Ota, Hiroyuki; Lim, Tae-Kyu; Tanaka, Tsuyoshi; Yoshino, Tomoko; Harada, Manabu; Matsunaga, Tadashi
2006-09-18
A novel, automated system, PNE-1080, equipped with eight automated pestle units and a spectrophotometer was developed for genomic DNA extraction from maize using aminosilane-modified bacterial magnetic particles (BMPs). The use of aminosilane-modified BMPs allowed highly accurate DNA recovery. The (A(260)-A(320)):(A(280)-A(320)) ratio of the extracted DNA was 1.9+/-0.1. The DNA quality was sufficiently pure for PCR analysis. The PNE-1080 offered rapid assay completion (30 min) with high accuracy. Furthermore, the results of real-time PCR confirmed that our proposed method permitted the accurate determination of genetically modified DNA composition and correlated well with results obtained by conventional cetyltrimethylammonium bromide (CTAB)-based methods.
[Application of DNA extraction kit, 'GM quicker' for detection of genetically modified soybeans].
Sato, Noriko; Sugiura, Yoshitsugu; Tanaka, Toshitsugu
2012-01-01
Several DNA extraction methods have been officially introduced to detect genetically modified soybeans, but the choice of DNA extraction kits depend on the nature of the samples, such as grains or processed foods. To overcome this disadvantage, we examined whether the GM quicker kit is available for both grains and processed foods. We compared GM quicker with four approved DNA extraction kits in respect of DNA purity, copy numbers of lectin gene, and working time. We found that the DNA quality of GM quicker was superior to that of the other kits for grains, and the procedure was faster. However, in the case of processed foods, GM quicker was not superior to the other kits. We therefore investigated an unapproved GM quicker 3 kit, which is available for DNA extraction from processed foods, such as tofu and boiled soybeans. The GM quicker 3 kit provided good DNA quality from both grains and processed foods, so we made a minor modification of the GM quicker-based protocol that was suitable for processed foods, using GM quicker and its reagents. The modified method enhanced the performance of GM quicker with processed foods. We believe that GM quicker with the modified protocol is an excellent tool to obtain high-quality DNA from grains and processed foods for detection of genetically modified soybeans.
Zhang, Miao; Liu, Yinan; Chen, Lili; Quan, Sheng; Jiang, Shimeng; Zhang, Dabing; Yang, Litao
2013-01-02
Quickness, simplicity, and effectiveness are the three major criteria for establishing a good molecular diagnosis method in many fields. Herein we report a novel detection system for genetically modified organisms (GMOs), which can be utilized to perform both on-field quick screening and routine laboratory diagnosis. In this system, a newly designed inexpensive DNA extraction device was used in combination with a modified visual loop-mediated isothermal amplification (vLAMP) assay. The main parts of the DNA extraction device included a silica gel membrane filtration column and a modified syringe. The DNA extraction device could be easily operated without using other laboratory instruments, making it applicable to an on-field GMO test. High-quality genomic DNA (gDNA) suitable for polymerase chain reaction (PCR) and isothermal amplification could be quickly isolated from plant tissues using this device within 15 min. In the modified vLAMP assay, a microcrystalline wax encapsulated detection bead containing SYBR green fluorescent dye was introduced to avoid dye inhibition and cross-contaminations from post-LAMP operation. The system was successfully applied and validated in screening and identification of GM rice, soybean, and maize samples collected from both field testing and the Grain Inspection, Packers, and Stockyards Administration (GIPSA) proficiency test program, which demonstrated that it was well-adapted to both on-field testing and/or routine laboratory analysis of GMOs.
A method suitable for DNA extraction from humus-rich soil.
Miao, Tianjin; Gao, Song; Jiang, Shengwei; Kan, Guoshi; Liu, Pengju; Wu, Xianming; An, Yingfeng; Yao, Shuo
2014-11-01
A rapid and convenient method for extracting DNA from soil is presented. Soil DNA is extracted by direct cell lysis in the presence of EDTA, SDS, phenol, chloroform and isoamyl alcohol (3-methyl-1-butanol) followed by precipitation with 2-propanol. The extracted DNA is purified by modified DNA purification kit and DNA gel extraction kit. With this method, DNA extracted from humus-rich dark brown forest soil was free from humic substances and, therefore, could be used for efficient PCR amplification and restriction digestion. In contrast, DNA sample extracted with the traditional CTAB-based method had lower yield and purity, and no DNA could be extracted from the same soil sample with a commonly-used commercial soil DNA isolation kit. In addition, this method is time-saving and convenient, providing an efficient choice especially for DNA extraction from humus-rich soils.
Immobilization of microalgae cells in alginate facilitates isolation of DNA and RNA.
Lopez, Blanca R; Hernandez, Juan-Pablo; Bashan, Yoav; de-Bashan, Luz E
2017-04-01
Isolation of nucleic acids from Chlorella is difficult, given the chemically complex nature of their cell walls and variable production of metabolites. Immobilization of microalgae in polymers adds additional difficulty. Here, we modified, amended, and standardized methods for isolation of nucleic acids and compared the yield of DNA and RNA from free-living and encapsulated microalgae C. sorokiniana. Isolation of nucleic acids from immobilized cells required two steps in dissolving the alginate matrix, releasing the cells, and mechanical disruption with glass beads. For DNA extraction, we used modified versions of a commercial kit along with the hexadecyltrimethylammonium bromide (CTAB) method. For RNA extraction, we used the commercial TRI reagent procedure and the CTAB-dithiotreitol method. Quantity and quality of nucleic acids in extracts varied with growth conditions, isolation procedures, and time of incubation of the original culture. There were consistently higher amounts of DNA and RNA in extracts from immobilized cells. Quantitatively, the modified procedure with the commercial Promega kit was the most reliable procedure for isolating DNA and a modified commercial TRI reagent procedure was the choice for isolating RNA. All four procedures eliminated proteins efficiently and had low levels of contamination from residual polysaccharides from the matrices and/or metabolites naturally produced by the microalgae. All DNA extracts under both growth conditions, time of incubation, and two isolation methods successfully amplified the 18S ribosomal RNA by PCR and quantitative reverse transcription (RT-qPCR). Copyright © 2017 Elsevier B.V. All rights reserved.
DNA extraction methods for detecting genetically modified foods: A comparative study.
Elsanhoty, Rafaat M; Ramadan, Mohamed Fawzy; Jany, Klaus Dieter
2011-06-15
The work presented in this manuscript was achieved to compare six different methods for extracting DNA from raw maize and its derived products. The methods that gave higher yield and quality of DNA were chosen to detect the genetic modification in the samples collected from the Egyptian market. The different methods used were evaluated for extracting DNA from maize kernels (without treatment), maize flour (mechanical treatment), canned maize (sweet corn), frozen maize (sweet corn), maize starch, extruded maize, popcorn, corn flacks, maize snacks, and bread made from corn flour (mechanical and thermal treatments). The quality and quantity of the DNA extracted from the standards, containing known percentages of GMO material and from the different food products were evaluated. For qualitative detection of the GMO varieties in foods, the GMOScreen 35S/NOS test kit was used, to screen the genetic modification in the samples. The positive samples for the 35S promoter and/or the NOS terminator were identified by the standard methods adopted by EU. All of the used methods extracted yielded good DNA quality. However, we noted that the purest DNA extract were obtained using the DNA extraction kit (Roche) and this generally was the best method for extracting DNA from most of the maize-derived foods. We have noted that the yield of DNA extracted from maize-derived foods was generally lower in the processed products. The results indicated that 17 samples were positive for the presence of 35S promoter, while 34% from the samples were positive for the genetically modified maize line Bt-176. Copyright © 2010 Elsevier Ltd. All rights reserved.
Efficient method for extracting DNA of parasites causing bovine babesiosis from tick vectors
USDA-ARS?s Scientific Manuscript database
The southern cattle tick, Rhipicephalus (Boophilus) microplus, is an economically important pest costing animal agriculture billions of dollars worldwide. This research focuses on a comparison of three different tick DNA extraction methods: phenol-chloroform extraction (method 1), a modified version...
Improving the recovery of qPCR-grade DNA from sludge and sediment.
Bonot, Sébastien; Courtois, Sophie; Block, Jean-Claude; Merlin, Christophe
2010-08-01
DNA extraction is often considered as the limiting step of most molecular approaches in ecology and environmental microbiology. Ten existing DNA extraction protocols were compared for recovery of DNA from sludge and a modified version of the protocol described by Porteous et al. (Mol Ecol 6:787-791, 1997) was determined to be the best method for recovery of DNA suitable for PCR. In this respect, it appeared that the commonly used guanidine isothiocyanate could impair the quality of the extracted DNA unless its concentration is lowered. Second, conditioning the samples as liquors as opposed to pellets critically impacts the outcome of the extraction. The suitability of the modified Porteous protocol for quantitative PCR applications is demonstrated in a series of experiments showing the absence of interfering coextracted inhibitors and the linear correspondence between the concentrations of input target DNA and PCR product. Interestingly, it is also shown that the nature of the environmental matrices affects the recovery yield of both circular plasmids and chromosomal DNA, resulting in an apparent fluctuation of the plasmid copy number per cell. This means that quantitative data obtained by PCR remain comparable as long as they apply to an identical target sequence extracted from a similar environment and amplified under the same conditions.
Gonzalez García, Eric; Ressmann, Anna K; Gaertner, Peter; Zirbs, Ronald; Mach, Robert L; Krska, Rudolf; Bica, Katharina; Brunner, Kurt
2014-12-01
To date, the extraction of genomic DNA is considered a bottleneck in the process of genetically modified organisms (GMOs) detection. Conventional DNA isolation methods are associated with long extraction times and multiple pipetting and centrifugation steps, which makes the entire procedure not only tedious and complicated but also prone to sample cross-contamination. In recent times, ionic liquids have emerged as innovative solvents for biomass processing, due to their outstanding properties for dissolution of biomass and biopolymers. In this study, a novel, easily applicable, and time-efficient method for the direct extraction of genomic DNA from biomass based on aqueous-ionic liquid solutions was developed. The straightforward protocol relies on extraction of maize in a 10 % solution of ionic liquids in aqueous phosphate buffer for 5 min at room temperature, followed by a denaturation step at 95 °C for 10 min and a simple filtration to remove residual biopolymers. A set of 22 ionic liquids was tested in a buffer system and 1-ethyl-3-methylimidazolium dimethylphosphate, as well as the environmentally benign choline formate, were identified as ideal candidates. With this strategy, the quality of the genomic DNA extracted was significantly improved and the extraction protocol was notably simplified compared with a well-established method.
Comprehensive GMO detection using real-time PCR array: single-laboratory validation.
Mano, Junichi; Harada, Mioko; Takabatake, Reona; Furui, Satoshi; Kitta, Kazumi; Nakamura, Kosuke; Akiyama, Hiroshi; Teshima, Reiko; Noritake, Hiromichi; Hatano, Shuko; Futo, Satoshi; Minegishi, Yasutaka; Iizuka, Tayoshi
2012-01-01
We have developed a real-time PCR array method to comprehensively detect genetically modified (GM) organisms. In the method, genomic DNA extracted from an agricultural product is analyzed using various qualitative real-time PCR assays on a 96-well PCR plate, targeting for individual GM events, recombinant DNA (r-DNA) segments, taxon-specific DNAs, and donor organisms of the respective r-DNAs. In this article, we report the single-laboratory validation of both DNA extraction methods and component PCR assays constituting the real-time PCR array. We selected some DNA extraction methods for specified plant matrixes, i.e., maize flour, soybean flour, and ground canola seeds, then evaluated the DNA quantity, DNA fragmentation, and PCR inhibition of the resultant DNA extracts. For the component PCR assays, we evaluated the specificity and LOD. All DNA extraction methods and component PCR assays satisfied the criteria set on the basis of previous reports.
Durnez, Lies; Stragier, Pieter; Roebben, Karen; Ablordey, Anthony; Leirs, Herwig; Portaels, Françoise
2009-02-01
Mycobacterium ulcerans is the causative agent of Buruli ulcer, the third most common mycobacterial disease in humans after tuberculosis and leprosy. Although the disease is associated with aquatic ecosystems, cultivation of the bacillus from the environment is difficult to achieve. Therefore, at the moment, research is based on the detection by PCR of the insertion sequence IS2404 present in M. ulcerans and some closely related mycobacteria. In the present study, we compared four DNA extraction methods for detection of M. ulcerans DNA, namely the one tube cell lysis and DNA extraction procedure (OT), the FastPrep procedure (FP), the modified Boom procedure (MB), and the Maxwell 16 Procedure (M16). The methods were performed on serial dilutions of M. ulcerans, followed by PCR analysis with different PCR targets in M. ulcerans to determine the detection limit (DL) of each method. The purity of the extracted DNA and the time and effort needed were compared as well. All methods were performed on environmental specimens and the two best methods (MB and M16) were tested on clinical specimens for detection of M. ulcerans DNA. When comparing the DLs of the DNA extraction methods, the MB and M16 had a significantly lower DL than the OT and FP. For the different PCR targets, IS2404 showed a significantly lower DL than mlsA, MIRU1, MIRU5 and VNTR6. The FP and M16 were considerably faster than the MB and OT, while the purity of the DNA extracted with the MB was significantly higher than the DNA extracted with the other methods. The MB performed best on the environmental and clinical specimens. This comparative study shows that the modified Boom procedure, although lengthy, provides a better method of DNA extraction than the other methods tested for detection and identification of M. ulcerans in both clinical and environmental specimens.
Akiyama, Hiroshi; Sakata, Kozue; Makiyma, Daiki; Nakamura, Kosuke; Teshima, Reiko; Nakashima, Akie; Ogawa, Asako; Yamagishi, Toru; Futo, Satoshi; Oguchi, Taichi; Mano, Junichi; Kitta, Kazumi
2011-01-01
In many countries, the labeling of grains, feed, and foodstuff is mandatory if the genetically modified (GM) organism content exceeds a certain level of approved GM varieties. We previously developed an individual kernel detection system consisting of grinding individual kernels, DNA extraction from the individually ground kernels, GM detection using multiplex real-time PCR, and GM event detection using multiplex qualitative PCR to analyze the precise commingling level and varieties of GM maize in real sample grains. We performed the interlaboratory study of the DNA extraction with multiple ground samples, multiplex real-time PCR detection, and multiplex qualitative PCR detection to evaluate its applicability, practicality, and ruggedness for the individual kernel detection system of GM maize. DNA extraction with multiple ground samples, multiplex real-time PCR, and multiplex qualitative PCR were evaluated by five laboratories in Japan, and all results from these laboratories were consistent with the expected results in terms of the commingling level and event analysis. Thus, the DNA extraction with multiple ground samples, multiplex real-time PCR, and multiplex qualitative PCR for the individual kernel detection system is applicable and practicable in a laboratory to regulate the commingling level of GM maize grain for GM samples, including stacked GM maize.
Kwok, Janette; Choi, Leo C W; Ho, Jenny C Y; Chan, Gavin S W; Mok, Maggie M Y; Lam, Man-Fei; Chak, Wai-Leung; Cheuk, Au; Chau, Ka-Foon; Tong, Matthew; Chan, Kwok-Wah; Chan, Tak-Mao
2016-01-01
Urine from kidney transplant recipient has proven to be a viable source for donor DNA. However, an optimized protocol would be required to determine mis-matched donor HLA specificities in view of the scarcity of DNA obtained in some cases. In this study, fresh early morning urine specimens were obtained from 155 kidney transplant recipients with known donor HLA phenotype. DNA was extracted and typing of HLA-A, B and DRB1 loci by polymerase chain reaction-specific sequence primers was performed using tailor-made condition according to the concentration of extracted DNA. HLA typing of DNA extracted from urine revealed both recipient and donor HLA phenotypes, allowing the deduction of the unknown donor HLA and hence the degree of HLA mis-match. By adopting the modified procedures, mis-matched donor HLA phenotypes were successfully deduced in all of 35 tested urine samples at DNA quantities spanning the range of 620-24,000 ng. This urine-based method offers a promising and reliable non-invasive means for the identification of mis-matched donor HLA antigens in kidney transplant recipients with unknown donor HLA phenotype or otherwise inadequate donor information.
Turkec, Aydin; Kazan, Hande; Karacanli, Burçin; Lucas, Stuart J
2015-08-01
In this paper, DNA extraction methods have been evaluated to detect the presence of genetically modified organisms (GMOs) in maize food and feed products commercialised in Turkey. All the extraction methods tested performed well for the majority of maize foods and feed products analysed. However, the highest DNA content was achieved by the Wizard, Genespin or the CTAB method, all of which produced optimal DNA yield and purity for different maize food and feed products. The samples were then screened for the presence of GM elements, along with certified reference materials. Of the food and feed samples, 8 % tested positive for the presence of one GM element (NOS terminator), of which half (4 % of the total) also contained a second element (the Cauliflower Mosaic Virus 35S promoter). The results obtained herein clearly demonstrate the presence of GM maize in the Turkish market, and that the Foodproof GMO Screening Kit provides reliable screening of maize food and feed products.
Lever, Mark A.; Torti, Andrea; Eickenbusch, Philip; Michaud, Alexander B.; Šantl-Temkiv, Tina; Jørgensen, Bo Barker
2015-01-01
A method for the extraction of nucleic acids from a wide range of environmental samples was developed. This method consists of several modules, which can be individually modified to maximize yields in extractions of DNA and RNA or separations of DNA pools. Modules were designed based on elaborate tests, in which permutations of all nucleic acid extraction steps were compared. The final modular protocol is suitable for extractions from igneous rock, air, water, and sediments. Sediments range from high-biomass, organic rich coastal samples to samples from the most oligotrophic region of the world's oceans and the deepest borehole ever studied by scientific ocean drilling. Extraction yields of DNA and RNA are higher than with widely used commercial kits, indicating an advantage to optimizing extraction procedures to match specific sample characteristics. The ability to separate soluble extracellular DNA pools without cell lysis from intracellular and particle-complexed DNA pools may enable new insights into the cycling and preservation of DNA in environmental samples in the future. A general protocol is outlined, along with recommendations for optimizing this general protocol for specific sample types and research goals. PMID:26042110
Evaluating the efficacy of DNA differential extraction methods for sexual assault evidence.
Klein, Sonja B; Buoncristiani, Martin R
2017-07-01
Analysis of sexual assault evidence, often a mixture of spermatozoa and victim epithelial cells, represents a significant portion of a forensic DNA laboratory's case load. Successful genotyping of sperm DNA from these mixed cell samples, particularly with low amounts of sperm, depends on maximizing sperm DNA recovery and minimizing non-sperm DNA carryover. For evaluating the efficacy of the differential extraction, we present a method which uses a Separation Potential Ratio (SPRED) to consider both sperm DNA recovery and non-sperm DNA removal as variables for determining separation efficiency. In addition, we describe how the ratio of male-to-female DNA in the sperm fraction may be estimated by using the SPRED of the differential extraction method in conjunction with the estimated ratio of male-to-female DNA initially present on the mixed swab. This approach may be useful for evaluating or modifying differential extraction methods, as we demonstrate by comparing experimental results obtained from the traditional differential extraction and the Erase Sperm Isolation Kit (PTC © ) procedures. Copyright © 2017 Elsevier B.V. All rights reserved.
A novel method of genomic DNA extraction for Cactaceae1
Fehlberg, Shannon D.; Allen, Jessica M.; Church, Kathleen
2013-01-01
• Premise of the study: Genetic studies of Cactaceae can at times be impeded by difficult sampling logistics and/or high mucilage content in tissues. Simplifying sampling and DNA isolation through the use of cactus spines has not previously been investigated. • Methods and Results: Several protocols for extracting DNA from spines were tested and modified to maximize yield, amplification, and sequencing. Sampling of and extraction from spines resulted in a simplified protocol overall and complete avoidance of mucilage as compared to typical tissue extractions. Sequences from one nuclear and three plastid regions were obtained across eight genera and 20 species of cacti using DNA extracted from spines. • Conclusions: Genomic DNA useful for amplification and sequencing can be obtained from cactus spines. The protocols described here are valuable for any cactus species, but are particularly useful for investigators interested in sampling living collections, extensive field sampling, and/or conservation genetic studies. PMID:25202521
Isolation of genomic DNA using magnetic cobalt ferrite and silica particles.
Prodelalová, Jana; Rittich, Bohuslav; Spanová, Alena; Petrová, Katerina; Benes, Milan J
2004-11-12
Adsorption separation techniques as an alternative to laborious traditional methods (e.g., based on phenol extraction procedure) have been applied for DNA purification. In this work we used two types of particles: silica and cobalt ferrite (unmodified or modified with a reagent containing weakly basic aminoethyl groups, aminophenyl groups, or alginic acid). DNA from chicken erythrocytes and DNA isolated from bacteria Lactococcus lactis were used for testing of adsorption/desorption properties of particles. The cobalt ferrite particles modified with different reagents were used for isolation of PCR-ready bacterial DNA from different dairy products.
A non-invasive technique for rapid extraction of DNA from fish scales.
Kumar, Ravindra; Singh, Poonam Jayant; Nagpure, N S; Kushwaha, Basdeo; Srivastava, S K; Lakra, W S
2007-11-01
DNA markers are being increasingly used in studies related to population genetics and conservation biology of endangered species. DNA isolation for such studies requires a source of biological material that is easy to collect, non-bulky and reliable. Further, the sampling strategies based on non-invasive procedures are desirable, especially for the endangered fish species. In view of above, a rapid DNA extraction method from fish scales has been developed with the use of a modified lysis buffer that require about 2 hr duration. This methodology is non-invasive, less expensive and reproducible with high efficiency of DNA recovery. The DNA extracted by this technique, have been found suitable for performing restriction enzyme digestion and PCR amplification. Therefore, the present DNA extraction procedure can be used as an alternative technique in population genetic studies pertaining to endangered fish species. The technique was also found equally effective for DNA isolation from fresh, dried and ethanol preserved scales.
Peano, Clelia; Samson, Maria Cristina; Palmieri, Luisa; Gulli, Mariolina; Marmiroli, Nelson
2004-11-17
The presence of DNA in foodstuffs derived from or containing genetically modified organisms (GMO) is the basic requirement for labeling of GMO foods in Council Directive 2001/18/CE (Off. J. Eur. Communities 2001, L1 06/2). In this work, four different methods for DNA extraction were evaluated and compared. To rank the different methods, the quality and quantity of DNA extracted from standards, containing known percentages of GMO material and from different food products, were considered. The food products analyzed derived from both soybean and maize and were chosen on the basis of the mechanical, technological, and chemical treatment they had been subjected to during processing. Degree of DNA degradation at various stages of food production was evaluated through the amplification of different DNA fragments belonging to the endogenous genes of both maize and soybean. Genomic DNA was extracted from Roundup Ready soybean and maize MON810 standard flours, according to four different methods, and quantified by real-time Polymerase Chain Reaction (PCR), with the aim of determining the influence of the extraction methods on the DNA quantification through real-time PCR.
Ai, Jinxia; Wang, Xuesong; Gao, Lijun; Xia, Wei; Li, Mingcheng; Yuan, Guangxin; Niu, Jiamu; Zhang, Lihua
2017-11-01
The use of Fetus cervi, which is derived from the embryo and placenta of Cervus Nippon Temminck or Cervs elaphus Linnaeus, has been documented for a long time in China. There are abundant species of deer worldwide. Those recorded by China Pharmacopeia (2010 edition) from all the species were either authentic or adulterants/counterfeits. Identification of their origins or authenticity became a key in the preparation of the authentic products. The traditional SDS alkaline lysis and salt-outing methods were modified to extract mt DNA and genomic DNA from fresh and dry Fetus cervi in addition to Fetus from false animals, respectively. A set of primers were designed by bioinformatics to target the intra-and inter-variation. The mt DNA and genomic DNA extracted from Fetus cervi using the two methods meet the requirement for authenticity. Extraction of mt DNA by SDS alkaline lysis is more practical and accurate than extraction of genomic DNA by salt-outing method. There were differences in length and number of segments amplified by PCR between mt DNA from authentic Fetus cervi and false animals Fetus. The distinctive PCR-fingerprint patterns can distinguish the Fetus cervi from adulterants and counterfeit animal Fetus.
Microbial Abundances in Salt Marsh Soils: A Molecular Approach for Small Spatial Scales
NASA Astrophysics Data System (ADS)
Granse, Dirk; Mueller, Peter; Weingartner, Magdalena; Hoth, Stefan; Jensen, Kai
2016-04-01
The rate of biological decomposition greatly determines the carbon sequestration capacity of salt marshes. Microorganisms are involved in the decomposition of biomass and the rate of decomposition is supposed to be related to microbial abundance. Recent studies quantified microbial abundance by means of quantitative polymerase chain reaction (QPCR), a method that also allows determining the microbial community structure by applying specific primers. The main microbial community structure can be determined by using primers specific for 16S rRNA (Bacteria) and 18S rRNA (Fungi) of the microbial DNA. However, the investigation of microbial abundance pattern at small spatial scales, such as locally varying abiotic conditions within a salt-marsh system, requires high accuracy in DNA extraction and QPCR methods. Furthermore, there is evidence that a single extraction may not be sufficient to reliably quantify rRNA gene copies. The aim of this study was to establish a suitable DNA extraction method and stable QPCR conditions for the measurement of microbial abundances in semi-terrestrial environments. DNA was extracted from two soil samples (top WE{5}{cm}) by using the PowerSoil DNA Extraction Kit (Mo Bio Laboratories, Inc., Carlsbad, CA) and applying a modified extraction protocol. The DNA extraction was conducted in four consecutive DNA extraction loops from three biological replicates per soil sample by reusing the PowerSoil bead tube. The number of Fungi and Bacteria rRNA gene copies of each DNA extraction loop and a pooled DNA solution (extraction loop 1 - 4) was measured by using the QPCR method with taxa specific primer pairs (Bacteria: B341F, B805R; Fungi: FR1, FF390). The DNA yield of the replicates varied at DNA extraction loop 1 between WE{25 and 85}{ng
Caprioara-Buda, M; Meyer, W; Jeynov, B; Corbisier, P; Trapmann, S; Emons, H
2012-07-01
The reliable quantification of genetically modified organisms (GMOs) by real-time PCR requires, besides thoroughly validated quantitative detection methods, sustainable calibration systems. The latter establishes the anchor points for the measured value and the measurement unit, respectively. In this paper, the suitability of two types of DNA calibrants, i.e. plasmid DNA and genomic DNA extracted from plant leaves, for the certification of the GMO content in reference materials as copy number ratio between two targeted DNA sequences was investigated. The PCR efficiencies and coefficients of determination of the calibration curves as well as the measured copy number ratios for three powder certified reference materials (CRMs), namely ERM-BF415e (NK603 maize), ERM-BF425c (356043 soya), and ERM-BF427c (98140 maize), originally certified for their mass fraction of GMO, were compared for both types of calibrants. In all three systems investigated, the PCR efficiencies of plasmid DNA were slightly closer to the PCR efficiencies observed for the genomic DNA extracted from seed powders rather than those of the genomic DNA extracted from leaves. Although the mean DNA copy number ratios for each CRM overlapped within their uncertainties, the DNA copy number ratios were significantly different using the two types of calibrants. Based on these observations, both plasmid and leaf genomic DNA calibrants would be technically suitable as anchor points for the calibration of the real-time PCR methods applied in this study. However, the most suitable approach to establish a sustainable traceability chain is to fix a reference system based on plasmid DNA.
Duval, Kristin; Aubin, Rémy A; Elliott, James; Gorn-Hondermann, Ivan; Birnboim, H Chaim; Jonker, Derek; Fourney, Ron M; Frégeau, Chantal J
2010-02-01
Archival tissue preserved in fixative constitutes an invaluable resource for histological examination, molecular diagnostic procedures and for DNA typing analysis in forensic investigations. However, available material is often limited in size and quantity. Moreover, recovery of DNA is often severely compromised by the presence of covalent DNA-protein cross-links generated by formalin, the most prevalent fixative. We describe the evaluation of buffer formulations, sample lysis regimens and DNA recovery strategies and define optimized manual and automated procedures for the extraction of high quality DNA suitable for molecular diagnostics and genotyping. Using a 3-step enzymatic digestion protocol carried out in the absence of dithiothreitol, we demonstrate that DNA can be efficiently released from cells or tissues preserved in buffered formalin or the alcohol-based fixative GenoFix. This preparatory procedure can then be integrated to traditional phenol/chloroform extraction, a modified manual DNA IQ or automated DNA IQ/Te-Shake-based extraction in order to recover DNA for downstream applications. Quantitative recovery of high quality DNA was best achieved from specimens archived in GenoFix and extracted using magnetic bead capture.
Rapid and efficient method to extract metagenomic DNA from estuarine sediments.
Shamim, Kashif; Sharma, Jaya; Dubey, Santosh Kumar
2017-07-01
Metagenomic DNA from sediments of selective estuaries of Goa, India was extracted using a simple, fast, efficient and environment friendly method. The recovery of pure metagenomic DNA from our method was significantly high as compared to other well-known methods since the concentration of recovered metagenomic DNA ranged from 1185.1 to 4579.7 µg/g of sediment. The purity of metagenomic DNA was also considerably high as the ratio of absorbance at 260 and 280 nm ranged from 1.88 to 1.94. Therefore, the recovered metagenomic DNA was directly used to perform various molecular biology experiments viz. restriction digestion, PCR amplification, cloning and metagenomic library construction. This clearly proved that our protocol for metagenomic DNA extraction using silica gel efficiently removed the contaminants and prevented shearing of the metagenomic DNA. Thus, this modified method can be used to recover pure metagenomic DNA from various estuarine sediments in a rapid, efficient and eco-friendly manner.
Bioaerosol DNA Extraction Technique from Air Filters Collected from Marine and Freshwater Locations
NASA Astrophysics Data System (ADS)
Beckwith, M.; Crandall, S. G.; Barnes, A.; Paytan, A.
2015-12-01
Bioaerosols are composed of microorganisms suspended in air. Among these organisms include bacteria, fungi, virus, and protists. Microbes introduced into the atmosphere can drift, primarily by wind, into natural environments different from their point of origin. Although bioaerosols can impact atmospheric dynamics as well as the ecology and biogeochemistry of terrestrial systems, very little is known about the composition of bioaerosols collected from marine and freshwater environments. The first step to determine composition of airborne microbes is to successfully extract environmental DNA from air filters. We asked 1) can DNA be extracted from quartz (SiO2) air filters? and 2) how can we optimize the DNA yield for downstream metagenomic sequencing? Aerosol filters were collected and archived on a weekly basis from aquatic sites (USA, Bermuda, Israel) over the course of 10 years. We successfully extracted DNA from a subsample of ~ 20 filters. We modified a DNA extraction protocol (Qiagen) by adding a beadbeating step to mechanically shear cell walls in order to optimize our DNA product. We quantified our DNA yield using a spectrophotometer (Nanodrop 1000). Results indicate that DNA can indeed be extracted from quartz filters. The additional beadbeating step helped increase our yield - up to twice as much DNA product was obtained compared to when this step was omitted. Moreover, bioaerosol DNA content does vary across time. For instance, the DNA extracted from filters from Lake Tahoe, USA collected near the end of June decreased from 9.9 ng/μL in 2007 to 3.8 ng/μL in 2008. Further next-generation sequencing analysis of our extracted DNA will be performed to determine the composition of these microbes. We will also model the meteorological and chemical factors that are good predictors for microbial composition for our samples over time and space.
Optimized DNA extraction from neonatal dried blood spots: application in methylome profiling
2014-01-01
Background Neonatal dried blood spots (DBS) represent an inexpensive method for long-term biobanking worldwide and are considered gold mines for research for several human diseases, including those of metabolic, infectious, genetic and epigenetic origin. However, the utility of DBS is restricted by the limited amount and quality of extractable biomolecules (including DNA), especially for genome wide profiling. Degradation of DNA in DBS often occurs during storage and extraction. Moreover, amplifying small quantities of DNA often leads to a bias in subsequent data, particularly in methylome profiles. Thus it is important to develop methodologies that maximize both the yield and quality of DNA from DBS for downstream analyses. Results Using combinations of in-house-derived and modified commercial extraction kits, we developed a robust and efficient protocol, compatible with methylome studies, many of which require stringent bisulfite conversion steps. Several parameters were tested in a step-wise manner, including blood extraction, cell lysis, protein digestion, and DNA precipitation, purification and elution. DNA quality was assessed based on spectrophotometric measurements, DNA detectability by PCR, and DNA integrity by gel electrophoresis and bioanalyzer analyses. Genome scale Infinium HumanMethylation450 and locus-specific pyrosequencing data generated using the refined DBS extraction protocol were of high quality, reproducible and consistent. Conclusions This study may prove useful to meet the increased demand for research on prenatal, particularly epigenetic, origins of human diseases and for newborn screening programs, all of which are often based on DNA extracted from DBS. PMID:24980254
Charge reversible gold nanoparticles for high efficient absorption and desorption of DNA
NASA Astrophysics Data System (ADS)
Wang, Can; Zhuang, Jiaqi; Jiang, Shan; Li, Jun; Yang, Wensheng
2012-10-01
Mercaptoundecylamine and mercaptoundecanoic acid co-modified Au nanoparticles were prepared by two-step ligand exchange of 6-mercaptohexanoic acid modified gold nanoparticles. Such particles terminated by appropriate ratios of the amine and carboxyl groups ( R N/C) were identified to show reversible charge on their surface, which were switchable by pH of the solution. The isoelectric point (IEP) of the particles is tunable by changing the ratios of the amine and carboxyl groups on the particle surfaces. The particles can absorb DNA effectively at pH lower than the IEP driven by the direct electrostatic interactions between DNA and the particle surface. When pH of the solutions was elevated to be higher than the IEP, the absorbed DNA can be released almost completely due to the electrostatic repulsion between the particle surface and DNA. With appropriate R N/C ratios of 0.8, the absorption and desorption efficiencies of DNA were 97 and 98 %, respectively, corresponding an extraction efficiency of 95 %. Such particles with reversible surface charges allow the high efficient extraction of DNA by simply changing pH instead of by changing salt concentration in the conventional salt bridge method.
Nasiri, H; Forouzandeh, M; Rasaee, M J; Rahbarizadeh, F
2005-01-01
Different approaches have been used to extract DNA from whole blood. In most of these methods enzymes (such as proteinase K and RNAse A) or toxic organic solvents (such as phenol or guanidine isothiocyanate) are used. Since these enzymes are expensive, and most of the materials that are used routinely are toxic, it is desirable to apply an efficient DNA extraction procedure that does not require the use of such materials. In this study, genomic DNA was extracted by the salting-out method, but instead of using an analytical-grade enzyme and chemical detergents, as normally used for DNA isolation, a common laundry powder was used. Different concentrations of the powder were tested, and proteins were precipitated by NaCl-saturated distilled water. Finally, DNA precipitation was performed with the use of 96% ethanol. From the results, we conclude that the optimum concentration of laundry powder for the highest yield and purity of isolated DNA is 30 mg/mL. The procedure was optimized, and a final protocol is suggested. Following the same protocol, DNA was extracted from 100 blood samples, and their amounts were found to be >50 microg/mL of whole blood. The integrity of the DNA fragments was confirmed by agarose gel electrophoresis. Furthermore, the extracted DNA was used as a template for PCR reaction. The results obtained from PCR showed that the final solutions of extracted DNA did not contain any inhibitory material for the enzyme used in the PCR reaction, and indicated that the isolated DNA was of good quality. These results show that this method is simple, fast, safe, and cost-effective, and can be used in medical laboratories and research centers. Copyright 2005 Wiley-Liss, Inc.
Rapid method to extract DNA from Cryptococcus neoformans.
Varma, A; Kwon-Chung, K J
1991-01-01
A rapid and easy method for the extraction of total cellular DNA from Cryptococcus neoformans is described. This procedure modifies and considerably simplifies previously reported methods. Numerous steps were either eliminated or replaced, including preincubations with cell wall permeability agents such as beta-mercaptoethanol and dithiothreitol. The commercially available enzyme preparation Novozyme 234 was found to contain a potent concentration of DNases which actively degrade DNA. Degradation and loss of DNA was prevented by maintaining a high concentration of EDTA in the lysing solution. This procedure resulted in high yields (150 to 200 micrograms of DNA from 100 ml of culture) of good-quality (undegraded), high-molecular-weight DNA which was readily digested by restriction endonucleases, making it suitable for use in various molecular applications. Images PMID:1909713
Sex determination based on amelogenin DNA by modified electrode with gold nanoparticle.
Mazloum-Ardakani, Mohammad; Rajabzadeh, Nooshin; Benvidi, Ali; Heidari, Mohammad Mehdi
2013-12-15
We have developed a simple and renewable electrochemical biosensor based on carbon paste electrode (CPE) for the detection of DNA synthesis and hybridization. CPE was modified with gold nanoparticles (AuNPs), which are helpful for immobilization of thiolated bioreceptors. AuNPs were characterized by scanning electron microscopy (SEM). Self-assembled monolayers (SAMs) of thiolated single-stranded DNA (SH-ssDNA) of the amelogenin gene was formed on CPE. The immobilization of the probe and its hybridization with the target DNA was optimized using different experimental conditions. The modified electrode was characterized by electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). The electrochemical response of ssDNA hybridization and DNA synthesis was measured using differential pulse voltammetry (DPV) with methylene blue (MB) as an electroactive indicator. The new biosensor can distinguish between complementary and non-complementary strands of amelogenin ssDNA. Genomic DNA was extracted from blood and was detected based on changes in the MB reduction signal. These results demonstrated that the new biosensor could be used for sex determination. The proposed biosensor in this study could be used for detection and discrimination of polymerase chain reaction (PCR) products of amelogenin DNA. Copyright © 2013 Elsevier Inc. All rights reserved.
Xavier, Miguel J; Nixon, Brett; Roman, Shaun D; Aitken, Robert John
2018-01-01
Current approaches for DNA extraction and fragmentation from mammalian spermatozoa provide several challenges for the investigation of the oxidative stress burden carried in the genome of male gametes. Indeed, the potential introduction of oxidative DNA damage induced by reactive oxygen species, reducing agents (dithiothreitol or beta-mercaptoethanol), and DNA shearing techniques used in the preparation of samples for chromatin immunoprecipitation and next-generation sequencing serve to cofound the reliability and accuracy of the results obtained. Here we report optimised methodology that minimises, or completely eliminates, exposure to DNA damaging compounds during extraction and fragmentation procedures. Specifically, we show that Micrococcal nuclease (MNase) digestion prior to cellular lysis generates a greater DNA yield with minimal collateral oxidation while randomly fragmenting the entire paternal genome. This modified methodology represents a significant improvement over traditional fragmentation achieved via sonication in the preparation of genomic DNA from human spermatozoa for downstream applications, such as next-generation sequencing. We also present a redesigned bioinformatic pipeline framework adjusted to correctly analyse this form of data and detect statistically relevant targets of oxidation.
Desneux, Jérémy; Pourcher, Anne-Marie
2014-01-01
Four commercial DNA extraction kits and a minor modification in the DNA elution procedure were evaluated for the quantitation of bacteria in pig manure samples. The PowerSoil®, PowerFecal®, NucleoSpin® Soil kits and QIAamp® DNA Stool Mini kit were tested on raw manure samples and on lagoon effluents for their ability to quantify total bacteria and a subdominant bacteria specific of pig manure contamination: Lactobacillus amylovorus. The NucleoSpin® Soil kit (NS kit), and to a lesser extent the PowerFecal® kit were the most efficient methods. Regardless of the kit utilized, the modified elution procedure increased DNA yield in the lagoon effluent by a factor of 1.4 to 1.8. When tested on 10 piggery effluent samples, compared to the QIAamp kit, the NS kit combined with the modified elution step, increased by a factor up to 1.7 log10 the values of the concentration of L. amylovorus. Regardless of the type of manure, the best DNA quality and the highest concentrations of bacteria were obtained using the NS kit combined with the modification of the elution procedure. The method recommended here significantly improved quantitation of subdominant bacteria in manure. PMID:24838631
Turkec, Aydin; Kazan, Hande; Baykut, Aykut; Lucas, Stuart J
2015-01-01
Soybean is one of the most important biotech crops, widely used as an ingredient in both foodstuffs and feed. DNA extraction methods have been evaluated to detect the presence of genetically modified (GM) materials in soya-containing food and feed products commercialised in Turkey. All extraction methods performed well for the majority of soya foods and feed products analysed. However, the most successful method varied between different products; the Foodproof, Genespin and the cetyltrimethylammonium bromide (CTAB) methods each produced the highest DNA yield and purity for different soya foodstuffs and feeds. Of the samples tested, 20% were positive for the presence of at least two GM elements (35S/NOS) while 11% contained an additional GM element (35S/NOS/FMV). Of the tested products, animal feeds showed a larger prevalence of GM material (50%) than the soya-containing foodstuffs (13%). The best performing extraction methods proved to be the Foodproof, Genespin and CTAB methods for soya-containing food and feed products. The results obtained herein clearly demonstrate the presence of GM soybean in the Turkish market, and that the Foodproof GMO Screening Kit provides reliable screening of soy-containing food and feed products. © 2014 Society of Chemical Industry.
Stevens, Matthew P; Rudland, Elice; Garland, Suzanne M; Tabrizi, Sepehr N
2006-07-01
Roche Molecular Systems recently released two PCR-based assays, AMPLICOR and LINEAR ARRAY (LA), for the detection and genotyping, respectively, of human papillomaviruses (HPVs). The manual specimen processing method recommended for use with both assays, AmpliLute, can be time-consuming and labor-intensive and is open to potential specimen cross-contamination. We evaluated the Roche MagNA Pure LC (MP) as an alternative for specimen processing prior to use with either assay. DNA was extracted from cervical brushings, collected in PreservCyt media, by AmpliLute and MP using DNA-I and Total Nucleic Acid (TNA) kits, from 150 patients with histologically confirmed cervical abnormalities. DNA was amplified and detected by AMPLICOR and the LA HPV test. Concordances of 96.5% (139 of 144) (kappa=0.93) and 95.1% (135 of 142) (kappa=0.90) were generated by AMPLICOR when we compared DNA extracts from AmpliLute to MP DNA-I and TNA, respectively. The HPV genotype profiles were identical in 78.7 and 74.7% of samples between AmpliLute and DNA-I or TNA, respectively. To improve LA concordance, all 150 specimens were extracted by MP DNA-I protocol after the centrifugation of 1-ml PreservCyt samples. This modified approach improved HPV genotype concordance levels between AmpliLute and MP DNA-I to 88.0% (P=0.043) without affecting AMPLICOR sensitivity. Laboratories that have an automated MP extraction system would find this procedure more feasible and easier to handle than the recommended manual extraction method and could substitute such extractions for AMPLICOR and LA HPV tests once internally validated.
Takabatake, Reona; Masubuchi, Tomoko; Futo, Satoshi; Minegishi, Yasutaka; Noguchi, Akio; Kondo, Kazunari; Teshima, Reiko; Kurashima, Takeyo; Mano, Junichi; Kitta, Kazumi
2016-01-01
A novel real-time PCR-based analytical method was developed for the event-specific quantification of a genetically modified (GM) maize, 3272. We first attempted to obtain genome DNA from this maize using a DNeasy Plant Maxi kit and a DNeasy Plant Mini kit, which have been widely utilized in our previous studies, but DNA extraction yields from 3272 were markedly lower than those from non-GM maize seeds. However, lowering of DNA extraction yields was not observed with GM quicker or Genomic-tip 20/G. We chose GM quicker for evaluation of the quantitative method. We prepared a standard plasmid for 3272 quantification. The conversion factor (Cf), which is required to calculate the amount of a genetically modified organism (GMO), was experimentally determined for two real-time PCR instruments, the Applied Biosystems 7900HT (the ABI 7900) and the Applied Biosystems 7500 (the ABI7500). The determined Cf values were 0.60 and 0.59 for the ABI 7900 and the ABI 7500, respectively. To evaluate the developed method, a blind test was conducted as part of an interlaboratory study. The trueness and precision were evaluated as the bias and reproducibility of the relative standard deviation (RSDr). The determined values were similar to those in our previous validation studies. The limit of quantitation for the method was estimated to be 0.5% or less, and we concluded that the developed method would be suitable and practical for detection and quantification of 3272.
Comparison of DNA extraction methods for meat analysis.
Yalçınkaya, Burhanettin; Yumbul, Eylem; Mozioğlu, Erkan; Akgoz, Muslum
2017-04-15
Preventing adulteration of meat and meat products with less desirable or objectionable meat species is important not only for economical, religious and health reasons, but also, it is important for fair trade practices, therefore, several methods for identification of meat and meat products have been developed. In the present study, ten different DNA extraction methods, including Tris-EDTA Method, a modified Cetyltrimethylammonium Bromide (CTAB) Method, Alkaline Method, Urea Method, Salt Method, Guanidinium Isothiocyanate (GuSCN) Method, Wizard Method, Qiagen Method, Zymogen Method and Genespin Method were examined to determine their relative effectiveness for extracting DNA from meat samples. The results show that the salt method is easy to perform, inexpensive and environmentally friendly. Additionally, it has the highest yield among all the isolation methods tested. We suggest this method as an alternative method for DNA isolation from meat and meat products. Copyright © 2016 Elsevier Ltd. All rights reserved.
2010-01-01
Background The modular approach to analysis of genetically modified organisms (GMOs) relies on the independence of the modules combined (i.e. DNA extraction and GM quantification). The validity of this assumption has to be proved on the basis of specific performance criteria. Results An experiment was conducted using, as a reference, the validated quantitative real-time polymerase chain reaction (PCR) module for detection of glyphosate-tolerant Roundup Ready® GM soybean (RRS). Different DNA extraction modules (CTAB, Wizard and Dellaporta), were used to extract DNA from different food/feed matrices (feed, biscuit and certified reference material [CRM 1%]) containing the target of the real-time PCR module used for validation. Purity and structural integrity (absence of inhibition) were used as basic criteria that a DNA extraction module must satisfy in order to provide suitable template DNA for quantitative real-time (RT) PCR-based GMO analysis. When performance criteria were applied (removal of non-compliant DNA extracts), the independence of GMO quantification from the extraction method and matrix was statistically proved, except in the case of Wizard applied to biscuit. A fuzzy logic-based procedure also confirmed the relatively poor performance of the Wizard/biscuit combination. Conclusions For RRS, this study recognises that modularity can be generally accepted, with the limitation of avoiding combining highly processed material (i.e. biscuit) with a magnetic-beads system (i.e. Wizard). PMID:20687918
Cankar, Katarina; Štebih, Dejan; Dreo, Tanja; Žel, Jana; Gruden, Kristina
2006-01-01
Background Real-time PCR is the technique of choice for nucleic acid quantification. In the field of detection of genetically modified organisms (GMOs) quantification of biotech products may be required to fulfil legislative requirements. However, successful quantification depends crucially on the quality of the sample DNA analyzed. Methods for GMO detection are generally validated on certified reference materials that are in the form of powdered grain material, while detection in routine laboratories must be performed on a wide variety of sample matrixes. Due to food processing, the DNA in sample matrixes can be present in low amounts and also degraded. In addition, molecules of plant origin or from other sources that affect PCR amplification of samples will influence the reliability of the quantification. Further, the wide variety of sample matrixes presents a challenge for detection laboratories. The extraction method must ensure high yield and quality of the DNA obtained and must be carefully selected, since even components of DNA extraction solutions can influence PCR reactions. GMO quantification is based on a standard curve, therefore similarity of PCR efficiency for the sample and standard reference material is a prerequisite for exact quantification. Little information on the performance of real-time PCR on samples of different matrixes is available. Results Five commonly used DNA extraction techniques were compared and their suitability for quantitative analysis was assessed. The effect of sample matrix on nucleic acid quantification was assessed by comparing 4 maize and 4 soybean matrixes. In addition 205 maize and soybean samples from routine analysis were analyzed for PCR efficiency to assess variability of PCR performance within each sample matrix. Together with the amount of DNA needed for reliable quantification, PCR efficiency is the crucial parameter determining the reliability of quantitative results, therefore it was chosen as the primary criterion by which to evaluate the quality and performance on different matrixes and extraction techniques. The effect of PCR efficiency on the resulting GMO content is demonstrated. Conclusion The crucial influence of extraction technique and sample matrix properties on the results of GMO quantification is demonstrated. Appropriate extraction techniques for each matrix need to be determined to achieve accurate DNA quantification. Nevertheless, as it is shown that in the area of food and feed testing matrix with certain specificities is impossible to define strict quality controls need to be introduced to monitor PCR. The results of our study are also applicable to other fields of quantitative testing by real-time PCR. PMID:16907967
Zarakowska, Ewelina; Gackowski, Daniel; Foksinski, Marek; Olinski, Ryszard
2014-04-01
The oxidatively modified DNA base 8-oxo-7,8-dihydroguanine (8-oxoGua) is nontoxic and weakly mutagenic. Here we report on new data suggesting a potential for 8-oxoGua to affect the expression of several genes via epigenetic changes resulting in chromatin relaxation. Using pig thymus extract, we analyzed the distribution of 8-oxoGua among different nuclei fractions representative of transcriptionally active and silenced regions. The levels of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) found in transcriptionally active euchromatin (4.37/10(6) nucleotides) and in the matrix fraction (4.16/10(6) nucleotides) were about 5 times higher than in transcriptionally silenced heterochromatin (0.91/10(6) nucleotides). Other experimental data are presented which suggest that 8-oxoGua present in specific DNA sequences may be widely used for transcription regulation. Like 8-oxoGua, 5-hydroxymethyluracil (5-hmUra) is another oxidatively modified DNA base (the derivative is formed by thymine oxidation). Recent experimental evidence supports the notion that 5-hmUra plays an important role in active DNA demethylation. This involves overexpression of activation-induced cytidine deaminase (AID) and ten-eleven translocation 1 (TET1) protein (the key proteins involved in active demethylation), which leads to global accumulation of 5-hmUra. Our preliminary data demonstrate a significant increase of the 5-hmUra levels in pig brain extract when compared with liver extract. The lack of 5-hmUra in Escherichia coli DNA also speaks for a role of this modification in the active demethylation process. It is concluded that 8-oxodG and 5-hmUra in DNA may be considered as epigenetic marks. Copyright © 2013 Elsevier B.V. All rights reserved.
Knob, Radim; Hanson, Robert L; Tateoka, Olivia B; Wood, Ryan L; Guerrero-Arguero, Israel; Robison, Richard A; Pitt, William G; Woolley, Adam T
2018-05-21
Fast determination of antibiotic resistance is crucial in selecting appropriate treatment for sepsis patients, but current methods based on culture are time consuming. We are developing a microfluidic platform with a monolithic column modified with oligonucleotides designed for sequence-specific capture of target DNA related to the Klebsiella pneumoniae carbapenemase (KPC) gene. We developed a novel single-step monolith fabrication method with an acrydite-modified capture oligonucleotide in the polymerization mixture, enabling fast monolith preparation in a microfluidic channel using UV photopolymerization. These prepared columns had a threefold higher capacity compared to monoliths prepared in a multistep process involving Schiff-base DNA attachment. Conditions for denaturing, capture and fluorescence labeling using hybridization probes were optimized with synthetic 90-mer oligonucleotides. These procedures were applied for extraction of a PCR amplicon from the KPC antibiotic resistance gene in bacterial lysate obtained from a blood sample spiked with E. coli. The results showed similar eluted peak areas for KPC amplicon extracted from either hybridization buffer or bacterial lysate. Selective extraction of the KPC DNA was verified by real time PCR on eluted fractions. These results show great promise for application in an integrated microfluidic diagnostic system that combines upstream blood sample preparation and downstream single-molecule counting detection. Copyright © 2018 Elsevier B.V. All rights reserved.
Ar Rochmah, Mawaddah; Harahap, Nur Imma Fatimah; Niba, Emma Tabe Eko; Nakanishi, Kenta; Awano, Hiroyuki; Morioka, Ichiro; Iijima, Kazumoto; Saito, Toshio; Saito, Kayoko; Lai, Poh San; Takeshima, Yasuhiro; Takeuchi, Atsuko; Bouike, Yoshihiro; Okamoto, Maya; Nishio, Hisahide; Shinohara, Masakazu
2017-10-01
Spinal muscular atrophy (SMA) is a common neuromuscular disorder caused by mutations in SMN1. More than 95% of SMA patients carry homozygous SMN1 deletion. SMA is the leading genetic cause of infant death, and has been considered an incurable disease. However, a recent clinical trial with an antisense oligonucleotide drug has shown encouraging clinical efficacy. Thus, early and accurate detection of SMN1 deletion may improve prognosis of many infantile SMA patients. A total of 88 DNA samples (37 SMA patients, 12 carriers and 39 controls) from dried blood spots (DBS) on filter paper were analyzed. All participants had previously been screened for SMN genes by PCR restriction fragment length polymorphism (PCR-RFLP) using DNA extracted from freshly collected blood. DNA was extracted from DBS that had been stored at room temperature (20-25°C) for 1week to 5years. To ensure sufficient quality and quantity of DNA samples, target sequences were pre-amplified by conventional PCR. Real-time modified competitive oligonucleotide priming-PCR (mCOP-PCR) with the pre-amplified PCR products was performed for the gene-specific amplification of SMN1 and SMN2 exon 7. Compared with PCR-RFLP using DNA from freshly collected blood, results from real-time mCOP-PCR using DBS-DNA for detection of SMN1 exon 7 deletion showed a sensitivity of 1.00 (CI [0.87, 1.00])] and specificity of 1.00 (CI [0.90, 1.00]), respectively. We combined DNA extraction from DBS on filter paper, pre-amplification of target DNA, and real-time mCOP-PCR to specifically detect SMN1 and SMN2 genes, thereby establishing a rapid, accurate, and high-throughput system for detecting SMN1-deletion with practical applications for newborn screening. Copyright © 2017 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.
Hassani, Asma; Khan, Gulfaraz
2015-12-01
Long-term formalin fixed brain tissues are potentially an important source of material for molecular studies. Ironically, very few protocols have been published describing DNA extraction from such material for use in PCR analysis. In our attempt to investigate the role of Epstein-Barr virus (EBV) in the pathogenesis of multiple sclerosis (MS), extracting PCR quality DNA from brain samples fixed in formalin for 2-22 years, proved to be very difficult and challenging. As expected, DNA extracted from these samples was not only of poor quality and quantity, but more importantly, it was frequently found to be non-amplifiable due to the presence of PCR inhibitors. Here, we describe a simple and reproducible procedure for extracting DNA using a modified proteinase K and phenol-chloroform methodology. Central to this protocol is the thorough pre-digestion washing of the tissues in PBS, extensive digestion with proteinase K in low SDS containing buffer, and using low NaCl concentration during DNA precipitation. The optimized protocol was used in extracting DNA from meninges of 26 MS and 6 non-MS cases. Although the quality of DNA from these samples was generally poor, small size amplicons (100-200 nucleotides) of the house-keeping gene, β-globin could be reliably amplified from all the cases. PCR for EBV revealed positivity in 35% (9/26) MS cases, but 0/6 non-MS cases. These findings indicate that the method described here is suitable for PCR detection of viral sequences in long-term formalin persevered brain tissues. Our findings also support a possible role for EBV in the pathogenesis of MS. Copyright © 2015 Elsevier Inc. All rights reserved.
Detection of genetically modified soybean in crude soybean oil.
Nikolić, Zorica; Vasiljević, Ivana; Zdjelar, Gordana; Ðorđević, Vuk; Ignjatov, Maja; Jovičić, Dušica; Milošević, Dragana
2014-02-15
In order to detect presence and quantity of Roundup Ready (RR) soybean in crude oil extracted from soybean seed with a different percentage of GMO seed two extraction methods were used, CTAB and DNeasy Plant Mini Kit. The amplifications of lectin gene, used to check the presence of soybean DNA, were not achieved in all CTAB extracts of DNA, while commercial kit gave satisfactory results. Comparing actual and estimated GMO content between two extraction methods, root mean square deviation for kit is 0.208 and for CTAB is 2.127, clearly demonstrated superiority of kit over CTAB extraction. The results of quantification evidently showed that if the oil samples originate from soybean seed with varying percentage of RR, it is possible to monitor the GMO content at the first stage of processing crude oil. Copyright © 2013 Elsevier Ltd. All rights reserved.
Guzmán-Larralde, Adriana J; Suaste-Dzul, Alba P; Gallou, Adrien; Peña-Carrillo, Kenzy I
2017-01-01
Because of the tiny size of microhymenoptera, successful morphological identification typically requires specific mounting protocols that require time, skills, and experience. Molecular taxonomic identification is an alternative, but many DNA extraction protocols call for maceration of the whole specimen, which is not compatible with preserving museum vouchers. Thus, non-destructive DNA isolation methods are attractive alternatives for obtaining DNA without damaging sample individuals. However, their performance needs to be assessed in microhymenopterans. We evaluated six non-destructive methods: (A) DNeasy® Blood & Tissue Kit; (B) DNeasy® Blood & Tissue Kit, modified; (C) Protocol with CaCl 2 buffer; (D) Protocol with CaCl 2 buffer, modified; (E) HotSHOT; and (F) Direct PCR. The performance of each DNA extraction method was tested across several microhymenopteran species by attempting to amplify the mitochondrial gene COI from insect specimens of varying ages: 1 day, 4 months, 3 years, 12 years, and 23 years. Methods B and D allowed COI amplification in all insects, while methods A, C, and E were successful in DNA amplification from insects up to 12 years old. Method F, the fastest, was useful in insects up to 4 months old. Finally, we adapted permanent slide preparation in Canada balsam for every technique. The results reported allow for combining morphological and molecular methodologies for taxonomic studies.
Mornkham, Tanupat; Wangsomnuk, Preeya Puangsomlee; Fu, Yong-Bi; Wangsomnuk, Pinich; Jogloy, Sanun; Patanothai, Aran
2013-04-29
Jerusalem artichoke (Helianthus tuberosus L.) is an important tuber crop. However, Jerusalem artichoke seeds contain high levels of starch and lipid, making the extraction of high-quality RNA extremely difficult and the gene expression analysis challenging. This study was aimed to improve existing methods for extracting total RNA from Jerusalem artichoke dry seeds and to assess the applicability of the improved method in other plant species. Five RNA extraction methods were evaluated on Jerusalem artichoke seeds and two were modified. One modified method with the significant improvement was applied to assay seeds of diverse Jerusalem artichoke accessions, sunflower, rice, maize, peanut and marigold. The effectiveness of the improved method to extract total RNA from seeds was assessed using qPCR analysis of four selected genes. The improved method of Ma and Yang (2011) yielded a maximum RNA solubility and removed most interfering substances. The improved protocol generated 29 to 41 µg RNA/30 mg fresh weight. An A260/A280 ratio of 1.79 to 2.22 showed their RNA purity. Extracted RNA was effective for downstream applications such as first-stranded cDNA synthesis, cDNA cloning and qPCR. The improved method was also effective to extract total RNA from seeds of sunflower, rice, maize and peanut that are rich in polyphenols, lipids and polysaccharides.
Ionizing Radiation-Induced DNA Damage and Its Repair in Human Cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dizdaroglu, Miral
DNA damage in mammalian chromatin in vitro and in cultured mammalian cells including human cells was studied. In the first phase of these studies, a cell culture laboratory was established. Necessary equipment including an incubator, a sterile laminar flow hood and several centrifuges was purchased. We have successfully grown several cell lines such as murine hybridoma cells, V79 cells and human K562 leukemia cells. This was followed by the establishment of a methodology for the isolation of chromatin from cells. This was a very important step, because a routine and successful isolation of chromatin was a prerequisite for the successmore » of the further studies in this project, the aim of which was the measurement of DNA darnage in mammalian chromatin in vitro and in cultured cells. Chromatin isolation was accomplished using a slightly modified procedure of the one described by Mee & Adelstein (1981). For identification and quantitation of DNA damage in cells, analysis of chromatin was preferred over the analysis of "naked DNA" for the following reasons: i. DNA may not be extracted efficiently from nucleoprotein in exposed cells, due to formation of DNA-protein cross-links, ii. the extractability of DNA is well known to decrease with increasing doses of radiation, iii. portions of DNA may not be extracted due to fragmentation, iv. unextracted DNA may contain a significant portion of damaged DNA bases and DNA-protein cross-links. The technique of gas chromatography/mass spectrometry (GC/MS), which was used in the present project, permits the identification and quantitation of modified DNA bases in chromatin in the presence of proteins without the necessity of first isolating DNA from chromatin. This has been demonstrated previously by the results from our laboratory and by the results obtained during the course of the present project. The quality of isolated chromatin was tested by measurement of its content of DNA, proteins, and RNA, by analysis of its protein components using gel electrophoresis, and by absorption spectral analysis. GeneraUy, the RNA content was <5% of the amount of DNA, and the ratio of the amount of protein to that of DNA was =1. 8-2 (w/w). Having developed a suitable methodology for routine isolation of chromatin from mammalian cells, studies of DNA damage in chromatin in vitro and in cultured human cells were pursued.« less
Gao, Lijun; Xia, Wei; Ai, Jinxia; Li, Mingcheng; Yuan, Guanxin; Niu, Jiamu; Fu, Guilian; Zhang, Lihua
2016-07-01
This study describes a method for discriminating the true Cervus antlers from its counterfeits using multiplex PCR. Bioinformatics were carried out to design the specific alleles primers for mitochondrial (mt) cytochrome b (Cyt b) and cytochrome C oxidase subunit 1 (Cox 1) genes. The mt DNA and genomic DNA were extracted from Cervi Cornu Pantotrichum through the modified alkaline and the salt-extracting method in addition to its counterfeits, respectively. Sufficient DNA templates were extracted from all samples used in two methods, and joint fragments of 354 bp and 543 bp that were specifically amplified from both of true Cervus antlers served as a standard control. The data revealed that the multiplex PCR-based assays using two primer sets can be used for forensic and quantitative identification of original Cervus deer products from counterfeit antlers in a single step.
Preparation of Formalin-fixed Paraffin-embedded Tissue Cores for both RNA and DNA Extraction.
Patel, Palak G; Selvarajah, Shamini; Boursalie, Suzanne; How, Nathan E; Ejdelman, Joshua; Guerard, Karl-Philippe; Bartlett, John M; Lapointe, Jacques; Park, Paul C; Okello, John B A; Berman, David M
2016-08-21
Formalin-fixed paraffin embedded tissue (FFPET) represents a valuable, well-annotated substrate for molecular investigations. The utility of FFPET in molecular analysis is complicated both by heterogeneous tissue composition and low yields when extracting nucleic acids. A literature search revealed a paucity of protocols addressing these issues, and none that showed a validated method for simultaneous extraction of RNA and DNA from regions of interest in FFPET. This method addresses both issues. Tissue specificity was achieved by mapping cancer areas of interest on microscope slides and transferring annotations onto FFPET blocks. Tissue cores were harvested from areas of interest using 0.6 mm microarray punches. Nucleic acid extraction was performed using a commercial FFPET extraction system, with modifications to homogenization, deparaffinization, and Proteinase K digestion steps to improve tissue digestion and increase nucleic acid yields. The modified protocol yields sufficient quantity and quality of nucleic acids for use in a number of downstream analyses, including a multi-analyte gene expression platform, as well as reverse transcriptase coupled real time PCR analysis of mRNA expression, and methylation-specific PCR (MSP) analysis of DNA methylation.
Detection of processed genetically modified food using CIM monolithic columns for DNA isolation.
Jerman, Sergej; Podgornik, Ales; Cankar, Katarina; Cadet, Neza; Skrt, Mihaela; Zel, Jana; Raspor, Peter
2005-02-11
The availability of sufficient quantities of DNA of adequate quality is crucial in polymerase chain reaction (PCR)-based methods for genetically modified food detection. In this work, the suitability of anion-exchange CIM (Convective Interaction Media; BIA Separations, Ljubljana, Slovenia) monolithic columns for isolation of DNA from food was studied. Maize and its derivates corn meal and thermally pretreated corn meal were chosen as model food. Two commercially available CIM disk columns were tested: DEAE (diethylaminoethyl) and QA (quaternary amine). Preliminary separations were performed with standard solution of salmon DNA at different pH values and different NaCl concentrations in mobile phase. DEAE groups and pH 8 were chosen for further isolations of DNA from a complex matrix-food extract. The quality and quantity of isolated DNA were tested on agarose gel electrophoresis, with UV-scanning spectrophotometry, and by amplification with real-time PCR. DNA isolated in this way was of suitable quality for further PCR analyses. The described method is also applicable for DNA isolation from processed foods with decreased DNA content. Furthermore, it is more effective and less time-consuming in comparison with the existing proposed methods for isolation of DNA from plant-derived foods.
Bonnet-Duquennoy, Mathilde; Dumas, Marc; Debacker, Adeline; Lazou, Kristell; Talbourdet, Sylvie; Franchi, Jocelyne; Heusèle, Catherine; André, Patrice; Schnebert, Sylvianne; Bonté, Frédéric; Kurfürst, Robin
2007-06-01
Studying photoexposed and photoprotected skin biopsies from young and aged women, it has been found that a specific zone, composed of the basal layers of the epidermis, the dermal epidermal junction, and the superficial dermis, is major target of aging and reactive oxygen species. We showed that this zone is characterized by significant variations at a transcriptional and/or protein levels. Using low-density DNA chip technology, we evaluated the effect of a natural mixture of Aframomum angustifolium seed extract containing labdane diterpenoids on these aging markers. Expression profiles of normal human fibroblasts (NHF) were studied using a customized cDNA macroarray system containing genes covering dermal structure, inflammatory responses, and oxidative stress defense mechanisms. For normal human keratinocyte (NHK) investigations, we chose OLISA technique, a sensitive and quantitative method developed by BioMérieux specifically designed to investigate cell death, proliferation, epidermal structure, differentiation, and oxidative stress defense response. We observed that this extract strongly modified gene expression profiles of treated NHK, but weakly for NHF. This extract regulated antioxidant defenses, dermal-epidermal junction components, and epidermal renewal-related genes. Using low-density DNA chip technology, we identified new potential actions of A. angustifolium seed extract on skin aging.
Selective recognition of DNA from olive leaves and olive oil by PNA and modified-PNA microarrays
Rossi, Stefano; Calabretta, Alessandro; Tedeschi, Tullia; Sforza, Stefano; Arcioni, Sergio; Baldoni, Luciana; Corradini, Roberto; Marchelli, Rosangela
2012-01-01
PNA probes for the specific detection of DNA from olive oil samples by microarray technology were developed. The presence of as low as 5% refined hazelnut (Corylus avellana) oil in extra-virgin olive oil (Olea europaea L.) could be detected by using a PNA microarray. A set of two single nucleotide polymorphisms (SNPs) from the Actin gene of Olive was chosen as a model for evaluating the ability of PNA probes for discriminating olive cultivars. Both unmodified and C2-modified PNAs bearing an arginine side-chain were used, the latter showing higher sequence specificity. DNA extracted from leaves of three different cultivars (Ogliarola leccese, Canino and Frantoio) could be easily discriminated using a microarray with unmodified PNA probes, whereas discrimination of DNA from oil samples was more challenging, and could be obtained only by using chiral PNA probes. PMID:22772038
Langie, Sabine A S; Knaapen, Ad M; Brauers, Karen J J; van Berlo, Damien; van Schooten, Frederik-Jan; Godschalk, Roger W L
2006-03-01
There is an increasing need for simple and reliable approaches to phenotypically assess DNA repair capacities. Therefore, a modification of the alkaline comet assay was developed to determine the ability of human lymphocyte extracts to perform the initial steps of the nucleotide excision repair (NER) process, i.e. damage recognition and incision. Gel-embedded nucleoids from A549 cells, pre-exposed to 1 microM benzo[a]pyrene-diol-epoxide, were incubated with cell extracts from frozen or freshly isolated lymphocytes. The rate at which incisions are introduced and the subsequent increase in tail moment is indicative for the repair capacity of the extracts. Freshly prepared extracts from lymphocytes of human volunteers (n = 8) showed significant inter-individual variations in their DNA repair capacity, which correlated with the removal of bulky DNA lesions over a period of 48 h determined by (32)P-post-labelling (R(2) = 0.76, P = 0.005). Repeated measurements revealed a low inter-assay variation (11%). Storage of cell extracts for more than 3 weeks significantly reduced (up to 80%) the capacity to incise the damaged DNA as compared to freshly isolated extracts. This reduction was completely restored by addition of ATP to the extracts before use, as it is required for the incision step of NER. In contrast, extracts freshly prepared from frozen lymphocyte pellets can be used without loss of repair activity. DNA repair deficient XPA-/- and XPC-/- fibroblasts were used to further validate the assay. Although some residual capacity to incise the DNA was observed in these cells, the repair activity was restored to normal wild-type levels when a complementary mixture of both extracts (thereby restoring XPA and XPC deficiency) was used. These results demonstrate that this repair assay can be applied in molecular epidemiological studies to assess inter-individual differences in NER.
Watanabe, Takahiro; Sekino, Ayako; Shiramasa, Yuko; Matsuda, Rieko; Maitani, Tamio
2008-08-01
It is very important to examine the effect of non-genetically modified (non-GM) soy varieties, which constitute the matrix of the testing sample used to quantify GM soy (RRS), on the measured value of RRS by quantitative PCR methods. Therefore, we quantified the amount of RRS in powder-mixed samples containing 1 or 5% RRS prepared by using 10 different varieties of non-GM soy as the matrix. The results revealed that the measured values were not in agreement with the powder-mixing levels and that the extent of the difference depended on the variety of non-GM soy used as the matrix. The yields of DNA extracted differed among the soy varieties. On the other hand, analysis of DNA-mixed samples, that were prepared with the DNAs extracted from RRS and non-GM soy varieties, showed that the measured values of RRS were in agreement with the DNA-mixing levels. These results strongly suggest that the proportions of DNA derived from RRS and non-GM soy were not consistent with the powder-mixing ratio in the case of some non-GM soy varieties used as a matrix, resulting in the discrepancy between the measured values and the powder-mixing levels.
Quantification of concentrated Chinese medicine granules by quantitative polymerase chain reaction.
Lo, Yat-Tung; Shaw, Pang-Chui
2017-10-25
Determination of the amount of constituent in a multi-herb product is important for quality control. In concentrated Chinese medicine granules (CCMG), no dregs are left after dissolution of the CCMG. This study is the first to examine the feasibility of using quantitative polymerase chain reaction (qPCR) to find the amount of CCMG in solution form. DNA was extracted from Hirudo and Zaocys CCMG mixed at different ratios and amplified in qPCR using species-specific primers. The threshold cycle (C T ) obtained was compared with the respective standard curves. Results showed that reproducible quantification results could be obtained (1) for 5-50mg CCMG using a modified DNA extraction protocol, (2) amongst DNA extracted from the same batch of CCMG and (3) amongst different batches of CCMG from the same company. This study demonstrated the constitute amount of CCMG in a mixture could be determined using qPCR. This work has extended the application of DNA techniques for the quantification of herbal products and this approach may be developed for quality assurance in the CCMG industry. Copyright © 2017 Elsevier B.V. All rights reserved.
Designing easy DNA extraction: Teaching creativity through laboratory practice.
Susantini, Endang; Lisdiana, Lisa; Isnawati; Tanzih Al Haq, Aushia; Trimulyono, Guntur
2017-05-01
Subject material concerning Deoxyribose Nucleic Acid (DNA) structure in the format of creativity-driven laboratory practice offers meaningful learning experience to the students. Therefore, a laboratory practice in which utilizes simple procedures and easy-safe-affordable household materials should be promoted to students to develop their creativity. This study aimed to examine whether designing and conducting DNA extraction with household materials could foster students' creative thinking. We also described how this laboratory practice affected students' knowledge and views. A total of 47 students participated in this study. These students were grouped and asked to utilize available household materials and modify procedures using hands-on worksheet. Result showed that this approach encouraged creative thinking as well as improved subject-related knowledge. Students also demonstrated positive views about content knowledge, social skills, and creative thinking skills. This study implies that extracting DNA with household materials is able to develop content knowledge, social skills, and creative thinking of the students. © 2016 by The International Union of Biochemistry and Molecular Biology, 45(3):216-225, 2017. © 2016 The International Union of Biochemistry and Molecular Biology.
Borman, Andrew M; Fraser, Mark; Linton, Christopher J; Palmer, Michael D; Johnson, Elizabeth M
2010-06-01
Here, we present a significantly improved version of our previously published method for the extraction of fungal genomic DNA from pure cultures using Whatman FTA filter paper matrix technology. This modified protocol is extremely rapid, significantly more cost effective than our original method, and importantly, substantially reduces the problem of potential cross-contamination between sequential filters when employing FTA technology.
Modified CTAB and TRIzol protocols improve RNA extraction from chemically complex Embryophyta1
Jordon-Thaden, Ingrid E.; Chanderbali, Andre S.; Gitzendanner, Matthew A.; Soltis, Douglas E.
2015-01-01
Premise of the study: Here we present a series of protocols for RNA extraction across a diverse array of plants; we focus on woody, aromatic, aquatic, and other chemically complex taxa. Methods and Results: Ninety-one taxa were subjected to RNA extraction with three methods presented here: (1) TRIzol/TURBO DNA-free kits using the manufacturer’s protocol with the addition of sarkosyl; (2) a combination method using cetyltrimethylammonium bromide (CTAB) and TRIzol/sarkosyl/TURBO DNA-free; and (3) a combination of CTAB and QIAGEN RNeasy Plant Mini Kit. Bench-ready protocols are given. Conclusions: After an iterative process of working with chemically complex taxa, we conclude that the use of TRIzol supplemented with sarkosyl and the TURBO DNA-free kit is an effective, efficient, and robust method for obtaining RNA from 100 mg of leaf tissue of land plant species (Embryophyta) examined. Our protocols can be used to provide RNA of suitable stability, quantity, and quality for transcriptome sequencing. PMID:25995975
Peano, C; Lesignoli, F; Gulli, M; Corradini, R; Samson, M C; Marchelli, R; Marmiroli, N
2005-09-15
In the present study a peptide nucleic acid (PNA)-mediated polymerase chain reaction (PCR) clamping method was developed and applied to the detection of genetically modified organisms (GMO), to test PCR products for band identity and to obtain a semiquantitative evaluation of GMO content. The minimal concentration of PNA necessary to block the PCR was determined by comparing PCRs containing a constant amount of DNA in the presence of increasing concentration of target-specific PNA. The lowest PNA concentration at which specific inhibition took place, by the inhibition of primer extension and/or steric hindrance, was the most efficient condition. Optimization of PCR clamping by PNA was observed by testing five different PNAs with a minimum of 13 bp to a maximum of 15 bp, designed on the target sequence of Roundup Ready soybean. The results obtained on the DNA extracted from Roundup Ready soybean standard flour were verified also on DNA extracted from standard flours of maize GA21, Bt176, Bt11, and MON810. A correlation between the PNA concentration necessary for inducing PCR clamping and the percentage of the GMO target sequence in the sample was found.
Milks, Maynard L; Sokolova, Yuliya Y; Isakova, Irina A; Fuxa, James R; Mitchell, Forrest; Snowden, Karen F; Vinson, S Bradleigh
2004-01-01
The main goal of this study was to compare the effectiveness of three staining techniques (calcofluor white M2R, Giemsa and modified trichrome), and the polymerase chain reaction (PCR) in detecting the microsporidium Thelohania solenopsae in red imported fire ants (Solenopsis invicta). The effect of the number of ants in a sample on the sensitivity of the staining techniques and the PCR, and the effect of three DNA extraction protocols on the sensitivity of PCR were also examined. In the first protocol, the ants were macerated and the crude homogenate was used immediately in the PCR. In the second protocol, the homogenate was placed on a special membrane (FTA card) that traps DNA, which is subsequently used in the PCR. In the third protocol, the DNA was purified from the homogenate by traditional phenol-chloroform extraction. Except for PCR using FTA cards, the sensitivity (number of samples positive for T. solenopsae) of all detection techniques increased with the number of ants in the sample. Overall, Giemsa was the least sensitive of all detection techniques. Calcofluor was more sensitive than modified trichrome with ants from one site and was equally as sensitive as PCR with crude DNA or a FTA card with ants from both sites. Trichrome staining was equally as sensitive as PCR with a FTA card at both sites, but it was less sensitive than PCR with crude DNA at one site. PCR on FTA cards was less sensitive than PCR with crude DNA for ants from one site but not the other. There was no difference whether crude or phenol-chloroform purified DNA was used as template. In summary, the results of this study show that PCR based on a crude DNA solution is equal to or more sensitive in detecting T. solenopsae than the other detection techniques investigated, and that it can be used as a reliable diagnostic tool for screening field samples of S. invicta for T. solenopsae. Nevertheless, ant smear stained with calcofluor or modified trichrome should be used to buttress findings from PCR.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Donahue, B.A.; Augot, M.; Bellon, S.F.
1990-06-19
A factor has been identified in extracts from human HeLa and hamster V79 cells that retards the electrophoretic mobility of several DNA restriction fragments modified with the antitumor drug cis-diamminedichloroplatinum(II) (cisplatin). Binding of the factor to cisplatin-modified DNA was sensitive to pretreatment with proteinase K, establishing that the factor is a protein. Gel mobility shifts were observed with probes containing as few as seven Pt atoms per kilobase of duplex DNA. By competition experiments the dissociation constant, K{sub d}, of the protein from cisplatin-modified DNA was estimated to be (1-20) {times} 10{sup {minus}10} M. Protein binding is selective for DNAmore » modified with cisplatin, (Pt(en)Cl{sub 2}) (en, ethylenediamine), and (Pt(dach)Cl{sub 2}) (dach, 1,2-diaminocyclohexane) but not with chemotherapeutically inactive trans-diamminedichloroplatinum(II) or monofunctionally coordinating (Pt(dien)Cl)Cl (dien, diethylenetriamine) complexes. The protein binds specifically to 1,2-intrastrand d(GpG) and d(ApG) cross-links formed by cisplatin. The apparent molecular weight of the protein is 91,000, as determined by sucrose gradient centrifugation of a preparation partially purified by ammonium sulfate fractionation. Binding of the protein to platinum-modified DNA does not require cofactors but is sensitive to treatment with 5 mM MnCl{sub 2}, CdCl{sub 2}, CoCl{sub 2}, or ZnCl{sub 2} and with 1 mM HgCl{sub 2}. This protein, alone or in conjunction with other cellular constituents, could be of general importance in the initial stages of processing of mammalian DNA damaged by cisplatin or other genotoxic agents and may belong to a wider class of such cellular damage-recognition proteins (DRPs).« less
Modulation of gene expression as a new skin anti-aging strategy.
Talbourdet, Sylvie; Sadick, Neil S; Lazou, Kristell; Bonnet-Duquennoy, Mathilde; Kurfurst, Robin; Neveu, Michele; Heusèle, Catherine; André, Patrice; Schnebert, Sylvianne; Draelos, Zoe D; Perrier, Eric
2007-06-01
[corrected] The signs of aging may originate from natural processes or from exposure to the sun, wind, or other environmental factors. To evaluate the anti-aging effects of potential agents researchers must first identify and be able to quantify epidermal markers that change with aging. This paper summarizes the results of studies conducted to evaluate the transcriptional effects of an Aframomum angustifolium seed extract and Malva Sylvestris extract, and the antiaging efficacy of a skin care product containing the Aframomum angustifolium seed extract. The transcriptional effect of an Aframomum angustifolium seed extract on normal human keratinocytes (NHKs) and normal human fibroblasts (NHF) was evaluated in vitro with the use of a low-density DNA array technology. The Malva Sylvestris extract was studied with a commercial DNA macroarray and by a real-time quantitative reverse transcriptase-polymerase chain reaction. The in vitro anti-aging activities of the Malva sylvestris extract were compared with those of all-trans retinoic acid (RA), a well-established topical therapy for photodamage and wrinkles. The genes studied were known to be modified by RA. The anti-aging efficacy of a facial skin care product containing Aframomum angustifolium seed extract was evaluated in a single-center study using image processing analysis and in a 2-center study by evaluation of the photographs by the investigator, independent evaluators, and subjects. In general, the Aframomum angustifolium seed extract strongly modified the gene expression profiles of NHKs and weakly modified the gene expression profiles of NHFs. After incubation with Aframomum angustifolium seed extract, the expressions of 3 antioxidant genes (metallothionein 1, metallothionein 2, and thioredoxin) were increased in NHKs, while expressions of 1 antioxidant gene (glutathione peroxidase) was increased in NHFs. Concerning the Malva sylvestris extract, a cDNA macro-array technology experiment with the reconstructed human epidermis model showed that some genes modulated by treatment with the Malva sylvestris extract are also regulated by RA treatment indicating a similar activity at the mRNA level. In the single-center study, a facial skin care product containing the Aframomum angustifolium seed extract significantly improved the homogeneity of the skin. The areas of the detected objects (skin imperfections) decreased significantly on each studied area of the face and the variance decreased significantly over the entire face. In the 2-center study, 28% percent of the subjects reported a greater than 50% overall global improvement in their skin by the end of the study compared to 11% of the subjects after 4 weeks of treatment. Seventy-six percent of subjects said they would purchase the cream. The authors developed a low-density DNA chip method that permitted the study of the transcriptional effect of Malva Sylvestris extract and of Aframomum angustrifolium seed extract. The gene expression profiles obtained demonstrate the anti-aging properties of these compounds. An in vivo single-center study, performed and analyzed with an assay based on image processing analysis, demonstrated the antiwrinkle activity of a formulation containing the Aframomum angustifolium seed extract. The data obtained in the 2-center study suggests that the cosmeceutical containing Aframomum angustifolium seed extract produces a global rejuvenation effect in terms of redness, pigmentation, and fine lines similar to that noted utilizing an intense pulse light source.
Yang, Hongmei; Yao, Wenbin; Wang, Yihan; Shi, Lei; Su, Rui; Wan, Debin; Xu, Niusheng; Lian, Wenhui; Chen, Changbao; Liu, Shuying
2017-02-14
Conventional strategies for the screening of DNA triplex binders cannot be used for complicated samples, such as ligand libraries created by combinatorial chemistry or from natural product extracts. In the current study, an ultra-high-performance liquid chromatography coupled with an Orbitrap mass spectrometry (UHPLC-Orbitrap-MS)-based approach, which we call peak area-fading (PAF) UHPLC-Orbitrap-MS and was designed for just such a purpose, is reported. The triplex DNA modified 96-well plate and the single stranded oligonucleotide modified 96-well plate (as control) were incubated with ligand libraries, and the unbound ligands were directly determined via UHPLC-ESI-MS. The binders were detected through the decrease (fading) in the peak areas compared to those of the control group. Several factors, such as incubation time, incubation temperature, and buffer, which might affect the binding affinity and reproducibility, were optimized. The potential of the approach was examined using the extracts of Rhizoma Coptidis and Phellodendron chinense Schneid cortexe. The triplex DNA-binding capabilities of the five components (epiberberine, coptisine, jatrorrhizine, berberrubine, and columbamine) were found for the first time, indicating their efficiency for the analysis of complicated samples. In contrast to our previous study, which suffered from a serious drawback of poor reproducibility, this method is more robust and more suitable for high-throughput measurements, opening a new experimental strategy in assessing large libraries of potential drug candidates that work by forming a drug/DNA complex.
