining lymph node, and lymphocyte cell surface markers analysed by flow-cytometry. Disperse yellow 3 and its metabolite significantly altered the various end-points at both the tested concentrations (0.5 and 1%), thus demonstrating the sensitising potential of the two substances. The cross-sensitisation study showed significant modulation in the tested variables in the treated group as compared to the control, signifying cross-sensitisation potential of the two substances. Penicillin G and cefotiam showed significant changes in various end-points, pointing towards their sensitising potential. However, even at 50% concentration of the beta-lactams no significant change in any end-point indicating absence of cross-reactivity of the antibiotics was noticed. We conclude that a biphasic, modified protocol of the LLNA is a suitable approach to test for a cross-reactivity potential of two related compounds.

  14. Surface modification of commercial seawater reverse osmosis membranes by grafting of hydrophilic monomer blended with carboxylated multiwalled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Vatanpour, Vahid; Zoqi, Naser

    2017-02-01

    In this study, modification of commercial seawater reverse osmosis membranes was carried out with simultaneous use of surface grafting and nanoparticle incorporation. Membrane grafting with a hydrophilic acrylic acid monomer and thermal initiator was used to increase membrane surface hydrophilicity. The used nanomaterial was carboxylated multiwalled carbon nanotubes (MWCNTs), which were dispersed in the grafting solution and deposited on membrane surface to reduce fouling by creating polymer brushes and hydrodynamic resistance. Effectiveness of the grafting process (formation of graft layer on membrane surface) was proved by Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM) analyses. Increase of membrane surface hydrophilicity was approved with contact angle test. First, the grafting was performed on the membrane surfaces with different monomer concentrations, various contact times and several membrane curing times (three variables for optimization). The modified membranes were tested by a cross-flow setup using saline solution for permeability and rejection tests, and bovine serum albumin (BSA) solution for fouling test. The results showed that the modified membranes with 0.75 M of monomer, 3 min contact time and 80 min curing time in an oven at 50 °C presented the highest flux and lowest rejection decline related to the commercial reverse osmosis membrane. In the next step, the optimum grafting condition was selected and the nanotubes with different weight percentages were dispersed in the acrylic acid monomer solution. The membrane containing 0.25 wt% COOH-MWCNTs showed the highest fouling resistance.

  15. Modifying glycyrrhetinic acid liposomes with liver-targeting ligand of galactosylated derivative: preparation and evaluations

    PubMed Central

    Cheng, Yi; Gao, Youheng; Zheng, Pinjing; Li, Chuangnan; Tong, Yidan; Li, Zhao; Luo, Wenhui; Chen, Zhao

    2017-01-01

    In this study, novel glycyrrhetinic acid (GA) liposomes modified with a liver-targeting galactosylated derivative ligand (Gal) were prepared using a film-dispersion method. To characterize the samples, particle size, zeta potential, drug loading, and encapsulation efficiency were performed. Moreover, plasma and tissues were pre-treated by liquid-liquid extraction and analyzed by high-performance liquid chromatography-tandem mass spectrometry (LC-MS/MS). The results showed that the mean residence times (MRTs) and the area under the curve (AUC) of GA liposomes with Gal (Gal-GA-LP), and GA liposomes (GA-LP) were higher than the GA solution (GA-S) in plasma. The tissue (liver) distribution of Gal-GA-LP was significantly different in contrast to GA-LP. The relative intake rate (Re) of Gal-GA-LP and GA-LP in the liver was 4.752 and 2.196, respectively. The peak concentration ratio (Ce) of Gal-GA-LP and GA-LP in the liver was 2.796 and 1.083, respectively. The targeting efficiency (Te) of Gal-GA-LP and GA-LP in the liver was 48.193% and 34.718%, respectively. Taken together, the results indicate that Gal-GA-LP is an ideal complex for liver-targeting, and has great potential application in the clinical treatment of hepatic diseases. Drug loading and releasing experiments also indicated that most liposomes are spherical structures and have good dispersity under physiologic conditions, which could prolong GA release efficiency in vitro. PMID:29254224

  16. Modifying Si-based consolidants through the addition of colloidal nano-particles

    NASA Astrophysics Data System (ADS)

    Ksinopoulou, E.; Bakolas, A.; Moropoulou, A.

    2016-04-01

    The modification of silicon-based stone consolidants has been the subject of many scientific studies aiming to overcome the commonly reported drawbacks of these materials, such as the tendency to shrink and crack during drying. The addition of nano-particle dispersions into silica matrix has been found to enhance their effectiveness in several ways. Objective of the current research was to study the preparation of particle-modified consolidants (PMC), consisting of an ethyl silicate matrix (TEOS) loaded with colloidal silica (SiO2) nano-particles and oxide titania (TiO2) particles. The effect of the polyacrylic acid on the dispersion stability was also investigated, by varying its concentration into PMC samples. The prepared materials were allowed to dry in two different relative humidity environments and then evaluated based on their stability in the sol phase, the aggregation sizes, determined through dynamic light scattering, the % solids content and their morphological characteristics, observed via scanning electron microscopy (SEM-EDAX). Mercury intrusion porosimetry was also applied to investigate the microstructural characteristics and differences between the prepared consolidants. Significant role in the final form of the material is played by both the initial molar ratios in the mixtures, as well as the conditions where the drying and aging takes place. Based on the results, the three-component PMCs appear to be promising in stone consolidation, as they show a reduction in cracking and shrinkage during drying and a more porous network, compared with the siliceous material, or the two-component TEOS-SiO2 formulation.

  17. Carbon Nanotube-Reinforced Thermotropic Liquid Crystal Polymer Nanocomposites

    PubMed Central

    Kim, Jun Young

    2009-01-01

    This paper focuses on the fabrication via simple melt blending of thermotropic liquid crystal polyester (TLCP) nanocomposites reinforced with a very small quantity of modified carbon nanotube (CNT) and the unique effects of the modified CNT on the physical properties of the nanocomposites. The thermal, mechanical, and rheological properties of modified CNT-reinforced TLCP nanocomposites are highly dependent on the uniform dispersion of CNT and the interactions between the CNT and TLCP, which can be enhanced by chemical modification of the CNT, providing a design guide of CNT-reinforced TLCP nanocomposites with great potential for industrial uses.

  18. Improved Large-Volume Sampler for the Collection of Bacterial Cells from Aerosol

    PubMed Central

    White, L. A.; Hadley, D. J.; Davids, D. E.; Naylor, R.

    1975-01-01

    A modified large-volume sampler was demonstrated to be an efficient device for the collection of mono-disperse aerosols of rhodamine B and poly-disperse aerosols of bacterial cells. Absolute efficiency for collection of rhodamine B varied from 100% with 5-μm particles to about 70% with 0.5-μm particles. The sampler concentrated the particles from 950 liters of air into a flow of between 1 and 2 ml of collecting fluid per min. Spores of Bacillus subtilis var. niger were collected at an efficiency of about 82% compared to the collection in the standard AGI-30 sampler. In the most desirable collecting fluids tested, aerosolized cells of Serratia marcescens, Escherichia coli, and Aerobacter aerogenes were collected at comparative efficiencies of approximately 90, 80, and 90%, respectively. The modified sampler has practical application in the study of aerosol transmission of respiratory pathogens. Images PMID:803820

  19. Capillary break-up, gelation and extensional rheology of hydrophobically modified cellulose ethers

    NASA Astrophysics Data System (ADS)

    Sharma, Vivek; Haward, Simon; Pessinet, Olivia; Soderlund, Asa; Threlfall-Holmes, Phil; McKinley, Gareth

    2012-02-01

    Cellulose derivatives containing associating hydrophobic groups along their hydrophilic polysaccharide backbone are used extensively in the formulations for inks, water-borne paints, food, nasal sprays, cosmetics, insecticides, fertilizers and bio-assays to control the rheology and processing behavior of multi-component dispersions. These complex dispersions are processed and used over a broad range of shear and extensional rates. The presence of hydrophobic stickers influences the linear and nonlinear rheology of cellulose ether solutions. In this talk, we systematically contrast the difference in the shear and extensional rheology of a cellulose ether: ethy-hydroxyethyl-cellulose (EHEC) and its hydrophobically-modified analog (HMEHEC) using microfluidic shear rheometry at deformation rates up to 10^6 inverse seconds, cross-slot flow extensional rheometry and capillary break-up during jetting as a rheometric technique. Additionally, we provide a constitutive model based on fractional calculus to describe the physical gelation in HMEHEC solutions.

  20. Dielectric dispersion of porous media as a fractal phenomenon

    NASA Astrophysics Data System (ADS)

    Thevanayagam, S.

    1997-09-01

    It is postulated that porous media is made up of fractal solid skeleton structure and fractal pore surface. The model thus developed satisfies measured anomalous dielectric behavior of three distinctly different porous media: kaolin, montmorillonite, and shaly sand rock. It is shown that the underlying mechanism behind dielectric dispersion in the kHz range to high MHz range is indeed Maxwell-Wagner mechanism but modified to take into account the multiphase nature of the porous media as opposed to the traditional two-phase Maxwell-Wagner charge accumulation effect. The conductivity of the surface water associated with the solid surface and charge accumulation across the surface irregularities, asperity, and bridging between particles at the micro-scale-level pores are shown to contribute to this modified Maxwell-Wagner mechanism. The latter is dominant at low frequencies. The surface water thickness is calculated to be about 2-6 nm for a variety of porous media.

  1. Covalent functionalization of single-walled carbon nanotubes with polytyrosine: Characterization and analytical applications for the sensitive quantification of polyphenols.

    PubMed

    Eguílaz, Marcos; Gutiérrez, Alejandro; Gutierrez, Fabiana; González-Domínguez, Jose Miguel; Ansón-Casaos, Alejandro; Hernández-Ferrer, Javier; Ferreyra, Nancy F; Martínez, María T; Rivas, Gustavo

    2016-02-25

    This work reports the synthesis and characterization of single-walled carbon nanotubes (SWCNT) covalently functionalized with polytyrosine (Polytyr); the critical analysis of the experimental conditions to obtain the efficient dispersion of the modified carbon nanotubes; and the analytical performance of glassy carbon electrodes (GCE) modified with the dispersion (GCE/SWCNT-Polytyr) for the highly sensitive quantification of polyphenols. Under the optimal conditions, the calibration plot for the amperometric response of gallic acid (GA) shows a linear range between 5.0 × 10(-7) and 1.7 × 10(-4) M, with a sensitivity of (518 ± 5) m AM(-1) cm(-2), and a detection limit of 8.8 nM. The proposed sensor was successfully used for the determination of total polyphenolic content in tea extracts. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Application of iota and kappa carrageenans to traditional several food using modified cassava flour

    NASA Astrophysics Data System (ADS)

    Al-Baarri, A. N.; Legowo, A. M.; Rizqiati, H.; Widayat; Septianingrum, A.; Sabrina, H. N.; Arganis, L. M.; Saraswati, R. O.; Mochtar, Rr C. P. R.

    2018-01-01

    Carrageenan has been known well as hydrocolloids that forming viscous dispersions and gels when dispersed in water. The carrageenan has not been widely applied to traditional foods. Therefore, the aim of this research was to determine the effect of kappa and iota carrageenans in traditional food models using modified cassava flour, sugar, and coconut milk. The textural properties, i.e. hardness, cohesiveness, springiness and adhesiveness have been measured using texture analyzer. The study indicated that traditional food models added kappa carrageenan at 2% generated remarkably higher in the hardness, cohesiveness, and springiness than those added iota carrageenan. On the other hand, the reserve result were found in the adhesiveness parameter. As conclusion, kappa carrageenan scan be potentially used for producing traditional foods based on the hard-texture-oriented foods whereas iota carrageenan can be used for the traditional foods with better adhesiveness.

  3. A review of the generalized uncertainty principle.

    PubMed

    Tawfik, Abdel Nasser; Diab, Abdel Magied

    2015-12-01

    Based on string theory, black hole physics, doubly special relativity and some 'thought' experiments, minimal distance and/or maximum momentum are proposed. As alternatives to the generalized uncertainty principle (GUP), the modified dispersion relation, the space noncommutativity, the Lorentz invariance violation, and the quantum-gravity-induced birefringence effects are summarized. The origin of minimal measurable quantities and the different GUP approaches are reviewed and the corresponding observations are analysed. Bounds on the GUP parameter are discussed and implemented in the understanding of recent PLANCK observations of cosmic inflation. The higher-order GUP approaches predict minimal length uncertainty with and without maximum momenta. Possible arguments against the GUP are discussed; for instance, the concern about its compatibility with the equivalence principles, the universality of gravitational redshift and the free fall and law of reciprocal action are addressed.

  4. Study on longitudinal dispersion relation in one-dimensional relativistic plasma: Linear theory and Vlasov simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, H.; Wu, S. Z.; Zhou, C. T.

    2013-09-15

    The dispersion relation of one-dimensional longitudinal plasma waves in relativistic homogeneous plasmas is investigated with both linear theory and Vlasov simulation in this paper. From the Vlasov-Poisson equations, the linear dispersion relation is derived for the proper one-dimensional Jüttner distribution. Numerically obtained linear dispersion relation as well as an approximate formula for plasma wave frequency in the long wavelength limit is given. The dispersion of longitudinal wave is also simulated with a relativistic Vlasov code. The real and imaginary parts of dispersion relation are well studied by varying wave number and plasma temperature. Simulation results are in agreement with establishedmore » linear theory.« less

  5. Transport and dispersion of fluorescent tracer particles for the dune-bed condition, Atrisco Feeder Canal near Bernalillo, New Mexico

    USGS Publications Warehouse

    Rathbun, R.E.; Kennedy, Vance C.

    1978-01-01

    A fluorescent tracer technique was used to study the rates of transport and dispersion of sediment particles of various diameters and specific gravities for a dune-bed condition in an alluvial channel, Atrisco Feeder Canal near Bernalillo, N. Mex. The total transport rates of bed material measured by the steady-dilution and spatial-integration procedures were within the range of transport rates computed by the modified Einstein procedure. Lateral dispersion of the tracer particles increased with increase in the size of the tracer particles, whereas longitudinal dispersion decreased. The velocities of the tracer particles decreased with increase in the size of the tracer particles; dependence on particle diameter was large for the small particles, small for the large particles. Tracers were found at larger depths in the bed than would be expected on the basis of the sizes of the dunes in the channel. (Woodard-USGS)

  6. Reduction of aqueous Crvi using nanoscale zero-valent iron dispersed by high energy electron beam irradiation

    NASA Astrophysics Data System (ADS)

    Zhang, Jing; Zhang, Guilong; Wang, Min; Zheng, Kang; Cai, Dongqing; Wu, Zhengyan

    2013-09-01

    High energy electron beam (HEEB) irradiation was used to disperse nanoscale zero-valent iron (NZVI) for reduction of Crvi to Criii in aqueous solution. Pore size distribution, scanning electron microscopy and X-ray diffraction characterizations demonstrated that HEEB irradiation could effectively increase the dispersion of NZVI resulting in more active reduction sites of Crvi on NZVI. Batch reduction experiments indicated that the reductive capacity of HEEB irradiation-modified NZVI (IMNZVI) was significantly improved, as the reductive efficiency reached 99.79% under the optimal conditions (electron beam dose of 30 kGy at 10 MeV, pH 2.0 and 313 K) compared with that of raw NZVI (72.14%). Additionally, the NZVI was stable for at least two months after irradiation. The modification mechanism of NZVI by HEEB irradiation was investigated and the results indicated that charge and thermal effects might play key roles in dispersing the NZVI particles.

  7. Green and Mild Oxidation: An Efficient Strategy toward Water-Dispersible Graphene.

    PubMed

    You, Xiaofei; Yang, Siwei; Li, Jipeng; Deng, Yuan; Dai, Lianqi; Peng, Xiong; Huang, Haoguang; Sun, Jing; Wang, Gang; He, Peng; Ding, Guqiao; Xie, Xiaoming

    2017-01-25

    Scalable fabrication of water-dispersible graphene (W-Gr) is highly desirable yet technically challenging for most practical applications of graphene. Herein, a green and mild oxidation strategy to prepare bulk W-Gr (dispersion, slurry, and powder) with high yield was proposed by fully exploiting structure defects of thermally reduced graphene oxide (TRGO) and oxidizing radicals generated from hydrogen peroxide (H 2 O 2 ). Owing to the increased carboxyl group from the mild oxidation process, the obtained W-Gr can be redispersed in low-boiling solvents with a reasonable concentration. Benefiting from the modified surface chemistry, macroscopic samples processed from the W-Gr show good hydrophilicity (water contact angle of 55.7°) and excellent biocompatibility, which is expected to be an alternative biomaterial for bone, vessel, and skin regeneration. In addition, the green and mild oxidation strategy is also proven to be effective for dispersing other carbon nanomaterials in a water system.

  8. A study of atmospheric dispersion of radionuclides at a coastal site using a modified Gaussian model and a mesoscale sea breeze model

    NASA Astrophysics Data System (ADS)

    Venkatesan, R.; Mathiyarasu, R.; Somayaji, K. M.

    Ground level concentration and sky-shine dose due to radioactive emissions from a nuclear power plant at a coastal site have been estimated using the standard Gaussian Plume Model (GPM) and the modified GPM suggested by Misra (Atmospheric Environment 14 (1980) 397), which incorporates fumigation effect under sea breeze condition. The difference in results between these two models is analysed in order to understand their significance and errors that would occur if proper choice were not made. Radioactive sky-shine dose from 41Ar, emitted from a 100 m stack of the nuclear plant is continuously recorded by environmental gamma dose monitors and the data is used to validate the modified GPM. It is observed that the dose values increase by a factor of about 2 times than those of the standard GPM estimates, up to a downwind distance of 6 km during sea breeze hours. In order to examine the dispersion of radioactive effluents in the mesoscale range, a sea breeze model coupled with a particle dispersion model is used. The deposited activity, thyroid dose and sky-shine radioactive dose are simulated for a range of 30 km. In this range, the plume is found to deviate from its straight-line trajectory, as otherwise assumed in GPM. A secondary maximum in the concentration and the sky-shine dose is also observed in the model results. These results are quite significant in realistically estimating the area affected under any unlikely event of an accidental release of radioactivity.

  9. The role of teosinte glume architecture (tga1) in coordinated regulation and evolution of grass glumes and inflorescence axes.

    PubMed

    Preston, Jill C; Wang, Huai; Kursel, Lisa; Doebley, John; Kellogg, Elizabeth A

    2012-01-01

    • Hardened floral bracts and modifications to the inflorescence axis of grasses have been hypothesized to protect seeds from predation and/or aid seed dispersal, and have evolved multiple times independently within the family. Previous studies have demonstrated that mutations in the maize (Zea mays ssp. mays) gene teosinte glume architecture (tga1) underlie a reduction in hardened structures, yielding free fruits that are easy to harvest. It remains unclear whether the causative mutation(s) occurred in the cis-regulatory or protein-coding regions of tga1, and whether similar mutations in TGA1-like genes can explain variation in the dispersal unit in related grasses. • To address these questions TGA1-like genes were cloned and sequenced from a number of grasses and analyzed phylogenetically in relation to morphology; protein expression was investigated by immunolocalization. • TGA1-like proteins were expressed throughout the spikelet in the early development of all grasses, and throughout the flower of the grass relative Joinvillea. Later in development, expression patterns differed between Tripsacum dactyloides, maize and teosinte (Z. mays ssp. parviglumis). • These results suggest an ancestral role for TGA1-like genes in early spikelet development, but do not support the hypothesis that TGA1-like genes have been repeatedly modified to affect glume and inflorescence axis diversification. © 2011 The Authors. New Phytologist © 2011 New Phytologist Trust.

  10. Isotope scattering and phonon thermal conductivity in light atom compounds: LiH and LiF

    DOE PAGES

    Lindsay, Lucas R.

    2016-11-08

    Engineered isotope variation is a pathway toward modulating lattice thermal conductivity (κ) of a material through changes in phonon-isotope scattering. The effects of isotope variation on intrinsic thermal resistance is little explored, as varying isotopes have relatively small differences in mass and thus do not affect bulk phonon dispersions. However, for light elements isotope mass variation can be relatively large (e.g., hydrogen and deuterium). Using a first principles Peierls-Boltzmann transport equation approach the effects of isotope variance on lattice thermal transport in ultra-low-mass compound materials LiH and LiF are characterized. The isotope mass variance modifies the intrinsic thermal resistance viamore » modulation of acoustic and optic phonon frequencies, while phonon-isotope scattering from mass disorder plays only a minor role. This leads to some unusual cases where values of isotopically pure systems ( 6LiH, 7Li 2H and 6LiF) are lower than the values from their counterparts with naturally occurring isotopes and phonon-isotope scattering. However, these differences are relatively small. The effects of temperature-driven lattice expansion on phonon dispersions and calculated κ are also discussed. This work provides insight into lattice thermal conductivity modulation with mass variation and the interplay of intrinsic phonon-phonon and phonon-isotope scattering in interesting light atom systems.« less

  11. Employment of ultrasonic irradiation for production of poly(vinyl pyrrolidone)/modified alpha manganese dioxide nanocomposites: Morphology, thermal and optical characterization.

    PubMed

    Mallakpour, Shadpour; Abdolmaleki, Amir; Tabebordbar, Hashem

    2018-03-01

    This work explains the production, morphology, and features of novel nanocomposite (NC) established on poly(vinyl pyrrolidone) (PVP) as polymer background and modified alpha manganese dioxide (α-MnO 2 ) nanorod (NR) asan efficient filler. At first, one-dimensional α-MnO 2 nanorods (NRs) were produced by a hydrothermal technique and then they were amended with stearic acid (SA) by a solvothermal process. In following, the NCs were made by adding different volumes of α-MnO 2 -SA NR (1, 3 and 5wt%) in the PVP matrix through ultrasonic irradiation as a green, low-cost, fast, and useful technique. Structural and morphological descriptions confirm crystallinity of α-MnO 2 -SA NRs and showed that NRs have been separately dispersed in PVP matrix with rod-like morphology and diameter of about 40-60nm. The use of modifier and ultrasonic waves is accountable for good homogeneities of NRs. Thermogravimetric analysis revealed that thermal permanency of the obtained NCs has grown with increasing the α-MnO 2 -SA content. Also, the UV-vis absorption of NCs was enhanced with the incorporation of the modified α-MnO 2 NR in PVP matrix. The substantial perfections in NCs properties are associated to compatible intermolecular relations between the surface modifying groups of the α-MnO 2 -SA and PVP chain. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. A model for predicting air quality along highways.

    DOT National Transportation Integrated Search

    1973-01-01

    The subject of this report is an air quality prediction model for highways, AIRPOL Version 2, July 1973. AIRPOL has been developed by modifying the basic Gaussian approach to gaseous dispersion. The resultant model is smooth and continuous throughout...

  13. Method of making a modified ceramic-ceramic composite

    DOEpatents

    Weaver, Billy L.; McLaughlin, Jerry C.; Stinton, David P.

    1995-01-01

    The present invention provides a method of making a shaped ceramic-ceramic composite articles, such as gas-fired radiant heat burner tubes, heat exchangers, flame dispersers, and other furnace elements, having a formed-on ceramic-ceramic composite thereon.

  14. Development of photopolymerizable clay nanocomposites utilizing reactive dispersants

    NASA Astrophysics Data System (ADS)

    Owusu-Adom, Kwame

    Nanocomposites hold tremendous promise for expanding the utility of polymeric materials. However, accessing particulate sizes in the nanoscale domain continues to be a scientific challenge, especially in highly cross-linked photopolymerizable systems. In this study, photopolymerizable nanocomposites utilizing clay nanoparticles and reactive dispersants have been developed. The influence of particle size, dispersant-clay interactions, and surfactant concentration on photopolymerization behavior and nanoparticle dispersion has been elucidated. Clay particles serve as templates upon which surfactants aggregate during photopolymerization. This results in higher photopolymerization rates with addition of increasing concentrations of polymerizable surfactants. Furthermore, polymerizable surfactants induce faster photopolymerization rates compared to non-polymerizable analogues in systems that have ionically-bound dispersants on the particle surface. Utilizing reactive organoclays induces significant changes to the photopolymerization behavior depending on the choice of reactive functionality employed. Faster acrylate photopolymerization rates occur in photopolymer systems containing thiol-modified clays, while much slower rates occur for nonpolymerizable organoclay systems. In addition, chemical compatibility between monomer and clay dispersant (based on chemical similarity or polarity) allows enhancement of exfoliation in photopolymerizable formulations. With polymerizable dispersants, exfoliation is readily achieved in various multifunctional acrylate systems. The degree of exfoliation depends on the position of the reactive group relative to the surfactant's cationic site and the type of functionality. Thiolated organoclays exfoliate during polymerization, while methacrylated clays show substantially less dependence on polymerization behavior. Interestingly, changes in the physical properties of the resulting nanocomposite are independent of the degree of exfoliation in polymerizable organoclay systems. The polymer cross-link density dictates the magnitude of change in both modulus and glass transition temperature of the nanocomposite. Substantial increases in modulus and Tg occur in elastomeric and low cross-link density polymers, while decreases occur in the modulus and Tg of highly cross-linked polymer networks. Finally, these parameters have formed a basis for developing nanocomposites with higher moduli and lower volumetric shrinkage. The photopolymerization rates of these systems are controllable and increase substantially with addition of polymerizable organoclays. Such properties occur in traditional multifunctional acrylate photopolymer systems as well as new binary thiol-(meth)acrylate and ternary thiol-ene-(meth)acrylate photopolymers.

  15. Fabrication of aligned magnetic nanoparticles using tobamoviruses.

    PubMed

    Kobayashi, Mime; Seki, Munetoshi; Tabata, Hitoshi; Watanabe, Yuichiro; Yamashita, Ichiro

    2010-03-10

    We used genetically modified tube-shaped tobamoviruses to produce 3 nm aligned magnetic nanoparticles. Amino acid residues facing the central channel of the virus were modified to increase the number of nucleation sites. Energy dispersive X-ray spectroscopy and superconducting quantum interference device analysis suggest that the particles consisted of Co-Pt alloy. The use of tobamovirus mutants is a promising approach to making a variety of components that can be applied to fabricate nanometer-scaled electronic devices.

  16. Optical and electrical properties of composites based on functional components of an electroluminescent layer

    NASA Astrophysics Data System (ADS)

    Avanesyan, V. T.; Rakina, A. V.; Sychov, M. M.; Vasina, E. S.

    2016-07-01

    Optical and electrical properties of cyanoethyl ether of polyvinyl alcohol with filling of barium titanate BaTiO3 modified by shungite carbon nanoparticles are studied. It is found that the modification affects the diffuse reflectance spectra and dispersion characteristics of the impedance components due to a change in the nature of interfacial interactions in the system. The values of the forbidden band width for various modifier and filler concentrations are determined.

  17. Modified starch containing liquid fuel slurry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Metzger, G.W.

    1978-04-04

    A substantially water-free, high solids content, stably dispersed combustible fuel slurry is provided, with a method of preparing the slurry. The slurry contains a minor amount of a solid particulate carbonaceous material such as powdered coal, with substantially the entire balance of the slurry being comprised of a liquid hydrocarbon fuel, particularly a heavy fuel oil. In extremely minor amounts are anionic surfactants, particularly soaps, and a stabilizing amount of a starch modified with an anionic polymer.

