Sample records for modified electrode displayed

  1. An electrochemically-driven dual-mode display device with both reflective and emissive modes using poly(p-phenylenevinylene) derivatives

    NASA Astrophysics Data System (ADS)

    Tsuneyasu, Shota; Jin, Lu; Nakamura, Kazuki; Kobayashi, Norihisa

    2016-04-01

    We demonstrate a novel electrochemical dual-mode displaying (DMD) device, which enables control of both coloration and light emission using an electrochemical reaction. The coloration control of the DMD device was based on an electrochromic (EC) reaction, whereas the light emission of the device was caused by an electrochemiluminescence (ECL) mechanism. This novel DMD device consisted of a pair of facing conductive polymer-modified electrodes: comb-shaped interdigitated Au electrodes modified with poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] (MEH-PPV) layers and poly(2,3-dihydrothieno-1,4-dioxin)-poly(styrene sulfonate) (PEDOT/PSS) film-modified indium tin oxide (ITO) electrodes. When a bias voltage was applied between the PEDOT/PSS film-modified ITO electrode and the comb-shaped electrodes, a color change of the device was observed by the EC reaction of the MEH-PPV and PEDOT/PSS. On the other hand, an emission was obtained when the bias voltage was applied between two comb-shaped interdigitated electrodes. The orange emission was ascribed to the ECL reaction of the MEH-PPV layer, which resulted from the formation of a p-i-n junction in this layer.

  2. A Palladium-Tin Modified Microband Electrode Array for Nitrate Determination

    PubMed Central

    Fu, Yexiang; Bian, Chao; Kuang, Jian; Wang, Jinfen; Tong, Jianhua; Xia, Shanhong

    2015-01-01

    A microband electrode array modified with palladium-tin bimetallic composite has been developed for nitrate determination. The microband electrode array was fabricated by Micro Electro-Mechanical System (MEMS) technique. Palladium and tin were electrodeposited successively on the electrode, forming a double-layer structure. The effect of the Pd-Sn composite was investigated and its enhancement of catalytic activity and lifetime was revealed. The Pd-Sn modified electrode showed good linearity (R2 = 0.998) from 1 mg/L to 20 mg/L for nitrate determination with a sensitivity of 398 μA/(mg∙L−1∙cm2). The electrode exhibited a satisfying analytical performance after 60 days of storage, indicating a long lifetime. Good repeatability was also displayed by the Pd-Sn modified electrodes. The results provided an option for nitrate determination in water. PMID:26389904

  3. Pd0@Polyoxometalate Nanostructures as Green Electrocatalysts: Illustrative Example of Hydrogen Production

    PubMed Central

    Biboum, Rosa N.; Keita, Bineta; Franger, Sylvain; Njiki, Charles P. Nanseu; Zhang, Guangjin; Zhang, Jie; Liu, Tianbo; Mbomekalle, Israel-Martyr; Nadjo, Louis

    2010-01-01

    Green-chemistry type procedures were used to synthesize Pd0 nanostructures encapsulated by a vanadium-substituted Wells-Dawson-type polyoxometalate (Pd0@POM). The cyclic voltammogram run with the Pd0@POM-modified glassy carbon electrode shows well-defined waves, associated with Pd0 nanostructures and the VV/VIV redox couple. The Pd0@POM-modified electrode displayed remarkably reproducible cyclic voltammetry patterns. The hydrogen evolution reaction (HER) was selected as an illustrative example to test the electrocatalytic behavior of the electrode. The kinetic parameters of the HER show the high efficiency of the Pd0@POM-modified electrode. This is the first example of electrochemical characterization of a modified electrode based on a vanado-tungstic POM and Pd0 nanostructures.

  4. Porous carbon derived from aniline-modified fungus for symmetrical supercapacitor electrodes

    DOE PAGES

    Wang, Keliang; Xu, Ming; Wang, Xiaomin; ...

    2017-01-23

    N incorporated carbon materials are proven to be efficient EDLCs electrode materials. In this work, aniline modified fungus served as a raw material, and N-doped porous activated carbon is prepared via an efficient KOH activation method. A porous network with a high specific surface area of 2339 m 2g -1 is displayed by the prepared carbon material, resulting in a high accessible surface area and low ion diffusion resistance which is desirable for EDLC electrode materials. In assembled EDLCs, the N–AC based electrode exhibits a specific capacitance of 218 F g -1 at a current density of 0.1 A gmore » -1. Besides, excellent stability is displayed after 5000 continuous cycles at different current densities ranging from 0.1 to 10 A g -1. Thus, the present work reveals a promising candidate for electrode materials of EDLCs.« less

  5. Improvement of the electrochromic response of a low-temperature sintered dye-modified porous electrode using low-resistivity indium tin oxide nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watanabe, Yuichi, E-mail: yuichi.watanabe@aist.go.jp; Suemori, Kouji; Hoshino, Satoshi

    2016-06-15

    An indium tin oxide (ITO) nanoparticle-based porous electrode sintered at low temperatures was investigated as a transparent electrode for electrochromic displays (ECDs). The electrochromic (EC) response of the dye-modified ITO porous electrode sintered at 150 °C, which exhibited a generally low resistivity, was markedly superior to that of a conventional dye-modified TiO{sub 2} porous electrode sintered at the same temperature. Moreover, the EC characteristics of the dye-modified ITO porous electrode sintered at 150 °C were better than those of the high-temperature (450 °C) sintered conventional dye-modified TiO{sub 2} porous electrode. These improvements in the EC characteristics of the dye-modified ITO porous electrode aremore » attributed to its lower resistivity than that of the TiO{sub 2} porous electrodes. In addition to its sufficiently low resistivity attained under the sintering conditions required for flexible ECD applications, the ITO porous film had superior visible-light transparency and dye adsorption capabilities. We conclude that the process temperature, resistivity, optical transmittance, and dye adsorption capability of the ITO porous electrode make it a promising transparent porous electrode for flexible ECD applications.« less

  6. Electrochemical detection of phenolic estrogenic compounds at clay modified carbon paste electrode

    NASA Astrophysics Data System (ADS)

    Belkamssa, N.; Ouattara, L.; Kawachi, A.; Tsujimura, M.; Isoda, H.; Chtaini, A.; Ksibi, M.

    2015-04-01

    A simple and sensitive electroanalytical method was developed to determine the Endocrine Disrupting chemical 4-tert-octylphenol on clay modified carbon paste electrode (Clay/CPE). The electrochemical response of the proposed electrode was studied by means of cyclic and square wave voltammetry. It has found that the oxidation of 4-tert-octylphenol on the clay/CPE displayed a well-defined oxidation peak. Under these optimal conditions, a linear relation between concentrations of 4-tert-octylphenol current response was obtained over range of 7.26×10-6 to 3.87×10-7 with a detection and quantification limit of 9.2×10-7 M and 3.06×10-6 M, respectively. The correlation coefficient is 0.9963. The modified electrode showed suitable sensitivity, high stability and an accurate detection of 4-tert-octylphenol. The modified electrode also relevant suitable selectivity for various phenolic estrogenic compounds.

  7. A selective and sensitive D-xylose electrochemical biosensor based on xylose dehydrogenase displayed on the surface of bacteria and multi-walled carbon nanotubes modified electrode.

    PubMed

    Li, Liang; Liang, Bo; Shi, Jianguo; Li, Feng; Mascini, Marco; Liu, Aihua

    2012-03-15

    A novel Nafion/bacteria-displaying xylose dehydrogenase (XDH)/multi-walled carbon nanotubes (MWNTs) composite film-modified electrode was fabricated and applied for the sensitive and selective determination of d-xylose (INS 967), where the XDH-displayed bacteria (XDH-bacteria) was prepared using a newly identified ice nucleation protein from Pseudomonas borealis DL7 as an anchoring motif. The XDH-displayed bacteria can be used directly, eliminating further enzyme-extraction and purification, thus greatly improved the stability of the enzyme. The optimal conditions for the construction of biosensor were established: homogeneous Nafion-MWNTs composite dispersion (10 μL) was cast onto the inverted glassy carbon electrode, followed by casting 10-μL of XDH-bacteria aqueous solution to stand overnight to dry, then a 5-μL of Nafion solution (0.05 wt%) is syringed to the electrode surface. The bacteria-displaying XDH could catalyze the oxidization of xylose to xylonolactone with coenzyme NAD(+) in 0.1M PBS buffer (pH7.4), where NAD(+) (nicotinamide adenine dinucleotide) is reduced to NADH (the reduced form of nicotinamide adenine dinucleotide). The resultant NADH is further electrocatalytically oxidized by MWNTs on the electrode, resulting in an obvious oxidation peak around 0.50 V (vs. Ag/AgCl). In contrast, the bacteria-XDH-only modified electrode showed oxidation peak at higher potential of 0.7 V and less sensitivity. Therefore, the electrode/MWNTs/bacteria-XDH/Nafion exhibited good analytical performance such as long-term stability, a wide dynamic range of 0.6-100 μM and a low detection limit of 0.5 μM D-xylose (S/N=3). No interference was observed in the presence of 300-fold excess of other saccharides including D-glucose, D-fructose, D-maltose, D-galactose, D-mannose, D-sucrose, and D-cellbiose as well as 60-fold excess of L-arabinose. The proposed microbial biosensor is stable, specific, sensitive, reproducible, simple, rapid and cost-effective, which holds great potential in real applications. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Electrochemical selective detection of dopamine on microbial carbohydrate-doped multiwall carbon nanotube-modified electrodes.

    PubMed

    Jin, Joon-Hyung; Cho, Eunae; Jung, Seunho

    2010-03-01

    Microbial carbohydrate-doped multiwall carbon nanotube (MWNT)-modified electrodes were prepared for the purpose of determining if 4-(2-aminoethyl)benzene-1,2-diol (3,4-dihydroxyphenylalanine; dopamine) exists in the presence of 0.5 mM ascorbic acid, a representative interfering agent in neurotransmitter detection. The microbial carbohydrate dopants were alpha-cyclosophorohexadecaose (alpha-C16) from Xanthomonas oryzae and cyclic-(1 --> 2)-beta-d-glucan (Cys) from Rhizobium meliloti. The cyclic voltammetric responses showed that the highest sensitivity (5.8 x 10(-3) mA cm(-2) microM(-1)) is attained with the Cys-doped MWNT-modified ultra-trace carbon electrode, and that the alpha-C16-doped MWNT-modified glassy carbon electrode displays the best selectivity to dopamine (the approximate peak potential separation is 310 mV).

  9. Highly sensitive and selective detection of dopamine based on hollow gold nanoparticles-graphene nanocomposite modified electrode.

    PubMed

    Zhu, Wencai; Chen, Ting; Ma, Xuemei; Ma, Houyi; Chen, Shenhao

    2013-11-01

    Highly dispersed hollow gold-graphene (HAu-G) nanocomposites were synthesized by a two-step method. The immobilization of hollow gold nanoparticles (HAu NPs) onto the surface of graphene sheets was achieved by mixing an aqueous solution of HAu NPs with a poly(N-vinylpyrrolidone)-functionalized graphene dispersion at room temperature. A glassy carbon electrode (GCE) was modified with the nanocomposites, and the as-prepared modified electrode displayed high electrocatalytic activity and extraordinary electronic transport properties. Amperometric detection of dopamine (DA) performed with the HAu-G modified electrode exhibits a good linearity between 0.08 and 600 μM with a low detection limit of 0.05 μM (S/N=3) and also possesses good reproducibility and operational stability. The interference of ascorbic acid (AA) and uric acid (UA) can be excluded when using differential pulse voltammetric technique. In addition, this type of modified electrode can also be applied to the determination of DA content in dopamine hydrochloride injection. It is obvious that the HAu-G modified electrode provides a new way to detect dopamine sensitively and selectively. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Application of Carbon-Microsphere-Modified Electrodes for Electrochemistry of Hemoglobin and Electrocatalytic Sensing of Trichloroacetic Acid

    PubMed Central

    Wang, Wen-Cheng; Yan, Li-Jun; Shi, Fan; Niu, Xue-Liang; Huang, Guo-Lei; Zheng, Cai-Juan; Sun, Wei

    2015-01-01

    By using the hydrothermal method, carbon microspheres (CMS) were fabricated and used for electrode modification. The characteristics of CMS were investigated using various techniques. The biocompatible sensing platform was built by immobilizing hemoglobin (Hb) on the micrometer-sized CMS-modified electrode with a layer of chitosan membrane. On the cyclic voltammogram, a couple of quasi-reversible cathodic and anodic peaks appeared, showing that direct electrochemistry of Hb with the working electrode was achieved. The catalytic reduction peak currents of the bioelectrode to trichloroacetic acid was established in the linear range of 2.0~70.0 mmol·L−1 accompanied by a detection limit of 0.30 mmol·L−1 (3σ). The modified electrode displayed favorable sensitivity, good reproducibility and stability, which suggests that CMS is promising for fabricating third-generation bioelectrochemical sensors. PMID:26703621

  11. Tracking metal ions with polypyrrole thin films adhesively bonded to diazonium-modified flexible ITO electrodes.

    PubMed

    Lo, Momath; Diaw, Abdou K D; Gningue-Sall, Diariatou; Aaron, Jean-Jacques; Oturan, Mehmet A; Chehimi, Mohamed M

    2018-05-09

    Adhesively bonded polypyrrole thin films doped with benzene sulfonic acid (BSA) were electrodeposited on aminobenzenediazonium-modified flexible ITO electrodes and further employed for the detection of Pb 2+ , Cu 2+ , and Cd 2+ metal ions in aqueous medium. The aminophenyl (AP) adhesive layer was grafted to ITO by electroreduction of the in situ generated parent diazonium compound. Polypyrrole (PPy) thin films exhibited remarkable adhesion to aminophenyl (ITO-AP). The strongly adherent polypyrrole films exhibited excellent electroactivity in the doped state with BSA which itself served to chelate the metal ions in aqueous medium. The surface of the resulting, modified flexible electrode was characterized by XPS, SEM, and electrochemical methods. The ITO-AP-PPy electrodes were then used for the simultaneous detection of Cu 2+ , Cd 2+ , and Pb 2+ by differential pulse voltammetry (DPV). The detection limits were 11.1, 8.95, and 0.99 nM for Cu 2+ , Cd 2+ , and Pb 2+ , respectively. In addition, the modified electrodes displayed a good reproducibility, making them suitable for the determination of heavy metals in real wastewater samples.

  12. Deliberate modification of the solid electrolyte interphase (SEI) during lithiation of magnetite, Fe 3O 4: impact on electrochemistry

    DOE PAGES

    Bock, David C.; Marschilok, Amy C.; Takeuchi, Kenneth J.; ...

    2017-11-20

    Here, magnetite is a conversion anode material displaying multi-electron transfer during lithiation and delithiation. The solid electrolyte interphase (SEI) on magnetite, Fe 3O 4, electrodes for lithium ion batteries was deliberately modified through the use of fluoroethylene carbonate (FEC) electrolyte additive, improving both capacity retention and rate capability. Analysis showed reduction of FEC at higher voltage compared to non-fluorinated solvents with formation of a modified lithium flouride containing electrode surface.

  13. Characterization of modified SiC@SiO2 nanocables/MnO2 and their potential application as hybrid electrodes for supercapacitors.

    PubMed

    Zhang, Yujie; Chen, Junhong; Fan, Huili; Chou, Kuo-Chih; Hou, Xinmei

    2015-12-14

    In this research, we demonstrate a simple route for preparing SiC@SiO2 core-shell nanocables and furthermore obtain SiC@SiO2 nanocables/MnO2 as hybrid electrodes for supercapacitors using various modified methods. The modified procedure consists of mild modifications using sodium hydroxide as well as UV light irradiation and deposition of MnO2. The morphology and microstructural characteristics of the composites are investigated using XRD, XPS, FE-SEM with EDS and TEM. The results indicate that the surfaces of modified SiC@SiO2 nanocables are uniformly coated with a MnO2 thin layer. The electrochemical behaviors of the hybrid electrodes are systematically measured in a three-electrode system using cyclic voltammetry, galvanostatic charge/discharge and electrochemical impedance spectroscopy. The resultant electrode presents a superb charge storage characteristic with a large specific capacitance of 276.3 F g(-1) at the current density of 0.2 A g(-1). Moreover, the hybrid electrode also displays a long cycle life with a good capacitance retention (∼92.0%) after 1000 CV cycles, exhibiting a promising potential for supercapacitors.

  14. Synthesis of netlike gold nanoparticles using ampicillin as a stabilizing reagent and its application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Y.Z., E-mail: singyuanzhi@sina.com; Zhou, J.F.; Song, Y., E-mail: songyang@mail.buct.edu.cn

    Graphical abstract: Electrochemical deposition of netlike gold nanoparticles (GNPs) on the surface of glassy carbon electrode and preparation of netlike GNPs in aqueous solution using ampicillin as a stabilizing reagent were proposed. The catalytic properties of netlike gold nanoparticles on the glassy carbon electrode for dopamine were demonstrated. The results indicate that the netlike gold nanoparticle modified electrode has an excellent repeatability and reproducibility. Display Omitted Highlights: ► Synthesis of netlike gold nanoparticles using ampicillin as a stabilizing reagent. ► Excellent repeatability and reproducibility of netlike gold nanoparticle modified glassy carbon electrode. ► The catalytic properties of netlike gold nanoparticlemore » for dopamine. -- Abstract: Electrochemical deposition of netlike gold nanoparticles on the surface of glassy carbon electrode and preparation of netlike GNPs in aqueous solution using ampicillin as a stabilizing reagent were proposed. The netlike gold nanoparticles were characterized by scanning electron microscope, transmission electron microscope, infrared spectrometer, UV spectrophotometer, powder X-ray diffractometer and electrochemical analyzer. The catalysis of the netlike gold nanoparticles on the glassy carbon electrode for dopamine was demonstrated. The results indicate that the gold nanoparticle modified electrode has an excellent repeatability and reproducibility.« less

  15. Green synthesis of gold nanoparticles for trace level detection of a hazardous pollutant (nitrobenzene) causing Methemoglobinaemia.

    PubMed

    Emmanuel, R; Karuppiah, Chelladurai; Chen, Shen-Ming; Palanisamy, Selvakumar; Padmavathy, S; Prakash, P

    2014-08-30

    The present study involves a green synthesis of gold nanoparticles (Au-NPs) using Acacia nilotica twig bark extract at room temperature and trace level detection of one of the hazardous materials, viz. nitrobenzene (NB) that causes Methemoglobinaemia. The synthesis protocol demonstrates that the bioreduction of chloroauric acid leads to the formation of Au-NPs within 10min, suggesting a higher reaction rate than any other chemical methods involved. The obtained Au-NPs have been characterized by UV-vis spectroscopy, X-ray diffraction, transmission electron microscopy, Energy-Dispersive X-ray Spectroscopy and Fourier Transform Infrared Spectroscopy. The electrochemical detection of NB has been investigated at the green synthesized Au-NPs modified glassy carbon electrode by using differential pulse voltammetry (DPV). The Au-NPs modified electrode exhibits excellent reduction ability toward NB compared to unmodified electrode. The developed NB sensor at Au-NPs modified electrode displays a wide linear response from 0.1 to 600μM with high sensitivity of 1.01μAμM(-1)cm(-2) and low limit of detection of 0.016μM. The modified electrode shows exceptional selectivity in the presence of ions, phenolic and biologically coactive compounds. In addition, the Au-NPs modified electrode exhibits an outstanding recovery results toward NB in various real water samples. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Qing; Shao, Mingwang, E-mail: mwshao@suda.edu.cn; Chen, Tao

    Large-scale, high-purity and uniform strontium vanadate (Sr{sub 2}V{sub 2}O{sub 7}) nanoribbons were easily synthesized via a hydrothermal process without any surfactants. The as-prepared products were up to hundreds of micrometers in length, 200-600 nm in width, and 20 nm in thickness. These nanomaterials were employed to modify glassy carbon electrode, which displayed excellent electrochemical sensitivity in detecting dopamine in the presence of ascorbic acid. A linear relationship between the concentrations of dopamine and its oxidation peak currents was obtained. The modified electrode exhibited high reproducibility and stability, which might be found potential application in the biosensors.

  17. Direct electrochemistry of hemoglobin on graphene and titanium dioxide nanorods composite modified electrode and its electrocatalysis.

    PubMed

    Sun, Wei; Guo, Yaqing; Ju, Xiaomei; Zhang, Yuanyuan; Wang, Xiuzhen; Sun, Zhenfan

    2013-04-15

    A biocompatible sensing platform based on graphene (GR) and titanium dioxide (TiO₂) nanorods for the immobilization of hemoglobin (Hb) was adopted in this paper. The GR-TiO₂-Hb composite-modified carbon ionic liquid electrode was constructed through a simple casting method with Nafion as the film forming material. UV-Vis and FT-IR spectra confirmed that Hb retained its native structure in the composite film. Direct electron transfer of Hb incorporated into the composite was realized with a pair of quasi-reversible redox waves appeared, indicating that the presence of GR-TiO₂ nanocomposite on the electrode surface could facilitate the electron transfer rate between the electroactive center of Hb and the substrate electrode. Hb modified electrode showed excellent electrocatalytic activity to the reduction of trichloroacetic acid in the concentration range from 0.6 to 21.0 mmol L⁻¹. These results indicated that GR-TiO₂ nanocomposite could be a friendly biocompatible interface for immobilizing biomolecules and keeping their native structure. The fabricated biosensor displayed the advantages such as high sensitivity, good reproducibility and long-term stability. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Functionalized Solid Electrodes for Electrochemical Biosensing of Purine Nucleobases and Their Analogues: A Review

    PubMed Central

    Sharma, Vimal Kumar; Jelen, Frantisek; Trnkova, Libuse

    2015-01-01

    Interest in electrochemical analysis of purine nucleobases and few other important purine derivatives has been growing rapidly. Over the period of the past decade, the design of electrochemical biosensors has been focused on achieving high sensitivity and efficiency. The range of existing electrochemical methods with carbon electrode displays the highest rate in the development of biosensors. Moreover, modification of electrode surfaces based on nanomaterials is frequently used due to their extraordinary conductivity and surface to volume ratio. Different strategies for modifying electrode surfaces facilitate electron transport between the electrode surface and biomolecules, including DNA, oligonucleotides and their components. This review aims to summarize recent developments in the electrochemical analysis of purine derivatives, as well as discuss different applications. PMID:25594595

  19. Three-dimensionally ordered macroporous (3DOM) gold-nanoparticle-doped titanium dioxide (GTD) photonic crystals modified electrodes for hydrogen peroxide biosensor.

    PubMed

    Li, Jianlin; Han, Tao; Wei, Nannan; Du, Jiangyan; Zhao, Xiangwei

    2009-12-15

    Gold nanoparticles have been introduced into the wall framework of titanium dioxide photonic crystals by the colloidal crystal template technique. The three-dimensionally ordered macroporous gold-nanoparticle-doped titanium dioxide (3DOM GTD) film was modified on the indium-tin oxide (ITO) electrode surface and used for the hydrogen peroxide biosensor. The direct electron transfer and electrocatalysis of horseradish peroxidase (HRP) immobilized on this film have been investigated. The 3DOM GTD film could provide a good microenvironment for retaining the biological bioactivity, large internal area, and superior conductivity. The HRP/3DOM GTD/ITO electrode exhibited two couples of redox peaks corresponding to the HRP intercalated in the mesopores and adsorbed on the external surface of the film with the formal potential of -0.19 and -0.52V in 0.1M PBS (pH 7.4), respectively. The HRP intercalated in the mesopores showed a surface-controlled process with a single proton transfer. The direct electron transfer between the adsorbed HRP and the electrode is achieved without the aid of an electron mediator. The H(2)O(2) biosensor displayed a rapid eletrocatalytic response (less than 3s), a wide linear range from 0.5 microM to 1.4mM with a detection limit of 0.2 microM, high sensitivity (179.9 microAmM(-1)), good stability and reproducibility. Compared with the free-Au doped titanium dioxide photonic crystals modified electrode, the GTD modified electrode could greatly enhance the response current signal, linear detection range and higher sensitivity. The 3DOM GTD provided a new matrix for protein immobilization and direct transfer study and opened a way for low conductivity electrode biosensor.

  20. An electrocatalytic oxidation and voltammetric method using a chemically reduced graphene oxide film for the determination of caffeic acid.

    PubMed

    Vilian, A T Ezhil; Chen, Shen-Ming; Chen, Ying-Hui; Ali, M Ajmal; Al-Hemaid, Fahad M A

    2014-06-01

    The present work describes the characterization of a chemically reduced graphene oxide (CRGO) modified glassy carbon electrode (GCE) for electrochemical investigation of caffeic acid (CA). Cyclic voltammetry (CV), differential pulse voltammetry (DPV), amperometry, and electrochemical impedance spectroscopy (EIS) techniques were used to characterize the properties of the electrode. There was an obvious enhancement of the current response and a decreased over potential for the oxidation of CA. The interfacial electron transfer rate of CA was studied by EIS. Under optimal conditions, the CRGO displayed a linear response range of 1×10(-8) to 8×10(-4) M and the detection limit was 2×10(-9) M (S/N=3), with a sensitivity of 192.21 μA mM(-1) cm(-2) at an applied potential of +0.2V (vs. Ag/AgCl reference), which suggests that the CRGO is a promising sensing materials for the electrochemical investigation of CA. The results showed the good sensitivity, selectivity and high reproducibility of the CRGO modified electrode. Moreover, this modified electrode was further applied to investigate the CA in real samples of wine with satisfactory results. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Non-enzymatic detection of glucose using poly(azure A)-nickel modified glassy carbon electrode.

    PubMed

    Liu, Tong; Luo, Yiqun; Zhu, Jiaming; Kong, Liyan; Wang, Wen; Tan, Liang

    2016-08-15

    A simple, sensitive and selective non-enzymatic glucose sensor was constructed in this paper. The poly(azure A)-nickel modified glassy carbon electrode was successfully fabricated by the electropolymerization of azure A and the adsorption of Ni(2+). The Ni modified electrode, which was characterized by scanning electron microscope, cyclic voltammetry, electrochemical impedance spectra and X-ray photoelectron spectroscopy measurements, respectively, displayed well-defined current responses of the Ni(III)/Ni(II) couple and showed a good activity for electrocatalytic oxidation of glucose in alkaline medium. Under the optimized conditions, the developed sensor exhibited a broad linear calibration range of 5 μM-12mM for quantification of glucose and a low detection limit of 0.64μM (3σ). The excellent analytical performance including simple structure, fast response time, good anti-interference ability, satisfying stability and reliable reproducibility were also found from the proposed amperometric sensor. The results were satisfactory for the determination of glucose in human serum samples as comparison to those from a local hospital. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Simultaneous determination of Cd(II) and Pb(II) by differential pulse anodic stripping voltammetry based on graphite nanofibers-Nafion composite modified bismuth film electrode.

    PubMed

    Li, Dongyue; Jia, Jianbo; Wang, Jianguo

    2010-12-15

    A bismuth-film modified graphite nanofibers-Nafion glassy carbon electrode (BiF/GNFs-NA/GCE) was constructed for the simultaneous determination of trace Cd(II) and Pb(II). The electrochemical properties and applications of the modified electrode were studied. Operational parameters such as deposition potential, deposition time, and bismuth ion concentration were optimized for the purpose of determination of trace metal ions in 0.10 M acetate buffer solution (pH 4.5). Under optimal conditions, based on three times the standard deviation of the baseline, the limits of detection were 0.09 μg L(-1) for Cd(II) and 0.02 μg L(-1) for Pb(II) with a 10 min preconcentration. In addition, the BiF/GNFs-NA/GCE displayed good reproducibility and selectivity, making it suitable for the simultaneous determination of Cd(II) and Pb(II) in real sample such as river water and human blood samples. Copyright © 2010 Elsevier B.V. All rights reserved.

  3. Symmetric supercapacitors using urea-modified lignin derived N-doped porous carbon as electrode materials in liquid and solid electrolytes

    NASA Astrophysics Data System (ADS)

    Wang, Keliang; Xu, Ming; Gu, Yan; Gu, Zhengrong; Fan, Qi Hua

    2016-11-01

    N-doped porous carbon materials derived from urea-modified lignin were prepared via efficient KOH activation under carbonization. The synthesized N-doped carbon materials, which displayed a well-developed porous morphology with high specific surface area of 3130 m2 g-1, were used as electrode materials in symmetric supercapacitors with aqueous and solid electrolytes. In consistent with the observed physical structures and properties, the supercapacitors exhibited specific capacitances of 273 and 306 F g-1, small resistances of 2.6 and 7.7 Ω, stable charge/discharge at different current densities for over 5000 cycles and comparable energy and power density in 6 mol L-1 KOH liquid and KOH-PVA solid electrolytes, respectively.

  4. Co-immobilization of glucose oxidase and xylose dehydrogenase displayed whole cell on multiwalled carbon nanotube nanocomposite films modified electrode for simultaneous voltammetric detection of D-glucose and D-xylose.

    PubMed

    Li, Liang; Liang, Bo; Li, Feng; Shi, Jianguo; Mascini, Marco; Lang, Qiaolin; Liu, Aihua

    2013-04-15

    In this paper, we first report the construction of Nafion/glucose oxidase (GOD)/xylose dehydrogenase displayed bacteria (XDH-bacteria)/multiwalled carbon nanotubes (MWNTs) modified electrode for simultaneous voltammetric determination of D-glucose and D-xylose. The optimal conditions for the immobilized enzymes were established. Both enzymes retained their good stability and activities. In the mixture solution of D-glucose and D-xylose containing coenzyme NAD⁺ (the oxidized form of nicotinamide adenine dinucleotide), the Nafion/GOD/XDH-bacteria/MWNTs modified electrode exhibited quasi-reversible oxidation-reduction peak at -0.5 V (vs. saturated calomel electrode, SCE) originating from the catalytic oxidation of D-glucose, and oxidation peak at +0.55 V(vs. SCE) responding to the oxidation of NADH (the reduced form of nicotinamide adenine dinucleotide) by the carbon nanotubes, where NADH is the resultant product of coenzyme NAD⁺ involved in the catalysis of D-xylose by XDH-displayed bacteria. For the proposed biosensor, cathodic peak current at -0.5 V was linear with the concentration of D-glucose within the range of 0.25-6 mM with a low detection limit of 0.1 mM D-glucose (S/N=3), and the anodic peak current at +0.55 V was linear with the concentration of d-xylose in the range of 0.25∼4 mM with a low detection limit of 0.1 mM D-xylose (S/N=3). Further, D-xylose and D-glucose did not interfere with each other. 300-fold excess saccharides including D-maltose, D-galactose, D-mannose, D-sucrose, D-fructose, D-cellobiose, and 60-fold excess L-arabinose, and common interfering substances (100-fold excess ascorbic acid, dopamine, uric acid) as well as 300-fold excess D-xylitol did not affect the detection of D-glucose and D-xylose (both 1 mM). Therefore, the proposed biosensor is stable, specific, reproducible, simple, rapid and cost-effective, which holds great potential in real applications. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. A highly sensitive and selective electrochemical sensor for determination of Cr(VI) in the presence of Cr(III) using modified multi-walled carbon nanotubes/quercetin screen-printed electrode.

    PubMed

    Sadeghi, Susan; Garmroodi, Aziz

    2013-12-01

    A novel screen-printed carbon electrode modified with quercetin/multi-walled carbon nanotubes was fabricated for determination of Cr(VI) in the presence of excess of Cr(III) without any pretreatment. The method is based on accumulation of the quercetin-Cr(III) complex generated in situ from Cr(VI) at the modified electrode surface in an open circuit followed by differential pulse voltammetry detection. The new method allowed selective determination of Cr(VI) in the presence of Cr(III). The influence of various parameters affecting the adsorptive stripping voltammetry performance was investigated. Under the optimum conditions, the calibration plot was found to be linear in the Cr(VI) concentration range from 1.0 to 200 μmol(-1) with a limit of detection(S/N=3) of 0.3 μmol L(-1). The relative standard deviation (RSD%) of seven replicates of the current measurements for a 50 μmol(-1) of Cr(VI) solution was 3.0%. The developed electrode displayed a very low or no sensitivity to alkali, alkali-earth and transition metal cations and was successfully applied for the determination of Cr(VI) in drinking water samples. © 2013.

  6. Anisotropic multi-spot DBR porous silicon chip for the detection of human immunoglobin G.

    PubMed

    Cho, Bomin; Um, Sungyong; Sohn, Honglae

    2014-07-01

    Asymmetric porous silicon multilayer (APSM)-based optical biosensor was developed to specify human Immunoglobin G (Ig G). APSM chip was generated by an electrochemical etching of silicon wafer using an asymmetric electrode configuration in aqueous ethanolic HF solution and constituted with nine arrayed porous silicon multilayer. APSM prepared from anisotropic etching conditions displayed a sharp reflection resonance in the reflectivity spectrum. Each spot displayed single reflection resonance at different wavelengths as a function of the lateral distance from the Pt counter electrode. The sensor system was consisted of the 3 x 3 spot array of APSM modified with protein A. The system was probed with an aqueous human Ig G. Molecular binding and specificity was monitored as a shift in wavelength of reflection resonance.

  7. Modified lead titanate thin films for pyroelectric infrared detectors on gold electrodes

    NASA Astrophysics Data System (ADS)

    Ahmed, Moinuddin; Butler, Donald P.

    2015-07-01

    Pyroelectric infrared detectors provide the advantage of both a wide spectral response and dynamic range, which also has enabled systems to be developed with reduced size, weight and power consumption. This paper demonstrates the deposition of lead zirconium titanate (PZT) and lead calcium titanate (PCT) thin films for uncooled pyroelectric detectors with the utilization of gold electrodes. The modified lead titanate thin films were deposited by pulsed laser deposition on gold electrodes. The PZT and PCT thins films deposited and annealed at temperatures of 650 °C and 550 °C respectively demonstrated the best pyroelectric performance in this work. The thin films displayed a pyroelectric effect that increased with temperature. Poling of the thin films was carried out for a fixed time periods and fixed dc bias voltages at elevated temperature in order to increase the pyroelectric coefficient by establishing a spontaneous polarization of the thin films. Poling caused the pyroelectric current to increase one order of magnitude.

  8. Electrochemical Sensing toward Trace As(III) Based on Mesoporous MnFe₂O₄/Au Hybrid Nanospheres Modified Glass Carbon Electrode.

    PubMed

    Zhou, Shaofeng; Han, Xiaojuan; Fan, Honglei; Liu, Yaqing

    2016-06-22

    Au nanoparticles decorated mesoporous MnFe₂O₄ nanocrystal clusters (MnFe₂O₄/Au hybrid nanospheres) were used for the electrochemical sensing of As(III) by square wave anodic stripping voltammetry (SWASV). Modified on a cheap glass carbon electrode, these MnFe₂O₄/Au hybrid nanospheres show favorable sensitivity (0.315 μA/ppb) and limit of detection (LOD) (3.37 ppb) toward As(III) under the optimized conditions in 0.1 M NaAc-HAc (pH 5.0) by depositing for 150 s at the deposition potential of -0.9 V. No obvious interference from Cd(II) and Hg(II) was recognized during the detection of As(III). Additionally, the developed electrode displayed good reproducibility, stability, and repeatability, and offered potential practical applicability for electrochemical detection of As(III) in real water samples. The present work provides a potential method for the design of new and cheap sensors in the application of electrochemical determination toward trace As(III) and other toxic metal ions.

  9. Molybdenum disulphide and graphene quantum dots as electrode modifiers for laccase biosensor.

    PubMed

    Vasilescu, Ioana; Eremia, Sandra A V; Kusko, Mihaela; Radoi, Antonio; Vasile, Eugeniu; Radu, Gabriel-Lucian

    2016-01-15

    A nanocomposite formed from molybdenum disulphide (MoS2) and graphene quantum dots (GQDs) was proposed as a novel and suitable support for enzyme immobilisation displaying interesting electrochemical properties. The conductivity of the carbon based screen-printed electrodes was highly improved after modification with MoS2 nanoflakes and GQDs, the nanocomposite also providing compatible matrix for laccase immobilisation. The influence of different modification steps on the final electroanalytical performances of the modified electrode were evaluated by UV-vis absorption and fluorescence spectroscopy, scanning electron microscopy, transmission electron microscopy, X ray diffraction, electrochemical impedance spectroscopy and cyclic voltammetry. The developed laccase biosensor has responded efficiently to caffeic acid over a concentration range of 0.38-100µM, had a detection limit of 0.32µM and a sensitivity of 17.92nAµM(-1). The proposed analytical tool was successfully applied for the determination of total polyphenolic content from red wine samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. A simple preparation of graphite/gelatin composite for electrochemical detection of dopamine.

    PubMed

    Rajkumar, Chellakannu; Thirumalraj, Balamurugan; Chen, Shen-Ming; Chen, His-An

    2017-02-01

    In this study, we demonstrate a simple preparation of graphite (GR) sheets assisted with gelatin (GLN) polypeptide composite was developed for sensitive detection of dopamine (DA) sensor. The GR/GLN composite was prepared by GR powder in GLN solution (5mg/mL) via sonication process. The prepared GR/GLN composite displays well dispersion ability in biopolymer matrix and characterized via scanning electron microscope (SEM), Fourier transform infrared (FTIR) spectroscopy and electrochemical impedance spectroscopy (EIS) studies. The GR/GLN modified electrode showed an excellent electrocatalytic activity toward the oxidation of DA, suggesting that the successful formation of GR sheets crosslinked with the functional groups of GLN polypeptide. In addition, the GR/GLN modified electrode achieved a wide linear response ranging from 0.05 to 79.5μM with a detection limit of 0.0045μM. The calculated analytical sensitivity of the sensor was 1.36±0.02μAμM -1 cm -2 . Conversely, the modified electrode demonstrates a good storage stability, reproducibility and repeatability. In addition, the sensor manifests the determination of DA in human serum and urine samples for practical applications. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Increasing the Affinity Between Carbon-Coated LiFePO4/C Electrodes and Conventional Organic Electrolyte by Spontaneous Grafting of a Benzene-Trifluoromethylsulfonimide Moiety.

    PubMed

    Delaporte, Nicolas; Perea, Alexis; Lebègue, Estelle; Ladouceur, Sébastien; Zaghib, Karim; Bélanger, Daniel

    2015-08-26

    The grafting of benzene-trifluoromethylsulfonimide groups on LiFePO4/C was achieved by spontaneous reduction of in situ generated diazonium ions of the corresponding 4-amino-benzene-trifluoromethylsulfonimide. The diazotization of 4-amino-benzene-trifluoromethylsulfonimide was a slow process that required a high concentration of precursors to promote the spontaneous grafting reaction. Contact angle measurements showed a hydrophilic surface was produced after the reaction that is consistent with grafting of benzene-trifluoromethylsulfonimide groups. Elemental analysis data revealed a 2.1 wt % loading of grafted molecules on the LiFePO4/C powder. Chemical oxidation of the cathode material during the grafting reaction was detected by X-ray diffraction and quantified by inductively coupled plasma atomic emission spectrometry. Surface modification improves the wettability of the cathode material, and better discharge capacities were obtained for modified electrodes at high C-rate. In addition, electrochemical impedance spectroscopy showed the resistance of the modified cathode was lower than that of the bare LiFePO4/C film electrode. Moreover, the modified cathode displayed superior capacity retention after 200 cycles of charge/discharge at 1 C.

  12. Amperometric glucose biosensor with remarkable acid stability based on glucose oxidase entrapped in colloidal gold-modified carbon ionic liquid electrode.

    PubMed

    Liu, Xiaoying; Zeng, Xiandong; Mai, Nannan; Liu, Yong; Kong, Bo; Li, Yonghong; Wei, Wanzhi; Luo, Shenglian

    2010-08-15

    A colloidal gold-modified carbon ionic liquid electrode was constructed by mixing colloidal gold-modified graphite powder with a solid room temperature ionic liquid n-octyl-pyridinium hexafluorophosphate (OPPF(6)). Glucose oxidase (GOD) was entrapped in this composite matrix and maintained its bioactivity well and displayed excellent stability. The effect conditions of pH, applied potential and GOD loading were examined. Especially, the glucose oxidase entrapped in this carbon ionic liquid electrode fully retained its activity upon stressing in strongly acidic conditions (pH 2.0) for over one hour. The proposed biosensor responds to glucose linearly over concentration range of 5.0x10(-6) to 1.2x10(-3) and 2.6x10(-3) to 1.3x10(-2) M, and the detection limit is 3.5x10(-6) M. The response time of the biosensor is fast (within 10s), and the life time is over two months. The effects of electroactive interferents, such as ascorbic acid, uric acid, can be significantly reduced by a Nafion film casting on the surface of resulting biosensor. Copyright 2010 Elsevier B.V. All rights reserved.

  13. ZrO2-Nanoparticle-Modified Graphite Felt: Bifunctional Effects on Vanadium Flow Batteries.

    PubMed

    Zhou, Haipeng; Shen, Yi; Xi, Jingyu; Qiu, Xinping; Chen, Liquan

    2016-06-22

    To improve the electrochemical performance of graphite felt (GF) electrodes in vanadium flow batteries (VFBs), we synthesize a series of ZrO2-modified GF (ZrO2/GF) electrodes with varying ZrO2 contents via a facile immersion-precipitation approach. It is found that the uniform immobilization of ZrO2 nanoparticles on the GF not only significantly promotes the accessibility of vanadium electrolyte, but also provides more active sites for the redox reactions, thereby resulting in better electrochemical activity and reversibility toward the VO(2+)/VO2(+) and V(2+)/V(3+) redox reactions as compared with those of GF. In particular, The ZrO2/GF composite with 0.3 wt % ZrO2 displays the best electrochemical performance with voltage and energy efficiencies of 71.9% and 67.4%, respectively, which are much higher than those of 57.3% and 53.8% as obtained from the GF electrode at 200 mA cm(-2). The cycle life tests demonstrate that the ZrO2/GF electrodes exhibit outstanding stability. The ZrO2/GF-based VFB battery shows negligible activity decay after 200 cycles.

  14. An electrochemical sensor for simultaneous determination of ascorbic acid, dopamine, uric acid and tryptophan based on MWNTs bridged mesocellular graphene foam nanocomposite.

    PubMed

    Li, Huixiang; Wang, Yi; Ye, Daixin; Luo, Juan; Su, Biquan; Zhang, Song; Kong, Jilie

    2014-09-01

    A multi-walled carbon nanotubes (MWNTs) bridged mesocellular graphene foam (MGF) nanocomposite (MWNTs/MGF) modified glassy carbon electrode was fabricated and successfully used for simultaneous determination of ascorbic acid (AA), dopamine (DA), uric acid (UA) and tryptophan (TRP). Comparing with pure MGF, MWNTs or MWNTs/GS (graphene sheets), MWNTs/MGF displayed higher catalytic activity and selectivity toward the oxidation of AA, DA, UA and TRP. Under the optimal conditions, MWCNs/MGF/GCE can simultaneously detect AA, DA, UA and TRP with high selectivity and sensitivity. The detection limits were 18.28 µmol L(-1), 0.06 µmol L(-1), 0.93 µmol L(-1) and 0.87 µmol L(-1), respectively. Moreover, the modified electrode exhibited excellent stability and reproducibility. Copyright © 2014. Published by Elsevier B.V.

  15. Smartphone-based cyclic voltammetry system with graphene modified screen printed electrodes for glucose detection.

    PubMed

    Ji, Daizong; Liu, Lei; Li, Shuang; Chen, Chen; Lu, Yanli; Wu, Jiajia; Liu, Qingjun

    2017-12-15

    Smartphone-based electrochemical devices have such advantages as the low price, miniaturization, and obtaining the real-time data. As a popular electrochemical method, cyclic voltammetry (CV) has shown its great practicability for quantitative detection and electrodes modification. In this study, a smartphone-based CV system with a simple method of electrode modification was constructed to perform electrochemical detections. The system was composed of these main portions: modified electrodes, portable electrochemical detector and smartphone. Among them, the detector was comprised of an energy transformation module applying the stimuli signals, and a low-cost potentiostat module for CV measurements with a Bluetooth module for transmitting data and commands. With an Application (App), the smartphone was used as the controller and displayer of the system. Through controlling of different scan rates, the smartphone-based system could perform CV detections for redox couples with test errors less than 3.8% compared to that of commercial electrochemical workstation. Also, the reduced graphene oxide (rGO) and sensitive substance could be modified by the system on the screen printed electrodes for detections. As a demonstration, 3-amino phenylboronic acid (APBA) was used as the sensitive substance to fabricate a glucose sensor. Finally, the experimental data of the system were shown the linear, sensitive, and specific responses to glucose at different doses, even in blood serum as low as about 0.026mM with 3δ/slope calculation. Thus, the system could show great potentials of detection and modification of electrodes in various fields, such as public health, water monitoring, and food quality. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Studies on electrochemical glucose sensing, antimicrobial activity and cytotoxicity of fabricated copper nanoparticle immobilized chitin nanostructure.

    PubMed

    Solairaj, Dhanasekaran; Rameshthangam, Palanivel; Muthukumaran, Palanisamy; Wilson, Jeyaraj

    2017-08-01

    In this study, copper nanoparticle immobilized chitin nanocomposite (CNP/CuNP) was synthesized and used for the development of non-enzymatic electrochemical sensor. The CNP/CuNP was characterized by X-ray diffraction (XRD), fourier transform infra red (FTIR) spectroscopy and high resolution transmission electron microscopy (HRTEM) analysis. The glucose sensing property of CNP/CuNP was investigated by cyclic voltammetry (CV) and chronoamperometry (CA). As a result of the synergistic effect of CNP and CuNP, the modified electrode displayed effective electro-oxidation of glucose in 0.1M NaOH solution. At 0.45V potential the modified electrode showed response towards glucose in the linear range of 1-1000μM with a lowest detection limit of 0.776μM with better selectivity and stability. In addition, the antimicrobial activity of CNP/CuNP was evaluated against bacterial and fungal strains. CNP/CuNP displayed enhanced antimicrobial activity when compared to CNP and CuNP alone. Similarly, cytotoxicity of CNP/CuNP was tested against Artemia salina, which showed no toxic effect in the tested concentration. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. High optical switching speed and flexible electrochromic display based on WO3 nanoparticles with ZnO nanorod arrays' supported electrode

    NASA Astrophysics Data System (ADS)

    Wang, Mingjun; Fang, Guojia; Yuan, Longyan; Huang, Huihui; Sun, Zhenhua; Liu, Nishuang; Xia, Shanhong; Zhao, Xingzhong

    2009-05-01

    The electrochromic (EC) property of WO3 nanoparticles grown on vertically self-aligned ZnO nanorods (ZNRs) is reported. An electrochromic character display based on WO3 nanoparticle-modified ZnO nanorod arrays on a flexible substrate has been fabricated and demonstrated. The ZNRs were first synthesized on ZnO-seed-coated In2O3:Sn (ITO) glass (1 cm2 cell) and polyethylene terephthalate (PET) (4 cm2 cell) substrates by a low temperature hydrothermal method, and then amorphous WO3 nanoparticles were grown directly on the surface of the ZNRs by the pulsed laser deposition (PLD) method. The ZNR-based EC device shows high transparence, good electrochromic stability and fast switching speed (4.2 and 4 s for coloration and bleaching, respectively, for a 1 cm2 cell). The good performance of the ZNR electrode-based EC display can be attributed to the large surface area, high crystallinity and good electron transport properties of the ZNR arrays. Its high contrast, fast switching, good memory and flexible characteristics indicate it is a promising candidate for flexible electrochromic displays or electronic paper.

  18. RuO2 pH Sensor with Super-Glue-Inspired Reference Electrode

    PubMed Central

    Wajrak, Magdalena; Alameh, Kamal

    2017-01-01

    A pH-sensitive RuO2 electrode coated in a commercial cyanoacrylate adhesive typically exhibits very low pH sensitivity, and could be paired with a RuO2 working electrode as a differential type pH sensor. However, such sensors display poor performance in real sample matrices. A pH sensor employing a RuO2 pH-sensitive working electrode and a SiO2-PVB junction-modified RuO2 reference electrode is developed as an alternative high-performance solution. This sensor exhibits a performance similar to that of a commercial glass pH sensor in some common sample matrices, particularly, an excellent pH sensitivity of 55.7 mV/pH, a hysteresis as low as 2.7 mV, and a drift below 2.2 mV/h. The developed sensor structure opens the way towards the development of a simple, cost effective, and robust pH sensor for pH analysis in various sample matrices. PMID:28878182

  19. RuO₂ pH Sensor with Super-Glue-Inspired Reference Electrode.

    PubMed

    Lonsdale, Wade; Wajrak, Magdalena; Alameh, Kamal

    2017-09-06

    A pH-sensitive RuO₂ electrode coated in a commercial cyanoacrylate adhesive typically exhibits very low pH sensitivity, and could be paired with a RuO₂ working electrode as a differential type pH sensor. However, such sensors display poor performance in real sample matrices. A pH sensor employing a RuO₂ pH-sensitive working electrode and a SiO₂-PVB junction-modified RuO₂ reference electrode is developed as an alternative high-performance solution. This sensor exhibits a performance similar to that of a commercial glass pH sensor in some common sample matrices, particularly, an excellent pH sensitivity of 55.7 mV/pH, a hysteresis as low as 2.7 mV, and a drift below 2.2 mV/h. The developed sensor structure opens the way towards the development of a simple, cost effective, and robust pH sensor for pH analysis in various sample matrices.

  20. One-Pot Green Synthesis of Graphene Nanosheets Encapsulated Gold Nanoparticles for Sensitive and Selective Detection of Dopamine

    PubMed Central

    Thirumalraj, Balamurugan; Rajkumar, Chellakannu; Chen, Shen-Ming; Palanisamy, Selvakumar

    2017-01-01

    We report a simple new approach for green preparation of gallic acid supported reduced graphene oxide encapsulated gold nanoparticles (GA-RGO/AuNPs) via one-pot hydrothermal method. The as-prepared composites were successfully characterized by using Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, X-ray powder diffraction techniques (XRD), scanning electron microscope (SEM), high resolution transmission electron microscopy (HRTEM) and elemental analysis. The GA-RGO/AuNPs modified electrode behaves as a hybrid electrode material for sensitive and selective detection of dopamine (DA) in presence of ascorbic acid (AA) and uric acid (UA). The GA-RGO/AuNPs modified electrode displays an excellent electrocatalytic activity towards the oxidation of DA and exhibits a wide linear response range over the DA concentrations from 0.01–100.3 μM with a detection limit (LOD) of 2.6 nM based on S/N = 3. In addition, the proposed sensor could be applied for the determination of DA in human serum and urine samples for practical analysis. PMID:28128225

  1. One-Pot Green Synthesis of Graphene Nanosheets Encapsulated Gold Nanoparticles for Sensitive and Selective Detection of Dopamine

    NASA Astrophysics Data System (ADS)

    Thirumalraj, Balamurugan; Rajkumar, Chellakannu; Chen, Shen-Ming; Palanisamy, Selvakumar

    2017-01-01

    We report a simple new approach for green preparation of gallic acid supported reduced graphene oxide encapsulated gold nanoparticles (GA-RGO/AuNPs) via one-pot hydrothermal method. The as-prepared composites were successfully characterized by using Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, X-ray powder diffraction techniques (XRD), scanning electron microscope (SEM), high resolution transmission electron microscopy (HRTEM) and elemental analysis. The GA-RGO/AuNPs modified electrode behaves as a hybrid electrode material for sensitive and selective detection of dopamine (DA) in presence of ascorbic acid (AA) and uric acid (UA). The GA-RGO/AuNPs modified electrode displays an excellent electrocatalytic activity towards the oxidation of DA and exhibits a wide linear response range over the DA concentrations from 0.01-100.3 μM with a detection limit (LOD) of 2.6 nM based on S/N = 3. In addition, the proposed sensor could be applied for the determination of DA in human serum and urine samples for practical analysis.

  2. A new electrochemical sensor for highly sensitive and selective detection of nitrite in food samples based on sonochemical synthesized Calcium Ferrite (CaFe2O4) clusters modified screen printed carbon electrode.

    PubMed

    Balasubramanian, Paramasivam; Settu, Ramki; Chen, Shen-Ming; Chen, Tse-Wei; Sharmila, Ganapathi

    2018-08-15

    Herein, we report a novel, disposable electrochemical sensor for the detection of nitrite ions in food samples based on the sonochemical synthesized orthorhombic CaFe 2 O 4 (CFO) clusters modified screen printed electrode. As synthesized CFO clusters were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transformer infrared spectroscopy (FT-IR), Thermogravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS), electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV) and amperometry (i-t). Under optimal condition, the CFO modified electrode displayed a rapid current response to nitrite, a linear response range from 0.016 to 1921 µM associated with a low detection limit 6.6 nM. The suggested sensor also showed the excellent sensitivity of 3.712 μA μM -1  cm -2 . Furthermore, a good reproducibility, long-term stability and excellent selectivity were also attained on the proposed sensor. In addition, the practical applicability of the sensor was investigated via meat samples, tap water and drinking water, and showed desirable recovery rate, representing its possibilities for practical application. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. Immobilization of glucose oxidase into a nanoporous TiO₂ film layered on metallophthalocyanine modified vertically-aligned carbon nanotubes for efficient direct electron transfer.

    PubMed

    Cui, Hui-Fang; Zhang, Kuan; Zhang, Yong-Fang; Sun, Yu-Long; Wang, Jia; Zhang, Wei-De; Luong, John H T

    2013-08-15

    Glucose oxidase (GOD) was adsorbed into a nanoporous TiO₂ film layered on the surface of an iron phthalocyanine (FePc) vertically-aligned carbon nanotube (CNT) modified electrode. A Nafion film was then dropcast on the electrode's surface to improve operational and storage stabilities of the GOD-based electrode. Scanning electron microscopy (SEM) micrographs revealed the formation of FePc and nanoporous TiO₂ nanoparticles along the sidewall and the tip of CNTs. Cyclic voltammograms of the GOD electrode in neutral PBS exhibited a pair of well-defined redox peaks, attesting the direct electron transfer of GOD (FAD/FADH₂) with the underlying electrode. The potential of glucose electro-oxidation under nitrogen was ∼+0.12 V with an oxidation current density of 65.3 μA cm(-2) at +0.77 V. Voltammetric and amperometric responses were virtually unaffected by oxygen, illustrating an efficient and fast direct electron transfer. The modification of the CNT surface with FePc resulted in a biosensor with remarkable detection sensitivity with an oxygen-independent bioelectrocatalysis. In deaerated PBS, the biosensor displayed average response time of 12 s, linearity from 50 μM to 4 mM, and a detection limit of 30 μM (S/N=3) for glucose. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Electrochemical Investigation of DA and UA on Carboxylated Graphene Oxide/lanthanum Electrodes with Sundry Content of Ctab

    NASA Astrophysics Data System (ADS)

    Jiang, J.; Zhu, L.; Qian, W.; Chen, H.; Feng, C.; Han, S.; Lin, H.; Ye, F. Y.

    Glassy carbon electrodes (GCE) were modified by carboxylated graphene oxide/lanthanum with various concentrations of hexadecyl trimethyl ammonium bromide (CTAB), and the treated electrodes, called CTAB/GO-COOLa/GCE, were prepared for the detection of uric acid (UA) and dopamine (DA) by using the differential pulse voltammetry (DPV) and the cyclic voltammetry (CV). The results show that the modified electrode’s electrocatalytic activity could be affected by several factors in the examination, they are the pH value of the system, the main content of CTAB, various concentrations and rates of scan. With a combination of carboxylated graphene oxide/lanthanum and CTAB, the resulted CTAB/GO-COOLa/GCE sensors showed preeminent selectivity and obvious catalytic property toward the electro-oxidation of UA and DA. In optimized conditions, the response of the CTAB/GO-COOLa/GCE electrode for DA was linear in the region of 0.03-500.0μM with detection limits of 0.036μM (S/N=3). Two linear response ranges for the determination UA were obtained from ranges of 1 to 200μM and 200 to 1300μM with a detection limit of 0.42μM (S/N=3). Moreover, the refined electrode was used in the inspection of DA and UA in real samples of serum and urine successfully, displaying its potential application of real samples involved in electroanalysis.

  5. Sandwich-structured nanohybrid paper based on controllable growth of nanostructured MnO2 on ionic liquid functionalized graphene paper as a flexible supercapacitor electrode.

    PubMed

    Sun, Yimin; Fang, Zheng; Wang, Chenxu; Ariyawansha, K R Rakhitha Malinga; Zhou, Aijun; Duan, Hongwei

    2015-05-07

    A sandwich-structured flexible supercapacitor electrode has been developed based on MnO2 nanonest (MNN) modified ionic liquid (IL) functionalized graphene paper (GP), which is fabricated by functionalizing graphene nanosheets with an amine-terminated IL (i.e., 1-(3-aminopropyl)-3-methylimidazolium bromide) to form freestanding IL functionalized GP (IL-GP), and then modifying IL-GP with a unique MNN structure via controllable template-free ultrasonic electrodeposition. The as-obtained MNN modified IL-GP (MNN/IL-GP) inherits the excellent pseudocapacity of the metal oxide, the high conductivity and electric double layer charging/discharging of IL-graphene composites, and therefore shows an enhanced supercapacitor performance. The maximum specific capacitance of 411 F g(-1) can be achieved by chronopotentiometry at a current density of 1 A g(-1). Meanwhile, the MNN/IL-GP electrode exhibits excellent rate capability and cycling stability, its specific capacitance is maintained at 70% as the current densities increase from 1 to 20 A g(-1) and 85% at a current density of 10 A g(-1) after 10 000 cycles. More importantly, the MNN/IL-GP displays distinguished mechanical stability and flexibility for device packaging, although its thickness is merely 8 μm. These features collectively demonstrate the potential of MNN/IL-GP as a high-performance paper electrode for flexible and lightweight and highly efficient electrochemical capacitor applications.

  6. Highly sensitive electrochemical biosensor for bisphenol A detection based on a diazonium-functionalized boron-doped diamond electrode modified with a multi-walled carbon nanotube-tyrosinase hybrid film.

    PubMed

    Zehani, Nedjla; Fortgang, Philippe; Saddek Lachgar, Mohamed; Baraket, Abdoullatif; Arab, Madjid; Dzyadevych, Sergei V; Kherrat, Rochdi; Jaffrezic-Renault, Nicole

    2015-12-15

    A highly sensitive electrochemical biosensor for the detection of Bisphenol A (BPA) in water has been developed by immobilizing tyrosinase onto a diazonium-functionalized boron doped diamond electrode (BDD) modified with multi-walled carbon nanotubes (MWCNTs). The fabricated biosensor exhibits excellent electroactivity towards o-quinone, a product of this enzymatic reaction of BPA oxidation catalyzed by tyrosinase. The developed BPA biosensor displays a large linear range from 0.01 nM to 100 nM, with a detection limit (LOD) of 10 pM. The feasibility of the proposed biosensor has been demonstrated on BPA spiked water river samples. Therefore, it could be a promising and reliable analytical tool for on-site monitoring of BPA in waste water. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Schiff Base modified on CPE electrode and PCB gold electrode for selective determination of silver ion

    NASA Astrophysics Data System (ADS)

    Leepheng, Piyawan; Suramitr, Songwut; Phromyothin, Darinee

    2017-09-01

    The schiff base was synthesized by 2,5-thiophenedicarboxaldehyde and 1,2,4-thiadiazole-3,5-diamine with condensation method. There was modified on carbon paste electrode (CPE) and Printed circuit board (PCB) gold electrode for determination silver ion. The schiff base modified electrodes was characterized by atomic force microscopy (AFM) and scanning electron microscopy (SEM), respectively. The electrochemical study was reported by cyclic voltammetry method and impedance spectroscopy using modified electrode as working electrode, platinum wire and Ag/AgCl as counter electrode and reference electrode, respectively. The modified electrodes have suitable detection for Ag+. The determination of silver ions using the modified electrodes depended linearly on Ag+ concentration in the range 1×10-10 M to 1×10-7 M, with cyclic voltammetry sensitivity were 2.51×108 μAM-1 and 1.88×108 μAM-1 for PCB gold electrode and CPE electrode, respectively, limits of detection were 5.33×10-9 M and 1.99×10-8 M for PCB gold electrode and CPE electrode, respectively. The modified electrodes have high accuracy, inexpensive and can applied to detection Ag+ in real samples.

  8. A Comparative evaluation of Graphene oxide based materials for Electrochemical non-enzymatic sensing of Curcumin

    NASA Astrophysics Data System (ADS)

    Dey, Nibedita; Devasena, T.; Sivalingam, Tamilarasu

    2018-02-01

    This work reports a comparative study on the development of a sensitive voltammetric method for the assay of diferuloylmethane which is fabricated using cost-effective sensing material graphene oxide (GO modified electrode) and reduced graphene oxide (rGO modified electrode) modified on glassy carbon electrode respectively. The prepared materials were characterized using SEM, XRD, FTIR, and Raman techniques to understand the formation. Between the both modified electrodes, rGO modified electrode demonstrated a lower limit detection of 0.9 pM and good signal quality. But, the better linear dynamic range for detection was found to be 1 nm to 100 nM for GO and 0.1 nM to 10 nM for rGO modified electrodes respectively. The repeatability is checked for seven cycles and interference studies were also performed for checking the sensors’ selectivity to curcumin. rGO modified electrode and GO modified electrode both shows specific signals for Diferuloylmethane under conditions similar to physiology. But, with better properties over GO modified electrode, rGO modified electrode is suggested a better candidate for real-time usability in sensing. The detection limit reported is the lowest till date for the given plant drug using any sensing assay.

  9. Electro-optical switching and memory display device

    DOEpatents

    Skotheim, T.A.; O'Grady, W.E.; Linkous, C.A.

    1983-12-29

    An electro-optical display device having a housing with wall means including one transparent wall and at least one other wall. Counter electrodes are positioned on the transparent wall and display electrodes are positioned on the other wall with both electrodes in electrically conductive relationship with an electrolyte. Circuits means are connected to the display and counter electrodes to apply different predetermined control potentials between them. The display electrodes are covered with a thin electrically conductive polymer film that is characterized according to the invention by having embedded in it pigment molecules as counter ions. The display device is operable to be switched to a plurality of different visual color states at an exceptionally rapid switching rate while each of the color states is characterized by possessing good color intensity and definition.

  10. Electro-optical switching and memory display device

    DOEpatents

    Skotheim, Terje A.; O'Grady, William E.; Linkous, Clovis A.

    1986-01-01

    An electro-optical display device having a housing with wall means including one transparent wall and at least one other wall. Counter electrodes are positioned on the transparent wall and display electrodes are positioned on the other wall with both electrodes in electrically conductive relationship with an electrolyte. Circuit means are connected to the display and counter electrodes to apply different predetermined control potentials between them. The display electrodes are covered with a thin electrically conductive polymer film that is characterized according to the invention by having embedded in it pigment molecules as counter ions. The display device is operable to be switched to a plurality of different visual color states at an exceptionally rapid switching rate while each of the color states is characterized by possessing good color intensity and definition.

  11. Synthesis and characterization of manganese diselenide nanoparticles (MnSeNPs): Determination of capsaicin by using MnSeNP-modified glassy carbon electrode.

    PubMed

    Sukanya, Ramaraj; Sakthivel, Mani; Chen, Shen-Ming; Chen, Tse-Wei; Al-Hemaid, Fahad M A; Ajmal Ali, M; Elshikh, Mohamed Soliman

    2018-06-02

    A new type of manganese diselenide nanoparticles (MnSeNPs) was synthesized by using a hydrothermal method. Their surface morphology, crystallinity and elemental distribution were characterized by using transmission electron microscopy, X-ray diffraction, energy dispersive X-ray spectroscopy, and X-ray photoelectron spectroscopy which scrutinize the formation of the NPs. The NPs were coated on a glassy carbon electrode (GCE), and electrochemical impedance spectroscopy, cyclic voltammetry and differential pulse voltammetry were applied to study the electroanalytical properties towards the oxidation of the food additive capsaicin. The modified GCE displays lower charge transfer resistance (R ct  = 29.52 Ω), a larger active surface area (0.089 cm 2 /g, and more efficient electrochemical oxidation of capsaicin compared to a MnS 2 /GCE and a bare GCE. The oxidation peak potential is 0.43 V (vs. Ag/AgCl) which is lower than that of previously reported GCEs. The sensor has a detection limit as low as 0.05 μM and an electrochemical sensitivity of 2.41 μA μM -1  cm -2 . The method was applied to the determination of capsaicin in pepper samples. Graphical abstract Electrochemical determination of capsaicin in pepper extract by using MnSeNPs modified electrode.

  12. Multi-spot porous silicon chip prepared from asymmetric electrochemical etching for human immunoglobin G sensor.

    PubMed

    Um, Sungyong; Cho, Bomin; Woo, Hee-Gweon; Sohn, Honglae

    2011-08-01

    Multi-spot porous silicon (MSPS)-based optical biosensor was developed to specify the biomolecules. MSPS chip was generated by an electrochemical etching of silicon wafer using an asymmetric electrode configuration in aqueous ethanolic HF solution and constituted with nine arrayed porous silicon. MSPS prepared from anisotropic etching conditions displayed the Fabry-Pérot fringe patterns which varied spatially across the porous silicon (PS). Each spot displayed different reflection resonances and different pore characteristics as a function of the lateral distance from the Pt counter electrode. The sensor system consists of the 3 x 3 spot array of porous silicon modified with Protein A. The system was probed with various fragments of an aqueous Human Immunoglobin G (Ig G) analyte. The sensor operated by measurement of the reflection patterns in the white light reflection spectrum of MSPS. Molecular binding and specificity was detected as a shift in wavelength of these Fabry-Pérot fringe patterns.

  13. Screen-Printed Carbon Electrodes Modified with Cobalt Phthalocyanine for Selective Sulfur Detection in Cosmetic Products

    PubMed Central

    Chen, Pei-Yen; Luo, Chin-Hsiang; Chen, Mei-Chin; Tsai, Feng-Jie; Chang, Nai-Fang; Shih, Ying

    2011-01-01

    Cobalt phthalocyanine (CoPc) films were deposited on the surface of a screen-printed carbon electrode using a simple drop coating method. The cyclic voltammogram of the resulting CoPc modified screen-printed electrode (CoPc/SPE) prepared under optimum conditions shows a well-behaved redox couple due to the (CoI/CoII) system. The CoPc/SPE surface demonstrates excellent electrochemical activity towards the oxidation of sulfur in a 0.01 mol·L−1 NaOH. A linear calibration curve with the detection limit (DL, S/N = 3) of 0.325 mg·L−1 was achieved by CoPc/SPE coupled with flow injection analysis of the sulfur concentration ranging from 4 to 1120 mg·L−1. The precision of the system response was evaluated (3.60% and 3.52% RSD for 12 repeated injections), in the range of 64 and 480 mg·L−1 sulfur. The applicability of the method was successfully demonstrated in a real sample analysis of sulfur in anti-acne creams, and good recovery was obtained. The CoPc/SPE displayed several advantages in sulfur determination including easy fabrication, high stability, and low cost. PMID:21747708

  14. Electrochemical determination of L-phenylalanine at polyaniline modified carbon electrode based on β-cyclodextrin incorporated carbon nanotube composite material and imprinted sol-gel film.

    PubMed

    Hu, Yu-fang; Zhang, Zhao-hui; Zhang, Hua-bin; Luo, Li-juan; Yao, Shou-zhuo

    2011-04-15

    A sensitive and selective electrochemical sensor based on a polyaniline modified carbon electrode for the determination of L-phenylalanine has been proposed by utilizing β-cyclodextrin (β-CD) incorporated multi-walled carbon nanotube (MWNT) and imprinted sol-gel film. The electrochemical behavior of the sensor towards L-phenylalanine was investigated by cyclic voltammetry (CV), differential pulse voltammetry (DPV), and amperometric i-t curve. The surface morphologies of layer-by-layer assembly electrodes were displayed by scanning electron microscope (SEM). The response mechanism of the imprinted sensor for L-phenylalanine was based on the inclusion interaction of β-CD and molecular recognition capacity of the imprinted film for L-phenylalanine. A linear calibration plot was obtained covering the concentration range from 5.0 × 10(-7) to 1.0 × 10(-4) mol L(-1) with a detection limit of 1.0 × 10(-9) mol L(-1). With excellent sensitivity, selectivity, stability, reproducibility and recovery, the electrochemical imprinted sensor was used to detect L-phenylalanine in blood plasma samples successfully. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. Biosensing of glucose in flow injection analysis system based on glucose oxidase-quantum dot modified pencil graphite electrode.

    PubMed

    Sağlam, Özlem; Kızılkaya, Bayram; Uysal, Hüseyin; Dilgin, Yusuf

    2016-01-15

    A novel amperometric glucose biosensor was proposed in flow injection analysis (FIA) system using glucose oxidase (GOD) and Quantum dot (ZnS-CdS) modified Pencil Graphite Electrode (PGE). After ZnS-CdS film was electrochemically deposited onto PGE surface, GOD was immobilized on the surface of ZnS-CdS/PGE through crosslinking with chitosan (CT). A pair of well-defined reversible redox peak of GOD was observed at GOD/CT/ZnS-CdS/PGE based on enzyme electrode by direct electron transfer between the protein and electrode. Further, obtained GOD/CT/ZnS-CdS/PGE offers a disposable, low cost, selective and sensitive electrochemical biosensing of glucose in FIA system based on the decrease of the electrocatalytic response of the reduced form of GOD to dissolved oxygen. Under optimum conditions (flow rate, 1.3mL min(-1); transmission tubing length, 10cm; injection volume, 100μL; and constant applied potential, -500mV vs. Ag/AgCl), the proposed method displayed a linear response to glucose in the range of 0.01-1.0mM with detection limit of 3.0µM. The results obtained from this study would provide the basis for further development of the biosensing using PGE based FIA systems. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. A glassy carbon electrode modified with poly(2,4-dinitrophenylhydrazine) for simultaneous detection of dihydroxybenzene isomers.

    PubMed

    Lopa, Nasrin Siraj; Rahman, Md Mahbubur; Jang, Hohyoun; Sutradhar, Sabuj Chandra; Ahmed, Faiz; Ryu, Taewook; Kim, Whangi

    2017-12-06

    2,4-Dinitrophenylhydrazine (DNPH) was electropolymerized on the surface of an anodized glassy carbon electrode by cyclic voltammetry. The anodized electrode has a highly electroactive surface due to the creation of chemically functionalized graphitic nanoparticles, and this facilitates the formation of poly-DNPH via radical polymerization. Poly-DNPH displays excellent redox activity due to the presence of nitro groups on its backbone. These catalyze the electro-oxidation of hydroquinone (HQ) and catechol (CT). The peak-to-peak separation is around 109 mV, while a bare GCE cannot resolve the peaks (located at 165 and 274 mV vs. Ag/AgCl). Sensitivity is also enhanced to ∼1.20 and 1.19 μA·cm -2 ·μM -1 , respectively. The sensor has a linear response that covers the 20-250 μM concentration range for both HQ and CT, with 0.75 and 0.76 μM detection limits, respectively, at simultaneous detection. Commonly present species do not interfere. Graphical abstract A novel conducting poly(2,4-dinitrophenylhydrazine)-modified anodized glassy carbon electrode (pDNPH/AGCE) was developed by electrochemical method. The electro-catalytic activity of pDNPH/AGCE sensor was investigated for the selective and simultaneous electrochemical detection of hydroquinone (HQ) and catechol (CT), which revealed high sensitivities and low detection limits with excellent stability.

  17. Graphene-Wrapped Ni(OH)2 Hollow Spheres as Novel Electrode Material for Supercapacitors.

    PubMed

    Sun, Jinfeng; Wang, Jinqing; Li, Zhangpeng; Ou, Junfei; Niu, Lengyuan; Wang, Honggang; Yang, Shengrong

    2015-09-01

    Graphene-wrapped Ni(OH)2 hollow spheres were prepared via electrostatic interaction between poly(diallyldimethylammonium chloride) (PDDA) modified Ni(OH)2 and graphene oxide (GO) in an aqueous dispersion, followed by the reduction of GO. Morphological and structural analysis by field-emission scanning electron microscopy, X-ray diffraction, Raman spectroscopy, X-ray photoelectron spectroscopy and thermogravimetric analysis confirmed the successful coating of graphene on Ni(OH)2 hollow spheres with a content of 3.8 wt%. And then its application as electrode material for supercapacitor has been investigated by cyclic voltammetry (CV) and galvanostatic charge-discharge tests. Results show that the sample displays a high capacitance of 1368 F g(-1) at a current density of 1 A g(-1), much better than that of pure Ni(OH)2, illustrating that such composite is a promising candidate as electrode material for supercapacitors.

  18. Surface modification of amine-functionalised graphite for preparation of cobalt hexacyanoferrate (CoHCF)-modified electrode: an amperometric sensor for determination of butylated hydroxyanisole (BHA).

    PubMed

    Prabakar, S J Richard; Narayanan, S Sriman

    2006-12-01

    A cobalt hexacyanoferrate (CoHCF)-modified graphite paraffin wax composite electrode was prepared by a new approach. An amine-functionalised graphite powder was used for the fabrication of the electrode. A functionalised graphite paraffin wax composite electrode was prepared and the surface of the electrode was modified with a thin film of CoHCF. Various parameters that influence the electrochemical behaviour of the modified electrode were studied by varying the background electrolytes, scan rates and pH. The modified electrode showed good electrocatalytic activity towards the oxidation of butylated hydroxyanisole (BHA) under optimal conditions and showed a linear response over the range from 7.9 x 10(-7) to 1.9 x 10(-4) M of BHA with a correlation coefficient of 0.9988. The limit of detection was 1.9 x 10(-7) M. Electrocatalytic oxidation of BHA was effective at the modified electrode at a significantly reduced potential and at a broader pH range. The utility of the modified electrode as an amperometric sensor for the determination of BHA in flow systems was evaluated by carrying out hydrodynamic and chronoamperometric experiments. The modified electrode showed very good stability and a longer shelf life. The modified electrode was applied for the determination of BHA in spiked samples of chewing gum and edible sunflower oil. The advantage of this method is the ease of electrode fabrication, good stability, longer shelf life, low cost and its diverse application for BHA determination.