The clinical potential of Enhanced-ice-COLD-PCR.
Tost, Jörg
2016-01-01
Enhanced-ice-COLD-PCR (E-ice-COLD-PCR) is a novel assay format that allows for the efficient enrichment and sensitive detection of all mutations in a region of interest using a chemically modified blocking oligonucleotide, which impedes the amplification of wild-type sequences. The assay is compatible with DNA extracted from tissue and cell-free circulating DNA. The main features of E-ice-COLD-PCR are the simplicity of the setup and the optimization of the assay, the use of standard laboratory equipment and the very short time to results (~4 h including DNA extraction, enrichment and sequence-based identification of mutations). E-ice-COLD-PCR is therefore a highly promising technology for a number of basic research as well as clinical applications including detection of clinically relevant mutated subclones and monitoring of treatment response or disease recurrence.
DNA adducts induced by in vitro activation of extracts of diesel and biodiesel exhaust particles.
Ross, Jeffrey A; Nelson, Garret B; Mutlu, Esra; Warren, Sarah H; Gilmour, M Ian; DeMarini, David M
2015-01-01
Biodiesel and biodiesel-blend fuels offer a renewable alternative to petroleum diesel, but few data are available concerning the carcinogenic potential of biodiesel exhausts. We compared the formation of covalent DNA adducts by the in vitro metabolic activation of organic extracts of diesel-exhaust particles (DEP) from petroleum diesel and soy biodiesel and correlated DNA adduct levels and mutagenicity in Salmonella TA100. We examined two different DEP from petroleum diesel (C-DEP and B0), one from soy bean oil biodiesel (B100) and one from combustion of a blend of 20% B100 and 80% B0 (B20) for in vitro DNA adduct-forming potential under oxidative or nitroreductive conditions in the presence of calf thymus DNA as well as in vivo in Salmonella TA100. The modified DNA was hydrolyzed and analyzed by (32)P-postlabeling using either butanol extraction or nuclease P1 pre-enrichment. Multiple DNA adducts were produced with chromatographic mobilities consistent with PAH and nitro-PAH adducts. The types and quantities of DNA adducts produced by the two independent petroleum diesel DEP were similar, with both polycyclic aromatic hydrocarbon (PAH)- and nitro-PAH-derived adducts formed. Relative potencies for S9-mediated DNA adduct formation, either per mass of particulate or per MJ(th) energy consumed were B100 > B0 > B20. Soy biodiesel emissions induced DNA damage in the form of presumptive PAH and nitro-PAH DNA adducts that correlated with mutagenicity in Salmonella. B20 is the soy biodiesel used most commonly in the US, and it produced the lowest DNA adduct-emission factor, ∼50% that of petroleum diesel.
Huanca-Mamani, W; Rivera-Cabello, D; Maita-Maita, J
2015-07-17
In this study, we report a modified CTAB-PVP method combined with silicon dioxide (silica) treatment for the extraction of high quality genomic DNA from a single larva or pupa. This method efficiently obtains DNA from small specimens, which is difficult and challenging because of the small amount of starting tissue. Maceration with liquid nitrogen, phenol treatment, and the ethanol precipitation step are eliminated using this methodology. The A260/A280 absorbance ratios of the isolated DNA were approximately 1.8, suggesting that the DNA is pure and can be used for further molecular analysis. The quality of the isolated DNA permits molecular applications and represents a fast, cheap, and effective alternative method for laboratories with low budgets.
Cavallo, Delia; Ursini, Cinzia L; Maiello, Raffaele; Apostoli, Pietro; Catalani, Simona; Ciervo, Aureliano; Iavicoli, Sergio
2008-01-01
The present study was aimed at assessing the carcinogenic risk of occupational exposure to PM10 in electric steel plants. PM10 was collected on cellulose filter respectively outside (site 1) and inside (site 2) the furnace area, was measured, extracted and its metal content was analysed by ICP-MS. Cells were exposed for 30 min, 2 and 4 hours to extract of filter from each site diluted at 0.004, 0.008 and 0.02%. The direct/oxidative DNA damage caused by PM10 was evaluated on A549 cells by Fpg-modified comet assay, analysing Tail moment (TM) and comet percentage. Air samples contained 1.08 mg/m3 of PM10 in site 1 and 5.54 mg/m3in site 2 and different amounts of metals with higher levels of Zn, Al, Ni, Pb, Cd, Cr, Ba in site 2 and of Fe, Mn, Sb in site 1. In cells exposed for 2h to PM10 from both sites, an oxidative DNA damage was found concentrations of 0.008% and 0.02%. For site 2, a direct DNA damage at 0.02% was also found. After 4h a direct/oxidative DNA damage was detected at 0.02% for site 2 and an oxidative DNA damage for site 1. The results indicate a moderate DNA damage induction by used diluitions of PM10 extracts with higher extent for more polluted site 2. These findings show the suitability of this experimental model to evaluate early DNA damage induced by complex mixtures containing metals on target organ, suggesting its use to study biological effects of occupational exposure to such substances.
Laible, Philip D; Hanson, Deborah K
2013-06-04
The invention provides an in vitro method for producing proteins, membrane proteins, membrane-associated proteins, and soluble proteins that interact with membrane-associated proteins for assembly into an oligomeric complex or that require association with a membrane for proper folding. The method comprises, supplying intracytoplasmic membranes from organisms; modifying protein composition of intracytoplasmic membranes from organism by modifying DNA to delete genes encoding functions of the organism not associated with the formation of the intracytoplasmic membranes; generating appropriate DNA or RNA templates that encode the target protein; and mixing the intracytoplasmic membranes with the template and a transcription/translation-competent cellular extract to cause simultaneous production of the membrane proteins and encapsulation of the membrane proteins within the intracytoplasmic membranes.
Rabiei, Maryam; Mehdizadeh, Mehrangiz; Rastegar, Hossein; Vahidi, Hossein; Alebouyeh, Mahmoud
2013-01-01
Detection of genetically modified organisms (GMOs) in food is an important issue for all the subjects involved in food control and customer’s right. Due to the increasing number of GMOs imported to Iran during the past few years, it has become necessary to screen the products in order to determine the identity of the consumed daily foodstuffs. In this study, following the extraction of genomic DNA from processed foods sold commercially in Iran, qualitative PCR was performed to detect genetically modified maize. The recombinant DNA target sequences were detected with primers highly specific for each investigated transgene such as CaMV35s gene, Bt-11, MON810 and Bt-176 separately. Based on the gel electrophoresis results, Bt- 11 and MON810 events were detected in some maize samples, while, in none of them Bt- 176 modified gene was detected. For the first time, the results demonstrate the presence of genetically modified maize in Iranian food products, reinforcing the need for the development of labeling system and valid quantitative methods in routine analyses. PMID:24250568
Rabiei, Maryam; Mehdizadeh, Mehrangiz; Rastegar, Hossein; Vahidi, Hossein; Alebouyeh, Mahmoud
2013-01-01
Detection of genetically modified organisms (GMOs) in food is an important issue for all the subjects involved in food control and customer's right. Due to the increasing number of GMOs imported to Iran during the past few years, it has become necessary to screen the products in order to determine the identity of the consumed daily foodstuffs. In this study, following the extraction of genomic DNA from processed foods sold commercially in Iran, qualitative PCR was performed to detect genetically modified maize. The recombinant DNA target sequences were detected with primers highly specific for each investigated transgene such as CaMV35s gene, Bt-11, MON810 and Bt-176 separately. Based on the gel electrophoresis results, Bt- 11 and MON810 events were detected in some maize samples, while, in none of them Bt- 176 modified gene was detected. For the first time, the results demonstrate the presence of genetically modified maize in Iranian food products, reinforcing the need for the development of labeling system and valid quantitative methods in routine analyses.
NASA Astrophysics Data System (ADS)
Jepsen, Morten Leth; Harmsen, Charlotte; Godbole, Adwait Anand; Nagaraja, Valakunja; Knudsen, Birgitta R.; Ho, Yi-Ping
2015-12-01
We present a quantum dot based DNA nanosensor specifically targeting the cleavage step in the reaction cycle of the essential DNA-modifying enzyme, mycobacterial topoisomerase I. The design takes advantages of the unique photophysical properties of quantum dots to generate visible fluorescence recovery upon specific cleavage by mycobacterial topoisomerase I. This report, for the first time, demonstrates the possibility to quantify the cleavage activity of the mycobacterial enzyme without the pre-processing sample purification or post-processing signal amplification. The cleavage induced signal response has also proven reliable in biological matrices, such as whole cell extracts prepared from Escherichia coli and human Caco-2 cells. It is expected that the assay may contribute to the clinical diagnostics of bacterial diseases, as well as the evaluation of treatment outcomes.We present a quantum dot based DNA nanosensor specifically targeting the cleavage step in the reaction cycle of the essential DNA-modifying enzyme, mycobacterial topoisomerase I. The design takes advantages of the unique photophysical properties of quantum dots to generate visible fluorescence recovery upon specific cleavage by mycobacterial topoisomerase I. This report, for the first time, demonstrates the possibility to quantify the cleavage activity of the mycobacterial enzyme without the pre-processing sample purification or post-processing signal amplification. The cleavage induced signal response has also proven reliable in biological matrices, such as whole cell extracts prepared from Escherichia coli and human Caco-2 cells. It is expected that the assay may contribute to the clinical diagnostics of bacterial diseases, as well as the evaluation of treatment outcomes. Electronic supplementary information (ESI) available: Characterization of the QD-based DNA Nanosensor. See DOI: 10.1039/c5nr06326d
NASA Astrophysics Data System (ADS)
Focke, Maximilian; Mark, Daniel; Stumpf, Fabian; Müller, Martina; Roth, Günter; Zengerle, Roland; von Stetten, Felix
2011-06-01
Two microfluidic cartridges intended for upgrading standard laboratory instruments with automated liquid handling capability by use of centrifugal forces are presented. The first microfluidic cartridge enables purification of DNA from human whole blood and is operated in a standard laboratory centrifuge. The second microfluidic catridge enables genotyping of pathogens by geometrically multiplexed real-time PCR. It is operated in a slightly modified off-the-shelf thermal cycler. Both solutions aim at smart and cost-efficient ways to automate work flows in laboratories. The DNA purification cartridge automates all liquid handling steps starting from a lysed blood sample to PCR ready DNA. The cartridge contains two manually crushable glass ampoules with liquid reagents. The DNA yield extracted from a 32 μl blood sample is 192 +/- 30 ng which corresponds to 53 +/- 8% of a reference extraction. The genotyping cartridge is applied to analyse isolates of the multi-resistant Staphyloccus aureus (MRSA) by real-time PCR. The wells contain pre-stored dry reagents such as primers and probes. Evaluation of the system with 44 genotyping assays showed a 100% specificity and agreement with the reference assays in standard tubes. The lower limit of detection was well below 10 copies of DNA per reaction.
Recovery and identification of bacterial DNA from illicit drugs.
Cho, Kaymann T; Richardson, Michelle M; Kirkbride, K Paul; McNevin, Dennis; Nelson, Michelle; Pianca, Dennis; Roffey, Paul; Gahan, Michelle E
2014-02-01
Bacterial infections, including Bacillus anthracis (anthrax), are a common risk associated with illicit drug use, particularly among injecting drug users. There is, therefore, an urgent need to survey illicit drugs used for injection for the presence of bacteria and provide valuable information to health and forensic authorities. The objectives of this study were to develop a method for the extraction of bacterial DNA from illicit drugs and conduct a metagenomic survey of heroin and methamphetamine seized in the Australian Capital Territory during 2002-2011 for the presence of pathogens. Trends or patterns in drug contamination and their health implications for injecting drug users were also investigated. Methods based on the ChargeSwitch(®)gDNA mini kit (Invitrogen), QIAamp DNA extraction mini kit (QIAGEN) with and without bead-beating, and an organic phenol/chloroform extraction with ethanol precipitation were assessed for the recovery efficiency of both free and cellular bacterial DNA. Bacteria were identified using polymerase chain reaction and electrospray ionization-mass spectrometry (PCR/ESI-MS). An isopropanol pre-wash to remove traces of the drug and diluents, followed by a modified ChargeSwitch(®) method, was found to efficiently lyse cells and extract free and cellular DNA from Gram-positive and Gram-negative bacteria in heroin and methamphetamine which could then be identified by PCR/ESI-MS. Analysis of 12 heroin samples revealed the presence of DNA from species of Comamonas, Weissella, Bacillus, Streptococcus and Arthrobacter. No organisms were detected in the nine methamphetamine samples analysed. This study develops a method to extract and identify Gram-positive and Gram-negative bacteria from illicit drugs and demonstrates the presence of a range of bacterial pathogens in seized drug samples. These results will prove valuable for future work investigating trends or patterns in drug contamination and their health implications for injecting drug users as well as enabling forensic links between seizures to be examined. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Pacheco Coello, Ricardo; Pestana Justo, Jorge; Factos Mendoza, Andrés; Santos Ordoñez, Efrén
2017-12-20
In Ecuador, food products need to be labeled if exceeded 0.9% of transgenic content in whole products. For the detection of genetically modified organisms (GMOs), three DNA extraction methods were tested in 35 food products commercialized in Ecuador. Samples with positive amplification of endogenous genes were screened for the presence of the Cauliflower mosaic virus 35S-promoter (P35S) and the nopaline synthase-terminator (Tnos). TaqMan™ probes were used for determination of transgenic content of the GTS 40-3-2 and MON810 events through quantitative PCR (qPCR). Twenty-six processed food samples were positive for the P35S alone and eight samples for the Tnos and P35S. Absolute qPCR results indicated that eleven samples were positive for GTS 40-3-2 specific event and two for MON810 specific event. A total of nine samples for events GTS 40-3-2 and MON810 exceeded the umbral allowed of transgenic content in the whole food product with the specific events. Different food products may require different DNA extraction protocols for GMO detection through PCR. Among the three methods tested, the DNeasy mericon food kit DNA extraction method obtained higher proportion of amplified endogenous genes through PCR. Finally, event-specific GMOs were detected in food products in Ecuador.
Topinka, Jan; Milcova, Alena; Schmuczerova, Jana; Mazac, Martin; Pechout, Martin; Vojtisek-Lom, Michal
2012-07-07
The present study was performed to identify possible genotoxicity induced by organic extracts from particulate matter in the exhaust of two typical diesel engines run on diesel fuel and neat heated fuel-grade rapeseed oil: a Cummins ISBe4 engine tested using the World Harmonized Steady State Test Cycle (WHSC) and modified Engine Steady Cycle (ESC) and a Zetor 1505 engine tested using the Non-Road Steady State Cycle (NRSC). In addition, biodiesel B-100 (neat methylester of rapeseed oil) was tested in the Cummins engine run on the modified ESC. Diluted exhaust was sampled with high-volume samplers on Teflon coated filters. Filters were extracted with dichlormethane (DCM) and DNA adduct levels induced by extractable organic matter (EOM) in an acellular assay of calf thymus DNA coupled with (32)P-postlabeling in the presence and absence of rat liver microsomal S9 fraction were employed. Simultaneously, the chemical analysis of 12 priority PAHs in EOM, including 7 carcinogenic PAHs (c-PAHs) was performed. The results suggest that diesel emissions contain substantially more total PAHs than rapeseed oil emissions (for the ESC) or that these concentrations were comparable (for the WHSC and NRSC), while c-PAHs levels were comparable (for the ESC) or significantly higher (for the WHSC and NRSC) for rapeseed oil emissions. DNA adduct levels induced by diesel and rapeseed oil derived EOM were comparable, but consistently slightly higher for diesel than for rapeseed oil. Highly significant correlations were found between 12 priority PAHs concentrations and DNA adduct levels (0.980; p<0.001) and these correlations were even stronger for c-PAHs (0.990; p<0.001). Metabolic activation by the microsomal S9 fraction resulted in several fold higher genotoxicity, suggesting a major contribution of PAHs to genotoxicity. Directly acting compounds, other than c-PAHs, and not requiring S9 to exhibit DNA reactivity were also significant. Generally, DNA adduct levels were more dependent on the type of engine and the test cycle than on the fuel. Our findings suggest that the genotoxicity of particulate emissions from the combustion of rapeseed oil is significant and is comparable to that from the combustion of diesel fuel. A more detailed study is ongoing to verify and extent these preliminary findings. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Dhanya, K; Kizhakkayil, Jaleel; Syamkumar, S; Sasikumar, B
2007-10-01
Black pepper is an important medicinal spice traded internationally. The extraction of high quality genomic DNA for PCR amplification from dried black pepper is challenging because of the presence of the exceptionally large amount of oxidized polyphenolic compounds, polysaccharides and other secondary metabolites. Here we report a modified hexadecyl trimethyl ammonium bromide (CTAB) protocol by incorporating potassium acetate and a final PEG precipitation step to isolate PCR amplifiable genomic DNA from dried and powdered berries of black pepper. The protocol has trade implication as it will help in the PCR characterization of traded black peppers from different countries.
Johanson, Helene C; Hyland, Valentine; Wicking, Carol; Sturm, Richard A
2009-04-01
We describe here a method for DNA elution from buccal cells and whole blood both collected onto Whatman FTA technology, using methanol fixation followed by an elution PCR program. Extracted DNA is comparable in quality to published Whatman FTA protocols, as judged by PCR-based genotyping. Elution of DNA from the dried sample is a known rate-limiting step in the published Whatman FTA protocol; this method enables the use of each 3-mm punch of sample for several PCR reactions instead of the standard, one PCR reaction per sample punch. This optimized protocol therefore extends the usefulness and cost effectiveness of each buccal swab sample collected, when used for nucleic acid PCR and genotyping.
Jaravata, Carmela V; Smith, Wayne L; Rensen, Gabriel J; Ruzante, Juliana M; Cullor, James S
2006-01-01
A modified forensic DNA extraction and real-time fluorescent polymerase chain reaction assay has been evaluated for the detection of Mycobacterium avium subsp. paratuberculosis (MAP) in bovine fecal samples using primers and fluorescent resonance energy transfer (FRET) probes targeting the IS900 gene sequence of MAP. DNA was successfully extracted from manure samples by utilizing the Whatman FTA card technology, which allows for simple processing and storage of samples at room temperature. The FTA cards were washed and subjected to a Chelex-100 incubation to remove any remaining polymerase chain reaction (PCR) inhibitors and to elute the DNA from the FTA card. This isolated DNA was then subjected to direct real time fluorescent PCR analysis. Detection of MAP DNA from bovine fecal samples spiked with known concentrations of viable MAP cells was obtained. The detection limits of the assay was consistently found to be between 10(2) and 10(4) colony forming units [CFU]/g, with some samples containing as low as 10 CFU/g, yielding positive assay results. This cost-efficient assay allows reporting of results as early as 4 h after fecal collection, which can be particularly useful in highthroughput herd screening.
Mei, Ting; Lu, Xuewen; Sun, Ning; Li, Xiaomei; Chen, Jitao; Liang, Min; Zhou, Xinke; Fang, Zhiyuan
2018-06-05
The level of circulating tumor cell (CTCs) is a reliable marker for tumor burden and malignant progression. Quantification of CTCs remains technically challenging due to the rarity of these cells in peripheral blood. In the present study, we established a real-time quantitative PCR (Q-PCR) based method for sensitive detection of CTCs without DNA extraction. Blood sample was first turned to erythrocyte lyses and then incubated with two antibodies, tag-DNA modified CK-19 antibody and magnetic beads conjugated EpCAM antibody. Tumor cells were further enriched by magnetic separation. Tag-DNA that immobilized on tumor cells through CK-19 antibodies were also retrieved, which was further quantified by Q-PCR. This assay was able to detect single tumor cell in a 5 mL blood sample. The detection rate of clinical tumor blood sample was 92.3%. Furthermore, CTC count in patient was correlated with tumor stage and tumor status. The signal amplification was based on tag DNA rather than tumor gene, which was independent of nucleic acid extraction. With high sensitivity and convenience, this method can be a good alternative for the determination of cancer progress. Copyright © 2018 Elsevier B.V. All rights reserved.
Magneto-mechanical detection of nucleic acids and telomerase activity in cancer cells.
Weizmann, Yossi; Patolsky, Fernando; Lioubashevski, Oleg; Willner, Itamar
2004-02-04
The ultra-sensitive magneto-mechanical detection of DNA, single-base-mismatches in nucleic acids, and the assay of telomerase activity are accomplished by monitoring the magnetically induced deflection of a cantilever functionalized with magnetic beads associated with the biosensing interface. The analyzed M13phi DNA hybridized with the nucleic acid-functionalized magnetic beads is replicated in the presence of dNTPs that include biotin-labeled dUTP. The resulting beads are attached to an avidin-coated cantilever, and the modified cantilever is deflected by an external magnetic field. Similarly, telomerization of nucleic acid-modified magnetic beads in the presence of dNTPs, biotin-labeled dUTP, and telomerase from cancer cell extracts and the subsequent association of the magnetic beads to the cantilever surface results in the lever deflection by an external magnetic field. M13phi DNA is sensed with a sensitivity limit of 7.1 x 10(-20) M by the magneto-mechanical detection method.
Vaudano, Enrico; Costantini, Antonella; Garcia-Moruno, Emilia
2016-10-03
The availability of genetically modified (GM) yeasts for winemaking and, in particular, transgenic strains based on the integration of genetic constructs deriving from other organisms into the genome of Saccharomyces cerevisiae, has been a reality for several years. Despite this, their use is only authorized in a few countries and limited to two strains: ML01, able to convert malic acid into lactic acid during alcoholic fermentation, and ECMo01 suitable for reducing the risk of carbamate production. In this work we propose a quali-quantitative culture-independent method for the detection of GM yeast ML01 in commercial preparations of ADY (Active Dry Yeast) consisting of efficient extraction of DNA and qPCR (quantitative PCR) analysis based on event-specific assay targeting MLC (malolactic cassette), and a taxon-specific S. cerevisiae assay detecting the MRP2 gene. The ADY DNA extraction methodology has been shown to provide good purity DNA suitable for subsequent qPCR. The MLC and MRP2 qPCR assay showed characteristics of specificity, dynamic range, limit of quantification (LOQ) limit of detection (LOD), precision and trueness, which were fully compliant with international reference guidelines. The method has been shown to reliably detect 0.005% (mass/mass) of GM ML01 S. cerevisiae in commercial preparations of ADY. Copyright © 2016 Elsevier B.V. All rights reserved.
Bai, Yalong; Song, Minghui; Cui, Yan; Shi, Chunlei; Wang, Dapeng; Paoli, George C; Shi, Xianming
2013-07-17
A method based on amino-modified silica-coated magnetic nanoparticles (ASMNPs) and polymerase chain reaction (PCR) was developed to rapidly and sensitively detect foodborne pathogens in raw milk. After optimizing parameters such as pH, temperature, and time, a trace amount of genomic DNA of pathogens could be extracted directly from complex matrices such as raw milk using ASMNPs. The magnetically separated complexes of genomic DNA and ASMNPs were directly subjected to single PCR (S-PCR) or multiplex PCR (M-PCR) to detect single or multiple pathogens from raw milk samples. Salmonella Enteritidis (Gram-negative) and Listeria monocytogenes (Gram-positive) were used as model organisms to artificially contaminate raw milk samples. After magnetic separation and S-PCR, the detection sensitivities were 8 CFU mL(-1) and 13 CFU mL(-1) respectively for these two types of pathogens. Furthermore, this method was successfully used to detect multiple pathogens (S. Enteritidis and L. monocytogenes) from artificially contaminated raw milk using M-PCR at sensitivities of 15 CFU mL(-1) and 25 CFU mL(-1), respectively. This method has great potential to rapidly and sensitively detect pathogens in raw milk or other complex food matrices. Copyright © 2013 Elsevier B.V. All rights reserved.
Museum genomics: low-cost and high-accuracy genetic data from historical specimens.
Rowe, Kevin C; Singhal, Sonal; Macmanes, Matthew D; Ayroles, Julien F; Morelli, Toni Lyn; Rubidge, Emily M; Bi, Ke; Moritz, Craig C
2011-11-01
Natural history collections are unparalleled repositories of geographical and temporal variation in faunal conditions. Molecular studies offer an opportunity to uncover much of this variation; however, genetic studies of historical museum specimens typically rely on extracting highly degraded and chemically modified DNA samples from skins, skulls or other dried samples. Despite this limitation, obtaining short fragments of DNA sequences using traditional PCR amplification of DNA has been the primary method for genetic study of historical specimens. Few laboratories have succeeded in obtaining genome-scale sequences from historical specimens and then only with considerable effort and cost. Here, we describe a low-cost approach using high-throughput next-generation sequencing to obtain reliable genome-scale sequence data from a traditionally preserved mammal skin and skull using a simple extraction protocol. We show that single-nucleotide polymorphisms (SNPs) from the genome sequences obtained independently from the skin and from the skull are highly repeatable compared to a reference genome. © 2011 Blackwell Publishing Ltd.
Differentiation of mixed biological traces in sexual assaults using DNA fragment analysis
Apostolov, Аleksandar
2014-01-01
During the investigation of sexual abuse, it is not rare that mixed genetic material from two or more persons is detected. In such cases, successful profiling can be achieved using DNA fragment analysis, resulting in individual genetic profiles of offenders and their victims. This has led to an increase in the percentage of identified perpetrators of sexual offenses. The classic and modified genetic models used, allowed us to refine and implement appropriate extraction, polymerase chain reaction and electrophoretic procedures with individual assessment and approach to conducting research. Testing mixed biological traces using DNA fragment analysis appears to be the only opportunity for identifying perpetrators in gang rapes. PMID:26019514
Isolation of high-quality total RNA from leaves of Myrciaria dubia "CAMU CAMU".
Gómez, Juan Carlos Castro; Reátegui, Alina Del Carmen Egoavil; Flores, Julián Torres; Saavedra, Roberson Ramírez; Ruiz, Marianela Cobos; Correa, Sixto Alfredo Imán
2013-01-01
Myrciaria dubia is a main source of vitamin C for people in the Amazon region. Molecular studies of M. dubia require high-quality total RNA from different tissues. So far, no protocols have been reported for total RNA isolation from leaves of this species. The objective of this research was to develop protocols for extracting high-quality total RNA from leaves of M. dubia. Total RNA was purified following two modified protocols developed for leaves of other species (by Zeng and Yang, and by Reid et al.) and one modified protocol developed for fruits of the studied species (by Silva). Quantity and quality of purified total RNA were assessed by spectrophotometric and electrophoretic analysis. Additionally, quality of total RNA was evaluated with reverse-transcription polymerase chain reaction (RT-PCR). With these three modified protocols we were able to isolate high-quality RNA (A260nm/A280nm >1.9 and A260nm/A230nm >2.0). Highest yield was produced with the Zeng and Yang modified protocol (384±46µg ARN/g fresh weight). Furthermore, electrophoretic analysis showed the integrity of isolated RNA and the absence of DNA. Another proof of the high quality of our purified RNA was the successful cDNA synthesis and amplification of a segment of the M. dubia actin 1 gene. We report three modified protocols for isolation total RNA from leaves of M. dubia. The modified protocols are easy, rapid, low in cost, and effective for high-quality and quantity total RNA isolation suitable for cDNA synthesis and polymerase chain reaction.
Tendency for interlaboratory precision in the GMO analysis method based on real-time PCR.
Kodama, Takashi; Kurosawa, Yasunori; Kitta, Kazumi; Naito, Shigehiro
2010-01-01
The Horwitz curve estimates interlaboratory precision as a function only of concentration, and is frequently used as a method performance criterion in food analysis with chemical methods. The quantitative biochemical methods based on real-time PCR require an analogous criterion to progressively promote method validation. We analyzed the tendency of precision using a simplex real-time PCR technique in 53 collaborative studies of seven genetically modified (GM) crops. Reproducibility standard deviation (SR) and repeatability standard deviation (Sr) of the genetically modified organism (GMO) amount (%) was more or less independent of GM crops (i.e., maize, soybean, cotton, oilseed rape, potato, sugar beet, and rice) and evaluation procedure steps. Some studies evaluated whole steps consisting of DNA extraction and PCR quantitation, whereas others focused only on the PCR quantitation step by using DNA extraction solutions. Therefore, SR and Sr for GMO amount (%) are functions only of concentration similar to the Horwitz curve. We proposed S(R) = 0.1971C 0.8685 and S(r) = 0.1478C 0.8424, where C is the GMO amount (%). We also proposed a method performance index in GMO quantitative methods that is analogous to the Horwitz Ratio.
Kurakata, Y; Sakagami, H; Takeda, M; Konno, K; Kitajima, K; Ichikawa, S; Hata, N; Sato, T
1989-01-01
An acidic pine cone extract, Fr. V. of Pinus parviflora Sieb. et Zucc. significantly stimulated DNA synthesis of isolated splenocytes from both mice and rats, but only marginally affected the DNA synthesis of leukemic cell lines. The maximum stimulation level attained by Fr. V slightly exceeded that of plant lectins, whereas much weaker stimulating activity was found in natural and chemically modified antitumor polysaccharides, sialic acid-rich glycoproteins, and polyphenolic compounds such as lignin and tannic acid. In mice with subcutaneously transplanted sarcoma-180, responses of splenocytes against Con A declines in the terminal stage of tumor development, whereas responses against Fr. V remained relatively constant throughout all periods of tumor progression. The suppression of Fr. V activity by acetylation or methylation suggests the importance of the hydroxyl group in the expression of its stimulation activity.
A multiplex PCR method of detecting recombinant DNAs from five lines of genetically modified maize.
Matsuoka, T; Kuribara, H; Akiyama, H; Miura, H; Goda, Y; Kusakabe, Y; Isshiki, K; Toyoda, M; Hino, A
2001-02-01
Seven lines of genetically modified (GM) maize have been authorized in Japan as foods and feeds imported from the USA. We improved a multiplex PCR method described in the previous report in order to distinguish the five lines of GM maize. Genomic DNA was extracted from GM maize with a silica spin column kit, which could reduce experimental time and improve safety in the laboratory and potentially in the environment. We sequenced recombinant DNA (r-DNA) introduced into GM maize, and re-designed new primer pairs to increase the specificity of PCR to distinguish five lines of GM maize by multiplex PCR. A primer pair for the maize intrinsic zein gene (Ze1) was also designed to confirm the presence of amplifiable maize DNA. The lengths of PCR products using these six primer pairs were different. The Ze1 and the r-DNAs from the five lines of GM maize were qualitatively detected in one tube. The specific PCR bands were distinguishable from each other on the basis of the expected length. The r-DNA could be detected from maize samples containing 0.5% of each of the five lines of GM maize. The sensitivity would be acceptable to secure the verification of non-GMO materials and to monitor the reliability of the labeling system.
Electronic Transport in Single-Stranded DNA Molecule Related to Huntington's Disease
NASA Astrophysics Data System (ADS)
Sarmento, R. G.; Silva, R. N. O.; Madeira, M. P.; Frazão, N. F.; Sousa, J. O.; Macedo-Filho, A.
2018-04-01
We report a numerical analysis of the electronic transport in single chain DNA molecule consisting of 182 nucleotides. The DNA chains studied were extracted from a segment of the human chromosome 4p16.3, which were modified by expansion of CAG (cytosine-adenine-guanine) triplet repeats to mimics Huntington's disease. The mutated DNA chains were connected between two platinum electrodes to analyze the relationship between charge propagation in the molecule and Huntington's disease. The computations were performed within a tight-binding model, together with a transfer matrix technique, to investigate the current-voltage (I-V) of 23 types of DNA sequence and compare them with the distributions of the related CAG repeat numbers with the disease. All DNA sequences studied have a characteristic behavior of a semiconductor. In addition, the results showed a direct correlation between the current-voltage curves and the distributions of the CAG repeat numbers, suggesting possible applications in the development of DNA-based biosensors for molecular diagnostics.
Detection of Toxoplasma oocysts from soil by modified sucrose flotation and PCR methods.
Matsuo, Junji; Kimura, Daisuke; Rai, Shiba Kumar; Uga, Shoji
2004-06-01
A detection method of Toxoplasma gondii oocysts from soil was evaluated using the sucrose flotation technique with modification involving addition of 0.1% gelatin into washing and floating solutions. PCR was performed on untreated samples and after treatment with polyvinylpyrrolidone (PVP), heating and cooling, and NaCl. The addition of gelatin in the sucrose solution yielded a higher number of oocysts. A very thin band was observed when DNA extract was diluted to 1:1024, indicating the presence of PCR inhibitor in the soil. PCR performed on untreated DNA, on PVP-treated, and on PVP-treated with heating and cooling without added bovine serum albumin (BSA) showed a band only at higher dilutions (1:1024 and 1:512) but at a much lower dilution (1:8) with BSA. In contrast, DNA treated with all three agents showed a band at a much lower dilution (1:64), even without added BSA, and no dilution was required when BSA was added. The PCR inhibitors present in the soil were removed by employing various treatment procedures during DNA extraction, and BSA in PCR. Furthermore, the detection limit with the method was 1 oocyst/g of soil, indicating that this method is useful in epidemiological studies.
Vaïtilingom, M; Pijnenburg, H; Gendre, F; Brignon, P
1999-12-01
A fast and quantitative method was developed to detect transgenic "Maximizer" maize "event 176" (Novartis) and "Roundup Ready" soybean (Monsanto) in food by real-time quantitative PCR. The use of the ABI Prism 7700 sequence detection system allowed the determination of the amplified product accumulation through a fluorogenic probe (TaqMan). Fluorescent dyes were chosen in such a way as to coamplify total and transgenic DNA in the same tube. Using real-time quantitative PCR, 2 pg of transgenic or total DNA per gram of starting sample was detected in 3 h after DNA extraction and the relative amounts of "Maximizer" maize and "Roundup Ready" soybean in some representative food products were quantified.
Bypassing bacterial infection in phage display by sequencing DNA released from phage particles.
Villequey, Camille; Kong, Xu-Dong; Heinis, Christian
2017-11-01
Phage display relies on a bacterial infection step in which the phage particles are replicated to perform multiple affinity selection rounds and to enable the identification of isolated clones by DNA sequencing. While this process is efficient for wild-type phage, the bacterial infection rate of phage with mutant or chemically modified coat proteins can be low. For example, a phage mutant with a disulfide-free p3 coat protein, used for the selection of bicyclic peptides, has a more than 100-fold reduced infection rate compared to the wild-type. A potential strategy for bypassing the bacterial infection step is to directly sequence DNA extracted from phage particles after a single round of phage panning using high-throughput sequencing. In this work, we have quantified the fraction of phage clones that can be identified by directly sequencing DNA from phage particles. The results show that the DNA of essentially all of the phage particles can be 'decoded', and that the sequence coverage for mutants equals that of amplified DNA extracted from cells infected with wild-type phage. This procedure is particularly attractive for selections with phage that have a compromised infection capacity, and it may allow phage display to be performed with particles that are not infective at all. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Age dependency of base modification in rabbit liver DNA
NASA Technical Reports Server (NTRS)
Yamamoto, O.; Fuji, I.; Yoshida, T.; Cox, A. B.; Lett, J. T.
1988-01-01
Age-related modifications of DNA bases have been observed in the liver of the New Zealand white (NZW) rabbit (Oryctolagus cuniculus), a lagomorph with a median life span in captivity of 5-7 yr. The ages of the animals studied ranged from 6 wk to 9 yr. After the DNA had been extracted from the liver cell nuclei and hydrolyzed with acid, the bases were analyzed by column chromatography with Cellulofine gels (GC-15-m). Two peaks in the chromatogram, which eluted before the four DNA bases, contained modified bases. Those materials, which were obtained in relatively large amounts from old animals, were highly fluorescent, and were shown to be crosslinked base products by mass spectrometry. The yield of crosslinked products versus rabbit age (greater than 0.5 yr) can be fitted by an exponential function (correlation coefficient: 0.76 +/- 0.09).
Kim, C S; Lee, C H; Shin, J S; Chung, Y S; Hyung, N I
1997-03-01
Because DNA degradation is mediated by secondary plant products such as phenolic terpenoids, the isolation of high quality DNA from plants containing a high content of polyphenolics has been a difficult problem. We demonstrate an easy extraction process by modifying several existing ones. Using this process we have found it possible to isolate DNAs from four fruit trees, grape (Vitis spp.), apple (Malus spp.), pear (Pyrus spp.) and persimmon (Diospyros spp.) and four species of conifer, Pinus densiflora, Pinus koraiensis,Taxus cuspidata and Juniperus chinensis within a few hours. Compared with the existing method, we have isolated high quality intact DNAs (260/280 = 1.8-2.0) routinely yielding 250-500 ng/microl (total 7.5-15 microg DNA from four to five tissue discs).
Kim, C S; Lee, C H; Shin, J S; Chung, Y S; Hyung, N I
1997-01-01
Because DNA degradation is mediated by secondary plant products such as phenolic terpenoids, the isolation of high quality DNA from plants containing a high content of polyphenolics has been a difficult problem. We demonstrate an easy extraction process by modifying several existing ones. Using this process we have found it possible to isolate DNAs from four fruit trees, grape (Vitis spp.), apple (Malus spp.), pear (Pyrus spp.) and persimmon (Diospyros spp.) and four species of conifer, Pinus densiflora, Pinus koraiensis,Taxus cuspidata and Juniperus chinensis within a few hours. Compared with the existing method, we have isolated high quality intact DNAs (260/280 = 1.8-2.0) routinely yielding 250-500 ng/microl (total 7.5-15 microg DNA from four to five tissue discs). PMID:9023124
[DNA extraction from bones and teeth using AutoMate Express forensic DNA extraction system].
Gao, Lin-Lin; Xu, Nian-Lai; Xie, Wei; Ding, Shao-Cheng; Wang, Dong-Jing; Ma, Li-Qin; Li, You-Ying
2013-04-01
To explore a new method in order to extract DNA from bones and teeth automatically. Samples of 33 bones and 15 teeth were acquired by freeze-mill method and manual method, respectively. DNA materials were extracted and quantified from the triturated samples by AutoMate Express forensic DNA extraction system. DNA extraction from bones and teeth were completed in 3 hours using the AutoMate Express forensic DNA extraction system. There was no statistical difference between the two methods in the DNA concentration of bones. Both bones and teeth got the good STR typing by freeze-mill method, and the DNA concentration of teeth was higher than those by manual method. AutoMate Express forensic DNA extraction system is a new method to extract DNA from bones and teeth, which can be applied in forensic practice.
DNA polymerase having modified nucleotide binding site for DNA sequencing
Tabor, Stanley; Richardson, Charles
1997-01-01
Modified gene encoding a modified DNA polymerase wherein the modified polymerase incorporates dideoxynucleotides at least 20-fold better compared to the corresponding deoxynucleotides as compared with the corresponding naturally-occurring DNA polymerase.
Crescenti, Anna; Solà, Rosa; Valls, Rosa M.; Caimari, Antoni; del Bas, Josep M.; Anguera, Anna; Anglés, Neus; Arola, Lluís
2013-01-01
DNA methylation regulates gene expression and can be modified by different bioactive compounds in foods, such as polyphenols. Cocoa is a rich source of polyphenols, but its role in DNA methylation is still unknown. The objective was to assess the effect of cocoa consumption on DNA methylation and to determine whether the enzymes involved in the DNA methylation process participate in the mechanisms by which cocoa exerts these effects in humans. The global DNA methylation levels in the peripheral blood were evaluated in 214 volunteers who were pre-hypertensive, stage-1 hypertensive or hypercholesterolemic. The volunteers were divided into two groups: 110 subjects who consumed cocoa (6 g/d) for two weeks and 104 control subjects. In addition, the peripheral blood mononuclear cells (PBMCs) from six subjects were treated with a cocoa extract to analyze the mRNA levels of the DNA methyltransferases (DNMTs), methylenetetrahydrofolate reductase (MTHFR), and methionine synthase reductase (MTRR) genes. Cocoa consumption significantly reduced the DNA methylation levels (2.991±0.366 vs. 3.909±0.380, p<0.001). Additionally, we found an association between the cocoa effects on DNA methylation and three polymorphisms located in the MTHFR, MTRR, and DNMT3B genes. Furthermore, in PBMCs, the cocoa extract significantly lowered the mRNA levels of the DNMTs, MTHFR, and MTRR. Our study demonstrates for the first time that the consumption of cocoa decreases the global DNA methylation of peripheral leukocytes in humans with cardiovascular risk factors. In vitro experiments with PBMCs suggest that cocoa may exert this effect partially via the down-regulation of DNMTs, MTHFR and MTRR, which are key genes involved in this epigenetic process. Trial Registration Clinicaltrials.gov NCT00511420 and NCT00502047 PMID:23840361
Crescenti, Anna; Solà, Rosa; Valls, Rosa M; Caimari, Antoni; Del Bas, Josep M; Anguera, Anna; Anglés, Neus; Arola, Lluís
2013-01-01
DNA methylation regulates gene expression and can be modified by different bioactive compounds in foods, such as polyphenols. Cocoa is a rich source of polyphenols, but its role in DNA methylation is still unknown. The objective was to assess the effect of cocoa consumption on DNA methylation and to determine whether the enzymes involved in the DNA methylation process participate in the mechanisms by which cocoa exerts these effects in humans. The global DNA methylation levels in the peripheral blood were evaluated in 214 volunteers who were pre-hypertensive, stage-1 hypertensive or hypercholesterolemic. The volunteers were divided into two groups: 110 subjects who consumed cocoa (6 g/d) for two weeks and 104 control subjects. In addition, the peripheral blood mononuclear cells (PBMCs) from six subjects were treated with a cocoa extract to analyze the mRNA levels of the DNA methyltransferases (DNMTs), methylenetetrahydrofolate reductase (MTHFR), and methionine synthase reductase (MTRR) genes. Cocoa consumption significantly reduced the DNA methylation levels (2.991±0.366 vs. 3.909±0.380, p<0.001). Additionally, we found an association between the cocoa effects on DNA methylation and three polymorphisms located in the MTHFR, MTRR, and DNMT3B genes. Furthermore, in PBMCs, the cocoa extract significantly lowered the mRNA levels of the DNMTs, MTHFR, and MTRR. Our study demonstrates for the first time that the consumption of cocoa decreases the global DNA methylation of peripheral leukocytes in humans with cardiovascular risk factors. In vitro experiments with PBMCs suggest that cocoa may exert this effect partially via the down-regulation of DNMTs, MTHFR and MTRR, which are key genes involved in this epigenetic process. Clinicaltrials.govNCT00511420 and NCT00502047.
Evaluation of four automated protocols for extraction of DNA from FTA cards.
Stangegaard, Michael; Børsting, Claus; Ferrero-Miliani, Laura; Frank-Hansen, Rune; Poulsen, Lena; Hansen, Anders J; Morling, Niels
2013-10-01
Extraction of DNA using magnetic bead-based techniques on automated DNA extraction instruments provides a fast, reliable, and reproducible method for DNA extraction from various matrices. Here, we have compared the yield and quality of DNA extracted from FTA cards using four automated extraction protocols on three different instruments. The extraction processes were repeated up to six times with the same pieces of FTA cards. The sample material on the FTA cards was either blood or buccal cells. With the QIAamp DNA Investigator and QIAsymphony DNA Investigator kits, it was possible to extract DNA from the FTA cards in all six rounds of extractions in sufficient amount and quality to obtain complete short tandem repeat (STR) profiles on a QIAcube and a QIAsymphony SP. With the PrepFiler Express kit, almost all the extractable DNA was extracted in the first two rounds of extractions. Furthermore, we demonstrated that it was possible to successfully extract sufficient DNA for STR profiling from previously processed FTA card pieces that had been stored at 4 °C for up to 1 year. This showed that rare or precious FTA card samples may be saved for future analyses even though some DNA was already extracted from the FTA cards.
DNA polymerase having modified nucleotide binding site for DNA sequencing
Tabor, S.; Richardson, C.
1997-03-25
A modified gene encoding a modified DNA polymerase is disclosed. The modified polymerase incorporates dideoxynucleotides at least 20-fold better compared to the corresponding deoxynucleotides as compared with the corresponding naturally-occurring DNA polymerase. 6 figs.
Olekšáková, Tereza; Žurovcová, Martina; Klimešová, Vanda; Barták, Miroslav; Šuláková, Hana
2018-04-01
Several methods of DNA extraction, coupled with 'DNA barcoding' species identification, were compared using specimens from early developmental stages of forensically important flies from the Calliphoridae and Sarcophagidae families. DNA was extracted at three immature stages - eggs, the first instar larvae, and empty pupal cases (puparia) - using four different extraction methods, namely, one simple 'homemade' extraction buffer protocol and three commercial kits. The extraction conditions, including the amount of proteinase K and incubation times, were optimized. The simple extraction buffer method was successful for half of the eggs and for the first instar larval samples. The DNA Lego Kit and DEP-25 DNA Extraction Kit were useful for DNA extractions from the first instar larvae samples, and the DNA Lego Kit was also successful regarding the extraction from eggs. The QIAamp DNA mini kit was the most effective; the extraction was successful with regard to all sample types - eggs, larvae, and pupari.
Biswas, C; Dey, P; Satpathy, S; Sarkar, S K; Bera, A; Mahapatra, B S
2013-02-01
A simple method was developed for isolating DNA from jute seed, which contains high amounts of mucilage and secondary metabolites, and a PCR protocol was standardized for detecting the seedborne pathogen Macrophomina phaseolina. The cetyl trimethyl ammonium bromide method was modified with increased salt concentration and a simple sodium acetate treatment to extract genomic as well as fungal DNA directly from infected jute seed. The Miniprep was evaluated along with five other methods of DNA isolation in terms of yield and quality of DNA and number of PCR positive samples. The Miniprep consistently recovered high amounts of DNA with good spectral qualities at A260/A280. The DNA isolated from jute seed was found suitable for PCR amplification. Macrophomina phaseolina could be detected by PCR from artificially inoculated as well as naturally infected jute seeds. The limit of PCR-based detection of M. phaseolina in jute seed was determined to be 0·62 × 10(-7) CFU g(-1) seed. © 2012 The Society for Applied Microbiology.
Mathieson, William; Guljar, Nafia; Sanchez, Ignacio; Sroya, Manveer; Thomas, Gerry A
2018-05-03
DNA extracted from formalin-fixed, paraffin-embedded (FFPE) tissue blocks is amenable to analytical techniques, including sequencing. DNA extraction protocols are typically long and complex, often involving an overnight proteinase K digest. Automated platforms that shorten and simplify the process are therefore an attractive proposition for users wanting a faster turn-around or to process large numbers of biospecimens. It is, however, unclear whether automated extraction systems return poorer DNA yields or quality than manual extractions performed by experienced technicians. We extracted DNA from 42 FFPE clinical tissue biospecimens using the QiaCube (Qiagen) and ExScale (ExScale Biospecimen Solutions) automated platforms, comparing DNA yields and integrities with those from manual extractions. The QIAamp DNA FFPE Spin Column Kit was used for manual and QiaCube DNA extractions and the ExScale extractions were performed using two of the manufacturer's magnetic bead kits: one extracting DNA only and the other simultaneously extracting DNA and RNA. In all automated extraction methods, DNA yields and integrities (assayed using DNA Integrity Numbers from a 4200 TapeStation and the qPCR-based Illumina FFPE QC Assay) were poorer than in the manual method, with the QiaCube system performing better than the ExScale system. However, ExScale was fastest, offered the highest reproducibility when extracting DNA only, and required the least intervention or technician experience. Thus, the extraction methods have different strengths and weaknesses, would appeal to different users with different requirements, and therefore, we cannot recommend one method over another.
Zhai, Qingfeng; Duan, Huawei; Wang, Yadong; Huang, Chuanfeng; Niu, Yong; Dai, Yufei; Bin, Ping; Liu, Qingjun; Chen, Wen; Ma, Junxiang; Zheng, Yuxin
2012-08-01
Coke oven emissions are known as human carcinogen, which is a complex mixture of polycyclic aromatic hydrocarbon. In this study, we aimed to clarify the mechanism of action of coke oven emissions induced carcinogenesis and to identify biomarkers of early biological effects in a human bronchial epithelial cell line with CYP1A1 activity (HBE-CYP1A1). Particulate matter was collected in the oven area on glass filter, extracted and analyzed by GC/MS. DNA breaks and oxidative damage were evaluated by alkaline and endonucleases (FPG, hOGG1 and ENDO III)-modified comet assays. Cytotoxicity and chromosomal damage were assessed by the cytokinesis-block micronucleus cytome (CBMN-Cyt) assay. The cells were treated with organic extract of coke oven emissions (OE-COE) representing 5, 10, 20, 40μg/mL extract for 24h. We found that there was a dose-effect relationship between the OE-COE and the direct DNA damage presented by tail length, tail intensity and Olive tail moment in the comet assay. The presence of lesion-specific endonucleases in the assays increased DNA migration after OE-COE treatment when compared to those without enzymes, which indicated that OE-COE produced oxidative damage at the level of pyrimidine and purine bases. The dose-dependent increase of micronuclei, nucleoplasmic bridges and nuclear buds in exposed cells was significant, indicating chromosomal and genomic damage induced by OE-COE. Based on the cytotoxic biomarkers in CBMN-Cyt assay, OE-COE may inhibit nuclear division, interfere with apoptosis, or induce cell necrosis. This study indicates that OE-COE exposure can induce DNA breaks/oxidative damage and genomic instability in HBE-CYP1A1 cells. The FPG-comet assay appears more specific for detecting oxidative DNA damage induced by complex mixtures of genotoxic substances. Copyright © 2012 Elsevier Ltd. All rights reserved.
Zheng, Lu; Gao, Naiyun; Deng, Yang
2012-01-01
It is difficult to isolate DNA from biological activated carbon (BAC) samples used in water treatment plants, owing to the scarcity of microorganisms in BAC samples. The aim of this study was to identify DNA extraction methods suitable for a long-term, comprehensive ecological analysis of BAC microbial communities. To identify a procedure that can produce high molecular weight DNA, maximizes detectable diversity and is relatively free from contaminants, the microwave extraction method, the cetyltrimethylammonium bromide (CTAB) extraction method, a commercial DNA extraction kit, and the ultrasonic extraction method were used for the extraction of DNA from BAC samples. Spectrophotometry, agarose gel electrophoresis and polymerase chain reaction (PCR)-restriction fragment length polymorphisms (RFLP) analysis were conducted to compare the yield and quality of DNA obtained using these methods. The results showed that the CTAB method produce the highest yield and genetic diversity of DNA from BAC samples, but DNA purity was slightly less than that obtained with the DNA extraction-kit method. This study provides a theoretical basis for establishing and selecting DNA extraction methods for BAC samples.
Wong, Kwong-Kwok
2000-01-01
The present invention is an improved method of making a partially modified PCR product from a DNA fragment with a polymerase chain reaction (PCR). In a standard PCR process, the DNA fragment is combined with starting deoxynucleoside triphosphates, a primer, a buffer and a DNA polymerase in a PCR mixture. The PCR mixture is then reacted in the PCR producing copies of the DNA fragment. The improvement of the present invention is adding an amount of a modifier at any step prior to completion of the PCR process thereby randomly and partially modifying the copies of the DNA fragment as a partially modified PCR product. The partially modified PCR product may then be digested with an enzyme that cuts the partially modified PCR product at unmodified sites thereby producing an array of DNA restriction fragments.
Bio-inspired materials for electrochemical devices
NASA Astrophysics Data System (ADS)
Pawlicka, A.; Firmino, A.; Sentanin, F.; Sabadini, R. C.; Jimenez, D. E. Q.; Jayme, C. C.; Mindroiu, M.; Zgarian, R. G.; Tihan, G. T.; Rau, I.; Silva, M. M.; Nogueira, A. F.; Kanicki, J.; Kajzar, F.
2015-10-01
Natural macromolecules are very promising row materials to be used in modern technology including security and defense. They are abundant in nature, easy to extract and possess biocompatibility and biodegradability properties. These materials can be modified throughout chemical or physical processes, and can be doped with lithium and rare earth salts, ionic liquids, organic and inorganic acids. In this communication samples of DNA and modified DNA were doped with Prussian Blue (PB), poly(ethylene dioxythiophene) (PEDOT), europium and erbium triflate and organic dyes such as Nile Blue (NB), Disperse Red 1 (DR1) and Disperse Orange 3 (DO3). The colored or colorless membranes were characterized by electrochemical and spectroscopic measurements, and they were applied in electrochromic devices (ECDs) and dye sensitized solar cells (DSSC). ECDs change the color under applied potential, so they can modulate the intensity of transmitted light of 15 to 35%. As the electrochromic materials, WO3 or Prussian blue (PB), are usually blue colored, the color change is from transparent to blue. DNA, and the complexes: DNA-CTMA, DNA-DODA and DNAPEDOT: PSS were also investigated as either hole carrier material (HTM) or polymer electrolyte in dye-sensitized solar cells (DSSC). The DNA-based samples as HTM in small DSSCs revealed a solar energy conversion efficiency of 0.56%. Polymer electrolytes of DNA-CTMA and DNA-DODA, both with 10 wt% of LiI/I2, applied in small DSSC, exhibited the efficiencies of 0.18 and 0.66%, respectively. The obtained results show that natural macromolecules-based membranes are not only environmentally friendly but are also promising materials to be investigated for several electrochemical devices. However, to obtain better performances more research is still needed.
Londoño, Maria A; Harmon, Carrie L; Polston, Jane E
2016-03-22
Plant viruses in the genus Begomovirus, family Geminiviridae often cause substantial crop losses. These viruses have been emerging in many locations throughout the tropics and subtropics. Like many plant viruses, they are often not recognized by plant diagnostic clinics due in large part to the lack of rapid and cost effective assays. An isothermal amplification assay, Recombinase polymerase amplification (RPA), was evaluated for its ability to detect three begomoviruses and for its suitability for use in plant diagnostic clinics. Methods for DNA extraction and separation of amplicons from proteins used in the assay were modified and compared to RPA manufacturer's protocols. The modified RPA assays were compared to PCR assays for sensitivity, use in downstream applications, cost, and speed. Recombinase polymerase amplification (RPA) assays for the detection of Bean golden yellow mosaic virus, Tomato mottle virus and Tomato yellow leaf curl virus (TYLCV) were specific, only amplifying the target viruses in three different host species. RPA was able to detect the target virus when the template was in a crude extract generated using a simple inexpensive extraction method, while PCR was not. Separation of RPA-generated amplicons from DNA-binding proteins could be accomplished by several methods, all of which were faster and less expensive than that recommended by the manufacturer. Use of these modifications resulted in an RPA assay that was faster than PCR but with a similar reagent cost. This modified RPA was the more cost effective assay when labor is added to the cost since RPA can be performed much faster than PCR. RPA had a sensitivity approximate to that of ELISA when crude extract was used as template. RPA-generated amplicons could be used in downstream applications (TA cloning, digestion with a restriction endonuclease, direct sequencing) similar to PCR but unlike some other isothermal reactions. RPA could prove useful for the cost effective detection of plant viruses by plant diagnostic clinics. It can be performed in one hour or less with a reagent cost similar to that of PCR but with a lower labor cost, and with an acceptable level of sensitivity and specificity.
Comparative analysis of protocols for DNA extraction from soybean caterpillars.
Palma, J; Valmorbida, I; da Costa, I F D; Guedes, J V C
2016-04-07
Genomic DNA extraction is crucial for molecular research, including diagnostic and genome characterization of different organisms. The aim of this study was to comparatively analyze protocols of DNA extraction based on cell lysis by sarcosyl, cetyltrimethylammonium bromide, and sodium dodecyl sulfate, and to determine the most efficient method applicable to soybean caterpillars. DNA was extracted from specimens of Chrysodeixis includens and Spodoptera eridania using the aforementioned three methods. DNA quantification was performed using spectrophotometry and high molecular weight DNA ladders. The purity of the extracted DNA was determined by calculating the A260/A280 ratio. Cost and time for each DNA extraction method were estimated and analyzed statistically. The amount of DNA extracted by these three methods was sufficient for PCR amplification. The sarcosyl method yielded DNA of higher purity, because it generated a clearer pellet without viscosity, and yielded high quality amplification products of the COI gene I. The sarcosyl method showed lower cost per extraction and did not differ from the other methods with respect to preparation times. Cell lysis by sarcosyl represents the best method for DNA extraction in terms of yield, quality, and cost effectiveness.
Crouse, C A; Ban, J D; D'Alessio, J K
1993-10-01
Sonication procedures for the extraction of DNA from forensic-type semen specimens have been developed, which, when compared to currently utilized sperm DNA extraction techniques, are simple, rapid and result in comparable DNA yields. Sperm DNA extraction by sonication was performed on whole semen, seminal stains, buccal swabs and post-coital specimens. Ultrasound disruption of sperm cells and their ultimate release of cellular DNA has been conducted in the presence of sperm wash buffers followed by organic extraction or Chelex 100 with little or no compromise to DNA quality, quantity or amplifiability. Two advantages of sonication over currently used forensic techniques to extract sperm DNA include 1) sperm DNA extraction that occurs within five minutes of sonication compared with an hour or greater for water bath incubations in classic enzyme digestion DNA extractions and 2) one less preparatory step with the Chelex/sonication protocol and three less steps with the sonication/organic protocol compared with other procedures thus eliminating potential sample-to-sample cross-contamination. Sperm DNA extracted by optimum sonication procedures was used for forensic HLA DQ alpha typing and restriction fragment length polymorphisms analysis without any adverse effects on typing results.
Demeke, Tigst; Ratnayaka, Indira; Phan, Anh
2009-01-01
The quality of DNA affects the accuracy and repeatability of quantitative PCR results. Different DNA extraction and purification methods were compared for quantification of Roundup Ready (RR) soybean (event 40-3-2) by real-time PCR. DNA was extracted using cetylmethylammonium bromide (CTAB), DNeasy Plant Mini Kit, and Wizard Magnetic DNA purification system for food. CTAB-extracted DNA was also purified using the Zymo (DNA Clean & Concentrator 25 kit), Qtip 100 (Qiagen Genomic-Tip 100/G), and QIAEX II Gel Extraction Kit. The CTAB extraction method provided the largest amount of DNA, and the Zymo purification kit resulted in the highest percentage of DNA recovery. The Abs260/280 and Abs260/230 ratios were less than the expected values for some of the DNA extraction and purification methods used, indicating the presence of substances that could inhibit PCR reactions. Real-time quantitative PCR results were affected by the DNA extraction and purification methods used. Further purification or dilution of the CTAB DNA was required for successful quantification of RR soybean. Less variability of quantitative PCR results was observed among experiments and replications for DNA extracted and/or purified by CTAB, CTAB+Zymo, CTAB+Qtip 100, and DNeasy methods. Correct and repeatable results for real-time PCR quantification of RR soybean were achieved using CTAB DNA purified with Zymo and Qtip 100 methods.
Ayoib, Adilah; Hashim, Uda; Gopinath, Subash C B; Md Arshad, M K
2017-11-01
This review covers a developmental progression on early to modern taxonomy at cellular level following the advent of electron microscopy and the advancement in deoxyribonucleic acid (DNA) extraction for expatiation of biological classification at DNA level. Here, we discuss the fundamental values of conventional chemical methods of DNA extraction using liquid/liquid extraction (LLE) followed by development of solid-phase extraction (SPE) methods, as well as recent advances in microfluidics device-based system for DNA extraction on-chip. We also discuss the importance of DNA extraction as well as the advantages over conventional chemical methods, and how Lab-on-a-Chip (LOC) system plays a crucial role for the future achievements.
Coppe, Jean-Philippe; Boysen, Megan; Ho Sun, Chung; Wong, Brian J.F.; Kang, Mo K.; Park, No-Hee; Desprez, Pierre-Yves; Campisi, Judith; Krtolica, Ana
2009-01-01
Cigarette smoke and smokeless tobacco extracts contain multiple carcinogenic compounds, but little is known about the mechanisms by which tumors develop and progress upon chronic exposure to carcinogens such as those present in tobacco products. Here, we examine the effects of smokeless tobacco extracts on human oral fibroblasts. We show that smokeless tobacco extracts elevated the levels of intracellular reactive oxygen, oxidative DNA damage, and DNA double-strand breaks in a dose-dependent manner. Extended exposure to extracts induced fibroblasts to undergo a senescence-like growth arrest, with striking accompanying changes in the secretory phenotype. Using cocultures of smokeless tobacco extracts–exposed fibroblasts and immortalized but nontumorigenic keratinocytes, we further show that factors secreted by extracts-modified fibroblasts increase the proliferation and invasiveness of partially transformed epithelial cells, but not their normal counterparts. In addition, smokeless tobacco extracts–exposed fibroblasts caused partially transformed keratinocytes to lose the expression of E-cadherin and ZO-1, as well as involucrin, changes that are indicative of compromised epithelial function and commonly associated with malignant progression. Together, our results suggest that fibroblasts may contribute to tumorigenesis indirectly by increasing epithelial cell aggressiveness. Thus, tobacco may not only initiate mutagenic changes in epithelial cells but also promote the growth and invasion of mutant cells by creating a procarcinogenic stromal environment. PMID:18644973
Successive DNA extractions improve characterization of soil microbial communities
de Hollander, Mattias; Smidt, Hauke; van Veen, Johannes A.
2017-01-01
Currently, characterization of soil microbial communities relies heavily on the use of molecular approaches. Independently of the approach used, soil DNA extraction is a crucial step, and success of downstream procedures will depend on how well DNA extraction was performed. Often, studies describing and comparing soil microbial communities are based on a single DNA extraction, which may not lead to a representative recovery of DNA from all organisms present in the soil. The use of successive DNA extractions might improve soil microbial characterization, but the benefit of this approach has only been limitedly studied. To determine whether successive DNA extractions of the same soil sample would lead to different observations in terms of microbial abundance and community composition, we performed three successive extractions, with two widely used commercial kits, on a range of clay and sandy soils. Successive extractions increased DNA yield considerably (1–374%), as well as total bacterial and fungal abundances in most of the soil samples. Analysis of the 16S and 18S ribosomal RNA genes using 454-pyrosequencing, revealed that microbial community composition (taxonomic groups) observed in the successive DNA extractions were similar. However, successive DNA extractions did reveal several additional microbial groups. For some soil samples, shifts in microbial community composition were observed, mainly due to shifts in relative abundance of a number of microbial groups. Our results highlight that performing successive DNA extractions optimize DNA yield, and can lead to a better picture of overall community composition. PMID:28168105
Janabi, Ali H D; Kerkhof, Lee J; McGuinness, Lora R; Biddle, Amy S; McKeever, Kenneth H
2016-10-01
There are many choices for methods of extracting bacterial DNA for Next Generation Sequencing (NGS) from fecal samples. Here, we compare our modifications of a phenol/chloroform extraction method plus an inhibitor removal solution (C3) (ph/Chl+C3) to the PowerFecal® DNA Isolation Kit (MoBio-K). DNA quality and quantity coupled to NGS results were used to assess differences in relative abundance, Shannon diversity index, unique species, and principle coordinate analysis (PCoA) between biological replicates. Six replicate samples, taken from a single ball of horse feces manually collected from the rectum, were subjected to each extraction method. The Ph/Chl+C3 method produced 100× higher DNA yields with less shearing than the MoBio-K method. To assess the methods, the two method samples were sent for sequencing of the bacterial V3-V4 region of 16S rRNA gene using the Illumina MiSeq platform. The relative abundance of Bacteroidetes was greater and there were more unique species assigned to this group in MoBio-K than in Ph/Chl+C3 (P<0.05). In contrast, Firmicutes had greater relative abundance and more unique species in Ph/Chl+C3 extracts than in MoBio-K (P<0.05). The other major bacterial phyla were equally abundant in samples using both extraction methods. Alpha diversity and Shannon Weaver indices showed greater evenness of bacterial distribution in Ph/Chl+C3 compared with MoBio-K (P<0.05), but there was no difference in the OTU richness. Principle coordinate analysis (PCoA) indicated a distinct separation between the two methods (P<0.05) and tighter clustering (less variability) in Ph/Chl+C3 than in MoBio-K. These results suggest that the Ph/Chl+C3 may be preferred for research to identify specific Firmicutes taxa such as Clostridium, and Bacillus. However; MoBio-K may be a better choice for projects focusing on Bacteroidetes abundance. The Ph/Chl+C3 method required less time, but has some safety concerns associated with exposure and disposal of phenol and chloroform. While the MoBio-K may be better choice for researchers with less access to safety equipment like a fume hood. Copyright © 2016 Elsevier B.V. All rights reserved.
Lu, Jingrang; Gerke, Tammie L; Buse, Helen Y; Ashbolt, Nicholas J
2014-12-01
A quantitative polymerase chain reaction assay (115 bp amplicon) specific to Escherichia coli K12 with an ABI(TM) internal control was developed based on sequence data encoding the rfb gene cluster. Assay specificity was evaluated using three E. coli K12 strains (ATCC W3110, MG1655 & DH1), 24 non-K12 E. coli and 23 bacterial genera. The biofilm detection limit was 10(3) colony-forming units (CFU) E. coli K12 mL(-1), but required a modified protocol, which included a bio-blocker Pseudomonas aeruginosa with ethylenediaminetetraacetic acid buffered to pH 5 prior to cell lysis/DNA extraction. The novel protocol yielded the same sensitivity for drinking water biofilms associated with Fe3O4 (magnetite)-coated SiO2 (quartz) grains and biofilm-surface iron corrosion products from a drinking water distribution system. The novel DNA extraction protocol and specific E. coli K12 assay are sensitive and robust enough for detection and quantification within iron drinking water pipe biofilms, and are particularly well suited for studying enteric bacterial interactions within biofilms.
NASA Astrophysics Data System (ADS)
Akceoglu, Garbis Atam; Li, Oi Lun; Saito, Nagahiro
2016-04-01
DNA extraction is the key step at various research areas like biotechnology, diagnostic development, paternity determination, and forensic science . Solid support extraction is the most common method for DNA purification. In this method, Na+ ions have often been applied as binding buffers in order to obtain high extraction efficiency and high quality of DNA; however, the presence of Na+ ions might be interfering with the downstream DNA applications. In this study, we proposed graphite oxide (GO)/magnetite composite/cellulose as an innovative material for Na+-free DNA extraction. The total wt.% of GO was fixed at 4.15% in the GO/cellulose/magnetite composite . The concentration of magnetite within the composites were controlled at 0-3.98 wt.%. The extraction yield of DNA increased with increasing weight percentage of magnetite. The highest yield was achieved at 3.98 wt.% magnetite, where the extraction efficiency was reported to be 338.5 ng/µl. The absorbance ratios between 260 nm and 280 nm (A260/A280) of the DNA elution volume was demonstrated as 1.81, indicating the extracted DNA consisted of high purity. The mechanism of adsorption of DNA was provided by (1) π-π interaction between the aromatic ring in GO and nucleobases of DNA molecule, and (2) surface charge interaction between the positive charge magnetite and anions such as phosphates within the DNA molecules. The results proved that the GO/cellulose/magnetite composite provides a Na+-free method for selective DNA extraction with high extraction efficiency of pure DNA.
A simple method to extract DNA from hair shafts using enzymatic laundry powder.
Guan, Zheng; Zhou, Yu; Liu, Jinchuan; Jiang, Xiaoling; Li, Sicong; Yang, Shuming; Chen, Ailiang
2013-01-01
A simple method to extract DNA from hair shafts was developed by using enzymatic laundry powder at the first step of the process. The whole extraction can be finished in less than 2 hours. The simple extraction reagent proposed here contains only two cheap components: ordinary enzymatic laundry powder and PCR buffer. After extraction, an ultra sensitive fluorescent nucleic acid stain, PicoGreen, was used for quantifying trace amount of double-stranded DNA in the solution extracted. For further validation of DNA extraction, four primers were employed to amplify DNA microsatellite loci. Both fluorescence spectroscopy and PCR results suggested that this method can extract DNA from hair shafts with good efficiency and repeatability. The study will greatly facilitate the use of hair shafts in future for DNA analyses on genome-wide scale.
The Rapid-Heat LAMPellet Method: A Potential Diagnostic Method for Human Urogenital Schistosomiasis
Carranza-Rodríguez, Cristina; Pérez-Arellano, José Luis; Vicente, Belén; López-Abán, Julio; Muro, Antonio
2015-01-01
Background Urogenital schistosomiasis due to Schistosoma haematobium is a serious underestimated public health problem affecting 112 million people - particularly in sub-Saharan Africa. Microscopic examination of urine samples to detect parasite eggs still remains as definitive diagnosis. This work was focussed on developing a novel loop-mediated isothermal amplification (LAMP) assay for detection of S. haematobium DNA in human urine samples as a high-throughput, simple, accurate and affordable diagnostic tool to use in diagnosis of urogenital schistosomiasis. Methodology/Principal Findings A LAMP assay targeting a species specific sequence of S. haematobium ribosomal intergenic spacer was designed. The effectiveness of our LAMP was assessed in a number of patients´ urine samples with microscopy confirmed S. haematobium infection. For potentially large-scale application in field conditions, different DNA extraction methods, including a commercial kit, a modified NaOH extraction method and a rapid heating method were tested using small volumes of urine fractions (whole urine, supernatants and pellets). The heating of pellets from clinical samples was the most efficient method to obtain good-quality DNA detectable by LAMP. The detection limit of our LAMP was 1 fg/µL of S. haematobium DNA in urine samples. When testing all patients´ urine samples included in our study, diagnostic parameters for sensitivity and specificity were calculated for LAMP assay, 100% sensitivity (95% CI: 81.32%-100%) and 86.67% specificity (95% CI: 75.40%-94.05%), and also for microscopy detection of eggs in urine samples, 69.23% sensitivity (95% CI: 48.21% -85.63%) and 100% specificity (95% CI: 93.08%-100%). Conclusions/Significance We have developed and evaluated, for the first time, a LAMP assay for detection of S. haematobium DNA in heated pellets from patients´ urine samples using no complicated requirement procedure for DNA extraction. The procedure has been named the Rapid-Heat LAMPellet method and has the potential to be developed further as a field diagnostic tool for use in urogenital schistosomiasis-endemic areas. PMID:26230990
Novel genomic island modifies DNA with 7-deazaguanine derivatives
Thiaville, Jennifer J.; Kellner, Stefanie M.; Yuan, Yifeng; Hutinet, Geoffrey; Thiaville, Patrick C.; Jumpathong, Watthanachai; Mohapatra, Susovan; Brochier-Armanet, Celine; Letarov, Andrey V.; Hillebrand, Roman; Malik, Chanchal K.; Rizzo, Carmelo J.; Dedon, Peter C.; de Crécy-Lagard, Valérie
2016-01-01
The discovery of ∼20-kb gene clusters containing a family of paralogs of tRNA guanosine transglycosylase genes, called tgtA5, alongside 7-cyano-7-deazaguanine (preQ0) synthesis and DNA metabolism genes, led to the hypothesis that 7-deazaguanine derivatives are inserted in DNA. This was established by detecting 2’-deoxy-preQ0 and 2’-deoxy-7-amido-7-deazaguanosine in enzymatic hydrolysates of DNA extracted from the pathogenic, Gram-negative bacteria Salmonella enterica serovar Montevideo. These modifications were absent in the closely related S. enterica serovar Typhimurium LT2 and from a mutant of S. Montevideo, each lacking the gene cluster. This led us to rename the genes of the S. Montevideo cluster as dpdA-K for 7-deazapurine in DNA. Similar gene clusters were analyzed in ∼150 phylogenetically diverse bacteria, and the modifications were detected in DNA from other organisms containing these clusters, including Kineococcus radiotolerans, Comamonas testosteroni, and Sphingopyxis alaskensis. Comparative genomic analysis shows that, in Enterobacteriaceae, the cluster is a genomic island integrated at the leuX locus, and the phylogenetic analysis of the TgtA5 family is consistent with widespread horizontal gene transfer. Comparison of transformation efficiencies of modified or unmodified plasmids into isogenic S. Montevideo strains containing or lacking the cluster strongly suggests a restriction–modification role for the cluster in Enterobacteriaceae. Another preQ0 derivative, 2’-deoxy-7-formamidino-7-deazaguanosine, was found in the Escherichia coli bacteriophage 9g, as predicted from the presence of homologs of genes involved in the synthesis of the archaeosine tRNA modification. These results illustrate a deep and unexpected evolutionary connection between DNA and tRNA metabolism. PMID:26929322
NASA Astrophysics Data System (ADS)
Johnston, Peter James
The damage caused to cells by ionising radiation is believed to center on damage to the DNA. In particular, the induction of DNA double strand breaks (DSB) have been implicated in biological end-points such as cell killing and the formation of chromosomal aberrations. The xrs-5 cell line is a mutant Chinese hamster ovary fibroblast (CHO-K1) mutant which exhibits sensitivity to ionising radiation and a number of other DNA damaging agents. This mutation, postulated to involve the hamster homologue of the human XRCC5 gene, is believed to be involved in the repair of the DSB. In addition, there are constitutive differences between the wild type and xrs cells involving the structure and function of the nucleus and higher order chromatin structures. The aims of this thesis were to study further the xrs-5 cell line and its response to DNA damage and to investigate the possible link between chromatin structure and DSB repair. By the examination of the response of xrs-5 cells to a number of DNA damaging agents and potential modulators of this response using the cytokinesis block micronucleus assay [Fenech and Morley, 1985] a possible cell cycle defect was identified in addition to elevated levels of chromosomal damage. Xrs-5 cells appeared to be partially defective in the cell cycle checkpoints involving the passage from G2 phase to mitosis. By the use of a modified neutral filter elution procedure variations in the repair of DSB were observed between xrs-5 and CHO. Conventional neutral filter elution requires harsh lysis conditions to remove higher order chromatin structures which interfere with the elution of DNA containing DSB. By lysing cells with non-ionic detergent in the presence of 2 M NaC1, histone depleted structures which retain the higher order nuclear matrix organisation, including chromatin loops, can be produced. Elution from these structures will only occur if two or more DSB lie within a single looped domain delineated by points of attachment to the nuclear matrix. Repair experiments indicate that in CHO cells repair of DSB in loops containing multiple DSB are repaired with "slow" kinetics (t1/2 = 5 hrs) whilst DSB occurring in loops containing single DSB are repaired with "fast" kinetics (t1/2 " 10 min). Xrs- 5 cells are incapable of repairing these multiply damaged loops. This work indicates that the spatial orientation of DSB in higher order structures of chromatin are a possible factor in the repair of these lesions. By construction of a mathematical model of the process of elution from chromatin loops it was possible to postulate the size of the loops to approximate to 2.5-3 Mbp. Further evidence of a potential structural defect in the chromatin of xrs-5 cells was provided by examination of the polypeptide composition and DNA binding activity of nuclear extracts. The affinity of extracted proteins for double-stranded calf-thymus DNA was measured in nuclear extracts of xrs-5 and CHO cells. There was an alteration in the DNA binding activity of salt extractable proteins from xrs-5 as measured by a filter binding assay. By the use of SDS-PAGE and the technique of South-Western blotting, it was possible to identify the approximate molecular weights of these DNA binding proteins. Differences were found in DNA binding between proteins from CHO and xrs-5 extracts of both non-irradiated and irradiated cells. Two proteins with apparent molecular weights of 32.2 and 31.8 kDa exhibited a lower DNA binding activity in xrs-5 than proteins of similar extracts from CHO. The amount of the 32.2 kDa protein was less in the xrs-5 extracts than in CHO extracts, as measured by Coomassie blue staining. The two proteins have not yet been identified but comprise a major DNA binding activity in CHO extracts obtained by detergent-free extraction procedures. This work provides circumstantial evidence that suggests these two polypeptides may form part of the histone H1 family.
Stangegaard, Michael; Hjort, Benjamin B; Hansen, Thomas N; Hoflund, Anders; Mogensen, Helle S; Hansen, Anders J; Morling, Niels
2013-05-01
The presence of PCR inhibitors in extracted DNA may interfere with the subsequent quantification and short tandem repeat (STR) reactions used in forensic genetic DNA typing. DNA extraction from fabric for forensic genetic purposes may be challenging due to the occasional presence of PCR inhibitors that may be co-extracted with the DNA. Using 120 forensic trace evidence samples consisting of various types of fabric, we compared three automated DNA extraction methods based on magnetic beads (PrepFiler Express Forensic DNA Extraction Kit on an AutoMate Express, QIAsyphony DNA Investigator kit either with the sample pre-treatment recommended by Qiagen or an in-house optimized sample pre-treatment on a QIAsymphony SP) and one manual method (Chelex) with the aim of reducing the amount of PCR inhibitors in the DNA extracts and increasing the proportion of reportable STR-profiles. A total of 480 samples were processed. The highest DNA recovery was obtained with the PrepFiler Express kit on an AutoMate Express while the lowest DNA recovery was obtained using a QIAsymphony SP with the sample pre-treatment recommended by Qiagen. Extraction using a QIAsymphony SP with the sample pre-treatment recommended by Qiagen resulted in the lowest percentage of PCR inhibition (0%) while extraction using manual Chelex resulted in the highest percentage of PCR inhibition (51%). The largest number of reportable STR-profiles was obtained with DNA from samples extracted with the PrepFiler Express kit (75%) while the lowest number was obtained with DNA from samples extracted using a QIAsymphony SP with the sample pre-treatment recommended by Qiagen (41%). Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Vuillemin, Aurèle; Horn, Fabian; Alawi, Mashal; Henny, Cynthia; Wagner, Dirk; Crowe, Sean A.; Kallmeyer, Jens
2017-01-01
Extracellular DNA is ubiquitous in soil and sediment and constitutes a dominant fraction of environmental DNA in aquatic systems. In theory, extracellular DNA is composed of genomic elements persisting at different degrees of preservation produced by processes occurring on land, in the water column and sediment. Extracellular DNA can be taken up as a nutrient source, excreted or degraded by microorganisms, or adsorbed onto mineral matrices, thus potentially preserving information from past environments. To test whether extracellular DNA records lacustrine conditions, we sequentially extracted extracellular and intracellular DNA from anoxic sediments of ferruginous Lake Towuti, Indonesia. We applied 16S rRNA gene Illumina sequencing on both fractions to discriminate exogenous from endogenous sources of extracellular DNA in the sediment. Environmental sequences exclusively found as extracellular DNA in the sediment originated from multiple sources. For instance, Actinobacteria, Verrucomicrobia, and Acidobacteria derived from soils in the catchment. Limited primary productivity in the water column resulted in few sequences of Cyanobacteria in the oxic photic zone, whereas stratification of the water body mainly led to secondary production by aerobic and anaerobic heterotrophs. Chloroflexi and Planctomycetes, the main degraders of sinking organic matter and planktonic sequences at the water-sediment interface, were preferentially preserved during the initial phase of burial. To trace endogenous sources of extracellular DNA, we used relative abundances of taxa in the intracellular DNA to define which microbial populations grow, decline or persist at low density with sediment depth. Cell lysis became an important additional source of extracellular DNA, gradually covering previous genetic assemblages as other microbial genera became more abundant with depth. The use of extracellular DNA as nutrient by active microorganisms led to selective removal of sequences with lowest GC contents. We conclude that extracellular DNA preserved in shallow lacustrine sediments reflects the initial environmental context, but is gradually modified and thereby shifts from its stratigraphic context. Discrimination of exogenous and endogenous sources of extracellular DNA allows simultaneously addressing in-lake and post-depositional processes. In deeper sediments, the accumulation of resting stages and sequences from cell lysis would require stringent extraction and specific primers if ancient DNA is targeted. PMID:28798742
A Simple and Efficient Method of Extracting DNA from Aged Bones and Teeth.
Liu, Qiqi; Liu, Liyan; Zhang, Minli; Zhang, Qingzhen; Wang, Qiong; Ding, Xiaoran; Shao, Liting; Zhou, Zhe; Wang, Shengqi
2018-05-01
DNA is often difficult to extract from old bones and teeth due to low levels of DNA and high levels of degradation. This study established a simple yet efficient method for extracting DNA from 20 aged bones and teeth (approximately 60 years old). Based on the concentration and STR typing results, the new method of DNA extraction (OM) developed in this study was compared with the PrepFiler™ BTA Forensic DNA Extraction Kit (BM). The total amount of DNA extracted using the OM method was not significantly different from that extracted using the commercial kit (p > 0.05). However, the number of STR loci detected was significantly higher in the samples processed using the OM method than using the BM method (p < 0.05). This study aimed to establish a DNA extraction method for aged bones and teeth to improve the detection rate of STR typing and reduce costs compared to the BM technique. © 2017 American Academy of Forensic Sciences.
Nascimento, Gustavo A; Souza, Elaine V M; Campos-Ferreira, Danielly S; Arruda, Mariana S; Castelletti, Carlos H M; Wanderley, Marcela S O; Ekert, Marek H F; Bruneska, Danyelly; Lima-Filho, José L
2012-01-01
A new electrochemical DNA biosensor for bovine papillomavirus (BPV) detection that was based on screen-printed electrodes was comprehensively studied by electrochemical methods of cyclic voltammetry (CV) and differential pulse voltammetry (DPV). A BPV probe was immobilised on a working electrode (gold) modified with a polymeric film of poly-L-lysine (PLL) and chitosan. The experimental design was carried out to evaluate the influence of polymers, probe concentration (BPV probe) and immobilisation time on the electrochemical reduction of methylene blue (MB). The polymer poly-L-lysine (PLL), a probe concentration of 1 μM and an immobilisation time of 60 min showed the best result for the BPV probe immobilisation. With the hybridisation of a complementary target sequence (BPV target), the electrochemical signal decreased compared to a BPV probe immobilised on the modified PLL-gold electrode. Viral DNA that was extracted from cattle with papillomatosis also showed a decrease in the MB electrochemical reduction, which suggested that the decreased electrochemical signal corresponded to a bovine papillomavirus infection. The hybridisation specificity experiments further indicated that the biosensor could discriminate the complementary sequence from the non-complementary sequence. Thus, the results showed that the development of analytical devices, such as a biosensor, could assist in the rapid and efficient detection of bovine papillomavirus DNA and help in the prevention and treatment of papillomatosis in cattle. Copyright © 2012 Elsevier B.V. All rights reserved.
Evaluation of methods for the extraction of DNA from drinking water distribution system biofilms.