  18. Fabrication of a bioadhesive transdermal device from chitosan and hyaluronic acid for the controlled release of lidocaine.

    PubMed

    Anirudhan, T S; Nair, Syam S; Nair, Anoop S

    2016-11-05

    A novel efficient transdermal (TD) lidocaine (LD) delivery device based on chitosan (CS) and hyaluronic acid (HA) was successfully developed in the present investigation. CS was grafted with glycidyl methacrylate (GMA) and butyl methacrylate (BMA) to fabricate a versatile material with improved adhesion and mechanical properties. HA was hydrophobically modified by covalently conjugating 3-(dimethylamino)-1-propylamine (DMPA) to encapsulate poorly water soluble LD and was uniformly dispersed in modified CS matrix. The prepared materials were characterized through FTIR, NMR, XRD, SEM, TEM and tensile assay. The dispersion of amine functionalized HA (AHA) on modified CS matrix offered strong matrix - filler interaction, which improved the mechanical properties and drug retention behavior of the device. In vitro skin permeation study of LD was performed with modified Franz diffusion cell using rat skin and exhibited controlled release. The influence of storage time on release profile was investigated and demonstrated that after the initial burst, LD release profile of the device after 30 and 60days storage was identical to that of a device which was not stored. In vivo skin adhesion test and skin irritation assay in human subjects, water vapor permeability and environmental fitness test was performed to judge its application in biomedical field. All results displayed that the fabricated device is a potential candidate for TD LD administration to the systemic circulation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Assembly of Modified Ferritin Proteins on Carbon Nanotubes and its Electrocatalytic Activity for Oxygen Reduction

    NASA Technical Reports Server (NTRS)

    Kim, Jae-Woo; Lillehei, Peter T.; Park, Cheol

    2012-01-01

    Highly effective dispersions of carbon nanotubes (CNTs) can be made using a commercially available buffer solution. Buffer solutions of 3-(N-morpholino)-propanesulfonic acid (MOPS), which consists of a cyclic ring with nitrogen and oxygen heteroatoms, a charged group, and an alkyl chain greatly enhance the dispersibility and stability of CNTs in aqueous solutions. Additionally, the ability of biomolecules, especially cationized Pt-cored ferritins, to adhere onto the well-dispersed CNTs in the aqueous buffer solution is also improved. This was accomplished without the use of surfactant molecules, which are detrimental to the electrical, mechanical, and other physical properties of the resulting products. The assembled Pt-cored ferritin proteins on the CNTs were used as an electrocatalyst for oxygen reduction

  20. Optical soliton solutions for the higher-order dispersive cubic-quintic nonlinear Schrödinger equation

    NASA Astrophysics Data System (ADS)

    Inc, Mustafa; Yusuf, Abdullahi; Aliyu, Aliyu Isa; Baleanu, Dumitru

    2017-12-01

    In this paper, we analyze new optical soliton solutions to the higher-order dispersive cubic-quintic nonlinear Schrödinger equation (NLSE) using three integration schemes. The schemes used in this paper are modified tanh-coth (MTC), extended Jacobi elliptic function expansion (EJEF), and two variable (G‧ / G , 1 / G) -expansion methods. We obtain new solutions that to the best of our knowledge do not exist previously. The obtained solutions includes bright, dark, combined bright-dark, singular as well as periodic waves solitons. The obtained solutions may be used to explain and understand the physical nature of the wave spreads in the most dispersive optical medium. Some interesting figures for the physical interpretation of the obtained solutions are also presented.

  1. Computation of leaky guided waves dispersion spectrum using vibroacoustic analyses and the Matrix Pencil Method: a validation study for immersed rectangular waveguides.

    PubMed

    Mazzotti, M; Bartoli, I; Castellazzi, G; Marzani, A

    2014-09-01

    The paper aims at validating a recently proposed Semi Analytical Finite Element (SAFE) formulation coupled with a 2.5D Boundary Element Method (2.5D BEM) for the extraction of dispersion data in immersed waveguides of generic cross-section. To this end, three-dimensional vibroacoustic analyses are carried out on two waveguides of square and rectangular cross-section immersed in water using the commercial Finite Element software Abaqus/Explicit. Real wavenumber and attenuation dispersive data are extracted by means of a modified Matrix Pencil Method. It is demonstrated that the results obtained using the two techniques are in very good agreement. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Modified dust ion-acoustic surface waves in a semi-bounded magnetized plasma containing the rotating dust grains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Myoung-Jae; Jung, Young-Dae, E-mail: ydjung@hanyang.ac.kr; Department of Applied Physics and Department of Bionanotechnology, Hanyang University, Ansan, Kyunggi-Do 15588

    2016-05-15

    The dispersion relation for modified dust ion-acoustic surface waves in the magnetized dusty plasma containing the rotating dust grains is derived, and the effects of magnetic field configuration on the resonant growth rate are investigated. We present the results that the resonant growth rates of the wave would increase with the ratio of ion plasma frequency to cyclotron frequency as well as with the increase of wave number for the case of perpendicular magnetic field configuration when the ion plasma frequency is greater than the dust rotation frequency. For the parallel magnetic field configuration, we find that the instability occursmore » only for some limited ranges of the wave number and the ratio of ion plasma frequency to cyclotron frequency. The resonant growth rate is found to decrease with the increase of the wave number. The influence of dust rotational frequency on the instability is also discussed.« less

  3. Using ion flows parallel and perpendicular to gravity to modify dust acoustic waves

    NASA Astrophysics Data System (ADS)

    Thomas, E.; Fisher, R.

    2008-11-01

    Recent studies of dust acoustic waves have shown that the dust kinetic temperature can play an important role in determining the resulting dispersion relation [M. Rosenberg, et al., Phys. Plasmas, 15, 073701 (2008)]. In these studies, it is believed that ion flows play a dominant role in determining both the kinetic temperature of the charged microparticles as well as providing the source of energy for triggering the waves. In this presentation, results will be presented on the effects of ion flow on spatial structure and velocity distribution of dust acoustic waves. Here, the waves will be formed in dusty plasmas consisting of 3 ± 1 micron diameter silica microspheres. Two separate electrodes will be used to modify the ion flow in the plasma -- one parallel to the direction of gravity and one perpendicular to the direction of gravity. Particle image velocimetry (PIV) techniques will be used to observe the particles and to measure their velocity distributions.

  4. Mesquite Gum as a Novel Reducing and Stabilizing Agent for Modified Tollens Synthesis of Highly Concentrated Ag Nanoparticles

    PubMed Central

    Moreno-Trejo, Maira Berenice; Sánchez-Domínguez, Margarita

    2016-01-01

    The synthesis that is described in this study is for the preparation of silver nanoparticles of sizes ranging from 10 nm to 30 nm with a defined shape (globular), confirmed by UV-vis, SEM, STEM and DLS analysis. This simple and favorable one-step modified Tollens reaction does not require any special equipment or other stabilizing or reducing agent except for a solution of purified mesquite gum, and it produces aqueous colloidal dispersions of silver nanoparticles with a stability that exceeds three months, a relatively narrow size distribution, a low tendency to aggregate and a yield of at least 95% for all cases. Reaction times are between 15 min and 60 min to obtain silver nanoparticles in concentrations ranging from 0.1 g to 3 g of Ag per 100 g of reaction mixture. The proposed synthetic method presents a high potential for scale-up, since its production capacity is rather high and the methodology is simple. PMID:28773938

  5. Laser-Plasma Interactions in Magnetized Environment

    NASA Astrophysics Data System (ADS)

    Shi, Yuan

    2017-10-01

    Propagation and scattering of lasers present new phenomena and applications when the plasma medium becomes magnetized. Starting from mega-Gauss magnetic fields, laser scattering becomes manifestly anisotropic [arXiv 1705.09758]. By arranging beams at special angles, one may be able to optimize laser-plasma coupling in magnetized environment. In stronger giga-Gauss magnetic field, laser propagation becomes modified by relativistic quantum effects [PRA 94.012124]. The modified wave dispersion relation enables correct interpretation of Faraday rotation measurements of strong magnetic fields, as well as correct extraction of plasma parameters from the X-ray spectra of pulsars. In addition, magnetized plasmas can be utilized to mediate laser pulse compression [PRE 95.023211]. Using magnetic resonances, it is not only possible to produce optic pulses of higher intensity, but also possible to amplify UV and soft X-ray pulses that cannot be compressed using existing technology. This research is supported by NNSA Grant No. DE-NA0002948 and DOE Research Grant No. DEAC02- 09CH11466.

  6. Polyethylenimine-incorporated zeolite 13X with mesoporosity for post-combustion CO2 capture

    NASA Astrophysics Data System (ADS)

    Chen, Chao; Kim, Su-Sung; Cho, Won-Seung; Ahn, Wha-Seung

    2015-03-01

    X-type zeolite with mesoporosity (Meso-13X) was prepared by using dimethyloctadecyl[3-(trimethoxysilyl)propyl]ammonium chloride as a mesopore-generating agent, and then modified with polyethylenimine (PEI) through a physical impregnation method to form a hybrid material (Meso-13X-PEI). Meso-13X with and without PEI was characterized by X-ray powder diffraction (XRD), N2 adsorption-desorption isotherm at 77 K, scanning electron microscopy (SEM), and thermogravimetric analysis (TGA). Meso-13X-PEI exhibited higher CO2 capture capacity than PEI-modified zeolite 13X owing to its larger pore volume that accommodates more amine species inside the pore structure, and the mesoporosity also can facilitate dispersion of PEI molecules inside the pore channels. Compared to zeolite 13X, Meso-13X-PEI showed much higher CO2 capture selectivity (against N2) as well as higher CO2 capture capacity at relatively high temperature (e.g. 100 °C) and dilute CO2 concentration relevant to post-combustion conditions.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaothekar, Sachin, E-mail: sackaothekar@gmail.com

    I have studied the effects of finite electron inertia, finite ion Larmor radius (FLR) corrections, and radiative heat-loss function on the thermal instability of an infinite homogeneous, viscous plasma incorporating the effect of thermal conductivity for star formation in interstellar medium (ISM). A general dispersion relation is derived using the normal mode analysis method with the help of relevant linearized perturbation equations of the problem. The wave propagation is discussed for longitudinal and transverse directions to the external magnetic field and the conditions of modified thermal instabilities and stabilities are discussed in different cases. We find that the thermal instabilitymore » criterion is get modified into radiative instability criterion by inclusion of radiative heat-loss functions with thermal conductivity. The viscosity of medium removes the effect of FLR corrections from the condition of radiative instability. Numerical calculation shows stabilizing effect of heat-loss function, viscosity and FLR corrections, and destabilizing effect of finite electron inertia on the thermal instability. Results carried out in this paper shows that stars are formed in interstellar medium mainly due to thermal instability.« less

  8. A new chiral residue analysis method for triazole fungicides in water using dispersive liquid-liquid microextraction (DLLME).

    PubMed

    Luo, Mai; Liu, Donghui; Zhou, Zhiqiang; Wang, Peng

    2013-09-01

    A rapid, simple, reliable, and environment-friendly method for the residue analysis of the enantiomers of four chiral fungicides including hexaconazole, triadimefon, tebuconazole, and penconazole in water samples was developed by dispersive liquid-liquid microextraction (DLLME) pretreatment followed by chiral high-performance liquid chromatography (HPLC)-DAD detection. The enantiomers were separated on a Chiralpak IC column by HPLC applying n-hexane or petroleum ether as mobile phase and ethanol or isopropanol as modifier. The influences of mobile phase composition and temperature on the resolution were investigated and most of the enantiomers could be completely separated in 20 min under optimized conditions. The thermodynamic parameters indicated that the separation was enthalpy-driven. The elution orders were detected by both circular dichroism detector (CD) and optical rotatory dispersion detector (ORD). Parameters affecting the DLLME performance for pretreatment of the chiral fungicides residue in water samples, such as the extraction and dispersive solvents and their volume, were studied and optimized. Under the optimum microextraction condition the enrichment factors were over 121 and the linearities were 30-1500 µg L(-1) with the correlation coefficients (R(2)) over 0.9988 and the recoveries were between 88.7% and 103.7% at the spiking levels of 0.5, 0.25, and 0.05 mg L(-1) (for each enantiomer) with relative standard deviations varying from 1.38% to 6.70% (n = 6) The limits of detection (LODs) ranged from 8.5 to 29.0 µg L(-1) (S/N = 3). © 2013 Wiley Periodicals, Inc.

  9. Ligand Assisted Stabilization of Fluorescence Nanoparticles; an Insight on the Fluorescence Characteristics, Dispersion Stability and DNA Loading Efficiency of Nanoparticles.

    PubMed

    Rhouati, Amina; Hayat, Akhtar; Mishra, Rupesh K; Bueno, Diana; Shahid, Shakir Ahmad; Muñoz, Roberto; Marty, Jean Louis

    2016-07-01

    This work reports on the ligand assisted stabilization of Fluospheres® carboxylate modified nanoparticles (FCMNPs), and subsequently investigation on the DNA loading capacity and fluorescence response of the modified particles. The designed fluorescence bioconjugate was characterized with enhanced fluorescence characteristics, good stability and large surface area with high DNA loading efficiency. For comparison purpose, bovine serum albumin (BSA) and polyethylene glycol (PEG) with three different length strands were used as cross linkers to modify the particles, and their DNA loading capacity and fluorescence characteristics were investigated. By comparing the performance of the particles, we found that the most improved fluorescence characteristics, enhanced DNA loading and high dispersion stability were obtained, when employing PEG of long spacer arm length. The designed fluorescence bioconjugate was observed to maintain all its characteristics under varying pH over an extended period of time. These types of bioconjugates are in great demand for fluorescence imaging and in vivo fluorescence biomedical application, especially when most of the as synthesized fluorescence particles cannot withstand to varying in vivo physiological conditions with decreases in fluorescence response and DNA loading efficiency.

  10. Deconstructing mammal dispersals and faunal dynamics in SW Europe during the Quaternary

    NASA Astrophysics Data System (ADS)

    Palombo, Maria Rita

    2014-07-01

    This research aims to investigate the relationships between climate change and faunal dynamics in south-west Europe, disentangling the asynchronous and diachronous dispersal bioevents of large mammals across geographical and ecological boundaries, analysing biodiversity and its changes through time. The analysis of local versus regional biological dynamics may shed new light on whether turnovers and ecological and evolutionary changes developed because of global climate changes and related phenomena, or because of intrinsic biological factors. The SW European Quaternary fossil record is particularly suitable for studying the role of climate change at local and regional levels because of the complex physiographic and climatic heterogeneity of the study area, the presence of important geographical/ecological barriers and the complex history of invasions of species of varying geographical origin and provenance. The data base consists of taxonomically revised lists of large mammal species from selected SW European local faunal assemblages ranging in age from the Early to the late Middle Pleistocene (middle Villafranchian to early Aurelian European Land Mammal Ages). The new biochronological scheme proposed here allows for the comparison of local turnovers and biodiversity trends, yielding a better understanding of the action of geographical/ecological barriers that either prevented the range of some taxa from reaching some regions or caused delays in the dispersal of a taxon in some territories. The results obtained provide evidence that major environmental perturbations, triggering dispersal events and removing keystone species, modified the structure of the pre-existing mammalian faunas, merging previously independently-evolved taxa into new palaeo-communities. The coupled action of climatic changes and internal biotic dynamics thus caused the Quaternary SW European faunal complexes to significantly restructure. Diachroneity in local turnover across the study area probably relates to differences in local dynamic patterns of competition/coevolution, although different manifestations of global climate changes in different geographic settings would have contributed to the scale of local bioevents.

  11. f (T ) gravity after GW170817 and GRB170817A

    NASA Astrophysics Data System (ADS)

    Cai, Yi-Fu; Li, Chunlong; Saridakis, Emmanuel N.; Xue, Ling-Qin

    2018-05-01

    The combined observation of GW170817 and its electromagnetic counterpart GRB170817A reveals that gravitational waves propagate at the speed of light in high precision. We apply the standard analysis of cosmological perturbations, as well as the effective field theory approach, to investigate the experimental consequences for the theory of f (T ) gravity. Our analysis verifies for the first time that the speed of gravitational waves within f (T ) gravity is equal to the light speed, and hence, the constraints from GW170817 and GRB170817A are trivially satisfied. Nevertheless, by examining the dispersion relation and the frequency of cosmological gravitational waves, we observe a deviation from the results of general relativity, quantified by a new parameter. Although its value is relatively small in viable f (T ) models, its possible future measurement in advancing gravitational-wave astronomy would be the smoking gun of testing this type of modified gravity.

  12. Toward the classification of differential calculi on κ-Minkowski space and related field theories

    NASA Astrophysics Data System (ADS)

    Jurić, Tajron; Meljanac, Stjepan; Pikutić, Danijel; Štrajn, Rina

    2015-07-01

    Classification of differential forms on κ-Minkowski space, particularly, the classification of all bicovariant differential calculi of classical dimension is presented. By imposing super-Jacobi identities we derive all possible differential algebras compatible with the κ-Minkowski algebra for time-like, space-like and light-like deformations. Embedding into the super-Heisenberg algebra is constructed using non-commutative (NC) coordinates and one-forms. Particularly, a class of differential calculi with an undeformed exterior derivative and one-forms is considered. Corresponding NC differential calculi are elaborated. Related class of new Drinfeld twists is proposed. It contains twist leading to κ-Poincaré Hopf algebra for light-like deformation. Corresponding super-algebra and deformed super-Hopf algebras, as well as the symmetries of differential algebras are presented and elaborated. Using the NC differential calculus, we analyze NC field theory, modified dispersion relations, and discuss further physical applications.

  13. Dispersion and stability of bare hematite nanoparticles: effect of dispersion tools, nanoparticle concentration, humic acid and ionic strength

    PubMed Central

    Dickson, Dionne; Liu, Guangliang; Li, Chenzhong; Tachiev, Georgio; Cai, Yong

    2012-01-01

    The aggregation and sedimentation of iron oxide nanoparticles (IONPs) can significantly affect the mobility and reactivity of IONPs and subsequently influence the interaction between IONPs and environmental contaminants. Dispersing bare IONPs into a stable suspension within nanoscale range is an important step for studying the interaction of IONPs with contaminants (e.g., toxic metals). In this study, different techniques to disperse bare IONPs (vortex, bath sonication and probe ultrasonication) and the effects of important environmental factors such as dissolved organic matter and ionic strength on the stability of IONPs dispersions were investigated. Vortex minimally dispersed IONPs with hydrodynamic diameter outside the “nanosize range” (698–2400nm). Similar to vortex, bath sonication could not disperse IONPs efficiently. Probe ultrasonication was more effective at dispersing IONPs (50% or more) with hydrodynamic diameters ranging from 120–140 nm with minimal changes in size and sedimentation of IONPs for a prolonged period of time. Over the course of 168 hours, considerable amounts of IONPs remained dispersed in the presence and absence of low ionic strength (0.1 mM of NaCl) and 100 mg/L of humic acid (HA). These results indicate that IONPs can be broken down efficiently into “nanosize range” by probe ultrasonication and a degree of stability can be achieved without the use of synthetic modifiers to enhance colloidal stability. This dispersion tool could be used to develop a laboratory method to study the adsorption mechanism between dispersed bare IONPs and toxic contaminants. PMID:22289174

  14. Simultaneous determination of atropine and scopolamine in buckwheat and related products using modified QuEChERS and liquid chromatography tandem mass spectrometry.

    PubMed

    Chen, Hongping; Marín-Sáez, Jesús; Romero-González, Roberto; Garrido Frenich, Antonia

    2017-03-01

    A method was developed for the determination of atropine and scopolamine in buckwheat and related products. A modified QuEChERS (Quick, Easy, Cheap, Effective, Rugged and Safe) extraction procedure was evaluated. Dispersive solid phase extraction (d-SPE) was studied as clean-up step, using graphitized black carbon (GBC) and primary secondary amine (PSA). The extract was diluted with water (50:50, v/v) prior to chromatographic analysis. The method was validated and recoveries (except chia samples spiked at 10μg/kg) ranged from 75% to 92%. Intra and inter-day precision was lower than or equal to 17%. The limit of quantification of atropine and scopolamine was 0.4 and 2μg/kg, respectively. Eight types of samples (buckwheat, wheat, soy, buckwheat flour, buckwheat noodle, amaranth grain, chia seeds and peeled millet) were analyzed. Target compounds were not found above the detection limits of the method, but three transformation products of scopolamine (norscopine, hydroscopolamine and dihydroxyscopolamine) were putative identified in the tested samples using high resolution mass spectrometry (Exactive-Orbitrap). Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Free-Volume Nanostructurization in Ga-Modified As2Se3 Glass.

    PubMed

    Shpotyuk, Ya; Ingram, A; Shpotyuk, O; Dziedzic, A; Boussard-Pledel, C; Bureau, B

    2016-12-01

    Different stages of intrinsic nanostructurization related to evolution of free-volume voids, including phase separation, crystalline nuclei precipitation, and growth, were studied in glassy As2Se3 doped with Ga up to 5 at. %, using complementary techniques of positron annihilation lifetime spectroscopy, X-ray powder diffraction, and scanning electron microscopy with energy-dispersive X-ray analysis. Positron lifetime spectra reconstructed in terms of a two-state trapping model testified in favor of a native void structure of g-As2Se3 modified by Ga additions. Under small Ga content (below 3 at. %), the positron trapping in glassy alloys was dominated by voids associated with bond-free solid angles of bridging As2Se4/2 units. This void agglomeration trend was changed on fragmentation with further Ga doping due to crystalline Ga2Se3 nuclei precipitation and growth, these changes being activated by employing free volume from just attached As-rich glassy matrix with higher content of As2Se4/2 clusters. Respectively, the positron trapping on free-volume voids related to pyramidal AsSe3/2 units (like in parent As2Se3 glass) was in obvious preference in such glassy crystalline alloys.

  16. Solitons, Lie Group Analysis and Conservation Laws of a (3+1)-Dimensional Modified Zakharov-Kuznetsov Equation in a Multicomponent Magnetised Plasma

    NASA Astrophysics Data System (ADS)

    Du, Xia-Xia; Tian, Bo; Chai, Jun; Sun, Yan; Yuan, Yu-Qiang

    2017-11-01

    In this paper, we investigate a (3+1)-dimensional modified Zakharov-Kuznetsov equation, which describes the nonlinear plasma-acoustic waves in a multicomponent magnetised plasma. With the aid of the Hirota method and symbolic computation, bilinear forms and one-, two- and three-soliton solutions are derived. The characteristics and interaction of the solitons are discussed graphically. We present the effects on the soliton's amplitude by the nonlinear coefficients which are related to the ratio of the positive-ion mass to negative-ion mass, number densities, initial densities of the lower- and higher-temperature electrons and ratio of the lower temperature to the higher temperature for electrons, as well as by the dispersion coefficient, which is related to the ratio of the positive-ion mass to the negative-ion mass and number densities. Moreover, using the Lie symmetry group theory, we derive the Lie point symmetry generators and the corresponding symmetry reductions, through which certain analytic solutions are obtained via the power series expansion method and the (G'/G) expansion method. We demonstrate that such an equation is strictly self-adjoint, and the conservation laws associated with the Lie point symmetry generators are derived.

  17. Rheological properties of magnetorheological fluid and its finishing application on large aperture BK7 glass

    NASA Astrophysics Data System (ADS)

    Wang, C.; Wei, Q. L.; Huang, W.; Luo, Q.; He, J. G.; Tang, G. P.

    2013-07-01

    The CeO2 nanoparticles with modified surface and mean sizes distribution during 107.0 nm - 127.7 nm are used as abrasive in magnetorheological finishing (MRF) fluid. The slow rotation dispersion without shearing thinning is better than fast emulsification dispersion. Steady D-shaped finishing spots and high quality precise processing surface with PV=0.1λ, GRMS=0.002λ/cm, Rq=0.83 nm are obtained on a 435 mm x 435 mm BK7 glass under self-developed MRF apparatus.

  18. Energetic and dynamical instability of spin-orbit coupled Bose-Einstein condensate in a deep optical lattice

    NASA Astrophysics Data System (ADS)

    Yu, Zi-Fa; Chai, Xu-Dan; Xue, Ju-Kui

    2018-05-01

    We investigate the energetic and dynamical instability of spin-orbit coupled Bose-Einstein condensate in a deep optical lattice via a tight-binding model. The stability phase diagram is completely revealed in full parameter space, while the dependence of superfluidity on the dispersion relation is illustrated explicitly. In the absence of spin-orbit coupling, the superfluidity only exists in the center of the Brillouin zone. However, the combination of spin-orbit coupling, Zeeman field, nonlinearity and optical lattice potential can modify the dispersion relation of the system, and change the position of Brillouin zone for generating the superfluidity. Thus, the superfluidity can appear in either the center or the other position of the Brillouin zone. Namely, in the center of the Brillouin zone, the system is either superfluid or Landau unstable, which depends on the momentum of the lowest energy. Therefore, the superfluidity can occur at optional position of the Brillouin zone by elaborating spin-orbit coupling, Zeeman splitting, nonlinearity and optical lattice potential. For the linear case, the system is always dynamically stable, however, the nonlinearity can induce the dynamical instability, and also expand the superfluid region. These predicted results can provide a theoretical evidence for exploring the superfluidity of the system experimentally.

  19. Modified Chapman-Enskog moment approach to diffusive phonon heat transport.

    PubMed

    Banach, Zbigniew; Larecki, Wieslaw

    2008-12-01

    A detailed treatment of the Chapman-Enskog method for a phonon gas is given within the framework of an infinite system of moment equations obtained from Callaway's model of the Boltzmann-Peierls equation. Introducing no limitations on the magnitudes of the individual components of the drift velocity or the heat flux, this method is used to derive various systems of hydrodynamic equations for the energy density and the drift velocity. For one-dimensional flow problems, assuming that normal processes dominate over resistive ones, it is found that the first three levels of the expansion (i.e., the zeroth-, first-, and second-order approximations) yield the equations of hydrodynamics which are linearly stable at all wavelengths. This result can be achieved either by examining the dispersion relations for linear plane waves or by constructing the explicit quadratic Lyapunov entropy functionals for the linear perturbation equations. The next order in the Chapman-Enskog expansion leads to equations which are unstable to some perturbations. Precisely speaking, the linearized equations of motion that describe the propagation of small disturbances in the flow have unstable plane-wave solutions in the short-wavelength limit of the dispersion relations. This poses no problem if the equations are used in their proper range of validity.

  20. PIC simulations of a three component plasma described by Kappa distribution functions as observed in Saturn's magnetosphere

    NASA Astrophysics Data System (ADS)

    Barbosa, Marcos; Alves, Maria Virginia; Simões Junior, Fernando

    2016-04-01

    In plasmas out of thermodynamic equilibrium the particle velocity distribution can be described by the so called Kappa distribution. These velocity distribution functions are a generalization of the Maxwellian distribution. Since 1960, Kappa velocity distributions were observed in several regions of interplanetary space and astrophysical plasmas. Using KEMPO1 particle simulation code, modified to introduce Kappa distribution functions as initial conditions for particle velocities, the normal modes of propagation were analyzed in a plasma containing two species of electrons with different temperatures and densities and ions as a third specie.This type of plasma is usually found in magnetospheres such as in Saturn. Numerical solutions for the dispersion relation for such a plasma predict the presence of an electron-acoustic mode, besides the Langmuir and ion-acoustic modes. In the presence of an ambient magnetic field, the perpendicular propagation (Bernstein mode) also changes, as compared to a Maxwellian plasma, due to the Kappa distribution function. Here results for simulations with and without external magnetic field are presented. The parameters for the initial conditions in the simulations were obtained from the Cassini spacecraft data. Simulation results are compared with numerical solutions of the dispersion relation obtained in the literature and they are in good agreement.