  19. Electrochemical detection of dopamine in the presence of ascorbic acid using PVP/graphene modified electrodes.

    PubMed

    Liu, Qin; Zhu, Xu; Huo, Zhaohui; He, Xulun; Liang, Yong; Xu, Maotian

    2012-08-15

    Graphene (GR) was synthesized through electrochemical reduction of graphene oxide and characterized by spectroscopic and electrochemical techniques. Polyvinylpyrrolidone (PVP)/graphene modified glassy carbon electrode (PVP/GR/GCE) was prepared and applied for the fabrication of dopamine (DA) sensors without the interference of ascorbic acid (AA). Compared to bare GCE, an increase of current signal was observed, demonstrating that PVP/GR/GCE exhibited favorable electron transfer kinetics and electrocatalytic activity towards the oxidation of dopamine. Furthermore, PVP/GR/GCE exhibited good ability to suppress the background current from large excess ascorbic acid. Amperometric response results show that the PVP based sensor displayed a wide linear range of 5×10(-10) to 1.13×10(-3) mol/L DA with a correlation coefficient of 0.9990 and a detection limit of 0.2 nM (S/N=3). The determination of dopamine in urine and human serum samples were studied. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Cobalt Phthalocyanine Modified Electrodes Utilised in Electroanalysis: Nano-Structured Modified Electrodes vs. Bulk Modified Screen-Printed Electrodes

    PubMed Central

    Foster, Christopher W.; Pillay, Jeseelan; Metters, Jonathan P.; Banks, Craig E.

    2014-01-01

    Cobalt phthalocyanine (CoPC) compounds have been reported to provide electrocatalytic performances towards a substantial number of analytes. In these configurations, electrodes are typically constructed via drop casting the CoPC onto a supporting electrode substrate, while in other cases the CoPC complex is incorporated within the ink of a screen-printed sensor, providing a one-shot economical and disposable electrode configuration. In this paper we critically compare CoPC modified electrodes prepared by drop casting CoPC nanoparticles (nano-CoPC) onto a range of carbon based electrode substrates with that of CoPC bulk modified screen-printed electrodes in the sensing of the model analytes l-ascorbic acid, oxygen and hydrazine. It is found that no “electrocatalysis” is observed towards l-ascorbic acid using either of these CoPC modified electrode configurations and that the bare underlying carbon electrode is the origin of the obtained voltammetric signal, which gives rise to useful electroanalytical signatures, providing new insights into literature reports where “electrocatalysis” has been reported with no clear control experiments undertaken. On the other hand true electrocatalysis is observed towards hydrazine, where no such voltammetric features are witnessed on the bare underlying electrode substrate. PMID:25414969

  1. Giant rectification in graphene nanoflake molecular devices with asymmetric graphene nanoribbon electrodes

    NASA Astrophysics Data System (ADS)

    Ji, Xiao-Li; Xie, Zhen; Zuo, Xi; Zhang, Guang-Ping; Li, Zong-Liang; Wang, Chuan-Kui

    2016-09-01

    By applying density functional theory based nonequilibrium Green's function method, we theoretically investigate the electron transport properties of a zigzag-edged trigonal graphene nanoflake (ZTGNF) sandwiched between two asymmetric zigzag graphene nanoribbon (zGNR) and armchair graphene nanoribbon (aGNR) electrodes with carbon atomic chains (CACs) as the anchoring groups. Significant rectifying effects have been observed for these molecular devices in low bias voltage regions. Interestingly, the rectifying performance of molecular devices can be optimized by changing the width of the aGNR electrode and the number of anchoring CACs. Especially, the molecular device displays giant rectification ratios up to the order of 104 when two CACs are used as the anchoring group between the ZTGNF and the right aGNR electrode. Further analysis indicates that the asymmetric shift of the perturbed molecular energy levels and the spatial parity of the electron wavefunctions in the electrodes around the Fermi level play key roles in determining the rectification performance. And the spatial distributions of tunneling electron wavefunctions under negative bias voltages can be modified to be very localized by changing the number of anchoring CACs, which is found to be the origin of the giant rectification ratios.

  2. Preparation of Fe2O3-Clorprenaline/Tetraphenylborate Nanospheres and Their Application as Ion Selective Electrode for Determination of Clorprenaline in Pork

    NASA Astrophysics Data System (ADS)

    Shao, Xintian; Zhang, Jing; Li, Donghui; Yue, Jingli; Chen, Zhenhua

    2016-04-01

    A novel modified ion selective electrode based on Fe2O3-clorprenaline/tetraphenylborate nanospheres (Fe2O3-CLPT NSs) as electroactive materials for the determination of clorprenaline hydrochloride (CLP) is described. The α-Fe2O3 nanoparticles (NPs) were prepared by hydrothermal synthesis, then self-assembled on CLP/tetraphenylborate (TPB) to form Fe2O3-CLPT NSs, which were used as a potentiometric electrode for analyte determination innovatively. The Fe2O3-CLPT NSs modified electrode exhibited a wider concentration range from 1.0 × 10-7 to 1.0 × 10-1 mol/L and a lower detection limit of 3.7 × 10-8 mol/L compared with unmodified electrodes. The selectivity of the modified electrode was evaluated by fixed interference method. The good performance of the modified electrode such as wide pH range (2.4-6.7), fast response time (15 s), and adequate lifetime (14 weeks) indicate the utility of the modified electrode for evaluation of CLP content in various real samples. Finally, the modified electrode was successfully employed to detect CLP in pork samples with satisfactory results. These results demonstrated the Fe2O3-CLPT NSs modified electrode to be a functional and convenient method to the field of potentiometry determination of CLP in real samples.

  3. Lipase-nanoporous gold biocomposite modified electrode for reliable detection of triglycerides.

    PubMed

    Wu, Chao; Liu, Xueying; Li, Yufei; Du, Xiaoyu; Wang, Xia; Xu, Ping

    2014-03-15

    For triglycerides biosensor design, protein immobilization is necessary to create the interface between the enzyme and the electrode. In this study, a glassy carbon electrode (GCE) was modified with lipase-nanoporous gold (NPG) biocomposite (denoted as lipase/NPG/GCE). Due to highly conductive, porous, and biocompatible three-dimensional structure, NPG is suitable for enzyme immobilization. In cyclic voltammetry experiments, the lipase/NPG/GCE bioelectrode displayed surface-confined reaction in a phosphate buffer solution. Linear responses were obtained for tributyrin concentrations ranging from 50 to 250 mg dl(-1) and olive oil concentrations ranging from 10 to 200 mg dl(-1). The value of apparent Michaelis-Menten constant for tributyrin was 10.67 mg dl(-1) and the detection limit was 2.68 mg dl(-1). Further, the lipase/NPG/GCE bioelectrode had strong anti-interference ability against urea, glucose, cholesterol, and uric acid as well as a long shelf-life. For the detection of triglycerides in human serum, the values given by the lipase/NPG/GCE bioelectrode were in good agreement with those of an automatic biochemical analyzer. These properties along with a long self-life make the lipase/NPG/GCE bioelectrode an excellent choice for the construction of triglycerides biosensor. © 2013 Elsevier B.V. All rights reserved.

  4. Two-Channel Kondo Effect in a Modified Single Electron Transistor

    NASA Astrophysics Data System (ADS)

    Oreg, Yuval; Goldhaber-Gordon, David

    2003-04-01

    We suggest a simple system of two electron droplets which should display two-channel Kondo behavior at experimentally accessible temperatures. Stabilization of the two-channel Kondo fixed point requires fine control of the electrochemical potential in each droplet, which can be achieved by adjusting voltages on nearby gate electrodes. We study the conditions for obtaining this type of two-channel Kondo behavior, discuss the experimentally observable consequences, and explore the gener­alization to the multichannel Kondo case.

  5. Fe local structure in Pt-free nitrogen-modified carbon based electrocatalysts: XAFS study

    NASA Astrophysics Data System (ADS)

    Witkowska, Agnieszka; Giuli, Gabriele; Renzi, Marco; Marzorati, Stefania; Yiming, Wubulikasimu; Nobili, Francesco; Longhi, Mariangela

    2016-05-01

    The paper presents a new results on the bonding environment (coordination number and geometry) and on oxidation states of Fe in nitrogen-modified Fe/C composites used as Pt-free catalysts for oxygen reduction in Direct Hydrogen Fuel Cells. Starting from glucose or fructose, two catalysts displaying different electrochemical performance were prepared and studied in the form of pristine powder and thin catalytic layer of electrode by Fe K-edge XAFS spectroscopy. The results show how the Fe local structure varies as a function of different synthesis conditions and how changes in the structural properties of the catalysts are related to fuel cell electrochemical performance increase during a cell activation period.

  6. Understanding interaction of curcumin and metal ions on electrode surfaces using EDXRF

    NASA Astrophysics Data System (ADS)

    Joseph, Daisy; Kumar, K. Krishna; Narayanan, S. Sriman

    2018-04-01

    A chemically modified electrode was developed for determination of metal ions (Cd, Pb, Zn, Co, Hg). The modifier used for the study was Curcumin. Curcumin acts as a complexing agent at the surface of the electrode for preconcentration of metal ions from electrolyte to electrode surface and stripped back to electrolyte during analysis. EDXRF was used to analyze these electrodes and it was concluded that the PCR modified electrode favored effective chelation for lead and mercury.

  7. Applications of Graphene-Modified Electrodes in Microbial Fuel Cells

    PubMed Central

    Yu, Fei; Wang, Chengxian; Ma, Jie

    2016-01-01

    Graphene-modified materials have captured increasing attention for energy applications due to their superior physical and chemical properties, which can significantly enhance the electricity generation performance of microbial fuel cells (MFC). In this review, several typical synthesis methods of graphene-modified electrodes, such as graphite oxide reduction methods, self-assembly methods, and chemical vapor deposition, are summarized. According to the different functions of the graphene-modified materials in the MFC anode and cathode chambers, a series of design concepts for MFC electrodes are assembled, e.g., enhancing the biocompatibility and improving the extracellular electron transfer efficiency for anode electrodes and increasing the active sites and strengthening the reduction pathway for cathode electrodes. In spite of the challenges of MFC electrodes, graphene-modified electrodes are promising for MFC development to address the reduction in efficiency brought about by organic waste by converting it into electrical energy. PMID:28773929

  8. Breath Figures under Electrowetting: Electrically Controlled Evolution of Drop Condensation Patterns

    NASA Astrophysics Data System (ADS)

    Baratian, Davood; Dey, Ranabir; Hoek, Harmen; van den Ende, Dirk; Mugele, Frieder

    2018-05-01

    We show that electrowetting (EW) with structured electrodes significantly modifies the distribution of drops condensing onto flat hydrophobic surfaces by aligning the drops and by enhancing coalescence. Numerical calculations demonstrate that drop alignment and coalescence are governed by the drop-size-dependent electrostatic energy landscape that is imposed by the electrode pattern and the applied voltage. Such EW-controlled migration and coalescence of condensate drops significantly alter the statistical characteristics of the ensemble of droplets. The evolution of the drop size distribution displays self-similar characteristics that significantly deviate from classical breath figures on homogeneous surfaces once the electrically induced coalescence cascades set in beyond a certain critical drop size. The resulting reduced surface coverage, coupled with earlier drop shedding under EW, enhances the net heat transfer.

  9. Simultaneous determination of hydroxylamine and phenol using a nanostructure-based electrochemical sensor.

    PubMed

    Moghaddam, Hadi Mahmoudi; Beitollahi, Hadi; Tajik, Somayeh; Malakootian, Mohammad; Maleh, Hassan Karimi

    2014-11-01

    The electrochemical oxidation of hydroxylamine on the surface of a carbon paste electrode modified with carbon nanotubes and 2,7-bis(ferrocenyl ethyl)fluoren-9-one is studied. The electrochemical response characteristics of the modified electrode toward hydroxylamine and phenol were investigated. The results showed an efficient catalytic activity of the electrode for the electro-oxidation of hydroxylamine, which leads to lowering its overpotential. The modified electrode exhibits an efficient electron-mediating behavior together with well-separated oxidation peaks for hydroxylamine and phenol. Also, the modified electrode was used for determination of hydroxylamine and phenol in some real samples.

  10. Chemically modified graphite for electrochemical cells

    DOEpatents

    Greinke, R.A.; Lewis, I.C.

    1998-05-26

    This invention relates to chemically modified graphite particles: (a) that are useful in alkali metal-containing electrode of a electrochemical cell comprising: (1) the electrode, (2) a non-aqueous electrolytic solution comprising an organic aprotic solvent which solvent tends to decompose when the electrochemical cell is in use, and an electrically conductive salt of an alkali metal, and (3) a counter electrode; and (b) that are chemically modified with fluorine, chlorine, iodine or phosphorus to reduce such decomposition. This invention also relates to electrodes comprising such chemically modified graphite and a binder and to electrochemical cells containing such electrodes. 3 figs.

  11. Selective voltammetric determination of Cd(II) by using N,S-codoped porous carbon nanofibers.

    PubMed

    Gao, Sanshuang; Liu, Jing; Luo, Jun; Mamat, Xamxikamar; Sambasivam, Sangaraju; Li, Yongtao; Hu, Xun; Wågberg, Thomas; Hu, Guangzhi

    2018-05-05

    Porous carbon nanofibers codoped with nitrogen and sulfur (NFs) were prepared by pyrolysis of trithiocyanuric acid, silica nanospheres and polyacrylonitrile (PAN) followed by electrospinning. The NFs were used to modify a glassy carbon electrode (GCE) which then displayed highly sensitive response to traces of Cd(II). Compared to a bare GCE and a Nafion modified GCE, the GCE modified with codoped NFs shows improved sensitivity for Cd(II) in differential pulse anodic sweep voltammetry. The stripping peak current (typically measured at 0.81 V vs. Ag/AgCl) increases linearly in the 2.0-500 μg·L -1 Cd(II) concentration range. This is attributed to the large surface area (109 m 2 ·g -1 ), porous structure, and high fraction of heteroatoms (19 at.% of N and 0.75 at.% of S). The method was applied to the determination of Cd(II) in (spiked) tap water where it gave recoveries that ranged between 96% and 103%. Graphical abstract Schematic of a glassy carbon electrode (GCE) modified with N- and S-codoped porous carbon nanofibers (N,S-PCNFs). This GCE has good selectivity for cadmium ion (Cd 2+ ) which can be determined by differential pulse anodic sweeping voltammetry (DPASV) with a detection limit as low as 0.7 ng·mL -1 .

  12. Improvement on the Repair Effect of Electrochemical Chloride Extraction Using a Modified Electrode Configuration

    PubMed Central

    Feng, Wei; Xu, Jinxia; Jiang, Linhua; Song, Yingbin; Cao, Yalong; Tan, Qiping

    2018-01-01

    To improve the repair effect of electrochemical chloride extraction, a modified electrode configuration is applied in this investigation. In this configuration, two auxiliary electrodes placed in the anodic and cathodic electrolytes were used as the anode and cathode, respectively. Besides this, the steel in the mortar was grounded to protect it from corrosion. By a comparative experiment, the potential evolution, various ions concentrations (Cl−, OH−, Na+, and K+) in different mortar depths, the corrosion potential, and the current density of the steel were measured. The results indicate that compared to electrochemical chloride extraction with the traditional electrode configuration, this electrochemical chloride extraction method with a modified electrode configuration has a similar chloride removal ratio. Besides this, potential of steel is just about 800 mV for a saturated calomel electrode (SCE) during the treatment, which did not reach the hydrogen evolution potential. The phenomenon of the accumulation of OH−, Na+, and K+ did not occur when the modified electrode configuration is applied. Additionally, higher corrosion potentials and lower corrosion current rates were measured after performing electrochemical chloride extraction with the modified electrode configuration. Additionally, it is a short period of time for the steel to go from activation to passivation. On this basis, the modified electrode configuration may overcome the drawbacks of electrochemical chloride extraction. PMID:29389855

  13. Electrochemical Quantification of the Antioxidant Capacity of Medicinal Plants Using Biosensors

    PubMed Central

    Rodríguez-Sevilla, Erika; Ramírez-Silva, María-Teresa; Romero-Romo, Mario; Ibarra-Escutia, Pedro; Palomar-Pardavé, Manuel

    2014-01-01

    The working area of a screen-printed electrode, SPE, was modified with the enzyme tyrosinase (Tyr) using different immobilization methods, namely entrapment with water-soluble polyvinyl alcohol (PVA), cross-linking using glutaraldehyde (GA), and cross-linking using GA and human serum albumin (HSA); the resulting electrodes were termed SPE/Tyr/PVA, SPE/Tyr/GA and SPE/Tyr/HSA/GA, respectively. These biosensors were characterized by means of amperometry and EIS techniques. From amperometric evaluations, the apparent Michaelis-Menten constant, Km′, of each biosensor was evaluated while the respective charge transfer resistance, Rct, was assessed from impedance measurements. It was found that the SPE/Tyr/GA had the smallest Km′ (57 ± 7) μM and Rct values. This electrode also displayed both the lowest detection and quantification limits for catechol quantification. Using the SPE/Tyr/GA, the Trolox Equivalent Antioxidant Capacity (TEAC) was determined from infusions prepared with “mirto” (Salvia microphylla), “hHierba dulce” (Lippia dulcis) and “salve real” (Lippia alba), medicinal plants commonly used in Mexico. PMID:25111237

  14. Electrochemical quantification of the antioxidant capacity of medicinal plants using biosensors.

    PubMed

    Rodríguez-Sevilla, Erika; Ramírez-Silva, María-Teresa; Romero-Romo, Mario; Ibarra-Escutia, Pedro; Palomar-Pardavé, Manuel

    2014-08-08

    The working area of a screen-printed electrode, SPE, was modified with the enzyme tyrosinase (Tyr) using different immobilization methods, namely entrapment with water-soluble polyvinyl alcohol (PVA), cross-linking using glutaraldehyde (GA), and cross-linking using GA and human serum albumin (HSA); the resulting electrodes were termed SPE/Tyr/PVA, SPE/Tyr/GA and SPE/Tyr/HSA/GA, respectively. These biosensors were characterized by means of amperometry and EIS techniques. From amperometric evaluations, the apparent Michaelis-Menten constant, Km', of each biosensor was evaluated while the respective charge transfer resistance, Rct, was assessed from impedance measurements. It was found that the SPE/Tyr/GA had the smallest Km' (57 ± 7) µM and Rct values. This electrode also displayed both the lowest detection and quantification limits for catechol quantification. Using the SPE/Tyr/GA, the Trolox Equivalent Antioxidant Capacity (TEAC) was determined from infusions prepared with "mirto" (Salvia microphylla), "hHierba dulce" (Lippia dulcis) and "salve real" (Lippia alba), medicinal plants commonly used in Mexico.

  15. Simultaneous electrochemical determination of dopamine and paracetamol on multiwalled carbon nanotubes/graphene oxide nanocomposite-modified glassy carbon electrode.

    PubMed

    Cheemalapati, Srikanth; Palanisamy, Selvakumar; Mani, Veerappan; Chen, Shen-Ming

    2013-12-15

    In the present study, multiwalled carbon nanotubes (MWCNT)/graphene oxide (GO) nanocomposite was prepared by homogenous dispersion of MWCNT and GO and used for the simultaneous voltammetric determination of dopamine (DA) and paracetamol (PA). The TEM results confirmed that MWCNT walls were wrapped well with GO sheets. The MWCNT/GO nanocomposite showed superior electrocatalytic activity towards the oxidation of DA and PA, when compared with either pristine MWCNT or GO. The major reason for the efficient simultaneous detection of DA and PA at nanocomposite was the synergistic effect between MWCNT and GO. The electrochemical oxidation of DA and PA was investigated by cyclic voltammetry, differential pulse voltammetry and amperometry. The nanocomposite modified electrode showed electrocatalytic oxidation of DA and PA in the linear response range from 0.2 to 400 µmol L(-1) and 0.5 to 400 µmol L(-1) with the detection limit of 22 nmol L(-1) and 47 nmol L(-1) respectively. The proposed sensor displayed good selectivity, sensitivity, stability with appreciable consistency and precision. © 2013 Elsevier B.V. All rights reserved.

  16. Fabrication, characterisation and voltammetric studies of gold amalgam nanoparticle modified electrodes.

    PubMed

    Welch, Christine M; Nekrassova, Olga; Dai, Xuan; Hyde, Michael E; Compton, Richard G

    2004-09-20

    The tabrication, characterisation, and electroanalytical application of gold and gold amalgam nanoparticles on glassy carbon electrodes is examined. Once the deposition parameters for gold nanoparticle electrodes were optimised, the analytical utility of the electrodes was examined in CrIII electroanalysis. It was found that gold nanoparticle modified (Au-NM) electrodes possess higher sensitivity than gold macroelectrodes. In addition, gold amalgam nanoparticle modified (AuHg-NM) electrodes were fabricated and characterised. The response of those electrodes was recorded in the presence of important environmental analytes (heavy metal cations). It was found AuHg-NM electrodes demonstrate a unique voltammetric behaviour and can be applied for electroanalysis when enhanced sensitivity is crucial.

  17. CHROMIUM ELECTROANALYSIS AT SCREEN PRINTED ELECTRODE MODIFIED BY THIN FILMS OF NICKEL

    EPA Science Inventory

    A rapid and potentially cost-effective electrochemical method is reported for analysis of chromium (VI) and Chromium(III) using a nickel modified screen printed carbon ink electrode. Electrochemical characteristics of nickel modified electrode as well voltammetric behavior f...

  18. Electrochemical detection of dopamine in the presence of ascorbic acid using graphene modified electrodes.

    PubMed

    Kim, Yang-Rae; Bong, Sungyool; Kang, Yeon-Joo; Yang, Yongtak; Mahajan, Rakesh Kumar; Kim, Jong Seung; Kim, Hasuck

    2010-06-15

    Dopamine plays a significant role in the function of human metabolism. It is important to develop sensitive sensor for the determination of dopamine without the interference by ascorbic acid. This paper reports the synthesis of graphene using a modified Hummer's method and its application for the electrochemical detection of dopamine. Electrochemical measurements were performed at glassy carbon electrode modified with graphene via drop-casting method. Cyclic voltammogram of ferri/ferrocyanide redox couple at graphene modified electrode showed an increased current intensity compared with glassy carbon electrode and graphite modified electrode. The decrease of charge transfer resistance was also analyzed by electrochemical impedance spectroscopy. The capacity of graphene modified electrode for selective detection of dopamine was confirmed in a sufficient amount of ascorbic acid (1 mM). The observed linear range for the determination of dopamine concentration was from 4 microM to 100 microM. The detection limit was estimated to be 2.64 microM. Copyright 2010 Elsevier B.V. All rights reserved.

  19. Stabilization of electrogenerated copper species on electrodes modified with quantum dots.

    PubMed

    Martín-Yerga, Daniel; Costa-García, Agustín

    2017-02-15

    Quantum dots (QDs) have special optical, surface, and electronic properties that make them useful for electrochemical applications. In this work, the electrochemical behavior of copper in ammonia medium is described using bare screen-printed carbon electrodes and the same modified with CdSe/ZnS QDs. At the bare electrodes, the electrogenerated Cu(i) and Cu(0) species are oxidized by dissolved oxygen in a fast coupled chemical reaction, while at the QDs-modified electrode, the re-oxidation of Cu(i) and Cu(0) species can be observed, which indicates that they are stabilized by the nanocrystals present on the electrode surface. A weak adsorption is proposed as the main cause for this stabilization. The electrodeposition on electrodes modified with QDs allows the generation of random nanostructures with copper nanoparticles, avoiding the preferential nucleation onto the most active electrode areas.

  20. Method of fabrication of display pixels driven by silicon thin film transistors

    DOEpatents

    Carey, Paul G.; Smith, Patrick M.

    1999-01-01

    Display pixels driven by silicon thin film transistors are fabricated on plastic substrates for use in active matrix displays, such as flat panel displays. The process for forming the pixels involves a prior method for forming individual silicon thin film transistors on low-temperature plastic substrates. Low-temperature substrates are generally considered as being incapable of withstanding sustained processing temperatures greater than about 200.degree. C. The pixel formation process results in a complete pixel and active matrix pixel array. A pixel (or picture element) in an active matrix display consists of a silicon thin film transistor (TFT) and a large electrode, which may control a liquid crystal light valve, an emissive material (such as a light emitting diode or LED), or some other light emitting or attenuating material. The pixels can be connected in arrays wherein rows of pixels contain common gate electrodes and columns of pixels contain common drain electrodes. The source electrode of each pixel TFT is connected to its pixel electrode, and is electrically isolated from every other circuit element in the pixel array.

  1. An electrochemical sensor for detection of neurotransmitter-acetylcholine using metal nanoparticles, 2D material and conducting polymer modified electrode.

    PubMed

    Chauhan, Nidhi; Chawla, Sheetal; Pundir, C S; Jain, Utkarsh

    2017-03-15

    An essential biological sensor for acetylcholine (ACh) detection is constructed by immobilizing enzymes, acetylcholinesterase (AChE) and choline oxidase (ChO), on the surface of iron oxide nanoparticles (Fe 2 O 3 NPs), poly(3,4-ethylenedioxythiophene) (PEDOT)-reduced graphene oxide (rGO) nanocomposite modified fluorine doped tin oxide (FTO). The qualitative and quantitative measurements of nanocomposites properties were accomplished by scanning electron microscope (SEM), electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). This prepared biological sensor delineated a wide linear range of 4.0nM to 800μM with a response time less than 4s and detection limit (based on S/N ratio) of 4.0nM. The sensor showed perfect sensitivity, excessive selectivity and stability for longer period of time during storage. Besides its very high-sensitivity, the biosensor has displayed a low detection limit which is reported for the first time in comparison to previously reported ACh sensors. By fabricating Fe 2 O 3 NPs/rGO/PEDOT modified FTO electrode for determining ACh level in serum samples, the applicability of biosensor has increased immensely as the detection of the level neurotransmitter is first priority for patients suffering from memory loss or Alzheimer's disease (AD). Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Investigation on direct electrochemical and electrocatalytic behavior of hemoglobin on palladium-graphene modified electrode.

    PubMed

    Chen, Wei; Niu, Xueliang; Li, Xiaoyan; Li, Xiaobao; Li, Guangjiu; He, Bolin; Li, Qiutong; Sun, Wei

    2017-11-01

    Palladium-graphene (Pd-GR) nanocomposite was acted as modifier for construction of the modified electrode with direct electrochemistry of hemoglobin (Hb) realized. By using Nafion as the immobilization film, Hb was fixed tightly on Pd-GR nanocomposite modified carbon ionic liquid electrode. Electrochemical behaviors of Hb modified electrode were checked by cyclic voltammetry and a pair of redox peaks originated from direct electron transfer of Hb was appeared. The Hb modified electrode had excellent electrocatalytic activity to the reduction of trichloroacetic acid and sodium nitrite in the concentration range from 0.6 to 13.0mmol·L -1 and from 0.04 to 0.5 mmol·L -1 . Therefore Pd-GR nanocomposite was proven to be a good candidate for the fabrication of third-generation electrochemical biosensor. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Preparation of hemoglobin-modified boron-doped diamond for acrylamide biosensors

    NASA Astrophysics Data System (ADS)

    Umam, K.; Saepudin, E.; Ivandini, T. A.

    2017-04-01

    Boron-doped diamond (BDD) electrode was modified with haemoglobin to develop electrochemical biosensors of acrylamide. Prior to modify with haemoglobin, the BDD was modified by gold nanoparticles to increase the affinity of BDD against haemoglobin. The electrochemical behaviour of the electrode in the presence of acrylamide was studied in comparison to haemoglobin-modified gold electrodes. Cyclic voltammetry indicated the optimum responses in 0.1 M sodium acetate buffer at pH 5. The responses were linear to the acrylamide concentration range of 5-50 μM with an estimated detection limit of 5.14 μM, suggesting that the electrode was promising for acrylamide biosensors.

  4. Electrochemiluminescence of luminol at the titanate nanotubes modified glassy carbon electrode.

    PubMed

    Xu, Guifang; Zeng, Xiaoxue; Lu, Shuangyan; Dai, Hong; Gong, Lingshan; Lin, Yanyu; Wang, Qingping; Tong, Yuejin; Chen, Guonan

    2013-01-01

    A new strategy for the construction of a sensitive and stable electrochemiluminescent platform based on titanate nanotubes (TNTs) and Nafion composite modified electrode for luminol is described, TNTs contained composite modified electrodes that showed some photocatalytic activity toward luminol electrochemiluminescence emission, and thus could dramatically enhance luminol light emission. This extremely sensitive and stable platform allowed a decrease of the experiment electrochemiluminescence luminol reagent. In addition, in luminol solution at low concentrations, we compared the capabilities of a bare glassy carbon electrode with the TNT composite modified electrode for hydrogen peroxide detection. The results indicated that compared with glassy carbon electrode this platform was extraordinarily sensitive to hydrogen peroxide. Therefore, by combining with an appropriate enzymatic reaction, this platform would be a sensitive matrix for many biomolecules.

  5. Imprinted zeolite modified carbon paste electrode as a potentiometric sensor for uric acid

    NASA Astrophysics Data System (ADS)

    Khasanah, Miratul; Widati, Alfa Akustia; Fitri, Sarita Aulia

    2016-03-01

    Imprinted zeolite modified carbon paste electrode (carbon paste-IZ) has been developed and applied to determine uric acid by potentiometry. The imprinted zeolite (IZ) was synthesized by the mole ratio of uric acid/Si of 0.0306. The modified electrode was manufactured by mass ratio of carbon, IZ and solid paraffin was 40:25:35. The modified electrode had shown the measurement range of 10-5 M to 10-2 M with Nernst factor of 28.6 mV/decade, the detection limit of 5.86 × 10-6 M and the accuracy of 95.3 - 105.0%. Response time of the electrode for uric acid 10-5 M - 10-2 M was 25 - 44 s. The developed electrode showed the high selectivity toward uric acid in the urea matrix. Life time of the carbon paste-IZ electrode was 10 weeks.

  6. Detection of Quinoline in G. boninense-Infected Plants Using Functionalized Multi-Walled Carbon Nanotubes: A Field Study.

    PubMed

    Akanbi, Fowotade Sulayman; Yusof, Nor Azah; Abdullah, Jaafar; Sulaiman, Yusran; Hushiarian, Roozbeh

    2017-07-01

    Carbon nanotubes (CNTs) reinforced with gold nanoparticles (AuNPs) and chitosan nanoparticles (CTSNPs) were anchored on a screen-printed electrode to fabricate a multi-walled structure for the detection of quinoline. The surface morphology of the nanocomposites and the modified electrode was examined by an ultra-high resolution field emission scanning electron microscope (FESEM), and Fourier-transform infrared (FT-IR) spectroscopy was used to confirm the presence of specific functional groups on the multi-walled carbon nanotubes MWCNTs. Cyclic voltammetry (CV) and linear sweep voltammetry (LSV) were used to monitor the layer-by-layer assembly of ultra-thin films of nanocomposites on the surface of the electrode and other electrochemical characterizations. Under optimized conditions, the novel sensor displayed outstanding electrochemical reactivity towards the electro-oxidation of quinoline. The linear range was fixed between 0.0004 and 1.0 μM, with a limit of detection (LOD) of 3.75 nM. The fabricated electrode exhibited high stability with excellent sensitivity and selectivity, specifically attributable to the salient characteristics of AuNPs, CTSNPs, and MWCNTs and the synergistic inter-relationship between them. The newly developed electrode was tested in the field. The Ipa increased with an increase in the amount of quinoline solution added, and the peak potential deviated minimally, depicting the real capability of the newly fabricated electrode.

  7. Detection of Quinoline in G. boninense-Infected Plants Using Functionalized Multi-Walled Carbon Nanotubes: A Field Study

    PubMed Central

    Akanbi, Fowotade Sulayman; Yusof, Nor Azah; Abdullah, Jaafar; Sulaiman, Yusran; Hushiarian, Roozbeh

    2017-01-01

    Carbon nanotubes (CNTs) reinforced with gold nanoparticles (AuNPs) and chitosan nanoparticles (CTSNPs) were anchored on a screen-printed electrode to fabricate a multi-walled structure for the detection of quinoline. The surface morphology of the nanocomposites and the modified electrode was examined by an ultra-high resolution field emission scanning electron microscope (FESEM), and Fourier-transform infrared (FT-IR) spectroscopy was used to confirm the presence of specific functional groups on the multi-walled carbon nanotubes MWCNTs. Cyclic voltammetry (CV) and linear sweep voltammetry (LSV) were used to monitor the layer-by-layer assembly of ultra-thin films of nanocomposites on the surface of the electrode and other electrochemical characterizations. Under optimized conditions, the novel sensor displayed outstanding electrochemical reactivity towards the electro-oxidation of quinoline. The linear range was fixed between 0.0004 and 1.0 μM, with a limit of detection (LOD) of 3.75 nM. The fabricated electrode exhibited high stability with excellent sensitivity and selectivity, specifically attributable to the salient characteristics of AuNPs, CTSNPs, and MWCNTs and the synergistic inter-relationship between them. The newly developed electrode was tested in the field. The Ipa increased with an increase in the amount of quinoline solution added, and the peak potential deviated minimally, depicting the real capability of the newly fabricated electrode. PMID:28671561

  8. Development of amperometric lysine biosensors based on Au nanoparticles/multiwalled carbon nanotubes/polymers modified Au electrodes.

    PubMed

    Chauhan, Nidhi; Singh, Anamika; Narang, Jagriti; Dahiya, Swati; Pundir, C S

    2012-11-07

    The construction of two amperometric l-lysine biosensors is described in this study. The construction comprises the covalent immobilization of lysine oxidase (LOx) onto nanocomposite composed of gold nanoparticles (AuNPs) and carboxylated multiwalled carbon nanotubes (c-MWCNT), decorated on (i) polyaniline (PANI) and (ii) poly 1,2 diaminobenzene (DAB), electrodeposited on Au electrodes. The biosensors were characterized by scanning electron microscopy (SEM), Fourier transform infrared (FTIR) and electrochemical impedance spectroscopy (EIS) studies. The optimum response (current) was observed within 2 s at pH 7.0 and 25 °C for LOx/AuNPs/c-MWCNT/PANI/Au, and 4 s at pH 7.0 and 30 °C for LOx/AuNPs/c-MWCNT/DAB/Au electrodes. There was a linear relationship between current and lysine concentration ranging from 5.0 to 600 μM for LOx/AuNPs/c-MWCNT/PANI/Au with a detection limit of 5.0 μM, and 20 to 600 μM for the LOx/AuNPs/c-MWCNT/DAB/Au electrode with a detection limit of 20 μM. The PANI modified electrode was in good agreement with the standard HPLC method, with a better correlation (r = 0.992) compared to the DAB modified electrode (r = 0.986). These observations revealed that the PANI modified Au electrode was better than the DAB modified electrode, and hence it was employed for the determination of lysine in milk, pharmaceutical tablets and sera. The PANI modified electrode showed a half life of 120 days, compared to that of 90 days for the DAB modified electrode, after their 100 uses, when stored at 4 °C.

  9. Application of three-dimensional reduced graphene oxide-gold composite modified electrode for direct electrochemistry and electrocatalysis of myoglobin.

    PubMed

    Shi, Fan; Xi, Jingwen; Hou, Fei; Han, Lin; Li, Guangjiu; Gong, Shixing; Chen, Chanxing; Sun, Wei

    2016-01-01

    In this paper a three-dimensional (3D) reduced graphene oxide (RGO) and gold (Au) composite was synthesized by electrodeposition and used for the electrode modification with carbon ionic liquid electrode (CILE) as the substrate electrode. Myoglobin (Mb) was further immobilized on the surface of 3D RGO-Au/CILE to obtain an electrochemical sensing platform. Direct electrochemistry of Mb on the modified electrode was investigated with a pair of well-defined redox waves appeared on cyclic voltammogram, indicating the realization of direct electron transfer of Mb with the modified electrode. The results can be ascribed to the presence of highly conductive 3D RGO-Au composite on the electrode surface that accelerate the electron transfer rate between the electroactive center of Mb and the electrode. The Mb modified electrode showed excellent electrocatalytic activity to the reduction of trichloroacetic acid in the concentration range from 0.2 to 36.0 mmol/L with the detection limit of 0.06 mmol/L (3σ). Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Synthesis of ZnO nanorods and their application in the construction of a nanostructure-based electrochemical sensor for determination of levodopa in the presence of carbidopa.

    PubMed

    Molaakbari, Elahe; Mostafavi, Ali; Beitollahi, Hadi; Alizadeh, Reza

    2014-09-07

    A novel carbon paste electrode modified with ZnO nanorods and 5-(4'-amino-3'-hydroxy-biphenyl-4-yl)-acrylic acid (3,4'-AAZCPE) was fabricated. The electrochemical study of the modified electrode, as well as its efficiency for the electrocatalytic oxidation of levodopa, is described. The electrode was employed to study the electrocatalytic oxidation of levodopa, using cyclic voltammetry (CV), chronoamperometry (CHA), and square-wave voltammetry (SWV) as diagnostic techniques. It has been found that the oxidation of levodopa at the surface of the modified electrode occurs at a potential of about 370 mV less positive than that of an unmodified carbon paste electrode. The SWV results exhibit a linear dynamic range from 1.0 × 10(-7) M to 7.0 × 10(-5) M and a detection limit of 3.5 × 10(-8) M for levodopa. In addition, this modified electrode was used for the simultaneous determination of levodopa and carbidopa. Finally, the modified electrode was used for the determination of levodopa and carbidopa in some real samples.

  11. Electrochemical investigation of the voltammetric determination of hydrochlorothiazide using a nickel hydroxide modified nickel electrode.

    PubMed

    Machini, Wesley B S; David-Parra, Diego N; Teixeira, Marcos F S

    2015-12-01

    The preparation and electrochemical characterization of a nickel hydroxide modified nickel electrode as well as its behavior as electrocatalyst toward the oxidation of hydrochlorothiazide (HCTZ) were investigated. The electrochemical behavior of the modified electrode and the electrooxidation of HCTZ were explored using cyclic voltammetry. The voltammetric response of the modified electrode in the detection of HCTZ is based on the electrochemical oxidation of the Ni(II)/Ni(III) and a chemical redox process. The analytical parameters for the electrooxidation of HCTZ by the nickel hydroxide modified nickel electrode were obtained in NaOH solution, in which the linear voltammetric response was in the concentration range from 1.39×10(-5) to 1.67×10(-4)mol L(-1) with a limit of detection of 7.92×10(-6)mol L(-1) and a sensitivity of 0.138 μA Lmmol(-1). Tafel analysis was used to elucidate the kinetics and mechanism of HCTZ oxidation by the modified electrode. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. One-Step Electrochemical Fabrication of Reduced Graphene Oxide/Gold Nanoparticles Nanocomposite-Modified Electrode for Simultaneous Detection of Dopamine, Ascorbic Acid, and Uric Acid

    PubMed Central

    Lee, Chang-Seuk; Yu, Su Hwan; Kim, Tae Hyun

    2017-01-01

    Here, we introduce the preparation of the hybrid nanocomposite-modified electrode consisting of reduced graphene oxide (RGO) and gold nanoparticles (AuNPs) using the one-step electrochemical method, allowing for the simultaneous and individual detection of dopamine (DA), ascorbic acid (AA), and uric acid (UA). RGO/AuNPs nanocomposite was formed on a glassy carbon electrode by the co-reduction of GO and Au3+ using the potentiodynamic method. The RGO/AuNPs nanocomposite-modified electrode was produced by subjecting a mixed solution of GO and Au3+ to cyclic sweeping from −1.5 V to 0.8 V (vs. Ag/AgCl) at a scan rate 10 mV/s for 3 cycles. The modified electrode was characterized by scanning electron microscopy, Raman spectroscopy, contact angle measurement, electrochemical impedance spectroscopy, and cyclic voltammetry. Voltammetry results confirm that the RGO/AuNPs nanocomposite-modified electrode has high catalytic activity and good resolution for the detection of DA, AA, and UA. The RGO/AuNPs nanocomposite-modified electrode exhibits stable amperometric responses for DA, AA, and UA, respectively, and its detection limits were estimated to be 0.14, 9.5, and 25 μM. The modified electrode shows high selectivity towards the determination of DA, AA, or UA in the presence of potentially active bioelements. In addition, the resulting sensor exhibits many advantages such as fast amperometric response, excellent operational stability, and appropriate practicality. PMID:29301209

  13. Efficient inverted polymer solar cells based on conjugated polyelectrolyte and zinc oxide modified ITO electrode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yuan, Tao; Zhu, Xiaoguang; Tu, Guoli, E-mail: tgl@hust.edu.cn

    Efficient inverted polymer solar cells (PSCs) were constructed by utilizing a conjugated polyelectrolyte PF{sub EO}SO{sub 3}Na and zinc oxide to modify the indium tin oxide (ITO) electrode. The ITO electrode modified by PF{sub EO}SO{sub 3}Na and zinc oxide possesses high transparency, increased electron mobility, smoothened surface, and lower work function. PTB7:PC{sub 71}BM inverted PSCs containing the modified ITO electrode achieved a high power conversion efficiency (PCE) of 8.49%, exceeding that of the control device containing a ZnO modified ITO electrode (7.48%). Especially, PCE-10:PC{sub 71}BM inverted polymer solar cells achieved a high PCE up to 9.4%. These results demonstrate a usefulmore » approach to improve the performance of inverted polymer solar cells.« less

  14. Application of N-doped graphene modified carbon ionic liquid electrode for direct electrochemistry of hemoglobin.

    PubMed

    Sun, Wei; Dong, Lifeng; Deng, Ying; Yu, Jianhua; Wang, Wencheng; Zhu, Qianqian

    2014-06-01

    Nitrogen-doped graphene (NG) was synthesized and used for the investigation on direct electrochemistry of hemoglobin (Hb) with a carbon ionic liquid electrode as the substrate electrode. Due to specific characteristics of NG such as excellent electrocatalytic property and large surface area, direct electron transfer of Hb was realized with enhanced electrochemical responses appearing. Electrochemical behaviors of Hb on the NG modified electrode were carefully investigated with the electrochemical parameters calculated. The Hb modified electrode exhibited excellent electrocatalytic reduction activity toward different substrates, such as trichloroacetic acid and H2O2, with wider dynamic range and lower detection limit. These findings show that NG can be used for the preparation of chemically modified electrodes with improved performance and has potential applications in electrochemical sensing. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Pristine multi-walled carbon nanotubes/SDS modified carbon paste electrode as an amperometric sensor for epinephrine.

    PubMed

    Thomas, Tony; Mascarenhas, Ronald J; D' Souza, Ozma J; Detriche, Simon; Mekhalif, Zineb; Martis, Praveen

    2014-07-01

    An amperometric sensor for the determination of epinephrine (EP) was fabricated by modifying the carbon paste electrode (CPE) with pristine multi-walled carbon nanotubes (pMWCNTs) using bulk modification followed by drop casting of sodium dodecyl sulfate (SDS) onto the surface for its optimal potential application. The modified electrode showed an excellent electrocatalytic activity towards EP by decreasing the overpotential and greatly enhancing the current sensitivity. FE-SEM images confirmed the dispersion of pMWCNTs in the CPE matrix. EDX analysis ensured the surface coverage of SDS. A comparative study of pMWCNTs with those of oxidized MWCNTs (MWCNTsOX) modified electrodes reveals that the former is the best base material for the construction of the sensor with advantages of lower oxidation overpotential and the least background current. The performance of the modified electrode was impressive in terms of the least charge transfer resistance (Rct), highest values for diffusion coefficient (DEP) and standard heterogeneous electron transfer rate constant (k°). Analytical characterization of the modified electrode exhibited two linear dynamic ranges from 1.0×10(-7) to 1.0×10(-6)M and 1.0×10(-6) to 1.0×10(-4)M with a detection limit of (4.5±0.18)×10(-8)M. A 100-fold excess of serotonin, acetaminophen, folic acid, uric acid, tryptophan, tyrosine and cysteine, 10-fold excess of ascorbic acid and twofold excess of dopamine do not interfere in the quantification of EP at this electrode. The analytical applications of the modified electrode were demonstrated by determining EP in spiked blood serum and adrenaline tartrate injection. The modified electrode involves a simple fabrication procedure, minimum usage of the modifier, quick response, excellent stability, reproducibility and anti-fouling effects. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Chemically modified graphite for electrochemical cells

    DOEpatents

    Greinke, Ronald Alfred; Lewis, Irwin Charles

    1998-01-01

    This invention relates to chemically modified graphite particles: (a) that are useful in alkali metal-containing electrode of a electrochemical cell comprising: (i) the electrode, (ii) a non-aqueous electrolytic solution comprising an organic aprotic solvent which solvent tends to decompose when the electrochemical cell is in use, and an electrically conductive salt of an alkali metal, and (iii) a counterelectrode; and (b) that are chemically modified with fluorine, chlorine, iodine or phosphorus to reduce such decomposition. This invention also relates to electrodes comprising such chemically modified graphite and a binder and to electrochemical cells containing such electrodes.

  17. Electrotactile and vibrotactile displays for sensory substitution systems

    NASA Technical Reports Server (NTRS)

    Kaczmarek, Kurt A.; Webster, John G.; Bach-Y-rita, Paul; Tompkins, Willis J.

    1991-01-01

    Sensory substitution systems provide their users with environmental information through a human sensory channel (eye, ear, or skin) different from that normally used or with the information processed in some useful way. The authors review the methods used to present visual, auditory, and modified tactile information to the skin and discuss present and potential future applications of sensory substitution, including tactile vision substitution (TVS), tactile auditory substitution, and remote tactile sensing or feedback (teletouch). The relevant sensory physiology of the skin, including the mechanisms of normal touch and the mechanisms and sensations associated with electrical stimulation of the skin using surface electrodes (electrotactile, or electrocutaneous, stimulation), is reviewed. The information-processing ability of the tactile sense and its relevance to sensory substitution is briefly summarized. The limitations of current tactile display technologies are discussed.

  18. A highly oriented hybrid microarray modified electrode fabricated by a template-free method for ultrasensitive electrochemical DNA recognition

    NASA Astrophysics Data System (ADS)

    Shi, Lei; Chu, Zhenyu; Dong, Xueliang; Jin, Wanqin; Dempsey, Eithne

    2013-10-01

    Highly oriented growth of a hybrid microarray was realized by a facile template-free method on gold substrates for the first time. The proposed formation mechanism involves an interfacial structure-directing force arising from self-assembled monolayers (SAMs) between gold substrates and hybrid crystals. Different SAMs and variable surface coverage of the assembled molecules play a critical role in the interfacial directing forces and influence the morphologies of hybrid films. A highly oriented hybrid microarray was formed on the highly aligned and vertical SAMs of 1,4-benzenedithiol molecules with rigid backbones, which afforded an intense structure-directing power for the oriented growth of hybrid crystals. Additionally, the density of the microarray could be adjusted by controlling the surface coverage of assembled molecules. Based on the hybrid microarray modified electrode with a large specific area (ca. 10 times its geometrical area), a label-free electrochemical DNA biosensor was constructed for the detection of an oligonucleotide fragment of the avian flu virus H5N1. The DNA biosensor displayed a significantly low detection limit of 5 pM (S/N = 3), a wide linear response from 10 pM to 10 nM, as well as excellent selectivity, good regeneration and high stability. We expect that the proposed template-free method can provide a new reference for the fabrication of a highly oriented hybrid array and the as-prepared microarray modified electrode will be a promising paradigm in constructing highly sensitive and selective biosensors.Highly oriented growth of a hybrid microarray was realized by a facile template-free method on gold substrates for the first time. The proposed formation mechanism involves an interfacial structure-directing force arising from self-assembled monolayers (SAMs) between gold substrates and hybrid crystals. Different SAMs and variable surface coverage of the assembled molecules play a critical role in the interfacial directing forces and influence the morphologies of hybrid films. A highly oriented hybrid microarray was formed on the highly aligned and vertical SAMs of 1,4-benzenedithiol molecules with rigid backbones, which afforded an intense structure-directing power for the oriented growth of hybrid crystals. Additionally, the density of the microarray could be adjusted by controlling the surface coverage of assembled molecules. Based on the hybrid microarray modified electrode with a large specific area (ca. 10 times its geometrical area), a label-free electrochemical DNA biosensor was constructed for the detection of an oligonucleotide fragment of the avian flu virus H5N1. The DNA biosensor displayed a significantly low detection limit of 5 pM (S/N = 3), a wide linear response from 10 pM to 10 nM, as well as excellent selectivity, good regeneration and high stability. We expect that the proposed template-free method can provide a new reference for the fabrication of a highly oriented hybrid array and the as-prepared microarray modified electrode will be a promising paradigm in constructing highly sensitive and selective biosensors. Electronic supplementary information (ESI) available: Four-probe method for determining the conductivity of the hybrid crystal (Fig. S1); stability comparisons of the hybrid films (Fig. S2); FESEM images of the hybrid microarray (Fig. S3); electrochemical characterizations of the hybrid films (Fig. S4); DFT simulations (Fig. S5); cross-sectional FESEM image of the hybrid microarray (Fig. S6); regeneration and stability tests of the DNA biosensor (Fig. S7). See DOI: 10.1039/c3nr03097k

  19. Using sewage sludge pyrolytic gas to modify titanium alloy to obtain high-performance anodes in bio-electrochemical systems

    NASA Astrophysics Data System (ADS)

    Gu, Yuan; Ying, Kang; Shen, Dongsheng; Huang, Lijie; Ying, Xianbin; Huang, Haoqian; Cheng, Kun; Chen, Jiazheng; Zhou, Yuyang; Chen, Ting; Feng, Huajun

    2017-12-01

    Titanium is under consideration as a potential stable bio-anode because of its high conductivity, suitable mechanical properties, and electrochemical inertness in the operating potential window of bio-electrochemical systems; however, its application is limited by its poor electron-transfer capacity with electroactive bacteria and weak ability to form biofilms on its hydrophobic surface. This study reports an effective and low-cost way to convert a hydrophobic titanium alloy surface into a hydrophilic surface that can be used as a bio-electrode with higher electron-transfer rates. Pyrolytic gas of sewage sludge is used to modify the titanium alloy. The current generation, anodic biofilm formation surface, and hydrophobicity are systematically investigated by comparing bare electrodes with three modified electrodes. Maximum current density (15.80 A/m2), achieved using a modified electrode, is 316-fold higher than that of the bare titanium alloy electrode (0.05 A/m2) and that achieved by titanium alloy electrodes modified by other methods (12.70 A/m2). The pyrolytic gas-modified titanium alloy electrode can be used as a high-performance and scalable bio-anode for bio-electrochemical systems because of its high electron-transfer rates, hydrophilic nature, and ability to achieve high current density.

  20. Electrocatalytic oxidation of 2-mercaptoethanol using modified glassy carbon electrode by MWCNT in combination with unsymmetrical manganese (II) Schiff base complexes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohebbi, Sajjad, E-mail: smohebbi@uok.ac.ir; Eslami, Saadat

    2015-06-15

    Highlights: • High electocatalytic efficiency and stability of modified hybrid electrode GC/MWCNTs/MnSaloph. • Direct reflection of catalytic activity of manganese complexes on electrocatalytic oxidation of 2-ME. • Decreasing overpotential and increasing catalytic peak current toward oxidation of 2-ME. • Deposition of range of novel substituted N{sub 2}O{sub 2} Saloph complexes of manganese(II) on GCE/MWCNT. • Enhancement of electrocatalytic oxidation activity upon electron donating substitutions on the Saloph. - Abstract: The performance of modified hybrid glassy carbon electrode with composite of carbon nanotubes and manganese complexes for the electrocatalytic oxidation of 2-mercaptoethanol is developed. GC electrode was modified using MWCNT andmore » new N{sub 2}O{sub 2} unsymmetrical tetradentate Schiff base complexes of manganese namely Manganese Saloph complexes 1-5, with general formula Mn[(5-x-4-y-Sal)(5-x′-4-y′-Sal) Ph], where x, x′ = H, Br, NO{sub 2} and y, y′ = H, MeO. Direct immobilization of CNT on the surface of GCE is performed by abrasive immobilization, and then modified by manganese(II) complexes via direct deposition method. These novel modified electrodes clearly demonstrate the necessity of modifying bare carbon electrodes to endow them with the desired behavior and were identified by HRTEM. Also complexes were characterized by elemental analyses, MS, UV–vis and IR spectroscopy. Modified hybrid GC/MWCNT/MnSaloph electrode exhibits strong and stable electrocatalytic activity towards the electrooxidation of 2-mercaptoethanol molecules in comparison with bare glassy carbon electrode with advantages of very low over potential and high catalytic current. Such ability promotes the thiol’s electron transfer reaction. Also, electron withdrawing substituent on the Saloph was enhanced electrocatalytic oxidation activity.« less

  1. Electrocatalytic response of poly(cobalt tetraaminophthalocyanine)/multi-walled carbon nanotubes-Nafion modified electrode toward sulfadiazine in urine*

    PubMed Central

    Hong, Xiao-ping; Zhu, Yan; Zhang, Yan-zhen

    2012-01-01

    A highly sensitive amperometric sulfadiazine sensor fabricated by electrochemical deposition of poly(cobalt tetraaminophthalocyanine) (poly(CoIITAPc)) on the surface of a multi-walled carbon nanotubes-Nafion (MWCNTs-Nafion) modified electrode is described. This electrode showed a very attractive performance by combining the advantages of CoIITAPc, MWCNTs, and Nafion. Compared with the bare glassy carbon electrode (GCE) and the MWCNTs-Nafion modified electrode, the electrocatalytic activity of poly(CoIITAPc)-coated MWCNTs-Nafion GCE generated greatly improved electrochemical detections toward sulfadiazine including low oxidation potential, high current responses, and good anti-fouling performance. The oxidation peak currents of sulfadiazine obtained on the new modified electrode increased linearly while increasing the concentration of sulfadiazine from 0.5 to 43.5 μmol/L with the detection limit of 0.17 μmol/L. PMID:22661213

  2. Correlation of the impedance and effective electrode area of doped PEDOT modified electrodes for brain-machine interfaces.

    PubMed

    Harris, Alexander R; Molino, Paul J; Kapsa, Robert M I; Clark, Graeme M; Paolini, Antonio G; Wallace, Gordon G

    2015-05-07

    Electrode impedance is used to assess the thermal noise and signal-to-noise ratio for brain-machine interfaces. An intermediate frequency of 1 kHz is typically measured, although other frequencies may be better predictors of device performance. PEDOT-PSS, PEDOT-DBSA and PEDOT-pTs conducting polymer modified electrodes have reduced impedance at 1 kHz compared to bare metal electrodes, but have no correlation with the effective electrode area. Analytical solutions to impedance indicate that all low-intermediate frequencies can be used to compare the electrode area at a series RC circuit, typical of an ideal metal electrode in a conductive solution. More complex equivalent circuits can be used for the modified electrodes, with a simplified Randles circuit applied to PEDOT-PSS and PEDOT-pTs and a Randles circuit including a Warburg impedance element for PEDOT-DBSA at 0 V. The impedance and phase angle at low frequencies using both equivalent circuit models is dependent on the electrode area. Low frequencies may therefore provide better predictions of the thermal noise and signal-to-noise ratio at modified electrodes. The coefficient of variation of the PEDOT-pTs impedance at low frequencies was lower than the other conducting polymers, consistent with linear and steady-state electroactive area measurements. There are poor correlations between the impedance and the charge density as they are not ideal metal electrodes.

  3. Voltammetric enzyme sensor for urea using mercaptohydroquinone-modified gold electrode as the base transducer.

    PubMed

    Mizutani, F; Yabuki, S; Sato, Y

    1997-01-01

    A voltammetric urea-sensing electrode was prepared by combining a lipid-attached urease layer with a 2,5-dihydroxythiophenol-modified gold electrode. A self-assembled monolayer of dihydroxythiophenol was prepared on the gold surface by soaking the electrode into an ethanolic solution containing the modifier. A layer of the lipid-attached enzyme and that of acetyl cellulose overcoat were successively made on the dihydroxythiophenol-modified electrode by applying a dip-coating procedure. The addition of urea in a test solution (10 mM phosphate buffer, pH 7.0) brought about an increase of pH near the urease layer. The pH shift accompanied a negative shift of the anodic peak, which corresponded to the electro-oxidation of dihydroxyphenol moiety to form quinone, on the linear sweep voltammograms for the urease/dihydroxythiophenol electrode. The concentration of urea (0.2-5 mM) could be determined by measuring the electrode current at -0.05 V versus Ag/AgCl from the voltammogram. The electrode was applied to the determination of urea in human urine; the measurement of electrode current at such a low potential provided the urea determination without any electrochemical interference from L-ascorbic acid and uric acid.

  4. Direct and mediated electrochemistry of peroxidase and its electrocatalysis on a variety of screen-printed carbon electrodes: amperometric hydrogen peroxide and phenols biosensor.

    PubMed

    Chekin, Fereshteh; Gorton, Lo; Tapsobea, Issa

    2015-01-01

    This study compares the behaviour of direct and mediated electrochemistry of horseradish peroxidase (HRP) immobilised on screen-printed carbon electrodes (SPCEs), screen-printed carbon electrodes modified with carboxyl-functionalised multi-wall carbon nanotubes (MWCNT-SPCEs) and screen-printed carbon electrodes modified with carboxyl-functionalised single-wall carbon nanotubes (SWCNT-SPCEs). The techniques of cyclic voltammetry and amperometry in the flow mode were used to characterise the properties of the HRP immobilised on screen-printed electrodes. From measurements of the mediated and mediatorless currents of hydrogen peroxide reduction at the HRP-modified electrodes, it was concluded that the fraction of enzyme molecules in direct electron transfer (DET) contact with the electrode varies substantially for the different electrodes. It was observed that the screen-printed carbon electrodes modified with carbon nanotubes (MWCNT-SPCEs and SWCNT-SPCEs) demonstrated a substantially higher percentage (≈100 %) of HRP molecules in DET contact than the screen-printed carbon electrodes (≈60 %). The HRP-modified electrodes were used for determination of hydrogen peroxide in mediatorless mode. The SWCNT-SPCE gave the lowest detection limit (0.40 ± 0.09 μM) followed by MWCNT-SPCE (0.48 ± 0.07 μM) and SPCE (0.98 ± 0.2 μM). These modified electrodes were additionally developed for amperometric determination of phenolic compounds. It was found that the SWCNT-SPCE gave a detection limit for catechol of 110.2 ± 3.6 nM, dopamine of 640.2 ± 9.2 nM, octopamine of 3341 ± 15 nM, pyrogallol of 50.10 ± 2.9 nM and 3,4-dihydroxy-L-phenylalanine of 980.7 ± 8.7 nM using 50 μM H2O2 in the flow carrier.

  5. Redox-active thionine-graphene oxide hybrid nanosheet: one-pot, rapid synthesis, and application as a sensing platform for uric acid.

    PubMed

    Sun, Zhoumin; Fu, Haiying; Deng, Liu; Wang, Jianxiu

    2013-01-25

    In this paper, we fabricate a sensitive and stable amperometric UA amperometric biosensor using nanobiocomposite derived from thionine modified graphene oxide in this study. A simple wet-chemical strategy for synthesis of thionine-graphene oxide hybrid nanosheets (T-GOs) through π-π stacking has been demonstrated. Various techniques, such as UV-vis absorption spectroscopy, X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), atomic force microscopy (AFM) and electrochemistry have been utilized to characterize the formation of the T-GOs. Due to the synergistic effect between thionine and graphene oxide, the nanosheets exhibited excellent performance toward H(2)O(2) reduction. The incorporation of thionine onto graphene oxide surface resulted in more than a twice increase in the amperometric response to H(2)O(2) of the thionine modified electrode. The as-formed T-GOs also served as a biocompatible matrix for enzyme assembly and a mediator to facilitate the electron transfer between the enzyme and the electrode. Using UOx as a model system, we have developed a simple and effective sensing platform for assay of uric acid at physiological levels. UA has been successfully detected at -0.1 V without any interference due to other electroactive compounds at physiological levels of glucose (5 mM), ascorbic acid (0.1 mM), noradrenalin (0.1 mM), and dopamine (0.1 mM). The response displays a good linear range from 0.02 to 4.5 mM with detection limit 7 μM. The application of this modified electrode in blood and urine UA exhibited a good performance. The robust and advanced hybrid materials might hold great promise in biosensing, energy conversion, and biomedical and electronic systems. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Application of a palladium hexacyanoferrate film-modified aluminum electrode to electrocatalytic oxidation of hydrazine.

    PubMed

    Razmi, Habib; Azadbakht, Azadeh; Sadr, Moayad Hossaini

    2005-11-01

    A palladium hexacyanoferrate (PdHCF) film as an electrocatalytic material was obtained at an aluminum (Al) electrode by a simple electroless dipping method. The modified Al electrode demonstrated a well-behaved redox couple due to the redox reaction of the PdHCF film. The PdHCF film showed an excellent electrocatalytic activity toward the oxidation of hydrazine. The electrocatalytic oxidation of hydrazine was studied by cyclic voltammetry and rotating disk electrode voltammetry techniques. A calibration graph obtained for the hydrazine consisted of two segments (localized at concentration ranges 0.39-10 and 20-75 mM). The rate constant k and transfer coefficient alpha for the catalytic reaction and the diffusion coefficient of hydrazine in the solution D, were found to be 3.11 x 10(3) M(-1) s(-1), 0.52 and 8.03 x 10(-6) cm2 s(-1) respectively. The modified electrode was used to amperometric determination of hydrazine in photographic developer. The interference of ascorbic acid and thiosulfate were investigated and greatly reduced using a thin film of Nafion on the modified electrode. The modified electrode indicated reproducible behavior and a high level of stability during electrochemical experiments, making it particularly suitable for analytical purposes.

  7. Development of electrochemical sensor for the determination of palladium ions (Pd2+) using flexible screen printed un-modified carbon electrode.

    PubMed

    Velmurugan, Murugan; Thirumalraj, Balamurugan; Chen, Shen-Ming; Al-Hemaid, Fahad M A; Ajmal Ali, M; Elshikh, Mohamed S

    2017-01-01

    To date, the development of different modified electrodes have received much attention in electrochemistry. The modified electrodes have some drawbacks such as high cost, difficult to handle and not eco friendly. Hence, we report an electrochemical sensor for the determination of palladium ions (Pd 2+ ) using an un-modified screen printed carbon electrode has been developed for the first time, which are characterized and studied via scanning electron microscope and cyclic voltammetry. Prior to determination of Pd 2+ ions, the operational conditions of un-modified SPCE was optimized using cyclic voltammetry and showed excellent electro-analytical behavior towards the determination of Pd 2+ ions. Electrochemical determination of Pd 2+ ions reveal that the un-modified electrode showed lower detection limit of 1.32μM with a linear ranging from 3 to 133.35μM towards the Pd 2+ ions concentration via differential pulse voltammetry. The developed sensor also applied to the successfully determination of trace level Pd 2+ ions in spiked water samples. In addition, the advantage of this type of electrode is simple, disposable and cost effective in electrochemical sensors. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Development of Novel Potentiometric Sensors for Determination of Lidocaine Hydrochloride in Pharmaceutical Preparations, Serum and Urine Samples

    PubMed Central

    Ali, Tamer Awad; Mohamed, Gehad Genidy; Yahya, Ghada A.

    2017-01-01

    This article is focused on the determination of lidocaine hydrochloride as a local anaesthetic drug. A potentiometric method based on modified screen-printed and modified carbon paste ion-selective electrodes was described for the determination of lidocaine hydrochloride in different pharmaceutical preparations and biological fluids (urine and serum). It was based on potentiometric titration of lidocaine hydrochloride using modified screen-printed and carbon paste electrodes as end point indicator sensors. The influences of the paste composition, different conditioning parameters and foreign ions on the electrodes performance were investigated and response times of the electrodes were studied. The electrodes showed Nernstian response of 58.9 and 57.5 mV decade-1 in the concentration range of 1×10-7–1×10-2 and 6.2×10-7–1×10-2 mol L-1 for modified screen-printed and carbon paste electrodes, respectively. The electrodes were found to be usable within the pH range of 2.0–8.0 and 2.0-7.5, exhibited a fast response time (about 6 and 4) low detection limit (1×10-7 and 6.2×10-7 mol L-1), long lifetime (6 and 4 months) and good stability for modified screen-printed (Electrode VII) and carbon paste electrodes (Electrode III), respectively. The electrodes were successfully applied for the determination of lidocaine hydrochloride in pure solutions, pharmaceutical preparation and biological fluids (urine and serum) samples. The results obtained applying these potentiometric electrodes were comparable with British pharmacopeia. The method validation parameters were optimized and the method can be applied for routine analysis of lidocaine hydrochloride drug. PMID:28979305

  9. Development of Novel Potentiometric Sensors for Determination of Lidocaine Hydrochloride in Pharmaceutical Preparations, Serum and Urine Samples.

    PubMed

    Ali, Tamer Awad; Mohamed, Gehad Genidy; Yahya, Ghada A

    2017-01-01

    This article is focused on the determination of lidocaine hydrochloride as a local anaesthetic drug. A potentiometric method based on modified screen-printed and modified carbon paste ion-selective electrodes was described for the determination of lidocaine hydrochloride in different pharmaceutical preparations and biological fluids (urine and serum). It was based on potentiometric titration of lidocaine hydrochloride using modified screen-printed and carbon paste electrodes as end point indicator sensors. The influences of the paste composition, different conditioning parameters and foreign ions on the electrodes performance were investigated and response times of the electrodes were studied. The electrodes showed Nernstian response of 58.9 and 57.5 mV decade -1 in the concentration range of 1×10 -7 -1×10 -2 and 6.2×10 -7 -1×10 -2 mol L -1 for modified screen-printed and carbon paste electrodes, respectively. The electrodes were found to be usable within the pH range of 2.0-8.0 and 2.0-7.5, exhibited a fast response time (about 6 and 4) low detection limit (1×10 -7 and 6.2×10 -7 mol L -1 ), long lifetime (6 and 4 months) and good stability for modified screen-printed (Electrode VII) and carbon paste electrodes (Electrode III), respectively. The electrodes were successfully applied for the determination of lidocaine hydrochloride in pure solutions, pharmaceutical preparation and biological fluids (urine and serum) samples. The results obtained applying these potentiometric electrodes were comparable with British pharmacopeia. The method validation parameters were optimized and the method can be applied for routine analysis of lidocaine hydrochloride drug.

  10. Fabrication of an electrochemical sensor based on spiropyran for sensitive and selective detection of fluoride ion.

    PubMed

    Tao, Jia; Zhao, Peng; Li, Yinhui; Zhao, Wenjie; Xiao, Yue; Yang, Ronghua

    2016-04-28

    In the past decades, numerous electrochemical sensors based on exogenous electroactive substance have been reported. Due to non-specific interaction between the redox mediator and the target, the instability caused by false signal may not be avoided. To address this issue, in this paper, a new electrochemical sensor based on spiropyran skeleton, namely SPOSi, was designed for specific electrochemical response to fluoride ions (F(-)). The breakage of Si-O induced by F(-) based on the specific nucleophilic substitution reaction between F(-) and silica would directly produce a hydroquinone structure for electrochemical signal generation. To improve the sensitivity, SPOSi probe was assembled on the single-walled carbon nanotubes (SWCNTs) modified glassy carbon electrode (GCE) through the π-π conjugating interaction. This electrode was successfully applied to monitor F(-) with a detection limit of 8.3 × 10(-8) M. Compared with the conventional F(-) ion selected electrode (ISE) which utilized noncovalent interaction, this method displays higher stability and a comparable sensitivity in the urine samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Synthesis of molecular imprinted polymer modified TiO{sub 2} nanotube array electrode and their photoelectrocatalytic activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu Na; Chen Shuo; Wang Hongtao

    2008-10-15

    A tetracycline hydrochloride (TC) molecularly imprinted polymer (MIP) modified TiO{sub 2} nanotube array electrode was prepared via surface molecular imprinting. Its surface was structured with surface voids and the nanotubes were open at top end with an average diameter of approximately 50 nm. The MIP-modified TiO{sub 2} nanotube array with anatase phase was identified by XRD and a distinguishable red shift in the absorption spectrum was observed. The MIP-modified electrode also exhibited a high adsorption capacity for TC due to its high surface area providing imprinted sites. Photocurrent was generated on the MIP-modified photoanode using the simulated solar spectrum andmore » increased with the increase of positive bias potential. Under simulated solar light irradiation, the MIP-modified TiO{sub 2} nanotube array electrode exhibited enhanced photoelectrocatalytic (PEC) activity with the apparent first-order rate constant being 1.2-fold of that with TiO{sub 2} nanotube array electrode. The effect of the thickness of the MIP layer on the PEC activity was also evaluated. - Graphical abstract: A tetracycline hydrochloride molecularly imprinted polymer modified TiO{sub 2} nanotube array electrode was prepared via surface molecular imprinting. It showed improved response to simulated solar light and higher adsorption capability for tetracycline hydrochloride, thereby exhibiting increased PEC activity under simulated solar light irradiation. The apparent first-order rate constant was 1.2-fold of that on TiO{sub 2} nanotube array electrode.« less

  12. A new analytical device incorporating a nitrogen doped lanthanum metal oxide with reduced graphene oxide sheets for paracetamol sensing.

    PubMed

    Ponnaiah, Sathish Kumar; Prakash, Periakaruppan; Vellaichamy, Balakumar

    2018-06-01

    The novel N-CeO 2 nanoparticles decorated on reduced graphene oxide (N-CeO 2 @rGO) composite has been synthesized by sonochemical method. The characterization of as prepared nanocomposite was intensely performed by UV-Vis, FT-IR, EDX, FE-SEM, HR-TEM, XRD, and TGA analysis. The synthesized nanomaterial was further investigated for its selective and sensitive sensing of paracetamol (PM) based on a N-CeO 2 @rGO modified glassy carbon electrode. A distinct and improved reversible redox peak of PM is obtained at N-CeO 2 @rGO nanocomposite compared to the electrodes modified with N-CeO 2 and rGO. It displays a very good performance with a wide linear range of 0.05-0.600 μM, a very low detection limit of 0.0098 μM (S/N = 3), a high sensitivity of 268 μA µM -1  cm -2 and short response time (<3 s). Also, the fabricated sensor shows a good sensibleness for the detection of PM in various tablet samples. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Dopamine and uric acid electrochemical sensor based on a glassy carbon electrode modified with cubic Pd and reduced graphene oxide nanocomposite.

    PubMed

    Wang, Jin; Yang, Beibei; Zhong, Jiatai; Yan, Bo; Zhang, Ke; Zhai, Chunyang; Shiraishi, Yukihide; Du, Yukou; Yang, Ping

    2017-07-01

    A cubic Pd and reduced graphene oxide modified glassy carbon electrode (Pd/RGO/GCE) was fabricated to simultaneously detect dopamine (DA) and uric acid (UA) by cyclic voltammetry (CV) and different pulse voltammetry (DPV) methods. Compared with Pd/GCE and RGO/GCE, the Pd/RGO/GCE exhibited excellent electrochemical activity in electrocatalytic behaviors. Performing the Pd/RGO/GCE in CV measurement, the well-defined oxidation peak potentials separation between DA and UA reached to 145mV. By using the differential pulse voltammetry (DPV) technique, the calibration curves for DA and UA were found linear with the concentration range of 0.45-421μM and 6-469.5μM and the detection limit (S/N =3) were calculated to be 0.18μM and 1.6μM, respectively. Furthermore, the Pd/RGO/GCE displayed high selectivity when it was applied into the determination of DA and UA even though in presence of high concentration of interferents. Additionally, the prepared electrochemical sensor of Pd/RGO/GCE demonstrated a practical feasibility in rat urine and serum samples determination. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Label-free impedimetric aptasensor for detection of femtomole level acetamiprid using gold nanoparticles decorated multiwalled carbon nanotube-reduced graphene oxide nanoribbon composites.