Hwang, Chiachi; Ling, Fangqiong; Andersen, Gary L; LeChevallier, Mark W; Liu, Wen-Tso
2012-01-01
While drinking water biofilms have been characterized in various drinking water distribution systems (DWDS), little is known about the impact of different DNA extraction methods on the subsequent analysis of microbial communities in drinking water biofilms. Since different DNA extraction methods have been shown to affect the outcome of microbial community analysis in other environments, it is necessary to select a DNA extraction method prior to the application of molecular tools to characterize the complex microbial ecology of the DWDS. This study compared the quantity and quality of DNA yields from selected DWDS bacteria with different cell wall properties using five widely used DNA extraction methods. These were further selected and evaluated for their efficiency and reproducibility of DNA extraction from DWDS samples. Terminal restriction fragment length analysis and the 454 pyrosequencing technique were used to interpret the differences in microbial community structure and composition, respectively, from extracted DNA. Such assessments serve as a concrete step towards the determination of an optimal DNA extraction method for drinking water biofilms, which can then provide a reliable comparison of the meta-analysis results obtained in different laboratories.
Fraser, L; Strzezek, J
2004-01-01
The comet assay, under neutral conditions, allows the assessment of DNA integrity influenced by sperm ageing, which is manifested in DNA double-strand breaks. Here, we attempted to use a modified neutral comet assay test (single-cell gel electrophoresis), to our knowledge for the first time, to assess DNA integrity of boar spermatozoa during liquid storage for 96 h at 5 degrees C and 16 degrees C. In this comet assay protocol we used 2% beta-mercaptoethanol prior to the lysis procedure, to aid in removing nuclear proteins. Ejaculates from 3 boars (designated A, C and G) were diluted with a standard semen extender, Kortowo-3 (K-3), which was supplemented with lipoprotein fractions extracted from hen egg yolk (LPFh) or ostrich egg yolk (LPFo). Irrespective of the extender type, the percentage of comet-detected spermatozoa with damaged DNA increased gradually during prolonged storage at 5 degrees C and 16 degrees C. Spermatozoa stored in K-3 extender exhibited elevated levels of DNA damage at both storage temperatures. Significant differences in DNA damage among the boars were more pronounced during storage in LPF-based extenders at 5 degrees C: spermatozoa of boars A and G were less susceptible to DNA damage. The percent of tail DNA in comets was lower in LPF-based extenders, and there were individual variations among the boars. We observed that changes in DNA integrity were dependent on the extender type and storage temperature. A higher level of DNA instability was observed in K-3 extended semen compared with K-3/LPFh or K-3/LPFo extended semen during storage at 5 degrees C. No significant difference in the level of DNA damage between K-3/LPFh and K-3/LPFo was observed. It seems that a long-term storage can affect genomic integrity of boar spermatozoa. The modified neutral comet assay can be used to detect low levels of DNA damage in boar spermatozoa during liquid preservation. Therefore, screening for sperm DNA damage may be used as an additional test of sperm function that can have diagnostic value in practice.
Paper-based tuberculosis diagnostic devices with colorimetric gold nanoparticles
NASA Astrophysics Data System (ADS)
Tsai, Tsung-Ting; Shen, Shu-Wei; Cheng, Chao-Min; Chen, Chien-Fu
2013-08-01
A colorimetric sensing strategy employing gold nanoparticles and a paper assay platform has been developed for tuberculosis diagnosis. Unmodified gold nanoparticles and single-stranded detection oligonucleotides are used to achieve rapid diagnosis without complicated and time-consuming thiolated or other surface-modified probe preparation processes. To eliminate the use of sophisticated equipment for data analysis, the color variance for multiple detection results was simultaneously collected and concentrated on cellulose paper with the data readout transmitted for cloud computing via a smartphone. The results show that the 2.6 nM tuberculosis mycobacterium target sequences extracted from patients can easily be detected, and the turnaround time after the human DNA is extracted from clinical samples was approximately 1 h.
Preliminary assessment for DNA extraction on microfluidic channel
NASA Astrophysics Data System (ADS)
Gopinath, Subash C. B.; Hashim, Uda; Uda, M. N. A.
2017-03-01
The aim of this research is to extract, purify and yield DNA in mushroom from solid state mushroom sample by using fabricated continuous high-capacity sample delivery microfluidic through integrated solid state extraction based amino-coated silica bead. This device is made to specifically extract DNA in mushroom sample in continuous inflow process with energy and cost consumption. In this project, we present two methods of DNA extraction and purification which are by using centrifuge (complex and conventional method) and by using microfluidic biosensor (new and fast method). DNA extracted can be determined by using ultraviolet-visible spectroscopy (UV-VIS). The peak obtained at wavelength 260nm after measuring the absorbance of sample proves that DNA is successfully extracted from the mushroom.
Mahmoudi, Nagissa; Slater, Greg F; Fulthorpe, Roberta R
2011-08-01
Molecular characterization of the microbial populations of soils and sediments contaminated with polycyclic aromatic hydrocarbons (PAHs) is often a first step in assessing intrinsic biodegradation potential. However, soils are problematic for molecular analysis owing to the presence of organic matter, such as humic acids. Furthermore, the presence of contaminants, such as PAHs, can cause further challenges to DNA extraction, quantification, and amplification. The goal of our study was to compare the effectiveness of four commercial soil DNA extraction kits (UltraClean Soil DNA Isolation kit, PowerSoil DNA Isolation kit, PowerMax Soil DNA Isolation kit, and FastDNA SPIN kit) to extract pure, high-quality bacterial and eukaryotic DNA from PAH-contaminated soils. Six different contaminated soils were used to determine if there were any biases among the kits due to soil properties or level of contamination. Extracted DNA was used as a template for bacterial 16S rDNA and eukaryotic 18S rDNA amplifications, and PCR products were subsequently analyzed using denaturing gel gradient electrophoresis (DGGE). We found that the FastDNA SPIN kit provided significantly higher DNA yields for all soils; however, it also resulted in the highest levels of humic acid contamination. Soil texture and organic carbon content of the soil did not affect the DNA yield of any kit. Moreover, a liquid-liquid extraction of the DNA extracts found no residual PAHs, indicating that all kits were effective at removing contaminants in the extraction process. Although the PowerSoil DNA Isolation kit gave relatively low DNA yields, it provided the highest quality DNA based on successful amplification of both bacterial and eukaryotic DNA for all six soils. DGGE fingerprints among the kits were dramatically different for both bacterial and eukaryotic DNA. The PowerSoil DNA Isolation kit revealed multiple bands for each soil and provided the most consistent DGGE profiles among replicates for both bacterial and eukaryotic DNA.
Biswas, Kristi; Taylor, Michael W.; Gear, Kim
2017-01-01
The application of high-throughput, next-generation sequencing technologies has greatly improved our understanding of the human oral microbiome. While deciphering this diverse microbial community using such approaches is more accurate than traditional culture-based methods, experimental bias introduced during critical steps such as DNA extraction may compromise the results obtained. Here, we systematically evaluate four commonly used microbial DNA extraction methods (MoBio PowerSoil® DNA Isolation Kit, QIAamp® DNA Mini Kit, Zymo Bacterial/Fungal DNA Mini PrepTM, phenol:chloroform-based DNA isolation) based on the following criteria: DNA quality and yield, and microbial community structure based on Illumina amplicon sequencing of the V3–V4 region of the 16S rRNA gene of bacteria and the internal transcribed spacer (ITS) 1 region of fungi. Our results indicate that DNA quality and yield varied significantly with DNA extraction method. Representation of bacterial genera in plaque and saliva samples did not significantly differ across DNA extraction methods and DNA extraction method showed no effect on the recovery of fungal genera from plaque. By contrast, fungal diversity from saliva was affected by DNA extraction method, suggesting that not all protocols are suitable to study the salivary mycobiome. PMID:28099455
DNA Extraction Techniques for Use in Education
ERIC Educational Resources Information Center
Hearn, R. P.; Arblaster, K. E.
2010-01-01
DNA extraction provides a hands-on introduction to DNA and enables students to gain real life experience and practical knowledge of DNA. Students gain a sense of ownership and are more enthusiastic when they use their own DNA. A cost effective, simple protocol for DNA extraction and visualization was devised. Buccal mucosal epithelia provide a…
Genotoxic effect of N-hydroxy-4-acetylaminobiphenyl on human DNA: implications in bladder cancer.
Shahab, Uzma; Moinuddin; Ahmad, Saheem; Dixit, Kiran; Habib, Safia; Alam, Khursheed; Ali, Asif
2013-01-01
The interaction of environmental chemicals and their metabolites with biological macromolecules can result in cytotoxic and genotoxic effects. 4-Aminobiphenyl (4-ABP) and several other related arylamines have been shown to be causally involved in the induction of human urinary bladder cancers. The genotoxic and the carcinogenic effects of 4-ABP are exhibited only when it is metabolically converted to a reactive electrophile, the aryl nitrenium ions, which subsequently binds to DNA and induce lesions. Although several studies have reported the formation of 4-ABP-DNA adducts, no extensive work has been done to investigate the immunogenicity of 4-ABP-modified DNA and its possible involvement in the generation of antibodies in bladder cancer patients. Human DNA was modified by N-hydroxy-4-acetylaminobiphenyl (N-OH-AABP), a reactive metabolite of 4-ABP. Structural perturbations in the N-OH-AABP modified DNA were assessed by ultraviolet, fluorescence, and circular dichroic spectroscopy as well as by agarose gel electrophoresis. Genotoxicity of N-OH-AABP modified DNA was ascertained by comet assay. High performance liquid chromatography (HPLC) analysis of native and modified DNA samples confirmed the formation of N-(deoxyguanosine-8-yl)-4-aminobiphenyl (dG-C8-4ABP) in the N-OH-AABP damaged DNA. The experimentally induced antibodies against N-OH-AABP-modified DNA exhibited much better recognition of the DNA isolated from bladder cancer patients as compared to the DNA obtained from healthy individuals in competitive binding ELISA. This work shows epitope sharing between the DNA isolated from bladder cancer patients and the N-OH-AABP-modified DNA implicating the role of 4-ABP metabolites in the DNA damage and neo-antigenic epitope generation that could lead to the induction of antibodies in bladder cancer patients.
Sequential microfluidic droplet processing for rapid DNA extraction.
Pan, Xiaoyan; Zeng, Shaojiang; Zhang, Qingquan; Lin, Bingcheng; Qin, Jianhua
2011-11-01
This work describes a novel droplet-based microfluidic device, which enables sequential droplet processing for rapid DNA extraction. The microdevice consists of a droplet generation unit, two reagent addition units and three droplet splitting units. The loading/washing/elution steps required for DNA extraction were carried out by sequential microfluidic droplet processing. The movement of superparamagnetic beads, which were used as extraction supports, was controlled with magnetic field. The microdevice could generate about 100 droplets per min, and it took about 1 min for each droplet to perform the whole extraction process. The extraction efficiency was measured to be 46% for λ-DNA, and the extracted DNA could be used in subsequent genetic analysis such as PCR, demonstrating the potential of the device for fast DNA extraction. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Khan, Md Asad; Alam, Khursheed; Mehdi, Syed Hassan; Rizvi, M Moshahid A
2017-12-01
Systemic lupus erythematosus (SLE) is an inflammatory autoimmune disease characterized by auto-antibodies against native deoxyribonucleic acid after modification and is one of the reasons for the development of SLE. Here, we have evaluated the structural perturbations in human placental DNA by peroxynitrite using spectroscopy, thermal denaturation and high-performance liquid chromatography (HPLC). Peroxynitrite is a powerful potent bi-functional oxidative/nitrative agent that is produced both endogenously and exogenously. In experimental animals, the peroxynitrite-modified DNA was found to be highly immunogenic. The induced antibodies showed cross-reactions with different types of DNA and nitrogen bases that were modified with peroxynitrite by inhibition ELISA. The antibody activity was inhibited by approximately 89% with its immunogen as the inhibitor. The antigen-antibodies interaction between induced antibodies with peroxynitrite-modified DNA showed retarded mobility as compared to the native form. Furthermore, significantly increased binding was also observed in SLE autoantibodies with peroxynitrite-modified DNA than native form. Moreover, DNA isolated from lymphocyte of SLE patients revealed significant recognition of anti-peroxynitrite-modified DNA immunoglobulin G (IgG). Our data indicates that DNA modified with peroxynitrite presents unique antigenic determinants that may induce autoantibody response in SLE. Copyright © 2017 Elsevier Inc. All rights reserved.
Lim, Natalie Y. N.; Roco, Constance A.; Frostegård, Åsa
2016-01-01
Adequate comparisons of DNA and cDNA libraries from complex environments require methods for co-extraction of DNA and RNA due to the inherent heterogeneity of such samples, or risk bias caused by variations in lysis and extraction efficiencies. Still, there are few methods and kits allowing simultaneous extraction of DNA and RNA from the same sample, and the existing ones generally require optimization. The proprietary nature of kit components, however, makes modifications of individual steps in the manufacturer’s recommended procedure difficult. Surprisingly, enzymatic treatments are often performed before purification procedures are complete, which we have identified here as a major problem when seeking efficient genomic DNA removal from RNA extracts. Here, we tested several DNA/RNA co-extraction commercial kits on inhibitor-rich soils, and compared them to a commonly used phenol-chloroform co-extraction method. Since none of the kits/methods co-extracted high-quality nucleic acid material, we optimized the extraction workflow by introducing small but important improvements. In particular, we illustrate the need for extensive purification prior to all enzymatic procedures, with special focus on the DNase digestion step in RNA extraction. These adjustments led to the removal of enzymatic inhibition in RNA extracts and made it possible to reduce genomic DNA to below detectable levels as determined by quantitative PCR. Notably, we confirmed that DNase digestion may not be uniform in replicate extraction reactions, thus the analysis of “representative samples” is insufficient. The modular nature of our workflow protocol allows optimization of individual steps. It also increases focus on additional purification procedures prior to enzymatic processes, in particular DNases, yielding genomic DNA-free RNA extracts suitable for metatranscriptomic analysis. PMID:27803690
Agardh, Elisabet; Gustavsson, Carin; Hagert, Per; Nilsson, Marie; Agardh, Carl-David
2006-02-01
The aim of the study was to evaluate messenger RNA and protein expression in limited amounts of tissue with low protein content. The Chomczynski method was used for simultaneous extraction of RNA, and protein was modified in the protein isolation step. Template mass and cycling time for the complementary DNA synthesis step of real-time reverse transcription-polymerase chain reaction (RT-PCR) for analysis of catalase, copper/zinc superoxide dismutase, manganese superoxide dismutase, the catalytic subunit of glutamylcysteine ligase, glutathione peroxidase 1, and the endogenous control cyclophilin B (CypB) were optimized before PCR. Polymerase chain reaction accuracy and efficacy were demonstrated by calculating the regression (R2) values of the separate amplification curves. Appropriate antibodies, blocking buffers, and running conditions were established for Western blot, and protein detection and multiplex assays with CypB were performed for each target. During the extraction procedure, the protein phase was dissolved in a modified washing buffer containing 0.1% sodium dodecyl sulfate, followed by ultrafiltration. Enzyme expression on real-time RT-PCR was accomplished with high reliability and reproducibility (R2, 0.990-0.999), and all enzymes except for glutathione peroxidase 1 were detectable in individual retinas on Western blot. Western blot multiplexing with CypB was possible for all targets. In conclusion, connecting gene expression directly to protein levels in the individual rat retina was possible by simultaneous extraction of RNA and protein. Real-time RT-PCR and Western blot allowed accurate detection of retinal protein expressions and levels.
Bergmann, Sven M; Riechardt, Meike; Fichtner, Dieter; Lee, Peiyu; Kempter, Jolanta
2010-02-01
Previous and new PCRs for KHV detection were compared by estimation of their sensitivity in recognizing KHV DNA in plasmids, cell culture extracted KHV DNA and total DNA obtained from field tissue samples. A modified real-time PCR (Gilad et al., 2004), combined with an internal control system (IC2, Hoffmann et al., 2006) in a duplex assay, was used as a "gold standard". The lowest reliably determined virus concentration between, 5 and 10 KHV DNA genomic equivalents, was found by real-time PCR (Gilad et al., 2004), nested PCR (Bergmann et al., 2006) and one-tube semi-nested PCR. All other published and unpublished PCRs, as well as the commercial Loopamp, recognized KHV DNA at higher concentrations only. Additionally, KHV variants, newly adapted to European conditions, which could not be detected by PCR according to Bercovier et al. (2005) were found in two field samples from carp and koi from different regions of Germany. A negative influence of sample pooling was shown with field samples tested by real-time PCR. 2009 Elsevier B.V. All rights reserved.
[Validation of Differential Extraction Kit in forensic sexual assault cases].
Wu, Dan; Cao, Yu; Xu, Yan; He, Bai-Fang; Bi, Gang; Zhou, Huai-Gu
2009-12-01
To evaluate the validity of Differential Extraction Kit in isolating spermatozoa and epithelial cell DNA from mixture samples. Selective lysis of spermatid and epithelial cells combined with paramagnetic particle method were applied to extract the DNA from the mock samples under controlled conditions and forensic case samples, and template DNA were analyzed by STR genotype method. This Differential Extraction Kit is efficient to obtain high quality spermatid and epithelial cell DNA from the mixture samples with different proportion of sperm to epithelial cell. The Differential Extraction Kit can be applied in DNA extraction for mixed stain from forensic sexual assault samples.
A simple automated instrument for DNA extraction in forensic casework.
Montpetit, Shawn A; Fitch, Ian T; O'Donnell, Patrick T
2005-05-01
The Qiagen BioRobot EZ1 is a small, rapid, and reliable automated DNA extraction instrument capable of extracting DNA from up to six samples in as few as 20 min using magnetic bead technology. The San Diego Police Department Crime Laboratory has validated the BioRobot EZ1 for the DNA extraction of evidence and reference samples in forensic casework. The BioRobot EZ1 was evaluated for use on a variety of different evidence sample types including blood, saliva, and semen evidence. The performance of the BioRobot EZ1 with regard to DNA recovery and potential cross-contamination was also assessed. DNA yields obtained with the BioRobot EZ1 were comparable to those from organic extraction. The BioRobot EZ1 was effective at removing PCR inhibitors, which often co-purify with DNA in organic extractions. The incorporation of the BioRobot EZ1 into forensic casework has streamlined the DNA analysis process by reducing the need for labor-intensive phenol-chloroform extractions.
Karakousis, A; Tan, L; Ellis, D; Alexiou, H; Wormald, P J
2006-04-01
To date, no single reported DNA extraction method is suitable for the efficient extraction of DNA from all fungal species. The efficiency of extraction is of particular importance in PCR-based medical diagnostic applications where the quantity of fungus in a tissue biopsy may be limited. We subjected 16 medically relevant fungi to physical, chemical and enzymatic cell wall disruption methods which constitutes the first step in extracting DNA. Examination by light microscopy showed that grinding with mortar and pestle was the most efficient means of disrupting the rigid fungal cell walls of hyphae and conidia. We then trialled several published DNA isolation protocols to ascertain the most efficient method of extraction. Optimal extraction was achieved by incorporating a lyticase and proteinase K enzymatic digestion step and adapting a DNA extraction procedure from a commercial kit (MO BIO) to generate high yields of high quality DNA from all 16 species. DNA quality was confirmed by the successful PCR amplification of the conserved region of the fungal 18S small-subunit rRNA multicopy gene.
Sato, Y; Sugie, R; Tsuchiya, B; Kameya, T; Natori, M; Mukai, K
2001-12-01
To obtain an adequate quality and quantity of DNA from formalin-fixed and paraffin-embedded tissue, six different DNA extraction methods were compared. Four methods used deparaffinization by xylene followed by proteinase K digestion and phenol-chloroform extraction. The temperature of the different steps was changed to obtain higher yields and improved quality of extracted DNA. The remaining two methods used microwave heating for deparaffinization. The best DNA extraction method consisted of deparaffinization by microwave irradiation, protein digestion with proteinase K at 48 degrees C overnight, and no further purification steps. By this method, the highest DNA yield was obtained and the amplification of a 989-base pair beta-globin gene fragment was achieved. Furthermore, DNA extracted by means of this procedure from five gastric carcinomas was successfully used for single strand conformation polymorphism and direct sequencing assays of the beta-catenin gene. Because the microwave-based DNA extraction method presented here is simple, has a lower contamination risk, and results in a higher yield of DNA compared with the ordinary organic chemical reagent-based extraction method, it is considered applicable to various clinical and basic fields.
Evaluation of Methods for the Extraction of DNA from Drinking Water Distribution System Biofilms
Hwang, Chiachi; Ling, Fangqiong; Andersen, Gary L.; LeChevallier, Mark W.; Liu, Wen-Tso
2012-01-01
While drinking water biofilms have been characterized in various drinking water distribution systems (DWDS), little is known about the impact of different DNA extraction methods on the subsequent analysis of microbial communities in drinking water biofilms. Since different DNA extraction methods have been shown to affect the outcome of microbial community analysis in other environments, it is necessary to select a DNA extraction method prior to the application of molecular tools to characterize the complex microbial ecology of the DWDS. This study compared the quantity and quality of DNA yields from selected DWDS bacteria with different cell wall properties using five widely used DNA extraction methods. These were further selected and evaluated for their efficiency and reproducibility of DNA extraction from DWDS samples. Terminal restriction fragment length analysis and the 454 pyrosequencing technique were used to interpret the differences in microbial community structure and composition, respectively, from extracted DNA. Such assessments serve as a concrete step towards the determination of an optimal DNA extraction method for drinking water biofilms, which can then provide a reliable comparison of the meta-analysis results obtained in different laboratories. PMID:22075624
[DNA quantification of blood samples pre-treated with pyramidon].
Zhu, Chuan-Hong; Zheng, Dao-Li; Ni, Rao-Zhi; Wang, Hai-Sheng; Ning, Ping; Fang, Hui; Liu, Yan
2014-06-01
To study DNA quantification and STR typing of samples pre-treated with pyramidon. The blood samples of ten unrelated individuals were anticoagulated in EDTA. The blood stains were made on the filter paper. The experimental groups were divided into six groups in accordance with the storage time, 30 min, 1 h, 3 h, 6 h, 12 h and 24h after pre-treated with pyramidon. DNA was extracted by three methods: magnetic bead-based extraction, QIAcube DNA purification method and Chelex-100 method. The quantification of DNA was made by fluorescent quantitative PCR. STR typing was detected by PCR-STR fluorescent technology. In the same DNA extraction method, the sample DNA decreased gradually with times after pre-treatment with pyramidon. In the same storage time, the DNA quantification in different extraction methods had significant differences. Sixteen loci DNA typing were detected in 90.56% of samples. Pyramidon pre-treatment could cause DNA degradation, but effective STR typing can be achieved within 24 h. The magnetic bead-based extraction is the best method for STR profiling and DNA extraction.
1993-01-01
Xenopus egg extracts prepared before and after egg activation retain M- and S-phase specific activity, respectively. Staurosporine, a potent inhibitor of protein kinase, converted M-phase extracts into interphase- like extracts that were capable of forming nuclei upon the addition of sperm DNA. The nuclei formed in the staurosporine treated M-phase extract were incapable of replicating DNA, and they were unable to initiate replication upon the addition of S-phase extracts. Furthermore, replication was inhibited when the staurosporine-treated M- phase extract was added in excess to the staurosporine-treated S-phase extract before the addition of DNA. The membrane-depleted S-phase extract supported neither nuclear formation nor replication; however, preincubation of sperm DNA with these extracts allowed them to form replication-competent nuclei upon the addition of excess staurosporine- treated M-phase extract. These results demonstrate that positive factors in the S-phase extracts determined the initiation of DNA replication before nuclear formation, although these factors were unable to initiate replication after nuclear formation. PMID:8253833
Comparison of methods of DNA extraction for real-time PCR in a model of pleural tuberculosis.
Santos, Ana; Cremades, Rosa; Rodríguez, Juan Carlos; García-Pachón, Eduardo; Ruiz, Montserrat; Royo, Gloria
2010-01-01
Molecular methods have been reported to have different sensitivities in the diagnosis of pleural tuberculosis and this may in part be caused by the use of different methods of DNA extraction. Our study compares nine DNA extraction systems in an experimental model of pleural tuberculosis. An inoculum of Mycobacterium tuberculosis was added to 23 pleural liquid samples with different characteristics. DNA was subsequently extracted using nine different methods (seven manual and two automatic) for analysis with real-time PCR. Only two methods were able to detect the presence of M. tuberculosis DNA in all the samples: extraction using columns (Qiagen) and automated extraction with the TNAI system (Roche). The automatic method is more expensive, but requires less time. Almost all the false negatives were because of the difficulty involved in extracting M. tuberculosis DNA, as in general, all the methods studied are capable of eliminating inhibitory substances that block the amplification reaction. The method of M. tuberculosis DNA extraction used affects the results of the diagnosis of pleural tuberculosis by molecular methods. DNA extraction systems that have been shown to be effective in pleural liquid should be used.
Extracellular plant DNA in Geneva groundwater and traditional artesian drinking water fountains.
Poté, John; Mavingui, Patrick; Navarro, Elisabeth; Rosselli, Walter; Wildi, Walter; Simonet, Pascal; Vogel, Timothy M
2009-04-01
DNA, as the signature of life, has been extensively studied in a wide range of environments. While DNA analysis has become central to work on natural gene exchange, forensic analyses, soil bioremediation, genetically modified organisms, exobiology, and palaeontology, fundamental questions about DNA resistance to degradation remain. This paper investigated on the presence of plant DNA in groundwater and artesian fountain (groundwater-fed) samples, which relates to the movement and persistence of DNA in the environment. The study was performed in the groundwater and in the fountains, which are considered as a traditional artesian drinking water in Geneva Champagne Basin. DNA from water samples was extracted, analysed and quantified. Plant gene sequences were detected using PCR amplification based on 18S rRNA gene primers specific for eukaryotes. Physicochemical parameters of water samples including temperature, pH, conductivity, organic matter, dissolved organic carbon (DOC) and total organic carbon (TOC) were measured throughout the study. The results revealed that important quantities of plant DNA can be found in the groundwater. PCR amplification based on 18S rDNA, cloning, RFLP analysis and sequencing demonstrated the presence of plant DNA including Vitis rupestris, Vitis berlandieri, Polygonum sp. Soltis, Boopis graminea, and Sinapis alba in the water samples. Our observations support the notion of plant DNA release, long-term persistence and movement in the unsaturated medium as well as in groundwater aquifers.
Witt, Sebastian; Neumann, Jan; Zierdt, Holger; Gébel, Gabriella; Röscheisen, Christiane
2012-09-01
Automated systems have been increasingly utilized for DNA extraction by many forensic laboratories to handle growing numbers of forensic casework samples while minimizing the risk of human errors and assuring high reproducibility. The step towards automation however is not easy: The automated extraction method has to be very versatile to reliably prepare high yields of pure genomic DNA from a broad variety of sample types on different carrier materials. To prevent possible cross-contamination of samples or the loss of DNA, the components of the kit have to be designed in a way that allows for the automated handling of the samples with no manual intervention necessary. DNA extraction using paramagnetic particles coated with a DNA-binding surface is predestined for an automated approach. For this study, we tested different DNA extraction kits using DNA-binding paramagnetic particles with regard to DNA yield and handling by a Freedom EVO(®)150 extraction robot (Tecan) equipped with a Te-MagS magnetic separator. Among others, the extraction kits tested were the ChargeSwitch(®)Forensic DNA Purification Kit (Invitrogen), the PrepFiler™Automated Forensic DNA Extraction Kit (Applied Biosystems) and NucleoMag™96 Trace (Macherey-Nagel). After an extensive test phase, we established a novel magnetic bead extraction method based upon the NucleoMag™ extraction kit (Macherey-Nagel). The new method is readily automatable and produces high yields of DNA from different sample types (blood, saliva, sperm, contact stains) on various substrates (filter paper, swabs, cigarette butts) with no evidence of a loss of magnetic beads or sample cross-contamination. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Dudek, Magda; Adams, Jessica; Swain, Martin; Hegarty, Matthew; Huws, Sharon; Gallagher, Joe
2014-10-20
This study investigated the microbial diversity associated with the digestive tract of the seaweed grazing marine limpet Patella pellucida. Using a modified indirect DNA extraction protocol and performing metagenomic profiling based on specific prokaryotic marker genes, the abundance of bacterial groups was identified from the analyzed metagenome. The members of three significantly abundant phyla of Proteobacteria, Firmicutes and Bacteroidetes were characterized through the literature and their predicted functions towards the host, as well as potential applications in the industrial environment assessed.
Assessment of DNA extracted from FTA® cards for use on the Illumina iSelect BeadChip
McClure, Matthew C; McKay, Stephanie D; Schnabel, Robert D; Taylor, Jeremy F
2009-01-01
Background As FTA® cards provide an ideal medium for the field collection of DNA we sought to assess the quality of genomic DNA extracted from this source for use on the Illumina BovineSNP50 iSelect BeadChip which requires unbound, relatively intact (fragment sizes ≥ 2 kb), and high-quality DNA. Bovine blood and nasal swab samples collected on FTA cards were extracted using the commercially available GenSolve kit with a minor modification. The call rate and concordance of genotypes from each sample were compared to those obtained from whole blood samples extracted by standard PCI extraction. Findings An ANOVA analysis indicated no significant difference (P > 0.72) in BovineSNP50 genotype call rate between DNA extracted from FTA cards by the GenSolve kit or extracted from whole blood by PCI. Two sample t-tests demonstrated that the DNA extracted from the FTA cards produced genotype call and concordance rates that were not different to those produced by assaying DNA samples extracted by PCI from whole blood. Conclusion We conclude that DNA extracted from FTA cards by the GenSolve kit is of sufficiently high quality to produce results comparable to those obtained from DNA extracted from whole blood when assayed by the Illumina iSelect technology. Additionally, we validate the use of nasal swabs as an alternative to venous blood or buccal samples from animal subjects for reliably producing high quality genotypes on this platform. PMID:19531223
Assessment of DNA extracted from FTA cards for use on the Illumina iSelect BeadChip.
McClure, Matthew C; McKay, Stephanie D; Schnabel, Robert D; Taylor, Jeremy F
2009-06-16
As FTA cards provide an ideal medium for the field collection of DNA we sought to assess the quality of genomic DNA extracted from this source for use on the Illumina BovineSNP50 iSelect BeadChip which requires unbound, relatively intact (fragment sizes >or= 2 kb), and high-quality DNA. Bovine blood and nasal swab samples collected on FTA cards were extracted using the commercially available GenSolve kit with a minor modification. The call rate and concordance of genotypes from each sample were compared to those obtained from whole blood samples extracted by standard PCI extraction. An ANOVA analysis indicated no significant difference (P > 0.72) in BovineSNP50 genotype call rate between DNA extracted from FTA cards by the GenSolve kit or extracted from whole blood by PCI. Two sample t-tests demonstrated that the DNA extracted from the FTA cards produced genotype call and concordance rates that were not different to those produced by assaying DNA samples extracted by PCI from whole blood. We conclude that DNA extracted from FTA cards by the GenSolve kit is of sufficiently high quality to produce results comparable to those obtained from DNA extracted from whole blood when assayed by the Illumina iSelect technology. Additionally, we validate the use of nasal swabs as an alternative to venous blood or buccal samples from animal subjects for reliably producing high quality genotypes on this platform.
Davoren, Jon; Vanek, Daniel; Konjhodzić, Rijad; Crews, John; Huffine, Edwin; Parsons, Thomas J.
2007-01-01
Aim To quantitatively compare a silica extraction method with a commonly used phenol/chloroform extraction method for DNA analysis of specimens exhumed from mass graves. Methods DNA was extracted from twenty randomly chosen femur samples, using the International Commission on Missing Persons (ICMP) silica method, based on Qiagen Blood Maxi Kit, and compared with the DNA extracted by the standard phenol/chloroform-based method. The efficacy of extraction methods was compared by real time polymerase chain reaction (PCR) to measure DNA quantity and the presence of inhibitors and by amplification with the PowerPlex 16 (PP16) multiplex nuclear short tandem repeat (STR) kit. Results DNA quantification results showed that the silica-based method extracted on average 1.94 ng of DNA per gram of bone (range 0.25-9.58 ng/g), compared with only 0.68 ng/g by the organic method extracted (range 0.0016-4.4880 ng/g). Inhibition tests showed that there were on average significantly lower levels of PCR inhibitors in DNA isolated by the organic method. When amplified with PP16, all samples extracted by silica-based method produced 16 full loci profiles, while only 75% of the DNA extracts obtained by organic technique amplified 16 loci profiles. Conclusions The silica-based extraction method showed better results in nuclear STR typing from degraded bone samples than a commonly used phenol/chloroform method. PMID:17696302
An Efficient Method for Genomic DNA Extraction from Different Molluscs Species
Pereira, Jorge C.; Chaves, Raquel; Bastos, Estela; Leitão, Alexandra; Guedes-Pinto, Henrique
2011-01-01
The selection of a DNA extraction method is a critical step when subsequent analysis depends on the DNA quality and quantity. Unlike mammals, for which several capable DNA extraction methods have been developed, for molluscs the availability of optimized genomic DNA extraction protocols is clearly insufficient. Several aspects such as animal physiology, the type (e.g., adductor muscle or gills) or quantity of tissue, can explain the lack of efficiency (quality and yield) in molluscs genomic DNA extraction procedure. In an attempt to overcome these aspects, this work describes an efficient method for molluscs genomic DNA extraction that was tested in several species from different orders: Veneridae, Ostreidae, Anomiidae, Cardiidae (Bivalvia) and Muricidae (Gastropoda), with different weight sample tissues. The isolated DNA was of high molecular weight with high yield and purity, even with reduced quantities of tissue. Moreover, the genomic DNA isolated, demonstrated to be suitable for several downstream molecular techniques, such as PCR sequencing among others. PMID:22174651
Jaworska, Aleksandra; Jablonska, Anna; Wilanowski, Tomasz; Palys, Barbara; Sek, Slawomir; Kudelski, Andrzej
2018-05-24
Adsorption of molecules of DNA (deoxyribonucleic acid) or modified DNA on gold surfaces is often the first step in construction of many various biosensors, including biosensors for detection of DNA with a particular sequence. In this work we study the influence of amine and thiol modifications at the 3' ends of single stranded DNA (ssDNA) molecules on their adsorption on the surface of gold substrates and on the efficiency of hybridization of immobilized DNA with the complementary single stranded DNA. The characterization of formed layers has been carried out using infrared spectroscopy and atomic force microscopy. As model single stranded DNA we used DNA containing 20 adenine bases, whereas the complementary DNA contained 20 thymine bases. We found that the bands in polarization modulation-infrared reflection-adsorption spectroscopy (PM-IRRAS) spectra of layers formed from thiol-modified DNA are significantly narrower and sharper, indicating their higher regularity in the orientation of DNA on gold surface when using thiol linker. Also, hybridization of the layer of thiol-modified DNA containing 20 adenine bases with the respective DNA containing thymine bases leads to formation of much more organized structures than in the case of unmodified DNA or DNA with the amine linker. We conclude that the thiol-modified ssDNA is more promising for the preparation of biosensors, in comparison with the amine-modified or unmodified ssDNA. We have also found that the above-mentioned modifications at the 3' end of ssDNA significantly influence the IR spectrum (and hence the structure) of polycrystalline films formed from such compounds, even though adsorbed fragments contain less than 5% of the DNA chain. This effect should be taken into account when comparing IR spectra of various polycrystalline films formed from modified and unmodified DNA. Copyright © 2018. Published by Elsevier B.V.
Soler, Salvador; Borràs, Dionís; Vilanova, Santiago; Sifres, Alicia; Andújar, Isabel; Figàs, Maria R; Llosa, Ernesto R; Prohens, Jaime
2016-03-01
Legal limits on the psychoactive tetrahydrocannabinol (THC) content in Cannabis sativa plants have complicated genetic and forensic studies in this species. However, Cannabis seeds present very low THC levels. We developed a method for embryo extraction from seeds and an improved protocol for DNA extraction and tested this method in four hemp and six marijuana varieties. This embryo extraction method enabled the recovery of diploid embryos from individual seeds. An improved DNA extraction protocol (CTAB3) was used to obtain DNA from individual embryos at a concentration and quality similar to DNA extracted from leaves. DNA extracted from embryos was used for SSR molecular characterization in individuals from the 10 varieties. A unique molecular profile for each individual was obtained, and a clear differentiation between hemp and marijuana varieties was observed. The combined embryo extraction-DNA extraction methodology and the new highly polymorphic SSR markers facilitate genetic and forensic studies in Cannabis. © 2015 American Academy of Forensic Sciences.
Lopata, M A; Cleveland, D W; Sollner-Webb, B
1984-01-01
Using a plasmid containing the bacterial chloramphenicol acetyl transferase gene, we have assayed for transient expression of DNA introduced into mouse L cells by a variety of transfection conditions. High efficiency uptake and expression of this foreign DNA have been achieved by modifying the DEAE dextran mediated transfection procedure of McCutchan and Pagano (1) to include a shock with either dimethyl sulfoxide or glycerol. Inclusion of the shock step can increase expression of the transfected gene a surprising approximately 50 fold. With plasmid constructs that do not replicate after transfection, we can readily detect CAT activity in an overnight autoradiographic exposure from less than 0.1% of an extract from a 60 mm dish of transfected cells. We have determined the amounts of DNA, the amount and time course of DEAE-dextran and dimethyl sulfoxide treatments, the effects of additional DNA, and the time after transfection which yield maximal expression. Overall, this transfection protocol using DEAE-dextran coupled to a shock treatment is simple, straightforward, and gives consistently high levels of expression of the input DNA. Images PMID:6589587
Zhang, Jing; Wang, Liang-Liang; Hou, Mei-Feng; Xia, Yao-Kun; He, Wen-Hui; Yan, An; Weng, Yun-Ping; Zeng, Lu-Peng; Chen, Jing-Hua
2018-04-15
Sensitive and selective detection of microRNAs (miRNAs) in cancer cells derived exosomes have attracted rapidly growing interest owing to their potential in diagnostic and prognostic applications. Here, we design a ratiometric electrochemical biosensor based on bipedal DNA walkers for the attomolar detection of exosomal miR-21. In the presence of miR-21, DNA walkers are activated to walk continuously along DNA tracks, resulting in conformational changes as well as considerable increases of the signal ratio produced by target-respond and target-independent reporters. With the signal cascade amplification of DNA walkers, the biosensor exhibits ultrahigh sensitivity with the limit of detection (LOD) down to 67 aM. Furthermore, owing to the background-correcting function of target-independent reporters termed as reference reporters, the biosensor is robust and stable enough to be applied in the detection of exosomal miR-21 extracted from breast cancer cell lines and serums. In addition, because locked nucleic acid (LNA) modified toehold mediate strand displacement reaction (TMSDR) has extraordinary discriminative ability, the biosensor displays excellent selectivity even against the single-base-mismatched target. It is worth mentioning that our sensor is regenerative and stable for at least 5 cycles without diminution in sensitivity. In brief, the high sensitivity, selectivity and reproducibility, together with cheap, make the proposed biosensor a promising approach for exosomal miRNAs detection, in conjunction with early point-of-care testing (POCT) of cancer. Copyright © 2017 Elsevier B.V. All rights reserved.
Shaw, Kirsty J; Joyce, Domino A; Docker, Peter T; Dyer, Charlotte E; Greenman, John; Greenway, Gillian M; Haswell, Stephen J
2009-12-07
A novel DNA loading methodology is presented for performing DNA extraction on a microfluidic system. DNA in a chaotropic salt solution was manually loaded onto a silica monolith orthogonal to the subsequent flow of wash and elution solutions. DNA was successfully extracted from buccal swabs using electro-osmotic pumping (EOP) coupled with in situ reagents contained within a 1.5% agarose gel matrix. The extracted DNA was of sufficient quantity and purity for polymerase chain reaction (PCR) amplification.
Henderson, Gemma; Cox, Faith; Kittelmann, Sandra; Miri, Vahideh Heidarian; Zethof, Michael; Noel, Samantha J.; Waghorn, Garry C.; Janssen, Peter H.
2013-01-01
Molecular microbial ecology techniques are widely used to study the composition of the rumen microbiota and to increase understanding of the roles they play. Therefore, sampling and DNA extraction methods that result in adequate yields of microbial DNA that also accurately represents the microbial community are crucial. Fifteen different methods were used to extract DNA from cow and sheep rumen samples. The DNA yield and quality, and its suitability for downstream PCR amplifications varied considerably, depending on the DNA extraction method used. DNA extracts from nine extraction methods that passed these first quality criteria were evaluated further by quantitative PCR enumeration of microbial marker loci. Absolute microbial numbers, determined on the same rumen samples, differed by more than 100-fold, depending on the DNA extraction method used. The apparent compositions of the archaeal, bacterial, ciliate protozoal, and fungal communities in identical rumen samples were assessed using 454 Titanium pyrosequencing. Significant differences in microbial community composition were observed between extraction methods, for example in the relative abundances of members of the phyla Bacteroidetes and Firmicutes. Microbial communities in parallel samples collected from cows by oral stomach-tubing or through a rumen fistula, and in liquid and solid rumen digesta fractions, were compared using one of the DNA extraction methods. Community representations were generally similar, regardless of the rumen sampling technique used, but significant differences in the abundances of some microbial taxa such as the Clostridiales and the Methanobrevibacter ruminantium clade were observed. The apparent microbial community composition differed between rumen sample fractions, and Prevotellaceae were most abundant in the liquid fraction. DNA extraction methods that involved phenol-chloroform extraction and mechanical lysis steps tended to be more comparable. However, comparison of data from studies in which different sampling techniques, different rumen sample fractions or different DNA extraction methods were used should be avoided. PMID:24040342
Henderson, Gemma; Cox, Faith; Kittelmann, Sandra; Miri, Vahideh Heidarian; Zethof, Michael; Noel, Samantha J; Waghorn, Garry C; Janssen, Peter H
2013-01-01
Molecular microbial ecology techniques are widely used to study the composition of the rumen microbiota and to increase understanding of the roles they play. Therefore, sampling and DNA extraction methods that result in adequate yields of microbial DNA that also accurately represents the microbial community are crucial. Fifteen different methods were used to extract DNA from cow and sheep rumen samples. The DNA yield and quality, and its suitability for downstream PCR amplifications varied considerably, depending on the DNA extraction method used. DNA extracts from nine extraction methods that passed these first quality criteria were evaluated further by quantitative PCR enumeration of microbial marker loci. Absolute microbial numbers, determined on the same rumen samples, differed by more than 100-fold, depending on the DNA extraction method used. The apparent compositions of the archaeal, bacterial, ciliate protozoal, and fungal communities in identical rumen samples were assessed using 454 Titanium pyrosequencing. Significant differences in microbial community composition were observed between extraction methods, for example in the relative abundances of members of the phyla Bacteroidetes and Firmicutes. Microbial communities in parallel samples collected from cows by oral stomach-tubing or through a rumen fistula, and in liquid and solid rumen digesta fractions, were compared using one of the DNA extraction methods. Community representations were generally similar, regardless of the rumen sampling technique used, but significant differences in the abundances of some microbial taxa such as the Clostridiales and the Methanobrevibacter ruminantium clade were observed. The apparent microbial community composition differed between rumen sample fractions, and Prevotellaceae were most abundant in the liquid fraction. DNA extraction methods that involved phenol-chloroform extraction and mechanical lysis steps tended to be more comparable. However, comparison of data from studies in which different sampling techniques, different rumen sample fractions or different DNA extraction methods were used should be avoided.
GARBIERI, Thais Francini; BROZOSKI, Daniel Thomas; DIONÍSIO, Thiago José; SANTOS, Carlos Ferreira; NEVES, Lucimara Teixeira das
2017-01-01
Abstract Saliva when compared to blood collection has the following advantages: it requires no specialized personnel for collection, allows for remote collection by the patient, is painless, well accepted by participants, has decreased risks of disease transmission, does not clot, can be frozen before DNA extraction and possibly has a longer storage time. Objective and Material and Methods This study aimed to compare the quantity and quality of human DNA extracted from saliva that was fresh or frozen for three, six and twelve months using five different DNA extraction protocols: protocol 1 – Oragene™ commercial kit, protocol 2 – QIAamp DNA mini kit, protocol 3 – DNA extraction using ammonium acetate, protocol 4 – Instagene™ Matrix and protocol 5 – Instagene™ Matrix diluted 1:1 using proteinase K and 1% SDS. Briefly, DNA was analyzed using spectrophotometry, electrophoresis and PCR. Results Results indicated that time spent in storage typically decreased the DNA quantity with the exception of protocol 1. The purity of DNA was generally not affected by storage times for the commercial based protocols, while the purity of the DNA samples extracted by the noncommercial protocols typically decreased when the saliva was stored longer. Only protocol 1 consistently extracted unfragmented DNA samples. In general, DNA samples extracted through protocols 1, 2, 3 and 4, regardless of storage time, were amplified by human specific primers whereas protocol 5 produced almost no samples that were able to be amplified by human specific primers. Depending on the protocol used, it was possible to extract DNA in high quantities and of good quality using whole saliva, and furthermore, for the purposes of DNA extraction, saliva can be reliably stored for relatively long time periods. Conclusions In summary, a complicated picture emerges when taking into account the extracted DNA’s quantity, purity and quality; depending on a given researchers needs, one protocol’s particular strengths and costs might be the deciding factor for its employment. PMID:28403355
Frégeau, Chantal J; Lett, C Marc; Fourney, Ron M
2010-10-01
A semi-automated DNA extraction process for casework samples based on the Promega DNA IQ™ system was optimized and validated on TECAN Genesis 150/8 and Freedom EVO robotic liquid handling stations configured with fixed tips and a TECAN TE-Shake™ unit. The use of an orbital shaker during the extraction process promoted efficiency with respect to DNA capture, magnetic bead/DNA complex washes and DNA elution. Validation studies determined the reliability and limitations of this shaker-based process. Reproducibility with regards to DNA yields for the tested robotic workstations proved to be excellent and not significantly different than that offered by the manual phenol/chloroform extraction. DNA extraction of animal:human blood mixtures contaminated with soil demonstrated that a human profile was detectable even in the presence of abundant animal blood. For exhibits containing small amounts of biological material, concordance studies confirmed that DNA yields for this shaker-based extraction process are equivalent or greater to those observed with phenol/chloroform extraction as well as our original validated automated magnetic bead percolation-based extraction process. Our data further supports the increasing use of robotics for the processing of casework samples. Crown Copyright © 2009. Published by Elsevier Ireland Ltd. All rights reserved.
Mohandesan, Elmira; Prost, Stefan; Hofreiter, Michael
2012-01-01
A major challenge for ancient DNA (aDNA) studies using museum specimens is that sampling procedures usually involve at least the partial destruction of each specimen used, such as the removal of skin, pieces of bone, or a tooth. Recently, a nondestructive DNA extraction method was developed for the extraction of amplifiable DNA fragments from museum specimens without appreciable damage to the specimen. Here, we examine the utility of this method by attempting DNA extractions from historic (older than 70 years) chimpanzee specimens. Using this method, we PCR-amplified part of the mitochondrial HVR-I region from 65% (56/86) of the specimens from which we attempted DNA extraction. However, we found a high incidence of multiple sequences in individual samples, suggesting substantial cross-contamination among samples, most likely originating from storage and handling in the museums. Consequently, reproducible sequences could be reconstructed from only 79% (44/56) of the successfully extracted samples, even after multiple extractions and amplifications. This resulted in an overall success rate of just over half (44/86 of samples, or 51% success), from which 39 distinct HVR-I haplotypes were recovered. We found a high incidence of C to T changes, arguing for both low concentrations of and substantial damage to the endogenous DNA. This chapter highlights both the potential and the limitations of nondestructive DNA extraction from museum specimens.
Modeling the Sensitivity of Field Surveys for Detection of Environmental DNA (eDNA)
Schultz, Martin T.; Lance, Richard F.
2015-01-01
The environmental DNA (eDNA) method is the practice of collecting environmental samples and analyzing them for the presence of a genetic marker specific to a target species. Little is known about the sensitivity of the eDNA method. Sensitivity is the probability that the target marker will be detected if it is present in the water body. Methods and tools are needed to assess the sensitivity of sampling protocols, design eDNA surveys, and interpret survey results. In this study, the sensitivity of the eDNA method is modeled as a function of ambient target marker concentration. The model accounts for five steps of sample collection and analysis, including: 1) collection of a filtered water sample from the source; 2) extraction of DNA from the filter and isolation in a purified elution; 3) removal of aliquots from the elution for use in the polymerase chain reaction (PCR) assay; 4) PCR; and 5) genetic sequencing. The model is applicable to any target species. For demonstration purposes, the model is parameterized for bighead carp (Hypophthalmichthys nobilis) and silver carp (H. molitrix) assuming sampling protocols used in the Chicago Area Waterway System (CAWS). Simulation results show that eDNA surveys have a high false negative rate at low concentrations of the genetic marker. This is attributed to processing of water samples and division of the extraction elution in preparation for the PCR assay. Increases in field survey sensitivity can be achieved by increasing sample volume, sample number, and PCR replicates. Increasing sample volume yields the greatest increase in sensitivity. It is recommended that investigators estimate and communicate the sensitivity of eDNA surveys to help facilitate interpretation of eDNA survey results. In the absence of such information, it is difficult to evaluate the results of surveys in which no water samples test positive for the target marker. It is also recommended that invasive species managers articulate concentration-based sensitivity objectives for eDNA surveys. In the absence of such information, it is difficult to design appropriate sampling protocols. The model provides insights into how sampling protocols can be designed or modified to achieve these sensitivity objectives. PMID:26509674
Modeling the Sensitivity of Field Surveys for Detection of Environmental DNA (eDNA).
Schultz, Martin T; Lance, Richard F
2015-01-01
The environmental DNA (eDNA) method is the practice of collecting environmental samples and analyzing them for the presence of a genetic marker specific to a target species. Little is known about the sensitivity of the eDNA method. Sensitivity is the probability that the target marker will be detected if it is present in the water body. Methods and tools are needed to assess the sensitivity of sampling protocols, design eDNA surveys, and interpret survey results. In this study, the sensitivity of the eDNA method is modeled as a function of ambient target marker concentration. The model accounts for five steps of sample collection and analysis, including: 1) collection of a filtered water sample from the source; 2) extraction of DNA from the filter and isolation in a purified elution; 3) removal of aliquots from the elution for use in the polymerase chain reaction (PCR) assay; 4) PCR; and 5) genetic sequencing. The model is applicable to any target species. For demonstration purposes, the model is parameterized for bighead carp (Hypophthalmichthys nobilis) and silver carp (H. molitrix) assuming sampling protocols used in the Chicago Area Waterway System (CAWS). Simulation results show that eDNA surveys have a high false negative rate at low concentrations of the genetic marker. This is attributed to processing of water samples and division of the extraction elution in preparation for the PCR assay. Increases in field survey sensitivity can be achieved by increasing sample volume, sample number, and PCR replicates. Increasing sample volume yields the greatest increase in sensitivity. It is recommended that investigators estimate and communicate the sensitivity of eDNA surveys to help facilitate interpretation of eDNA survey results. In the absence of such information, it is difficult to evaluate the results of surveys in which no water samples test positive for the target marker. It is also recommended that invasive species managers articulate concentration-based sensitivity objectives for eDNA surveys. In the absence of such information, it is difficult to design appropriate sampling protocols. The model provides insights into how sampling protocols can be designed or modified to achieve these sensitivity objectives.
Zhamanbaeva, G T; Murzakhmetova, M K; Tuleukhanov, S T; Danilenko, M P
2014-12-01
We studied the effects of ethanol extract from Hippophae rhamnoides L. leaves on the growth and differentiation of human acute myeloid leukemia cells (KG-1a, HL60, and U937). The extract of Hippophae rhamnoides L. leaves inhibited cell growth depending on the cell strain and extract dose. In a high concentration (100 μg/ml), the extract also exhibited a cytotoxic effect on HL60 cells. Hippophae rhamnoides L. leaves extract did not affect cell differentiation and did not modify the differentiating effect of calcitriol, active vitamin D metabolite. Inhibition of cell proliferation was paralleled by paradoxical accumulation of phase S cells (synthetic phase) with a reciprocal decrease in the count of G1 cells (presynthetic phase). The extract in a concentration of 100 μg/ml induced the appearance of cells with a subdiploid DNA content (sub-G1 phase cells), which indicated induction of apoptosis. The antiproliferative effect of Hippophae rhamnoides L. extract on acute myeloid leukemia cells was at least partially determined by activation of the S phase checkpoint, which probably led to deceleration of the cell cycle and apoptosis induction.
Nondestructive DNA extraction from museum specimens.
Hofreiter, Michael
2012-01-01
Natural history museums around the world hold millions of animal and plant specimens that are potentially amenable to genetic analyses. With more and more populations and species becoming extinct, the importance of these specimens for phylogenetic and phylogeographic analyses is rapidly increasing. However, as most DNA extraction methods damage the specimens, nondestructive extraction methods are useful to balance the demands of molecular biologists, morphologists, and museum curators. Here, I describe a method for nondestructive DNA extraction from bony specimens (i.e., bones and teeth). In this method, the specimens are soaked in extraction buffer, and DNA is then purified from the soaking solution using adsorption to silica. The method reliably yields mitochondrial and often also nuclear DNA. The method has been adapted to DNA extraction from other types of specimens such as arthropods.
Electron transfer of plurimodified DNA SAMs.
Rospigliosi, Alessandro; Ehlich, Rudolf; Hoerber, Heinrich; Middelberg, Anton; Moggridge, Geoff
2007-07-17
An STM-based current-voltage (I/V) investigation of deoxyribonucleic acid (DNA) 18 base pair (bp) oligonucleotide monolayers on gold is presented. Three bases of each of the immobilized and complementary strands were modified with either iodine or phenylethylene moieties. The oligonucleotides were immobilized on template stripped gold (tsg) surfaces and characterized by atomic force microscopy (AFM) and scanning tunneling microscopy (STM). AFM imaging showed that monolayers of the expected height were formed. A comparative study of normal, halogenated, and phenyl-modified DNA was made with the STM in tunneling spectroscopy (TS) mode. I/V spectroscopic measurements in the range +/-250 mV on both single- and double-stranded (ds) DNA monolayers (modified and unmodified) showed that for negative substrate bias (U(sub)) electron transfer is more efficient through a phenyl-modified monolayer than through normal or halogenated DNA. This effect was particularly clear below a threshold bias of -100 mV. For positive U(sub), unmodified ds DNA was found to conduct slightly better than the modified strands. This is presumably caused by greater order in the unmodified versus modified DNA monolayers. Modifications on the immobilized (thiolated) strand seem to improve electron transport through the DNA monolayer more than modifications on the complementary (not surface-bound) strand.
Validation of a standardized extraction method for formalin-fixed paraffin-embedded tissue samples.
Lagheden, Camilla; Eklund, Carina; Kleppe, Sara Nordqvist; Unger, Elizabeth R; Dillner, Joakim; Sundström, Karin
2016-07-01
Formalin-fixed paraffin-embedded (FFPE) samples can be DNA-extracted and used for human papillomavirus (HPV) genotyping. The xylene-based gold standard for extracting FFPE samples is laborious, suboptimal and involves health hazards for the personnel involved. To compare extraction with the standard xylene method to a xylene-free method used in an HPV LabNet Global Reference Laboratory at the Centers for Disease Control (CDC); based on a commercial method with an extra heating step. Fifty FFPE samples were randomly selected from a national audit of all cervical cancer cases diagnosed in Sweden during 10 years. For each case-block, a blank-block was sectioned, as a control for contamination. For xylene extraction, the standard WHO Laboratory Manual protocol was used. For the CDC method, the manufacturers' protocol was followed except for an extra heating step, 120°C for 20min. Samples were extracted and tested in parallel with β-globin real-time PCR, HPV16 real-time PCR and HPV typing using modified general primers (MGP)-PCR and Luminex assays. For a valid result the blank-block had to be betaglobin-negative in all tests and the case-block positive for beta-globin. Overall, detection was improved with the heating method and the amount of HPV-positive samples increased from 70% to 86% (p=0.039). For all samples where HPV type concordance could be evaluated, there was 100% type concordance. A xylene-free and robust extraction method for HPV-DNA typing in FFPE material is currently in great demand. Our proposed standardized protocol appears to be generally useful. Copyright © 2016. Published by Elsevier B.V.
Entropic Profiler – detection of conservation in genomes using information theory
Fernandes, Francisco; Freitas, Ana T; Almeida, Jonas S; Vinga, Susana
2009-01-01
Background In the last decades, with the successive availability of whole genome sequences, many research efforts have been made to mathematically model DNA. Entropic Profiles (EP) were proposed recently as a new measure of continuous entropy of genome sequences. EP represent local information plots related to DNA randomness and are based on information theory and statistical concepts. They express the weighed relative abundance of motifs for each position in genomes. Their study is very relevant because under or over-representation segments are often associated with significant biological meaning. Findings The Entropic Profiler application here presented is a new tool designed to detect and extract under and over-represented DNA segments in genomes by using EP. It allows its computation in a very efficient way by recurring to improved algorithms and data structures, which include modified suffix trees. Available through a web interface and as downloadable source code, it allows to study positions and to search for motifs inside the whole sequence or within a specified range. DNA sequences can be entered from different sources, including FASTA files, pre-loaded examples or resuming a previously saved work. Besides the EP value plots, p-values and z-scores for each motif are also computed, along with the Chaos Game Representation of the sequence. Conclusion EP are directly related with the statistical significance of motifs and can be considered as a new method to extract and classify significant regions in genomes and estimate local scales in DNA. The present implementation establishes an efficient and useful tool for whole genome analysis. PMID:19416538
NASA Astrophysics Data System (ADS)
Azizah, N.; Hashim, U.; Nadzirah, Sh.; Arshad, M. K. Md; Ruslinda, A. R.; Gopinath, Subash C. B.
2017-03-01
The affectability and unwavering quality of PCR for indicative and research purposes require effective fair systems of extraction and sanitization of nucleic acids. One of the real impediments of PCR-based tests is the hindrance of the enhancement procedure by substances exhibit in clinical examples. This examination considers distinctive techniques for extraction and cleaning of viral DNA from serum tests in view of recuperation productivity as far as yield of DNA and rate recouped immaculateness of removed DNA, and rate of restraint. The best extraction strategies were the phenol/chloroform strategy and the silica gel extraction methodology for serum tests, individually. Considering DNA immaculateness, extraction technique by utilizing the phenol/chloroform strategy delivered the most tasteful results in serum tests contrasted with the silica gel, separately. The nearness of inhibitors was overcome by all DNA extraction strategies in serum tests, as confirm by semiquantitative PCR enhancement.
Data on DNA gel sample load, gel electrophoresis, PCR and cost analysis.
Kuhn, Ramona; Böllmann, Jörg; Krahl, Kathrin; Bryant, Isaac Mbir; Martienssen, Marion
2018-02-01
The data presented in this article provide supporting information to the related research article "Comparison of ten different DNA extraction procedures with respect to their suitability for environmental samples" (Kuhn et al., 2017) [1]. In that article, we compared the suitability of ten selected DNA extraction methods based on DNA quality, purity, quantity and applicability to universal PCR. Here we provide the data on the specific DNA gel sample load, all unreported gel images of crude DNA and PCR results, and the complete cost analysis for all tested extraction procedures and in addition two commercial DNA extraction kits for soil and water.
Verma, Digvijay; Satyanarayana, T
2011-09-01
An improved single-step protocol has been developed for extracting pure community humic substance-free DNA from alkaline soils and sediments. The method is based on direct cell lysis in the presence of powdered activated charcoal and polyvinylpolypyrrolidone followed by precipitation with polyethyleneglycol and isopropanol. The strategy allows simultaneous isolation and purification of DNA while minimizing the loss of DNA with respect to other available protocols for metagenomic DNA extraction. Moreover, the purity levels are significant, which are difficult to attain with any of the methods reported in the literature for DNA extraction from soils. The DNA thus extracted was free from humic substances and, therefore, could be processed for restriction digestion, PCR amplification as well as for the construction of metagenomic libraries.
Shan, Jinyu; Clokie, Martha
2009-01-01
Bacteriophages manipulate bacterial gene expression in order to express their own genes or influence bacterial metabolism. Gene expression can be studied using real-time PCR or microarrays. Either technique requires the prior isolation of high quality RNA uncontaminated by the presence of genomic DNA. We outline the considerations necessary when working with bacteriophage infected bacterial cells. We also give an example of a protocol for extraction and quantification of high quality RNA from infected bacterial cells, using the marine cyanobacterium WH7803 and the phage S-PM2 as a case study. This protocol can be modified to extract RNA from the host/bacteriophage of interest.
Kennedy, Nicholas A; Walker, Alan W; Berry, Susan H; Duncan, Sylvia H; Farquarson, Freda M; Louis, Petra; Thomson, John M; Satsangi, Jack; Flint, Harry J; Parkhill, Julian; Lees, Charlie W; Hold, Georgina L
2014-01-01
Determining bacterial community structure in fecal samples through DNA sequencing is an important facet of intestinal health research. The impact of different commercially available DNA extraction kits upon bacterial community structures has received relatively little attention. The aim of this study was to analyze bacterial communities in volunteer and inflammatory bowel disease (IBD) patient fecal samples extracted using widely used DNA extraction kits in established gastrointestinal research laboratories. Fecal samples from two healthy volunteers (H3 and H4) and two relapsing IBD patients (I1 and I2) were investigated. DNA extraction was undertaken using MoBio Powersoil and MP Biomedicals FastDNA SPIN Kit for Soil DNA extraction kits. PCR amplification for pyrosequencing of bacterial 16S rRNA genes was performed in both laboratories on all samples. Hierarchical clustering of sequencing data was done using the Yue and Clayton similarity coefficient. DNA extracted using the FastDNA kit and the MoBio kit gave median DNA concentrations of 475 (interquartile range 228-561) and 22 (IQR 9-36) ng/µL respectively (p<0.0001). Hierarchical clustering of sequence data by Yue and Clayton coefficient revealed four clusters. Samples from individuals H3 and I2 clustered by patient; however, samples from patient I1 extracted with the MoBio kit clustered with samples from patient H4 rather than the other I1 samples. Linear modelling on relative abundance of common bacterial families revealed significant differences between kits; samples extracted with MoBio Powersoil showed significantly increased Bacteroidaceae, Ruminococcaceae and Porphyromonadaceae, and lower Enterobacteriaceae, Lachnospiraceae, Clostridiaceae, and Erysipelotrichaceae (p<0.05). This study demonstrates significant differences in DNA yield and bacterial DNA composition when comparing DNA extracted from the same fecal sample with different extraction kits. This highlights the importance of ensuring that samples in a study are prepared with the same method, and the need for caution when cross-comparing studies that use different methods.
Extraction of genomic DNA from yeasts for PCR-based applications.
Lõoke, Marko; Kristjuhan, Kersti; Kristjuhan, Arnold
2011-05-01
We have developed a quick and low-cost genomic DNA extraction protocol from yeast cells for PCR-based applications. This method does not require any enzymes, hazardous chemicals, or extreme temperatures, and is especially powerful for simultaneous analysis of a large number of samples. DNA can be efficiently extracted from different yeast species (Kluyveromyces lactis, Hansenula polymorpha, Schizosaccharomyces pombe, Candida albicans, Pichia pastoris, and Saccharomyces cerevisiae). The protocol involves lysis of yeast colonies or cells from liquid culture in a lithium acetate (LiOAc)-SDS solution and subsequent precipitation of DNA with ethanol. Approximately 100 nanograms of total genomic DNA can be extracted from 1 × 10(7) cells. DNA extracted by this method is suitable for a variety of PCR-based applications (including colony PCR, real-time qPCR, and DNA sequencing) for amplification of DNA fragments of ≤ 3500 bp.
Povedano, Eloy; Valverde, Alejandro; Ruiz-Valdepeñas Montiel, Víctor; Pedrero, María; Yáñez-Sedeño, Paloma; Barderas, Rodrigo; San Segundo-Acosta, Pablo; Peláez-García, Alberto; Mendiola, Marta; Hardisson, David; Campuzano, Susana; Pingarron, José Manuel
2018-05-09
We report a rapid and sensitive electrochemical strategy for the detection of gene-specific 5-methylcytosine DNA methylation. Magnetic beads (MBs) modified with an antibody specific for 5-methylcytosines (5-mC) are employed for the selective capture of any 5-mC methylated single-stranded (ss)DNA sequence. A flanking region next to the 5-mCs of the captured methylated ssDNA is recognized by selective hybridization with a synthetic biotinylated DNA sequence, further labeled with an HRP streptavidin conjugate. Amperometric transduction at disposable screen-printed carbon electrodes (SPCEs) is employed. The developed biosensor exhibits a dynamic range from 3.9 to 500 pM and a detection limit of 1.2 pM for the methylated synthetic sequence of the tumor suppressor gene O-6-methylguanine-DNA methyltransferase (MGMT) promoter region. The applicability of this strategy is demonstrated through the 45 min-analysis of specific methylation in the MGMT promoter region directly in raw spiked human serum samples and in genomic DNA extracted from U-87 glioblastoma cells and paraffin-embedded brain tumor tissues without any amplification and pretreatment step. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Comparison of DNA extraction protocols for microbial communities from soil treated with biochar
Leite, D.C.A.; Balieiro, F.C.; Pires, C.A.; Madari, B.E.; Rosado, A.S.; Coutinho, H.L.C.; Peixoto, R.S.
2014-01-01
Many studies have evaluated the effects of biochar application on soil structure and plant growth. However, there are very few studies describing the effect of biochar on native soil microbial communities. Microbial analysis of environmental samples requires accurate and reproducible methods for the extraction of DNA from samples. Because of the variety among microbial species and the strong adsorption of the phosphate backbone of the DNA molecule to biochar, extracting and purifying high quality microbial DNA from biochar-amended soil is not a trivial process and can be considerably more difficult than the extraction of DNA from other environmental samples. The aim of this study was to compare the relative efficacies of three commercial DNA extraction kits, the FastDNA® SPIN Kit for Soil (FD kit), the PowerSoil® DNA Isolation Kit (PS kit) and the ZR Soil Microbe DNA Kit Miniprep™ (ZR kit), for extracting microbial genomic DNA from sand treated with different types of biochar. The methods were evaluated by comparing the DNA yields and purity and by analysing the bacterial and fungal community profiles generated by PCR-DGGE. Our results showed that the PCR-DGGE profiles for bacterial and fungal communities were highly affected by the purity and yield of the different DNA extracts. Among the tested kits, the PS kit was the most efficient with respect to the amount and purity of recovered DNA and considering the complexity of the generated DGGE microbial fingerprint from the sand-biochar samples. PMID:24948928
Comparison of DNA extraction protocols for microbial communities from soil treated with biochar.
Leite, D C A; Balieiro, F C; Pires, C A; Madari, B E; Rosado, A S; Coutinho, H L C; Peixoto, R S
2014-01-01
Many studies have evaluated the effects of biochar application on soil structure and plant growth. However, there are very few studies describing the effect of biochar on native soil microbial communities. Microbial analysis of environmental samples requires accurate and reproducible methods for the extraction of DNA from samples. Because of the variety among microbial species and the strong adsorption of the phosphate backbone of the DNA molecule to biochar, extracting and purifying high quality microbial DNA from biochar-amended soil is not a trivial process and can be considerably more difficult than the extraction of DNA from other environmental samples. The aim of this study was to compare the relative efficacies of three commercial DNA extraction kits, the FastDNA® SPIN Kit for Soil (FD kit), the PowerSoil® DNA Isolation Kit (PS kit) and the ZR Soil Microbe DNA Kit Miniprep™ (ZR kit), for extracting microbial genomic DNA from sand treated with different types of biochar. The methods were evaluated by comparing the DNA yields and purity and by analysing the bacterial and fungal community profiles generated by PCR-DGGE. Our results showed that the PCR-DGGE profiles for bacterial and fungal communities were highly affected by the purity and yield of the different DNA extracts. Among the tested kits, the PS kit was the most efficient with respect to the amount and purity of recovered DNA and considering the complexity of the generated DGGE microbial fingerprint from the sand-biochar samples.
Hailemariam, Zerihun; Ahmed, Jabbar Sabir; Clausen, Peter-Henning; Nijhof, Ard Menzo
2017-01-01
An essential step in the molecular detection of tick-borne pathogens (TBPs) in blood is the extraction of DNA. When cooled storage of blood under field conditions prior to DNA extraction in a dedicated laboratory is not possible, the storage of blood on filter paper forms a promising alternative. We evaluated six DNA extraction methods from blood spotted on FTA Classic ® cards (FTA cards), to determine the optimal protocol for the subsequent molecular detection of TBPs by PCR and the Reverse Line Blot hybridization assay (RLB). Ten-fold serial dilutions of bovine blood infected with Babesia bovis, Theileria mutans, Anaplasma marginale or Ehrlichia ruminantium were made by dilution with uninfected blood and spotted on FTA cards. Subsequently, DNA was extracted from FTA cards using six different DNA extraction protocols. DNA was also isolated from whole blood dilutions using a commercial kit. PCR/RLB results showed that washing of 3mm discs punched from FTA cards with FTA purification reagent followed by DNA extraction using Chelex ® resin was the most sensitive procedure. The detection limit could be improved when more discs were used as starting material for the DNA extraction, whereby the use of sixteen 3mm discs proved to be most practical. The presented best practice method for the extraction of DNA from blood spotted on FTA cards will facilitate epidemiological studies on TBPs. It may be particularly useful for field studies where a cold chain is absent. Copyright © 2016 Elsevier GmbH. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hansson, J.; Keyse, S.M.; Lindahl, T.
Whole cell extracts from human lymphoid cell lines can perform in vitro DNA repair synthesis in plasmids damaged by agents including UV or cis-diamminedichloroplatinum(II) (cis-DDP). Extracts from xeroderma pigmentosum (XP) cells are defective in repair synthesis. We have now studied in vitro DNA repair synthesis using extracts from lymphoblastoid cell lines representing four human hereditary syndromes with increased sensitivity to DNA-damaging agents. Extracts of cell lines from individuals with the sunlight-sensitive disorders dysplastic nevus syndrome or Cockayne's syndrome (complementation groups A and B) showed normal DNA repair synthesis in plasmids with UV photoproducts. This is consistent with in vivo measurementsmore » of the overall DNA repair capacity in such cell lines. A number of extracts were prepared from two cell lines representing the variant form of XP (XP-V). Half of the extracts prepared showed normal levels of in vitro DNA repair synthesis in plasmids containing UV lesions, but the remainder of the extracts from the same cell lines showed deficient repair synthesis, suggesting the possibility of an unusually labile excision repair protein in XP-V. Fanconi's anemia (FA) cells show cellular hypersensitivity to cross-linking agents including cis-DDP. Extracts from cell lines belonging to two different complementation groups of FA showed normal DNA repair synthesis in plasmids containing cis-DDP or UV adducts. Thus, there does not appear to be an overall excision repair defect in FA, but the data do not exclude a defect in the repair of interstrand DNA cross-links.« less
A Comparison of DNA Extraction Methods using Petunia hybrida Tissues
Tamari, Farshad; Hinkley, Craig S.; Ramprashad, Naderia
2013-01-01
Extraction of DNA from plant tissue is often problematic, as many plants contain high levels of secondary metabolites that can interfere with downstream applications, such as the PCR. Removal of these secondary metabolites usually requires further purification of the DNA using organic solvents or other toxic substances. In this study, we have compared two methods of DNA purification: the cetyltrimethylammonium bromide (CTAB) method that uses the ionic detergent hexadecyltrimethylammonium bromide and chloroform-isoamyl alcohol and the Edwards method that uses the anionic detergent SDS and isopropyl alcohol. Our results show that the Edwards method works better than the CTAB method for extracting DNA from tissues of Petunia hybrida. For six of the eight tissues, the Edwards method yielded more DNA than the CTAB method. In four of the tissues, this difference was statistically significant, and the Edwards method yielded 27–80% more DNA than the CTAB method. Among the different tissues tested, we found that buds, 4 days before anthesis, had the highest DNA concentrations and that buds and reproductive tissue, in general, yielded higher DNA concentrations than other tissues. In addition, DNA extracted using the Edwards method was more consistently PCR-amplified than that of CTAB-extracted DNA. Based on these results, we recommend using the Edwards method to extract DNA from plant tissues and to use buds and reproductive structures for highest DNA yields. PMID:23997658
DNA recovery from soils of diverse composition.
Zhou, J; Bruns, M A; Tiedje, J M
1996-02-01
A simple, rapid method for bacterial lysis and direct extraction of DNA from soils with minimal shearing was developed to address the risk of chimera formation from small template DNA during subsequent PCR. The method was based on lysis with a high-salt extraction buffer (1.5 M NaCl) and extended heating (2 to 3 h) of the soil suspension in the presence of sodium dodecyl sulfate (SDS), hexadecyltrimethylammonium bromide, and proteinase K. The extraction method required 6 h and was tested on eight soils differing in organic carbon, clay content, and pH, including ones from which DNA extraction is difficult. The DNA fragment size in crude extracts from all soils was > 23 kb. Preliminary trials indicated that DNA recovery from two soils seeded with gram-negative bacteria was 92 to 99%. When the method was tested on all eight unseeded soils, microscopic examination of indigenous bacteria in soil pellets before and after extraction showed variable cell lysis efficiency (26 to 92%). Crude DNA yields from the eight soils ranged from 2.5 to 26.9 micrograms of DNA g-1, and these were positively correlated with the organic carbon content in the soil (r = 0.73). DNA yields from gram-positive bacteria from pure cultures were two to six times higher when the high-salt-SDS-heat method was combined with mortar-and-pestle grinding and freeze-thawing, and most DNA recovered was of high molecular weight. Four methods for purifying crude DNA were also evaluated for percent recovery, fragment size, speed, enzyme restriction, PCR amplification, and DNA-DNA hybridization. In general, all methods produced DNA pure enough for PCR amplification. Since soil type and microbial community characteristics will influence DNA recovery, this study provides guidance for choosing appropriate extraction and purification methods on the basis of experimental goals.
Eichmiller, Jessica J; Miller, Loren M; Sorensen, Peter W
2016-01-01
Few studies have examined capture and extraction methods for environmental DNA (eDNA) to identify techniques optimal for detection and quantification. In this study, precipitation, centrifugation and filtration eDNA capture methods and six commercially available DNA extraction kits were evaluated for their ability to detect and quantify common carp (Cyprinus carpio) mitochondrial DNA using quantitative PCR in a series of laboratory experiments. Filtration methods yielded the most carp eDNA, and a glass fibre (GF) filter performed better than a similar pore size polycarbonate (PC) filter. Smaller pore sized filters had higher regression slopes of biomass to eDNA, indicating that they were potentially more sensitive to changes in biomass. Comparison of DNA extraction kits showed that the MP Biomedicals FastDNA SPIN Kit yielded the most carp eDNA and was the most sensitive for detection purposes, despite minor inhibition. The MoBio PowerSoil DNA Isolation Kit had the lowest coefficient of variation in extraction efficiency between lake and well water and had no detectable inhibition, making it most suitable for comparisons across aquatic environments. Of the methods tested, we recommend using a 1.5 μm GF filter, followed by extraction with the MP Biomedicals FastDNA SPIN Kit for detection. For quantification of eDNA, filtration through a 0.2-0.6 μm pore size PC filter, followed by extraction with MoBio PowerSoil DNA Isolation Kit was optimal. These results are broadly applicable for laboratory studies on carps and potentially other cyprinids. The recommendations can also be used to inform choice of methodology for field studies. © 2015 John Wiley & Sons Ltd.
Jacociunas, Laura Vicedo; Dihl, Rafael Rodrigues; Lehmann, Mauricio; de Barros Falcão Ferraz, Alexandre; Richter, Marc François; da Silva, Juliana; de Andrade, Heloísa Helena Rodrigues
2014-01-01
The genotoxicity of bloom head (BHE) and leaf (LE) extracts from artichoke (Cynara scolymus L.), and their ability to modulate the mutagenicity and recombinogenicity of two alkylating agents (ethyl methanesulfonate – EMS and mitomycin C – MMC) and the intercalating agent bleomycin (BLM), were examined using the somatic mutation and recombination test (SMART) in Drosophila melanogaster. Neither the mutagenicity nor the recombinogenicity of BLM or MMC was modified by co- or post-treatment with BHE or LE. In contrast, co-treatment with BHE significantly enhanced the EMS-induced genotoxicity involving mutagenic and/or recombinant events. Co-treatment with LE did not alter the genotoxicity of EMS whereas post-treatment with the highest dose of LE significantly increased this genotoxicity. This enhancement included a synergistic increase restricted to somatic recombination. These results show that artichoke extracts promote homologous recombination in proliferative cells of D. melanogaster. PMID:24688296
Jacociunas, Laura Vicedo; Dihl, Rafael Rodrigues; Lehmann, Mauricio; de Barros Falcão Ferraz, Alexandre; Richter, Marc François; da Silva, Juliana; de Andrade, Heloísa Helena Rodrigues
2014-03-01
The genotoxicity of bloom head (BHE) and leaf (LE) extracts from artichoke (Cynara scolymus L.), and their ability to modulate the mutagenicity and recombinogenicity of two alkylating agents (ethyl methanesulfonate - EMS and mitomycin C - MMC) and the intercalating agent bleomycin (BLM), were examined using the somatic mutation and recombination test (SMART) in Drosophila melanogaster. Neither the mutagenicity nor the recombinogenicity of BLM or MMC was modified by co- or post-treatment with BHE or LE. In contrast, co-treatment with BHE significantly enhanced the EMS-induced genotoxicity involving mutagenic and/or recombinant events. Co-treatment with LE did not alter the genotoxicity of EMS whereas post-treatment with the highest dose of LE significantly increased this genotoxicity. This enhancement included a synergistic increase restricted to somatic recombination. These results show that artichoke extracts promote homologous recombination in proliferative cells of D. melanogaster.
Lee, You Jin; Ahn, Youngsook; Kwon, Oran; Lee, Mee Youn; Lee, Choong Hwan; Lee, Sungyoung; Park, Taesung; Kwon, Sung Won; Kim, Ji Yeon
2017-01-18
In the present study, we evaluated the antioxidative and anti-inflammatory effects of an aqueous extract of wolfberry fruit (WBE) in mild hypercholesterolemic and overweight subjects. This study was a double-blind randomized trial of two parallel groups of free-living subjects (n = 53). The participants consumed the contents of an 80 mL pouch containing 13.5 g WBE or placebo after one meal per day over an 8-week period. Following 8 weeks of WBE supplementation, we observed a slight but significant decrease in erythrocyte superoxide dismutase activity and an increase in catalase activity. Furthermore, to assess endogenous DNA damage in lymphocytes, the alkaline comet assay was performed, showing that the percentage of DNA in the tail was significantly decreased by 8-week WBE intake. Additionally, the proportion of significantly deregulated mRNAs related to oxidative or inflammatory stress was considerably higher in the WBE intake group. The present data indicate that WBE intake has antioxidative and anti-inflammatory effects in overweight and hypercholesterolemic subjects by modulating mRNA expression.
Horváthová, Eva; Srančíková, Annamária; Regendová-Sedláčková, Eva; Melušová, Martina; Meluš, Vladimír; Netriová, Jana; Krajčovičová, Zdenka; Slameňová, Darina; Pastorek, Michal; Kozics, Katarína
2016-01-01
Nature is an attractive source of therapeutic compounds. In comparison to the artificial drugs, natural compounds cause less adverse side effects and are suitable for current molecularly oriented approaches to drug development and their mutual combining. Medicinal plants represent one of the most available remedy against various diseases. Proper examples are Salvia officinalis L. and Thymus vulgaris L. which are known aromatic medicinal plants. They are very popular and frequently used in many countries. The molecular mechanism of their biological activity has not yet been fully understood. The aim of this study was to ascertain if liver cells of experimental animals drinking extracts of sage or thyme will manifest increased resistance against oxidative stress. Adult Sprague-Dawley rats were divided into seven groups. They drank sage or thyme extracts for 2 weeks. At the end of the drinking period, blood samples were collected for determination of liver biochemical parameters and hepatocytes were isolated to analyze (i) oxidatively generated DNA damage (conventional and modified comet assay), (ii) activities of antioxidant enzymes [superoxide dismutase (SOD), glutathione peroxidase (GPx)] and (iii) content of glutathione. Intake of sage and thyme had no effect either on the basal level of DNA damage or on the activity of SOD in rat hepatocytes and did not change the biochemical parameters of blood plasma. Simultaneously, the activity of GPx was significantly increased and the level of DNA damage induced by oxidants was decreased. Moreover, sage extract was able to start up the antioxidant protection expressed by increased content of glutathione. Our results indicate that the consumption of S.officinalis and T.vulgaris extracts positively affects resistency of rat liver cells against oxidative stress and may have hepatoprotective potential. © The Author 2015. Published by Oxford University Press on behalf of the UK Environmental Mutagen Society. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Quantitation of exposure to benzo[a]pyrene with monoclonal antibodies.
Santella, R M; Hsieh, L L; Lin, C D; Viet, S; Weinstein, I B
1985-01-01
It is now possible to quantitate carcinogen adducts on DNA by highly sensitive immunoassays. These techniques are particularly useful for screening human populations for exposure to potential environmental carcinogens. We have developed a panel of monoclonal antibodies that react with benzo(a)pyrene (BP) modified DNA to be used in an enzyme linked immunoassay (ELISA) to quantitate adduct levels of both human and animal samples. BALBc/Cr mice were immunized with either DNA modified by 7 beta, 8 alpha-dihydroxy-9 alpha, 10 alpha-epoxy-7,8,9, 10-tetrahydrobenzo(a)pyrene (BPDE-I-DNA) complexed electrostatically to methylated bovine serum albumin or with BPDE-I-modified guanosine conjugated with bovine serum albumin (BPDE-I-G-BSA). Four stable clones were produced from the spleen cells of animals immunized with BPDE-I-DNA and one from BPDE-I-G-BSA immunized animals. All antibodies were shown to be highly specific for BPDE-I-DNA and did not crossreact with nonmodified DNA or with N-2-acetylaminofluorene or 1-aminopyrene modified DNA. The antibodies differed in their sensitivity to BPDE-II-DNA, BPDE-I-poly G, BPDE-I-tetraols and BPDE-I-dG. In general, all the antibodies showed the greatest affinity for their original antigen. Those generated against modified DNA showed highest reactivity against modified DNA while the one antibody generated against the monoadduct showed highest reactivity with the monoadduct. These antibodies are currently being used in a highly sensitive competitive ELISA to quantitate levels of BP-DNA adducts in various animal and human tissue samples. PMID:4085452
Yang, Qi; Franco, Christopher M M; Zhang, Wei
2015-10-01
Experiments were designed to validate the two common DNA extraction protocols (CTAB-based method and DNeasy Blood & Tissue Kit) used to effectively recover actinobacterial DNA from sponge samples in order to study the sponge-associated actinobacterial diversity. This was done by artificially spiking sponge samples with actinobacteria (spores, mycelia and a combination of the two). Our results demonstrated that both DNA extraction methods were effective in obtaining DNA from the sponge samples as well as the sponge samples spiked with different amounts of actinobacteria. However, it was noted that in the presence of the sponge, the bacterial 16S rRNA gene could not be amplified unless the combined DNA template was diluted. To test the hypothesis that the extracted sponge DNA contained inhibitors, dilutions of the DNA extracts were tested for six sponge species representing five orders. The results suggested that the inhibitors were co-extracted with the sponge DNA, and a high dilution of this DNA was required for the successful PCR amplification for most of the samples. The optimized PCR conditions, including primer selection, PCR reaction system and program optimization, further improved the PCR performance. However, no single PCR condition was found to be suitable for the diverse sponge samples using various primer sets. These results highlight for the first time that the DNA extraction methods used are effective in obtaining actinobacterial DNA and that the presence of inhibitors in the sponge DNA requires high dilution coupled with fine tuning of the PCR conditions to achieve success in the study of sponge-associated actinobacterial diversity.