  1. Group Velocity for Leaky Waves

    NASA Astrophysics Data System (ADS)

    Rzeznik, Andrew; Chumakova, Lyubov; Rosales, Rodolfo

    2017-11-01

    In many linear dispersive/conservative wave problems one considers solutions in an infinite medium which is uniform everywhere except for a bounded region. In general, localized inhomogeneities of the medium cause partial internal reflection, and some waves leak out of the domain. Often one only desires the solution in the inhomogeneous region, with the exterior accounted for by radiation boundary conditions. Formulating such conditions requires definition of the direction of energy propagation for leaky waves in multiple dimensions. In uniform media such waves have the form exp (d . x + st) where d and s are complex and related by a dispersion relation. A complex s is required since these waves decay via radiation to infinity, even though the medium is conservative. We present a modified form of Whitham's Averaged Lagrangian Theory along with modulation theory to extend the classical idea of group velocity to leaky waves. This allows for solving on the bounded region by representing the waves as a linear combination of leaky modes, each exponentially decaying in time. This presentation is part of a joint project, and applications of these results to example GFD problems will be presented by L. Chumakova in the talk ``Leaky GFD Problems''. This work is partially supported by NSF Grants DMS-1614043, DMS-1719637, and 1122374, and by the Hertz Foundation.

  2. Measurement of the thermal effects in the dispersion relation of the dust acoustic wave

    NASA Astrophysics Data System (ADS)

    Hoyng, Joshua; Williams, Jeremiah

    2017-10-01

    A complex (dusty) plasma is a four-component plasma system composed of ions, electrons, neutral particles and charged microparticles. The charged microparticles interact with, and self- consistently modify, the surrounding plasma medium; resulting in a new and unique state of matter that can support a wide range of physical phenomena. Among these is a new wave mode known as the dust acoustic, or dust density, wave (DAW). The DAW is a low- frequency, longitudinal mode that propagates through the microparticle component of the dusty plasma system and is self-excited by the energy from the ions streaming through this component. Over the past twenty years, the dust acoustic wave has been a subject of intense study and recent studies have shown that thermal effects can, in some cases, have a significant role in the measured dispersion relation. A recent theoretical model suggest that the thermal effects are, in part, due to the finite size of the dusty plasma systems that support this wave mode. In this poster, we report the results of an experimental study examining this effect over a range of experimental conditions in a weakly-coupled dusty plasma system in an rf discharge plasma. This work is supported by US National Science Foundation through Grant No. PHY-1615420.

  3. Human diets drive range expansion of megafauna-dispersed fruit species.

    PubMed

    van Zonneveld, Maarten; Larranaga, Nerea; Blonder, Benjamin; Coradin, Lidio; Hormaza, José I; Hunter, Danny

    2018-03-27

    Neotropical fruit species once dispersed by Pleistocene megafauna have regained relevance in diversifying human diets to address malnutrition. Little is known about the historic interactions between humans and these fruit species. We quantified the human role in modifying geographic and environmental ranges of Neotropical fruit species by comparing the distribution of megafauna-dispersed fruit species that have been part of both human and megafauna diets with fruit species that were exclusively part of megafauna diets. Three quarters of the fruit species that were once dispersed by megafauna later became part of human diets. Our results suggest that, because of extensive dispersal and management, humans have expanded the geographic and environmental ranges of species that would otherwise have suffered range contraction after extinction of megafauna. Our results suggest that humans have been the principal dispersal agent for a large proportion of Neotropical fruit species between Central and South America. Our analyses help to identify range segments that may hold key genetic diversity resulting from historic interactions between humans and these fruit species. These genetic resources are a fundamental source to improve and diversify contemporary food systems and to maintain critical ecosystem functions. Public, private, and societal initiatives that stimulate dietary diversity could expand the food usage of these megafauna-dispersed fruit species to enhance human nutrition in combination with biodiversity conservation.

  4. Adsorption of Amorphous Silica Nanoparticles onto Hydroxyapatite Surfaces Differentially Alters Surfaces Properties and Adhesion of Human Osteoblast Cells

    PubMed Central

    Kalia, Priya; Brooks, Roger A.; Kinrade, Stephen D.; Morgan, David J.; Brown, Andrew P.; Rushton, Neil; Jugdaohsingh, Ravin

    2016-01-01

    Silicon (Si) is suggested to be an important/essential nutrient for bone and connective tissue health. Silicon-substituted hydroxyapatite (Si-HA) has silicate ions incorporated into its lattice structure and was developed to improve attachment to bone and increase new bone formation. Here we investigated the direct adsorption of silicate species onto an HA coated surface as a cost effective method of incorporating silicon on to HA surfaces for improved implant osseointegration, and determined changes in surface characteristics and osteoblast cell adhesion. Plasma-sprayed HA-coated stainless steel discs were incubated in silica dispersions of different concentrations (0–42 mM Si), at neutral pH for 12 h. Adsorbed Si was confirmed by XPS analysis and quantified by ICP-OES analysis following release from the HA surface. Changes in surface characteristics were determined by AFM and measurement of surface wettability. Osteoblast cell adhesion was determined by vinculin plaque staining. Maximum Si adsorption to the HA coated disc occurred after incubation in the 6 mM silica dispersion and decreased progressively with higher silica concentrations, while no adsorption was observed with dispersions below 6 mM Si. Comparison of the Si dispersions that produced the highest and lowest Si adsorption to the HA surface, by TEM-based analysis, revealed an abundance of small amorphous nanosilica species (NSP) of ~1.5 nm in diameter in the 6 mM Si dispersion, with much fewer and larger NSP in the 42 mM Si dispersions. 29Si-NMR confirmed that the NSPs in the 6 mM silica dispersion were polymeric and similar in composition to the larger NSPs in the 42 mM Si dispersion, suggesting that the latter were aggregates of the former. Amorphous NSP adsorbed from the 6 mM dispersion on to a HA-coated disc surface increased the surface’s water contact angle by 53°, whereas that adsorbed from the 42 mM dispersion decreased the contact angle by 18°, indicating increased and decreased hydrophobicity, respectively. AFM showed an increase in surface roughness of the 6 mM Si treated surface, which correlated well with an increase in number of vinculin plaques. These findings suggest that NSP of the right size (relative to charge) adsorb readily to the HA surface, changing the surface characteristics and, thus, improving osteoblast cell adhesion. This treatment provides a simple way to modify plasma-coated HA surfaces that may enable improved osseointegration of bone implants. PMID:26863624

  5. Testing fundamental physics with distant star clusters: theoretical models for pressure-supported stellar systems

    NASA Astrophysics Data System (ADS)

    Haghi, Hosein; Baumgardt, Holger; Kroupa, Pavel; Grebel, Eva K.; Hilker, Michael; Jordi, Katrin

    2009-05-01

    We investigate the mean velocity dispersion and the velocity dispersion profile of stellar systems in modified Newtonian dynamics (MOND), using the N-body code N-MODY, which is a particle-mesh-based code with a numerical MOND potential solver developed by Ciotti, Londrillo & Nipoti. We have calculated mean velocity dispersions for stellar systems following Plummer density distributions with masses in the range of 104 to 109Msolar and which are either isolated or immersed in an external field. Our integrations reproduce previous analytic estimates for stellar velocities in systems in the deep MOND regime (ai, ae << a0), where the motion of stars is either dominated by internal accelerations (ai >> ae) or constant external accelerations (ae >> ai). In addition, we derive for the first time analytic formulae for the line-of-sight velocity dispersion in the intermediate regime (ai ~ ae ~ a0). This allows for a much-improved comparison of MOND with observed velocity dispersions of stellar systems. We finally derive the velocity dispersion of the globular cluster Pal14 as one of the outer Milky Way halo globular clusters that have recently been proposed as a differentiator between Newtonian and MONDian dynamics.

  6. Taming axial dispersion in hydrodynamic chromatography columns through wall patterning

    NASA Astrophysics Data System (ADS)

    Adrover, Alessandra; Cerbelli, Stefano; Giona, Massimiliano

    2018-04-01

    A well-known limitation of hydrodynamic chromatography arises from the synergistic interaction between transverse diffusion and streamwise convection, which enhances axial dispersion through the Taylor-Aris mechanism. We show that a periodic sequence of slip/no-slip conditions at the channel walls (e.g., representing wall indentations hosting stable air pockets) can significantly reduce axial dispersion, thus enhancing separation performance. The theoretical/numerical analysis is based on a generalization of Brenner's macrotransport approach to solute transport, here modified to account for the finite-size of the suspended particles. The most effective dispersion-taming outcome is observed when the alternating sequence of slip/no-slip conditions yields non-vanishing cross-sectional flow components. The combination of these components with the hindering interaction between the channel boundaries and the finite-sized particles gives rise to a non-trivial solution of Brenner's problem on the unit periodic cell, where the cross-sectional particle number density departs from the spatially homogeneous condition. In turn, this effect impacts upon the solution of the so-called b-field defining the large-scale dispersion tensor, with an overall decremental effect on the axial dispersion coefficient and on the Height Equivalent of a Theoretical Plate.

  7. Directed seed dispersal of Piper by Carollia perspicillata and its effect on understory plant diversity and folivory.

    PubMed

    Salazar, Diego; Kelm, Detlev H; Salazar, Diego

    2013-11-01

    Directed dispersal occurs when seeds are differentially deposited to sites where offspring survivorship is higher than at randomly chosen sites. Traditionally, characteristics of the dispersal target sites that could increase survivorship of the dispersed plants are thought to be intrinsic to the sites. If directed dispersal is constant over extended periods of time, however, it is likely that nonrandom patterns of dispersal could modify the ecological characteristics of the target site in ways that could increase survivorship and fitness of the dispersed plants. Here we report patterns of Piper diversity (richness, equitability, and similarity) and Piper folivory within plots near natural or artificial roosts of Carollia perspicillata vs. similar plots without bat roosts. Plots with bat roosts, both natural and artificial, had significantly higher Piper species diversity. Additionally, we found that plots with a higher Piper species diversity showed less specialist folivory, higher generalist folivory, and lower total herbivore leaf damage than plots with low Piper diversity. Finally, plots with bat roosts also showed less specialist folivory, lower generalist folivory, and lower total folivory when compared to plots without roosts. We propose that long-lasting nonrandom patterns of seed dispersal can change the local ecological characteristics of target sites via changes in plant diversity, and that these changes are likely to reduce the local rates of folivory and, therefore, increase seed and adult plant survivorship.

  8. The General Fishbone Like Dispersion Relation

    NASA Astrophysics Data System (ADS)

    Zonca, Fulvio

    2015-12-01

    The following sections are included: * Introduction * Motivation and outline * Fundamental equations * The collisionless gyrokinetic equation * Vorticity equation * Quasi-neutrality condition * Perpendicular Ampère's law * Studying collective modes in burning plasmas * Ideal plasma equilibrium in the low-β limit * Approximations for the energetic population * Characteristic frequencies of particle motions * Alfvén wave frequency and wavelength orderings * Applications of the general theoretical framework * The general fishbone like dispersion relation * Properties of the fishbone like dispersion relation * Derivation of the fishbone like dispersion relation * Special cases of the fishbone like dispersion relation * Toroidal Alfvén Eigenmodes (TAE) * Alfvén Cascades * Summary and discussions * Acknowledgments * References

  9. Multi-residue determination of 171 pesticides in cowpea using modified QuEChERS method with multi-walled carbon nanotubes as reversed-dispersive solid-phase extraction materials.

    PubMed

    Han, Yongtao; Song, Le; Zou, Nan; Chen, Ronghua; Qin, Yuhong; Pan, Canping

    2016-09-15

    A rapid and sensitive method for the determination of 171 pesticides in cowpea was developed using multi-walled carbon nanotubes (MWCNTs) as reversed-dispersive solid-phase (r-DSPE) extraction materials. The clean-up performance of MWCNTs was proved to be obviously superior to PSA and GCB. This method was validated on cowpea spiked at 0.01 and 0.1mgkg(-1) with five replicates. The mean recoveries for 169 pesticides ranged from 74% to 129% with relative standard deviations (RSDs) (n=5) lower than 16.4%, except diflufenican and quizalofop-ethyl. Good linearity for all pesticides was obtained with the calibration curve coefficients (R(2)) larger than 0.9970. The limit of detection (LODs) and limit of quantification (LOQs) for the 171 pesticides ranged from 0.001 to 0.003mgkg(-1) and from 0.002 to 0.009mgkg(-1), respectively. The method was demonstrated to be reliable and sensitive for the routine monitoring of the 171 pesticides in cowpea samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Novel Quantum Criticality in Two Dimensional Topological Phase transitions

    PubMed Central

    Cho, Gil Young; Moon, Eun-Gook

    2016-01-01

    Topological quantum phase transitions intrinsically intertwine self-similarity and topology of many-electron wave-functions, and divining them is one of the most significant ways to advance understanding in condensed matter physics. Our focus is to investigate an unconventional class of the transitions between insulators and Dirac semimetals whose description is beyond conventional pseudo relativistic Dirac Hamiltonian. At the transition without the long-range Coulomb interaction, the electronic energy dispersion along one direction behaves like a relativistic particle, linear in momentum, but along the other direction it behaves like a non-relativistic particle, quadratic in momentum. Various physical systems ranging from TiO2-VO2 heterostructure to organic material α-(BEDT-TTF)2I3 under pressure have been proposed to have such anisotropic dispersion relation. Here, we discover a novel quantum criticality at the phase transition by incorporating the long range Coulomb interaction. Unique interplay between the Coulomb interaction and electronic critical modes enforces not only the anisotropic renormalization of the Coulomb interaction but also marginally modified electronic excitation. In connection with experiments, we investigate several striking effects in physical observables of our novel criticality. PMID:26791803

  11. Enhancing oral bioavailability of quercetin using novel soluplus polymeric micelles

    NASA Astrophysics Data System (ADS)

    Dian, Linghui; Yu, Enjiang; Chen, Xiaona; Wen, Xinguo; Zhang, Zhengzan; Qin, Lingzhen; Wang, Qingqing; Li, Ge; Wu, Chuanbin

    2014-12-01

    To improve its poor aqueous solubility and stability, the potential chemotherapeutic drug quercetin was encapsulated in soluplus polymeric micelles by a modified film dispersion method. With the encapsulation efficiency over 90%, the quercetin-loaded polymeric micelles (Qu-PMs) with drug loading of 6.7% had a narrow size distribution around mean size of 79.00 ± 2.24 nm, suggesting the complete dispersibility of quercetin in water. X-ray diffraction (XRD) patterns illustrated that quercetin was in amorphous or molecular form within PMs. Fourier transform infrared spectroscopy (FTIR) indicated that quercetin formed intermolecular hydrogen bonding with carriers. An in vitro dialysis test showed the Qu-PMs possessed significant sustained-release property, and the formulation was stable for at least 6 months under accelerated conditions. The pharmacokinetic study in beagle dogs showed that absorption of quercetin after oral administration of Qu-PMs was improved significantly, with a half-life 2.19-fold longer and a relative oral bioavailability of 286% as compared to free quercetin. Therefore, these novel soluplus polymeric micelles can be applied to encapsulate various poorly water-soluble drugs towards a development of more applicable therapeutic formulations.

  12. Selfing ability and dispersal are positively related, but not affected by range position: a multispecies study on southern African Asteraceae.

    PubMed

    de Waal, C; Rodger, J G; Anderson, B; Ellis, A G

    2014-05-01

    Dispersal and breeding system traits are thought to affect colonization success. As species have attained their present distribution ranges through colonization, these traits may vary geographically. Although several theories predict associations between dispersal ability, selfing ability and the relative position of a population within its geographic range, there is little theoretical or empirical consensus on exactly how these three variables are related. We investigated relationships between dispersal ability, selfing ability and range position across 28 populations of 13 annual, wind-dispersed Asteraceae species from the Namaqualand region of South Africa. Controlling for phylogeny, relative dispersal ability--assessed from vertical fall time of fruits--was positively related to an index of autofertility--determined from hand-pollination experiments. These findings support the existence of two discrete syndromes: high selfing ability associated with good dispersal and obligate outcrossing associated with lower dispersal ability. This is consistent with the hypothesis that selection for colonization success drives the evolution of an association between these traits. However, no general effect of range position on dispersal or breeding system traits was evident. This suggests selection on both breeding system and dispersal traits acts consistently across distribution ranges. © 2014 The Authors. Journal of Evolutionary Biology © 2014 European Society For Evolutionary Biology.

  13. Effects of Activated Carbon Surface Property on Structure and Activity of Ru/AC Catalysts

    NASA Astrophysics Data System (ADS)

    Xu, S. K.; Li, L. M.; Guo, N. N.

    2018-05-01

    The activated carbon (AC) was modified by supercritical (SC) methanol, HNO3 oxidation, or HNO3 oxidation plus SC methanol, respectively. Then, the original and the modified AC were used as supports for Ru/AC catalysts prepared via the impregnation method. The results showed that the SC methanol modification decreased the content of surface acidic groups of AC. While HNO3 oxidation displayed the opposite behavior. Furthermore, the dispersion of ruthenium and the activity of catalysts were highly dependent on the content of surface acidic groups, and the SC methanol modified sample exhibited the highest activity for hydrogenation of glucose.

  14. Modified Bloch equations and spectral hole burning in solids

    NASA Astrophysics Data System (ADS)

    Asadullina, N. Ya; Asadullin, T. Ya; Asadullin, Ya Ya

    2001-06-01

    On the grounds of Bloch equations modified by taking into account the power dependence of the dispersion and damping parameters, we give general expressions for hole shapes burnt in the absorption and polarization spectra of the two-level systems. The general expressions are used for detailed numerical calculations of the hole shapes and hole widths in a concrete paramagnetic system (quartz with [AlO4]0 centres). This system earlier was studied experimentally and theoretically through the transient nutation and free induction decay methods. The results on the hole width in our modified-Bloch-equations model are in good qualitative agreement with the FID data.

  15. Development of In Vitro-In Vivo Correlation for Amorphous Solid Dispersion Immediate-Release Suvorexant Tablets and Application to Clinically Relevant Dissolution Specifications and In-Process Controls.

    PubMed

    Kesisoglou, Filippos; Hermans, Andre; Neu, Colleen; Yee, Ka Lai; Palcza, John; Miller, Jessica

    2015-09-01

    Although in vitro-in vivo correlations (IVIVCs) are commonly pursued for modified-release products, there are limited reports of successful IVIVCs for immediate-release (IR) formulations. This manuscript details the development of a Multiple Level C IVIVC for the amorphous solid dispersion formulation of suvorexant, a BCS class II compound, and its application to establishing dissolution specifications and in-process controls. Four different 40 mg batches were manufactured at different tablet hardnesses to produce distinct dissolution profiles. These batches were evaluated in a relative bioavailability clinical study in healthy volunteers. Although no differences were observed for the total exposure (AUC) of the different batches, a clear relationship between dissolution and Cmax was observed. A validated Multiple Level C IVIVC against Cmax was developed for the 10, 15, 20, 30, and 45 min dissolution time points and the tablet disintegration time. The relationship established between tablet tensile strength and dissolution was subsequently used to inform suitable tablet hardness ranges within acceptable Cmax limits. This is the first published report for a validated Multiple Level C IVIVC for an IR solid dispersion formulation demonstrating how this approach can facilitate Quality by Design in formulation development and help toward clinically relevant specifications and in-process controls. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  16. Cosmic web and environmental dependence of screening: Vainshtein vs. chameleon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Falck, Bridget; Koyama, Kazuya; Zhao, Gong-Bo, E-mail: bridget.falck@port.ac.uk, E-mail: kazuya.koyama@port.ac.uk, E-mail: gong-bo.zhao@port.ac.uk

    Theories which modify general relativity to explain the accelerated expansion of the Universe often use screening mechanisms to satisfy constraints on Solar System scales. We investigate the effects of the cosmic web and the local environmental density of dark matter halos on the screening properties of the Vainshtein and chameleon screening mechanisms. We compare the cosmic web morphology of dark matter particles, mass functions of dark matter halos, mass and radial dependence of screening, velocity dispersions and peculiar velocities, and environmental dependence of screening mechanisms in f(R) and nDGP models. Using the ORIGAMI cosmic web identification routine we find thatmore » the Vainshtein mechanism depends on the cosmic web morphology of dark matter particles, since these are defined according to the dimensionality of their collapse, while the chameleon mechanism shows no morphology dependence. The chameleon screening of halos and their velocity dispersions depend on halo mass, and small halos and subhalos can be environmentally screened in the chameleon mechanism. On the other hand, the screening of halos in the Vainshtein mechanism does not depend on mass nor environment, and their velocity dispersions are suppressed. The peculiar velocities of halos in the Vainshtein mechanism are enhanced because screened objects can still feel the fifth force generated by external fields, while peculiar velocities of chameleon halos are suppressed when the halo centers are screened.« less

  17. Effect of matrix elasticity on the continuous foaming of food models.

    PubMed

    Narchi, I; Vial, Ch; Djelveh, G

    2008-12-01

    The aim is to understand the effect of matrix elasticity on continuous foaming using food models based on glucose syrup. This was modified by adding polyacrylamide (PAA) with 2% whey protein isolate (WPI) or Tween 80 as foaming agents. Foaming was conducted in a stirred column. Rotation speed N and gas-to-liquid flow ratio (G/L) were varied. Overrun, average bubble size d (32), texture and stability were measured using densimetry, image analysis, and rheometry, respectively. Experimental results showed that 0.01% PAA did not modify the viscosity of 2% WPI models, but conferred low elastic behavior. PAA (0.05%) doubled matrix viscosity and drastically increased elasticity. The increase of elasticity became slower for further PAA addition. Foaming experiments demonstrated that theoretical overrun could not be achieved for inelastic WPI models in two cases: for high viscosity and low N, as dispersion effectiveness was reduced; for high G/L and N because of enhanced coalescence. Matrix elasticity was shown to increase overrun at constant viscosity for high G/L by enhancing interface stabilization. However, in elastic models, gas dispersion was more difficult and d (32) was higher than in inelastic fluids of similar viscosity. Finally, when the limiting step was dispersion, foaming was shown to be negatively affected by matrix elasticity.

  18. Effect of cellulose nanocrystals (CNC) particle morphology on dispersion and rheological and mechanical properties of polypropylene/CNC nanocomposites.

    PubMed

    Khoshkava, Vahid; Kamal, Musa R

    2014-06-11

    Polypropylene (PP) nanocomposites containing spray-dried cellulose nanocrystals (CNC), freeze-dried CNC, and spray-freeze-dried CNC (CNCSFD) were prepared via melt mixing in an internal batch mixer. Polarized light, scanning electron, and atomic force microscopy showed significantly better dispersion of CNCSFD in PP/CNC nanocomposites compared with the spray-dried and freeze-dried CNCs. Rheological measurements, including linear and nonlinear viscoelastic tests, were performed on PP/CNC samples. The microscopy results were supported by small-amplitude oscillatory shear tests, which showed substantial rises in the magnitudes of key rheological parameters of PP samples containing CNCSFD. Steady-shear results revealed a strong shear thinning behavior of PP samples containing CNCSFD. Moreover, PP melts containing CNCSFD exhibited a yield stress. The magnitude of the yield stress and the degree of shear thinning behavior increased with CNCSFD concentration. It was found that CNCSFD agglomerates with a weblike structure were more effective in modifying the rheological properties. This effect was attributed to better dispersion of the agglomerates with the weblike structure. Dynamic mechanical analysis showed considerable improvement in the modulus of samples containing CNCSFD agglomerates. The percolation mechanical model with modified volume percolation threshold and filler network strength values and the Halpin-Kardos model were used to fit the experimental results.

  19. Modelling low-frequency volcanic earthquakes in a viscoelastic medium with topography

    NASA Astrophysics Data System (ADS)

    Jousset, P.; Neuberg, J.

    2003-04-01

    Magma properties are fundamental to explain the volcanic eruption style as well as the generation and propagation of seismic waves. This study focusses on rheological magma properties and their impact on low-frequency volcanic earthquakes. We investigate the effects of anelasticity and topography on the amplitudes and spectra of synthetic low-frequency earthquakes. Using a 2D finite difference scheme, we model the propagation of seismic energy initiated in a fluid-filled conduit embedded in a 2D homogeneous viscoelastic medium with topography. Topography is introduced by using a mapping procedure that stretches the computational rectangular grid into a grid which follows the topography. We model intrinsic attenuation by linear viscoelastic theory and we show that volcanic media can be approximated by a standard linear solid for seismic frequencies (i.e., above 2 Hz). Results demonstrate that attenuation modifies both amplitude and dispersive characteristics of low-frequency earthquakes. Low-frequency events are dispersive by nature; however, if attenuation is introduced, their dispersion characteristics will be altered. The topography modifies the amplitudes, depending on the position of seismographs at the surface. This study shows that we need to take into account attenuation and topography to interpret correctly observed low-frequency volcanic earthquakes. It also suggests that the rheological properties of magmas may be constrained by the analysis of low-frequency seismograms.

  20. Heme Structural Perturbation of PEG-Modified Horseradish Peroxidase C in Aromatic Organic Solvents Probed by Optical Absorption and Resonance Raman Dispersion Spectroscopy

    PubMed Central

    Huang, Qing; Al-Azzam, Wasfi; Griebenow, Kai; Schweitzer-Stenner, Reinhard

    2003-01-01

    The heme structure perturbation of poly(ethylene glycol)-modified horseradish peroxidase (HRP-PEG) dissolved in benzene and toluene has been probed by resonance Raman dispersion spectroscopy. Analysis of the depolarization ratio dispersion of several Raman bands revealed an increase of rhombic B1g distortion with respect to native HRP in water. This finding strongly supports the notion that a solvent molecule has moved into the heme pocket where it stays in close proximity to one of the heme's pyrrole rings. The interactions between the solvent molecule, the heme, and the heme cavity slightly stabilize the hexacoordinate high spin state without eliminating the pentacoordinate quantum mixed spin state that is dominant in the resting enzyme. On the contrary, the model substrate benzohydroxamic acid strongly favors the hexacoordinate quantum mixed spin state and induces a B2g-type distortion owing to its position close to one of the heme methine bridges. These results strongly suggest that substrate binding must have an influence on the heme geometry of HRP and that the heme structure of the enzyme-substrate complex (as opposed to the resting state) must be the key to understanding the chemical reactivity of HRP. PMID:12719258

  1. Polyelectrolyte-modified cowpea mosaic virus for the synthesis of gold nanoparticles.

    PubMed

    Aljabali, Alaa A A; Evans, David J

    2014-01-01

    Polyelectrolyte surface-modified cowpea mosaic virus (CPMV) can be used for the templated synthesis of narrowly dispersed gold nanoparticles. Cationic polyelectrolyte, poly(allylamine) hydrochloride, is electrostatically bound to the external surface of the virus capsid. The polyelectrolyte-coated CPMV promotes adsorption of aqueous gold hydroxide anionic species, prepared from gold(III) chloride and potassium carbonate, that are easily reduced to form CPMV-templated gold nanoparticles. The process is simple and environmentally benign using only water as solvent at ambient temperature.