    PubMed

    Fei, Airong; Liu, Qian; Huan, Juan; Qian, Jing; Dong, Xiaoya; Qiu, Baijing; Mao, Hanping; Wang, Kun

    2015-08-15

    Gold nanoparticles (Au NPs) decorated multiwalled carbon nanotube-reduced graphene oxide nanoribbon (Au/MWCNT-rGONR) composites were synthesized by a one-pot reaction. By employing the resulting Au/MWCNT-rGONR composites as the support for aptamer immobilization, we developed an ultrasensitive label-free electrochemical impedimetric aptasensor for acetamiprid detection, which was based on that the variation of electron transfer resistance was relevant to the formation of acetamiprid-aptamer complex at the modified electrode surface. Compared with pure Au NPs and MWCNT-rGONR, the Au/MWCNT-rGONR composites modified electrode was the most sensitive aptasensing platform for the determination of acetamiprid. The proposed aptasensor displayed a linear response for acetamiprid in the range from 5×10(-14) M to 1×10(-5) M with an extremely low detection limit of 1.7×10(-14) M (S/N=3). In addition, this impedimetric aptasensor possessed great advantages including the simple operation process, low-cost, selectivity and sensitivity, which provided a promising model for the aptamer-based detection with a direct impedimetric method. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. The Electrochemical Behavior of Carbon Fiber Microelectrodes Modified with Carbon Nanotubes Using a Two-Step Electroless Plating/Chemical Vapor Deposition Process

    PubMed Central

    Lu, Longsheng; Liang, Linsheng; Teh, Kwok Siong; Xie, Yingxi; Wan, Zhenping; Tang, Yong

    2017-01-01

    Carbon fiber microelectrode (CFME) has been extensively applied in the biosensor and chemical sensor domains. In order to improve the electrochemical activity and sensitivity of the CFME, a new CFME modified with carbon nanotubes (CNTs), denoted as CNTs/CFME, was fabricated and investigated. First, carbon fiber (CF) monofilaments grafted with CNTs (simplified as CNTs/CFs) were fabricated in two key steps: (i) nickel electroless plating, followed by (ii) chemical vapor deposition (CVD). Second, a single CNTs/CF monofilament was selected and encapsulated into a CNTs/CFME with a simple packaging method. The morphologies of as-prepared CNTs/CFs were characterized by scanning electron microscopy. The electrochemical properties of CNTs/CFMEs were measured in potassium ferrocyanide solution (K4Fe(CN)6), by using a cyclic voltammetry (CV) and a chronoamperometry method. Compared with a bare CFME, a CNTs/CFME showed better CV curves with a higher distinguishable redox peak and response current; the higher the CNT content was, the better the CV curves were. Because the as-grown CNTs significantly enhanced the effective electrode area of CNTs/CFME, the contact area between the electrode and reactant was enlarged, further increasing the electrocatalytic active site density. Furthermore, the modified microelectrode displayed almost the same electrochemical behavior after 104 days, exhibiting remarkable stability and outstanding reproducibility. PMID:28358344

  16. Two dimensional visible-light-active Pt-BiOI photoelectrocatalyst for efficient ethanol oxidation reaction in alkaline media

    NASA Astrophysics Data System (ADS)

    Zhai, Chunyang; Hu, Jiayue; Sun, Mingjuan; Zhu, Mingshan

    2018-02-01

    Two dimensional (2D) BiOI nanoplates were synthesized and used as support for the deposition of Pt nanoparticles. Owing to broad visible light absorption (up to 660 nm), the as-obtained Pt-BiOI electrode was used as effective photoelectrocatalyst in the application of catalytic ethanol oxidation in alkaline media under visible light irradiation. Compared to dark condition, the Pt-BiOI modified electrode displayed 3 times improved catalytic activity towards ethanol oxidation under visible light irradiation. The synergistic effect of electrocatalytic and photocatalytic, and the unique of 2D structures contribute to the improvement of catalytic activity. The mechanism of enhanced photoelectrocatalytic process is proposed. The present results suggest that 2D visible-light-activated BiOI can be served as promising support for the decoration of Pt and applied in the fields of photoelectrochemical and photo-assisted fuel cell applications

  17. Chitosan coated on the layers' glucose oxidase immobilized on cysteamine/Au electrode for use as glucose biosensor.

    PubMed

    Zhang, Yawen; Li, Yunqiu; Wu, Wenjian; Jiang, Yuren; Hu, Biru

    2014-10-15

    A glucose biosensor was developed via direct immobilization of glucose oxidase (GOD) by self-assembled cysteamine monolayer on Au electrode surface followed by coating chitosan on the surface of electrode. In this work, chitosan film was coated on the surface of GOD as a protection film to ensure the stability and biocompatibility of the constructed glucose biosensor. The different application ranges of sensors were fabricated by immobilizing varied layers of GOD. The modified surface film was characterized by a scanning electron microscope (SEM) and the fabrication process of the biosensor was confirmed through electrochemical impedance spectroscopy (EIS) of ferrocyanide. The performance of cyclic voltammetry (CV) in the absence and presence of 25 mM glucose and ferrocenemethanol showed a diffusion-controlled electrode process and reflected the different maximum currents between the different GOD layers. With the developed glucose biosensor, the detection limits of the two linear responses are 49.96 μM and 316.8 μM with the sensitivities of 8.91 μA mM(-1)cm(-2) and 2.93 μA mM(-1)cm(-2), respectively. In addition, good stability (up to 30 days) of the developed biosensor was observed. The advantages of this new method for sensors construction was convenient and different width ranges of detection can be obtained by modified varied layers of GOD. The sensor with two layers of enzyme displayed two current linear responses of glucose. The present work provided a simplicity and novelty method for producing biosensors, which may help design enzyme reactors and biosensors in the future. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. New β-Cyclodextrin Entrapped in Polyethyleneimine Film-Modified Electrodes for Pharmaceutical Compounds Determination

    PubMed Central

    Fritea, Luminţa; Tertiş, Mihaela; Cristea, Cecilia; Săndulescu, Robert

    2013-01-01

    The electrochemical behavior of ascorbic acid and uric acid on glassy carbon bare electrodes and ones modified with β-cyclodextrin entrapped in polyethyleneimine film has been investigated using square wave voltammetry. The electrode modification was achieved in order to separate the voltammetric peaks of ascorbic acid and uric acid when present in the same solution. On the modified electrodes the potential of the oxidation peak of the ascorbic acid was shifted to more negative values by over 0.3 V, while in the case of uric acid, the negative potential shift was about 0.15 V compared to the bare glassy carbon electrode. When the two compounds were found together in the solution, on the bare electrode only a single broad signal was observed, while on the modified electrode the peak potentials of these two compounds were separated by 0.4 V. When the uric acid concentration remained constant, the peak intensity of the ascorbic acid is increased linearly with the concentration (r2 = 0.996) and when the ascorbic acid concentration remains constant, the peak intensity of the uric acid increased linearly with the concentration (r2 = 0.992). FTIR measurements supported the formation of inclusion complexes. In order to characterize the modification of the electrodes microscopic studies were performed. The modified electrodes were successfully employed for the determination of ascorbic acid in pharmaceutical formulations with a detection limit of 0.22 μM. PMID:24287544

  19. Green electrochemical modification of RVC foam electrode and improved H2O2 electrogeneration by applying pulsed current for pollutant removal.

    PubMed

    Zhou, Wei; Ding, Yani; Gao, Jihui; Kou, Kaikai; Wang, Yan; Meng, Xiaoxiao; Wu, Shaohua; Qin, Yukun

    2018-02-01

    The performance of cathode on H 2 O 2 electrogeneration is a critical factor that limits the practical application of electro-Fenton (EF) process. Herein, we report a simple but effective electrochemical modification of reticulated vitreous carbon foam (RVC foam) electrode for enhanced H 2 O 2 electrogeneration. Cyclic voltammetry, chronoamperometry, and X-ray photoelectron spectrum were used to characterize the modified electrode. Oxygen-containing groups (72.5-184.0 μmol/g) were introduced to RVC foam surface, thus resulting in a 59.8-258.2% higher H 2 O 2 yield. The modified electrodes showed much higher electrocatalytic activity toward O 2 reduction and good stability. Moreover, aimed at weakening the extent of electroreduction of H 2 O 2 in porous RVC foam, the strategy of pulsed current was proposed. H 2 O 2 concentration was 582.3 and 114.0% higher than the unmodified and modified electrodes, respectively. To test the feasibility of modification, as well as pulsed current, EF process was operated for removal of Reactive Blue 19 (RB19). The fluorescence intensity of hydroxybenzoic acid in EF with modified electrode is 3.2 times higher than EF with unmodified electrode, illustrating more hydroxyl radicals were generated. The removal efficiency of RB 19 in EF with unmodified electrode, modified electrode, and unmodified electrode assisted by pulsed current was 53.9, 68.9, and 81.1%, respectively, demonstrating that the green modification approach, as well as pulsed current, is applicable in EF system for pollutant removal. Graphical abstract ᅟ.

  20. Fabrication and surface-modification of implantable microprobes for neuroscience studies

    NASA Astrophysics Data System (ADS)

    Cao, H.; Nguyen, C. M.; Chiao, J. C.

    2012-06-01

    In this work implantable micro-probes for central nervous system (CNS) studies were developed on silicon and polyimide substrates. The probes which contained micro-electrode arrays with different surface modifications were designed for implantation in the CNS. The electrode surfaces were modified with nano-scale structures that could greatly increase the active surface area in order to enhance the electrochemical current outputs while maintaining micro-scale dimensions of the electrodes and probes. The electrodes were made of gold or platinum, and designed with different sizes. The silicon probes were modified by silicon nanowires fabricated with the vapor-liquid-solid mechanism at high temperatures. With polyimide substrates, the nanostructure modification was carried out by applying concentrated gold or silver colloid solutions onto the micro-electrodes at room temperature. The surfaces of electrodes before and after modification were observed by scanning electron microscopy. The silicon nanowire-modified surface was characterized by cyclic voltammetry. Experiments were carried out to investigate the improvement in sensing performance. The modified electrodes were tested with H2O2, electrochemical L-glutamate and dopamine. Comparisons between electrodes with and without nanostructure modification were conducted showing that the modifications have enhanced the signal outputs of the electrochemical neurotransmitter sensors.

  1. Facile preparation of molecularly imprinted polypyrrole-graphene-multiwalled carbon nanotubes composite film modified electrode for rutin sensing.

    PubMed

    Yang, Lite; Yang, Juan; Xu, Bingjie; Zhao, Faqiong; Zeng, Baizhao

    2016-12-01

    In this paper, a novel molecularly imprinted composite film modified electrode was presented for rutin (RT) detection. The modified electrode was fabricated by electropolymerization of pyrrole on a graphene-multiwalled carbon nanotubes composite (G-MWCNTs) coated glassy carbon electrode in the presence of RT. The netlike G-MWCNTs composite, prepared by in situ hydrothermal process, had high conductivity and electrocatalytic activity. At the resulting MIP/G-MWCNTs/GCE electrode RT could produce a sensitive anodic peak in pH 1.87 Britton-Robinson buffer solution. The factors affecting the electrochemical behavior and response of RT on the modified electrode were carefully investigated and optimized. Under the selected conditions, the linear response range of RT was 0.01-1.0μmolL -1 and the detection limit (S/N=3) was 5.0nmolL -1 . The electrode was successfully applied to the determination of RT in buckwheat tea and orange juice samples, and the recoveries for standards added were 93.4-105%. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Micro-valve pump light valve display

    DOEpatents

    Yeechun Lee.

    1993-01-19

    A flat panel display incorporates a plurality of micro-pump light valves (MLV's) to form pixels for recreating an image. Each MLV consists of a dielectric drop sandwiched between substrates, at least one of which is transparent, a holding electrode for maintaining the drop outside a viewing area, and a switching electrode from accelerating the drop from a location within the holding electrode to a location within the viewing area. The sustrates may further define non-wetting surface areas to create potential energy barriers to assist in controlling movement of the drop. The forces acting on the drop are quadratic in nature to provide a nonlinear response for increased image contrast. A crossed electrode structure can be used to activate the pixels whereby a large flat panel display is formed without active driver components at each pixel.

  3. Micro-valve pump light valve display

    DOEpatents

    Lee, Yee-Chun

    1993-01-01

    A flat panel display incorporates a plurality of micro-pump light valves (MLV's) to form pixels for recreating an image. Each MLV consists of a dielectric drop sandwiched between substrates, at least one of which is transparent, a holding electrode for maintaining the drop outside a viewing area, and a switching electrode from accelerating the drop from a location within the holding electrode to a location within the viewing area. The sustrates may further define non-wetting surface areas to create potential energy barriers to assist in controlling movement of the drop. The forces acting on the drop are quadratic in nature to provide a nonlinear response for increased image contrast. A crossed electrode structure can be used to activate the pixels whereby a large flat panel display is formed without active driver components at each pixel.

  4. ELECTROCHEMICAL DETERMINATION OF HYDROGEN SULFIDE AT CARBON NANOTUBE MODIFIED ELECTRODES. (R830900)

    EPA Science Inventory

    Carbon nanotube (CNT) modified glassy carbon electrodes exhibiting a strong and stable electrocatalytic response towards sulfide are described. A substantial (400 mV) decrease in the overvoltage of the sulfide oxidation reaction (compared to ordinary carbon electrodes) is...

  5. Preparation of AN Electrode Modified with a Thermostable Enzyme BACILLUS Subtilis COTA by Electrodeposition

    NASA Astrophysics Data System (ADS)

    Watanabe, Toshio; Yamada, Yohei; Motonaka, Junko; Yabutani, Tomoki; Sakuraba, Haruhiko; Yasuzawa, Mikito

    In this study, electrodeposition of thermostable enzyme Bacillus subtilis CotA, which is a laccase and has a bilirubin oxidase (BOD) activity, was investigated. The electrodeposition was operated in a mixture of Bacillus subtilis CotA in the PBS (pH 8.0) and TritonX-100 under applying potential (1100 mV vs. Ag/AgCl for 5 min.). The current response was measured by linear sweep voltammetry technique (LSV). The thermostable enzyme Bacillus subtilis CotA electrodeposited electrode was compared with a mesophile BOD electrodeposited electrode. As a result, the Bacillus subtilis CotA modified electrode showed better sensitivity and long-term stability than the mesophile BOD modified electrode.

  6. Highly stable Na2/3 (Mn0.54 Ni0.13 Co0.13 )O2 cathode modified by atomic layer deposition for sodium-ion batteries.

    PubMed

    Kaliyappan, Karthikeyan; Liu, Jian; Lushington, Andrew; Li, Ruying; Sun, Xueliang

    2015-08-10

    For the first time, atomic layer deposition (ALD) of Al2 O3 was adopted to enhance the cyclic stability of layered P2-type Na2/3 (Mn0.54 Ni0.13 Co0.13 )O2 (MNC) cathodes for use in sodium-ion batteries (SIBs). Discharge capacities of approximately 120, 123, 113, and 105 mA h g(-1) were obtained for the pristine electrode and electrodes coated with 2, 5, and 10 ALD cycles, respectively. All electrodes were cycled at the 1C discharge current rate for voltages between 2 and 4.5 V in 1 M NaClO4 electrolyte. Among the electrodes tested, the Al2 O3 coating from 2 ALD cycles (MNC-2) exhibited the best electrochemical stability and rate capability, whereas the electrode coated by 10 ALD cycles (MNC-10) displayed the highest columbic efficiency (CE), which exceeded 97 % after 100 cycles. The enhanced electrochemical stability observed for ALD-coated electrodes could be a result of the protection effects and high band-gap energy (Eg =9.00 eV) of the Al2 O3 coating layer. Additionally, the metal-oxide coating provides structural stability against mechanical stresses occurring during the cycling process. The capacity, cyclic stability, and rate performance achieved for the MNC electrode coated with 2 ALD cycles of Al2 O3 reveal the best results for SIBs. This study provides a promising route toward increasing the stability and CE of electrode materials for SIB application. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Direct electrochemistry of hemoglobin immobilized in CuO nanowire bundles.

    PubMed

    Li, Yueming; Zhang, Qian; Li, Jinghong

    2010-11-15

    It is one of main challenges to find the suitable materials to enhance the direct electron transfer between the electrode and redox protein for direct electrochemistry field. Nano-structured metal oxides have attracted considerable interest because of unique properties, well biocompatibility, and good stability. In this paper, the copper oxide nanowire bundles (CuO NWBs) were prepared via a template route, and the bioelectrochemical performances of hemoglobin (Hb) on the CuO NWBs modified glass carbon electrodes (denoted as Hb-CuO NWBs/GC) were studied. TEM and XRD were used to characterize the morphology and structure of the as synthesized CuO NWBs. Fourier transform-infrared spectroscopy (FT-IR) proved that Hb in the CuO NWBs matrix could retain its native secondary structure. A pair of well-defined and quasi-reversible redox peaks at approximately -0.325 V (vs. Ag/AgCl saturated KCl) were shown in the cyclic voltammogram curve for the Hb-CuO NWBs/GC electrode, which indicated the direct electrochemical behavior. The Hb-CuO NWBs/GC electrode also displayed a good electrocatalytic activity toward the reduction of hydrogen peroxide. These results indicate that the CuO NWBs are good substrates for immobilization of biomolecules and might be promising in the fields of (bio) electrochemical analysis. Copyright © 2010 Elsevier B.V. All rights reserved.

  8. Gold nanoparticles embedded electropolymerized thin film of pyrimidine derivative on glassy carbon electrode for highly sensitive detection of l-cysteine.

    PubMed

    Kannan, Ayyadurai; Sevvel, Ranganathan

    2017-09-01

    This paper demonstrates the fabrication of novel gold nanoparticles incorporated poly (4-amino-6-hydroxy-2-mercaptopyrimidine) (Nano-Au/Poly-AHMP) film modified glassy carbon electrode and it is employed for highly sensitive detection of l-cysteine (CYS). The modified electrode was characterized by scanning electron microscope (SEM), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). SEM images of modified electrode revealed the homogeneous distribution of gold nanoparticles on poly (4-amino-6-hydroxy-2-mercaptopyrimidine) thin film modified glassy carbon electrode. The modified electrode was successfully utilized for highly selective and sensitive determination of l-cysteine at physiological pH7.0. The present electrochemical sensor successfully resolved the voltammetric signals of ascorbic acid (AA) and l-cysteine with peak separation of 0.510V. To the best of our knowledge, this is the first report of larger peak separation between AA and CYS. Wide linear concentration ranges (2μM-500μM), low detection limit (0.020μM), an excellent reproducibility and stability are achieved for cysteine sensing with this Nano-Au/Poly-AHMP/GCE. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Strategies for an enzyme immobilization on electrodes: Structural and electrochemical characterizations

    NASA Astrophysics Data System (ADS)

    Ganesh, V.; Muthurasu, A.

    2012-04-01

    In this paper, we propose various strategies for an enzyme immobilization on electrodes (both metal and semiconductor electrodes). In general, the proposed methodology involves two critical steps viz., (1) chemical modification of substrates using functional monolayers [Langmuir - Blodgett (LB) films and/or self-assembled monolayers (SAMs)] and (2) anchoring of a target enzyme using specific chemical and physical interactions by attacking the terminal functionality of the modified films. Basically there are three ways to immobilize an enzyme on chemically modified electrodes. First method consists of an electrostatic interaction between the enzyme and terminal functional groups present within the chemically modified films. Second and third methods involve the introduction of nanomaterials followed by an enzyme immobilization using both the physical and chemical adsorption processes. As a proof of principle, in this work we demonstrate the sensing and catalytic activity of horseradish peroxidase (HRP) anchored onto SAM modified indium tin oxide (ITO) electrodes towards hydrogen peroxide (H2O2). Structural characterization of such modified electrodes is performed using X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM) and contact angle measurements. The binding events and the enzymatic reactions are monitored using electrochemical techniques mainly cyclic voltammetry (CV).

  10. Direct electron transfer of Phanerochaete chrysosporium cellobiose dehydrogenase at platinum and palladium nanoparticles decorated carbon nanotubes modified electrodes.

    PubMed

    Bozorgzadeh, Somayyeh; Hamidi, Hassan; Ortiz, Roberto; Ludwig, Roland; Gorton, Lo

    2015-10-07

    In the present work, platinum and palladium nanoparticles (PtNPs and PdNPs) were decorated on the surface of multi-walled carbon nanotubes (MWCNTs) by a simple thermal decomposition method. The prepared nanohybrids, PtNPs-MWCNTs and PdNPs-MWCNTs, were cast on the surface of spectrographic graphite electrodes and then Phanerochaete chrysosporium cellobiose dehydrogenase (PcCDH) was adsorbed on the modified layer. Direct electron transfer between PcCDH and the nanostructured modified electrodes was studied using flow injection amperometry and cyclic voltammetry. The maximum current responses (Imax) and the apparent Michaelis-Menten constants (K) for the different PcCDH modified electrodes were calculated by fitting the data to the Michaelis-Menten equation and compared. The sensitivity towards lactose was 3.07 and 3.28 μA mM(-1) at the PcCDH/PtNPs-MWCNTs/SPGE and PcCDH/PdNPs-MWCNTs/SPGE electrodes, respectively, which were higher than those measured at the PcCDH/MWCNTs/SPGE (2.60 μA mM(-1)) and PcCDH/SPGE (0.92 μA mM(-1)). The modified electrodes were additionally tested as bioanodes for biofuel cell applications.

  11. Modified Electrodes Used for Electrochemical Detection of Metal Ions in Environmental Analysis

    PubMed Central

    March, Gregory; Nguyen, Tuan Dung; Piro, Benoit

    2015-01-01

    Heavy metal pollution is one of the most serious environmental problems, and regulations are becoming stricter. Many efforts have been made to develop sensors for monitoring heavy metals in the environment. This review aims at presenting the different label-free strategies used to develop electrochemical sensors for the detection of heavy metals such as lead, cadmium, mercury, arsenic etc. The first part of this review will be dedicated to stripping voltammetry techniques, on unmodified electrodes (mercury, bismuth or noble metals in the bulk form), or electrodes modified at their surface by nanoparticles, nanostructures (CNT, graphene) or other innovative materials such as boron-doped diamond. The second part will be dedicated to chemically modified electrodes especially those with conducting polymers. The last part of this review will focus on bio-modified electrodes. Special attention will be paid to strategies using biomolecules (DNA, peptide or proteins), enzymes or whole cells. PMID:25938789

  12. Layer-by-Layer Assembly of Glucose Oxidase on Carbon Nanotube Modified Electrodes.

    PubMed

    Suroviec, Alice H

    2017-01-01

    The use of enzymatically modified electrodes for the detection of glucose or other non-electrochemically active analytes is becoming increasingly common. Direct heterogeneous electron transfer to glucose oxidase has been shown to be kinetically difficult, which is why electron transfer mediators or indirect detection is usually used for monitoring glucose with electrochemical sensors. It has been found, however, that electrodes modified with single or multi-walled carbon nanotubes (CNTs) demonstrate fast heterogeneous electron transfer kinetics as compared to that found for traditional electrodes. Incorporating CNTs into the assembly of electrochemical glucose sensors, therefore, affords the possibility of facile electron transfer to glucose oxidase, and a more direct determination of glucose. This chapter describes the methods used to use CNTs in a layer-by-layer structure along with glucose oxidase to produce an enzymatically modified electrode with high turnover rates, increased stability and shelf-life.

  13. Carbon materials modified by plasma treatment as electrodes for supercapacitors

    NASA Astrophysics Data System (ADS)

    Lota, Grzegorz; Tyczkowski, Jacek; Kapica, Ryszard; Lota, Katarzyna; Frackowiak, Elzbieta

    The carbon material was modified by RF plasma with various reactive gases: O 2, Ar and CO 2. Physicochemical properties of the final carbon products were characterized using different techniques such as gas adsorption method and XPS. Plasma modified materials enriched in oxygen functionalities were investigated as electrodes for supercapacitors in acidic medium. The electrochemical measurements have been carried out using cyclic voltammetry, galvanostatic charge/discharge and impedance spectroscopy. The electrochemical measurements have confirmed that capacity characteristics are closely connected with a type of plasma exposition. Modification processes have an influence on the kind and amount of surface functional groups in the carbon matrix. The moderate increase of capacity of carbon materials modified by plasma has been observed using symmetric two-electrode systems. Whereas investigations made in three-electrode system proved that the suitable selection of plasma modification parameters allows to obtain promising negative and positive electrode materials for supercapacitor application.

  14. An electrochemical fungicide pyrimethanil sensor based on carbon nanotubes/ionic-liquid construction modified electrode.

    PubMed

    Yang, Jichun; Wang, Qiong; Zhang, Minhui; Zhang, Shuming; Zhang, Lei

    2015-11-15

    In this study, a simple, rapid, sensitive and environmentally friendly electroanalytical detection method for pyrimethanil (PMT) was developed, which was based on multi-walled carbon nanotubes (MWCNTs) and ionic liquids (IL) 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIM][PF6]) modified glassy carbon electrode (GCE). MWCNTs-IL modified electrode significantly enhanced the oxidation peak current of PMT by combining the excellent electrochemical properties of MWCNTs and IL, suggesting that the modified electrode can remarkably improve the sensitivity of PMT detection. Under the optimum conditions, this electrochemical sensor exhibited a linear concentration range for PMT of 1.0 × 10(-7)-1.0 × 10(-4) mol L(-1) and the detection limit was 1.6 × 10(-8) mol L(-1) (S/N = 3). The fabricated electrode showed good reproducibility, stability and anti-interference, and also it was successfully employed to detect PMT in real samples. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Performance of polyacrylonitrile-carbon nanotubes composite on carbon cloth as electrode material for microbial fuel cells.

    PubMed

    Kim, Sun-Il; Lee, Jae-Wook; Roh, Sung-Hee

    2011-02-01

    The performance of carbon nanotubes composite-modified carbon cloth electrodes in two-chambered microbial fuel cell (MFC) was investigated. The electrode modified with polyacrylonitrile-carbon nanotubes (PAN-CNTs) composite showed better electrochemical performance than that of plain carbon cloth. The MFC with the composite-modified anode containing 5 mg/cm2 PAN-CNTs exhibited a maximum power density of 480 mW/m2.

  16. Sensitive detection of hydroxylamine at a simple baicalin carbon nanotubes modified electrode.

    PubMed

    Zhang, Hongfang; Zheng, Jianbin

    2012-05-15

    A baicalin multi-wall carbon nanotubes (BaMWCNT) modified glassy carbon electrode (GCE) for the sensitive determination of hydroxylamine was described. The BaMWCNT/GCE with dramatic stability was firstly fabricated with a simple adsorption method. And it showed excellent catalytic activity toward the electrooxidation of hydroxylamine. The amperometric response at the BaMWCNT/GCE modified electrode increased linearly to hydroxylamine concentrations in the range of 0.5 μM to 0.4mM with a detection limit of 0.1 μM. The modified electrode was applied to detection hydroxylamine in the tap water, and the average recovery for the standards added was 96.0%. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Determination of heavy metals in mussel and oyster samples with tris (2,2‧-bipyridyl) ruthenium (II)/graphene/Nafion® modified glassy carbon electrodes

    NASA Astrophysics Data System (ADS)

    Palisoc, Shirley T.; Uy, Donald Jans S.; Natividad, Michelle T.; Lopez, Toni Beth G.

    2017-11-01

    Tris (2,2‧-bipyridyl)ruthenium(II)/graphene/Nafion® modified glassy carbon electrodes (GCEs) were fabricated using the drop coating method. The modified electrode was used as the working electrode in differential pulse voltammetry (DPV) for the determination of lead, cadmium, and copper in mussel and oyster samples. The concentration of Tris (2,2‧-bipyridyl) ruthenium (II) and graphene were varied while those of Nafion®, methanol, and ethanol were held constant in the coating solution. The morphology and elemental composition of the fabricated electrodes were analyzed by scanning electron microscopy and energy-dispersive x-ray spectroscopy. Cyclic voltammetry (CV) was done to investigate the reversibility and stability of the modified electrodes. The modified electrode with the best figures of merit was utilized for the detection of copper (Cu2+), lead (Pb2+) and cadmium (Cd2+) via DPV. This was the electrode modified with 4 mg [Ru (bpy)3]2+ and 3 mg graphene. The anodic current and metal concentration showed linear relationship in the range of 48 ppb-745 ppb for Pb2+, 49 ppb-613 ppb for Cd2+, and 28 ppb-472 ppb for Cu2+. The limits of detection for lead, cadmium, and copper were 48 ppb, 49 ppb, and 28 ppb, respectively. Results from atomic absorption spectrometry (AAS) were compared with those measured with DPV. Lead, cadmium, and copper were in mussels, oysters, and sea water. In addition, DPV was able to detect other metals such as zinc, iron, tin and mercury in sea water samples and some samples of oysters.

  18. Interfacial characterization and supercapacitive properties of polyaniline-Gum arabic nanocomposite/graphene oxide LbL modified electrodes

    NASA Astrophysics Data System (ADS)

    Oliveira, Rafaela D.; Santos, Cleverson S.; Ferreira, Rodolfo T.; Marciniuk, Gustavo; Marchesi, Luís F.; Garcia, Jarem R.; Vidotti, Marcio; Pessoa, Christiana A.

    2017-12-01

    In this manuscript, we describe the synthesis and electrochemical characterization of polyaniline-gum arabic nanocomposites and graphene oxide (PANI-GA/GO) modified electrodes with a detailed study concerning their supercapacitive properties. The electrode modification was carried out by using the Layer-by-Layer technique (LbL), where the PANI-GA nanocomposite dispersion was used as polycation and the GO colloidal dispersion as polyanion. The bilayer growth was followed by both UV-vis spectroscopy and cyclic voltammetry, and an increase in the characteristic PANI absorption and in the electrochemical signal was verified, confirming the electrode build up. Galvanostatic charge-discharge curves (GCDC) were performed to evaluate the supercapacitive properties of the modified electrodes, these results showed the dependence of the specific capacitance with the number of bilayers, where values of CS around 15 mF cm-2 (i = 0.1 mA cm-2) were found. Electrochemical impedance spectroscopy confirmed the pseudocapacitive properties of the modified electrodes, showing an increase in the low-frequency capacitance with the number of bilayers. Hereby the (PANI-GA/GO)-LbL electrodes were shown to be good candidates for active materials in supercapacitors.

  19. Derivatization of single-walled carbon nanotubes with redox mediator for biocatalytic oxygen electrodes.

    PubMed

    Sadowska, K; Stolarczyk, K; Biernat, J F; Roberts, K P; Rogalski, J; Bilewicz, R

    2010-11-01

    Single-walled carbon nanotubes (SWCNTs) were covalently modified with a redox mediator derived from 2,2'-azino-bis-(3-ethylbenzothiazoline)-6-sulfonic acid (ABTS), and implemented in the construction of electrodes for biocatalytic oxygen reduction. The procedure is based on: covalent bonding of mediator to nanotubes, placing the nanotubes directly on the carbon electrode surface and covering the nanostructured electrode with a Nafion film containing laccase as the biocatalyst. The modified electrode is stable and the problem of mediator (ABTS) leaking from the film is eliminated by binding it covalently to the nanotubes. Three different synthetic approaches were used to obtain ABTS-modified carbon nanotubes. Nanotubes were modified at ends/defect sites or on the nanotube sidewalls and characterized by Raman spectroscopy, TGA and electrochemistry. The accessibility of differently located ABTS units by the laccase active center and mediation of electron transfer were studied by cyclic voltammetry. The surface concentrations of ABTS groups electrically connected with the electrode were compared for each of the electrodes based on the charges of the voltammetric peaks recorded in the deaerated solution. The nanotube modification procedure giving the best parameters of the catalytic process was selected. Copyright © 2010 Elsevier B.V. All rights reserved.

  20. Determination of kojic acid based on the interface enhancement effects of carbon nanotube/alizarin red S modified electrode.

    PubMed

    Liu, Jieshu; Zhou, Dazhai; Liu, Xiaopeng; Wu, Kangbing; Wan, Chidan

    2009-04-01

    Based on non-covalent interactions such as pi-pi stacking, van der Waals interactions and strong adsorption, alizarin red S (ARS) interacts with multi-walled carbon nanotubes (MWNT), improving the solubility of MWNT in water and resulting in a stable MWNT/ARS solution. By successive cyclic sweeps between 0.0 and 2.2V in the MWNT/ARS solution, a MWNT/ARS composite film was fabricated on an electrode surface. The electrochemical behaviors of kojic acid at the bare electrode, the ARS film-modified electrode and the MWNT/ARS film-modified electrode were investigated. It was found that the oxidation signal of kojic acid significantly increased at the MWNT/ARS film-modified electrode, which was attributed to the unique properties of MWNT such as large surface area, strong adsorptive ability and subtle electronic character. The effects of pH and cyclic number of electropolymerization were examined. A rapid, sensitive and simple electrochemical method was then developed for the determination of kojic acid. This method exhibits good linearity over the range from 4.0 x 10(-7) to 6.0 x 10(-5)mol L(-1), and the limit of detection is as low as 1.0 x 10(-7)mol L(-1). In order to validate feasibility, the MWNT/ARS film-modified electrode was used for quantitative analysis of kojic acid in food samples.

  1. Improving the power generation of microbial fuel cells by modifying the anode with single-wall carbon nanohorns.

    PubMed

    Yang, Jiawei; Cheng, Shaoan; Sun, Yi; Li, Chaochao

    2017-10-01

    To increase the power generation of microbial fuel cells (MFCs), anode modification with carbon materials (activated carbon, carbon nanotubes, and carbon nanohorns) was investigated. Maximum power densities of a stainless-steel anode MFC with a non-modified electrode (SS-MFC), an activated carbon-modified electrode (AC-MFC), a carbon nanotube-modified electrode (CNT-MFC) and a carbon nanohorn-modified electrode (CNH-MFC) were 72, 244, 261 and 327 mW m -2 , respectively. The total polarization resistance measured by electrochemical impedance spectroscopy were 3610 Ω for SS-MFC, 283 Ω for AC-MFC, 231 Ω for CNTs-MFC, and 136 Ω for CNHs-MFC, consistent with the anode resistances obtained by fitting the anode polarization curves. Single-wall carbon nanohorns are better than activated carbon and carbon nanotubes as a new anode modification material for improving anode performance.

  2. Synthesis and electrocatalytic activity of Au/Pt bimetallic nanodendrites for ethanol oxidation in alkaline medium.

    PubMed

    Han, Xinyi; Wang, Dawei; Liu, Dong; Huang, Jianshe; You, Tianyan

    2012-02-01

    Gold/Platinum (Au/Pt) bimetallic nanodendrites were successfully synthesized through seeded growth method using preformed Au nanodendrites as seeds and ascorbic acid as reductant. Cyclic voltammograms (CVs) of a series of Au/Pt nanodendrites modified electrodes in 1M KOH solution containing 1M ethanol showed that the electrocatalyst with a molar ratio (Au:Pt) of 3 exhibited the highest peak current density and the lowest onset potential. The peak current density of ethanol electro-oxidation on the Au(3)Pt(1) nanodendrites modified glassy carbon electrode (Au(3)Pt(1) electrode) is about 16, 12.5, and 4.5 times higher than those on the polycrystalline Pt electrode, polycrystalline Au electrode, and Au nanodendrites modified glassy carbon electrode (Au dendrites electrode), respectively. The oxidation peak potential of ethanol electro-oxidation on the Au(3)Pt(1) electrode is about 299 and 276 mV lower than those on the polycrystalline Au electrode and Au dendrites electrode, respectively. These results demonstrated that the Au/Pt bimetallic nanodendrites may find potential application in alkaline direct ethanol fuel cells (ADEFCs). Copyright © 2011 Elsevier Inc. All rights reserved.

  3. An electrochemiluminescent biosensor for glucose based on the electrochemiluminescence of luminol on the nafion/glucose oxidase/poly(nickel(II)tetrasulfophthalocyanine)/multi-walled carbon nanotubes modified electrode.

    PubMed

    Qiu, Bin; Lin, Zhenyu; Wang, Jian; Chen, Zhihuang; Chen, Jinhua; Chen, Guonan

    2009-04-15

    A poly(nickel(II) tetrasulfophthalocyanine)/multi-walled carbon nanotubes composite modified electrode (polyNiTSPc/MWNTs) was fabricated by electropolymerization of NiTSPc on MWNTs-modified glassy carbon electrode (GCE). The modified electrode was found to be able to greatly improve the emission of luminol electrochemiluminescence (ECL) in a solution containing hydrogen peroxide. Glucose oxidase (GOD) was immobilized on the surface of polyNiTSPc/MWNTs modified GC electrode by Nafion to establish an ECL glucose sensor. Under the optimum conditions, the linear response range of glucose was 1.0x10(-6) to 1.0x10(-4) mol L(-1) with a detection limit of 8.0x10(-8) mol L(-1) (defined as the concentration that could be detected at the signal-to-noise ratio of 3). The ECL sensor showed an outstanding well reproducibility and long-term stability. The established method has been applied to determine the glucose concentrations in real serum samples with satisfactory results.

  4. Sensitive and selective determination of Cu2+ at D-penicillamine functionalized nano-cellulose modified pencil graphite electrode

    NASA Astrophysics Data System (ADS)

    Taheri, M.; Ahour, F.; Keshipour, S.

    2018-06-01

    A novel electrochemical sensor based on D-penicillamine anchored nano-cellulose (DPA-NC) modified pencil graphite electrode was fabricated and used for highly selective and sensitive determination of copper (II) ions in the picomolar concentration by square wave adsorptive stripping voltammetric (SWV) method. The modified electrode showed better and increased SWV response compared to the bare and NC modified electrodes which may be related to the porous structure of modifier along with formation of complex between Cu2+ ions and nitrogen or oxygen containing groups in DPA-NC. Optimization of various experimental parameters influence the performance of the sensor, were investigated. Under optimized condition, DPA-NC modified electrode was used for the analysis of Cu2+ in the concentration range from 0.2 to 50 pM, and a lower detection limit of 0.048 pM with good stability, repeatability, and selectivity. Finally, the practical applicability of DPA-NC-PGE was confirmed via measuring trace amount of Cu (II) in tap and river water samples.

  5. Ag Nanoparticles-Modified 3D Graphene Foam for Binder-Free Electrodes of Electrochemical Sensors.

    PubMed

    Han, Tao; Jin, Jianli; Wang, Congxu; Sun, Youyi; Zhang, Yinghe; Liu, Yaqing

    2017-02-16

    Ag nanoparticles-modified 3D graphene foam was synthesized through a one-step in-situ approach and then directly applied as the electrode of an electrochemical sensor. The composite foam electrode exhibited electrocatalytic activity towards Hg(II) oxidation with high limit of detection and sensitivity of 0.11 μM and 8.0 μA/μM, respectively. Moreover, the composite foam electrode for the sensor exhibited high cycling stability, long-term durability and reproducibility. These results were attributed to the unique porous structure of the composite foam electrode, which enabled the surface of Ag nanoparticles modified reduced graphene oxide (Ag NPs modified rGO) foam to become highly accessible to the metal ion and provided more void volume for the reaction with metal ion. This work not only proved that the composite foam has great potential application in heavy metal ions sensors, but also provided a facile method of gram scale synthesis 3D electrode materials based on rGO foam and other electrical active materials for various applications.

  6. Ag Nanoparticles-Modified 3D Graphene Foam for Binder-Free Electrodes of Electrochemical Sensors

    PubMed Central

    Han, Tao; Jin, Jianli; Wang, Congxu; Sun, Youyi; Zhang, Yinghe; Liu, Yaqing

    2017-01-01

    Ag nanoparticles-modified 3D graphene foam was synthesized through a one-step in-situ approach and then directly applied as the electrode of an electrochemical sensor. The composite foam electrode exhibited electrocatalytic activity towards Hg(II) oxidation with high limit of detection and sensitivity of 0.11 µM and 8.0 µA/µM, respectively. Moreover, the composite foam electrode for the sensor exhibited high cycling stability, long-term durability and reproducibility. These results were attributed to the unique porous structure of the composite foam electrode, which enabled the surface of Ag nanoparticles modified reduced graphene oxide (Ag NPs modified rGO) foam to become highly accessible to the metal ion and provided more void volume for the reaction with metal ion. This work not only proved that the composite foam has great potential application in heavy metal ions sensors, but also provided a facile method of gram scale synthesis 3D electrode materials based on rGO foam and other electrical active materials for various applications. PMID:28336878

  7. Evaluation of MOSFET-type glucose sensor using platinum electrode with glucose oxidase

    NASA Astrophysics Data System (ADS)

    Ooe, Katsutoshi; Hamamoto, Yasutaro; Hirano, Yoshiaki

    2005-02-01

    As the population ages, health management will be one of the important issues. The development of a safe medical machine based on MEMS technologies for the human body will be the primary research project in the future. We have developed the glucose sensor, as one of the medical based devices, for use in the Health Monitoring System (HMS). HMS is the device that continuously monitors human health conditions. For example, blood is the monitoring target of HMS. The glucose sensor specifically detects the glucose levels of the blood and monitors the glucose concentration as the blood sugar level. This glucose sensor has a "separated Au electrode", which immobilizes GOx. In our previous work, GOx was immobilized onto Au electrode by the SAMs (Self-Assembled Monolayer) method, and the sensor, using this working electrode, detected the glucose concentration of an aqueous glucose solution. In this report, we used a Pt electrode, which immobilized GOx, as a working electrode. Au electrode, which was used previously, was dissolved by the application of current in the presence of chloride ions. Based on the above-mentioned fact, a new working electrode, which immobilized GOx, was produced using Pt, which did not possess such characteristics. These Pt working electrodes were produced using the covalent binding method and the cross-link method, and both the electrodes displayed a good sensing property. In addition, the electrode using glutaraldehyde (GA) and bovine serum albumin (BSA) as crosslinking agents was produced, and it displayed better characteristics as compared with those displayed by the electrode that used only GA. Based on the above-mentioned techniques, the improvement in performance of the sensor was confirmed.

  8. Electrochemical properties of seamless three-dimensional carbon nanotubes-grown graphene modified with horseradish peroxidase.

    PubMed

    Komori, Kikuo; Terse-Thakoor, Trupti; Mulchandani, Ashok

    2016-10-01

    Horseradish peroxidase (HRP) was immobilized through sodium dodecyl sulfate (SDS) on the surface of a seamless three-dimensional hybrid of carbon nanotubes grown at the graphene surface (HRP-SDS/CNTs/G) and its electrochemical properties were investigated. Compared with graphene alone electrode modified with HRP via SDS (HRP-SDS/G electrode), the surface coverage of electroactive HRP at the CNTs/G electrode surface was approximately 2-fold greater because of CNTs grown at the graphene surface. Based on the increase in the surface coverage of electroactive HRP, the sensitivity to H2O2 at the HRP-SDS/CNTs/G electrode was higher than that at the HRP-SDS/G electrode. The kinetics of the direct electron transfer from the CNTs/G electrode to compound I and II of modified HRP was also analyzed. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Effect of electrode materials on the space charge distribution of an Al2O3 nano-modified transformer oil under impulse voltage conditions

    NASA Astrophysics Data System (ADS)

    Yang, Qing; Liu, Mengna; Sima, Wenxia; Jin, Yang

    2017-11-01

    The combined effect mechanism of electrode materials and Al2O3 nanoparticles on the insulating characteristics of transformer oil was investigated. Impulse breakdown tests of pure transformer oil and Al2O3 nano-modified transformer oil of varying concentrations with different electrode materials (brass, aluminum and stainless steel) showed that the breakdown voltage of Al2O3 nano-modified transformer oil is higher than that of pure transformer oil and there is a there is an optimum concentration for Al2O3 nanoparticles when the breakdown voltage reaches the maximum. In addition, the breakdown voltage was highest with the brass electrode, followed by that with stainless steel and then aluminum, irrespective of the concentration of nanoparticles in the transformer oil. This is explained by the charge injection patterns from different electrode materials according to the results of space charge measurements in pure and nano-modified transformer oil using the Kerr electro-optic system. The test results indicate that there are electrode-dependent differences in the charge injection patterns and quantities and then the electric field distortion, which leads to the difference breakdown strength in result. As for the nano-modified transformer oil, due to the Al2O3 nanoparticle’s ability of shielding space charges of different polarities and the charge injection patterns of different electrodes, these two factors have different effects on the electric field distribution and breakdown process of transformer oil between different electrode materials. This paper provides a feasible approach to exploring the mechanism of the effect of the electrode material and nanoparticles on the breakdown strength of liquid dielectrics and analyzing the breakdown process using the space charge distribution.

  10. Cellobiose Dehydrogenase Aryl Diazonium Modified Single Walled Carbon Nanotubes: Enhanced Direct Electron Transfer through a Positively Charged Surface

    PubMed Central

    2011-01-01

    One of the challenges in the field of biosensors and biofuel cells is to establish a highly efficient electron transfer rate between the active site of redox enzymes and electrodes to fully access the catalytic potential of the biocatalyst and achieve high current densities. We report on very efficient direct electron transfer (DET) between cellobiose dehydrogenase (CDH) from Phanerochaete sordida (PsCDH) and surface modified single walled carbon nanotubes (SWCNT). Sonicated SWCNTs were adsorbed on the top of glassy carbon electrodes and modified with aryl diazonium salts generated in situ from p-aminobenzoic acid and p-phenylenediamine, thus featuring at acidic pH (3.5 and 4.5) negative or positive surface charges. After adsorption of PsCDH, both electrode types showed excellent long-term stability and very efficient DET. The modified electrode presenting p-aminophenyl groups produced a DET current density of 500 μA cm−2 at 200 mV vs normal hydrogen reference electrode (NHE) in a 5 mM lactose solution buffered at pH 3.5. This is the highest reported DET value so far using a CDH modified electrode and comes close to electrodes using mediated electron transfer. Moreover, the onset of the electrocatalytic current for lactose oxidation started at 70 mV vs NHE, a potential which is 50 mV lower compared to when unmodified SWCNTs were used. This effect potentially reduces the interference by oxidizable matrix components in biosensors and increases the open circuit potential in biofuel cells. The stability of the electrode was greatly increased compared with unmodified but cross-linked SWCNTs electrodes and lost only 15% of the initial current after 50 h of constant potential scanning. PMID:21417322

  11. Cellobiose dehydrogenase aryl diazonium modified single walled carbon nanotubes: enhanced direct electron transfer through a positively charged surface.

    PubMed

    Tasca, Federico; Harreither, Wolfgang; Ludwig, Roland; Gooding, John Justin; Gorton, Lo

    2011-04-15

    One of the challenges in the field of biosensors and biofuel cells is to establish a highly efficient electron transfer rate between the active site of redox enzymes and electrodes to fully access the catalytic potential of the biocatalyst and achieve high current densities. We report on very efficient direct electron transfer (DET) between cellobiose dehydrogenase (CDH) from Phanerochaete sordida (PsCDH) and surface modified single walled carbon nanotubes (SWCNT). Sonicated SWCNTs were adsorbed on the top of glassy carbon electrodes and modified with aryl diazonium salts generated in situ from p-aminobenzoic acid and p-phenylenediamine, thus featuring at acidic pH (3.5 and 4.5) negative or positive surface charges. After adsorption of PsCDH, both electrode types showed excellent long-term stability and very efficient DET. The modified electrode presenting p-aminophenyl groups produced a DET current density of 500 μA cm(-2) at 200 mV vs normal hydrogen reference electrode (NHE) in a 5 mM lactose solution buffered at pH 3.5. This is the highest reported DET value so far using a CDH modified electrode and comes close to electrodes using mediated electron transfer. Moreover, the onset of the electrocatalytic current for lactose oxidation started at 70 mV vs NHE, a potential which is 50 mV lower compared to when unmodified SWCNTs were used. This effect potentially reduces the interference by oxidizable matrix components in biosensors and increases the open circuit potential in biofuel cells. The stability of the electrode was greatly increased compared with unmodified but cross-linked SWCNTs electrodes and lost only 15% of the initial current after 50 h of constant potential scanning. © 2011 American Chemical Society

  12. Voltammetric sensor based on carbon paste electrode modified with molecular imprinted polymer for determination of sulfadiazine in milk and human serum.

    PubMed

    Sadeghi, Susan; Motaharian, Ali

    2013-12-01

    A new sensitive voltammetric sensor for determination of sulfadiazine is described. The developed sensor is based on carbon paste electrode modified with sulfadiazine imprinted polymer (MIP) as a recognition element. For comparison, a non-imprinted polymer (NIP) modified carbon paste electrode was prepared. Cyclic voltammetry (CV) and differential pulse voltammetry (DPV) methods were performed to study the binding event and electrochemical behavior of sulfadiazine at the modified carbon paste electrodes. The determination of sulfadiazine after its extraction onto the electrode surface was carried out by DPV at 0.92 V vs. Ag/AgCl owing to oxidation of sulfadiazine. Under the optimized operational conditions, the peak current obtained at the MIP modified carbon paste electrode was proportional to the sulfadiazine concentration within the range of 2.0×10(-7)-1.0×10(-4) mol L(-1) with a detection limit and sensitivity of 1.4×10(-7) mol L(-1) and 4.2×10(5) μA L mol(-1), respectively. The reproducibility of the developed sensor in terms of relative standard deviation was 2.6%. The sensor was successfully applied for determination of sulfadiazine in spiked cow milk and human serum samples with recovery values in the range of 96.7-100.9%. © 2013.

  13. Preparation of glucose sensors using gold nanoparticles modified diamond electrode

    NASA Astrophysics Data System (ADS)

    Fachrurrazie; Ivandini, T. A.; Wibowo, W.

    2017-04-01

    A glucose sensor was successfully developed by immobilizing glucose oxidase (GOx) at boron-doped diamond (BDD) electrodes. Prior to GOx immobilization, the BDD was modified with gold nanoparticles (AuNPs). To immobilize AuNPs, the gold surface was modified to nitrogen termination. The characterization of the electrode surface was performed using an X-ray photoelectron spectroscopy and a scanning electron microscope, while the electrochemical properties of the enzyme electrode were characterized using cyclic voltammetry. Cyclic voltammograms of the prepared electrode for D-glucose in phosphate buffer solution pH 7 showed a new reduction peak at +0.16 V. The currents of the peak were linear in the concentration range of 0.1 M to 0.9 M, indicated that the GOx-AuNP-BDD can be applied for electrochemical glucose detection.

  14. Improved Electrochemical Detection of Zinc Ions Using Electrode Modified with Electrochemically Reduced Graphene Oxide

    PubMed Central

    Kudr, Jiri; Richtera, Lukas; Nejdl, Lukas; Xhaxhiu, Kledi; Vitek, Petr; Rutkay-Nedecky, Branislav; Hynek, David; Kopel, Pavel; Adam, Vojtech; Kizek, Rene

    2016-01-01

    Increasing urbanization and industrialization lead to the release of metals into the biosphere, which has become a serious issue for public health. In this paper, the direct electrochemical reduction of zinc ions is studied using electrochemically reduced graphene oxide (ERGO) modified glassy carbon electrode (GCE). The graphene oxide (GO) was fabricated using modified Hummers method and was electrochemically reduced on the surface of GCE by performing cyclic voltammograms from 0 to −1.5 V. The modification was optimized and properties of electrodes were determined using electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). The determination of Zn(II) was performed using differential pulse voltammetry technique, platinum wire as a counter electrode, and Ag/AgCl/3 M KCl reference electrode. Compared to the bare GCE the modified GCE/ERGO shows three times better electrocatalytic activity towards zinc ions, with an increase of reduction current along with a negative shift of reduction potential. Using GCE/ERGO detection limit 5 ng·mL−1 was obtained. PMID:28787832

  15. Application of graphene oxide/lanthanum-modified carbon paste electrode for the selective determination of dopamine

    NASA Astrophysics Data System (ADS)

    Ye, Fengying; Feng, Chenqi; Fu, Ning; Wu, Huihui; Jiang, Jibo; Han, Sheng

    2015-12-01

    A home-made carbon paste electrode (CPE) was reformed by graphene oxide (GO)/lanthanum (La) complexes, and a modified electrode, called GO-La/CPE, was fabricated for the selective determination of dopamine (DA) by cyclic voltammetry (CV) and differential pulse voltammetry (DPV). Several factors affecting the electrocatalytic performance of the modified sensor were investigated. Owning to the combination of GO and La ions, the GO-La/CPE sensor exhibited large surface area, well selectivity, good repeatability and stability in the oxidation reaction of DA. At optimal conditions, the response of the GO-La/CPE electrode for determining DA was linear in the region of 0.01-0.1 μM and 0.1-400.0 μM. The limit of detection was down to 0.32 nM (S/N = 3). In addition, this modified electrode was successfully applied to the detection of DA in real urine and serum samples by using standard adding method, showing its promising application in the electroanalysis of real samples.

  16. Molecularly imprinted electrochemical sensor based on amine group modified graphene covalently linked electrode for 4-nonylphenol detection.

    PubMed

    Chen, Hong-Jun; Zhang, Zhao-Hui; Cai, Rong; Chen, Xing; Liu, Yu-Nan; Rao, Wei; Yao, Shou-Zhuo

    2013-10-15

    In this work, an imprinted electrochemical sensor based on electrochemical reduced graphene covalently modified carbon electrode was developed for the determination of 4-nonylphenol (NP). An amine-terminated functional graphene oxide was covalently modified onto the electrode surface with diazonium salt reactions to improve the stability and reproducibility of the imprinted sensor. The electrochemical properties of each modified electrodes were investigated with differential pulse voltammetry (DPV). The electrochemical characteristic of the imprinted sensor was also investigated using electrochemical impedance spectroscopy (EIS) in detail. The response currents of the imprinted electrode exhibited a linear relationship toward 4-nonylphenol concentration ranging from 1.0 × 10(-11) to 1.0 × 10(-8) gm L(-1) with the detection limit of 3.5 × 10(-12) gm L(-1) (S/N=3). The fabricated electrochemical imprinted sensor was successfully applied to the detection of 4-nonylphenol in rain and lake water samples. Crown Copyright © 2013 Published by Elsevier B.V. All rights reserved.

  17. A nanoporous MXene film enables flexible supercapacitors with high energy storage.

    PubMed

    Fan, Zhimin; Wang, Youshan; Xie, Zhimin; Xu, Xueqing; Yuan, Yin; Cheng, Zhongjun; Liu, Yuyan

    2018-05-14

    MXene films are attractive for use in advanced supercapacitor electrodes on account of their ultrahigh density and pseudocapacitive charge storage mechanism in sulfuric acid. However, the self-restacking of MXene nanosheets severely affects their rate capability and mass loading. Herein, a free-standing and flexible modified nanoporous MXene film is fabricated by incorporating Fe(OH)3 nanoparticles with diameters of 3-5 nm into MXene films and then dissolving the Fe(OH)3 nanoparticles, followed by low calcination at 200 °C, resulting in highly interconnected nanopore channels that promote efficient ion transport without compromising ultrahigh density. As a result, the modified nanoporous MXene film presents an attractive volumetric capacitance (1142 F cm-3 at 0.5 A g-1) and good rate capability (828 F cm-3 at 20 A g-1). Furthermore, it still displays a high volumetric capacitance of 749 F cm-3 and good flexibility even at a high mass loading of 11.2 mg cm-2. Therefore, this flexible and free-standing nanoporous MXene film is a promising electrode material for flexible, portable and compact storage devices. This study provides an efficient material design for flexible energy storage devices possessing high volumetric capacitance and good rate capability even at a high mass loading.

  18. Microcontact printing of self-assembled monolayers to pattern the light-emission of polymeric light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Brondijk, J. J.; Li, X.; Akkerman, H. B.; Blom, P. W. M.; de Boer, B.

    2009-04-01

    By patterning a self-assembled monolayer (SAM) of thiolated molecules with opposing dipole moments on a gold anode of a polymer light-emitting diode (PLED), the charge injection and, therefore, the light-emission of the device can be controlled with a micrometer-scale resolution. Gold surfaces were modified with SAMs based on alkanethiols and perfluorinated alkanethiols, applied by microcontact printing, and their work functions have been measured. The molecules form a chemisorbed monolayer of only ˜1.5 nm on the gold surface, thereby locally changing the work function of the metal. Kelvin probe measurements show that the local work function can be tuned from 4.3 to 5.5 eV, which implies that this anode can be used as a hole blocking electrode or as a hole injecting electrode, respectively, in PLEDs based on poly( p-phenylene vinylene) (PPV) derivatives. By microcontact printing of SAMs with opposing dipole moments, the work function was locally modified and the charge injection in the PLED could be controlled down to the micrometer length scale. Consequently, the local light-emission exhibits a high contrast. Microcontact printing of SAMs is a simple and inexpensive method to pattern, with micrometer resolution, the light-emission for low-end applications like static displays.

  19. An ultra-sensitive Au nanoparticles functionalized DNA biosensor for electrochemical sensing of mercury ions.

    PubMed

    Zhang, Yanyan; Zhang, Cong; Ma, Rui; Du, Xin; Dong, Wenhao; Chen, Yuan; Chen, Qiang

    2017-06-01

    The present work describes an effective strategy to fabricate a highly sensitive and selective DNA-biosensor for the determination of mercury ions (Hg 2+ ). The DNA 1 was modified onto the surface of Au electrode by the interaction between sulfydryl group and Au electrode. DNA probe is complementary with DNA 1. In the presence of Hg 2+ , the electrochemical signal increases owing to that Hg 2+ -mediated thymine bases induce the conformation of DNA probe to change from line to hairpin and less DNA probes adsorb into DNA 1. Taking advantage of its reduction property, methylene blue is considered as the signal indicating molecule. For improving the sensitivity of the biosensor, Au nanoparticles (Au NPs) modified reporter DNA 3 is used to adsorb DNA 1. Electrochemical behaviors of the biosensor were evaluated by electrochemical impedance spectroscopy and cyclic voltammetry. Several important parameters which could affect the property of the biosensor were studied and optimized. Under the optimal conditions, the biosensor exhibits wide linear range, high sensitivity and low detection limit. Besides, it displays superior selectivity and excellent stability. The biosensor was also applied for water sample detection with satisfactory result. The novel strategy of fabricating biosensor provides a potential platform for fabricating a variety of metal ions biosensors. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Plastic substrates for active matrix liquid crystal display incapable of withstanding processing temperature of over 200 C and method of fabrication

    DOEpatents

    Carey, P.G.; Smith, P.M.; Havens, J.H.; Jones, P.

    1999-01-05

    Bright-polarizer-free, active-matrix liquid crystal displays (AMLCDs) are formed on plastic substrates. The primary components of the display are a pixel circuit fabricated on one plastic substrate, an intervening liquid-crystal material, and a counter electrode on a second plastic substrate. The-pixel circuit contains one or more thin-film transistors (TFTs) and either a transparent or reflective pixel electrode manufactured at sufficiently low temperatures to avoid damage to the plastic substrate. Fabrication of the TFTs can be carried out at temperatures less than 100 C. The liquid crystal material is a commercially made nematic curvilinear aligned phase (NCAP) film. The counter electrode is comprised of a plastic substrate coated with a transparent conductor, such as indium-doped tin oxide (ITO). By coupling the active matrix with NCAP, a high-information content can be provided in a bright, fully plastic package. Applications include any low cost portable electronics containing flat displays where ruggedization of the display is desired. 12 figs.

  1. Plastic substrates for active matrix liquid crystal display incapable of withstanding processing temperature of over 200.degree. C and method of fabrication

    DOEpatents

    Carey, Paul G.; Smith, Patrick M.; Havens, John; Jones, Phil

    1999-01-01

    Bright-polarizer-free, active-matrix liquid crystal displays (AMLCDs) are formed on plastic substrates. The primary components of the display are a pixel circuit fabricated on one plastic substrate, an intervening liquid-crystal material, and a counter electrode on a second plastic substrate. The-pixel circuit contains one or more thin-film transistors (TFTs) and either a transparent or reflective pixel electrode manufactured at sufficiently low temperatures to avoid damage to the plastic substrate. Fabrication of the TFTs can be carried out at temperatures less than 100.degree. C. The liquid crystal material is a commercially made nematic curvilinear aligned phase (NCAP) film. The counter electrode is comprised of a plastic substrate coated with a transparent conductor, such as indium-doped tin oxide (ITO). By coupling the active matrix with NCAP, a high-information content can be provided in a bright, fully plastic package. Applications include any low cost portable electronics containing flat displays where ruggedization of the display is desired.

  2. Cyto-sensing in electrochemical lab-on-paper cyto-device for in-situ evaluation of multi-glycan expressions on cancer cells.

    PubMed

    Su, Min; Ge, Lei; Kong, Qingkun; Zheng, Xiaoxiao; Ge, Shenguang; Li, Nianqiang; Yu, Jinghua; Yan, Mei

    2015-01-15

    A novel electrochemical lab-on-paper cyto-device (ELPCD) was fabricated to demonstrate sensitive and specific cancer cell detection as well as in-situ monitoring of multi-glycans on living cancer cells. In this ELPCD, aptamers modified three-dimensional macroporous Au-paper electrode (Au-PE) was employed as the working electrode for specific and efficient cancer cell capture. Using a sandwich format, sensitive and reproducible cell detection was achieved in this ELPCD on the basis of the electrochemical signal amplification of the Au-PE and the horseradish peroxidase-lectin electrochemical probe. The ELPCD displayed excellent analytical performance for the detection of four K562 cells with a wide linear calibration range from 550 to 2.0×10(7) cells mL(-1). Then, this ELPCD was successfully applied to determine cell-surface multi-glycans in parallel and in-situ monitor multi-glycans expression on living cells in response to drug treatment through in-electrode 3D cell culture. The proposed method provides promising application in decipherment of the glycomic codes as well as clinical diagnosis and treatment in early process of cancer. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Disposable amperometric biosensor based on nanostructured bacteriophages for glucose detection

    NASA Astrophysics Data System (ADS)

    Kang, Yu Ri; Hwang, Kyung Hoon; Kim, Ju Hwan; Nam, Chang Hoon; Kim, Soo Won

    2010-10-01

    The selection of electrode material profoundly influences biosensor science and engineering, as it heavily influences biosensor sensitivity. Here we propose a novel electrochemical detection method using a working electrode consisting of bio-nanowires from genetically modified filamentous phages and nanoparticles. fd-tet p8MMM filamentous phages displaying a three-methionine (MMM) peptide on the major coat protein pVIII (designated p8MMM phages) were immobilized on the active area of an electrochemical sensor through physical adsorption and chemical bonding. Bio-nanowires composed of p8MMM phages and silver nanoparticles facilitated sensitive, rapid and selective detection of particular molecules. We explored whether the composite electrode with bio-nanowires was an effective platform to detect the glucose oxidase. The current response of the bio-nanowire sensor was high at various glucose concentrations (0.1 µm-0.1 mM). This method provides a considerable advantage to demonstrate analyte detection over low concentration ranges. Especially, phage-enabled bio-nanowires can serve as receptors with high affinity and specificity for the detection of particular biomolecules and provide a convenient platform for designing site-directed multifunctional scaffolds based on bacteriophages and may serve as a simple method for label-free detection.

  4. Nickel-phendione complex covalently attached onto carbon nanotube/cross linked glucose dehydrogenase as bioanode for glucose/oxygen compartment-less biofuel cell

    NASA Astrophysics Data System (ADS)

    Korani, Aazam; Salimi, Abdollah; Hadadzadeh, Hasan

    2015-05-01

    Here, [Ni(phendion) (phen)]Cl2 complex, (phendion and phen are 1,10-phenanthroline-5,6-dione and 5-amino-1, 10-phenanthrolin) covalently attached onto carboxyl functionalized multi walls carbon nanotube modified glassy carbon electrode (GCE/MWCNTs-COOH) using solid phase interactions and combinatorial approaches.The attached [Ni(phendion) (phen)]Cl2 complex displays a surface controlled electrode process and it acts as an effective redox mediator for electrocatalytic oxidation of dihydronicotinamide adenine dinucleotide (NADH) at reduced overpotentials. With co-immobilization of glucose dehydrogenase enzyme (GDH) by crosslinking an effective biocatalyst for glucose oxidation designed. The onset potential and current density are -0.1 V versus Ag/AgCl electrode and 0.550 mA cm-2, which indicate the applicability of the proposed system as an efficient bioanode for biofuel cell (BFC) design. A GCE/MWCNTs modified with electrodeposited gold nanoparticles (AuNPs) as a platform for immobilization of bilirubin oxidase (BOD) and the prepared GCE/MWCNTs/AuNPs/BOD biocathode exhibits an onset potential of 0.56 V versus Ag/AgCl. The performance of the fabricated bioanode and biocathode in a membraneless enzyme based glucose/O2 biofuel cell is evaluated. The open circuit voltage of the cell and maximum current density are 520 mV and 0.233 mA cm-2, respectively, while maximum power density of 40 μWcm-2 achieves at voltage of 280 mV with stable output power after 24 h continues operation.

  5. Electroanalytical detection of pindolol: comparison of unmodified and reduced graphene oxide modified screen-printed graphite electrodes.

    PubMed

    Cumba, Loanda R; Smith, Jamie P; Brownson, Dale A C; Iniesta, Jesús; Metters, Jonathan P; do Carmo, Devaney R; Banks, Craig E

    2015-03-07

    Recent work has reported the first electroanalytical detection of pindolol using reduced graphene oxide (RGO) modified glassy carbon electrodes [S. Smarzewska and W. Ciesielski, Anal. Methods, 2014, 6, 5038] where it was reported that the use of RGO provided significant improvements in the electroanalytical signal in comparison to a bare (unmodified) glassy carbon electrode. We demonstrate, for the first time, that the electroanalytical quantification of pindolol is actually possible using bare (unmodified) screen-printed graphite electrodes (SPEs). This paper addresses the electroanalytical determination of pindolol utilising RGO modified SPEs. Surprisingly, it is found that bare (unmodified) SPEs provide superior electrochemical signatures over that of RGO modified SPEs. Consequently the electroanalytical sensing of pindolol is explored at bare unmodified SPEs where a linear range between 0.1 μM-10.0 μM is found to be possible whilst offering a limit of detection (3σ) corresponding to 0.097 μM. This provides a convenient yet analytically sensitive method for sensing pindolol. The optimised electroanalytical protocol using the unmodified SPEs, which requires no pre-treatment (electrode polishing) or electrode modification step (such as with the use of RGO), was then further applied to the determination of pindolol in urine samples. This work demonstrates that the use of RGO modified SPEs have no significant benefits when compared to the bare (unmodified) alternative and that the RGO free electrode surface can provide electro-analytically useful performances.

  6. Construction of an electrochemical sensor based on the electrodeposition of Au-Pt nanoparticles mixtures on multi-walled carbon nanotubes film for voltammetric determination of cefotaxime.

    PubMed

    Shahrokhian, Saeed; Rastgar, Shokoufeh

    2012-06-07

    Mixtures of gold-platinum nanoparticles (Au-PtNPs) are fabricated consecutively on a multi-walled carbon nanotubes (MWNT) coated glassy carbon electrode (GCE) by the electrodeposition method. The surface morphology and nature of the hybrid film (Au-PtNPs/MWCNT) deposited on glassy carbon electrodes is characterized by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) techniques. The modified electrode is used as a new and sensitive electrochemical sensor for the voltammetric determination of cefotaxime (CFX). The electrochemical behavior of CFX is investigated on the surface of the modified electrode using linear sweep voltammetry (LSV). The results of voltammetric studies exhibited a considerable improvement in the oxidation peak current of CFX compared to glassy carbon electrodes individually coated with MWCNT or Au-PtNPs. Under the optimized conditions, the modified electrode showed a wide linear dynamic range of 0.004-10.0 μM with a detection limit of 1.0 nM for the voltammetric determination of CFX. The modified electrode was successfully applied for the accurate determination of trace amounts of CFX in pharmaceutical and clinical preparations.

  7. Modification of Patterned Nanoporous Gold Thin Film Electrodes via Electro-annealing and Electrochemical Etching

    NASA Astrophysics Data System (ADS)

    Dorofeeva, Tatiana

    Nanostructured materials have had a major impact on various fields, including medicine, catalysis, and energy storage, for the major part due to unique phenomena that arise at nanoscale. For this reason, there is a sustained need for new nanostructured materials, techniques to pattern them, and methods to precisely control their nanostructure. To that end, the primary focus of this dissertation is to demonstrate novel techniques to fabricate and tailor the morphology of a class of nanoporous metals, obtained by a process known as dealloying. In this process, while the less noble constituent of an alloy is chemically dissolved, surface-diffusion of the more noble constituent leads to self-assembly of a bicontinuous ligament network with characteristic porosity of ˜70% and ligament diameter of 10s of nanometers. As a model material produced by dealloying, this work employ nanoporous gold (np-Au), which has attracted significant attention of desirable features, such as high effective surface area, electrical conductivity, well-defined thiol-based surface modification strategies, microfabrication-compatibility, and biocompatibility. The most commonly method used to modify the morphology of np-Au is thermal treatment, where the enhanced diffusivity of the surface atoms leads to ligament (and consequently pore) coarsening. This method, however, is not conducive to modifying the morphology of thin films at specific locations on the film, which is necessary for creating devices that may need to contain different morphologies on a single device. In addition, coarsening attained by thermal treatment also leads to an undesirable reduction in effective surface area. In response to these challenges, this work demonstrates two different techniques that enables in situ modification of np-Au thin film electrodes obtained by sputter-deposition of a precursors silver-rich gold-silver alloy. The first method, referred to as electro-annealing, is achieved by injecting electrical current to np-Au electrodes, which leads coarsening due to a combination of Joule heating and other mechanisms. This method offers the capability to anneal different electrodes to varying degrees of coarsening in one step, by employing electrodes patterns with different cross-sectional areas - easily attained since np-Au can be patterned into arbitrary shapes via photolithography - to control electrode resistivity, thus current density and the amount of electro-annealing of an electrode. A surprising finding was that electro-annealing lead to electrode coarsening at much lower temperatures than conventional thermal treatment, which was attributed to augmented electron-surface atom interactions at high current densities that may in turn enhance surface atom diffusivity. A major advantage of electro-annealing is the ability to monitor the resistance change of the electrode (surrogate for electrode morphology) in real-time and vary the electro-annealing current accordingly to establish a closed-loop electro-annealing configuration. In nanostructured materials, the electrical resistance is often a function of nanostructure, thus changes in resistance can be directly linked to morphological changes of the electrode. Examination of the underlying mechanisms of nanostructure-dependent resistance change revealed that both ligament diameter and grain size play a role in dictating the observed electrode resistance change. The second method relies on electrochemical etching of ligaments to modify electrode morphology in order to maintain both a high effective surface area and large pores for unhindered transport of molecules to/from the ligament surfaces - an important consideration for many physico-chemical processes, such fuel cells, electrochemical sensors, and drug delivery platforms. The advantage of this method over purely chemical approach is that while an entire sample in exposed to the chemical reagent, the etching process does not occur until the necessary electrochemical potential is applied. Similar to the electro-annealing methods, electrical addressability allows for differentially modifying the morphology individual electrodes on a single substrate. The results of this study also revealed that electrochemical etching is a combination of coarsening and etching processes, where the optimization of etching parameters makes it possible precisely control the etching by favoring one process over the other. In summary, the two techniques, taken together in combination with np-Au's compatibility with microfabrication processes, can be extended to create multiple electrode arrays that display different morphologies for studying structure?property relationships and tuning catalysts/sensors for optimal performance.

  8. Electrochemical sensor for terbutaline sulfate based on a glassy carbon electrode modified with grapheme and multi-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Li, Zhou; Hua, Xin; Pei, Hongying; Shen, Yuan; Shen, Guijun

    2017-12-01

    A glass carbon electrode was prepared that coated with a composite film containing grapheme and multi-walled carbon nanotubes. It was used to study the electrochemical response of terbutaline sulfate. Under the optimized conditions, the oxidation peak current was found to be proportional to its concentration in the range of 0.2-5 μmol·L-1 and 5-40 μmol·L-1).Compared with the bare GC electrode, the GN-MWNTs-modified GC (GN-MWNTs/GC) had many advantages such as relatively high sensitivity, good stability and long life time. The modified electrode was used to determine the TES tablets with satisfactory results.

  9. Determination of caffeic acid in wine using PEDOT film modified electrode.

    PubMed

    Bianchini, C; Curulli, A; Pasquali, M; Zane, D

    2014-08-01

    A novel method using PEDOT (poly(3,4-ethylenedioxy) thiophene) modified electrode was developed for the determination of caffeic acid (CA) in wine. Cyclic voltammetry (CV) with the additions standard method was used to quantify the analyte at PEDOT modified electrodes. PEDOT films were electrodeposited on Platinum electrode (Pt) in aqueous medium by galvanostatic method using sodium poly(styrene-4-sulfonate) (PSS) as electrolyte and surfactant. CV allows detecting the analyte over a wide concentration range (10.0nmoll(-1)-6.5mmoll(-1)). The electrochemical method proposed showed good statistical and analytical parameters as linearity range, LOD, LOQ and sensitivity. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Electrochemical behavior of adrenaline at the carbon atom wire modified electrode

    NASA Astrophysics Data System (ADS)

    Xue, Kuan-Hong; Liu, Jia-Mei; Wei, Ri-Bing; Chen, Shao-Peng

    2006-09-01

    Electrochemical behavior of adrenaline at an electrode modified by carbon atom wires (CAWs), a new material, was investigated by cyclic voltammetry combined with UV-vis spectrometry, and forced convection method. As to the electrochemical response of redox of adrenaline/adrenalinequinone couple in 0.50 M H 2SO 4, at a nitric acid treated CAW modified electrode, the anodic and cathodic peak potentials Epa and Epc shifted by 87 mV negatively and 139 mV in the positive direction, respectively, and standard heterogeneous rate constant k0 increased by 16 times compared to the corresponding bare electrode, indicating the extraordinary activity of CAWs in electrocatalysis for the process.

  11. The influence of different modified graphene on property of DSSCs

    NASA Astrophysics Data System (ADS)

    Xu, Kai; Shen, Yue; Zhang, Zongkun; Cao, Meng; Gu, Feng; Wang, Linjun

    2016-01-01

    Two kinds of modified reduced graphene oxide (rGO) power with different hydrophilic property were synthesized in NH3/hydrazine hydrate (N-rGO) and KOH/hydrazine hydrate (K-rGO) reduction systems, respectively, and be used as counter electrode materials. The as-prepared rGO counter electrodes were confirmed as substitution for Pt counter electrode in dye-sensitized solar cells (DSSCs). The efficiency (η) of DSSCs based on N-rGO counter electrodes achieved 4.72% while that of K-rGO counter electrode was just 3.38%. The electrochemical impedance spectroscopy (EIS) measurements revealed that the hydrophilic K-rGO counter electrode has a low charge transfer resistance (Rct) and the hydrophobic N-rGO counter electrode has a low series resistance (Rs).

  12. Application of nickel zinc ferrite/graphene nanocomposite as a modifier for fabrication of a sensitive electrochemical sensor for determination of omeprazole in real samples.

    PubMed

    Afkhami, Abbas; Bahiraei, Atousa; Madrakian, Tayyebeh

    2017-06-01

    In the present study, a simple and highly sensitive sensor for the determination of omeprazole based on nickel-zinc ferrite/graphene modified glassy carbon electrode is reported. The morphology and electro analytical performance of the fabricated sensor were characterized with X-ray diffraction spectrometry, Fourier transform infrared spectrometry, scanning electron microscopy, electrochemical impedance spectroscopy, cyclic voltammetry, differential pulse voltammetry and operation of the sensor. Results were compared with those achieved at the graphene modified glassy carbon electrode and bare glassy carbon electrode. Under the optimized experimental conditions, linear response was over the range of 0.03-100.0µmolL -1 . The lower detection limit was found to be 0.015µmolL -1 . The effect of different interferences on the anodic current response of OMZ was investigated. By measuring the concentrations of omeprazole in plasma and pharmaceutical samples, the practical application of the modified electrode was evaluated. This revealed that the nickel-zinc ferrite/graphene modified glassy carbon electrode shows excellent analytical performance for the determination of omeprazole with a very low detection limit, high sensitivity, and very good accuracy. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Gold Electrodes Modified with Self-Assembled Monolayers for Measuring L-Ascorbic Acid: An Undergraduate Analytical Chemistry Laboratory Experiment

    ERIC Educational Resources Information Center

    Ito, Takashi; Perera, D. M. Neluni T.; Nagasaka, Shinobu

    2008-01-01

    This article describes an undergraduate electrochemistry laboratory experiment in which the students measure the L-ascorbic acid content of a real sample. Gold electrodes modified with self-assembled monolayers (SAMs) of thioctic acid and cysteamine are prepared to study the effects of surface modification on the electrode reaction of L-ascorbic…

  14. Detection of vitamin b1 (thiamine) using modified carbon paste electrodes with polypyrrole

    NASA Astrophysics Data System (ADS)

    Muppariqoh, N. M.; Wahyuni, W. T.; Putra, B. R.