Evaluation Of A Powder-Free DNA Extraction Method For Skeletal Remains.
Harrel, Michelle; Mayes, Carrie; Gangitano, David; Hughes-Stamm, Sheree
2018-02-07
Bones are often recovered in forensic investigations, including missing persons and mass disasters. While traditional DNA extraction methods rely on grinding bone into powder prior to DNA purification, the TBone Ex buffer (DNA Chip Research Inc.) digests bone chips without powdering. In this study, six bones were extracted using the TBone Ex kit in conjunction with the PrepFiler ® BTA™ DNA extraction kit (Thermo Fisher Scientific) both manually and via an automated platform. Comparable amounts of DNA were recovered from a 50 mg bone chip using the TBone Ex kit and 50 mg of powdered bone with the PrepFiler ® BTA™ kit. However, automated DNA purification decreased DNA yield (p < 0.05). Nevertheless, short tandem repeat (STR) success was comparable across all methods tested. This study demonstrates that digestion of whole bone fragments is an efficient alternative to powdering bones for DNA extraction without compromising downstream STR profile quality. © 2018 American Academy of Forensic Sciences.
Hansen, Majken N; Farjami, Elaheh; Kristiansen, Martin; Clima, Lilia; Pedersen, Steen Uttrup; Daasbjerg, Kim; Ferapontova, Elena E; Gothelf, Kurt V
2010-04-16
A new DNA modifier containing triazene, ferrocene, and activated ester functionalities was synthesized and applied for electrochemical grafting and characterization of DNA at glassy carbon (GC) and gold electrodes. The modifier was synthesized from ferrocenecarboxylic acid by attaching a phenyltriazene derivative to one of the ferrocene Cp rings, while the other Cp ring containing the carboxylic acid was converted to an activated ester. The modifier was conjugated to an amine-modified DNA sequence. For immobilization of the conjugate at Au or GC electrodes, the triazene was activated by dimethyl sulfate for release of the diazonium salt. The salt was reductively converted to the aryl radical which was readily immobilized at the surface. DNA grafted onto electrodes exhibited remarkable hybridization properties, as detected through a reversible shift in the redox potential of the Fc redox label upon repeated hybridization/denaturation procedures with a complementary target DNA sequence. By using a methylene blue (MB) labeled target DNA sequence the hybridization could also be followed through the MB redox potential. Electrochemical studies demonstrated that grafting through the triazene modifier can successfully compete with existing protocols for DNA immobilization through the commonly used alkanethiol linkers and diazonium salts. Furthermore, the triazene modifier provides a practical one-step immobilization procedure.
Jordan, Jeanne A; Ibe, Christine O; Moore, Miranda S; Host, Christel; Simon, Gary L
2012-05-01
In resource-limited settings (RLS) dried blood spots (DBS) are collected on infants and transported through provincial laboratories to a central facility where HIV-1 DNA PCR testing is performed using specialized equipment. Implementing a simpler approach not requiring such equipment or skilled personnel could allow the more numerous provincial laboratories to offer testing, improving turn-around-time to identify and treat infected infants sooner. Assess performances of a manual DNA extraction method and helicase-dependent amplification (HDA) assay for detecting HIV-1 DNA from DBS. 60 HIV-1 infected adults were enrolled, blood samples taken and DBS made. DBS extracts were assessed for DNA concentration and beta globin amplification using PCR and melt-curve analysis. These same extracts were then tested for HIV-1 DNA using HDA and compared to results generated by PCR and pyrosequencing. Finally, HDA limit of detection (LOD) studies were performed using DBS extracts prepared with known numbers of 8E5 cells. The manual extraction protocol consistently yielded high concentrations of amplifiable DNA from DBS. LOD assessment demonstrated HDA detected ∼470 copies/ml of HIV-1 DNA extracts in 4/4 replicates. No statistical difference was found using the McNemar's test when comparing HDA to PCR for detecting HIV-1 DNA from DBS. Using just a magnet, heat block and pipettes, the manual extraction protocol and HDA assay detected HIV-1 DNA from DBS at levels that would be useful for early infant diagnosis. Next steps will include assessing HDA for non-B HIV-1 subtypes recognition and comparison to Roche HIV-1 DNA v1.5 PCR assay. Copyright © 2012 Elsevier B.V. All rights reserved.
Gonzales, J L; Loza, A; Chacon, E
2006-03-15
There are several T. vivax specific primers developed for PCR diagnosis. Most of these primers were validated under different DNA extraction methods and study designs leading to heterogeneity of results. The objective of the present study was to validate PCR as a diagnostic test for T. vivax trypanosomosis by means of determining the test sensitivity of different published specific primers with different sample preparations. Four different DNA extraction methods were used to test the sensitivity of PCR with four different primer sets. DNA was extracted directly from whole blood samples, blood dried on filter papers or blood dried on FTA cards. The results showed that the sensitivity of PCR with each primer set was highly dependant of the sample preparation and DNA extraction method. The highest sensitivities for all the primers tested were determined using DNA extracted from whole blood samples, while the lowest sensitivities were obtained when DNA was extracted from filter paper preparations. To conclude, the obtained results are discussed and a protocol for diagnosis and surveillance for T. vivax trypanosomosis is recommended.
Fleischman, R A; Cambell, J L; Richardson, C C
1976-03-25
Using the single-stranded circular DNA of bacteriophage fd as template, double-stranded circular DNA has been prepared in vitro with either 5-hydroxymethylcytosine ([hmdC]DNA) or cytosine ([dC]DNA) in the product strand. Extracts prepared from Escherichia coli cells restrictive to T-even phage containing nonglucosylated DNA degrade [hmdC]DNA to acid-soluble material in vitro, but do not degrade [dC]dna. In contrast, extracts prepared from E. coli K12 rglA- rglB-, a strain permissive to T-even phage containing nonglucosylated DNA, do not degrade [hmdC]DNA or [dC]DNA. In addition, glucosylation of the [hmdC]DNA renders it resistant to degradation by extracts from restrictive strains. The conversion of [hmdC]DNA to acid-soluble material in vitro consists of an HmCyt-specific endonucleolytic cleavage requiring the presence of the RglB gene product to form a linear molecule, followed by a non-HmCyt-specific hydrolysis of the linear DNA to acid-soluble fragments, catalyzed in part by exonuclease V. The RglB protein present in extracts of E. coli K12 rglA- rglB+ has been purified 200-fold by complementation with extracts from E. coli K12 rglA- rglB-. The purified RglB protein does not contain detectable HmCyt-specific endonuclease or exonuclease activity. In vitro endonucleolytic cleavage of [hmdC]DNA thus requires additional factors present in cell extracts.
A collaborative exercise on DNA methylation based body fluid typing.
Jung, Sang-Eun; Cho, Sohee; Antunes, Joana; Gomes, Iva; Uchimoto, Mari L; Oh, Yu Na; Di Giacomo, Lisa; Schneider, Peter M; Park, Min Sun; van der Meer, Dieudonne; Williams, Graham; McCord, Bruce; Ahn, Hee-Jung; Choi, Dong Ho; Lee, Yang Han; Lee, Soong Deok; Lee, Hwan Young
2016-10-01
A collaborative exercise on DNA methylation based body fluid identification was conducted by seven laboratories. For this project, a multiplex methylation SNaPshot reaction composed of seven CpG markers was used for the identification of four body fluids, including blood, saliva, semen, and vaginal fluid. A total of 30 specimens were prepared and distributed to participating laboratories after thorough testing. The required experiments included four increasingly complex tasks: (1) CE of a purified single-base extension reaction product, (2) multiplex PCR and multiplex single-base extension reaction of bisulfite-modified DNA, (3) bisulfite conversion of genomic DNA, and (4) extraction of genomic DNA from body fluid samples. In tasks 2, 3 and 4, one or more mixtures were analyzed, and specimens containing both known and unknown body fluid sources were used. Six of the laboratories generated consistent body fluid typing results for specimens of bisulfite-converted DNA and genomic DNA. One laboratory failed to set up appropriate conditions for capillary analysis of reference single-base extension products. In general, variation in the values obtained for DNA methylation analysis between laboratories increased with the complexity of the required experiments. However, all laboratories concurred on the interpretation of the DNA methylation profiles produced. Although the establishment of interpretational guidelines on DNA methylation based body fluid identification has yet to be performed, this study supports the addition of DNA methylation profiling to forensic body fluid typing. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Murphy, M.A.; Waits, L.P.; Kendall, K.C.
2003-01-01
To evaluate the influence of diet on faecal DNA amplification, 11 captive brown bears (Ursus arctos) were placed on six restricted diets: grass (Trifolium spp., Haplopappus hirtus and Poa pratensis), alfalfa (Lupinus spp.), carrots (Daucus spp.), white-tailed deer (Odocoileus virginianus), blueberries (Vaccinium spp.) and salmon (Salmo spp.). DNA was extracted from 50 faecal samples of each restricted diet, and amplification of brown bear DNA was attempted for a mitochondrial DNA (mtDNA) locus and nuclear DNA (nDNA) locus. For mtDNA, no significant differences were observed in amplification success rates across diets. For nDNA, amplification success rates for salmon diet extracts were significantly lower than all other diet extracts (P < 0.001). To evaluate the accuracy of faecal DNA sex identification when female carnivores consume male mammalian prey, female bears were fed male white-tailed deer. Four of 10 extracts amplified, and all extracts were incorrectly scored as male due to amplification of X and Y-chromosome fragments. The potential biases highlighted in this study have broad implications for researchers using faecal DNA for individual and sex identification, and should be evaluated in other species.
An off-the-shelf, authentic, and versatile undergraduate molecular biology practical course.
Whitworth, David E
2015-01-01
We provide a prepackaged molecular biology course, which has a broad context and is scalable to large numbers of students. It is provided complete with technical setup guidance, a reliable assessment regime, and can be readily implemented without any development necessary. Framed as a forensic examination of blue/white cloning plasmids, the course is a versatile workbench, adaptable to different degree subjects, and can be easily modified to undertake novel research as part of its teaching activities. Course activities include DNA extraction, RFLP, PCR, DNA sequencing, gel electrophoresis, and transformation, alongside a range of basic microbiology techniques. Students particularly appreciated the relevance of the practical to professional practice and the authenticity of the experimental work. © 2015 The International Union of Biochemistry and Molecular Biology.
[Detection of genetically modified soy (Roundup-Ready) in processed food products].
Hagen, M; Beneke, B
2000-01-01
In this study, the application of a qualitative and a quantitative method of analysis to detect genetically modified RR-Soy (Roundup-Ready Soy) in processed foods is described. A total of 179 various products containing soy such as baby food and diet products, soy drinks and desserts, tofu and tofu products, soy based meat substitutes, soy protein, breads, flour, granules, cereals, noodles, soy bean sprouts, fats and oils as well as condiments were investigated following the pattern of the section 35 LMBG-method L 23.01.22-1. The DNA was extracted from the samples and analysed using a soybean specific lectin gene PCR as well as a PCR, specific for the genetic modification. Additional, by means of PCR in combination with fluorescence-detection (TaqMan 5'-Nuclease Assay), suspicious samples were subjected to a real-time quantification of the percentage of genetically modified RR-Soy. The methods of analysis proved to be extremely sensitive and specific in regard to the food groups checked. The fats and oils, as well as the condiments were the exceptions in which amplifiable soy DNA could not be detected. The genetic modification of RR-Soy was detected in 34 samples. Eight of these samples contained more than 1% of RR-Soy. It is necessary to determine the percentage of transgenic soy in order to assess whether genetically modified ingredients were deliberately added, or whether they were caused by technically unavoidable contamination (for example during transportation and processing).
Study of microtip-based extraction and purification of DNA from human samples for portable devices
NASA Astrophysics Data System (ADS)
Fotouhi, Gareth
DNA sample preparation is essential for genetic analysis. However, rapid and easy-to-use methods are a major challenge to obtaining genetic information. Furthermore, DNA sample preparation technology must follow the growing need for point-of-care (POC) diagnostics. The current use of centrifuges, large robots, and laboratory-intensive protocols has to be minimized to meet the global challenge of limited access healthcare by bringing the lab to patients through POC devices. To address these challenges, a novel extraction method of genomic DNA from human samples is presented by using heat-cured polyethyleneimine-coated microtips generating a high electric field. The microtip extraction method is based on recent work using an electric field and capillary action integrated into an automated device. The main challenges to the method are: (1) to obtain a stable microtip surface for the controlled capture and release of DNA and (2) to improve the recovery of DNA from samples with a high concentration of inhibitors, such as human samples. The present study addresses these challenges by investigating the heat curing of polyethyleneimine (PEI) coated on the surface of the microtip. Heat-cured PEI-coated microtips are shown to control the capture and release of DNA. Protocols are developed for the extraction and purification of DNA from human samples. Heat-cured PEI-coated microtip methods of DNA sample preparation are used to extract genomic DNA from human samples. It is discovered through experiment that heat curing of a PEI layer on a gold-coated surface below 150°C could inhibit the signal of polymerase chain reaction (PCR). Below 150°C, the PEI layer is not completely cured and dissolved off the gold-coated surface. Dissolved PEI binds with DNA to inhibit PCR. Heat curing of a PEI layer above 150°C on a gold-coated surface prevents inhibition to PCR and gel electrophoresis. In comparison to gold-coated microtips, the 225°C-cured PEI-coated microtips improve the recovery of DNA to 45% efficiency. Furthermore, the 225°C-cured PEI-coated microtips recover more DNA than gold-coated microtips when the surface is washed. Heat-cured (225°C) PEI-coated microtips are used for the recovery of human genomic DNA from whole blood. A washing protocol is developed to remove inhibiting particles bound to the PEI-coated microtip surface after DNA extraction. From 1.25 muL of whole blood, an average of 1.83 ng of human genomic DNA is captured, purified, and released using a 225°C-cured PEI-coated microtip in less than 30 minutes. The extracted DNA is profiled by short tandem repeat analysis (STR). For forensic and medical applications, genomic DNA is extracted from dried samples using heat-cured PEI-coated microtips that are integrated into an automated device. DNA extraction from dried samples is critical for forensics. The use of dried samples in the medical field is increasing because dried samples are convenient for storage, biosafety, and contamination. The main challenge is the time required to properly extract DNA in a purified form. Typically, a 1 hour incubation period is required to complete this process. Overnight incubation is sometimes necessary. To address this challenge, a pre-extraction washing step is investigated to remove inhibiting particles from dried blood spots (DBS) before DNA is released from dried form into solution for microtip extraction. The developed protocol is expanded to extract DNA from a variety of dried samples including nasal swabs, buccal swabs, and other forensic samples. In comparison to a commercial kit, the microtip-based extraction reduced the processing time from 1.5 hours to 30 minutes or less with an equivalent concentration of extracted DNA from dried blood spots. The developed assay will benefit genetic studies on newborn screening, forensic investigation, and POC diagnostics.
Osmundson, Todd W; Eyre, Catherine A; Hayden, Katherine M; Dhillon, Jaskirn; Garbelotto, Matteo M
2013-01-01
The ubiquity, high diversity and often-cryptic manifestations of fungi and oomycetes frequently necessitate molecular tools for detecting and identifying them in the environment. In applications including DNA barcoding, pathogen detection from plant samples, and genotyping for population genetics and epidemiology, rapid and dependable DNA extraction methods scalable from one to hundreds of samples are desirable. We evaluated several rapid extraction methods (NaOH, Rapid one-step extraction (ROSE), Chelex 100, proteinase K) for their ability to obtain DNA of quantity and quality suitable for the following applications: PCR amplification of the multicopy barcoding locus ITS1/5.8S/ITS2 from various fungal cultures and sporocarps; single-copy microsatellite amplification from cultures of the phytopathogenic oomycete Phytophthora ramorum; probe-based P. ramorum detection from leaves. Several methods were effective for most of the applications, with NaOH extraction favored in terms of success rate, cost, speed and simplicity. Frozen dilutions of ROSE and NaOH extracts maintained PCR viability for over 32 months. DNA from rapid extractions performed poorly compared to CTAB/phenol-chloroform extracts for TaqMan diagnostics from tanoak leaves, suggesting that incomplete removal of PCR inhibitors is an issue for sensitive diagnostic procedures, especially from plants with recalcitrant leaf chemistry. NaOH extracts exhibited lower yield and size than CTAB/phenol-chloroform extracts; however, NaOH extraction facilitated obtaining clean sequence data from sporocarps contaminated by other fungi, perhaps due to dilution resulting from low DNA yield. We conclude that conventional extractions are often unnecessary for routine DNA sequencing or genotyping of fungi and oomycetes, and recommend simpler strategies where source materials and intended applications warrant such use. © 2012 Blackwell Publishing Ltd.
Zinc ion enhances GABA tea-mediated oxidative DNA damage.
Chuang, Show-Mei; Wang, Hsueh-Fang; Hsiao, Ching-Chuan; Cherng, Shur-Hueih
2012-02-15
GABA tea is a tea product that contains a high level of γ-aminobutyric acid (GABA). Previous study has demonstrated a synergistic effect of GABA tea and copper ions on DNA breakage. This study further explored whether zinc (Zn), a nonredox metal, modulated DNA cleavage induced by GABA tea extract. In a cell-free system, Zn(2+) significantly enhanced GABA tea extract and (-)-epigallocatechin-3-gallate (EGCG)- or H(2)O(2)-induced DNA damage at 24 h of incubation. Additionally, low dosages of GABA tea extract (1-10 μg/mL) possessed pro-oxidant activity to increase H(2)O(2)/Zn(2+)-induced DNA cleavage in a dose-dependent profile. By use of various reactive oxygen scavengers, it was observed that glutathione, catalase, and potassium iodide effectively inhibited DNA degradation caused by the GABA tea extract/H(2)O(2)/Zn(2+) system. Moreover, the data showed that the GABA tea extract itself (0.5-5 mg/mL) could induce DNA cleavage in a long-term exposure (48 h). EGCG, but not the GABA tea extract, enhanced H(2)O(2)-induced DNA cleavage. In contrast, GABA decreased H(2)O(2)- and EGCG-induced DNA cleavage, suggesting that GABA might contribute the major effect on the antioxidant activity of GABA tea extract. Furthermore, a comet assay revealed that GABA tea extract (0.25 mg/mL) and GABA had antioxidant activity on H(2)O(2)-induced DNA breakage in human peripheral lymphocytes. Taken together, these findings indicate that GABA tea has the potential of both pro-oxidant and antioxidant. It is proposed that a balance between EGCG-induced pro-oxidation and GABA-mediated antioxidation may occur in a complex mixture of GABA tea extract.
Mentegari, Elisa; Crespan, Emmanuele; Bavagnoli, Laura; Kissova, Miroslava; Bertoletti, Federica; Sabbioneda, Simone; Imhof, Ralph; Sturla, Shana J.; Nilforoushan, Arman; Hübscher, Ulrich; van Loon, Barbara
2017-01-01
Abstract Ribonucleotides (rNs) incorporated in the genome by DNA polymerases (Pols) are removed by RNase H2. Cytidine and guanosine preferentially accumulate over the other rNs. Here we show that human Pol η can incorporate cytidine monophosphate (rCMP) opposite guanine, 8-oxo-7,8-dihydroguanine, 8-methyl-2΄-deoxyguanosine and a cisplatin intrastrand guanine crosslink (cis-PtGG), while it cannot bypass a 3-methylcytidine or an abasic site with rNs as substrates. Pol η is also capable of synthesizing polyribonucleotide chains, and its activity is enhanced by its auxiliary factor DNA Pol δ interacting protein 2 (PolDIP2). Human RNase H2 removes cytidine and guanosine less efficiently than the other rNs and incorporation of rCMP opposite DNA lesions further reduces the efficiency of RNase H2. Experiments with XP-V cell extracts indicate Pol η as the major basis of rCMP incorporation opposite cis-PtGG. These results suggest that translesion synthesis by Pol η can contribute to the accumulation of rCMP in the genome, particularly opposite modified guanines. PMID:27994034
A RAPID DNA EXTRACTION METHOD IS SUCCESSFULLY APPLIED TO ITS-RFLP ANALYSIS OF MYCORRHIZAL ROOT TIPS
A rapid method for extracting DNA from intact, single root tips using a Xanthine solution was developed to handle very large numbers of analyses of ectomycorrhizas. By using an extraction without grinding we have attempted to bias the extraction towards the fungal DNA in the man...
Maas, Miriam; van Roon, Annika; Dam-Deisz, Cecile; Opsteegh, Marieke; Massolo, Alessandro; Deksne, Gunita; Teunis, Peter; van der Giessen, Joke
2016-10-30
A new method, based on a magnetic capture based DNA extraction followed by qPCR, was developed for the detection of the zoonotic parasite Echinococcus multilocularis in definitive hosts. Latent class analysis was used to compare this new method with the currently used phenol-chloroform DNA extraction followed by single tube nested PCR. In total, 60 red foxes and coyotes from three different locations were tested with both molecular methods and the sedimentation and counting technique (SCT) or intestinal scraping technique (IST). Though based on a limited number of samples, it could be established that the magnetic capture based DNA extraction followed by qPCR showed similar sensitivity and specificity as the currently used phenol-chloroform DNA extraction followed by single tube nested PCR. All methods have a high specificity as shown by Bayesian latent class analysis. Both molecular assays have higher sensitivities than the combined SCT and IST, though the uncertainties in sensitivity estimates were wide for all assays tested. The magnetic capture based DNA extraction followed by qPCR has the advantage of not requiring hazardous chemicals like the phenol-chloroform DNA extraction followed by single tube nested PCR. This supports the replacement of the phenol-chloroform DNA extraction followed by single tube nested PCR by the magnetic capture based DNA extraction followed by qPCR for molecular detection of E. multilocularis in definitive hosts. Copyright © 2016 Elsevier B.V. All rights reserved.
Maukonen, Johanna; Simões, Catarina; Saarela, Maria
2012-03-01
Recently several human health-related microbiota studies have had partly contradictory results. As some differences may be explained by methodologies applied, we evaluated how different storage conditions and commonly used DNA-extraction kits affect bacterial composition, diversity, and numbers of human fecal microbiota. According to our results, the DNA-extraction did not affect the diversity, composition, or quantity of Bacteroides spp., whereas after a week's storage at -20 °C, the numbers of Bacteroides spp. were 1.6-2.5 log units lower (P < 0.05). Furthermore, the numbers of predominant bacteria, Eubacterium rectale (Erec)-group, Clostridium leptum group, bifidobacteria, and Atopobium group were 0.5-4 log units higher (P < 0.05) after mechanical DNA-extraction as detected with qPCR, regardless of storage. Furthermore, the bacterial composition of Erec-group differed significantly after different DNA-extractions; after enzymatic DNA-extraction, the most prevalent genera detected were Roseburia (39% of clones) and Coprococcus (10%), whereas after mechanical DNA-extraction, the most prevalent genera were Blautia (30%), Coprococcus (13%), and Dorea (10%). According to our results, rigorous mechanical lysis enables detection of higher bacterial numbers and diversity from human fecal samples. As it was shown that the results of clostridial and actinobacterial populations are highly dependent on the DNA-extraction methods applied, the use of different DNA-extraction protocols may explain the contradictory results previously obtained. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.
Eriksson, Per; Mourkas, Evangelos; González-Acuna, Daniel; Olsen, Björn; Ellström, Patrik
2017-01-01
ABSTRACT Introduction: Advances in the development of nucleic acid-based methods have dramatically facilitated studies of host–microbial interactions. Fecal DNA analysis can provide information about the host’s microbiota and gastrointestinal pathogen burden. Numerous studies have been conducted in mammals, yet birds are less well studied. Avian fecal DNA extraction has proved challenging, partly due to the mixture of fecal and urinary excretions and the deficiency of optimized protocols. This study presents an evaluation of the performance in avian fecal DNA extraction of six commercial kits from different bird species, focusing on penguins. Material and methods: Six DNA extraction kits were first tested according to the manufacturers’ instructions using mallard feces. The kit giving the highest DNA yield was selected for further optimization and evaluation using Antarctic bird feces. Results: Penguin feces constitute a challenging sample type: most of the DNA extraction kits failed to yield acceptable amounts of DNA. The QIAamp cador Pathogen kit (Qiagen) performed the best in the initial investigation. Further optimization of the protocol resulted in good yields of high-quality DNA from seven bird species of different avian orders. Conclusion: This study presents an optimized approach to DNA extraction from challenging avian fecal samples. PMID:29152162
The major human AP endonuclease (Ape1) is involved in the nucleotide incision repair pathway
Gros, Laurent; Ishchenko, Alexander A.; Ide, Hiroshi; Elder, Rhoderick H.; Saparbaev, Murat K.
2004-01-01
In nucleotide incision repair (NIR), an endonuclease nicks oxidatively damaged DNA in a DNA glycosylase-independent manner, providing the correct ends for DNA synthesis coupled to the repair of the remaining 5′-dangling modified nucleotide. This mechanistic feature is distinct from DNA glycosylase-mediated base excision repair. Here we report that Ape1, the major apurinic/apyrimidinic endonuclease in human cells, is the damage- specific endonuclease involved in NIR. We show that Ape1 incises DNA containing 5,6-dihydro-2′-deoxyuridine, 5,6-dihydrothymidine, 5-hydroxy-2′-deoxyuridine, alpha-2′-deoxyadenosine and alpha-thymidine adducts, generating 3′-hydroxyl and 5′-phosphate termini. The kinetic constants indicate that Ape1-catalysed NIR activity is highly efficient. The substrate specificity and protein conformation of Ape1 is modulated by MgCl2 concentrations, thus providing conditions under which NIR becomes a major activity in cell-free extracts. While the N-terminal region of Ape1 is not required for AP endonuclease function, we show that it regulates the NIR activity. The physiological relevance of the mammalian NIR pathway is discussed. PMID:14704345
Bank, Steffen; Nexø, Bjørn Andersen; Andersen, Vibeke; Vogel, Ulla; Andersen, Paal Skytt
2013-06-01
The recovery of biological samples for genetic epidemiological studies can be cumbersome. Blood clots are routinely collected for serological examinations. However, the extraction of DNA from blood clots can be difficult and often results in low yields. The aim was to compare the efficiency of commercial purification kits for extracting DNA from long-term frozen clotted blood. Serum tubes with clotted blood were stored at -20°C for 1 to 2.5 years before DNA extraction. DNA was extracted from 10 blood clot samples using PureGene (Qiagen) with and without glycogen, the QIAamp DNA Micro kit (Qiagen), and the Nucleospin 96 Blood kit (Macherey-Nagel). Furthermore, blood clots from 1055 inflammatory bowel disease patients were purified using the Maxwell 16 Blood purification kit (Promega). The DNA was extracted according to the manufacturers` instructions and real-time PCR and the A(260)/A(280) ratio were used to evaluate the quality of the extracted DNA. The highest DNA yield was obtained by the Maxwell 16 Blood purification kit (Promega) with a median of 4.90 μg (range 0.8-25 μg) pr 300 μL total blood. PureGene with glycogen (Qiagen) had the second highest yield with a median of 0.65 μg (range 0.5-2.6 μg) pr 300 μL total blood. The yield obtained by the different commercial kits varied considerably. Our work demonstrates that high-quality and -quantity DNA can be extracted with the Maxwell 16 Blood purification kit (Promega) from cryopreserved blood clots, even after prolonged storage. The recovered DNA served as a reliable PCR template for single-nucleotide polymorphism assays.
Microchip-based cell lysis and DNA extraction from sperm cells for application to forensic analysis.
Bienvenue, Joan M; Duncalf, Natalie; Marchiarullo, Daniel; Ferrance, Jerome P; Landers, James P
2006-03-01
The current backlog of casework is among the most significant challenges facing crime laboratories at this time. While the development of next-generation microchip-based technology for expedited forensic casework analysis offers one solution to this problem, this will require the adaptation of manual, large-volume, benchtop chemistry to small volume microfluidic devices. Analysis of evidentiary materials from rape kits where semen or sperm cells are commonly found represents a unique set of challenges for on-chip cell lysis and DNA extraction that must be addressed for successful application. The work presented here details the development of a microdevice capable of DNA extraction directly from sperm cells for application to the analysis of sexual assault evidence. A variety of chemical lysing agents are assessed for inclusion in the extraction protocol and a method for DNA purification from sperm cells is described. Suitability of the extracted DNA for short tandem repeat (STR) analysis is assessed and genetic profiles shown. Finally, on-chip cell lysis methods are evaluated, with results from fluorescence visualization of cell rupture and DNA extraction from an integrated cell lysis and purification with subsequent STR amplification presented. A method for on-chip cell lysis and DNA purification is described, with considerations toward inclusion in an integrated microdevice capable of both differential cell sorting and DNA extraction. The results of this work demonstrate the feasibility of incorporating microchip-based cell lysis and DNA extraction into forensic casework analysis.
[DNA Extraction from Old Bones by AutoMate Express™ System].
Li, B; Lü, Z
2017-08-01
To establish a method for extracting DNA from old bones by AutoMate Express™ system. Bones were grinded into powder by freeze-mill. After extraction by AutoMate Express™, DNA were amplified and genotyped by Identifiler®Plus and MinFiler™ kits. DNA were extracted from 10 old bone samples, which kept in different environments with the postmortem interval from 10 to 20 years, in 3 hours by AutoMate Express™ system. Complete STR typing results were obtained from 8 samples. AutoMate Express™ system can quickly and efficiently extract DNA from old bones, which can be applied in forensic practice. Copyright© by the Editorial Department of Journal of Forensic Medicine
[Study on a collagenase protocol to extract DNA from remnant feathers in edible bird's nest].
Wang, Ling-Li; Chen, Nian; Zhang, Wei-Wei; Wu, Guo-Hong; Lai, Xiao-Ping
2013-08-01
To establish a method for extracting genomic DNA from rudimental bird feather from the precious edible bird's nest (EBN) harvested from the swiftlet cave. Observed the EBN using endoscopic and studied the influence of adding collagenase on the extracting yield of DNA. PCR amplification and sequencing for the extraction was also conducted. Collagenase was used in addition to protease K which could substantively increase the DNA yield. The DNA extracted by this method could be used for PCR and other molecular biology analyses. This method can be applied to identify the species types in biological products, especially for animal tissue materials that rich in collagen.
Ferreira-Gonzalez, A; Yanovich, S; Langley, M R; Weymouth, L A; Wilkinson, D S; Garrett, C T
2000-01-01
Accurate and rapid diagnosis of CMV disease in immunocompromised individuals remains a challenge. Quantitative polymerase chain reaction (QPCR) methods for detection of CMV in peripheral blood mononuclear cells (PBMC) have improved the positive and negative predictive value of PCR for diagnosis of CMV disease. However, detection of CMV in plasma has demonstrated a lower negative predictive value for plasma as compared with PBMC. To enhance the sensitivity of the QPCR assay for plasma specimens, plasma samples were centrifuged before nucleic-acid extraction and the extracted DNA resolubilized in reduced volume. Optimization of the nucleic-acid extraction focused on decreasing or eliminating the presence of inhibitors in the pelleted plasma. Quantitation was achieved by co-amplifying an internal quantitative standard (IS) with the same primer sequences as CMV. PCR products were detected by hybridization in a 96-well microtiter plate coated with a CMV or IS specific probe. The precision of the QPCR assay for samples prepared from untreated and from pelleted plasma was then assessed. The coefficient of variation for both types of samples was almost identical and the magnitude of the coefficient of variations was reduced by a factor of ten if the data were log transformed. Linearity of the QPCR assay extended over a 3.3-log range for both types of samples but the range of linearity for pelleted plasma was 20 to 40,000 viral copies/ml (vc/ml) in contrast to 300 to 400,000 vc/ml for plasma. Thus, centrifugation of plasma before nucleic-acid extraction and resuspension of extracted CMV DNA in reduced volume enhanced the analytical sensitivity approximately tenfold over the dynamic range of the assay. Copyright 2000 Wiley-Liss, Inc.
DNA-modified electrodes fabricated using copper-free click chemistry for enhanced protein detection.
Furst, Ariel L; Hill, Michael G; Barton, Jacqueline K
2013-12-31
A method of DNA monolayer formation has been developed using copper-free click chemistry that yields enhanced surface homogeneity and enables variation in the amount of DNA assembled; extremely low-density DNA monolayers, with as little as 5% of the monolayer being DNA, have been formed. These DNA-modified electrodes (DMEs) were characterized visually, with AFM, and electrochemically, and were found to facilitate DNA-mediated reduction of a distally bound redox probe. These low-density monolayers were found to be more homogeneous than traditional thiol-modified DNA monolayers, with greater helix accessibility through an increased surface area-to-volume ratio. Protein binding efficiency of the transcriptional activator TATA-binding protein (TBP) was also investigated on these surfaces and compared to that on DNA monolayers formed with standard thiol-modified DNA. Our low-density monolayers were found to be extremely sensitive to TBP binding, with a signal decrease in excess of 75% for 150 nM protein. This protein was detectable at 4 nM, on the order of its dissociation constant, with our low-density monolayers. The improved DNA helix accessibility and sensitivity of our low-density DNA monolayers to TBP binding reflects the general utility of this method of DNA monolayer formation for DNA-based electrochemical sensor development.
Dudek, Magda; Adams, Jessica; Swain, Martin; Hegarty, Matthew; Huws, Sharon; Gallagher, Joe
2014-01-01
This study investigated the microbial diversity associated with the digestive tract of the seaweed grazing marine limpet Patella pellucida. Using a modified indirect DNA extraction protocol and performing metagenomic profiling based on specific prokaryotic marker genes, the abundance of bacterial groups was identified from the analyzed metagenome. The members of three significantly abundant phyla of Proteobacteria, Firmicutes and Bacteroidetes were characterized through the literature and their predicted functions towards the host, as well as potential applications in the industrial environment assessed. PMID:25334059
Food Fish Identification from DNA Extraction through Sequence Analysis
ERIC Educational Resources Information Center
Hallen-Adams, Heather E.
2015-01-01
This experiment exposed 3rd and 4th y undergraduates and graduate students taking a course in advanced food analysis to DNA extraction, polymerase chain reaction (PCR), and DNA sequence analysis. Students provided their own fish sample, purchased from local grocery stores, and the class as a whole extracted DNA, which was then subjected to PCR,…
Kurien, B T; Kaufman, K M; Harley, J B; Scofield, R H
2001-09-15
A simple method for extracting DNA from agarose gel slices is described. The extraction is rapid and does not involve harsh chemicals or sophisticated equipment. The method involves homogenization of the excised gel slice (in Tris-EDTA buffer), containing the DNA fragment of interest, at 45 degrees C in a microcentrifuge tube with a Kontes pellet pestle for 1 min. The "homogenate" is then centrifuged for 30 s and the supernatant is saved. The "homogenized" agarose is extracted one more time and the supernatant obtained is combined with the previous supernatant. The DNA extracted using this method lent itself to restriction enzyme analysis, ligation, transformation, and expression of functional protein in bacteria. This method was found to be applicable with 0.8, 1.0, and 2.0% agarose gels. DNA fragments varying from 23 to 0.4 kb were extracted using this procedure and a yield ranging from 40 to 90% was obtained. The yield was higher for fragments 2.0 kb and higher (70-90%). This range of efficiency was maintained when the starting material was kept between 10 and 300 ng. The heat step was found to be critical since homogenization at room temperature failed to yield any DNA. Extracting DNA with our method elicited an increased yield (up to twofold) compared with that extracted with a commercial kit. Also, the number of transformants obtained using the DNA extracted with our method was at least twice that obtained using the DNA extracted with the commercial kit. Copyright 2001 Academic Press.
Yoshimura, Tomoaki; Kuribara, Hideo; Matsuoka, Takeshi; Kodama, Takashi; Iida, Mayu; Watanabe, Takahiro; Akiyama, Hiroshi; Maitani, Tamio; Furui, Satoshi; Hino, Akihiro
2005-03-23
The applicability of quantifying genetically modified (GM) maize and soy to processed foods was investigated using heat treatment processing models. The detection methods were based on real-time quantitative polymerase chain reaction (PCR) analysis. Ground seeds of insect resistant GM maize (MON810) and glyphosate tolerant Roundup Ready (RR) soy were dissolved in water and were heat treated by autoclaving for various time intervals. The calculated copy numbers of the recombinant and taxon specific deoxyribonucleic acid (DNA) sequences in the extracted DNA solution were found to decrease with time. This decrease was influenced by the PCR-amplified size. The conversion factor (Cf), which is the ratio of the recombinant DNA sequence to the taxon specific DNA sequence and is used as a constant number for calculating GM% at each event, tended to be stable when the sizes of PCR products of two DNA sequences were nearly equal. The results suggested that the size of the PCR product plays a key role in the quantification of GM organisms in processed foods. It is believed that the Cf of the endosperm (3n) is influenced by whether the GM originated from a paternal or maternal source. The embryos and endosperms were separated from the F1 generation seeds of five GM maize events, and their Cf values were measured. Both paternal and maternal GM events were identified. In these, the endosperm Cf was lower than that of the embryo, and the embryo Cf was lower than that of the endosperm. These results demonstrate the difficulties encountered in the determination of GM% in maize grains (F2 generation) and in processed foods from maize and soy.
Chen, Haimei; Zhang, Jianhui; Yuan, George; Liu, Chang
2014-01-01
Salvia miltiorrhiza is one of the most widely used medicinal plants. As a first step to develop a chloroplast-based genetic engineering method for the over-production of active components from S. miltiorrhiza, we have analyzed the genome, transcriptome, and base modifications of the S. miltiorrhiza chloroplast. Total genomic DNA and RNA were extracted from fresh leaves and then subjected to strand-specific RNA-Seq and Single-Molecule Real-Time (SMRT) sequencing analyses. Mapping the RNA-Seq reads to the genome assembly allowed us to determine the relative expression levels of 80 protein-coding genes. In addition, we identified 19 polycistronic transcription units and 136 putative antisense and intergenic noncoding RNA (ncRNA) genes. Comparison of the abundance of protein-coding transcripts (cRNA) with and without overlapping antisense ncRNAs (asRNA) suggest that the presence of asRNA is associated with increased cRNA abundance (p<0.05). Using the SMRT Portal software (v1.3.2), 2687 potential DNA modification sites and two potential DNA modification motifs were predicted. The two motifs include a TATA box–like motif (CPGDMM1, “TATANNNATNA”), and an unknown motif (CPGDMM2 “WNYANTGAW”). Specifically, 35 of the 97 CPGDMM1 motifs (36.1%) and 91 of the 369 CPGDMM2 motifs (24.7%) were found to be significantly modified (p<0.01). Analysis of genes downstream of the CPGDMM1 motif revealed the significantly increased abundance of ncRNA genes that are less than 400 bp away from the significantly modified CPGDMM1motif (p<0.01). Taking together, the present study revealed a complex interplay among DNA modifications, ncRNA and cRNA expression in chloroplast genome. PMID:24914614
Chen, Haimei; Zhang, Jianhui; Yuan, George; Liu, Chang
2014-01-01
Salvia miltiorrhiza is one of the most widely used medicinal plants. As a first step to develop a chloroplast-based genetic engineering method for the over-production of active components from S. miltiorrhiza, we have analyzed the genome, transcriptome, and base modifications of the S. miltiorrhiza chloroplast. Total genomic DNA and RNA were extracted from fresh leaves and then subjected to strand-specific RNA-Seq and Single-Molecule Real-Time (SMRT) sequencing analyses. Mapping the RNA-Seq reads to the genome assembly allowed us to determine the relative expression levels of 80 protein-coding genes. In addition, we identified 19 polycistronic transcription units and 136 putative antisense and intergenic noncoding RNA (ncRNA) genes. Comparison of the abundance of protein-coding transcripts (cRNA) with and without overlapping antisense ncRNAs (asRNA) suggest that the presence of asRNA is associated with increased cRNA abundance (p<0.05). Using the SMRT Portal software (v1.3.2), 2687 potential DNA modification sites and two potential DNA modification motifs were predicted. The two motifs include a TATA box-like motif (CPGDMM1, "TATANNNATNA"), and an unknown motif (CPGDMM2 "WNYANTGAW"). Specifically, 35 of the 97 CPGDMM1 motifs (36.1%) and 91 of the 369 CPGDMM2 motifs (24.7%) were found to be significantly modified (p<0.01). Analysis of genes downstream of the CPGDMM1 motif revealed the significantly increased abundance of ncRNA genes that are less than 400 bp away from the significantly modified CPGDMM1motif (p<0.01). Taking together, the present study revealed a complex interplay among DNA modifications, ncRNA and cRNA expression in chloroplast genome.
DNA Base Flipping: A General Mechanism for Writing, Reading, and Erasing DNA Modifications
Cheng, Xiaodong
2017-01-01
The modification of DNA bases is a classic hallmark of epigenetics. Four forms of modified cytosine—5-methylcytosine, 5-hydroxymethylcytosine, 5-formylcytosine, and 5-carboxylcytosine—have been discovered in eukaryotic DNA. In addition to cytosine carbon-5 modifications, cytosine and adenine methylated in the exocyclic amine—N4-methylcytosine and N6-methyladenine—are other modified DNA bases discovered even earlier. Each modified base can be considered a distinct epigenetic signal with broader biological implications beyond simple chemical changes. Since 1994, crystal structures of proteins and enzymes involved in writing, reading, and erasing modified bases have become available. Here, we present a structural synopsis of writers, readers, and erasers of the modified bases from prokaryotes and eukaryotes. Despite significant differences in structures and functions, they are remarkably similar regarding their engagement in flipping a target base/nucleotide within DNA for specific recognitions and/or reactions. We thus highlight base flipping as a common structural framework broadly applied by distinct classes of proteins and enzymes across phyla for epigenetic regulations of DNA. PMID:27826845
A quantitative and high-throughput assay of human papillomavirus DNA replication.
Gagnon, David; Fradet-Turcotte, Amélie; Archambault, Jacques
2015-01-01
Replication of the human papillomavirus (HPV) double-stranded DNA genome is accomplished by the two viral proteins E1 and E2 in concert with host DNA replication factors. HPV DNA replication is an established model of eukaryotic DNA replication and a potential target for antiviral therapy. Assays to measure the transient replication of HPV DNA in transfected cells have been developed, which rely on a plasmid carrying the viral origin of DNA replication (ori) together with expression vectors for E1 and E2. Replication of the ori-plasmid is typically measured by Southern blotting or PCR analysis of newly replicated DNA (i.e., DpnI digested DNA) several days post-transfection. Although extremely valuable, these assays have been difficult to perform in a high-throughput and quantitative manner. Here, we describe a modified version of the transient DNA replication assay that circumvents these limitations by incorporating a firefly luciferase expression cassette in cis of the ori. Replication of this ori-plasmid by E1 and E2 results in increased levels of firefly luciferase activity that can be accurately quantified and normalized to those of Renilla luciferase expressed from a control plasmid, thus obviating the need for DNA extraction, digestion, and analysis. We provide a detailed protocol for performing the HPV type 31 DNA replication assay in a 96-well plate format suitable for small-molecule screening and EC50 determinations. The quantitative and high-throughput nature of the assay should greatly facilitate the study of HPV DNA replication and the identification of inhibitors thereof.
Another Extraction! Try This One Instead of Dried Peas
ERIC Educational Resources Information Center
Sultana, Khalida; van Rooy, Wilhelmina
2009-01-01
Extracting DNA from fruit and vegetables provides students with hands-on opportunities to engage with a visualisation of genetic material that can later be supported by ICT and practical model making. Here is a quick, cheap and easy way to extract DNA from strawberries that avoids the mess involved in other DNA extractions, such as from dried…
Desai, Chirayu; Madamwar, Datta
2007-03-01
PCR inhibitor-free metagenomic DNA of high quality and high yield was extracted from highly polluted sediments using a simple remediation strategy of adsorption and ion-exchange chromatography. Extraction procedure was optimized with series of steps, which involved gentle mechanical lysis, treatment with powdered activated charcoal (PAC) and ion-exchange chromatography with amberlite resin. Quality of the extracted DNA for molecular diversity analysis was tested by amplifying bacterial 16S rDNA (16S rRNA gene) with eubacterial specific universal primers (8f and 1492r), cloning of the amplified 16S rDNA and ARDRA (amplified rDNA restriction analysis) of the 16S rDNA clones. The presence of discrete differences in ARDRA banding profiles provided evidence for expediency of the DNA extraction protocol in molecular diversity studies. A comparison of the optimized protocol with commercial Ultraclean Soil DNA isolation kit suggested that method described in this report would be more efficient in removing metallic and organic inhibitors, from polluted sediment samples.
Wang, Hua; Gill, Vikas S; Cheng, Chorng-Ming; Gonzalez-Escalona, Narjol; Irvin, Kari A; Zheng, Jie; Bell, Rebecca L; Jacobson, Andrew P; Hammack, Thomas S
2015-04-01
Foodborne outbreaks, involving pine nuts and peanut butter, illustrate the need to rapidly detect Salmonella in low moisture foods. However, the current Bacteriological Analytical Manual (BAM) culture method for Salmonella, using lactose broth (LB) as a pre enrichment medium, has not reliably supported real-time quantitative PCR (qPCR) assays for certain foods. We evaluated two qPCR assays in LB and four other pre enrichment media: buffered peptone water (BPW), modified BPW (mBPW), Universal Pre enrichment broth (UPB), and BAX(®) MP media to detect Salmonella in naturally-contaminated pine nuts (2011 outbreak). A four-way comparison among culture method, Pathatrix(®) Auto, VIDAS(®) Easy SLM, and qPCR was conducted. Automated DNA extraction techniques were compared with manual extraction methods (boiling or InstaGene™). There were no significant differences (P > 0.05) among the five pre enrichment media for pine nuts using the culture method. While both qPCR assays produced significantly (P ≤ 0.05) higher false negatives in 24 h pre enriched LB than in the other four media, they were as sensitive as the culture method in BPW, mBPW, UPB, and BAX media. The VIDAS Easy and qPCR were equivalent; Pathatrix was the least effective method. The Automatic PrepSEQ™ DNA extraction, using 1000 μL of pre enrichment, was as effective as manual extraction methods. Published by Elsevier Ltd.
Dobbs, Larry J; Madigan, Merle N; Carter, Alexis B; Earls, Lori
2002-01-01
Efficient methods of storing tumor specimens for molecular testing are needed in the modern surgical pathology laboratory. The FTA Gene Guard system is a novel method for the collection and room temperature storage of blood samples for DNA testing. The method uses index card-sized filter papers that provide an ideal medium on which to store tumor specimens for DNA testing. To determine whether FTA filter paper can be used in the surgical pathology laboratory to store tumor cells for DNA testing. Cell suspensions were prepared from 60 surgical specimens, and DNA was extracted either immediately or after storage on FTA paper. The DNA extracted by each method was tested by polymerase chain reaction (PCR) for the beta-globin and interferon gamma genes, and the results were compared. Fifteen lymph node specimens stored on FTA paper were then tested for immunoglobulin heavy chain (IgH) gene rearrangement by PCR, and these results were compared with those obtained for immediately extracted DNA. University medical center. The DNA extracted from cells stored on FTA paper performed as well in the PCR as the freshly extracted DNA in nearly all cases (>95%). The results of tests for IgH gene rearrangements showed 100% concordance between the 2 methods of DNA extraction.Conclusion.-Cells from surgical specimens can be stored on FTA paper for extended lengths of time, and DNA can be extracted from these cells for PCR-based testing. FTA filter paper is a reliable medium for the storage and/or transport of tumor cells for PCR-based DNA analysis.
The use of carrier RNA to enhance DNA extraction from microfluidic-based silica monoliths.
Shaw, Kirsty J; Thain, Lauren; Docker, Peter T; Dyer, Charlotte E; Greenman, John; Greenway, Gillian M; Haswell, Stephen J
2009-10-12
DNA extraction was carried out on silica-based monoliths within a microfluidic device. Solid-phase DNA extraction methodology was applied in which the DNA binds to silica in the presence of a chaotropic salt, such as guanidine hydrochloride, and is eluted in a low ionic strength solution, such as water. The addition of poly-A carrier RNA to the chaotropic salt solution resulted in a marked increase in the effective amount of DNA that could be recovered (25ng) compared to the absence of RNA (5ng) using the silica-based monolith. These findings confirm that techniques utilising nucleic acid carrier molecules can enhance DNA extraction methodologies in microfluidic applications.
Tagging potato leafroll virus with the jellyfish green fluorescent protein gene.
Nurkiyanova, K M; Ryabov, E V; Commandeur, U; Duncan, G H; Canto, T; Gray, S M; Mayo, M A; Taliansky, M E
2000-03-01
A full-length cDNA corresponding to the RNA genome of Potato leafroll virus (PLRV) was modified by inserting cDNA that encoded the jellyfish green fluorescent protein (GFP) into the P5 gene near its 3' end. Nicotiana benthamiana protoplasts electroporated with plasmid DNA containing this cDNA behind the 35S RNA promoter of Cauliflower mosaic virus became infected with the recombinant virus (PLRV-GFP). Up to 5% of transfected protoplasts showed GFP-specific fluorescence. Progeny virus particles were morphologically indistinguishable from those of wild-type PLRV but, unlike PLRV particles, they bound to grids coated with antibodies to GFP. Aphids fed on extracts of these protoplasts transmitted PLRV-GFP to test plants, as shown by specific fluorescence in some vascular tissue and epidermal cells and subsequent systemic infection. In plants agroinfected with PLRV-GFP cDNA in pBIN19, some cells became fluorescent and systemic infections developed. However, after either type of inoculation, fluorescence was mostly restricted to single cells and the only PLRV genome detected in systemically infected tissues lacked some or all of the inserted GFP cDNA, apparently because of naturally occurring deletions. Thus, intact PLRV-GFP was unable to move from cell to cell. Nevertheless, PLRV-GFP has novel potential for exploring the initial stages of PLRV infection.
First report of the complete sequence of Sida golden yellow vein virus from Jamaica.
Stewart, Cheryl S; Kon, Tatsuya; Gilbertson, Robert L; Roye, Marcia E
2011-08-01
Begomoviruses are phytopathogens that threaten food security [18]. Sida spp. are ubiquitous weed species found in Jamaica. Sida samples were collected island-wide, DNA was extracted via a modified Dellaporta method, and the viral genome was amplified using degenerate and sequence-specific primers [2, 11]. The amplicons were cloned and sequenced. Sequence analysis revealed that a DNA-A molecule isolated from a plant in Liguanea, St. Andrew, was 90.9% similar to Sida golden yellow vein virus-[United States of America:Homestead:A11], making it a strain of SiGYVV. It was named Sida golden yellow vein virus-[Jamaica:Liguanea 2:2008] (SiGYVV-[JM:Lig2:08]). The cognate DNA-B, previously unreported, was successfully cloned and was most similar to that of Malvastrum yellow mosaic Jamaica virus (MaYMJV). Phylogenetic analysis suggested that this virus was most closely related to begomoviruses that infect malvaceous hosts in Jamaica, Cuba and Florida in the United States.
Multiplex DNA detection of food allergens on a digital versatile disk.
Tortajada-Genaro, Luis A; Santiago-Felipe, Sara; Morais, Sergi; Gabaldón, José Antonio; Puchades, Rosa; Maquieira, Ángel
2012-01-11
The development of a DNA microarray method on a digital versatile disk (DVD) is described for the simultaneous detection of traces of hazelnut ( Corylus avellana L.), peanut ( Arachis hypogaea ), and soybean ( Glycine max ) in foods. After DNA extraction, multiplex PCR was set up using 5'-labeled specific primers for Cor a 1, Ar h 2, and Le genes, respectively. Digoxin-labeled PCR products were detected by hybridization with 5'-biotinylated probes immobilized on a streptavidin-modified DVD surface. The reaction product attenuates the signal intensity of the laser that reached the DVD drive used as detector, correlating well with the amount of amplified sequence. Analytical performances showed a detection limit of 1 μg/g and good assay reproducibility (RSD 8%), suitable for the simultaneous detection of the three targeted allergens. The developed methodology was tested with several commercially available foodstuffs, demonstrating its applicability. The results were in good agreement, in terms of sensitivity and reproducibility, with those obtained with ELISA, PCR-gel agarose electrophoresis, and RT-PCR.
Optimisation of DNA extraction from the crustacean Daphnia
Athanasio, Camila Gonçalves; Chipman, James K.; Viant, Mark R.
2016-01-01
Daphnia are key model organisms for mechanistic studies of phenotypic plasticity, adaptation and microevolution, which have led to an increasing demand for genomics resources. A key step in any genomics analysis, such as high-throughput sequencing, is the availability of sufficient and high quality DNA. Although commercial kits exist to extract genomic DNA from several species, preparation of high quality DNA from Daphnia spp. and other chitinous species can be challenging. Here, we optimise methods for tissue homogenisation, DNA extraction and quantification customised for different downstream analyses (e.g., LC-MS/MS, Hiseq, mate pair sequencing or Nanopore). We demonstrate that if Daphnia magna are homogenised as whole animals (including the carapace), absorbance-based DNA quantification methods significantly over-estimate the amount of DNA, resulting in using insufficient starting material for experiments, such as preparation of sequencing libraries. This is attributed to the high refractive index of chitin in Daphnia’s carapace at 260 nm. Therefore, unless the carapace is removed by overnight proteinase digestion, the extracted DNA should be quantified with fluorescence-based methods. However, overnight proteinase digestion will result in partial fragmentation of DNA therefore the prepared DNA is not suitable for downstream methods that require high molecular weight DNA, such as PacBio, mate pair sequencing and Nanopore. In conclusion, we found that the MasterPure DNA purification kit, coupled with grinding of frozen tissue, is the best method for extraction of high molecular weight DNA as long as the extracted DNA is quantified with fluorescence-based methods. This method generated high yield and high molecular weight DNA (3.10 ± 0.63 ng/µg dry mass, fragments >60 kb), free of organic contaminants (phenol, chloroform) and is suitable for large number of downstream analyses. PMID:27190714
Effect of seven Indian plant extracts on Fenton reaction-mediated damage to DNA constituents.
Kar, Indrani; Chattopadhyaya, Rajagopal
2017-11-01
The influences of substoichiometric amounts of seven plant extracts in the Fenton reaction-mediated damage to deoxynucleosides, deoxynucleoside monophosphates, deoxynucleoside triphosphates, and supercoiled plasmid DNA were studied to rationalize anticancer properties reported in some of these extracts. Extracts from Acacia catechu, Emblica officinalis, Spondias dulcis, Terminalia belerica, Terminalia chebula, as well as gallic acid, epicatechin, chebulagic acid and chebulinic acid enhance the extent of damage in Fenton reactions with all monomeric substrates but protect supercoiled plasmid DNA, compared to standard Fenton reactions. The damage to pyrimidine nucleosides/nucleotides is enhanced by these extracts and compounds to a greater extent than for purine ones in a concentration dependent manner. Dolichos biflorus and Hemidesmus indicus extracts generally do not show this enhancement for the monomeric substrates though they protect plasmid DNA. Compared to standard Fenton reactions for deoxynucleosides with ethanol, the presence of these five plant extracts render ethanol scavenging less effective as the radical is generated in the vicinity of the target. Since substoichiometric amounts of these extracts and the four compounds produce this effect, a catalytic mechanism involving the presence of a ternary complex of the nucleoside/nucleotide substrate, a plant compound and the hydroxyl radical is proposed. Such a mechanism cannot operate for plasmid DNA as the planar rings in the extract compounds cannot stack with the duplex DNA bases. These plant extracts, by enhancing Fenton reaction-mediated damage to deoxynucleoside triphosphates, slow down DNA replication in rapidly dividing cancer cells, thus contributing to their anticancer properties.
Extending the spectrum of DNA sequences retrieved from ancient bones and teeth
Glocke, Isabelle; Meyer, Matthias
2017-01-01
The number of DNA fragments surviving in ancient bones and teeth is known to decrease with fragment length. Recent genetic analyses of Middle Pleistocene remains have shown that the recovery of extremely short fragments can prove critical for successful retrieval of sequence information from particularly degraded ancient biological material. Current sample preparation techniques, however, are not optimized to recover DNA sequences from fragments shorter than ∼35 base pairs (bp). Here, we show that much shorter DNA fragments are present in ancient skeletal remains but lost during DNA extraction. We present a refined silica-based DNA extraction method that not only enables efficient recovery of molecules as short as 25 bp but also doubles the yield of sequences from longer fragments due to improved recovery of molecules with single-strand breaks. Furthermore, we present strategies for monitoring inefficiencies in library preparation that may result from co-extraction of inhibitory substances during DNA extraction. The combination of DNA extraction and library preparation techniques described here substantially increases the yield of DNA sequences from ancient remains and provides access to a yet unexploited source of highly degraded DNA fragments. Our work may thus open the door for genetic analyses on even older material. PMID:28408382
Genoprotective effect of Phyllanthus orbicularis extract against UVA, UVB and solar radiation.
Vernhes Tamayo, Marioly; Schuch, André Passaglia; Yagura, Teiti; Baly Gil, Luis; Menck, Carlos Frederico Martins; Sánchez-Lamar, Angel
2018-05-16
One approach to protect the human skin against harmful effects of solar ultraviolet (UV) radiation is to use natural products as photoprotectors. In this work, the extract from specie Phyllanthus orbicularis K was evaluated as a protective agent against the photodamage by UVB, UVA artificial lamps and environmental sunlight exposure. The plasmid DNA solutions were exposed to radiations using the DNA-dosimeter system in presence of plant extract. The DNA repair enzymes, E. coli Formamidopyrimidine-DNA glycosylase (Fpg) and T4 bacteriophage endonuclease V (T4-endo V), were employed to discriminate oxidized DNA damage and cyclobutane pyrimidine dimers (CPD) respectively. The supercoiled and relaxed forms of DNA were separated through electrophoretic migration in agarose gels. These DNA forms were quantified to determine strands break, representing the types of lesion levels. The results showed that, in presence of P. orbicularis extract, the CPD and oxidative damage were reduced in irradiated DNA samples. The photoprotective effect of extract was more evident for UVB and sunlight radiation than for UVA. This work documents the UV absorbing properties of P. orbicularis aqueous extract and opens up new vistas in its characterization as protective agent against DNA damage induced by environmental sunlight radiation. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Comparison of DNA extraction methods for human gut microbial community profiling.
Lim, Mi Young; Song, Eun-Ji; Kim, Sang Ho; Lee, Jangwon; Nam, Young-Do
2018-03-01
The human gut harbors a vast range of microbes that have significant impact on health and disease. Therefore, gut microbiome profiling holds promise for use in early diagnosis and precision medicine development. Accurate profiling of the highly complex gut microbiome requires DNA extraction methods that provide sufficient coverage of the original community as well as adequate quality and quantity. We tested nine different DNA extraction methods using three commercial kits (TianLong Stool DNA/RNA Extraction Kit (TS), QIAamp DNA Stool Mini Kit (QS), and QIAamp PowerFecal DNA Kit (QP)) with or without additional bead-beating step using manual or automated methods and compared them in terms of DNA extraction ability from human fecal sample. All methods produced DNA in sufficient concentration and quality for use in sequencing, and the samples were clustered according to the DNA extraction method. Inclusion of bead-beating step especially resulted in higher degrees of microbial diversity and had the greatest effect on gut microbiome composition. Among the samples subjected to bead-beating method, TS kit samples were more similar to QP kit samples than QS kit samples. Our results emphasize the importance of mechanical disruption step for a more comprehensive profiling of the human gut microbiome. Copyright © 2017 The Authors. Published by Elsevier GmbH.. All rights reserved.
Ganapathy, Vengatesh; Manyanga, Jimmy; Brame, Lacy; McGuire, Dehra; Sadhasivam, Balaji; Floyd, Evan; Rubenstein, David A.; Ramachandran, Ilangovan; Wagener, Theodore
2017-01-01
Background Electronic cigarette (EC) aerosols contain unique compounds in addition to toxicants and carcinogens traditionally found in tobacco smoke. Studies are warranted to understand the public health risks of ECs. Objective The aim of this study was to determine the genotoxicity and the mechanisms induced by EC aerosol extracts on human oral and lung epithelial cells. Methods Cells were exposed to EC aerosol or mainstream smoke extracts and DNA damage was measured using the primer anchored DNA damage detection assay (q-PADDA) and 8-oxo-dG ELISA assay. Cell viability, reactive oxygen species (ROS) and total antioxidant capacity (TAC) were measured using standard methods. mRNA and protein expression were evaluated by RT-PCR and western blot, respectively. Results EC aerosol extracts induced DNA damage in a dose-dependent manner, but independently of nicotine concentration. Overall, EC aerosol extracts induced significantly less DNA damage than mainstream smoke extracts, as measured by q-PADDA. However, the levels of oxidative DNA damage, as indicated by the presence of 8-oxo-dG, a highly mutagenic DNA lesion, were similar or slightly higher after exposure to EC aerosol compared to mainstream smoke extracts. Mechanistically, while exposure to EC extracts significantly increased ROS, it decreased TAC as well as the expression of 8-oxoguanine DNA glycosylase (OGG1), an enzyme essential for the removal of oxidative DNA damage. Conclusions Exposure to EC aerosol extracts suppressed the cellular antioxidant defenses and led to significant DNA damage. These findings emphasize the urgent need to investigate the potential long-term cancer risk of exposure to EC aerosol for vapers and the general public. PMID:28542301
NASA Astrophysics Data System (ADS)
Suto, Koichi; Joe, Seong Jin; Inoue, Chihiro; Chida, Tadashi
2006-05-01
A heterotrophic bacterium, designated as HIB4, having an ability to oxidize ferrous iron was isolated from the sample of an enrichment culture with 9K medium, by using the modified WAYE (washed agarose/yeast extract) medium with ferrous sulphate. This isolate was identified as Alicyclobacillus disulfidooxidans from 16S rDNA sequence analysis. The isolate grew and oxidized ferrous iron in an inorganic medium containing 0.02 % (w/v) of yeast extract and Ferrous iron oxidation occurred at the almost end of its logarithmic phase. Yeast extract was an essential substrate for the isolate because the isolate could not grow or oxidize ferrous iron without yeast extract. However, higher concentration of yeast extract inhibited the growth of the isolate. On the other hand, it was confirmed that the isolate was able to grow without ferrous ion so that it did not get any energy by ferrous ion oxidation. Its optimum concentration of yeast extract was 0.02% (w/v) at the concentration of ferrous ion 0.08mol/liter. Its optimum pH was 1.5 and the optimum temperature was 30 °C These physiological characteristics were completely different from A. disulfidooxidans SD-11 which is the type strain.
Evaluation of different sources of DNA for use in genome wide studies and forensic application.
Al Safar, Habiba S; Abidi, Fatima H; Khazanehdari, Kamal A; Dadour, Ian R; Tay, Guan K
2011-02-01
In the field of epidemiology, Genome-Wide Association Studies (GWAS) are commonly used to identify genetic predispositions of many human diseases. Large repositories housing biological specimens for clinical and genetic investigations have been established to store material and data for these studies. The logistics of specimen collection and sample storage can be onerous, and new strategies have to be explored. This study examines three different DNA sources (namely, degraded genomic DNA, amplified degraded genomic DNA and amplified extracted DNA from FTA card) for GWAS using the Illumina platform. No significant difference in call rate was detected between amplified degraded genomic DNA extracted from whole blood and amplified DNA retrieved from FTA™ cards. However, using unamplified-degraded genomic DNA reduced the call rate to a mean of 42.6% compared to amplified DNA extracted from FTA card (mean of 96.6%). This study establishes the utility of FTA™ cards as a viable storage matrix for cells from which DNA can be extracted to perform GWAS analysis.
Efficient isolation method for high-quality genomic DNA from cicada exuviae.
Nguyen, Hoa Quynh; Kim, Ye Inn; Borzée, Amaël; Jang, Yikweon
2017-10-01
In recent years, animal ethics issues have led researchers to explore nondestructive methods to access materials for genetic studies. Cicada exuviae are among those materials because they are cast skins that individuals left after molt and are easily collected. In this study, we aim to identify the most efficient extraction method to obtain high quantity and quality of DNA from cicada exuviae. We compared relative DNA yield and purity of six extraction protocols, including both manual protocols and available commercial kits, extracting from four different exoskeleton parts. Furthermore, amplification and sequencing of genomic DNA were evaluated in terms of availability of sequencing sequence at the expected genomic size. Both the choice of protocol and exuvia part significantly affected DNA yield and purity. Only samples that were extracted using the PowerSoil DNA Isolation kit generated gel bands of expected size as well as successful sequencing results. The failed attempts to extract DNA using other protocols could be partially explained by a low DNA yield from cicada exuviae and partly by contamination with humic acids that exist in the soil where cicada nymphs reside before emergence, as shown by spectroscopic measurements. Genomic DNA extracted from cicada exuviae could provide valuable information for species identification, allowing the investigation of genetic diversity across consecutive broods, or spatiotemporal variation among various populations. Consequently, we hope to provide a simple method to acquire pure genomic DNA applicable for multiple research purposes.
Mohamad, Nurhidayatul Asma; Mustafa, Shuhaimi; El Sheikha, Aly Farag; Khairil Mokhtar, Nur Fadhilah; Ismail, Amin; Ali, Md Eaqub
2016-05-01
Poor quality and quantity of DNA extracted from gelatin and gelatin capsules often causes failure in the determination of animal species using PCR. Gelatin, which is mainly derived from porcine and bovine, has been a matter of concern among customers in order to fulfill religious obligation and safety precaution against several transmissible infectious diseases associated with bovine species. Thus, optimised DNA extraction from gelatin is very important for successful real-time PCR detection of gelatin species. In this work, the DNA extraction method was optimised in terms of lysis incubation period and inclusion of pre-treatment pH modification of samples. The yield of DNA extracted from porcine gelatin was significantly increased when the pH of the samples was adjusted to pH 8.5 prior to DNA precipitation with isopropanol. The optimal pH for DNA precipitation from bovine gelatin solution was then determined at the original pH range of solution: pH 7.6 to 8. A DNA fragment of approximately 300 base pairs was available for PCR amplification. DNA extracted from gelatin and commercially available capsules has been successfully utilised for species detection using real-time PCR assay. However, significant adulterations of porcine and bovine in pure gelatin and capsules have been detected, which require further analytical techniques for validation. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.
Santos, E M; Paula, J F R; Motta, P M C; Heinemann, M B; Leite, R C; Haddad, J P A; Del Puerto, H L; Reis, J K P
2010-08-17
We compared three different protocols for DNA extraction from horse peripheral blood mononuclear cells (PBMC) and lung fragments, determining average final DNA concentration, purity, percentage of PCR amplification using beta-actin, and cost. Thirty-four samples from PBMC, and 33 samples from lung fragments were submitted to DNA extraction by three different protocols. Protocol A consisted of a phenol-chloroform and isoamylic alcohol extraction, Protocol B used alkaline extraction with NaOH, and Protocol C used the DNAzol((R)) reagent kit. Protocol A was the best option for DNA extraction from lung fragments, producing high DNA concentrations, with high sensitivity in PCR amplification (100%), followed by Protocols C and B. On the other hand, for PBMC samples, Protocol B gave the highest sensitivity in PCR amplification (100%), followed by Protocols C and A. We conclude that Protocol A should be used for PCR diagnosis from lung fragment samples, while Protocol B should be used for PBMC.
Rapid non-enzymatic extraction method for isolating PCR-quality camelpox virus DNA from skin.
Yousif, A Ausama; Al-Naeem, A Abdelmohsen; Al-Ali, M Ahmad
2010-10-01
Molecular diagnostic investigations of orthopoxvirus (OPV) infections are performed using a variety of clinical samples including skin lesions, tissues from internal organs, blood and secretions. Skin samples are particularly convenient for rapid diagnosis and molecular epidemiological investigations of camelpox virus (CMLV). Classical extraction procedures and commercial spin-column-based kits are time consuming, relatively expensive, and require multiple extraction and purification steps in addition to proteinase K digestion. A rapid non-enzymatic procedure for extracting CMLV DNA from dried scabs or pox lesions was developed to overcome some of the limitations of the available DNA extraction techniques. The procedure requires as little as 10mg of tissue and produces highly purified DNA [OD(260)/OD(280) ratios between 1.47 and 1.79] with concentrations ranging from 6.5 to 16 microg/ml. The extracted CMLV DNA was proven suitable for virus-specific qualitative and, semi-quantitative PCR applications. Compared to spin-column and conventional viral DNA extraction techniques, the two-step extraction procedure saves money and time, and retains the potential for automation without compromising CMLV PCR sensitivity. Copyright (c) 2010 Elsevier B.V. All rights reserved.
Nucleic acid extraction techniques and application to the microchip.
Price, Carol W; Leslie, Daniel C; Landers, James P
2009-09-07
As recently as the early 1990s, DNA purification was time-consuming, requiring the use of toxic, hazardous reagents. The advent of solid phase extraction techniques and the availability of commercial kits for quick and reliable DNA extraction has relegated those early techniques largely to the history books. High quality DNA can now be extracted from whole blood, serum, saliva, urine, stool, cerebral spinal fluid, tissues, and cells in less time without sacrificing recovery. Having achieved such a radical change in the methodology of DNA extraction, focus has shifted to adapting these methods to a miniaturized system, or "lab-on-a-chip" (A. Manz, N. Graber and H. M. Widmer, Sens. Actuators, B, 1990, 1, 244-248). Manz et al.'s concept of a "miniaturized total chemical analysis system" (microTAS) involved a silicon chip that incorporated sample pretreatment, separation and detection. This review will focus on the first of these steps, sample pretreatment in the form of DNA purification. The intention of this review is to provide an overview of the fundamentals of nucleic acid purification and solid phase extraction (SPE) and to discuss specific microchip DNA extraction successes and challenges. In order to fully appreciate the advances in DNA purification, a brief review of the history of DNA extraction is provided so that the reader has an understanding of the impact that the development of SPE techniques have had. This review will highlight the different methods of nucleic acid extraction (Table 1), including relevant citations, but without an exhaustive summary of the literature. A recent review by Wen et al. (J. Wen, L. A. Legendre, J. M. Bienvenue and J. P. Landers, Anal. Chem., 2008, 80, 6472-6479) covers solid phase extraction methods with a greater focus on their incorporation into integrated microfluidic systems.
Paternò, Annalisa; Marchesi, Ugo; Gatto, Francesco; Verginelli, Daniela; Quarchioni, Cinzia; Fusco, Cristiana; Zepparoni, Alessia; Amaddeo, Demetrio; Ciabatti, Ilaria
2009-12-09
The comparison of five real-time polymerase chain reaction (PCR) methods targeted at maize ( Zea mays ) endogenous sequences is reported. PCR targets were the alcohol dehydrogenase (adh) gene for three methods and high-mobility group (hmg) gene for the other two. The five real-time PCR methods have been checked under repeatability conditions at several dilution levels on both pooled DNA template from several genetically modified (GM) maize certified reference materials (CRMs) and single CRM DNA extracts. Slopes and R(2) coefficients of all of the curves obtained from the adopted regression model were compared within the same method and among all of the five methods, and the limit of detection and limit of quantitation were analyzed for each PCR system. Furthermore, method equivalency was evaluated on the basis of the ability to estimate the target haploid genome copy number at each concentration level. Results indicated that, among the five methods tested, one of the hmg-targeted PCR systems can be considered equivalent to the others but shows the best regression parameters and a higher repeteability along the dilution range. Thereby, it is proposed as a valid module to be coupled to different event-specific real-time PCR for maize genetically modified organism (GMO) quantitation. The resulting practicability improvement on the analytical control of GMOs is discussed.
Extraction of high-quality DNA from ethanol-preserved tropical plant tissues.
Bressan, Eduardo A; Rossi, Mônica L; Gerald, Lee T S; Figueira, Antonio
2014-04-24
Proper conservation of plant samples, especially during remote field collection, is essential to assure quality of extracted DNA. Tropical plant species contain considerable amounts of secondary compounds, such as polysaccharides, phenols, and latex, which affect DNA quality during extraction. The suitability of ethanol (96% v/v) as a preservative solution prior to DNA extraction was evaluated using leaves of Jatropha curcas and other tropical species. Total DNA extracted from leaf samples stored in liquid nitrogen or ethanol from J. curcas and other tropical species (Theobroma cacao, Coffea arabica, Ricinus communis, Saccharum spp., and Solanum lycopersicon) was similar in quality, with high-molecular-weight DNA visualized by gel electrophoresis. DNA quality was confirmed by digestion with EcoRI or HindIII and by amplification of the ribosomal gene internal transcribed spacer region. Leaf tissue of J. curcas was analyzed by light and transmission electron microscopy before and after exposure to ethanol. Our results indicate that leaf samples can be successfully preserved in ethanol for long periods (30 days) as a viable method for fixation and conservation of DNA from leaves. The success of this technique is likely due to reduction or inactivation of secondary metabolites that could contaminate or degrade genomic DNA. Tissue conservation in 96% ethanol represents an attractive low-cost alternative to commonly used methods for preservation of samples for DNA extraction. This technique yields DNA of equivalent quality to that obtained from fresh or frozen tissue.
Extraction of high-quality DNA from ethanol-preserved tropical plant tissues
2014-01-01
Background Proper conservation of plant samples, especially during remote field collection, is essential to assure quality of extracted DNA. Tropical plant species contain considerable amounts of secondary compounds, such as polysaccharides, phenols, and latex, which affect DNA quality during extraction. The suitability of ethanol (96% v/v) as a preservative solution prior to DNA extraction was evaluated using leaves of Jatropha curcas and other tropical species. Results Total DNA extracted from leaf samples stored in liquid nitrogen or ethanol from J. curcas and other tropical species (Theobroma cacao, Coffea arabica, Ricinus communis, Saccharum spp., and Solanum lycopersicon) was similar in quality, with high-molecular-weight DNA visualized by gel electrophoresis. DNA quality was confirmed by digestion with EcoRI or HindIII and by amplification of the ribosomal gene internal transcribed spacer region. Leaf tissue of J. curcas was analyzed by light and transmission electron microscopy before and after exposure to ethanol. Our results indicate that leaf samples can be successfully preserved in ethanol for long periods (30 days) as a viable method for fixation and conservation of DNA from leaves. The success of this technique is likely due to reduction or inactivation of secondary metabolites that could contaminate or degrade genomic DNA. Conclusions Tissue conservation in 96% ethanol represents an attractive low-cost alternative to commonly used methods for preservation of samples for DNA extraction. This technique yields DNA of equivalent quality to that obtained from fresh or frozen tissue. PMID:24761774
Linear, Single-Stranded Deoxyribonucleic Acid Isolated from Kilham Rat Virus
Salzman, Lois Ann; White, Wesley L.; Kakefuda, Tsuyoshi
1971-01-01
Kilham rat virus (KRV) was grown in a rat nephroma cell line and was purified by two isopycnic centrifugations in cesium chloride. The virus contains single-stranded deoxyribonucleic acid (DNA) with a molecular weight of approximately 1.6 × 106. The DNA was extracted from the virion by both phenol extraction and by 2% sodium dodecyl sulfate at 50 C. KRV DNA, extracted by both procedures, was observed in an electron microscope by using a cytochrome c or diethylaminoethyldextran monolayer. The DNA was also exposed to exonuclease I, an enzyme which hydrolyzes specifically linear, single-stranded DNA. Hydrolysis of 70 to 80% of the DNA was observed. Both the enzymatic and the electron microscope studies support the conclusion that extracted KRV DNA is a single-stranded, linear molecule. The length of the DNA was measured in the electron microscope and determined to be 1.505 ± 0.206 μm. Images PMID:4327590
Hunter, Stephanie J; Goodall, Tim I; Walsh, Kerry A; Owen, Richard; Day, John C
2008-01-01
A nondestructive, chemical-free method is presented for the extraction of DNA from small insects. Blackflies were submerged in sterile, distilled water and sonicated for varying lengths of time to provide DNA which was assessed in terms of quantity, purity and amplification efficiency. A verified DNA barcode was produced from DNA extracted from blackfly larvae, pupae and adult specimens. A 60-second sonication period was found to release the highest quality and quantity of DNA although the amplification efficiency was found to be similar regardless of sonication time. Overall, a 66% amplification efficiency was observed. Examination of post-sonicated material confirmed retention of morphological characters. Sonication was found to be a reliable DNA extraction approach for barcoding, providing sufficient quality template for polymerase chain reaction amplification as well as retaining the voucher specimen for post-barcoding morphological evaluation. © 2007 The Authors.
SMA Diagnosis: Detection of SMN1 Deletion with Real-Time mCOP-PCR System Using Fresh Blood DNA.
Niba, Emma Tabe Eko; Ar Rochmah, Mawaddah; Harahap, Nur Imma Fatimah; Awano, Hiroyuki; Morioka, Ichiro; Iijima, Kazumoto; Saito, Toshio; Saito, Kayoko; Takeuchi, Atsuko; Lai, Poh San; Bouike, Yoshihiro; Nishio, Hisahide; Shinohara, Masakazu
2017-12-18
Spinal muscular atrophy (SMA) is one of the most common autosomal recessive disorders. The symptoms are caused by defects of lower motor neurons in the spinal cord. More than 95% of SMA patients are homozygous for survival motor neuron 1 (SMN1) deletion. We previously developed a screening system for SMN1 deletion based on a modified competitive oligonucleotide priming-PCR (mCOP-PCR) technique using dried blood spot (DBS) on filter paper. This system is convenient for mass screening in the large population and/or first-tier diagnostic method of the patients in the remote areas. However, this system was still time-consuming and effort-taking, because it required pre-amplification procedure to avoid non-specific amplification and gel-electrophoresis to detect the presence or absence of SMN1 deletion. When the fresh blood samples are used instead of DBS, or when the gel-electrophoresis is replaced by real-time PCR, we may have a simpler and more rapid diagnostic method for SMA. To establish a simpler and more rapid diagnostic method of SMN1 deletion using fresh blood DNA. DNA samples extracted from fresh blood and stored at 4 ℃ for 1 month. The samples were assayed using a real-time mCOP-PCR system without pre-amplification procedures. DNA samples had already been genotyped by PCR-restriction fragment length polymorphism (PCR-RFLP), showing the presence or absence of SMN1 exon 7. The DNA samples were directly subjected to the mCOP-PCR step. The amplification of mCOP-PCR was monitored in a real-time PCR apparatus. The genotyping results of the real-time mCOP-PCR system using fresh blood DNA were completely matched with those of PCR-RFLP. In this real-time mCOP-PCR system using fresh blood-DNA, it took only four hours from extraction of DNA to detection of the presence or absence of SMN1 deletion, while it took more than 12 hours in PCR-RFLP. Our real-time mCOP-PCR system using fresh blood DNA was rapid and accurate, suggesting it may be useful for the first-tier diagnostic method of SMA.
Kiddle, Guy; Hardinge, Patrick; Buttigieg, Neil; Gandelman, Olga; Pereira, Clint; McElgunn, Cathal J; Rizzoli, Manuela; Jackson, Rebecca; Appleton, Nigel; Moore, Cathy; Tisi, Laurence C; Murray, James A H
2012-04-30
There is an increasing need for quantitative technologies suitable for molecular detection in a variety of settings for applications including food traceability and monitoring of genetically modified (GM) crops and their products through the food processing chain. Conventional molecular diagnostics utilising real-time polymerase chain reaction (RT-PCR) and fluorescence-based determination of amplification require temperature cycling and relatively complex optics. In contrast, isothermal amplification coupled to a bioluminescent output produced in real-time (BART) occurs at a constant temperature and only requires a simple light detection and integration device. Loop mediated isothermal amplification (LAMP) shows robustness to sample-derived inhibitors. Here we show the applicability of coupled LAMP and BART reactions (LAMP-BART) for determination of genetically modified (GM) maize target DNA at low levels of contamination (0.1-5.0% GM) using certified reference material, and compare this to RT-PCR. Results show that conventional DNA extraction methods developed for PCR may not be optimal for LAMP-BART quantification. Additionally, we demonstrate that LAMP is more tolerant to plant sample-derived inhibitors, and show this can be exploited to develop rapid extraction techniques suitable for simple field-based qualitative tests for GM status determination. We also assess the effect of total DNA assay load on LAMP-BART quantitation. LAMP-BART is an effective and sensitive technique for GM detection with significant potential for quantification even at low levels of contamination and in samples derived from crops such as maize with a large genome size. The resilience of LAMP-BART to acidic polysaccharides makes it well suited to rapid sample preparation techniques and hence to both high throughput laboratory settings and to portable GM detection applications. The impact of the plant sample matrix and genome loading within a reaction must be controlled to ensure quantification at low target concentrations.
A RAPID DNA EXTRACTION METHOD FOR PCR IDENTIFICATION OF FUNGAL INDOOR AIR CONTAMINANTS
Following air sampling, fungal DNA needs to be extracted and purified to a state suitable for laboratory use. Our laboratory has developed a simple method of extraction and purification of fungal DNA appropriate for enzymatic manipulation and polymerase chain reaction (PCR) appli...
Sengüven, Burcu; Baris, Emre; Oygur, Tulin; Berktas, Mehmet
2014-01-01
Discussing a protocol involving xylene-ethanol deparaffinization on slides followed by a kit-based extraction that allows for the extraction of high quality DNA from FFPE tissues. DNA was extracted from the FFPE tissues of 16 randomly selected blocks. Methods involving deparaffinization on slides or tubes, enzyme digestion overnight or for 72 hours and isolation using phenol chloroform method or a silica-based commercial kit were compared in terms of yields, concentrations and the amplifiability. The highest yield of DNA was produced from the samples that were deparaffinized on slides, digested for 72 hours and isolated with a commercial kit. Samples isolated with the phenol-chloroform method produced DNA of lower purity than the samples that were purified with kit. The samples isolated with the commercial kit resulted in better PCR amplification. Silica-based commercial kits and deparaffinized on slides should be considered for DNA extraction from FFPE.
El Bali, Latifa; Diman, Aurélie; Bernard, Alfred; Roosens, Nancy H. C.; De Keersmaecker, Sigrid C. J.