  2. Plume Dispersion over Idealized Urban-liked Roughness with Height Variation: an LES Approach

    NASA Astrophysics Data System (ADS)

    Wong, Colman Ching Chi; Liu, Chun-Ho

    2013-04-01

    Human activities (e.g. vehicular emission) are the primary pollutant sources affecting the health and living quality of stakeholders in modern compact cities. Gaussian plume dispersion model is commonly used for pollutant distribution estimate that works well over rural areas with flat terrain. However, its major parameters, dispersion coefficients, exclude the effect of surface roughness that unavoidably prone to error handling the pollutant transport in the urban boundary layer (UBL) over building roughness. Our recent large-eddy simulation (LES) has shown that urban surfaces affect significantly the pollutant dispersion over idealized, identical two-dimensional (2D) street canyons of uniform height. As an extension to our on-going effort, this study is conceived to investigate how rough urban surfaces, which are constructed by 2D street canyons of non-uniform height, modify the UBL pollutant dispersion . A series of LESs with idealized roughness elements of non-uniform heights were performed in neutral stratification. Building models with two different heights were placed alternatively in the computational domain to construct 2D street canyons in cross flows. The plume dispersion from a ground-level passive pollutant source over more realistic urban areas was then examined. Along with the existing building-height-to-street-width (aspect) ratio (AR), a new parameter, building-height variability (BHV), is used to measure the building height unevenness. Four ARs (1, 0.5, 0.25 and 0.125) and three BHVs (20%, 40% and 60%) were considered in this study. Preliminary results show that BHV greatly increases the aerodynamic roughness of the hypothetical urban surfaces for narrow street canyons. Analogous to our previous findings, the air exchange rate (ACH) of street canyons increases with increasing friction factor, implying that street-level ventilation could be improved by increasing building roughness via BHV. In addition, the parameters used in dispersion coefficient estimates are related to the friction factor in the way similar to that of uniform street canyons, i.e. they are linear functions of friction factor when the roughness is small and become insensitive to friction factor thereafter over very rough surfaces. It is thus suggested that aerodynamic resistance is the key factor affecting the air quality in urban areas. Moreover, the friction factor could be used to parameterize the dispersion coefficients over different roughness elements.

  3. A space-time discretization procedure for wave propagation problems

    NASA Technical Reports Server (NTRS)

    Davis, Sanford

    1989-01-01

    Higher order compact algorithms are developed for the numerical simulation of wave propagation by using the concept of a discrete dispersion relation. The dispersion relation is the imprint of any linear operator in space-time. The discrete dispersion relation is derived from the continuous dispersion relation by examining the process by which locally plane waves propagate through a chosen grid. The exponential structure of the discrete dispersion relation suggests an efficient splitting of convective and diffusive terms for dissipative waves. Fourth- and eighth-order convection schemes are examined that involve only three or five spatial grid points. These algorithms are subject to the same restrictions that govern the use of dispersion relations in the constructions of asymptotic expansions to nonlinear evolution equations. A new eighth-order scheme is developed that is exact for Courant numbers of 1, 2, 3, and 4. Examples are given of a pulse and step wave with a small amount of physical diffusion.

  4. Hydrodynamic dispersion in a combined magnetohydrodynamic- electroosmotic-driven flow through a microchannel with slowly varying wall zeta potentials

    NASA Astrophysics Data System (ADS)

    Vargas, C.; Arcos, J.; Bautista, O.; Méndez, F.

    2017-09-01

    The effective dispersion coefficient of a neutral solute in the combined electroosmotic (EO) and magnetohydrodynamic (MHD)-driven flow of a Newtonian fluid through a parallel flat plate microchannel is studied. The walls of the microchannel are assumed to have modulated and low zeta potentials that vary slowly in the axial direction in a sinusoidal manner. The flow field required to obtain the dispersion coefficient is solved using the lubrication approximation theory. The solution of the electrical potential is based on the Debye-Hückel approximation for a symmetric (Z :Z ) electrolyte solution. The EO and MHD effects, together with the variations in the zeta potentials of the walls, are observed to notably modify the axial distribution of the effective dispersion coefficient. The problem is formulated for two cases of the zeta potential function. Note that the dispersion coefficient primarily depends on the Hartmann number, on the ratio of the half height of the microchannel to the Debye length, and on the assumed variation in the zeta potentials of the walls.

  5. Interaction physics for the stimulated Brillouin scattering of a laser in laser driven fusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yadav, Pinki; Gupta, D.N.; Avinash, K., E-mail: dngupta@physics.du.ac.in

    2014-07-01

    Energy exchange between pump wave and ion-acoustic wave during the stimulated Brillouin Scattering process in relativistic laser-plasma interactions is studied, including the effect of damping coefficient of electron-ion collision by obeying the energy and momentum conservations. The variations of plasma density and damping coefficient of electron-ion collision change the amplitudes of the interacting wave. The relativistic mass effect modifies the dispersion relations of the interacting waves and consequently, the energy exchange during the stimulated Brillouin Scattering is affected. The collisional damping of electron-ion collision in the plasma is shown to have an important effect on the evolution of the interactingmore » waves. (author)« less

  6. Density of photonic states in cholesteric liquid crystals

    NASA Astrophysics Data System (ADS)

    Dolganov, P. V.

    2015-04-01

    Density of photonic states ρ (ω ) , group vg, and phase vph velocity of light, and the dispersion relation between wave vector k , and frequency ω (k ) were determined in a cholesteric photonic crystal. A highly sensitive method (measurement of rotation of the plane of polarization of light) was used to determine ρ (ω ) in samples of different quality. In high-quality samples a drastic increase in ρ (ω ) near the boundaries of the stop band and oscillations related to Pendellösung beatings are observed. In low-quality samples photonic properties are strongly modified. The maximal value of ρ (ω ) is substantially smaller, and density of photonic states increases near the selective reflection band without oscillations in ρ (ω ) . Peculiarities of ρ (ω ) , vg, and ω (k ) are discussed. Comparison of the experimental results with theory was performed.

  7. Analytical relation between effective mode field area and waveguide dispersion in microstructure fibers.

    PubMed

    Moenster, Mathias; Steinmeyer, Günter; Iliew, Rumen; Lederer, Falk; Petermann, Klaus

    2006-11-15

    For optical fibers exhibiting a radially symmetric refractive index profile, there exists an analytical relation that connects waveguide dispersion and the Petermann-II mode field radius. We extend the usefulness of this relation to the nonradially symmetric case of microstructure fibers in the anomalous dispersion regime, yielding a simple relation between dispersion and effective mode field area. Assuming a Gaussian mode distribution, we derive a fundamental upper limit for the effective mode field area that is required to obtain a certain amount of anomalous waveguide dispersion. This relation is demonstrated to show excellent agreement for fiber designs suited for supercontinuum generation and soliton lasers in the near infrared.

  8. PARTICLE SCATTERING OFF OF RIGHT-HANDED DISPERSIVE WAVES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schreiner, C.; Kilian, P.; Spanier, F., E-mail: cschreiner@astro.uni-wuerzburg.de

    Resonant scattering of fast particles off low frequency plasma waves is a major process determining transport characteristics of energetic particles in the heliosphere and contributing to their acceleration. Usually, only Alfvén waves are considered for this process, although dispersive waves are also present throughout the heliosphere. We investigate resonant interaction of energetic electrons with dispersive, right-handed waves. For the interaction of particles and a single wave a variable transformation into the rest frame of the wave can be performed. Here, well-established analytic models derived in the framework of magnetostatic quasi-linear theory can be used as a reference to validate simulationmore » results. However, this approach fails as soon as several dispersive waves are involved. Based on analytic solutions modeling the scattering amplitude in the magnetostatic limit, we present an approach to modify these equations for use in the plasma frame. Thereby we aim at a description of particle scattering in the presence of several waves. A particle-in-cell code is employed to study wave–particle scattering on a micro-physically correct level and to test the modified model equations. We investigate the interactions of electrons at different energies (from 1 keV to 1 MeV) and right-handed waves with various amplitudes. Differences between model and simulation arise in the case of high amplitudes or several waves. Analyzing the trajectories of single particles we find no microscopic diffusion in the case of a single plasma wave, although a broadening of the particle distribution can be observed.« less

  9. Probing nanodispersions of clays for reactive foaming.

    PubMed

    Harikrishnan, G; Lindsay, Chris I; Arunagirinathan, M A; Macosko, Christopher W

    2009-09-01

    Nanodispersions of clays in polyurethane components have been prepared. Nanoclays (both natural and organically modified) of various aspect ratios are used. The fillers are dispersed separately in polyurethane components, viz., polyol and polyisocyanate. The nanodispersions are characterized by the combined use of solution rheology, X-ray scattering, cryo-electron microscopy, and IR spectroscopy. Reactive foaming of these nanodispersions is carried out to make polyurethane nanocomposite foams. The status of the dispersion of fillers in components and in foams has been compared to investigate the effect of the foaming process in exfoliation. Interpretation of the results from different characterization techniques describes the state of the dispersion of fillers in components and in foam. The rheological and physicochemical behaviors of nanodispersions are shown to have a significant influence on the properties of nanocomposite foams.

  10. Enhanced Fe dispersion via "pinning" effect of thiocyanate ion on ferric ion in Fe-N-S-doped catalyst as an excellent oxygen reduction reaction electrode

    NASA Astrophysics Data System (ADS)

    Shu, Chengyong; Chen, Yuanzhen; Yang, Xiao-Dong; Liu, Yan; Chong, Shaokun; Fang, Yuan; Liu, Yongning; Yang, Wei-Hua

    2018-02-01

    In this study, by using thiocyanate as an iron ion dispersing agent, the pinning effect of thiocyanate ion (SCN-) enables the high dispersion of Fe3+ in a nitrogen-doped carbon polymer and significantly promotes ORR catalysis in both acidic and alkaline media. It shows 47.3 A g-1 kinetic ORR current density in 0.1 M H2SO4 solution at 0.8 V vs. RHE. In addition, SCN- can dope into the base material and modify the surface of catalysts, which generates strong cyanide N functional groups. Additionally, it also has a higher BET surface area and more uniform granularity, which accounts for the enhancement in mass transport.

  11. Ultrasmall, water dispersible, TWEEN80 modified Yb:Er:NaGd(WO4)2 nanoparticles with record upconversion ratiometric thermal sensitivity and their internalization by mesenchymal stem cells

    NASA Astrophysics Data System (ADS)

    Cascales, Concepción; Paíno, Carlos L.; Bazán, Eulalia; Zaldo, Carlos

    2017-05-01

    This work presents the synthesis by coprecipitation of diamond shaped Yb:Er:NaGd(WO4)2 crystalline nanoparticles (NPs) with diagonal dimensions in the 5-7 nm × 10-12 nm range which have been modified with TWEEN80 for their dispersion in water, and their interaction with mesenchymal stem cells (MSCs) proposed as cellular NP vehicles. These NPs belong to a large family of tetragonal Yb:Er:NaT(XO4)2 (T = Y, La, Gd, Lu; X = Mo, W) compounds with green (2H11/2 + 4S3/2 → 4I15/2) Er-related upconversion (UC) efficiency comparable to that of Yb:Er:β-NaYF4 reference compound, but with a ratiometric thermal sensitivity (S) 2.5-3.5 times larger than that of the fluoride. At the temperature range of interest for biomedical applications (˜293-317 K/20-44 °C) S = 108-118 × 10-4 K-1 for 20 at%Yb:5 at%Er:NaGd(WO4)2 NPs, being the largest values so far reported using the 2H11/2/4S3/2 Er intensity ratiometric method. Cultured MSCs, incubated with these water NP emulsions, internalize and accumulate the NPs enclosed in endosomes/lysosomes. Incubations with up to 10 μg of NPs per ml of culture medium maintain cellular metabolism at 72 h. A thermal assisted excitation path is discussed as responsible for the UC behavior of Yb:Er:NaT(XO4)2 compounds.

  12. Predicting BRCA1 and BRCA2 gene mutation carriers: comparison of LAMBDA, BRCAPRO, Myriad II, and modified Couch models.

    PubMed

    Lindor, Noralane M; Lindor, Rachel A; Apicella, Carmel; Dowty, James G; Ashley, Amanda; Hunt, Katherine; Mincey, Betty A; Wilson, Marcia; Smith, M Cathie; Hopper, John L

    2007-01-01

    Models have been developed to predict the probability that a person carries a detectable germline mutation in the BRCA1 or BRCA2 genes. Their relative performance in a clinical setting is unclear. To compare the performance characteristics of four BRCA1/BRCA2 gene mutation prediction models: LAMBDA, based on a checklist and scores developed from data on Ashkenazi Jewish (AJ) women; BRCAPRO, a Bayesian computer program; modified Couch tables based on regression analyses; and Myriad II tables collated by Myriad Genetics Laboratories. Family cancer history data were analyzed from 200 probands from the Mayo Clinic Familial Cancer Program, in a multispecialty tertiary care group practice. All probands had clinical testing for BRCA1 and BRCA2 mutations conducted in a single laboratory. For each model, performance was assessed by the area under the receiver operator characteristic curve (ROC) and by tests of accuracy and dispersion. Cases "missed" by one or more models (model predicted less than 10% probability of mutation when a mutation was actually found) were compared across models. All models gave similar areas under the ROC curve of 0.71 to 0.76. All models except LAMBDA substantially under-predicted the numbers of carriers. All models were too dispersed. In terms of ranking, all prediction models performed reasonably well with similar performance characteristics. Model predictions were widely discrepant for some families. Review of cancer family histories by an experienced clinician continues to be vital to ensure that critical elements are not missed and that the most appropriate risk prediction figures are provided.

  13. Temperature-tuned erbium-doped fiber ring laser with Mach-Zehnder interferometer based on two quasi-abrupt tapered fiber sections

    NASA Astrophysics Data System (ADS)

    Selvas-Aguilar, R.; Martínez-Rios, A.; Anzueto-Sánchez, G.; Castillo-Guzmán, A.; Hernández-Luna, M. C.; Robledo-Fava, R.

    2014-10-01

    We present a wavelength tuning of an Erbium-Doped Fiber Ring Laser (EDFRL) based in a Mach-Zehnder fiber interferometer (MZFI) that consists on two tapers fabricated on commercial SMF28 from Corning as an intracavity filter. The MZFI spectral interference pattern is modified by external refractive index changes that alter the light transmission characteristics. In this work, the fiber device is immersed into a glycerol solution with higher dispersion in its refractive index in relation with temperature. Since the temperature sensitiveness of the glycerol is much higher than that of the fiber in a temperature range from 25-110 °C, therefore, the spectral changes are mainly due to the dispersion of glycerol refractive index when heat increases. Also, when this device is inserted into the EDFRL cavity, the gain spectrum of the EDF is modified accordingly and the changes, which can be controlled in an electrical heater, allow the tuning of the laser wavelength determined by the interference fringes. A wavelength shift as high as 180 pm/°C and a tunable range of 12 nm are obtained. The side mode suppression ratio (SMSR) of the fiber laser is around 25-30 dB depending on the notch filtering position. The insertion losses of the filter are below 0.3 dB and the measured wavelength shift has a quasilinear dependence as a function of temperature in the 80-110 °C. This method is very simple, portable and inexpensive over traditional methods to tune a fiber laser.

  14. Species traits modify the species-area relationship in ground-beetle (Coleoptera: Carabidae) assemblages on islands in a boreal lake

    PubMed Central

    Spence, John R.

    2017-01-01

    Life-history traits influence colonization, persistence, and extinction of species on islands and are important aspects of theories predicting the geographical distribution and evolution of species. We used data collected from a large freshwater lake (1,413 km2) in central Canada to test the effects of island area and isolation on species richness and abundance of carabid beetles as a function of body size, wing length, and breeding season. A total of 10,018 individual beetles from 37 species were collected during the frost-free period of 2013 using transects of pitfall traps on 30 forested islands ranging in area from 0.2 to 980.7 ha. Life-history traits improved the predictive ability and significantly modified the shape of species-area and abundance-area curves. Abundance and richness of small-bodied (< 13.9 mm), macropterous (winged), and spring-breeding species decreased with island area and increased with isolation. In contrast, richness and abundance of larger-bodied (> 14.0 mm) and flightless species increased with area, but not isolation. Body size of female Carabus taedatus Fabricius, the largest-bodied species, was positively related to island area, while body size on the adjacent mainland was most similar to that on smaller islands. Overall, species with large body size and low dispersal ability, as indicated by flightlessness, were most sensitive to reductions in area. We suggest that large-bodied, flightless species are rare on small islands because habitat is less suitable for them and immigration rates are lower because they depend on freshwater drift for dispersal to islands. PMID:29261805

  15. Synthesis of monodispersed ZnAl{sub 2}O{sub 4} nanoparticles and their tribology properties as lubricant additives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Xiaoyun; Zheng, Shaohua; Zhang, Jun

    Graphical abstract: Display Omitted Highlights: ► The preparation of ZnAl{sub 2}O{sub 4} nanoparticles was realized by hydrothermal method. ► After surface modification, ZnAl{sub 2}O{sub 4} nanoparticles of narrow size distribution can disperse in lubricating oil stably. ► The modified ZnAl{sub 2}O{sub 4} nanoparticles as lubricating oil additives exhibit good tribology properties. -- Abstract: Monodispersed spherical zinc aluminate spinel (ZnAl{sub 2}O{sub 4}) nanoparticles were synthesized via a solvothermal method and modified by oleic acid in cyclohexanol solution. The nanoparticles were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM) and infrared spectrum (IR). The dispersion ability of nanoparticles in lubricant oilmore » was measured with optical absorbance spectrum. The results show that the modified nanoparticles are nearly monodispersed and can stably disperse in lubricant oil. The tribological properties of the ZnAl{sub 2}O{sub 4} nanoparticles as an additive in lubricant oil were evaluated with four-ball test and thrust-ring test. For comparison, ZnO and Al{sub 2}O{sub 3} nanoparticles as additive in lubricant oil were also tested respectively. The results show that ZnAl{sub 2}O{sub 4} nanoparticles exhibit better tribology properties in terms of anti-wear and anti-friction than ZnO or Al{sub 2}O{sub 3} nanoparticles. The anti-friction and anti-wear mechanisms were discussed and the lubricating effect of ZnAl{sub 2}O{sub 4} nanoparticles can be attributed to nano-bearings effect and tribo-sintering mechanism.« less

  16. Characterization and enhanced nonlinear optical limiting response in carbon nanodots dispersed in solid-state hybrid organically modified silica gel glasses

    NASA Astrophysics Data System (ADS)

    Huang, Li; Zheng, Chan; Guo, Qiaohang; Huang, Dongdong; Wu, Xiukai; Chen, Ling

    2018-02-01

    Freely dispersed carbon nanodots (CNDs) were introduced into a 3-glycidoxy-propyltrimethoxysilane modified silicate gel glass (i.e. an organically modified silica or ORMOSIL) by a highly efficient and simple sol-gel process, which could be easily extended to prepare functional molecules/nanoparticles solid state optoelectronic devices. Scanning electron microscope imaging, Fourier transform infrared spectroscopy, pore structure measurements, ultraviolet-visible spectroscopy, and fluorescence spectroscopy were used to investigate the surface characteristics, structure, texture, and linear optical properties of the CND/SiO2 ORMOSIL gel glasses. Images and UV/Vis spectra confirmed the successful dispersion of CNDs in the ORMOSIL gel glass. The surface characteristics and pore structure of the host SiO2 matrix were markedly changed through the introduction of the CNDs. The linear optical properties of the guest CNDs were also affected by the sol-gel procedure. The nonlinear optical (NLO) properties of the CNDs were investigated by a nanosecond open-aperture Z-scan technique at 532 nm both in liquid and solid matrices. We found that the NLO response of the CNDs was considerably improved after their incorporation into the ORMOSIL gel glasses. Possible enhancement mechanisms were also explored. The nonlinear extinction coefficient gradually increased while the optical limiting (OL) threshold decreased as the CND doping level was increased. This result suggests that the NLO and OL properties of the composite gel glasses can be optimized by tuning the concentration of CNDs in the gel glass matrix. Our findings show that CND/SiO2 ORMOSIL gel glasses are promising candidates for optical limiters to protect sensitive instruments and human eyes from damage caused by high power lasers.

  17. Multiple proximate and ultimate causes of natal dispersal in white-tailed deer

    USGS Publications Warehouse

    Long, E.S.; Diefenbach, D.R.; Rosenberry, C.S.; Wallingford, B.D.

    2008-01-01

    Proximate and ultimate causes of dispersal in vertebrates vary, and relative importance of these causes is poorly understood. Among populations, inter- and intrasexual social cues for dispersal are thought to reduce inbreeding and local mate competition, respectively, and specific emigration cue may affect dispersal distance, such that inbreeding avoidance dispersal tends to be farther than dispersal to reduce local competition. To investigate potential occurrence of multiple proximate and ultimate causes of dispersal within populations, we radio-marked 363 juvenile male white-tailed deer (Odocoileus virginianus) in 2 study areas in Pennsylvania. Natal dispersal probability and distance were monitored over a 3-year period when large-scale management changes reduced density of adult females and increased density of adult males. Most dispersal (95-97%) occurred during two 12-week periods: spring, when yearling males still closely associate with related females, and prior to fall breeding season, when yearling males closely associate with other breeding-age males. Following changes to sex and age structure that reduced potential for inbreeding and increased potential for mate competition, annual dispersal probability did not change; however, probability of spring dispersal decreased, whereas probability of fall dispersal increased. Spring dispersal distances were greater than fall dispersal distances, suggesting that adaptive inbreeding avoidance dispersal requires greater distance than mate competition dispersal where opposite-sex relatives are philopatric and populations are not patchily distributed. Both inbreeding avoidance and mate competition are important ultimate causes of dispersal of white-tailed deer, but ultimate motivations for dispersal are proximately cued by different social mechanisms and elicit different responses in dispersers.

  18. Dispersion mechanisms of a tidal river junction in the Sacramento–San Joaquin Delta, California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gleichauf, Karla T.; Wolfram, Philip J.; Monsen, Nancy E.

    In branching channel networks, such as in the Sacramento–San Joaquin River Delta, junction flow dynamics contribute to dispersion of ecologically important entities such as fish, pollutants, nutrients, salt, sediment, and phytoplankton. Flow transport through a junction largely arises from velocity phasing in the form of divergent flow between junction channels for a portion of the tidal cycle. Field observations in the Georgiana Slough junction, which is composed of the North and South Mokelumne rivers, Georgiana Slough, and the Mokelumne River, show that flow phasing differences between these rivers arise from operational, riverine, and tidal forcing. A combination of Acoustic Dopplermore » Current Profile (ADCP) boat transecting and moored ADCPs over a spring–neap tidal cycle (May to June 2012) monitored the variability of spatial and temporal velocity, respectively. Two complementary drifter studies enabled assessment of local transport through the junction to identify small-scale intrajunction dynamics. We supplemented field results with numerical simulations using the SUNTANS model to demonstrate the importance of phasing offsets for junction transport and dispersion. Different phasing of inflows to the junction resulted in scalar patchiness that is characteristic of MacVean and Stacey’s (2011) advective tidal trapping. Furthermore, we observed small-scale junction flow features including a recirculation zone and shear layer, which play an important role in intra-junction mixing over time scales shorter than the tidal cycle (i.e., super-tidal time scales). Thus, the study period spanned open- and closed-gate operations at the Delta Cross Channel. Synthesis of field observations and modeling efforts suggest that management operations related to the Delta Cross Channel can strongly affect transport in the Delta by modifying the relative contributions of tidal and riverine flows, thereby changing the junction flow phasing.« less

  19. Modification of polydopamine-coated Fe3O4 nanoparticles with multi-walled carbon nanotubes for magnetic-μ-dispersive solid-phase extraction of antiepileptic drugs in biological matrices.

    PubMed

    Zhang, Ruiqi; Wang, Siming; Yang, Ye; Deng, Yulan; Li, Di; Su, Ping; Yang, Yi

    2018-06-01

    In this study, multi-walled carbon nanotubes were coated on the surface of magnetic nanoparticles modified by polydopamine. The synthesized composite was characterized and applied to magnetic-μ-dispersive solid-phase extraction of oxcarbazepine (OXC), phenytoin (PHT), and carbamazepine (CBZ) from human plasma, urine, and cerebrospinal fluid samples prior to analysis by a high-performance liquid chromatography-photodiode array detector. The extraction parameters were investigated and the optimum condition was obtained when the variables were set to the following: sorbent type, Fe 3 O 4 @polyDA-MWCNTs (length < 2 μm); sample pH, 6; amount of sorbent, 15 mg; sorption time, 1.5 min at room temperature; type and volume of the eluent, 2.5 mL methanol; and salt content, none added. Under the optimized conditions, the calibration curves are linear in the concentration range 2-2000 ng/mL, the limits of detection are in the range 0.4-3.1 ng/mL, and the relative standard deviations and relative recoveries of plasma (spiked at 200 ng/mL) and CSF (spiked at 50 ng/mL) are in the ranges 1.4-8.2% and 92.8-96.5%, respectively. The applicability of the method was successfully confirmed by extraction and determination of OXC, PHT, and CBZ in biological matrices. Graphical abstract Magnetic multi-walled carbon nanotube core-shell composites were applied as magnetic-μ-dispersive solid-phase extraction adsorbents for determination of antiepileptic drugs in biological matrices.

  20. Dispersion mechanisms of a tidal river junction in the Sacramento–San Joaquin Delta, California

    DOE PAGES

    Gleichauf, Karla T.; Wolfram, Philip J.; Monsen, Nancy E.; ...

    2014-12-17

    In branching channel networks, such as in the Sacramento–San Joaquin River Delta, junction flow dynamics contribute to dispersion of ecologically important entities such as fish, pollutants, nutrients, salt, sediment, and phytoplankton. Flow transport through a junction largely arises from velocity phasing in the form of divergent flow between junction channels for a portion of the tidal cycle. Field observations in the Georgiana Slough junction, which is composed of the North and South Mokelumne rivers, Georgiana Slough, and the Mokelumne River, show that flow phasing differences between these rivers arise from operational, riverine, and tidal forcing. A combination of Acoustic Dopplermore » Current Profile (ADCP) boat transecting and moored ADCPs over a spring–neap tidal cycle (May to June 2012) monitored the variability of spatial and temporal velocity, respectively. Two complementary drifter studies enabled assessment of local transport through the junction to identify small-scale intrajunction dynamics. We supplemented field results with numerical simulations using the SUNTANS model to demonstrate the importance of phasing offsets for junction transport and dispersion. Different phasing of inflows to the junction resulted in scalar patchiness that is characteristic of MacVean and Stacey’s (2011) advective tidal trapping. Furthermore, we observed small-scale junction flow features including a recirculation zone and shear layer, which play an important role in intra-junction mixing over time scales shorter than the tidal cycle (i.e., super-tidal time scales). Thus, the study period spanned open- and closed-gate operations at the Delta Cross Channel. Synthesis of field observations and modeling efforts suggest that management operations related to the Delta Cross Channel can strongly affect transport in the Delta by modifying the relative contributions of tidal and riverine flows, thereby changing the junction flow phasing.« less

  1. Superparamagnetic graphene oxide-based dispersive-solid phase extraction for preconcentration and determination of tamsulosin hydrochloride in human plasma by high performance liquid chromatography-ultraviolet detection.