    2017-03-01

    Vitamin B1 (thiamine) is oxidized in alkaline medium and can be detected by cyclic voltammetry technique using carbon paste electrode (CPE) as a working electrode. polypyrrole-modified CPE were used in this study to increase sensitivity and selectivity measurement of thiamine. Molecularly imprinted polymers (MIP) of the modified CPE was prepared through electrodeposition of pyrrole. Measurement of thiamine performed in KCl 0.05 M (pH 10, tris buffer) using CPE and the modified CPE gave an optimum condition anodic current of thiamine at 0.3 V, potential range (-1.6_1 V), and scan rate of 100 mV/s. Measurement of thiamine using polypyrrole modified CPE (CPE-MIPpy) showed better result than CPE itself with detection limit of 6.9×10-5 M and quantitation limit 2.1×10-4 M. CPE-MIPpy is selective to vita min B1. In conclusion, CPE-MIPpy as a working electrode showed better performance of thiamine measurement than that of CPE.

  15. Design, Synthesis, and Use of Peptides Derived from Human Papillomavirus L1 Protein for the Modification of Gold Electrode Surfaces by Self-Assembled Monolayers.

    PubMed

    Lara Carrillo, John Alejandro; Fierro Medina, Ricardo; Manríquez Rocha, Juan; Bustos Bustos, Erika; Insuasty Cepeda, Diego Sebastián; García Castañeda, Javier Eduardo; Rivera Monroy, Zuly Jenny

    2017-11-14

    In order to obtain gold electrode surfaces modified with Human Papillomavirus L1 protein (HPV L1)-derived peptides, two sequences, SPINNTKPHEAR and YIK, were chosen. Both have been recognized by means of sera from patients infected with HPV. The molecules, Fc-Ahx-SPINNTKPHEAR, Ac-C- Ahx -(Fc)KSPINNTKPHEAR, Ac-C- Ahx -SPINNTKPHEAR(Fc)K, C- Ahx -SPINNTKPHEAR, and (YIK)₂- Ahx -C, were designed, synthesized, and characterized. Our results suggest that peptides derived from the SPINNTKPHEAR sequence, containing ferrocene and cysteine residues, are not stable and not adequate for electrode surface modification. The surface of polycrystalline gold electrodes was modified with the peptides C-Ahx-SPINNTKPHEAR or (YIK)₂-Ahx-C through self-assembly. The modified polycrystalline gold electrodes were characterized via infrared spectroscopy and electrochemical measurements. The thermodynamic parameters, surface coverage factor, and medium pH effect were determined for these surfaces. The results indicate that surface modification depends on the peptide sequence (length, amino acid composition, polyvalence, etc.). The influence of antipeptide antibodies on the voltammetric response of the modified electrode was evaluated by comparing results obtained with pre-immune and post-immune serum samples.

  16. Freeze-drying synthesis of three-dimensional porous LiFePO4 modified with well-dispersed nitrogen-doped carbon nanotubes for high-performance lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Tu, Xiaofeng; Zhou, Yingke; Song, Yijie

    2017-04-01

    The three-dimensional porous LiFePO4 modified with uniformly dispersed nitrogen-doped carbon nanotubes has been successfully prepared by a freeze-drying method. The morphology and structure of the porous composites are characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS), and the electrochemical performances are evaluated using the constant current charge/discharge tests, cyclic voltammetry and electrochemical impedance spectroscopy. The nitrogen-doped carbon nanotubes are uniformly dispersed inside the porous LiFePO4 to construct a superior three-dimensional conductive network, which remarkably increases the electronic conductivity and accelerates the diffusion of lithium ion. The porous composite displays high specific capacity, good rate capability and excellent cycling stability, rendering it a promising positive electrode material for high-performance lithium-ion batteries.

  17. One-step electrodeposition of graphene loaded nickel oxides nanoparticles for acetaminophen detection.

    PubMed

    Liu, Gui-Ting; Chen, Hui-Fen; Lin, Guo-Ming; Ye, Ping-ping; Wang, Xiao-Ping; Jiao, Ying-Zhi; Guo, Xiao-Yu; Wen, Ying; Yang, Hai-Feng

    2014-06-15

    An electrochemical sensor of acetaminophen (AP) based on electrochemically reduced graphene (ERG) loaded nickel oxides (Ni2O3-NiO) nanoparticles coated onto glassy carbon electrode (ERG/Ni2O3-NiO/GCE) was prepared by a one-step electrodeposition process. The as-prepared electrode was characterized by scanning electron microscopy, X-ray photoelectron spectroscopy and Raman spectroscopy. The electrocatalytic properties of ERG/Ni2O3-NiO modified glassy carbon electrode toward the oxidation of acetaminophen were analyzed via cyclic voltammetry (CV) and differential pulse voltammetry (DPV). The electrodes of Ni2O3-NiO/GCE, ERG/GCE, and Ni2O3-NiO deposited ERG/GCE were fabricated for the comparison and the catalytic mechanism understanding. The studies showed that the one-step prepared ERG/Ni2O3-NiO/GCE displayed the highest electro-catalytic activity, attributing to the synergetic effect derived from the unique composite structure and physical properties of nickel oxides nanoparticles and graphene. The low detection limit of 0.02 μM (S/N=3) with the wide linear detection range from 0.04 μM to 100 μM (R=0.998) was obtained. The resulting sensor was successfully used to detect acetaminophen in commercial pharmaceutical tablets and urine samples. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Smartphone-based portable biosensing system using impedance measurement with printed electrodes for 2,4,6-trinitrotoluene (TNT) detection.

    PubMed

    Zhang, Diming; Jiang, Jing; Chen, Junye; Zhang, Qian; Lu, Yanli; Yao, Yao; Li, Shuang; Logan Liu, Gang; Liu, Qingjun

    2015-08-15

    Rapid, sensitive, selective and portable detection of 2,4,6-trinitrotoluene (TNT) is in high demand for public safety and environmental monitoring. In this study, we reported a smartphone-based system using impedance monitoring for TNT detection. The screen-printed electrodes modified with TNT-specific peptides were used as disposable a biosensor to produce impedance responses to TNT. The responses could be monitored by a hand-held device and send out to smartphone through Bluetooth. Then, the smartphone was used to display TNT responses in real time and report concentration finally. In the measurement, the system was demonstrated to detect TNT at concentration as low as 10(-6) M and distinguish TNT versus different chemicals in high specificity. Thus, the smartphone-based biosensing platform provided a convenient and efficient approach to design portable instruments for chemical detections such as TNT recognition. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Study the effect of active carbon modified using HNO3 for carbon electrodes in capacitive deionization system

    NASA Astrophysics Data System (ADS)

    Blegur, Ernes Josias; Endarko

    2017-01-01

    Carbon electrodes prepared with crosslink method for desalination purpose has been synthesized and characterized. The carbon electrodes were synthesized with activated carbon (700 - 1400 m2/g) and polyvinyl alcohol (PVA) as a binder using crosslink method with temperature crosslink at 120°C. Electrochemical properties of carbon electrodes were examined using electrical impedance spectroscopy (EIS) and cyclic voltammetry (CV). The proposed study was to measure the salt-removal percentage of 330 µS/cm NaCl using a capacitive deionization (CDI) unit cell prepared with two pairs of carbon electrodes. The applied potential of 2.0 V and a flow rate of 25 mL/min were used to desalination tests. The result showed that the greatest value of the percentage of salt-removal was achieved at 36.1% for the carbon electrodes with Active Carbon Modified (ACM) while the salt-removal percentage for the Active Carbon (AC) electrodes only at 22%. The fact indicates that the active carbon modified using HNO3 can improve the efficiency of CDI about 14%.

  20. Direct electrochemistry of Shewanella loihica PV-4 on gold nanoparticles-modified boron-doped diamond electrodes fabricated by layer-by-layer technique.

    PubMed

    Wu, Wenguo; Xie, Ronggang; Bai, Linling; Tang, Zuming; Gu, Zhongze

    2012-05-01

    Microbial Fuel Cells (MFCs) are robust devices capable of taping biological energy, converting pollutants into electricity through renewable biomass. The fabrication of nanostructured electrodes with good bio- and electrochemical activity, play a profound role in promoting power generation of MFCs. Au nanoparticles (AuNPs)-modified Boron-Doped Diamond (BDD) electrodes are fabricated by layer-by-layer (LBL) self-assembly technique and used for the direct electrochemistry of Shewanella loihica PV-4 in an electrochemical cell. Experimental results show that the peak current densities generated on the Au/PAH multilayer-modified BDD electrodes increased from 1.25 to 2.93 microA/cm(-2) as the layer increased from 0 to 6. Different cell morphologies of S. loihica PV-4 were also observed on the electrodes and the highest density of cells was attached on the (Au/PAH)6/BDD electrode with well-formed three-dimensional nanostructure. The electrochemistry of S. loihica PV-4 was enhanced on the (Au/PAH)4/BDD electrode due to the appropriate amount of AuNPsand thickness of PAH layer.

  1. Poly(dimethylsiloxane) cross-linked carbon paste electrodes for microfluidic electrochemical sensing.

    PubMed

    Sameenoi, Yupaporn; Mensack, Meghan M; Boonsong, Kanokporn; Ewing, Rebecca; Dungchai, Wijitar; Chailapakul, Orawan; Cropek, Donald M; Henry, Charles S

    2011-08-07

    Recently, the development of electrochemical biosensors as part of microfluidic devices has garnered a great deal of attention because of the small instrument size and portability afforded by the integration of electrochemistry in microfluidic systems. Electrode fabrication, however, has proven to be a major obstacle in the field. Here, an alternative method to create integrated, low cost, robust, patternable carbon paste electrodes (CPEs) for microfluidic devices is presented. The new CPEs are composed of graphite powder and a binder consisting of a mixture of poly(dimethylsiloxane) (PDMS) and mineral oil. The electrodes are made by filling channels molded in previously cross-linked PDMS using a method analogous to screen printing. The optimal binder composition was investigated to obtain electrodes that were physically robust and performed well electrochemically. After studying the basic electrochemistry, the PDMS-oil CPEs were modified with multi-walled carbon nanotubes (MWCNT) and cobalt phthalocyanine (CoPC) for the detection of catecholamines and thiols, respectively, to demonstrate the ease of electrode chemical modification. Significant improvement of analyte signal detection was observed from both types of modified CPEs. A nearly 2-fold improvement in the electrochemical signal for 100 μM dithiothreitol (DTT) was observed when using a CoPC modified electrode (4.0 ± 0.2 nA (n = 3) versus 2.5 ± 0.2 nA (n = 3)). The improvement in signal was even more pronounced when looking at catecholamines, namely dopamine, using MWCNT modified CPEs. In this case, an order of magnitude improvement in limit of detection was observed for dopamine when using the MWCNT modified CPEs (50 nM versus 500 nM). CoPC modified CPEs were successfully used to detect thiols in red blood cell lysate while MWCNT modified CPEs were used to monitor temporal changes in catecholamine release from PC12 cells following stimulation with potassium.

  2. Highly selective dopamine electrochemical sensor based on electrochemically pretreated graphite and nafion composite modified screen printed carbon electrode.

    PubMed

    Ku, Shuhao; Palanisamy, Selvakumar; Chen, Shen-Ming

    2013-12-01

    Herein, we report a highly selective dopamine electrochemical sensor based on electrochemically pretreated graphite/nafion composite modified screen printed carbon (SPC) electrode. Electrochemically activated graphite/nafion composite was prepared by using a simple electrochemical method. Scanning electron microscope (SEM) used to characterize the surface morphology of the fabricated composite electrode. The SEM result clearly indicates that the graphitic basal planes were totally disturbed and leads to the formation of graphite nanosheets. The composite modified electrode showed an enhanced electrocatalytic activity toward the oxidation of DA when compared with either electrochemical pretreated graphite or nafion SPC electrodes. The fabricated composite electrode exhibits a good electrocatalytic oxidation toward DA in the linear response range from 0.5 to 70 μM with the detection limit of 0.023 μM. The proposed sensor also exhibits very good selectivity and stability, with the appreciable sensitivity. In addition, the proposed sensor showed satisfactory recovery results toward the commercial pharmaceutical DA samples. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. Monolithic quasi-solid-state dye-sensitized solar cells based on graphene-modified mesoscopic carbon-counter electrodes

    NASA Astrophysics Data System (ADS)

    Rong, Yaoguang; Han, Hongwei

    2013-01-01

    A monolithic quasi-solid-state dye-sensitized solar cell (DSSC) based on graphene-modified mesoscopic carbon-counter electrode is developed. A TiO2-working electrode layer, ZrO2 spacer layer, and carbon counter electrode layer were constructed on a single conducting glass substrate by screen printing. The quasi-solid-state polymer gel electrolyte employed a polymer composite as the gelator, and effectively infiltrated the porous layers. Fabricated with normal carbon-counter electrode (NC-CE) containing graphite and carbon black, the DSSC had a power conversion efficiency (PCE) of 5.09% with the fill factor of 0.63 at 100 mW cm-2 AM1.5 illumination. When the NC-CE was modified with graphene sheets, the PCE and fill factor were enhanced to 6.27% and 0.71, respectively. This improvement indicates excellent conductivity and high electrocatalytic activity of the graphene sheets, which have been considered as a promising platinum-free electrode material for DSSCs.

  4. The Simultaneous Electrochemical Detection of Catechol and Hydroquinone with [Cu(Sal-β-Ala)(3,5-DMPz)2]/SWCNTs/GCE

    PubMed Central

    Alshahrani, Lina Abdullah; Li, Xi; Luo, Hui; Yang, Linlin; Wang, Mengmeng; Yan, Songling; Liu, Peng; Yang, Yuqin; Li, Quanhua

    2014-01-01

    A glassy carbon electrode was modified with a copper(II) complex [Cu(Sal-β-Ala) (3,5-DMPz)2] (Sal = salicylaldehyde, β-Ala = β-alanine, 3,5-DMPz = 3,5-dimethylpyrazole) and single-walled carbon nanotubes (SWCNTs). The modified electrode was used to detect catechol (CT) and hydroquinone (HQ) and exhibited good electrocatalytic activities toward the oxidation of CT and HQ. The peak currents were linear with the CT and HQ concentrations over the range of 5–215 μmol·L−1 and 5–370 μmol·L−1 with corresponding detection limits of 3.5 μmol·L−1 and 1.46 μmol·L−1 (S/N = 3) respectively. Moreover, the modified electrode exhibited good sensitivity, stability and reproducibility for the determination of CT and HQ, indicating the promising applications of the modified electrode in real sample analysis. PMID:25429411

  5. Investigation of the Ionization Mechanism of NAD+/NADH-Modified Gold Electrodes in ToF-SIMS Analysis.

    PubMed

    Hua, Xin; Zhao, Li-Jun; Long, Yi-Tao

    2018-06-04

    Analysis of nicotinamide adenine dinucleotide (NAD + /NADH)-modified electrodes is important for in vitro monitoring of key biological processes. In this work, time-of-flight secondary ion mass spectrometry (ToF-SIMS) was used to analyze NAD + /NADH-modified gold electrodes. Interestingly, no obvious characteristic peaks of nicotinamide fragment could be observed in the mass spectra of NAD + /NADH in their neutral sodium pyrophosphate form. However, after acidification, the characteristic peaks for both NAD + and NADH were detected. This was due to the suppression effect of inner pyrophosphoric salts in both neutral molecules. Besides, it was proved that the suppression by inner salt was intramolecular. No obvious suppression was found between neighboring molecules. These results demonstrated the suppression effect of inner salts in ToF-SIMS analysis, providing useful evidence for the study of ToF-SIMS ionization mechanism of organic molecule-modified electrodes. Graphical Abstract ᅟ.

  6. In situ Observation of Direct Electron Transfer Reaction of Cytochrome c Immobilized on ITO Electrode Modified with 11-{2-[2-(2-Methoxyethoxy)ethoxy]ethoxy}undecylphosphonic Acid Self-assembled Monolayer Film by Electrochemical Slab Optical Waveguide Spectroscopy.

    PubMed

    Matsuda, Naoki; Okabe, Hirotaka; Omura, Ayako; Nakano, Miki; Miyake, Koji

    2017-01-01

    To immobilize cytochrome c (cyt.c) on an ITO electrode while keeping its direct electron transfer (DET) functionality, the ITO electrode surface was modified with 11-{2-[2-(2-methoxyethoxy)ethoxy]ethoxy}undecylphosphonic acid (CH 3 O (CH 2 CH 2 O) 3 C 11 H 22 PO(OH) 2 , M-EG 3 -UPA) self-assembled monolayer (SAM) film. After a 100-times washing process to exchange a phosphate buffer saline solution surrounding cyt.c and ITO electrode to a fresh one, an in situ observation of visible absorption spectral change with slab optical waveguide (SOWG) spectroscopy showed that 87.7% of the cyt.c adsorbed on the M-EG 3 -UPA modified ITO electrode remained on the ITO electrode. The SOWG absorption spectra corresponding to oxidized and reduced cyt.c were observed with setting the ITO electrode potential at 0.3 and -0.3 V vs. Ag/AgCl, respectively, while probing the DET reaction between cyt.c and ITO electrode occurred. The amount of cyt.c was evaluated to be about 19.4% of a monolayer coverage based on the coulomb amount in oxidation and reduction peaks on cyclic voltammetry (CV) data. The CV peak current maintained to be 83.4% compared with the initial value for a M-EG 3 -UPA modified ITO electrode after 60 min continuous scan with 0.1 V/s between 0.3 and -0.3 V vs. Ag/AgCl.

  7. Effective Electrochemistry of Human Sulfite Oxidase Immobilized on Quantum-Dots-Modified Indium Tin Oxide Electrode.

    PubMed

    Zeng, Ting; Leimkühler, Silke; Koetz, Joachim; Wollenberger, Ulla

    2015-09-30

    The bioelectrocatalytic sulfite oxidation by human sulfite oxidase (hSO) on indium tin oxide (ITO) is reported, which is facilitated by functionalizing of the electrode surface with polyethylenimine (PEI)-entrapped CdS nanoparticles and enzyme. hSO was assembled onto the electrode with a high surface loading of electroactive enzyme. In the presence of sulfite but without additional mediators, a high bioelectrocatalytic current was generated. Reference experiments with only PEI showed direct electron transfer and catalytic activity of hSO, but these were less pronounced. The application of the polyelectrolyte-entrapped quantum dots (QDs) on ITO electrodes provides a compatible surface for enzyme binding with promotion of electron transfer. Variations of the buffer solution conditions, e.g., ionic strength, pH, viscosity, and the effect of oxygen, were studied in order to understand intramolecular and heterogeneous electron transfer from hSO to the electrode. The results are consistent with a model derived for the enzyme by using flash photolysis in solution and spectroelectrochemistry and molecular dynamic simulations of hSO on monolayer-modified gold electrodes. Moreover, for the first time a photoelectrochemical electrode involving immobilized hSO is demonstrated where photoexcitation of the CdS/hSO-modified electrode lead to an enhanced generation of bioelectrocatalytic currents upon sulfite addition. Oxidation starts already at the redox potential of the electron transfer domain of hSO and is greatly increased by application of a small overpotential to the CdS/hSO-modified ITO.

  8. Electrochemical sensing of bisphenol using a multilayer graphene nanobelt modified photolithography patterned platinum electrode

    NASA Astrophysics Data System (ADS)

    Karthick Kannan, Padmanathan; Hu, Chunxiao; Morgan, Hywel; Moshkalev, Stanislav A.; Sekhar Rout, Chandra

    2016-09-01

    An electrochemical sensor has been developed for the detection of Bisphenol-A (BPA) using photolithographically patterned platinum electrodes modified with multilayer graphene nanobelts (GNB). Compared to bare electrodes, the GNB modified electrode exhibited enhanced BPA oxidation current, due to the high effective surface area and high adsorption capacity of the GNB. The sensor showed a linear response over the concentration range from 0.5 μM-9 μM with a very low limit of detection = 37.33 nM. In addition, the sensor showed very good stability and reproducibility with good specificity, demonstrating that GNB is potentially a new material for the development of a practical BPA electrochemical sensor with application in both industrial and plastic industries.

  9. Intensification of electrochemiluminescence of luminol on TiO2 supported Au atomic cluster nano-hybrid modified electrode.

    PubMed

    Yu, Zhimin; Wei, Xiuhua; Yan, Jilin; Tu, Yifeng

    2012-04-21

    With TiO(2) nanoparticles as carrier, a supported nano-material of Au atomic cluster/TiO(2) nano-hybrid was synthesized. It was then modified onto the surface of indium tin oxide (ITO) by Nafion to act as a working electrode for exciting the electrochemiluminescence (ECL) of luminol. The properties of the nano-hybrid and the modified electrode were characterized by XRD, XPS, electronic microscopy, electrochemistry and spectroscopy. The experimental results demonstrated that the modification of this nano-hybrid onto the ITO electrode efficiently intensified the ECL of luminol. It was also revealed that the ECL intensity of luminol on this modified electrode showed very sensitive responses to oxygen and hydrogen peroxide. The detection limits for dissolved oxygen and hydrogen peroxide were 2 μg L(-1) and 5.5 × 10(-12) M, respectively. Besides the discussion of the intensifying mechanism of this nano-hybrid for ECL of luminol, the developed method was also applied for monitoring dissolved oxygen and evaluating the scavenging efficiency of reactive oxygen species of the Ganoderma lucidum spore.

  10. A new modification method of a Cetyl Trimethyl Ammonium Bromide/Nano-ZnO and Multi-walled Carbon Nanotubes Electrode for Determination of Anti Doping in Urine

    NASA Astrophysics Data System (ADS)

    Zhao, Zhiwei; Mu, Shuai; Zheng, Jie; Gu, Lingyan; Shen, Guijun; Shen, Yuan

    2017-07-01

    The preparation and application of Cetyl Trimethyl Ammonium Bromide/Nano-ZnO and Multi-walled Carbon Nanotubes (CTAB/ZnO-MWNTs) Modified Electrodes was studied, establishing a new electrochemical method for determination of carteolol hydrochloride in urine. After its pre-enrichment by adsorption and extraction on modified electrodes, electrochemical behaviors of carteolol hydrochloride on the modified electrodes were studied by CV and DPV. The response is linear at the range of 1×10-3 ∼ 2×10-1 g/L, with a detection limit of 2×10-4 g/L. Under appropriate conditions, the content of carteolol hydrochloride in urine can be determined directly by the method, which had strong anti-interference ability and the recovery is 96.5% - 110.5%. In addition, extraction and adsorption behaviors of the modified electrodes for carteolol hydrochloride were studied by chronocoulumetry, and the results showed that extraction during the enrichment process played a major role at low concentrations, and contribution of surface adsorption became greater with the increase of concentrations.

  11. Voltammetric Sensor Based on Fe-doped ZnO and TiO2 Nanostructures-modified Carbon-paste Electrode for Determination of Levodopa

    NASA Astrophysics Data System (ADS)

    Anaraki Firooz, Azam; Hosseini Nia, Bahram; Beheshtian, Javad; Ghalkhani, Masoumeh

    2017-10-01

    In this study, undoped and 1 wt.% Fe-doped with ZnO, and TiO2 nanostructures were synthesized by a simple hydrothermal method without using templates. The influence of the Fe dopant on structural, optical and electrochemical response was studied by x-ray diffraction, scanning electron microscopy, UV-Vis spectra, photoluminescence spectra and electrochemical characterization system. The electrochemical response of the carbon paste electrode modified with synthesized nanostructures (undoped ZnO and TiO2 as well as doped with Fe ions) toward levodopa (L-Dopa) was studied. Cyclic voltammetry using provided modified electrodes showed electro-catalytic properties for electro-oxidation of L-Dopa and a significant reduction was observed in the anodic overvoltage compared to the bare electrode. The results indicated the presence of the sufficient dopants. The best response was obtained in terms of the current enhancement, overvoltage reduction, and reversibility improvement of the L-Dopa oxidation reaction under experimental conditions by the modified electrode with TiO2 nanoparticles doped with Fe ions.

  12. Process for producing nickel electrode having lightweight substrate

    NASA Technical Reports Server (NTRS)

    Lim, Hong S. (Inventor)

    1996-01-01

    A nickel electrode having a lightweight porous nickel substrate is subjected to a formation cycle involving heavy overcharging and under-discharging in a KOH electrolyte having a concentration of 26% to 31%, resulting in electrodes displaying high active material utilization.

  13. Highly active, bi-functional and metal-free B4C-nanoparticle-modified graphite felt electrodes for vanadium redox flow batteries

    NASA Astrophysics Data System (ADS)

    Jiang, H. R.; Shyy, W.; Wu, M. C.; Wei, L.; Zhao, T. S.

    2017-10-01

    The potential of B4C as a metal-free catalyst for vanadium redox reactions is investigated by first-principles calculations. Results show that the central carbon atom of B4C can act as a highly active reaction site for redox reactions, due primarily to the abundant unpaired electrons around it. The catalytic effect is then verified experimentally by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) tests, both of which demonstrate that B4C nanoparticles can enhance the kinetics for both V2+/V3+ and VO2+/VO2+ redox reactions, indicating a bi-functional effect. The B4C-nanoparticle-modified graphite felt electrodes are finally prepared and tested in vanadium redox flow batteries (VRFBs). It is shown that the batteries with the prepared electrodes exhibit energy efficiencies of 88.9% and 80.0% at the current densities of 80 and 160 mA cm-2, which are 16.6% and 18.8% higher than those with the original graphite felt electrodes. With a further increase in current densities to 240 and 320 mA cm-2, the batteries can still maintain energy efficiencies of 72.0% and 63.8%, respectively. All these results show that the B4C-nanoparticle-modified graphite felt electrode outperforms existing metal-free catalyst modified electrodes, and thus can be promising electrodes for VRFBs.

  14. Nafion/lead nitroprusside nanoparticles modified carbon ceramic electrode as a novel amperometric sensor for L-cysteine.

    PubMed

    Razmi, H; Heidari, H

    2009-05-01

    This work describes the electrochemical and electrocatalytic properties of carbon ceramic electrode (CCE) modified with lead nitroprusside (PbNP) nanoparticles as a new electrocatalyst material. The structure of deposited film on the CCE was characterized by energy dispersive X-ray (EDX), Fourier transform infrared (FTIR), and scanning electron microscopy (SEM). The cyclic voltammogram (CV) of the PbNP modified CCE showed two well-defined redox couples due to [Fe(CN)5NO](3-)/[Fe(CN)5NO](2-) and Pb(IV)/Pb(II) redox reactions. The modified electrode showed electrocatalytic activity toward the oxidation of L-cysteine and was used as an amperometric sensor. Also, to reduce the fouling effect of L-cysteine and its oxidation products on the modified electrode, a thin film of Nafion was coated on the electrode surface. The sensor response was linearly changed with L-cysteine concentration in the range of 1 x 10(-6) to 6.72 x 10(-5)mol L(-1) with a detection limit (signal/noise ratio [S/N]=3) of 0.46 microM. The sensor sensitivity was 0.17 microA (microM)(-1), and some important advantages such as simple preparation, fast response, good stability, interference-free signals, antifouling properties, and reproducibility of the sensor for amperometric determination of L-cysteine were achieved.

  15. SiC nanoparticles-modified glassy carbon electrodes for simultaneous determination of purine and pyrimidine DNA bases.

    PubMed

    Ghavami, Raouf; Salimi, Abdollah; Navaee, Aso

    2011-05-15

    For the first time a novel and simple electrochemical method was used for simultaneous detection of DNA bases (guanine, adenine, thymine and cytosine) without any pretreatment or separation process. Glassy carbon electrode modified with silicon carbide nanoparticles (SiCNP/GC), have been used for electrocatalytic oxidation of purine (guanine and adenine) and pyrimidine bases (thymine and cytosine) nucleotides. Field emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM) techniques were used to examine the structure of the SiCNP/GC modified electrode. The modified electrode shows excellent electrocatalytic activity toward guanine, adenine, thymine and cytosine. Differential pulse voltammetry (DPV) was proposed for simultaneous determination of four DNA bases. The effects of different parameters such as the thickness of SiC layer, pulse amplitude, scan rate, supporting electrolyte composition and pH were optimized to obtain the best peak potential separation and higher sensitivity. Detection limit, sensitivity and linear concentration range of the modified electrode toward proposed analytes were calculated for, guanine, adenine, thymine and cytosine, respectively. As shown this sensor can be used for nanomolar or micromolar detection of different DNA bases simultaneously or individually. This sensor also exhibits good stability, reproducibility and long lifetime. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. The natural diatomite from caldiran-van (Turkey): electroanalytical application to antimigraine compound naratriptan at modified carbon paste electrode.

    PubMed

    Calışkan, Necla; Sögüt, Eda; Saka, Cafer; Yardım, Yavuz; Sentürk, Zuhre

    2010-09-01

    This paper is the first report describing the characterization of local diatomite of Caldiran-Van region (Eastern Anatolia, Turkey). Special attention was paid to the ability of its electroanalytical performance at modified electrodes and to the potential application of diatomite-modified electrode. For this purpose, the determination of Naratriptan which is a novel oral triptan (5-hydroxytryptamine receptor agonist) in migraine treatment, by means of a carbon paste electrode modified with 10% (w/w) of diatomite was studied using cyclic and square-wave voltammetry. The experimental conditions that affect the electrode reaction process were studied in terms of pH of the supporting electrolyte, scan rate, accumulation variables, modifier composition and square-wave parameters. Using square-wave stripping mode, the drug yielded a well-defined voltammetric response in Britton-Robinson buffer, pH 4.0 at 0.84 V (vs. Ag/AgCl) (a pre-concentration step being carried out with an open circuit at 120 s). The process could be used to determine Naratriptan concentrations in the range 5x10(-7)-9x10(-7) M, with a detection limit of 1.25x10(-7) M (46.5 mug L(-1)). The applicability of the method to spiked human urine samples was illustrated.

  17. Fabrication of sensitive enzymatic biosensor based on multi-layered reduced graphene oxide added PtAu nanoparticles-modified hybrid electrode

    PubMed Central

    Hossain, Md Faruk; Park, Jae Y.

    2017-01-01

    A highly sensitive amperometric glucose sensor was developed by immobilization of glucose oxidase (GOx) onto multi-layer reduced graphene oxide (MRGO) sheets decorated with platinum and gold flower-like nanoparticles (PtAuNPs) modified Au substrate electrode. The fabricated MRGO/PtAuNPs modified hybrid electrode demonstrated high electrocatalytic activities toward oxidation of H2O2, to which it had a wide linear response that ranged from 0.5 to 8 mM (R2 = 0.997), and high sensitivity of 506.25 μA/mMcm2. Furthermore, glucose oxidase-chitosan composite and cationic polydiallyldimethylammonium chloride (PDDA) were assembled by a casting method on the surface of MRGO/PtAuNPs modified electrode. This as-fabricated hybrid biosensor electrode exhibited high electrocatalytic activity for the detection of glucose in PBS. It demonstrated good analytical properties in terms of a low detection limit of 1 μM (signal-to-noise ratio of 3), short response time (3 s), high sensitivity (17.85 μA/mMcm2), and a wide linear range (0.01–8 mM) for glucose sensing. These results reveal that the newly developed sensing electrode offers great promise for new type enzymatic biosensor applications. PMID:28333943

  18. One-step electrodeposition of Co0·12Ni1·88S2@Co8S9 nanoparticles on highly conductive TiO2 nanotube arrays for battery-type electrodes with enhanced energy storage performance

    NASA Astrophysics Data System (ADS)

    Yu, Cuiping; Wang, Yan; Zhang, Jianfang; Yang, Wanfen; Shu, Xia; Qin, Yongqiang; Cui, Jiewu; Zheng, Hongmei; Zhang, Yong; Ajayan, Pulickel M.; Wu, Yucheng

    2017-10-01

    High-performance battery-type electrodes based on TiO2 nanotube arrays decorated with Co0·12Ni1·88S2@Co8S9 (CNCS) nanoparticles have been successfully prepared in this paper. The highly conductive TiO2 nanotube arrays modified with carbon and oxygen vacancies (Ti3+ defects) (m-TNAs) are selected as the three-dimensional backbones to support electroactive materials and offer direct pathways for electron and ions transport. Then CNCS nanoparticles are electrodeposited on each nanotube uniformly, and the loading mass of nanoparticles can be controlled through adjusting electrodeposition cycles. After optimization, a remarkable specific capacity of 680.1 C g-1 is achieved at 2 A g -1 as a result of the intrinsic synergetic contributions from structural/compositional/componental merits. This specific capacity is much higher than most of the TNAs-based energy storage electrodes. In addition, an asymmetric supercapacitor device is assembled by applying the optimized CNCS/m-TNAs and commercial active carbon as positive and negative electrode, respectively. It displays a high energy density of 45.5 Wh kg-1 at a power density of 400.5 W kg-1, after cycling for 3000 cycles at a high current density of 4 A g-1, the specific capacitance could still remain 85.7%. This self-supported and binder-free CNCS/m-TNAs electrode will be a competitive and promising candidate for the application in energy storage.

  19. Atomically-thin molecular layers for electrode modification of organic transistors

    NASA Astrophysics Data System (ADS)

    Gim, Yuseong; Kang, Boseok; Kim, Bongsoo; Kim, Sun-Guk; Lee, Joong-Hee; Cho, Kilwon; Ku, Bon-Cheol; Cho, Jeong Ho

    2015-08-01

    Atomically-thin molecular layers of aryl-functionalized graphene oxides (GOs) were used to modify the surface characteristics of source-drain electrodes to improve the performances of organic field-effect transistor (OFET) devices. The GOs were functionalized with various aryl diazonium salts, including 4-nitroaniline, 4-fluoroaniline, or 4-methoxyaniline, to produce several types of GOs with different surface functional groups (NO2-Ph-GO, F-Ph-GO, or CH3O-Ph-GO, respectively). The deposition of aryl-functionalized GOs or their reduced derivatives onto metal electrode surfaces dramatically enhanced the electrical performances of both p-type and n-type OFETs relative to the performances of OFETs prepared without the GO modification layer. Among the functionalized rGOs, CH3O-Ph-rGO yielded the highest hole mobility of 0.55 cm2 V-1 s-1 and electron mobility of 0.17 cm2 V-1 s-1 in p-type and n-type FETs, respectively. Two governing factors: (1) the work function of the modified electrodes and (2) the crystalline microstructures of the benchmark semiconductors grown on the modified electrode surface were systematically investigated to reveal the origin of the performance improvements. Our simple, inexpensive, and scalable electrode modification technique provides a significant step toward optimizing the device performance by engineering the semiconductor-electrode interfaces in OFETs.Atomically-thin molecular layers of aryl-functionalized graphene oxides (GOs) were used to modify the surface characteristics of source-drain electrodes to improve the performances of organic field-effect transistor (OFET) devices. The GOs were functionalized with various aryl diazonium salts, including 4-nitroaniline, 4-fluoroaniline, or 4-methoxyaniline, to produce several types of GOs with different surface functional groups (NO2-Ph-GO, F-Ph-GO, or CH3O-Ph-GO, respectively). The deposition of aryl-functionalized GOs or their reduced derivatives onto metal electrode surfaces dramatically enhanced the electrical performances of both p-type and n-type OFETs relative to the performances of OFETs prepared without the GO modification layer. Among the functionalized rGOs, CH3O-Ph-rGO yielded the highest hole mobility of 0.55 cm2 V-1 s-1 and electron mobility of 0.17 cm2 V-1 s-1 in p-type and n-type FETs, respectively. Two governing factors: (1) the work function of the modified electrodes and (2) the crystalline microstructures of the benchmark semiconductors grown on the modified electrode surface were systematically investigated to reveal the origin of the performance improvements. Our simple, inexpensive, and scalable electrode modification technique provides a significant step toward optimizing the device performance by engineering the semiconductor-electrode interfaces in OFETs. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr03307a

  20. Synthesis and application of a triazene-ferrocene modifier for immobilization and characterization of oligonucleotides at electrodes.

    PubMed

    Hansen, Majken N; Farjami, Elaheh; Kristiansen, Martin; Clima, Lilia; Pedersen, Steen Uttrup; Daasbjerg, Kim; Ferapontova, Elena E; Gothelf, Kurt V

    2010-04-16

    A new DNA modifier containing triazene, ferrocene, and activated ester functionalities was synthesized and applied for electrochemical grafting and characterization of DNA at glassy carbon (GC) and gold electrodes. The modifier was synthesized from ferrocenecarboxylic acid by attaching a phenyltriazene derivative to one of the ferrocene Cp rings, while the other Cp ring containing the carboxylic acid was converted to an activated ester. The modifier was conjugated to an amine-modified DNA sequence. For immobilization of the conjugate at Au or GC electrodes, the triazene was activated by dimethyl sulfate for release of the diazonium salt. The salt was reductively converted to the aryl radical which was readily immobilized at the surface. DNA grafted onto electrodes exhibited remarkable hybridization properties, as detected through a reversible shift in the redox potential of the Fc redox label upon repeated hybridization/denaturation procedures with a complementary target DNA sequence. By using a methylene blue (MB) labeled target DNA sequence the hybridization could also be followed through the MB redox potential. Electrochemical studies demonstrated that grafting through the triazene modifier can successfully compete with existing protocols for DNA immobilization through the commonly used alkanethiol linkers and diazonium salts. Furthermore, the triazene modifier provides a practical one-step immobilization procedure.

  1. Improved peroxide biosensor based on Horseradish Peroxidase/Carbon Nanotube on a thiol-modified gold electrode.

    PubMed

    Kafi, A K M; Naqshabandi, M; Yusoff, Mashitah M; Crossley, Maxwell J

    2018-06-01

    A new 3-dimensional (3D) network of crosslinked Horseradish Peroxidase/Carbon Nanotube (HRP/CNT) on a thiol-modified Au surface has been described in order to build up the effective electrical wiring of the enzyme units with the electrode. The synthesized 3D HRP/CNT network has been characterized with cyclic voltammetry and amperometry which results the establishment of direct electron transfer between the redox active unit of HRP and the Au surface. Electrochemical measurements reveal that the high biological activity and stability is exhibited by the immobilized HRP and a quasi-reversible redox peak of the redox centre of HRP was observed at about -0.355 and -0.275V vs. Ag/AgCl. The electron transfer rate constant, K S and electron transfer co-efficient α were found as 0.57s -1 and 0.42, respectively. Excellent electrocatalytic activity for the reduction of H 2 O 2 was exhibited by the developed biosensor. The proposed biosensor modified with HRP/CNT 3D network displays a broader linear range and a lower detection limit for H 2 O 2 determination. The linear range is from 1.0×10 -7 to 1.2×10 -4 M with a detection limit of 2.2.0×10 -8 M at 3σ. The Michaelies-Menten constant Kapp M value is estimated to be 0.19mM. Moreover, this biosensor exhibits very high sensitivity, good reproducibility and long-time stability. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Sensitive electrochemical detection of dopamine with a DNA/graphene bi-layer modified carbon ionic liquid electrode.

    PubMed

    Wang, Xiaofeng; You, Zheng; Sha, Hailiang; Cheng, Yong; Zhu, Huanhuan; Sun, Wei

    2014-10-01

    A DNA and graphene (GR) bi-layer modified carbon ionic liquid electrode (CILE) was fabricated by an electrodeposition method. GR nanosheets were electrodeposited on the surface of CILE at the potential of -1.3 V and then DNA was further deposited at the potential of +0.5 V on GR modified CILE. Electrochemical performances of the fabricated DNA/GR/CILE were carefully investigated. Then electrochemical behaviors of dopamine (DA) on the modified electrode were studied with the calculated electrochemical parameters. Under the optimized conditions, a linear relationship between the oxidation peak current and the concentration of DA was obtained in the range from 0.1 μmol/L to 1.0 mmol/L with a detection limit of 0.027 μmol/L (3σ). The modified electrode exhibited excellent reproducibility, repeatability, stability, validation and robustness for the electrochemical detection of DA. The proposed method was further applied to the DA injection solution and human urine samples determination with satisfactory results. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Poly(amidosulfonic acid) modified glassy carbon electrode for determination of isoniazid in pharmaceuticals.

    PubMed

    Yang, Gongjun; Wang, Cunxiao; Zhang, Rui; Wang, Chenying; Qu, Qishu; Hu, Xiaoya

    2008-06-01

    Amidosulfonic acid was electropolymerized by cyclic voltammetry onto the surface of glassy carbon electrode (GCE) to fabricate the chemically modified electrode, which showed high stability, good selectivity and reproducibility for determination of isoniazid. The modified electrode showed an excellent electrocatalytical effect on the oxidation of isoniazid. Under the optimum conditions, there was a good linear relationship between anodic peak current and isoniazid concentration in the range of 5.0 x 10(-8)- 1.0 x 10(-5) M, and a detection limit of 1.0 x 10(-8) M (S/N = 3) was obtained after 120 s at the accumulation potential of - 0.2 V (vs. SCE). This developed method had been applied to the direct determination of isoniazid in injection and tablet samples with satisfactory results.

  4. A novel material screening platform for nanoporous gold-based neural electrodes

    NASA Astrophysics Data System (ADS)

    Chapman, Christopher Abbott Reece

    Neural-electrical interfaces have emerged in the past decades as a promising modality to facilitate the understanding of the electropathophysiology of neurological disorders as well as the normal functioning of the central nervous system, and enable the treatment of neurological defects through electrical stimulation or electrically-controlled drug delivery. However, chronically implanted electrodes face a myriad of design challenges, including their coupling to neural tissue (biocompatibility), small form factor requirement, and their electrical properties (maintaining a low electrical impedance). Planar electrode materials such as planar platinum and gold experience a large increase in electrical impedance when electrode dimensions are reduced to increase spatial resolution of neural recordings. A decrease in electrode surface area reduces the total capacitance of the electrode double layer resulting in an increase in electrode impedance. This high impedance can reduce the signal amplitude and increase the thermal noise, resulting in degradation of signal-to-noise ratio. Conventionally, this increase in electrical impedance at small electrode dimensions has been mitigated by coatings with rough morphologies such as platinum black, conducting polymers, and titanium nitride. Porous surfaces have high effective surface area enabling low impedance at small electrode dimensions. However, achieving long-term stability of cellular coupling to the electrode surface has remained difficult. Designing electrodes that can physically couple with neurons successfully and maintain low impedance at small electrode dimensions necessitates consideration of novel electrode coatings, such as carbon nanotubes and gold nanopillars. Another promising material, and focus of this proposal, is thin film nanoporous gold (np-Au). Nanoporous gold is a promising material for addressing these limitations because of its inherently large effective surface area allows for lower impedances at small form factors, and its modifiable surface morphology can be used to control cell-electrode coupling. Additionally, thin film nanoporous gold is fabricated by traditional microfabrication methods, and thus can be directly adopted by the current state-of-the-art neural electrode fabrication processes. All these properties make thin film nanoporous gold a promising candidate for use in neural electrode surfaces. This dissertation seeks to characterize both the morphological and the electrical response of neural cells to thin film nanoporous gold morphologies using an in vitro electrode morphology screening platform. The specific aims for this proposal are to: (i) develop a electrode morphology library that displays varying topographies to study structure-property relationships of thin film nanoporous gold and cellular response, (ii) characterize neural cell response to identified nanoporous gold topographies that reduce adverse tissue response in vitro, and (iii) develop an electrophysiology platform to characterize neural coupling to each identified nanoporous gold topography.

  5. Improved Bi Film Wrapped Single Walled Carbon Nanotubes for Ultrasensitive Electrochemical Detection of Trace Cr(VI).

    PubMed

    Ouyang, Ruizhuo; Zhang, Wangyao; Zhou, Shilin; Xue, Zi-Ling; Xu, Lina; Gu, Yingying; Miao, Yuqing

    2013-12-15

    We report here the successful fabrication of an improved Bi film wrapped single walled carbon nanotubes modified glassy carbon electrode (Bi/SWNTs/GCE) as a highly sensitive platform for ultratrace Cr(VI) detection through catalytic adsorptive cathodic stripping voltammetry (AdCSV). The introduction of negatively charged SWNTs extraordinarily decreased the size of Bi particles to nanoscale due to electrostatic interaction which made Bi(III) cations easily attracted onto the surface of SWNTs in good order, leading to higher quality of Bi film deposition. The obtained Bi/SWNTs composite was well characterized with electrochemical impedance spectroscopy (EIS), scanning electron microscopy (SEM), the static water contact angle and the voltammetric measurements. The results demonstrates the improvements in the quality of Bi film deposited on the surface of SWNTs such as faster speed of electron transfer, more uniform and smoother morphology, better hydrophilicity and higher stripping signal. Using diethylene triaminepentaacetic acid (DTPA) as complexing ligand, the fabricated electrode displays a well-defined and highly sensitive peak for the reduction of Cr(III)-DTPA complex at -1.06 V ( vs . Ag/AgCl) with a linear concentration range of 0-25 nM and a fairly low detection limit of 0.036 nM. No interference was found in the presence of coexisting ions, and good recoveries were achieved for the analysis of a river sample. In comparison to previous approaches using Bi film modified GCE, the newly designed electrode exhibits better reproducibility and repeatability towards aqueous detection of trace Cr(VI) and appears to be very promising as the basis of a highly sensitive and selective voltammetric procedure for Cr(VI) detection at trace level in real samples.

  6. Improved Bi Film Wrapped Single Walled Carbon Nanotubes for Ultrasensitive Electrochemical Detection of Trace Cr(VI)

    PubMed Central

    Zhou, Shilin; Xue, Zi-Ling; Xu, Lina; Gu, Yingying; Miao, Yuqing

    2014-01-01

    We report here the successful fabrication of an improved Bi film wrapped single walled carbon nanotubes modified glassy carbon electrode (Bi/SWNTs/GCE) as a highly sensitive platform for ultratrace Cr(VI) detection through catalytic adsorptive cathodic stripping voltammetry (AdCSV). The introduction of negatively charged SWNTs extraordinarily decreased the size of Bi particles to nanoscale due to electrostatic interaction which made Bi(III) cations easily attracted onto the surface of SWNTs in good order, leading to higher quality of Bi film deposition. The obtained Bi/SWNTs composite was well characterized with electrochemical impedance spectroscopy (EIS), scanning electron microscopy (SEM), the static water contact angle and the voltammetric measurements. The results demonstrates the improvements in the quality of Bi film deposited on the surface of SWNTs such as faster speed of electron transfer, more uniform and smoother morphology, better hydrophilicity and higher stripping signal. Using diethylene triaminepentaacetic acid (DTPA) as complexing ligand, the fabricated electrode displays a well-defined and highly sensitive peak for the reduction of Cr(III)-DTPA complex at −1.06 V (vs. Ag/AgCl) with a linear concentration range of 0–25 nM and a fairly low detection limit of 0.036 nM. No interference was found in the presence of coexisting ions, and good recoveries were achieved for the analysis of a river sample. In comparison to previous approaches using Bi film modified GCE, the newly designed electrode exhibits better reproducibility and repeatability towards aqueous detection of trace Cr(VI) and appears to be very promising as the basis of a highly sensitive and selective voltammetric procedure for Cr(VI) detection at trace level in real samples. PMID:24771881

  7. Molecularly imprinted polymer based electrochemical detection of L-cysteine at carbon paste electrode.

    PubMed

    Aswini, K K; Vinu Mohan, A M; Biju, V M

    2014-04-01

    A methacrylic acid (MAA) based molecularly imprinted polymer (MIP) modified carbon paste electrode (CPE) was developed for electrochemical detection of L-cysteine (Cys). Characterisation of MIP was done with FTIR and the modified electrode with cyclic voltammetry (CV) and differential pulse voltammetry (DPV). CV, DPV and impedance analysis demonstrated that the modified electrode is responsive towards the target molecule. The optimum percentage composition of MIP for MIP/CPE and the effect of pH towards the electrode response for Cys were studied. The detection of Cys in the range of 2×10(-8) to 18×10(-8)M at MIP/CPE was monitored by DPV with a limit of detection of 9.6nM and R(2) of 0.9974. Also, various physiological interferents such as ascorbic acid, L-tryptophan, D-glucose, D-cysteine and L-cysteine were found to have little effect on DPV response at MIP/CPE. The utility of the electrode was proved by the effective detection of Cys from tap water and human blood plasma samples with reproducible results. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. The O2 reduction at the IFC modified O2 fuel cell electrode

    NASA Technical Reports Server (NTRS)

    Fielder, William L.; Singer, Joseph; Baldwin, Richard S.; Johnson, Richard E.

    1992-01-01

    The International Fuel Corporation (IFC) state of the art (SOA) O2 electrode (Au-10 percent Pt electrocatalyst by weight) is currently being used in the alkaline H2-O2 fuel cell in the NASA Space Shuttle. Recently, IFC modified O2 electrode, as a possible replacement for the SOA electrode. In the present study, O2 reduction data were obtained for the modified electrode at temperatures between 23.3 and 91.7 C. BET measurements gave an electrode BET surface area of about 2070 sq. cm/sq. cm of geometric surface area. The Tafel data could be fitted to two straight line regions. The slope for the lower region, designated as the 0.04 V/decade region, was temperature dependent, and the transfer coefficient was about 1.5. The 'apparent' energy of activation for this region was about 19 kcal/mol. An O2 reduction mechanism for this 0.04 region is presented. In the upper region, designated as the 0.08 V/decade region, diffusion may be the controlling process. Tafel data are presented to illustrate the increase in performance with increasing temperature.

  9. Monolithic quasi-solid-state dye-sensitized solar cells based on graphene modified mesoscopic carbon counter electrodes

    NASA Astrophysics Data System (ADS)

    Rong, Yaoguang; Li, Xiong; Liu, Guanghui; Wang, Heng; Ku, Zhiliang; Xu, Mi; Liu, Linfeng; Hu, Min; Yang, Ying; Han, Hongwei

    2013-03-01

    We have developed a monolithic quasi-solid-state dye-sensitized solar cell (DSSC) based on graphene modified mesoscopic carbon counter electrode (GC-CE), which offers a promising prospect for commercial applications. Based on the design of a triple layer structure, the TiO2 working electrode layer, ZrO2 spacer layer and carbon counter electrode (CE) layer are constructed on a single conducting glass substrate by screen-printing. The quasi-solid-state polymer gel electrolyte employs a polymer composite as the gelator and could effectively infiltrate into the porous layers. Fabricated with normal carbon counter electrode (NC-CE) containing graphite and carbon black, the device shows a power conversion efficiency (PCE) of 5.09% with the fill factor (FF) of 0.63 at 100 mW cm-2 AM1.5 illumination. When the NC-CE is modified with graphene sheets, the PCE and FF could be enhanced to 6.27% and 0.71, respectively. This improvement indicates excellent conductivity and high electrocatalytic activity of the graphene sheets, which have been considered as a promising platinum-free electrode material for DSSCs.

  10. Improving Single-Carbon-Nanotube-Electrode Contacts Using Molecular Electronics.

    PubMed

    Krittayavathananon, Atiweena; Ngamchuea, Kamonwad; Li, Xiuting; Batchelor-McAuley, Christopher; Kätelhön, Enno; Chaisiwamongkhol, Korbua; Sawangphruk, Montree; Compton, Richard G

    2017-08-17

    We report the use of an electroactive species, acetaminophen, to modify the electrical connection between a carbon nanotube (CNT) and an electrode. By applying a potential across two electrodes, some of the CNTs in solution occasionally contact the electrified interface and bridge between two electrodes. By observing a single CNT contact between two microbands of an interdigitated Au electrode in the presence and absence of acetaminophen, the role of the molecular species at the electronic junction is revealed. As compared with the pure CNT, the current magnitude of the acetaminophen-modified CNTs significantly increases with the applied potentials, indicating that the molecule species improves the junction properties probably via redox shuttling.

  11. Graphene-bimetallic nanoparticle composites with enhanced electro-catalytic detection of bisphenol A

    NASA Astrophysics Data System (ADS)

    Pogacean, Florina; Biris, Alexandru R.; Socaci, Crina; Coros, Maria; Magerusan, Lidia; Rosu, Marcela-Corina; Lazar, Mihaela D.; Borodi, Gheorghe; Pruneanu, Stela

    2016-12-01

    This study brings for the first time novel knowledge about the synthesis by catalytic chemical vapor deposition with induction heating of graphene-bimetallic nanoparticle composites (Gr-AuCu and Gr-AgCu) and their morphological and structural characterization by transmission electron microscopy, Raman spectroscopy, and x-ray powder diffraction. Gold electrodes modified with the obtained materials exhibit an enhanced electro-catalytic effect towards one of the most encountered estrogenic disruptive chemicals, bisphenol A (BPA). The BPA behavior in varying pH solutions was investigated using the electrochemical quartz crystal microbalance, which allowed the accurate determination of the number of molecules involved in the oxidation process. The modified electrodes promote the oxidation of BPA at significantly lower potentials (0.66 V) compared to bare gold (0.78 V). In addition, the peak current density recorded with such electrodes greatly exceeded that obtained with bare gold (e.g. one order of magnitude larger, for a Au/Gr-AgCu electrode). The two modified electrodes have low detection limits, of 1.31 × 10-6 M and 1.91 × 10-6 M for Au/Gr-AgCu and Au/Gr-AuCu, respectively. The bare gold electrode has a higher detection limit of 5.1 × 10-6 M. The effect of interfering species (e.g. catechol and 3-nitrophenol) was also investigated. Their presence influenced not only the BPA peak potential, but also the peak current. With both modified electrodes, no peak currents were recorded below 3 × 10-5 M BPA.

  12. A novel glucose oxidase biosensor based on poly([2,2';5',2″]-terthiophene-3'-carbaldehyde) modified electrode.

    PubMed

    Guler, Muhammet; Turkoglu, Vedat; Kivrak, Arif

    2015-08-01

    In the study, the electrochemical behavior of glucose oxidase (GOx) immobilized on poly([2,2';5',2″]-terthiophene-3'-carbaldehyde) (poly(TTP)) modified glassy carbon electrode (GCE) was investigated. The biosensor (poly(TTP)/GOx/GCE) showed a pair of redox peaks in 0.1 M phosphate buffer (pH 7.4) solution in the absence of oxygen the co-substrate of GOx. In here, Poly(TTP)/GOx/GCE biosensor acts as the co-substrate instead of oxygen. Upon the addition of glucose, the reduction and oxidation peak currents increased until the active site of GOx was fully saturated with glucose. The apparent m was estimated 26.13 mM from Lineweaver-Burk graph. The biosensor displayed a good stability and bioactivity. The biosensor showed a high sensitivity (56.1 nA/mM), a linear range (from 0.5 to 20.15 mM), and a good reproducibility with 3.6% of relative standard deviation. In addition, the interference currents of glycin, ascorbic acid, histidine, uric acid, dopamine, arginine, and fructose on GOx biosensor were investigated. All that substances exhibited an interference current under 10%. It was not shown a marked difference between GOx biosensor and spectrophotometric measurement of glucose in serum examples. UV-visible spectroscopy and scanning electron microscopy (SEM) experiments of the biosensor were also performed. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Uniform Li deposition regulated via three-dimensional polyvinyl alcohol nanofiber networks for effective Li metal anodes.

    PubMed

    Wang, Gang; Xiong, Xunhui; Lin, Zhihua; Zheng, Jie; Fenghua, Zheng; Li, Youpeng; Liu, Yanzhen; Yang, Chenghao; Tang, Yiwei; Liu, Meilin

    2018-05-31

    Lithium metal anodes are considered to be the most promising anode material for next-generation advanced energy storage devices due to their high reversible capacity and extremely low anode potential. Nevertheless, the formation of dendritic Li, induced by the repeated breaking and repairing of solid electrolyte interphase layers, always causes poor cycling performance and low coulombic efficiency, as well as serious safety problems, which have hindered the practical application of Li anodes for a long time. Herein, we design an electrode by covering a polyvinyl alcohol layer with a three-dimensional nanofiber network structure through an electrospinning technique. The polar functional groups on the surface of the polymer nanofibers can restrict the deposition of Li along the fibers and regulate the deposition of Li uniformly in the voids between the nanofibers. Owing to the structural features of the polymer, the modified Li|Cu electrode displays excellent cycle stability, with a high coulombic efficiency of 98.6% after 200 cycles at a current density of 1 mA cm-2 under a deposition capacity of 1 mA h cm-2, whilst the symmetric cell using the polymer modified Li anode shows stable cycling with a low hysteresis voltage of ∼80 mV over 600 h at a current density of 5 mA cm-2.

  14. Immobilization of glucose oxidase onto a novel platform based on modified TiO2 and graphene oxide, direct electrochemistry, catalytic and photocatalytic activity.

    PubMed

    Haghighi, Nasibeh; Hallaj, Rahman; Salimi, Abdollah

    2017-04-01

    In this work a new organic-inorganic nanocomposite has been introduced for enzyme immobilization. The composite consisting of graphene oxide (GO) and titanium oxide nanoparticles (TiO 2 ) modified with 2, 2'-dithioxo-3, 3'-bis (3-(triethoxysilyl) propyl)-2H, 2'H-[5, 5'-bithiazolylidene]-4, 4'(3H, 3'H)-dione as Organic-Inorganic Supporting Ligand (OISL). The OISL was covalently attached to TiO 2 nanoparticles and employed for obtaining a suitable solid surface to enzyme attachment. The glucose oxidase (GOD) was irreversibly loaded on the GC/GO/TiO 2 -OISL using consecutive cyclic voltammetry. The enzyme immobilization and the enzymatic activity were determined by electrochemical methods. The cyclic voltammogram displayed a pair of well-defined and nearly symmetric redox peaks with a formal potential of -0.465V and an apparent electron transfer rate constant of 1.74s -1 . The GO/TiO 2 -OISL can catalyze the electroreduction and electrooxidation of hydrogen peroxide. The GC/GO/TiO 2 -OISL/GOD electrode was used in the hydrogen peroxide determination. The fabricated nanobiocomposite shows dramatic photoelectrocatalytic activity which evaluated by studying the electrocatalytic activity of the fabricated electrode toward hydrogen peroxide in darkness and in the presences of light. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Silver Nanoparticle Modified Electrode Covered by Graphene Oxide for the Enhanced Electrochemical Detection of Dopamine

    PubMed Central

    Shin, Jae-Wook; Kim, Kyeong-Jun; Yoon, Jinho; Jo, Jinhee; El-Said, Waleed Ahmed; Choi, Jeong-Woo

    2017-01-01

    Several neurological disorders such as Alzheimer’s disease and Parkinson’s disease have become a serious impediment to aging people nowadays. One of the efficient methods used to monitor these neurological disorders is the detection of neurotransmitters such as dopamine. Metal materials, such as gold and platinum, are widely used in this electrochemical detection method; however, low sensitivity and linearity at low dopamine concentrations limit the use of these materials. To overcome these limitations, a silver nanoparticle (SNP) modified electrode covered by graphene oxide for the detection of dopamine was newly developed in this study. For the first time, the surface of an indium tin oxide (ITO) electrode was modified using SNPs and graphene oxide sequentially through the electrochemical deposition method. The developed biosensor provided electrochemical signal enhancement at low dopamine concentrations in comparison with previous biosensors. Therefore, our newly developed SNP modified electrode covered by graphene oxide can be used to monitor neurological diseases through electrochemical signal enhancement at low dopamine concentrations. PMID:29186040

  16. Silver Nanoparticle Modified Electrode Covered by Graphene Oxide for the Enhanced Electrochemical Detection of Dopamine.

    PubMed

    Shin, Jae-Wook; Kim, Kyeong-Jun; Yoon, Jinho; Jo, Jinhee; El-Said, Waleed Ahmed; Choi, Jeong-Woo

    2017-11-29

    Several neurological disorders such as Alzheimer's disease and Parkinson's disease have become a serious impediment to aging people nowadays. One of the efficient methods used to monitor these neurological disorders is the detection of neurotransmitters such as dopamine. Metal materials, such as gold and platinum, are widely used in this electrochemical detection method; however, low sensitivity and linearity at low dopamine concentrations limit the use of these materials. To overcome these limitations, a silver nanoparticle (SNP) modified electrode covered by graphene oxide for the detection of dopamine was newly developed in this study. For the first time, the surface of an indium tin oxide (ITO) electrode was modified using SNPs and graphene oxide sequentially through the electrochemical deposition method. The developed biosensor provided electrochemical signal enhancement at low dopamine concentrations in comparison with previous biosensors. Therefore, our newly developed SNP modified electrode covered by graphene oxide can be used to monitor neurological diseases through electrochemical signal enhancement at low dopamine concentrations.

  17. Preparation of chitosan grafted graphite composite for sensitive detection of dopamine in biological samples.

    PubMed

    Palanisamy, Selvakumar; Thangavelu, Kokulnathan; Chen, Shen-Ming; Gnanaprakasam, P; Velusamy, Vijayalakshmi; Liu, Xiao-Heng

    2016-10-20

    The accurate detection of dopamine (DA) levels in biological samples such as human serum and urine are essential indicators in medical diagnostics. In this work, we describe the preparation of chitosan (CS) biopolymer grafted graphite (GR) composite for the sensitive and lower potential detection of DA in its sub micromolar levels. The composite modified electrode has been used for the detection of DA in biological samples such as human serum and urine. The GR-CS composite modified electrode shows an enhanced oxidation peak current response and low oxidation potential for the detection of DA than that of electrodes modified with bare, GR and CS discretely. Under optimum conditions, the fabricated GR-CS composite modified electrode shows the DPV response of DA in the linear response ranging from 0.03 to 20.06μM. The detection limit and sensitivity of the sensor were estimated as 0.0045μM and 6.06μA μM(-1)cm(-2), respectively. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Construction and operation of microbial fuel cell with Chlorella vulgaris biocathode for electricity generation.

    PubMed

    Wu, Xia-yuan; Song, Tian-shun; Zhu, Xu-jun; Wei, Ping; Zhou, Charles C

    2013-12-01

    In this study, a modified microbial fuel cell (MFC) with a tubular photobioreactor (PHB) configuration as a cathode compartment was constructed by introducing Chlorella vulgaris to the cathode chamber used to generate oxygen in situ. Two types of cathode materials and light/dark cycles were used to test the effect on MFC with algae biocathode. Results showed that the use of algae is an effective approach because these organisms can act as efficient in situ oxygenators, thereby facilitating the cathodic reaction. Dissolved oxygen and voltage output displayed a clear light positive response and were drastically enhanced compared with the abiotic cathode. In particular, carbon paper-coated Pt used as a cathode electrode increased voltage output at a higher extent than carbon felt used as an electrode. The maximum power density of 24.4 mW/m2 was obtained from the MFC with algae biocathode which utilized the carbon paper-coated Pt as the cathode electrode under intermittent illumination. This density was 2.8 times higher than that of the abiotic cathode. Continuous illumination shortened the algal lifetime. These results demonstrated that intermittent illumination and cathode material-coated catalyst are beneficial to a more efficient and prolonged operation of MFC with C. vulgaris biocathode.

  19. Construction and operation of microbial fuel cell with Chlorella vulgaris biocathode for electricity generation.

    PubMed

    Wu, Xia-yuan; Song, Tian-shun; Zhu, Xu-jun; Wei, Ping; Zhou, Charles C

    2013-12-01

    In this study, a modified microbial fuel cell (MFC) with a tubular photobioreactor (PHB) configuration as a cathode compartment was constructed by introducing Chlorella vulgaris to the cathode chamber used to generate oxygen in situ. Two types of cathode materials and light/dark cycles were used to test the effect on MFC with algae biocathode. Results showed that the use of algae is an effective approach because these organisms can act as efficient in situ oxygenators, thereby facilitating the cathodic reaction. Dissolved oxygen and voltage output displayed a clear light positive response and were drastically enhanced compared with the abiotic cathode. In particular, carbon paper-coated Pt used as a cathode electrode increased voltage output at a higher extent than carbon felt used as an electrode. The maximum power density of 24.4 mW/m(2) was obtained from the MFC with algae biocathode which utilized the carbon paper-coated Pt as the cathode electrode under intermittent illumination. This density was 2.8 times higher than that of the abiotic cathode. Continuous illumination shortened the algal lifetime. These results demonstrated that intermittent illumination and cathode material-coated catalyst are beneficial to a more efficient and prolonged operation of MFC with C. vulgaris biocathode.

  20. Reagentless biosensor based on layer-by-layer assembly of functional multiwall carbon nanotubes and enzyme-mediator biocomposite.

    PubMed

    Zhou, Xing-Hua; Xi, Feng-Na; Zhang, Yi-Ming; Lin, Xian-Fu

    2011-06-01

    A simple and controllable layer-by-layer (LBL) assembly method was proposed for the construction of reagentless biosensors based on electrostatic interaction between functional multiwall carbon nanotubes (MWNTs) and enzyme-mediator biocomposites. The carboxylated MWNTs were wrapped with polycations poly(allylamine hydrochloride) (PAH) and the resulting PAH-MWNTs were well dispersed and positively charged. As a water-soluble dye methylene blue (MB) could mix well with horseradish peroxidase (HRP) to form a biocompatible and negatively-charged HRP-MB biocomposite. A (PAH-MWNTs/HRP-MB)(n) bionanomultilayer was then prepared by electrostatic LBL assembly of PAH-MWNTs and HRP-MB on a polyelectrolyte precursor film-modified Au electrode. Due to the excellent biocompatibility of HRP-MB biocomposite and the uniform LBL assembly, the immobilized HRP could retain its natural bioactivity and MB could efficiently shuttle electrons between HRP and the electrode. The incorporation of MWNTs in the bionanomultilayer enhanced the surface coverage concentration of the electroactive enzyme and increased the catalytic current response of the electrode. The proposed biosensor displayed a fast response (2 s) to hydrogen peroxide with a low detection limit of 2.0×10⁻⁷ mol/L (S/N=3). This work provided a versatile platform in the further development of reagentless biosensors.

  1. Biosensing applications of titanium dioxide coated graphene modified disposable electrodes.

    PubMed

    Kuralay, Filiz; Tunç, Selma; Bozduman, Ferhat; Oksuz, Lutfi; Oksuz, Aysegul Uygun

    2016-11-01

    In the present work, preparation of titanium dioxide coated graphene (TiO2/graphene) and the use of this nanocomposite modified electrode for electrochemical biosensing applications were detailed. The nanocomposite was prepared with radio frequency (rf) rotating plasma method which serves homogeneous distribution of TiO2 onto graphene. TiO2/graphene was characterized with scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and X-ray diffraction (XRD) analysis. Then, this nanocomposite was dissolved in phosphate buffer solution (pH 7.4) and modified onto disposable pencil graphite electrode (PGE) by dip coating for the investigation of the biosensing properties of the prepared electrode. TiO2/graphene modified PGE was characterized with SEM, EDS and cyclic voltammetry (CV). The sensor properties of the obtained surface were examined for DNA and DNA-drug interaction. The detection limit was calculated as 1.25mgL(-1) (n=3) for double-stranded DNA (dsDNA). RSD% was calculated as 2.4% for three successive determinations at 5mgL(-1) dsDNA concentration. Enhanced results were obtained compared to the ones obtained with graphene and unmodified (bare) electrodes. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Electrochemical sensor for ranitidine determination based on carbon paste electrode modified with oxovanadium (IV) salen complex.

    PubMed

    Raymundo-Pereira, Paulo A; Teixeira, Marcos F S; Fatibello-Filho, Orlando; Dockal, Edward R; Bonifácio, Viviane Gomes; Marcolino, Luiz H

    2013-10-01

    The preparation and electrochemical characterization of a carbon paste electrode modified with the N,N-ethylene-bis(salicyllideneiminato)oxovanadium (IV) complex ([VO(salen)]) as well as its application for ranitidine determination are described. The electrochemical behavior of the modified electrode for the electroreduction of ranitidine was investigated using cyclic voltammetry, and analytical curves were obtained for ranitidine using linear sweep voltammetry (LSV) under optimized conditions. The best voltammetric response was obtained for an electrode composition of 20% (m/m) [VO(salen)] in the paste, 0.10 mol L(-1) of KCl solution (pH 5.5 adjusted with HCl) as supporting electrolyte and scan rate of 25 mV s(-1). A sensitive linear voltammetric response for ranitidine was obtained in the concentration range from 9.9×10(-5) to 1.0×10(-3) mol L(-1), with a detection limit of 6.6×10(-5) mol L(-1) using linear sweep voltammetry. These results demonstrated the viability of this modified electrode as a sensor for determination, quality control and routine analysis of ranitidine in pharmaceutical formulations. Copyright © 2013. Published by Elsevier B.V.

  3. Preparation of boron doped diamond modified by iridium for electroreduction of carbon dioxide (CO2)

    NASA Astrophysics Data System (ADS)

    Ichzan, A. M.; Gunlazuardi, J.; Ivandini, T. A.

    2017-04-01

    Electroreduction of carbon dioxide (CO2) at iridium oxide-modified boron-doped diamond (IrOx-BDD) electrodes in aqueous electrolytes was studied by voltammetric method. The aim of this study was to find out the catalytic effect of IrOx to produce fine chemicals contained of two or more carbon atoms (for example acetic acid) in high percentage. Characterization using FE-SEM and XPS indicated that IrO2 can be deposited at BDD electrode, whereas characterization using cyclic voltammetry indicated that the electrode was applicable to be used as working electrode for CO2 electroreduction.

  4. Label-Free Electrochemical Detection of Vanillin through Low-Defect Graphene Electrodes Modified with Au Nanoparticles.

    PubMed

    Gao, Jingyao; Yuan, Qilong; Ye, Chen; Guo, Pei; Du, Shiyu; Lai, Guosong; Yu, Aimin; Jiang, Nan; Fu, Li; Lin, Cheng-Te; Chee, Kuan W A

    2018-03-25

    Graphene is an excellent modifier for the surface modification of electrochemical electrodes due to its exceptional physical properties and, for the development of graphene-based chemical and biosensors, is usually coated on glassy carbon electrodes (GCEs) via drop casting. However, the ease of aggregation and high defect content of reduced graphene oxides degrade the electrical properties. Here, we fabricated low-defect graphene electrodes by catalytically thermal treatment of HPHT diamond substrate, followed by the electrodeposition of Au nanoparticles (AuNPs) with an average size of ≈60 nm on the electrode surface using cyclic voltammetry. The Au nanoparticle-decorated graphene electrodes show a wide linear response range to vanillin from 0.2 to 40 µM with a low limit of detection of 10 nM. This work demonstrates the potential applications of graphene-based hybrid electrodes for highly sensitive chemical detection.

  5. Electrochemical analysis of gold-coated magnetic nanoparticles for detecting immunological interaction

    NASA Astrophysics Data System (ADS)

    Pham, Thao Thi-Hien; Sim, Sang Jun

    2010-01-01

    An electrochemical impedance immunosensor was developed for detecting the immunological interaction between human immunoglobulin (IgG) and protein A from Staphylococcus aureus based on the immobilization of human IgG on the surface of modified gold-coated magnetic nanoparticles. The nanoparticles with an Au shell and Fe oxide cores were functionalized by a self-assembled monolayer of 11-mercaptoundecanoic acid. The electrochemical analysis was conducted on the modified magnetic carbon paste electrodes with the nanoparticles. The magnetic nanoparticles were attached to the surface of the magnetic carbon paste electrodes via magnetic force. The cyclic voltammetry technique and electrochemical impedance spectroscopy measurements of the magnetic carbon paste electrodes coated with magnetic nanoparticles-human IgG complex showed changes in its alternating current (AC) response both after the modification of the surface of the electrode and the addition of protein A. The immunological interaction between human IgG on the surface of the modified magnetic carbon paste electrodes and protein A in the solution could be successfully monitored.

  6. A non-enzymatic sensor for hydrogen peroxide based on polyaniline, multiwalled carbon nanotubes and gold nanoparticles modified Au electrode.

    PubMed

    Narang, Jagriti; Chauhan, Nidhi; Pundir, C S

    2011-11-07

    We describe the construction of a polyaniline (PANI), multiwalled carbon nanotubes (MWCNTs) and gold nanoparticles (AuNPs) modified Au electrode for determination of hydrogen peroxide without using peroxidase (HRP). The AuNPs/MWCNT/PANI composite film deposited on Au electrode was characterized by Scanning Electron Microscopy (SEM) and electrochemical methods. Cyclic voltammetric (CV) studies of the electrode at different stages of construction demonstrated that the modified electrode had enhanced electrochemical oxidation of H(2)O(2), which offers a number of attractive features to develop amperometric sensors based on split of H(2)O(2). The amperometric response to H(2)O(2) showed a linear relationship in the range from 3.0 μM to 600.0 μM with a detection limit of 0.3 μM (S/N = 3) and with high sensitivity of 3.3 mA μM(-1). The sensor gave accurate and satisfactory results, when employed for determination of H(2)O(2) in milk and urine.

  7. Supercapacitors based on modified graphene electrodes with poly(ionic liquid)

    NASA Astrophysics Data System (ADS)

    Trigueiro, João Paulo C.; Lavall, Rodrigo L.; Silva, Glaura G.

    2014-06-01

    The improved accessibility of the electrolyte to the surface of carbon nanomaterials is a challenge to be overcome in supercapacitors based on ionic liquid electrolytes. In this study, we report the preparation of supercapacitors based on reduced graphene oxide (RGO) electrodes and ionic liquid as the electrolyte (specifically, 1-methyl-1-propylpyrrolidinium bis(trifluoromethylsulfonyl)imide or [MPPy][TFSI]). Two types of electrodes were compared: the RGO-based electrode and a poly(ionic liquid)-modified RGO electrode (PIL:RGO). The supercapacitor produced with the PIL:RGO electrode and [MPPy][TFSI] showed an electrochemical stability of 3 V and provided a capacitance of 71.5 F g-1 at room temperature; this capacitance is 130% higher with respect to the RGO-based supercapacitor. The decrease of the specific capacitance after 2000 cycles is only 10% for the PIL:RGO-based device. The results revealed the potential of the PIL:RGO material as an electrode for supercapacitors. This composite electrode increases the compatibility with the ionic liquid electrolyte compared to an RGO electrode, promoting an increase in the effective surface area of the electrode accessible to the electrolyte ions.