2014-01-01
Human genomic DNA extracted from urine could be an interesting tool for large-scale public health studies involving characterization of genetic variations or DNA biomarkers as a result of the simple and noninvasive collection method. These studies, involving many samples, require a rapid, easy, and standardized extraction protocol. Moreover, for practicability, there is a necessity to collect urine at a moment different from the first void and to store it appropriately until analysis. The present study compared seven commercial kits to select the most appropriate urinary human DNA extraction procedure for epidemiological studies. DNA yield has been determined using different quantification methods: two classical, i.e., NanoDrop and PicoGreen, and two species-specific real-time quantitative (q)PCR assays, as DNA extracted from urine contains, besides human, microbial DNA also, which largely contributes to the total DNA yield. In addition, the kits giving a good yield were also tested for the presence of PCR inhibitors. Further comparisons were performed regarding the sampling time and the storage conditions. Finally, as a proof-of-concept, an important gene related to smoking has been genotyped using the developed tools. We could select one well-performing kit for the human DNA extraction from urine suitable for molecular diagnostic real-time qPCR-based assays targeting genetic variations, applicable to large-scale studies. In addition, successful genotyping was possible using DNA extracted from urine stored at −20°C for several months, and an acceptable yield could also be obtained from urine collected at different moments during the day, which is particularly important for public health studies. PMID:25365790
Hocek, Michal
2014-11-07
The synthesis of 2'-deoxyribonucleoside triphosphates (dNTPs) either by classical triphosphorylation of nucleosides or by aqueous cross-coupling reactions of halogenated dNTPs is discussed. Different enzymatic methods for synthesis of modified oligonucleotides and DNA by polymerase incorporation of modified nucleotides are summarized, and the applications in redox or fluorescent labeling, as well as in bioconjugations and modulation of interactions of DNA with proteins, are outlined.
Wijatmiko, Teddy; Vajpeyee, Manisha; Taywade, Onjal
2018-01-01
Purpose Several blood markers have been evaluated in stroke patients, but their role remains limited in clinical practice. This study was designed to evaluate the utility of cell free DNA (cf DNA) in stroke patients undergoing therapeutic intervention in the form of mechanical thrombectomy in acute ischemic stroke patients. Materials and Methods Twenty-six patients with ischemic stroke who were managed with interventions like intravenous thrombolysis (IVT) and mechanical thrombectomy were recruited consecutively in this study. The cf DNA was extracted by using circulating nucleic acid kit and measured by real-time quantitative PCR assay for β-globin gene. The neurological outcome was measured by modified Rankin scale (mRS) score at three months after the onset of symptoms. Results Cf DNA levels correlated with severity of stroke at the time of admission (r=0.421, P=0.032) and poor outcome at three months (r=0.606, P=0.001). Therapeutic intervention in the form of mechanical thrombectomy or IVT was associated with improved outcome in patients with cf DNA <10,000 kilogenome-equivalents/L (P=<0.05). Conclusion Cf DNA level correlated well with the 3 month outcome in acute ischemic stroke patients. It can be a potential supplementary marker to predict neurological outcome after therapeutic intervention. PMID:29535894
DNA degrades during storage in formalin-fixed and paraffin-embedded tissue blocks.
Guyard, Alice; Boyez, Alice; Pujals, Anaïs; Robe, Cyrielle; Tran Van Nhieu, Jeanne; Allory, Yves; Moroch, Julien; Georges, Odette; Fournet, Jean-Christophe; Zafrani, Elie-Serge; Leroy, Karen
2017-10-01
Formalin-fixed paraffin-embedded (FFPE) tissue blocks are widely used to identify clinically actionable molecular alterations or perform retrospective molecular studies. Our goal was to quantify degradation of DNA occurring during mid to long-term storage of samples in usual conditions. We selected 46 FFPE samples of surgically resected carcinomas of lung, colon, and urothelial tract, of which DNA had been previously extracted. We performed a second DNA extraction on the same blocks under identical conditions after a median period of storage of 5.5 years. Quantitation of DNA by fluorimetry showed a 53% decrease in DNA quantity after storage. Quantitative PCR (qPCR) targeting KRAS exon 2 showed delayed amplification of DNA extracted after storage in all samples but one. The qPCR/fluorimetry quantification ratio decreased from 56 to 15% after storage (p < 0.001). Overall, remaining proportion of DNA analyzable by qPCR represented only 11% of the amount obtained at first extraction. Maximal length of amplifiable DNA fragments assessed with a multiplex PCR was reduced in DNA extracted from stored tissue, indicating that DNA fragmentation had increased in the paraffin blocks during storage. Next-generation sequencing was performed on 12 samples and showed a mean 3.3-fold decrease in library yield and a mean 4.5-fold increase in the number of single-nucleotide variants detected after storage. In conclusion, we observed significant degradation of DNA extracted from the same FFPE block after 4 to 6 years of storage. Better preservation strategies should be considered for storage of FFPE biopsy specimens.
Hot-Alkaline DNA Extraction Method for Deep-Subseafloor Archaeal Communities
Terada, Takeshi; Hoshino, Tatsuhiko; Inagaki, Fumio
2014-01-01
A prerequisite for DNA-based microbial community analysis is even and effective cell disruption for DNA extraction. With a commonly used DNA extraction kit, roughly two-thirds of subseafloor sediment microbial cells remain intact on average (i.e., the cells are not disrupted), indicating that microbial community analyses may be biased at the DNA extraction step, prior to subsequent molecular analyses. To address this issue, we standardized a new DNA extraction method using alkaline treatment and heating. Upon treatment with 1 M NaOH at 98°C for 20 min, over 98% of microbial cells in subseafloor sediment samples collected at different depths were disrupted. However, DNA integrity tests showed that such strong alkaline and heat treatment also cleaved DNA molecules into short fragments that could not be amplified by PCR. Subsequently, we optimized the alkaline and temperature conditions to minimize DNA fragmentation and retain high cell disruption efficiency. The best conditions produced a cell disruption rate of 50 to 80% in subseafloor sediment samples from various depths and retained sufficient DNA integrity for amplification of the complete 16S rRNA gene (i.e., ∼1,500 bp). The optimized method also yielded higher DNA concentrations in all samples tested compared with extractions using a conventional kit-based approach. Comparative molecular analysis using real-time PCR and pyrosequencing of bacterial and archaeal 16S rRNA genes showed that the new method produced an increase in archaeal DNA and its diversity, suggesting that it provides better analytical coverage of subseafloor microbial communities than conventional methods. PMID:24441163
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Zhen; Department of Biochemistry and Molecular Biology, Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058; Xiang, Wenqing
Highlights: {yields} LNA-modified oligonucleotides can pass through the plasma membrane of cultured cells even without using transfection machinery. {yields} LNA-modified oligonucleotides passed efficiently across the cell membrane, and lipid-coating facilitated translocation from the cytoplasm to the nucleus. {yields} LNA-oligonucleotide designed to target nuclear HBV DNA efficiently suppresses HBV replication and transcription in cultured hepatic cells. -- Abstract: Silencing target genes with small regulatory RNAs is widely used to investigate gene function and therapeutic drug development. Recently, triplex-based approaches have provided another attractive means to achieve targeted gene regulation and gene manipulation at the molecular and cellular levels. Nuclear entry ofmore » oligonucleotides and enhancement of their affinity to the DNA targets are key points of such approaches. In this study, we developed lipid-based transport of a locked-nucleic-acid (LNA)-modified oligonucleotide for hepatitis B virus (HBV) DNA interference in human hepatocytes expressing HBV genomic DNA. In these cells, the LNA-modified oligonucleotides passed efficiently across the cell membrane, and lipid-coating facilitated translocation from the cytoplasm to the nucleus. The oligonucleotide specifically targeting HBV DNA clearly interfered with HBV DNA transcription as shown by a block in pregenomic RNA (pgRNA) production. The HBV DNA-targeted oligonucleotide suppressed HBV DNA replication and HBV protein production more efficiently than small interfering RNAs directed to the pgRNA. These results demonstrate that fusion with lipid can carry LNA-modified oligonucleotides to the nucleus where they regulate gene expression. Interfering with HBV DNA transcription by LNA-modified oligonucleotides has strong potential as a new strategy for HBV inhibition.« less
Bravo, Dayana; Clari, María Ángeles; Costa, Elisa; Muñoz-Cobo, Beatriz; Solano, Carlos; José Remigia, María; Navarro, David
2011-08-01
Limited data are available on the performance of different automated extraction platforms and commercially available quantitative real-time PCR (QRT-PCR) methods for the quantitation of cytomegalovirus (CMV) DNA in plasma. We compared the performance characteristics of the Abbott mSample preparation system DNA kit on the m24 SP instrument (Abbott), the High Pure viral nucleic acid kit on the COBAS AmpliPrep system (Roche), and the EZ1 Virus 2.0 kit on the BioRobot EZ1 extraction platform (Qiagen) coupled with the Abbott CMV PCR kit, the LightCycler CMV Quant kit (Roche), and the Q-CMV complete kit (Nanogen), for both plasma specimens from allogeneic stem cell transplant (Allo-SCT) recipients (n = 42) and the OptiQuant CMV DNA panel (AcroMetrix). The EZ1 system displayed the highest extraction efficiency over a wide range of CMV plasma DNA loads, followed by the m24 and the AmpliPrep methods. The Nanogen PCR assay yielded higher mean CMV plasma DNA values than the Abbott and the Roche PCR assays, regardless of the platform used for DNA extraction. Overall, the effects of the extraction method and the QRT-PCR used on CMV plasma DNA load measurements were less pronounced for specimens with high CMV DNA content (>10,000 copies/ml). The performance characteristics of the extraction methods and QRT-PCR assays evaluated herein for clinical samples were extensible at cell-based standards from AcroMetrix. In conclusion, different automated systems are not equally efficient for CMV DNA extraction from plasma specimens, and the plasma CMV DNA loads measured by commercially available QRT-PCRs can differ significantly. The above findings should be taken into consideration for the establishment of cutoff values for the initiation or cessation of preemptive antiviral therapies and for the interpretation of data from clinical studies in the Allo-SCT setting.
Umeki, Yuka; Saito, Masaaki; Takahashi, Yuki; Takakura, Yoshinobu; Nishikawa, Makiya
2017-10-01
Our previous study indicates that cationization of an antigen is effective for sustained release of both immunostimulatory DNA containing unmethylated cytosine-phosphate-guanine (CpG) dinucleotides, or CpG DNA, and antigen from a DNA hydrogel. Another approach to sustained antigen release would increase the applicability and versatility of the system. In this study, a hydrophobic interaction-based sustained release system of ovalbumin (OVA), a model antigen, from immunostimulatory CpG DNA hydrogel is developed by the use of cholesterol-modified DNA and urea-denatured OVA (udOVA). Cholesterol-modified DNA forms a hydrogel, Dgel(chol), and induces IL-6 mRNA expression in mouse skin after intradermal injection, as DNA without cholesterol does. Cholesterol-modified DNA associated with OVA and denaturation of OVA using urea increases the interaction. The release of udOVA from Dgel(chol) is significantly slower than that from DNA hydrogel with no cholesterol, Dgel. Moreover, intratumoral injections of udOVA/Dgel(chol) significantly inhibit the growth of EG7-OVA tumors in mice. These results indicate that sustained release of antigen from Dgel can be achieved by the combination of urea denaturation and cholesterol modification, and retardation of antigen release is effective to induce antigen-specific cancer immunity. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Straub, Julia; Paula, Helga; Mayr, Michaela; Kasper, David; Assadian, Ojan; Berger, Angelika; Rittenschober-Böhm, Judith
2017-01-01
Diagnosis of neonatal sepsis remains a major challenge in neonatology. Most molecular-based methods are not customized for neonatal requirements. The aim of the present study was to assess the diagnostic accuracy of a modified multiplex PCR protocol for the detection of neonatal sepsis using small blood volumes. 212 episodes of suspected neonatal late onset sepsis were analyzed prospectively using the Roche SeptiFast® MGRADE PCR with a modified DNA extraction protocol and software-handling tool. Results were compared to blood culture, laboratory biomarkers and clinical signs of sepsis. Of 212 episodes, 85 (40.1%) were categorized as "not infected". Among these episodes, 1 was false positive by blood culture (1.2%) and 23 were false positive by PCR (27.1%). Of 51 (24.1%) episodes diagnosed as "culture proven sepsis", the same pathogen was detected by blood culture and PCR in 39 episodes (76.5%). In 8 episodes, more pathogens were detected by PCR compared to blood culture, and in 4 episodes the pathogen detected by blood culture was not found by PCR. One of these episodes was caused by Bacillus cereus, a pathogen not included in the PCR panel. In 76/212 (35.8%) episodes, clinical sepsis was diagnosed. Among these, PCR yielded positive results in 39.5% of episodes (30/76 episodes). For culture-positive sepsis, PCR showed a sensitivity of 90.2% (95%CI 86.2-94.2%) and a specificity of 72.9% (95%CI 67.0-79.0%). The Roche SeptiFast® MGRADE PCR using a modified DNA extraction protocol showed acceptable results for rapid detection of neonatal sepsis in addition to conventional blood culture. The benefit of rapid pathogen detection has to be balanced against the considerable risk of contamination, loss of information on antibiotic sensitivity pattern and increased costs.
Mazloum-Ardakani, Mohammad; Ahmadi, Roya; Heidari, Mohammad Mehdi; Sheikh-Mohseni, Mohammad Ali
2014-06-15
A simple electrochemical biosensor was developed for the detection of the mitochondrial NADH dehydrogenase 6 gene (MT-ND6) and its enzymatic digestion by BamHI enzyme. This biosensor was fabricated by modification of a glassy carbon electrode with gold nanoparticles (AuNPs/GCE) and a probe oligonucleotide (ssDNA/AuNPs/GCE). The probe, which is a thiolated segment of the MT-ND6 gene, was deposited by self-assembling immobilization on AuNPs/GCE. Two indicators including methylene blue (MB) and neutral red (NR) were used as the electroactive indicators and the electrochemical response of the modified electrode was measured by differential pulse voltammetry. The proposed biosensor can detect the complementary sequences of the MT-ND6 gene. Also the modified electrode was used for the detection of an enzymatic digestion process by BamHI enzyme. The electrochemical biosensor can detect the MT-ND6 gene and its enzymatic digestion in polymerase chain reaction (PCR)-amplified DNA extracted from human blood. Also the biosensor was used directly for detection of the MT-ND6 gene in all of the human genome. Copyright © 2014 Elsevier Inc. All rights reserved.
A rapid and efficient DNA extraction protocol from fresh and frozen human blood samples.
Guha, Pokhraj; Das, Avishek; Dutta, Somit; Chaudhuri, Tapas Kumar
2018-01-01
Different methods available for extraction of human genomic DNA suffer from one or more drawbacks including low yield, compromised quality, cost, time consumption, use of toxic organic solvents, and many more. Herein, we aimed to develop a method to extract DNA from 500 μL of fresh or frozen human blood. Five hundred microliters of fresh and frozen human blood samples were used for standardization of the extraction procedure. Absorbance at 260 and 280 nm, respectively, (A 260 /A 280 ) were estimated to check the quality and quantity of the extracted DNA sample. Qualitative assessment of the extracted DNA was checked by Polymerase Chain reaction and double digestion of the DNA sample. Our protocol resulted in average yield of 22±2.97 μg and 20.5±3.97 μg from 500 μL of fresh and frozen blood, respectively, which were comparable to many reference protocols and kits. Besides yielding bulk amount of DNA, our protocol is rapid, economical, and avoids toxic organic solvents such as Phenol. Due to unaffected quality, the DNA is suitable for downstream applications. The protocol may also be useful for pursuing basic molecular researches in laboratories having limited funds. © 2017 Wiley Periodicals, Inc.
Rodrigues, P; Venâncio, A; Lima, N
2018-01-01
The aim of this work was to evaluate a fungal DNA extraction procedure with the lowest inputs in terms of time as well as of expensive and toxic chemicals, but able to consistently produce genomic DNA of good quality for PCR purposes. Two types of fungal biological material were tested - mycelium and conidia - combined with two protocols for DNA extraction using Sodium Dodecyl Sulphate (SDS) and Cetyl Trimethyl Ammonium Bromide as extraction buffers and glass beads for mechanical disruption of cell walls. Our results showed that conidia and SDS buffer was the combination that lead to the best DNA quality and yield, with the lowest variation between samples. This study clearly demonstrates that it is possible to obtain high yield and pure DNA from pigmented conidia without the use of strong cell disrupting procedures and of toxic reagents. There are numerous methods for DNA extraction from fungi. Some rely on expensive commercial kits and/or equipments, unavailable for many laboratories, or make use of toxic chemicals such as chloroform, phenol and mercaptoethanol. This study clearly demonstrates that it is possible to obtain high yields of pure DNA from pigmented conidia without the use of strong and expensive cell disrupting procedures and of toxic reagents. The method herein described is simultaneously inexpensive and adequate to DNA extraction from several different types of fungi. © 2017 The Society for Applied Microbiology.
Oh, Seo Young; Kim, Wook Youn; Hwang, Tae Sook; Han, Hye Seung; Lim, So Dug; Kim, Wan Seop
2013-01-01
DNA extraction from microdissected cells has become essential for handling clinical specimens with advances in molecular pathology. Conventional methods have limitations for extracting amplifiable DNA from specimens containing a small number of cells. We developed an ammonium sulfate DNA extraction method (A) and compared it with two other methods (B and C). DNA quality and quantity, β-globin amplification, and detectability of two cancer associated gene mutations were evaluated. Method A showed the best DNA yield, particularly when the cell number was very low. Amplification of the β-globin gene using DNA from the SNU 790 cell line and papillary thyroid carcinoma (PTC) cells extracted with Method A demonstrated the strongest band. BRAF V600E mutation analysis using ethanol-fixed PTC cells from a patient demonstrated both a “T” peak increase and an adjacent “A” peak decrease when 25 and 50 cells were extracted, whereas mutant peaks were too low to be analyzed using the other two methods. EGFR mutation analysis using formalin-fixed paraffin-embedded lung cancer tissues demonstrated a mutant peak with Method A, whereas the mutant peak was undetectable with Methods B or C. Method A yielded the best DNA quantity and quality with outstanding efficiency, particularly when paucicellular specimens were used. PMID:23691506
Necessity of purification during bacterial DNA extraction with environmental soils
Choi, Jung-Hyun
2017-01-01
Complexity and heterogeneity of soil samples have often implied the inclusion of purification steps in conventional DNA extraction for polymerase chain reaction (PCR) assays. Unfortunately the purification steps are also time and labor intensive. Therefore the necessity of DNA purification was re-visited and investigated for a variety of environmental soil samples that contained various amounts of PCR inhibitors. Bead beating and centrifugation was used as the baseline (without purification) method for DNA extraction. Its performance was compared with that of conventional DNA extraction kit (with purification). The necessity criteria for DNA purification were established with environmental soil samples. Using lysis conditions at 3000 rpm for 3 minutes with 0.1 mm glass beads, centrifugation time of 10 minutes and 1:10 dilution ratio, the baseline method outperformed conventional DNA extraction on cell seeded sand samples. Further investigation with PCR inhibitors (i.e., humic acids, clay, and magnesium [Mg]) showed that sand samples containing less than 10 μg/g humic acids and 70% clay may not require purifications. Interestingly, the inhibition pattern of Mg ion was different from other inhibitors due to the complexation interaction of Mg ion with DNA fragments. It was concluded that DNA extraction method without purification is suitable for soil samples that have less than 10 μg/g of humic acids, less than 70% clay content and less than 0.01% Mg ion content. PMID:28793754
Berlyne, Sigal; Oz, Carla; Einot, Naftaly; Avraham, Shlomit; Ram, Tanya; Goldberg, Miri D; Gafny, Ron
2017-07-01
In 2012 the Israel Police DNA Casework laboratory adopted the 16 STR PowerPlex ® ESI kit for routine use. The Promega Company updated this kit and developed the PowerPlex ® ESI 16 Fast System in which all autosomal primer pairs remained identical to the original set, except at the amelogenin site. The master mix was improved and optimized which allowed for direct, faster and more robust amplification. Prior to implementing the PowerPlex ® ESI 16 Fast System in our lab, we conducted a preliminary assay where 213 casework samples were amplified using the new kit. These samples had previously been extracted by one of two extraction kits employed by our lab. (the PrepFiler ExpressTM and PrepFiler BTATM Forensic DNA Extraction Kits). The amplification results from these samples were compared to samples amplified using the original PowerPlex ® ESI 16 kit. Multiple incidents of failure to amplify at the amelogenin locus were noted using the new system with the recommended protocol at a rate of 13% (28 of 213 samples). Experiments were performed to understand whether these amplification failures could be a result of primer binding site mutations, extraction method reagents and/or inhibitors. The conclusions reached following these experiments, in conjunction with consultation with the manufacturer, led to the trial of a modified amplification protocol where the suggested annealing temperature was reduced by 2 degrees. To evaluate the efficiency of this altered protocol, a comparison study was undertaken where 88 additional casework samples were chosen and amplified using both the modified 58°C and the recommended 60°C annealing temperatures. We concluded that the most effective method in our laboratory for achieving a consistent and balanced amplification at the amelogenin locus was to reduce the annealing temperature from the manufacturer's recommended 60°C to 58°C. This modification resulted in a reduction of the failure to amplify at the amelogenin locus from 13% (28/213) to 1.1% (1/88) without any observed changes to the autosomal STR amplification results. Copyright © 2017 Elsevier B.V. All rights reserved.
Gutiérrez Nava, Zúlima Jannette; Jiménez-Aparicio, Antonio Ruperto; Herrera-Ruiz, Maribel Lucila; Jiménez-Ferrer, Enrique
2017-05-25
In this work, the immunomodulatory activity of the acetone extract and the fructans obtained from Agave tequilana were evaluated, on the systemic autoimmunity type-SLE model generated by the administration of 2,6,10,14-tetramethylpentadecane (TMPD, also known as pristane) on Balb/c female mice. The systemic autoimmunity type-SLE was observed seven months after the application of TMPD, in which the animals from the negative control group (animals with damage and without any other treatment) developed articular inflammation, proteinuria, an increment of the antinuclear antibody titters and tissue pro-inflammatory cytokines levels (IL-1β, IL-6, TNF-α e IFN-γ) as well as the anti-inflammatory cytokine IL-10. The administration of the different treatments and the extracts of A. tequilana , provoked the decrease of: articular inflammation, the development of proteinuria, ssDNA/dsDNA antinuclear antibody titters and cytokines IL-1β, IL-6, TNF-α, IFN-γ and IL-10. The phytochemical analysis of the acetone extract identified the presence of the following compounds: β-sitosterol glycoside; 3,7,11,15-tetramethyl-2-hexadecen-1-ol (phytol); octadecadienoic acid-2,3-dihydroxypropyl ester; stigmasta-3,5-dien-7-one; cycloartenone and cycloartenol. Therefore, A. tequilana contains active compounds with the capacity to modify the evolution of the systemic autoimmunity type-SLE on a murine model.
Benvidi, Ali; Tezerjani, Marzieh Dehghan; Jahanbani, Shahriar; Mazloum Ardakani, Mohammad; Moshtaghioun, Seyed Mohammad
2016-01-15
In this research, we have developed lable free DNA biosensors based on modified glassy carbon electrodes (GCE) with reduced graphene oxide (RGO) and carbon nanotubes (MWCNTs) for detection of DNA sequences. This paper compares the detection of BRCA1 5382insC mutation using independent glassy carbon electrodes (GCE) modified with RGO and MWCNTs. A probe (BRCA1 5382insC mutation detection (ssDNA)) was then immobilized on the modified electrodes for a specific time. The immobilization of the probe and its hybridization with the target DNA (Complementary DNA) were performed under optimum conditions using different electrochemical techniques such as cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The proposed biosensors were used for determination of complementary DNA sequences. The non-modified DNA biosensor (1-pyrenebutyric acid-N- hydroxysuccinimide ester (PANHS)/GCE), revealed a linear relationship between ∆Rct and logarithm of the complementary target DNA concentration ranging from 1.0×10(-16)molL(-1) to 1.0×10(-10)mol L(-1) with a correlation coefficient of 0.992, for DNA biosensors modified with multi-wall carbon nanotubes (MWCNTs) and reduced graphene oxide (RGO) wider linear range and lower detection limit were obtained. For ssDNA/PANHS/MWCNTs/GCE a linear range 1.0×10(-17)mol L(-1)-1.0×10(-10)mol L(-1) with a correlation coefficient of 0.993 and for ssDNA/PANHS/RGO/GCE a linear range from 1.0×10(-18)mol L(-1) to 1.0×10(-10)mol L(-1) with a correlation coefficient of 0.985 were obtained. In addition, the mentioned biosensors were satisfactorily applied for discriminating of complementary sequences from noncomplementary sequences, so the mentioned biosensors can be used for the detection of BRCA1-associated breast cancer. Copyright © 2015. Published by Elsevier B.V.
Detection of airborne genetically modified maize pollen by real-time PCR.
Folloni, Silvia; Kagkli, Dafni-Maria; Rajcevic, Bojan; Guimarães, Nilson C C; Van Droogenbroeck, Bart; Valicente, Fernando H; Van den Eede, Guy; Van den Bulcke, Marc
2012-09-01
The cultivation of genetically modified (GM) crops has raised numerous concerns in the European Union and other parts of the world about their environmental and economic impact. Especially outcrossing of genetically modified organisms (GMO) was from the beginning a critical issue as airborne pollen has been considered an important way of GMO dispersal. Here, we investigate the use of airborne pollen sampling combined with microscopic analysis and molecular PCR analysis as an approach to monitor GM maize cultivations in a specific area. Field trial experiments in the European Union and South America demonstrated the applicability of the approach under different climate conditions, in rural and semi-urban environment, even at very low levels of airborne pollen. The study documents in detail the sampling of GM pollen, sample DNA extraction and real-time PCR analysis. Our results suggest that this 'GM pollen monitoring by bioaerosol sampling and PCR screening' approach might represent an useful aid in the surveillance of GM-free areas, centres of origin and natural reserves. © 2012 Blackwell Publishing Ltd.
Caboux, Elodie; Lallemand, Christophe; Ferro, Gilles; Hémon, Bertrand; Mendy, Maimuna; Biessy, Carine; Sims, Matt; Wareham, Nick; Britten, Abigail; Boland, Anne; Hutchinson, Amy; Siddiq, Afshan; Vineis, Paolo; Riboli, Elio; Romieu, Isabelle; Rinaldi, Sabina; Gunter, Marc J.; Peeters, Petra H. M.; van der Schouw, Yvonne T.; Travis, Ruth; Bueno-de-Mesquita, H. Bas; Canzian, Federico; Sánchez, Maria-José; Skeie, Guri; Olsen, Karina Standahl; Lund, Eiliv; Bilbao, Roberto; Sala, Núria; Barricarte, Aurelio; Palli, Domenico; Navarro, Carmen; Panico, Salvatore; Redondo, Maria Luisa; Polidoro, Silvia; Dossus, Laure; Boutron-Ruault, Marie Christine; Clavel-Chapelon, Françoise; Trichopoulou, Antonia; Trichopoulos, Dimitrios; Lagiou, Pagona; Boeing, Heiner; Fisher, Eva; Tumino, Rosario; Agnoli, Claudia; Hainaut, Pierre
2012-01-01
The European Prospective Investigation into Cancer and nutrition (EPIC) is a long-term, multi-centric prospective study in Europe investigating the relationships between cancer and nutrition. This study has served as a basis for a number of Genome-Wide Association Studies (GWAS) and other types of genetic analyses. Over a period of 5 years, 52,256 EPIC DNA samples have been extracted using an automated DNA extraction platform. Here we have evaluated the pre-analytical factors affecting DNA yield, including anthropometric, epidemiological and technical factors such as center of subject recruitment, age, gender, body-mass index, disease case or control status, tobacco consumption, number of aliquots of buffy coat used for DNA extraction, extraction machine or procedure, DNA quantification method, degree of haemolysis and variations in the timing of sample processing. We show that the largest significant variations in DNA yield were observed with degree of haemolysis and with center of subject recruitment. Age, gender, body-mass index, cancer case or control status and tobacco consumption also significantly impacted DNA yield. Feedback from laboratories which have analyzed DNA with different SNP genotyping technologies demonstrate that the vast majority of samples (approximately 88%) performed adequately in different types of assays. To our knowledge this study is the largest to date to evaluate the sources of pre-analytical variations in DNA extracted from peripheral leucocytes. The results provide a strong evidence-based rationale for standardized recommendations on blood collection and processing protocols for large-scale genetic studies. PMID:22808065
Rothrock, Michael J.; Hiett, Kelli L.; Gamble, John; Caudill, Andrew C.; Cicconi-Hogan, Kellie M.; Caporaso, J. Gregory
2014-01-01
The efficacy of DNA extraction protocols can be highly dependent upon both the type of sample being investigated and the types of downstream analyses performed. Considering that the use of new bacterial community analysis techniques (e.g., microbiomics, metagenomics) is becoming more prevalent in the agricultural and environmental sciences and many environmental samples within these disciplines can be physiochemically and microbiologically unique (e.g., fecal and litter/bedding samples from the poultry production spectrum), appropriate and effective DNA extraction methods need to be carefully chosen. Therefore, a novel semi-automated hybrid DNA extraction method was developed specifically for use with environmental poultry production samples. This method is a combination of the two major types of DNA extraction: mechanical and enzymatic. A two-step intense mechanical homogenization step (using bead-beating specifically formulated for environmental samples) was added to the beginning of the “gold standard” enzymatic DNA extraction method for fecal samples to enhance the removal of bacteria and DNA from the sample matrix and improve the recovery of Gram-positive bacterial community members. Once the enzymatic extraction portion of the hybrid method was initiated, the remaining purification process was automated using a robotic workstation to increase sample throughput and decrease sample processing error. In comparison to the strict mechanical and enzymatic DNA extraction methods, this novel hybrid method provided the best overall combined performance when considering quantitative (using 16S rRNA qPCR) and qualitative (using microbiomics) estimates of the total bacterial communities when processing poultry feces and litter samples. PMID:25548939
Schwartz, Alanna; Baidjoe, Amrish; Rosenthal, Philip J; Dorsey, Grant; Bousema, Teun; Greenhouse, Bryan
2015-05-01
Extraction and amplification of DNA from dried blood spots (DBS) collected in field studies is commonly used for detection of Plasmodium falciparum. However, there have been few systematic efforts to determine the effects of storage and extraction methods on the sensitivity of DNA amplification. We investigated the effects of storage conditions, length of storage, and DNA extraction methods on amplification via three PCR-based assays using field samples and laboratory controls. Samples stored as DBS for 2 or more years at ambient temperature showed a significant loss of sensitivity that increased with time; after 10 years only 10% samples with parasite densities > 1,000 parasites/μL were detectable by nested polymerase chain reaction (PCR). Conversely, DBS and extracted DNA stored at -20°C showed no loss of sensitivity with time. Samples with low parasite densities amplified more successfully with saponin/Chelex compared with spin-column-based extraction, though the latter method performed better on samples with higher parasite densities stored for 2 years at ambient temperature. DNA extracted via both methods was stable after 20 freeze-thaw cycles. Our results suggest that DBS should be stored at -20°C or extracted immediately, especially if anticipating 2 or more years of storage. © The American Society of Tropical Medicine and Hygiene.
Schwartz, Alanna; Baidjoe, Amrish; Rosenthal, Philip J.; Dorsey, Grant; Bousema, Teun; Greenhouse, Bryan
2015-01-01
Extraction and amplification of DNA from dried blood spots (DBS) collected in field studies is commonly used for detection of Plasmodium falciparum. However, there have been few systematic efforts to determine the effects of storage and extraction methods on the sensitivity of DNA amplification. We investigated the effects of storage conditions, length of storage, and DNA extraction methods on amplification via three PCR-based assays using field samples and laboratory controls. Samples stored as DBS for 2 or more years at ambient temperature showed a significant loss of sensitivity that increased with time; after 10 years only 10% samples with parasite densities > 1,000 parasites/μL were detectable by nested polymerase chain reaction (PCR). Conversely, DBS and extracted DNA stored at −20°C showed no loss of sensitivity with time. Samples with low parasite densities amplified more successfully with saponin/Chelex compared with spin-column-based extraction, though the latter method performed better on samples with higher parasite densities stored for 2 years at ambient temperature. DNA extracted via both methods was stable after 20 freeze-thaw cycles. Our results suggest that DBS should be stored at −20°C or extracted immediately, especially if anticipating 2 or more years of storage. PMID:25758652
Le Govic, Y; Guyot, K; Certad, G; Deschildre, A; Novo, R; Mary, C; Sendid, B; Viscogliosi, E; Favennec, L; Dei-Cas, E; Fréalle, E; Dutoit, E
2016-01-01
Cryptosporidiosis is an important though underreported public health concern. Molecular tools might be helpful in improving its diagnosis. In this study, ZR Fecal DNA MiniPrep™ Kit (ZR) and NucliSens® easyMAG® (EM) were compared using four Cryptosporidium-seeded feces and 29 Cryptosporidium-positive stools. Thereafter, ZR was selected for prospective evaluation of Cryptosporidium detection by 18S rDNA and LAXER quantitative PCR (qPCR) in 69 stools from 56 patients after Cryptosporidium detection by glycerin, modified Ziehl-Neelsen (ZN) and auramine-phenol (AP) stainings. The combination of any of the two extraction methods with 18S qPCR yielded adequate detection of Cryptosporidium in seeded stools, but the ZR kit showed the best performance. All 29 Cryptosporidium-positive samples were positive with 18S qPCR, after both ZR and EM extraction. However, false-negative results were found with LAXER qPCR or nested PCR. Cryptosporidiosis was diagnosed in 7/56 patients. All the microscopic methods enabled the initial diagnosis, but Cryptosporidium was detected in 12, 13, and 14 samples from these seven patients after glycerin, ZN, and AP staining respectively. Among these samples, 14 and 12 were positive with 18S and LAXER qPCR respectively. In two patients, Cryptosporidium DNA loads were found to be correlated with clinical evolution. Although little known, glycerin is a sensitive method for the initial detection of Cryptosporidium. When combined with 18S qPCR, ZR extraction, which had not been evaluated so far for Cryptosporidium, was an accurate tool for detecting Cryptosporidium and estimating the oocyst shedding in the course of infection.
The validation of forensic DNA extraction systems to utilize soil contaminated biological evidence.
Kasu, Mohaimin; Shires, Karen
2015-07-01
The production of full DNA profiles from biological evidence found in soil has a high failure rate due largely to the inhibitory substance humic acid (HA). Abundant in various natural soils, HA co-extracts with DNA during extraction and inhibits DNA profiling by binding to the molecular components of the genotyping assay. To successfully utilize traces of soil contaminated evidence, such as that found at many murder and rape crime scenes in South Africa, a reliable HA removal extraction system would often be selected based on previous validation studies. However, for many standard forensic DNA extraction systems, peer-reviewed publications detailing the efficacy on soil evidence is either lacking or is incomplete. Consequently, these sample types are often not collected or fail to yield suitable DNA material due to the use of unsuitable methodology. The aim of this study was to validate the common forensic DNA collection and extraction systems used in South Africa, namely DNA IQ, FTA elute and Nucleosave for processing blood and saliva contaminated with HA. A forensic appropriate volume of biological evidence was spiked with HA (0, 0.5, 1.5 and 2.5 mg/ml) and processed through each extraction protocol for the evaluation of HA removal using QPCR and STR-genotyping. The DNA IQ magnetic bead system effectively removed HA from highly contaminated blood and saliva, and generated consistently acceptable STR profiles from both artificially spiked samples and crude soil samples. This system is highly recommended for use on soil-contaminated evidence over the cellulose card-based systems currently being preferentially used for DNA sample collection. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gabrielle N. Pecora; Francine C. Reid; Lauren M. Tom
2016-05-01
Collecting field samples from remote or geographically distant areas can be a financially and logistically challenging. With participation of a local organization where the samples are originated from, gDNA samples can be extracted from the field and shipped to a research institution for further processing and analysis. The ability to set up gDNA extraction capabilities in the field can drastically reduce cost and time when running long-term microbial studies with a large sample set. The method outlined here has developed a compact and affordable method for setting up a “laboratory” and extracting and shipping gDNA samples from anywhere in themore » world. This white paper explains the process of setting up the “laboratory”, choosing and training individuals with no prior scientific experience how to perform gDNA extractions and safe methods for shipping extracts to any research institution. All methods have been validated by the Andersen group at Lawrence Berkeley National Laboratory using the Berkeley Lab PhyloChip.« less
A facile and efficient method to modify gold nanorods with thiolated DNA at a low pH value.
Shi, Dangwei; Song, Chen; Jiang, Qiao; Wang, Zhen-Gang; Ding, Baoquan
2013-03-28
We report a simple, rapid and efficient strategy for modification of gold nanorods (AuNRs) with thiolated DNA at low solution pH and high salt concentration. DNA functionalized AuNRs were then used to assemble with DNA modified gold nanoparticles to form discrete satellite nanostructures.
Forensic genetic analysis of bone remain samples.
Siriboonpiputtana, T; Rinthachai, T; Shotivaranon, J; Peonim, V; Rerkamnuaychoke, B
2018-03-01
DNA typing from degraded human remains is still challenging forensic DNA scientists not only in the prospective of DNA purification but also in the interpretation of established DNA profiles and data manipulation, especially in mass fatalities. In this report, we presented DNA typing protocol to investigate many skeletal remains in different degrees of decomposing. In addition, we established the grading system aiming for prior determination of the association between levels of decomposing and overall STR amplification efficacy. A total of 80 bone samples were subjected to DNA isolation using the modified DNA IQ™ System (Promega, USA) for bone extraction following with STR analysis using the AmpFLSTR Identifiler ® (Thermo Fisher Scientific, USA). In low destruction group, complete STR profiles were observed as 84.4% whereas partial profiles and non-amplified were found as 9.4% and 6.2%, respectively. Moreover, in medium destruction group, both complete and partial STR profiles were observed as 31.2% while 37.5% of this group was unable to amplify. Nevertheless, we could not purify DNA and were unable to generate STR profile in any sample from the high destroyed bone samples. Compact bones such as femur and humerus have high successful amplification rate superior than loose/spongy bones. Furthermore, costal cartilage could be a designate specimen for DNA isolation in a case of the body that was discovered approximately to 3 days after death which enabled to isolate high quality and quantity of DNA, reduce time and cost, and do not require special tools such as freezer mill. Copyright © 2018 Elsevier B.V. All rights reserved.
Gubu, Amu; Li, Long; Ning, Yan; Zhang, Xiaoyun; Lee, Seonghyun; Feng, Mengke; Li, Qiang; Lei, Xiaoguang; Jo, Kyubong; Tang, Xinjing
2018-04-17
Bioorthogonal metabolic DNA labeling with fluorochromes is a powerful strategy to visualize DNA molecules and their functions. Here, we report the development of a new DNA metabolic labeling strategy enabled by the catalyst-free bioorthogonal ligation using vinyl thioether modified thymidine and o-quinolinone quinone methide. With the newly designed vinyl thioether-modified thymidine (VTdT), we added labeling tags on cellular DNA, which could further be linked to fluorochromes in cells. Therefore, we successfully visualized the DNA localization within cells as well as single DNA molecules without other staining reagents. In addition, we further characterized this bioorthogonal DNA metabolic labeling using DNase I digestion, MS characterization of VTdT as well as VTdT-oQQF conjugate in cell nuclei or mitochondria. This technique provides a powerful strategy to study DNA in cells, which paves the way to achieve future spatiotemporal deciphering of DNA synthesis and functions. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Extraction of DNA from human embryos after long-term preservation in formalin and Bouin's solutions.
Nagai, Momoko; Minegishi, Katsura; Komada, Munekazu; Tsuchiya, Maiko; Kameda, Tomomi; Yamada, Shigehito
2016-05-01
The "Kyoto Collection of Human Embryos" at Kyoto University was begun in 1961. Although morphological analyses of samples in the Kyoto Collection have been performed, these embryos have been considered difficult to genetically analyze because they have been preserved in formalin or Bouin's solution for 20-50 years. Owing to the recent advances in molecular biology, it has become possible to extract DNA from long-term fixed tissues. The purpose of this study was to extract DNA from wet preparations of human embryo samples after long-term preservation in fixing solution. We optimized the DNA extraction protocol to be suitable for tissues that have been damaged by long-term fixation, including DNA-protein crosslinking damage. Diluting Li2 CO3 with 70% ethanol effectively removed picric acid from samples fixed in Bouin's solution. Additionally, 20.0 mg/mL proteinase was valuable to lyse the long-term fixed samples. The extracted DNA was checked with PCR amplification using several sets of primers and sequence analysis. The PCR products included at least 295- and 838-bp amplicons. These results show that the extracted DNA is applicable for genetic analyses, and indicate that old embryos in the Kyoto Collection should be made available for future studies. The protocol described in this study can successfully extract DNA from old specimens and, with improvements, should be applicable in research aiming to understand the molecular mechanisms of human congenital anomalies. © 2015 Japanese Teratology Society.
Kresse, Stine H; Namløs, Heidi M; Lorenz, Susanne; Berner, Jeanne-Marie; Myklebost, Ola; Bjerkehagen, Bodil; Meza-Zepeda, Leonardo A
2018-01-01
Nucleic acid material of adequate quality is crucial for successful high-throughput sequencing (HTS) analysis. DNA and RNA isolated from archival FFPE material are frequently degraded and not readily amplifiable due to chemical damage introduced during fixation. To identify optimal nucleic acid extraction kits, DNA and RNA quantity, quality and performance in HTS applications were evaluated. DNA and RNA were isolated from five sarcoma archival FFPE blocks, using eight extraction protocols from seven kits from three different commercial vendors. For DNA extraction, the truXTRAC FFPE DNA kit from Covaris gave higher yields and better amplifiable DNA, but all protocols gave comparable HTS library yields using Agilent SureSelect XT and performed well in downstream variant calling. For RNA extraction, all protocols gave comparable yields and amplifiable RNA. However, for fusion gene detection using the Archer FusionPlex Sarcoma Assay, the truXTRAC FFPE RNA kit from Covaris and Agencourt FormaPure kit from Beckman Coulter showed the highest percentage of unique read-pairs, providing higher complexity of HTS data and more frequent detection of recurrent fusion genes. truXTRAC simultaneous DNA and RNA extraction gave similar outputs as individual protocols. These findings show that although successful HTS libraries could be generated in most cases, the different protocols gave variable quantity and quality for FFPE nucleic acid extraction. Selecting the optimal procedure is highly valuable and may generate results in borderline quality specimens.
Tissue Specific and Hormonal Regulation of Gene Expression
1997-08-01
interference assays were performed. These assays identify DNA bases that, when modified, interfere with the binding of the nuclear factor to the hCRH promoter...thymidine residues. The DNA bases that when modified affected the binding of the protein are noted with arrows, and their location in the hCRH...indicated. B. Methylation interference. The fragments were partially methylated using dimethyl sulfate. The DNA bases that when modified affected the
Competition for DNA binding sites using Promega DNA IQ™ paramagnetic beads.
Frégeau, Chantal J; De Moors, Anick
2012-09-01
The Promega DNA IQ™ system is easily amenable to automation and has been an integral part of standard operating procedures for many forensic laboratories including those of the Royal Canadian Mounted Police (RCMP) since 2004. Due to some failure to extract DNA from samples that should have produced DNA using our validated automated DNA IQ™-based protocol, the competition for binding sites on the DNA IQ™ magnetic beads was more closely examined. Heme from heavily blooded samples interfered slightly with DNA binding. Increasing the concentration of Proteinase K during lysis of these samples did not enhance DNA recovery. However, diluting the sample lysate following lysis prior to DNA extraction overcame the reduction in DNA yield and preserved portions of the lysates for subsequent manual or automated extraction. Dye/chemicals from black denim lysates competed for binding sites on the DNA IQ™ beads and significantly reduced DNA recovery. Increasing the size or number of black denim cuttings during lysis had a direct adverse effect on DNA yield from various blood volumes. The dilution approach was successful on these samples and permitted the extraction of high DNA yields. Alternatively, shortening the incubation time for cell lysis to 30 min instead of the usual overnight at 56 °C prevented competition from black denim dye/chemicals and increased DNA yields. Crown Copyright © 2011. Published by Elsevier Ireland Ltd. All rights reserved.
A Sensitive Branched DNA HIV-1 Signal Amplification Viral Load Assay with Single Day Turnaround
Baumeister, Mark A.; Zhang, Nan; Beas, Hilda; Brooks, Jesse R.; Canchola, Jesse A.; Cosenza, Carlo; Kleshik, Felix; Rampersad, Vinod; Surtihadi, Johan; Battersby, Thomas R.
2012-01-01
Branched DNA (bDNA) is a signal amplification technology used in clinical and research laboratories to quantitatively detect nucleic acids. An overnight incubation is a significant drawback of highly sensitive bDNA assays. The VERSANT® HIV-1 RNA 3.0 Assay (bDNA) (“Versant Assay”) currently used in clinical laboratories was modified to allow shorter target incubation, enabling the viral load assay to be run in a single day. To dramatically reduce the target incubation from 16–18 h to 2.5 h, composition of only the “Lysis Diluent” solution was modified. Nucleic acid probes in the assay were unchanged. Performance of the modified assay (assay in development; not commercially available) was evaluated and compared to the Versant Assay. Dilution series replicates (>950 results) were used to demonstrate that analytical sensitivity, linearity, accuracy, and precision for the shorter modified assay are comparable to the Versant Assay. HIV RNA-positive clinical specimens (n = 135) showed no significant difference in quantification between the modified assay and the Versant Assay. Equivalent relative quantification of samples of eight genotypes was demonstrated for the two assays. Elevated levels of several potentially interfering endogenous substances had no effect on quantification or specificity of the modified assay. The modified assay with drastically improved turnaround time demonstrates the viability of signal-amplifying technology, such as bDNA, as an alternative to the PCR-based assays dominating viral load monitoring in clinical laboratories. Highly sensitive bDNA assays with a single day turnaround may be ideal for laboratories with especially stringent cost, contamination, or reliability requirements. PMID:22479381
A sensitive branched DNA HIV-1 signal amplification viral load assay with single day turnaround.
Baumeister, Mark A; Zhang, Nan; Beas, Hilda; Brooks, Jesse R; Canchola, Jesse A; Cosenza, Carlo; Kleshik, Felix; Rampersad, Vinod; Surtihadi, Johan; Battersby, Thomas R
2012-01-01
Branched DNA (bDNA) is a signal amplification technology used in clinical and research laboratories to quantitatively detect nucleic acids. An overnight incubation is a significant drawback of highly sensitive bDNA assays. The VERSANT® HIV-1 RNA 3.0 Assay (bDNA) ("Versant Assay") currently used in clinical laboratories was modified to allow shorter target incubation, enabling the viral load assay to be run in a single day. To dramatically reduce the target incubation from 16-18 h to 2.5 h, composition of only the "Lysis Diluent" solution was modified. Nucleic acid probes in the assay were unchanged. Performance of the modified assay (assay in development; not commercially available) was evaluated and compared to the Versant Assay. Dilution series replicates (>950 results) were used to demonstrate that analytical sensitivity, linearity, accuracy, and precision for the shorter modified assay are comparable to the Versant Assay. HIV RNA-positive clinical specimens (n = 135) showed no significant difference in quantification between the modified assay and the Versant Assay. Equivalent relative quantification of samples of eight genotypes was demonstrated for the two assays. Elevated levels of several potentially interfering endogenous substances had no effect on quantification or specificity of the modified assay. The modified assay with drastically improved turnaround time demonstrates the viability of signal-amplifying technology, such as bDNA, as an alternative to the PCR-based assays dominating viral load monitoring in clinical laboratories. Highly sensitive bDNA assays with a single day turnaround may be ideal for laboratories with especially stringent cost, contamination, or reliability requirements.
Evaluation and comparison of FTA card and CTAB DNA extraction methods for non-agricultural taxa.
Siegel, Chloe S; Stevenson, Florence O; Zimmer, Elizabeth A
2017-02-01
An efficient, effective DNA extraction method is necessary for comprehensive analysis of plant genomes. This study analyzed the quality of DNA obtained using paper FTA cards prepared directly in the field when compared to the more traditional cetyltrimethylammonium bromide (CTAB)-based extraction methods from silica-dried samples. DNA was extracted using FTA cards according to the manufacturer's protocol. In parallel, CTAB-based extractions were done using the automated AutoGen DNA isolation system. DNA quality for both methods was determined for 15 non-agricultural species collected in situ, by gel separation, spectrophotometry, fluorometry, and successful amplification and sequencing of nuclear and chloroplast gene markers. The FTA card extraction method yielded less concentrated, but also less fragmented samples than the CTAB-based technique. The card-extracted samples provided DNA that could be successfully amplified and sequenced. The FTA cards are also useful because the collected samples do not require refrigeration, extensive laboratory expertise, or as many hazardous chemicals as extractions using the CTAB-based technique. The relative success of the FTA card method in our study suggested that this method could be a valuable tool for studies in plant population genetics and conservation biology that may involve screening of hundreds of individual plants. The FTA cards, like the silica gel samples, do not contain plant material capable of propagation, and therefore do not require permits from the U.S. Department of Agriculture (USDA) Animal and Plant Health Inspection Service (APHIS) for transportation.
Xenopus egg extract: A powerful tool to study genome maintenance mechanisms.
Hoogenboom, Wouter S; Klein Douwel, Daisy; Knipscheer, Puck
2017-08-15
DNA repair pathways are crucial to maintain the integrity of our genome and prevent genetic diseases such as cancer. There are many different types of DNA damage and specific DNA repair mechanisms have evolved to deal with these lesions. In addition to these repair pathways there is an extensive signaling network that regulates processes important for repair, such as cell cycle control and transcription. Despite extensive research, DNA damage repair and signaling are not fully understood. In vitro systems such as the Xenopus egg extract system, have played, and still play, an important role in deciphering the molecular details of these processes. Xenopus laevis egg extracts contain all factors required to efficiently perform DNA repair outside a cell, using mechanisms conserved in humans. These extracts have been used to study several genome maintenance pathways, including mismatch repair, non-homologous end joining, ICL repair, DNA damage checkpoint activation, and replication fork stability. Here we describe how the Xenopus egg extract system, in combination with specifically designed DNA templates, contributed to our detailed understanding of these pathways. Copyright © 2017. Published by Elsevier Inc.
Extraction of High Quality DNA from Seized Moroccan Cannabis Resin (Hashish)
El Alaoui, Moulay Abdelaziz; Melloul, Marouane; Alaoui Amine, Sanaâ; Stambouli, Hamid; El Bouri, Aziz; Soulaymani, Abdelmajid; El Fahime, Elmostafa
2013-01-01
The extraction and purification of nucleic acids is the first step in most molecular biology analysis techniques. The objective of this work is to obtain highly purified nucleic acids derived from Cannabis sativa resin seizure in order to conduct a DNA typing method for the individualization of cannabis resin samples. To obtain highly purified nucleic acids from cannabis resin (Hashish) free from contaminants that cause inhibition of PCR reaction, we have tested two protocols: the CTAB protocol of Wagner and a CTAB protocol described by Somma (2004) adapted for difficult matrix. We obtained high quality genomic DNA from 8 cannabis resin seizures using the adapted protocol. DNA extracted by the Wagner CTAB protocol failed to give polymerase chain reaction (PCR) amplification of tetrahydrocannabinolic acid (THCA) synthase coding gene. However, the extracted DNA by the second protocol permits amplification of THCA synthase coding gene using different sets of primers as assessed by PCR. We describe here for the first time the possibility of DNA extraction from (Hashish) resin derived from Cannabis sativa. This allows the use of DNA molecular tests under special forensic circumstances. PMID:24124454
Magnetic studies of Co2+, Ni2+, and Zn2+-modified DNA double-crossover lattices
NASA Astrophysics Data System (ADS)
Dugasani, Sreekantha Reddy; Oh, Young Hoon; Gnapareddy, Bramaramba; Park, Tuson; Kang, Won Nam; Park, Sung Ha
2018-01-01
We fabricated divalent-metal-ion-modified DNA double-crossover (DX) lattices on a glass substrate and studied their magnetic characteristics as a function of ion concentrations [Co2+], [Ni2+] and [Zn2+]. Up to certain critical concentrations, the DNA DX lattices with ions revealed discrete S-shaped hysteresis, i.e. characteristics of strong ferromagnetism, with significant changes in the coercive field, remanent magnetization, and susceptibility. Induced magnetic dipoles formed by metal ions in DNA duplex in the presence of a magnetic field imparted ferromagnetic behaviour. By considering hysteresis and the magnitude of magnetization in a magnetization-magnetic field curve, Co2+-modified DNA DX lattices showed a relatively strong ferromagnetic nature with an increasing (decreasing) trend of coercive field and remanent magnetization when [Co2+] ≤ 1 mM ([Co2+] > 1 mM). In contrast, Ni2+ and Zn2+-modified DNA DX lattices exhibited strong and weak ferromagnetic behaviours at lower (≤1 mM for Ni2+ and ≤0.5 mM for Zn2+) and higher (>1 mM for Ni2+ and >0.5 mM for Zn2+) concentrations of ions, respectively. About 1 mM of [Co2+], [Ni2+] and [Zn2+] in DNA DX lattices was of special interest with regard to physical characteristics and was identified to be an optimum concentration of each ion. Finally, we measured the temperature-dependent magnetic characteristics of the metal-ion-modified DNA DX lattices. Nonzero magnetization and inverse susceptibility with almost constant values were observed between 25 and 300 K, with no indication of a magnetic transition. This indicated that the magnetic Curie temperatures of Co2+, Ni2+ and Zn2+-modified DNA DX lattices were above 300 K.
Renshaw, Mark A; Olds, Brett P; Jerde, Christopher L; McVeigh, Margaret M; Lodge, David M
2015-01-01
Current research targeting filtered macrobial environmental DNA (eDNA) often relies upon cold ambient temperatures at various stages, including the transport of water samples from the field to the laboratory and the storage of water and/or filtered samples in the laboratory. This poses practical limitations for field collections in locations where refrigeration and frozen storage is difficult or where samples must be transported long distances for further processing and screening. This study demonstrates the successful preservation of eDNA at room temperature (20 °C) in two lysis buffers, CTAB and Longmire's, over a 2-week period of time. Moreover, the preserved eDNA samples were seamlessly integrated into a phenol–chloroform–isoamyl alcohol (PCI) DNA extraction protocol. The successful application of the eDNA extraction to multiple filter membrane types suggests the methods evaluated here may be broadly applied in future eDNA research. Our results also suggest that for many kinds of studies recently reported on macrobial eDNA, detection probabilities could have been increased, and at a lower cost, by utilizing the Longmire's preservation buffer with a PCI DNA extraction. PMID:24834966
Sengüven, Burcu; Baris, Emre; Oygur, Tulin; Berktas, Mehmet
2014-01-01
Aim: Discussing a protocol involving xylene-ethanol deparaffinization on slides followed by a kit-based extraction that allows for the extraction of high quality DNA from FFPE tissues. Methods: DNA was extracted from the FFPE tissues of 16 randomly selected blocks. Methods involving deparaffinization on slides or tubes, enzyme digestion overnight or for 72 hours and isolation using phenol chloroform method or a silica-based commercial kit were compared in terms of yields, concentrations and the amplifiability. Results: The highest yield of DNA was produced from the samples that were deparaffinized on slides, digested for 72 hours and isolated with a commercial kit. Samples isolated with the phenol-chloroform method produced DNA of lower purity than the samples that were purified with kit. The samples isolated with the commercial kit resulted in better PCR amplification. Conclusion: Silica-based commercial kits and deparaffinized on slides should be considered for DNA extraction from FFPE. PMID:24688314
Comparison of six extraction techniques for isolation of DNA from filamentous fungi.
van Burik, J A; Schreckhise, R W; White, T C; Bowden, R A; Myerson, D
1998-10-01
Filamentous fungi have a sturdy cell wall which is resistant to the usual DNA extraction procedures. We determined the DNA extraction procedure with the greatest yield of high quality fungal DNA and the least predilection for cross-contamination of equipment between specimens. Each of six extraction methods was performed using Aspergillus fumigatus hyphae. The six methods were: (1) glass bead pulverization with vortexing; (2) grinding with mortar and pestle followed by glass bead pulverization; (3) glass bead pulverization using 1% hydroxyacetyl trimethyl ammonium bromide (CTAB) buffer in a water bath sonicator; (4) water bath sonication in CTAB buffer; (5) grinding followed by incubation with CTAB; and (6) lyticase enzymatic cell lysis. Genomic DNA yields were measured by spectrophotometry and by visual reading of 2% agarose gels, with shearing assessed by the migration of the DNA on the gel. Genomic fungal DNA yields were highest for Method 1, followed by Methods 5 approximately = to 2 >3 approximately = to 4 approximately = to 6. Methods 2 and 5, both of which involved grinding with mortar and pestle, led to shearing of the genomic DNA in one of two trials each. We conclude that the use of glass beads with extended vortexing is optimal for extraction of microgramme amounts of DNA from filamentous fungal cultures.
Bai, Jinhe; Baldwin, Elizabeth; Liao, Hui-Ling; Zhao, Wei; Kostenyuk, Igor; Burns, Jacqueline; Irey, Mike
2013-10-02
Orange juice processed from Huanglongbing (HLB) affected fruit is often associated with bitter taste and/or off-flavor. HLB disease in Florida is associated with Candidatus Liberibacter asiaticus (CLas), a phloem-limited bacterium. The current standard to confirm CLas for citrus trees is to take samples from midribs of leaves, which are rich in phloem tissues, and use a quantitative real-time polymerase chain reaction (qPCR) test to detect the 16S rDNA gene of CLas. It is extremely difficult to detect CLas in orange juice because of the low CLas population, high sugar and pectin concentration, low pH, and possible existence of an inhibitor to DNA amplification. The objective of this research was to improve extraction of DNA from orange juice and detection of CLas by qPCR. Homogenization using a sonicator increased DNA yield by 86% in comparison to mortar and pestle extraction. It is difficult to separate DNA from pectin; however, DNA was successfully extracted by treating the juice with pectinase. Application of an elution column successfully removed the unidentified inhibitor to DNA amplification. This work provided a protocol to extract DNA from whole orange juice and detect CLas in HLB-affected fruit.
Faisal, Mohammad; Shahab, Uzma; Alatar, Abdulrahman A; Ahmad, Saheem
2017-11-01
The structural perturbations in DNA molecule may be caused by a break in a strand, a missing base from the backbone, or a chemically changed base. These alterations in DNA that occurs naturally can result from metabolic or hydrolytic processes. DNA damage plays a major role in the mutagenesis, carcinogenesis, aging and various other patho-physiological conditions. DNA damage can be induced through hydrolysis, exposure to reactive oxygen species (ROS) and other reactive carbonyl metabolites including 4-hydroxynonenal (HNE). 4-HNE is an important lipid peroxidation product which has been implicated in the mutagenesis and carcinogenesis processes. The present study examines to probe the presence of auto-antibodies against 4-hydroxynonenal damaged DNA (HNE-DNA) in various cancer subjects. In this study, the purified calf thymus DNA was damaged by the action of 4-HNE. The DNA was incubated with 4-HNE for 24 h at 37°C temperature. The binding characteristics of cancer auto-antibodies were assessed by direct binding and competitive inhibition ELISA. DNA modifications produced hyperchromicity in UV spectrum and decreased fluorescence intensity. Cancer sera exhibited enhanced binding with the 4-HNE modified calf thymus DNA as compared to its native conformer. The 4-HNE modified DNA presents unique epitopes which may be one of the factors for the auto-antibody induction in cancer patients. The HNE modified DNA presents unique epitopes which may be one of the factors for the autoantibody induction in cancer patients. © 2017 Wiley Periodicals, Inc.
Preparation of DNA-containing extract for PCR amplification
Dunbar, John M.; Kuske, Cheryl R.
2006-07-11
Environmental samples typically include impurities that interfere with PCR amplification and DNA quantitation. Samples of soil, river water, and aerosol were taken from the environment and added to an aqueous buffer (with or without detergent). Cells from the sample are lysed, releasing their DNA into the buffer. After removing insoluble cell components, the remaining soluble DNA-containing extract is treated with N-phenacylthiazolium bromide, which causes rapid precipitation of impurities. Centrifugation provides a supernatant that can be used or diluted for PCR amplification of DNA, or further purified. The method may provide a DNA-containing extract sufficiently pure for PCR amplification within 5–10 minutes.
Tripathi, Prashant; Moinuddin; Dixit, Kiran; Mir, Abdul Rouf; Habib, Safia; Alam, Khursheed; Ali, Asif
2014-07-01
Peroxynitrite (ONOO(-)), formed by the reaction between nitric oxide (NO) and superoxide (O2(-)), has been implicated in the etiology of numerous disease processes. Peroxynitrite interacts with DNA via direct oxidative reactions or via indirect radical-mediated mechanism. It can inflict both oxidative and nitrosative damages on DNA bases, generating abasic sites, resulting in the single strand breaks. Plasmid pUC 18 isolated from Escherichiacoli was modified with peroxynitrite, generated by quenched flow process. Modifications incurred in plasmid DNA were characterized by ultraviolet and fluorescence spectroscopy, circular dichroism, HPLC and melting temperature studies. Binding characteristics and specificity of antibodies from diabetes patients were analyzed by direct binding and inhibition ELISA. Peroxynitrite modification of pUC 18 plasmid resulted in the formation of strand breaks and base modification. The major compound formed when peroxynitrite reacted with DNA was 8-nitroguanine, a specific marker for peroxynitrite induced DNA damage in inflamed tissues. The concentration of 8-nitroguanine was found to be 3.8 μM. Sera from diabetes type 1 patients from different age groups were studied for their binding to native and peroxynitrite modified plasmid. Direct binding and competitive-inhibition ELISA results showed higher recognition of peroxynitrite modified plasmid, as compared to the native form, by auto-antibodies present in diabetes patients. The preferential recognition of modified plasmid by diabetes autoantibodies was further reiterated by gel shift assay. Experimentally induced anti-peroxynitrite-modified plasmid IgG was used as a probe to detect nitrosative lesions in the DNA isolated from diabetes patients. Copyright © 2014 Elsevier Inc. All rights reserved.
Tsunoda, Hirosuke; Kudo, Tomomi; Masaki, Yoshiaki; Ohkubo, Akihiro; Seio, Kohji; Sekine, Mitsuo
2011-04-01
To clarify the biochemical behavior of 2'-deoxyribonucleoside 5'-triphosphates and oligodeoxyribonucleotides (ODNs) containing cytosine N-oxide (C(o)) and adenine N-oxide (A(o)), we examined their base recognition ability in DNA duplex formation using melting temperature (T(m)) experiments and their substrate specificity in DNA polymerase-mediated replication. As the result, it was found that the T(m) values of modified DNA-DNA duplexes incorporating 2'-deoxyribonucleoside N-oxide derivatives significantly decreased compared with those of the unmodified duplexes. However, single insertion reactions by DNA polymerases of Klenow fragment (KF) (exo(-)) and Vent (exo(-)) suggested that C(o) and A(o) selectively recognized G and T, respectively. Meanwhile, the kinetic study showed that the incorporation efficiencies of the modified bases were lower than those of natural bases. Ab initio calculations suggest that these modified bases can form the stable base pairs with the original complementary bases. These results indicate that the modified bases usually recognize the original bases as partners for base pairing, except for misrecognition of dATP by the action of KF (exo(-)) toward A(o) on the template, and the primers could be extended on the template DNA. When they misrecognized wrong bases, the chain could not be elongated so that the modified base served as the chain terminator.
Content and persistence of extracellular DNA in native soils
NASA Astrophysics Data System (ADS)
Blagodatskaya, Evgenia; Blagodatsky, Sergey; Anderson, Traute-Heidi; Kuzyakov, Yakov
2014-05-01
The long-term persistence of soil extracellular DNA is questionable because of high potential activity of nucleases produced by soil microorganisms. By the other hand, the relative persistence of DNA-like biopolymers could be due to their adsorption on clay minerals and humus substances in soil. High-specific and ultra sensitive reagent PicoGreenTM (Molecular Probes) permits the quantitative assessment of microbial dsDNA in diluted soil extracts giving a good tool for tracing the DNA fate in soil. Our goal was to determine intracellular and extracellular DNA content in cambisol (loamy sand) and in chernozem (silty loam) soils and to investigate the possible adsorption and degradation of extracellular DNA in soil. Optimized procedure of mechanical and enzymatic destruction of cell walls was used for direct extraction of microbial DNA with Tris-EDTA buffer (Blagodatskaya et al., 2003). Extracellular dsDNA was determined in distilled water and in Tris-EDTA extracts without enzymatic or mechanical treatments. DNA content was determined after addition of PicoGreen to diluted soil extracts. Degradation of extracellular DNA was traced during 24 h incubation of 2 µg lambda-phage DNA in soil. Possible DNA adsorption to soil matrix was determined by recovery of lambda -phage DNA added to autoclaved soil. Extracellular dsDNA was absent in water extracts of both soils. The content of extracellular dsDNA extracted by Tris-EDTA buffer was 0.46 µg/g in chernozem and 1.59 µg/g in cambisol amounting 0.43 and 2.8% of total dsDNA content in these soils, respectively. 100% and 64.8% of added extracellular lambda -phage dsDNA was found in cambisol and chernozem soils, respectively, in 5 h after application. 39% and 73.5% of added DNA disappeared in cambisol and in chernozem, respectively, during 24 h incubation. Degradation rate of extracellular DNA depended on microbial biomass content, which was 2.5 times higher in chernozem as compared to cambisol. Maximum adsorption of DNA by soils was observed in cambisol and reached 2.7% of added amount. We speculate that probability of gene transfer could be rather high in soils, taking into account possible increase of extracellular DNA content after transient environmental events (i.e. drying - rewetting and freezing - thawing).
Lv, Yun; Yang, Lili; Mao, Xiaoxia; Lu, Mengjia; Zhao, Jing; Yin, Yongmei
2016-11-15
Glutathione (GSH) plays an important role in numerous cellular functions, and the abnormal GSH expression is closely related with many dangerous human diseases. In this work, we have proposed a simple but sensitive electrochemical method for quantitative detection of GSH based on an Hg(2+)-mediated strand displacement reaction. Owing to the specific binding of Hg(2+) with T-T mismatches, helper DNA can bind to 3' terminal of probe DNA 1 and initiate the displacement of probe DNA 2 immobilized on an electrode surface. However, Hg(2+)-mediated strand displacement reaction can be inhibited by the chelation of GSH with Hg(2+), thereby leading to an obvious electrochemical response obtained from methylene blue that is modified onto the probe DNA. Our method can sensitively detect GSH in a wide linear range from 0.5nM to 5μM with a low detection limit of 0.14nM, which can also easily distinguish target molecules in complex serum samples and even cell extractions. Therefore, this method may have great potential to monitor GSH in the physiological and pathological condition in the future. Copyright © 2016 Elsevier B.V. All rights reserved.
Stabilising the Herpes Simplex Virus capsid by DNA packaging
NASA Astrophysics Data System (ADS)
Wuite, Gijs; Radtke, Kerstin; Sodeik, Beate; Roos, Wouter
2009-03-01
Three different types of Herpes Simplex Virus type 1 (HSV-1) nuclear capsids can be distinguished, A, B and C capsids. These capsids types are, respectively, empty, contain scaffold proteins, or hold DNA. We investigate the physical properties of these three capsids by combining biochemical and nanoindentation techniques. Atomic Force Microscopy (AFM) experiments show that A and C capsids are mechanically indistinguishable whereas B capsids already break at much lower forces. By extracting the pentamers with 2.0 M GuHCl or 6.0 M Urea we demonstrate an increased flexibility of all three capsid types. Remarkably, the breaking force of the B capsids without pentamers does not change, while the modified A and C capsids show a large drop in their breaking force to approximately the value of the B capsids. This result indicates that upon DNA packaging a structural change at or near the pentamers occurs which mechanically reinforces the capsids structure. The reported binding of proteins UL17/UL25 to the pentamers of the A and C capsids seems the most likely candidate for such capsids strengthening. Finally, the data supports the view that initiation of DNA packaging triggers the maturation of HSV-1 capsids.
Sánchez, Beatriz; Rodríguez, Mar; Casado, Eva M; Martín, Alberto; Córdoba, Juan J
2008-12-01
A variety of previously established mechanical and chemical treatments to achieve fungal cell lysis combined with a semiautomatic system operated by a vacuum pump were tested to obtain DNA extract to be directly used in randomly amplified polymorphic DNA (RAPD)-PCR to differentiate cyclopiazonic acid-producing and -nonproducing mold strains. A DNA extraction method that includes digestion with proteinase K and lyticase prior to using a mortar and pestle grinding and a semiautomatic vacuum system yielded DNA of high quality in all the fungal strains and species tested, at concentrations ranging from 17 to 89 ng/microl in 150 microl of the final DNA extract. Two microliters of DNA extracted with this method was directly used for RAPD-PCR using primer (GACA)4. Reproducible RAPD fingerprints showing high differences between producer and nonproducer strains were observed. These differences in the RAPD patterns did not differentiate all the strains tested in clusters by cyclopiazonic acid production but may be very useful to distinguish cyclopiazonic acid producer strains from nonproducer strains by a simple RAPD analysis. Thus, the DNA extracts obtained could be used directly without previous purification and quantification for RAPD analysis to differentiate cyclopiazonic acid producer from nonproducer mold strains. This combined analysis could be adaptable to other toxigenic fungal species to enable differentiation of toxigenic and non-toxigenic molds, a procedure of great interest in food safety.
Dispersion of bamboo type multi-wall carbon nanotubes in calf-thymus double stranded DNA.
Primo, Emiliano N; Cañete-Rosales, Paulina; Bollo, Soledad; Rubianes, María D; Rivas, Gustavo A
2013-08-01
We report for the first time the use of double stranded calf-thymus DNA (dsDNA) to successfully disperse bamboo-like multi-walled carbon nanotubes (bCNT). The dispersion and the modified electrodes were studied by different spectroscopic, microscopic and electrochemical techniques. The drastic treatment for dispersing the bCNT (45min sonication in a 50% (v/v) ethanol:water solution), produces a partial denaturation and a decrease in the length of dsDNA that facilitates the dispersion of CNT and makes possible an efficient electron transfer of guanine residues to the electrode. A critical analysis of the influence of different experimental conditions on the efficiency of the dispersion and on the performance of glassy carbon electrodes (GCE) modified with bCNT-dsDNA dispersion is also reported. The electron transfer of redox probes and guanine residues was more efficient at GCE modified with bCNT dispersed in dsDNA than at GCE modified with hollow CNT (hCNT) dispersed in dsDNA, demonstrating the importance of the presence of bCNT. Copyright © 2013 Elsevier B.V. All rights reserved.
Kuwahara, Masayasu; Obika, Satoshi; Nagashima, Jun-ichi; Ohta, Yuki; Suto, Yoshiyuki; Ozaki, Hiroaki; Sawai, Hiroaki; Imanishi, Takeshi
2008-08-01
In order to systematically analyze the effects of nucleoside modification of sugar moieties in DNA polymerase reactions, we synthesized 16 modified templates containing 2',4'-bridged nucleotides and three types of 2',4'-bridged nucleoside-5'-triphospates with different bridging structures. Among the five types of thermostable DNA polymerases used, Taq, Phusion HF, Vent(exo-), KOD Dash and KOD(exo-), the KOD Dash and KOD(exo-) DNA polymerases could smoothly read through the modified templates containing 2'-O,4'-C-methylene-linked nucleotides at intervals of a few nucleotides, even at standard enzyme concentrations for 5 min. Although the Vent(exo-) DNA polymerase also read through these modified templates, kinetic study indicates that the KOD(exo-) DNA polymerase was found to be far superior to the Vent(exo-) DNA polymerase in accurate incorporation of nucleotides. When either of the DNA polymerase was used, the presence of 2',4'-bridged nucleotides on a template strand substantially decreased the reaction rates of nucleotide incorporations. The modified templates containing sequences of seven successive 2',4'-bridged nucleotides could not be completely transcribed by any of the DNA polymerases used; yields of longer elongated products decreased in the order of steric bulkiness of the modified sugars. Successive incorporation of 2',4'-bridged nucleotides into extending strands using 2',4'-bridged nucleoside-5'-triphospates was much more difficult. These data indicate that the sugar modification would have a greater effect on the polymerase reaction when it is adjacent to the elongation terminus than when it is on the template as well, as in base modification.
USDA-ARS?s Scientific Manuscript database
Extraction of DNA from tissue samples can be expensive both in time and monetary resources and can often require handling and disposal of hazardous chemicals. We have developed a high throughput protocol for extracting DNA from honey bees that is of a high enough quality and quantity to enable hundr...
The bacterial composition of chlorinated drinking water was analyzed using 16S rRNA gene clone libraries derived from DNA extracts of 12 samples and compared to clone libraries previously generated using RNA extracts from the same samples. Phylogenetic analysis of 761 DNA-based ...
High-throughput DNA extraction of forensic adhesive tapes.
Forsberg, Christina; Jansson, Linda; Ansell, Ricky; Hedman, Johannes
2016-09-01
Tape-lifting has since its introduction in the early 2000's become a well-established sampling method in forensic DNA analysis. Sampling is quick and straightforward while the following DNA extraction is more challenging due to the "stickiness", rigidity and size of the tape. We have developed, validated and implemented a simple and efficient direct lysis DNA extraction protocol for adhesive tapes that requires limited manual labour. The method uses Chelex beads and is applied with SceneSafe FAST tape. This direct lysis protocol provided higher mean DNA yields than PrepFiler Express BTA on Automate Express, although the differences were not significant when using clothes worn in a controlled fashion as reference material (p=0.13 and p=0.34 for T-shirts and button-down shirts, respectively). Through in-house validation we show that the method is fit-for-purpose for application in casework, as it provides high DNA yields and amplifiability, as well as good reproducibility and DNA extract stability. After implementation in casework, the proportion of extracts with DNA concentrations above 0.01ng/μL increased from 71% to 76%. Apart from providing higher DNA yields compared with the previous method, the introduction of the developed direct lysis protocol also reduced the amount of manual labour by half and doubled the potential throughput for tapes at the laboratory. Generally, simplified manual protocols can serve as a cost-effective alternative to sophisticated automation solutions when the aim is to enable high-throughput DNA extraction of complex crime scene samples. Copyright © 2016 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.
Accessing the Soil Metagenome for Studies of Microbial Diversity▿ †
Delmont, Tom O.; Robe, Patrick; Cecillon, Sébastien; Clark, Ian M.; Constancias, Florentin; Simonet, Pascal; Hirsch, Penny R.; Vogel, Timothy M.
2011-01-01
Soil microbial communities contain the highest level of prokaryotic diversity of any environment, and metagenomic approaches involving the extraction of DNA from soil can improve our access to these communities. Most analyses of soil biodiversity and function assume that the DNA extracted represents the microbial community in the soil, but subsequent interpretations are limited by the DNA recovered from the soil. Unfortunately, extraction methods do not provide a uniform and unbiased subsample of metagenomic DNA, and as a consequence, accurate species distributions cannot be determined. Moreover, any bias will propagate errors in estimations of overall microbial diversity and may exclude some microbial classes from study and exploitation. To improve metagenomic approaches, investigate DNA extraction biases, and provide tools for assessing the relative abundances of different groups, we explored the biodiversity of the accessible community DNA by fractioning the metagenomic DNA as a function of (i) vertical soil sampling, (ii) density gradients (cell separation), (iii) cell lysis stringency, and (iv) DNA fragment size distribution. Each fraction had a unique genetic diversity, with different predominant and rare species (based on ribosomal intergenic spacer analysis [RISA] fingerprinting and phylochips). All fractions contributed to the number of bacterial groups uncovered in the metagenome, thus increasing the DNA pool for further applications. Indeed, we were able to access a more genetically diverse proportion of the metagenome (a gain of more than 80% compared to the best single extraction method), limit the predominance of a few genomes, and increase the species richness per sequencing effort. This work stresses the difference between extracted DNA pools and the currently inaccessible complete soil metagenome. PMID:21183646
NASA Astrophysics Data System (ADS)
Hieu, Nguyen Minh; Nam, Nguyen Hoang; Huyen, Nguyen Thi; Van Anh, Nguyen Thi; Nghia, Phan Tuan; Khoa, Nguyen Ba; Toan, Nguyen Linh; Luong, Nguyen Hoang
2017-06-01
SiO2-coated Fe3O4 nanoparticles (Fe3O4@SiO2 NPs) were successfully synthesized using ultrasound in order to extract DNA from cancer tissues for application in diagnostics. The core 10.7-nm-diameter Fe3O4 nanoparticles were synthesized by co-precipitation of Fe3+ and Fe2+ as reaction substrates and NH4OH as precipitant, then coated with a thin layer of amorphous silica by a modified Stober method. Further SiO2 coating using alkaline hydrolysis of tetraethyl orthosilicate in ethanol and water mixture was accelerated in the presence of a 37-kHz ultrasound, resulting in the NPs having different sizes of 14.5 nm (version M1), 24.4 nm (version M2), and 34.9 nm (version M3) with saturation magnetization values of 50.2 emu/g, 18.6 emu/g, 10.3 emu/g, respectively. Among the three Fe3O4@SiO2 NPs versions, the M1 NPs allowed extraction of DNAs from 10 mg formalin-fixed and paraffin-embedded (FFPE) tissues of nasopharyngeal carcinoma patients with the highest recovery of about 100-500 ng/ μl and good purity (A260/A280: 1.8-1.9). The extracted DNAs could be used as templates for downstream amplification of 252-bp sequencing specifically for the Braf cancer biomarker gene using polymerase chain reaction (PCR), as well as detection of the pathogenic Epstein-Barr virus (EBV) and the human papilloma-virus (HPV) using real-time PCR. DNA extraction recoveries of both EBV and HPV using Fe3O4@SiO2 NPs M1 were significantly better that those using commercialized Fe3O4@SiO2 microbeads, as indicated by lower threshold cycles of all fluorescent signals including fluorescein amidite (FAM) dye representative for EBV infection, hexachlorofluorescein (HEX) dye representative for β-globin (internal control), and SYBR Green dye representative for HPV infection in tested clinical samples from patients with nasopharyngeal carcinoma (NPC).
ERIC Educational Resources Information Center
Militello, Kevin T.
2013-01-01
Epigenetic inheritance is the inheritance of genetic information that is not based on DNA sequence alone. One type of epigenetic information that has come to the forefront in the last few years is modified DNA bases. The most common modified DNA base in nature is 5-methylcytosine. Herein, we describe a laboratory experiment that combines…
DNA origami metallized site specifically to form electrically conductive nanowires.
Pearson, Anthony C; Liu, Jianfei; Pound, Elisabeth; Uprety, Bibek; Woolley, Adam T; Davis, Robert C; Harb, John N
2012-09-06
DNA origami is a promising tool for use as a template in the design and fabrication of nanoscale structures. The ability to engineer selected staple strands on a DNA origami structure provides a high density of addressable locations across the structure. Here we report a method using site-specific attachment of gold nanoparticles to modified staple strands and subsequent metallization to fabricate conductive wires from DNA origami templates. We have modified DNA origami structures by lengthening each staple strand in select regions with a 10-base nucleotide sequence and have attached DNA-modified gold nanoparticles to the lengthened staple strands via complementary base-pairing. The high density of extended staple strands allowed the gold nanoparticles to pack tightly in the modified regions of the DNA origami, where the measured median gap size between neighboring particles was 4.1 nm. Gold metallization processes were optimized so that the attached gold nanoparticles grew until gaps between particles were filled and uniform continuous nanowires were formed. Finally, electron beam lithography was used to pattern electrodes in order to measure the electrical conductivity of metallized DNA origami, which showed an average resistance of 2.4 kΩ per metallized structure.
Bacterial and fungal DNA extraction from blood samples: automated protocols.
Lorenz, Michael G; Disqué, Claudia; Mühl, Helge
2015-01-01
Automation in DNA isolation is a necessity for routine practice employing molecular diagnosis of infectious agents. To this end, the development of automated systems for the molecular diagnosis of microorganisms directly in blood samples is at its beginning. Important characteristics of systems demanded for routine use include high recovery of microbial DNA, DNA-free containment for the reduction of DNA contamination from exogenous sources, DNA-free reagents and consumables, ideally a walkaway system, and economical pricing of the equipment and consumables. Such full automation of DNA extraction evaluated and in use for sepsis diagnostics is yet not available. Here, we present protocols for the semiautomated isolation of microbial DNA from blood culture and low- and high-volume blood samples. The protocols include a manual pretreatment step followed by automated extraction and purification of microbial DNA.
Tian, Zi-Qiang; Liu, Jun-Feng; Zhang, Shao-Wei; Li, Bao-Qing; Wang, Fu-Shun; Zhang, Yue-Feng
2004-03-01
Unbuffered formalin is widely used to fix resected specimens in China. The DNA in unbuffered formalin-fixed and paraffin-embedded tissues is usually degraded seriously, so the extraction of DNA from these samples is difficult. This study was conducted to seek an optimal method to extract DNA from these samples. Fifteen blocks of esophageal carcinoma resected in Fourth Hospital of Hebei Medical University in 2000 were selected. The cells were lyzed by proteinase K digestion or heating under different pH values, then DNA was extracted by phenol:chloroform. After that, four parameters (deparaffined by xylene or histolene; digested for 48 h or 72 h at 37 degrees C or 56 degrees C; extracted by salting-out or phenol:chloroform) were optimized according to the principle of cross design. At last, the quality of obtained DNA was analyzed with electrophoresis and PCR amplification. The quality and quantity of DNA obtained by proteinase K digestion (the average yield is 17.88 microg) were better than that of heating under different pH (7-12)(P< 0.05). The quality and quantity of DNA digested at 56 degrees C were better than that at 37 degrees C, and similarly, digestion for 72 hours was better than that for 48 hours. The methods of deparaffin and extraction had no obvious influence on the quality and quantity of DNA. By means of NaCl salting-out after proteinase K digestion, more reliable quality of DNA can be obtained from unbuffered formalin-fixed and paraffin-embedded samples. Furthermore,digestion for three days at 56 degrees C is more likely to obtain DNA with high quality and quantity.
Aberg, Karolina A.; Xie, Lin Y.; Nerella, Srilaxmi; Copeland, William E.; Costello, E. Jane; van den Oord, Edwin J.C.G.