    PubMed

    Pashaei, Yaser; Ghorbani-Bidkorbeh, Fatemeh; Shekarchi, Maryam

    2017-05-26

    In the present study, superparamagnetic graphene oxide-Fe 3 O 4 nanocomposites were successfully prepared by a modified impregnation method (MGO mi ) and their application as a sorbent in the magnetic-dispersive solid phase extraction (M-dSPE) mode to the preconcentration and determination of tamsulosin hydrochloride (TMS) in human plasma was investigated by coupling with high performance liquid chromatography-ultraviolet detection (HPLC-UV). The structure, morphology and magnetic properties of the prepared nanocomposites were characterized using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), and vibrating sample magnetometry (VSM). Some factors affecting the extraction efficiency, including the pH value, amount of sorbent, extraction time, elution solvent and its volume, and desorption time were studied and optimized. Magnetic nanocomposites plasma extraction of TMS following HPLC analyses showed a linear calibration curve in the range of 0.5-50.0ngmL -1 with an acceptable correlation coefficient (R 2 =0.9988). The method was sensitive, with a low limit of detection (0.17ngmL -1 ) and quantification (0.48ngmL -1 ). Inter- and intra-day precision expressed as relative standard deviation (n=3) and the preconcentration factor, were found to be 5.6-7.2%, 2.9-4.2% and 10, respectively. Good recoveries (98.1-101.4%) with low relative standard deviations (4.2-5.0%) indicated that the matrices under consideration do not significantly affect the extraction process. Due to its high precision and accuracy, the developed method may be a HPLC-UV alternative with M-dSPE for bioequivalence analysis of TMS in human plasma. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Development of Flat Roof Construction with Waterproofing from Modified Self-Compacting Concrete

    NASA Astrophysics Data System (ADS)

    Bogdanov, R. R.; Ibragimov, R. A.

    2017-11-01

    The given article considers the issues of increase of building flat roof durability by application of the modified self-compacting concrete (SSC). When SSC was modified, a complex modifier was developed and the optimization of the complex modifier composition was carried out using a three-factor experiment. The physico-mechanical properties of the obtained SSC are determined. The microstructure and phase composition of the modified cement stone were studied. On the basis of the studies carried out, namely, X-ray phase analysis and electron microscopy, it was concluded that the reduced content of calcium hydroxide in the samples with a complex modifier is due to the adsorption of calcium hydroxide on highly dispersed particles and the reaction of interaction with metakaolin also contributing to reduction in the content of calcium hydroxide in cement stone. The received data allow one to speak about SSC high operational characteristics. With the mark for the spreading of cone P5, the modified SSC has a class of compressive strength B50, high frost resistance (F600) and water resistance (W16).

  3. Preparation and mechanical properties of modified nanocellulose/PLA composites from cassava residue

    NASA Astrophysics Data System (ADS)

    Huang, Lijie; Zhang, Xiaoxiao; Xu, Mingzi; Chen, Jie; Shi, Yinghan; Huang, Chongxing; Wang, Shuangfei; An, Shuxiang; Li, Chunying

    2018-02-01

    Nanocellulose was prepared by a mechanochemical method using cassava residue as a raw material and phosphoric acid as the auxiliary agent. The prepared nanocellulose was hydrophobically modified with stearic acid to improve its dispersibility. This modified nanocellulose was added to polylactic acid (PLA) film-forming liquids at concentrations of 0%, 0.5%, 1.0%, 1.5% and 2.0%, and the effect of modified nanocellulose on the mechanical properties of polylactic acid (PLA) films were investigated. When at least 0.5% modified nanocellulose is added, more active groups of modified nanocellulose are adsorbed onto the PLA molecular chain. Although the tensile strength of the film is only improved by 13.59%, the flexibility of the film decreases, and the elastic modulus decreases by 28.91%. When 1% modified nanocellulose is added, the modified nanocellulose and PLA are tangled together through molecular chains and they co-crystallize to form a stable network structure. The tensile strength of the nanocomposite films is enhanced by 40.03%, the elastic modulus is enhanced by 55.65%, and the flexibility of the film decreases.

  4. How interactions between animal movement and landscape processes modify range dynamics and extinction risk

    EPA Science Inventory

    Range dynamics models now incorporate many of the mechanisms and interactions that drive species distributions. However, connectivity continues to be studied using overly simple distance-based dispersal models with little consideration of how the individual behavior of dispersin...

  5. Cellulose-Silica Nanocomposites of High Reinforcing Content with Fungi Decay Resistance by One-Pot Synthesis

    PubMed Central

    Rodríguez-Robledo, M. Concepción; González-Lozano, M. Azucena; Ponce-Peña, Patricia; Quintana Owen, Patricia; Aguilar-González, Miguel Angel; Nieto-Castañeda, Georgina; López-Martínez, Rubén; Ramírez-Galicia, Guillermo

    2018-01-01

    Hybrid bionanocomposites based on cellulose matrix, with silica nanoparticles as reinforcers, were prepared by one-pot synthesis of cellulose surface modified by solvent exchange method to keep the biopolymer net void for hosting inorganic nanoparticles. Neither expensive inorganic-particle precursors nor crosslinker agents or catalysts were used for effective dispersion of reinforcer concentration up to 50 wt %. Scanning electron microscopy of the nanocomposites shows homogeneous dispersion of reinforcers in the surface modified cellulose matrix. The FTIR spectra demonstrated the cellulose features even at 50 weight percent content of silica nanoparticles. Such a high content of silica provides high thermal stability to composites, as seen by TGA-DSC. The fungi decay resistance to Trametes versicolor was measured by standard test showing good resistance even with no addition of antifungal agents. This one-pot synthesis of biobased hybrid materials represents an excellent way for industrial production of high performance materials, with a high content of inorganic nanoparticles, for a wide variety of applications. PMID:29642522

  6. Cellulose-Silica Nanocomposites of High Reinforcing Content with Fungi Decay Resistance by One-Pot Synthesis.

    PubMed

    Rodríguez-Robledo, M Concepción; González-Lozano, M Azucena; Ponce-Peña, Patricia; Quintana Owen, Patricia; Aguilar-González, Miguel Angel; Nieto-Castañeda, Georgina; Bazán-Mora, Elva; López-Martínez, Rubén; Ramírez-Galicia, Guillermo; Poisot, Martha

    2018-04-09

    Hybrid bionanocomposites based on cellulose matrix, with silica nanoparticles as reinforcers, were prepared by one-pot synthesis of cellulose surface modified by solvent exchange method to keep the biopolymer net void for hosting inorganic nanoparticles. Neither expensive inorganic-particle precursors nor crosslinker agents or catalysts were used for effective dispersion of reinforcer concentration up to 50 wt %. Scanning electron microscopy of the nanocomposites shows homogeneous dispersion of reinforcers in the surface modified cellulose matrix. The FTIR spectra demonstrated the cellulose features even at 50 weight percent content of silica nanoparticles. Such a high content of silica provides high thermal stability to composites, as seen by TGA-DSC. The fungi decay resistance to Trametes versicolor was measured by standard test showing good resistance even with no addition of antifungal agents. This one-pot synthesis of biobased hybrid materials represents an excellent way for industrial production of high performance materials, with a high content of inorganic nanoparticles, for a wide variety of applications.

  7. Effect of polyethyleneimine modified graphene on the mechanical and water vapor barrier properties of methyl cellulose composite films.

    PubMed

    Liu, Hongyu; Liu, Cuiyun; Peng, Shuge; Pan, Bingli; Lu, Chang

    2018-02-15

    A series of novel methyl cellulose (MC) composite films were prepared using polyethyleneimine reduced graphene oxide (PEI-RGO) as an effective filler for water vapor barrier application. The as-prepared PEI-RGO/MC composites were characterized by Fourier transform infrared spectroscopy, X-ray diffraction, thermogravimetric analysis, tensile test and scanning electron microscopy. The experimental and theoretical results exhibited that PEI-RGO was uniformly dispersed in the MC matrix without aggregation and formed an aligned dispersion. The addition of PEI-RGO resulted in an enhanced surface hydrophobicity and a tortuous diffusion pathway for water molecules. Water vapor permeability of PEI-RGO/MC with loading of 3.0% of surface modified graphene was as low as 5.98×10 -11 gmm -2 s -1 Pa -1 . The synergistic effects of enhanced surface hydrophobicity and tortuous diffusion pathway were accounted for the improved water vapor barrier performance of the PEI-RGO/MC composite films. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Thermodynamic characteristics of the adsorption of organic molecules on modified MCM-41 adsorbents

    NASA Astrophysics Data System (ADS)

    Gus'kov, V. Yu.; Sukhareva, D. A.; Salikhova, G. R.; Karpov, S. I.; Kudasheva, F. Kh.; Roessner, F.; Borodina, E. V.

    2017-07-01

    The adsorption of a number of organic molecules on samples of MCM-41 adsorbent modified with dichloromethylphenylsilane and subsequently treated with sulfuric acid (MDCS) and N-trimethoxysilylpropyl- N, N, N-trimethylammonium chloride (MNM) is studied. Specific retention volumes equal to the Henry constant are determined by means of inverse gas chromatography at infinite dilution. The thermodynamic characteristics of adsorption, the dispersive and specific components of the Helmholtz energy of adsorption, and the increment of the methyl group to the heat of adsorption are calculated. It is shown that the grafting of aminosilane and phenylsilane groups enhances the forces of dispersion and reduces specific interactions. A greater drop in polarity is observed for MDCS than for MNM, due to the stronger polarity of amoinosilane; the enthalpy factor makes the main contribution to the adsorption of organic compounds on the investigated adsorbents. It is found that the MNM sample is capable of the irreversible adsorption of alcohols.

  9. The effect of broadened linewidth induced by dispersion on the performance of resonant optical gyroscope

    NASA Astrophysics Data System (ADS)

    Zhang, Hao; Li, Wenxiu; Han, Peng; Chang, Xiaoyang; Liu, Jiaming; Lin, Jian; Xue, Xia; Zhu, Fang; Yang, Yang; Liu, Xiaojing; Zhang, Xiaofu; Huang, Anping; Xiao, Zhisong; Fang, Jiancheng

    2018-01-01

    Anomalous dispersion enhancement physical mechanism for Sagnac effect is described by special relativity derivation, and three kinds of definitions of minimum detectable angular rate of resonance optical gyroscope (ROG) are compared and the relations among them are investigated. The effect of linewidth broadening induced by anomalous dispersion on the sensitivity of ROG is discussed in this paper. Material dispersion-broadened resonance linewidth deteriorates the performance of a passive ROG and dispersion enhancement effect, while the sensitivity of a structural dispersion ROG is enhanced by two orders of magnitude even considering the dispersion-broadened resonance linewidth.

  10. [Preparation and performance characterization of gold nanoparticles modified chiral capillary electrochromatography stationary phase].

    PubMed

    Xiong, Lele; Li, Ruijun; Ji, Yibing

    2017-07-08

    Gold nanoparticles (GNPs, 15 nm) were prepared and introduced to amino groups derived silica monolithic column. Bovine serum albumin (BSA) was immobilized via covalent modification method onto the carboxylic functionalized GNPs to afford chiral stationary phase (CSP) for enantioseparation. GNPs were well dispersed and successfully incorporated onto the columns with the contents as high as 17.18% by characterization method such as transmission electron microscopy (TEM), ultraviolet (UV)-visible absorption spectra and scanning electron microscopy (SEM). The preparation conditions of the BSA modified CSP were optimized and 10% (v/v) 3-aminopropyltriethoxysilane (APTES) and 15 g/L BSA were selected as appropriate reaction conditions. The enantioseparation performance of the BSA modified CSP has been investigated by capillary electrochromatography (CEC). Enantiomers of tryptophan, ephedrine and atenolol were resolved, and the baseline separation of tryptophan was achieved. Meanwhile, the influences of pH value, buffer concentrations and applied voltages used on the chiral separation were studied, and the optimal separation conditions were 10 mmol/L phosphate buffer at pH 7.4 and 15 kV applied voltages. In comparison with the BSA modified CSP prepared by physical adsorption, the CSP prepared by covalent modification method had better separation results, and the analytes could be separated directly without pre-column derivatization. In addition, the prepared BSA modified CSP exhibited good run to run repeatability with relative standard deviations (RSDs) of the migration times and selectivity factors not more than 2.3% and 0.96%, respectively. This work offers a good thinking for modification with other proteins or other types of chiral selectors.

  11. Generation of localized patterns in anharmonic lattices with cubic-quintic nonlinearities and fourth-order dispersion via a variational approach

    NASA Astrophysics Data System (ADS)

    Wamba, Etienne; Tchakoutio Nguetcho, Aurélien S.

    2018-05-01

    We use the time-dependent variational method to examine the formation of localized patterns in dynamically unstable anharmonic lattices with cubic-quintic nonlinearities and fourth-order dispersion. The governing equation is an extended nonlinear Schrödinger equation known for modified Frankel-Kontorova models of atomic lattices and here derived from an extended Bose-Hubbard model of bosonic lattices with local three-body interactions. In presence of modulated waves, we derive and investigate the ordinary differential equations for the time evolution of the amplitude and phase of dynamical perturbation. Through an effective potential, we find the modulationally unstable domains of the lattice and discuss the effect of the fourth-order dispersion in the dynamics. Direct numerical simulations are performed to support our analytical results, and a good agreement is found. Various types of localized patterns, including breathers and solitonic chirped-like pulses, form in the system as a result of interplay between the cubic-quintic nonlinearities and the second- and fourth-order dispersions.

  12. Wave-packet formation at the zero-dispersion point in the Gardner-Ostrovsky equation.

    PubMed

    Whitfield, A J; Johnson, E R

    2015-05-01

    The long-time effect of weak rotation on an internal solitary wave is the decay into inertia-gravity waves and the eventual emergence of a coherent, steadily propagating, nonlinear wave packet. There is currently no entirely satisfactory explanation as to why these wave packets form. Here the initial value problem is considered within the context of the Gardner-Ostrovsky, or rotation-modified extended Korteweg-de Vries, equation. The linear Gardner-Ostrovsky equation has maximum group velocity at a critical wave number, often called the zero-dispersion point. It is found here that a nonlinear splitting of the wave-number spectrum at the zero-dispersion point, where energy is shifted into the modulationally unstable regime of the Gardner-Ostrovsky equation, is responsible for the wave-packet formation. Numerical comparisons of the decay of a solitary wave in the Gardner-Ostrovsky equation and a derived nonlinear Schrödinger equation at the zero-dispersion point are used to confirm the spectral splitting.

  13. Reduction of aqueous CrVI using nanoscale zero-valent iron dispersed by high energy electron beam irradiation.

    PubMed

    Zhang, Jing; Zhang, Guilong; Wang, Min; Zheng, Kang; Cai, Dongqing; Wu, Zhengyan

    2013-10-21

    High energy electron beam (HEEB) irradiation was used to disperse nanoscale zero-valent iron (NZVI) for reduction of CrVI to CrIII in aqueous solution. Pore size distribution, scanning electron microscopy and X-ray diffraction characterizations demonstrated that HEEB irradiation could effectively increase the dispersion of NZVI resulting in more active reduction sites of Crvi on NZVI. Batch reduction experiments indicated that the reductive capacity of HEEB irradiation-modified NZVI (IMNZVI) was significantly improved, as the reductive efficiency reached 99.79% under the optimal conditions (electron beam dose of 30 kGy at 10 MeV, pH 2.0 and 313 K) compared with that of raw NZVI (72.14%). Additionally, the NZVI was stable for at least two months after irradiation. The modification mechanism of NZVI by HEEB irradiation was investigated and the results indicated that charge and thermal effects might play key roles in dispersing the NZVI particles.

  14. Direct design of achromatic lens for Lambertian sources in collimating illumination

    NASA Astrophysics Data System (ADS)

    Yin, Peng; Xu, Xiping; Jiang, Zhaoguo; Wang, Hongshu

    2017-10-01

    Illumination design used to redistribute the spatial energy distribution of light source is a key technique in lighting applications. However, there is still no effective illumination design method for the removing of the chromatic dispersion. What we present here is an achromatic lens design to enhance the efficiency and uniform illumination of white light-emitting diode (LED) with diffractive optical element (DOE). We employ the chromatic aberration value (deg) to measure the degree of chromatic dispersion in illumination systems. Monte Carlo ray tracing simulation results indicate that the chromatic dispersion of the modified achromatic collimator significantly decreases from 0.5 to 0.1 with LED chip size of 1.0mm×1.0mm and simulation efficiency of 90.73%, compared with the traditional collimator. Moreover, with different corrected wavelengths we compared different chromatic aberration values that followed with the changing pupil percent. The achromatic collimator provided an effective way to achieve white LED with low chromatic dispersion at high efficiency and uniform illumination.

  15. Asymmetric spin-wave dispersion in ferromagnetic nanotubes induced by surface curvature

    NASA Astrophysics Data System (ADS)

    Otálora, Jorge A.; Yan, Ming; Schultheiss, Helmut; Hertel, Riccardo; Kákay, Attila

    2017-05-01

    We present a detailed analytical derivation of the spin wave (SW) dispersion relation in magnetic nanotubes with magnetization along the azimuthal direction. The obtained formula can be used to calculate the dispersion relation for any longitudinal and azimuthal mode. The obtained dispersion is asymmetric for all azimuthal modes traveling along the axial direction. As reported in our recent publication [Phys. Rev. Lett. 117, 227203 (2016), 10.1103/PhysRevLett.117.227203], the asymmetry is a curvature-induced effect originating from the dipole-dipole interaction. Here, we discuss the asymmetry of the dispersion for azimuthal modes by analyzing the SW asymmetry Δ f (kz) =fn(kz) -fn(-kz) , where fn(kz) is the eigenfrequency of a magnon with a longitudinal and azimuthal wave vectors, kz and n , respectively; and the dependence of the maximum asymmetry with the nanotube radius R . The analytical results are in perfect agreement with micromagnetic simulations. Furthermore, we show that the dispersion relation simplifies to the thin-film dispersion relation with in-plane magnetization when analyzing the three limiting cases: (i) kz=0 , (ii) kz≫1 /R , and (iii) kz≪1 /R . In the first case, for the zeroth-order modes the thin-film Kittel formula is obtained. For modes with higher order the dispersion relation for the Backward-Volume geometry is recovered. In the second case, for the zeroth-order mode the exchange dominated dispersion relation for SW in Damon-Esbach configuration is obtained. For the case kz≪1 /R , we find that the dispersion relation can be reduced to a formula similar to the Kalinikos-Slavin [J. Phys. C: Sol. State Phys. 19, 7013 (1986), 10.1088/0022-3719/19/35/014] type.

  16. Amide and Ester-Functionalized Humic Acid for Fuel Combustion Enhancement

    NASA Astrophysics Data System (ADS)

    Riggs, Mark

    Humic acid is a class of naturally occurring molecules composed of large sheet-like regions of cyclic aromatic hydrocarbon networks with surface and edge functional groups including phenols, carboxylic acids, and epoxides. These naturally occurring molecules are found in brown coal deposits near lignite formations. Humic acid has gained attention from the scientific community as a precursor for graphene. Graphene is a 2-dimensional honeycomb structure of fully unsaturated carbon atoms that has exceptional material properties and inherent aromaticity. Graphene's incredible properties are matched by the difficulty associated with reproducibly manufacturing it on a large scale. This issue has limited the use of graphene for commercial applications. The polar functional groups of humic acid contribute to the hydrophilic nature of the molecule, limiting its miscibility in any alkyl-based solvent. Surfactants containing long alkyl chains can affect the miscibility of the molecule in an organic solvent. Surfactants are often difficult to remove from the system. It is theorized that alkylation of the functional sites of humic acid can affect the hydrophilic nature of the molecule, and effectively enable its dispersion into organic solvents without simultaneous incorporation of surfactants. This dissertation investigated the amidation and esterification of humic acid molecules extracted from leonardite. The resulting change in the modified humic acid dispersibility in organic solvents and its potential usage as a fuel additive were evaluated. Butyl, hexyl, octyl, and decyl amide-modified and ester-modified humic acids were synthesized. These products were characterized to confirm successful chemical reaction through thermogravimetric analysis, Fourier-transform infrared spectroscopy, and scanning electron microscopy. The decyl-modified humic acids remained suspended in kerosene mixtures for longer than 1 week. Other organo-humic acids showed varying degrees of flocculation. The modified humic acid samples were diluted with kerosene to identify the influence on combustion properties. Butyl-modified humic acid samples decreased the molar enthalpy of combustion. Hexyl, octyl, and decyl-modified humic acids improved the combustion values. Decyl amide-modified humic acid showed the largest improvement of these mixtures with a 0.9% increase from the expected molar enthalpy of combustion with a loading percentage of 0.36% in kerosene. Octyl amide-modified and octyl ester-modified humic acid mixtures were prepared in 0.05, 0.1, and 1% loading percentage dilutions to study the effect of modified humic acid loading percent on combustion properties. The 0.1% dilution showed the largest increase of the expected molar enthalpy of combustion by 1.14% and 0.4% for amide-modified HA and ester-modified HA, respectively.

  17. Pore-scale and continuum simulations of solute transport micromodel benchmark experiments

    DOE PAGES

    Oostrom, M.; Mehmani, Y.; Romero-Gomez, P.; ...

    2014-06-18

    Four sets of nonreactive solute transport experiments were conducted with micromodels. Three experiments with one variable, i.e., flow velocity, grain diameter, pore-aspect ratio, and flow-focusing heterogeneity were in each set. The data sets were offered to pore-scale modeling groups to test their numerical simulators. Each set consisted of two learning experiments, for which our results were made available, and one challenge experiment, for which only the experimental description and base input parameters were provided. The experimental results showed a nonlinear dependence of the transverse dispersion coefficient on the Peclet number, a negligible effect of the pore-aspect ratio on transverse mixing,more » and considerably enhanced mixing due to flow focusing. Five pore-scale models and one continuum-scale model were used to simulate the experiments. Of the pore-scale models, two used a pore-network (PN) method, two others are based on a lattice Boltzmann (LB) approach, and one used a computational fluid dynamics (CFD) technique. Furthermore, we used the learning experiments, by the PN models, to modify the standard perfect mixing approach in pore bodies into approaches to simulate the observed incomplete mixing. The LB and CFD models used the learning experiments to appropriately discretize the spatial grid representations. For the continuum modeling, the required dispersivity input values were estimated based on published nonlinear relations between transverse dispersion coefficients and Peclet number. Comparisons between experimental and numerical results for the four challenge experiments show that all pore-scale models were all able to satisfactorily simulate the experiments. The continuum model underestimated the required dispersivity values, resulting in reduced dispersion. The PN models were able to complete the simulations in a few minutes, whereas the direct models, which account for the micromodel geometry and underlying flow and transport physics, needed up to several days on supercomputers to resolve the more complex problems.« less

  18. Classical density functional theory and Monte Carlo simulation study of electric double layer in the vicinity of a cylindrical electrode

    NASA Astrophysics Data System (ADS)

    Zhou, Shiqi; Lamperski, Stanisław; Sokołowska, Marta

    2017-07-01

    We have performed extensive Monte-Carlo simulations and classical density functional theory (DFT) calculations of the electrical double layer (EDL) near a cylindrical electrode in a primitive model (PM) modified by incorporating interionic dispersion interactions. It is concluded that (i) in general, an unsophisticated use of the mean field (MF) approximation for the interionic dispersion interactions does not distinctly worsen the classical DFT performance, even if the salt ions considered are highly asymmetrical in size (3:1) and charge (5:1), the bulk molar concentration considered is high up to a total bulk ion packing fraction of 0.314, and the surface charge density of up to 0.5 C m-2. (ii) More specifically, considering the possible noises in the simulation, the local volume charge density profiles are the most accurately predicted by the classical DFT in all situations, and the co- and counter-ion singlet distributions are also rather accurately predicted; whereas the mean electrostatic potential profile is relatively less accurately predicted due to an integral amplification of minor inaccuracy of the singlet distributions. (iii) It is found that the layered structure of the co-ion distribution is abnormally possible only if the surface charge density is high enough (for example 0.5 C m-2) moreover, the co-ion valence abnormally influences the peak height of the first counter-ion layer, which decreases with the former. (iv) Even if both the simulation and DFT indicate an insignificant contribution of the interionic dispersion interaction to the above three ‘local’ quantities, it is clearly shown by the classical DFT that the interionic dispersion interaction does significantly influence a ‘global’ quantity like the cylinder surface-aqueous electrolyte interfacial tension, and this may imply the role of the interionic dispersion interaction in explaining the specific Hofmeister effects. We elucidate all of the above observations based on the arguments from the liquid state theory and at the molecular scale.

  19. Near-infrared (1550 nm) in vivo bioimaging based on rare-earth doped ceramic nanophosphors modified with PEG-b-poly(4-vinylbenzylphosphonate).

    PubMed

    Kamimura, Masao; Kanayama, Naoki; Tokuzen, Kimikazu; Soga, Kohei; Nagasaki, Yukio

    2011-09-01

    A novel poly(ethylene glycol) (PEG)-based block copolymer possessing a 4-vinylbenzylphosphonate repeating unit in another segment (PEG-block-poly(4-vinylbenzylphosphonate)) (PEG-b-PVBP) was designed and successfully synthesized. As a control, an end-functionalized PEG possessing a mono-phosphonate group (PEG-PO(3)H(2)) was also synthesized. The surface of near-infrared (NIR) phosphors (i.e., ytterbium (Yb) and erbium (Er) ion-codoped Y(2)O(3) nanoparticles (YNPs)) were modified with PEG-b-PVBP (PEG-YNP(b)s) and PEG-PO(3)H(2) (PEG-YNP(1)s). The adsorption of PEG-b-PVBP and PEG-PO(3)H(2) was estimated by Fourier transform infrared (FT-IR) measurements and thermal gravimetric analysis (TGA). The physicochemical characteristics of the obtained YNP samples were analyzed by ζ-potential and dynamic light scattering (DLS) measurements. The ζ-potentials of YNPs modified by these polymers were close to zero, indicating the effective coverage of the YNP surface by our new PEG derivatives. However, the dispersion stability of the PEGylated YNPs was strongly affected by the structure of the PEG terminus. The average diameter of the PEG-YNP(1)s increased, and aggregates precipitated after less than 1 h in phosphate buffer saline (PBS). In contrast, the size did not change at all in the case of PEG-YNP(b)s and the dispersion in PBS was stable for over 1 week. PEG-YNP(b)s also showed high erosion resistance under acidic conditions. The multiple coordinated PVBP segment of the block copolymer on the YNP surface plays a substantial role in improving such dispersion stability. The excellent dispersion stability and strong NIR luminescence of the obtained PEG-YNP(b)s were also confirmed in fetal bovine serum (FBS) solution over 1 week. Furthermore, in vivo NIR imaging of live mice was performed, and the 1550 nm NIR emission of PEG-YNP(b)s from the organ of live mice was confirmed without dissection.