  8. Polyoxometalate-Graphene Nanocomposite Modified Electrode for Electrocatalytic Detection of Ascorbic Acid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Weiying; Du, Dan; Gunaratne, Don

    Phosphomolybdate functionalized graphene nanocomposite (PMo 12-GS) has been successfully formed on a glassy carbon electrode (GCE) for the detection of ascorbic acid (AA). The obtained PMo 12-GS modified GCE, was characterized by cyclic voltammetry, electrochemical impedance spectroscopy, scanning electron microscopy (SEM) and Fourier transform infrared (FT-IR) spectroscopy and compared with GCE, GS modified GCE, and PMo 12 modified GCE. It shows an increased current and a decrease in over-potential of ~210 mV. The amperometric signals are linearly proportional to the AA concentration in a wide concentration range from 1×10 -6 M to 8×10 -3 M, with a detection limit ofmore » 0.5×10 -6 M. Finally, the PMo 12-GS modified electrode was employed for the determination of the AA level in vitamin C tablets, with recoveries between 96.3 and 100.8 %.« less

  9. Ni-NiO core-shell inverse opal electrodes for supercapacitors.

    PubMed

    Kim, Jae-Hun; Kang, Soon Hyung; Zhu, Kai; Kim, Jin Young; Neale, Nathan R; Frank, Arthur J

    2011-05-14

    A general template-assisted electrochemical approach was used to synthesize three-dimensional ordered Ni core-NiO shell inverse opals (IOs) as electrodes for supercapacitors. The Ni-NiO IO electrodes displayed pseudo-capacitor behavior, good rate capability and cycling performance. © The Royal Society of Chemistry 2011

  10. Detection of Guanine and Adenine Using an Aminated Reduced Graphene Oxide Functional Membrane-Modified Glassy Carbon Electrode

    PubMed Central

    Li, Di; Yang, Xiao-Lu; Xiao, Bao-Lin; Geng, Fang-Yong; Hong, Jun; Sheibani, Nader; Moosavi-Movahedi, Ali Akbar

    2017-01-01

    A new electrochemical sensor based on a Nafion, aminated reduced graphene oxide and chitosan functional membrane-modified glassy carbon electrode was proposed for the simultaneous detection of adenine and guanine. Fourier transform-infrared spectrometry (FTIR), transmission electron microscopy (TEM), and electrochemical methods were utilized for the additional characterization of the membrane materials. The prepared electrode was utilized for the detection of guanine (G) and adenine (A). The anodic peak currents to G and A were linear in the concentrations ranging from 0.1 to 120 μM and 0.2 to 110 μM, respectively. The detection limits were found to be 0.1 μM and 0.2 μM, respectively. Moreover, the modified electrode could also be used to determine G and A in calf thymus DNA. PMID:28718793

  11. Simultaneous quantification of arginine, alanine, methionine and cysteine amino acids in supplements using a novel bioelectro-nanosensor based on CdSe quantum dot/modified carbon nanotube hollow fiber pencil graphite electrode via Taguchi method.

    PubMed

    Hooshmand, Sara; Es'haghi, Zarrin

    2017-11-30

    A number of four amino acids have been simultaneously determined at CdSe quantum dot-modified/multi-walled carbon nanotube hollow fiber pencil graphite electrode in different bodybuilding supplements. CdSe quantum dots were synthesized and applied to construct a modified carbon nanotube hollow fiber pencil graphite electrode. FT-IR, TEM, XRD and EDAX methods were applied for characterization of the synthesized CdSe QDs. The electro-oxidation of arginine (Arg), alanine (Ala), methionine (Met) and cysteine (Cys) at the surface of the modified electrode was studied. Then the Taguchi's method was applied using MINITAB 17 software to find out the optimum conditions for the amino acids determination. Under the optimized conditions, the differential pulse (DP) voltammetric peak currents of Arg, Ala, Met and Cys increased linearly with their concentrations in the ranges of 0.287-33670μM and detection limits of 0.081, 0.158, 0.094 and 0.116μM were obtained for them, respectively. Satisfactory results were achieved for calibration and validation sets. The prepared modified electrode represents a very good resolution between the voltammetric peaks of the four amino acids which makes it suitable for the detection of each in presence of others in real samples. Copyright © 2017. Published by Elsevier B.V.

  12. Blue phase liquid crystal: strategies for phase stabilization and device development

    PubMed Central

    Rahman, M D Asiqur; Mohd Said, Suhana; Balamurugan, S

    2015-01-01

    The blue phase liquid crystal (BPLC) is a highly ordered liquid crystal (LC) phase found very close to the LC–isotropic transition. The BPLC has demonstrated potential in next-generation display and photonic technology due to its exceptional properties such as sub-millisecond response time and wide viewing angle. However, BPLC is stable in a very small temperature range (0.5–1 °C) and its driving voltage is very high (∼100 V). To overcome these challenges recent research has focused on solutions which incorporate polymers or nanoparticles into the blue phase to widen the temperature range from around few °C to potentially more than 60 °C. In order to reduce the driving voltage, strategies have been attempted by modifying the device structure by introducing protrusion or corrugated electrodes and vertical field switching mechanism has been proposed. In this paper the effectiveness of the proposed solution will be discussed, in order to assess the potential of BPLC in display technology and beyond. PMID:27877782

  13. A novel l-leucine modified Sol-Gel-Carbon electrode for simultaneous electrochemical detection of homovanillic acid, dopamine and uric acid in neuroblastoma diagnosis.

    PubMed

    Khamlichi, Redouan El; Bouchta, Dounia; Anouar, El Hassane; Atia, Mounia Ben; Attar, Aisha; Choukairi, Mohamed; Tazi, Saloua; Ihssane, Raissouni; Faiza, Chaoukat; Khalid, Draoui; Khalid, Riffi Temsamani

    2017-02-01

    Neuroblastoma is a pediatric neuroblastic tumor arising in the sympathetic nervous crest cells. A high grade of Neuroblastoma is characterized by a high urinary excretion of homovanillic acid and dopamine. In this work l-leucine modified Sol-Gel-Carbon electrode was used for a sensitive voltammetric determination of homovanillic acid and dopamine in urine. The electrochemical response characteristics were investigated by cyclic and differential pulse voltammetry; the modified electrode has shown an increase in the effective area of up to 40%, a well-separated oxidation peaks and an excellent electrocatalytic activity. High sensitivity and selectivity in the linear range of 0,4-100μML -1 of homovanillic acid and 10-120μML -1 of dopamine were also obtained. Moreover, a sub-micromolar limit of detection of 0.1μM for homovanillic acid and 1.0μM for the dopamine was achieved. Indeed, high reproducibility with simple preparation and regeneration of the electrode surface made this electrode very suitable for the determination of homovanillic acid and dopamine in pharmaceutical and clinical preparations. The mechanism of homovanillic acid and the electrochemical oxidation at l-leucine modified Sol-Gel-Carbon electrode is described out the B3P86/6-31+G(d,p) level of theory as implemented in Gaussian software. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. An amperometric bienzymatic cholesterol biosensor based on functionalized graphene modified electrode and its electrocatalytic activity towards total cholesterol determination.

    PubMed

    Manjunatha, Revanasiddappa; Shivappa Suresh, Gurukar; Melo, Jose Savio; D'Souza, Stanislaus F; Venkatesha, Thimmappa Venkatarangaiah

    2012-09-15

    Cholesterol oxidase (ChOx) and cholesterol esterase (ChEt) have been covalently immobilized onto functionalized graphene (FG) modified graphite electrode. Enzymes modified electrodes were characterized using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). FG accelerates the electron transfer from electrode surface to the immobilized ChOx, achieving the direct electrochemistry of ChOx. A well defined redox peak was observed, corresponding to the direct electron transfer of the FAD/FADH(2) of ChOx. The electron transfer coefficient (α) and electron transfer rate constant (K(s)) were calculated and their values are found to be 0.31 and 0.78 s(-1), respectively. For the free cholesterol determination, ChOx-FG/Gr electrode exhibits a sensitive response from 50 to 350 μM (R=-0.9972) with a detection limit of 5 μM. For total cholesterol determination, co-immobilization of ChEt and ChOx on modified electrode, i.e. (ChEt/ChOx)-FG/Gr electrode showed linear range from 50 to 300 μM (R=-0.9982) with a detection limit of 15 μM. Some common interferents like glucose, ascorbic acid and uric acid did not cause any interference, due to the use of a low operating potential. The FG/Gr electrode exhibits good electrocatalytic activity towards hydrogen peroxide (H(2)O(2)). A wide linear response to H(2)O(2) ranging from 0.5 to 7 mM (R=-0.9967) with a sensitivity of 443.25 μA mM(-1) cm(-2) has been obtained. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Study on the Pulsed Flashover Characteristics of Solid-Solid Interface in Electrical Devices Poured by Epoxy Resin

    NASA Astrophysics Data System (ADS)

    Li, Manping; Wu, Kai; Yang, Zhanping; Ding, Man; Liu, Xin; Cheng, Yonghong

    2014-09-01

    In electrical devices poured by epoxy resin, there are a lot of interfaces between epoxy resin and other solid dielectrics, i.e. solid-solid interfaces. Experiments were carried out to study the flashover characteristics of two typical solid-solid interfaces (epoxy-ceramic and epoxy-PMMA) under steep high-voltage impulse for different electrode systems (coaxial electrodes and finger electrodes) and different types of epoxy resin (neat epoxy resin, polyether modified epoxy resin and polyurethane modified epoxy resin). Results showed that, the flashover of solid-solid interface is similar to the breakdown of solid dielectric, and there are unrecoverable carbonated tracks after flashover. Under the same distance of electrodes, the electric stress of coaxial electrodes is lower than that of finger electrodes; and after the flashover, there are more severe breakdown and larger enhanced surface conductivity at interface for coaxial electrodes, as compared with the case of finger electrode. The dielectric properties are also discussed.

  16. Photoactive films of photosystem I on transparent reduced graphene oxide electrodes.

    PubMed

    Darby, Emily; LeBlanc, Gabriel; Gizzie, Evan A; Winter, Kevin M; Jennings, G Kane; Cliffel, David E

    2014-07-29

    Photosystem I (PSI) is a photoactive electron-transport protein found in plants that participates in the process of photosynthesis. Because of PSI's abundance in nature and its efficiency with charge transfer and separation, there is a great interest in applying the protein in photoactive electrodes. Here, we developed a completely organic, transparent, conductive electrode using reduced graphene oxide (RGO) on which a multilayer of PSI could be deposited. The resulting photoactive electrode demonstrated current densities comparable to that of a gold electrode modified with a multilayer film of PSI and significantly higher than that of a graphene electrode modified with a monolayer film of PSI. The relatively large photocurrents produced by integrating PSI with RGO and using an opaque, organic mediator can be applied to the facile production of more economic solar energy conversion devices.

  17. Voltammetric behavior of dopamine at a glassy carbon electrode modified with NiFe(2)O(4) magnetic nanoparticles decorated with multiwall carbon nanotubes.

    PubMed

    Ensafi, Ali A; Arashpour, B; Rezaei, B; Allafchian, Ali R

    2014-06-01

    Voltammetric behavior of dopamine was studied on a glassy carbon electrode (GCE) modified-NiFe(2)O(4) magnetic nanoparticles decorated with multiwall carbon nanotubes. Impedance spectroscopy and cyclic voltammetry were used to characterize the behavior of dopamine at the surface of modified-GCE. The modified electrode showed a synergic effect toward the oxidation of dopamine. The oxidation peak current is increased linearly with the dopamine concentration (at pH7.0) in wide dynamic ranges of 0.05-6.0 and 6.0-100μmolL(-1) with a detection limit of 0.02μmolL(-1), using differential pulse voltammetry. The selectivity of the method was studied and the results showed that the modified electrode is free from interference of organic compounds especially ascorbic acid, uric acid, cysteine and urea. Its applicability in the determination of dopamine in pharmaceutical, urine samples and human blood serum was also evaluated. The proposed electrochemical sensor has appropriate properties such as high selectivity, low detection limit and wide linear dynamic range when compared with that of the previous reported papers for dopamine detection. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Electrochemically reduced graphene oxide/Poly-Glycine composite modified electrode for sensitive determination of l-dopa.

    PubMed

    Palakollu, Venkata Narayana; Thapliyal, Neeta; Chiwunze, Tirivashe E; Karpoormath, Rajshekhar; Karunanidhi, Sivanandhan; Cherukupalli, Srinivasulu

    2017-08-01

    A facile preparation strategy based on electrochemical technique for the fabrication of glycine (Poly-Gly) and electrochemically reduced graphene oxide (ERGO) composite modified electrode was developed. The morphology of the developed composite (ERGO/Poly-Gly) was investigated using field emission scanning electron microscope (FE-SEM). The composite modified glassy carbon electrode (GCE) was characterized using fourier transform-infrared (FT-IR) spectroscopy, electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). The electrochemical characterization results revealed that ERGO/Poly-Gly modified GCE has excellent electrocatalytic activity. Further, it was employed for sensing of l-dopa in pH5.5. Differential pulse voltammetry (DPV) was used for the quantification of l-dopa as well as for the simultaneous resolution of l-dopa and uric acid (UA). The LOD (S/N=3) was found to be 0.15μM at the proposed composite modified electrode. Determination of l-dopa could also be achieved in the presence of potentially interfering substances. The sensor showed high sensitivity and selectivity with appreciable reliability and precision. The proposed sensor was also successfully applied for real sample analysis. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Immunosensor based on electrodeposition of gold-nanoparticles and ionic liquid composite for detection of Salmonella pullorum.

    PubMed

    Wang, Dan; Dou, Wenchao; Zhao, Guangying; Chen, Yan

    2014-11-01

    In order to increase the reproducibility and stability of electrochemical immunosensor, which is a key issue for its application and popularization, an accurate and stable immunosensor for rapid detection of Salmonella pullorum (S. pullorum) was proposed in this study. The immunosensor was fabricated by modifying Screen-printed Carbon Electrode (SPCE) with electrodeposited gold nanoparticles (AuNPs), HRP-labeled anti-S. pullorum and ionic liquids (ILs) (AuNP/HRP/IL). AuNPs are electrodeposited on the working electrode surface to increase the amount of antibodies that bind to the electrode and then modified with ILs to protect the antibodies from being inactivated in the test environment and maintain their biological activity and the stability of the detection electrode. The electrochemical characteristics of the stepwise modified electrodes and the detection of S. pullorum were investigated by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). As shown in the results of the experiments, AuNPs with unique electrochemical properties as well as biocompatibility characteristics have been proven to be able to strengthen the antibody combination effectively and to increase the electrochemical response signal. In addition, a crucial assessment regarding implementation of stability and reproducibility analysis of a range of immunosensors is provided. We found that application of AuNPs/ILs in the immune modified electrodes showed obvious improvement when compared with other groups. Given their high levels of reproducibility, stability, target specificity and sensitivity, AuNPs and ILs were considered to be excellent elements for electrode modification. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Extraction of Carbon Dioxide and Hydrogen from Seawater by an Electrochemical Acidification Cell. Part 4. Electrode Compartments of Cell Modified and Tested in Scaled-Up Mobile Unit

    DTIC Science & Technology

    2013-09-03

    Electrochemical Acidification Cell Part IV: Electrode Compartments of Cell Modified and Tested in Scaled-Up Mobile Unit September 3, 2013 Approved for public...OF ABSTRACT Extraction of Carbon Dioxide and Hydrogen from Seawater by an Electrochemical Acidification Cell Part IV: Electrode Compartments of Cell...Electrochemical acidification cell Carbon dioxide Hydrogen Polarity reversal An electrochemical acidification cell was scaled-up and integrated into a

  1. Electrochemical sensor for hazardous food colourant quinoline yellow based on carbon nanotube-modified electrode.

    PubMed

    Zhao, Jun; Zhang, Yu; Wu, Kangbing; Chen, Jianwei; Zhou, Yikai

    2011-09-15

    A novel electrochemical method using multi-wall carbon nanotube (MWNT) film-modified electrode was developed for the detection of quinoline yellow. In pH 8 phosphate buffer, an irreversible oxidation peak at 0.71V was observed for quinoline yellow. Compared with the unmodified electrode, the MWNT film-modified electrode greatly increases the oxidation peak current of quinoline yellow, showing notable enhancement effect. The effects of pH value, amount of MWNT, accumulation potential and time were studied on the oxidation peak current of quinoline yellow. The linear range is from 0.75 to 20mgL(-1), and the limit of detection is 0.5mgL(-1). It was applied to the detection of quinoline yellow in commercial soft drinks, and the results consisted with the value that obtained by high-performance liquid chromatography. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Electrosorption of a modified electrode in the vicinity of phase transition: A Monte Carlo study

    NASA Astrophysics Data System (ADS)

    Gavilán Arriazu, E. M.; Pinto, O. A.

    2018-03-01

    We present a Monte Carlo study for the electrosorption of an electroactive species on a modified electrode. The surface of the electrode is modified by the irreversible adsorption of a non-electroactive species which is able to block a percentage of the adsorption sites. This generates an electrode with variable connectivity sites. A second species, electroactive in this case, is adsorbed in surface vacancies and can interact repulsively with itself. In particular, we are interested in the analysis of the effect of the non-electroactive species near of critical regime, where the c(2 × 2) structure is formed. Lattice-gas models and Monte Carlo simulations in the Gran Canonical Ensemble are used. The analysis conducted is based on the study of voltammograms, order parameters, isotherms, configurational entropy per site, at several values of energies and coverage degrees of the non-electroactive species.

  3. ITO Modification for Efficient Inverted Organic Solar Cells.

    PubMed

    Susarova, Diana K; Akkuratov, Alexander V; Kukharenko, Andrey I; Cholakh, Seif O; Kurmaev, Ernst Z; Troshin, Pavel A

    2017-10-03

    We demonstrate a facile approach to designing transparent electron-collecting electrodes by depositing thin layers of medium and low work function metals on top of transparent conductive metal oxides (TCOs) such as ITO and FTO. The modified electrodes were fairly stable for months under ambient conditions and maintained their electrical characteristics. XPS spectroscopy data strongly suggested integration of the deposited metal in the TCO structure resulting in additional doping of the conducting oxide at the interface. Kelvin probe microscopy measurements revealed a significant decrease in the ITO work function after modification. Organic solar cells based on three different conjugated polymers have demonstrated state of the art performances in inverted device geometry using Mg- or Yb-modified ITO as electron collecting electrode. The simplicity of the proposed approach and the excellent ambient stability of the modified ITO electrodes allows one to expect their wide utilization in research laboratories and electronic industry.

  4. Direct determination of creatinine based on poly(ethyleneimine)/phosphotungstic acid multilayer modified electrode.

    PubMed

    Han, Ping; Xu, Shimei; Feng, Shun; Hao, Yanjun; Wang, Jide

    2016-05-01

    In this work, the direct determination of creatinine was achieved using a poly(ethyleneimine)/phosphotungstic acid multilayer modified electrode with the assistance of Copper(II) ions by cyclic voltammetry. The quantity of creatinine were determined by measuring the redox peak current of Cu(II)-creatinine complex/Cu(I)-creatinine complex. Factors affecting the response current of creatinine at the modified electrode were optimized. A linear relationship between the response current and the concentration of creatinine ranging from 0.125 to 62.5μM was obtained with a detection limit of 0.06μM. The proposed method was applied to determine creatinine in human urine, and satisfied results were gotten which was validated in accordance with high performance liquid chromatography. The proposed electrode provided a promising alternative in routine sensing for creatinine without enzymatic assistance. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Flow injection amperometric detection of insulin at cobalt hydroxide nanoparticles modified carbon ceramic electrode.

    PubMed

    Habibi, Esmaeil; Omidinia, Eskandar; Heidari, Hassan; Fazli, Maryam

    2016-02-15

    Cobalt hydroxide nanoparticles were prepared onto a carbon ceramic electrode (CHN|CCE) using the cyclic voltammetry (CV) technique. The modified electrode was characterized by X-ray diffraction and scanning electron microscopy. The results showed that CHN with a single-layer structure was uniformly electrodeposited on the surface of CCE. The electrocatalytic activity of the modified electrode toward the oxidation of insulin was studied by CV. CHN|CCE was also used in a homemade flow injection analysis system for insulin determination. The limit of detection (signal/noise [S/N] = 3) and sensitivity were found to be 0.11 nM and 11.8 nA/nM, respectively. Moreover, the sensor was used for detection of insulin in human serum samples. This sensor showed attractive properties such as high stability, reproducibility, and high selectivity. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Novel Signal-Amplified Fenitrothion Electrochemical Assay, Based on Glassy Carbon Electrode Modified with Dispersed Graphene Oxide

    NASA Astrophysics Data System (ADS)

    Wang, Limin; Dong, Jinbo; Wang, Yulong; Cheng, Qi; Yang, Mingming; Cai, Jia; Liu, Fengquan

    2016-03-01

    A novel signal-amplified electrochemical assay for the determination of fenitrothion was developed, based on the redox behaviour of organophosphorus pesticides on a glassy carbon working electrode. The electrode was modified using graphene oxide dispersion. The electrochemical response of fenitrothion at the modified electrode was investigated using cyclic voltammetry, current-time curves, and square-wave voltammetry. Experimental parameters, namely the accumulation conditions, pH value, and volume of dispersed material, were optimised. Under the optimum conditions, a good linear relationship was obtained between the oxidation peak current and the fenitrothion concentration. The linear range was 1-400 ng·mL-1, with a detection limit of 0.1 ng·mL-1 (signal-to-nose ratio = 3). The high sensitivity of the sensor was demonstrated by determining fenitrothion in pakchoi samples.

  7. BIOSENSOR FOR DIRECT DETERMINATION OF ORGANOPHOSPHATE NERVE AGENTS. 1. POTENTIOMETRIC ENZYME ELECTRODE. (R823663)

    EPA Science Inventory

    A potentiometric enzyme electrode for the direct measurement of organophosphate (OP)
    nerve agents was developed. The basic element of this enzyme electrode was a pH electrode
    modified with an immobilized organophosphorus hydrolase (OPH) layer formed by cross-linking
    OPH ...

  8. Chemically modified graphene based supercapacitors for flexible and miniature devices

    NASA Astrophysics Data System (ADS)

    Ghosh, Debasis; Kim, Sang Ouk

    2015-09-01

    Rapid progress in the portable and flexible electronic devises has stimulated supercapacitor research towards the design and fabrication of high performance flexible devices. Recent research efforts for flexible supercapacitor electrode materials are highly focusing on graphene and chemically modified graphene owing to the unique properties, including large surface area, high electrical and thermal conductivity, excellent mechanical flexibility, and outstanding chemical stability. This invited review article highlights current status of the flexible electrode material research based on chemically modified graphene for supercapacitor application. A variety of electrode architectures prepared from chemically modified graphene are summarized in terms of their structural dimensions. Novel prototypes for the supercapacitor aiming at flexible miniature devices, i.e. microsupercapacitor with high energy and power density are highlighted. Future challenges relevant to graphene-based flexible supercapacitors are also suggested. [Figure not available: see fulltext.

  9. Use of side-chain incompatibility for tailoring long-range p/n heterojunctions: photoconductive nanofibers formed by self-assembly of an amphiphilic donor-acceptor dyad consisting of oligothiophene and perylenediimide.

    PubMed

    Li, Wei-Shi; Saeki, Akinori; Yamamoto, Yohei; Fukushima, Takanori; Seki, Shu; Ishii, Noriyuki; Kato, Kenichi; Takata, Masaki; Aida, Takuzo

    2010-07-05

    To tailor organic p/n heterojunctions with molecular-level precision, a rational design strategy using side-chain incompatibility of a covalently connected donor-acceptor (D-A) dyad has been successfully carried out. An oligothiophene-perylenediimide dyad, when modified with triethylene glycol side chains at one terminus and dodecyl side chains at the other (2(Amphi)), self-assembles into nanofibers with a long-range D/A heterojunction. In contrast, when the dyad is modified with dodecyl side chains at both termini (2(Lipo)), ill-defined microfibers result. In steady-state measurements using microgap electrodes, a cast film of the nanofiber of 2(Amphi) displays far better photoconducting properties than that of the microfiber of 2(Lipo). Flash-photolysis time-resolved microwave conductivity measurements, in conjunction with transient absorption spectroscopy, clearly indicate that the nanofiber of 2(Amphi) intrinsically allows for better carrier generation and transport properties than the microfibrous assembly of 2(Lipo).

  10. Hierarchical structured Sm2O3 modified CuO nanoflowers as electrode materials for high performance supercapacitors

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaojuan; He, Mingqian; He, Ping; Liu, Hongtao; Bai, Hongmei; Chen, Jingchao; He, Shaoying; Zhang, Xingquan; Dong, Faqing; Chen, Yang

    2017-12-01

    By a simple and cost effective chemical precipitation-hydrothermal method, novel hierarchical structured Sm2O3 modified CuO nanoflowers are prepared and investigated as electrode materials for supercapacitors. The physical properties of prepared materials are characterized by XRD, FE-SEM, EDX and FTIR techniques. Furthermore, electrochemical performances of prepared materials are investigated by cyclic voltammetry, galvanostatic charge/discharge and electrochemical impedance spectrum in 1.0 M KOH electrolyte. The resulting Sm2O3 modified CuO based electrodes exhibit obviously enhanced capacitive properties owing to the unique nanostructures and strong synergistic effects. It is worth noting that the optimized SC-3 based electrode exhibits the best electrochemical performances in all prepared electrodes, including higher specific capacitance (383.4 F g-1 at 0.5 A g-1) and good rate capability (393.2 F g-1 and 246.3 F g-1 at 0.3 A g-1 and 3.0 A g-1, respectively), as well as excellent cycling stability (84.6% capacitance retention after 2000 cycles at 1.0 A g-1). The present results show that Sm2O3 is used as a promising modifier to change the morphology and improve electrochemical performances of CuO materials.

  11. Zeolite A functionalized with copper nanoparticles and graphene oxide for simultaneous electrochemical determination of dopamine and ascorbic acid.

    PubMed

    He, Ping; Wang, Wei; Du, Licheng; Dong, Faqin; Deng, Yuequan; Zhang, Tinghong

    2012-08-20

    A novel Cu-zeolite A/graphene modified glassy carbon electrode for the simultaneous electrochemical determination of dopamine (DA) and ascorbic acid (AA) has been described. The Cu-zeolite A/graphene composites were prepared using Cu(2+) functionalized zeolite A and graphene oxide as the precursor, and subsequently reduced by chemical agents. The composites were characterized by X-ray diffraction, Fourier transform infrared spectra and scanning electron microscopy. Based on the Cu-zeolite A/graphene-modified electrode, the potential difference between the oxidation peaks of DA and AA was over 200mV, which was adequate for the simultaneous electrochemical determination of DA and AA. Also the proposed Cu-zeolite/graphene-modified electrode showed higher electrocatalytic performance than zeolite/graphene electrode or graphene-modified electrode. The electrocatalytic oxidation currents of DA and AA were linearly related to the corresponding concentration in the range of 1.0×10(-7)-1.9×10(-5)M for DA and 2.0×10(-5)-2.0×10(-4)M for AA. Detection limits (S/N=3) were estimated to be 4.1×10(-8)M for DA and 1.1×10(-5)M for AA, respectively. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Direct electrochemistry of glucose oxidase and glucose biosensing on a hydroxyl fullerenes modified glassy carbon electrode.

    PubMed

    Gao, Yun-Fei; Yang, Tian; Yang, Xiao-Lu; Zhang, Yu-Shuai; Xiao, Bao-Lin; Hong, Jun; Sheibani, Nader; Ghourchian, Hedayatollah; Hong, Tao; Moosavi-Movahedi, Ali Akbar

    2014-10-15

    Direct electrochemistry of glucose oxidase (GOD) was achieved when GOD-hydroxyl fullerenes (HFs) nano-complex was immobilized on a glassy carbon (GC) electrode and protected with a chitosan (Chit) membrane. The ultraviolet-visible absorption spectrometry (UV-vis), transmission electron microscopy (TEM), and circular dichroism spectropolarimeter (CD) methods were utilized for additional characterization of the GOD, GOD-HFs and Chit/GOD-HFs. Chit/HFs may preserve the secondary structure and catalytic properties of GOD. The cyclic voltammograms (CVs) of the modified GC electrode showed a pair of well-defined quasi-reversible redox peaks with the formal potential (E°') of 353 ± 2 mV versus Ag/AgCl at a scan rate of 0.05 V/s. The heterogeneous electron transfer constant (ks) was calculated to be 2.7 ± 0.2s(-1). The modified electrode response to glucose was linear in the concentrations ranging from 0.05 to 1.0mM, with a detection limit of 5 ± 1 μM. The apparent Michaelis-Menten constant (Km(app)) was 694 ± 8 μM. Thus, the modified electrode could be applied as a third generation biosensor for glucose with high sensitivity, selectivity and low detection limit. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. IMPACT OF POLYCYCLIC AROMATIC HYDROCARBONS OF THE ELECTROCHEMICAL RESPONSES OF A FERRICYNIDE PROBE AT TEMPLATE-MODIFIED SELF ASSEMBLED MONOLAYERS ON GOLD ELECTRODES

    EPA Science Inventory

    The impact of pyrene on the electrochemical response of the ferricyanide probe using Self Assembled Monolayer (SAM)-modified gold electrodes was investigated using Cyclic Voltammetry (CV) and Square Wave Voltammetry (SWV). These results suggest the feasibility of using SAMs, par...

  14. Double-Polymer-Modified Pencil Lead for Stripping Voltammetry of Perchlorate in Drinking Water

    ERIC Educational Resources Information Center

    Izadyar, Anahita; Kim, Yushin; Ward, Michelle M.; Amemiya, Shigeru

    2012-01-01

    The inexpensive and disposable electrode based on a double-polymer-modified pencil lead is proposed for upper-division undergraduate instrumental laboratories to enable the highly sensitive detection of perchlorate. Students fabricate and utilize their own electrodes in the 3-4 h laboratory session to learn important concepts and methods of…

  15. A Facile Electrochemical Preparation of Reduced Graphene Oxide@Polydopamine Composite: A Novel Electrochemical Sensing Platform for Amperometric Detection of Chlorpromazine

    NASA Astrophysics Data System (ADS)

    Palanisamy, Selvakumar; Thirumalraj, Balamurugan; Chen, Shen-Ming; Wang, Yi-Ting; Velusamy, Vijayalakshmi; Ramaraj, Sayee Kannan

    2016-09-01

    We report a novel and sensitive amperometric sensor for chlorpromazine (CPZ) based on reduced graphene oxide (RGO) and polydopamine (PDA) composite modified glassy carbon electrode. The RGO@PDA composite was prepared by electrochemical reduction of graphene oxide (GO) with PDA. The RGO@PDA composite modified electrode shows an excellent electro-oxidation behavior to CPZ when compared with other modified electrodes such as GO, RGO and GO@PDA. Amperometric i-t method was used for the determination of CPZ. Amperometry result shows that the RGO@PDA composite detects CPZ in a linear range from 0.03 to 967.6 μM. The sensor exhibits a low detection limit of 0.0018 μM with the analytical sensitivity of 3.63 ± 0.3 μAμM-1 cm-2. The RGO@PDA composite shows its high selectivity towards CPZ in the presence of potentially interfering drugs such as metronidazole, phenobarbital, chlorpheniramine maleate, pyridoxine and riboflavin. In addition, the fabricated RGO@PDA modified electrode showed an appropriate recovery towards CPZ in the pharmaceutical tablets.

  16. Simulating Charge Transport in Solid Oxide Mixed Ionic and Electronic Conductors: Nernst-Planck Theory vs Modified Fick's Law

    DOE PAGES

    Jin, Xinfang; White, Ralph E.; Huang, Kevin

    2016-10-04

    With the assumption that the Fermi level (electrochemical potential of electrons) is uniform across the thickness of a mixed ionic and electronic conducting (MIEC) electrode, the charge-transport model in the electrode domain can be reduced to the modified Fick’s first law, which includes a thermodynamic factor A. A transient numerical solution of the Nernst-Planck theory was obtained for a symmetric cell with MIEC electrodes to illustrate the validity of the assumption of a uniform Fermi level. Subsequently, an impedance numerical solution based on the modified Fick’s first law is compared with that from the Nernst-Planck theory. The results show thatmore » Nernst-Planck charge-transport model is essentially the same as the modified Fick’s first law model as long as the MIEC electrodes have a predominant electronic conductivity. However, because of the invalidity of the uniform Fermi level assumption for aMIEC electrolyte with a predominant ionic conductivity, Nernst-Planck theory is needed to describe the charge transport behaviors.« less

  17. EDTA assisted synthesis of hydroxyapatite nanoparticles for electrochemical sensing of uric acid.

    PubMed

    Kanchana, P; Sekar, C

    2014-09-01

    Hydroxyapatite nanoparticles have been synthesized using EDTA as organic modifier by a simple microwave irradiation method and its application for the selective determination of uric acid (UA) has been demonstrated. Electrochemical behavior of uric acid at HA nanoparticle modified glassy carbon electrode (E-HA/GCE) has been investigated by electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV), linear sweep voltammetry (LSV) and amperometry. The E-HA modified electrode exhibits efficient electrochemical activity towards uric acid sensing without requiring enzyme or electron mediator. Amperometry studies revealed that the fabricated electrode has excellent sensitivity for uric acid with the lowest detection limit of 142 nM over a wide concentration range from 1 × 10(-7) to 3 × 10(-5)M. Moreover, the studied E-HA modified GC electrode exhibits a good reproducibility and long-term stability and an admirable selectivity towards the determination of UA even in the presence of potential interferents. The analytical performance of this sensor was evaluated for the detection of uric acid in human urine and blood serum samples. Copyright © 2014. Published by Elsevier B.V.

  18. Electrochemical behavior and voltammetric determination of acetaminophen based on glassy carbon electrodes modified with poly(4-aminobenzoic acid)/electrochemically reduced graphene oxide composite films.

    PubMed

    Zhu, Wencai; Huang, Hui; Gao, Xiaochun; Ma, Houyi

    2014-12-01

    Poly(4-aminobenzoic acid)/electrochemically reduced graphene oxide composite film modified glassy carbon electrodes (4-ABA/ERGO/GCEs) were fabricated by a two-step electrochemical method. The electrochemical behavior of acetaminophen at the modified electrode was investigated by means of cyclic voltammetry. The results indicated that 4-ABA/ERGO composite films possessed excellent electrocatalytic activity towards the oxidation of acetaminophen. The electrochemical reaction of acetaminophen at 4-ABA/ERGO/GCE is proved to be a surface-controlled process involving the same number of protons and electrons. The voltammetric determination of acetaminophen performed with the 4-ABA/ERGO modified electrode presents a good linearity in the range of 0.1-65 μM with a low detection limit of 0.01 μM (S/N=3). In the case of using the 4-ABA/ERGO/GCE, acetaminophen and dopamine can be simultaneously determined without mutual interference. Furthermore, the 4-ABA/ERGO/GCE has good reproducibility and stability, and can be used to determine acetaminophen in tablets. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Novel LTCC-potentiometric microfluidic device for biparametric analysis of organic compounds carrying plastic antibodies as ionophores: application to sulfamethoxazole and trimethoprim.

    PubMed

    Almeida, S A A; Arasa, E; Puyol, M; Martinez-Cisneros, C S; Alonso-Chamarro, J; Montenegro, M C B S M; Sales, M G F

    2011-12-15

    Monitoring organic environmental contaminants is of crucial importance to ensure public health. This requires simple, portable and robust devices to carry out on-site analysis. For this purpose, a low-temperature co-fired ceramics (LTCC) microfluidic potentiometric device (LTCC/μPOT) was developed for the first time for an organic compound: sulfamethoxazole (SMX). Sensory materials relied on newly designed plastic antibodies. Sol-gel, self-assembling monolayer and molecular-imprinting techniques were merged for this purpose. Silica beads were amine-modified and linked to SMX via glutaraldehyde modification. Condensation polymerization was conducted around SMX to fill the vacant spaces. SMX was removed after, leaving behind imprinted sites of complementary shape. The obtained particles were used as ionophores in plasticized PVC membranes. The most suitable membrane composition was selected in steady-state assays. Its suitability to flow analysis was verified in flow-injection studies with regular tubular electrodes. The LTCC/μPOT device integrated a bidimensional mixer, an embedded reference electrode based on Ag/AgCl and an Ag-based contact screen-printed under a micromachined cavity of 600 μm depth. The sensing membranes were deposited over this contact and acted as indicating electrodes. Under optimum conditions, the SMX sensor displayed slopes of about -58.7 mV/decade in a range from 12.7 to 250 μg/mL, providing a detection limit of 3.85 μg/mL and a sampling throughput of 36 samples/h with a reagent consumption of 3.3 mL per sample. The system was adjusted later to multiple analyte detection by including a second potentiometric cell on the LTCC/μPOT device. No additional reference electrode was required. This concept was applied to Trimethoprim (TMP), always administered concomitantly with sulphonamide drugs, and tested in fish-farming waters. The biparametric microanalyzer displayed Nernstian behaviour, with average slopes -54.7 (SMX) and +57.8 (TMP) mV/decade. To demonstrate the microanalyzer capabilities for real applications, it was successfully applied to single and simultaneous determination of SMX and TMP in aquaculture waters. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. Nanostructured ZnO in a Metglas/ZnO/Hemoglobin Modified Electrode to Detect the Oxidation of the Hemoglobin Simultaneously by Cyclic Voltammetry and Magnetoelastic Resonance.

    PubMed

    Sagasti, Ariane; Bouropoulos, Nikolaos; Kouzoudis, Dimitris; Panagiotopoulos, Apostolos; Topoglidis, Emmanuel; Gutiérrez, Jon

    2017-07-25

    In the present work, a nanostructured ZnO layer was synthesized onto a Metglas magnetoelastic ribbon to immobilize hemoglobin (Hb) on it and study the Hb's electrochemical behavior towards hydrogen peroxide. Hb oxidation by H₂O₂ was monitored simultaneously by two different techniques: Cyclic Voltammetry (CV) and Magnetoelastic Resonance (MR). The Metglas/ZnO/Hb system was simultaneously used as a working electrode for the CV scans and as a magnetoelastic sensor excited by external coils, which drive it to resonance and interrogate it. The ZnO nanoparticles for the ZnO layer were grown hydrothermally and fully characterized by X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM) and photoluminescence (PL). Additionally, the ZnO layer's elastic modulus was measured using a new method, which makes use of the Metglas substrate. For the detection experiments, the electrochemical cell was performed with a glass vial, where the three electrodes (working, counter and reference) were immersed into PBS (Phosphate Buffer Solution) solution and small H₂O₂ drops were added, one at a time. CV scans were taken every 30 s and 5 min after the addition of each drop and meanwhile a magnetoelastic measurement was taken by the external coils. The CV plots reveal direct electrochemical behavior of Hb and display good electrocatalytic response to the reduction of H₂O₂. The measured catalysis currents increase linearly with the H₂O₂ concentration in a wide range of 25-350 μM with a correlation coefficient 0.99. The detection limit is 25-50 μM. Moreover, the Metglas/ZnO/Hb electrode displays rapid response (30 s) to H₂O₂, and exhibits good stability and reproducibility of the measurements. On the other hand, the magnetoelastic measurements show a small linear mass increase versus the H₂O₂ concentration with a slope of 152 ng/μM, which is probably due to H₂O₂ adsorption in ZnO during the electrochemical reaction. No such effects were detected during the control experiment when only PBS solution was present for a long time.

  1. Redox electrodes comprised of polymer-modified carbon nanomaterials

    NASA Astrophysics Data System (ADS)

    Roberts, Mark; Emmett, Robert; Karakaya, Mehmet; Podila, Ramakrishna; Rao, Apparao; Clemson Physics Team; Clemson Chemical Engineering Team

    2013-03-01

    A shift in how we generate and use electricity requires new energy storage materials and systems compatible with hybrid electric transportation and the integration of renewable energy sources. Supercapacitors provide a solution to these needs by combining the high power, rapid switching, and exceptional cycle life of a capacitor with the high energy density of a battery. Our research brings together nanotechnology and materials chemistry to address the limitations of electrode materials. Paper electrodes fabricated with various forms of carbon nanomaterials, such as nanotubes, are modified with redox-polymers to increase the electrode's energy density while maintaining rapid discharge rates. In these systems, the carbon nanomaterials provide the high surface area, electrical conductivity, nanoscale and porosity, while the redox polymers provide a mechanism for charge storage through Faradaic charge transfer. The design of redox polymers and their incorporation into nanomaterial electrodes will be discussed with a focus on enabling high power and high energy density electrodes.

  2. Surface-modified Mg{sub 2}Ni-type negative electrode materials for Ni-MH battery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cui, N.; Luan, B.; Bradhurst, D.

    1997-12-01

    In order to further improve the electrode performance of Mg{sub 1.9}Y{sub 0.1}Ni{sub 0.9}Al{sub 0.1} alloy at ambient temperature, its surface was modified by an ultrasound pretreatment in the alkaline solution and microencapsulation with Ni-P coating. The effects of various surface modifications on the microstructure and electrochemical performance of the alloy electrodes were investigated and compared in this paper. It was found that the modification with ultrasound pretreatment significantly improved the electrocatalytic activity of the negative electrode and then reduced the overpotential of charging/discharging, resulting in a remarkable increase of electrode capacity and high-rate discharge capability but having little influence onmore » the cycle life. However, the electrode fabricated from the microencapsulated alloy powder showed a higher discharge capacity, better high-rate discharge capability and longer cycle life as well.« less

  3. Direct electrochemistry with enhanced electrocatalytic activity of hemoglobin in hybrid modified electrodes composed of graphene and multi-walled carbon nanotubes.

    PubMed

    Sun, Wei; Cao, Lili; Deng, Ying; Gong, Shixing; Shi, Fan; Li, Gaonan; Sun, Zhenfan

    2013-06-05

    A graphene (GR) and multi-walled carbon nanotubes (MWCNT) hybrid was prepared and modified on a 1-hexylpyridinium hexafluorophosphate based carbon ionic liquid electrode (CILE). Hemoglobin (Hb) was immobilized on GR-MWCNT/CILE surface with Nafion as the film forming material and the modified electrode was denoted as Nafion/Hb-GR-MWCNT/CILE. Spectroscopic results revealed that Hb molecules retained its native structure in the GR-MWCNT hybird. Electrochemical behaviors of Hb were carefully investigated by cyclic voltammetry with a pair of well-defined redox peaks obtained, which indicated that direct electron transfer of Hb was realized in the hybrid modified electrode. The result could be attributed to the synergistic effects of GR-MWCNT hybrid with enlarged surface area and improved conductivity through the formation of a three-dimensional network. Electrochemical parameters of the immobilized Hb on the electrode surface were further calculated with the results of the electron transfer number (n) as 1.03, the charge transfer coefficient (a) as 0.58 and the electron-transfer rate constant (ks) as 0.97 s(-1). The Hb modified electrode showed good electrocatalytic ability toward the reduction of different substrates such as trichloroacetic acid in the concentration range from 0.05 to 38.0 mmol L(-1) with a detection limit of 0.0153 mmol L(-1) (3σ), H2O2 in the concentration range from 0.1 to 516.0 mmol L(-1) with a detection limit of 34.9 nmol/L (3σ) and NaNO2 in the concentration range from 0.5 to 650.0 mmol L(-1) with a detection limit of 0.282 μmol L(-1) (3σ). So the proposed electrode had the potential application in the third-generation electrochemical biosensors without mediator. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Amperometric biosensor based on glassy carbon electrode modified with long-length carbon nanotube and enzyme

    NASA Astrophysics Data System (ADS)

    Furutaka, Hajime; Nemoto, Kentaro; Inoue, Yuki; Hidaka, Hiroki; Muguruma, Hitoshi; Inoue, Hitoshi; Ohsawa, Tatsuya

    2016-05-01

    An amperometric biosensor based on a glassy carbon electrode modified with long-length multiwalled carbon nanotubes (MWCNTs) and enzyme nicotinamide-adenine-dinucleotide-dependent glucose dehydrogenase (GDH) is presented. We demonstrate the effect of the MWCNT length on the amperometric response of the enzyme biosensor. The long length of MWCNT is 200 µm (average), whereas the normal length of MWCNT is 1 µm (average). The response of the long MWCNT-GDH electrode is 2 times more sensitive than that of the normal-length MWCNT-GDH electrode in the concentration range from 0.25-35 mM. The result of electrochemical impedance spectroscopy measurements suggest that the long-length MWCNT-GDH electrode formed a better electron transfer network than the normal-length one.

  5. High-performance supercapacitors based on poly(ionic liquid)-modified graphene electrodes.

    PubMed

    Kim, Tae Young; Lee, Hyun Wook; Stoller, Meryl; Dreyer, Daniel R; Bielawski, Christopher W; Ruoff, Rodney S; Suh, Kwang S

    2011-01-25

    We report a high-performance supercapacitor incorporating a poly(ionic liquid)-modified reduced graphene oxide (PIL:RG-O) electrode and an ionic liquid (IL) electrolyte (specifically, 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)amide or EMIM-NTf(2)). PIL:RG-O provides enhanced compatibility with the IL electrolyte, thereby increasing the effective electrode surface area accessible to electrolyte ions. The supercapacitor assembled with PIL:RG-O electrode and EMIM-NTf(2) electrolyte showed a stable electrochemical response up to 3.5 V operating voltage and was capable of yielding a maximum energy density of 6.5 W·h/kg with a power density of 2.4 kW/kg. These results demonstrate the potential of the PIL:RG-O material as an electrode in high-performance supercapacitors.

  6. Selective determination of four arsenic species in rice and water samples by modified graphite electrode-based electrolytic hydride generation coupled with atomic fluorescence spectrometry.

    PubMed

    Yang, Xin-An; Lu, Xiao-Ping; Liu, Lin; Chi, Miao-Bin; Hu, Hui-Hui; Zhang, Wang-Bing

    2016-10-01

    This work describes a novel non-chromatographic approach for the accurate and selective determining As species by modified graphite electrode-based electrolytic hydride generation (EHG) for sample introduction coupled with atomic fluorescence spectrometry (AFS) detection. Two kinds of sulfydryl-containing modifiers, l-cysteine (Cys) and glutathione (GSH), are used to modify cathode. The EHG performance of As has been changed greatly at the modified cathode, which has never been reported. Arsenite [As(III)] on the GSH modified graphite electrode (GSH/GE)-based EHG can be selectively and quantitatively converted to AsH3 at applied current of 0.4A. As(III) and arsenate [As(V)] on the Cys modified graphite electrode (Cys/GE) EHG can be selectively and efficiently converted to arsine at applied current of 0.6A, whereas monomethylarsonic acid (MMA) and dimethylarsinic acid (DMA) do not form any or only less volatile hydrides under this condition. By changing the analytical conditions, we also have achieved the analysis of total As (tAs) and DMA. Under the optimal condition, the detection limits (3s) of As(III), iAs and tAs in aqueous solutions are 0.25μgL(-1), 0.22μgL(-1) and 0.10μgL(-1), respectively. The accuracy of the method is verified through the analysis of standard reference materials (SRM 1568a). Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Graphene-loaded nanofiber-modified electrodes for the ultrasensitive determination of dopamine.

    PubMed

    Rodthongkum, Nadnudda; Ruecha, Nipapan; Rangkupan, Ratthapol; Vachet, Richard W; Chailapakul, Orawon

    2013-12-04

    A novel and highly sensitive electrochemical system based on electrospun graphene/polyaniline/polystyrene (G/PANI/PS) nanofiber-modified screen-printed carbon electrodes has been developed for dopamine (DA) determination. A dramatic increase (9 times) in the current signal for the redox reaction of a standard, ferri/ferrocyanide [Fe(CN)6](3-/4-) couple was found when compared to an unmodified electrode. This modified electrode also exhibited favorable electron transfer kinetics and excellent electrocatalytic activity toward the oxidation of DA. When used together with square wave voltammetry (SWV), DA can be selectively determined in the presence of the common interferents (i.e. ascorbic acid and uric acid). Under optimal conditions, a very low limit of detection (0.05 nM) and limit of quantification (0.30 nM) were achieved for DA. In addition, a wide dynamic range of 0.1 nM to 100 μM was found for this electrode system. Finally, the system can be successfully applied to determine DA in complex biological environment (e.g. human serum, urine) with excellent reproducibility. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Surface Analysis of 4-Aminothiophenol Adsorption at Polycrystalline Platinum Electrodes

    NASA Technical Reports Server (NTRS)

    Rosario-Castro, Belinda I.; Fachini, Estevao R.; Contes, Enid J.; Perez-Davis, Marla E.; Cabrera, Carlos R.

    2008-01-01

    Formation of self-assembled monolayer (SAM) of 4-aminothiophenol (4-ATP) on polycrystalline platinum electrodes has been studied by surface analysis and electrochemistry techniques. The 4-ATP monolayer was characterized by cyclic voltammetry (CV), Raman spectroscopy, reflection absorption infrared (RAIR) spectroscopy, and X-ray photoelectron spectroscopy (XPS). Cyclic voltammetry (CV) experiments give an idea about the packing quality of the monolayer. RAIR and Raman spectra for 4-ATP modified platinum electrodes showed the characteristic adsorption bands for neat 4-ATP indicating the adsorption of 4-ATP molecules on platinum surface. The adsorption on platinum was also evidenced by the presence of sulfur and nitrogen peaks by XPS survey spectra of the modified platinum electrodes. High resolution XPS studies and RAIR spectrum for platinum electrodes modified with 4-ATP indicate that molecules are sulfur-bonded to the platinum surface. The formation of S-Pt bond suggests that ATP adsorption gives up an amino terminated SAM. Thickness of the monolayer was evaluated via angle-resolved XPS (AR-XPS) analyses. Derivatization of 4-ATP SAM was performed using 16-Br hexadecanoic acid.

  9. The electrochemical performance of graphene modified electrodes: an analytical perspective.

    PubMed

    Brownson, Dale A C; Foster, Christopher W; Banks, Craig E

    2012-04-21

    We explore the use of graphene modified electrodes towards the electroanalytical sensing of various analytes, namely dopamine hydrochloride, uric acid, acetaminophen and p-benzoquinone via cyclic voltammetry. In line with literature methodologies and to investigate the full-implications of employing graphene in this electrochemical context, we modify electrode substrates that exhibit either fast or slow electron transfer kinetics (edge- or basal- plane pyrolytic graphite electrodes respectively) with well characterised commercially available graphene that has not been chemically treated, is free from surfactants and as a result of its fabrication has an extremely low oxygen content, allowing the true electroanalytical applicability of graphene to be properly de-convoluted and determined. In comparison to the unmodified underlying electrode substrates (constructed from graphite), we find that graphene exhibits a reduced analytical performance in terms of sensitivity, linearity and observed detection limits towards each of the various analytes studied within. Owing to graphene's structural composition, low proportion of edge plane sites and consequent slow heterogeneous electron transfer rates, there appears to be no advantages, for the analytes studied here, of employing graphene in this electroanalytical context.

  10. Pencil Graphite Electrodes: A Versatile Tool in Electroanalysis

    PubMed Central

    2017-01-01

    Due to their electrochemical and economical characteristics, pencil graphite electrodes (PGEs) gained in recent years a large applicability to the analysis of various types of inorganic and organic compounds from very different matrices. The electrode material of this type of working electrodes is constituted by the well-known and easy commercially available graphite pencil leads. Thus, PGEs are cheap and user-friendly and can be employed as disposable electrodes avoiding the time-consuming step of solid electrodes surface cleaning between measurements. When compared to other working electrodes PGEs present lower background currents, higher sensitivity, good reproducibility, and an adjustable electroactive surface area, permitting the analysis of low concentrations and small sample volumes without any deposition/preconcentration step. Therefore, this paper presents a detailed overview of the PGEs characteristics, designs and applications of bare, and electrochemically pretreated and chemically modified PGEs along with the corresponding performance characteristics like linear range and detection limit. Techniques used for bare or modified PGEs surface characterization are also reviewed. PMID:28255500

  11. Facile synthesis of NiAl-layered double hydroxide/graphene hybrid with enhanced electrochemical properties for detection of dopamine

    NASA Astrophysics Data System (ADS)

    Li, Meixia; Zhu, Jun E.; Zhang, Lili; Chen, Xu; Zhang, Huimin; Zhang, Fazhi; Xu, Sailong; Evans, David G.

    2011-10-01

    Layered double hydroxides (LDHs), also known as hydrotalcite-like anionic clays, have been investigated widely as promising electrochemical active materials. Due to the inherently weak conductivity, the electrochemical properties of LDHs were improved typically by utilization of either functional molecules intercalated between LDH interlayer galleries, or proteins confined between exfoliated LDH nanosheets. Here, we report a facile protocol to prepare NiAl-LDH/graphene (NiAl-LDH/G) nanocomposites using a conventional coprecipitation process under low-temperature conditions and subsequent reduction of the supporting graphene oxide. Electrochemical tests showed that the NiAl-LDH/G modified electrode exhibited highly enhanced electrochemical performance of dopamine electrooxidation in comparison with the pristine NiAl-LDH modified electrode. Results of high-resolution transmission electron microscopy and Raman spectra provide convincing information on the nanostructure and composition underlying the enhancement. Our results of the NiAl-LDH/G modified electrodes with the enhanced electrochemical performance may allow designing a variety of promising hybrid sensors via a simple and feasible approach.Layered double hydroxides (LDHs), also known as hydrotalcite-like anionic clays, have been investigated widely as promising electrochemical active materials. Due to the inherently weak conductivity, the electrochemical properties of LDHs were improved typically by utilization of either functional molecules intercalated between LDH interlayer galleries, or proteins confined between exfoliated LDH nanosheets. Here, we report a facile protocol to prepare NiAl-LDH/graphene (NiAl-LDH/G) nanocomposites using a conventional coprecipitation process under low-temperature conditions and subsequent reduction of the supporting graphene oxide. Electrochemical tests showed that the NiAl-LDH/G modified electrode exhibited highly enhanced electrochemical performance of dopamine electrooxidation in comparison with the pristine NiAl-LDH modified electrode. Results of high-resolution transmission electron microscopy and Raman spectra provide convincing information on the nanostructure and composition underlying the enhancement. Our results of the NiAl-LDH/G modified electrodes with the enhanced electrochemical performance may allow designing a variety of promising hybrid sensors via a simple and feasible approach. Electronic supplementary information (ESI) available: Fig. S1 showing 2D fast Fourier transform (FFT) image of NiAl-LDH phase in NiAl-LDH/G composites, and Fig. S2 showing CV curve of the pristine G modified electrode. See DOI: 10.1039/c1nr10592b.

  12. Amperometric Enzyme Electrodes

    DTIC Science & Technology

    1989-12-01

    form of carbon (glascy carbon , graphite, reticulated vitreous carbon , carbon paste, fiber or foil). Carbon is favored for enzyme immoblization...the surface for covalent bonding. The most frequently used electrode material, glassy carbon , often displays complex behavior. Although attempts have...Mixed Carbon Paste Electrode with an Immobilized Layer of D-Gluconate Dehydrogenase from Bacteral Membranes," Agric. Biol. Chelm., 51 (1987), 747-754

  13. Electrochemical Glucose Biosensor Based on Glucose Oxidase Displayed on Yeast Surface.

    PubMed

    Wang, Hongwei; Lang, Qiaolin; Liang, Bo; Liu, Aihua

    2015-01-01

    The conventional enzyme-based biosensor requires chemical or physical immobilization of purified enzymes on electrode surface, which often results in loss of enzyme activity and/or fractions immobilized over time. It is also costly. A major advantage of yeast surface display is that it enables the direct utilization of whole cell catalysts with eukaryote-produced proteins being displayed on the cell surface, providing an economic alternative to traditional production of purified enzymes. Herein, we describe the details of the display of glucose oxidase (GOx) on yeast cell surface and its application in the development of electrochemical glucose sensor. In order to achieve a direct electrochemistry of GOx, the entire cell catalyst (yeast-GOx) was immobilized together with multiwalled carbon nanotubes on the electrode, which allowed sensitive and selective glucose detection.

  14. Modified electrical survey for effective leakage detection at concrete hydraulic facilities

    NASA Astrophysics Data System (ADS)

    Lee, Bomi; Oh, Seokhoon

    2018-02-01

    Three original electrode arrays for the effective leakage detection of concrete hydraulic facilities through electrical resistivity surveys are proposed: 'cross-potential', 'direct-potential' and modified tomography-like arrays. The main differences with respect to the commonly used arrays are that the current line-sources are separated from potential pole lines and floated upon the water. The potential pole lines are located directly next to the facility in order to obtain intuitive data and useful interpretations of the internal conditions of the hydraulic facility. This modified configuration of the array clearly displays the horizontal variation of the electrical field around the damaged zones of the concrete hydraulic facility, and any anomalous regions that might be found between potential poles placed across the facilities. In order to facilitate the interpretation of these modified electrical surveys, a new and creative way of presenting the measurements is also proposed and an inversion approach is provided for the modified tomography-like array. A numerical modeling and two field tests were performed to verify these new arrays and interpretation methods. The cross and direct potential array implied an ability to detect small variations of the potential field near the measurement poles. The proposed array showed the overall potential distribution across the hydraulic facility which may be used to assist in the search of trouble zones within the structure, in combination with the traditional electrical resistivity array.

  15. Covalently functionalized single-walled carbon nanotubes and graphene composite electrodes for pseudocapacitor application

    NASA Astrophysics Data System (ADS)

    Le Barny, Pierre; Servet, Bernard; Campidelli, Stéphane; Bondavalli, Paolo; Galindo, Christophe

    2013-09-01

    The use of carbon-based materials in electrochemical double-layer supercapacitors (EDLC) is currently being the focus of much research. Even though activated carbon (AC) is the state of the art electrode material, AC suffers from some drawbacks including its limited electrical conductivity, the need for a binder to ensure the expected electrode cohesion and its limited accessibility of its pores to solvated ions of the electrolyte. Owing to their unique physical properties, carbon nanotubes (CNTs) or graphene could overcome these drawbacks. It has been demonstrated that high specific capacitance could be obtained when the carbon accessible surface area of the electrode was finely tailored by using graphene combined with other carbonaceous nanoparticles such as CNTs12.In this work, to further increase the specific capacitance of the electrode, we have covalently grafted onto the surface of single-walled carbon nanotubes (SWCNTs), exfoliated graphite or graphene oxide (GO), anthraquinone (AQ) derivatives which are electrochemically active materials. The modified SWCNTs and graphene-like materials have been characterized by Raman spectroscopy, X-ray photoemission and cyclic voltammetry . Then suspensions based on mixtures of modified SWCNTs and modified graphene-like materials have been prepared and transformed into electrodes either by spray coating or by filtration. These electrodes have been characterized by SEM and by cyclic voltammetry in 0.1M H2S04 electrolyte.

  16. Selectivity and Sensitivity of Ultrathin Monolayer Electrodes

    NASA Astrophysics Data System (ADS)

    Cheng, Quan

    The objective of this work is to build a molecular architecture on the electrode surface with a well-defined morphology and desirable electrochemical characteristics. The goal is accomplished by means of self-assembly of thioctic acid, a sulfur-terminated organic molecule with a short alkyl chain and a hydrophilic carboxylic headgroup, on a gold electrode. Characterization of the monolayer structure and the electrochemical response of the monolayer electrodes is performed by means of capacitance measurements and voltammetry. Investigation of the capacitance of the self-assembled monolayers provides insight into the macroscopic permeability of the films and reveals that penetration of solvent/ions into the thioctic acid monolayer film occurs extensively. Voltammetric results demonstrate that permselectivity of the monolayer electrode can be obtained as a result of the induced electrostatic interactions between the monolayer interface and the electroactive species. Measurement of the voltammetric response of the redox probes at the monolayers as a function of the electrolyte concentration and composition is used to qualitatively analyze the effect of electrolyte on response. A model describing the role of the interfacial charge in the electrochemical response of the monolayers as a function of the solution composition and surface smoothness is proposed. A strategy is developed to further explore the applications of the monolayer electrodes to control the electrochemical response of the biological molecules such as catecholamines. The ability to control the surface hydrophobicity of the monolayer electrodes through coadsorption of thioctic acid and hexanethiol, to display different electrochemical properties towards biological molecules is tested. The optimum conditions for detection of the biological molecules on the monolayer electrodes are discussed. In order to pursue selective analysis in microenvironments, the thioctic acid monolayer formed on the ultramicroelectrodes (UME) is investigated, demonstrating high permselectivity and high sensitivity of the monolayer modified UMEs. Because of the more effective mass transport to the UMEs, effects of electrolyte on the monolayer response can be characterized facilely. Amperometric pH sensing on the thioctic acid UMEs using a redox mediator is discussed. Finally, the thioctic acid monolayer microelectrode is applied to investigate direct electrochemistry of a redox protein, cytochrome c. A sketch for developing a biosensor via mediation effects using the monolayer assembly is proposed.

  17. Role of Au(NPs) in the enhanced response of Au(NPs)-decorated MWCNT electrochemical biosensor

    PubMed Central

    Mehmood, Shahid; Ciancio, Regina; Carlino, Elvio; Bhatti, Arshad S

    2018-01-01

    Background The combination of Au-metallic-NPs and CNTs are a new class of hybrid nanomaterials for the development of electrochemical biosensor. Concentration of Au(nanoparticles [NPs]) in the electrochemical biosensor is crucial for the efficient charge transfer between the Au-NPs-MWCNTs modified electrode and electrolytic solution. Methods In this work, the charge transfer kinetics in the glassy carbon electrode (GCE) modified with Au(NPs)–multiwalled carbon nanotube (MWCNT) nanohybrid with varied concentrations of Au(NPs) in the range 40–100 nM was studied using electrochemical impedance spectroscopy (EIS). Field emission scanning electron microscopy and transmission electron microscopy confirmed the attachment of Au(NPs) on the surface of MWCNTs. Results The cyclic voltammetry and EIS results showed that the charge transfer mechanism was diffusion controlled and the rate of charge transfer was dependent on the concentration of Au(NPs) in the nanohybrid. The formation of spherical diffusion zone, which was dependent on the concentration of Au(NPs) in nanohybrids, was attributed to result in 3 times the increase in the charge transfer rate ks, 5 times increase in mass transfer, and 5% (9%) increase in Ipa (Ipc) observed in cyclic voltammetry in 80 nM Au(NP) nanohybrid-modified GCE from MWCNT-modified GCE. The work was extended to probe the effect of charge transfer rates at various concentrations of Au(NPs) in the nanohybrid-modified electrodes in the presence of Escherichia coli. The cyclic voltammetry results clearly showed the best results for 80 nM Au(NPs) in nanohybrid electrode. Conclusion The present study suggested that the formation of spherical diffusion zone in nanohybrid-modified electrodes is critical for the enhanced electrochemical biosensing applications. PMID:29713161

  18. A modified ion-selective electrode method for measurement of chloride in sweat.

    PubMed

    Finley, P R; Dye, J A; Lichti, D A; Byers, J M; Williams, R J

    1978-06-01

    A modified method of analysis of sweat chloride concentration with an ion-selective electrode is presented. The original method of sweat chloride analysis proposed by the Orion Research Corporation (Cambridge, Massachusetts 02139) is inadequate because it produces erratic and misleading results. The modified method was compared with the reference quantitative method of Gibson and Cooke. In the modified method, individual electrode pads are cut and placed in the electrodes rather than using the pads supplied by the company; pilocarpine nitrate (2,000 mg/l) is used in place of pilocarpine HCl (640 mg/l); sodium bicarbonate as the weak electrolyte is used instead of K2SO4. A 10-minute period for sweat accumulation is employed rather than a zero-time collection as in the original Orion method. The modification has been studied for reproducibility in individuals, reproducibility between right and left arm in individuals; it has been compared extensively with the quantitative method of Gibson and Cooke, both in normal individuals and in patients with cystic fibrosis. There is excellent agreement between the modified method and the quantitative reference method. There appears to be a slight bias toward higher concentrations of chloride from the right arm compared with the left arm, but this difference is not medically significant.

  19. Electroanalytical and Spectroscopic Studies of Poly(2,2'-bithiophene)-Modified Platinum Electrode to Detect Catechol in the Presence of Ascorbic Acid

    ERIC Educational Resources Information Center

    Lunsford, Suzanne K.; Speelman, Nicole; Stinson, Jelynn; Yeary, Amber; Choi, Hyeok; Widera, Justyna; Dionysiou, Dionysios D.

    2008-01-01

    This article describes an undergraduate laboratory for an instrumental analysis course that integrates electroanalytical chemistry and infrared spectroscopy. Modified electrode surfaces are prepared by constant potentiometric electrolysis over the potential range of 1.5-1.8 V and analyzed by cyclic voltammetry and infrared spectroscopy. The…

  20. Modified Carbon Nanotube Paste Electrode for Voltammetric Determination of Carbidopa, Folic Acid, and Tryptophan

    PubMed Central

    Esfandiari Baghbamidi, Sakineh; Beitollahi, Hadi; Karimi-Maleh, Hassan; Soltani-Nejad, Somayeh; Soltani-Nejad, Vahhab; Roodsaz, Sara

    2012-01-01

    A simple and convenient method is described for voltammetric determination of carbidopa (CD), based on its electrochemical oxidation at a modified multiwall carbon nanotube paste electrode. Under optimized conditions, the proposed method exhibited acceptable analytical performances in terms of linearity (over the concentration range from 0.1 to 700.0 μM), detection limit (65.0 nM), and reproducibility (RSD = 2.5%) for a solution containing CD. Also, square wave voltammetry (SWV) was used for simultaneous determination of CD, folic acid (FA), and tryptophan (TRP) at the modified electrode. To further validate its possible application, the method was used for the quantification of CD, FA, and TRP in urine samples. PMID:22666634

  1. Hg(2+) detection using a disposable and miniaturized screen-printed electrode modified with nanocomposite carbon black and gold nanoparticles.

    PubMed

    Cinti, Stefano; Santella, Francesco; Moscone, Danila; Arduini, Fabiana

    2016-05-01

    A miniaturized screen-printed electrode (SPE) modified with a carbon black-gold nanoparticle (CBNP-AuNP) nanocomposite has been developed as an electrochemical sensor for the detection of inorganic mercury ions (Hg(2+)). The working electrode surface has been modified with nanocomposite constituted of CBNPs and AuNPs by an easy drop casting procedure that makes this approach extendible to an automatable mass production of modified SPEs. Square wave anodic stripping voltammetry (SWASV) was adopted to perform Hg(2+) detection, revealing satisfactory sensitivity and detection limit, equal to 14 μA ppb(-1) cm(-2) and 3 ppb, respectively. The applicability of the CBNP-AuNP-SPE for the determination of inorganic mercury has been assessed in river water by a simple filtration and acidification of the sample as well as in soil by means of a facile acidic extraction procedure assisted by ultrasound.

  2. An organic surface modifier to produce a high work function transparent electrode for high performance polymer solar cells.

    PubMed

    Choi, Hyosung; Kim, Hak-Beom; Ko, Seo-Jin; Kim, Jin Young; Heeger, Alan J

    2015-02-04

    Modification of an ITO electrode with small-molecule organic surface modifier, 4-chloro-benzoic acid (CBA), via a simple spin-coating method produces a high-work-function electrode with high transparency and a hydrophobic surface. As an alternative to PEDOT:PSS, CBA modification achieves efficiency enhancement up to 8.5%, which is attributed to enhanced light absorption within the active layer and smooth hole transport from the active layer to the anode. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Sensitive HIV-1 detection in a homogeneous solution based on an electrochemical molecular beacon coupled with a nafion-graphene composite film modified screen-printed carbon electrode.

    PubMed

    Li, Bo; Li, Zhengliang; Situ, Bo; Dai, Zong; Liu, Qinlan; Wang, Qian; Gu, Dayong; Zheng, Lei

    2014-02-15

    A novel electrochemical sensing assay for sensitive determination of HIV-1 in a homogeneous solution has been developed using an electrochemical molecular beacon combined with a nafion-graphene composite film modified screen-printed carbon electrode (nafion-graphene/SPCE). The electrochemical molecular beacon (CAs-MB), comprising a special recognition sequence for the conserved region of the HIV-1 gag gene and a pair of carminic acid molecules as a marker, can indicate the presence of the HIV-1 target by its on/off electrochemical signal behavior. It is suitable for direct, electrochemical determination of HIV-1, thereby simplifying the detection procedure and improving the signal-to-noise (S/N) ratio. To further improve the sensitivity, the nafion-graphene/SPCE was used to monitor changes in the CAs-MB, which has notable advantages, such as being ultrasensitive, inexpensive, and disposable. Under optimized conditions, the peak currents showed a linear relationship with the logarithm of target oligonucleotide concentrations ranging from 40 nM to 2.56 μM, with a detection limit of 5 nM (S/N=3). This sensing assay also displays a good stability, with a recovery of 88-106.8% and RSD<7% (n=5) in real serum samples. This work may lead to the development of an effective method for early point-of-care diagnosis of HIV-1 infection. © 2013 Elsevier B.V. All rights reserved.

  4. A novel mesoporous silica nanosphere matrix for the immobilization of proteins and their applications as electrochemical biosensor.

    PubMed

    Li, Juan; Qin, Xingzhang; Yang, Zhanjun; Qi, Huamei; Xu, Qin; Diao, Guowang

    2013-01-30

    A mesoporous silica nanoshpere (MSN) was proposed to modify glassy carbon electrode (GCE) for the immobilization of protein. Using glucose oxidase (GOD) as a model, direct electrochemistry of protein and biosensing at the MSN modified GCE was studied for the first time. The MNS had large surface area and offered a favorable microenvironment for facilitating the direct electron transfer between enzyme and electrode surface. Scanning electron microscopy, transmission electron microscopy, UV-vis spectroscopy and cyclic voltammetry were used to examine the interaction between GOD and the MSN matrix. The results demonstrated that the immobilized enzyme on the MSN retained its native structure and bioactivity. In addition, the electrochemical reaction showed a surface controlled, reversible two-proton and two-electron transfer process with the apparent electron transfer rate constant of 3.96 s(-1). The MNS-based glucose biosensor exhibited the two linear ranges of 0.04-2.0 mM and 2.0-4.8 mM, a high sensitivity of 14.5 mA M(-1) cm(-2) and a low detection limit of 0.02 mM at signal-to-noise of 3. The proposed biosensor showed excellent selectivity, good reproducibility, acceptable stability and could be successfully applied in the reagentless detection of glucose in real samples at -0.45 V. The work displayed that mesoporous silica nanosphere provided a promising approach for immobilizing proteins and fabrication of excellent biosensors. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Enhancement of anodic biofilm formation and current output in microbial fuel cells by composite modification of stainless steel electrodes

    NASA Astrophysics Data System (ADS)

    Liang, Yuxiang; Feng, Huajun; Shen, Dongsheng; Li, Na; Guo, Kun; Zhou, Yuyang; Xu, Jing; Chen, Wei; Jia, Yufeng; Huang, Bin

    2017-02-01

    In this paper, we first systematically investigate the current output performance of stainless steel electrodes (SS) modified by carbon coating (CC), polyaniline coating (PANI), neutral red grafting (NR), surface hydrophilization (SDBS), and heat treatment (HEAT). The maximum current density of 13.0 A m-2 is obtained on CC electrode (3.0 A m-2 of the untreated anode). Such high performance should be attributed to its large effective surface area, which is 2.3 times that of the unmodified electrode. Compared with SS electrode, about 3-fold increase in current output is achieved with PANI. Functionalization with hydrophilic group and electron medium result in the current output rising to 1.5-2 fold, through enhancing bioadhesive and electron transport rate, respectively. CC modification is the best choice of single modification for SS electrode in this study. However, this modification is not perfect because of its poor hydrophilicity. So CC electrode is modified by SDBS for further enhancing the current output to 16 A m-2. These results could provide guidance for the choice of suitable single modification on SS electrodes and a new method for the perfection of electrode performance through composite modification.

  6. Optimization of the electrodeposition of copper on poly-1-naphthylamine for the amperometric detection of carbohydrates in HPLC.

    PubMed

    D'Eramo, Fabiana; Marioli, Juan M; Arévalo, Alejandro H; Sereno, Leonides E

    2003-11-04

    A modified electrode consisting of copper dispersed in a poly-1-naphthylamine (p-1-NAP/Cu) film on a glassy carbon electrode was used as an amperometric detector for the on-line analysis of various carbohydrates separated by high performance liquid chromatography. The results obtained with this new sensor were compared to those obtained with a modified electrode based on the same polymer but with copper ions incorporated at open circuit, as described in a previous paper. In this new modified electrode the copper microparticles were electrochemically deposited into the polymeric matrix by single potential step chronoamperometry. A nucleation and growth mechanism was proposed to explain the current transients of copper electrodeposition. The experimental results were fitted to the proposed mechanism by using a mathematical equation that considers three-dimensional growth and progressive nucleation, assuming a no overlap and no diffusion mechanism. Cyclic voltammetric experiments showed that the electrodeposited copper microparticles provided a catalytic surface suited for the oxidation of glucose and several carbohydrates. The sensitivity of the electrode was influenced by the amount of copper electrodeposited, which in turn depended on the applied overpotential used for the deposition of copper. Liquid chromatographic experiments were carried out to test the analytical performance of these electrodes for the determination of various carbohydrates.

  7. Boronic Acid vs. Folic Acid: A Comparison of the bio-recognition performances by Impedimetric Cytosensors based on Ferrocene cored dendrimer.

    PubMed

    Dervisevic, Muamer; Şenel, Mehmet; Sagir, Tugba; Isik, Sevim

    2017-05-15

    A comparative study is reported where folic acid (FA) and boronic acid (BA) based cytosensors and their analytical performances in cancer cell detection were analyzed by using electrochemical impedance spectroscopy (EIS) method. Cytosensors were fabricated using self-assembled monolayer principle by modifying Au electrode with cysteamine (Cys) and immobilization of ferrocene cored polyamidiamine dendrimers second generation (Fc-PAMAM (G2)), after which electrodes were modified with FA and BA. Au/Fc-PAMAM(G2)/FA and Au/Fc-PAMAM(G2)/BA based cytosensors showed extremely good analytical performances in cancer cell detection with linear range of 1×10 2 to 1×10 6 cellsml -1 , detection limit of 20cellsml -1 with incubation time of 20min for FA based electrode, and for BA based electrode detection limit was 28cellsml -1 with incubation time of 10min. Next to excellent analytical performances, cytosensors showed high selectivity towards cancer cells which was demonstrated in selectivity study using human embryonic kidney 293 cells (HEK 293) as normal cells and Au/Fc-PAMAM(G2)/FA electrode showed two times better selectivity than BA modified electrode. These cytosensors are promising for future applications in cancer cell diagnosis. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Sputtering graphite coating to improve the elevated-temperature cycling ability of the LiMn2O4 electrode.