2013-01-01
The potential importance of DNA methylation in the etiology of complex diseases has led to interest in the development of methylome-wide association studies (MWAS) aimed at interrogating all methylation sites in the human genome. When using blood as biomaterial for a MWAS the DNA is typically extracted directly from fresh or frozen whole blood that was collected via venous puncture. However, DNA extracted from dry blood spots may also be an alternative starting material. In the present study, we apply a methyl-CpG binding domain (MBD) protein enrichment-based technique in combination with next generation sequencing (MBD-seq) to assess the methylation status of the ~27 million CpGs in the human autosomal reference genome. We investigate eight methylomes using DNA from blood spots. This data are compared with 1,500 methylomes previously assayed with the same MBD-seq approach using DNA from whole blood. When investigating the sequence quality and the enrichment profile across biological features, we find that DNA extracted from blood spots gives comparable results with DNA extracted from whole blood. Only if the amount of starting material is ≤ 0.5µg DNA we observe a slight decrease in the assay performance. In conclusion, we show that high quality methylome-wide investigations using MBD-seq can be conducted in DNA extracted from archived dry blood spots without sacrificing quality and without bias in enrichment profile as long as the amount of starting material is sufficient. In general, the amount of DNA extracted from a single blood spot is sufficient for methylome-wide investigations with the MBD-seq approach. PMID:23644822
Aberg, Karolina A; Xie, Lin Y; Nerella, Srilaxmi; Copeland, William E; Costello, E Jane; van den Oord, Edwin J C G
2013-05-01
The potential importance of DNA methylation in the etiology of complex diseases has led to interest in the development of methylome-wide association studies (MWAS) aimed at interrogating all methylation sites in the human genome. When using blood as biomaterial for a MWAS the DNA is typically extracted directly from fresh or frozen whole blood that was collected via venous puncture. However, DNA extracted from dry blood spots may also be an alternative starting material. In the present study, we apply a methyl-CpG binding domain (MBD) protein enrichment-based technique in combination with next generation sequencing (MBD-seq) to assess the methylation status of the ~27 million CpGs in the human autosomal reference genome. We investigate eight methylomes using DNA from blood spots. This data are compared with 1,500 methylomes previously assayed with the same MBD-seq approach using DNA from whole blood. When investigating the sequence quality and the enrichment profile across biological features, we find that DNA extracted from blood spots gives comparable results with DNA extracted from whole blood. Only if the amount of starting material is ≤ 0.5µg DNA we observe a slight decrease in the assay performance. In conclusion, we show that high quality methylome-wide investigations using MBD-seq can be conducted in DNA extracted from archived dry blood spots without sacrificing quality and without bias in enrichment profile as long as the amount of starting material is sufficient. In general, the amount of DNA extracted from a single blood spot is sufficient for methylome-wide investigations with the MBD-seq approach.
Aghili, Zahra; Nasirizadeh, Navid; Divsalar, Adeleh; Shoeibi, Shahram; Yaghmaei, Parichehreh
2017-09-15
Genetically Modified Organisms, have been entered our food chain and detection of these organisms in market products are still the main challenge for scientists. Among several developed detection/quantification methods for detection of these organisms, the electrochemical nanobiosensors are the most attended which are combining the advantages of using nanomaterials, electrochemical methods and biosensors. In this research, a novel and sensitive electrochemical nanobiosensor for detection/quantification of these organisms have been developed using nanomaterials; Exfoliated Graphene Oxide and Gold Nano-Urchins for modification of the screen-printed carbon electrode, and also applying a specific DNA probe as well as hematoxylin for electrochemical indicator. Application time period and concentration of the components have been optimized and also several reliable methods have been used to assess the correct assembling of the nanobiosensor e.g. field emission scanning electron microscope, cyclic voltammetry and electrochemical impedance spectroscopy. The results shown the linear range of the sensor was 40.0-1100.0 femtomolar and the limit of detection calculated as 13.0 femtomolar. Besides, the biosensor had good selectivity towards the target DNA over the non-specific sequences and also it was cost and time-effective and possess ability to be used in real sample environment of extracted DNA of Genetically Modified Organism products. Therefore, the superiority of the aforementioned specification to the other previously published methods was proved adequate. Copyright © 2017. Published by Elsevier B.V.
Role of modifiers for analytical-scale supercritical fluid extraction of environmental samples
DOE Office of Scientific and Technical Information (OSTI.GOV)
Langenfeld, J.J.; Hawthorne, S.B.; Miller, D.J.
1994-03-15
Supercritical fluid extraction (SFE) using eight different CO[sub 2] + organic modifier mixtures and one ternary mixture (CO[sub 2] + methanol/toluene) at two different concentrations (1 and 10% v/v) was performed on two certified reference materials including polychlorinated biphenyls (PCBs) from river sediment and polycyclic aromatic hydrocarbons (PAHs) from urban air particulate matter. The modifier identity was more important than modifier concentration for increasing extraction efficiencies. Acidic/basic modifiers including methanol, acetic acid, and aniline greatly enhanced the extraction of PCBs. Low molecular weight PAHs were best extracted with modifiers including aniline, acetic acid, acetonitrile, methanol/toluene, hexane, and diethylamine. In contrast,more » modifiers capable of dipole-induced dipole interactions and [pi]-[pi] interactions such as toluene, diethylamine, and methylene chloride were the best modifiers to use for SFE of high molecular weight PAHs from air particulates. 37 refs., 6 tabs.« less
Chen, Youdinghuan; Marotti, Jonathan D; Jenson, Erik G; Onega, Tracy L; Johnson, Kevin C; Christensen, Brock C
2017-08-01
The utility and reliability of assessing molecular biomarkers for translational applications on pre-operative core biopsy specimens assume consistency of molecular profiles with larger surgical specimens. Whether DNA methylation in ductal carcinoma in situ (DCIS), measured in core biopsy and surgical specimens are similar, remains unclear. Here, we compared genome-scale DNA methylation measured in matched core biopsy and surgical specimens from DCIS, including specific DNA methylation biomarkers of subsequent invasive cancer. DNA was extracted from guided 2mm cores of formalin fixed paraffin embedded (FFPE) specimens, bisulfite-modified, and measured on the Illumina HumanMethylation450 BeadChip. DNA methylation profiles of core biopsies exhibited high concordance with matched surgical specimens. Within-subject variability in DNA methylation was significantly lower than between-subject variability (all P<2.20E-16). In 641 CpGs whose methylation was related with increased hazard of invasive breast cancer, lower within-subject than between-subject variability was observed in 92.3% of the study participants (P<0.05). Between patient-matched core biopsy and surgical specimens, <0.6% of CpGs measured had changes in median DNA methylation >15%, and a pathway analysis of these CpGs indicated enrichment for genes related with wound healing. Our results indicate that DNA methylation measured in core biopsies are representative of the matched surgical specimens and suggest that DCIS biomarkers measured in core biopsies can inform clinical decision-making. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Amplification of the flgE gene provides evidence for the existence of a Brazilian borreliosis.
Mantovani, Elenice; Marangoni, Roberta G; Gauditano, Giancarla; Bonoldi, Virgínia L N; Yoshinari, Natalino H
2012-01-01
The symptoms of Brazilian borreliosis resemble the clinical manifestations of Lyme disease (LD). However, there are differences between the two in terms of epidemiological and laboratory findings. Primers usually employed to diagnose LD have failed to detect Borrelia strains in Brazil. We aimed to identify the Brazilian Borrelia using a conserved gene that synthesizes the flagellar hook (flgE) of Borrelia burgdorferi sensu lato. Three patients presenting with erythema migrans and positive epidemiological histories were recruited for the study. Blood samples were collected, and the DNA was extracted by commercial kits. The gene flgE was amplified from DNA of all selected patients. Upon sequencing, these positive samples revealed 99% homology to B. burgdorferi flgE. These results support the existence of borreliosis in Brazil. However, it is unclear whether this borreliosis is caused by a genetically modified B. burgdorferi sensu stricto or by a new species of Borrelia spp.
Antimutagenic and free radical scavenger effects of leaf extracts from Accacia salicina
2011-01-01
Background Three extracts were prepared from the leaves of Accacia salicina; ethyl acetate (EA), chloroform (Chl) and petroleum ether (PE) extracts and was designed to examine antimutagenic, antioxidant potenty and oxidative DNA damage protecting activity. Methods Antioxidant activity of A. salicina extracts was determined by the ability of each extract to protect against plasmid DNA strand scission induced by hydroxyl radicals. An assay for the ability of these extracts to prevent mutations induced by various oxidants in Salmonella typhimurium TA102 and TA 104 strains was conducted. In addition, nonenzymatic methods were employed to evaluate anti-oxidative effects of tested extracts. Results These extracts from leaf parts of A. salicina showed no mutagenicity either with or without the metabolic enzyme preparation (S9). The highest protections against methylmethanesulfonate induced mutagenicity were observed with all extracts and especially chloroform extract. This extract exhibited the highest inhibitiory level of the Ames response induced by the indirect mutagen 2- aminoanthracene. All extracts exhibited the highest ability to protect plasmid DNA against hydroxyl radicals induced DNA damages. The ethyl acetate (EA) and chloroform (Chl) extracts showed with high TEAC values radical of 0.95 and 0.81 mM respectively, against the ABTS.+. Conclusion The present study revealed the antimutagenic and antioxidant potenty of plant extract from Accacia salicina leaves. PMID:22132863
Exploring microbial diversity in volcanic environments: a review of methods in DNA extraction.
Herrera, Aude; Cockell, Charles S
2007-07-01
The last decade has been marked by a large number of studies focused on understanding the distribution of microorganisms in volcanic environments. These studies are motivated by the desire to elucidate how the geochemically extreme conditions of such environments can influence microbial diversity both on the surface and in the subsurface of the Earth. The exploration of microbial community diversity has generally not relied on culture-dependent methods, but has been carried out using environmental DNA extraction. Because of the large diversity of chemically and physically complex samples, extracting DNA from volcanic environments is technically challenging. In view of the emerging literature, and our own experience in the optimisation of methods for DNA extraction from volcanic materials, it is timely to provide a methodological comparison. This review highlights and discusses new insights and methods published on DNA extraction methods from volcanic samples, considering the different volcanic environments. A description of a recent method for DNA extraction from basalt and obsidian glass rock samples from Iceland is included. Finally, we discuss these approaches in the wider context of modern work to understand the microbial diversity of volcanic environments.
Moreano, Francisco; Busch, Ulrich; Engel, Karl-Heinz
2005-12-28
Milling fractions from conventional and transgenic corn were prepared at laboratory scale and used to study the influence of sample composition and heat-induced DNA degradation on the relative quantification of genetically modified organisms (GMO) in food products. Particle size distributions of the obtained fractions (coarse grits, regular grits, meal, and flour) were characterized using a laser diffraction system. The application of two DNA isolation protocols revealed a strong correlation between the degree of comminution of the milling fractions and the DNA yield in the extracts. Mixtures of milling fractions from conventional and transgenic material (1%) were prepared and analyzed via real-time polymerase chain reaction. Accurate quantification of the adjusted GMO content was only possible in mixtures containing conventional and transgenic material in the form of analogous milling fractions, whereas mixtures of fractions exhibiting different particle size distributions delivered significantly over- and underestimated GMO contents depending on their compositions. The process of heat-induced nucleic acid degradation was followed by applying two established quantitative assays showing differences between the lengths of the recombinant and reference target sequences (A, deltal(A) = -25 bp; B, deltal(B) = +16 bp; values related to the amplicon length of the reference gene). Data obtained by the application of method A resulted in underestimated recoveries of GMO contents in the samples of heat-treated products, reflecting the favored degradation of the longer target sequence used for the detection of the transgene. In contrast, data yielded by the application of method B resulted in increasingly overestimated recoveries of GMO contents. The results show how commonly used food technological processes may lead to distortions in the results of quantitative GMO analyses.
Vaidya, Jueeli D.; van den Bogert, Bartholomeus; Edwards, Joan E.; Boekhorst, Jos; van Gastelen, Sanne; Saccenti, Edoardo; Plugge, Caroline M.; Smidt, Hauke
2018-01-01
DNA based methods have been widely used to study the complexity of the rumen microbiota, and it is well known that the method of DNA extraction is a critical step in enabling accurate assessment of this complexity. Rumen fluid (RF) and fibrous content (FC) fractions differ substantially in terms of their physical nature and associated microorganisms. The aim of this study was therefore to assess the effect of four DNA extraction methods (RBB, PBB, FDSS, PQIAmini) differing in cell lysis and/or DNA recovery methods on the observed microbial diversity in RF and FC fractions using samples from four rumen cannulated dairy cows fed 100% grass silage (GS100), 67% GS and 33% maize silage (GS67MS33), 33% GS and 67% MS (GS33MS67), or 100% MS (MS100). An ANOVA statistical test was applied on DNA quality and yield measurements, and it was found that the DNA yield was significantly affected by extraction method (p < 0.001) and fraction (p < 0.001). The 260/280 ratio was not affected by extraction (p = 0.08) but was affected by fraction (p = 0.03). On the other hand, the 260/230 ratio was affected by extraction method (p < 0.001) but not affected by fraction (p = 0.8). However, all four extraction procedures yielded DNA suitable for further analysis of bacterial, archaeal and anaerobic fungal communities using quantitative PCR and pyrosequencing of relevant taxonomic markers. Redundancy analysis (RDA) of bacterial 16S rRNA gene sequence data at the family level showed that there was a significant effect of rumen fraction (p = 0.012), and that PBB (p = 0.012) and FDSS (p = 0.024) also significantly contributed to explaining the observed variation in bacterial community composition. Whilst the DNA extraction method affected the apparent bacterial community composition, no single extraction method could be concluded to be ineffective. No obvious effect of DNA extraction method on the anaerobic fungi or archaea was observed, although fraction effects were evident for both. In summary, the comprehensive assessment of observed communities of bacteria, archaea and anaerobic fungi described here provides insight into a rational basis for selecting an optimal methodology to obtain a representative picture of the rumen microbiota. PMID:29445366
Vaidya, Jueeli D; van den Bogert, Bartholomeus; Edwards, Joan E; Boekhorst, Jos; van Gastelen, Sanne; Saccenti, Edoardo; Plugge, Caroline M; Smidt, Hauke
2018-01-01
DNA based methods have been widely used to study the complexity of the rumen microbiota, and it is well known that the method of DNA extraction is a critical step in enabling accurate assessment of this complexity. Rumen fluid (RF) and fibrous content (FC) fractions differ substantially in terms of their physical nature and associated microorganisms. The aim of this study was therefore to assess the effect of four DNA extraction methods (RBB, PBB, FDSS, PQIAmini) differing in cell lysis and/or DNA recovery methods on the observed microbial diversity in RF and FC fractions using samples from four rumen cannulated dairy cows fed 100% grass silage (GS100), 67% GS and 33% maize silage (GS67MS33), 33% GS and 67% MS (GS33MS67), or 100% MS (MS100). An ANOVA statistical test was applied on DNA quality and yield measurements, and it was found that the DNA yield was significantly affected by extraction method ( p < 0.001) and fraction ( p < 0.001). The 260/280 ratio was not affected by extraction ( p = 0.08) but was affected by fraction ( p = 0.03). On the other hand, the 260/230 ratio was affected by extraction method ( p < 0.001) but not affected by fraction ( p = 0.8). However, all four extraction procedures yielded DNA suitable for further analysis of bacterial, archaeal and anaerobic fungal communities using quantitative PCR and pyrosequencing of relevant taxonomic markers. Redundancy analysis (RDA) of bacterial 16S rRNA gene sequence data at the family level showed that there was a significant effect of rumen fraction ( p = 0.012), and that PBB ( p = 0.012) and FDSS ( p = 0.024) also significantly contributed to explaining the observed variation in bacterial community composition. Whilst the DNA extraction method affected the apparent bacterial community composition, no single extraction method could be concluded to be ineffective. No obvious effect of DNA extraction method on the anaerobic fungi or archaea was observed, although fraction effects were evident for both. In summary, the comprehensive assessment of observed communities of bacteria, archaea and anaerobic fungi described here provides insight into a rational basis for selecting an optimal methodology to obtain a representative picture of the rumen microbiota.
DNA extraction from benthic Cyanobacteria: comparative assessment and optimization.
Gaget, V; Keulen, A; Lau, M; Monis, P; Brookes, J D
2017-01-01
Benthic Cyanobacteria produce toxic and odorous compounds similar to their planktonic counterparts, challenging the quality of drinking water supplies. The biofilm that benthic algae and other micro-organisms produce is a complex and protective matrix. Monitoring to determine the abundance and identification of Cyanobacteria, therefore, relies on molecular techniques, with the choice of DNA isolation technique critical. This study investigated which DNA extraction method is optimal for DNA recovery in order to guarantee the best DNA yield for PCR-based analysis of benthic Cyanobacteria. The conventional phenol-chloroform extraction method was compared with five commercial kits, with the addition of chemical and physical cell-lysis steps also trialled. The efficacy of the various methods was evaluated by measuring the quantity and quality of DNA by UV spectrophotometry and by quantitative PCR (qPCR) using Cyanobacteria-specific primers. The yield and quality of DNA retrieved with the commercial kits was significantly higher than that of DNA obtained with the phenol-chloroform protocol. Kits including a physical cell-lysis step, such as the MO BIO Power Soil and Biofilm kits, were the most efficient for DNA isolation from benthic Cyanobacteria. These commercial kits allow greater recovery and the elimination of dangerous chemicals for DNA extraction, making them the method of choice for the isolation of DNA from benthic mats. They also facilitate the extraction of DNA from benthic Cyanobacteria, which can help to improve the characterization of Cyanobacteria in environmental studies using qPCRs or population composition analysis using next-generation sequencing. © 2016 The Society for Applied Microbiology.
Evaluation and comparison of FTA card and CTAB DNA extraction methods for non-agricultural taxa1
Siegel, Chloe S.; Stevenson, Florence O.; Zimmer, Elizabeth A.
2017-01-01
Premise of the study: An efficient, effective DNA extraction method is necessary for comprehensive analysis of plant genomes. This study analyzed the quality of DNA obtained using paper FTA cards prepared directly in the field when compared to the more traditional cetyltrimethylammonium bromide (CTAB)–based extraction methods from silica-dried samples. Methods: DNA was extracted using FTA cards according to the manufacturer’s protocol. In parallel, CTAB-based extractions were done using the automated AutoGen DNA isolation system. DNA quality for both methods was determined for 15 non-agricultural species collected in situ, by gel separation, spectrophotometry, fluorometry, and successful amplification and sequencing of nuclear and chloroplast gene markers. Results: The FTA card extraction method yielded less concentrated, but also less fragmented samples than the CTAB-based technique. The card-extracted samples provided DNA that could be successfully amplified and sequenced. The FTA cards are also useful because the collected samples do not require refrigeration, extensive laboratory expertise, or as many hazardous chemicals as extractions using the CTAB-based technique. Discussion: The relative success of the FTA card method in our study suggested that this method could be a valuable tool for studies in plant population genetics and conservation biology that may involve screening of hundreds of individual plants. The FTA cards, like the silica gel samples, do not contain plant material capable of propagation, and therefore do not require permits from the U.S. Department of Agriculture (USDA) Animal and Plant Health Inspection Service (APHIS) for transportation. PMID:28224056
RECOVERY OF DNA FROM SOILS AND SEDIMENTS
Experiments were performed to evaluate the effectiveness of different methodological approaches for recovering DNA from soil and sediment bacterial communities; cell extraction followed by lysis and DNA recovery (cell extraction method) versus direct cell lysis and alkaline extra...
DNA Extraction from Soils: Old Bias for New Microbial Diversity Analysis Methods
Martin-Laurent, F.; Philippot, L.; Hallet, S.; Chaussod, R.; Germon, J. C.; Soulas, G.; Catroux, G.
2001-01-01
The impact of three different soil DNA extraction methods on bacterial diversity was evaluated using PCR-based 16S ribosomal DNA analysis. DNA extracted directly from three soils showing contrasting physicochemical properties was subjected to amplified ribosomal DNA restriction analysis and ribosomal intergenic spacer analysis (RISA). The obtained RISA patterns revealed clearly that both the phylotype abundance and the composition of the indigenous bacterial community are dependent on the DNA recovery method used. In addition, this effect was also shown in the context of an experimental study aiming to estimate the impact on soil biodiversity of the application of farmyard manure or sewage sludge onto a monoculture of maize for 15 years. PMID:11319122
Konakandla, Bhanu; Park, Yoonseong; Margolies, David
2006-01-01
We developed and optimized a method using Chelex DNA extraction followed by whole genome amplification (WGA) to overcome problems conducting molecular genetic studies due to the limited amount of DNA obtainable from individual small organisms such as predatory mites. The DNA from a single mite, Phytoseiulus persimilis Athias-Henrot (Acari: Phytoseiidae), isolated in Chelex suspension was subjected to WGA. More than 1000-fold amplification of the DNA was achieved using as little as 0.03 ng genomic DNA template. The DNA obtained by the WGA was used for polymerase chain reaction followed by direct sequencing. From WGA DNA, nuclear DNA intergenic spacers ITS1 and ITS2 and a mitochondrial DNA 12S marker were tested in three different geographical populations of the predatory mite: California, the Netherlands, and Sicily. We found a total of four different alleles of the 12S in the Sicilian population, but no polymorphism was identified in the ITS marker. The combination of Chelex DNA extraction and WGA is thus shown to be a simple and robust technique for examining molecular markers for multiple loci by using individual mites. We conclude that the methods, Chelex extraction of DNA followed by WGA, provide a large quantity of DNA template that can be used for multiple PCR reactions useful for genetic studies requiring the genotypes of individual mites.
Vargas, Eva; Povedano, Eloy; Montiel, Víctor Ruiz-Valdepeñas; Torrente-Rodríguez, Rebeca M; Zouari, Mohamed; Montoya, Juan José; Raouafi, Noureddine; Campuzano, Susana; Pingarrón, José M
2018-03-15
This work reports an amperometric biosensor for the determination of miRNA-21, a relevant oncogene. The methodology involves a competitive DNA-target miRNA hybridization assay performed on the surface of magnetic microbeads (MBs) and amperometric transduction at screen-printed carbon electrodes (SPCEs). The target miRNA competes with a synthetic fluorescein isothiocyanate (FITC)-modified miRNA with an identical sequence for hybridization with a biotinylated and complementary DNA probe (b-Cp) immobilized on the surface of streptavidin-modified MBs (b-Cp-MBs). Upon labeling, the FITC-modified miRNA attached to the MBs with horseradish peroxidase (HRP)-conjugated anti-FITC Fab fragments and magnetic capturing of the MBs onto the working electrode surface of SPCEs. The cathodic current measured at -0.20 V (versus the Ag pseudo-reference electrode) was demonstrated to be inversely proportional to the concentration of the target miRNA. This convenient biosensing method provided a linear range between 0.7 and 10.0 nM and a limit of detection (LOD) of 0.2 nM (5 fmol in 25 μL of sample) for the synthetic target miRNA without any amplification step. An acceptable selectivity towards single-base mismatched oligonucleotides, a high storage stability of the b-Cp-MBs, and usefulness for the accurate determination of miRNA-21 in raw total RNA (RNA t ) extracted from breast cancer cells (MCF-7) were demonstrated.
Higgins, Denice; Rohrlach, Adam B.; Kaidonis, John; Townsend, Grant; Austin, Jeremy J.
2015-01-01
Major advances in genetic analysis of skeletal remains have been made over the last decade, primarily due to improvements in post-DNA-extraction techniques. Despite this, a key challenge for DNA analysis of skeletal remains is the limited yield of DNA recovered from these poorly preserved samples. Enhanced DNA recovery by improved sampling and extraction techniques would allow further advancements. However, little is known about the post-mortem kinetics of DNA degradation and whether the rate of degradation varies between nuclear and mitochondrial DNA or across different skeletal tissues. This knowledge, along with information regarding ante-mortem DNA distribution within skeletal elements, would inform sampling protocols facilitating development of improved extraction processes. Here we present a combined genetic and histological examination of DNA content and rates of DNA degradation in the different tooth tissues of 150 human molars over short-medium post-mortem intervals. DNA was extracted from coronal dentine, root dentine, cementum and pulp of 114 teeth via a silica column method and the remaining 36 teeth were examined histologically. Real time quantification assays based on two nuclear DNA fragments (67 bp and 156 bp) and one mitochondrial DNA fragment (77 bp) showed nuclear and mitochondrial DNA degraded exponentially, but at different rates, depending on post-mortem interval and soil temperature. In contrast to previous studies, we identified differential survival of nuclear and mtDNA in different tooth tissues. Futhermore histological examination showed pulp and dentine were rapidly affected by loss of structural integrity, and pulp was completely destroyed in a relatively short time period. Conversely, cementum showed little structural change over the same time period. Finally, we confirm that targeted sampling of cementum from teeth buried for up to 16 months can provide a reliable source of nuclear DNA for STR-based genotyping using standard extraction methods, without the need for specialised equipment or large-volume demineralisation steps. PMID:25992635
Li, Mingcheng; Gao, Lijun; Qu, Li; Sun, Jingyu; Yuan, Guangxin; Xia, Wei; Niu, Jiamu; Fu, Guilian; Zhang, Lihua
2016-07-01
The use of Penis et testis cervi, as a kind of precious Traditional Chinese Medicine (TCM), which is derived from dry deer's testis and penis, has been recorded for many years in China. There are abundant species of deer in China, the Penis et testis from species of Cervus Nippon and Cervus elaphusL were authentic, others species were defined as adulterant (different subspecies of deer) or counterfeits (different species). Identification of their origins or authenticity becomes a key in controlling the herbal products. A modified column chromatography was used to extract mitochondrial DNA of dried deer's testis and penis from sika deer (C. Nippon) and red deer (C. elaphusL) in addition to adulterants and counterfeits. Column chromatography requires for a short time to extract mitochondrial DNA of high purity with little damage of DNA molecules, which provides the primary structure of guarantee for the specific PCR; PCR-SSCP method showed a clear intra-specific difference among patterns of single-chain fragments, and completely differentiate Penis et testis origins from C. Nippon and C. elaphusL. RAPD-HPCE was based on the standard electropherograms to compute a control spectrum curve as similarity reference (R) among different samples. The similarity analysis indicated that there were significant inter-species differences among Penis et testis' adulterant or counterfeits. Both techniques provide a fast, simple, and accurate way to directly identify among inter-species or intra-species of Penis et testis.
Greenspoon, Susan A; Ban, Jeffrey D; Sykes, Karen; Ballard, Elizabeth J; Edler, Shelley S; Baisden, Melissa; Covington, Brian L
2004-01-01
Robotic systems are commonly utilized for the extraction of database samples. However, the application of robotic extraction to forensic casework samples is a more daunting task. Such a system must be versatile enough to accommodate a wide range of samples that may contain greatly varying amounts of DNA, but it must also pose no more risk of contamination than the manual DNA extraction methods. This study demonstrates that the BioMek 2000 Laboratory Automation Workstation, used in combination with the DNA IQ System, is versatile enough to accommodate the wide range of samples typically encountered by a crime laboratory. The use of a silica coated paramagnetic resin, as with the DNA IQ System, facilitates the adaptation of an open well, hands off, robotic system to the extraction of casework samples since no filtration or centrifugation steps are needed. Moreover, the DNA remains tightly coupled to the silica coated paramagnetic resin for the entire process until the elution step. A short pre-extraction incubation step is necessary prior to loading samples onto the robot and it is at this step that most modifications are made to accommodate the different sample types and substrates commonly encountered with forensic evidentiary samples. Sexual assault (mixed stain) samples, cigarette butts, blood stains, buccal swabs, and various tissue samples were successfully extracted with the BioMek 2000 Laboratory Automation Workstation and the DNA IQ System, with no evidence of contamination throughout the extensive validation studies reported here.
Renshaw, Mark A; Olds, Brett P; Jerde, Christopher L; McVeigh, Margaret M; Lodge, David M
2015-01-01
Current research targeting filtered macrobial environmental DNA (eDNA) often relies upon cold ambient temperatures at various stages, including the transport of water samples from the field to the laboratory and the storage of water and/or filtered samples in the laboratory. This poses practical limitations for field collections in locations where refrigeration and frozen storage is difficult or where samples must be transported long distances for further processing and screening. This study demonstrates the successful preservation of eDNA at room temperature (20 °C) in two lysis buffers, CTAB and Longmire's, over a 2-week period of time. Moreover, the preserved eDNA samples were seamlessly integrated into a phenol-chloroform-isoamyl alcohol (PCI) DNA extraction protocol. The successful application of the eDNA extraction to multiple filter membrane types suggests the methods evaluated here may be broadly applied in future eDNA research. Our results also suggest that for many kinds of studies recently reported on macrobial eDNA, detection probabilities could have been increased, and at a lower cost, by utilizing the Longmire's preservation buffer with a PCI DNA extraction. © 2014 The Authors. Molecular Ecology Resources Published by John Wiley & Sons Ltd.
Cimino, Matthew T
2010-03-01
Twenty-four herbal dietary supplement powder and extract reference standards provided by the National Institute of Standards and Technology (NIST) were investigated using three different commercially available DNA extraction kits to evaluate DNA availability for downstream nucleotide-based applications. The material included samples of Camellia, Citrus, Ephedra, Ginkgo, Hypericum, Serenoa, And Vaccinium. Protocols from Qiagen, MoBio, and Phytopure were used to isolate and purify DNA from the NIST standards. The resulting DNA concentration was quantified using SYBR Green fluorometry. Each of the 24 samples yielded DNA, though the concentration of DNA from each approach was notably different. The Phytopure method consistently yielded more DNA. The average yield ratio was 22 : 3 : 1 (ng/microL; Phytopure : Qiagen : MoBio). Amplification of the internal transcribed spacer II region using PCR was ultimately successful in 22 of the 24 samples. Direct sequencing chromatograms of the amplified material suggested that most of the samples were comprised of mixtures. However, the sequencing chromatograms of 12 of the 24 samples were sufficient to confirm the identity of the target material. The successful extraction, amplification, and sequencing of DNA from these herbal dietary supplement extracts and powders supports a continued effort to explore nucleotide sequence-based tools for the authentication and identification of plants in dietary supplements. (c) Georg Thieme Verlag KG Stuttgart . New York.
NASA Astrophysics Data System (ADS)
Hari, Yvonne; Dugovič, Branislav; Istrate, Alena; Fignolé, Annabel; Leumann, Christian J.; Schürch, Stefan
2016-07-01
Tricyclo-DNA (tcDNA) is a sugar-modified analogue of DNA currently tested for the treatment of Duchenne muscular dystrophy in an antisense approach. Tandem mass spectrometry plays a key role in modern medical diagnostics and has become a widespread technique for the structure elucidation and quantification of antisense oligonucleotides. Herein, mechanistic aspects of the fragmentation of tcDNA are discussed, which lay the basis for reliable sequencing and quantification of the antisense oligonucleotide. Excellent selectivity of tcDNA for complementary RNA is demonstrated in direct competition experiments. Moreover, the kinetic stability and fragmentation pattern of matched and mismatched tcDNA heteroduplexes were investigated and compared with non-modified DNA and RNA duplexes. Although the separation of the constituting strands is the entropy-favored fragmentation pathway of all nucleic acid duplexes, it was found to be only a minor pathway of tcDNA duplexes. The modified hybrid duplexes preferentially undergo neutral base loss and backbone cleavage. This difference is due to the low activation entropy for the strand dissociation of modified duplexes that arises from the conformational constraint of the tc-sugar-moiety. The low activation entropy results in a relatively high free activation enthalpy for the dissociation comparable to the free activation enthalpy of the alternative reaction pathway, the release of a nucleobase. The gas-phase behavior of tcDNA duplexes illustrates the impact of the activation entropy on the fragmentation kinetics and suggests that tandem mass spectrometric experiments are not suited to determine the relative stability of different types of nucleic acid duplexes.
Mohammadi, Samira; Esfahani, Bahram Nasr; Moghim, Sharareh; Mirhendi, Hossein; Zaniani, Fatemeh Riyahi; Safaei, Hajieh Ghasemian; Fazeli, Hossein; Salehi, Mahshid
2017-01-01
Nontuberculous mycobacteria (NTM) are a group of opportunistic pathogens and these are widely dispersed in water and soil resources. Identification of mycobacteria isolates by conventional methods including biochemical tests, growth rates, colony pigmentation, and presence of acid-fast bacilli is widely used, but these methods are time-consuming, labor-intensive, and may sometimes remain inconclusive. The DNA was extracted from NTM cultures using CTAB, Chelex, Chelex + Nonidet P-40, FTA ® Elute card, and boiling The quantity and quality of the DNA extracted via these methods were determined using UV-photometer at 260 and 280 nm, and polymerase chain reaction (PCR) amplification of the heat-shock protein 65 gene with serially diluted DNA samples. The CTAB method showed more positive results at 1:10-1:100,000 at which the DNA amount was substantial. With the Chelex method of DNA extraction, PCR amplification was detected at 1:10 and 1:1000 dilutions. According to the electrophoresis results, the CTAB and Chelex DNA extraction methods were more successful in comparison with the others as regard producing suitable concentrations of DNA with the minimum use of PCR inhibitor.
Matsumoto, Yasuko; Nakano, Tsuyoshi; Yamamoto, Masafumi; Matsushima-Hibiya, Yuko; Odagiri, Ken-Ichi; Yata, Osamu; Koyama, Kotaro; Sugimura, Takashi; Wakabayashi, Keiji
2008-01-01
Cabbage butterflies, Pieris rapae and Pieris brassicae, contain strong cytotoxic proteins, designated as pierisin-1 and -2, against cancer cell lines. These proteins exhibit DNA ADP-ribosylating activity. To determine the distribution of substances with cytotoxicity and DNA ADP-ribosylating activity among other species, crude extracts from 20 species of the family Pieridae were examined for cytotoxicity in HeLa cells and DNA ADP-ribosylating activity. Both activities were detected in extracts from 13 species: subtribes Pierina (Pieris rapae, Pieris canidia, Pieris napi, Pieris melete, Pieris brassicae, Pontia daplidice, and Talbotia naganum), Aporiina (Aporia gigantea, Aporia crataegi, Aporia hippia, and Delias pasithoe), and Appiadina (Appias nero and Appias paulina). All of these extracts contained substances recognized by anti-pierisin-1 antibodies, with a molecular mass of ≈100 kDa established earlier for pierisin-1. Moreover, sequences containing NAD-binding sites, conserved in ADP-ribosyltransferases, were amplified from genomic DNA from 13 species of butterflies with cytotoxicity and DNA ADP-ribosylating activity by PCR. Extracts from seven species, Appias lyncida, Leptosia nina, Anthocharis scolymus, Eurema hecabe, Catopsilia pomona, Catopsilia scylla, and Colias erate, showed neither cytotoxicity nor DNA ADP-ribosylating activity, and did not contain substances recognized by anti-pierisin-1 antibodies. Sequences containing NAD-binding sites were not amplified from genomic DNA from these seven species. Thus, pierisin-like proteins, showing cytotoxicity and DNA ADP-ribosylating activity, are suggested to be present in the extracts from butterflies not only among the subtribe Pierina, but also among the subtribes Aporiina and Appiadina. These findings offer insight to understanding the nature of DNA ADP-ribosylating activity in the butterfly. PMID:18256183
Bordelon, Hali; Ricks, Keersten M.; Pask, Megan E.; Russ, Patricia K.; Solinas, Francesca; Baglia, Mark L.; Short, Philip A.; Nel, Andrew; Blackburn, Jonathan; Dheda, Keertan; Zamudio, Carlos; Cáceres, Tatiana; Wright, David W.; Haselton, Frederick R.; Pettit, April C.
2017-01-01
Urine samples are increasingly used for diagnosing infections including Escherichia coli, Ebola virus, and Zika virus. However, extraction and concentration of nucleic acid biomarkers from urine is necessary for many molecular detection strategies such as polymerase chain reaction (PCR). Since urine samples typically have large volumes with dilute biomarker concentrations making them prone to false negatives, another impediment for urine-based diagnostics is the establishment of appropriate controls particularly to rule out false negatives. In this study, a mouse glyceraldehyde 3-phosphate dehydrogenase (GAPDH) DNA target was added to retrospectively collected urine samples from tuberculosis (TB)-infected and TB-uninfected patients to indicate extraction of intact DNA and removal of PCR inhibitors from urine samples. We tested this design on surrogate urine samples, retrospective 1 milliliter (mL) urine samples from patients in Lima, Peru and retrospective 5 mL urine samples from patients in Cape Town, South Africa. Extraction/PCR control DNA was detectable in 97% of clinical samples with no statistically significant differences among groups. Despite the inclusion of this control, there was no difference in the amount of TB IS6110 Tr-DNA detected between TB-infected and TB-uninfected groups except for samples from known HIV-infected patients. We found a increase in TB IS6110 Tr-DNA between TB/HIV co-infected patients compared to TB-uninfected/HIV-infected patients (N=18, p=0.037). The inclusion of an extraction/PCR control DNA to indicate successful DNA extraction and removal of PCR inhibitors should be easily adaptable as a sample preparation control for other acellular sample types. PMID:28285168
Bordelon, Hali; Ricks, Keersten M; Pask, Megan E; Russ, Patricia K; Solinas, Francesca; Baglia, Mark L; Short, Philip A; Nel, Andrew; Blackburn, Jonathan; Dheda, Keertan; Zamudio, Carlos; Cáceres, Tatiana; Wright, David W; Haselton, Frederick R; Pettit, April C
2017-05-01
Urine samples are increasingly used for diagnosing infections including Escherichia coli, Ebola virus, and Zika virus. However, extraction and concentration of nucleic acid biomarkers from urine is necessary for many molecular detection strategies such as polymerase chain reaction (PCR). Since urine samples typically have large volumes with dilute biomarker concentrations making them prone to false negatives, another impediment for urine-based diagnostics is the establishment of appropriate controls particularly to rule out false negatives. In this study, a mouse glyceraldehyde 3-phosphate dehydrogenase (GAPDH) DNA target was added to retrospectively collected urine samples from tuberculosis (TB)-infected and TB-uninfected patients to indicate extraction of intact DNA and removal of PCR inhibitors from urine samples. We tested this design on surrogate urine samples, retrospective 1milliliter (mL) urine samples from patients in Lima, Peru and retrospective 5mL urine samples from patients in Cape Town, South Africa. Extraction/PCR control DNA was detectable in 97% of clinical samples with no statistically significant differences among groups. Despite the inclusion of this control, there was no difference in the amount of TB IS6110 Tr-DNA detected between TB-infected and TB-uninfected groups except for samples from known HIV-infected patients. We found an increase in TB IS6110 Tr-DNA between TB/HIV co-infected patients compared to TB-uninfected/HIV-infected patients (N=18, p=0.037). The inclusion of an extraction/PCR control DNA to indicate successful DNA extraction and removal of PCR inhibitors should be easily adaptable as a sample preparation control for other acellular sample types. Copyright © 2017 Elsevier B.V. All rights reserved.
Inaccurate DNA synthesis in cell extracts of yeast producing active human DNA polymerase iota.
Makarova, Alena V; Grabow, Corinn; Gening, Leonid V; Tarantul, Vyacheslav Z; Tahirov, Tahir H; Bessho, Tadayoshi; Pavlov, Youri I
2011-01-31
Mammalian Pol ι has an unusual combination of properties: it is stimulated by Mn(2+) ions, can bypass some DNA lesions and misincorporates "G" opposite template "T" more frequently than incorporates the correct "A." We recently proposed a method of detection of Pol ι activity in animal cell extracts, based on primer extension opposite the template T with a high concentration of only two nucleotides, dGTP and dATP (incorporation of "G" versus "A" method of Gening, abbreviated as "misGvA"). We provide unambiguous proof of the "misGvA" approach concept and extend the applicability of the method for the studies of variants of Pol ι in the yeast model system with different cation cofactors. We produced human Pol ι in baker's yeast, which do not have a POLI ortholog. The "misGvA" activity is absent in cell extracts containing an empty vector, or producing catalytically dead Pol ι, or Pol ι lacking exon 2, but is robust in the strain producing wild-type Pol ι or its catalytic core, or protein with the active center L62I mutant. The signature pattern of primer extension products resulting from inaccurate DNA synthesis by extracts of cells producing either Pol ι or human Pol η is different. The DNA sequence of the template is critical for the detection of the infidelity of DNA synthesis attributed to DNA Pol ι. The primer/template and composition of the exogenous DNA precursor pool can be adapted to monitor replication fidelity in cell extracts expressing various error-prone Pols or mutator variants of accurate Pols. Finally, we demonstrate that the mutation rates in yeast strains producing human DNA Pols ι and η are not elevated over the control strain, despite highly inaccurate DNA synthesis by their extracts.
Cruz, Mutya; Wang, Miao; Frisch-Daiello, Jessica; Han, Xianlin
2016-07-01
Extraction of lipids from biological samples is a critical step in lipidomics, especially for shotgun lipidomics where lipid extracts are directly infused into a mass spectrometer. The butanol-methanol (BUME) extraction method was originally developed to extract lipids from plasma samples with 1 % acetic acid. Considering some lipids are sensitive to acidic environments, we modified this protocol by replacing acetic acid with lithium chloride solution and extended the modified extraction to tissue samples. Although no significant reduction of plasmalogen levels in the acidic BUME extracts of rat heart samples was found, the modified method was established to extract various tissue samples, including rat liver, heart, and plasma. Essentially identical profiles of the majority of lipid classes were obtained from the extracts of the modified BUME and traditional Bligh-Dyer methods. However, it was found that neither the original, nor the modified BUME method was suitable for 4-hydroxyalkenal species measurement in biological samples.
Cruz, Mutya; Wang, Miao; Frisch-Daiello, Jessica; Han, Xianlin
2016-01-01
Extraction of lipids from biological samples is a critical step in lipidomics, especially for shotgun lipidomics where lipid extracts are directly infused into a mass spectrometer. The butanol-methanol (BUME) extraction method was originally developed to extract lipids from plasma samples with 1% acetic acid. Considering some lipids are sensitive to acidic environments, we modified this protocol by replacing acetic acid with lithium chloride solution and extended the modified extraction to tissue samples. Although no significant reduction of plasmalogen levels in the acidic BUME extracts of rat heart samples was found, the modified method was established to extract various tissue samples, including rat liver, heart, and plasma. Essentially identical profiles of the majority of lipid classes were obtained from the extracts of the modified BUME and traditional Bligh-Dyer methods. However, it was found that neither the original, nor the modified BUME method was suitable for 4-hydroxyalkenal species measurement in biological samples. PMID:27245345
Li, Guoping; Yuan, Kefei; Yan, Chunguang; Fox, John; Gaid, Madeleine; Breitwieser, Wayne; Bansal, Arvind K.; Zeng, Huawei; Gao, Hongwei; Wu, Min
2013-01-01
8-oxoguanine-DNA glycosylase (OGG-1) is a base excision DNA repair enzyme; however, its function in modulating allergic diseases remains undefined. Using OGG-1 knockout (KO) mice, we show that this protein impacts allergic airway inflammation following sensitization and challenge by ovalbumin (OVA). OGG-1 KO mice exhibited less inflammatory cell infiltration and reduced oxidative stress in the lungs after OVA challenge compared to WT mice. The KO phenotype included decreased IL-4, IL-6, IL-10, and IL-17 in lung tissues. In addition, OGG-1 KO mice showed decreased expression and phosphorylation of STAT6 as well as NF-κB. Down-regulation of OGG-1 by siRNA lowered ROS and IL-4 levels but increased INF-γ production in cultured epithelial cells following exposure to house dust mite (HDM) extracts. OGG-1 may affect the levels of oxidative stress and proinflammatory cytokines during asthmatic conditions. OGG-1-deficiency negatively regulates allergen-induced airway inflammatory response. PMID:22100973
Detection of histone modifications in plant leaves.
Jaskiewicz, Michal; Peterhansel, Christoph; Conrath, Uwe
2011-09-23
Chromatin structure is important for the regulation of gene expression in eukaryotes. In this process, chromatin remodeling, DNA methylation, and covalent modifications on the amino-terminal tails of histones H3 and H4 play essential roles(1-2). H3 and H4 histone modifications include methylation of lysine and arginine, acetylation of lysine, and phosphorylation of serine residues(1-2). These modifications are associated either with gene activation, repression, or a primed state of gene that supports more rapid and robust activation of expression after perception of appropriate signals (microbe-associated molecular patterns, light, hormones, etc.)(3-7). Here, we present a method for the reliable and sensitive detection of specific chromatin modifications on selected plant genes. The technique is based on the crosslinking of (modified) histones and DNA with formaldehyde(8,9), extraction and sonication of chromatin, chromatin immunoprecipitation (ChIP) with modification-specific antibodies(9,10), de-crosslinking of histone-DNA complexes, and gene-specific real-time quantitative PCR. The approach has proven useful for detecting specific histone modifications associated with C(4;) photosynthesis in maize(5,11) and systemic immunity in Arabidopsis(3).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kodadek, T.; Gamper, H.
The authors report a simple method for the in vitro synthesis of large quantities of site specifically modified DNA. The protocol involves extension of an oligonucleotide primer annealed to M13 single-stranded DNA using part of the T4 DNA polymerase holoenzyme. The resulting nicked double-stranded circles are ligated and supercoiled in the same tube, producing good yields of form I DNA. When the oligonucleotide primer is chemically modified, the resultant product contains a site-specific lesion. In this study, they report the synthesis of an M13 mp19 form I DNA which contains a psoralen monoadduct or cross-link at the KpnI site. Theymore » demonstrate the utility of these modified substrates by assessing the ability of the bacteriophage T4 DNA replication complex to bypass the damage and show that the psoralen monoadduct poses a severe block to the holoenzyme when attached to the template strand.« less
The Extraction and Recovery Efficiency of Pure DNA for Different Types of Swabs.
Bruijns, Brigitte B; Tiggelaar, Roald M; Gardeniers, Han
2018-06-11
The extraction and recovery efficiency of swabs used to collect evidence at crime scenes is relatively low (typically <50%) for bacterial spores and body fluids. Cell-free deoxyribonucleic acid (DNA) is an interesting alternative compared to whole cells as a source for forensic analysis, but extraction and recovery from swabs has not been tested before using pure DNA. In this study cotton, foam, nylon flocked, polyester and rayon swabs are investigated in order to collect pure DNA isolated from saliva samples. The morphology and absorption capacity of swabs is studied. Extraction and recovery efficiencies are determined and compared to the maximum theoretical efficiency. The results indicate that a substantial part of DNA is not extracted from the swab and some types of swab seem to bind effectively with DNA. The efficiency of the different types of swab never exceeds 50%. The nylon flocked 4N6FLOQSwab used for buccal sampling performs the best. © 2018 The Authors. Journal of Forensic Sciences published by Wiley Periodicals, Inc. on behalf of American Academy of Forensic Sciences.
A two-step electrodialysis method for DNA purification from polluted metallic environmental samples.
Rodríguez-Mejía, José Luis; Martínez-Anaya, Claudia; Folch-Mallol, Jorge Luis; Dantán-González, Edgar
2008-08-01
Extracting DNA from samples of polluted environments using standard methods often results in low yields of poor-quality material unsuited to subsequent manipulation and analysis by molecular biological techniques. Here, we report a novel two-step electrodialysis-based method for the extraction of DNA from environmental samples. This technique permits the rapid and efficient isolation of high-quality DNA based on its acidic nature, and without the requirement for phenol-chloroform-isoamyl alcohol cleanup and ethanol precipitation steps. Subsequent PCR, endonuclease restriction, and cloning reactions were successfully performed utilizing DNA obtained by electrodialysis, whereas some or all of these techniques failed using DNA extracted with two alternative methods. We also show that his technique is applicable to purify DNA from a range of polluted and nonpolluted samples.
Multiplexed Sequence Encoding: A Framework for DNA Communication.
Zakeri, Bijan; Carr, Peter A; Lu, Timothy K
2016-01-01
Synthetic DNA has great propensity for efficiently and stably storing non-biological information. With DNA writing and reading technologies rapidly advancing, new applications for synthetic DNA are emerging in data storage and communication. Traditionally, DNA communication has focused on the encoding and transfer of complete sets of information. Here, we explore the use of DNA for the communication of short messages that are fragmented across multiple distinct DNA molecules. We identified three pivotal points in a communication-data encoding, data transfer & data extraction-and developed novel tools to enable communication via molecules of DNA. To address data encoding, we designed DNA-based individualized keyboards (iKeys) to convert plaintext into DNA, while reducing the occurrence of DNA homopolymers to improve synthesis and sequencing processes. To address data transfer, we implemented a secret-sharing system-Multiplexed Sequence Encoding (MuSE)-that conceals messages between multiple distinct DNA molecules, requiring a combination key to reveal messages. To address data extraction, we achieved the first instance of chromatogram patterning through multiplexed sequencing, thereby enabling a new method for data extraction. We envision these approaches will enable more widespread communication of information via DNA.
Comparison of methods for extracting DNA from formalin-fixed paraffin sections for nonisotopic PCR.
Frank, T S; Svoboda-Newman, S M; Hsi, E D
1996-09-01
DNA was extracted from unstained 5-microns sections of neutral buffered 10% formalin-fixed paraffin-embedded tissue by proteinase K digestion without detergents followed by boiling, proteinase K digestion with ionic detergents with and without phenol chloroform extraction and ethanol precipitation, sonication with proteinase K followed by boiling, or boiling alone. Serial 1:10 dilutions of the extracted DNA were subject to polymerase chain reaction (PCR) amplification of a 255-bp portion of the p53 gene. Digestion with proteinase K without ionic detergents followed by boiling (without phenol chloroform extraction) gave the best yield, enabling visualization of ethidium bromide-stained PCR product from a DNA dilution corresponding to 0.1 mm2 of tissue containing of the order of 10(3) nuclear profiles. Proteinase K digestion with detergents followed by phenol-chloroform extraction was no more effective than simple boiling. Although the success of PCR from preserved tissue will vary with the fixative and size of the amplified fragment, DNA extracted with this optimized method can be used for identification of viruses, loss of heterozygosity, and immunoglobulin gene rearrangements in paraffin-embedded tissue without radioisotopes.
Gillespie, Peter J.; Gambus, Agnieszka; Blow, J. Julian
2012-01-01
The use of cell-free extracts prepared from eggs of the South African clawed toad, Xenopus laevis, has led to many important discoveries in cell cycle research. These egg extracts recapitulate the key nuclear transitions of the eukaryotic cell cycle in vitro under apparently the same controls that exist in vivo. DNA added to the extract is first assembled into a nucleus and is then efficiently replicated. Progression of the extract into mitosis then allows the separation of paired sister chromatids. The Xenopus cell-free system is therefore uniquely suited to the study of the mechanisms, dynamics and integration of cell cycle regulated processes at a biochemical level. In this article we describe methods currently in use in our laboratory for the preparation of Xenopus egg extracts and demembranated sperm nuclei for the study of DNA replication in vitro. We also detail how DNA replication can be quantified in this system. In addition, we describe methods for isolating chromatin and chromatin-bound protein complexes from egg extracts. These recently developed and revised techniques provide a practical starting point for investigating the function of proteins involved in DNA replication. PMID:22521908
Statistical assessment of DNA extraction reagent lot variability in real-time quantitative PCR
Bushon, R.N.; Kephart, C.M.; Koltun, G.F.; Francy, D.S.; Schaefer, F. W.; Lindquist, H.D. Alan
2010-01-01
Aims: The aim of this study was to evaluate the variability in lots of a DNA extraction kit using real-time PCR assays for Bacillus anthracis, Francisella tularensis and Vibrio cholerae. Methods and Results: Replicate aliquots of three bacteria were processed in duplicate with three different lots of a commercial DNA extraction kit. This experiment was repeated in triplicate. Results showed that cycle threshold values were statistically different among the different lots. Conclusions: Differences in DNA extraction reagent lots were found to be a significant source of variability for qPCR results. Steps should be taken to ensure the quality and consistency of reagents. Minimally, we propose that standard curves should be constructed for each new lot of extraction reagents, so that lot-to-lot variation is accounted for in data interpretation. Significance and Impact of the Study: This study highlights the importance of evaluating variability in DNA extraction procedures, especially when different reagent lots are used. Consideration of this variability in data interpretation should be an integral part of studies investigating environmental samples with unknown concentrations of organisms. ?? 2010 The Society for Applied Microbiology.
Assessing DNA recovery from chewing gum.
Eychner, Alison M; Schott, Kelly M; Elkins, Kelly M
2017-01-01
The purpose of this study was to evaluate which DNA extraction method yields the highest quantity of DNA from chewing gum. In this study, several popular extraction methods were tested, including Chelex-100, phenol-chloroform-isoamyl alcohol (PCIA), DNA IQ, PrepFiler, and QIAamp Investigator, and the quantity of DNA recovered from chewing gum was determined using real-time polymerase chain reaction with Quantifiler. Chewed gum control samples were submitted by anonymous healthy adult donors, and discarded environmental chewing gum samples simulating forensic evidence were collected from outside public areas (e.g., campus bus stops, streets, and sidewalks). As expected, results indicate that all methods tested yielded sufficient amplifiable human DNA from chewing gum using the wet-swab method. The QIAamp performed best when DNA was extracted from whole pieces of control gum (142.7 ng on average), and the DNA IQ method performed best on the environmental whole gum samples (29.0 ng on average). On average, the QIAamp kit also recovered the most DNA from saliva swabs. The PCIA method demonstrated the highest yield with wet swabs of the environmental gum (26.4 ng of DNA on average). However, this method should be avoided with whole gum samples (no DNA yield) due to the action of the organic reagents in dissolving and softening the gum and inhibiting DNA recovery during the extraction.
Stanczyk, M; Sliwinski, T; Trelinska, J; Cuchra, M; Markiewicz, L; Dziki, L; Bieniek, A; Bielecka-Kowalska, A; Kowalski, M; Pastorczak, A; Szemraj, J; Mlynarski, W; Majsterek, I
2012-01-24
Methotrexate (MTX) and 6-mercaptopurine (6MP) are the most commonly used drugs in the therapy of childhood acute lymphoblastic leukaemia (ALL). The main genotoxic effect of MTX resulting from inhibition of thymidylate synthase is mis-incorporation of uracil into DNA, which is considered essential for the effectiveness of the Protocol M in ALL IC BFM 2002/EURO LB 2002 regimens. In this study, we investigated the level of basal and induced DNA damage as well as the effectiveness of DNA repair in lymphocytes of children with ALL at four time-points during therapy with MTX and 6MP. To assess DNA damage and the efficacy of DNA repair we used the modified alkaline comet assay with uracil DNA glycosylase (Udg) and endonuclease III (EndoIII). In addition, we examined the induction of apoptosis in the lymphocytes of the patients during treatment. Finally, we compared the activity of base-excision repair (BER), involved in removal of both uracil and oxidized bases from DNA in lymphocytes of children with ALL and lymphocytes of healthy children. BER efficiency was estimated in an in vitro assay with cellular extracts and plasmid substrates of heteroduplex DNA with an AP-site. Our results indicate that there is a significant decrease in the efficacy of DNA repair associated with an increased level of uracil in DNA and induction of apoptosis during therapy. Moreover, it was found that the BER capacity was decreased in the lymphocytes of ALL patients in contrast to that in lymphocytes of healthy children. Thus, we suggest that an impairment of the BER pathway may play a role in the pathogenesis and therapy of childhood ALL. © 2011 Elsevier B.V. All rights reserved.
Hernández, Carolina; Durán, Claudia; Ulloa, María Teresa; Prado, Valeria
2004-05-01
Streptococcus pneumoniae is a common etiologic agent of invasive respiratory infections among children under 5 years of age and older adults. Isolation rates of S. pneumoniae by traditional culture techniques are low. To study the sensitivity and specificity of two different DNA extraction methods to amplify the ply gene, applied to three different types of blood culture broths, experimentally inoculated with S. pneumoniae. DNA was extracted from the cultures using an organic method or a technique that consists in dilution, washing with NaOH and concentration of the sample. This was followed by PCR amplification of a 355 pb fragment of the pneumolysin gene (ply). The organic DNA extraction method inhibited the PCR reaction at all concentrations studied (0.6 to 10(6) colony forming units/mL). Using the NaOH extraction, ply gene amplification was positive in all three blood culture broths, but only at concentrations of 10(3) colony forming units/mL, or higher. Using the same DNA extraction method, PCR was negative when the broths were inoculated with seven other related bacterial species, which results in a 100% specificity. Detection of S. pneumoniae by amplification of ply gene from blood cultures using the protocol of NaOH for DNA extraction is specific and provides results in a short lapse. However, the diagnostic sensitivity is not optimal, which limits its clinical use.
Human Lamin B Contains a Farnesylated Cysteine Residue*
Farnsworth, Christopher C.; Wolda, Sharon L.; Gelb, Michael H.; Glomset, John A.
2012-01-01
We recently showed that HeLa cell lamin B is modified by a mevalonic acid derivative. Here we identified the modified amino acid, determined its mode of link-age to the mevalonic acid derivative, and established the derivative’s structure. A cysteine residue is modified because experiments with lamin B that had been biosynthetically labeled with [3H] mevalonic acid or [35S] cysteine and then extensively digested with proteases yielded 3H- or 35S-labeled products that co-chromatographed in five successive systems. A thioether linkage rather than a thioester linkage is involved because the mevalonic acid derivative could be released from the 3H-labeled products in a pentane-extractable form by treatment with Raney nickel but not with methanolic KOH. The derivative is a farnesyl moiety because the Raney nickel-released material was identified as 2,6,10-trimethyl-2,6,10-dodecatriene by a combination of gas chromatography and mass spectrometry. The thioether-modified cysteine residue appears to be located near the carboxyl end of lamin B because treatment of 3H-labeled lamin B with cyanogen bromide yielded a single labeled polypeptide that mapped toward this end of the cDNA-inferred sequence of human lamin B. PMID:2684976
Survival of Skin Graft between Transgenic Cloned Dogs and Non-Transgenic Cloned Dogs
Kim, Geon A; Oh, Hyun Ju; Kim, Min Jung; Jo, Young Kwang; Choi, Jin; Park, Jung Eun; Park, Eun Jung; Lim, Sang Hyun; Yoon, Byung Il; Kang, Sung Keun; Jang, Goo; Lee, Byeong Chun
2014-01-01
Whereas it has been assumed that genetically modified tissues or cells derived from somatic cell nuclear transfer (SCNT) should be accepted by a host of the same species, their immune compatibility has not been extensively explored. To identify acceptance of SCNT-derived cells or tissues, skin grafts were performed between cloned dogs that were identical except for their mitochondrial DNA (mtDNA) haplotypes and foreign gene. We showed here that differences in mtDNA haplotypes and genetic modification did not elicit immune responses in these dogs: 1) skin tissues from genetically-modified cloned dogs were successfully transplanted into genetically-modified cloned dogs with different mtDNA haplotype under three successive grafts over 63 days; and 2) non-transgenic cloned tissues were accepted into transgenic cloned syngeneic recipients with different mtDNA haplotypes and vice versa under two successive grafts over 63 days. In addition, expression of the inserted gene was maintained, being functional without eliciting graft rejection. In conclusion, these results show that transplanting genetically-modified tissues into normal, syngeneic or genetically-modified recipient dogs with different mtDNA haplotypes do not elicit skin graft rejection or affect expression of the inserted gene. Therefore, therapeutically valuable tissue derived from SCNT with genetic modification might be used safely in clinical applications for patients with diseased tissues. PMID:25372489
Tsunoda, Hirosuke; Kudo, Tomomi; Masaki, Yoshiaki; Ohkubo, Akihiro; Seio, Kohji; Sekine, Mitsuo
2011-01-01
To clarify the biochemical behavior of 2′-deoxyribonucleoside 5′-triphosphates and oligodeoxyribonucleotides (ODNs) containing cytosine N-oxide (Co) and adenine N-oxide (Ao), we examined their base recognition ability in DNA duplex formation using melting temperature (Tm) experiments and their substrate specificity in DNA polymerase-mediated replication. As the result, it was found that the Tm values of modified DNA–DNA duplexes incorporating 2′-deoxyribonucleoside N-oxide derivatives significantly decreased compared with those of the unmodified duplexes. However, single insertion reactions by DNA polymerases of Klenow fragment (KF) (exo−) and Vent (exo−) suggested that Co and Ao selectively recognized G and T, respectively. Meanwhile, the kinetic study showed that the incorporation efficiencies of the modified bases were lower than those of natural bases. Ab initio calculations suggest that these modified bases can form the stable base pairs with the original complementary bases. These results indicate that the modified bases usually recognize the original bases as partners for base pairing, except for misrecognition of dATP by the action of KF (exo−) toward Ao on the template, and the primers could be extended on the template DNA. When they misrecognized wrong bases, the chain could not be elongated so that the modified base served as the chain terminator. PMID:21300642
Visualization of DNA in highly processed botanical materials.
Lu, Zhengfei; Rubinsky, Maria; Babajanian, Silva; Zhang, Yanjun; Chang, Peter; Swanson, Gary
2018-04-15
DNA-based methods have been gaining recognition as a tool for botanical authentication in herbal medicine; however, their application in processed botanical materials is challenging due to the low quality and quantity of DNA left after extensive manufacturing processes. The low amount of DNA recovered from processed materials, especially extracts, is "invisible" by current technology, which has casted doubt on the presence of amplifiable botanical DNA. A method using adapter-ligation and PCR amplification was successfully applied to visualize the "invisible" DNA in botanical extracts. The size of the "invisible" DNA fragments in botanical extracts was around 20-220 bp compared to fragments of around 600 bp for the more easily visualized DNA in botanical powders. This technique is the first to allow characterization and visualization of small fragments of DNA in processed botanical materials and will provide key information to guide the development of appropriate DNA-based botanical authentication methods in the future. Copyright © 2017 Elsevier Ltd. All rights reserved.
Wooten, Dennis C; Starr, Clarise R; Lyon, Wanda J
2016-01-01
Different forms of heavy metals affect biochemical systems in characteristic ways that cannot be detected with typical metal analysis methods like atomic absorption spectrometry. Further, using living systems to analyze interaction of heavy metals with biochemical systems can be laborious and unreliable. To generate a reliable easy-to-use biologically-based biosensor system, the entire human metallothionein-II (MT-II) gene was incorporated into a plasmid (pUC57-MT) easily replicated in Escherichia coli. In this system, a commercial polyclonal antibody raised against human metal-responsive transcription factor-1 protein (MTF-1 protein) could modify the electrophoretic migration patterns (i.e. cause specific decreases in agarose gel electrophoretic mobility) of the plasmid in the presence or absence of heavy metals other than zinc (Zn). In the study here, heavy metals, MTF-1 protein, and polyclonal anti-MTF-1 antibody were used to assess pUC57-MT plasmid antibody-assisted electrophoretic mobility. Anti-MTF-1 antibody bound both MTF-1 protein and pUC57-MT plasmid in a non-competitive fashion such that it could be used to differentiate specific heavy metal binding. The results showed that antibody-inhibited plasmid migration was heavy metal level-dependent. Zinc caused a unique mobility shift pattern opposite to that of other metals tested, i.e. Zn blocked the antibody ability to inhibit plasmid migration, despite a greatly increased affinity for DNA by the antibody when Zn was present. The Zn effect was reversed/modified by adding MTF-1 protein. Additionally, antibody inhibition of plasmid mobility was resistant to heat pre-treatment and trypsinization, indicating absence of residual DNA extraction-resistant bacterial DNA binding proteins. DNA binding by anti-DNA antibodies may be commonly enhanced by xenobiotic heavy metals and elevated levels of Zn, thus making them potentially effective tools for assessment of heavy metal bioavailability in aqueous solutions and fluid obtained from metal implant sites.
Vargas, Eva; Torrente-Rodríguez, Rebeca M; Ruiz-Valdepeñas Montiel, Víctor; Povedano, Eloy; Pedrero, María; Montoya, Juan J; Campuzano, Susana; Pingarrón, José M
2017-11-09
This work describes a sensitive amperometric magneto-biosensor for single-step and rapid determination of microRNAs (miRNAs). The developed strategy involves the use of direct hybridization of the target miRNA (miRNA-21) with a specific biotinylated DNA probe immobilized on streptavidin-modified magnetic beads (MBs), and labeling of the resulting heteroduplexes with a specific DNA-RNA antibody and the bacterial protein A (ProtA) conjugated with an horseradish peroxidase (HRP) homopolymer (Poly-HRP40) as an enzymatic label for signal amplification. Amperometric detection is performed upon magnetic capture of the modified MBs onto the working electrode surface of disposable screen-printed carbon electrodes (SPCEs) using the H₂O₂/hydroquinone (HQ) system. The magnitude of the cathodic signal obtained at -0.20 V (vs. the Ag pseudo-reference electrode) demonstrated linear dependence with the concentration of the synthetic target miRNA over the 1.0 to 100 pM range. The method provided a detection limit (LOD) of 10 attomoles (in a 25 μL sample) without any target miRNA amplification in just 30 min (once the DNA capture probe-MBs were prepared). This approach shows improved sensitivity compared with that of biosensors constructed with the same anti-DNA-RNA Ab as capture instead of a detector antibody and further labeling with a Strep-HRP conjugate instead of the Poly-HRP40 homopolymer. The developed strategy involves a single step working protocol, as well as the possibility to tailor the sensitivity by enlarging the length of the DNA/miRNA heteroduplexes using additional probes and/or performing the labelling with ProtA conjugated with homopolymers prepared with different numbers of HRP molecules. The practical usefulness was demonstrated by determination of the endogenous levels of the mature target miRNA in 250 ng raw total RNA (RNA t ) extracted from human mammary epithelial normal (MCF-10A) and cancer (MCF-7) cells and tumor tissues.
Díaz-Cano, S J; Brady, S P
1997-12-01
Several DNA extraction methods have been used for formalin-fixed, paraffin-embedded tissues, with variable results being reported regarding the suitability of DNA obtained from such sources to serve as template in polymerase chain reaction (PCR)-based genetic analyses. We present a method routinely used for archival material in our laboratory that reliably yields DNA of sufficient quality for PCR studies. This method is based on extended proteinase K digestion (250 micrograms/ml in an EDTA-free calcium-containing buffer supplemented with mussel glycogen) followed by phenol-chloroform extraction. Agarose gel electrophoresis of both digestion buffer aliquots and PCR amplification of the beta-globin gene tested the suitability of the retrieved DNA for PCR amplification.
Sukhanova, Maria V; D'Herin, Claudine; Boiteux, Serge; Lavrik, Olga I
2014-10-01
To characterize proteins that interact with single-stranded/double-stranded (ss/ds) DNA junctions in whole cell free extracts of Saccharomyces cerevisiae, we used [(32)P]-labeled photoreactive partial DNA duplexes containing a 3'-ss/ds-junction (3'-junction) or a 5'-ss/ds-junction (5'-junction). Identification of labeled proteins was achieved by MALDI-TOF mass spectrometry peptide mass fingerprinting and genetic analysis. In wild-type extract, one of the components of the Ddc1-Rad17-Mec3 complex, Ddc1, was found to be preferentially photocrosslinked at a 3'-junction. On the other hand, RPAp70, the large subunit of the replication protein A (RPA), was the predominant crosslinking product at a 5'-junction. Interestingly, ddc1Δ extracts did not display photocrosslinking of RPAp70 at a 5'-junction. The results show that RPAp70 crosslinked to DNA with a 5'-junction is subject to limited proteolysis in ddc1Δ extracts, whereas it is stable in WT, rad17Δ, mec3Δ and mec1Δ extracts. The degradation of the RPAp70-DNA adduct in ddc1Δ extract is strongly reduced in the presence of the proteasome inhibitor MG 132. We also addressed the question of the stability of free RPA, using anti-RPA antibodies. The results show that RPAp70 is also subject to proteolysis without photocrosslinking to DNA upon incubation in ddc1Δ extract. The data point to a novel property of Ddc1, modulating the turnover of DNA binding proteins such as RPAp70 by the proteasome. Copyright © 2014 Elsevier B.V. All rights reserved.
Antimutagenic and free radical scavenger effects of leaf extracts from Accacia salicina.
Boubaker, Jihed; Mansour, Hedi Ben; Ghedira, Kamel; Chekir-Ghedira, Leila
2011-12-01
Three extracts were prepared from the leaves of Accacia salicina; ethyl acetate (EA), chloroform (Chl) and petroleum ether (PE) extracts and was designed to examine antimutagenic, antioxidant potenty and oxidative DNA damage protecting activity. Antioxidant activity of A. salicina extracts was determined by the ability of each extract to protect against plasmid DNA strand scission induced by hydroxyl radicals. An assay for the ability of these extracts to prevent mutations induced by various oxidants in Salmonella typhimurium TA102 and TA 104 strains was conducted. In addition, nonenzymatic methods were employed to evaluate anti-oxidative effects of tested extracts. These extracts from leaf parts of A. salicina showed no mutagenicity either with or without the metabolic enzyme preparation (S9). The highest protections against methylmethanesulfonate induced mutagenicity were observed with all extracts and especially chloroform extract. This extract exhibited the highest inhibitiory level of the Ames response induced by the indirect mutagen 2- aminoanthracene. All extracts exhibited the highest ability to protect plasmid DNA against hydroxyl radicals induced DNA damages. The ethyl acetate (EA) and chloroform (Chl) extracts showed with high TEAC values radical of 0.95 and 0.81 mM respectively, against the ABTS(.+). The present study revealed the antimutagenic and antioxidant potenty of plant extract from Accacia salicina leaves. © 2011 Boubaker et al; licensee BioMed Central Ltd.
Nanopore DNA sensors based on dendrimer-modified nanopipettes.
Fu, Yaqin; Tokuhisa, Hideo; Baker, Lane A
2009-08-28
A dendrimer-modified nanopipette is used to detect hybridization of a specific DNA sequence through evaluation of the extent of rectification of ion currents observed in the measured current-voltage response.
Liang, Pingping; Canoura, Juan; Yu, Haixiang; Alkhamis, Obtin; Xiao, Yi
2018-01-31
DNA-modified gold nanoparticles (AuNPs) are useful signal-reporters for detecting diverse molecules through various hybridization- and enzyme-based assays. However, their performance is heavily dependent on the probe DNA surface coverage, which can influence both target binding and enzymatic processing of the bound probes. Current methods used to adjust the surface coverage of DNA-modified AuNPs require the production of multiple batches of AuNPs under different conditions, which is costly and laborious. We here develop a single-step assay utilizing dithiothreitol (DTT) to fine-tune the surface coverage of DNA-modified AuNPs. DTT is superior to the commonly used surface diluent, mercaptohexanol, as it is less volatile, allowing for the rapid and reproducible controlling of surface coverage on AuNPs with only micromolar concentrations of DTT. Upon adsorption, DTT forms a dense monolayer on gold surfaces, which provides antifouling capabilities. Furthermore, surface-bound DTT adopts a cyclic conformation, which reorients DNA probes into an upright position and provides ample space to promote DNA hybridization, aptamer assembly, and nuclease digestion. We demonstrate the effects of surface coverage on AuNP-based sensors using DTT-regulated DNA-modified AuNPs. We then use these AuNPs to visually detect DNA and cocaine in colorimetric assays based on enzyme-mediated AuNP aggregation. We determine that DTT-regulated AuNPs with lower surface coverage achieve shorter reaction times and lower detection limits relative to those for assays using untreated AuNPs or DTT-regulated AuNPs with high surface coverage. Additionally, we demonstrate that our DTT-regulated AuNPs can perform cocaine detection in 50% urine without any significant matrix effects. We believe that DTT regulation of surface coverage can be broadly employed for optimizing DNA-modified AuNP performance for use in biosensors as well as drug delivery and therapeutic applications.
Date palm pollen allergoid: characterization of its chemical-physical and immunological properties.
Mistrello, G; Harfi, H; Roncarolo, D; Kwaasi, A; Zanoni, D; Falagiani, P; Panzani, R
2008-01-01
Date palm (DP) pollen can cause allergic symptoms in people living in different countries. Specific immunotherapy with allergenic extracts by subcutaneous route is effective to cure allergic people. However, the risk of side effects has led to explore safer therapeutic modalities. The aim of our work was to evaluate IgE cross-reactivity between DP and autochthonous palm (European fan palm, EFP) pollen extracts, to chemically modify DP extract with potassium cyanate in order to obtain an allergoid, and to characterize it. By radioallergosorbent test inhibition, immunoblotting (IB) and skin prick test, in vitro and in vivo allergenic activities of native and modified DP extracts were compared. By SDS-PAGE and IB, we compared the protein profile and IgE-binding capacity of both native and modified DP, as well as of EFP extracts. By IB inhibition, IgE cross-reactivity of native DP and EFP extracts was evaluated. By ELISA, the capacity of modified DP-induced IgG to react with native DP extract was determined. Radioallergosorbent test inhibition, IB and skin prick test results demonstrated that modified DP was significantly less allergenic than native DP extract. The SDS-PAGE profile showed that potassium cyanate treatment of DP extract did not alter the molecular weight of its components. In addition, no difference was observed between native DP and EFP extracts. Subsequent IB inhibition data evidenced the existence of a strong IgE cross-reactivity between native DP and EFP extracts. ELISA results indicated that the administration of modified DP in mice was able to induce specific IgG also recognizing native DP extract. Modified DP extract (allergoid) seems to be a good candidate for immunotherapy of patients affected by specific allergy. 2007 S. Karger AG, Basel
New procedure for recovering extra- and intracellular DNA from marine sediment samples
NASA Astrophysics Data System (ADS)
Alawi, M.; Kallmeyer, J.
2012-12-01
Extracellular DNA (eDNA) is a ubiquitous biological compound in aquatic sediment and soil. Despite major methodological advances, analysis of DNA from sediment is still technically challenging, not just because of the co-elution of inhibitory substances, but also due to co-elution of extracellular DNA, which potentially leads to an overestimate of the actual diversity. Previous studies suggested that eDNA might play an important role in biogeochemical element cycling, horizontal gene transfer and stabilization of biofilm structures. Several protocols based on the precipitation of eDNA e.g. with CTAB and ethanol have already been published. However, using these methods we did not succeed in quantifying very low amounts of eDNA (e.g. <1μg eDNA/g dry wt) in marine sediment even when using DNA carriers like glycogen. Since the recovery of eDNA by precipitation strongly depends on its concentration, these previously published procedures are not adequate for deep biosphere sediment due to the low eDNA content. We have focused on the question whether eDNA could be a source of nitrogen and phosphorus for microbes in the subseafloor biosphere. Therefore we developed a new method for the (semi)-quantitative extraction of eDNA from sediment. The new extraction procedure is based on sequential washing of the sediment to remove simultaneously eDNA and microbial cells without lysing them. After separation of the cells by centrifugation, the eDNA was extracted from the supernatant and purified by adsorption onto a solid phase, followed by removal of the solids and subsequent elution of the pure eDNA. Intracellular DNA (iDNA) was extracted and purified from the cell pellet using a commercial DNA extraction kit. Additional to a very low detection limit and reproducible quantification, this new method allows separation and purification of both extracellular and intracellular DNA to an extent that inhibitors are removed and downstream applications like PCR can be performed. To evaluate the new extraction method two sediments with rather opposing composition were analyzed. Sediment from the South Pacific Gyre, the most oligotrophic oceanic region on earth and organic-rich Baltic Sea sediment (Northern Germany) were processed. Using this new procedure high purity genomic iDNA and eDNA with a molecular size range between 20 bp and 50k bp can be simultaneously recovered even from very oligotrophic sediment with very low cell abundances. The main fraction of recovered eDNA was suitable for downstream applications like PCR and had a molecular size that indicates minimal shearing. Despite about two decades of research many questions about deep subsurface life remain unanswered. The fact that microbes can be found even in deep oligotrophic marine sediment raises the fundamental questions of the types and availability of substrates and their biogeochemical cycling. This is the first study that provides evidence that eDNA is an important potential substrate for microorganisms in the deep biosphere. Also, our results show a link between cell counts and eDNA content, indicating that the eDNA pool in the investigated sediment consist mainly of microbial DNA. Comparative sequence analysis of extracted iDNA and eDNA will provide deeper insights into the origin and turnover of eDNA and the apparent microbial community composition in the deep biosphere.
Nagai, Satoshi; Yamamoto, Keigo; Hata, Naotugu; Itakura, Shigeru
2012-09-01
In a previous study, we experienced instable amplification and a low amplification success in loop-mediated isothermal amplification (LAMP) reactions from naturally occurring vegetative cells or resting cysts of the toxic dinoflagellates Alexandrium tamarense and Alexandrium catenella. In this study, we examined 4 methods for extracting DNA from single resting cysts of A. tamarense and A. catenella to obtain more stable and better amplification success and to facilitate unambiguous detection using the LAMP method. Apart from comparing the 4 different DNA extraction methods, namely, (1) boiling in Tris-EDTA (TE) buffer, (2) heating at 65 °C in hexadecyltrimethylammonium bromide buffer, (3) boiling in 0.5% Chelex buffer, and (4) boiling in 5% Chelex buffer, we also examined the need for homogenization to crush the resting cysts before DNA extraction in each method. Homogenization of resting cysts was found to be essential for DNA extraction in all 4 methods. The detection time was significantly shorter in 5% Chelex buffer than in the other buffers and the amplification success was 100% (65/65), indicating the importance of DNA extraction and the effectiveness of 5% Chelex buffer in the Alexandrium LAMP. Copyright © 2012 Elsevier B.V. All rights reserved.
DNA extraction from hair shafts of wild Brazilian felids and canids.
Alberts, C C; Ribeiro-Paes, J T; Aranda-Selverio, G; Cursino-Santos, J R; Moreno-Cotulio, V R; Oliveira, A L D; Porchia, B F M M; Santos, W F; Souza, E B
2010-12-21
Wild felids and canids are usually the main predators in the food chains where they dwell and are almost invisible to behavior and ecology researchers. Due to their grooming behavior, they tend to swallow shed hair, which shows up in the feces. DNA found in hair shafts can be used in molecular studies that can unravel, for instance, genetic variability, reproductive mode and family structure, and in some species, it is even possible to estimate migration and dispersion rates in given populations. First, however, DNA must be extracted from hair. We extracted successfully and dependably hair shaft DNA from eight wild Brazilian felids, ocelot, margay, oncilla, Geoffroy's cat, pampas cat, jaguarundi, puma, and jaguar, as well as the domestic cat and from three wild Brazilian canids, maned wolf, crab-eating fox, and hoary fox, as well as the domestic dog. Hair samples came mostly from feces collected at the São Paulo Zoo and were also gathered from non-sedated pet or from recently dead wild animals and were also collected from museum specimens. Fractions of hair samples were stained before DNA extraction, while most samples were not. Our extraction protocol is based on a feather DNA extraction technique, based in the phenol:chloroform:isoamyl alcohol general method, with proteinase K as digestive enzyme.
Zhang, Zhuhong; Chen, Si; Mei, Hu; Xuan, Jiekun; Guo, Xiaoqing; Couch, Letha; Dobrovolsky, Vasily N; Guo, Lei; Mei, Nan
2015-09-30
Ginkgo biloba leaf extract has been shown to increase the incidence in liver tumors in mice in a 2-year bioassay conducted by the National Toxicology Program. In this study, the DNA damaging effects of Ginkgo biloba leaf extract and many of its constituents were evaluated in human hepatic HepG2 cells and the underlying mechanism was determined. A molecular docking study revealed that quercetin, a flavonoid constituent of Ginkgo biloba, showed a higher potential to interact with topoisomerase II (Topo II) than did the other Ginkgo biloba constituents; this in silico prediction was confirmed by using a biochemical assay to study Topo II enzyme inhibition. Moreover, as measured by the Comet assay and the induction of γ-H2A.X, quercetin, followed by keampferol and isorhamnetin, appeared to be the most potent DNA damage inducer in HepG2 cells. In Topo II knockdown cells, DNA damage triggered by Ginkgo biloba leaf extract or quercetin was dramatically decreased, indicating that DNA damage is directly associated with Topo II. DNA damage was also observed when cells were treated with commercially available Ginkgo biloba extract product. Our findings suggest that Ginkgo biloba leaf extract- and quercetin-induced in vitro genotoxicity may be the result of Topo II inhibition.
Zhang, Zhuhong; Chen, Si; Mei, Hu; Xuan, Jiekun; Guo, Xiaoqing; Couch, Letha; Dobrovolsky, Vasily N.; Guo, Lei; Mei, Nan
2015-01-01
Ginkgo biloba leaf extract has been shown to increase the incidence in liver tumors in mice in a 2-year bioassay conducted by the National Toxicology Program. In this study, the DNA damaging effects of Ginkgo biloba leaf extract and many of its constituents were evaluated in human hepatic HepG2 cells and the underlying mechanism was determined. A molecular docking study revealed that quercetin, a flavonoid constituent of Ginkgo biloba, showed a higher potential to interact with topoisomerase II (Topo II) than did the other Ginkgo biloba constituents; this in silico prediction was confirmed by using a biochemical assay to study Topo II enzyme inhibition. Moreover, as measured by the Comet assay and the induction of γ-H2A.X, quercetin, followed by keampferol and isorhamnetin, appeared to be the most potent DNA damage inducer in HepG2 cells. In Topo II knockdown cells, DNA damage triggered by Ginkgo biloba leaf extract or quercetin was dramatically decreased, indicating that DNA damage is directly associated with Topo II. DNA damage was also observed when cells were treated with commercially available Ginkgo biloba extract product. Our findings suggest that Ginkgo biloba leaf extract- and quercetin-induced in vitro genotoxicity may be the result of Topo II inhibition. PMID:26419945
Effect of DNA extraction and sample preservation method on rumen bacterial population.
Fliegerova, Katerina; Tapio, Ilma; Bonin, Aurelie; Mrazek, Jakub; Callegari, Maria Luisa; Bani, Paolo; Bayat, Alireza; Vilkki, Johanna; Kopečný, Jan; Shingfield, Kevin J; Boyer, Frederic; Coissac, Eric; Taberlet, Pierre; Wallace, R John
2014-10-01
The comparison of the bacterial profile of intracellular (iDNA) and extracellular DNA (eDNA) isolated from cow rumen content stored under different conditions was conducted. The influence of rumen fluid treatment (cheesecloth squeezed, centrifuged, filtered), storage temperature (RT, -80 °C) and cryoprotectants (PBS-glycerol, ethanol) on quality and quantity parameters of extracted DNA was evaluated by bacterial DGGE analysis, real-time PCR quantification and metabarcoding approach using high-throughput sequencing. Samples clustered according to the type of extracted DNA due to considerable differences between iDNA and eDNA bacterial profiles, while storage temperature and cryoprotectants additives had little effect on sample clustering. The numbers of Firmicutes and Bacteroidetes were lower (P < 0.01) in eDNA samples. The qPCR indicated significantly higher amount of Firmicutes in iDNA sample frozen with glycerol (P < 0.01). Deep sequencing analysis of iDNA samples revealed the prevalence of Bacteroidetes and similarity of samples frozen with and without cryoprotectants, which differed from sample stored with ethanol at room temperature. Centrifugation and consequent filtration of rumen fluid subjected to the eDNA isolation procedure considerably changed the ratio of molecular operational taxonomic units (MOTUs) of Bacteroidetes and Firmicutes. Intracellular DNA extraction using bead-beating method from cheesecloth sieved rumen content mixed with PBS-glycerol and stored at -80 °C was found as the optimal method to study ruminal bacterial profile. Copyright © 2013 Elsevier Ltd. All rights reserved.