  20. Ginsenoside improves physicochemical properties and bioavailability of curcumin-loaded nanostructured lipid carrier.

    PubMed

    Vijayakumar, Ajay; Baskaran, Rengarajan; Maeng, Han-Joo; Yoo, Bong Kyu

    2017-07-01

    The aim of this study was to develop a ginsenoside-modified nanostructured lipid carrier (G-NLC) dispersion containing curcumin. The NLC was prepared by melt emulsification with slight modification process. Different G-NLC dispersion systems were prepared using lipid carrier matrix composed of ginsenoside, phosphatidylcholine, lysophosphatidylcholine, and hydrogenated bean oil. TEM image of the nanoparticles in the NLC dispersion showed core/shell structure, and there was corona-like layer surrounding the particles in the G-NLC. The mean particle size of G-NLC dispersion was in the range of about 300-500 nm and stayed submicron size up to 12 months. The in vitro release of curcumin was faster in pH 1.2 compared to pH 6.8 and it showed linear release pattern after lag time of 1 h. When the G-NLC dispersion was orally administered to rats, C max of the free curcumin was 15.2 and 32.3 ng/mL at doses of 50 and 100 mg/kg, respectively, while it was below quantification limit when curcumin was administered as of dispersion in distilled water. Based on these results, it is certain that ginsenoside modulated the NLC dispersion, leading to enduring shelf-life of the dispersion system and enhanced bioavailability. These results strongly suggest that ginsenoside holds a promising potential as a pharmaceutical excipient in the pharmaceutical industries to increase the utility of various bioactives.

  1. Disrupted dispersal and its genetic consequences: Comparing protected and threatened baboon populations (Papio papio) in West Africa.

    PubMed

    Ferreira da Silva, Maria Joana; Kopp, Gisela H; Casanova, Catarina; Godinho, Raquel; Minhós, Tânia; Sá, Rui; Zinner, Dietmar; Bruford, Michael W

    2018-01-01

    Dispersal is a demographic process that can potentially counterbalance the negative impacts of anthropogenic habitat fragmentation. However, mechanisms of dispersal may become modified in populations living in human-dominated habitats. Here, we investigated dispersal in Guinea baboons (Papio papio) in areas with contrasting levels of anthropogenic fragmentation, as a case study. Using molecular data, we compared the direction and extent of sex-biased gene flow in two baboon populations: from Guinea-Bissau (GB, fragmented distribution, human-dominated habitat) and Senegal (SEN, continuous distribution, protected area). Individual-based Bayesian clustering, spatial autocorrelation, assignment tests and migrant identification suggested female-mediated gene flow at a large spatial scale for GB with evidence of contact between genetically differentiated males at one locality, which could be interpreted as male-mediated gene flow in southern GB. Gene flow was also found to be female-biased in SEN for a smaller scale. However, in the southwest coastal part of GB, at the same geographic scale as SEN, no sex-biased dispersal was detected and a modest or recent restriction in GB female dispersal seems to have occurred. This population-specific variation in dispersal is attributed to behavioural responses to human activity in GB. Our study highlights the importance of considering the genetic consequences of disrupted dispersal patterns as an additional impact of anthropogenic habitat fragmentation and is potentially relevant to the conservation of many species inhabiting human-dominated environments.

  2. Comparative effects of biological and chemical dispersants on the bioavailability and toxicity of crude oil to early life stages of marine medaka (Oryzias melastigma).

    PubMed

    Mu, Jingli; Jin, Fei; Ma, Xindong; Lin, Zhongsheng; Wang, Juying

    2014-11-01

    The authors assessed the bioavailability and chronic toxicity of water-accommodated fractions of crude oil (WAFs) and 2 dispersants plus dispersed crude oil (chemical dispersant + crude oil [CE-WAF] and biological dispersant + crude oil [BE-WAF]) on the early life stages of marine medaka, Oryzias melastigma. The results showed that the addition of the 2 dispersants caused a 3- and 4-fold increase in concentrations of summed priority polycyclic aromatic hydrocarbons (PAHs) and high-molecular-weight PAHs with 3 or more benzene rings. The chemical and biological dispersants increased the bioavailability (as measured by ethoxyresorufin-O-dethylase activity) of crude oil 6-fold and 3-fold, respectively. Based on nominal concentrations, chronic toxicity (as measured by deformity) in WAFs exhibited a 10-fold increase in CE-WAF and a 3-fold increase in BE-WAF, respectively. When total petroleum hydrocarbon was measured, the differences between WAF and CE-WAF treatments disappeared, and CE-WAF was approximately 10 times more toxic than BE-WAF. Compared with the chemical dispersant, the biological dispersant possibly modified the toxicity of oil hydrocarbons because of the increase in the proportion of 2- and 3-ringed PAHs in water. The chemical and biological dispersants enhanced short-term bioaccumulation and toxicity, through different mechanisms. These properties should be considered in addition to their efficacy in degrading oil when oil spill management strategies are selected. © 2014 SETAC.

  3. Ionospheric effects of magneto-acoustic-gravity waves: Dispersion relation

    NASA Astrophysics Data System (ADS)

    Jones, R. Michael; Ostrovsky, Lev A.; Bedard, Alfred J.

    2017-06-01

    There is extensive evidence for ionospheric effects associated with earthquake-related atmospheric disturbances. Although the existence of earthquake precursors is controversial, one suggested method of detecting possible earthquake precursors and tsunamis is by observing possible ionospheric effects of atmospheric waves generated by such events. To study magneto-acoustic-gravity waves in the atmosphere, we have derived a general dispersion relation including the effects of the Earth's magnetic field. This dispersion relation can be used in a general atmospheric ray tracing program to calculate the propagation of magneto-acoustic-gravity waves from the ground to the ionosphere. The presence of the Earth's magnetic field in the ionosphere can radically change the dispersion properties of the wave. The general dispersion relation obtained here reduces to the known dispersion relations for magnetoacoustic waves and acoustic-gravity waves in the corresponding particular cases. The work described here is the first step in achieving a generalized ray tracing program permitting propagation studies of magneto-acoustic-gravity waves.

  4. Dispersive micro-solid phase extraction combined with dispersive liquid-liquid microextraction for speciation analysis of antimony by electrothermal vaporization inductively coupled plasma mass spectrometry

    NASA Astrophysics Data System (ADS)

    Chen, Shizhong; Zhu, Shengping; Lu, Dengbo

    2018-01-01

    A method was developed for speciation analysis of antimony by electrothermal vaporization inductively coupled plasma mass spectrometry (ETV-ICP-MS) after preconcentration/separation using dispersive micro-solid phase extraction (DMSPE) and dispersive liquid-liquid micro-extraction (DLLME). In DMSPE, titanium dioxide nanofibers were used for preconcentration and separation of analytes. The upper aqueous phase and elution solution from DMSPE were used for further preconcentration and separation of Sb(III) and Sb(V) by DLLME without any pre-oxidation or pre-reduction operation, respectively. The extracts from DLLME were used for ETV-ICP-MS determination with APDC as a chemical modifier. Under optimal conditions, the detection limits of this method were 0.019 and 0.025 pg mL- 1 with relative standard deviations of 5.7% and 6.9% for Sb(III) and Sb(V) (c = 1.0 ng mL- 1, n = 9), respectively. This method was applied for speciation analysis of Sb and its distribution in the tea leaves and the tea infusion, including total, suspended, soluble, organic and inorganic Sb as well as Sb(III) and Sb(V). The results showed that the contents of Sb are 62.7, 12.9 and 47.3 ng g- 1 in the tea leaves, tea residue and tea soup, respectively; those of soluble, organic, inorganic, Sb(III) and Sb(V) are 0.41, 0.11, 0.29, 0.21 and 0.07 ng mL- 1 in the tea soup, respectively. A certified reference material of tea leaves (GBW 07605) was analyzed by this method with satisfactory results.

  5. Computational investigation of longitudinal diffusion, eddy dispersion, and trans-particle mass transfer in bulk, random packings of core-shell particles with varied shell thickness and shell diffusion coefficient.

    PubMed

    Daneyko, Anton; Hlushkou, Dzmitry; Baranau, Vasili; Khirevich, Siarhei; Seidel-Morgenstern, Andreas; Tallarek, Ulrich

    2015-08-14

    In recent years, chromatographic columns packed with core-shell particles have been widely used for efficient and fast separations at comparatively low operating pressure. However, the influence of the porous shell properties on the mass transfer kinetics in core-shell packings is still not fully understood. We report on results obtained with a modeling approach to simulate three-dimensional advective-diffusive transport in bulk random packings of monosized core-shell particles, covering a range of reduced mobile phase flow velocities from 0.5 up to 1000. The impact of the effective diffusivity of analyte molecules in the porous shell and the shell thickness on the resulting plate height was investigated. An extension of Giddings' theory of coupled eddy dispersion to account for retention of analyte molecules due to stagnant regions in porous shells with zero mobile phase flow velocity is presented. The plate height equation involving a modified eddy dispersion term excellently describes simulated data obtained for particle-packings with varied shell thickness and shell diffusion coefficient. It is confirmed that the model of trans-particle mass transfer resistance of core-shell particles by Kaczmarski and Guiochon [42] is applicable up to a constant factor. We analyze individual contributions to the plate height from different mass transfer mechanisms in dependence of the shell parameters. The simulations demonstrate that a reduction of plate height in packings of core-shell relative to fully porous particles arises mainly due to reduced trans-particle mass transfer resistance and transchannel eddy dispersion. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Nonlinear acoustic wave equations with fractional loss operators.

    PubMed

    Prieur, Fabrice; Holm, Sverre

    2011-09-01

    Fractional derivatives are well suited to describe wave propagation in complex media. When introduced in classical wave equations, they allow a modeling of attenuation and dispersion that better describes sound propagation in biological tissues. Traditional constitutive equations from solid mechanics and heat conduction are modified using fractional derivatives. They are used to derive a nonlinear wave equation which describes attenuation and dispersion laws that match observations. This wave equation is a generalization of the Westervelt equation, and also leads to a fractional version of the Khokhlov-Zabolotskaya-Kuznetsov and Burgers' equations. © 2011 Acoustical Society of America

  7. Effect of dispersal networks on bacterial dispersal and biodegradation at varying water potentials

    NASA Astrophysics Data System (ADS)

    Worrich, Anja; Kästner, Matthias; Miltner, Anja; Wick, Lukas Y.

    2015-04-01

    In porous media the matric and the osmotic potential contribute to the availability of water to microbes and decisively influence important microbial ecosystem services such as biodegradation. Bacterial motility is considered as a key driver for biodegradation and fungal mycelia have been shown to serve as effective dispersal networks thereby increasing bacterial movement in water unsaturated environments. However, poor knowledge exists on the beneficial effects of mycelia at varying water potentials (Ψw). We therefore established experimental microcosms to investigate the effect of mycelia-like dispersal networks on the dispersal and growth of Pseudomonas putida KT2440-gfp at given osmotic and matric potentials and determined their benefit for the biodegradation of benzoate. Using either NaCl or polyethylene glycol 8000 the Ψw of agar was modified between ΔΨw 0 - -1.5 MPa (i.e. water potentials representing completely saturated or plant permanent wilting point conditions). We found that dispersal, growth and biodegradation rates dropped noticeably below ΔΨw -0.5 MPa in osmotically stressed systems. However, in matric stress treatments this decline occurred at ΔΨw -0.25 MPa due to a complete repression of bacterial movement at this Ψw. The presence of dispersal networks effectively defused the negative effects of lowered matric potentials by enhancing bacterial dispersal. No benefical network effect was observed in the osmotically stressed systems, likely due to NaCl toxicity rather than the water depriviation effects. We propose that dispersal networks act as an important buffer mechanism and hence may increase the microbial ecosystem's functional resistance to matric stress.

  8. Trimethylamine Sensors Based on Au-Modified Hierarchical Porous Single-Crystalline ZnO Nanosheets.

    PubMed

    Meng, Fanli; Zheng, Hanxiong; Sun, Yufeng; Li, Minqiang; Liu, Jinhuai

    2017-06-22

    It is of great significance for dynamic monitoring of foods in storage or during the transportation process through on-line detecting trimethylamine (TMA). Here, TMA were sensitively detected by Au-modified hierarchical porous single-crystalline ZnO nanosheets (HPSCZNs)-based sensors. The HPSCZNs were synthesized through a one-pot wet-chemical method followed by an annealing treatment. Polyethyleneimine (PEI) was used to modify the surface of the HPSCZNs, and then the PEI-modified samples were mixed with Au nanoparticles (NPs) sol solution. Electrostatic interactions drive Au nanoparticles loading onto the surface of the HPSCZNs. The Au-modified HPSCZNs were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and energy dispersive spectrum (EDS), respectively. The results show that Au-modified HPSCZNs-based sensors exhibit a high response to TMA. The linear range is from 10 to 300 ppb; while the detection limit is 10 ppb, which is the lowest value to our knowledge.

  9. Trimethylamine Sensors Based on Au-Modified Hierarchical Porous Single-Crystalline ZnO Nanosheets

    PubMed Central

    Zheng, Hanxiong; Sun, Yufeng; Li, Minqiang; Liu, Jinhuai

    2017-01-01

    It is of great significance for dynamic monitoring of foods in storage or during the transportation process through on-line detecting trimethylamine (TMA). Here, TMA were sensitively detected by Au-modified hierarchical porous single-crystalline ZnO nanosheets (HPSCZNs)-based sensors. The HPSCZNs were synthesized through a one-pot wet-chemical method followed by an annealing treatment. Polyethyleneimine (PEI) was used to modify the surface of the HPSCZNs, and then the PEI-modified samples were mixed with Au nanoparticles (NPs) sol solution. Electrostatic interactions drive Au nanoparticles loading onto the surface of the HPSCZNs. The Au-modified HPSCZNs were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and energy dispersive spectrum (EDS), respectively. The results show that Au-modified HPSCZNs-based sensors exhibit a high response to TMA. The linear range is from 10 to 300 ppb; while the detection limit is 10 ppb, which is the lowest value to our knowledge. PMID:28640226

  10. Controlling harmful algae blooms using aluminum-modified clay.

    PubMed

    Liu, Yang; Cao, Xihua; Yu, Zhiming; Song, Xiuxian; Qiu, Lixia

    2016-02-15

    The performances of aluminum chloride modified clay (AC-MC), aluminum sulfate modified clay (AS-MC) and polyaluminum chloride modified clay (PAC-MC) in the removal of Aureococcus anophagefferens were compared, and the potential mechanisms were analyzed according to the dispersion medium, suspension pH and clay surface charges. The results showed that AC-MC and AS-MC had better efficiencies in removing A.anophagefferens than PAC-MC. The removal mechanisms of the three modified clays varied. At optimal coagulation conditions, the hydrolysates of AC and AS were mainly monomers, and they transformed into Al(OH)3(am) upon their addition to algae culture, with the primary mechanism being sweep flocculation. The PAC mainly hydrolyzed to the polyaluminum compounds, which remained stable when added to the algae culture, and the flocculation mainly occurred through polyaluminum compounds. The suspension pH significantly influenced the aluminum hydrolysate and affected the flocculation between the modified clay and algae cells. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Phonon dispersion on Ag (100) surface: A modified analytic embedded atom method study

    NASA Astrophysics Data System (ADS)

    Xiao-Jun, Zhang; Chang-Le, Chen

    2016-01-01

    Within the harmonic approximation, the analytic expression of the dynamical matrix is derived based on the modified analytic embedded atom method (MAEAM) and the dynamics theory of surface lattice. The surface phonon dispersions along three major symmetry directions , and X¯M¯ are calculated for the clean Ag (100) surface by using our derived formulas. We then discuss the polarization and localization of surface modes at points X¯ and M¯ by plotting the squared polarization vectors as a function of the layer index. The phonon frequencies of the surface modes calculated by MAEAM are compared with the available experimental and other theoretical data. It is found that the present results are generally in agreement with the referenced experimental or theoretical results, with a maximum deviation of 10.4%. The agreement shows that the modified analytic embedded atom method is a reasonable many-body potential model to quickly describe the surface lattice vibration. It also lays a significant foundation for studying the surface lattice vibration in other metals. Project supported by the National Natural Science Foundation of China (Grant Nos. 61471301 and 61078057), the Scientific Research Program Funded by Shaanxi Provincial Education Department, China (Grant No. 14JK1301), and the Specialized Research Fund for the Doctoral Program of Higher Education, China (Grant No. 20126102110045).

  12. CuO based catalysts on modified acidic silica supports tested in the de-NOx reduction.

    PubMed

    Bennici, Simona; Gervasini, Antonella; Lazzarin, Marta; Ragaini, Vittorio

    2005-03-01

    A series of dispersed CuO catalysts supported on modified silica supports with Al2O3 (SA), TiO2 (ST), and ZrO2 (SZ) were prepared optimising the adsorption method of copper deposition assisted by ultrasound treatment, already reported in a previous paper (S. Bennici, A. Gervasini, V. Ragaini, Ultrason. Sonochem. 10 (2003) 61). The obtained catalysts were characterized in their bulk (atomic absorption, X-ray diffraction, temperature programmed reduction) and surface (N2 adsorption, X-ray photoelectron spectroscopy, scanning electron microscopy) properties. The morphology of the finished materials was not deeply modified compared with that of the relevant supports. The employed complemented techniques evidenced a well dispersed CuO phase with a copper-support interaction on the most acidic supports (SA and SZ). The catalyst performances were studied in the reaction of selective catalytic reduction of NOx with ethene in oxidizing atmosphere in a flow apparatus under variable times (0.360-0.072 s) and temperatures (200-450 degrees C). The catalysts prepared on the most acidic supports (SA and SZ) were the most active and selective towards N2 formation. They showed a particular interesting activity in the reaction of NO2 reduction besides that of NO reduction.

  13. Novel Organically Modified Core-Shell Clay for Epoxy Composites-"SOBM Filler 1".

    PubMed

    Iheaturu, Nnamdi Chibuike; Madufor, Innocent Chimezie

    2014-01-01

    Preparation of a novel organically modified clay from spent oil base drilling mud (SOBM) that could serve as core-shell clay filler for polymers is herein reported. Due to the hydrophilic nature of clay, its compatibility with polymer matrix was made possible through modification of the surface of the core clay sample with 3-aminopropyltriethoxysilane (3-APTES) compound prior to its use. Fourier transform infrared (FT-IR) spectroscopy was used to characterize clay surface modification. Electron dispersive X-ray diffraction (EDX) and scanning electron microscopy (SEM) were used to expose filler chemical composition and morphology, while electrophoresis measurement was used to examine level of filler dispersion. Results show an agglomerated core clay powder after high temperature treatment, while EDX analysis shows that the organically modified clay is composed of chemical inhomogeneities, wherein elemental compositions in weight percent vary from one point to the other in a probe of two points. Micrographs of the 3-APTES coupled SOBM core-shell clay filler clearly show cloudy appearance, while FT-IR indicates 25% and 5% increases in fundamental vibrations band at 1014 cm(-1) and 1435 cm(-1), respectively. Furthermore, 3-APTES coupled core-shell clay was used to prepare epoxy composites and tested for mechanical properties.

  14. Flight performance and teneral energy reserves of two genetically-modified and one wild-type strain of the yellow fever mosquito Aedes aegypti.

    PubMed

    Bargielowski, Irka; Kaufmann, Christian; Alphey, Luke; Reiter, Paul; Koella, Jacob

    2012-12-01

    The ability of sterile males to survive, disperse, find, and mate with wild females is key to the success of sterile insect technique (SIT). The Release of Insects carrying a Dominant Lethal (RIDL) system is a genetics-based SIT strategy for Aedes aegypti. We examine two aspects of insect performance, flight potential (dispersal ability) and teneral energy reserves, by comparing wild-type (WT) males with genetically-modified lines carrying the tetracycline-repressible constructs OX513A and OX3604C. Our results show significant differences in the flight capacity of the modified lines. OX513A males bred with tetracycline covered 38% less distance, while OX3604C males reared without tetracycline spent 21% less time in flight than their WT counterparts. Such differences in flight performance should be considered when designing release programs (e.g., by placing release sites sufficiently close together to achieve adequate coverage). All mosquito lines had similar teneral carbohydrate contents, though males of the OX3604C line contained more lipids. The addition of tetracycline to the larval diet did not influence the flight potential of the males; however, it did change the teneral sugar reserves of the WT and the lipid reserves of both the WT and the OX3604C lines.

  15. Novel Organically Modified Core-Shell Clay for Epoxy Composites—“SOBM Filler 1”

    PubMed Central

    Iheaturu, Nnamdi Chibuike; Madufor, Innocent Chimezie

    2014-01-01

    Preparation of a novel organically modified clay from spent oil base drilling mud (SOBM) that could serve as core-shell clay filler for polymers is herein reported. Due to the hydrophilic nature of clay, its compatibility with polymer matrix was made possible through modification of the surface of the core clay sample with 3-aminopropyltriethoxysilane (3-APTES) compound prior to its use. Fourier transform infrared (FT-IR) spectroscopy was used to characterize clay surface modification. Electron dispersive X-ray diffraction (EDX) and scanning electron microscopy (SEM) were used to expose filler chemical composition and morphology, while electrophoresis measurement was used to examine level of filler dispersion. Results show an agglomerated core clay powder after high temperature treatment, while EDX analysis shows that the organically modified clay is composed of chemical inhomogeneities, wherein elemental compositions in weight percent vary from one point to the other in a probe of two points. Micrographs of the 3-APTES coupled SOBM core-shell clay filler clearly show cloudy appearance, while FT-IR indicates 25% and 5% increases in fundamental vibrations band at 1014 cm−1 and 1435 cm−1, respectively. Furthermore, 3-APTES coupled core-shell clay was used to prepare epoxy composites and tested for mechanical properties. PMID:27355022

  16. Zirconium-carbon hybrid sorbent for removal of fluoride from water: oxalic acid mediated Zr(IV) assembly and adsorption mechanism

    PubMed Central

    Halla, Velazquez-Jimenez Litza; Hurt Robert, H; Juan, Matos; Rene, Rangel-Mendez Jose

    2014-01-01

    When activated carbon (AC) is modified with zirconium(IV) by impregnation or precipitation, the fluoride adsorption capacity is typically improved. There is significant potential to improve these hybrid sorbent by controlling the impregnation conditions, which determine the assembly and dispersion of the Zr phases on carbon surfaces. Here, commercial activated carbon was modified with Zr(IV) together with oxalic acid (OA) used to maximize the zirconium dispersion and enhance fluoride adsorption. Adsorption experiments were carried out at pH 7 and 25 °C with a fluoride concentration of 40 mg L−1. The OA/Zr ratio was varied to determine the optimal conditions for subsequent fluoride adsorption. The data was analyzed using the Langmuir and Freundlich isotherm models. FTIR, XPS and the surface charge distribution were performed to elucidate the adsorption mechanism. Potentiometric titrations showed that the modified activated carbon (ZrOx-AC) possesses positive charge at pH lower than 7, and FTIR analysis demonstrated that zirconium ions interact mainly with carboxylic groups on the activated carbon surfaces. Moreover, XPS analysis demonstrated that Zr(IV) interacts with oxalate ions, and the fluoride adsorption mechanism is likely to involve –OH− exchange from zirconyl oxalate complexes. PMID:24359079

  17. Thermo-mechanical characterization of siliconized E-glass fiber/hematite particles reinforced epoxy resin hybrid composite

    NASA Astrophysics Data System (ADS)

    V. R., Arun prakash; Rajadurai, A.

    2016-10-01

    In this present work hybrid polymer (epoxy) matrix composite has been strengthened with surface modified E-glass fiber and iron(III) oxide particles with varying size. The particle sizes of 200 nm and <100 nm has been prepared by high energy ball milling and sol-gel methods respectively. To enhance better dispersion of particles and improve adhesion of fibers and fillers with epoxy matrix surface modification process has been done on both fiber and filler by an amino functional silane 3-Aminopropyltrimethoxysilane (APTMS). Crystalline and functional groups of siliconized iron(III) oxide particles were characterized by XRD and FTIR spectroscopy analysis. Fixed quantity of surface treated 15 vol% E-glass fiber was laid along with 0.5 and 1.0 vol% of iron(III) oxide particles into the matrix to fabricate hybrid composites. The composites were cured by an aliphatic hardener Triethylenetetramine (TETA). Effectiveness of surface modified particles and fibers addition into the resin matrix were revealed by mechanical testing like tensile testing, flexural testing, impact testing, inter laminar shear strength and hardness. Thermal behavior of composites was evaluated by TGA, DSC and thermal conductivity (Lee's disc). The scanning electron microscopy was employed to found shape and size of iron(III) oxide particles adhesion quality of fiber with epoxy matrix. Good dispersion of fillers in matrix was achieved with surface modifier APTMS. Tensile, flexural, impact and inter laminar shear strength of composites was improved by reinforcing surface modified fiber and filler. Thermal stability of epoxy resin was improved when surface modified fiber was reinforced along with hard hematite particles. Thermal conductivity of epoxy increased with increase of hematite content in epoxy matrix.

  18. Extending of flat normal dispersion profile in all-solid soft glass nonlinear photonic crystal fibres

    NASA Astrophysics Data System (ADS)

    Siwicki, Bartłomiej; Kasztelanic, Rafał; Klimczak, Mariusz; Cimek, Jarosław; Pysz, Dariusz; Stępień, Ryszard; Buczyński, Ryszard

    2016-06-01

    The bandwidth of coherent supercontinuum generated in optical fibres is strongly determined by the all-normal dispersion characteristic of the fibre. We investigate all-normal dispersion limitations in all-solid oxide-based soft glass photonic crystal fibres with various relative inclusion sizes and lattice constants. The influence of material dispersion on fibre dispersion characteristics for a selected pair of glasses is also examined. A relation between the material dispersion of the glasses and the fibre dispersion has been described. We determined the parameters which limit the maximum range of flattened all-normal dispersion profile achievable for the considered pair of heavy-metal-oxide soft glasses.

  19. The Trajectory of Dispersal Research in Conservation Biology. Systematic Review

    PubMed Central

    Driscoll, Don A.; Banks, Sam C.; Barton, Philip S.; Ikin, Karen; Lentini, Pia; Lindenmayer, David B.; Smith, Annabel L.; Berry, Laurence E.; Burns, Emma L.; Edworthy, Amanda; Evans, Maldwyn J.; Gibson, Rebecca; Heinsohn, Rob; Howland, Brett; Kay, Geoff; Munro, Nicola; Scheele, Ben C.; Stirnemann, Ingrid; Stojanovic, Dejan; Sweaney, Nici; Villaseñor, Nélida R.; Westgate, Martin J.