    PubMed

    Wang, Jiexi; Zhang, Qiaobao; Li, Xinhai; Wang, Zhixing; Guo, Huajun; Xu, Daguo; Zhang, Kaili

    2014-08-14

    To improve the cycle performance of LiMn2O4 at elevated temperature, a graphite layer is introduced to directly cover the surface of a commercial LiMn2O4-based electrode via room-temperature DC magnetron sputtering. The as-modified cathodes display improved capacity retention as compared to the bare LiMn2O4 cathode (BLMO) at 55 °C. When sputtering graphite for 30 min, the sample shows the best cycling performance at 55 °C, maintaining 96.2% capacity retention after 200 cycles. Reasons with respect to the graphite layer for improving the elevated-temperature performance of LiMn2O4 are systematically investigated via the methods of cyclic voltammetry, electrochemical impedance spectroscopy, X-ray photoelectron spectrometry, scanning and transmission electron microscopy, X-ray diffraction and inductively coupled plasma-atomic emission spectrometry. The results demonstrate that the graphite coated LiMn2O4 cathode has much less increased electrode polarization and electrochemical impedance than BLMO during the elevated-temperature cycling process. Furthermore, the graphite layer is able to alleviate the severe dissolution of manganese ions into the electrolyte and mitigate the morphological and structural degradation of LiMn2O4 during cycling. A model for the electrochemical kinetics process is also suggested for explaining the roles of the graphite layer in suppressing the Mn dissolution.

  9. Recent advances in graphite powder-based electrodes.

    PubMed

    Bellido-Milla, Dolores; Cubillana-Aguilera, Laura Ma; El Kaoutit, Mohammed; Hernández-Artiga, Ma Purificación; Hidalgo-Hidalgo de Cisneros, José Luis; Naranjo-Rodríguez, Ignacio; Palacios-Santander, José Ma

    2013-04-01

    Graphite powder-based electrodes have the electrochemical performance of quasi-noble metal electrodes with intrinsic advantages related to the possibility of modification to enhance selectivity and their easily renewable surface, with no need for hazardous acids or bases for their cleaning. In contrast with commercial electrodes, for example screen-printed or sputtered-chip electrodes, graphite powder-based electrodes can also be fabricated in any laboratory with the form and characteristics desired. They are also readily modified with advanced materials, with relatively high reproducibility. All these characteristics make them a very interesting option for obtaining a large variety of electrodes to resolve different kinds of analytical problems. This review summarizes the state-of-the-art, advantages, and disadvantages of graphite powder-based electrodes in electrochemical analysis in the 21st century. It includes recent trends in carbon paste electrodes, devoting special attention to the use of emergent materials as new binders and to the development of other composite electrodes. The most recent advances in the use of graphite powder-modified sol-gel electrodes are also described. The development of sonogel-carbon electrodes and their use in electrochemical sensors and biosensors is included. These materials extend the possibilities of applications, especially for industrial technology-transfer purposes, and their development could affect not only electroanalytical green chemistry but other interesting areas also, for example catalysis and energy conversion and storage.

  10. Nitrogen-doped reduced graphene oxide electrodes for electrochemical supercapacitors.

    PubMed

    Nolan, Hugo; Mendoza-Sanchez, Beatriz; Ashok Kumar, Nanjundan; McEvoy, Niall; O'Brien, Sean; Nicolosi, Valeria; Duesberg, Georg S

    2014-02-14

    Herein we use Nitrogen-doped reduced Graphene Oxide (N-rGO) as the active material in supercapacitor electrodes. Building on a previous work detailing the synthesis of this material, electrodes were fabricated via spray-deposition of aqueous dispersions and the electrochemical charge storage mechanism was investigated. Results indicate that the functionalised graphene displays improved performance compared to non-functionalised graphene. The simplicity of fabrication suggests ease of up-scaling of such electrodes for commercial applications.

  11. Surface-modified CMOS IC electrochemical sensor array targeting single chromaffin cells for highly parallel amperometry measurements.

    PubMed

    Huang, Meng; Delacruz, Joannalyn B; Ruelas, John C; Rathore, Shailendra S; Lindau, Manfred

    2018-01-01

    Amperometry is a powerful method to record quantal release events from chromaffin cells and is widely used to assess how specific drugs modify quantal size, kinetics of release, and early fusion pore properties. Surface-modified CMOS-based electrochemical sensor arrays allow simultaneous recordings from multiple cells. A reliable, low-cost technique is presented here for efficient targeting of single cells specifically to the electrode sites. An SU-8 microwell structure is patterned on the chip surface to provide insulation for the circuitry as well as cell trapping at the electrode sites. A shifted electrode design is also incorporated to increase the flexibility of the dimension and shape of the microwells. The sensitivity of the electrodes is validated by a dopamine injection experiment. Microwells with dimensions slightly larger than the cells to be trapped ensure excellent single-cell targeting efficiency, increasing the reliability and efficiency for on-chip single-cell amperometry measurements. The surface-modified device was validated with parallel recordings of live chromaffin cells trapped in the microwells. Rapid amperometric spikes with no diffusional broadening were observed, indicating that the trapped and recorded cells were in very close contact with the electrodes. The live cell recording confirms in a single experiment that spike parameters vary significantly from cell to cell but the large number of cells recorded simultaneously provides the statistical significance.

  12. A simple gold plate electrode modified with Gd-doped TiO₂ nanoparticles used for determination of trace nitrite in cured food.

    PubMed

    Zhang, M-L; Cao, Z; He, J-L; Xue, L; Zhou, Y; Long, S; Deng, T; Zhang, L

    2012-01-01

    A simple gold plate electrode (GPE) based on a gadolinium-doped titanium dioxide (Gd/TiO₂) ultrathin film was successfully constructed by using a surface sol-gel technique, and used for the detection of trace amounts of nitrite in cured foods. The Gd/TiO₂ nanoparticles were synthesised and characterised via scanning electron microscopy (SEM) and X-ray diffraction (XRD), indicating that the Gd-doped TiO₂ formed an anatase phase through roasting at 450°C, generating actively interstitial oxygen at the interface of the surface of TiO₂ lattice surrounded by Gd³⁺. The electro-catalytic effect for oxidation of nitrite on the modified electrode was investigated by cyclic voltammetry in 0.10 mol l⁻¹ sulfuric acid media solution, showing that the modified electrode exhibited excellent response performance to nitrite with good reproducibility, selectivity and stability. The catalytic peak current was found to be linear with nitrite concentrations in the range of 8.0 × 10⁻⁷ to 4.0 × 10⁻⁴) mol l⁻¹, with a detection limit of 5.0 × 10⁻⁷ mol l⁻¹ (S/N = 3). The modified electrode could be used for the determination of nitrite in the cured sausage samples with a satisfactory recovery in the range of 95.5-104%, showing its promising application for food safety monitoring.

  13. Simultaneous voltammetry detection of dopamine and uric acid in human serum and urine with a poly(procaterol hydrochloride) modified glassy carbon electrode.

    PubMed

    Kong, Dexian; Zhuang, Qizhao; Han, Yejian; Xu, Lanping; Wang, Zeming; Jiang, Lili; Su, Jinwei; Lu, Chun-Hua; Chi, Yuwu

    2018-08-01

    In the present study, procaterol hydrochloride (ProH) was successfully electropolymerized onto a glass carbon electrode (GCE) with simply cyclic voltammetry scans to construct a poly(procaterol hydrochloride) (p-ProH) membrane modified electrode. Compared with the bare GCE, much higher oxidation peak current responses and better peak potentials separation could be obtained for the simultaneous oxidation of dopamine (DA) and uric acid (UA), owning to the excellent electrocatalytic ability of the p-ProH membrane. And it's based on that a square wave voltammetry (SWV) method was developed to selective and simultaneous measurement of DA and UA. Under the optimum conditions, the linear dependence of oxidation peak current on analyte concentrations were found to be 1.0-100 μmol/L and 2-100 μmol/L, giving detection limits of 0.3 μmol/L and 0.5 μmol/L for DA and UA, separately. The as prepared modified electrode shows simplicity in construction with the merits of good reproducibility, high stability, passable selectivity and nice sensitivity. Finally, the proposed p-ProH membrane modified electrode was successfully devoted to the detection of DA and UA in biological fluids such as human serum and urine with acceptable results. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. A highly sensitive electrochemical biosensor for catechol using conducting polymer reduced graphene oxide-metal oxide enzyme modified electrode.

    PubMed

    Sethuraman, V; Muthuraja, P; Anandha Raj, J; Manisankar, P

    2016-10-15

    The fabrication, characterization and analytical performances were investigated for a catechol biosensor, based on the PEDOT-rGO-Fe2O3-PPO composite modified glassy carbon (GC) electrode. The graphene oxide (GO) doped conducting polymer poly (3,4-ethylenedioxythiophene) (PEDOT) was prepared through electrochemical polymerization by potential cycling. Reduction of PEDOT-GO was carried out by amperometric method. Fe2O3 nanoparticles were synthesized in ethanol by hydrothermal method. The mixture of Fe2O3, PPO and glutaraldehyde was casted on the PEDOT-rGO electrode. The surface morphology of the modified electrodes was studied by FE-SEM and AFM. Cyclic voltammetric studies of catechol on the enzyme modified electrode revealed higher reduction peak current. Determination of catechol was carried out successfully by Differential Pulse Voltammetry (DPV) technique. The fabricated biosensor investigated shows a maximum current response at pH 6.5. The catechol biosensor exhibited wide sensing linear range from 4×10(-8) to 6.20×10(-5)M, lower detection limit of 7×10(-9)M, current maxima (Imax) of 92.55µA and Michaelis-Menten (Km) constant of 30.48µM. The activation energy (Ea) of enzyme electrode is 35.93KJmol(-1) at 50°C. There is no interference from d-glucose and l-glutamic acid, ascorbic acid and o-nitrophenol. The PEDOT-rGO-Fe2O3-PPO biosensor was stable for at least 75 days when stored in a buffer at about 4°C. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Amperometric determination of 6-mercaptopurine on functionalized multi-wall carbon nanotubes modified electrode by liquid chromatography coupled with microdialysis and its application to pharmacokinetics in rabbit.

    PubMed

    Cao, Xu-Ni; Lin, Li; Zhou, Yu-Yan; Shi, Guo-Yue; Zhang, Wen; Yamamoto, Katsunobu; Jin, Li-Tong

    2003-07-27

    In this paper, multi-wall carbon nanotubes functionalized with carboxylic groups modified electrode (MWNT-COOH CME) was fabricated. This chemically modified electrode (CME) can be used as the working electrode in the liquid chromatography for the determination of 6-mercaptopurine (6-MP). The results indicate that the CME exhibits efficiently electrocatalytic oxidation for 6-MP with relatively high sensitivity, stability and long-life. The peak currents of 6-MP are linear to its concentrations ranging from 4.0 x 10(-7) to 1.0 x 10(-4) mol l(-1) with the calculated detection limit (S/N=3) of 2.0 x 10(-7) mol l(-1). Coupled with microdialysis, the method has been successfully applied to the pharmacokinetic study of 6-MP in rabbit blood. This method provides a fast, sensible and simple technique for the pharmacokinetic study of 6-MP in vivo.

  16. A New Sensitive Sensor for Simultaneous Differential Pulse Voltammetric Determination of Codeine and Acetaminophen Using a Hydroquinone Derivative and Multiwall Carbon Nanotubes Carbon Paste Electrode

    PubMed Central

    Garazhian, Elahe; Shishehbore, M. Reza

    2015-01-01

    A new sensitive sensor was fabricated for simultaneous determination of codeine and acetaminophen based on 4-hydroxy-2-(triphenylphosphonio)phenolate (HTP) and multiwall carbon nanotubes paste electrode at trace levels. The sensitivity of codeine determination was deeply affected by spiking multiwall carbon nanotubes and a modifier in carbon paste. Electron transfer coefficient, α, catalytic electron rate constant, k, and the exchange current density, j 0, for oxidation of codeine at the HTP-MWCNT-CPE were calculated using cyclic voltammetry. The calibration curve was linear over the range 0.2–844.7 μM with two linear segments, and the detection limit of 0.063 μM of codeine was obtained using differential pulse voltammetry. The modified electrode was separated codeine and acetaminophen signals by differential pulse voltammetry. The modified electrode was applied for the determination of codeine and acetaminophen in biological and pharmaceutical samples with satisfactory results. PMID:25945094

  17. Screen-Printed Electrodes Modified with “Green” Metals for Electrochemical Stripping Analysis of Toxic Elements

    PubMed Central

    Economou, Anastasios

    2018-01-01

    This work reviews the field of screen-printed electrodes (SPEs) modified with “green” metals for electrochemical stripping analysis of toxic elements. Electrochemical stripping analysis has been established as a useful trace analysis technique offering many advantages compared to competing optical techniques. Although mercury has been the preferred electrode material for stripping analysis, the toxicity of mercury and the associated legal requirements in its use and disposal have prompted research towards the development of “green” metals as alternative electrode materials. When combined with the screen-printing technology, such environment-friendly metals can lead to disposable sensors for trace metal analysis with excellent operational characteristics. This review focuses on SPEs modified with Au, Bi, Sb, and Sn for stripping analysis of toxic elements. Different modification approaches (electroplating, bulk modification, use of metal precursors, microengineering techniques) are considered and representative applications are described. A developing related field, namely biosensing based on stripping analysis of metallic nanoprobe labels, is also briefly mentioned. PMID:29596391

  18. Screen-Printed Electrodes Modified with "Green" Metals for Electrochemical Stripping Analysis of Toxic Elements.

    PubMed

    Economou, Anastasios

    2018-03-29

    This work reviews the field of screen-printed electrodes (SPEs) modified with "green" metals for electrochemical stripping analysis of toxic elements. Electrochemical stripping analysis has been established as a useful trace analysis technique offering many advantages compared to competing optical techniques. Although mercury has been the preferred electrode material for stripping analysis, the toxicity of mercury and the associated legal requirements in its use and disposal have prompted research towards the development of "green" metals as alternative electrode materials. When combined with the screen-printing technology, such environment-friendly metals can lead to disposable sensors for trace metal analysis with excellent operational characteristics. This review focuses on SPEs modified with Au, Bi, Sb, and Sn for stripping analysis of toxic elements. Different modification approaches (electroplating, bulk modification, use of metal precursors, microengineering techniques) are considered and representative applications are described. A developing related field, namely biosensing based on stripping analysis of metallic nanoprobe labels, is also briefly mentioned.

  19. Application of ionic liquids in electrochemical sensing systems.

    PubMed

    Shiddiky, Muhammad J A; Torriero, Angel A J

    2011-01-15

    Since 1992, when the room temperature ionic liquids (ILs) based on the 1-alkyl-3-methylimidazolium cation were reported to provide an attractive combination of an electrochemical solvent and electrolyte, ILs have been widely used in electrodeposition, electrosynthesis, electrocatalysis, electrochemical capacitor, and lithium batteries. However, it has only been in the last few years that electrochemical biosensors based on carbon ionic liquid electrodes (CILEs) and IL-modified macrodisk electrodes have been reported. However, there are still a lot of challenges in achieving IL-based sensitive, selective, and reproducible biosensors for high speed analysis of biological and environmental compounds of interest. This review discusses the principles of operation of electrochemical biosensors based on CILEs and IL/composite-modified macrodisk electrodes. Subsequently, recent developments and major strategies for enhancing sensing performance are discussed. Key challenges and opportunities of IL-based biosensors to further development and use are considered. Emphasis is given to direct electron-transfer reaction and electrocatalysis of hemeproteins and enzyme-modified composite electrodes. Copyright © 2010 Elsevier B.V. All rights reserved.

  20. Direct electrochemistry and electrocatalysis of glucose oxidase immobilized on reduced graphene oxide and silver nanoparticles nanocomposite modified electrode.

    PubMed

    Palanisamy, Selvakumar; Karuppiah, Chelladurai; Chen, Shen-Ming

    2014-02-01

    The direct electrochemistry of glucose oxidase (GOx) was successfully realized on electrochemically reduced graphene oxide and silver nanoparticles (RGO/Ag) nanocomposite modified electrode. The fabricated nanocomposite was characterized by field emission scanning electron microscope and energy dispersive spectroscopy. The GOx immobilized nanocomposite modified electrode showed a pair of well-defined redox peaks with a formal potential (E°) of -0.422 V, indicating that the bioactivity of GOx was retained. The heterogeneous electron transfer rate constant (Ks) of GOx at the nanocomposite was calculated to be 5.27 s(-1), revealing a fast direct electron transfer of GOx. The GOx immobilized RGO/Ag nanocomposite electrode exhibited a good electrocatalytic activity toward glucose over a linear concentration range from 0.5 to 12.5 mM with a detection limit of 0.16 mM. Besides, the fabricated biosensor showed an acceptable sensitivity and selectivity for glucose. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. A voltammetric determination of caffeic acid in red wines based on the nitrogen doped carbon modified glassy carbon electrode.

    PubMed

    Karikalan, Natarajan; Karthik, Raj; Chen, Shen-Ming; Chen, Hsi-An

    2017-04-05

    We reported an electrochemical determination of caffeic acid (CA) based on the nitrogen doped carbon (NDC). The described sensor material was prepared by the flame synthesis method, which gave an excellent platform for the synthesis of carbon nanomaterials with the hetero atom dopant. The synthesized material was confirmed by various physical characterizations and it was further characterized by different electrochemical experiments. The NDC modified glassy carbon electrode (NDC/GCE) shows the superior electrocatalytic performance towards the determination of CA with the wide linear concentration range from 0.01 to 350 μM. It achieves the lowest detection limit of 0.0024 μM and the limit of quantification of 0.004 μM. The NDC/GCE-CA sensor reveals the good selectivity, stability, sensitivity and reproducibility which endorsed that the NDC is promising electrode for the determination of CA. In addition, NDC modified electrode is applied to the determination of CA in red wines and acquired good results.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin, Xinfang; White, Ralph E.; Huang, Kevin

    With the assumption that the Fermi level (electrochemical potential of electrons) is uniform across the thickness of a mixed ionic and electronic conducting (MIEC) electrode, the charge-transport model in the electrode domain can be reduced to the modified Fick’s first law, which includes a thermodynamic factor A. A transient numerical solution of the Nernst-Planck theory was obtained for a symmetric cell with MIEC electrodes to illustrate the validity of the assumption of a uniform Fermi level. Subsequently, an impedance numerical solution based on the modified Fick’s first law is compared with that from the Nernst-Planck theory. The results show thatmore » Nernst-Planck charge-transport model is essentially the same as the modified Fick’s first law model as long as the MIEC electrodes have a predominant electronic conductivity. However, because of the invalidity of the uniform Fermi level assumption for aMIEC electrolyte with a predominant ionic conductivity, Nernst-Planck theory is needed to describe the charge transport behaviors.« less

  3. 2D nanosheet molybdenum disulphide (MoS2) modified electrodes explored towards the hydrogen evolution reaction.

    PubMed

    Rowley-Neale, Samuel J; Brownson, Dale A C; Smith, Graham C; Sawtell, David A G; Kelly, Peter J; Banks, Craig E

    2015-11-21

    We explore the use of two-dimensional (2D) MoS2 nanosheets as an electrocatalyst for the Hydrogen Evolution Reaction (HER). Using four commonly employed commercially available carbon based electrode support materials, namely edge plane pyrolytic graphite (EPPG), glassy carbon (GC), boron-doped diamond (BDD) and screen-printed graphite electrodes (SPE), we critically evaluate the reported electrocatalytic performance of unmodified and MoS2 modified electrodes towards the HER. Surprisingly, current literature focuses almost exclusively on the use of GC as an underlying support electrode upon which HER materials are immobilised. 2D MoS2 nanosheet modified electrodes are found to exhibit a coverage dependant electrocatalytic effect towards the HER. Modification of the supporting electrode surface with an optimal mass of 2D MoS2 nanosheets results in a lowering of the HER onset potential by ca. 0.33, 0.57, 0.29 and 0.31 V at EPPG, GC, SPE and BDD electrodes compared to their unmodified counterparts respectively. The lowering of the HER onset potential is associated with each supporting electrode's individual electron transfer kinetics/properties and is thus distinct. The effect of MoS2 coverage is also explored. We reveal that its ability to catalyse the HER is dependent on the mass deposited until a critical mass of 2D MoS2 nanosheets is achieved, after which its electrocatalytic benefits and/or surface stability curtail. The active surface site density and turn over frequency for the 2D MoS2 nanosheets is determined, characterised and found to be dependent on both the coverage of 2D MoS2 nanosheets and the underlying/supporting substrate. This work is essential for those designing, fabricating and consequently electrochemically testing 2D nanosheet materials for the HER.

  4. Application of graphene-ionic liquid-chitosan composite-modified carbon molecular wire electrode for the sensitive determination of adenosine-5'-monophosphate.

    PubMed

    Shi, Fan; Gong, Shixing; Xu, Li; Zhu, Huanhuan; Sun, Zhenfan; Sun, Wei

    2013-12-01

    In this paper, a graphene (GR) ionic liquid (IL) 1-octyl-3-methylimidazolium hexafluorophosphate and chitosan composite-modified carbon molecular wire electrode (CMWE) was fabricated by a drop-casting method and further applied to the sensitive electrochemical detection of adenosine-5'-monophosphate (AMP). CMWE was prepared with diphenylacetylene (DPA) as the modifier and the binder. The properties of modified electrode were examined by scanning electron microscopy, cyclic voltammetry and electrochemical impedance spectroscopy. Electrochemical behaviors of AMP was carefully investigated with enhanced responses appeared, which was due to the presence of GR-IL composite on the electrode surface with excellent electrocatalytic ability. A well-defined oxidation peak of AMP appeared at 1.314 V and the electrochemical parameters were calculated by electrochemical methods. Under the selected conditions, the oxidation peak current of AMP was proportional to its concentration in the range from 0.01 μM to 80.0 μM with the detection limit as 3.42 nM (3σ) by differential pulse voltammetry. The proposed method exhibited good selectivity and was applied to the detection of vidarabine monophosphate injection samples with satisfactory results. © 2013.

  5. An amperometric hydrogen peroxide biosensor based on Co3O4 nanoparticles and multiwalled carbon nanotube modified glassy carbon electrode

    NASA Astrophysics Data System (ADS)

    Kaçar, Ceren; Dalkiran, Berna; Erden, Pınar Esra; Kiliç, Esma

    2014-08-01

    In this work a new type of hydrogen peroxide biosensor was fabricated based on the immobilization of horseradish peroxidase (HRP) by cross-linking on a glassy carbon electrode (GCE) modified with Co3O4 nanoparticles, multiwall carbon nanotubes (MWCNTs) and gelatin. The introduction of MWCNTs and Co3O4 nanoparticles not only enhanced the surface area of the modified electrode for enzyme immobilization but also facilitated the electron transfer rate, resulting in a high sensitivity of the biosensor. The fabrication process of the sensing surface was characterized by scanning electron microscopy (SEM), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). Amperometric detection of hydrogen peroxide was investigated by holding the modified electrode at -0.30 V (vs. Ag/AgCl). The biosensor showed optimum response within 5 s at pH 7.0. The optimized biosensor showed linear response range of 7.4 × 10-7-1.9 × 10-5 M with a detection limit of 7.4 × 10-7. The applicability of the purposed biosensor was tested by detecting hydrogen peroxide in disinfector samples. The average recovery was calculated as 100.78 ± 0.89.

  6. A Facile Electrochemical Preparation of Reduced Graphene Oxide@Polydopamine Composite: A Novel Electrochemical Sensing Platform for Amperometric Detection of Chlorpromazine

    PubMed Central

    Palanisamy, Selvakumar; Thirumalraj, Balamurugan; Chen, Shen-Ming; Wang, Yi-Ting; Velusamy, Vijayalakshmi; Ramaraj, Sayee Kannan

    2016-01-01

    We report a novel and sensitive amperometric sensor for chlorpromazine (CPZ) based on reduced graphene oxide (RGO) and polydopamine (PDA) composite modified glassy carbon electrode. The RGO@PDA composite was prepared by electrochemical reduction of graphene oxide (GO) with PDA. The RGO@PDA composite modified electrode shows an excellent electro-oxidation behavior to CPZ when compared with other modified electrodes such as GO, RGO and GO@PDA. Amperometric i-t method was used for the determination of CPZ. Amperometry result shows that the RGO@PDA composite detects CPZ in a linear range from 0.03 to 967.6 μM. The sensor exhibits a low detection limit of 0.0018 μM with the analytical sensitivity of 3.63 ± 0.3 μAμM–1 cm–2. The RGO@PDA composite shows its high selectivity towards CPZ in the presence of potentially interfering drugs such as metronidazole, phenobarbital, chlorpheniramine maleate, pyridoxine and riboflavin. In addition, the fabricated RGO@PDA modified electrode showed an appropriate recovery towards CPZ in the pharmaceutical tablets. PMID:27650697

  7. In vitro extracellular recording and stimulation performance of nanoporous gold-modified multi-electrode arrays.

    PubMed

    Kim, Yong Hee; Kim, Gook Hwa; Kim, Ah Young; Han, Young Hwan; Chung, Myung-Ae; Jung, Sang-Don

    2015-12-01

    Nanoporous gold (Au) structures can reduce the impedance and enhance the charge injection capability of multi-electrode arrays (MEAs) used for interfacing neuronal networks. Even though there are various nanoporous Au preparation techniques, fabrication of MEA based on low-cost electro-codeposition of Ag:Au has not been performed. In this work, we have modified a Au MEA via the electro-codeposition of Ag:Au alloy, followed by the chemical etching of Ag, and report on the in vitro extracellular recording and stimulation performance of the nanoporous Au-modified MEA. Ag:Au alloy was electro-codeposited on a bilayer lift-off resist sputter-deposition passivated Au MEA followed by chemical etching of Ag to form a porous Au structure. The porous Au structure was analyzed by scanning electron microscopy and tunneling electron microscopy and found to have an interconnected nanoporous Au structure. The impedance value of the nanoporous Au-modified MEA is 15.4 ± 0.55 kΩ at 1 kHz, accompanied by the base noise V rms of 2.4 ± 0.3 μV. The charge injection limit of the nanoporous Au-modified electrode estimated from voltage transient measurement is approximately 1 mC cm(-2), which is comparable to roughened platinum and carbon nanotube electrodes. The charge injection capability of the nanoporous Au-modified MEA was confirmed by observing stimulus-induced spikes at above 0.2 V. The nanoporous Au-modified MEA showed mechanical durability upon ultrasonic treatment for up to an hour. Electro-codeposition of Ag:Au alloy combined with chemical etching Ag is a low-cost process for fabricating nanoporous Au-modified MEA suitable for establishing the stimulus-response relationship of cultured neuronal networks.

  8. In vitro extracellular recording and stimulation performance of nanoporous gold-modified multi-electrode arrays

    NASA Astrophysics Data System (ADS)

    Kim, Yong Hee; Kim, Gook Hwa; Kim, Ah Young; Han, Young Hwan; Chung, Myung-Ae; Jung, Sang-Don

    2015-12-01

    Objective. Nanoporous gold (Au) structures can reduce the impedance and enhance the charge injection capability of multi-electrode arrays (MEAs) used for interfacing neuronal networks. Even though there are various nanoporous Au preparation techniques, fabrication of MEA based on low-cost electro-codeposition of Ag:Au has not been performed. In this work, we have modified a Au MEA via the electro-codeposition of Ag:Au alloy, followed by the chemical etching of Ag, and report on the in vitro extracellular recording and stimulation performance of the nanoporous Au-modified MEA. Approach. Ag:Au alloy was electro-codeposited on a bilayer lift-off resist sputter-deposition passivated Au MEA followed by chemical etching of Ag to form a porous Au structure. Main results. The porous Au structure was analyzed by scanning electron microscopy and tunneling electron microscopy and found to have an interconnected nanoporous Au structure. The impedance value of the nanoporous Au-modified MEA is 15.4 ± 0.55 kΩ at 1 kHz, accompanied by the base noise V rms of 2.4 ± 0.3 μV. The charge injection limit of the nanoporous Au-modified electrode estimated from voltage transient measurement is approximately 1 mC cm-2, which is comparable to roughened platinum and carbon nanotube electrodes. The charge injection capability of the nanoporous Au-modified MEA was confirmed by observing stimulus-induced spikes at above 0.2 V. The nanoporous Au-modified MEA showed mechanical durability upon ultrasonic treatment for up to an hour. Significance. Electro-codeposition of Ag:Au alloy combined with chemical etching Ag is a low-cost process for fabricating nanoporous Au-modified MEA suitable for establishing the stimulus-response relationship of cultured neuronal networks.

  9. A graphene-based electrochemical sensor for sensitive detection of paracetamol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kang, Xinhuang; Wang, Jun; Wu, Hong

    2010-05-15

    An electrochemical sensor based on the electrocatalytic activity of functionalized graphene for sensitive detection of paracetamol is presented. The electrochemical behaviors of paracetamol on graphene-modified glassy carbon electrodes (GCEs) were investigated by cyclic voltammetry and square-wave voltammetry. The results showed that the graphene-modified electrode exhibited excellent electrocatalytic activity to paracetamol. A quasi-reversible redox process of paracetamol at the modified electrode was obtained, and the over-potential of paracetamol decreased significantly compared with that at the bare GCE. Such electrocatalytic behavior of graphene is attributed to its unique physical and chemical properties, e.g., subtle electronic characteristics, attractive π–π interaction, and strong adsorptivemore » capability. The sensor shows great promise for simple, sensitive, and quantitative detection of paracetamol.« less

  10. Functionalization of indium-tin-oxide electrodes by laser-nanostructured gold thin films for biosensing applications

    NASA Astrophysics Data System (ADS)

    Grochowska, Katarzyna; Siuzdak, Katarzyna; Karczewski, Jakub; Śliwiński, Gerard

    2015-12-01

    The production and properties of the indium-tin-oxide (ITO) electrodes functionalized by Au nanoparticle (NP) arrays of a relatively large area formed by pulsed laser nanostructuring of thin gold films are reported and discussed. The SEM inspection of modified electrodes reveals the presence of the nearly spherical and disc-shaped particles of dimensions in the range of 40-120 nm. The NP-array geometry can be controlled by selection of the laser processing conditions. It is shown that particle size and packing density of the array are important factors which determine the electrode performance. In the case of NP-modified electrodes the peak current corresponding to the glucose direct oxidation process shows rise with increasing glucose concentration markedly higher comparing to the reference Au disc electrode. The detection limit reaches 12 μM and linear response of the sensor is observed from 0.1 to 47 mM that covers the normal physiological range of the blood sugar detection.

  11. Recent advances in material science for developing enzyme electrodes.

    PubMed

    Sarma, Anil Kumar; Vatsyayan, Preety; Goswami, Pranab; Minteer, Shelley D

    2009-04-15

    The enzyme-modified electrode is the fundamental component of amperometric biosensors and biofuel cells. The selection of appropriate combinations of materials, such as: enzyme, electron transport mediator, binding and encapsulation materials, conductive support matrix and solid support, for construction of enzyme-modified electrodes governs the efficiency of the electrodes in terms of electron transfer kinetics, mass transport, stability, and reproducibility. This review investigates the varieties of materials that can be used for these purposes. Recent innovation in conductive electro-active polymers, functionalized polymers, biocompatible composite materials, composites of transition metal-based complexes and organometallic compounds, sol-gel and hydro-gel materials, nanomaterials, other nano-metal composites, and nano-metal oxides are reviewed and discussed here. In addition, the critical issues related to the construction of enzyme electrodes and their application for biosensor and biofuel cell applications are also highlighted in this article. Effort has been made to cover the recent literature on the advancement of materials sciences to develop enzyme electrodes and their potential applications for the construction of biosensors and biofuel cells.

  12. Direct on-chip DNA synthesis using electrochemically modified gold electrodes as solid support

    NASA Astrophysics Data System (ADS)

    Levrie, Karen; Jans, Karolien; Schepers, Guy; Vos, Rita; Van Dorpe, Pol; Lagae, Liesbet; Van Hoof, Chris; Van Aerschot, Arthur; Stakenborg, Tim

    2018-04-01

    DNA microarrays have propelled important advancements in the field of genomic research by enabling the monitoring of thousands of genes in parallel. The throughput can be increased even further by scaling down the microarray feature size. In this respect, microelectronics-based DNA arrays are promising as they can leverage semiconductor processing techniques with lithographic resolutions. We propose a method that enables the use of metal electrodes for de novo DNA synthesis without the need for an insulating support. By electrochemically functionalizing gold electrodes, these electrodes can act as solid support for phosphoramidite-based synthesis. The proposed method relies on the electrochemical reduction of diazonium salts, enabling site-specific incorporation of hydroxyl groups onto the metal electrodes. An automated DNA synthesizer was used to couple phosphoramidite moieties directly onto the OH-modified electrodes to obtain the desired oligonucleotide sequence. Characterization was done via cyclic voltammetry and fluorescence microscopy. Our results present a valuable proof-of-concept for the integration of solid-phase DNA synthesis with microelectronics.

  13. Nanoband array electrode as a platform for high sensitivity enzyme-based glucose biosensing.

    PubMed

    Falk, Magnus; Sultana, Reshma; Swann, Marcus J; Mount, Andrew R; Freeman, Neville J

    2016-12-01

    We describe a novel glucose biosensor based on a nanoband array electrode design, manufactured using standard semiconductor processing techniques, and bio-modified with glucose oxidase immobilized at the nanoband electrode surface. The nanoband array architecture allows for efficient diffusion of glucose and oxygen to the electrode, resulting in a thousand-fold improvement in sensitivity and wide linear range compared to a conventional electrode. The electrode constitutes a robust and manufacturable sensing platform. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Zinc oxide inverse opal electrodes modified by glucose oxidase for electrochemical and photoelectrochemical biosensor.

    PubMed

    Xia, Lei; Song, Jian; Xu, Ru; Liu, Dali; Dong, Biao; Xu, Lin; Song, Hongwei

    2014-09-15

    The ZnO inverse opal photonic crystals (IOPCs) were synthesized by the sol-gel method using the polymethylmethacrylate (PMMA) as a template. For glucose detection, glucose oxidase (GOD) was further immobilized on the inwall and surface of the IOPCs. The biosensing properties toward glucose of the Nafion/GOD/ZnO IOPCs modified FTO electrodes were carefully studied and the results indicated that the sensitivity of ZnO IOPCs modified electrode was 18 times than reference electrode due to the large surface area and uniform porous structure of ZnO IOPCs. Moreover, photoelectrochemical detection for glucose using the electrode was realized and the sensitivity approached to 52.4 µA mM(-1) cm(-2), which was about four times to electrochemical detection (14.1 µA mM(-1) cm(-2)). It indicated that photoelectrochemical detection can highly improve the sensor performance than conventional electrochemical method. It also exhibited an excellent anti-interference property and a good stability at the same time. This work provides a promising approach for realizing excellent photoelectrochemical biosensor of similar semiconductor photoelectric material. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Ferrocene-Modified Linear Poly(ethylenimine) for Enzymatic Immobilization and Electron Mediation.

    PubMed

    Hickey, David P

    2017-01-01

    Enzymatic glucose biosensors and biofuel cells make use of the electrochemical transduction between an oxidoreductase enzyme, such as glucose oxidase (GOx), and an electrode to either quantify the amount of glucose in a solution or generate electrical energy. However, many enzymes including GOx are not able to electrochemically interact with an electrode surface directly, but require an external electrochemical relay to shuttle electrons to the electrode. Ferrocene-modified linear poly(ethylenimine) (Fc-LPEI) redox polymers have been designed to simultaneously immobilize glucose oxidase (GOx) at an electrode and mediate electron transfer from their flavin adenine dinucleotide (FAD) active site to the electrode surface. Cross-linked films of Fc-LPEI create hydrogel networks that allow for rapid transport of glucose, while the covalently bound ferrocene moieties are able to facilitate rapid electron transfer due to the ability of ferrocene to exchange electrons between adjacent ferrocene residues. For these reasons, Fc-LPEI films have been widely used in the development of high current density bioanode materials. This chapter describes the synthesis of a commonly used dimethylferrocene-modified linear poly(ethylenimine), as well as the subsequent preparation and electrochemical characterization of a GOx bioanode film utilizing the synthesized polymer.

  16. Highly sensitive and stable electrochemical sulfite biosensor incorporating a bacterial sulfite dehydrogenase.

    PubMed

    Kalimuthu, Palraj; Tkac, Jan; Kappler, Ulrike; Davis, Jason J; Bernhardt, Paul V

    2010-09-01

    This paper describes a highly sensitive electrochemical (voltammetric) determination of sulfite using a combination of Starkeya novella sulfite dehydrogenase (SDH), horse heart cytochrome c (cyt c), and a self-assembled monolayer of 11-mercaptoundecanol (MU) cast on a gold electrode. The biosensor was optimized in terms of pH and the ratio of cyt c/SDH. The electrocatalytic oxidation current of sulfite increased linearly from 1 to 6 microM at the enzyme-modified electrode with a correlation coefficient of 0.9995 and an apparent Michaelis constant (K(M,app)) of 43 microM. Using an amperometric method, the low detection limit for sulfite at the enzyme-modified electrode was 44 pM (signal-to-noise ratio = 3). The modified electrode retained a stable response for 3 days while losing only ca. 4% of its initial sensitivity during a 2 week storage period in 50 mM Tris buffer solution at 4 degrees C. The enzyme electrode was successfully used for the determination of sulfite in beer and white wine samples. The results of these electrochemical analyses agreed well with an independent spectrophotometric method using Ellman's reagent, but the detection limit was far superior using the electrochemical method.

  17. Electrochemical impedance immunosensor based on gold nanoparticles and aryl diazonium salt functionalized gold electrodes for the detection of antibody.

    PubMed

    Liu, Guozhen; Liu, Jingquan; Davis, Thomas P; Gooding, J Justin

    2011-04-15

    Electrodes modified with passivating organic layers have been shown to, here and previously, to exhibit good Faradaic electrochemistry upon attachment of gold nanoparticles (AuNP). Due to their low background capacitances these constructs have good potential in electrochemical sensing. Herein is reported the application of these electrode constructs for impedance based immunosensing. The immunosensor was constructed by modifying a gold electrode with 4-thiophenol (4-TP) passivating layers by diazonium salt chemistry. Subsequently, the attachment of AuNP and then a biotin derivative as a model epitope to detect anti-biotin IgG were carried out. The interfacial properties of the modified electrodes were evaluated in the presence of Fe(CN)(6)(4-/3-) redox couple as a probe by cyclic voltammetry and electrochemical impedance spectroscopy. The impedance change, due to the specific immuno-interaction at the immunosensor surface was utilized to detect anti-biotin IgG. The increase in charge-transfer resistance (R(ct)) was linearly proportional to the concentration of anti-biotin IgG in the range of 5-500 ng mL(-1), with a detection limit of 5 ng mL(-1). Copyright © 2011 Elsevier B.V. All rights reserved.

  18. The electrocatalytic reduction of nitrate in water on Pd/Sn-modified activated carbon fiber electrode.

    PubMed

    Wang, Ying; Qu, Jiuhui; Wu, Rongcheng; Lei, Pengju

    2006-03-01

    The Pd/Sn-modified activated carbon fiber (ACF) electrodes were successfully prepared by the impregnation of Pd2+ and Sn2+ ions onto ACF, and their electrocatalytic reduction capacity for nitrate ions in water was evaluated in a batch experiment. The electrode was characterized by scanning electron microscope (SEM), transmission electron microscope (TEM), X-ray diffraction (XRD), X-ray photoelectron spectrum (XPS) and temperature programmed reduction (TPR). The capacity for nitrate reduction depending on Sn content on the electrode and the pH of electrolyte was discussed at length. The results showed that at an applied current density of 1.11 mA cm(-2), nitrate ions in water (solution volume: 400 mL) were reduced from 110 to 3.4 mg L(-1) after 240 min with consecutive change of intermediate nitrite. Ammonium ions and nitrogen were formed as the main final products. The amount of other possible gaseous products (including NO and N2O) was trace. With the increase of Sn content on the Pd/Sn-modified ACF electrode, the activity for nitrate reduction went up to reach a maximum (at Pd/Sn = 4) and then decreased, while the selectivity to N2 was depressed. Higher pH value of electrolyte exhibited more suppression effect on the reduction of nitrite than that of nitrate. However, no significant influence on the final ammonia formation was observed. Additionally, Cu ion in water was found to cover the active sites of the electrode to make the electrode deactivated.

  19. Ordered mesoporous carbon modified carbon ionic liquid electrode for the electrochemical detection of double-stranded DNA.

    PubMed

    Zhu, Zhihong; Li, Xia; Zeng, Yan; Sun, Wei

    2010-06-15

    In this paper the direct electrochemistry of double-stranded DNA (dsDNA) was investigated on ordered mesoporous carbon (OMC) modified carbon ionic liquid electrode (CILE). CILE was prepared by mixing graphite powder with 1-ethyl-3-methylimidazolium ethylsulphate ([EMIM]EtOSO(3)) and liquid paraffin. A stable OMC film was formed on the surface of CILE with the help of Nafion to get a modified electrode denoted as Nafion-OMC/CILE. Due to the specific characteristics of OMC and IL present on the electrode surface, the fabricated electrode showed good electrochemical performances to different electroactive molecules. The electrochemical responses of dsDNA were carefully investigated on this electrode with two irreversible oxidation peak appeared at +1.250 V and +0.921 V (vs. SCE), which was corresponding to the oxidation of adenine and guanine residues in dsDNA structure. The electrochemical behaviors of dsDNA were carefully investigated on the Nafion-OMC/CILE. Experimental results indicated that the electron transfer rate was promoted with the increase of the oxidation peak current and the decrease of the oxidation peak potential, which was due to the electrocatalytic ability of OMC on the electrode surface. Under the optimal conditions the oxidation peak current increased with dsDNA concentration in the range of 10.0-600.0 microg mL(-1) by differential pulse voltammetry (DPV) with the detection limit of 1.2 microg mL(-1) (3sigma). Copyright 2010 Elsevier B.V. All rights reserved.

  20. Selective in situ potential-assisted SAM formation on multi electrode arrays

    NASA Astrophysics Data System (ADS)

    Haag, Ann-Lauriene; Toader, Violeta; Lennox, R. Bruce; Grutter, Peter

    2016-11-01

    The selective modification of individual components in a biosensor array is challenging. To address this challenge, we present a generalizable approach to selectively modify and characterize individual gold surfaces in an array, in an in situ manner. This is achieved by taking advantage of the potential dependent adsorption/desorption of surface-modified organic molecules. Control of the applied potential of the individual sensors in an array where each acts as a working electrode provides differential derivatization of the sensor surfaces. To demonstrate this concept, two different self-assembled monolayer (SAM)-forming electrochemically addressable ω-ferrocenyl alkanethiols (C11) are chemisorbed onto independent but spatially adjacent gold electrodes. The ferrocene alkanethiol does not chemisorb onto the surface when the applied potential is cathodic relative to the adsorption potential and the electrode remains underivatized. However, applying potentials that are modestly positive relative to the adsorption potential leads to extensive coverage within 10 min. The resulting SAM remains in a stable state while held at potentials <200 mV above the adsorption potential. In this state, the chemisorbed SAM does not significantly desorb nor do new ferrocenylalkythiols adsorb. Using three set applied potentials provides for controlled submonolayer alkylthiol marker coverage of each independent gold electrode. These three applied potentials are dependent upon the specifics of the respective adsorbate. Characterization of the ferrocene-modified electrodes via cyclic voltammetry demonstrates that each specific ferrocene marker is exclusively adsorbed to the desired target electrode.

  1. The effect of the carbon nanotube buffer layer on the performance of a Li metal battery

    NASA Astrophysics Data System (ADS)

    Zhang, Ding; Zhou, Yi; Liu, Changhong; Fan, Shoushan

    2016-05-01

    Lithium (Li) metal is one of the most promising candidates as an anode for the next-generation energy storage systems because of its high specific capacity and lowest negative electrochemical potential. But the growth of Li dendrites limits the application of the Li metal battery. In this work, a type of modified Li metal battery with a carbon nanotube (CNT) buffer layer inserted between the separator and the Li metal electrode was reported. The electrochemical results show that the modified batteries have a much better rate capability and cycling performance than the conventional Li metal batteries. The mechanism study by electrochemical impedance spectroscopy reveals that the modified battery has a smaller charge transfer resistance and larger Li ion diffusion coefficient during the deposition process on the Li electrode than the conventional Li metal batteries. Symmetric battery tests show that the interfacial behavior of the Li metal electrode with the buffer layer is more stable than the naked Li metal electrode. The morphological characterization of the CNT buffer layer and Li metal lamina reveals that the CNT buffer layer has restrained the growth of Li dendrites. The CNT buffer layer has great potential to solve the safety problem of the Li metal battery.Lithium (Li) metal is one of the most promising candidates as an anode for the next-generation energy storage systems because of its high specific capacity and lowest negative electrochemical potential. But the growth of Li dendrites limits the application of the Li metal battery. In this work, a type of modified Li metal battery with a carbon nanotube (CNT) buffer layer inserted between the separator and the Li metal electrode was reported. The electrochemical results show that the modified batteries have a much better rate capability and cycling performance than the conventional Li metal batteries. The mechanism study by electrochemical impedance spectroscopy reveals that the modified battery has a smaller charge transfer resistance and larger Li ion diffusion coefficient during the deposition process on the Li electrode than the conventional Li metal batteries. Symmetric battery tests show that the interfacial behavior of the Li metal electrode with the buffer layer is more stable than the naked Li metal electrode. The morphological characterization of the CNT buffer layer and Li metal lamina reveals that the CNT buffer layer has restrained the growth of Li dendrites. The CNT buffer layer has great potential to solve the safety problem of the Li metal battery. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr00465b

  2. Ag electrode modified with polyhexamethylene biguanide stabilized silver nanoparticles: a new type of SERS substrates for detection of enzymatically generated thiocholine

    NASA Astrophysics Data System (ADS)

    Tepanov, A. A.; Nechaeva, N. L.; Prokopkina, T. A.; Kudrinskiy, A. A.; Kurochkin, I. N.; Lisichkin, G. V.

    2015-11-01

    The detection of thiocholine is one of the most widespread techniques for estimation of the cholinesterase activity - acetylcholinesterase and butyrylcholinesterase. Both cholinesterases can be inhibited by organophosphates and carbamates and accordingly can be considered for estimation of these pollutants in the environment. In the current work, SERS spectroscopy was applied for the thiocholine detection. The Ag electrodes modified with silver nanoparticles stabilized by polyhexamethylene biguanide were for the first time suggested as SERS-substrates for that purpose. Such electrodes can be applicable for SERS detection of submicromolar concentrations of thiocholine.

  3. Polyaniline-Modified Oriented Graphene Hydrogel Film as the Free-Standing Electrode for Flexible Solid-State Supercapacitors.

    PubMed

    Du, Pengcheng; Liu, Huckleberry C; Yi, Chao; Wang, Kai; Gong, Xiong

    2015-11-04

    In this study, we report polyaniline (PANI)-modified oriented graphene hydrogel (OGH) films as the free-standing electrode for flexible solid-state supercapacitors (SCs). The OGH films are prepared by a facile filtration method using chemically converted graphene sheets and then introduced to PANI on the surface of OGH films by in situ chemical polymerization. The PANI-modified OGH films possess high flexibility, high electrical conductivity, and mechanical robustness. The flexible solid-state SCs based on the PANI-modified OGH films exhibit a specific capacitance of 530 F/g, keeping 80% of its original value up to 10 000 charge-discharge cycles at the current density of 10 A/g. Remarkably, the flexible solid-state SCs maintain ∼100% capacitance retention bent at 180° for 250 cycles. Moreover, the flexible solid-state SCs are further demonstrated to be able to light up a red-light-emitting diode. These results indicate that the flexible solid-state SCs based on PANI-modified OGH films as the free-standing electrode have potential applications as energy-storage devices.

  4. Spontaneous modification of graphite anode by anthraquinone-2-sulfonic acid for microbial fuel cells.

    PubMed

    Tang, Xinhua; Li, Haoran; Du, Zhuwei; Ng, How Yong

    2014-07-01

    In this study, anthraquinone-2-sulfonic acid (AQS), an electron transfer mediator, was immobilized onto graphite felt surface via spontaneous reduction of the in situ generated AQS diazonium cations. Cyclic voltammetry (CV) and energy dispersive spectrometry (EDS) characterizations of AQS modified graphite demonstrated that AQS was covalently grafted onto the graphite surface. The modified graphite, with a surface AQS concentration of 5.37 ± 1.15 × 10(-9)mol/cm(2), exhibited good electrochemical activity and high stability. The midpoint potential of the modified graphite was about -0.248 V (vs. normal hydrogen electrode, NHE), indicating that electrons could be easily transferred from NADH in bacteria to the electrode. AQS modified anode in MFCs increased the maximum power density from 967 ± 33 mW/m(2) to 1872 ± 42 mW/m(2). These results demonstrated that covalently modified AQS functioned as an electron transfer mediator to facilitate extracellular electron transfer from bacteria to electrode and significantly enhanced the power production in MFCs. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Method and device for producing a tactile display using an electrorheological fluid

    NASA Technical Reports Server (NTRS)

    Garner, H. Douglas (Inventor)

    1996-01-01

    A tactile display device utilizes an electrorheological fluid to activate a plurality of tactile dots. A voltage is selectively produced uniformly across an electrorheological fluid flowing between a common ground electrode and a plurality of conductive dot electrodes, thereby producing an increase in the fluid's viscosity to the extent that fluid flow between the two electrodes is restricted. The flow restriction produces a build-up of electrorheological fluid in a corresponding dot actuator chamber. The resulting pressure increase in the chamber displaces an elastic diaphragm fixed to a display surface to form a lump which can be perceived by the reader as one dot in a Braille character cell. A flow regulation system provides a continually pressurized flow system and provides for free flow of the electrorheological fluid through the plurality of dot actuator chambers when they are not activated. The device is adaptable to printed circuit techniques and can simultaneously display tactile dots representative of a full page of Braille characters stored on a medium such as a tape cassette or to display tactile dots representative of non-Braille data appearing on a computer monitor or contained on another data storage medium. In an alternate embodiment, the elastic diaphragm drives a plurality of spring-loaded pins provided with positive stops to maintain consistent displacements of the pins in both their actuated and nonactuated positions.

  6. Tactile display device using an electrorheological fluid

    NASA Technical Reports Server (NTRS)

    Garner, H. Douglas (Inventor)

    1994-01-01

    A tactile display device utilizes an electrorheological fluid to activate a plurality of tactile dots. A voltage is selectively produced uniformly across an electrorheological fluid flowing between a common ground electrode and a plurality of conductive dot electrodes, thereby producing an increase in the fluid's viscosity to the extent that fluid flow between the two electrodes is restricted. The flow restriction produces a build-up of electrorheological fluid in a corresponding dot actuator chamber. The resulting pressure increase in the chamber displaces an elastic diaphragm fixed to a display surface to form a lump which can be perceived by the reader as one dot in a Braille character cell. A flow regulation system provides a continually pressurized flow system and provides for free flow of the electrorheological fluid through the plurality of dot actuator chambers when they are not activated. The device is adaptable to printed circuit techniques and can simultaneously display tactile dots representative of a full page of Braille characters stored on a medium such as a tape cassette or to display tactile dots representative of non-Braille data appearing on a computer monitor or contained on another data storage medium. In an alternate embodiment, the elastic diaphragm drives a plurality of spring-loaded pins provided with positive stops to maintain consistent displacements of the pins in both their actuated and nonactuated positions.

  7. Spray-on electrodes enable EKG monitoring of physically active subjects

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Easily applied EKG electrodes monitor the heart signals of human subjects engaged in various physical exercises. The electrodes are formed from an air drying, electrically conductive cement mixture that can be applied to the skin by means of a modified commercially available spray gun.

  8. Sensitive detection of maltose and glucose based on dual enzyme-displayed bacteria electrochemical biosensor.

    PubMed

    Liu, Aihua; Lang, Qiaolin; Liang, Bo; Shi, Jianguo

    2017-01-15

    Glucoamylase-displayed bacteria (GA-bacteria) and glucose dehydrogenase-displayed bacteria (GDH-bacteria) were co-immobilized on multi-walled carbon nanotubes (MWNTs) modified glassy carbon electrode (GCE) to construct GA-bacteria/GDH-bacteria/MWNTs/GCE biosensor. The biosensor was developed by optimizing the loading amount and the ratio of GA-bacteria to GDH-bacteria. The as-prepared biosensor exhibited a wide dynamic range of 0.2-10mM and a low detection limit of 0.1mM maltose (S/N=3). The biosensor also had a linear response to glucose in the range of 0.1-2.0mM and a low detection limit of 0.04mM glucose (S/N=3). Interestingly, at the same concentration, glucose was 3.75-fold sensitive than that of maltose at the proposed biosensor. No interferences were observed for other possible mono- and disaccharides. The biosensor also demonstrated good long-term storage stability and repeatability. Further, using both GDH-bacteria/MWNTs/GCE biosensor and GA-bacteria/GDH-bacteria/MWNTs/GCE biosensor, glucose and maltose in real samples can be detected. Therefore, the proposed biosensor is capable of monitoring the food manufacturing and fermentation process. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Electrodes from carbon nanotubes/NiO nanocomposites synthesized in modified Watts bath for supercapacitors

    NASA Astrophysics Data System (ADS)

    Hakamada, Masataka; Abe, Tatsuhiko; Mabuchi, Mamoru

    2016-09-01

    A modified Watts bath coupled with pulsed current electroplating is used to uniformly deposit ultrafine nickel oxide particles (diameter < 4 nm) on multiwalled carbon nanotubes. The capacitance of the multiwalled carbon nanotubes/nickel oxide electrodes was as high as 2480 F g-1 (per mass of nickel oxide), which is close to the theoretical capacitance of NiO.

  10. Fabrication of Metal Nanoparticle-Modified Screen Printed Carbon Electrodes for the Evaluation of Hydrogen Peroxide Content in Teeth Whitening Strips

    ERIC Educational Resources Information Center

    Popa, Adriana; Abenojar, Eric C.; Vianna, Adam; Buenviaje, Czarina Y. A.; Yang, Jiahua; Pascual, Cherrie B.; Samia, Anna Cristina S.

    2015-01-01

    A laboratory experiment in which students synthesize Ag, Au, and Pt nanoparticles (NPs) and use them to modify screen printed carbon electrodes for the electroanalysis of the hydrogen peroxide content in commercially available teeth whitening strips is described. This experiment is designed for two 3-h laboratory periods and can be adapted for…

  11. Biotic and abiotic characterization of bioanodes formed on oxidized carbon electrodes as a basis to predict their performance.

    PubMed

    Cercado, Bibiana; Cházaro-Ruiz, Luis Felipe; Ruiz, Vianey; López-Prieto, Israel de Jesús; Buitrón, Germán; Razo-Flores, Elías

    2013-12-15

    Bioelectrochemical systems (BESs) are based on the catalytic activity of biofilm on electrodes, or the so-called bioelectrodes, to produce electricity and other valuable products. In order to increase bioanode performance, diverse electrode materials and modification methods have been implemented; however, the factors directly affecting performance are yet unclear. In this work carbon cloth electrodes were modified by thermal, chemical, and electrochemical oxidation to enhance oxygenated surface groups, to modify the electrode texture, and consequently the electron transfer rate and biofilm adhesion. The oxidized electrodes were physically, chemically, and electrochemically characterized, then bioanodes were formed at +0.1 V vs. Ag/AgCl using domestic wastewater amended with acetate. The bioanode performance was evaluated according to the current and charge generated. The efficacy of the treatments were in the order Thermal>Electrochemical>Untreated>Chemical oxidation. The maximum current observed with untreated electrode was 0.152±0.026 mA (380±92 mA m(-2)), and it was increased by 78% and 28% with thermal and electrochemical oxidized electrodes, respectively. Moreover, the volatile solids correlated significantly with the maximum current obtained, and the electrode texture was revealed as a critical factor for increasing the bioanode performance. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Carbon Nanotube-based microelectrodes for enhanced detection of neurotransmitters

    NASA Astrophysics Data System (ADS)

    Jacobs, Christopher B.

    Fast-scan cyclic voltammetry (FSCV) is one of the common techniques used for rapid measurement of neurotransmitters in vivo. Carbon-fiber microelectrodes (CFMEs) are typically used for neurotransmitter detection because of sub-second measurement capabilities, ability to measure changes in neurotransmitter concentration during neurotransmission, and the small size electrode diameter, which limits the amount of damage caused to tissue. Cylinder CFMEs, typically 50 -- 100 microm long, are commonly used for in vivo experiments because the electrode sensitivity is directly related to the electrode surface area. However the length of the electrode can limit the spatial resolution of neurotransmitter detection, which can restrict experiments in Drosophila and other small model systems. In addition, the electrode sensitivity toward dopamine and serotonin detection drops significantly for measurements at rates faster than 10 Hz, limiting the temporal resolution of CFMEs. While the use of FSCV at carbon-fiber microelectrodes has led to substantial strides in our understanding of neurotransmission, techniques that expand the capabilities of CFMEs are crucial to fully maximize the potential uses of FSCV. This dissertation introduces new methods to integrate carbon nanotubes (CNT) into microelectrodes and discusses the electrochemical enhancements of these CNT-microelectrodes. The electrodes are specifically designed with simple fabrication procedures so that highly specialized equipment is not necessary, and they utilize commercially available materials so that the electrodes could be easily integrated into existing systems. The electrochemical properties of CNT modified CFMEs are characterized using FSCV and the effect of CNT functionalization on these properties is explored in Chapter 2. For example, CFME modification using carboxylic acid functionalized CNTs yield about a 6-fold increase in dopamine oxidation current, but modification with octadecylamine CNTs results in a negligible change to the signal. Chapter 3 is devoted to the development and characterization of new CNT-Yarn Microelectrodes (CNTYME) which display a beneficial enhancement in sensitivity and reduction in both electron transfer kinetics and overpotential. Chapter 4 introduces the high-speed dopamine detection capabilities of CNTYMEs, almost two orders of magnitude faster than at CFMEs without any compromise in electrochemical sensitivity, and discusses how adsorption and desorption relate to this phenomenon.

  13. Analysis of polyphenols in white wine by CZE with amperometric detection using carbon nanotube-modified electrodes.

    PubMed

    Moreno, Mónica; Arribas, Alberto Sánchez; Bermejo, Esperanza; Zapardiel, Antonio; Chicharro, Manuel

    2011-04-01

    A method for the simultaneous detection of five polyphenols (caffeic, chlorogenic, ferulic and gallic acids and (+)-catechin) by CZE with electrochemical detection was developed. Separation of these polyphenols was performed in a 100 mM borate buffer (pH 9.2) within 15 min. Under optimized separation conditions, the performance of glassy carbon (GC) electrodes modified with multiwalled carbon nanotube layer obtained from different dispersions was examined. GC electrode modified with a dispersion of multi-walled carbon nanotubes (CNT) in polyethylenimine has proven to be the most suitable CNT-based electrode for its application as amperometric detector for the CZE separation of the studied compounds. The excellent electrochemical properties of this electrode allowed the detection of the selected polyphenols at +200 mV and improved the efficiency and the resolution of their CZE separation. Limits of detection below 3.1 μM were obtained with linear ranges covering the 10⁻⁵ to 10⁻⁴  M range. The proposed method has been successfully applied for the detection (ferulic, caffeic and gallic acids and (+)-catechin) and the quantification (gallic acid and (+)-catechin) of polyphenols in two different white wines without any preconcentration step. A remarkable signal stability was observed on the electrode performance despite the presence of potential fouling substances in wine. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. High speed chalcogenide glass electrochemical metallization cells with various active metals.

    PubMed

    Hughes, Mark A; Burgess, Alexander; Hinder, Steven; Gholizadeh, A Baset; Craig, Christopher; Hewak, Daniel W

    2018-08-03

    We fabricated electrochemical metallization cells using a GaLaSO solid electrolyte, an InSnO inactive electrode and active electrodes consisting of various metals (Cu, Ag, Fe, Cu, Mo, Al). Devices with Ag and Cu active metals showed consistent and repeatable resistive switching behaviour, and had a retention of 3 and >43 days, respectively; both had switching speeds of <5 ns. Devices with Cr and Fe active metals displayed incomplete or intermittent resistive switching, and devices with Mo and Al active electrodes displayed no resistive switching ability. Deeper penetration of the active metal into the GaLaSO layer resulted in greater resistive switching ability of the cell. The off-state resistivity was greater for more reactive active metals which may be due to a thicker intermediate layer.

  15. Bioelectrochemistry of heme peptide at seamless three-dimensional carbon nanotubes/graphene hybrid films for highly sensitive electrochemical biosensing.

    PubMed

    Komori, Kikuo; Terse-Thakoor, Trupti; Mulchandani, Ashok

    2015-02-18

    A seamless three-dimensional hybrid film consisting of carbon nanotubes grown at the graphene surface (CNTs/G) is a promising material for the application to highly sensitive enzyme-based electrochemical biosensors. The CNTs/G film was used as a conductive nanoscaffold for enzymes. The heme peptide (HP) was immobilized on the surface of the CNTs/G film for amperometric sensing of H2O2. Compared with flat graphene electrodes modified with HP, the catalytic current for H2O2 reduction at the HP-modified CNTs/G electrode increased due to the increase in the surface coverage of HP. In addition, microvoids in the CNTs/G film contributed to diffusion of H2O2 to modified HP, resulting in the enhancement of the catalytic cathodic currents. The kinetics of the direct electron transfer from the CNTs/G electrode to compound I and II of modified HP was also analyzed.

  16. Au-TiO2/Chit modified sensor for electrochemical detection of trace organophosphates insecticides.

    PubMed

    Qu, Yunhe; Min, Hong; Wei, Yinyin; Xiao, Fei; Shi, Guoyue; Li, Xiaohua; Jin, Litong

    2008-08-15

    In this paper, Au-TiO2/Chit modified electrode was prepared with Au-TiO2 nanocomposite (Au-TiO2) and Chitosan (Chit) as a conjunct. The Au-TiO2 nanocomposite and the films were characterized by electrochemical and spectroscopy methods. A set of experimental conditions was also optimized for the film's fabrication. The electrochemical and electrocatalytic behaviors of Au-TiO2/Chit modified electrode to trace organophosphates (OPs) insecticides such as parathion were discussed in this work. By differential pulse voltammetry (DPV) measurement, the current responses of Au-TiO2/Chit modified electrode were linear with parathion concentration ranging from 1.0 ng/ml to 7.0 x 10(3)ng/ml with the detection limit of 0.5 ng/ml. In order to evaluate the performance of the detection system, we also examined the real samples successfully in this work. It exhibited a sensitive, rapid and easy-to-use method for the fast determination of trace OPs insecticides.

  17. A 3D Microfluidic Chip for Electrochemical Detection of Hydrolysed Nucleic Bases by a Modified Glassy Carbon Electrode

    PubMed Central

    Vlachova, Jana; Tmejova, Katerina; Kopel, Pavel; Korabik, Maria; Zitka, Jan; Hynek, David; Kynicky, Jindrich; Adam, Vojtech; Kizek, Rene

    2015-01-01

    Modification of carbon materials, especially graphene-based materials, has wide applications in electrochemical detection such as electrochemical lab-on-chip devices. A glassy carbon electrode (GCE) modified with chemically alternated graphene oxide was used as a working electrode (glassy carbon modified by graphene oxide with sulphur containing compounds and Nafion) for detection of nucleobases in hydrolysed samples (HCl pH = 2.9, 100 °C, 1 h, neutralization by NaOH). It was found out that modification, especially with trithiocyanuric acid, increased the sensitivity of detection in comparison with pure GCE. All processes were finally implemented in a microfluidic chip formed with a 3D printer by fused deposition modelling technology. As a material for chip fabrication, acrylonitrile butadiene styrene was chosen because of its mechanical and chemical stability. The chip contained the one chamber for the hydrolysis of the nucleic acid and another for the electrochemical detection by the modified GCE. This chamber was fabricated to allow for replacement of the GCE. PMID:25621613

  18. A 3D microfluidic chip for electrochemical detection of hydrolysed nucleic bases by a modified glassy carbon electrode.

    PubMed

    Vlachova, Jana; Tmejova, Katerina; Kopel, Pavel; Korabik, Maria; Zitka, Jan; Hynek, David; Kynicky, Jindrich; Adam, Vojtech; Kizek, Rene

    2015-01-22

    Modification of carbon materials, especially graphene-based materials, has wide applications in electrochemical detection such as electrochemical lab-on-chip devices. A glassy carbon electrode (GCE) modified with chemically alternated graphene oxide was used as a working electrode (glassy carbon modified by graphene oxide with sulphur containing compounds and Nafion) for detection of nucleobases in hydrolysed samples (HCl pH = 2.9, 100 °C, 1 h, neutralization by NaOH). It was found out that modification, especially with trithiocyanuric acid, increased the sensitivity of detection in comparison with pure GCE. All processes were finally implemented in a microfluidic chip formed with a 3D printer by fused deposition modelling technology. As a material for chip fabrication, acrylonitrile butadiene styrene was chosen because of its mechanical and chemical stability. The chip contained the one chamber for the hydrolysis of the nucleic acid and another for the electrochemical detection by the modified GCE. This chamber was fabricated to allow for replacement of the GCE.

  19. Voltammetric studies of Azathioprine on the surface of graphite electrode modified with graphene nanosheets decorated with Ag nanoparticles.

    PubMed

    Asadian, Elham; Iraji Zad, Azam; Shahrokhian, Saeed

    2016-01-01

    By using graphene nanosheets decorated with Ag nanoparticles (AgNPs-G) as an effective approach for the surface modification of pyrolytic graphite electrode (PGE), a sensing platform was fabricated for the sensitive voltammetric determination of Azathioprine (Aza). The prepared AgNPs-G nanosheets were characterized using transmission electron microscopy (TEM), X-ray diffraction (XRD), UV-vis and Raman spectroscopy techniques. The electrochemical behavior of Aza was investigated by means of cyclic voltammetry. Comparing to the bare PGE, a remarkable enhancement was observed in the response characteristics of Aza on the surface of the modified electrode (AgNPs-G/PGE) as well as a noticeable decrease in its reduction overpotential. These results can be attributed to the incredible enlargement in the microscopic surface area of the electrode due to the presence of graphene nanosheets together with strong adsorption of Aza on its surface. The effect of experimental parameters such as accumulation time, the amount of modifier suspension and pH of the supporting electrolyte were also optimized toward obtaining the maximum sensitivity. Under the optimum conditions, the calibration curve studies demonstrated that the peak current increased linearly with Aza concentrations in the range of 7 × 10(-7) to 1 × 10(-4)mol L(-1) with the detection limit of 68 nM. Further experiments revealed that the modified electrode can be successfully applied for the accurate determination of Aza in pharmaceutical preparations. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Highly selective determination of dopamine in the presence of ascorbic acid and serotonin at glassy carbon electrodes modified with carbon nanotubes dispersed in polyethylenimine.

    PubMed

    Rodríguez, Marcela C; Rubianes, María D; Rivas, Gustavo A

    2008-11-01

    We report the highly selective and sensitive voltammetric dopamine quantification in the presence of ascorbic acid and serotonin by using glassy carbon electrodes modified with a dispersion of multi-wall carbon nanotubes (MWCNT) in polyethylenimine, PEI (GCE/MWCNT-PEI). The electrocatalytic activity of the MWCNT deposited on the glassy carbon electrode has allowed an important decrease in the overvoltages for the oxidation of ascorbic acid and dopamine, making possible a clear definition of dopamine, serotonin and ascorbic acid oxidation processes. The sensitivities for dopamine in the presence and absence of 1.0 mM ascorbic acid and serotonin were (2.18 +/- 0.03) x 10(5) microAM(-1) (r = 0.9998); and (2.10 +/- 0.07) x 10(5) miroAM(-1) (r=0.9985), respectively, demonstrating the excellent performance of the GCE/MWCNT-PEI. The detection limit for dopamine in the mixture was 9.2 x 10(-7) M. The R. S. D. for the determination of 50 microM dopamine using four different electrodes was 3.9% when modified with the same MWCNT/PEI dispersion, and 4.6% when using four different dispersions. The modified electrode has been successfully applied for recovery assays of dopamine in human blood serum. Therefore, the new sensor represents an interesting and promising alternative for the electrochemical quantification of neurotransmitters and other analytes of clinical interest.

  1. Undifferentiated Facial Electromyography Responses to Dynamic, Audio-Visual Emotion Displays in Individuals with Autism Spectrum Disorders

    ERIC Educational Resources Information Center

    Rozga, Agata; King, Tricia Z.; Vuduc, Richard W.; Robins, Diana L.

    2013-01-01

    We examined facial electromyography (fEMG) activity to dynamic, audio-visual emotional displays in individuals with autism spectrum disorders (ASD) and typically developing (TD) individuals. Participants viewed clips of happy, angry, and fearful displays that contained both facial expression and affective prosody while surface electrodes measured…

  2. Oxide modified air electrode surface for high temperature electrochemical cells

    DOEpatents

    Singh, Prabhakar; Ruka, Roswell J.

    1992-01-01

    An electrochemical cell is made having a porous cermet electrode (16) and a porous lanthanum manganite electrode (14), with solid oxide electrolyte (15) between them, where the lanthanum manganite surface next to the electrolyte contains a thin discontinuous layer of high surface area cerium oxide and/or praseodymium oxide, preferably as discrete particles (30) in contact with the air electrode and electrolyte.

  3. High cycle life secondary lithium battery

    NASA Technical Reports Server (NTRS)

    Yen, Shiao-Ping S. (Inventor); Shen, David H. (Inventor); Carter, Boyd J. (Inventor); Somoano, Robert B. (Inventor)

    1985-01-01

    A secondary battery (10) of high energy density and long cycle is achieved by coating the separator (18) with a film (21) of cationic polymer such as polyvinyl-imidazoline. The binder of the positive electrode (14) such as an ethylene-propylene elastomer binder (26) containing particles (28) of TiS.sub.2 chalcogenide can also be modified to contain sulfone functional groups by incorporating liquid or solid sulfone materials such as 0.1 to 5 percent by weight of sulfolane into the binder. The negative lithium electrode (14), separator (18) and positive electrode (16) are preferably spirally wound and disposed within a sealed casing (17) containing terminals (32, 34). The modified separator and positive electrode are more wettable by the electrolytes in which a salt is dissolved in a polar solvent such as sulfolane.

  4. Peptide nanotube-modified electrodes for enzyme-biosensor applications.

    PubMed

    Yemini, Miri; Reches, Meital; Gazit, Ehud; Rishpon, Judith

    2005-08-15

    The fabrication and notably improved performance of composite electrodes based on modified self-assembled diphenylalanine peptide nanotubes is described. Peptide nanotubes were attached to gold electrodes, and we studied the resulting electrochemical behavior using cyclic voltammetry and chronoamperometry. The peptide nanotube-based electrodes demonstrated a direct and unmediated response to hydrogen peroxide and NADH at a potential of +0.4 V (vs SCE). This biosensor enables a sensitive determination of glucose by monitoring the hydrogen peroxide produced by an enzymatic reaction between the glucose oxidase attached to the peptide nanotubes and glucose. In addition, the marked electrocatalytic activity toward NADH enabled a sensitive detection of ethanol using ethanol dehydrogenase and NAD+. The peptide nanotube-based amperometric biosensor provides a potential new tool for sensitive biosensors and biomolecular diagnostics.

  5. Electrochemical luminescence determination of hyperin using a sol-gel@graphene luminescent composite film modified electrode for solid phase microextraction

    NASA Astrophysics Data System (ADS)

    Zou, Xiaojun; Shang, Fang; Wang, Sui

    2017-02-01

    In this paper, a novel electrochemiluminescence (ECL) sensor of sol-gel@graphene luminescent composite film modified electrode for hyperin determination was prepared using graphene (G) as solid-phase microextraction (SPME) material, based on selective preconcentration of target onto an electrode and followed by luminol ECL detection. Hyperin was firstly extracted from aqueous solution through the modified GCE. Hydrogel, electrogenerated chemiluminescence reagents, pH of working solution, extraction time and temperature and scan rate were discussed. Under the optimum conditions, the change of ECL intensity was in proportion to the concentration of hyperin in the range of 0.02-0.24 μg/mL with a detection limit of 0.01 μg/mL. This method showed good performance in stability, reproducibility and precision for the determination of hyperin.

  6. Amperometric sensing of hydrogen peroxide using glassy carbon electrode modified with copper nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sophia, J.; Muralidharan, G., E-mail: muraligru@gmail.com

    2015-10-15

    In this paper, fabrication of glassy carbon electrode (GCE) modified with nano copper particles is discussed. The modified electrode has been tested for the non-enzymatic electrochemical detection of hydrogen peroxide (H{sub 2}O{sub 2}). The copper nanoparticles (Cu NPs) were prepared employing a simple chemical reduction method. The presence of Cu NPs was confirmed through UV–visible (UV–vis) absorption spectroscopy and X-ray diffraction (XRD) analysis. The size and morphology of the particles were investigated using transmission electron microscopy (TEM). The electrochemical properties of the fabricated sensor were studied via cyclic voltammetry (CV), chronoamperometry and electrochemical impedance spectroscopy (EIS). The electrochemical sensor displayedmore » excellent performance features towards H{sub 2}O{sub 2} detection exhibiting wide linear range, low detection limit, swift response time, good reproducibility and stability.« less

  7. Research, development and demonstration of nickel-iron batteries for electric-vehicle propulsion

    NASA Astrophysics Data System (ADS)

    1982-03-01

    Full-size, prototype cell, module and battery fabrication and evaluation, aimed at advancing the technical capabilities of the nickel-iron battery, while simultaneously reducing its potential cost in materials and process areas are discussed. Improved electroprecipitation process nickel electrodes of design thickness (2.5 mm) are now being prepared that display stable capacities for the C/3 drain rate with less than 10% capacity decline for greater than 1000 test cycles. Iron electrodes of the composite-type are delivering 24 Ah at the target thickness (1.0 mm). Iron electrodes also are displaying capacity stability for greater than 1000 test cycles in continuing 3-plate cell tests. Finished cells delivered 57 to 63 Wh/kg at C/3, and have demonstrated cyclic stability up to 1200 cycles at 80 percent depth of discharge profiles. Modules exceeded 580 test cycles and remain on test. Reduction in nickel electrode swelling (and concurrent stack starvation), to improve cycling, continues to be an area of major effort to reach the final battery cycle life objectives.

  8. An electrochemical biosensor based on nanoporous stainless steel modified by gold and palladium nanoparticles for simultaneous determination of levodopa and uric acid.