Hara, Shintaro; Saito, Masanori
2016-01-01
Phytate (inositol hexaphosphate; IHP)-degrading microbes have been suggested to contribute to arbuscular mycorrhizal fungi (AMF)-mediated P transfer from IHP to plants; however, no IHP degrader involved in AMF-mediated P transfer has been isolated to date. We herein report the isolation of IHP-degrading bacteria using a modified baiting method. We applied alginate beads as carriers of IHP powder, and used them as recoverable IHP in the AM fungal compartment of plant cultivation experiments. P transfer from IHP in alginate beads via AMF was confirmed, and extracted DNA from alginate beads was analyzed by denaturing gradient gel electrophoresis targeting the 16S rRNA gene and a clone library method for the beta-propeller phytase (BPP) gene. The diversities of the 16S rRNA and BPP genes of microbes growing on IHP beads were simple and those of Sphingomonas spp. and Caulobacter spp. dominated. A total of 187 IHP-utilizing bacteria were isolated and identified, and they were consistent with the results of DNA analysis. Furthermore, some isolated Sphingomonas spp. and Caulobacter sp. showed IHP-degrading activity. Therefore, we successfully isolated dominant IHP-degrading bacteria from IHP in an AMF hyphal compartment. These strains may contribute to P transfer from IHP via AMF. PMID:27383681
Synthesis and Crystal Structure of 2’-Se-modified guanosine Containing DNA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Salon, J.; Sheng, J; Gan, J
Selenium modification of nucleic acids is of great importance in X-ray crystal structure determination and functional study of nucleic acids. Herein, we describe a convenient synthesis of a new building block, the 2{prime}-SeMe-modified guanosine (G{sub Se}) phosphoramidite, and report the first incorporation of the 2{prime}-Se-G moiety into DNA. The X-ray crystal structure of the 2{prime}-Se-modified octamer DNA (5{prime}-GTG{sub Se}TACAC-3{prime}) was determined at a resolution of 1.20 {angstrom}. We also found that the 2{prime}-Se modification points to the minor groove and that the modified and native structures are virtually identical. Furthermore, we observed that the 2{prime}-Se-G modification can significantly facilitate themore » crystal growth with respect to the corresponding native DNA.« less
NASA Astrophysics Data System (ADS)
Kafle, Amol; Coy, Stephen L.; Wong, Bryan M.; Fornace, Albert J.; Glick, James J.; Vouros, Paul
2014-07-01
A systematic study involving the use and optimization of gas-phase modifiers in quantitative differential mobility-mass spectrometry (DMS-MS) analysis is presented using nucleoside-adduct biomarkers of DNA damage as an important reference point for analysis in complex matrices. Commonly used polar protic and polar aprotic modifiers have been screened for use against two deoxyguanosine adducts of DNA: N-(deoxyguanosin-8-yl)-4-aminobiphenyl (dG-C8-4-ABP) and N-(deoxyguanosin-8-y1)-2-amino-l-methyl-6-phenylimidazo[4,5-b]pyridine (dG-C8-PhIP). Particular attention was paid to compensation voltage (CoV) shifts, peak shapes, and product ion signal intensities while optimizing the DMS-MS conditions. The optimized parameters were then applied to rapid quantitation of the DNA adducts in calf thymus DNA. After a protein precipitation step, adduct levels corresponding to less than one modification in 106 normal DNA bases were detected using the DMS-MS platform. Based on DMS fundamentals and ab initio thermochemical results, we interpret the complexity of DMS modifier responses in terms of thermal activation and the development of solvent shells. At very high bulk gas temperature, modifier dipole moment may be the most important factor in cluster formation and cluster geometry, but at lower temperatures, multi-neutral clusters are important and less predictable. This work provides a useful protocol for targeted DNA adduct quantitation and a basis for future work on DMS modifier effects.
Kafle, Amol; Coy, Stephen L.; Wong, Bryan M.; Fornace, Albert J.; Glick, James J.; Vouros, Paul
2014-01-01
A systematic study involving the use and optimization of gas phase modifiers in quantitative differential mobility- mass spectrometry (DMS-MS) analysis is presented using mucleoside-adduct biomarkers of DNA damage as an important reference point for analysis in complex matrices. Commonly used polar protic and polar aprotic modifiers have been screened for use against two deoxyguanosine adducts of DNA: N-(deoxyguanosin-8-yl)-4-aminobiphenyl (dG-C8-4-ABP) and N-(deoxyguanosin-8-y1)-2-amino-l-methyl-6-phenylimidazo[4,5-b]pyridine (dG-C8-PhIP). Particular attention was paid to compensation voltage (CoV) shifts, peak shapes and product ion signal intensities while optimizing the DMS-MS conditions. The optimized parameters were then applied to rapid quantitation of the DNA adducts in calf thymus DNA. After a protein precipitation step, adduct levels corresponding to less than one modification in 106 normal DNA bases were detected using the DMS-MS platform. Based on DMS fundamentals and ab-initio thermochemical results we interpret the complexity of DMS modifier responses in terms of thermal activation and the development of solvent shells. At very high bulk gas temperature, modifier dipole moment may be the most important factor in cluster formation and cluster geometry in mobility differences, but at lower temperatures multi-neutral clusters are important and less predictable. This work provides a useful protocol for targeted DNA adduct quantitation and a basis for future work on DMS modifier effects. PMID:24452298
Comparative evaluation of different extraction and quantification methods for forensic RNA analysis.
Grabmüller, Melanie; Madea, Burkhard; Courts, Cornelius
2015-05-01
Since about 2005, there is increasing interest in forensic RNA analysis whose versatility may very favorably complement traditional DNA profiling in forensic casework. There is, however, no method available specifically dedicated for extraction of RNA from forensically relevant sample material. In this study we compared five commercially available and commonly used RNA extraction kits and methods (mirVana™ miRNA Isolation Kit Ambion; Trizol® Reagent, Invitrogen; NucleoSpin® miRNA Kit Macherey-Nagel; AllPrep DNA/RNA Mini Kit and RNeasy® Mini Kit both Qiagen) to assess their relative effectiveness of yielding RNA of good quality and their compatibility with co-extraction of DNA amenable to STR profiling. We set up samples of small amounts of dried blood, liquid saliva, semen and buccal mucosa that were aged for different time intervals for co-extraction of RNA and DNA. RNA quality was assessed by determination of 'RNA integrity number' (RIN) and quantitative PCR based expression analysis. DNA quality was assessed via monitoring STR typing success rates. By comparison, the different methods exhibited considerable differences between RNA and DNA yields, RNA quality values and expression levels, and STR profiling success, with the AllPrep DNA/RNA Mini Kit and the NucleoSpin® miRNA Kit excelling at DNA co-extraction and RNA results, respectively. Overall, there was no 'best' method to satisfy all demands of comprehensible co-analysis of RNA and DNA and it appears that each method has specific merits and flaws. We recommend to cautiously choose from available methods and align its characteristics with the needs of the experimental setting at hand. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Pusch, Carsten M; Bachmann, Lutz
2004-05-01
Proof of authenticity is the greatest challenge in palaeogenetic research, and many safeguards have become standard routine in laboratories specialized on ancient DNA research. Here we describe an as-yet unknown source of artifacts that will require special attention in the future. We show that ancient DNA extracts on their own can have an inhibitory and mutagenic effect under PCR. We have spiked PCR reactions including known human test DNA with 14 selected ancient DNA extracts from human and nonhuman sources. We find that the ancient DNA extracts inhibit the amplification of large fragments to different degrees, suggesting that the usual control against contaminations, i.e., the absence of long amplifiable fragments, is not sufficient. But even more important, we find that the extracts induce mutations in a nonrandom fashion. We have amplified a 148-bp stretch of the mitochondrial HVRI from contemporary human template DNA in spiked PCR reactions. Subsequent analysis of 547 sequences from cloned amplicons revealed that the vast majority (76.97%) differed from the correct sequence by single nucleotide substitutions and/or indels. In total, 34 positions of a 103-bp alignment are affected, and most mutations occur repeatedly in independent PCR amplifications. Several of the induced mutations occur at positions that have previously been detected in studies of ancient hominid sequences, including the Neandertal sequences. Our data imply that PCR-induced mutations are likely to be an intrinsic and general problem of PCR amplifications of ancient templates. Therefore, ancient DNA sequences should be considered with caution, at least as long as the molecular basis for the extract-induced mutations is not understood.
Iyer, Lakshminarayan M; Zhang, Dapeng; Burroughs, A Maxwell; Aravind, L
2013-09-01
Discovery of the TET/JBP family of dioxygenases that modify bases in DNA has sparked considerable interest in novel DNA base modifications and their biological roles. Using sensitive sequence and structure analyses combined with contextual information from comparative genomics, we computationally characterize over 12 novel biochemical systems for DNA modifications. We predict previously unidentified enzymes, such as the kinetoplastid J-base generating glycosyltransferase (and its homolog GREB1), the catalytic specificity of bacteriophage TET/JBP proteins and their role in complex DNA base modifications. We also predict the enzymes involved in synthesis of hypermodified bases such as alpha-glutamylthymine and alpha-putrescinylthymine that have remained enigmatic for several decades. Moreover, the current analysis suggests that bacteriophages and certain nucleo-cytoplasmic large DNA viruses contain an unexpectedly diverse range of DNA modification systems, in addition to those using previously characterized enzymes such as Dam, Dcm, TET/JBP, pyrimidine hydroxymethylases, Mom and glycosyltransferases. These include enzymes generating modified bases such as deazaguanines related to queuine and archaeosine, pyrimidines comparable with lysidine, those derived using modified S-adenosyl methionine derivatives and those using TET/JBP-generated hydroxymethyl pyrimidines as biosynthetic starting points. We present evidence that some of these modification systems are also widely dispersed across prokaryotes and certain eukaryotes such as basidiomycetes, chlorophyte and stramenopile alga, where they could serve as novel epigenetic marks for regulation or discrimination of self from non-self DNA. Our study extends the role of the PUA-like fold domains in recognition of modified nucleic acids and predicts versions of the ASCH and EVE domains to be novel 'readers' of modified bases in DNA. These results open opportunities for the investigation of the biology of these systems and their use in biotechnology.
Iyer, Lakshminarayan M.; Zhang, Dapeng; Maxwell Burroughs, A.; Aravind, L.
2013-01-01
Discovery of the TET/JBP family of dioxygenases that modify bases in DNA has sparked considerable interest in novel DNA base modifications and their biological roles. Using sensitive sequence and structure analyses combined with contextual information from comparative genomics, we computationally characterize over 12 novel biochemical systems for DNA modifications. We predict previously unidentified enzymes, such as the kinetoplastid J-base generating glycosyltransferase (and its homolog GREB1), the catalytic specificity of bacteriophage TET/JBP proteins and their role in complex DNA base modifications. We also predict the enzymes involved in synthesis of hypermodified bases such as alpha-glutamylthymine and alpha-putrescinylthymine that have remained enigmatic for several decades. Moreover, the current analysis suggests that bacteriophages and certain nucleo-cytoplasmic large DNA viruses contain an unexpectedly diverse range of DNA modification systems, in addition to those using previously characterized enzymes such as Dam, Dcm, TET/JBP, pyrimidine hydroxymethylases, Mom and glycosyltransferases. These include enzymes generating modified bases such as deazaguanines related to queuine and archaeosine, pyrimidines comparable with lysidine, those derived using modified S-adenosyl methionine derivatives and those using TET/JBP-generated hydroxymethyl pyrimidines as biosynthetic starting points. We present evidence that some of these modification systems are also widely dispersed across prokaryotes and certain eukaryotes such as basidiomycetes, chlorophyte and stramenopile alga, where they could serve as novel epigenetic marks for regulation or discrimination of self from non-self DNA. Our study extends the role of the PUA-like fold domains in recognition of modified nucleic acids and predicts versions of the ASCH and EVE domains to be novel ‘readers’ of modified bases in DNA. These results open opportunities for the investigation of the biology of these systems and their use in biotechnology. PMID:23814188
DNA extraction for streamlined metagenomics of diverse environmental samples.
Marotz, Clarisse; Amir, Amnon; Humphrey, Greg; Gaffney, James; Gogul, Grant; Knight, Rob
2017-06-01
A major bottleneck for metagenomic sequencing is rapid and efficient DNA extraction. Here, we compare the extraction efficiencies of three magnetic bead-based platforms (KingFisher, epMotion, and Tecan) to a standardized column-based extraction platform across a variety of sample types, including feces, oral, skin, soil, and water. Replicate sample plates were extracted and prepared for 16S rRNA gene amplicon sequencing in parallel to assess extraction bias and DNA quality. The data demonstrate that any effect of extraction method on sequencing results was small compared with the variability across samples; however, the KingFisher platform produced the largest number of high-quality reads in the shortest amount of time. Based on these results, we have identified an extraction pipeline that dramatically reduces sample processing time without sacrificing bacterial taxonomic or abundance information.
Single Nucleotide Polymorphism Analysis of European Archaeological M. leprae DNA
Watson, Claire L.; Lockwood, Diana N. J.
2009-01-01
Background Leprosy was common in Europe eight to twelve centuries ago but molecular confirmation of this has been lacking. We have extracted M. leprae ancient DNA (aDNA) from medieval bones and single nucleotide polymorphism (SNP) typed the DNA, this provides insight into the pattern of leprosy transmission in Europe and may assist in the understanding of M. leprae evolution. Methods and Findings Skeletons have been exhumed from 3 European countries (the United Kingdom, Denmark and Croatia) and are dated around the medieval period (476 to 1350 A.D.). we tested for the presence of 3 previously identified single nucleotide polymorphisms (SNPs) in 10 aDNA extractions. M. leprae aDNA was extracted from 6 of the 10 bone samples. SNP analysis of these 6 extractions were compared to previously analysed European SNP data using the same PCR assays and were found to be the same. Testing for the presence of SNPs in M. leprae DNA extracted from ancient bone samples is a novel approach to analysing European M. leprae DNA and the findings concur with the previously published data that European M. leprae strains fall in to one group (SNP group 3). Conclusions These findings support the suggestion that the M. leprae genome is extremely stable and show that archaeological M. leprae DNA can be analysed to gain detailed information about the genotypic make-up of European leprosy, which may assist in the understanding of leprosy transmission worldwide. PMID:19847306
Zhao, Guangtao; Ding, Jiawang; Yu, Han; Yin, Tanji; Qin, Wei
2016-12-02
A potentiometric aptasensing assay that couples the DNA nanostructure-modified magnetic beads with a solid-contact polycation-sensitive membrane electrode for the detection of Vibrio alginolyticus is herein described. The DNA nanostructure-modified magnetic beads are used for amplification of the potential response and elimination of the interfering effect from a complex sample matrix. The solid-contact polycation-sensitive membrane electrode using protamine as an indicator is employed to chronopotentiometrically detect the change in the charge or DNA concentration on the magnetic beads, which is induced by the interaction between Vibrio alginolyticus and the aptamer on the DNA nanostructures. The present potentiometric aptasensing method shows a linear range of 10-100 CFU mL -1 with a detection limit of 10 CFU mL -1 , and a good specificity for the detection of Vibrio alginolyticus . This proposed strategy can be used for the detection of other microorganisms by changing the aptamers in the DNA nanostructures.
Hurt, Richard A.; Robeson, Michael S.; Shakya, Migun; Moberly, James G.; Vishnivetskaya, Tatiana A.; Gu, Baohua; Elias, Dwayne A.
2014-01-01
Despite over three decades of progress, extraction of high molecular weight (HMW) DNA from high clay soils or iron oxide cemented clay has remained challenging. HMW DNA is desirable for next generation sequencing as it yields the most comprehensive coverage. Several DNA extraction procedures were compared from samples that exhibit strong nucleic acid adsorption. pH manipulation or use of alternative ion solutions offered no improvement in nucleic acid recovery. Lysis by liquid N2 grinding in concentrated guanidine followed by concentrated sodium phosphate extraction supported HMW DNA recovery from clays high in iron oxides. DNA recovered using 1 M sodium phosphate buffer (PB) as a competitive desorptive wash was 15.22±2.33 µg DNA/g clay, with most DNA consisting of >20 Kb fragments, compared to 2.46±0.25 µg DNA/g clay with the Powerlyzer system (MoBio). Increasing PB concentration in the lysis reagent coincided with increasing DNA fragment length during initial extraction. Rarefaction plots of 16S rRNA (V1–V3 region) pyrosequencing from A-horizon and clay soils showed an ∼80% and ∼400% larger accessed diversity compared to the Powerlyzer soil DNA system, respectively. The observed diversity from the Firmicutes showed the strongest increase with >3-fold more operational taxonomic units (OTU) recovered. PMID:25033199
Baker, Erin J.; Kellogg, Christina A.
2014-01-01
Coral microbiology is an expanding field, yet there is no standard DNA extraction protocol. Although many researchers depend on commercial extraction kits, no specific kit has been optimized for use with coral samples. Both soil and plant DNA extraction kits from MO BIO Laboratories, Inc., have been used by many research groups for this purpose. MO BIO recently replaced their PowerPlant® kit with an improved PowerPlantPro kit, but it was unclear how these changes would affect the kit’s use with coral samples. In order to determine which kit produced the best results, we conducted a comparison between the original PowerPlant kit, the new PowerPlantPro kit, and an alternative kit, PowerSoil, using samples from several different coral genera. The PowerPlantPro kit had the highest DNA yields, but the lack of 16S rRNA gene amplification in many samples suggests that much of the yield may be coral DNA rather than microbial DNA. The most consistent positive amplifications came from the PowerSoil kit.
Shaw, Kirsty J; Joyce, Domino A; Docker, Peter T; Dyer, Charlotte E; Greenway, Gillian M; Greenman, John; Haswell, Stephen J
2011-02-07
Integrated DNA extraction and amplification have been carried out in a microfluidic device using electro-osmotic pumping (EOP) for fluidic control. All the necessary reagents for performing both DNA extraction and polymerase chain reaction (PCR) amplification were pre-loaded into the microfluidic device following encapsulation in agarose gel. Buccal cells were collected using OmniSwabs [Whatman™, UK] and manually added to a chaotropic binding/lysis solution pre-loaded into the microfluidic device. The released DNA was then adsorbed onto a silica monolith contained within the DNA extraction chamber and the microfluidic device sealed using polymer electrodes. The washing and elution steps for DNA extraction were carried out using EOP, resulting in transfer of the eluted DNA into the PCR chamber. Thermal cycling, achieved using a Peltier element, resulted in amplification of the Amelogenin locus as confirmed using conventional capillary gel electrophoresis. It was demonstrated that the PCR reagents could be stored in the microfluidic device for at least 8 weeks at 4 °C with no significant loss of activity. Such methodology lends itself to the production of 'ready-to-use' microfluidic devices containing all the necessary reagents for sample processing, with many obvious applications in forensics and clinical medicine.
Cryopreservation of human blood for alkaline and Fpg-modified comet assay.
Pu, Xinzhu; Wang, Zemin; Klaunig, James E
2016-01-01
The Comet assay is a reproducible and sensitive assay for the detection of DNA damage in eukaryotic cells and tissues. Incorporation of lesion specific, oxidative DNA damage repair enzymes (for example, Fpg, OGG1 and EndoIII) in the standard alkaline Comet assay procedure allows for the detection and measurement of oxidative DNA damage. The Comet assay using white blood cells (WBC) has proven useful in monitoring DNA damage from environmental agents in humans. However, it is often impractical to performance Comet assay immediately after blood sampling. Thus, storage of blood sample is required. In this study, we developed and tested a simple storage method for very small amount of whole blood for standard and Fpg-modified modified Comet assay. Whole blood was stored in RPMI 1640 media containing 10% FBS, 10% DMSO and 1 mM deferoxamine at a sample to media ratio of 1:50. Samples were stored at -20 °C and -80 °C for 1, 7, 14 and 28 days. Isolated lymphocytes from the same subjects were also stored under the same conditions for comparison. Direct DNA strand breakage and oxidative DNA damage in WBC and lymphocytes were analyzed using standard and Fpg-modified alkaline Comet assay and compared with freshly analyzed samples. No significant changes in either direct DNA strand breakage or oxidative DNA damage was seen in WBC and lymphocytes stored at -20 °C for 1 and 7 days compared to fresh samples. However, significant increases in both direct and oxidative DNA damage were seen in samples stored at -20 °C for 14 and 28 days. No changes in direct and oxidative DNA damage were observed in WBC and lymphocytes stored at -80 °C for up to 28 days. These results identified the proper storage conditions for storing whole blood or isolated lymphocytes to evaluate direct and oxidative DNA damage using standard and Fpg-modified alkaline Comet assay.
Seela, F; Röling, A
1992-01-01
The enzymatic synthesis of 7-deazapurine nucleoside containing DNA (501 bp) is performed by PCR-amplification (Taq polymerase) using a pUC18 plasmid DNA as template and the triphosphates of 7-deaza-2'-deoxyguanosine (c7Gd), -adenosine (c7Ad) and -inosine (c7Id). c7GdTP can fully replace dGTP resulting in a completely modified DNA-fragment of defined size and sequence. The other two 7-deazapurine triphosphates (c7AdTP) and (c7IdTP) require the presence of the parent purine 2'-deoxyribonucleotides. In purine/7-deazapurine nucleotide mixtures Taq polymerase prefers purine over 7-deazapurine nucleotides but accepts c7GdTP much better than c7AdTP or c7IdTP. As incorporation of 7-deazapurine nucleotides represents a modification of the major groove of DNA it can be used to probe DNA/protein interaction. Regioselective phosphodiester hydrolysis of the modified DNA-fragments was studied with 28 endodeoxyribonucleases. c7Gd is able to protect the DNA from the phosphodiester hydrolysis in more than 20 cases, only a few enzymes (Mae III, Rsa I, Hind III, Pvu II or Taq I) do still hydrolyze the modified DNA. c7Ad protects DNA less efficiently, as this DNA could only be modified in part. The absence of N-7 as potential binding position or a geometric distortion of the recognition duplex caused by the 7-deazapurine base can account for protection of hydrolysis. Images PMID:1738604
Balintová, Jana; Simonova, Anna; Białek-Pietras, Magdalena; Olejniczak, Agnieszka; Lesnikowski, Zbigniew J; Hocek, Michal
2017-11-01
5-[(p-Carborane-2-yl)ethynyl]-2'-deoxyuridine 5'-O-triphosphate was synthesized and used as a good substrate in enzymatic construction of carborane-modified DNA or oligonucleotides containing up to 21 carborane moieties in primer extension reactions by DNA polymerases. Copyright © 2017 Elsevier Ltd. All rights reserved.
Filtration Isolation of Nucleic Acids: A Simple and Rapid DNA Extraction Method.
McFall, Sally M; Neto, Mário F; Reed, Jennifer L; Wagner, Robin L
2016-08-06
FINA, filtration isolation of nucleic acids, is a novel extraction method which utilizes vertical filtration via a separation membrane and absorbent pad to extract cellular DNA from whole blood in less than 2 min. The blood specimen is treated with detergent, mixed briefly and applied by pipet to the separation membrane. The lysate wicks into the blotting pad due to capillary action, capturing the genomic DNA on the surface of the separation membrane. The extracted DNA is retained on the membrane during a simple wash step wherein PCR inhibitors are wicked into the absorbent blotting pad. The membrane containing the entrapped DNA is then added to the PCR reaction without further purification. This simple method does not require laboratory equipment and can be easily implemented with inexpensive laboratory supplies. Here we describe a protocol for highly sensitive detection and quantitation of HIV-1 proviral DNA from 100 µl whole blood as a model for early infant diagnosis of HIV that could readily be adapted to other genetic targets.
Xu, Jian-zhong; Zhang, Wei-guo
2016-01-01
With the availability of the whole genome sequence of Escherichia coli or Corynebacterium glutamicum, strategies for directed DNA manipulation have developed rapidly. DNA manipulation plays an important role in understanding the function of genes and in constructing novel engineering bacteria according to requirement. DNA manipulation involves modifying the autologous genes and expressing the heterogenous genes. Two alternative approaches, using electroporation linear DNA or recombinant suicide plasmid, allow a wide variety of DNA manipulation. However, the over-expression of the desired gene is generally executed via plasmid-mediation. The current review summarizes the common strategies used for genetically modifying E. coli and C. glutamicum genomes, and discusses the technical problem of multi-layered DNA manipulation. Strategies for gene over-expression via integrating into genome are proposed. This review is intended to be an accessible introduction to DNA manipulation within the bacterial genome for novices and a source of the latest experimental information for experienced investigators. PMID:26834010
Rapid synthesis of DNA-cysteine conjugates for expressed protein ligation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lovrinovic, Marina; Niemeyer, Christof M.
2005-09-30
We report a rapid method for the covalent modification of commercially available amino-modified DNA oligonucleotides with a cysteine moiety. The resulting DNA-cysteine conjugates are versatile reagents for the efficient preparation of covalent DNA-protein conjugates by means of expressed protein ligation (EPL). The EPL method allows for the site-specific coupling of cysteine-modified DNA oligomers with recombinant intein-fusion proteins, the latter of which contain a C-terminal thioester enabling the mild and highly specific reaction with N-terminal cysteine compounds. We prepared a cysteine-modifier reagent in a single-step reaction which allows for the rapid and near quantitative synthesis of cysteine-DNA conjugates. The latter weremore » ligated with the green fluorescent protein mutant EYFP, recombinantly expressed as an intein-fusion protein, allowing for the mild and selective formation of EYFP-DNA conjugates in high yields of about 60%. We anticipate many applications of our approach, ranging from protein microarrays to the arising field of nanobiotechnology.« less
Mohammadi, Samira; Esfahani, Bahram Nasr; Moghim, Sharareh; Mirhendi, Hossein; Zaniani, Fatemeh Riyahi; Safaei, Hajieh Ghasemian; Fazeli, Hossein; Salehi, Mahshid
2017-01-01
Background: Nontuberculous mycobacteria (NTM) are a group of opportunistic pathogens and these are widely dispersed in water and soil resources. Identification of mycobacteria isolates by conventional methods including biochemical tests, growth rates, colony pigmentation, and presence of acid-fast bacilli is widely used, but these methods are time-consuming, labor-intensive, and may sometimes remain inconclusive. Materials and Methods: The DNA was extracted from NTM cultures using CTAB, Chelex, Chelex + Nonidet P-40, FTA® Elute card, and boiling The quantity and quality of the DNA extracted via these methods were determined using UV-photometer at 260 and 280 nm, and polymerase chain reaction (PCR) amplification of the heat-shock protein 65 gene with serially diluted DNA samples. Results: The CTAB method showed more positive results at 1:10–1:100,000 at which the DNA amount was substantial. With the Chelex method of DNA extraction, PCR amplification was detected at 1:10 and 1:1000 dilutions. Conclusions: According to the electrophoresis results, the CTAB and Chelex DNA extraction methods were more successful in comparison with the others as regard producing suitable concentrations of DNA with the minimum use of PCR inhibitor. PMID:29279831
Wagner Mackenzie, Brett; Waite, David W; Taylor, Michael W
2015-01-01
The human gut contains dense and diverse microbial communities which have profound influences on human health. Gaining meaningful insights into these communities requires provision of high quality microbial nucleic acids from human fecal samples, as well as an understanding of the sources of variation and their impacts on the experimental model. We present here a systematic analysis of commonly used microbial DNA extraction methods, and identify significant sources of variation. Five extraction methods (Human Microbiome Project protocol, MoBio PowerSoil DNA Isolation Kit, QIAamp DNA Stool Mini Kit, ZR Fecal DNA MiniPrep, phenol:chloroform-based DNA isolation) were evaluated based on the following criteria: DNA yield, quality and integrity, and microbial community structure based on Illumina amplicon sequencing of the V4 region of bacterial and archaeal 16S rRNA genes. Our results indicate that the largest portion of variation within the model was attributed to differences between subjects (biological variation), with a smaller proportion of variation associated with DNA extraction method (technical variation) and intra-subject variation. A comprehensive understanding of the potential impact of technical variation on the human gut microbiota will help limit preventable bias, enabling more accurate diversity estimates.
Lech, T
2016-05-06
Historical parchments in the form of documents, manuscripts, books, or letters, make up a large portion of cultural heritage collections. Their priceless historical value is associated with not only their content, but also the information hidden in the DNA deposited on them. Analyses of ancient DNA (aDNA) retrieved from parchments can be used in various investigations, including, but not limited to, studying their authentication, tracing the development of the culture, diplomacy, and technology, as well as obtaining information on the usage and domestication of animals. This article proposes and verifies a procedure for aDNA recovery from historical parchments and its appropriate preparation for further analyses. This study involved experimental selection of an aDNA extraction method with the highest efficiency and quality of extracted genetic material, from among the multi-stage phenol-chloroform extraction methods, and the modern, column-based techniques that use selective DNA-binding membranes. Moreover, current techniques to amplify entire genetic material were questioned, and the possibility of using mitochondrial DNA for species identification was analyzed. The usefulness of the proposed procedure was successfully confirmed in identification tests of historical parchments dating back to the 13-16th century AD.
Solomon, April D; Hytinen, Madison E; McClain, Aryn M; Miller, Marilyn T; Dawson Cruz, Tracey
2018-01-01
DNA profiles have been obtained from fingerprints, but there is limited knowledge regarding DNA analysis from archived latent fingerprints-touch DNA "sandwiched" between adhesive and paper. Thus, this study sought to comparatively analyze a variety of collection and analytical methods in an effort to seek an optimized workflow for this specific sample type. Untreated and treated archived latent fingerprints were utilized to compare different biological sampling techniques, swab diluents, DNA extraction systems, DNA concentration practices, and post-amplification purification methods. Archived latent fingerprints disassembled and sampled via direct cutting, followed by DNA extracted using the QIAamp® DNA Investigator Kit, and concentration with Centri-Sep™ columns increased the odds of obtaining an STR profile. Using the recommended DNA workflow, 9 of the 10 samples provided STR profiles, which included 7-100% of the expected STR alleles and two full profiles. Thus, with carefully selected procedures, archived latent fingerprints can be a viable DNA source for criminal investigations including cold/postconviction cases. © 2017 American Academy of Forensic Sciences.
Analysis of genetic variation in Ganoderma Lucidum after space flight
NASA Astrophysics Data System (ADS)
Qi, Jian-Jun; Ma, Rong-Cai; Chen, Xiang-Dong; Lan, Jin
A modified CTAB method was used in the extraction of total cellular DNA of Ganoderma lucidum. Four strains Cx, Ch, C3 and C4, and their counterparts, four space flown strains Sx, Xh, S3 and S4, were analysed by amplified fragment length polymorphism (AFLP) with several primer combinations. Polymorphic bands were detected between Sx and Cx, S3 and C3, respectively. Somatic incompatibility tests further confirmed their heterogeneity. However, no disparity between Sh and Ch, S4 and C4 was detectable. The results suggest that spaceflight may be used to accelerate breeding of Ganoderma lucidum strains for commercial cultivation.
Where's the P in Plankton? Phosphorus Allocation to DNA across Diverse Marine Picoplankton
NASA Astrophysics Data System (ADS)
Raney, S. E.; Popendorf, K.; Duhamel, S.
2016-02-01
Phosphorus (P) is a critical nutrient for survival, particularly in oligotrophic environments such as the Sargasso Sea. Microbes require phosphorus to build and maintain cellular components, including DNA, RNA, and lipids. We expect variation across microbes in the fraction of cellular P allocated to each of these components. We hypothesized that a high but variable percentage of cellular P will be allocated towards DNA. Studying cellular P allocation can offer insight into the role of different microbes in phosphorus cycling in low-P regions like the Sargasso Sea. To assess allocation of P to DNA, we first tested the efficiency of different DNA extraction methods and then analyzed the amount of extracted DNA from different microbial groups. We performed DNA extractions using four different extraction kits and determined Promega Reliaprep Blood gDNA Miniprep System to be the most efficient. We extracted DNA from cultured picoplankton which are representative of the most abundant species in the Sargasso Sea: Synechococcus (WH8102), Prochlorococcus (MED4 and MIT9301), and heterotrophic bacteria (HTCC2516 and HTCC2601). We found that the percentage of P allocated towards DNA varies across microbial species and across strains within the same genera. Additionally, we estimated the relative number of copies of the genome per cell, and found that more copies of the genome per cell, not necessarily a larger genome size, may correlate with allocating a larger percentage of cellular P towards DNA. By understanding how phosphorus cycling works on the molecular level in different species of picoplankton, we can develop a greater understanding of the role of these picoplankton in phosphorus cycling as a whole in the Sargasso Sea.
Ligation Bias in Illumina Next-Generation DNA Libraries: Implications for Sequencing Ancient Genomes
Seguin-Orlando, Andaine; Schubert, Mikkel; Clary, Joel; Stagegaard, Julia; Alberdi, Maria T.; Prado, José Luis; Prieto, Alfredo; Willerslev, Eske; Orlando, Ludovic
2013-01-01
Ancient DNA extracts consist of a mixture of endogenous molecules and contaminant DNA templates, often originating from environmental microbes. These two populations of templates exhibit different chemical characteristics, with the former showing depurination and cytosine deamination by-products, resulting from post-mortem DNA damage. Such chemical modifications can interfere with the molecular tools used for building second-generation DNA libraries, and limit our ability to fully characterize the true complexity of ancient DNA extracts. In this study, we first use fresh DNA extracts to demonstrate that library preparation based on adapter ligation at AT-overhangs are biased against DNA templates starting with thymine residues, contrarily to blunt-end adapter ligation. We observe the same bias on fresh DNA extracts sheared on Bioruptor, Covaris and nebulizers. This contradicts previous reports suggesting that this bias could originate from the methods used for shearing DNA. This also suggests that AT-overhang adapter ligation efficiency is affected in a sequence-dependent manner and results in an uneven representation of different genomic contexts. We then show how this bias could affect the base composition of ancient DNA libraries prepared following AT-overhang ligation, mainly by limiting the ability to ligate DNA templates starting with thymines and therefore deaminated cytosines. This results in particular nucleotide misincorporation damage patterns, deviating from the signature generally expected for authenticating ancient sequence data. Consequently, we show that models adequate for estimating post-mortem DNA damage levels must be robust to the molecular tools used for building ancient DNA libraries. PMID:24205269
Yoshizaki, Yuta; Yuba, Eiji; Sakaguchi, Naoki; Koiwai, Kazunori; Harada, Atsushi; Kono, Kenji
2017-10-01
Efficient vaccine carriers for cancer immunotherapy require two functions: antigen delivery to dendritic cells (DCs) and the activation of DCs, a so-called adjuvant effect. We previously reported antigen delivery system using liposomes modified with pH-sensitive polymers, such as 3-methylglutarylated hyperbranched poly(glycidol) (MGlu-HPG), for the induction of antigen-specific immune responses. We reported that inclusion of cationic lipids to MGlu-HPG-modified liposomes activates DCs and enhances antitumor effects. In this study, CpG-DNA, a ligand to Toll-like receptor 9 (TLR9) expressing in endosomes of DCs, was introduced to MGlu-HPG-modified liposomes containing cationic lipids using two complexation methods (Pre-mix and Post-mix) for additional activation of antigen-specific immunity. For Pre-mix, thin membrane of lipids and polymers were dispersed by a mixture of antigen/CpG-DNA. For Post-mix, CpG-DNA was added to pre-formed liposomes. Both Pre-mix and Post-mix delivered CpG-DNA to DC endosomes, where TLR9 is expressing, more efficiently than free CpG-DNA solution did. These liposomes promoted cytokine production from DCs and the expression of co-stimulatory molecules in vitro and induced antigen-specific immune responses in vivo. Both Pre-mix and Post-mix exhibited strong antitumor effects compared with conventional pH-sensitive polymer-modified liposomes. Results show that inclusion of multiple adjuvant molecules into pH-sensitive polymer-modified liposomes and suitable CpG-DNA complexation methods are important to design potent vaccine carriers. Copyright © 2017 Elsevier Ltd. All rights reserved.
2012-01-01
Background Edible plants such as Cratoxylum formosum (Jack) Dyer, Curcumin longa Lin, Momordica charantia Lin and Moringa oleifera Lam have long been believed in Thai culture to relieve ulcers and the symptoms of liver disease. However, little is known about their anti-liver cancer properties and antiviral activity against hepatitis B virus (HBV). The aim of this study was to investigate the anti-liver cancer and anti-HBV activities of crude extracts from these edible plants on human liver cancer cells. Methods Plant samples were prepared and extracted using buffer and hydro-alcoholic solvents. The MTT assay was performed to investigate the effects of the plant extracts on the cell viability of HepG2 cells. The inhibitory effect on replication of HBV was analysed by determining the level of HBV covalently closed circular DNA (cccDNA) in transiently transfected HepG2 cells with the DNA expression plasmid of the HBV genome using a quantitative real-time PCR. Results Buffer and hydroalcoholic extracts from C. formosum (leaf) reduced cell viability of HepG2 cells and they also inhibited HBV cccDNA. Crude extracts from C. longa (bulb) in both solvents did not have any cytotoxic effects on the HepG2 cells, but they significantly decreased the level of HBV cccDNA. Buffer extracts from the leaves of M. charantia and the fruits of M. oleifera showed to have anti-HBV activity and also a mild cytotoxicity effect on the HepG2 cells. In addition, leaves of M. Oleifera extracted by hydroalcoholic solvent drastically decreased the level of cccDNA in transiently transfected HepG2 cells. Conclusion Some crude extracts of edible plants contain compounds that demonstrate anti-liver cancer and anti-HBV activities. PMID:23216691
Characterization of Breast Cancer Cell Death Induced by Interferons and Retinoids
1999-07-01
treated cells. Cells were treated for 48 hr, before RNA extraction . Figure 4: Expression of GRIM-I in different mouse tissues. A multiple tissue...knockout approach (12). In this teria were scraped from the plates, and plasmid DNA was extracted and purified approach specific cell death-associated genes...ml), and Hirt DNA extracts intracellular redox regulatory enzyme (16). We show that cel- were prepared (22). DNA was digested with DpnI and
An Electrochemical DNA Microbiosensor Based on Succinimide-Modified Acrylic Microspheres
Ulianas, Alizar; Heng, Lee Yook; Hanifah, Sharina Abu; Ling, Tan Ling
2012-01-01
An electrochemical microbiosensor for DNA has been fabricated based on new acrylic microspheres modified with reactive N-acryloxysuccinimide (NAS) functional groups. Hydrophobic poly(n-butylacrylate-N-acryloxysuccinimide) microspheres were synthesized in an emulsion form with a simple one-step photopolymerization technique. Aminated DNA probe was attached to the succinimde functional group of the acrylic microspheres via covalent bonding. The hybridization of the immobilized DNA probe with the complementary DNA was studied by differential pulse voltametry using anthraquninone-2-sulfonic acid monohydrate sodium salt (AQMS) as the electroactive hybridization label. The influences of many factors such as duration of DNA probe immobilization and hybridization, pH, type of ions, buffer concentrations, ionic strength, operational temperature and non-complementary DNA on the biosensor performance were evaluated. Under optimized conditions, the DNA microbiosensor demonstrated a linear response range to target DNA over a wide concentration range of 1.0 × 10−16 and 1.0 × 10−8 M with a lower limit of detection (LOD) of 9.46 × 10−17 M (R2 = 0.97). This DNA microbiosensor showed good reproducibility with 2.84% RSD (relative standard deviation) (n = 3). Application of the NAS-modified acrylic microspheres in the construction of DNA microbiosensor had improved the overall analytical performance of the resultant DNA microbiosensor when compared with other reported DNA biosensors using other nano-materials for membranes and microspheres as DNA immobilization matrices. PMID:22778594
Rusterholz, Hans-Peter; Ursenbacher, Sylvain; Coray, Armin; Weibel, Urs; Baur, Bruno
2015-01-01
The sampling of living insects should be avoided in highly endangered species when the sampling would further increase the risk of population extinction. Nonlethal sampling (wing clips or leg removals) can be an alternative to obtain DNA of individuals for population genetic studies. However, nonlethal sampling may not be possible for all insect species. We examined whether remnants of traffic-killed specimens of the endangered and protected flightless longhorn beetle Iberodorcadion fuliginator (L., 1758) can be used as a resource for population genetic analyses. Using insect fragments of traffic-killed specimens collected over 15 yr, we determined the most efficient DNA extraction method in relation to the state of the specimens (crushed, fragment, or intact), preservation (dried, airtight, or in ethanol), storage duration, and weight of the sample by assessing the quantity and quality of genomic DNA. A modified cetyltrimethyl ammonium bromide method provided the highest recovery rate of genomic DNA and the largest yield and highest quality of DNA. We further used traffic-killed specimens to evaluate two DNA amplification techniques (quantitative polymerase chain reaction [qPCR] and microsatellites). Both qPCR and microsatellites revealed successful DNA amplification in all degraded specimens or beetle fragments examined. However, relative qPCR concentration and peak height of microsatellites were affected by the state of specimen and storage duration but not by specimen weight. Our investigation demonstrates that degraded remnants of traffic-killed beetle specimens can serve as a source of high-quality genomic DNA, which allows to address conservation genetic issues. © The Author 2015. Published by Oxford University Press on behalf of the Entomological Society of America.
Production of non viral DNA vectors.
Schleef, Martin; Blaesen, Markus; Schmeer, Marco; Baier, Ruth; Marie, Corinne; Dickson, George; Scherman, Daniel
2010-12-01
After some decades of research, development and first clinical approaches to use DNA vectors in gene therapy, cell therapy and DNA vaccination, the requirements for the pharmaceutical manufacturing of gene vectors has improved significantly step by step. Even the expression level and specificity of non viral DNA vectors were significantly modified and followed the success of viral vectors. The strict separation of "viral" and "non viral" gene transfer are historic borders between scientist and we will show that both fields together are able to allow the next step towards successful prevention and therapy. Here we summarize the features of producing and modifying these non-viral gene vectors to ensure the required quality to modify cells and to treat human and animals.
Poverennyĭ, A M; Podgorodnichenko, V K; Monastyrskaia, G S; Bryskina, L E; Sverdlov, E D
1978-01-01
Immunization of animals with DNA modified by a mixture of bisulphite and O-methylhydroxylamine and methylated bovine serum albumin results in production of antibodies mainly reacting with modified DNA. Antibodies that react with denatured DNA were produced in minute quantity. It was shown that elicited antibodies possess a high specificity and have the ability to recognize only nucleotides with a double modification. The immune sera were fractionated by Sephadex G-200 column chromatography and the antibody activity was demonstrable in the 19S and 7S fractions. The attempts to induce synthesis of antibodies by injection of DNA modified by O-methylhydroxylamine failed.
DNA Extraction from Museum Specimens of Parasitic Hymenoptera
Andersen, Jeremy C.; Mills, Nicholas J.
2012-01-01
At the same time that molecular researchers are improving techniques to extract DNA from museum specimens, this increased demand for access to museum specimens has created tension between the need to preserve specimens for maintaining collections and morphological research and the desire to conduct molecular analyses. To address these concerns, we examined the suitability of non-invasive DNA extraction techniques on three species of parasitic Hymenoptera (Braconidae), and test the effects of body size (parasitoid species), age (time since collection), and DNA concentration from each extract on the probability of amplifying meaningful fragments of two commonly used genetic loci. We found that age was a significant factor for determining the probability of success for sequencing both 28S and COI fragments. While the size of the braconid parasitoids significantly affected the total amount of extracted DNA, neither size nor DNA concentration were significant factors for the amplification of either gene region. We also tested several primer combinations of various lengths, but were unable to amplify fragments longer than ∼150 base pairs. These short fragments of 28S and COI were however sufficient for species identification, and for the discovery of within species genetic variation. PMID:23077493
Harper, Kathryn A; Meiklejohn, Kelly A; Merritt, Richard T; Walker, Jessica; Fisher, Constance L; Robertson, James M
2018-02-01
Hairs are commonly submitted as evidence to forensic laboratories, but standard nuclear DNA analysis is not always possible. Mitochondria (mt) provide another source of genetic material; however, manual isolation is laborious. In a proof-of-concept study, we assessed pressure cycling technology (PCT; an automated approach that subjects samples to varying cycles of high and low pressure) for extracting mtDNA from single, short hairs without roots. Using three microscopically similar donors, we determined the ideal PCT conditions and compared those yields to those obtained using the traditional manual micro-tissue grinder method. Higher yields were recovered from grinder extracts, but yields from PCT extracts exceeded the requirements for forensic analysis, with the DNA quality confirmed through sequencing. Automated extraction of mtDNA from hairs without roots using PCT could be useful for forensic laboratories processing numerous samples.
Dentinger, Bryn T M; Margaritescu, Simona; Moncalvo, Jean-Marc
2010-07-01
We present two methods for DNA extraction from fresh and dried mushrooms that are adaptable to high-throughput sequencing initiatives, such as DNA barcoding. Our results show that these protocols yield ∼85% sequencing success from recently collected materials. Tests with both recent (<2 year) and older (>100 years) specimens reveal that older collections have low success rates and may be an inefficient resource for populating a barcode database. However, our method of extracting DNA from herbarium samples using small amount of tissue is reliable and could be used for important historical specimens. The application of these protocols greatly reduces time, and therefore cost, of generating DNA sequences from mushrooms and other fungi vs. traditional extraction methods. The efficiency of these methods illustrates that standardization and streamlining of sample processing should be shifted from the laboratory to the field. © 2009 Blackwell Publishing Ltd.
Zatorska, Beata; Groger, Marion; Moser, Doris; Diab-Elschahawi, Magda; Lusignani, Luigi Segagni; Presterl, Elisabeth
2017-08-01
Prosthetic implant infections caused by Staphylococcus aureus and epidermidis are major challenges for early diagnosis and treatment owing to biofilm formation on the implant surface. Extracellular DNA (eDNA) is actively excreted from bacterial cells in biofilms, contributing to biofilm stability, and may offer promise in the detection or treatment of such infections. (1) Does DNA structure change during biofilm formation? (2) Are there time-dependent differences in eDNA production during biofilm formation? (3) Is there differential eDNA production between clinical and control Staphylococcal isolates? (4) Is eDNA production correlated to biofilm thickness? We investigated eDNA presence during biofilm formation in 60 clinical and 30 control isolates of S aureus and S epidermidis. The clinical isolates were isolated from patients with infections of orthopaedic prostheses and implants: 30 from infected hip prostheses and 30 from infected knee prostheses. The control isolates were taken from healthy volunteers who had not been exposed to antibiotics and a hospital environment during the previous 3 and 12 months, respectively. Control S epidermidis was isolated from the skin of the antecubital fossa, and control S aureus was isolated from the nares. For the biofilm experiments the following methods were used to detect eDNA: (1) fluorescent staining with 4',6-diamidino-2-phenylindole (DAPI), (2) eDNA extraction using a commercial kit, and (3) confocal laser scanning microscopy for 24-hour biofilm observation using propidium iodide and concanavalin-A staining; TOTO ® -1 and SYTO ® 60 staining were used for observation and quantification of eDNA after 6 and 24 hours of biofilm formation. Additionally antibiotic resistance was described. eDNA production as observed by confocal laser scanning microscopy was greater in clinical isolates than controls (clinical isolates mean ± SD: 1.84% ± 1.31%; control mean ± SD: 1.17% ± 1.37%; p < 0.005) after 6 hours of biofilm formation. After 24 hours, the amount of eDNA was greater in biofilms of S epidermidis than in biofilms of S aureus (S aureus mean ± SD: 1.35% ± 2.0%; S epidermidis mean ± SD: 6.42% ± 10.6%; p < 0.05). Clinical isolates of S aureus and S epidermidis produced more eDNA than control isolates at 6 hours of biofilm formation. The extraction method also showed that clinical isolates produced substantially greater amounts of eDNA than controls. S aureus and S epidermidis exhibit a differential production of DNA with time. Clinical isolates associated with implant infections produce greater amounts of eDNA than controls. Future research might focus on the diagnostic value of eDNA as a surrogate laboratory marker for biofilm formation in implant infections. eDNA should be considered as a potential future diagnostic tool or even a possible target to modify biofilms for successful treatment of biofilm-associated infections.
Živković, Lada; Stajić, Mirjana; Vukojević, Jelena; Milovanović, Ivan; Spremo-Potparević, Biljana
2015-01-01
Trametes species have been used for thousands of years in traditional and conventional medicine for the treatment of various types of diseases. The goal was to evaluate possible antigenotoxic effects of mycelium and basidiocarp extracts of selected Trametes species and to assess dependence on their antioxidant potential. Trametes versicolor, T. hirsuta, and T. gibbosa were the species studied. Antigenotoxic potentials of extracts were assessed on human peripheral white blood cells with basidiocarp and mycelium extracts of the species. The alkaline comet test was used for detection of DNA strand breaks and alkali-labile sites, as well as the extent of DNA migration. DPPH assay was used to estimate antioxidative properties of extracts. Fruiting body extracts of T. versicolor and T. gibbosa as well as T. hirsuta extracts, except that at 20.0 mg/mL, were not genotoxic agents. T. versicolor extract had at 5.0 mg/mL the greatest antigenotoxic effect in both pre- and posttreatment of leukocytes. The mycelium extracts of the three species had no genotoxic activity and significant antigenotoxic effect against H2O2-induced DNA damage, both in pre- and posttreatment. The results suggest that extracts of these three species could be considered as strong antigenotoxic agents able to stimulate genoprotective response of cells. PMID:26258163
NASA Astrophysics Data System (ADS)
Yan, Yuan; Shan, Hangyong; Li, Min; Chen, Shu; Liu, Jianyu; Cheng, Yanfang; Ye, Cui; Yang, Zhilin; Lai, Xuandi; Hu, Jianqiang
2015-11-01
In this work, a hierarchical DNA-directed self-assembly strategy to construct structure-controlled Au nanoassemblies (NAs) has been demonstrated by conjugating Au nanoparticles (NPs) with internal-modified dithiol single-strand DNA (ssDNA) (Au-B-A or A-B-Au-B-A). It is found that the dithiol-ssDNA-modified Au NPs and molecule quantity of thiol-modified ssDNA grafted to Au NPs play critical roles in the assembly of geometrically controlled Au NAs. Through matching Au-DNA self-assembly units, geometrical structures of the Au NAs can be tailored from one-dimensional (1D) to quasi-2D and 2D. Au-B-A conjugates readily give 1D and quasi-2D Au NAs while 2D Au NAs can be formed by A-B-Au-B-A building blocks. Surface-enhanced Raman scattering (SERS) measurements and 3D finite-difference time domain (3D-FDTD) calculation results indicate that the geometrically controllable Au NAs have regular and linearly “hot spots”-number-depended SERS properties. For a certain number of NPs, the number of “hot spots” and accordingly enhancement factor of Au NAs can be quantitatively evaluated, which open a new avenue for quantitative analysis based on SERS technique.
Wang, Hsiao-Ning; Liu, Tsan-Zon; Chen, Ya-Lei; Shiuan, David
2007-01-01
The protective effects of a freeze-dried extracts of vegetables and fruits (BauYuan; BY) on the hydroxyl radical-mediated DNA strand breakages and the structural integrity of human red blood cells (RBCs) were investigated. First, the supercoiled plasmid (pEGFP-C1) DNA was subjected to oxidation damage by an ascorbate-fortified Fenton reaction and the protective effects were analyzed by agarose gel electrophoresis. In the absence of BY extracts, exposure of the high-throughput .OH-generating system (Fe2+ concentration >1.0 microM) caused a complete fragmentation of DNA. Supplementation of BY extract (1 mg/mL) to the plasmid DNA prior to the exposure could prevent it significantly. In contrast, as the plasmid exposed to a low-grade .OH-generating system (Fe2+<0.1 microM), the BY extract (1 mg/mL) provided an almost complete protection. Next, the cell deformabilities were measured to assess the protection effects of various BY extracts on human erythrocytes exposed to the oxidative insults. We found that both the aqueous extract and the organic solvent-derived extracts could strongly protect human RBCs from the reactive oxygen species (ROS)-mediated decrease in the deformability indices. The results implicated that the BY extracts could effectively protect the cell membrane integrity via scavenging ROS which enabling RBCs to maintain a balance of water content and surface area to prevent the drop of cell deformability.
Plant and metagenomic DNA extraction of mucilaginous seeds.
Ramos, Simone N M; Salazar, Marcela M; Pereira, Gonçalo A G; Efraim, Priscilla
2014-01-01
The pulp surrounding the seeds of some fruits is rich in mucilage, carbohydrates, etc. Some seeds are rich in proteins and polyphenols. Fruit seeds, like cacao (Theobroma cacao) and cupuassu (Theobroma grandiflorum), are subjected to fermentation to develop flavor. During fermentation, ethanol is produced [2-6]. All of these compounds are considered as interfering substances that hinder the DNA extraction [4-8]. Protocols commonly used in the DNA extraction in samples of plant origin were used, but without success. Thus, a protocol for DNA samples under different conditions that can be used for similar samples was developed and applied with success. The protocol initially described for RNA samples by Zeng et al. [9] and with changes proposed by Provost et al. [5] was adapted for extracting DNA samples from those described. However, several modifications have been proposed:•Samples were initially washed with petroleum ether for fat phase removal.•RNAse was added to the extraction buffer, while spermidin was removed.•Additional steps of extraction with 5 M NaCl, saturated NaCl and CTAB (10%) were included and precipitation was carried out with isopropanol, followed by washing with ethanol.
Plant and metagenomic DNA extraction of mucilaginous seeds
Ramos, Simone N.M.; Salazar, Marcela M.; Pereira, Gonçalo A.G.; Efraim, Priscilla
2014-01-01
The pulp surrounding the seeds of some fruits is rich in mucilage, carbohydrates, etc. Some seeds are rich in proteins and polyphenols. Fruit seeds, like cacao (Theobroma cacao) and cupuassu (Theobroma grandiflorum), are subjected to fermentation to develop flavor. During fermentation, ethanol is produced [2–6]. All of these compounds are considered as interfering substances that hinder the DNA extraction [4–8]. Protocols commonly used in the DNA extraction in samples of plant origin were used, but without success. Thus, a protocol for DNA samples under different conditions that can be used for similar samples was developed and applied with success. The protocol initially described for RNA samples by Zeng et al. [9] and with changes proposed by Provost et al. [5] was adapted for extracting DNA samples from those described. However, several modifications have been proposed:•Samples were initially washed with petroleum ether for fat phase removal.•RNAse was added to the extraction buffer, while spermidin was removed.•Additional steps of extraction with 5 M NaCl, saturated NaCl and CTAB (10%) were included and precipitation was carried out with isopropanol, followed by washing with ethanol. PMID:26150956
Harlé, Alexandre; Lion, Maëva; Husson, Marie; Dubois, Cindy; Merlin, Jean-Louis
2013-01-01
According to the French legislation on medical biology (January 16th, 2010), all biological laboratories must be accredited according to ISO 15189 for at least 50% of their activities before the end of 2016. The extraction of DNA from a sample of interest, whether solid or liquid is one of the critical steps in molecular biology and specifically in somatic or constitutional genetic. The extracted DNA must meet a number of criteria such quality and also be in sufficient concentration to allow molecular biology assays such as the detection of somatic mutations. This paper describes the validation of the extraction and purification of DNA using chromatographic column extraction and quantitative determination by spectrophotometric assay, according to ISO 15189 and the accreditation technical guide in Human Health SH-GTA-04.
Adamowicz, Michael S.; Stasulli, Dominique M.; Sobestanovich, Emily M.; Bille, Todd W.
2014-01-01
Samples for forensic DNA analysis are often collected from a wide variety of objects using cotton or nylon tipped swabs. Testing has shown that significant quantities of DNA are retained on the swab, however, and subsequently lost. When processing evidentiary samples, the recovery of the maximum amount of available DNA is critical, potentially dictating whether a usable profile can be derived from a piece of evidence or not. The QIAamp DNA Investigator extraction kit was used with its recommended protocol for swabs (one hour incubation at 56°C) as a baseline. Results indicate that over 50% of the recoverable DNA may be retained on the cotton swab tip, or otherwise lost, for both blood and buccal cell samples when using this protocol. The protocol’s incubation time and temperature were altered, as was incubating while shaking or stationary to test for increases in recovery efficiency. An additional step was then tested that included periodic re-suspension of the swab tip in the extraction buffer during incubation. Aliquots of liquid blood or a buccal cell suspension were deposited and dried on cotton swabs and compared with swab-less controls. The concentration of DNA in each extract was quantified and STR analysis was performed to assess the quality of the extracted DNA. Stationary incubations and those performed at 65°C did not result in significant gains in DNA yield. Samples incubated for 24 hours yielded less DNA. Increased yields were observed with three and 18 hour incubation periods. Increases in DNA yields were also observed using a swab re-suspension method for both cell types. The swab re-suspension method yielded an average two-fold increase in recovered DNA yield with buccal cells and an average three-fold increase with blood cells. These findings demonstrate that more of the DNA collected on swabs can be recovered with specific protocol alterations. PMID:25549111
Inaccurate DNA Synthesis in Cell Extracts of Yeast Producing Active Human DNA Polymerase Iota
Makarova, Alena V.; Grabow, Corinn; Gening, Leonid V.; Tarantul, Vyacheslav Z.; Tahirov, Tahir H.; Bessho, Tadayoshi; Pavlov, Youri I.
2011-01-01
Mammalian Pol ι has an unusual combination of properties: it is stimulated by Mn2+ ions, can bypass some DNA lesions and misincorporates “G” opposite template “T” more frequently than incorporates the correct “A.” We recently proposed a method of detection of Pol ι activity in animal cell extracts, based on primer extension opposite the template T with a high concentration of only two nucleotides, dGTP and dATP (incorporation of “G” versus “A” method of Gening, abbreviated as “misGvA”). We provide unambiguous proof of the “misGvA” approach concept and extend the applicability of the method for the studies of variants of Pol ι in the yeast model system with different cation cofactors. We produced human Pol ι in baker's yeast, which do not have a POLI ortholog. The “misGvA” activity is absent in cell extracts containing an empty vector, or producing catalytically dead Pol ι, or Pol ι lacking exon 2, but is robust in the strain producing wild-type Pol ι or its catalytic core, or protein with the active center L62I mutant. The signature pattern of primer extension products resulting from inaccurate DNA synthesis by extracts of cells producing either Pol ι or human Pol η is different. The DNA sequence of the template is critical for the detection of the infidelity of DNA synthesis attributed to DNA Pol ι. The primer/template and composition of the exogenous DNA precursor pool can be adapted to monitor replication fidelity in cell extracts expressing various error-prone Pols or mutator variants of accurate Pols. Finally, we demonstrate that the mutation rates in yeast strains producing human DNA Pols ι and η are not elevated over the control strain, despite highly inaccurate DNA synthesis by their extracts. PMID:21304950
Wang, Guannan; Su, Xingguang
2010-06-01
A novel, highly sensitive technology for the detection, enrichment, and separation of trace amounts of target DNA was developed on the basis of amino-modified fluorescent magnetic composite nanoparticles (AFMN). In this study, the positively charged amino-modified composite nanoparticles conjugate with the negatively charged capture DNA through electrostatic binding. The optimal combination of AFMN and capture DNA was measured by dynamic light scattering (DLS) and UV-vis absorption spectroscopy. The highly sensitive detection of trace amounts of target DNA was achieved through enrichment by means of AFMN. The detection limit for target DNA is 0.4 pM, which could be further improved by using a more powerful magnet. Because of their different melting temperatures, single-base mismatched target DNA could be separated from perfectly complementary target DNA. In addition, the photoluminescence (PL) signals of perfectly complementary target DNA and single-base mismatched DNA as well as the hybridization kinetics of different concentrations of target DNA at different reaction times have also been studied. Most importantly, the detection, enrichment, and separation ability of AFMN was further verified with milk. Simple and satisfactory results were obtained, which show the great potential in the fields of mutation identification and clinical diagnosis.
Zeng, Yan; Wan, Yi; Zhang, Dun; Qi, Peng
2015-01-01
A novel magneto-DNA duplex probe for bacterial DNA detection based on exonuclease III (Exo-III) aided cycling amplification has been developed. This magneto-DNA duplex probe contains a partly hybrid fluorophore-modified capture probe and a fluorophore-modified signal probe with magnetic microparticle as carrier. In the presence of a perfectly matched target bacterial DNA, blunt 3'-terminus of the capture probe is formed, activating the Exo-III aided cycling amplification. Thus, Exo-III catalyzes the stepwise removal of mononucleotides from this terminus, releasing both fluorophore-modified signal probe, fluorescent dyes of the capture probe and target DNA. The released target DNA then starts a new cycle, while released fluorescent fragments are recovered with magnetic separation for fluorescence signal collection. This system exhibited sensitive detection of bacterial DNA, with a detection limit of 14 pM because of the unique cleavage function of Exo-III, high fluorescence intensity, and separating function of magneto-DNA duplex probes. Besides this sensitivity, this strategy exhibited excellent selectivity with mismatched bacterial DNA targets and other bacterial species targets and good applicability in real seawater samples, hence, this strategy could be potentially used for qualitative and quantitative analysis of bacteria. Copyright © 2014 Elsevier B.V. All rights reserved.
Preparation of fluorescent-dye-labeled cDNA from RNA for microarray hybridization.
Ares, Manuel
2014-01-01
This protocol describes how to prepare fluorescently labeled cDNA for hybridization to microarrays. It consists of two steps: first, a mixture of anchored oligo(dT) and random hexamers is used to prime amine-modified cDNA synthesis by reverse transcriptase using a modified deoxynucleotide with a reactive amine group (aminoallyl-dUTP) and an RNA sample as a template. Second, the cDNA is purified and exchanged into bicarbonate buffer so that the amine groups in the cDNA react with the dye N-hydroxysuccinimide (NHS) esters, covalently joining the dye to the cDNA. The dye-coupled cDNA is purified again, and the amount of dye incorporated per microgram of cDNA is determined.
Stretching, twisting and supercoiling in short, single DNA molecules
NASA Astrophysics Data System (ADS)
Lam, Pui-Man; Zhen, Yi
2018-02-01
We had combined the Neukirch-Marko model that describes the extension, torque and supercoiling in single, stretched and twisted DNA of infinite contour length, with a form of the free energy suggested by Sinha and Samuels to describe short DNA, with contour length only a few times the persistence length. We find that the free energy of the stretched but untwisted DNA, is significantly modified from its infinitely length value and this in turn modifies significantly the torque and supercoiling. We show that this is consistent with short DNA being more flexible than infinitely long DNA. We hope our results will stimulate experimental investigation of torque and supercoiling in short DNA.
Emaus, Miranda N; Clark, Kevin D; Hinners, Paige; Anderson, Jared L
2018-04-28
Nucleic acid extraction and purification represents a major bottleneck in DNA analysis. Traditional methods for DNA purification often require reagents that may inhibit quantitative polymerase chain reaction (qPCR) if not sufficiently removed from the sample. Approaches that employ magnetic beads may exhibit lower extraction efficiencies due to sedimentation and aggregation. In this study, four hydrophobic magnetic ionic liquids (MILs) were investigated as DNA extraction solvents with the goal of improving DNA enrichment factors and compatibility with downstream bioanalytical techniques. By designing custom qPCR buffers, we directly incorporated DNA-enriched MILs including trihexyl(tetradecyl)phosphonium tris(hexafluoroacetylaceto)nickelate(II) ([P 6,6,6,14 + ][Ni(hfacac) 3 - ]), [P 6,6,6,14 + ] tris(hexafluoroacetylaceto)colbaltate(II) ([Co(hfacac) 3 - ]), [P 6,6,6,14 + ] tris(hexafluoroacetylaceto)manganate(II) ([Mn(hfacac) 3 - ]), or [P 6,6,6,14 + ] tetrakis(hexafluoroacetylaceto)dysprosate(III) ([Dy(hfacac) 4 - ]) into reaction systems, thereby circumventing the need for time-consuming DNA recovery steps. Incorporating MILs into the reaction buffer did not significantly impact the amplification efficiency of the reaction (91.1%). High enrichment factors were achieved using the [P 6,6,6,14 + ][Ni(hfacac) 3 - ] MIL for the extraction of single-stranded and double-stranded DNA with extraction times as short as 2 min. When compared to a commercial magnetic bead-based platform, the [P 6,6,6,14 + ][Ni(hfacac) 3 - ] MIL was capable of producing higher enrichment factors for single-stranded DNA and similar enrichment factors for double-stranded DNA. The MIL-based method was applied for the extraction and direct qPCR amplification of mutation prone-KRAS oncogene fragment in plasma samples. Graphical abstract Magnetic ionic liquid solvents are shown to preconcentrate sufficient KRAS DNA template from an aqueous solution in as short as 2 min without using chaotropic salts or toxic organic solvents. By using custom-designed qPCR buffers, DNA can be directly amplified and quantified from four MILs examined in this study.
Gerdes, Lars; Busch, Ulrich; Pecoraro, Sven
2014-12-14
According to Regulation (EU) No 619/2011, trace amounts of non-authorised genetically modified organisms (GMO) in feed are tolerated within the EU if certain prerequisites are met. Tolerable traces must not exceed the so-called 'minimum required performance limit' (MRPL), which was defined according to the mentioned regulation to correspond to 0.1% mass fraction per ingredient. Therefore, not yet authorised GMO (and some GMO whose approvals have expired) have to be quantified at very low level following the qualitative detection in genomic DNA extracted from feed samples. As the results of quantitative analysis can imply severe legal and financial consequences for producers or distributors of feed, the quantification results need to be utterly reliable. We developed a statistical approach to investigate the experimental measurement variability within one 96-well PCR plate. This approach visualises the frequency distribution as zygosity-corrected relative content of genetically modified material resulting from different combinations of transgene and reference gene Cq values. One application of it is the simulation of the consequences of varying parameters on measurement results. Parameters could be for example replicate numbers or baseline and threshold settings, measurement results could be for example median (class) and relative standard deviation (RSD). All calculations can be done using the built-in functions of Excel without any need for programming. The developed Excel spreadsheets are available (see section 'Availability of supporting data' for details). In most cases, the combination of four PCR replicates for each of the two DNA isolations already resulted in a relative standard deviation of 15% or less. The aims of the study are scientifically based suggestions for minimisation of uncertainty of measurement especially in -but not limited to- the field of GMO quantification at low concentration levels. Four PCR replicates for each of the two DNA isolations seem to be a reasonable minimum number to narrow down the possible spread of results.
Comparison of different methods for isolation of bacterial DNA from retail oyster tissues
USDA-ARS?s Scientific Manuscript database
Oysters are filter-feeders that bio-accumulate bacteria in water while feeding. To evaluate the bacterial genomic DNA extracted from retail oyster tissues, including the gills and digestive glands, four isolation methods were used. Genomic DNA extraction was performed using the Allmag™ Blood Genomic...
ERIC Educational Resources Information Center
Falconer, A. C.; Hayes, L. J.
1986-01-01
Describes a relatively simple method of extraction and purification of bacterial DNA. This technique permits advanced secondary-level science students to obtain adequate amounts of DNA from very small pellets of bacteria and to observe some of its polymer properties. (ML)
Wang, Xiaoqin; Li, Guizhen; Row, Kyung Ho
2017-08-01
Magnetic graphene oxide was modified by four imidazole-based ionic liquids to synthesize materials for the extraction of polysaccharides by magnetic solid-phase extraction. Fucoidan and laminarin were chosen as the representative polysaccharides owing to their excellent pharmaceutical value and availability. Fourier transform infrared spectroscopy, field-emission scanning electron microscopy, and thermogravimetric analysis were applied to characterize the synthesized materials. Single-factor experiments showed that the extraction efficiency of polysaccharides was affected by the amount of ionic liquids for modification, solid-liquid ratio of brown alga and ethanol, the stirring time of brown alga and ionic liquid-modified magnetic graphene oxide materials, and amount of 1-(3-aminopropyl)imidazole chloride modified magnetic graphene oxide materials added to the brown alga sample solution. The results indicated that 1-(3-aminopropyl)imidazole chloride modified magnetic graphene oxide possessed better extraction ability than graphene oxide, magnetic graphene oxide, and other three ionic-liquid-modified magnetic graphene oxide materials. The highest extraction recoveries of fucoidan and laminarin extracted by 1-(3-aminopropyl)imidazole chloride modified magnetic graphene oxide were 93.3 and 87.2%, respectively. In addition, solid materials could be separated and reused easily owing to their magnetic properties. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Turner, Cameron R.; Miller, Derryl J.; Coyne, Kathryn J.; Corush, Joel
2014-01-01
Indirect, non-invasive detection of rare aquatic macrofauna using aqueous environmental DNA (eDNA) is a relatively new approach to population and biodiversity monitoring. As such, the sensitivity of monitoring results to different methods of eDNA capture, extraction, and detection is being investigated in many ecosystems and species. One of the first and largest conservation programs with eDNA-based monitoring as a central instrument focuses on Asian bigheaded carp (Hypophthalmichthys spp.), an invasive fish spreading toward the Laurentian Great Lakes. However, the standard eDNA methods of this program have not advanced since their development in 2010. We developed new, quantitative, and more cost-effective methods and tested them against the standard protocols. In laboratory testing, our new quantitative PCR (qPCR) assay for bigheaded carp eDNA was one to two orders of magnitude more sensitive than the existing endpoint PCR assays. When applied to eDNA samples from an experimental pond containing bigheaded carp, the qPCR assay produced a detection probability of 94.8% compared to 4.2% for the endpoint PCR assays. Also, the eDNA capture and extraction method we adapted from aquatic microbiology yielded five times more bigheaded carp eDNA from the experimental pond than the standard method, at a per sample cost over forty times lower. Our new, more sensitive assay provides a quantitative tool for eDNA-based monitoring of bigheaded carp, and the higher-yielding eDNA capture and extraction method we describe can be used for eDNA-based monitoring of any aquatic species. PMID:25474207
Turner, Cameron R; Miller, Derryl J; Coyne, Kathryn J; Corush, Joel
2014-01-01
Indirect, non-invasive detection of rare aquatic macrofauna using aqueous environmental DNA (eDNA) is a relatively new approach to population and biodiversity monitoring. As such, the sensitivity of monitoring results to different methods of eDNA capture, extraction, and detection is being investigated in many ecosystems and species. One of the first and largest conservation programs with eDNA-based monitoring as a central instrument focuses on Asian bigheaded carp (Hypophthalmichthys spp.), an invasive fish spreading toward the Laurentian Great Lakes. However, the standard eDNA methods of this program have not advanced since their development in 2010. We developed new, quantitative, and more cost-effective methods and tested them against the standard protocols. In laboratory testing, our new quantitative PCR (qPCR) assay for bigheaded carp eDNA was one to two orders of magnitude more sensitive than the existing endpoint PCR assays. When applied to eDNA samples from an experimental pond containing bigheaded carp, the qPCR assay produced a detection probability of 94.8% compared to 4.2% for the endpoint PCR assays. Also, the eDNA capture and extraction method we adapted from aquatic microbiology yielded five times more bigheaded carp eDNA from the experimental pond than the standard method, at a per sample cost over forty times lower. Our new, more sensitive assay provides a quantitative tool for eDNA-based monitoring of bigheaded carp, and the higher-yielding eDNA capture and extraction method we describe can be used for eDNA-based monitoring of any aquatic species.
Schuurman, Tim; de Boer, Richard; Patty, Rachèl; Kooistra-Smid, Mirjam; van Zwet, Anton
2007-12-01
In the present study, three methods (NucliSens miniMAG [bioMérieux], MagNA Pure DNA Isolation Kit III Bacteria/Fungi [Roche], and a silica-guanidiniumthiocyanate {Si-GuSCN-F} procedure for extracting DNA from stool specimens were compared with regard to analytical performance (relative DNA recovery and down stream real-time PCR amplification of Salmonella enterica DNA), stability of the extracted DNA, hands-on time (HOT), total processing time (TPT), and costs. The Si-GuSCN-F procedure showed the highest analytical performance (relative recovery of 99%, S. enterica real-time PCR sensitivity of 91%) at the lowest associated costs per extraction (euro 4.28). However, this method did required the longest HOT (144 min) and subsequent TPT (176 min) when processing 24 extractions. Both miniMAG and MagNA Pure extraction showed similar performances at first (relative recoveries of 57% and 52%, S. enterica real-time PCR sensitivity of 85%). However, when difference in the observed Ct values after real-time PCR were taken into account, MagNA Pure resulted in a significant increase in Ct value compared to both miniMAG and Si-GuSCN-F (with on average +1.26 and +1.43 cycles). With regard to inhibition all methods showed relatively low inhibition rates (< 4%), with miniMAG providing the lowest rate (0.7%). Extracted DNA was stable for at least 1 year for all methods. HOT was lowest for MagNA Pure (60 min) and TPT was shortest for miniMAG (121 min). Costs, finally, were euro 4.28 for Si-GuSCN, euro 6.69 for MagNA Pure and euro 9.57 for miniMAG.
Sexton-Oates, Alexandra; Carmody, Jake; Ekinci, Elif I.; Dwyer, Karen M.; Saffery, Richard
2018-01-01
Aim To characterise the genomic DNA (gDNA) yield from urine and quality of derived methylation data generated from the widely used Illuminia Infinium MethylationEPIC (HM850K) platform and compare this with buffy coat samples. Background DNA methylation is the most widely studied epigenetic mark and variations in DNA methylation profile have been implicated in diabetes which affects approximately 415 million people worldwide. Methods QIAamp Viral RNA Mini Kit and QIAamp DNA micro kit were used to extract DNA from frozen and fresh urine samples as well as increasing volumes of fresh urine. Matched buffy coats to the frozen urine were also obtained and DNA was extracted from the buffy coats using the QIAamp DNA Mini Kit. Genomic DNA of greater concentration than 20μg/ml were used for methylation analysis using the HM850K array. Results Irrespective of extraction technique or the use of fresh versus frozen urine samples, limited genomic DNA was obtained using a starting sample volume of 5ml (0–0.86μg/mL). In order to optimize the yield, we increased starting volumes to 50ml fresh urine, which yielded only 0–9.66μg/mL A different kit, QIAamp DNA Micro Kit, was trialled in six fresh urine samples and ten frozen urine samples with inadequate DNA yields from 0–17.7μg/mL and 0–1.6μg/mL respectively. Sufficient genomic DNA was obtained from only 4 of the initial 41 frozen urine samples (10%) for DNA methylation profiling. In comparison, all four buffy coat samples (100%) provided sufficient genomic DNA. Conclusion High quality data can be obtained provided a sufficient yield of genomic DNA is isolated. Despite optimizing various extraction methodologies, the modest amount of genomic DNA derived from urine, may limit the generalisability of this approach for the identification of DNA methylation biomarkers of chronic diabetic kidney disease. PMID:29462136
Lecamwasam, Ashani; Sexton-Oates, Alexandra; Carmody, Jake; Ekinci, Elif I; Dwyer, Karen M; Saffery, Richard
2018-01-01
To characterise the genomic DNA (gDNA) yield from urine and quality of derived methylation data generated from the widely used Illuminia Infinium MethylationEPIC (HM850K) platform and compare this with buffy coat samples. DNA methylation is the most widely studied epigenetic mark and variations in DNA methylation profile have been implicated in diabetes which affects approximately 415 million people worldwide. QIAamp Viral RNA Mini Kit and QIAamp DNA micro kit were used to extract DNA from frozen and fresh urine samples as well as increasing volumes of fresh urine. Matched buffy coats to the frozen urine were also obtained and DNA was extracted from the buffy coats using the QIAamp DNA Mini Kit. Genomic DNA of greater concentration than 20μg/ml were used for methylation analysis using the HM850K array. Irrespective of extraction technique or the use of fresh versus frozen urine samples, limited genomic DNA was obtained using a starting sample volume of 5ml (0-0.86μg/mL). In order to optimize the yield, we increased starting volumes to 50ml fresh urine, which yielded only 0-9.66μg/mL A different kit, QIAamp DNA Micro Kit, was trialled in six fresh urine samples and ten frozen urine samples with inadequate DNA yields from 0-17.7μg/mL and 0-1.6μg/mL respectively. Sufficient genomic DNA was obtained from only 4 of the initial 41 frozen urine samples (10%) for DNA methylation profiling. In comparison, all four buffy coat samples (100%) provided sufficient genomic DNA. High quality data can be obtained provided a sufficient yield of genomic DNA is isolated. Despite optimizing various extraction methodologies, the modest amount of genomic DNA derived from urine, may limit the generalisability of this approach for the identification of DNA methylation biomarkers of chronic diabetic kidney disease.
Longmire, J.L.; Lewis, A.K.; Hildebrand, C.E.
1988-01-21
A method is provided for isolating DNA from eukaryotic cell and flow sorted chromosomes. When DNA is removed from chromosome and cell structure, detergent and proteolytic digestion products remain with the DNA. These products can be removed with organic extraction, but the process steps associated with organic extraction reduces the size of DNA fragments available for experimental use. The present process removes the waste products by dialyzing a solution containing the DNA against a solution containing polyethylene glycol (PEG). The waste products dialyze into the PEG leaving isolated DNA. The remaining DNA has been prepared with fragments containing more than 160 kb. The isolated DNA has been used in conventional protocols without effect on the protocol.
Gimonet, Johan; Portmann, Anne-Catherine; Fournier, Coralie; Baert, Leen
2018-06-16
This work shows that an incubation time reduced to 4-5 h to prepare a culture for DNA extraction followed by an automated DNA extraction can shorten the hands-on time, the turnaround time by 30% and increase the throughput while maintaining the WGS quality assessed by high quality Single Nucleotide Polymorphism analysis. Copyright © 2018. Published by Elsevier B.V.
Kulstein, Galina; Marienfeld, Ralf; Miltner, Erich; Wiegand, Peter
2016-10-01
In the last years, microRNA (miRNA) analysis came into focus in the field of forensic genetics. Yet, no standardized and recommendable protocols for co-isolation of miRNA and DNA from forensic relevant samples have been developed so far. Hence, this study evaluated the performance of an automated Maxwell® 16 System-based strategy (Promega) for co-extraction of DNA and miRNA from forensically relevant (blood and saliva) samples compared to (semi-)manual extraction methods. Three procedures were compared on the basis of recovered quantity of DNA and miRNA (as determined by real-time PCR and Bioanalyzer), miRNA profiling (shown by Cq values and extraction efficiency), STR profiles, duration, contamination risk and handling. All in all, the results highlight that the automated co-extraction procedure yielded the highest miRNA and DNA amounts from saliva and blood samples compared to both (semi-)manual protocols. Also, for aged and genuine samples of forensically relevant traces the miRNA and DNA yields were sufficient for subsequent downstream analysis. Furthermore, the strategy allows miRNA extraction only in cases where it is relevant to obtain additional information about the sample type. Besides, this system enables flexible sample throughput and labor-saving sample processing with reduced risk of cross-contamination. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Mortier, Virginie; Vancoillie, Leen; Dauwe, Kenny; Staelens, Delfien; Demecheleer, Els; Schauvliege, Marlies; Dinakis, Sylvie; Van Maerken, Tom; Dessilly, Géraldine; Ruelle, Jean; Verhofstede, Chris
2017-10-24
Pre-analytical sample processing is often overlooked as a potential cause of inaccurate assay results. Here we demonstrate how plasma, extracted from standard EDTA-containing blood collection tubes, may contain traces of blood cells consequently resulting in a false low-level HIV-1 viral load when using Roche Cobas HIV-1 assays. The presence of human DNA in Roche Cobas 4800 RNA extracts and in RNA extracts from the Abbott HIV-1 RealTime assay was assessed by quantifying the human albumin gene by means of quantitative PCR. RNA was extracted from plasma samples before and after an additional centrifugation and tested for viral load and DNA contamination. The relation between total DNA content and viral load was defined. Elevated concentrations of genomic DNA were detected in 28 out of 100 Cobas 4800 extracts and were significantly more frequent in samples processed outside of the AIDS Reference Laboratory. An association between genomic DNA presence and spurious low-level viraemia results was demonstrated. Supplementary centrifugation of plasma before RNA extraction eliminated the contamination and the false viraemia. Plasma isolated from standard EDTA-containing blood collection tubes may contain traces of HIV DNA leading to false viral load results above the clinical cutoff. Supplementary centrifugation of plasma before viral load analysis may eliminate the occurrence of this spurious low-level viraemia.
Recent Mitochondrial DNA Mutations Increase the Risk of Developing Common Late-Onset Human Diseases
Hudson, Gavin; Gomez-Duran, Aurora; Wilson, Ian J.; Chinnery, Patrick F.
2014-01-01
Mitochondrial DNA (mtDNA) is highly polymorphic at the population level, and specific mtDNA variants affect mitochondrial function. With emerging evidence that mitochondrial mechanisms are central to common human diseases, it is plausible that mtDNA variants contribute to the “missing heritability” of several complex traits. Given the central role of mtDNA genes in oxidative phosphorylation, the same genetic variants would be expected to alter the risk of developing several different disorders, but this has not been shown to date. Here we studied 38,638 individuals with 11 major diseases, and 17,483 healthy controls. Imputing missing variants from 7,729 complete mitochondrial genomes, we captured 40.41% of European mtDNA variation. We show that mtDNA variants modifying the risk of developing one disease also modify the risk of developing other diseases, thus providing independent replication of a disease association in different case and control cohorts. High-risk alleles were more common than protective alleles, indicating that mtDNA is not at equilibrium in the human population, and that recent mutations interact with nuclear loci to modify the risk of developing multiple common diseases. PMID:24852434
Schmedes, Sarah; Marshall, Pamela; King, Jonathan L; Budowle, Bruce
2013-07-01
Various types of biological samples present challenges for extraction of DNA suitable for subsequent molecular analyses. Commonly used extraction methods, such as silica membrane columns and phenol-chloroform, while highly successful may still fail to provide a sufficiently pure DNA extract with some samples. Synchronous coefficient of drag alteration (SCODA), implemented in Boreal Genomics' Aurora Nucleic Acid Extraction System (Boreal Genomics, Vancouver, BC), is a new technology that offers the potential to remove inhibitors effectively while simultaneously concentrating DNA. In this initial study, SCODA was tested for its ability to remove various concentrations of forensically and medically relevant polymerase chain reaction (PCR) inhibitors naturally found in tissue, hair, blood, plant, and soil samples. SCODA was used to purify and concentrate DNA from intentionally contaminated DNA samples containing known concentrations of hematin, humic acid, melanin, and tannic acid. The internal positive control (IPC) provided in the Quantifiler™ Human DNA Quantification Kit (Life Technologies, Foster City, CA) and short tandem repeat (STR) profiling (AmpFℓSTR® Identifiler® Plus PCR Amplification Kit; Life Technologies, Foster City, CA) were used to measure inhibition effects and hence purification. SCODA methodology yielded overall higher efficiency of purification of highly contaminated samples compared with the QIAquick® PCR Purification Kit (Qiagen, Valencia, CA). SCODA-purified DNA yielded no cycle shift of the IPC for each sample and yielded greater allele percentage recovery and relative fluorescence unit values compared with the QIAquick® purification method. The Aurora provided an automated, minimal-step approach to successfully remove inhibitors and concentrate DNA from challenged samples.