    2014-01-01

    Dispersal knowledge is essential for conservation management, and demand is growing. But are we accumulating dispersal knowledge at a pace that can meet the demand? To answer this question we tested for changes in dispersal data collection and use over time. Our systematic review of 655 conservation-related publications compared five topics: climate change, habitat restoration, population viability analysis, land planning (systematic conservation planning) and invasive species. We analysed temporal changes in the: (i) questions asked by dispersal-related research; (ii) methods used to study dispersal; (iii) the quality of dispersal data; (iv) extent that dispersal knowledge is lacking, and; (v) likely consequences of limited dispersal knowledge. Research questions have changed little over time; the same problems examined in the 1990s are still being addressed. The most common methods used to study dispersal were occupancy data, expert opinion and modelling, which often provided indirect, low quality information about dispersal. Although use of genetics for estimating dispersal has increased, new ecological and genetic methods for measuring dispersal are not yet widely adopted. Almost half of the papers identified knowledge gaps related to dispersal. Limited dispersal knowledge often made it impossible to discover ecological processes or compromised conservation outcomes. The quality of dispersal data used in climate change research has increased since the 1990s. In comparison, restoration ecology inadequately addresses large-scale process, whilst the gap between knowledge accumulation and growth in applications may be increasing in land planning. To overcome apparent stagnation in collection and use of dispersal knowledge, researchers need to: (i) improve the quality of available data using new approaches; (ii) understand the complementarities of different methods and; (iii) define the value of different kinds of dispersal information for supporting management decisions. Ambitious, multi-disciplinary research programs studying many species are critical for advancing dispersal research. PMID:24743447

  20. The trajectory of dispersal research in conservation biology. Systematic review.

    PubMed

    Driscoll, Don A; Banks, Sam C; Barton, Philip S; Ikin, Karen; Lentini, Pia; Lindenmayer, David B; Smith, Annabel L; Berry, Laurence E; Burns, Emma L; Edworthy, Amanda; Evans, Maldwyn J; Gibson, Rebecca; Heinsohn, Rob; Howland, Brett; Kay, Geoff; Munro, Nicola; Scheele, Ben C; Stirnemann, Ingrid; Stojanovic, Dejan; Sweaney, Nici; Villaseñor, Nélida R; Westgate, Martin J

    2014-01-01

    Dispersal knowledge is essential for conservation management, and demand is growing. But are we accumulating dispersal knowledge at a pace that can meet the demand? To answer this question we tested for changes in dispersal data collection and use over time. Our systematic review of 655 conservation-related publications compared five topics: climate change, habitat restoration, population viability analysis, land planning (systematic conservation planning) and invasive species. We analysed temporal changes in the: (i) questions asked by dispersal-related research; (ii) methods used to study dispersal; (iii) the quality of dispersal data; (iv) extent that dispersal knowledge is lacking, and; (v) likely consequences of limited dispersal knowledge. Research questions have changed little over time; the same problems examined in the 1990s are still being addressed. The most common methods used to study dispersal were occupancy data, expert opinion and modelling, which often provided indirect, low quality information about dispersal. Although use of genetics for estimating dispersal has increased, new ecological and genetic methods for measuring dispersal are not yet widely adopted. Almost half of the papers identified knowledge gaps related to dispersal. Limited dispersal knowledge often made it impossible to discover ecological processes or compromised conservation outcomes. The quality of dispersal data used in climate change research has increased since the 1990s. In comparison, restoration ecology inadequately addresses large-scale process, whilst the gap between knowledge accumulation and growth in applications may be increasing in land planning. To overcome apparent stagnation in collection and use of dispersal knowledge, researchers need to: (i) improve the quality of available data using new approaches; (ii) understand the complementarities of different methods and; (iii) define the value of different kinds of dispersal information for supporting management decisions. Ambitious, multi-disciplinary research programs studying many species are critical for advancing dispersal research.

  1. Facile approach to fabricate waterborne polyaniline nanocomposites with environmental benignity and high physical properties

    NASA Astrophysics Data System (ADS)

    Wang, Haihua; Wen, Huan; Hu, Bin; Fei, Guiqiang; Shen, Yiding; Sun, Liyu; Yang, Dong

    2017-03-01

    Waterborne polyaniline (PANI) dispersion has got extensive attention due to its environmental friendliness and good processability, whereas the storage stability and mechanical property have been the challenge for the waterborne PANI composites. Here we prepare for waterborne PANI dispersion through the chemical graft polymerisation of PANI into epichlorohydrin modified poly (vinyl alcohol) (EPVA). In comparison with waterborne PANI dispersion prepared through physical blend and in situ polymerisation, the storage stability of PANI-g-EPVA dispersion is greatly improved and the dispersion keeps stable for one year. In addition, the as-prepared PANI-g-EPVA film displays more uniform and smooth morphology, as well as enhanced phase compatibility. PANI is homogeneously distributed in the EPVA matrix on the nanoscale. PANI-g-EPVA displays different morphology at different aniline content. The electrical conductivity corresponds to 7.3 S/cm when only 30% PANI is incorporated into the composites, and then increases up to 20.83 S/cm with further increase in the aniline content. Simultaneously, the tensile strength increases from 35 MPa to 64 MPa. The as-prepared PANI-g-EPVA dispersion can be directly used as the conductive ink or coatings for cellulose fibre paper to prepare flexible conductive paper with high conductivity and mechanical property, which is also suitable for large scalable production.

  2. Theoretical Re-evaluations of Scaling Relations between SMBHs and Their Host Galaxies - 2. Importance of AGN Feedback Suggested by Stellar Age - Velocity Dispersion Relation

    NASA Astrophysics Data System (ADS)

    Shirakata, Hikari; Kawaguchi, Toshihiro; Okamoto, Takashi; Ishiyama, Tomoaki

    2017-09-01

    We present the galactic stellar age - velocity dispersion relation obtained from a semi-analytic model of galaxy formation. We divide galaxies into two populations: galaxies which have over-massive/under-massive black holes (BHs) against the best-fitting BH mass - velocity dispersion relation. We find that galaxies with larger velocity dispersion have older stellar ages. We also find that galaxies with over-massive BHs have older stellar ages. These results are consistent with observational results obtained from Martin-Navarro et al. (2016). We tested the model with weak AGN feedback and find that galaxies with larger velocity dispersion have a younger stellar age.

  3. A parametric study of the linear growth of magnetospheric EMIC waves in a hot plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Qi; Cao, Xing; Gu, Xudong, E-mail: guxudong@whu.edu.cn, E-mail: bbni@whu.edu.cn

    2016-06-15

    Since electromagnetic ion cyclotron (EMIC) waves in the terrestrial magnetosphere play a crucial role in the dynamic losses of relativistic electrons and energetic protons and in the ion heating, it is important to pursue a comprehensive understanding of the EMIC wave dispersion relation under realistic circumstances, which can shed significant light on the generation, amplification, and propagation of magnetospheric EMIC waves. The full kinetic linear dispersion relation is implemented in the present study to evaluate the linear growth of EMIC waves in a multi-ion (H{sup +}, He{sup +}, and O{sup +}) magnetospheric plasma that also consists of hot ring currentmore » protons. Introduction of anisotropic hot protons strongly modifies the EMIC wave dispersion surface and can result in the simultaneous growth of H{sup +}-, He{sup +}-, and O{sup +}-band EMIC emissions. Our parametric analysis demonstrates that an increase in the hot proton concentration can produce the generation of H{sup +}- and He{sup +}-band EMIC waves with higher possibility. While the excitation of H{sup +}-band emissions requires relatively larger temperature anisotropy of hot protons, He{sup +}-band emissions are more likely to be triggered in the plasmasphere or plasmaspheric plume where the background plasma is denser. In addition, the generation of He{sup +}-band waves is more sensitive to the variation of proton temperature than H{sup +}-band waves. Increase of cold heavy ion (He{sup +} and O{sup +}) density increases the H{sup +} cutoff frequency and therefore widens the frequency coverage of the stop band above the He{sup +} gyrofrequency, leading to a significant damping of H{sup +}-band EMIC waves. In contrast, O{sup +}-band EMIC waves characteristically exhibit the temporal growth much weaker than the other two bands, regardless of all considered variables, suggesting that O{sup +}-band emissions occur at a rate much lower than H{sup +}- and He{sup +}-band emissions, which is consistent with the observations.« less

  4. Effect of secondary flows on dispersion in finite-length channels at high Peclet numbers

    NASA Astrophysics Data System (ADS)

    Adrover, Alessandra

    2013-09-01

    We investigate the effects of secondary (transverse) flows on convection-dominated dispersion of pressure driven, open column laminar flow in a conduit with rectangular cross-section. We show that secondary flows significantly reduce dispersion (enhancing transverse diffusion) in Taylor-Aris regime [H. Zhao and H. H. Bau, "Effect of secondary flows on Taylor-Aris dispersion," Anal. Chem. 79, 7792-7798 (2007)], as well as in convection-controlled regime. In the convection-controlled dispersion regime (i.e., laminar dispersion in finite-length channel with axial flow at high Peclet numbers) the properties of the dispersion boundary layer and the values of the scaling exponents controlling the dependence of the moment hierarchy on the Peclet number m^{(n)}_out ˜ Pe_eff^{θ _n} are determined by the local near-wall behaviour of the axial velocity. The presence of transverse flows strongly modify the localization properties of the dispersion boundary layer and consequently the moment scaling exponents. Different secondary flows, electrokinetically induced and independent of the primary axial flow are considered. A complete scaling theory is presented for the nth order moment of the outlet chromatogram as a function of the axial Peclet number, the secondary flow's pattern and intensity. We show that some secondary flows (the corotating and the counter-rotating cavity flows) significantly reduce dispersion and m^{(n)}_out ˜ Pe_eff^{(n-1)/3}. No significant dispersion reduction is obtained with the cavity cross-flow m^{(n)}_out ˜ Pe_eff^{(n-1)/2}. The best result is obtained with the two full-motion counter-rotating cross-flows because m^{(n)}_out saturates towards a constant value. Theoretical results from scaling theory are strongly supported by numerical results obtained by Finite Element Method.

  5. Dispersion relations for 1D high-gain FELs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Webb, S.D.; Litvinenko, V.N.

    2010-08-23

    We present analytical results for the one-dimensional dispersion relation for high-gain FELs. Using kappa-n distributions, we obtain analytical relations between the dispersion relations for various order kappa distributions. Since an exact solution exists for the kappa-1 (Lorentzian) distribution, this provides some insight into the number of modes on the way to the Gaussian distribution.

  6. Southern Forestry Smoke Management Guidebook

    Treesearch

    Hugh E. Mobley; [senior compiler

    1976-01-01

    A system for predicting and modifying smoke concentrations from prescription fires is introduced. While limited to particulate matter and the more typical southern fuels, the system is for both simple and complex applications. Forestrysmoke constituents, variables affecting smoke production and dispersion, and new methods for estimating available fuel are presented....

  7. Invasion, establishment, and range expansion of two parasitic nematodes in the Canadian Arctic

    USDA-ARS?s Scientific Manuscript database

    Climate warming is modifying host-parasite interactions in the Arctic. Invasion of an arctic island by protostrongylid nematodes appears mediated by sporadic dispersal of muskoxen and seasonal migration by caribou from the Canadian mainland. A newly permissive environment likely facilitated initial ...

  8. Semiochemical lures reduce emigration and enhance pest control services in open-field predator augmentation

    USDA-ARS?s Scientific Manuscript database

    Augmentation biocontrol is a commercially viable pest management tactic in enclosed glasshouse environments, but is far less effective in open-field agriculture where newly released enemies rapidly disperse from release sites. We tested the potential for behavior-modifying semiochemicals to increase...

  9. Direct measurement of nonlinear dispersion relation for water surface waves

    NASA Astrophysics Data System (ADS)

    Magnus Arnesen Taklo, Tore; Trulsen, Karsten; Elias Krogstad, Harald; Gramstad, Odin; Nieto Borge, José Carlos; Jensen, Atle

    2013-04-01

    The linear dispersion relation for water surface waves is often taken for granted for the interpretation of wave measurements. High-resolution spatiotemporal measurements suitable for direct validation of the linear dispersion relation are on the other hand rarely available. While the imaging of the ocean surface with nautical radar does provide the desired spatiotemporal coverage, the interpretation of the radar images currently depends on the linear dispersion relation as a prerequisite, (Nieto Borge et al., 2004). Krogstad & Trulsen (2010) carried out numerical simulations with the nonlinear Schrödinger equation and its generalizations demonstrating that the nonlinear evolution of wave fields may render the linear dispersion relation inadequate for proper interpretation of observations, the reason being that the necessary domain of simultaneous coverage in space and time would allow significant nonlinear evolution. They found that components above the spectral peak can have larger phase and group velocities than anticipated by linear theory, and that the spectrum does not maintain a thin dispersion surface. We have run laboratory experiments and accurate numerical simulations designed to have sufficient resolution in space and time to deduce the dispersion relation directly. For a JONSWAP spectrum we find that the linear dispersion relation can be appropriate for the interpretation of spatiotemporal measurements. For a Gaussian spectrum with narrower bandwidth we find that the dynamic nonlinear evolution in space and time causes the directly measured dispersion relation to deviate from the linear dispersion surface in good agreement with our previous numerical predictions. This work has been supported by RCN grant 214556/F20. Krogstad, H. E. & Trulsen, K. (2010) Interpretations and observations of ocean wave spectra. Ocean Dynamics 60:973-991. Nieto Borge, J. C., Rodríguez, G., Hessner, K., Izquierdo, P. (2004) Inversion of marine radar images for surface wave analysis. J. Atmos. Ocean. Tech. 21:1291-1300.

  10. Effect of Acid Oxidation on the Dispersion Property of Multiwalled Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Goh, P. S.; Ismail, A. F.; Aziz, M.

    2009-06-01

    A means of dispersion of multiwalled carbon nanotube (MWCNT) via mixed acid (HNO3 and H2SO4) oxidation with different treatment durations was investigated through the solubility study of the treated carbon nanotubes in some common solvents. Fourier transformed infrared (FTIR) characterization of the reaction products revealed that the surface of MWCNTs was successfully functionalized with surface acidic groups. The acid-base titration demonstrated that the amount of surface acidic groups increased in parallel with the refluxing duration. The acid modified MWCNTs were found to be well dispersed in polar solvents, such as ethanol and water due to the presence of the hydrophilic acid functional groups on the surface of raw MWCNTs. Such chemical modification of carbon nanotube properties will pave the way towards the realistic applications in the nanotechnology world.

  11. Formation and enhanced biocidal activity of water-dispersable organic nanoparticles

    NASA Astrophysics Data System (ADS)

    Zhang, Haifei; Wang, Dong; Butler, Rachel; Campbell, Neil L.; Long, James; Tan, Bien; Duncalf, David J.; Foster, Alison J.; Hopkinson, Andrew; Taylor, David; Angus, Doris; Cooper, Andrew I.; Rannard, Steven P.

    2008-08-01

    Water-insoluble organic compounds are often used in aqueous environments in various pharmaceutical and consumer products. To overcome insolubility, the particles are dispersed in a medium during product formation, but large particles that are formed may affect product performance and safety. Many techniques have been used to produce nanodispersions-dispersions with nanometre-scale dimensions-that have properties similar to solutions. However, making nanodispersions requires complex processing, and it is difficult to achieve stability over long periods. Here we report a generic method for producing organic nanoparticles with a combination of modified emulsion-templating and freeze-drying. The dry powder composites formed using this method are highly porous, stable and form nanodispersions upon simple addition of water. Aqueous nanodispersions of Triclosan (a commercial antimicrobial agent) produced with this approach show greater activity than organic/aqueous solutions of Triclosan.

  12. Time evolution of giant molecular cloud mass functions with cloud-cloud collisions and gas resurrection in various environments

    NASA Astrophysics Data System (ADS)

    Kobayashi, M. I. N.; Inutsuka, S.; Kobayashi, H.; Hasegawa, K.

    We formulate the evolution equation for the giant molecular cloud (GMC) mass functions including self-growth of GMCs through the thermal instability, self-dispersal due to massive stars born in GMCs, cloud-cloud collisions (CCCs), and gas resurrection that replenishes the minimum-mass GMC population. The computed time evolutions obtained from this formulation suggest that the slope of GMC mass function in the mass range <105.5 Mȯ is governed by the ratio of GMC formation timescale to its dispersal timescale, and that the CCC process modifies only the massive end of the mass function. Our results also suggest that most of the dispersed gas contributes to the mass growth of pre-existing GMCs in arm regions whereas less than 60 per cent contributes in inter-arm regions.

  13. Trajectory and Relative Dispersion Case Studies and Statistics from the Green River Mesoscale Deformation, Dispersion, and Dissipation Program

    NASA Astrophysics Data System (ADS)

    Niemann, Brand Lee

    A major field program to study beta-mesoscale transport and dispersion over complex mountainous terrain was conducted during 1969 with the cooperation of three government agencies at the White Sands Missile Range in central Utah. The purpose of the program was to measure simultaneously on a large number of days the synoptic and mesoscale wind fields, the relative dispersion between pairs of particle trajectories and the rate of small scale turbulence dissipation. The field program included measurements during more than 60 days in the months of March, June, and November. The large quantity of data generated from this program has been processed and analyzed to provide case studies and statistics to evaluate and refine Lagrangian variable trajectory models. The case studies selected to illustrate the complexities of mesoscale transport and dispersion over complex terrain include those with terrain blocking, lee waves, and stagnation, as well as those with large vertical wind shears and horizontal wind field deformation. The statistics of relative particle dispersion were computed and compared to the classical theories of Richardson and Batchelor and the more recent theories of Lin and Kao among others. The relative particle dispersion was generally found to increase with travel time in the alongwind and crosswind directions, but in a more oscillatory than sustained or even accelerated manner as predicted by most theories, unless substantial wind shears or finite vertical separations between particles were present. The relative particle dispersion in the vertical was generally found to be small and bounded even when substantial vertical motions due to lee waves were present because of the limiting effect of stable temperature stratification. The data show that velocity shears have a more significant effect than turbulence on relative particle dispersion and that sufficient turbulence may not always be present above the planetary boundary layer for "wind direction shear induced dispersion" to become effective horizontal dispersion by vertical mixing over the shear layer. The statistics of relative particle dispersion in the three component directions have been summarized and stratified by flow parameters for use in practical prediction problems.

  14. The utilization of SiNWs/AuNPs-modified indium tin oxide (ITO) in fabrication of electrochemical DNA sensor.

    PubMed

    Rashid, Jahwarhar Izuan Abdul; Yusof, Nor Azah; Abdullah, Jaafar; Hashim, Uda; Hajian, Reza

    2014-12-01

    This work describes the incorporation of SiNWs/AuNPs composite as a sensing material for DNA detection on indium tin-oxide (ITO) coated glass slide. The morphology of SiNWs/AuNPs composite as the modifier layer on ITO was studied by scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX). The morphological studies clearly showed that SiNWs were successfully decorated with 20 nm-AuNPs using self-assembly monolayer (SAM) technique. The effective surface area for SiNWs/AuNPs-modified ITO enhanced about 10 times compared with bare ITO electrode. SiNWs/AuNPs nanocomposite was further explored as a matrix for DNA probe immobilization in detection of dengue virus as a bio-sensing model to evaluate its performance in electrochemical sensors. The hybridization of complementary DNA was monitored by differential pulse voltammetry (DPV) using methylene blue (MB) as the redox indicator. The fabricated biosensor was able to discriminate significantly complementary, non-complementary and single-base mismatch oligonucleotides. The electrochemical biosensor was sensitive to target DNA related to dengue virus in the range of 9.0-178.0 ng/ml with detection limit of 3.5 ng/ml. In addition, SiNWs/AuNPs-modified ITO, regenerated up to 8 times and its stability was up to 10 weeks at 4°C in silica gel. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Dispersal patterns of red foxes relative to population density

    USGS Publications Warehouse

    Allen, Stephen H.; Sargeant, Alan B.

    1993-01-01

    Factors affecting red fox (Vulpes vulpes) dispersal patterns are poorly understood but warranted investigation because of the role of dispersal in rebuilding depleted populations and transmission of diseases. We examined dispersal patterns of red foxes in North Dakota based on recoveries of 363 of 854 foxes tagged as pups and relative to fox density. Foxes were recovered up to 8.6 years after tagging; 79% were trapped or shot. Straight-line distances between tagging and recovery locations ranged from 0 to 302 km. Mean recovery distances increased with age and were greater for males than females, but longest individual recovery distances were by females. Dispersal distances were not related to population density for males (P = 0.36) or females (P = 0.96). The proportion of males recovered that dispersed was inversely related to population density (r = -0.94; n = 5; P = 0.02), but not the proportion of females (r = -0.49; n = 5; P = 0.40). Dispersal directions were not uniform for either males (P = 0.003) or females (P = 0.006); littermates tended to disperse in similar directions (P = 0.09). A 4-lane interstate highway altered dispersal directions (P = 0.001). Dispersal is a strong innate behavior of red foxes (especially males) that results in many individuals of both sexes traveling far from natal areas. Because dispersal distance was unaffected by fox density, populations can be rebuilt and diseases transmitted long distances regardless of fox abundance.

  16. Synthesis, stabilization, and characterization of metal nanoparticles

    NASA Astrophysics Data System (ADS)

    White, Gregory Von, II

    Wet chemical synthesis techniques offer the ability to control various nanoparticle characteristics including size, shape, dispersibility in both aqueous and organic solvents, and tailored surface chemistries appropriate for different applications. Large quantities of stabilizing ligands or surfactants are often required during synthesis to achieve these nanoparticle characteristics. Unfortunately, excess reaction byproducts, surfactants, and ligands remaining in solution after nanoparticle synthesis can impede application, and therefore post-synthesis purification must be employed. A liquid-liquid solvent/antisolvent pair (typically ethanol/toluene or ethanol/hexane for gold nanoparticles, GNPs) can be used to both purify and size-selectively fractionate hydrophobically modified nanoparticles. Alternatively, carbon dioxide may be used in place of a liquid antisolvent, a "green" approach, enabling both nanoparticle purification and size-selective fractionation while simultaneously eliminating mixed solvent waste and allowing solvent recycle. We have used small-angle neutron scattering (SANS) to investigate the ligand structure and composition response of alkanethiol modified gold and silver nanoparticles at varying anti-solvent conditions (CO2 or ethanol). The ligand lengths and ligand solvation for alkanethiol gold and silver NPs were found to decrease with increased antisolvent concentrations directly impacting their dispersibility in solution. Calculated Flory-Huggins interaction parameters support our SANS study for dodecanethiol dispersibility in the mixed organic solvents. This research has led to a greater understanding of the liquid-liquid precipitation process for metal nanoparticles, and provides critical results for future interaction energy modeling.

  17. Application of London-type dispersion corrections to the solid-state density functional theory simulation of the terahertz spectra of crystalline pharmaceuticals.

    PubMed

    King, Matthew D; Buchanan, William D; Korter, Timothy M

    2011-03-14

    The effects of applying an empirical dispersion correction to solid-state density functional theory methods were evaluated in the simulation of the crystal structure and low-frequency (10 to 90 cm(-1)) terahertz spectrum of the non-steroidal anti-inflammatory drug, naproxen. The naproxen molecular crystal is bound largely by weak London force interactions, as well as by more prominent interactions such as hydrogen bonding, and thus serves as a good model for the assessment of the pair-wise dispersion correction term in systems influenced by intermolecular interactions of various strengths. Modifications to the dispersion parameters were tested in both fully optimized unit cell dimensions and those determined by X-ray crystallography, with subsequent simulations of the THz spectrum being performed. Use of the unmodified PBE density functional leads to an unrealistic expansion of the unit cell volume and the poor representation of the THz spectrum. Inclusion of a modified dispersion correction enabled a high-quality simulation of the THz spectrum and crystal structure of naproxen to be achieved without the need for artificially constraining the unit cell dimensions.

  18. Utilization of highly purified single wall carbon nanotubes dispersed in polymer thin films for an improved performance of an electrochemical glucose sensor.

    PubMed

    Goornavar, Virupaxi; Jeffers, Robert; Biradar, Santoshkumar; Ramesh, Govindarajan T

    2014-07-01

    In this work we report the improved performance an electrochemical glucose sensor based on a glassy carbon electrode (GCE) that has been modified with highly purified single wall carbon nanotubes (SWCNTs) dispersed in polyethyleneimine (PEI), polyethylene glycol (PEG) and polypyrrole (PPy). The single wall carbon nanotubes were purified by both thermal and chemical oxidation to achieve maximum purity of ~98% with no damage to the tubes. The SWCNTs were then dispersed by sonication in three different organic polymers (1.0mg/ml SWCNT in 1.0mg/ml of organic polymer). The stable suspension was coated onto the GCE and electrochemical characterization was performed by Cyclic Voltammetry (CV) and Amperometry. The electroactive enzyme glucose oxidase (GOx) was immobilized on the surface of the GCE/(organic polymer-SWCNT) electrode. The amperometric detection of glucose was carried out at 0.7 V versus Ag/AgCl. The GCE/(SWCNT-PEI, PEG, PPY) gave a detection limit of 0.2,633 μM, 0.434 μM, and 0.9,617 μM, and sensitivities of 0.2411 ± 0.0033 μA mM(-1), r(2)=0.9984, 0.08164 ± 0.001129 μA mM(-1), r(2)=0.9975, 0.04189 ± 0.00087 μA mM(-1), and r(2)=0.9944 respectively and a response time of less than 5s. The use of purified SWCNTs has several advantages, including fast electron transfer rate and stability in the immobilized enzyme. The significant enhancement of the SWCNT modified electrode as a glucose sensor can be attributed to the superior conductivity and large surface area of the well dispersed purified SWCNTs. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Consistent hydrodynamic theory of chiral electrons in Weyl semimetals

    NASA Astrophysics Data System (ADS)

    Gorbar, E. V.; Miransky, V. A.; Shovkovy, I. A.; Sukhachov, P. O.

    2018-03-01

    The complete set of Maxwell's and hydrodynamic equations for the chiral electrons in Weyl semimetals is presented. The formulation of the Euler equation takes into account the explicit breaking of the Galilean invariance by the ion lattice. It is shown that the Chern-Simons (or Bardeen-Zumino) contributions should be added to the electric current and charge densities in Maxwell's equations that provide the information on the separation of Weyl nodes in energy and momentum. On the other hand, these topological contributions do not directly affect the Euler equation and the energy conservation relation for the electron fluid. By making use of the proposed consistent hydrodynamic framework, we show that the Chern-Simons contributions strongly modify the dispersion relations of collective modes in Weyl semimetals. This is reflected, in particular, in the existence of distinctive anomalous Hall waves, which are sustained by the local anomalous Hall currents.

  20. Temperature Effect on the Dispersion Relation of Nonequilibrium Exciton-Polariton Condensates in a CuBr Microcavity

    NASA Astrophysics Data System (ADS)

    Nakayama, Masaaki; Tamura, Kazuki

    2018-05-01

    We observed the dispersion relation of nonequilibrium exciton-polariton condensates at 10 and 80 K in a CuBr microcavity using angle-resolved photoluminescence spectroscopy. The dispersion relation consists of dispersionless and dispersive parts in small and large in-plane wave vector regions, respectively. It was found that the cutoff wave vector of the dispersionless region at 80 K is larger than that at 10 K. From quantitative analysis of the dispersion relation based on a theory for nonequilibrium condensation, we show that the larger cutoff wave vector results from an increase in the effective relaxation rate of the Bogoliubov mode in equilibrium condensation; namely, a degree of nonequilibrium at 80 K is higher than that at 10 K.