    PubMed

    Rezaei, Behzad; Shams-Ghahfarokhi, Leila; Havakeshian, Elaheh; Ensafi, Ali A

    2016-09-01

    In this paper, an electrochemical biosensor based on gold and palladium nano particles-modified nanoporous stainless steel (Au-Pd/NPSS) electrode has been introduced for the simultaneous determination of levodopa (LD) and uric acid (UA). To prepare the electrode, the stainless steel was anodized to fabricate NPSS and then Cu was electrodeposited onto the nanoporous steel by applying the multiple step potential. Finally, the electrode was immersed into a gold and palladium precursor's solution by the atomic ratio of 9:1 to form Au-Pd/NPSS through the galvanic replacement reaction. Morphological aspects, structural properties and the electroanalytical behavior of the Au-Pd/NPSS electrode were studied using field emission scanning electron microscopy (FE-SEM), energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), electrochemical impedance spectroscopy (EIS) and voltammetric techniques. Also, differential pulse voltammetry (DPV) was used for the simultaneous determination of LD and UA. According to results, the surface of Au-Pd/NPSS electrode contained Au and Pd nanoparticles with an average diameter of 75nm. The electrode acted better than Au/NPSS and Pd/NPSS electrodes for the simultaneous determination of LD and UA, with the peak separation potential of about 220mV. Also, the calibration plot for LD was in two linear concentration ranges of 5.0-10.0 and 10.0-55.0μmolL(-1) and for UA, it was in the range of 100-1200μmolL(-1). The detection limit for LD and UA was 0.2 and 15μmolL(-1), respectively. The modified electrode had a good performance for LD and UA detection in urine, blood serum and levodopa C-Forte tablet. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Permselective and enzyme-entrapping behaviours of an electropolymerized, non-conducting, poly(o-aminophenol) thin film-modified electrode: a critical study.

    PubMed

    Guerrieri, Antonio; Ciriello, Rosanna; Centonze, Diego

    2009-02-15

    Non-conducting polymeric films synthesised by the electrooxidation of o-aminophenol on a platinum electrode in acetate or phosphate buffer displayed an interesting permselective behaviour, which proved valuable in minimising the electrochemical interferences from ascorbate, acetaminophen, cysteine and urate sample molecules in amperometric detection mode. The electrosynthesis of poly(o-aminophenol) (p(oAP)) film showed also useful as permselective membrane for enzyme immobilization as demonstrated by the production of an interference-free glucose oxidase biosensor. In this respect, the glucose response time, t(0.95), evaluated in batch addition experiments, was lower than 5s while the calibration curve was linear up to 10mM of glucose with a sensitivity of 69.7nA/mM. Both the permselective behaviour and the enzyme-entrapping property of the film were critically compared with the relevant studies until now reported. With respect to the sophisticated but complex approaches described elsewhere, this study shows that simply a proper optimization of p(oAP) electrosynthesis and its permselective behaviour is the key to improve significantly the selectivity of the resulting analytical devices.

  10. Spontaneous grafting: a novel approach to graft diazonium cations on gold nanoparticles in aqueous medium and their self-assembly on electrodes.

    PubMed

    Kesavan, Srinivasan; John, S Abraham

    2014-08-15

    The spontaneous grafting of aminophenyl groups on gold nanoparticles (AuNPs) by reaction with in situ generated 4-aminophenyl diazonium cations (APD) in an aqueous medium was described. The spontaneous grafting was likely to proceed by transfer of electrons from AuNPs to the APD cations to form an aminophenyl radical and subsequent attachment with AuNPs. The aminophenyl (AP) functionalized gold nanoparticles (AP-AuNPs) were characterized by UV-visible spectroscopy, high resolution-transmission electron microscopy (HR-TEM), X-ray diffraction, FT-IR spectroscopy, X-ray photoelectron spectroscopy (XPS) and surface-enhanced Raman spectroscopy (SERS). The absence of characteristic vibrational bands corresponding to diazonium group in the FT-IR spectrum confirmed the reduction of the aminophenyl diazonium cations at the surface of AuNPs. The spontaneous attachment of AP on AuNPs was confirmed by XPS from the observed binding energy values for -NH2 at 399.4 eV and -N=N- at 400.2 eV. The SERS spectrum reveals the presence Au-C (437 cm(-1)) bond on AP-AuNPs. Further, the AP-AuNPs were self-assembled on GC/ITO electrode (AP-AuNPs modified electrode) with the aid of free amine groups present on the surface of AP-AuNPs via Michael's nucleophilic addition reaction. The AP-AuNPs modified electrode was characterized by cyclic voltammetry, impedance spectroscopy, UV-visible spectroscopy and scanning electron microscopy. Impedance studies show that the electron transfer reaction of [Fe(CN)6](3-/4-) was higher at the AP-AuNPs modified electrode (1.81×10(-4) cm s(-1)) than at bare (3.77×10(-5) cm s(-1)) GC electrode. Finally, the electrocatalytic activity of the AP-AuNPs modified electrode was demonstrated by studying the oxidation of dopamine (DA). Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Highly sensitive and simultaneous electrochemical determination of 2-aminophenol and 4-aminophenol based on poly(l-arginine)-β-cyclodextrin/carbon nanotubes@graphene nanoribbons modified electrode.

    PubMed

    Yi, Yinhui; Zhu, Gangbing; Wu, Xiangyang; Wang, Kun

    2016-03-15

    Owing to the similar characteristics and physiochemical property of 2-aminophenol (2-AP) and 4-aminophenol (4-AP), the highly sensitive simultaneous electrochemical determination of 2- and 4-AP is a great challenge. In this paper, by electropolymerizing β-cyclodextrin (β-CD) and l-arginine (l-Arg) on the surface of carbon nanotubes@graphene nanoribbons (CNTs@GNRs) core-shell heterostructure, a P-β-CD-l-Arg/CNTs@GNRs nanohybrid modified electrode was prepared successfully, and it could exhibit the synergetic effects of β-CD (high host-guest recognition and enrichment ability), l-Arg (excellent electrocatalytic activity) and CNTs@GNRs (prominent electrochemical properties and large surface area), the P-β-CD-l-Arg/CNTs@GNRs modified electrode was used in the electrochemical determination of 2- and 4-AP, the results demonstrated that the highly sensitive and simultaneous determination of 2- and 4-AP is successfully achieved and the modified electrode has a linear response range of 25.0-1300.0 nM for both 2- and 4-AP, and the detection limits of 2- and 4-AP obtained in this work are 6.2 and 3.5 nM, respectively. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Determination of functionalized gold nanoparticles incorporated in hydrophilic and hydrophobic microenvironments by surface modification of quartz crystal microbalance

    NASA Astrophysics Data System (ADS)

    Wu, Tsui-Hsun; Liao, Shu-Chuan; Chen, Ying-Fang; Huang, Yi-You; Wei, Yi-Syuan; Tu, Shu-Ju; Chen, Ko-Shao

    2013-06-01

    In this study, plasma deposition methods were used to immobilize Au electrode of a quartz crystal microbalance (QCM) to create different microenvironments for mass measurement of various modified Au nanoparticles (AuNPs). AuNPs were modified by 11-mercaptoundecanoic acid (MUA) and 1-decanethiol (DCT) for potential applications to drug release, protective coatings, and immunosensors. We aimed to develop a highly sensitive and reliable method to quantify the mass of various modified AuNPs. The surface of AuNPs and Au electrode was coated with polymer films, as determined by Fourier transform infrared spectroscopy and atomic force microscopy. Measurements obtained for various AuNPs and the plasma-treated surface of the Au electrode were compared with those obtained for an untreated Au electrode. According to the resonant frequency shift of QCM, a linear relationship was observed that significantly differed for AuNPs, MUA-AuNPs, and DCT-AuNPs (R2 range, 0.94-0.965, 0.934-0.972, and 0.874-0.9514, respectively). Compared to inductively coupled plasma and micro-computerized tomography, the QCM method with plasma treatment has advantages of real-time monitoring, greater sensitivity, and lower cost. Our results demonstrate that surface modifications measured by a QCM system for various modified AuNPs were reliable.

  13. Modified coaxial wire method for measurement of transfer impedance of beam position monitors

    NASA Astrophysics Data System (ADS)

    Kumar, Mukesh; Babbar, L. K.; Deo, R. K.; Puntambekar, T. A.; Senecha, V. K.

    2018-05-01

    The transfer impedance is a very important parameter of a beam position monitor (BPM) which relates its output signal with the beam current. The coaxial wire method is a standard technique to measure transfer impedance of the BPM. The conventional coaxial wire method requires impedance matching between coaxial wire and external circuits (vector network analyzer and associated cables). This paper presents a modified coaxial wire method for bench measurement of the transfer impedance of capacitive pickups like button electrodes and shoe box BPMs. Unlike the conventional coaxial wire method, in the modified coaxial wire method no impedance matching elements have been used between the device under test and the external circuit. The effect of impedance mismatch has been solved mathematically and a new expression of transfer impedance has been derived. The proposed method is verified through simulation of a button electrode BPM using cst studio suite. The new method is also applied to measure transfer impedance of a button electrode BPM developed for insertion devices of Indus-2 and the results are also compared with its simulations. Close agreement between measured and simulation results suggests that the modified coaxial wire setup can be exploited for the measurement of transfer impedance of capacitive BPMs like button electrodes and shoe box BPM.

  14. Sensitive, selective, disposable electrochemical dopamine sensor based on PEDOT-modified laser scribed graphene.

    PubMed

    Xu, Guangyuan; Jarjes, Zahraa A; Desprez, Valentin; Kilmartin, Paul A; Travas-Sejdic, Jadranka

    2018-06-01

    The fabrication of a novel, and highly selective electrochemical sensor based on a poly(3,4-ethylenedioxythiophene) (PEDOT) modified laser scribed graphene (LSG), and detection of dopamine (DA) in the presence of ascorbic acid (AA) and uric acid (UA) is described. LSG electrodes were produced with a 3-dimensional macro-porous network and large electrochemically-active surface area via direct laser writing on polyimide sheets. PEDOT was electrodeposited on the LSG electrode, and the physical properties of the obtained films were characterized by scanning electron microscopy (SEM) and energy dispersive X-ray diffraction microanalysis (EDAX). The modified electrodes were applied for the determination of DA in the presence of AA and UA using cyclic voltammetry (CV), and differential pulse voltammetry (DPV) techniques. The linear range for dopamine detection was found to be 1-150 µM with a sensitivity of 0.220 ± 0.011 µA μM -1 and a detection limit of 0.33 µM; superior values to those obtained without PEDOT. For the first time, PEDOT-modified LSG have been fabricated and assessed for high-performance dopamine sensing using cost-effective, disposable electrodes, with potential for development in further sensing applications. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Immobilization of ruthenium phthalocyanine on silica-coated multi-wall partially oriented carbon nanotubes: Electrochemical detection of fenitrothion pesticide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Canevari, Thiago C., E-mail: tccanevari@gmail.com; Prado, Thiago M.; Cincotto, Fernando H.

    Highlights: • Hybrid material, SiO{sub 2}/MWCNTs containing ruthenium phthalocyanine (RuPc) synthesized in situ. • Silica containing multi-walled carbon nanotube partially oriented. • Determination of pesticide fenitrothion in orange juice. - Abstract: This paper reports on the determination of the pesticide fenitrothion using a glassy carbon electrode modified with silica-coated, multi-walled, partially oriented carbon nanotubes, SiO{sub 2}/MWCNTs, containing ruthenium phthalocyanine (RuPc) synthesized in situ. The hybrid SiO{sub 2}/MWCNTs/RuPc material was characterized by UV–vis absorption spectroscopy, X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HR-TEM) and differential pulse voltammetry. The modified electrode showed well-defined peaks in the presencemore » of fenitrothion in acetate buffer, pH 4.5, with a sensitivity of 0.0822 μA μM{sup −1} mm{sup −2} and a detection limit of 0.45 ppm. Notably, the modified SiO{sub 2}/MWCNTs/RuPc electrodes with did not suffer from significant influences in the presence of other organophosphorus pesticides during the determination of the fenitrothion pesticide. Moreover, this modified electrode showed excellent performance in the determination of fenitrothion in orange juice.« less

  16. Amplified electrochemiluminescence of quantum dots by electrochemically reduced graphene oxide for nanobiosensing of acetylcholine.

    PubMed

    Deng, Shengyuan; Lei, Jianping; Cheng, Lingxiao; Zhang, Yangyang; Ju, Huangxian

    2011-07-15

    A signal amplification system for electrochemiluminescence (ECL) of quantum dots (QDs) was developed by using electrochemically reduced graphene oxide (ERGO) to construct a nanobiosensing platform. Due to the structural defects of GO, the ECL emission of QDs coated on GO modified electrode was significantly quenched. After the electrochemical reduction of GO, the restoration of structural conjugation was observed with spectroscopic, morphologic and impedance techniques. Thus in the presence of dissolved O₂ as coreactant, the QDs/ERGO modified electrode showed ECL intensity increase by 4.2 and 178.9 times as compared with intrinsic QDs and QDs/GO modified electrodes due to the adsorption of dissolved O₂ on ERGO and the facilitated electron transfer. After choline oxidase (ChO) or ChO-acetylcholinesterase was further covalently cross-linked on the QDs/ERGO modified electrode, two ECL biosensors for choline and acetylcholine were fabricated, which showed the linear response ranges and detection limits of 10-210 μM and 8.8 μM for choline, and 10-250 μM and 4.7 μM for acetylcholine, respectively. This green and facile approach to prepare graphene-QDs system could be of potential applications in electronic device and bioanalysis. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Synthesis of water soluble chitosan stabilized gold nanoparticles and determination of uric acid

    NASA Astrophysics Data System (ADS)

    Lanh Le, Thi; Khieu Dinh, Quang; Hoa Tran, Thai; Nguyen, Hai Phong; Le Hien Hoang, Thi; Hien Nguyen, Quoc

    2014-06-01

    Gold nanoparticles (Au-NPs) have been successfully synthesized by utilizing water soluble chitosan as reducing and stabilizing agent. The colloidal Au-NPs were characterized by UV-Vis spectroscopy and transmission electron microscopy (TEM). The results showed that the colloidal Au-NPs had a plasmon absorption band with maximum wavelength in the range of 520-526 nm and the diameters were about 8-15 nm. In addition, a new Au-NPs-modified electrode was fabricated by self-assembling Au-NPs to the surface of the L-cysteine-modified glassy carbon electrode (Au-NPs/L-Cys/GCE). The Au-NPs-modified electrode showed an excellent character for electro-catalytic oxidization of uric acid (UA) in 0.1 mol L-1 phosphate buffer solution (pH 3.2). Using differential pulse anodic stripping voltammetry (DP-ASV), a high selectivity for determination of UA has been explored for the Au-NPs-modified electrode. DP-ASV peak currents of UA increased linearly with their concentration at the range of 2.0 × 10-6 to 4.0 × 10-5 mol L-1 with the detection limit of 2.7 × 10-6 mol L-1 for UA. The proposed method was applied for the detection of UA in human urine and serum samples with satisfactory results.

  18. Fabrication and characterization of PbO2 electrode modified with [Fe(CN)6](3-) and its application on electrochemical degradation of alkali lignin.

    PubMed

    Hao, Xu; Quansheng, Yuan; Dan, Shao; Honghui, Yang; Jidong, Liang; Jiangtao, Feng; Wei, Yan

    2015-04-09

    PbO2 electrode modified by [Fe(CN)6](3-) (marked as FeCN-PbO2) was prepared by electro-deposition method and used for the electrochemical degradation of alkali lignin (AL). The surface morphology and the structure of the electrodes were characterized by scanning electronic microscopy (SEM) and X-ray diffraction (XRD), respectively. The stability and electrochemical activity of FeCN-PbO2 electrode were characterized by accelerated life test, linear sweep voltammetry, electrochemical impedance spectrum (EIS) and AL degradation. The results showed that [Fe(CN)6](3-) increased the average grain size of PbO2 and formed a compact surface coating. The service lifetime of FeCN-PbO2 electrode was 287.25 h, which was longer than that of the unmodified PbO2 electrode (100.5h). The FeCN-PbO2 electrode showed higher active surface area and higher oxygen evolution potential than that of the unmodified PbO2 electrode. In electrochemical degradation tests, the apparent kinetics coefficient of FeCN-PbO2 electrode was 0.00609 min(-1), which was higher than that of unmodified PbO2 electrode (0.00419 min(-1)). The effects of experimental parameters, such as applied current density, initial AL concentration, initial pH value and solution temperature, on electrochemical degradation of AL by FeCN-PbO2 electrode were evaluated. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Defining the light emitting area for displays in the unipolar regime of highly efficient light emitting transistors

    PubMed Central

    Ullah, Mujeeb; Armin, Ardalan; Tandy, Kristen; Yambem, Soniya D.; Burn, Paul L.; Meredith, Paul; Namdas, Ebinazar B.

    2015-01-01

    Light-emitting field effect transistors (LEFETs) are an emerging class of multifunctional optoelectronic devices. It combines the light emitting function of an OLED with the switching function of a transistor in a single device architecture. The dual functionality of LEFETs has the potential applications in active matrix displays. However, the key problem of existing LEFETs thus far has been their low EQEs at high brightness, poor ON/OFF and poorly defined light emitting area - a thin emissive zone at the edge of the electrodes. Here we report heterostructure LEFETs based on solution processed unipolar charge transport and an emissive polymer that have an EQE of up to 1% at a brightness of 1350 cd/m2, ON/OFF ratio > 104 and a well-defined light emitting zone suitable for display pixel design. We show that a non-planar hole-injecting electrode combined with a semi-transparent electron-injecting electrode enables to achieve high EQE at high brightness and high ON/OFF ratio. Furthermore, we demonstrate that heterostructure LEFETs have a better frequency response (fcut-off = 2.6 kHz) compared to single layer LEFETs. The results presented here therefore are a major step along the pathway towards the realization of LEFETs for display applications. PMID:25743444

  20. A ω-mercaptoundecylphosphonic acid chemically modified gold electrode for uranium determination in waters in presence of organic matter.

    PubMed

    Merli, Daniele; Protti, Stefano; Labò, Matteo; Pesavento, Maria; Profumo, Antonella

    2016-05-01

    A chemically modified electrode (CME) on a gold surface assembled with a ω-phosphonic acid terminated thiol was investigated for its capability to complex uranyl ions. The electrode, characterized by electrochemical techniques, demonstrated to be effective for the determination of uranyl at sub-μgL(-1) level by differential pulse adsorptive stripping voltammetry (DPAdSV) in environmental waters, also in presence of humic matter and other potential chelating agents. The accuracy of the measurements was investigated employing as model probes ligands of different complexing capability (humic acids and EDTA). Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Novel ferrocene-anchored ZnO nanoparticle/carbon nanotube assembly for glucose oxidase wiring: application to a glucose/air fuel cell.

    PubMed

    Haddad, Raoudha; Mattei, Jean-Gabriel; Thery, Jessica; Auger, Aurélien

    2015-06-28

    Glucose oxidase (GOx) is immobilized on ZnO nanoparticle-modified electrodes. The immobilized glucose oxidase shows efficient mediated electron transfer with ZnO nanoparticles to which the ferrocenyl moiety is π-stacked into a supramolecular architecture. The constructed ZnO-Fc/CNT modified electrode exhibits high ferrocene surface coverage, preventing any leakage of the π-stacked ferrocene from the newly described ZnO hybrid nanoparticles. The use of the new architecture of ZnO supported electron mediators to shuttle electrons from the redox centre of the enzyme to the surface of the working electrode can effectively bring about successful glucose oxidation. These modified electrodes evaluated as a highly efficient architecture provide a catalytic current for glucose oxidation and are integrated in a specially designed glucose/air fuel cell prototype using a conventional platinum-carbon (Pt/C) cathode at physiological pH (7.0). The obtained architecture leads to a peak power density of 53 μW cm(-2) at 300 mV for the Nafion® based biofuel cell under "air breathing" conditions at room temperature.

  2. Immobilization of nanobeads on a surface to control the size, shape and distribution of pores in electrochemically generated sol-gel films.

    PubMed

    Ciabocco, Michela; Berrettoni, Mario; Zamponi, Silvia; Cox, James A

    2015-07-01

    Electrochemically assisted deposition of an ormosil film at a potential where hydrogen ion is generated as the catalyst yields insulating films on electrodes. When the base electrode is modified with 20-nm poly(styrene sulfonate), PSS, beads bound to the surface with 3-aminopropyltriethoxysilane (APTES) and using (CH 3 ) 3 SiOCH 3 as the precursor, the resulting film of organically modified silica (ormosil) has cylindrical channels that reflect both the diameter of the PSS and the distribution of the APTES-PSS on the electrode. At an electrode modified by a 20-min immersion in 0.5 mmol dm -3 APTES followed by a 30-s immersion in PSS, a 20-min electrolysis at 1.5 V in acidified (CH 3 ) 3 SiOCH 3 resulted in an ormosil film with 20-nm pores separated by 100 nm. Cyclic voltammetry of Ru(CN) 6 4- at scan rates above 5 mVs -1 yielded currents controlled primarily by linear diffusion. Below 5 mVs -1 , convection rather than the expected factor, radial diffusion, apparently limited the current.

  3. Determination of bisphenol A in food-simulating liquids using LCED with a chemically modified electrode.

    PubMed

    D'Antuono, A; Dall'Orto, V C; Lo Balbo, A; Sobral, S; Rezzano, I

    2001-03-01

    Liquid chromatography with electrochemical detector (LC-ED), using a chemically modified electrode coated with a metalloporphyrin film, is reported for determination of bisphenol A (BPA) migration from polycarbonate baby bottles. The extraction process of the samples was performed according to regulations of the Southern Common Market (MERCOSUR), where certain food-simulating liquids [(A) distilled water, (B) acetic acid 3% V/V in distilled water, and (C) ethanol 15% V/V in distilled water] are defined along with controlled time and temperature conditions. The baseline obtained using the naked electrode showed a considerable drift which increased the detection limit. This effect was suppressed with the chemically modified electrode. A linear range up to 450 ppb along with a detection limit of 20 ppb for the amperometric detection technique was observed. The procedure described herein allowed lowering the detection limit of the method to 0.2 ppb. The value found for BPA in the food-simulating liquid is 1.2 ppb, which is below the tolerance limit for specific migration (4.8 ppm).

  4. Effect of NaX zeolite-modified graphite felts on hexavalent chromium removal in biocathode microbial fuel cells.

    PubMed

    Wu, Xiayuan; Tong, Fei; Yong, Xiaoyu; Zhou, Jun; Zhang, Lixiong; Jia, Honghua; Wei, Ping

    2016-05-05

    Two kinds of NaX zeolite-modified graphite felts were used as biocathode electrodes in hexavalent chromium (Cr(VI))-reducing microbial fuel cells (MFCs). The one was fabricated through direct modification, and the other one processed by HNO3 pretreatment of graphite felt before modification. The results showed that two NaX zeolite-modified graphite felts are excellent bio-electrode materials for MFCs, and that a large NaX loading mass, obtained by HNO3 pretreatment (the HNO3-NaX electrode), leads to a superior performance. The HNO3-NaX electrode significantly improved the electricity generation and Cr(VI) removal of the MFC. The maximum Cr(VI) removal rate increased to 10.39±0.28 mg/L h, which was 8.2 times higher than that of the unmodified control. The improvement was ascribed to the strong affinity that NaX zeolite particles, present in large number on the graphite felt, have for microorganisms and Cr(VI) ions. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. A voltammetric method for Fe(iii) in blood serum using a screen-printed electrode modified with a Schiff base ionophore.

    PubMed

    Mittal, Susheel K; Rana, Sonia; Kaur, Navneet; Banks, Craig E

    2018-05-23

    Herein, a potent electrochemical ionophore (SMS-2) based on a Schiff base has been used for the modification of a screen-printed electrode (SPE). The modified disposable electrode can selectively detect ferric ions in an aqueous medium. Redox behavior of the proposed strip was characterized using cyclic voltammetry (CV) and differential pulse voltammetry (DPV). Incorporation of the ligand in the ink of the SPE enhanced the analytical performance of the electrode, and its surface modification was confirmed by SEM and EDX analysis. Shifting/quenching of the cathodic peak potential of the ionophore after binding with Fe(iii) ions was used to detect and measure the ferric ion concentration. This sensor can identify Fe(iii) in the detection range from 0.625 μM to 7.5 μM. The modified SPE can selectively detect ferric ions in the presence of many other interfering ions and has been successfully used to determine the Fe(iii) content in blood serum samples. The metal-ionophore complex structure was optimized using DFT calculations to study the energetics of the metal-ionophore interactions.

  6. Electrochemical response of carbon paste electrode modified with mixture of titanium dioxide/zirconium dioxide in the detection of heavy metals: lead and cadmium.

    PubMed

    Nguyen, Phuong Khanh Quoc; Lunsford, Suzanne K

    2012-11-15

    A novel carbon modified electrode was developed by incorporating titanium dioxide/zirconium dioxide into the graphite carbon paste electrode to detect heavy metals-cadmium and lead. In this work, the development of the novel titanium dioxide/zirconium dioxide modified carbon paste electrode was studied to determine the optimum synthesis conditions related to the temperature, heating duration, amount and ratio of titanium dioxide/zirconium dioxide, and amount of surfactant, to create the most reproducible results. Using cyclic voltammetric (CV) analysis, this study has proven that the novel titanium dioxide/zirconium dioxide can be utilized to detect heavy metals-lead and cadmium, at relatively low concentrations (7.6×10(-6) M and 1.1×10(-5) M for Pb and Cd, respectively) at optimum pH value (pH=3). From analyzing CV data the optimal electrodes surface area was estimated to be 0.028 (±0.003) cm(2). Also, under the specific experimental conditions, electron transfer coefficients were estimated to be 0.44 and 0.33 along with the heterogeneous electron transfer rate constants of 5.64×10(-3) and 2.42×10(-3) (cm/s) for Pb and Cd, respectively. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Electrochemistry of hemoglobin entrapped in a Nafion/nano-ZnO film on carbon ionic liquid electrode.

    PubMed

    Sun, Wei; Zhai, ZiQin; Wang, DanDan; Liu, ShuFeng; Jiao, Kui

    2009-02-01

    A stable composite film composed of the ionomer Nafion, the ZnO nanoparticle and the protein hemoglobin was cast on the surface of an ionic liquid modified carbon paste electrode (CILE) to establish a modified electrode denoted as Nafion/nano-ZnO/Hb/CILE. UV-vis and FT-IR spectrum showed that hemoglobin in the film retained its native conformation. The electrochemical behaviors of hemoglobin entrapped in the film were carefully investigated with cyclic voltammetry. A pair of well-defined and quasi-reversible redox voltammetric peaks for Hb Fe(III)/Fe(II) was obtained with the standard potential (E(0)') located at -0.344 V (vs. SCE) in phosphate buffer solution (PBS, pH 7.0), which was attributed to the direct electron transfer of Hb with electrode in the microenvironments of ZnO nanoparticle and ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate (BMIMPF(6)). The electrochemical parameters of Hb in the composite film were further carefully calculated with the results of the electron-transfer rate constant (k(s)) as 0.139 s(-1), the charge transfer coefficient (alpha) as 0.413 and the number of electron transferred (n) as 0.95. The Hb modified electrode showed good electrocatalytic ability toward the reduction of trichloroacetic acid (TCA).

  8. Modified Au nanoparticles-imprinted sol-gel, multiwall carbon nanotubes pencil graphite electrode used as a sensor for ranitidine determination.

    PubMed

    Rezaei, B; Lotfi-Forushani, H; Ensafi, A A

    2014-04-01

    A new, simple, and disposable molecularly imprinted electrochemical sensor for the determination of ranitidine was developed on pencil graphite electrode (PGE) via cyclic voltammetry (CV). The PGEs were coated with MWCNTs containing the carboxylic functional group (f-MWCNTs), imprinted with sol-gel and Au nanoparticle (AuNPs) layers (AuNP/MIP-sol-gel/f-MWCNT/PGE), respectively, to enhance the electrode's electrical transmission and sensitivity. The thin film of molecularly imprinted sol-gel polymers with specific binding sites for ranitidine was cast on modified PGE by electrochemical deposition. The AuNP/MIP-sol-gel/f-MWCNT/PGE thus developed was characterized by electrochemical impedance spectroscopy (EIS) and CV. The interaction between the imprinted sensor and the target molecule was also observed on the electrode by measuring the current response of 5.0mMK3[Fe(CN)6] solution as an electrochemical probe. The pick currents of ranitidine increased linearly with concentration in the ranges of 0.05 to 2.0μM, with a detection limit of (S/N=3) 0.02μM. Finally, the modified electrode was successfully employed to determine ranitidine in human urine samples. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Enhanced electrocatalytic oxidation of isoniazid at electrochemically modified rhodium electrode for biological and pharmaceutical analysis.

    PubMed

    Cheemalapati, Srikanth; Chen, Shen-Ming; Ali, M Ajmal; Al-Hemaid, Fahad M A

    2014-09-01

    A simple and sensitive electrochemical method has been proposed for the determination of isoniazid (INZ). For the first time, rhodium (Rh) modified glassy carbon electrode (GCE) has been employed for the determination of INZ by linear sweep voltammetry technique (LSV). Compared with the unmodified electrode, the proposed Rh modified electrode provides strong electrocatalytic activity toward INZ with significant enhancement in the anodic peak current. Scanning electron microscopy (SEM) and field emission scanning electron microscopy (FESEM) results reveal the morphology of Rh particles. With the advantages of wide linearity (70-1300μM), good sensitivity (0.139μAμM(-1)cm(-2)) and low detection limit (13μM), this proposed sensor holds great potential for the determination of INZ in real samples. The practicality of the proposed electrode for the detection of INZ in human urine and blood plasma samples has been successfully demonstrated using LSV technique. Through the determination of INZ in commercially available pharmaceutical tablets, the practical applicability of the proposed method has been validated. The recovery results are found to be in good agreement with the labeled amounts of INZ in tablets, thus showing its great potential for use in clinical and pharmaceutical analysis. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Modification of Glucose Oxidase biofuel cell by multi-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Lotfi, Ladan; Farahbakhsh, Afshin; Aghili, Sina

    2018-01-01

    Biofuel cells are a subset of fuel cells that employ biocatalysts. Enzyme-based biofuel cells (EBFCs) generate electrical energy from biofuels such as glucose and ethanol, which are renewable and sustainable energy sources. Glucose biofuel cells (GBFCs) are particularly interesting nowadays due to continuous harvesting of oxygen and glucose from bioavailable substrates, activity inside the human body, and environmental benign, which generate electricity through oxidation of glucose on the anode and reduction of oxygen on the cathode. Promoting the electron transfer of redox enzymes at modified electrode utilizing Nano size materials, such as carbon nanotubes (CNT), to achieve the direct electrochemistry of enzymes has been reported. The polypyrrole-MWCNTs-glucose oxidase (PY-CNT-GOx) electrode has been investigated in the present work. Cyclic voltammetry tests were performed in a three-electrode electrochemical set-up with modified electrode (Pt/PPy/MWCNTs/GOx) was used as working electrode. Platinum flat and Ag/AgCl (saturated KCl) were used as counter electrode and the reference electrode, respectively. The biofuel cells probe was prepared by immobilizing MWCNTs at the tip of a platinum (Pt) electrode (0.5 cm2) with PPy as the support matrix We have demonstrated a well-dispersed nanomaterial PPy/MWNT, which is able to immobilize GOx firmly under the condition of the absence of any other cross-linking agent.

  11. Biosensors Based on Urease Adsorbed on Nickel, Platinum, and Gold Conductometric Transducers Modified with Silicalite and Nanozeolites

    NASA Astrophysics Data System (ADS)

    Kucherenko, Ivan S.; Soldatkin, Oleksandr O.; Kasap, Berna Ozansoy; Kurç, Burcu Akata; Melnyk, Volodymir G.; Semenycheva, Lyudmila M.; Dzyadevych, Sergei V.; Soldatkin, Alexei P.

    This work describes urease-based conductometric biosensors that were created using nontypical method of urease immobilization via adsorption on micro- and nanoporous particles: silicalite and nanocrystalline zeolites Beta (BEA) and L. Conductometric transducers with nickel, gold, and platinum interdigitated electrodes were used. Active regions of the nickel transducers were modified with microparticles using two procedures—spin coating and drop coating. Gold and platinum transducers were modified with silicalite using drop coating since it was more effective. Scanning electron microscopy was used to evaluate effectiveness of these procedures. The procedure of spin coating produced more uniform layers of particles (and biosensors had good reproducibility of preparation), but it was more complicated, drop coating was easier and led to formation of a bulk of particles; thus, biosensors had bigger sensitivity but worse reproducibility of preparation. Urease was immobilized onto transducers modified with particles by physical adsorption. Analytical characteristics of the obtained biosensors for determination of urea (calibration curves, sensitivity, limit of detection, linear concentration range, noise of responses, reproducibility of signal during a day, and operational stability during 3 days) were compared. Biosensors with all three particles deposited by spin coating showed similar characteristics; however, silicalite was a bit more effective. Biosensors based on nickel transducers modified by drop coating had better characteristics in comparison with modification by spin coating (except reproducibility of preparation). Transducers with gold electrodes showed best characteristics while creating biosensors, platinum electrodes were slightly inferior to them, and nickel electrodes were the worst.

  12. Yeast surface displaying glucose oxidase as whole-cell biocatalyst: construction, characterization, and its electrochemical glucose sensing application.

    PubMed

    Wang, Hongwei; Lang, Qiaolin; Li, Liang; Liang, Bo; Tang, Xiangjiang; Kong, Lingrang; Mascini, Marco; Liu, Aihua

    2013-06-18

    The display of glucose oxidase (GOx) on yeast cell surface using a-agglutinin as an anchor motif was successfully developed. Both the immunochemical analysis and enzymatic assay showed that active GOx was efficiently expressed and translocated on the cell surface. Compared with conventional GOx, the yeast cell surface that displayed GOx (GOx-yeast) demonstrated excellent enzyme properties, such as good stability within a wide pH range (pH 3.5-11.5), good thermostability (retaining over 94.8% enzyme activity at 52 °C and 84.2% enzyme activity at 56 °C), and high d-glucose specificity. In addition, direct electrochemistry was achieved at a GOx-yeast/multiwalled-carbon-nanotube modified electrode, suggesting that the host cell of yeast did not have any adverse effect on the electrocatalytic property of the recombinant GOx. Thus, a novel electrochemical glucose biosensor based on this GOx-yeast was developed. The as-prepared biosensor was linear with the concentration of d-glucose within the range of 0.1-14 mM and a low detection limit of 0.05 mM (signal-to-noise ratio of S/N = 3). Moreover, the as-prepared biosensor is stable, specific, reproducible, simple, and cost-effective, which can be applicable for real sample detection. The proposed strategy to construct robust GOx-yeast may be applied to explore other oxidase-displaying-system-based whole-cell biocatalysts, which can find broad potential application in biosensors, bioenergy, and industrial catalysis.

  13. Glucose Biosensor Based on a Glassy Carbon Electrode Modified with Polythionine and Multiwalled Carbon Nanotubes

    PubMed Central

    Tang, Wenwei; Li, Lei; Wu, Lujun; Gong, Jiemin; Zeng, Xinping

    2014-01-01

    A novel glucose biosensor was fabricated. The first layer of the biosensor was polythionine, which was formed by the electrochemical polymerisation of the thionine monomer on a glassy carbon electrode. The remaining layers were coated with chitosan-MWCNTs, GOx, and the chitosan-PTFE film in sequence. The MWCNTs embedded in FAD were like “conductive wires” connecting FAD with electrode, reduced the distance between them and were propitious to fast direct electron transfer. Combining with good electrical conductivity of PTH and MWCNTs, the current response was enlarged. The sensor was a parallel multi-component reaction system (PMRS) and excellent electrocatalytic performance for glucose could be obtained without a mediator. The glucose sensor had a working voltage of −0.42 V, an optimum working temperature of 25°C, an optimum working pH of 7.0, and the best percentage of polytetrafluoroethylene emulsion (PTFE) in the outer composite film was 2%. Under the optimised conditions, the biosensor displayed a high sensitivity of 2.80 µA mM−1 cm−2 and a low detection limit of 5 µM (S/N = 3), with a response time of less than 15 s and a linear range of 0.04 mM to 2.5 mM. Furthermore, the fabricated biosensor had a good selectivity, reproducibility, and long-term stability, indicating that the novel CTS+PTFE/GOx/MWCNTs/PTH composite is a promising material for immobilization of biomolecules and fabrication of third generation biosensors. PMID:24816121

  14. Glucose biosensor based on a glassy carbon electrode modified with polythionine and multiwalled carbon nanotubes.

    PubMed

    Tang, Wenwei; Li, Lei; Wu, Lujun; Gong, Jiemin; Zeng, Xinping

    2014-01-01

    A novel glucose biosensor was fabricated. The first layer of the biosensor was polythionine, which was formed by the electrochemical polymerisation of the thionine monomer on a glassy carbon electrode. The remaining layers were coated with chitosan-MWCNTs, GOx, and the chitosan-PTFE film in sequence. The MWCNTs embedded in FAD were like "conductive wires" connecting FAD with electrode, reduced the distance between them and were propitious to fast direct electron transfer. Combining with good electrical conductivity of PTH and MWCNTs, the current response was enlarged. The sensor was a parallel multi-component reaction system (PMRS) and excellent electrocatalytic performance for glucose could be obtained without a mediator. The glucose sensor had a working voltage of -0.42 V, an optimum working temperature of 25°C, an optimum working pH of 7.0, and the best percentage of polytetrafluoroethylene emulsion (PTFE) in the outer composite film was 2%. Under the optimised conditions, the biosensor displayed a high sensitivity of 2.80 µA mM(-1) cm(-2) and a low detection limit of 5 µM (S/N = 3), with a response time of less than 15 s and a linear range of 0.04 mM to 2.5 mM. Furthermore, the fabricated biosensor had a good selectivity, reproducibility, and long-term stability, indicating that the novel CTS+PTFE/GOx/MWCNTs/PTH composite is a promising material for immobilization of biomolecules and fabrication of third generation biosensors.

  15. Artificial vision support system (AVS(2)) for improved prosthetic vision.

    PubMed

    Fink, Wolfgang; Tarbell, Mark A

    2014-11-01

    State-of-the-art and upcoming camera-driven, implanted artificial vision systems provide only tens to hundreds of electrodes, affording only limited visual perception for blind subjects. Therefore, real time image processing is crucial to enhance and optimize this limited perception. Since tens or hundreds of pixels/electrodes allow only for a very crude approximation of the typically megapixel optical resolution of the external camera image feed, the preservation and enhancement of contrast differences and transitions, such as edges, are especially important compared to picture details such as object texture. An Artificial Vision Support System (AVS(2)) is devised that displays the captured video stream in a pixelation conforming to the dimension of the epi-retinal implant electrode array. AVS(2), using efficient image processing modules, modifies the captured video stream in real time, enhancing 'present but hidden' objects to overcome inadequacies or extremes in the camera imagery. As a result, visual prosthesis carriers may now be able to discern such objects in their 'field-of-view', thus enabling mobility in environments that would otherwise be too hazardous to navigate. The image processing modules can be engaged repeatedly in a user-defined order, which is a unique capability. AVS(2) is directly applicable to any artificial vision system that is based on an imaging modality (video, infrared, sound, ultrasound, microwave, radar, etc.) as the first step in the stimulation/processing cascade, such as: retinal implants (i.e. epi-retinal, sub-retinal, suprachoroidal), optic nerve implants, cortical implants, electric tongue stimulators, or tactile stimulators.

  16. An ultrasensitive electrochemiluminescence sensor based on reduced graphene oxide-copper sulfide composite coupled with capillary electrophoresis for determination of amlodipine besylate in mice plasma.

    PubMed

    Wei, Yanfen; Wang, Hao; Sun, Shuangjiao; Tang, Lifu; Cao, Yupin; Deng, Biyang

    2016-12-15

    A new electrochemiluminescence (ECL) sensor based on reduced graphene oxide-copper sulfide (rGO-CuS) composite coupled with capillary electrophoresis (CE) was constructed for the ultrasensitive detection of amlodipine besylate (AML) for the first time. In this work, rGO-CuS composite was synthesized by one-pot hydrothermal method and used for electrode modification. The electrochemical and ECL behaviors of the sensor were investigated. More than 5-fold enhance in ECL intensity was observed after modified with rGO-CuS composite. The results can be ascribed to the presence of rGO-CuS composite on the electrode surface that facilitates the electron transfer rate between the electroactive center of Ru(bpy)3(2+) and the electrode. The ECL sensor was coupled with CE to improve the selectivity and the CE-ECL parameters that affect separation and detection were optimized. Under the optimum conditions, the linear ranges for AML was 0.008-5.0μg/mL with a detection limit of 2.8ng/mL (S/N=3). The method displayed the advantages of high sensitivity, good selectivity, wide linear range, low detection limit and fine reproducibility, and was used to analyze AML in mice plasma with a satisfactory result, which holds a great potential in the field of pharmaceutical analysis. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Improved thermal oxidation stability of solution-processable silver nanowire transparent electrode by reduced graphene oxide.

    PubMed

    Ahn, Yumi; Jeong, Youngjun; Lee, Youngu

    2012-12-01

    Solution-processable silver nanowire-reduced graphene oxide (AgNW-rGO) hybrid transparent electrode was prepared in order to replace conventional ITO transparent electrode. AgNW-rGO hybrid transparent electrode exhibited high optical transmittance and low sheet resistance, which is comparable to ITO transparent electrode. In addition, it was found that AgNW-rGO hybrid transparent electrode exhibited highly enhanced thermal oxidation and chemical stabilities due to excellent gas-barrier property of rGO passivation layer onto AgNW film. Furthermore, the organic solar cells with AgNW-rGO hybrid transparent electrode showed good photovoltaic behavior as much as solar cells with AgNW transparent electrode. It is expected that AgNW-rGO hybrid transparent electrode can be used as a key component in various optoelectronic application such as display panels, touch screen panels, and solar cells.

  18. Nanostructured ZnO in a Metglas/ZnO/Hemoglobin Modified Electrode to Detect the Oxidation of the Hemoglobin Simultaneously by Cyclic Voltammetry and Magnetoelastic Resonance

    PubMed Central

    Sagasti, Ariane; Bouropoulos, Nikolaos; Kouzoudis, Dimitris; Panagiotopoulos, Apostolos; Topoglidis, Emmanuel; Gutiérrez, Jon

    2017-01-01

    In the present work, a nanostructured ZnO layer was synthesized onto a Metglas magnetoelastic ribbon to immobilize hemoglobin (Hb) on it and study the Hb’s electrochemical behavior towards hydrogen peroxide. Hb oxidation by H2O2 was monitored simultaneously by two different techniques: Cyclic Voltammetry (CV) and Magnetoelastic Resonance (MR). The Metglas/ZnO/Hb system was simultaneously used as a working electrode for the CV scans and as a magnetoelastic sensor excited by external coils, which drive it to resonance and interrogate it. The ZnO nanoparticles for the ZnO layer were grown hydrothermally and fully characterized by X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM) and photoluminescence (PL). Additionally, the ZnO layer’s elastic modulus was measured using a new method, which makes use of the Metglas substrate. For the detection experiments, the electrochemical cell was performed with a glass vial, where the three electrodes (working, counter and reference) were immersed into PBS (Phosphate Buffer Solution) solution and small H2O2 drops were added, one at a time. CV scans were taken every 30 s and 5 min after the addition of each drop and meanwhile a magnetoelastic measurement was taken by the external coils. The CV plots reveal direct electrochemical behavior of Hb and display good electrocatalytic response to the reduction of H2O2. The measured catalysis currents increase linearly with the H2O2 concentration in a wide range of 25–350 μM with a correlation coefficient 0.99. The detection limit is 25–50 μM. Moreover, the Metglas/ZnO/Hb electrode displays rapid response (30 s) to H2O2, and exhibits good stability and reproducibility of the measurements. On the other hand, the magnetoelastic measurements show a small linear mass increase versus the H2O2 concentration with a slope of 152 ng/μM, which is probably due to H2O2 adsorption in ZnO during the electrochemical reaction. No such effects were detected during the control experiment when only PBS solution was present for a long time. PMID:28773209

  19. A portable hypergolic oxidizer vapor sensor for NASA's Space Shuttle program

    NASA Technical Reports Server (NTRS)

    Helms, W. R.

    1978-01-01

    The design and performance characteristics of an electrochemical NO2 sensor selected by NASA for the space shuttle program is described. The instrument consists of a sample pump, an electrochemical cell, and control and display electronics. The pump pushes the sample through the electrochemical cell where the vapors are analyzed and an output proportional to the NO2 concentration is produced. The output is displayed on a panel meter, and is also available at a recorder jack. The electrochemical cell is made up of a polypropylene chamber covered with teflon membrane faceplates. Plantinum electrodes are bonded to the faceplates, and the sensing and counter electrodes are potentiostatically controlled at -200 mV with respect to the reference electrode. The cell is filled with electrolyte, consisting of 13.5 cc of 23% solution of KOH.

  20. Remarkable sensitivity for detection of bisphenol A on a gold electrode modified with nickel tetraamino phthalocyanine containing Ni-O-Ni bridges.

    PubMed

    Chauke, Vongani; Matemadombo, Fungisai; Nyokong, Tebello

    2010-06-15

    This work reports the electrocatalysis of bisphenol A on Ni(II) tetraamino metallophthalocyanine (NiTAPc) polymer modified gold electrode containing Ni-O-Ni bridges (represented as Ni(OH)TAPc). The Ni(II)TAPc films were electro-transformed in 0.1 mol L(-1) NaOH aqueous solution to form 'O-Ni-O oxo bridges', forming poly-n-Ni(OH)TAPc (where n is the number of polymerising scans). poly-30-Ni(OH)TAPc, poly-50-Ni(OH)TAPc, poly-70-Ni(OH)TAPc and poly-90-Ni(OH)TAPc films were investigated. The polymeric films were characterised by electrochemical impedance spectroscopy and the charge transfer resistance (R(CT)) values increased with film thickness. The best catalytic activity for the detection of bisphenol A was on poly-70-Ni(OH)TAPc. Electrode resistance to passivation improved with polymer thickness. The electrocatalytic behaviour of bisphenol A was compared to that of p-nitrophenol in terms of electrode passivation and regeneration. The latter was found to passivate the electrode less than the former. The poly-70-Ni(OH)TAPc modified electrode could reliably detect bisphenol A in a concentration range of 7x10(-4) to 3x10(-2)mol L(-1) with a limit of detection of 3.68x10(-9)mol L(-1). The sensitivity was 3.26x10(-4)A mol(-1) L cm(-2). Copyright 2010 Elsevier B.V. All rights reserved.

  1. A novel rapid synthesis of Fe{sub 2}O{sub 3}/graphene nanocomposite using ferrate(VI) and its application as a new kind of nanocomposite modified electrode as electrochemical sensor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karimi, Mohammad Ali, E-mail: ma_karimi43@yahoo.com; Department of Chemistry & Nanoscience and Nanotechnology Research Laboratory; Banifatemeh, Fatemeh

    2015-10-15

    Highlights: • A novel rapid synthesis of rGO–Fe{sub 2}O{sub 3} nanocomposite was developed using Fe(VI). • Fe(VI) as an environmentally friendly oxidant was introduced for GO synthesis. • Synthesized rGO–Fe{sub 2}O{sub 3} nanocomposite was applied as electrochemical sensor. • A non-enzymatic sensor was developed for H{sub 2}O{sub 2}. - Abstract: In this study, a novel, simple and sensitive non-enzymatic hydrogen peroxide electrochemical sensor was developed using reduced graphene oxide/Fe{sub 2}O{sub 3} nanocomposite modified glassy carbon electrode. This nanocomposite was synthesized by reaction of sodium ferrate with graphene in alkaline media. This reaction completed in 5 min and the products weremore » stable and its deposition on the surface of electrode is investigated. It has been found the apparent charge transfer rate constant (ks) is 0.52 and transfer coefficient (α) is 0.61 for electron transfer between the modifier and glassy carbon electrode. Electrochemical behavior of this electrode and its ability to catalyze the electro-reduction of H{sub 2}O{sub 2} has been studied by cyclic voltammetry and chronoamperometry at different experimental conditions. The analytical parameters showed the good ability of electrode as a sensor for H{sub 2}O{sub 2} amperometric reduction.« less

  2. Switchable silver mirrors with long memory effects.

    PubMed

    Park, Chihyun; Seo, Seogjae; Shin, Haijin; Sarwade, Bhimrao D; Na, Jongbeom; Kim, Eunkyoung

    2015-01-01

    An electrochemically stable and bistable switchable mirror was achieved for the first time by introducing (1) a thiol-modified indium tin oxide (ITO) electrode for the stabilization of the metallic film and (2) ionic liquids as an anion-blocking layer, to achieve a long memory effect. The growth of the metallic film was denser and faster at the thiol-modified ITO electrode than at a bare ITO electrode. The electrochemical stability of the metallic film on the thiol-modified ITO was enhanced, maintaining the metallic state without rupture. In the voltage-off state, the metal film maintained bistability for a long period (>2 h) when ionic liquids were introduced as electrolytes for the switchable mirror. The electrical double layer in the highly viscous ionic liquid electrolyte seemed to effectively form a barrier to the bromide ions, to protect the metal thin film from them when in the voltage-off state.

  3. Electrodeposition of platinum and silver into chemically modified microporous silicon electrodes

    PubMed Central

    2012-01-01

    Electrodeposition of platinum and silver into hydrophobic and hydrophilic microporous silicon layers was investigated using chemically modified microporous silicon electrodes. Hydrophobic microporous silicon enhanced the electrodeposition of platinum in the porous layer. Meanwhile, hydrophilic one showed that platinum was hardly deposited within the porous layer, and a film of platinum on the top of the porous layer was observed. On the other hand, the electrodeposition of silver showed similar deposition behavior between these two chemically modified electrodes. It was also found that the electrodeposition of silver started at the pore opening and grew toward the pore bottom, while a uniform deposition from the pore bottom was observed in platinum electrodeposition. These electrodeposition behaviors are explained on the basis of the both effects, the difference in overpotential for metal deposition on silicon and on the deposited metal, and displacement deposition rate of metal. PMID:22720690

  4. 2D nanosheet molybdenum disulphide (MoS2) modified electrodes explored towards the hydrogen evolution reaction

    NASA Astrophysics Data System (ADS)

    Rowley-Neale, Samuel J.; Brownson, Dale A. C.; Smith, Graham C.; Sawtell, David A. G.; Kelly, Peter J.; Banks, Craig E.

    2015-10-01

    We explore the use of two-dimensional (2D) MoS2 nanosheets as an electrocatalyst for the Hydrogen Evolution Reaction (HER). Using four commonly employed commercially available carbon based electrode support materials, namely edge plane pyrolytic graphite (EPPG), glassy carbon (GC), boron-doped diamond (BDD) and screen-printed graphite electrodes (SPE), we critically evaluate the reported electrocatalytic performance of unmodified and MoS2 modified electrodes towards the HER. Surprisingly, current literature focuses almost exclusively on the use of GC as an underlying support electrode upon which HER materials are immobilised. 2D MoS2 nanosheet modified electrodes are found to exhibit a coverage dependant electrocatalytic effect towards the HER. Modification of the supporting electrode surface with an optimal mass of 2D MoS2 nanosheets results in a lowering of the HER onset potential by ca. 0.33, 0.57, 0.29 and 0.31 V at EPPG, GC, SPE and BDD electrodes compared to their unmodified counterparts respectively. The lowering of the HER onset potential is associated with each supporting electrode's individual electron transfer kinetics/properties and is thus distinct. The effect of MoS2 coverage is also explored. We reveal that its ability to catalyse the HER is dependent on the mass deposited until a critical mass of 2D MoS2 nanosheets is achieved, after which its electrocatalytic benefits and/or surface stability curtail. The active surface site density and turn over frequency for the 2D MoS2 nanosheets is determined, characterised and found to be dependent on both the coverage of 2D MoS2 nanosheets and the underlying/supporting substrate. This work is essential for those designing, fabricating and consequently electrochemically testing 2D nanosheet materials for the HER.We explore the use of two-dimensional (2D) MoS2 nanosheets as an electrocatalyst for the Hydrogen Evolution Reaction (HER). Using four commonly employed commercially available carbon based electrode support materials, namely edge plane pyrolytic graphite (EPPG), glassy carbon (GC), boron-doped diamond (BDD) and screen-printed graphite electrodes (SPE), we critically evaluate the reported electrocatalytic performance of unmodified and MoS2 modified electrodes towards the HER. Surprisingly, current literature focuses almost exclusively on the use of GC as an underlying support electrode upon which HER materials are immobilised. 2D MoS2 nanosheet modified electrodes are found to exhibit a coverage dependant electrocatalytic effect towards the HER. Modification of the supporting electrode surface with an optimal mass of 2D MoS2 nanosheets results in a lowering of the HER onset potential by ca. 0.33, 0.57, 0.29 and 0.31 V at EPPG, GC, SPE and BDD electrodes compared to their unmodified counterparts respectively. The lowering of the HER onset potential is associated with each supporting electrode's individual electron transfer kinetics/properties and is thus distinct. The effect of MoS2 coverage is also explored. We reveal that its ability to catalyse the HER is dependent on the mass deposited until a critical mass of 2D MoS2 nanosheets is achieved, after which its electrocatalytic benefits and/or surface stability curtail. The active surface site density and turn over frequency for the 2D MoS2 nanosheets is determined, characterised and found to be dependent on both the coverage of 2D MoS2 nanosheets and the underlying/supporting substrate. This work is essential for those designing, fabricating and consequently electrochemically testing 2D nanosheet materials for the HER. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr05164a|ART

  5. Molecular modification of highly degenerate semiconductor as an active electrode to enhance the performance of supercapacitors

    NASA Astrophysics Data System (ADS)

    Mundinamani, S. P.; Rabinal, M. K.

    2014-12-01

    Highly conducting antimony doped tin oxide (SnO2:Sb) films are electrografted with suitable organic molecules to study their electrolytic behavior. A series of organic molecules, such as heptanethiol, dodecanethiol and octadecanethiol are bonded to electrode surfaces. Electrolytic capacitors were formed on both unmodified and chemically modified electrodes using KCl and H2SO4 as electrolytes. This molecular modification significantly enhances the current levels in cyclic voltammograms, and there is a clear shift in oxidation/reduction peaks of these capacitors with scan rate. The results obey Randles-Sevcik relation, which indicates that there is enhancement of ionic diffusion at the electrode-electrolyte interface. There is a large enhancement in the values of specific capacitance (almost by 104 times) after the chemical modification. These measurements show that Faradaic reactions are responsible for charge storage/discharge process in these capacitors. Hence, the molecularly modified electrodes can be a good choice to increase the specific capacitance.

  6. Construction of ferrocene modified conducting polymer based amperometric urea biosensor.

    PubMed

    Dervisevic, Muamer; Dervisevic, Esma; Senel, Mehmet; Cevik, Emre; Yildiz, Huseyin Bekir; Camurlu, Pınar

    2017-07-01

    Herein, an electrochemical urea sensing bio-electrode is reported that has been constructed by firstly electropolymerizing 4-(2,5-Di(thiophen-2-yl)-1H-pyrrol-1-yl)aniline monomer (SNS-Aniline) on Pencil Graphite Electrode (PGE), then modifying the polymer coated electrode surface with di-amino-Ferrocene (DAFc) as the mediator, and lastly Urease enzyme through glutaraldehyde crosslinking. The effect of pH, temperature, polymer thickness, and applied potential on the electrode current response was investigated besides performing storage and operational stability experiments with the interference studies. The resulting urea biosensor's amperometric response was linear in the range of 0.1-8.5mM with the sensitivity of 0.54μA/mM, detection limit of 12μM, and short response time of 2s. The designed bio-electrode was tested with real human blood and urine samples where it showed excellent analytical performance with insignificant interference. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Determination of glutamine and glutamic acid in mammalian cell cultures using tetrathiafulvalene modified enzyme electrodes.

    PubMed

    Mulchandani, A; Bassi, A S

    1996-01-01

    Tetrathiafulvalene (TTF) mediated amperometric enzyme electrodes have been developed for the monitoring of L-glutamine and L-glutamic acid in growing mammalian cell cultures. The detection of glutamine was accomplished by a coupled enzyme system comprised of glutaminase plus glutamate oxidase, while the detection of glutamic acid was carried out by a single enzyme, glutamate oxidase. The appropriate enzyme(s) were immoblized on the Triton-X treated surface of tetrathiafulvalene modified carbon paste electrodes by adsorption, in conjunction with entrapment by an electrochemically deposited copolymer film of 1,3-phenylenediamine and resorcinol. Operating conditions for the glutamine enzyme electrode were optimized with respect to the amount of enzymes immoblized, pH, temperature and mobile phase flow rate for operation in a flow injection (FIA) system. When applied to glutamine and glutamic acid measurements in mammalian cell culture in FIA, the results obtained with enzyme electrodes were in excellent agreement with those determined by enzymatic analysis.

  8. Perovskite LaTiO₃-Ag0.2 nanomaterials for nonenzymatic glucose sensor with high performance.

    PubMed

    Wang, Yin-zhu; Zhong, Hui; Li, Xiao-mo; Jia, Fei-fei; Shi, Yi-xiang; Zhang, Wei-guang; Cheng, Zhi-peng; Zhang, Li-li; Wang, Ji-kui

    2013-10-15

    In this paper, a nonenzymatic glucose biosensor based on perovskite LaTiO3-Ag0.2(LTA) modified electrode was presented. The morphology and the composition of the perovskite LaTiO₃-Ag0.2 nanomaterials were characterized by using scanning electron microscopy (SEM) and X-ray diffraction (XRD) respectively. The LaTiO₃-Ag0.2(LTA) composite was investigated by electrochemical characterization using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). Under optimal conditions, CV and chronoamperometry (I-t) study revealed that, compared with the bare glassy carbon electrode (GCE), the modified electrode showed a remarkable increase in the efficiency of the electrocatalytic oxidation of glucose, starting at around +0.70 V (vs. Ag/AgCl). The prepared sensor exhibited a high sensitivity of 784.14 µAmM⁻¹ cm⁻², a low detection limit of 2.1×10⁻⁷ M and a wide linear range from 2.5 µM to 4 mM (R=0.9997). More importantly, the LTA modified electrode was also relatively insensitive to commonly interfering species such as ascorbic acid (AA), uric acid (UA), dopamine (DA) in high potential. Moreover, the nonenzymatic sensor was applied to the determination of glucose in human serum samples and the results were in good agreement with clinical data. Electrodes modified with perovskite nanomaterials are highly promising for nonenzymatic electrochemical detection of glucose because of their high sensitivity, fast response, excellent stability and good reproducibility. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Electrode Modification and Optimization in Air-Cathode Single-Chamber Microbial Fuel Cells.

    PubMed

    Wang, Yanhua; Wu, Jiayan; Yang, Shengke; Li, Huihui; Li, Xiaoping

    2018-06-27

    Due to the known problems of microbial fuel cells (MFCs), such as low electricity generation performance and high cost of operation, we modified the electrode with graphene and polyaniline (PANI) is a single-chamber air-cathode MFC and then evaluated the effects of electrode modification on MFC electricity generation performance. Carbon cloth electrodes (unmodified, CC; graphene-modified, G/CC; and polyaniline-graphene-modified, PANI-G/CC) were prepared using the impregnation method. Sulfonated cobalt phthalocyanine (CoPcS) was then introduced as a cathode catalyst. The Co-PANI-G/CC cathode showed higher catalytic activity toward oxygen reduction compared with other electrodes. The maximum power density of the MFC with Co-PANI-G/CC cathode was 32.2 mW/m², which was 1.8 and 6.1 times higher than the value obtained with Co-G/CC and Co/CC cathodes, respectively. This indicates a significant improvement in the electricity generation of single-chamber MFCs and provides a simple, effective cathode modification method. Furthermore, we constructed single-chamber MFCs using the modified anode and cathode and analyzed electricity generation and oxytetracycline (OTC) degradation with different concentrations of OTC as the fuel. With increasing added OTC concentration, the MFC performance in both electricity generation and OTC degradation gradually decreased. However, when less than 50 mg/L OTC was added, the 5-day degradation rate of OTC reached more than 90%. It is thus feasible to process OTC-containing wastewater and produce electricity using single-chamber MFCs, which provides a new concept for wastewater treatment.

  10. Combination of cathodic reduction with adsorption for accelerated removal of Cr(VI) through reticulated vitreous carbon electrodes modified with sulfuric acid-glycine co-doped polyaniline.

    PubMed

    Mo, Xi; Yang, Zhao-hui; Xu, Hai-yin; Zeng, Guang-ming; Huang, Jing; Yang, Xia; Song, Pei-pei; Wang, Li-ke

    2015-04-09

    Improving the reduction kinetics is crucial in the electroreduction process of Cr(VI). In this study, we developed a novel adsorption-electroreduction system for accelerated removal of Cr(VI) by employing reticulated vitreous carbon electrode modified with sulfuric acid-glycine co-doped polyaniline (RVC/PANI-SA-GLY). Firstly, response surface methodology confirmed the optimum polymerization condition of co-doped polyaniline for modifying electrodes (Aniline, sulfuric acid and glycine, respectively, of 0.2 mol/L, 0.85 mol/L, 0.93 mol/L) when untraditional dopant glycine was added. Subsequently, RVC/PANI-SA-GLY showed higher Cr(VI) removal percentages in electroreduction experiments over RVC electrode modified with sulfuric acid doped polyaniline (RVC/PANI-SA) and bare RVC electrode. In contrast to RVC/PANI-SA, the improvement by RVC/PANI-SA-GLY was more significant and especially obvious at more negative potential, lower initial Cr(VI) concentration, relatively less acidic solution and higher current densities, best achieving 7.84% higher removal efficiency with entire Cr(VI) eliminated after 900 s. Current efficiencies were likewise enhanced by RVC/PANI-SA-GLY under quite negative potentials. Fourier transform infrared (FTIR) and energy dispersive spectrometer (EDS) analysis revealed a possible adsorption-reduction mechanism of RVC/PANI-SA-GLY, which greatly contributed to the faster reduction kinetics and was probably relative to the absorption between protonated amine groups of glycine and HCrO4(-). Eventually, the stability of RVC/PANI-SA-GLY was proven relatively satisfactory. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Electrocatalytic activity of cobalt phosphide-modified graphite felt toward VO2+/VO2+ redox reaction

    NASA Astrophysics Data System (ADS)

    Ge, Zhijun; Wang, Ling; He, Zhangxing; Li, Yuehua; Jiang, Yingqiao; Meng, Wei; Dai, Lei

    2018-04-01

    A novel strategy for improving the electro-catalytic properties of graphite felt (GF) electrode in vanadium redox flow battery (VRFB) is designed by depositing cobalt phosphide (CoP) onto GF surface. The CoP powder is synthesized by direct carbonization of Co-based zeolitic imidazolate framework (ZIF-67) followed by phosphidation. Cyclic voltammetry results confirm that the CoP-modified graphite felt (GF-CoP) electrode has excellent reversibility and electro-catalytic activity to the VO2+/VO2+ cathodic reaction compared with the pristine GF electrode. The cell using GF-CoP electrode shows apparently higher discharge capacity over that based on GF electrode. The cell using GF-CoP electrode has the capacity of 67.2 mA h at 100 mA cm-2, 32.7 mA h larger than that using GF electrode. Compared with cell using GF electrode, the voltage efficiency of the cell based on GF-CoP electrode increases by 5.9% and energy efficiency by 5.4% at a current density of 100 mA cm-2. The cell using GF-CoP electrode can reach 94.31% capacity retention after 50 cycles at a current density of 30 mA cm-2. The results show that the CoP can effectively promote the VO2+/VO2+ redox reaction, implying that metal phosphides are a new kind of potential catalytic materials for VRFB.

  12. Study of the Electrocatalytic Activity of Cerium Oxide and Gold-Studded Cerium Oxide Nanoparticles Using a Sonogel-Carbon Material as Supporting Electrode: Electroanalytical Study in Apple Juice for Babies

    PubMed Central

    Abdelrahim, M. Yahia M.; Benjamin, Stephen R.; Cubillana-Aguilera, Laura Ma; Naranjo-Rodríguez, Ignacio; Hidalgo-Hidalgo de Cisneros, Josè L.; Delgado, Juan Josè; Palacios-Santander, Josè Ma

    2013-01-01

    The present work reports a study of the electrocatalytic activity of CeO2 nanoparticles and gold sononanoparticles (AuSNPs)/CeO2 nanocomposite, deposited on the surface of a Sonogel-Carbon (SNGC) matrix used as supporting electrode and the application of the sensing devices built with them to the determination of ascorbic acid (AA) used as a benchmark analyte. Cyclic voltammetry (CV) and differential pulse voltammetry (DPV) were used to investigate the electrocatalytic behavior of CeO2- and AuSNPs/CeO2-modified SNGC electrodes, utilizing different concentrations of CeO2 nanoparticles and different AuSNPs:CeO2 w/w ratios. The best detection and quantification limits, obtained for CeO2 (10.0 mg·mL−1)- and AuSNPs/CeO2 (3.25% w/w)-modified SNGC electrodes, were 1.59 × 10−6 and 5.32 × 10−6 M, and 2.93 × 10−6 and 9.77 × 10−6 M, respectively, with reproducibility values of 5.78% and 6.24%, respectively, for a linear concentration range from 1.5 μM to 4.0 mM of AA. The electrochemical devices were tested for the determination of AA in commercial apple juice for babies. The results were compared with those obtained by applying high performance liquid chromatography (HPLC) as a reference method. Recovery errors below 5% were obtained in most cases, with standard deviations lower than 3% for all the modified SNGC electrodes. Bare, CeO2- and AuSNPs/CeO2-modified SNGC electrodes were structurally characterized using scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). AuSNPs and AuSNPs/CeO2 nanocomposite were characterized by UV-vis spectroscopy and X-ray diffraction (XRD), and information about their size distribution and shape was obtained by transmission electron microscopy (TEM;. The advantages of employing CeO2 nanoparticles and AuSNPs/CeO2 nanocomposite in SNGC supporting material are also described. This research suggests that the modified electrode can be a very promising voltammetric sensor for the determination of electroactive species of interest in real samples. PMID:23584124

  13. Study of the electrocatalytic activity of cerium oxide and gold-studded cerium oxide nanoparticles using a Sonogel-Carbon material as supporting electrode: electroanalytical study in apple juice for babies.

    PubMed

    Abdelrahim, M Yahia M; Benjamin, Stephen R; Cubillana-Aguilera, Laura Ma; Naranjo-Rodríguez, Ignacio; de Cisneros, José L Hidalgo-Hidalgo; Delgado, Juan José; Palacios-Santander, José Ma

    2013-04-12

    The present work reports a study of the electrocatalytic activity of CeO2 nanoparticles and gold sononanoparticles (AuSNPs)/CeO2 nanocomposite, deposited on the surface of a Sonogel-Carbon (SNGC) matrix used as supporting electrode and the application of the sensing devices built with them to the determination of ascorbic acid (AA) used as a benchmark analyte. Cyclic voltammetry (CV) and differential pulse voltammetry (DPV) were used to investigate the electrocatalytic behavior of CeO2- and AuSNPs/CeO2-modified SNGC electrodes, utilizing different concentrations of CeO2 nanoparticles and different AuSNPs:CeO2 w/w ratios. The best detection and quantification limits, obtained for CeO2 (10.0 mg·mL(-1))- and AuSNPs/CeO2 (3.25% w/w)-modified SNGC electrodes, were 1.59 × 10(-6) and 5.32 × 10(-6) M, and 2.93 × 10(-6) and 9.77 × 10(-6) M, respectively, with reproducibility values of 5.78% and 6.24%, respectively, for a linear concentration range from 1.5 µM to 4.0 mM of AA. The electrochemical devices were tested for the determination of AA in commercial apple juice for babies. The results were compared with those obtained by applying high performance liquid chromatography (HPLC) as a reference method. Recovery errors below 5% were obtained in most cases, with standard deviations lower than 3% for all the modified SNGC electrodes. Bare, CeO2- and AuSNPs/CeO2-modified SNGC electrodes were structurally characterized using scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). AuSNPs and AuSNPs/CeO2 nanocomposite were characterized by UV-vis spectroscopy and X-ray diffraction (XRD), and information about their size distribution and shape was obtained by transmission electron microscopy (TEM). The advantages of employing CeO2 nanoparticles and AuSNPs/CeO2 nanocomposite in SNGC supporting material are also described. This research suggests that the modified electrode can be a very promising voltammetric sensor for the determination of electroactive species of interest in real samples.

  14. Block Copolymer Patterns as Templates for the Electrocatalyzed Deposition of Nanostructures on Electrodes and for the Generation of Surfaces of Controlled Wettability.

    PubMed

    Chandaluri, Chanchayya Gupta; Pelossof, Gilad; Tel-Vered, Ran; Shenhar, Roy; Willner, Itamar

    2016-01-20

    ITO electrodes modified with a nanopatterned film of polystyrene-block-poly(2-vinylpyridine), PS-b-P2VP, where the P2VP domains are quaternized with iodomethane, are used for selective deposition of redox-active materials. Electrochemical studies (cyclic voltammetry, Faradaic impedance measurements) indicate that the PS domains insulate the conductive surface toward redox labels in solution. In turn, the quaternized P2VP domains electrostatically attract negatively charged redox labels solubilized in the electrolyte solution, resulting in an effective electron transfer between the electrode and the redox label. This phenomenon is implemented for the selective deposition of the electroactive Prussian blue on the nanopatterned surface and for the electrochemical deposition of Au nanoparticles, modified with a monolayer of p-aminothiophenol/2-mercaptoethanesulfonic acid, on the quaternized P2VP domains. The patterned Prussian blue-modified surface enables controlling the wettability properties by the content of the electrochemically deposited Prussian blue. Controlled wettability is unattainable with the homopolymer-modified surface, attesting to the role of the nanopattern.

  15. Dispersion of bamboo type multi-wall carbon nanotubes in calf-thymus double stranded DNA.

    PubMed

    Primo, Emiliano N; Cañete-Rosales, Paulina; Bollo, Soledad; Rubianes, María D; Rivas, Gustavo A

    2013-08-01

    We report for the first time the use of double stranded calf-thymus DNA (dsDNA) to successfully disperse bamboo-like multi-walled carbon nanotubes (bCNT). The dispersion and the modified electrodes were studied by different spectroscopic, microscopic and electrochemical techniques. The drastic treatment for dispersing the bCNT (45min sonication in a 50% (v/v) ethanol:water solution), produces a partial denaturation and a decrease in the length of dsDNA that facilitates the dispersion of CNT and makes possible an efficient electron transfer of guanine residues to the electrode. A critical analysis of the influence of different experimental conditions on the efficiency of the dispersion and on the performance of glassy carbon electrodes (GCE) modified with bCNT-dsDNA dispersion is also reported. The electron transfer of redox probes and guanine residues was more efficient at GCE modified with bCNT dispersed in dsDNA than at GCE modified with hollow CNT (hCNT) dispersed in dsDNA, demonstrating the importance of the presence of bCNT. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. A polyamidoamine dendrimer-streptavidin supramolecular architecture for biosensor development.

    PubMed

    Soda, N; Arotiba, O A

    2017-12-01

    A novel polyamidoamine dendrimer-streptavidin supramolecular architecture suitable as a versatile platform for biosensor development is reported. The dendrimer was electrodeposited on a glassy carbon electrode via cyclic voltammetry. The dendrimer electrode was further modified with streptavidin by electrostatic attraction upon drop coating. The platform i.e. the dendrimer-streptavidin modified electrode was electrochemically interrogated in phosphate buffer, ferrocyanide and H 2 O 2 . The dendrimer-streptavidin platform was used in the preparation of a simple DNA biosensor as a proof of concept. The supramolecular architecture of dendrimer-streptavidin was stable, electroactive and thus lends itself as a versatile immobilisation layer for any biotinylated bioreceptors in biosensor development. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Anchor of Ni2+ on the Agmatine Sulfate-Modified Electrodes for the Determination of H2O2 in Food

    NASA Astrophysics Data System (ADS)

    Yan, Yuhua; Zhang, Zhonghui; Xiao, Mingshu; Zhou, Hualan

    2017-07-01

    A method was developed to conveniently and rapidly determine hydrogen peroxide (H2O2) in food. The glassy carbon electrode (GCE) modified with agmatine sulfate (AS) easily anchoring nickel ion was attached to AS with polyamine structure. As a result, more Ni2+ was obtained and transformed to Ni(OH)2/NiOOH on the AS-GCE, which caused the electrode to own much better electrocatalytic performance on H2O2. Based on these, the content of H2O2 in thin sheet of bean curd sample was detected with standard addition method, by which good results were obtained.

  18. An all-solid-state lithium/polyaniline rechargeable cell

    NASA Astrophysics Data System (ADS)

    Li, Changzhi; Peng, Xinsheng; Zhang, Borong; Wang, Baochen

    1992-07-01

    The performance of an all-solid-state cell having a lithium negative electrode, a modified polyethylene oxide (PEO)-epoxy resin (ER) electrolyte, and a polyaniline (PAn) positive electrode has been studied using cyclic voltammetry, charge/discharge cycling, and polarization curves at various temperatures. The redox reaction of the PAn electrode at the PAn/modified PEO-ER interface exhibits good reversibility. At 50-80 C, the Li/PEO-ER-LiClO4/PAn cell shows more than 40 charge/discharge cycles, 90 percent charge/discharge efficiency, and 54 W h kg discharge energy density (on PAn weight basis) at 50 micro-A between 2 and 4 V. The polarization performance of the battery improves steadily with increase in temperature.

  19. Comparison of Foam-Based and Spring-Loaded Dry EEG Electrodes with Wet Electrodes in Resting and Moving Conditions*

    PubMed Central

    Yeung, Arnold; Garudadri, Harinath; Van Toen, Carolyn; Mercier, Patrick; Balkan, Ozgur; Makeig, Scott; Virji-Babul, Naznin

    2018-01-01

    The introduction of dry electrodes for EEG measurements has opened up possibilities of recording EEG outside of standard clinical environments by reducing required preparation and maintenance. However, the signal quality of dry electrodes in comparison with wet electrodes has not yet been evaluated under activities of daily life (ADL) or high motion tasks. In this study, we compared the performances of foam-based and spring-loaded dry electrodes with wet electrodes under three different task conditions: resting state, walking, and cycling. Our analysis showed signals obtained by the 2 types of dry electrodes and obtained by wet electrodes displayed high correlation for all conditions, while being prone to similar environmental and electrode-based artifacts. Overall, our results suggest that dry electrodes have a similar signal quality in comparison to wet electrodes and may be more practical for use in mobile and real-time motion applications due to their convenience. In addition, we conclude that as with wet electrodes, post-processing can mitigate motion artifacts in ambulatory EEG acquisition. PMID:26737936

  20. Cerium-modified doped strontium titanate compositions for solid oxide fuel cell anodes and electrodes for other electrochemical devices

    DOEpatents

    Marina, Olga A [Richland, WA; Stevenson, Jeffry W [Richland, WA

    2010-03-02

    The present invention provides novel compositions that find advantageous use in making electrodes for electrochemical cells and electrochemical devices such as solid oxide fuel cells, electrolyzers, sensors, pumps and the like, the compositions comprising cerium-modified doped strontium titanate. The invention also provides novel methods for making and using anode material compositions and solid oxide fuel cells and solid oxide fuel cell assemblies having anodes comprising the compositions.