Kline, Margaret C; Duewer, David L; Redman, Janette W; Butler, John M; Boyer, David A
2002-04-15
In collaboration with the Armed Forces Institute of Pathology's Department of Defense DNA Registry, the National Institute of Standards and Technology recently evaluated the performance of a short tandem repeat multiplex with dried whole blood stains on four different commercially available identification card matrixes. DNA from 70 stains that had been stored for 19 months at ambient temperature was extracted or directly amplified and then processed using routine methods. All four storage media provided fully typeable (qualitatively identical) samples. After standardization, the average among-locus fluorescence intensity (electropherographic peak height or area) provided a suitable metric for quantitative analysis of the relative amounts of amplifiable DNA in an archived sample. The amounts of DNA in Chelex extracts from stains on two untreated high-purity cotton linter pulp papers and a paper treated with a DNA-binding coating were essentially identical. Average intensities for the aqueous extracts from a paper treated with a DNA-releasing coating were somewhat lower but also somewhat less variable than for the Chelex extracts. Average intensities of directly amplified punches of the DNA-binding paper were much larger but somewhat more variable than the Chelex extracts. Approximately 25% of the observed variation among the intensity measurements is shared among the four media and thus can be attributed to intrinsic variation in white blood count among the donors. All of the evaluated media adequately "bank" forensically useful DNA in well-dried whole blood stains for at least 19 months at ambient temperature.
Winters, M; Torkelson, A; Booth, R; Mailand, C; Hoareau, Y; Tucker, S; Wasser, S K
2018-07-01
Genotyping ivory samples can determine the geographic origin of poached ivory as well as the legality of ivory being sold in ivory markets. We conducted a series of experiments to determine where the DNA is most concentrated in ivory samples and how best to increase DNA yield from groups of samples likely to vary in DNA concentration. We examined variation in DNA amplification success from: the layer(s) of the tusk (cementum and/or dentine) being extracted, demineralization temperature and time, and the concentration of eluates. Since demineralization of the pulverized sample produces a pellet and supernatant, we also assessed DNA amplification success from the pellet, the supernatant, their combination, as well as variation in the respective amounts used for extraction. Our results show that the outer cementum layer of the tusk contains the highest concentration of DNA and should be separated and used exclusively as the source material of ivory processed for extraction, when available. Utilizing the combined demineralized lysate improves extraction efficiency, as does increasing demineralization time to 3 or more days, conducted at 4°C. The most significant improvements occurred for low template DNA ivory samples followed by medium quality samples. Amplification success of high quality samples was not affected by these changes. Application of this optimized method to 3068 ivory samples resulted in 81.2% of samples being confirmed for both alleles at a minimum of 10 out of 16 microsatellite loci, which is our threshold for inclusion in DNA assignment analyses. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.
Souza, H A V; Muller, L A C; Brandão, R L; Lovato, M B
2012-03-22
Dimorphandra mollis (Leguminosae), known as faveiro and fava d'anta, is a tree that is widely distributed throughout the Brazilian Cerrado (a savanna-like biome). This species is economically valuable and has been extensively exploited because its fruits contain the flavonoid rutin, which is used to produce medications for human circulatory diseases. Knowledge about its genetic diversity is needed to guide decisions about the conservation and rational use of this species in order to maintain its diversity. DNA extraction is an essential step for obtaining good results in a molecular analysis. However, DNA isolation from plants is usually compromised by excessive contamination by secondary metabolites. DNA extraction of D. mollis, mainly from mature leaves, results in a highly viscous mass that is difficult to handle and use in techniques that require pure DNA. We tested four protocols for plant DNA extraction that can be used to minimize problems such as contamination by polysaccharides, which is more pronounced in material from mature leaves. The protocol that produced the best DNA quality initially utilizes a sorbitol buffer to remove mucilaginous polysaccharides. The macerated leaf material is washed with this buffer until there is no visible mucilage in the sample. This protocol is adequate for DNA extraction both from young and mature leaves, and could be useful not only for D. mollis but also for other species that have high levels of polysaccharide contamination during the extraction process.
Chen, Ya-Bing; Lan, Dao-Liang; Tang, Cheng; Yang, Xiao-Nong; Li, Jian
2015-01-01
To more efficiently identify the microbial community of the yak rumen, the standardization of DNA extraction is key to ensure fidelity while studying environmental microbial communities. In this study, we systematically compared the efficiency of several extraction methods based on DNA yield, purity, and 16S rDNA sequencing to determine the optimal DNA extraction methods whose DNA products reflect complete bacterial communities. The results indicate that method 6 (hexadecyltrimethylammomium bromide-lysozyme-physical lysis by bead beating) is recommended for the DNA isolation of the rumen microbial community due to its high yield, operational taxonomic unit, bacterial diversity, and excellent cell-breaking capability. The results also indicate that the bead-beating step is necessary to effectively break down the cell walls of all of the microbes, especially Gram-positive bacteria. Another aim of this study was to preliminarily analyze the bacterial community via 16S rDNA sequencing. The microbial community spanned approximately 21 phyla, 35 classes, 75 families, and 112 genera. A comparative analysis showed some variations in the microbial community between yaks and cattle that may be attributed to diet and environmental differences. Interestingly, numerous uncultured or unclassified bacteria were found in yak rumen, suggesting that further research is required to determine the specific functional and ecological roles of these bacteria in yak rumen. In summary, the investigation of the optimal DNA extraction methods and the preliminary evaluation of the bacterial community composition of yak rumen support further identification of the specificity of the rumen microbial community in yak and the discovery of distinct gene resources.
Aoki, Kimiko; Tanaka, Hiroyuki; Ueki, Makoto
2017-08-01
When the tampering of a urine sample is suspected in doping control, personal identification of the sample needs to be determined by short tandem repeat (STR) analysis using DNA. We established a method for extracting DNA from urine samples stored at -20 °C without using any additives or procedures, which is consistent with how samples are required to be managed for doping control. The method, using the Puregene® Blood Core kit followed by NucleoSpin® gDNA Clean-up or NucleoSpin® gDNA Clean-up XS kit, does not need any special instrument and can provide a purified extract with high-quality DNA from up to 40 mL of urine suitable for STR analysis using an AmpFlSTR® Identifiler® PCR amplification kit. Storing urine at -20 °C is detrimental to the stability of DNA. The DNA concentration of preserved urine could not be predicted by specific gravity or creatinine level at the time of urine collection. The DNA concentration of a purified extract (10 μL) was required to be >0.06 ng/μL to ensure a successful STR analysis. Thus, the required extraction volumes of urine preserved for 3-7 years at -20 °C were estimated to be 30 mL and 20 mL to succeed in at least 86% of men and 91% of women, respectively. Considering the long half-life of DNA during long-term preservation, our extraction method is applicable to urine samples stored even for 10 years, which is currently the storage duration allowed (increased from 8 years) before re-examination in doping control. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Cho, Yoon-Kyoung; Kim, Tae-hyeong; Lee, Jeong-Gun
2010-06-01
We report the on-chip concentration of bacteria using a dielectrophoretic (DEP) chip with 3D electrodes and subsequent laser-based DNA extraction in the same chip. The DEP chip has a set of interdigitated Au post electrodes with 50 µm height to generate a network of non-uniform electric fields for the efficient trapping by DEP. The metal post array was fabricated by photolithography and subsequent Ni and Au electroplating. Three model bacteria samples (Escherichia coli, Staphylococcus epidermidis, Streptococcus mutans) were tested and over 80-fold concentrations were achieved within 2 min. Subsequently, on-chip DNA extraction from the concentrated bacteria in the 3D DEP chip was performed by laser irradiation using the laser-irradiated magnetic bead system (LIMBS) in the same chip. The extracted DNA was analyzed with silicon chip-based real-time polymerase chain reaction (PCR). The total process of on-chip bacteria concentration and the subsequent DNA extraction can be completed within 10 min including the manual operation time.
Kuznetsova, Alexandra A; Kuznetsov, Nikita A; Ishchenko, Alexander A; Saparbaev, Murat K; Fedorova, Olga S
2014-10-01
DNA glycosylases remove the modified, damaged or mismatched bases from the DNA by hydrolyzing the N-glycosidic bonds. Some enzymes can further catalyze the incision of a resulting abasic (apurinic/apyrimidinic, AP) site through β- or β,δ-elimination mechanisms. In most cases, the incision reaction of the AP-site is catalyzed by special enzymes called AP-endonucleases. Here, we report the kinetic analysis of the mechanisms of modified DNA transfer from some DNA glycosylases to the AP endonuclease, APE1. The modified DNA contained the tetrahydrofurane residue (F), the analogue of the AP-site. DNA glycosylases AAG, OGG1, NEIL1, MBD4(cat) and UNG from different structural superfamilies were used. We found that all DNA glycosylases may utilise direct protein-protein interactions in the transient ternary complex for the transfer of the AP-containing DNA strand to APE1. We hypothesize a fast "flip-flop" exchange mechanism of damaged and undamaged DNA strands within this complex for monofunctional DNA glycosylases like MBD4(cat), AAG and UNG. Bifunctional DNA glycosylase NEIL1 creates tightly specific complex with DNA containing F-site thereby efficiently competing with APE1. Whereas APE1 fast displaces other bifunctional DNA glycosylase OGG1 on F-site thereby induces its shifts to undamaged DNA regions. Kinetic analysis of the transfer of DNA between human DNA glycosylases and APE1 allows us to elucidate the critical step in the base excision repair pathway. Copyright © 2014 Elsevier B.V. All rights reserved.
Elimination of bioweapons agents from forensic samples during extraction of human DNA.
Timbers, Jason; Wilkinson, Della; Hause, Christine C; Smith, Myron L; Zaidi, Mohsin A; Laframboise, Denis; Wright, Kathryn E
2014-11-01
Collection of DNA for genetic profiling is a powerful means for the identification of individuals responsible for crimes and terrorist acts. Biologic hazards, such as bacteria, endospores, toxins, and viruses, could contaminate sites of terrorist activities and thus could be present in samples collected for profiling. The fate of these hazards during DNA isolation has not been thoroughly examined. Our goals were to determine whether the DNA extraction process used by the Royal Canadian Mounted Police eliminates or neutralizes these agents and if not, to establish methods that render samples safe without compromising the human DNA. Our results show that bacteria, viruses, and toxins were reduced to undetectable levels during DNA extraction, but endospores remained viable. Filtration of samples after DNA isolation eliminated viable spores from the samples but left DNA intact. We also demonstrated that contamination of samples with some bacteria, endospores, and toxins for longer than 1 h compromised the ability to complete genetic profiling. © 2014 American Academy of Forensic Sciences.
Fell, Shari; Bröckl, Stephanie; Büttner, Mathias; Rettinger, Anna; Zimmermann, Pia; Straubinger, Reinhard K
2016-09-15
Bovine tuberculosis (bTB), which is caused by Mycobacterium bovis and M. caprae, is a notifiable animal disease in Germany. Diagnostic procedure is based on a prescribed protocol that is published in the framework of German bTB legislation. In this protocol small sample volumes are used for DNA extraction followed by real-time PCR analyses. As mycobacteria tend to concentrate in granuloma and the infected tissue in early stages of infection does not necessarily show any visible lesions, it is likely that DNA extraction from only small tissue samples (20-40 mg) of a randomly chosen spot from the organ and following PCR testing may result in false negative results. In this study two DNA extraction methods were developed to process larger sample volumes to increase the detection sensitivity of mycobacterial DNA in animal tissue. The first extraction method is based on magnetic capture, in which specific capture oligonucleotides were utilized. These nucleotides are linked to magnetic particles and capture Mycobacterium-tuberculosis-complex (MTC) DNA released from 10 to 15 g of tissue material. In a second approach remaining sediments from the magnetic capture protocol were further processed with a less complex extraction protocol that can be used in daily routine diagnostics. A total number of 100 tissue samples from 34 cattle (n = 74) and 18 red deer (n = 26) were analyzed with the developed protocols and results were compared to the prescribed protocol. All three extraction methods yield reliable results by the real-time PCR analysis. The use of larger sample volume led to a sensitivity increase of DNA detection which was shown by the decrease of Ct-values. Furthermore five samples which were tested negative or questionable by the official extraction protocol were detected positive by real time PCR when the alternative extraction methods were used. By calculating the kappa index, the three extraction protocols resulted in a moderate (0.52; protocol 1 vs 3) to almost perfect agreement (1.00; red deer sample testing with all protocols). Both new methods yielded increased detection rates for MTC DNA detection in large sample volumes and consequently improve the official diagnostic protocol.
Pant, Kamala; Roden, Nicholas; Zhang, Charles; Bruce, Shannon; Wood, Craig; Pendino, Kimberly
2015-12-01
14-Hydroxycodeinone (14-HC) is an α,β-unsaturated ketone impurity found in oxycodone drug substance and has a structural alert for genotoxicity. 14-HC was tested in a combined Modified and Standard Comet Assay to determine if the slight decrease in % Tail DNA noted in a previously conducted Standard Comet Assay with 14-HC could be magnified to clarify if the response was due to cross-linking activity. One limitation of the Standard Comet Assay is that DNA cross-links cannot be reliably detected. However, under certain modified testing conditions, DNA cross-links and chemical moieties that elicit such cross-links can be elucidated. One such modification involves the induction of additional breakages of DNA strands by gamma or X-ray irradiation. To determine if 14-HC is a DNA crosslinker in vivo, a Modified Comet Assay was conducted using X-ray irradiation as the modification to visualize crosslinking activity. In this assay, 14-HC was administered orally to mice up to 320 mg/kg/day. Results showed a statistically significant reduction in percent tail DNA in duodenal cells at 320 mg/kg/day, with a nonstatistically significant but dose-related reduction in percent tail DNA also observed at the mid dose of 160 mg/kg/day. Similar decreases were not observed in cells from the liver or stomach, and no increases in percent tail DNA were noted for any tissue in the concomitantly conducted Standard Comet Assay. Taken together, 14-HC was identified as a cross-linking agent in the duodenum in the Modified Comet Assay. © 2015 Wiley Periodicals, Inc.
Novel approach for deriving genome wide SNP analysis data from archived blood spots
2012-01-01
Background The ability to transport and store DNA at room temperature in low volumes has the advantage of optimising cost, time and storage space. Blood spots on adapted filter papers are popular for this, with FTA (Flinders Technology Associates) Whatman™TM technology being one of the most recent. Plant material, plasmids, viral particles, bacteria and animal blood have been stored and transported successfully using this technology, however the method of porcine DNA extraction from FTA Whatman™TM cards is a relatively new approach, allowing nucleic acids to be ready for downstream applications such as PCR, whole genome amplification, sequencing and subsequent application to single nucleotide polymorphism microarrays has hitherto been under-explored. Findings DNA was extracted from FTA Whatman™TM cards (following adaptations of the manufacturer’s instructions), whole genome amplified and subsequently analysed to validate the integrity of the DNA for downstream SNP analysis. DNA was successfully extracted from 288/288 samples and amplified by WGA. Allele dropout post WGA, was observed in less than 2% of samples and there was no clear evidence of amplification bias nor contamination. Acceptable call rates on porcine SNP chips were also achieved using DNA extracted and amplified in this way. Conclusions DNA extracted from FTA Whatman cards is of a high enough quality and quantity following whole genomic amplification to perform meaningful SNP chip studies. PMID:22974252
Li, Mingcheng; Xia, Wei; Wang, Miao; Yang, Mingyan; Zhang, Lihua; Guo, Jie
2014-02-01
The use of Martes zibellina L. heart as a famous kind of traditional Chinese medicine has been documented for many years in China. Identification of its authenticity as raw materials became a key in controlling of herbal preparations. In this study, the characteristics of mitochondrial cytochrome b (Cyt b) gene from four species of Martes were explored, and a specific molecular genetics technique for identifying the heart of M. zibellina L. in addition to some close relatives from their counterfeits was established. The bioinformatics was carried out to design the primers for the Cyt b gene based on the different species of Martes. PCR and sequencing technology were performed. The mt DNA was extracted from all of fresh M. zibellina L., Martes melampus. Martes flavigula. Martes martes heart samples and dry M. zibellina L. heart powder through the modified alkaline extracting method in addition to its counterfeits including the chicken heart, duck heart, goose heart, rabbit heart and Mustela vison. The complete mt DNA was separated from all samples used in the study, and the Cyt b gene with 310 bp segments was amplified only from M. zibellina L. heart as DNA template by the PCR technique. The sequencing indicated that the segment amplified by the PCR was homologous with the species of M. zibellina in GenBank. The data revealed that the primers and selected segment could be used as the genetic markers to identify M. zibellina L. heart from its counterfeits among different animal species.
Rosinger, Silke; Nutland, Sarah; Mickelson, Eric; Varney, Michael D; Boehm, Bernard O; Olsem, Gary J; Hansen, John A; Nicholson, Ian; Hilner, Joan E; Perdue, Letitia H; Pierce, June J; Akolkar, Beena; Nierras, Concepcion; Steffes, Michael W
2010-01-01
Background and Purpose To yield large amounts of DNA for many genotype analyses and to provide a renewable source of DNA, the Type 1 Diabetes Genetics Consortium (T1DGC) harvested DNA and peripheral blood mononuclear cells (PBMCs) from individuals with type 1 diabetes and their family members in several regions of the world. Methods DNA repositories were established in Asia-Pacific, Europe, North America, and the United Kingdom. To address region-specific needs, different methods and sample processing techniques were used among the laboratories to extract and to quantify DNA and to establish Epstein-Barr virus transformed cell lines. Results More than 98% of the samples of PBMCs were successfully transformed. Approximately 20–25 µg of DNA were extracted per mL of whole blood. Extraction of DNA from the cell pack ranged from 92 to 165 µg per cell pack. In addition, the extracted DNA from whole blood or transformed cells was successfully utilized in each regional human leukocyte antigen genotyping laboratory and by several additional laboratories performing consortium-wide genotyping projects. Limitations Although the isolation of PBMCs was consistent among sites, the measurement of DNA was difficult to harmonize. Conclusions DNA repositories can be established in different regions of the world and produce similar amounts of high-quality DNA for a variety of high-throughput genotyping techniques. Furthermore, even with the distances and time necessary for transportation, highly efficient transformation of PBMCs is possible. For future studies/trials involving several laboratories in different locations, the T1DGC experience includes examples of protocols that may be applicable. In summary, T1DGC has developed protocols that would be of interest to any scientific organization attempting to overcome the logistical problems associated with studies/trials spanning multiple research facilities, located in different regions of the world. PMID:20595244
Yera, H.; Filisetti, D.; Bastien, P.; Ancelle, T.; Thulliez, P.; Delhaes, L.
2009-01-01
Over the past few years, a number of new nucleic acid extraction methods and extraction platforms using chemistry combined with magnetic or silica particles have been developed, in combination with instruments to facilitate the extraction procedure. The objective of the present study was to investigate the suitability of these automated methods for the isolation of Toxoplasma gondii DNA from amniotic fluid (AF). Therefore, three automated procedures were compared to two commercialized manual extraction methods. The MagNA Pure Compact (Roche), BioRobot EZ1 (Qiagen), and easyMAG (bioMérieux) automated procedures were compared to two manual DNA extraction kits, the QIAamp DNA minikit (Qiagen) and the High Pure PCR template preparation kit (Roche). Evaluation was carried out with two specific Toxoplasma PCRs (targeting the 529-bp repeat element), inhibitor search PCRs, and human beta-globin PCRs. The samples each consisted of 4 ml of AF with or without a calibrated Toxoplasma gondii RH strain suspension (0, 1, 2.5, 5, and 25 tachyzoites/ml). All PCR assays were laboratory-developed real-time PCR assays, using either TaqMan or fluorescent resonance energy transfer probes. A total of 1,178 PCRs were performed, including 978 Toxoplasma PCRs. The automated and manual methods were similar in sensitivity for DNA extraction from T. gondii at the highest concentration (25 Toxoplasma gondii cells/ml). However, our results showed that the DNA extraction procedures led to variable efficacy in isolating low concentrations of tachyzoites in AF samples (<5 Toxoplasma gondii cells/ml), a difference that might have repercussions since low parasite concentrations in AF exist and can lead to congenital toxoplasmosis. PMID:19846633
Isolation and characterization of DNA from archaeological bone.
Hagelberg, E; Clegg, J B
1991-04-22
DNA was extracted from human and animal bones recovered from archaeological sites and mitochondrial DNA sequences were amplified from the extracts using the polymerase chain reaction. Evidence is presented that the amplified sequences are authentic and do not represent contamination by extraneous DNA. The results show that significant amounts of genetic information can survive for long periods in bone, and have important implications for evolutionary genetics, anthropology and forensic science.
García-Bautista, I; Toledano-Thompson, T; Dantán-González, E; González-Montilla, J; Valdez-Ojeda, R
2017-09-21
Marine environments are a reservoir of relevant information on dangerous contaminants such as hydrocarbons, as well as microbial communities with probable degradation skills. However, to access microbial diversity, it is necessary to obtain high-quality DNA. An inexpensive, reliable, and effective metagenomic DNA (mgDNA) extraction protocol from marine sediments contaminated with petroleum hydrocarbons was established in this study from modifications to Zhou's protocol. The optimization included pretreatment of sediment with saline solutions for the removal of contaminants, a second precipitation and enzymatic degradation of RNA, followed by purification of mgDNA extracted by electroelution. The results obtained indicated that the modifications applied to 12 sediments with total petroleum hydrocarbon (TPH) concentrations from 22.6-174.3 (µg/g dry sediment) yielded 20.3-321.3 ng/µL mgDNA with A 260 /A 280 and A 260 /A 230 ratios of 1.75 ± 0.08 and 1.19 ± 0.22, respectively. The 16S rRNA amplification confirmed the purity of the mgDNA. The suitability of this mgDNA extraction protocol lies in the fact that all chemical solutions utilized are common in all molecular biology laboratories, and the use of dialysis membrane does not require any sophisticated or expensive equipment, only an electrophoretic chamber.
Sensitive diagnosis of cutaneous leishmaniasis by lesion swab sampling coupled to qPCR
ADAMS, EMILY R.; GOMEZ, MARIA ADELAIDA; SCHESKE, LAURA; RIOS, RUBY; MARQUEZ, RICARDO; COSSIO, ALEXANDRA; ALBERTINI, AUDREY; SCHALLIG, HENK; SARAVIA, NANCY GORE
2015-01-01
SUMMARY Variation in clinical accuracy of molecular diagnostic methods for cutaneous leishmaniasis (CL) is commonly observed depending on the sample source, the method of DNA recovery and the molecular test. Few attempts have been made to compare these variables. Two swab and aspirate samples from lesions of patients with suspected CL (n = 105) were evaluated alongside standard diagnosis by microscopic detection of amastigotes or culture of parasites from lesion material. Three DNA extraction methods were compared: Qiagen on swab and aspirate specimens, Isohelix on swabs and Boil/Spin of lesion aspirates. Recovery of Leishmania DNA was evaluated for each sample type by real-time polymerase chain reaction detection of parasitic 18S rDNA, and the diagnostic accuracy of the molecular method determined. Swab sampling combined with Qiagen DNA extraction was the most efficient recovery method for Leishmania DNA, and was the most sensitive (98%; 95% CI: 91–100%) and specific (84%; 95% CI: 64–95%) approach. Aspirated material was less sensitive at 80% (95% CI: 70–88%) and 61% (95% CI: 50–72%) when coupled to Qiagen or Boil-Spin DNA extraction, respectively. Swab sampling of lesions was painless, simple to perform and coupled with standardized DNA extraction enhances the feasibility of molecular diagnosis of CL. PMID:25111885
Relatively well preserved DNA is present in the crystal aggregates of fossil bones
Salamon, Michal; Tuross, Noreen; Arensburg, Baruch; Weiner, Steve
2005-01-01
DNA from fossil human bones could provide invaluable information about population migrations, genetic relations between different groups and the spread of diseases. The use of ancient DNA from bones to study the genetics of past populations is, however, very often compromised by the altered and degraded state of preservation of the extracted material. The universally observed postmortem degradation, together with the real possibility of contamination with modern human DNA, makes the acquisition of reliable data, from humans in particular, very difficult. We demonstrate that relatively well preserved DNA is occluded within clusters of intergrown bone crystals that are resistant to disaggregation by the strong oxidant NaOCl. We obtained reproducible authentic sequences from both modern and ancient animal bones, including humans, from DNA extracts of crystal aggregates. The treatment with NaOCl also minimizes the possibility of modern DNA contamination. We thus demonstrate the presence of a privileged niche within fossil bone, which contains DNA in a better state of preservation than the DNA present in the total bone. This counterintuitive approach to extracting relatively well preserved DNA from bones significantly improves the chances of obtaining authentic ancient DNA sequences, especially from human bones. PMID:16162675
Low Cost Extraction and Isothermal Amplification of DNA for Infectious Diarrhea Diagnosis
Huang, Shichu; Do, Jaephil; Mahalanabis, Madhumita; Fan, Andy; Zhao, Lei; Jepeal, Lisa; Singh, Satish K.; Klapperich, Catherine M.
2013-01-01
In order to counter the common perception that molecular diagnostics are too complicated to work in low resource settings, we have performed a difficult sample preparation and DNA amplification protocol using instrumentation designed to be operated without wall or battery power. In this work we have combined a nearly electricity-free nucleic acid extraction process with an electricity-free isothermal amplification assay to detect the presence of Clostridium difficile (C. difficile) DNA in the stool of infected patients. We used helicase-dependent isothermal amplification (HDA) to amplify the DNA in a low-cost, thermoplastic reaction chip heated with a pair of commercially available toe warmers, while using a simple Styrofoam insulator. DNA was extracted from known positive and negative stool samples. The DNA extraction protocol utilized an air pressure driven solid phase extraction device run using a standard bicycle pump. The simple heater setup required no electricity or battery and was capable of maintaining the temperature at 65°C±2°C for 55 min, suitable for repeatable HDA amplification. Experiments were performed to explore the adaptability of the system for use in a range of ambient conditions. When compared to a traditional centrifuge extraction protocol and a laboratory thermocycler, this disposable, no power platform achieved approximately the same lower limit of detection (1.25×10−2 pg of C. difficile DNA) while requiring much less raw material and a fraction of the lab infrastructure and cost. This proof of concept study could greatly impact the accessibility of molecular assays for applications in global health. PMID:23555883
2012-01-01
A computer numerical control (CNC) apparatus was used to perform droplet centrifugation, droplet DNA extraction, and rapid droplet thermocycling on a single superhydrophobic surface and a multi-chambered PCB heater. Droplets were manipulated using “wire-guided” method (a pipette tip was used in this study). This methodology can be easily adapted to existing commercial robotic pipetting system, while demonstrated added capabilities such as vibrational mixing, high-speed centrifuging of droplets, simple DNA extraction utilizing the hydrophobicity difference between the tip and the superhydrophobic surface, and rapid thermocycling with a moving droplet, all with wire-guided droplet manipulations on a superhydrophobic surface and a multi-chambered PCB heater (i.e., not on a 96-well plate). Serial dilutions were demonstrated for diluting sample matrix. Centrifuging was demonstrated by rotating a 10 μL droplet at 2300 round per minute, concentrating E. coli by more than 3-fold within 3 min. DNA extraction was demonstrated from E. coli sample utilizing the disposable pipette tip to cleverly attract the extracted DNA from the droplet residing on a superhydrophobic surface, which took less than 10 min. Following extraction, the 1500 bp sequence of Peptidase D from E. coli was amplified using rapid droplet thermocycling, which took 10 min for 30 cycles. The total assay time was 23 min, including droplet centrifugation, droplet DNA extraction and rapid droplet thermocycling. Evaporation from of 10 μL droplets was not significant during these procedures, since the longest time exposure to air and the vibrations was less than 5 min (during DNA extraction). The results of these sequentially executed processes were analyzed using gel electrophoresis. Thus, this work demonstrates the adaptability of the system to replace many common laboratory tasks on a single platform (through re-programmability), in rapid succession (using droplets), and with a high level of accuracy and automation. PMID:22947281
Schneider, Uffe Vest; Mikkelsen, Nikolaj Dam; Lindqvist, Anja; Okkels, Limei Meng; Jøhnk, Nina; Lisby, Gorm
2012-01-01
We introduce quantitative polymerase chain reaction (qPCR) primers and multiplex end-point PCR primers modified by the addition of a single ortho-Twisted Intercalating Nucleic Acid (o-TINA) molecule at the 5′-end. In qPCR, the 5′-o-TINA modified primers allow for a qPCR efficiency of 100% at significantly stressed reaction conditions, increasing the robustness of qPCR assays compared to unmodified primers. In samples spiked with genomic DNA, 5′-o-TINA modified primers improve the robustness by increased sensitivity and specificity compared to unmodified DNA primers. In unspiked samples, replacement of unmodified DNA primers with 5′-o-TINA modified primers permits an increased qPCR stringency. Compared to unmodified DNA primers, this allows for a qPCR efficiency of 100% at lowered primer concentrations and at increased annealing temperatures with unaltered cross-reactivity for primers with single nucleobase mismatches. In a previously published octaplex end-point PCR targeting diarrheagenic Escherichia coli, application of 5′-o-TINA modified primers allows for a further reduction (>45% or approximately one hour) in overall PCR program length, while sustaining the amplification and analytical sensitivity for all targets in crude bacterial lysates. For all crude bacterial lysates, 5′-o-TINA modified primers permit a substantial increase in PCR stringency in terms of lower primer concentrations and higher annealing temperatures for all eight targets. Additionally, crude bacterial lysates spiked with human genomic DNA show lesser formation of non-target amplicons implying increased robustness. Thus, 5′-o-TINA modified primers are advantageous in PCR assays, where one or more primer pairs are required to perform at stressed reaction conditions. PMID:22701644
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vanhemmen, J.J.; Meuling, W.J.A.; Bleichrodt, J.F.
1974-01-01
The radiosensitization by oxygen of biological active bacteriophage DNA in bacterial extracts was studied. The oxygen effect in such a system appeared not to be due or due only to a minor extent to the presence of endogenous sulfhydryl compounds. The components in a cell extract which enable oxygen and other sensitizers to sensitize DNA could not be destroyed by extremely high doses of gamma radiation. (Author) (GRA)
Strategy for the extraction of yeast DNA from artisan agave must for quantitative PCR analysis.
Kirchmayr, Manuel Reinhart; Segura-Garcia, Luis Eduardo; Flores-Berrios, Ericka Patricia; Gschaedler, Anne
2011-11-01
An efficient method for the direct extraction of yeast genomic DNA from agave must was developed. The optimized protocol, which was based on silica-adsorption of DNA on microcolumns, included an enzymatic cell wall degradation step followed by prolonged lysis with hot detergent. The resulting extracts were suitable templates for subsequent qPCR assays that quantified mixed yeast populations in artisan Mexican mezcal fermentations. Copyright © 2011 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Wang, Xiaofeng; You, Zheng; Sha, Hailiang; Cheng, Yong; Zhu, Huanhuan; Sun, Wei
2014-10-01
A DNA and graphene (GR) bi-layer modified carbon ionic liquid electrode (CILE) was fabricated by an electrodeposition method. GR nanosheets were electrodeposited on the surface of CILE at the potential of -1.3 V and then DNA was further deposited at the potential of +0.5 V on GR modified CILE. Electrochemical performances of the fabricated DNA/GR/CILE were carefully investigated. Then electrochemical behaviors of dopamine (DA) on the modified electrode were studied with the calculated electrochemical parameters. Under the optimized conditions, a linear relationship between the oxidation peak current and the concentration of DA was obtained in the range from 0.1 μmol/L to 1.0 mmol/L with a detection limit of 0.027 μmol/L (3σ). The modified electrode exhibited excellent reproducibility, repeatability, stability, validation and robustness for the electrochemical detection of DA. The proposed method was further applied to the DA injection solution and human urine samples determination with satisfactory results. Copyright © 2014 Elsevier B.V. All rights reserved.
Simple DNA extraction of urine samples: Effects of storage temperature and storage time.
Ng, Huey Hian; Ang, Hwee Chen; Hoe, See Ying; Lim, Mae-Lynn; Tai, Hua Eng; Soh, Richard Choon Hock; Syn, Christopher Kiu-Choong
2018-06-01
Urine samples are commonly analysed in cases with suspected illicit drug consumption. In events of alleged sample mishandling, urine sample source identification may be necessary. A simple DNA extraction procedure suitable for STR typing of urine samples was established on the Promega Maxwell ® 16 paramagnetic silica bead platform. A small sample volume of 1.7mL was used. Samples were stored at room temperature, 4°C and -20°C for 100days to investigate the influence of storage temperature and time on extracted DNA quantity and success rate of STR typing. Samples stored at room temperature exhibited a faster decline in DNA yield with time and lower typing success rates as compared to those at 4°C and -20°C. This trend can likely be attributed to DNA degradation. In conclusion, this study presents a quick and effective DNA extraction protocol from a small urine volume stored for up to 100days at 4°C and -20°C. Copyright © 2018 Elsevier B.V. All rights reserved.
Flavonoids in Helichrysum pamphylicum inhibit mammalian type I DNA topoisomerase.
Topcu, Zeki; Ozturk, Bintug; Kucukoglu, Ozlem; Kilinc, Emrah
2008-01-01
DNA topoisomerases are important targets for cancer chemotherapy. We investigated the effects of a methanolic extract of Helichrysum pamphylicum on mammalian DNA topoisomerase I via in vitro plasmid supercoil relaxation assays. The extracts manifested a considerable inhibition of the enzyme's activity in a dose-dependent manner. We also performed a HPLC analysis to identify the flavonoid content of the H. pamphylicum extract and tested the identified flavonoids; luteolin, luteolin-4-glucoside, naringenin, helichrysinA and isoquercitrin, on DNA topoisomerase I activity. The measurement of the total antioxidant capacity of the flavonoid standards suggested that the topoisomerase inhibition might be correlated with the antioxidant capacity of the plant.
Pîrlea, Sorina; Puiu, Mihaela; Răducan, Adina; Oancea, Dumitru
2017-03-01
In this study, it was demonstrated that the DNA Chelex extraction combined with the permanganate assisted-oxidation is highly efficient in removing the PCR inhibitors often found in clothing materials, such as phthalocyanine. The extraction assays were conducted in saliva, blood and epithelial cells samples mixed with three oxidation-resistant dye copper(II) α-phthalocyanine, copper(II) β-phthalocyanine and tetrasulfonated copper(II) β-phthalocyanine. After DNA amplification, all samples were able to provide full DNA profiles. The permanganate/Chelex system was tested further on denim-stained samples and displayed the same ability to remove the PCR inhibitors from the commercial textile materials.
Blackwood, Kym S; Burdz, Tamara V; Turenne, Christine Y; Sharma, Meenu K; Kabani, Amin M; Wolfe, Joyce N
2005-01-24
In the field of clinical mycobacteriology, Mycobacterium tuberculosis (MTB) can be a difficult organism to manipulate due to the restrictive environment of a containment level 3 (CL3) laboratory. Tests for rapid diagnostic work involving smears and molecular methods do not require CL3 practices after the organism has been rendered non-viable. While it has been assumed that after organism deactivation these techniques can be performed outside of a CL3, no conclusive study has consistently confirmed that the organisms are noninfectious after the theoretical 'deactivation' steps. Previous studies have shown that initial steps (such as heating/chemical fixation) may not consistently kill MTB organisms. An inclusive viability study (n = 226) was undertaken to determine at which point handling of culture extraction materials does not necessitate a CL3 environment. Four different laboratory protocols tested for viability included: standard DNA extractions for IS6110 fingerprinting, crude DNA preparations for PCR by boiling and mechanical lysis, protein extractions, and smear preparations. For each protocol, laboratory staff planted a proportion of the resulting material to Bactec 12B medium that was observed for growth for 8 weeks. Of the 208 isolates initially tested, 21 samples grew within the 8-week period. Sixteen (7.7%) of these yielded positive results for MTB that included samples of: deactivated culture resuspensions exposed to 80 degrees C for 20 minutes, smear preparations and protein extractions. Test procedures were consequently modified and tested again (n = 18), resulting in 0% viability. This study demonstrates that it cannot be assumed that conventional practices (i.e. smear preparation) or extraction techniques render the organism non-viable. All methodologies, new and existing, should be examined by individual laboratories to validate the safe removal of material derived from MTB to the outside of a CL3 laboratory. This process is vital to establish in house biosafety-validated practices with the aim of protecting laboratory workers conducting these procedures.
Zhao, Guangtao; Ding, Jiawang; Yu, Han; Yin, Tanji; Qin, Wei
2016-01-01
A potentiometric aptasensing assay that couples the DNA nanostructure-modified magnetic beads with a solid-contact polycation-sensitive membrane electrode for the detection of Vibrio alginolyticus is herein described. The DNA nanostructure-modified magnetic beads are used for amplification of the potential response and elimination of the interfering effect from a complex sample matrix. The solid-contact polycation-sensitive membrane electrode using protamine as an indicator is employed to chronopotentiometrically detect the change in the charge or DNA concentration on the magnetic beads, which is induced by the interaction between Vibrio alginolyticus and the aptamer on the DNA nanostructures. The present potentiometric aptasensing method shows a linear range of 10–100 CFU mL−1 with a detection limit of 10 CFU mL−1, and a good specificity for the detection of Vibrio alginolyticus. This proposed strategy can be used for the detection of other microorganisms by changing the aptamers in the DNA nanostructures. PMID:27918423
Method for performing site-specific affinity fractionation for use in DNA sequencing
Mirzabekov, Andrei Darievich; Lysov, Yuri Petrovich; Dubley, Svetlana A.
1999-01-01
A method for fractionating and sequencing DNA via affinity interaction is provided comprising contacting cleaved DNA to a first array of oligonucleotide molecules to facilitate hybridization between said cleaved DNA and the molecules; extracting the hybridized DNA from the molecules; contacting said extracted hybridized DNA with a second array of oligonucleotide molecules, wherein the oligonucleotide molecules in the second array have specified base sequences that are complementary to said extracted hybridized DNA; and attaching labeled DNA to the second array of oligonucleotide molecules, wherein the labeled re-hybridized DNA have sequences that are complementary to the oligomers. The invention further provides a method for performing multi-step conversions of the chemical structure of compounds comprising supplying an array of polyacrylamide vessels separated by hydrophobic surfaces; immobilizing a plurality of reactants, such as enzymes, in the vessels so that each vessel contains one reactant; contacting the compounds to each of the vessels in a predetermined sequence and for a sufficient time to convert the compounds to a desired state; and isolating the converted compounds from said array.
Mirzabekov, Andrei Darievich; Lysov, Yuri Petrovich; Dubley, Svetlana A.
2000-01-01
A method for fractionating and sequencing DNA via affinity interaction is provided comprising contacting cleaved DNA to a first array of oligonucleotide molecules to facilitate hybridization between said cleaved DNA and the molecules; extracting the hybridized DNA from the molecules; contacting said extracted hybridized DNA with a second array of oligonucleotide molecules, wherein the oligonucleotide molecules in the second array have specified base sequences that are complementary to said extracted hybridized DNA; and attaching labeled DNA to the second array of oligonucleotide molecules, wherein the labeled re-hybridized DNA have sequences that are complementary to the oligomers. The invention further provides a method for performing multi-step conversions of the chemical structure of compounds comprising supplying an array of polyacrylamide vessels separated by hydrophobic surfaces; immobilizing a plurality of reactants, such as enzymes, in the vessels so that each vessel contains one reactant; contacting the compounds to each of the vessels in a predetermined sequence and for a sufficient time to convert the compounds to a desired state; and isolating the converted compounds from said array.
Detection of Streptococcus mutans Genomic DNA in Human DNA Samples Extracted from Saliva and Blood
Vieira, Alexandre R.; Deeley, Kathleen B.; Callahan, Nicholas F.; Noel, Jacqueline B.; Anjomshoaa, Ida; Carricato, Wendy M.; Schulhof, Louise P.; DeSensi, Rebecca S.; Gandhi, Pooja; Resick, Judith M.; Brandon, Carla A.; Rozhon, Christopher; Patir, Asli; Yildirim, Mine; Poletta, Fernando A.; Mereb, Juan C.; Letra, Ariadne; Menezes, Renato; Wendell, Steven; Lopez-Camelo, Jorge S.; Castilla, Eduardo E.; Orioli, Iêda M.; Seymen, Figen; Weyant, Robert J.; Crout, Richard; McNeil, Daniel W.; Modesto, Adriana; Marazita, Mary L.
2011-01-01
Caries is a multifactorial disease, and studies aiming to unravel the factors modulating its etiology must consider all known predisposing factors. One major factor is bacterial colonization, and Streptococcus mutans is the main microorganism associated with the initiation of the disease. In our studies, we have access to DNA samples extracted from human saliva and blood. In this report, we tested a real-time PCR assay developed to detect copies of genomic DNA from Streptococcus mutans in 1,424 DNA samples from humans. Our results suggest that we can determine the presence of genomic DNA copies of Streptococcus mutans in both DNA samples from caries-free and caries-affected individuals. However, we were not able to detect the presence of genomic DNA copies of Streptococcus mutans in any DNA samples extracted from peripheral blood, which suggests the assay may not be sensitive enough for this goal. Values of the threshold cycle of the real-time PCR reaction correlate with higher levels of caries experience in children, but this correlation could not be detected for adults. PMID:21731912
Method for performing site-specific affinity fractionation for use in DNA sequencing
Mirzabekov, A.D.; Lysov, Y.P.; Dubley, S.A.
1999-05-18
A method for fractionating and sequencing DNA via affinity interaction is provided comprising contacting cleaved DNA to a first array of oligonucleotide molecules to facilitate hybridization between the cleaved DNA and the molecules; extracting the hybridized DNA from the molecules; contacting the extracted hybridized DNA with a second array of oligonucleotide molecules, wherein the oligonucleotide molecules in the second array have specified base sequences that are complementary to the extracted hybridized DNA; and attaching labeled DNA to the second array of oligonucleotide molecules, wherein the labeled re-hybridized DNA have sequences that are complementary to the oligomers. The invention further provides a method for performing multi-step conversions of the chemical structure of compounds comprising supplying an array of polyacrylamide vessels separated by hydrophobic surfaces; immobilizing a plurality of reactants, such as enzymes, in the vessels so that each vessel contains one reactant; contacting the compounds to each of the vessels in a predetermined sequence and for a sufficient time to convert the compounds to a desired state; and isolating the converted compounds from the array. 14 figs.
NASA Astrophysics Data System (ADS)
Hall, J. A.; Felnagle, E.; Fries, M.; Spearing, S.; Monaco, L.; Steele, A.
2006-12-01
A Modular Assay System for Solar System Exploration (MASSE) is being developed to include sample handling, pre-treatment, separation and analysis of biological target compounds by both DNA and protein microarrays. To better design sensitive and accurate initial upstream sample handling of the MASSE instrument, experiments investigating the sensitivity and potential extraction bias of commercially available DNA extraction kits between classes of environmentally relevant prokaryotes such as gram-negative bacteria ( Escherichia coli), gram-positive bacteria ( Bacillus megatarium), and Archaea ( Haloarcula marismortui) were performed. For extractions of both planktonic cultures and spiked Mars simulated regolith, FTA ® paper demonstrated the highest sensitivity, with detection as low as ˜1×10 1 cells and ˜3.3×10 2 cells, respectively. In addition to the highest sensitivity, custom modified application of FTA ® paper extraction protocol is the simplest in terms of incorporation into MASSE and displayed little bias in sensitivity with respect to prokaryotic cell type. The implementation of FTA paper for environmental microbiology investigations appears to be a viable and effective option potentially negating the need for other pre-concentration steps such as filtration and negating concerns regarding extraction efficiency of cells. In addition to investigations on useful technology for upstream sample handling in MASSE, we have also evaluated the potential for μTAS to be employed in the MASSE instrument by employing proprietary lab-on-a-chip development technology to investigate the potential for microfluidic cell lysis of different prokaryotic cells employing both chemical and biological lysis agents. Real-time bright-field microscopy and quantitative PMT detection indicated that that gram positive, gram negative and archaeal cells were effectively lyzed in a few seconds using the microfluidic chip protocol developed. This included employing a lysis buffer with components including lysozyme, Protease, Proteinase K, Tween-20 and TritonX-100. The effectiveness of antibiotics and other chemical lysis agents were also screened and demonstrated partial effectiveness on all three cell types. This work demonstrates a step wise approach to evaluating the efficacy and sensitivity of commercial macro-scale technology and state-of-the-art developmental microfluidic technology under consideration for incorporation into the remotely operated MASSE instrument currently under development at the Carnegie Institution of Washington.
Frankic, T; Salobir, K; Salobir, J
2009-12-01
The objective of the study was to evaluate the protective effect of Calendula officinalis propylene glycol extracts against oxidative DNA damage and lipid peroxidation induced by high polyunsaturated fatty acid (PUFA) intake in young growing pigs. Forty young growing pigs were assigned to five treatment groups: control; oil (linseed oil supplementation); C. officinalis 1 and 2 groups (linseed oil plus 3 ml/day of C. officinalis propylene glycol extracts); and vitamin E group (linseed oil plus 100 mg/kg of vitamin E). Lymphocyte DNA fragmentation and 24-h urinary 8-hydroxy-2'-deoxyguanosine (8-OHdG) excretion were measured to determine DNA damage. Lipid peroxidation was studied by analysing plasma and urine malondialdehyde (MDA), and urine isoprostane concentrations (iPF2α-VI), total antioxidant status of plasma and glutathione peroxidase (GPx) assays. C. officinalis 1 (extract from petals) effectively protected DNA from oxidative damage. It indicated a numerical trend towards the reduction of plasma MDA and urinary iPF2α-VI excretion. Its effect was comparable with that of vitamin E. C. officinalis 2 (extract from flower tops) showed less antioxidant potential than the extract from petals. We can conclude that the amount of C. officinalis extracts proposed for internal use by traditional medicine protects the organism against DNA damage induced by high PUFA intake.
[Comparison of MPure-12 Automatic Nucleic Acid Purification and Chelex-100 Method].
Shen, X; Li, M; Wang, Y L; Chen, Y L; Lin, Y; Zhao, Z M; Que, T Z
2017-04-01
To explore the forensic application value of MPure-12 automatic nucleic acid purification (MPure-12 Method) for DNA extraction by extracting and typing DNA from bloodstains and various kinds of biological samples with different DNA contents. Nine types of biological samples, such as bloodstains, semen stains, and saliva were collected. DNA were extracted using MPure-12 method and Chelex-100 method, followed by PCR amplification and electrophoresis for obtaining STR-profiles. The samples such as hair root, chutty, butt, muscular tissue, saliva stain, bloodstain and semen stain were typed successfully by MPure-12 method. Partial alleles were lacked in the samples of saliva, and the genotyping of contact swabs was unsatisfactory. Additional, all of the bloodstains (20 μL, 15 μL, 10 μL, 5 μL, 1 μL) showed good typing results using Chelex-100 method. But the loss of alleles occurred in 1 μL blood volume by MPure-12 method. MPure-12 method is suitable for DNA extraction of a certain concentration blood samples.Chelex-100 method may be better for the extraction of trace blood samples.This instrument used in nucleic acid extraction has the advantages of simplicity of operator, rapidity, high extraction efficiency, high rate of reportable STR-profiles and lower man-made pollution. Copyright© by the Editorial Department of Journal of Forensic Medicine
Mikaeili, F; Kia, E B; Sharbatkhori, M; Sharifdini, M; Jalalizand, N; Heidari, Z; Zarei, Z; Stensvold, C R; Mirhendi, H
2013-06-01
Six simple methods for extraction of ribosomal and mitochondrial DNA from Toxocara canis, Toxocara cati and Toxascaris leonina were compared by evaluating the presence, appearance and intensity of PCR products visualized on agarose gels and amplified from DNA extracted by each of the methods. For each species, two isolates were obtained from the intestines of their respective hosts: T. canis and T. leonina from dogs, and T. cati from cats. For all isolates, total DNA was extracted using six different methods, including grinding, boiling, crushing, beating, freeze-thawing and the use of a commercial kit. To evaluate the efficacy of each method, the internal transcribed spacer (ITS) region and the cytochrome c oxidase subunit 1 (cox1) gene were chosen as representative markers for ribosomal and mitochondrial DNA, respectively. Among the six DNA extraction methods, the beating method was the most cost effective for all three species, followed by the commercial kit. Both methods produced high intensity bands on agarose gels and were characterized by no or minimal smear formation, depending on gene target; however, beating was less expensive. We therefore recommend the beating method for studies where costs need to be kept at low levels. Copyright © 2013 Elsevier Inc. All rights reserved.
The Effect of a Grape Seed Extract on Radiation-Induced DNA Damage in Human Lymphocytes
NASA Astrophysics Data System (ADS)
Dicu, Tiberius; Postescu, Ion D.; Foriş, Vasile; Brie, Ioana; Fischer-Fodor, Eva; Cernea, Valentin; Moldovan, Mircea; Cosma, Constantin
2009-05-01
Plant-derived antioxidants due to their phenolic compounds content are reported as potential candidates for reducing the levels of oxidative stress in living organisms. Grape seed extracts are very potent antioxidants and exhibit numerous interesting pharmacologic activities. Hydroethanolic (50/50, v/v) standardized extract was obtained from red grape seed (Vitis vinifera, variety Burgund Mare—BM). The total polyphenols content was evaluated by Folin-Ciocalteu procedure and expressed as μEq Gallic Acid/ml. The aim of this study was to evaluate the potential antioxidant effects of different concentrations of BM extract against 60Co γ-rays induced DNA damage in human lymphocytes. Samples of human lymphocytes were incubated with BM extract (12.5, 25.0 and 37.5 μEq GA/ml, respectively) administered at 30 minutes before in vitro irradiation with γ-rays (2 Gy). The DNA damage and repair in lymphocytes were evaluated using alkaline comet assay. Using the lesion score, the radiation-induced DNA damage was found to be significantly different (p<0.05) from control, both in the absence and presence of BM extract (except the lymphocytes treated with 37.5 μEq GA/ml BM extract). DNA repair analyzed by incubating the irradiated cells at 37° C and 5% CO2 atmosphere for 2 h, indicated a significant difference (p<0.05) in the lymphocytes group treated with 25.0 μEq GA/ml BM extract, immediately and two hours after irradiation. These results suggest radioprotective effects after treatment with BM extract in human lymphocytes.
Crouse, Cecelia A; Yeung, Stephanie; Greenspoon, Susan; McGuckian, Amy; Sikorsky, Julie; Ban, Jeff; Mathies, Richard
2005-08-01
To present validation studies performed for the implementation of existing and new technologies to increase the efficiency in the forensic DNA Section of the Palm Beach County Sheriff's Office (PBSO) Crime Laboratory. Using federally funded grants, internal support, and an external Process Mapping Team, the PBSO collaborated with forensic vendors, universities, and other forensic laboratories to enhance DNA testing procedures, including validation of the DNA IQ magnetic bead extraction system, robotic DNA extraction using the BioMek2000, the ABI7000 Sequence Detection System, and is currently evaluating a micro Capillary Array Electrophoresis device. The PBSO successfully validated and implemented both manual and automated Promega DNA IQ magnetic bead extractions system, which have increased DNA profile results from samples with low DNA template concentrations. The Beckman BioMek2000 DNA robotic workstation has been validated for blood, tissue, bone, hair, epithelial cells (touch evidence), and mixed stains such as semen. There has been a dramatic increase in the number of samples tested per case since implementation of the robotic extraction protocols. The validation of the ABI7000 real-time quantitative polymerase chain reaction (qPCR) technology and the single multiplex short tandem repeat (STR) PowerPlex16 BIO amplification system has provided both a time and a financial benefit. In addition, the qPCR system allows more accurate DNA concentration data and the PowerPlex 16 BIO multiplex generates DNA profiles data in half the time when compared to PowerPlex1.1 and PowerPlex2.1 STR systems. The PBSO's future efficiency requirements are being addressed through collaboration with the University of California at Berkeley and the Virginia Division of Forensic Science to validate microcapillary array electrophoresis instrumentation. Initial data demonstrated the electrophoresis of 96 samples in less than twenty minutes. The PBSO demonstrated, through the validation of more efficient extraction and quantification technology, an increase in the number of evidence samples tested using robotic/DNA IQ magnetic bead DNA extraction, a decrease in the number of negative samples amplified due to qPCR and implementation of a single multiplex amplification system. In addition, initial studies show the microcapillary array electrophoresis device (microCAE) evaluation results provide greater sensitivity and faster STR analysis output than current platforms.
Abras, Alba; Ballart, Cristina; Llovet, Teresa; Roig, Carme; Gutiérrez, Cristina; Tebar, Silvia; Berenguer, Pere; Pinazo, María-Jesús; Posada, Elizabeth; Gascón, Joaquim; Schijman, Alejandro G; Gállego, Montserrat; Muñoz, Carmen
2018-01-01
Polymerase chain reaction (PCR) has become a useful tool for the diagnosis of Trypanosoma cruzi infection. The development of automated DNA extraction methodologies and PCR systems is an important step toward the standardization of protocols in routine diagnosis. To date, there are only two commercially available Real-Time PCR assays for the routine laboratory detection of T. cruzi DNA in clinical samples: TCRUZIDNA.CE (Diagnostic Bioprobes Srl) and RealCycler CHAG (Progenie Molecular). Our aim was to evaluate the RealCycler CHAG assay taking into account the whole process. We assessed the usefulness of an automated DNA extraction system based on magnetic particles (EZ1 Virus Mini Kit v2.0, Qiagen) combined with a commercially available Real-Time PCR assay targeting satellite DNA (SatDNA) of T. cruzi (RealCycler CHAG), a methodology used for routine diagnosis in our hospital. It was compared with a well-known strategy combining a commercial DNA isolation kit based on silica columns (High Pure PCR Template Preparation Kit, Roche Diagnostics) with an in-house Real-Time PCR targeting SatDNA. The results of the two methodologies were in almost perfect agreement, indicating they can be used interchangeably. However, when variations in protocol factors were applied (sample treatment, extraction method and Real-Time PCR), the results were less convincing. A comprehensive fine-tuning of the whole procedure is the key to successful results. Guanidine EDTA-blood (GEB) samples are not suitable for DNA extraction based on magnetic particles due to inhibition, at least when samples are not processed immediately. This is the first study to evaluate the RealCycler CHAG assay taking into account the overall process, including three variables (sample treatment, extraction method and Real-Time PCR). Our findings may contribute to the harmonization of protocols between laboratories and to a wider application of Real-Time PCR in molecular diagnostic laboratories associated with health centers.
Nucleic acid isolation process
Longmire, Jonathan L.; Lewis, Annette K.; Hildebrand, Carl E.
1990-01-01
A method is provided for isolating DNA from eukaryotic cell and flow sorted chromosomes. When DNA is removed from chromosome and cell structure, detergent and proteolytic digestion products remain with the DNA. These products can be removed with organic extraction, but the process steps associated with organic extraction reduce the size of DNA fragments available for experimental use. The present process removes the waste products by dialyzing a solution containing the DNA against a solution containing polyethylene glycol (PEG). The waste products dialyze into the PEG leaving isolated DNA. The remaining DNA has been prepared with fragments containing more than 160 kb. The isolated DNA has been used in conventional protocols without affect on the protocol.
Malecka, Kamila; Michalczuk, Lech; Radecka, Hanna; Radecki, Jerzy
2014-10-09
A DNA biosensor for detection of specific oligonucleotides sequences of Plum Pox Virus (PPV) in plant extracts and buffer is proposed. The working principles of a genosensor are based on the ion-channel mechanism. The NH2-ssDNA probe was deposited onto a glassy carbon electrode surface to form an amide bond between the carboxyl group of oxidized electrode surface and amino group from ssDNA probe. The analytical signals generated as a result of hybridization were registered in Osteryoung square wave voltammetry in the presence of [Fe(CN)6]3-/4- as a redox marker. The 22-mer and 42-mer complementary ssDNA sequences derived from PPV and DNA samples from plants infected with PPV were used as targets. Similar detection limits of 2.4 pM (31.0 pg/mL) and 2.3 pM (29.5 pg/mL) in the concentration range 1-8 pM were observed in the presence of the 22-mer ssDNA and 42-mer complementary ssDNA sequences of PPV, respectively. The genosensor was capable of discriminating between samples consisting of extracts from healthy plants and leaf extracts from infected plants in the concentration range 10-50 pg/mL. The detection limit was 12.8 pg/mL. The genosensor displayed good selectivity and sensitivity. The 20-mer partially complementary DNA sequences with four complementary bases and DNA samples from healthy plants used as negative controls generated low signal.
DNA and bone structure preservation in medieval human skeletons.
Coulson-Thomas, Yvette M; Norton, Andrew L; Coulson-Thomas, Vivien J; Florencio-Silva, Rinaldo; Ali, Nadir; Elmrghni, Samir; Gil, Cristiane D; Sasso, Gisela R S; Dixon, Ronald A; Nader, Helena B
2015-06-01
Morphological and ultrastructural data from archaeological human bones are scarce, particularly data that have been correlated with information on the preservation of molecules such as DNA. Here we examine the bone structure of macroscopically well-preserved medieval human skeletons by transmission electron microscopy and immunohistochemistry, and the quantity and quality of DNA extracted from these skeletons. DNA technology has been increasingly used for analyzing physical evidence in archaeological forensics; however, the isolation of ancient DNA is difficult since it is highly degraded, extraction yields are low and the co-extraction of PCR inhibitors is a problem. We adapted and optimised a method that is frequently used for isolating DNA from modern samples, Chelex(®) 100 (Bio-Rad) extraction, for isolating DNA from archaeological human bones and teeth. The isolated DNA was analysed by real-time PCR using primers targeting the sex determining region on the Y chromosome (SRY) and STR typing using the AmpFlSTR(®) Identifiler PCR Amplification kit. Our results clearly show the preservation of bone matrix in medieval bones and the presence of intact osteocytes with well preserved encapsulated nuclei. In addition, we show how effective Chelex(®) 100 is for isolating ancient DNA from archaeological bones and teeth. This optimised method is suitable for STR typing using kits aimed specifically at degraded and difficult DNA templates since amplicons of up to 250bp were successfully amplified. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
2010-01-01
Research in plant molecular biology involves DNA purification on a daily basis. Although different commercial kits enable convenient extraction of high-quality DNA from E. coli cells, PCR and agarose gel samples as well as plant tissues, each kit is designed for a particular type of DNA extraction work, and the cost of purchasing these kits over a long run can be considerable. Furthermore, a simple method for the isolation of binary plasmid from Agrobacterium tumefaciens cells with satisfactory yield is lacking. Here we describe an easy protocol using homemade silicon dioxide matrix and seven simple solutions for DNA extraction from E. coli and A. tumefaciens cells, PCR and restriction digests, agarose gel slices, and plant tissues. Compared with the commercial kits, this protocol allows rapid DNA purification from diverse sources with comparable yield and purity at negligible cost. Following this protocol, we have demonstrated: (1) DNA fragments as small as a MYC-epitope tag coding sequence can be successfully recovered from an agarose gel slice; (2) Miniprep DNA from E. coli can be eluted with as little as 5 μl water, leading to high DNA concentrations (>1 μg/μl) for efficient biolistic bombardment of Arabidopsis seedlings, polyethylene glycol (PEG)-mediated Arabidopsis protoplast transfection and maize protoplast electroporation; (3) Binary plasmid DNA prepared from A. tumefaciens is suitable for verification by restriction analysis without the need for large scale propagation; (4) High-quality genomic DNA is readily isolated from several plant species including Arabidopsis, tobacco and maize. Thus, the silicon dioxide matrix-based DNA purification protocol offers an easy, efficient and economical way to extract DNA for various purposes in plant research. PMID:20180960
Al-Griw, Huda H.; Zraba, Zena A.; Al-Muntaser, Salsabiel K.; Draid, Marwan M.; Zaidi, Aisha M.; Tabagh, Refaat M.; Al-Griw, Mohamed A.
2017-01-01
Efficient extraction of genomic DNA (gDNA) from biological materials found in harsh environments is the first step for successful forensic DNA profiling. This study aimed to evaluate two methods for DNA recovery from animal tissues (livers, muscles), focusing on the best storage temperature for DNA yield in term of quality, quantity, and integrity for use in several downstream molecular techniques. Six male Swiss albino mice were sacrificed, liver and muscle tissues (n=32) were then harvested and stored for one week in different temperatures, -20°C, 4°C, 25°C and 40°C. The conditioned animal tissues were used for DNA extraction by Chelex-100 method or NucleoSpinC Blood and Tissue kit. The extracted gDNA was visualized on 1.5% agarose gel electrophoresis to determine the quality of gDNA and analysed spectrophotometrically to determine the DNA concentration and the purity. Both methods, Chelex-100 and NucleoSpin Blood and Tissue kit found to be appropriate for yielding high quantity of gDNA, with the Chelex 100 method yielding a greater quantity (P < 0.045) than the kit. At -20°C, 4°C, and 25°C temperatures, the concentration of DNA yield was numerically lower than at 40°C. The NucleoSpinC Blood and Tissue kit produced a higher (P=0.031) purity product than the Chelex-100 method, particularly for muscle tissues. The Chelex-100 method is cheap, fast, effective, and is a crucial tool for yielding DNA from animal tissues (livers, muscles) exposed to harsh environment with little limitations. PMID:28884076
Two simple techniques for the safe Sarcoptes collection and individual mite DNA extraction.
Soglia, Dominga; Rambozzi, Luisa; Maione, Sandra; Spalenza, Veronica; Sartore, Stefano; Alasaad, Samer; Sacchi, Paola; Rossi, Luca
2009-10-01
Availability of mites is a recognized limiting factor of biological and genetic investigations of the genus Sarcoptes. Current methods of deoxyribonucleic acid (DNA) extraction from individual mites also need substantial improvement in efficiency and operator friendliness. We have first developed a technique for efficient and safe extraction of living mites from scabietic skin samples (crusts or deep skin scrapings). Its core device is a large plastic syringe connected with a 1.5-ml Eppendorf tube. The source material is introduced in the syringe and the device in a shoe box with the tip half of the tube emerging. Mites migrate towards a heat source during a minimum of 36 h. Then, the tube is detached and the mites utilized without risks for the operators. A second technique allows operator-friendly manipulation of individual mites for DNA extraction. Fixed mites are isolated by adhesion to a small strip of polyvinyl chloride (PVC) adhesive tape operated with tweezers. Then, mite and strip are plunged in the lyses buffer and the sample twice submitted to thermal shock for disruption of the chitinous exoskeleton. Data show that the tape does not interfere with successive DNA extraction with a commercial kit. The corresponding protocol, that we briefly name "PVC adhesive tape + thermal shock + kit DNA extraction," compares favorably with the available ones.
Rubinson, Emily H.; Metz, Audrey H.; O'Quin, Jami; Eichman, Brandt F.
2013-01-01
Summary DNA glycosylases safeguard the genome by locating and excising chemically modified bases from DNA. AlkD is a recently discovered bacterial DNA glycosylase that removes positively charged methylpurines from DNA, and was predicted to adopt a protein fold distinct from other DNA repair proteins. The crystal structure of Bacillus cereus AlkD presented here shows that the protein is composed exclusively of helical HEAT-like repeats, which form a solenoid perfectly shaped to accommodate a DNA duplex on the concave surface. Structural analysis of the variant HEAT repeats in AlkD provides a rationale for how this protein scaffolding motif has been modified to bind DNA. We report 7mG excision and DNA binding activities of AlkD mutants, along with a comparison of alkylpurine DNA glycosylase structures. Together, these data provide important insight into the requirements for alkylation repair within DNA and suggest that AlkD utilizes a novel strategy to manipulate DNA in its search for alkylpurine bases. PMID:18585735
Ankri, S; Reyes, O; Leblon, G
1996-07-01
Differences of up to 33 000-fold in electro-transformability of highly DNA restrictive corynebacteria are observed in the DNA of a shuttle plasmid extracted from Escherichia coli hosts propagated in different nutritional conditions. Growth of the host in minimal medium increases plasmid transformability, whereas growth on rich media decreases it. In the E. coli DH5 alpha host, the starvation-dependent increase DNA transformability is reverted by supplementing with methionine, an obligate 5-adenosyl-methionine (SAM) precursor. This suggests that an E. coli nutritionally modulated SAM-dependent DNA-methyltransferase may be involved in this phenomenon.
Souza, Deise Elizabeth; Pereira, Marcia Oliveira; Bernardo, Luciana Camargo; Carmo, Fernanda Santos; Fonseca, Adenilson de Souza da; Bernardo-Filho, Mario
2011-01-01
Cassia angustifolia Vahl (senna) is a natural product that contains sennosides, which are active components that affect the intestinal tract and induce diarrhea. Authors have shown that senna produces DNA (deoxyribonucleic acid) lesions in Escherichia coli cultures and can act as an antifungal agent. Natural drugs can alter the labeling of blood constituents with technetium-⁹⁹m (⁹⁹mTc) and can affect the biodistribution of radiopharmaceuticals. In this work, we have evaluated the influence of a senna extract on the radiolabeling of blood constituents and on the biodistribution of the radiopharmaceutical sodium pertechnetate (Na⁹⁹mTcO₄)in Wistar rats. Twelve animals were treated with senna extract for 7 days. Blood samples were withdrawn from the animals and the radiolabeling procedure was carried out. The senna extract did not modify the radiolabeling of the blood constituents. A biodistributional assay was performed by administering Na⁹⁹mTcO₄ and determining its activity in different organs and in blood. The senna extract altered the biodistribution of Na⁹⁹mTcO₄ in the thyroid, liver, pancreas, lungs and blood. These results are associated with properties of the chemical substances present in the aqueous senna extract. Although these assays were performed in animals, our findings suggest that caution should be exercised when nuclear medicine examinations using Na⁹⁹mTcO₄ are conducted in patients who are using senna extract.
Souza, Deise Elizabeth; Pereira, Marcia Oliveira; Bernardo, Luciana Camargo; Carmo, Fernanda Santos; de Souza da Fonseca, Adenilson; Bernardo-Filho, Mario
2011-01-01
ABSTRACT Cassia angustifolia Vahl (senna) is a natural product that contains sennosides, which are active components that affect the intestinal tract and induce diarrhea. Authors have shown that senna produces DNA (deoxyribonucleic acid) lesions in Escherichia coli cultures and can act as an antifungal agent. Natural drugs can alter the labeling of blood constituents with technetium-99m (99mTc) and can affect the biodistribution of radiopharmaceuticals. In this work, we have evaluated the influence of a senna extract on the radiolabeling of blood constituents and on the biodistribution of the radiopharmaceutical sodium pertechnetate (Na99mTcO4) in Wistar rats. Twelve animals were treated with senna extract for 7 days. Blood samples were withdrawn from the animals and the radiolabeling procedure was carried out. The senna extract did not modify the radiolabeling of the blood constituents. A biodistributional assay was performed by administering Na99mTcO4 and determining its activity in different organs and in blood. The senna extract altered the biodistribution of Na99mTcO4 in the thyroid, liver, pancreas, lungs and blood. These results are associated with properties of the chemical substances present in the aqueous senna extract. Although these assays were performed in animals, our findings suggest that caution should be exercised when nuclear medicine examinations using Na99mTcO4 are conducted in patients who are using senna extract. PMID:21552677
Platinated DNA oligonucleotides: new probes forming ultrastable conjugates with graphene oxide
NASA Astrophysics Data System (ADS)
Wang, Feng; Liu, Juewen
2014-05-01
Metal containing polymers have expanded the property of polymers by involving covalently associated metal complexes. DNA is a special block copolymer. While metal ions are known to influence DNA, little is explored on its polymer property when strong metal complexes are associated. In this work, we study cisplatin modified DNA as a new polymer and probe. Out of the complexes formed between cisplatin-A15, HAuCl4-A15, Hg2+-T15 and Ag+-C15, only the cisplatin adduct is stable under the denaturing gel electrophoresis condition. Each Pt-nucleobase bond gives a positive charge and thus makes DNA a zwitterionic polymer. This allows ultrafast adsorption of DNA by graphene oxide (GO) and the adsorbed complex is highly stable. Non-specific DNA, protein, surfactants and thiolated compounds cannot displace platinated DNA from GO, while non-modified DNA is easily displaced in most cases. The stable GO/DNA conjugate is further tested for surface hybridization. This is the first demonstration of using metallated DNA as a polymeric material for interfacing with nanoscale materials.Metal containing polymers have expanded the property of polymers by involving covalently associated metal complexes. DNA is a special block copolymer. While metal ions are known to influence DNA, little is explored on its polymer property when strong metal complexes are associated. In this work, we study cisplatin modified DNA as a new polymer and probe. Out of the complexes formed between cisplatin-A15, HAuCl4-A15, Hg2+-T15 and Ag+-C15, only the cisplatin adduct is stable under the denaturing gel electrophoresis condition. Each Pt-nucleobase bond gives a positive charge and thus makes DNA a zwitterionic polymer. This allows ultrafast adsorption of DNA by graphene oxide (GO) and the adsorbed complex is highly stable. Non-specific DNA, protein, surfactants and thiolated compounds cannot displace platinated DNA from GO, while non-modified DNA is easily displaced in most cases. The stable GO/DNA conjugate is further tested for surface hybridization. This is the first demonstration of using metallated DNA as a polymeric material for interfacing with nanoscale materials. Electronic supplementary information (ESI) available: Methods, additional gels, kinetics, mass spectrum. See DOI: 10.1039/c4nr00867g
Gajski, Goran; Garaj-Vrhovac, Vera; Orescanin, Visnja
2008-08-15
To investigate the genotoxic potential of atorvastatin on human lymphocytes in vitro standard comet assay was used in the evaluation of basal DNA damage and to investigate possible oxidative DNA damage produced by reactive oxygen species (ROS) Fpg-modified version of comet assay was also conducted. In addition to these techniques the new criteria for scoring micronucleus test were applied for more complete detection of baseline damage in binuclear lymphocytes exposed to atorvastatin 80 mg/day in different time periods by virtue of measuring the frequency of micronuclei, nucleoplasmic bridges and nuclear buds. All parameters obtained with the standard comet assay and Fpg-modified comet assay were significantly higher in the treated than in control lymphocytes. The Fpg-modified comet assay showed a significantly greater tail length, tail intensity, and tail moment in all treated lymphocytes than did the standard comet assay, which suggests that oxidative stress is likely to be responsible for DNA damage. DNA damage detected by the standard comet assay indicates that some other mechanism is also involved. In addition to the comet assay, a total number of micronuclei, nucleoplasmic bridges and nuclear buds were significantly higher in the exposed than in controlled lymphocytes. Regression analyses showed a positive correlation between the results obtained by the comet (Fpg-modified and standard) and micronucleus assay. Overall, the study demonstrated that atorvastatin in its highest dose is capable of producing damage on the level of DNA molecule and cell.
Primo, Emiliano N; Oviedo, M Belén; Sánchez, Cristián G; Rubianes, María D; Rivas, Gustavo A
2014-10-01
We report the quantification of promethazine (PMZ) using glassy carbon electrodes (GCE) modified with bamboo-like multi-walled carbon nanotubes (bCNT) dispersed in double stranded calf-thymus DNA (dsDNA) (GCE/bCNT-dsDNA). Cyclic voltammetry measurements demonstrated that PMZ presents a thin film-confined redox behavior at GCE/bCNT-dsDNA, opposite to the irreversibly-adsorbed behavior obtained at GCE modified with bCNT dispersed in ethanol (GCE/bCNT). Differential pulse voltammetry-adsorptive stripping with medium exchange experiments performed with GCE/bCNT-dsDNA and GCE modified with bCNTs dispersed in single-stranded calf-thymus DNA (ssDNA) confirmed that the interaction between PMZ and bCNT-dsDNA is mainly hydrophobic. These differences are due to the intercalation of PMZ within the dsDNA that supports the bCNTs, as evidenced from the bathochromic displacement of UV-Vis absorption spectra of PMZ and quantum dynamics calculations at DFTB level. The efficient accumulation of PMZ at GCE/bCNT-dsDNA made possible its sensitive quantification at nanomolar levels (sensitivity: (3.50±0.05)×10(8) μA·cm(-2)·M(-1) and detection limit: 23 nM). The biosensor was successfully used for the determination of PMZ in a pharmaceutical product with excellent correlation. Copyright © 2014 Elsevier B.V. All rights reserved.
Qiu, Yanyan; Qu, Xiangjin; Dong, Jing; Ai, Shiyun; Han, Ruixia
2011-06-15
A new electrochemical biosensor for directly detecting DNA damage induced by acrylamide (AA) and its metabolite was presented in this work. The graphene-ionic liquid-Nafion modified pyrolytic graphite electrode (PGE) was prepared, and then horseradish peroxidase (HRP) and natural double-stranded DNA were alternately assembled on the modified electrode by the layer-by-layer method. The PGE/graphene-ionic liquid-Nafion and the construction of the (HRP/DNA)(n) film were characterized by electrochemical impedance spectroscopy. With the guanine signal in DNA as an indicator, the damage of DNA was detected by differential pulse voltammetry after PGE/graphene-ionic liquid-Nafion/(HRP/DNA)(n) was incubated in AA solution or AA+H(2)O(2) solution at 37°C. This method provides a new model to mimic and directly detect DNA damage induced by chemical pollutants and their metabolites in vitro. The results indicated that, in the presence of H(2)O(2), HRP was activated and catalyzed the transformation of AA to glycidamide, which could form DNA adducts and induce more serious damage of DNA than AA. In order to further verify these results, UV-vis spectrophotometry was also used to investigate DNA damage induced by AA and its metabolites in solution and the similar results were obtained. Copyright © 2011 Elsevier B.V. All rights reserved.
Acharya, Kamal R.; Dhand, Navneet K.; Whittington, Richard J.; Plain, Karren M.
2017-01-01
Molecular tests such as polymerase chain reaction (PCR) are increasingly being applied for the diagnosis of Johne’s disease, a chronic intestinal infection of ruminants caused by Mycobacterium avium subspecies paratuberculosis (MAP). Feces, as the primary test sample, presents challenges in terms of effective DNA isolation, with potential for PCR inhibition and ultimately for reduced analytical and diagnostic sensitivity. However, limited evidence is available regarding the magnitude and diagnostic implications of PCR inhibition for the detection of MAP in feces. This study aimed to investigate the presence and diagnostic implications of PCR inhibition in a quantitative PCR assay for MAP (High-throughput Johne’s test) to investigate the characteristics of samples prone to inhibition and to identify measures that can be taken to overcome this. In a study of fecal samples derived from a high prevalence, endemically infected cattle herd, 19.94% of fecal DNA extracts showed some evidence of inhibition. Relief of inhibition by a five-fold dilution of the DNA extract led to an average increase in quantification of DNA by 3.3-fold that consequently increased test sensitivity of the qPCR from 55 to 80% compared to fecal culture. DNA extracts with higher DNA and protein content had 19.33 and 10.94 times higher odds of showing inhibition, respectively. The results suggest that the current test protocol is sensitive for herd level diagnosis of Johne’s disease but that test sensitivity and individual level diagnosis could be enhanced by relief of PCR inhibition, achieved by five-fold dilution of the DNA extract. Furthermore, qualitative and quantitative parameters derived from absorbance measures of DNA extracts could be useful for prediction of inhibitory fecal samples. PMID:28210245
Marjanović, Damir; Hadžić Metjahić, Negra; Čakar, Jasmina; Džehverović, Mirela; Dogan, Serkan; Ferić, Elma; Džijan, Snježana; Škaro, Vedrana; Projić, Petar; Madžar, Tomislav; Rod, Eduard; Primorac, Dragan
2015-01-01
Aim To present the results obtained in the identification of human remains from World War II found in two mass graves in Ljubuški, Bosnia and Herzegovina. Methods Samples from 10 skeletal remains were collected. Teeth and femoral fragments were collected from 9 skeletons and only a femoral fragment from 1 skeleton. DNA was isolated from bone and teeth samples using an optimized phenol/chloroform DNA extraction procedure. All samples required a pre-extraction decalcification with EDTA and additional post-extraction DNA purification using filter columns. Additionally, DNA from 12 reference samples (buccal swabs from potential living relatives) was extracted using the Qiagen DNA extraction method. QuantifilerTM Human DNA Quantification Kit was used for DNA quantification. PowerPlex ESI kit was used to simultaneously amplify 15 autosomal short tandem repeat (STR) loci, and PowerPlex Y23 was used to amplify 23 Y chromosomal STR loci. Matching probabilities were estimated using a standard statistical approach. Results A total of 10 samples were processed, 9 teeth and 1 femoral fragment. Nine of 10 samples were profiled using autosomal STR loci, which resulted in useful DNA profiles for 9 skeletal remains. A comparison of established victims' profiles against a reference sample database yielded 6 positive identifications. Conclusion DNA analysis may efficiently contribute to the identification of remains even seven decades after the end of the World War II. The significant percentage of positively identified remains (60%), even when the number of the examined possible living relatives was relatively small (only 12), proved the importance of cooperation with the members of the local community, who helped to identify the closest missing persons’ relatives and collect referent samples from them. PMID:26088850
Marjanović, Damir; Hadžić Metjahić, Negra; Čakar, Jasmina; Džehverović, Mirela; Dogan, Serkan; Ferić, Elma; Džijan, Snježana; Škaro, Vedrana; Projić, Petar; Madžar, Tomislav; Rod, Eduard; Primorac, Dragan
2015-06-01
To present the results obtained in the identification of human remains from World War II found in two mass graves in Ljubuški, Bosnia and Herzegovina. Samples from 10 skeletal remains were collected. Teeth and femoral fragments were collected from 9 skeletons and only a femoral fragment from 1 skeleton. DNA was isolated from bone and teeth samples using an optimized phenol/chloroform DNA extraction procedure. All samples required a pre-extraction decalcification with EDTA and additional post-extraction DNA purification using filter columns. Additionally, DNA from 12 reference samples (buccal swabs from potential living relatives) was extracted using the Qiagen DNA extraction method. QuantifilerTM Human DNA Quantification Kit was used for DNA quantification. PowerPlex ESI kit was used to simultaneously amplify 15 autosomal short tandem repeat (STR) loci, and PowerPlex Y23 was used to amplify 23 Y chromosomal STR loci. Matching probabilities were estimated using a standard statistical approach. A total of 10 samples were processed, 9 teeth and 1 femoral fragment. Nine of 10 samples were profiled using autosomal STR loci, which resulted in useful DNA profiles for 9 skeletal remains. A comparison of established victims' profiles against a reference sample database yielded 6 positive identifications. DNA analysis may efficiently contribute to the identification of remains even seven decades after the end of the World War II. The significant percentage of positively identified remains (60%), even when the number of the examined possible living relatives was relatively small (only 12), proved the importance of cooperation with the members of the local community, who helped to identify the closest missing persons' relatives and collect referent samples from them.
Wells, Beth; Shaw, Hannah; Innocent, Giles; Guido, Stefano; Hotchkiss, Emily; Parigi, Maria; Opsteegh, Marieke; Green, James; Gillespie, Simon; Innes, Elisabeth A; Katzer, Frank
2015-12-15
Waterborne transmission of Toxoplasma gondii is a potential public health risk and there are currently no agreed optimised methods for the recovery, processing and detection of T. gondii oocysts in water samples. In this study modified methods of T. gondii oocyst recovery and DNA extraction were applied to 1427 samples collected from 147 public water supplies throughout Scotland. T. gondii DNA was detected, using real time PCR (qPCR) targeting the 529bp repeat element, in 8.79% of interpretable samples (124 out of 1411 samples). The samples which were positive for T. gondii DNA originated from a third of the sampled water sources. The samples which were positive by qPCR and some of the negative samples were reanalysed using ITS1 nested PCR (nPCR) and results compared. The 529bp qPCR was the more sensitive technique and a full analysis of assay performance, by Bayesian analysis using a Markov Chain Monte Carlo method, was completed which demonstrated the efficacy of this method for the detection of T. gondii in water samples. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
Nielsen, E E; Morgan, J A T; Maher, S L; Edson, J; Gauthier, M; Pepperell, J; Holmes, B J; Bennett, M B; Ovenden, J R
2017-05-01
Archived specimens are highly valuable sources of DNA for retrospective genetic/genomic analysis. However, often limited effort has been made to evaluate and optimize extraction methods, which may be crucial for downstream applications. Here, we assessed and optimized the usefulness of abundant archived skeletal material from sharks as a source of DNA for temporal genomic studies. Six different methods for DNA extraction, encompassing two different commercial kits and three different protocols, were applied to material, so-called bio-swarf, from contemporary and archived jaws and vertebrae of tiger sharks (Galeocerdo cuvier). Protocols were compared for DNA yield and quality using a qPCR approach. For jaw swarf, all methods provided relatively high DNA yield and quality, while large differences in yield between protocols were observed for vertebrae. Similar results were obtained from samples of white shark (Carcharodon carcharias). Application of the optimized methods to 38 museum and private angler trophy specimens dating back to 1912 yielded sufficient DNA for downstream genomic analysis for 68% of the samples. No clear relationships between age of samples, DNA quality and quantity were observed, likely reflecting different preparation and storage methods for the trophies. Trial sequencing of DNA capture genomic libraries using 20 000 baits revealed that a significant proportion of captured sequences were derived from tiger sharks. This study demonstrates that archived shark jaws and vertebrae are potential high-yield sources of DNA for genomic-scale analysis. It also highlights that even for similar tissue types, a careful evaluation of extraction protocols can vastly improve DNA yield. © 2016 John Wiley & Sons Ltd.
Stangegaard, Michael; Frøslev, Tobias G; Frank-Hansen, Rune; Hansen, Anders J; Morling, Niels
2011-04-01
We have implemented and validated automated protocols for DNA extraction and PCR setup using a Tecan Freedom EVO liquid handler mounted with the Te-MagS magnetic separation device (Tecan, Männedorf, Switzerland). The protocols were validated for accredited forensic genetic work according to ISO 17025 using the Qiagen MagAttract DNA Mini M48 kit (Qiagen GmbH, Hilden, Germany) from fresh whole blood and blood from deceased individuals. The workflow was simplified by returning the DNA extracts to the original tubes minimizing the risk of misplacing samples. The tubes that originally contained the samples were washed with MilliQ water before the return of the DNA extracts. The PCR was setup in 96-well microtiter plates. The methods were validated for the kits: AmpFℓSTR Identifiler, SGM Plus and Yfiler (Applied Biosystems, Foster City, CA), GenePrint FFFL and PowerPlex Y (Promega, Madison, WI). The automated protocols allowed for extraction and addition of PCR master mix of 96 samples within 3.5h. In conclusion, we demonstrated that (1) DNA extraction with magnetic beads and (2) PCR setup for accredited, forensic genetic short tandem repeat typing can be implemented on a simple automated liquid handler leading to the reduction of manual work, and increased quality and throughput. Copyright © 2011 Society for Laboratory Automation and Screening. Published by Elsevier Inc. All rights reserved.