  1. Stability of gravito-coupled complex gyratory astrofluids

    NASA Astrophysics Data System (ADS)

    Kumar Karmakar, Pralay; Das, Papari

    2017-07-01

    We analyze the gravitational instability of complex rotating astrofluids in the presence of dynamic role of dark matter in a homogeneous hydrostatic equilibrium framework. The effects of the lowest-order fluid viscoelasticity, Coriolis force, fluid turbulence and inter-layer frictional coupling dynamics are concurrently considered in spatially-flat geometry. The Coriolis rotation is relative to the center of the entire fluid mass distribution, contributed by both the gyratory bright (visible) and dark (invisible) sectors, conjugated via the mutual gravitational interaction. The turbulence effects are included via the modified Larson equation of state. We use a regular Fourier-based linear perturbation analysis over the rotating fluid field equations to obtain a unique form of quartic dispersion relation with variable coefficients. We numerically carry out the dispersion analysis in two extreme limits: hydrodynamic (low-frequency) and kinetic (high-frequency) regimes. It is demonstrated that, in the former regime, the gas as well as dark matter rotations have stabilizing effects on the Jeans instability of the bi-fluidic admixture. In contrast, in the latter, the rotations play destabilizing roles on the instability. An interesting feature noted here is that the magnitude of the group velocity of the fluctuations throughout increases with both the gas and dark matter rotation frequencies, and vice-versa. We, finally, hope that the obtained results could be helpful in understanding the top-down kinetic mechanisms of bounded structure formation via gravitational collapse dynamics.

  2. A nonlinear dynamics for the scalar field in Randers spacetime

    NASA Astrophysics Data System (ADS)

    Silva, J. E. G.; Maluf, R. V.; Almeida, C. A. S.

    2017-03-01

    We investigate the properties of a real scalar field in the Finslerian Randers spacetime, where the local Lorentz violation is driven by a geometrical background vector. We propose a dynamics for the scalar field by a minimal coupling of the scalar field and the Finsler metric. The coupling is intrinsically defined on the Randers spacetime, and it leads to a non-canonical kinetic term for the scalar field. The nonlinear dynamics can be split into a linear and nonlinear regimes, which depend perturbatively on the even and odd powers of the Lorentz-violating parameter, respectively. We analyze the plane-waves solutions and the modified dispersion relations, and it turns out that the spectrum is free of tachyons up to second-order.

  3. Slowing down the speed of light using an electromagnetically-induced-transparency mechanism in a modified reservoir

    NASA Astrophysics Data System (ADS)

    Liu, Ronggang; Liu, Tong; Wang, Yingying; Li, Yujie; Gai, Bingzheng

    2017-11-01

    We propose an effective method to achieve extremely slow light by using both the mechanism of electromagnetically induced transparency (EIT) and the localization of a coupled cavity waveguide (CCW). Based on quantum mechanics theory and the dispersion relation of a CCW, we derive a group-velocity formula that reveals both the effects of the EIT and CCW. Results show that ultralow light velocity at the order of several meters per second or even static light, could be obtained feasibly. In comparison with the EIT mechanism in a background of vacuum, this proposed method is more effective and realistic to achieve extremely slow light. And it exhibits potential values in the field of light storage.

  4. Twisted waves and instabilities in a permeating dusty plasma

    NASA Astrophysics Data System (ADS)

    Bukhari, S.; Ali, S.; Khan, S. A.; Mendonca, J. T.

    2018-04-01

    New features of the twisted dusty plasma modes and associated instabilities are investigated in permeating plasmas. Using the Vlasov-Poisson model equations, a generalized dispersion relation is obtained for a Maxwellian distributed plasma to analyse the dust-acoustic and dust-ion-acoustic waves with finite orbital angular momentum (OAM) states. Existence conditions for damping/growth rates are discussed and showed significant modifications in twisted dusty modes as compared to straight propagating dusty modes. Numerically, the instability growth rate, which depends on particle streaming and twist effects in the wave potential, is significantly modified due to the Laguerre-Gaussian profiles. Relevance of the study to wave excitations due to penetration of solar wind into cometary clouds or interstellar dusty plasmas is discussed.

  5. The Simple Metals and New Models of the Interacting-Electron-Gas Type: I. Anomalous Plasmon Dispersion Relations in Heavy Alkali Metals

    NASA Astrophysics Data System (ADS)

    Okuda, Takashi; Horio, Kohji; Ohmura, Yoshihiro; Mizuno, Yukio

    2018-06-01

    The well-known interacting-electron-gas model of metallic states is modified by replacing the Coulomb interaction by a truncated one to weaken the repulsive force between electrons at short distances. The new model is applied to the so-called simple metals and is found far superior to the old one. Most of the calculations are carried out successfully on the basis of the random-phase-approximation (RPA), which is known much too poor for the old familiar model. In the present paper the numerical value of the new parameter peculiar to the new model is determined systematically with the help of the observed plasmon spectrum for each metal.

  6. 3D effects on transport and plasma control in the TJ-II stellarator

    NASA Astrophysics Data System (ADS)

    Castejón, F.; Alegre, D.; Alonso, A.; Alonso, J.; Ascasíbar, E.; Baciero, A.; de Bustos, A.; Baiao, D.; Barcala, J. M.; Blanco, E.; Borchardt, M.; Botija, J.; Cabrera, S.; de la Cal, E.; Calvo, I.; Cappa, A.; Carrasco, R.; Castro, R.; De Castro, A.; Catalán, G.; Chmyga, A. A.; Chamorro, M.; Dinklage, A.; Eliseev, L.; Estrada, T.; Fernández-Marina, F.; Fontdecaba, J. M.; García, L.; García-Cortés, I.; García-Gómez, R.; García-Regaña, J. M.; Guasp, J.; Hatzky, R.; Hernanz, J.; Hernández, J.; Herranz, J.; Hidalgo, C.; Hollmann, E.; Jiménez-Denche, A.; Kirpitchev, I.; Kleiber, R.; Komarov, A. D.; Kozachoek, A. S.; Krupnik, L.; Lapayese, F.; Liniers, M.; Liu, B.; López-Bruna, D.; López-Fraguas, A.; López-Miranda, B.; López-Razola, J.; Losada, U.; de la Luna, E.; Martín de Aguilera, A.; Martín-Díaz, F.; Martínez, M.; Martín-Gómez, G.; Martín-Hernández, F.; Martín-Rojo, A. B.; Martínez-Fernández, J.; McCarthy, K. J.; Medina, F.; Medrano, M.; Melón, L.; Melnikov, A. V.; Méndez, P.; Merino, R.; Miguel, F. J.; van Milligen, B.; Molinero, A.; Momo, B.; Monreal, P.; Moreno, R.; Navarro, M.; Narushima, Y.; Nedzelskiy, I. S.; Ochando, M. A.; Olivares, J.; Oyarzábal, E.; de Pablos, J. L.; Pacios, L.; Panadero, N.; Pastor, I.; Pedrosa, M. A.; de la Peña, A.; Pereira, A.; Petrov, A.; Petrov, S.; Portas, A. B.; Poveda, E.; Rattá, G. A.; Rincón, E.; Ríos, L.; Rodríguez, C.; Rojo, B.; Ros, A.; Sánchez, J.; Sánchez, M.; Sánchez, E.; Sánchez-Sarabia, E.; Sarksian, K.; Satake, S.; Sebastián, J. A.; Silva, C.; Solano, E. R.; Soleto, A.; Sun, B. J.; Tabarés, F. L.; Tafalla, D.; Tallents, S.; Tolkachev, A.; Vega, J.; Velasco, G.; Velasco, J. L.; Wolfers, G.; Yokoyama, M.; Zurro, B.

    2017-10-01

    The effects of 3D geometry are explored in TJ-II from two relevant points of view: neoclassical transport and modification of stability and dispersion relation of waves. Particle fuelling and impurity transport are studied considering the 3D transport properties, paying attention to both neoclassical transport and other possible mechanisms. The effects of the 3D magnetic topology on stability, confinement and Alfvén Eigenmodes properties are also explored, showing the possibility of controlling Alfvén modes by modifying the configuration; the onset of modes similar to geodesic acoustic modes are driven by fast electrons or fast ions; and the weak effect of magnetic well on confinement. Finally, we show innovative power exhaust scenarios using liquid metals.

  7. 77 FR 66585 - Atlantic Coastal Fisheries Cooperative Management Act Provisions; General Provisions for Domestic...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-06

    ... 11 commercial fishing vessels from the following Federal American lobster regulations: (1) Gear... patterns of larval dispersal and settlement in the offshore Lobster Management Area 3 (Area 3), 11 federally permitted vessels would utilize a maximum combined total of 50 modified lobster traps to target...

  8. LONG-DISTANCE GM POLLEN MOVEMENT OF CREEPING BENTGRASS USING MODELED WIND TRAJECTORY ANALYSIS

    EPA Science Inventory

    The importance of understanding the role of atmospheric conditions in pollen dispersal has grown in recent years with increased field-testing of genetically modified (GM) crop plants. An atmospheric model was used to characterize wind trajectories at 10 m and 100 m above GM polle...

  9. Multidentate zwitterionic chitosan oligosaccharide modified gold nanoparticles: stability, biocompatibility and cell interactions

    NASA Astrophysics Data System (ADS)

    Liu, Xiangsheng; Huang, Haoyuan; Liu, Gongyan; Zhou, Wenbo; Chen, Yangjun; Jin, Qiao; Ji, Jian

    2013-04-01

    Surface engineering of nanoparticles plays an essential role in their colloidal stability, biocompatibility and interaction with biosystems. In this study, a novel multidentate zwitterionic biopolymer derivative is obtained from conjugating dithiolane lipoic acid and zwitterionic acryloyloxyethyl phosphorylcholine to the chitosan oligosaccharide backbone. Gold nanoparticles (AuNPs) modified by this polymer exhibit remarkable colloidal stabilities under extreme conditions including high salt conditions, wide pH range and serum or plasma containing media. The AuNPs also show strong resistance to competition from dithiothreitol (as high as 1.5 M). Moreover, the modified AuNPs demonstrate low cytotoxicity investigated by both MTT and LDH assays, and good hemocompatibility evaluated by hemolysis of human red blood cells. In addition, the intracellular fate of AuNPs was investigated by ICP-MS and TEM. It showed that the AuNPs are uptaken by cells in a concentration dependent manner, and they can escape from endosomes/lysosomes to cytosol and tend to accumulate around the nucleus after 24 h incubation but few of them are excreted out of the cells. Gold nanorods are also stabilized by this ligand, which demonstrates robust dispersion stability and excellent hemocompatibility. This kind of multidentate zwitterionic chitosan derivative could be widely used for stabilizing other inorganic nanoparticles, which will greatly improve their performance in a variety of bio-related applications.Surface engineering of nanoparticles plays an essential role in their colloidal stability, biocompatibility and interaction with biosystems. In this study, a novel multidentate zwitterionic biopolymer derivative is obtained from conjugating dithiolane lipoic acid and zwitterionic acryloyloxyethyl phosphorylcholine to the chitosan oligosaccharide backbone. Gold nanoparticles (AuNPs) modified by this polymer exhibit remarkable colloidal stabilities under extreme conditions including high salt conditions, wide pH range and serum or plasma containing media. The AuNPs also show strong resistance to competition from dithiothreitol (as high as 1.5 M). Moreover, the modified AuNPs demonstrate low cytotoxicity investigated by both MTT and LDH assays, and good hemocompatibility evaluated by hemolysis of human red blood cells. In addition, the intracellular fate of AuNPs was investigated by ICP-MS and TEM. It showed that the AuNPs are uptaken by cells in a concentration dependent manner, and they can escape from endosomes/lysosomes to cytosol and tend to accumulate around the nucleus after 24 h incubation but few of them are excreted out of the cells. Gold nanorods are also stabilized by this ligand, which demonstrates robust dispersion stability and excellent hemocompatibility. This kind of multidentate zwitterionic chitosan derivative could be widely used for stabilizing other inorganic nanoparticles, which will greatly improve their performance in a variety of bio-related applications. Electronic supplementary information (ESI) available: More experimental details for the synthesis of AuNPs and AuNRs. Fig. S1, 1H NMR spectrum of LA-CSO-PC and Fig. S2, FT-IR spectrum of AuNP-LA-CSO-PC. See DOI: 10.1039/c3nr00284e

  10. Mechanism for Tuning the Hydrophobicity of Microfibrillated Cellulose Films by Controlled Thermal Release of Encapsulated Wax

    PubMed Central

    Rastogi, Vibhore Kumar; Stanssens, Dirk; Samyn, Pieter

    2014-01-01

    Although films of microfibrillated cellulose (MFC) have good oxygen barrier properties due to its fine network structure, properties strongly deteriorate after absorption of water. In this work, a new approach has been followed for actively tuning the water resistance of a MFC fiber network by the inclusion of dispersed organic nanoparticles with encapsulated plant wax. The modified pulp suspensions have been casted into films and were subsequently cured at 40 to 220 °C. As such, static water contact angles can be specifically tuned from 120 to 150° by selection of the curing temperature in relation with the intrinsic transition temperatures of the modified pulp, as determined by thermal analysis. The appearance of encapsulated wax after curing was followed by a combination of morphological analysis, infrared spectroscopy and Raman mapping, showing balanced mechanisms of progressive release and migration of wax into the fiber network controlling the surface properties and water contact angles. Finally, the appearance of nanoparticles covered with a thin wax layer after complete thermal release provides highest hydrophobicity. PMID:28788241

  11. Instability of low viscosity elliptic jets with varying aspect ratio

    NASA Astrophysics Data System (ADS)

    Kulkarni, Varun

    2011-11-01

    In this work an analytical description of capillary instability of liquid elliptic jets with varying aspect ratio is presented. Linear stability analysis in the long wave approximation with negligible gravitational effects is employed. Elliptic cylindrical coordinate system is used and perturbation velocity potential substituted in the Laplace equation to yield Mathieu and Modified Mathieu differential equations. The dispersion relation for elliptical orifices of any aspect ratio is derived and validated for axisymmetric disturbances with m = 0, in the limit of aspect ratio, μ = 1 , i.e. the case of a circular jet. As Mathieu functions and Modified Mathieu function solutions converge to Bessel's functions in this limit the Rayleigh-Plateau instability criterion is met. Also, stability of solutions corresponding to asymmetric disturbances for the kink mode, m = 1 and flute modes corresponding to m >= 2 is discussed. Experimental data from earlier works is used to compare observations made for elliptical orifices with μ ≠ 1 . This novel approach aims at generalizing the results pertaining to cylindrical jets with circular cross section leading to better understanding of breakup in liquid jets of various geometries.

  12. Dielectric Dispersion, Diffuse Phase Transition, and Electrical Properties of BCT-BZT Ceramics Sintered at a Low-Temperature

    NASA Astrophysics Data System (ADS)

    Tian, Yongshang; Gong, Yansheng; Meng, Dawei; Li, Yuanjian; Kuang, Boya

    2015-08-01

    Lead-free ceramics 0.50Ba0.9Ca0.1TiO3-0.50BaTi1- x Zr x O3 (BCT-BZT) were prepared via sintering BCT and BZT nanoparticles, which were synthesized using a modified Pechini polymeric precursor method, at a low temperature of 1260°C. The relative densities of the ceramics prepared with different zirconium contents ( x) were all above 95.3%, reaching a maximum of 97% when x = 0.08. X-ray diffraction results confirmed the onset of phase transformation from orthorhombic to rhombohedral symmetry with increasing zirconium contents, and the polymorphic phase transition was observed at x = 0.10. The dielectric dispersion, diffuse phase transition (DPT), and relaxor-like ferroelectric characteristics as a function of zirconium content were thoroughly studied. Optimum physical properties, remnant polarization ( P r) = 16.4 μC/cm2, piezoelectric constant ( d 33) = ~240 pC/N, and electromechanical coupling factor ( k p) = 0.22, were obtained at x = 0.10. The findings of the current DPT behavior study of BCT-BZT ceramics are believed to be insightful to the development of ferroelectric materials.

  13. One pot synthesis of magnetic graphene/carbon nanotube composites as magnetic dispersive solid-phase extraction adsorbent for rapid determination of oxytetracycline in sewage water.

    PubMed

    Sun, Yunyun; Tian, Jing; Wang, Lu; Yan, Hongyuan; Qiao, Fengxia; Qiao, Xiaoqiang

    2015-11-27

    A simple and time-saving one pot synthesis of magnetic graphene/carbon nanotube composites (M-G/CNTs) was developed that could avoid the tedious drying process of graphite oxide, and G/CNTs were modified by Fe3O4 nanoparticles in the reduction procedure. It contributed to a shorten duration of the synthesis process of M-G/CNTs. The obtained M-G/CNTs were characterized and the results indicated that CNTs and Fe3O4 nanoparticles were served as spacer distributing to the layers of graphene, which was beneficial for enlarging surface area and improving extraction efficiency. Moreover, M-G/CNTs showed good magnetic property and outstanding thermal stability. Then M-G/CNTs were applied as adsorbent of magnetic dispersive solid-phase extraction for rapid extraction and determination of oxytetracycline in sewage water. Under the optimum conditions, good linearity was obtained in the range of 20-800ngmL(-1) and the recoveries were ranged from 95.5% to 112.5% with relative standard deviations less than 5.8%. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Corresponding-states behavior of SPC/E-based modified (bent and hybrid) water models

    NASA Astrophysics Data System (ADS)

    Weiss, Volker C.

    2017-02-01

    The remarkable and sometimes anomalous properties of water can be traced back at the molecular level to the tetrahedral coordination of molecules due to the ability of a water molecule to form four hydrogen bonds to its neighbors; this feature allows for the formation of a network that greatly influences the thermodynamic behavior. Computer simulations are becoming increasingly important for our understanding of water. Molecular models of water, such as SPC/E, are needed for this purpose, and they have proved to capture many important features of real water. Modifications of the SPC/E model have been proposed, some changing the H-O-H angle (bent models) and others increasing the importance of dispersion interactions (hybrid models), to study the structural features that set water apart from other polar fluids and from simple fluids such as argon. Here, we focus on the properties at liquid-vapor equilibrium and study the coexistence curve, the interfacial tension, and the vapor pressure in a corresponding-states approach. In particular, we calculate Guggenheim's ratio for the reduced apparent enthalpy of vaporization and Guldberg's ratio for the reduced normal boiling point. This analysis offers additional insight from a more macroscopic, thermodynamic perspective and augments that which has already been learned at the molecular level from simulations. In the hybrid models, the relative importance of dispersion interactions is increased, which turns the modified water into a Lennard-Jones-like fluid. Consequently, in a corresponding-states framework, the typical behavior of simple fluids, such as argon, is seen to be approached asymptotically. For the bent models, decreasing the bond angle turns the model essentially into a polar diatomic fluid in which the particles form linear molecular arrangements; as a consequence, characteristic features of the corresponding-states behavior of hydrogen halides emerge.

  15. Conduction phenomenon of Al{sup 3+} modified lead free (Na{sub 0.5}Bi{sub 0.5}){sub 0.92}Ba{sub 0.08}TiO{sub 3} electroceramics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borkar, Hitesh; Kumar, Ashok, E-mail: ashok553@nplindia.org

    2016-05-23

    Choice of proper dopants at A or B-site of ABO{sub 3} perovskite structure can modify the morphotropic phase boundary (MPB), and hence functional properties of polar systems. The chemical nature of donor or acceptor will significantly influence the fundamental properties. Lead-free ferroelectrics have vast potential to replace the lead-based ceramics. The (Na{sub 0.5}Bi{sub 0.5}){sub 1-x}Ba{sub x}TiO{sub 3} (NBT-BT) (at x=0.08) near MPB with small substitution of trivalent cations (Al{sup 3+}) has been synthesized by solid state reaction route. The aim to choose the trivalent cations (Al{sup 3+}) was its relatively smaller radii than that of Bi{sup 3+} cations to developmore » the antipolar phases in the ferroelectric ceramic. Structural, morphological and elemental compositional analyses were studied by X-ray diffraction (XRD), Secondary electron microscope (SEM) and Energy-dispersive X-ray spectroscopy (EDAX), respectively. Ferroelectric studies were carried out on various compositions of (Na{sub 0.46}Bi{sub 0.46-x}Al{sub x}Ba{sub 0.08})TiO{sub 3} (NBAT-BT) (x=0, 0.05, 0.07, 0.10) electroceramics. It was observed that with increase in concentration of Al the ferroelectricity state changes from soft to hard. Temperature dependent dielectric spectroscopy shows broad dielectric dispersion. The Al doping diminishes the relaxor behavior of NBT-BT ceramics. Impedance spectroscopy shows that electrical resistivity and relaxation frequency decreases with increase in Al-concentration. Modulus spectra indicate that Al significantly change the bulk capacitance of NBT-BT.« less

  16. Geometrically induced surface polaritons in planar nanostructured metallic cavities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davids, P. S.; Intravia, F; Dalvit, Diego A.

    2014-01-14

    We examine the modal structure and dispersion of periodically nanostructured planar metallic cavities within the scattering matrix formulation. By nanostructuring a metallic grating in a planar cavity, artificial surface excitations or spoof plasmon modes are induced with dispersion determined by the periodicity and geometric characteristics of the grating. These spoof surface plasmon modes are shown to give rise to new cavity polaritonic modes at short mirror separations that modify the density of modes in nanostructured cavities. The increased modal density of states form cavity polarirons have a large impact on the fluctuation induced electromagnetic forces and enhanced hear transfer atmore » short separations.« less

  17. Depth-enhanced three-dimensional-two-dimensional convertible display based on modified integral imaging.

    PubMed

    Park, Jae-Hyeung; Kim, Hak-Rin; Kim, Yunhee; Kim, Joohwan; Hong, Jisoo; Lee, Sin-Doo; Lee, Byoungho

    2004-12-01

    A depth-enhanced three-dimensional-two-dimensional convertible display that uses a polymer-dispersed liquid crystal based on the principle of integral imaging is proposed. In the proposed method, a lens array is located behind a transmission-type display panel to form an array of point-light sources, and a polymer-dispersed liquid crystal is electrically controlled to pass or to scatter light coming from these point-light sources. Therefore, three-dimensional-two-dimensional conversion is accomplished electrically without any mechanical movement. Moreover, the nonimaging structure of the proposed method increases the expressible depth range considerably. We explain the method of operation and present experimental results.

  18. Female-biased dispersal alone can reduce the occurrence of inbreeding in black grouse (Tetrao tetrix).

    PubMed

    Lebigre, C; Alatalo, R V; Siitari, H

    2010-05-01

    Although inbreeding depression and mechanisms for kin recognition have been described in natural bird populations, inbreeding avoidance through mate choice has rarely been reported suggesting that sex-biased dispersal is the main mechanism reducing the risks of inbreeding. However, a full understanding of the effect of dispersal on the occurrence of inbred matings requires estimating the inbreeding risks prior to dispersal. Combining pairwise relatedness measures and kinship assignments, we investigated in black grouse whether the observed occurrence of inbred matings was explained by active kin discrimination or by female-biased dispersal. In this large continuous population, copulations between close relatives were rare. As female mate choice was random for relatedness, females with more relatives in the local flock tended to mate with genetically more similar males. To quantify the initial risks of inbreeding, we measured the relatedness to the males of females captured in their parental flock and virtually translocated female hatchlings in their parental and to more distant flocks. These tests indicated that dispersal decreased the likelihood of mating with relatives and that philopatric females had higher inbreeding risks than the actual breeding females. As females do not discriminate against relatives, the few inbred matings were probably due to the variance in female dispersal propensity and dispersal distance. Our results support the view that kin discrimination mate choice is of little value if dispersal effectively reduces the risks of inbreeding.

  19. Computational identification of novel biochemical systems involved in oxidation, glycosylation and other complex modifications of bases in DNA.

    PubMed

    Iyer, Lakshminarayan M; Zhang, Dapeng; Burroughs, A Maxwell; Aravind, L

    2013-09-01

    Discovery of the TET/JBP family of dioxygenases that modify bases in DNA has sparked considerable interest in novel DNA base modifications and their biological roles. Using sensitive sequence and structure analyses combined with contextual information from comparative genomics, we computationally characterize over 12 novel biochemical systems for DNA modifications. We predict previously unidentified enzymes, such as the kinetoplastid J-base generating glycosyltransferase (and its homolog GREB1), the catalytic specificity of bacteriophage TET/JBP proteins and their role in complex DNA base modifications. We also predict the enzymes involved in synthesis of hypermodified bases such as alpha-glutamylthymine and alpha-putrescinylthymine that have remained enigmatic for several decades. Moreover, the current analysis suggests that bacteriophages and certain nucleo-cytoplasmic large DNA viruses contain an unexpectedly diverse range of DNA modification systems, in addition to those using previously characterized enzymes such as Dam, Dcm, TET/JBP, pyrimidine hydroxymethylases, Mom and glycosyltransferases. These include enzymes generating modified bases such as deazaguanines related to queuine and archaeosine, pyrimidines comparable with lysidine, those derived using modified S-adenosyl methionine derivatives and those using TET/JBP-generated hydroxymethyl pyrimidines as biosynthetic starting points. We present evidence that some of these modification systems are also widely dispersed across prokaryotes and certain eukaryotes such as basidiomycetes, chlorophyte and stramenopile alga, where they could serve as novel epigenetic marks for regulation or discrimination of self from non-self DNA. Our study extends the role of the PUA-like fold domains in recognition of modified nucleic acids and predicts versions of the ASCH and EVE domains to be novel 'readers' of modified bases in DNA. These results open opportunities for the investigation of the biology of these systems and their use in biotechnology.

  20. Computational identification of novel biochemical systems involved in oxidation, glycosylation and other complex modifications of bases in DNA

    PubMed Central

    Iyer, Lakshminarayan M.; Zhang, Dapeng; Maxwell Burroughs, A.; Aravind, L.

    2013-01-01

    Discovery of the TET/JBP family of dioxygenases that modify bases in DNA has sparked considerable interest in novel DNA base modifications and their biological roles. Using sensitive sequence and structure analyses combined with contextual information from comparative genomics, we computationally characterize over 12 novel biochemical systems for DNA modifications. We predict previously unidentified enzymes, such as the kinetoplastid J-base generating glycosyltransferase (and its homolog GREB1), the catalytic specificity of bacteriophage TET/JBP proteins and their role in complex DNA base modifications. We also predict the enzymes involved in synthesis of hypermodified bases such as alpha-glutamylthymine and alpha-putrescinylthymine that have remained enigmatic for several decades. Moreover, the current analysis suggests that bacteriophages and certain nucleo-cytoplasmic large DNA viruses contain an unexpectedly diverse range of DNA modification systems, in addition to those using previously characterized enzymes such as Dam, Dcm, TET/JBP, pyrimidine hydroxymethylases, Mom and glycosyltransferases. These include enzymes generating modified bases such as deazaguanines related to queuine and archaeosine, pyrimidines comparable with lysidine, those derived using modified S-adenosyl methionine derivatives and those using TET/JBP-generated hydroxymethyl pyrimidines as biosynthetic starting points. We present evidence that some of these modification systems are also widely dispersed across prokaryotes and certain eukaryotes such as basidiomycetes, chlorophyte and stramenopile alga, where they could serve as novel epigenetic marks for regulation or discrimination of self from non-self DNA. Our study extends the role of the PUA-like fold domains in recognition of modified nucleic acids and predicts versions of the ASCH and EVE domains to be novel ‘readers’ of modified bases in DNA. These results open opportunities for the investigation of the biology of these systems and their use in biotechnology. PMID:23814188

Top