  1. Cerium-modified doped strontium titanate compositions for solid oxide fuel cell anodes and electrodes for other electrochemical devices

    DOEpatents

    Marina, Olga A [Richland, WA; Stevenson, Jeffry W [Richland, WA

    2010-11-23

    The present invention provides novel compositions that find advantageous use in making electrodes for electrochemical cells and electrochemical devices such as solid oxide fuel cells, electrolyzers, sensors, pumps and the like, the compositions comprising cerium-modified doped strontium titanate. The invention also provides novel methods for making and using anode material compositions and solid oxide fuel cells and solid oxide fuel cell assemblies having anodes comprising the compositions.

  2. Pencil graphite electrodes for improved electrochemical detection of oleuropein by the combination of Natural Deep Eutectic Solvents and graphene oxide.

    PubMed

    Gomez, Federico J V; Spisso, Adrian; Fernanda Silva, María

    2017-11-01

    A novel methodology is presented for the enhanced electrochemical detection of oleuropein in complex plant matrices by Graphene Oxide Pencil Grahite Electrode (GOPGE) in combination with a buffer modified with a Natural Deep Eutectic Solvent, containing 10% (v/v) of Lactic acid, Glucose and H 2 O (LGH). The electrochemical behavior of oleuropein in the modified-working buffer was examined using differential pulse voltammetry. The combination of both modifications, NADES modified buffer and nanomaterial modified electrode, LGH-GOPGE, resulted on a signal enhancement of 5.3 times higher than the bare electrode with unmodified buffer. A calibration curve of oleuropein was performed between 0.10 to 37 μM and a good linearity was obtained with a correlation coefficient of 0.989. Detection and quantification limits of the method were obtained as 30 and 102 nM, respectively. In addition, precision studies indicated that the voltammetric method was sufficiently repeatable, %RSD 0.01 and 3.16 (n = 5) for potential and intensity, respectively. Finally, the proposed electrochemical sensor was successfully applied to the determination of oleuropein in an olive leaf extract prepared by ultrasound-assisted extraction. The results obtained with the proposed electrochemical sensor were compared with Capillary Zone Electrophoresis analysis with satisfactory results. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Graphene frameworks synthetized with Na2CO3 as a renewable water-soluble substrate and their high rate capability for supercapacitors

    NASA Astrophysics Data System (ADS)

    Cui, Huijuan; Zheng, Jianfeng; Zhu, Yanyan; Wang, Zhijian; Jia, Suping; Zhu, Zhenping

    2015-10-01

    Substrates are normally required in the chemical synthesis of graphene to enhance its formation. However, removing substrates in the post purification stage is difficult, during which harsh reagents are used and the substrates are usually consumed undesirably. In this paper, we report that universal sodium carbonate (Na2CO3) particles can effectively promote the construction of well-structured graphene frameworks based on a quick thermal decomposition of fumaric acids. Notably, the Na2CO3 particles are easily separated from graphene through a simple and green method, namely, washing with water at room temperature. Together with the reused characteristic of the recovered Na2CO3 particles, this approach is undoubtedly beneficial to the low-cost and clean synthesis of graphene. Benefiting from the framework structure, the as-synthesized graphene exhibits excellent performance in the supercapacitor. The specific capacitance of the GFs-modified electrode was calculated to be 242 F g-1 at 0.5 A g-1, which was almost twice that of the RGO-modified electrode (134 F g-1). More importantly, the GFs-modified electrode maintained 92.6% retention of its initial specific capacitance (from current density of 0.5 to 16 A g-1), which was much higher than that of 2D graphene-modified electrode.

  4. para-Sulfonatocalix[6]arene-modified silver nanoparticles electrodeposited on glassy carbon electrode: preparation and electrochemical sensing of methyl parathion.

    PubMed

    Bian, Yinghui; Li, Chunya; Li, Haibing

    2010-05-15

    In this paper, a new electrochemical sensor, based on modified silver nanoparticles, was fabricated using one-step electrodeposition approach. The para-sulfonatocalix[6]arene-modified silver nanoparticles coated on glassy carbon electrode (pSC(6)-Ag NPs/GCE) was characterized by attenuated total reflection IR spectroscopy (ATR-IR), X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM), etc. The pSC(6) as the host are highly efficient to capture organophosphates (OPs), which dramatically facilitates the enrichment of nitroaromatic OPs onto the electrochemical sensor surface. The combination of the host-guest supramolecular structure and the excellent electrochemical catalytic activities of the pSC(6)-Ag NPs/GCE provides a fast, simple, and sensitive electrochemical method for detecting nitroaromatic OPs. In this work, methyl parathion (MP) was used as a nitroaromatic OP model for testing the proposed sensor. In comparison with Ag NPs-modified electrode, the cathodic peak current of MP was amplified significantly. Differential pulse voltammetry was used for the simultaneous determination of MP. Under optimum conditions, the current increased linearly with the increasing concentration of MP in the range of 0.01-80microM, with a detection limit of 4.0nM (S/N=3). The fabrication reproducibility and stability of the sensor is better than that of enzyme-based electrodes. The possible underlying mechanism is discussed.

  5. Biofouling resistance of boron-doped diamond neural stimulation electrodes is superior to titanium nitride electrodes in vivo.

    PubMed

    Meijs, S; Alcaide, M; Sørensen, C; McDonald, M; Sørensen, S; Rechendorff, K; Gerhardt, A; Nesladek, M; Rijkhoff, N J M; Pennisi, C P

    2016-10-01

    The goal of this study was to assess the electrochemical properties of boron-doped diamond (BDD) electrodes in relation to conventional titanium nitride (TiN) electrodes through in vitro and in vivo measurements. Electrochemical impedance spectroscopy, cyclic voltammetry and voltage transient (VT) measurements were performed in vitro after immersion in a 5% albumin solution and in vivo after subcutaneous implantation in rats for 6 weeks. In contrast to the TiN electrodes, the capacitance of the BDD electrodes was not significantly reduced in albumin solution. Furthermore, BDD electrodes displayed a decrease in the VTs and an increase in the pulsing capacitances immediately upon implantation, which remained stable throughout the whole implantation period, whereas the opposite was the case for the TiN electrodes. These results reveal that BDD electrodes possess a superior biofouling resistance, which provides significantly stable electrochemical properties both in protein solution as well as in vivo compared to TiN electrodes.

  6. Biomedical engineering tasks. [electrode development for electrocardiography and electroencephalography

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Electrocardiographic and vectorcardiographic bioinstrumentation work centered on the development of a new electrode system harness for Project Skylab. Evaluation of several silver electrode configurations proved superior impedance voltage performance for silver/silver chloride electrodes mounted flush by using a paste adhesive. A portable ECG processor has been designed and a breadboard unit has been built to sample ECG input data at a rate of 500 samples per second for arrhythmia detection. A small real time display driver program has been developed for statistical analysis on selected QPS features. Engineering work on a sleep monitoring cap assembly continued.

  7. Activated carbon/manganese dioxide hybrid electrodes for high performance thin film supercapacitors

    NASA Astrophysics Data System (ADS)

    Jang, Yunseok; Jo, Jeongdai; Jang, Hyunjung; Kim, Inyoung; Kang, Dongwoo; Kim, Kwang-Young

    2014-06-01

    We combine the activated carbon (AC) and the manganese dioxide (MnO2) in a AC/MnO2 hybrid electrode to overcome the low capacitance of activated carbon and MnO2 by exploiting the large surface area of AC and the fast reversible redox reaction of MnO2. An aqueous permanganate (MnO4 -) is converted to MnO2 on the surface of the AC electrode by dipping the AC electrode into an aqueous permanganate solution. The AC/MnO2 hybrid electrode is found to display superior specific capacitance of 290 F/g. This shows that supercapacitors classified as electric double layer capacitors and pseudocapacitors can be combined together.

  8. Direct Measurement of Cyclic Current-Voltage Responses of Integral Membrane Proteins at a Self-Assembled Lipid-Bilayer-Modified Electrode: Cytochrome f and Cytochrome c Oxidase

    NASA Astrophysics Data System (ADS)

    Salamon, Z.; Hazzard, J. T.; Tollin, G.

    1993-07-01

    Direct cyclic voltage-current responses, produced in the absence of redox mediators, for two detergent-solubilized integral membrane proteins, spinach cytochrome f and beef heart cytochrome c oxidase, have been obtained at an optically transparent indium oxide electrode modified with a self-assembled lipid-bilayer membrane. The results indicate that both proteins interact with the lipid membrane so as to support quasi-reversible electron transfer redox reactions at the semiconductor electrode. The redox potentials that were obtained from analysis of the cyclic "voltammograms," 365 mV for cytochrome f and 250 and 380 mV for cytochrome c oxidase (vs. normal hydrogen electrode), compare quite well with the values reported by using conventional titration methods. The ability to obtain direct electrochemical measurements opens up another approach to the investigation of the properties of integral membrane redox proteins.

  9. Graphite felt modified with bismuth nanoparticles as negative electrode in a vanadium redox flow battery.

    PubMed

    Suárez, David J; González, Zoraida; Blanco, Clara; Granda, Marcos; Menéndez, Rosa; Santamaría, Ricardo

    2014-03-01

    A graphite felt decorated with bismuth nanoparticles was studied as negative electrode in a vanadium redox flow battery (VRFB). The results confirm the excellent electrochemical performance of the bismuth modified electrode in terms of the reversibility of the V(3+) /V(2+) redox reactions and its long-term cycling performance. Moreover a mechanism that explains the role that Bi nanoparticles play in the redox reactions in this negative half-cell is proposed. Bi nanoparticles favor the formation of BiHx , an intermediate that reduces V(3+) to V(2+) and, therefore, inhibits the competitive irreversible reaction of hydrogen formation (responsible for the commonly observed loss of Coulombic efficiency of VRFBs). Thus, the total charge consumed during the cathodic sweep in this electrode is used to reduce V(3+) to V(2+) , resulting in a highly reversible and efficient process. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Glucose biosensing using glassy carbon electrode modified with polyhydroxy-C60, glucose oxidase and ionic-liquid.

    PubMed

    Yang, Tian; Yang, Xiao-Lu; Zhang, Yu-Shuai; Xiao, BaoLin; Hong, Jun

    2014-01-01

    Direct electrochemistry of glucose oxidase (GOD) was achieved when an ionic liquid/GOD-Polyhydroxy-C60 functional membrane was confined on a glassy carbon electrode (GCE). The cyclic voltammograms (CVs) of the modified GCE showed a pair of redox peaks with a formal potential (E°') of - 329 ± 2 mV. The heterogeneous electron transfer constant (k(s)) was 1.43 s-1. The modified GCE response to glucose was linear in the range from 0.02 to 2.0 mM. The detection limit was 1 μM. The apparent Michaelis-Menten constant (K(m)(app)) was 1.45 mM.

  11. Chemically and compositionally modified solid solution disordered multiphase nickel hydroxide positive electrode for alkaline rechargeable electrochemical cells

    DOEpatents

    Ovshinsky, Stanford R.; Corrigan, Dennis; Venkatesan, Srini; Young, Rosa; Fierro, Christian; Fetcenko, Michael A.

    1994-01-01

    A high capacity, long cycle life positive electrode for use in an alkaline rechargeable electrochemical cell comprising: a solid solution nickel hydroxide material having a multiphase structure that comprises at least one polycrystalline .gamma.-phase including a polycrystalline .gamma.-phase unit cell comprising spacedly disposed plates with at least one chemical modifier incorporated around the plates, the plates having a range of stable intersheet distances corresponding to a 2.sup.+ oxidation state and a 3.5.sup.+, or greater, oxidation state; and at least one compositional modifier incorporated into the solid solution nickel hydroxide material to promote the multiphase structure.

  12. Degradation of paracetamol by advance oxidation processes using modified reticulated vitreous carbon electrodes with TiO(2) and CuO/TiO(2)/Al(2)O(3).

    PubMed

    Arredondo Valdez, H C; García Jiménez, G; Gutiérrez Granados, S; Ponce de León, C

    2012-11-01

    The degradation of paracetamol in aqueous solutions in the presence of hydrogen peroxide was carried out by photochemistry, electrolysis and photoelectrolysis using modified 100 pores per inch reticulated vitreous carbon electrodes. The electrodes were coated with catalysts such as TiO(2) and CuO/TiO(2)/Al(2)O(3) by electrophoresis followed by heat treatment. The results of the electrolysis with bare reticulated vitreous carbon electrodes show that 90% paracetamol degradation occurs in 4 h at 1.3 V vs. SCE, forming intermediates such as benzoquinone and carboxylic acids followed by their complete mineralisation. When the electrolysis was carried out with the modified electrodes such as TiO(2)/RVC, 90% degradation was achieved in 2 h while with CuO/TiO(2)/Al(2)O(3)/RVC, 98% degradation took only 1 h. The degradation was also carried out in the presence of UV reaching 95% degradation with TiO(2)/RVC/UV and 99% with CuO/TiO(2)/Al(2)O(3)/RVC/UV in 1 h. The reactions were followed by spectroscopy UV-Vis, HPLC and total organic carbon analysis. These studies show that the degradation of paracetamol follows a pseudo-first order reaction kinetics. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Electrocatalytic oxidation of dopamine based on non-covalent functionalization of manganese tetraphenylporphyrin/reduced graphene oxide nanocomposite.

    PubMed

    Sakthinathan, Subramanian; Lee, Hsin Fang; Chen, Shen-Ming; Tamizhdurai, P

    2016-04-15

    In the present work, a reduced graphene oxide (RGO) supported manganese tetraphenylporphyrin (Mn-TPP) nanocomposite was electrochemically synthesized and used for the highly selective and sensitive detection of dopamine (DA). The nuclear magnetic resonance, scanning electron microscopy and elemental analysis were confirmed the successful formation of RGO/Mn-TPP nanocomposite. The prepared RGO/Mn-TPP nanocomposite modified electrode exhibited an enhanced electrochemical response to DA with less oxidation potential and enhanced response current. The electrochemical studies revealed that the oxidation of the DA at the composite electrode is a surface controlled process. The cyclic voltammetry, differential pulse voltammetry and amperometry methods were enable to detect DA. The working linear range of the electrode was observed from 0.3 to 188.8 μM, limit of detection was 8 nM and the sensitivity was 2.606 μA μM(-1) cm(-2). Here, the positively charged DA and negatively charged porphyrin modified RGO can accelerate the electrocatalysis of DA via electrostatic attraction, while the negatively charged ascorbic acid (AA) repulsed by the negatively charged electrode surface which supported for good selectivity. The good recovery results obtained for the determination of DA present in DA injection samples and human pathological sample further revealed the good practicality of RGO/Mn-TPP nanocomposite film modified electrode. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Biofuel cells based on direct enzyme-electrode contacts using PQQ-dependent glucose dehydrogenase/bilirubin oxidase and modified carbon nanotube materials.

    PubMed

    Scherbahn, V; Putze, M T; Dietzel, B; Heinlein, T; Schneider, J J; Lisdat, F

    2014-11-15

    Two types of carbon nanotube electrodes (1) buckypaper (BP) and (2) vertically aligned carbon nanotubes (vaCNT) have been used for elaboration of glucose/O2 enzymatic fuel cells exploiting direct electron transfer. For the anode pyrroloquinoline quinone dependent glucose dehydrogenase ((PQQ)GDH) has been immobilized on [poly(3-aminobenzoic acid-co-2-methoxyaniline-5-sulfonic acid), PABMSA]-modified electrodes. For the cathode bilirubin oxidase (BOD) has been immobilized on PQQ-modified electrodes. PABMSA and PQQ act as promoter for enzyme bioelectrocatalysis. The voltammetric characterization of each electrode shows current densities in the range of 0.7-1.3 mA/cm(2). The BP-based fuel cell exhibits maximal power density of about 107 µW/cm(2) (at 490 mV). The vaCNT-based fuel cell achieves a maximal power density of 122 µW/cm(2) (at 540 mV). Even after three days and several runs of load a power density over 110 µW/cm(2) is retained with the second system (10mM glucose). Due to a better power exhibition and an enhanced stability of the vaCNT-based fuel cells they have been studied in human serum samples and a maximal power density of 41 µW/cm(2) (390 mV) can be achieved. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Impedance spectroscopy study of a catechol-modified activated carbon electrode as active material in electrochemical capacitor

    NASA Astrophysics Data System (ADS)

    Cougnon, C.; Lebègue, E.; Pognon, G.

    2015-01-01

    Modified activated carbon (Norit S-50) electrodes with electrochemical double layer (EDL) capacitance and redox capacitance contributions to the electric charge storage were tested in 1 M H2SO4 to quantify the benefit and the limitation of the surface redox reactions on the electrochemical performances of the resulting pseudo-capacitive materials. The electrochemical performances of an electrochemically anodized carbon electrode and a catechol-modified carbon electrode, which make use both EDL capacitance of the porous structure of the carbon and redox capacitance, were compared to the performances obtained for the pristine carbon. Nitrogen gas adsorption measurements have been used for studying the impact of the grafting on the BET surface area, pore size distribution, pore volume and average pore diameter. The electrochemical behavior of carbon materials was studied by cyclic voltammetry and electrochemical impedance spectroscopy (EIS). The EIS data were discussed by using a complex capacitance model that allows defining the characteristic time constant, the global capacitance and the frequency at which the maximum charge stored is reached. The EIS measurements were achieved at different dc potential values where a redox activity occurs and the evolution of the capacitance and the capacitive relaxation time with the electrode potential are presented. Realistic galvanostatic charge/discharge measurements performed at different current rates corroborate the results obtained by impedance.

  16. Performance-Enhanced Activated Carbon Electrodes for Supercapacitors Combining Both Graphene-Modified Current Collectors and Graphene Conductive Additive.

    PubMed

    Wang, Rubing; Qian, Yuting; Li, Weiwei; Zhu, Shoupu; Liu, Fengkui; Guo, Yufen; Chen, Mingliang; Li, Qi; Liu, Liwei

    2018-05-15

    Graphene has been widely used in the active material, conductive agent, binder or current collector for supercapacitors, due to its large specific surface area, high conductivity, and electron mobility. However, works simultaneously employing graphene as conductive agent and current collector were rarely reported. Here, we report improved activated carbon (AC) electrodes (AC@G@NiF/G) simultaneously combining chemical vapor deposition (CVD) graphene-modified nickel foams (NiF/Gs) current collectors and high quality few-layer graphene conductive additive instead of carbon black (CB). The synergistic effect of NiF/Gs and graphene additive makes the performances of AC@G@NiF/G electrodes superior to those of electrodes with CB or with nickel foam current collectors. The performances of AC@G@NiF/G electrodes show that for the few-layer graphene addition exists an optimum value around 5 wt %, rather than a larger addition of graphene, works out better. A symmetric supercapacitor assembled by AC@G@NiF/G electrodes exhibits excellent cycling stability. We attribute improved performances to graphene-enhanced conductivity of electrode materials and NiF/Gs with 3D graphene conductive network and lower oxidation, largely improving the electrical contact between active materials and current collectors.

  17. Electrochemical characterisation and anodic stripping voltammetry at mesoporous platinum rotating disc electrodes.

    PubMed

    Lozano-Sanchez, Pablo; Elliott, Joanne M

    2008-02-01

    Using the technique of liquid crystal templating a rotating disc electrode (RDE) was modified with a high surface area mesoporous platinum film. The surface area of the electrode was characterised by acid voltammetry, and found to be very high (ca. 86 cm(2)). Acid characterisation of the electrode produced distorted voltammograms was interpreted as being due to the extremely large surface area which produced a combination of effects such as localised pH change within the pore environment and also ohmic drop effects. Acid voltammetry in the presence of two different types of surfactant, namely Tween 20 and Triton X-100, suggested antifouling properties associated with the mesoporous deposit. Further analysis of the modified electrode using a redox couple in solution showed typical RDE behaviour although extra capacitive currents were observed due to the large surface area of the electrode. The phenomenon of underpotential deposition was exploited for the purpose of anodic stripping voltammetry and results were compared with data collected for microelectrodes. Underpotential deposition of metal ions at the mesoporous RDE was found to be similar to that at conventional platinum electrodes and mesoporous microelectrodes although the rate of surface coverage was found to be slower at a mesoporous RDE. It was found that a mesoporous RDE forms a suitable system for quantification of silver ions in solution.

  18. Performance-Enhanced Activated Carbon Electrodes for Supercapacitors Combining Both Graphene-Modified Current Collectors and Graphene Conductive Additive

    PubMed Central

    Wang, Rubing; Qian, Yuting; Li, Weiwei; Zhu, Shoupu; Liu, Fengkui; Guo, Yufen; Chen, Mingliang; Li, Qi; Liu, Liwei

    2018-01-01

    Graphene has been widely used in the active material, conductive agent, binder or current collector for supercapacitors, due to its large specific surface area, high conductivity, and electron mobility. However, works simultaneously employing graphene as conductive agent and current collector were rarely reported. Here, we report improved activated carbon (AC) electrodes (AC@G@NiF/G) simultaneously combining chemical vapor deposition (CVD) graphene-modified nickel foams (NiF/Gs) current collectors and high quality few-layer graphene conductive additive instead of carbon black (CB). The synergistic effect of NiF/Gs and graphene additive makes the performances of AC@G@NiF/G electrodes superior to those of electrodes with CB or with nickel foam current collectors. The performances of AC@G@NiF/G electrodes show that for the few-layer graphene addition exists an optimum value around 5 wt %, rather than a larger addition of graphene, works out better. A symmetric supercapacitor assembled by AC@G@NiF/G electrodes exhibits excellent cycling stability. We attribute improved performances to graphene-enhanced conductivity of electrode materials and NiF/Gs with 3D graphene conductive network and lower oxidation, largely improving the electrical contact between active materials and current collectors. PMID:29762528

  19. Study of the interaction of 6-mercaptopurine with protein by microdialysis coupled with LC and electrochemical detection based on functionalized multi-wall carbon nanotubes modified electrode.

    PubMed

    Cao, Xu-Ni; Lin, Li; Zhou, Yu-Yan; Zhang, Wen; Shi, Guo-Yue; Yamamoto, Katsunobu; Jin, Li-Tong

    2003-07-14

    Microdialysis sampling coupled with liquid chromatography and electrochemical detection (LC-ECD) was developed and applied to study the interaction of 6-Mercaptopurine (6-MP) with bovine serum albumin (BSA). In the LC-ECD, the multi-wall carbon nanotubes fuctionalized with carboxylic groups modified electrode (MWNT-COOH CME) was used as the working electrode for the determination of 6-MP. The results indicated that this chemically modified electrode (CME) exhibited efficiently electrocatalytic oxidation for 6-MP with relatively high sensitivity, stability and long-life. The peak currents of 6-MP were linear to its concentrations ranging from 4.0 x 10(-7) to 1.0 x 10(-4) mol l(-1) with the calculated detection limit (S/N = 3) of 2.0 x 10(-7) mol l(-1). The method had been successfully applied to assess the association constant (K) and the number of the binding sites (n) on a BSA molecular, which calculated by Scatchard equation, were 3.97 x 10(3) mol(-1) l and 1.51, respectively. This method provided a fast, sensible and simple technique for the study of drug-protein interactions.

  20. Preparation of Cu₂O-Reduced Graphene Nanocomposite Modified Electrodes towards Ultrasensitive Dopamine Detection.

    PubMed

    He, Quanguo; Liu, Jun; Liu, Xiaopeng; Li, Guangli; Deng, Peihong; Liang, Jing

    2018-01-12

    Cu₂O-reduced graphene oxide nanocomposite (Cu₂O-RGO) was used to modify glassy carbon electrodes (GCE), and applied for the determination of dopamine (DA). The microstructure of Cu₂O-RGO nanocomposite material was characterized by scanning electron microscope. Then the electrochemical reduction condition for preparing Cu₂O-RGO/GCE and experimental conditions for determining DA were further optimized. The electrochemical behaviors of DA on the bare electrode, RGO- and Cu₂O-RGO-modified electrodes were also investigated using cyclic voltammetry in phosphate-buffered saline solution (PBS, pH 3.5). The results show that the oxidation peaks of ascorbic acid (AA), dopamine (DA), and uric acid (UA) could be well separated and the peak-to-peak separations are 204 mV (AA-DA) and 144 mV (DA-UA), respectively. Moreover, the linear response ranges for the determination of 1 × 10 -8 mol/L~1 × 10 -6 mol/L and 1 × 10 -6 mol/L~8 × 10 -5 mol/L with the detection limit 6.0 × 10 -9 mol/L (S/N = 3). The proposed Cu₂O-RGO/GCE was further applied to the determination of DA in dopamine hydrochloride injections with satisfactory results.

  1. A new electrochemical sensor for OH radicals detection.

    PubMed

    Gualandi, Isacco; Tonelli, Domenica

    2013-10-15

    A new, cheap modified electrode for indirect detection of OH radical is described. A glassy carbon (GC) electrode was modified with a polyphenol film prepared by oxidative potentiostatic electropolymerization of 0.05 M phenol in 1M H2SO4. The film having a thickness of ~10nm perfectly covered the GC surface and inhibited the charge transfer of many redox species. The degradation of the polyphenol film, that was induced by OH radicals generated by Fenton reaction or by H2O2 photolysis, is the analytical signal and it was evaluated by cyclic voltammetry and chronoamperometry using the redox probe Ru(NH3)6(3+). Some simulations of the kinetics of the reactions occurring in the solution bulk and near the electrode surface were carried out to fully understand the processes that lead to the analytical signal. The modified electrode was used to evaluate the performances of different TiO2-based photocatalysts and the results were successfully compared with those obtained from a traditional HPLC method that is based on the determination of the hydroxylation products of salicylic acid. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Fullerene-C60-modified electrode as a sensitive voltammetric sensor for detection of nandrolone--an anabolic steroid used in doping.

    PubMed

    Goyal, Rajendra N; Gupta, Vinod K; Bachheti, Neeta

    2007-07-30

    The electrochemical behaviour of nandrolone is investigated by cyclic, differential pulse and square-wave voltammetry in phosphate buffer system at fullerene-C60-modified electrode. The modified electrode shows an excellent electrocatalytic activity towards the oxidation of nandrolone resulting in a marked lowering in the peak potential and considerable improvement of the peak current as compared to the electrochemical activity at the bare glassy carbon electrode. The oxidation process is shown to be irreversible and diffusion-controlled. A linear range of 50 microM to 0.1 nM is obtained along with a detection limit and sensitivity of 0.42 nM and 0.358 nA nM(-1), respectively, in square-wave voltammetric technique. A diffusion coefficient of 4.13x10(-8) cm2 s(-1) was found for nandrolone using chronoamperometry. The effect of interferents, stability and reproducibility of the proposed method were also studied. The described method was successfully employed for the determination of nandrolone in human serum and urine samples. A cross-validation of observed results by GC-MS indicates that the results are in good agreement with each other.

  3. Improved photocurrent of a poly (3,4-ethylenedioxythiophene)-ClO₄⁻/TiO₂ thin film-modified counter electrode for dye-sensitized solar cells.

    PubMed

    Sakurai, Sho; Kawamata, Yuka; Takahashi, Masashi; Kobayashi, Koichi

    2011-01-01

    We prepared a poly(3,4-ethylenedioxythiophene) (PEDOT)-ClO₄⁻-supported TiO₂ thin-film electrode as a counter electrode on a transparent conductive oxide glass electrode for a dye-sensitized solar cell (DSSC) using a combination of sol-gel and electropolymerization methods. The photocurrent-voltage characteristics indicate that DSSCs with PEDOT-ClO₄⁻/TiO₂ thin-film counter electrodes had a high photovoltaic conversion efficiency similar to that of PEDOT-ClO₄⁻/TiO₂ particle composite-film electrodes. Furthermore, it was found that the photocurrent was increased by attaching a reflector to the opposite side of the transparent counter electrode.

  4. Embedded Touch Sensing Circuit Using Mutual Capacitance for Active-Matrix Organic Light-Emitting Diode Display

    NASA Astrophysics Data System (ADS)

    Park, Young-Ju; Seok, Su-Jeong; Park, Sang-Ho; Kim, Ohyun

    2011-03-01

    We propose and simulate an embedded touch sensing circuit for active-matrix organic light-emitting diode (AMOLED) displays. The circuit consists of three thin-film transistors (TFTs), one fixed capacitor, and one variable capacitor. AMOLED displays do not have a variable capacitance characteristic, so we realized a variable capacitor to detect touches in the sensing pixel by exploiting the change in the mutual capacitance between two electrodes that is caused by touch. When a dielectric substance approaches two electrodes, the electric field is shunted so that the mutual capacitance decreases. We use the existing TFT process to form the variable capacitor, so no additional process is needed. We use advanced solid-phase-crystallization TFTs because of their stability and uniformity. The proposed circuit detects multi-touch points by a scanning process.

  5. Efficient recyclable organic solar cells on cellulose nanocrystal substrates with a conducting polymer top electrode deposited by film-transfer lamination

    Treesearch

    Yinhua Zhou; Talha M. Khan; Jen-Chieh Liu; Canek Fuentes-Hernandez; Jae Won Shim; Ehsan Najafabadi; Jeffrey P. Youngblood; Robert J. Moon; Bernard Kippelen

    2014-01-01

    We report on efficient solar cells on recyclable cellulose nanocrystal (CNC) substrates with a new device structure wherein polyethylenimine-modified Ag is used as the bottom electron-collecting electrode and high-conductivity poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) (PEDOT:PSS, PH1000) is used as the semitransparent top holecollecting electrode. The...

  6. Characteristics of a corona discharge with a hot corona electrode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kulumbaev, E. B.; Lelevkin, V. M.; Niyazaliev, I. A.

    The effect of the temperature of the corona electrode on the electrical characteristics of a corona discharge was studied experimentally. A modified Townsend formula for the current-voltage characteristic of a one-dimensional corona is proposed. Gasdynamic and thermal characteristics of a positive corona discharge in a coaxial electrode system are calculated. The calculated results are compared with the experimental data.

  7. RuO2/Activated Carbon Composite Electrode Prepared by Modified Colloidal Procedure and Thermal Decomposition Method

    NASA Astrophysics Data System (ADS)

    Li, Xiang; Zheng, Feng; Gan, Weiping; Luo, Xun

    2016-01-01

    RuO2/activated carbon (AC) composite electrode was prepared by a modified colloidal procedure and a thermal decomposition method. The precursor for RuO2/AC was coated on tantalum sheet and annealed at 150°C to 190°C for 3 h to develop thin-film electrode. The microstructure and morphology of the RuO2/AC film were characterized by thermogravimetric analysis (TGA), x-ray diffraction (XRD) analysis, and scanning electron microscopy (SEM). The TGA results showed the maximum loss of RuO2/AC composite film at 410°C, with residual RuO2 of 23.17 wt.%. The amorphous phase structure of the composite was verified by XRD analysis. SEM analysis revealed that fine RuO2 particles were dispersed in an activated carbon matrix after annealing. The electrochemical properties of RuO2/AC electrode were examined by cycling voltammetry, galvanostatic charge-discharge, and cyclic behavior measurements. The specific capacitance of RuO2/AC electrode reached 245 F g-1. The cyclic behavior of RuO2/AC electrode was stable. Optimal annealing was achieved at 170°C for 3 h.

  8. Fabrication and Characterization of a Stabilized Thin Film Ag/AgCl Reference Electrode Modified with Self-Assembled Monolayer of Alkane Thiol Chains for Rapid Biosensing Applications.

    PubMed

    Rahman, Tanzilur; Ichiki, Takanori

    2017-10-13

    The fabrication of miniaturized electrical biosensing devices can enable the rapid on-chip detection of biomarkers such as miRNA molecules, which is highly important in early-stage cancer detection. The challenge in realizing such devices remains in the miniaturization of the reference electrodes, which is an integral part of electrical detection. Here, we report on a novel thin film Ag/AgCl reference electrode (RE) that has been fabricated on top of a Au-sputtered glass surface, which was coated with a self-assembled monolayer (SAM) of 6-mercepto-1-hexanol (MCH). The electrode showed very little measurement deviation (-1.5 mv) from a commercial Ag/AgCl reference electrode and exhibited a potential drift of only ± 0.2 mV/h. In addition, the integration of this SAM-modified microfabricated thin film RE enabled the rapid detection (<30 min) of miRNA (let-7a). The electrode can be integrated seamlessly into a microfluidic device, allowing the highly stable and fast measurement of surface potential and is expected to be very useful for the development of miniature electrical biosensors.

  9. Electrochemical properties of the erbium-chitosan-fluorine-modified PbO2 electrode for the degradation of 2,4-dichlorophenol in aqueous solution.

    PubMed

    Wang, Ying; Shen, Zhenyao; Li, Yang; Niu, Junfeng

    2010-05-01

    The erbium (Er)-chitosan-fluorine (F) modified PbO(2) electrode was prepared by electrodeposition method, and its use for adsorption and electrochemical degradation of 2,4-dichlorophenol (2,4-DCP) in aqueous solution was compared with F-PbO(2) and Er-F-PbO(2) electrodes in a batch experiment. The electrodes were characterized by scanning electron microscopy, X-ray diffraction and cyclic voltammetry. Degradation of 2,4-DCP depending on Er and chitosan contents was discussed. The results showed that Er(2)O(3) and chitosan were scattered between the prevailing crystal structure of beta-PbO(2) and thus decreased the internal stress of PbO(2) film. Prior to each electrolysis, the modified PbO(2) anode was first pre-saturated with 2,4-DCP solution for 360 min to preclude the 2,4-DCP decrease due to adsorption. Among the electrodes examined in our study, the highest adsorption and electrochemical degradation for 2,4-DCP and TOC removals that are due to oxidation and adsorption of the organic products onto the chitosan was observed on Er-chitosan-F-PbO(2) electrode. At an applied current density of 5 mAcm(-2), the removal percentages of 2,4-DCP and TOC (solution volume: 180 mL, initial 2,4-DCP concentration: 90 mgL(-1)) were 95% after 120 min and 53% after 360 min, respectively. At Er amount of 10mM in the precursor coating solution, the degradation and mineralization removal for 2,4-DCP on the Er-F-PbO(2) electrode reached a maximum. At chitosan amount of 5 gL(-1), the highest TOC removal on the Er-chitosan-F-PbO(2) electrode was observed. Intermediates mainly including aliphatic carboxylic acids were examined and a possible degradation pathway for 2,4-DCP in aqueous solution involving dechlorination and hydroxylation reactions was proposed. Copyright 2010 Elsevier Ltd. All rights reserved.

  10. Temperature field analysis for PZT pyroelectric cells for thermal energy harvesting.

    PubMed

    Hsiao, Chun-Ching; Ciou, Jing-Chih; Siao, An-Shen; Lee, Chi-Yuan

    2011-01-01

    This paper proposes the idea of etching PZT to improve the temperature variation rate of a thicker PZT sheet in order to enhance the energy conversion efficiency when used as pyroelectric cells. A partially covered electrode was proven to display a higher output response than a fully covered electrode did. A mesh top electrode monitored the temperature variation rate and the electrode area. The mesh electrode width affected the distribution of the temperature variation rate in a thinner pyroelectric material. However, a pyroelectric cell with a thicker pyroelectric material was beneficial in generating electricity pyroelectrically. The PZT sheet was further etched to produce deeper cavities and a smaller electrode width to induce lateral temperature gradients on the sidewalls of cavities under homogeneous heat irradiation, enhancing the temperature variation rate.

  11. Temperature Field Analysis for PZT Pyroelectric Cells for Thermal Energy Harvesting

    PubMed Central

    Hsiao, Chun-Ching; Ciou, Jing-Chih; Siao, An-Shen; Lee, Chi-Yuan

    2011-01-01

    This paper proposes the idea of etching PZT to improve the temperature variation rate of a thicker PZT sheet in order to enhance the energy conversion efficiency when used as pyroelectric cells. A partially covered electrode was proven to display a higher output response than a fully covered electrode did. A mesh top electrode monitored the temperature variation rate and the electrode area. The mesh electrode width affected the distribution of the temperature variation rate in a thinner pyroelectric material. However, a pyroelectric cell with a thicker pyroelectric material was beneficial in generating electricity pyroelectrically. The PZT sheet was further etched to produce deeper cavities and a smaller electrode width to induce lateral temperature gradients on the sidewalls of cavities under homogeneous heat irradiation, enhancing the temperature variation rate. PMID:22346652

  12. Nickel hydroxide nanoparticles-reduced graphene oxide nanosheets film: layer-by-layer electrochemical preparation, characterization and rifampicin sensory application.

    PubMed

    Rastgar, Shokoufeh; Shahrokhian, Saeed

    2014-02-01

    Electrochemical deposition, as a well-controlled synthesis procedure, has been used for subsequently layer-by-layer preparation of nickel hydroxide nanoparticle-reduced graphene oxide nanosheets (Ni(OH)2-RGO) on a graphene oxide (GO) film pre-cast on a glassy carbon electrode surface. The surface morphology and nature of the nano-hybrid film (Ni(OH)2-RGO) was thoroughly characterized by scanning electron and atomic force microscopy, spectroscopy and electrochemical techniques. The modified electrode appeared as an effective electro-catalytic model for analysis of rifampicin (RIF) by using linear sweep voltammetry (LSV). The prepared modified electrode exhibited a distinctly higher activity for electro-oxidation of RIF than either GO, RGO nanosheets or Ni(OH)2 nanoparticles. Enhancement of peak currents is ascribed to the fast heterogeneous electron transfer kinetics that arise from the synergistic coupling between the excellent properties of RGO nanosheets (such as high density of edge plane sites, subtle electronic characteristics and attractive π-π interaction) and unique properties of metal nanoparticles. Under the optimized analysis conditions, the modified electrode showed two oxidation processes for rifampicin at potentials about 0.08 V (peak I) and 0.69 V (peak II) in buffer solution of pH 7.0 with a wide linear dynamic range of 0.006-10.0 µmol L(-1) and 0.04-10 µmol L(-1) with a detection limit of 4.16 nmol L(-1) and 2.34 nmol L(-1) considering peaks I and II as an analytical signal, respectively. The results proved the efficacy of the fabricated modified electrode for simple, low cost and highly sensitive medicine sensor well suited for the accurate determinations of trace amounts of rifampicin in the pharmaceutical and clinical preparations. © 2013 Elsevier B.V. All rights reserved.

  13. Nonenzymatic electrochemical detection of glucose using well-distributed nickel nanoparticles on straight multi-walled carbon nanotubes.

    PubMed

    Nie, Huagui; Yao, Zhen; Zhou, Xuemei; Yang, Zhi; Huang, Shaoming

    2011-12-15

    A nonenzymatic electrochemical sensor device was fabricated for glucose detection based on nickel nanoparticles (NiNPs)/straight multi-walled carbon nanotubes (SMWNTs) nanohybrids, which were synthesized through in situ precipitation procedure. SMWNTs can be easily dispersed in solution after mild sonication pretreatment, which facilitates the precursor of NiNPs binding to their surface and results in the homogeneous distribution of NiNPs on the surface of SMWNTs. The morphology and component of the nanohybrids were characterized by scanning electron microscopy (SEM) and X-ray powder diffraction (XRD), respectively. Cyclic voltammetry (CV) and amperometry were used to evaluate the catalytic activity of the NiNPs/SMWNTs nanohybrids modified electrode towards glucose. It was found that the nanohybrids modified electrode showed remarkably enhanced electrocatalytic activity towards the oxidation of glucose in alkaline solution compared to that of the bare glass carbon electrode (GCE), the NiNPs and the SMWNTs modified electrode, attributing to the synergistic effect of SMWNTs and Ni(2+)/Ni(3+) redox couple. Under the optimal detection conditions, the as-prepared sensors exhibited linear behavior in the concentration range from 1 μM to 1 mM for the quantification of glucose with a limit of detection of 500 nM (3σ). Moreover, the NiNPs/SMWNTs modified electrode was also relatively insensitive to commonly interfering species such as ascorbic acid (AA), uric acid (UA), dopamine (DA), galactose (GA), and xylose (XY). The robust selectivities, sensitivities, and stabilities determined experimentally indicated the great potential of NiNPs/SMWNTs nanohybrids for construction of a variety of electrochemical sensors. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. A hierarchical porous electrode using a micron-sized honeycomb-like carbon material for high capacity lithium-oxygen batteries

    NASA Astrophysics Data System (ADS)

    Li, Jing; Zhang, Huamin; Zhang, Yining; Wang, Meiri; Zhang, Fengxiang; Nie, Hongjiao

    2013-05-01

    A micron-sized honeycomb-like carbon material (MHC) is prepared in a facile way using nano-CaCO3 as a hard template. A novel electrode for lithium-oxygen batteries is fabricated and displays a superior discharge capacity as high as 5862 mA h g-1. The higher electrode space utilization is attributed to its hierarchical pore structure, with intrinsic mesopores in the MHC particles for Li2O2 depositions and macropores among them for oxygen transport.A micron-sized honeycomb-like carbon material (MHC) is prepared in a facile way using nano-CaCO3 as a hard template. A novel electrode for lithium-oxygen batteries is fabricated and displays a superior discharge capacity as high as 5862 mA h g-1. The higher electrode space utilization is attributed to its hierarchical pore structure, with intrinsic mesopores in the MHC particles for Li2O2 depositions and macropores among them for oxygen transport. Electronic supplementary information (ESI) available: Synthesis of the MHC material. Cathode preparation. Material characterization. Assembly of Li-O2 battery cells and performance evaluation. SEM image of the CaCO3-sucrose composite before carbonization. See DOI: 10.1039/c3nr00337j

  15. Photo-electrochemical communication between cyanobacteria (Leptolyngbia sp.) and osmium redox polymer modified electrodes.

    PubMed

    Hasan, Kamrul; Bekir Yildiz, Huseyin; Sperling, Eva; Conghaile, Peter Ó; Packer, Michael A; Leech, Dónal; Hägerhäll, Cecilia; Gorton, Lo

    2014-12-07

    Photosynthetic microbial fuel cells (PMFCs) are an emerging technology for renewable solar energy conversion. Major efforts have been made to explore the electrogenic activity of cyanobacteria, mostly using practically unsustainable reagents. Here we report on photocurrent generation (≈8.64 μA cm(-2)) from cyanobacteria immobilized on electrodes modified with an efficient electron mediator, an Os(2+/3+) redox polymer. Upon addition of ferricyanide to the electrolyte, cyanobacteria generate the maximum current density of ≈48.2 μA cm(-2).

  16. The tongue display unit (TDU) for electrotactile spatiotemporal pattern presentation.

    PubMed

    Kaczmarek, K A

    2011-12-01

    The Tongue Display Unit (TDU) is a 144-channel programmable pulse generator that delivers dc-balanced voltage pulses suitable for electrotactile (electrocutaneous) stimulation of the anterior-dorsal tongue, through a matrix of surface electrodes. This article reviews the theory of operation and a design overview of the TDU, as well as selected applications. These include sensory substitution, tactile information display and neurorehabilitation via induced neuroplasticity.

  17. Designed Electroresponsive Biomaterials: Sequence-Controlled Behavior

    DTIC Science & Technology

    2010-06-29

    protein of the M13 . Traditional phage and yeast display methodologies indicate that peptide sequences with high affinities for electrode materials...drug delivery. The original vision for this work was to employ combinatorial tools such as phage and yeast display under electrical selection pressure...and drug delivery. The original vision for this work was to employ combinatorial tools such as phage and yeast display under electrical selection

  18. Effect of annealing over optoelectronic properties of graphene based transparent electrodes

    NASA Astrophysics Data System (ADS)

    Yadav, Shriniwas; Kaur, Inderpreet

    2016-04-01

    Graphene, an atom-thick two dimensional graphitic material have led various fundamental breakthroughs in the field of science and technology. Due to their exceptional optical, physical and electrical properties, graphene based transparent electrodes have shown several applications in organic light emitting diodes, solar cells and thin film transistors. Here, we are presenting effect of annealing over optoelectronic properties of graphene based transparent electrodes. Graphene based transparent electrodes have been prepared by wet chemical approach over glass substrates. After fabrication, these electrodes tested for optical transmittance in visible region. Sheet resistance was measured using four probe method. Effect of thermal annealing at 200 °C was studied over optical and electrical performance of these electrodes. Optoelectronic performance was judged from ratio of direct current conductivity to optical conductivity (σdc/σopt) as a figure of merit for transparent conductors. The fabricated electrodes display good optical and electrical properties. Such electrodes can be alternatives for doped metal oxide based transparent electrodes.

  19. A theoretical consideration of ion size effects on the electric double layer and voltammetry of nanometer-sized disk electrodes.

    PubMed

    Gao, Yu; Liu, Yuwen; Chen, Shengli

    2016-12-12

    Considering that an electric-double-layer (EDL) structure may significantly impact on the mass transport and charge transfer kinetics at the interfaces of nanometer-sized electrodes, while EDL structures could be altered by the finite sizes of electrolyte and redox ions, the possible effects of ion sizes on EDL structures and voltammetric responses of nanometer-sized disk (nanodisk) electrodes are investigated. Modified Boltzmann and Nernst-Planck (NP) equations, which include the influence of the finite ion volumes, are combined with the Poisson equation and modified Butler-Volmer equation to gain knowledge on how the finite sizes of ions and the nanometer sizes of electrodes may couple with each other to affect the structures and reactivities of a nanoscale electrochemical interface. Two typical ion radii, 0.38 nm and 0.68 nm, which could represent the sizes of the commonly used aqueous electrolyte ions (e.g., the solvated K + ) and the organic electrolyte ions (e.g., the solvated TEA + ) respectively, are considered. The finite size of ions can result in decreased screening of electrode charges, therefore magnifying EDL effects on the ion transport and the electron transfer at electrochemical interfaces. This finite size effect of ions becomes more pronounced for larger ions and at smaller electrodes as the electrode radii is larger than 10 nm. For electrodes with radii smaller than 10 nm, however, the ion size effect may be less pronounced with decreasing the electrode size. This can be explained in terms of the increased edge effect of disk electrodes at nanometer scales, which could relax the ion crowding at/near the outer Helmholtz plane. The conditions and situations under which the ion sizes may have a significant effect on the voltammetry of electrodes are discussed.

  20. Highly selective direct determination of chlorate ions by using a newly developed potentiometric electrode based on modified smectite.

    PubMed

    Topcu, Cihan

    2016-12-01

    A novel polyvinyl chloride membrane chlorate (ClO 3 - ) selective electrode based on modified smectite was developed for the direct determination of chlorate ions and the potentiometric performance characteristics of its were examined. The best selectivity and sensitivity for chlorate ions were obtained for the electrode membrane containing ionophore/polyvinylchloride/o-nitrophenyloctylether in composition of 12/28/60 (w/w%). The proposed electrode showed a Nernstian response toward chlorate ions at pH=7 in the concentration range of 1×10 -7 -1×10 -1 M and the limit of detection was calculated as 9×10 -8 M from the constructed response plot. The linear slope of the electrode was -61±1mVdecade -1 for chlorate activity in the mentioned linear working range. The selectivity coefficients were calculated according to both the matched potential method and the separate solution method. The calculated selectivity coefficients showed that the electrode performed excellent selectivity for chlorate ions. The potentiometric response of electrode toward chlorate ions was found to be highly reproducible. The electrode potential was stable between pH=4-10 and it had a dynamic response time of <5s. The potentiometric behavior of the electrode in partial non-aqueous medium was also investigated and the obtained results (up to 5% (v/v) alcohol) were satisfactory. The proposed electrode was used during 15 weeks without any significant change in its potential response. Additionally, the electrode was very useful in water analysis studies such as dam water, river water, tap water, and swimming pool water where the direct determination of chlorate ions was required. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Site selective generation of sol-gel deposits in layered bimetallic macroporous electrode architectures.

    PubMed

    Lalo, Hélène; Bon-Saint-Côme, Yémima; Plano, Bernard; Etienne, Mathieu; Walcarius, Alain; Kuhn, Alexander

    2012-02-07

    The elaboration of an original composite bimetallic macroporous electrode containing a site-selective sol-gel deposit is reported. Regular colloidal crystals, obtained by a modified Langmuir-Blodgett approach, are used as templates for the electrogeneration of the desired metals in the form of a well-defined layered bimetallic porous electrode. This porous matrix shows a spatially modulated electroactivity which is subsequently used as a strategy for targeted electrogeneration of a sol-gel deposit, exclusively in one predefined part of the porous electrode.

  2. Use of modified lip repositioning technique associated with esthetic crown lengthening for treatment of excessive gingival display: A case report of multiple etiologies

    PubMed Central

    Mantovani, Matheus Bortoluzzi; Souza, Eduardo Clemente; Marson, Fabiano Carlos; Corrêa, Giovani Oliveira; Progiante, Patrícia Saram; Silva, Cléverson Oliveira

    2016-01-01

    Excessive gingival display during smile can result in compromised esthetics. This study aims to report a case of excessive gingival display with multiple etiologies treated by means of modified lip repositioning technique associated with esthetic crown lengthening. A 23-year-old female patient, with 5-mm gingival display during smile caused by altered passive eruption and hypermobility of the upper lip, underwent the modified lip repositioning technique associated with gingivectomy followed by flap elevation and ostectomy/osteoplasty. Seven months after the second procedure, the patient had her esthetic complaint solved appearing stable in the observation period. The modified lip repositioning technique is an effective procedure employed to reduce gingival display and when associated with esthetic clinical crown lengthening, can appropriately treat cases of gummy smile. PMID:27041845

  3. Electrochemical and in vitro neuronal recording characteristics of multi-electrode arrays surface-modified with electro-co-deposited gold-platinum nanoparticles.

    PubMed

    Kim, Yong Hee; Kim, Ah Young; Kim, Gook Hwa; Han, Young Hwan; Chung, Myung-Ae; Jung, Sang-Don

    2016-02-01

    In order to complement the high impedance electrical property of gold nanoparticles (Au NPs) we have performed electro-co-deposition of gold-platinum nanoparticles (Au-Pt NPs) onto the Au multi-electrode array (MEA) and modified the Au-Pt NPs surface with cell adhesive poly-D-lysine via thiol chemistry based covalent binding. The Au-Pt NPs were analyzed to have bimetallic nature not the mixture of Au NPs and Pt NPs by X-ray diffraction analysis and to have impedance value (4.0 × 10(4) Ω (at 1 kHz)) comparable to that of Pt NPs. The performance of Au-Pt NP-modified MEAs was also checked in relation to neuronal signal recording. The noise level in Au-Pt NP-modified MEAs was lower than in that of Au NP-modified MEA.

  4. Chemically modified electrodes by nucleophilic substitution of chlorosilylated platinum oxide surfaces

    NASA Astrophysics Data System (ADS)

    Chen, Chun-Hsien; Hutchison, James H.; Postlethwaite, Timothy A.; Richardson, John N.; Murray, R. W.

    1994-07-01

    Chlorosilylated platinum oxide electrode surfaces can be generated by reaction of SiCl4 vapor with an electrochemically prepared monolayer of platinum oxide. A variety of nucleophilic agents (such as alcohols, amines, thiols, and Grignard reagents) can be used to displace chloride and thereby functionalize the metal surface. Electroactive surfaces prepared with ferrocene methanol as the nucleophile show that derivatization by small molecules can achieve coverages on the order of a full monolayer. Surfaces modified with long-chain alkyl groups efficiently block electrode reactions of redox probes dissolved in the contacting solution, but other electrochemical (double layer capacitance and surface coverage) and contact angle measurements suggest that these molecule films are not highly ordered, self-assembled monolayers.

  5. Carbon paste electrode with covalently immobilized thionine for electrochemical sensing of hydrogen peroxide

    NASA Astrophysics Data System (ADS)

    Thenmozhi, K.; Sriman Narayanan, S.

    2017-11-01

    A water-soluble redox mediator, thionin was covalently immobilized to the functionalized graphite powder and a carbon paste electrode was fabricated from this modified graphite powder. The immobilization procedure proved to be effective in anchoring the thionin mediator in the graphite electrode setup without any leakage problem during the electrochemical studies. The covalent immobilization of the thionin mediator was studied with FT-IR and the electrochemical response of the thionin carbon paste electrode was optimized on varying the supporting electrolyte, pH and scan rate. The modified electrode exhibited well-defined electrocatalytic activity towards the reduction of H2O2 at a lower potential of -0.266 V with good sensitivity. The developed amperometric sensor was efficient towards H2O2 in the linear range from 2.46 × 10-5 M to 4.76 × 10-3 M, with a detection limit of 1.47 × 10-5 M respectively. Important advantages of this sensor are its excellent electrochemical performance, simple fabrication, easy renewability, reproducible analytical results, acceptable accuracy and good operational and long-term stability.

  6. Construction of an electrode modified with gallium(III) for voltammetric detection of ovalbumin.

    PubMed

    Sugawara, Kazuharu; Okusawa, Makoto; Takano, Yusaku; Kadoya, Toshihiko

    2014-01-01

    Electrodes modified with gallium(III) complexes were constructed to detect ovalbumin (OVA). For immobilization of a gallium(III)-nitrilotriacetate (NTA) complex, the electrode was first covered with collagen film. After the amino groups of the film had reacted with isothiocyanobenzyl-NTA, the gallium(III) was then able to combine with the NTA moieties. Another design featured an electrode cast with a gallium(III)-acetylacetonate (AA) complex. The amount of gallium(III) in the NTA complex was equivalent to one-quarter of the gallium(III) that could be utilized from an AA complex. However, the calibration curves of OVA using gallium(III)-NTA and gallium(III)-AA complexes were linear in the ranges of 7.0 × 10(-11) - 3.0 × 10(-9) M and 5.0 × 10(-10) - 8.0 × 10(-9) M, respectively. The gallium(III) on the electrode with NTA complex had high flexibility due to the existence of a spacer between the NTA and the collagen film, and, therefore, the reactivity of the gallium(III) to OVA was superior to that of the gallium(III)-AA complex with no spacer.

  7. Spontaneous modification of carbon surface with neutral red from its diazonium salts for bioelectrochemical systems.

    PubMed

    Guo, Kun; Chen, Xin; Freguia, Stefano; Donose, Bogdan C

    2013-09-15

    This study introduces a novel and simple method to covalently graft neutral red (NR) onto carbon surfaces based on spontaneous reduction of in situ generated NR diazonium salts. Immobilization of neutral red on carbon surface was achieved by immersing carbon electrodes in NR-NaNO2-HCl solution. The functionalized electrodes were characterized by cyclic voltammetry (CV), atomic force microscope (AFM), and X-ray photoelectron spectroscopy (XPS). Results demonstrated that NR attached in this way retains high electrochemical activity and proved that NR was covalently bound to the carbon surface via the pathway of reduction of aryl diazonium salts. The NR-modified electrodes showed a good stability when stored in PBS solution in the dark. The current output of an acetate-oxidising microbial bioanode made of NR-modified graphite felts were 3.63±0.36 times higher than the unmodified electrodes, which indicates that covalently bound NR can act as electron transfer mediator to facilitate electron transfer from bacteria to electrodes. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Coated carbon nanotube array electrodes

    DOEpatents

    Ren, Zhifeng; Wen, Jian; Chen, Jinghua; Huang, Zhongping; Wang, Dezhi

    2006-12-12

    The present invention provides conductive carbon nanotube (CNT) electrode materials comprising aligned CNT substrates coated with an electrically conducting polymer, and the fabrication of electrodes for use in high performance electrical energy storage devices. In particular, the present invention provides conductive CNTs electrode material whose electrical properties render them especially suitable for use in high efficiency rechargeable batteries. The present invention also provides methods for obtaining surface modified conductive CNT electrode materials comprising an array of individual linear, aligned CNTs having a uniform surface coating of an electrically conductive polymer such as polypyrrole, and their use in electrical energy storage devices.

  9. Coated carbon nanotube array electrodes

    DOEpatents

    Ren, Zhifeng [Newton, MA; Wen, Jian [Newton, MA; Chen, Jinghua [Chestnut Hill, MA; Huang, Zhongping [Belmont, MA; Wang, Dezhi [Wellesley, MA

    2008-10-28

    The present invention provides conductive carbon nanotube (CNT) electrode materials comprising aligned CNT substrates coated with an electrically conducting polymer, and the fabrication of electrodes for use in high performance electrical energy storage devices. In particular, the present invention provides conductive CNTs electrode material whose electrical properties render them especially suitable for use in high efficiency rechargeable batteries. The present invention also provides methods for obtaining surface modified conductive CNT electrode materials comprising an array of individual linear, aligned CNTs having a uniform surface coating of an electrically conductive polymer such as polypyrrole, and their use in electrical energy storage devices.

  10. Detection of mercury ions using L-cysteine modified electrodes by anodic stripping voltammetric method

    NASA Astrophysics Data System (ADS)

    Vanitha, M.; Balasubramanian, N.; Joni, I. Made; Panatarani, Camellia

    2018-02-01

    The detection of contaminants in wastewater is of massive importance in today's situation as they pose a serious threat to the environment as well as humans. One such vital contaminants is mercury and its compound, the reported mercury detectors grieve from low sensitivity, high cost and slow response. In the present work graphene based electrode material is developed for sensing mercury contaminants in wastewater using electrochemical technique. The synthesized material graphene oxide (GO) modified with L-Cysteine in presence of polyvinylpyrrolidone (PVP) as capping agent was characterized using SEM, TEM and Raman Spectroscopic analysis. It is ascertained from the morphological characterization that the nanocomposite exhibits a spherical morphology. The L-cysteine modified graphene oxide electrode is electrochemically characterized using redox couple [Fe(CN)63-/4-] and electrochemical impedance spectroscopic (EIS) analysis. Electrochemical sensing of Hg (II) ions in solution was done using Square wave anodic stripping voltammetry (SWASV). The incorporation of graphene significantly increases the sensitivity and selectivity towards mercury sensing.

  11. Determination of fenitrothion in water using a voltammetric sensor based on a polymer-modified glassy carbon electrode.

    PubMed

    Amare, Meareg; Abicho, Samuel; Admassie, Shimelis

    2014-01-01

    A glassy carbon electrode (GCE) modified with poly(4-amino-3-hydroxynaphthalene sulfonic acid) (poly-AHNSA) was used for the selective and sensitive determination of fenitrothion (FT) organophosphorus pesticide in water. The electrochemical behavior of FT at the bare GCE and the poly-AHNSA/GCE were compared using cyclic voltammetry. Enhanced peak current response and shift to a lower potential at the polymer-modified electrode indicated the electrocatalytic activity of the polymer film towards FT. Under optimized solution and method parameters, the adsorptive stripping square wave voltammetric reductive peak current of FT was linear to FT concentration in the range of 0.001 to 6.6 x 10(-6) M, and the LOD obtained (3delta/m) was 7.95 x 10(-10) M. Recoveries in the range 96-98% of spiked FT in tap water and reproducible results with RSD of 2.6% (n = 5) were obtained, indicating the potential applicability of the method for the determination of trace levels of FT in environmental samples.

  12. Simultaneous monitoring of humidity and chemical changes using quartz crystal microbalance sensors modified with nano-thin films.

    PubMed

    Selyanchyn, Roman; Korposh, Serhiy; Wakamatsu, Shunichi; Lee, Seung-Woo

    2011-01-01

    Quartz crystal microbalance (QCM) electrodes modified with nano-thin films were used to develop a system for measuring significant environment changes (smoke, humidity, hazardous material release). A layer-by-layer approach was used for the deposition of sensitive coatings with a nanometer thickness on the electrode surface. The QCM electrode was modified with self-assembled alternate layers of tetrakis-(4-sulfophenyl) porphine (TSPP) (or its manganese derivative, MnTSPP) and poly(diallyldimethylammonium chloride) (PDDA). The QCM sensors, which had been reported previously for humidity sensing purposes, revealing a high possibility to recognize significant environmental changes. Identifying of the origin of environmental change is possible via differential signal analysis of the obtained data. The sensors showed different responses to humidity changes, hazardous gas (ammonia) or cigarette smoke exposure. Even qualitative analysis is not yet available; it has been shown that ventilation triggers or alarms for monitoring smoke or hazardous material release can be built using the obtained result.

  13. Voltammetric sensor for buzepide methiodide determination based on TiO2 nanoparticle-modified carbon paste electrode.

    PubMed

    Kalanur, Shankara S; Seetharamappa, Jaldappagari; Prashanth, S N

    2010-07-01

    In this work, we have prepared nano-material modified carbon paste electrode (CPE) for the sensing of an antidepressant, buzepide methiodide (BZP) by incorporating TiO2 nanoparticles in carbon paste matrix. Electrochemical studies indicated that the TiO2 nanoparticles efficiently increased the electron transfer kinetics between drug and the electrode. Compared with the nonmodified CPE, the TiO2-modified CPE greatly enhances the oxidation signal of BZP with negative shift in peak potential. Based on this, we have proposed a sensitive, rapid and convenient electrochemical method for the determination of BZP. Under the optimized conditions, the oxidation peak current of BZP is found to be proportional to its concentration in the range of 5 x 10(-8) to 5 x 10(-5)M with a detection limit of 8.2 x 10(-9)M. Finally, this sensing method was successfully applied for the determination of BZP in human blood serum and urine samples with good recoveries. 2010 Elsevier B.V. All rights reserved.

  14. Photoelectrochemical NADH Regeneration using Pt-Modified p -GaAs Semiconductor Electrodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stufano, Paolo; Paris, Aubrey R.; Bocarsly, Andrew

    Cofactor regeneration in enzymatic reductions is crucial for the application of enzymes to both biological and energy-related catalysis. Specifically, regenerating NADH from NAD + is of great interest, and using electrochemistry to achieve this end is considered a promising option. Here in this paper, we report the first example of photoelectrochemical NADH regeneration at the illuminated (λ >600 nm), metal-modified p-type semiconductor electrode Pt/p-GaAs. Although bare p-GaAs electrodes produce only enzymatically inactive NAD 2, NADH was produced at the illuminated Pt-modified p-GaAs surface. At low overpotential (–0.75 V vs. Ag/AgCl), Pt/p-GaAs exhibited a seven-fold greater Faradaic efficiency for the formationmore » of NADH than Pt alone, with reduced competition from the hydrogen evolution reaction. Improved Faradaic efficiency and low overpotential suggest the possible utility of Pt/p-GaAs in energy-related NADH-dependent enzymatic processes.« less

  15. Honeycomb-like Porous Carbon-Cobalt Oxide Nanocomposite for High-Performance Enzymeless Glucose Sensor and Supercapacitor Applications.

    PubMed

    Madhu, Rajesh; Veeramani, Vediyappan; Chen, Shen-Ming; Manikandan, Arumugam; Lo, An-Ya; Chueh, Yu-Lun

    2015-07-29

    Herein, we report the preparation of Pongam seed shells-derived activated carbon and cobalt oxide (∼2-10 nm) nanocomposite (PSAC/Co3O4) by using a general and facile synthesis strategy. The as-synthesized PSAC/Co3O4 samples were characterized by a variety of physicochemical techniques. The PSAC/Co3O4-modified electrode is employed in two different applications such as high performance nonenzymatic glucose sensor and supercapacitor. Remarkably, the fabricated glucose sensor is exhibited an ultrahigh sensitivity of 34.2 mA mM(-1) cm(-2) with a very low detection limit (21 nM) and long-term durability. The PSAC/Co3O4 modified stainless steel electrode possesses an appreciable specific capacitance and remarkable long-term cycling stability. The obtained results suggest the as-synthesized PSAC/Co3O4 is more suitable for the nonenzymatic glucose sensor and supercapacitor applications outperforming the related carbon based modified electrodes, rendering practical industrial applications.

  16. Functional interface of polymer modified graphite anode

    NASA Astrophysics Data System (ADS)

    Komaba, S.; Ozeki, T.; Okushi, K.

    Graphite electrodes were modified by polyacrylic acid (PAA), polymethacrylic acid (PMA), and polyvinyl alcohol (PVA). Their electrochemical properties were examined in 1 mol dm -3 LiClO 4 ethylene carbonate:dimethyl carbonate (EC:DMC) and propylene carbonate (PC) solutions as an anode of lithium ion batteries. Generally, lithium ions hardly intercalate into graphite in the PC electrolyte due to a decomposition of the PC electrolyte at ca. 0.8 V vs. Li/Li +, and it results in the exfoliation of the graphene layers. However, the modified graphite electrodes with PAA, PMA, and PVA demonstrated the stable charge-discharge performance due to the reversible lithium intercalation not only in the EC:DMC but also in the PC electrolytes since the electrolyte decomposition and co-intercalation of solvent were successfully suppressed by the polymer modification. It is thought that these improvements were attributed to the interfacial function of the polymer layer on the graphite which interacted with the solvated lithium ions at the electrode interface.

  17. Sensitive and Facile Electrochemiluminescent Immunoassay for Detecting Genetically Modified Rapeseed Based on Novel Carbon Nanoparticles.

    PubMed

    Gao, Hongfei; Wen, Luke; Wu, Yuhua; Yan, Xiaohong; Li, Jun; Li, Xiaofei; Fu, Zhifeng; Wu, Gang

    2018-05-23

    A highly sensitive electrochemiluminescent (ECL) immunoassay targeting PAT/ bar protein was facilely developed for genetically modified (GM) rapeseed detection using carbon nanoparticles (CNPs) originally prepared from printer toner. In this work, CNPs linked with antibody for PAT/ bar protein were used to modify a working electrode. After an immunoreaction between the PAT/ bar protein and its antibody, the immunocomplex formed on the electrode receptor region resulted in an inhibition of electron transfer between the electrode surface and the ECL substance, thus led to a decrease of ECL response. Under the optimal conditions, the ECL responses linearly decreased as the increase of the PAT/ bar protein concentration and the GM rapeseed RF3 content in the ranges of 0.10-10 ng/mL and 0.050-1.0%, with the limits of detection of 0.050 ng/mL and 0.020% (S/N = 3). These results open a facile, sensitive, and rapid approach for the safety control of agricultural GM rape.

  18. Photoelectrochemical NADH Regeneration using Pt-Modified p -GaAs Semiconductor Electrodes

    DOE PAGES

    Stufano, Paolo; Paris, Aubrey R.; Bocarsly, Andrew

    2017-02-22

    Cofactor regeneration in enzymatic reductions is crucial for the application of enzymes to both biological and energy-related catalysis. Specifically, regenerating NADH from NAD + is of great interest, and using electrochemistry to achieve this end is considered a promising option. Here in this paper, we report the first example of photoelectrochemical NADH regeneration at the illuminated (λ >600 nm), metal-modified p-type semiconductor electrode Pt/p-GaAs. Although bare p-GaAs electrodes produce only enzymatically inactive NAD 2, NADH was produced at the illuminated Pt-modified p-GaAs surface. At low overpotential (–0.75 V vs. Ag/AgCl), Pt/p-GaAs exhibited a seven-fold greater Faradaic efficiency for the formationmore » of NADH than Pt alone, with reduced competition from the hydrogen evolution reaction. Improved Faradaic efficiency and low overpotential suggest the possible utility of Pt/p-GaAs in energy-related NADH-dependent enzymatic processes.« less

  19. A glucose biosensor based on partially unzipped carbon nanotubes.

    PubMed

    Hu, Huifang; Feng, Miao; Zhan, Hongbing

    2015-08-15

    An amperometric glucose biosensor based on direct electron transfer of glucose oxidase (GOD) self-assembled on the surface of partially unzipped carbon nanotubes (PUCNTs) modified glassy carbon electrode (GCE) has been successfully fabricated. PUCNTs were synthesized via a facile chemical oxidative etching CNTs and used as a novel immobilization matrix for GOD. The cyclic voltammetric result of the PUCNT/GOD/GCE showed a pair of well-defined and quasi-reversible redox peaks with a formal potential of -0.470V and a peak to peak separation of 37mV, revealing that the fast direct electron transfer between GOD and the electrode has been achieved. It is notable that the glucose determination has been achieved in mediator-free condition. The developed biosensor displayed satisfactory analytical performance toward glucose including high sensitivity (19.50μA mM(-1)cm(-2)), low apparent Michaelis-Menten (5.09mM), a wide linear range of 0-17mM, and also preventing the interference from ascorbic acid, uric acid and dopamine usually coexisting with glucose in human blood. In addition, the biosensor acquired excellent storage stabilities. This facile, fast, environment-friendly and economical preparation strategy of PUCNT-GOD may provide a new platform for the fabrication of biocompatible glucose biosensors and other types of biosensors. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Fabrication of Highly Sensitive Nonenzymatic Electrochemical H₂O₂ Sensor Based on Pt Nanoparticles Anchored Reduced Graphene Oxide.

    PubMed

    Dhara, Keerthy; Ramachandran, T; Nair, Bipin G; Babu, T G Satheesh

    2018-06-01

    A highly sensitive nonenzymatic hydrogen peroxide (H2O2) sensor was fabricated using platinum nanoparticles decorated reduced graphene oxide (Pt/rGO) nanocomposite. The Pt/rGO nanocomposite was prepared by single-step chemical reduction method. Nanocomposite was characterized by various analytical techniques including Raman spectroscopy, X-ray diffraction, field emission scanning electron microscope and high-resolution transmission electron microscopy. Screen printed electrodes (SPEs) were fabricated and the nanocomposite was cast on the working area of the SPE. Cyclic voltammetry and amperometry demonstrated that the Pt/rGO/SPE displayed much higher electrocatalytic activity towards the reduction of H2O2 than the other modified electrodes. The sensor exhibited wide linear detection range (from 10 μM to 8 mM), very high sensitivity of 1848 μA mM-1 cm-2 and a lower limit of detection of 0.06 μM. The excellent performance of Pt/rGO/SPE sensor were attributed to the reduced graphene oxide being used as an effective matrix to load a number of Pt nanoparticles and the synergistic amplification effect of the two kinds of nanomaterials. Moreover, the sensor showed remarkable features such as good reproducibility, repeatability, long-term stability, and selectivity.

  1. Flexible MXene/Graphene Films for Ultrafast Supercapacitors with Outstanding Volumetric Capacitance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, Jun; Ren, Chang E.; Maleski, Kathleen

    A strategy to prepare flexible and conductive MXene/graphene (reduced graphene oxide, rGO) supercapacitor electrodes by using electrostatic self-assembly between positively charged rGO modified with poly(diallyldimethylammonium chloride) and negatively charged titanium carbide MXene nanosheets is presented. After electrostatic assembly, rGO nanosheets are inserted in-between MXene layers. As a result, the self-restacking of MXene nanosheets is effectively prevented, leading to a considerably increased interlayer spacing. Accelerated diffusion of electrolyte ions enables more electroactive sites to become accessible. The freestanding MXene/rGO-5 wt% electrode displays a volumetric capacitance of 1040 F cm –3 at a scan rate of 2 mV s –1, an impressivemore » rate capability with 61% capacitance retention at 1 V s –1 and long cycle life. Moreover, the fabricated binder-free symmetric supercapacitor shows an ultrahigh volumetric energy density of 32.6 Wh L –1, which is among the highest values reported for carbon and MXene based materials in aqueous electrolytes. Furthermore, this work provides fundamental insight into the effect of interlayer spacing on the electrochemical performance of 2D hybrid materials and sheds light on the design of next-generation flexible, portable and highly integrated supercapacitors with high volumetric and rate performances.« less

  2. Cost-effective three dimensional Ag/polymer dyes/graphene-carbon spheres hybrids for high performance nonenzymatic sensor and its application in living cell H2O2 detection.

    PubMed

    Lu, Baoping; Yuan, Xuna; Ren, Yuehong; Shi, Qinghua; Wang, Song; Dong, Jinlong; Nan, Ze-Dong

    2018-05-03

    We describe a facile method to synthesize a new type of catalyst by electrodepositing Ag nanocrystals (AgNCs) on the different polymer dyes, Poly (methylene blue) (PMB) or Poly (4-(2-Pyridylazo)-Resorcinol) (PAR) modified graphene‑carbon spheres (GS) hybrids. The self-assembled GS take dual advantages of carbon spheres and graphene. Carbon spheres acts as nano-spacers prevent the aggregation of graphene and guarantee the fast electron transfer of GS. Secondly, polymerized dyes used here are beneficial for AgNCs growing as a linker. The effects of dyes on the growth habits, morphologies and catalytic properties for AgNCs were investigated. A novel electrochemical nonenzymatic sensor for hydrogen peroxide (H 2 O 2 ) detection is fabricated based on the Ag/Polymer dyes/GS ternary composites modified glass carbon electrode (GCE) for the first time. It was found that the proposed electrodes, especially for Ag/PMB/GS/GCE, displayed a peculiar electrocatalytic activity towards H 2 O 2 reduction synergistically as compared to Ag/PAR/GS/GCE or Ag/GS/GCE alone. Ag/PMB/GS/GCE showed a linear response over the H 2 O 2 concentration range of 0.5 to 1112 μM. The detection limit and sensitivity is 0.15 μM and 400 μA mM -1  cm -2 , respectively. These outstanding results enable the practical application of Ag/PMB/GS/GCE for the H 2 O 2 tracking released from MCF-7 (human breast cancer cells) with satisfactory results. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. A non-enzymatic amperometric hydrogen peroxide sensor based on iron nanoparticles decorated reduced graphene oxide nanocomposite.

    PubMed

    Amanulla, Baishnisha; Palanisamy, Selvakumar; Chen, Shen-Ming; Velusamy, Vijayalakshmi; Chiu, Te-Wei; Chen, Tse-Wei; Ramaraj, Sayee Kannan

    2017-02-01

    A simple and facile green process was used for the synthesis of iron nanoparticles (FeNPs) decorated reduced graphene oxide (rGO) nanocomposite by using Ipomoea pes-tigridis leaf extract as a reducing and stabilizing agent. The as-prepared rGO/FeNPs nanocomposite was characterized by transmission electron microscopy, X-ray spectroscopy and Fourier transform infrared spectroscopy. The nanocomposite was further modified on the glassy carbon electrode and used for non-enzymatic sensing of hydrogen peroxide (H 2 O 2 ). Cyclic voltammetry results reveal that rGO/FeNPs nanocomposite has excellent electro-reduction behavior to H 2 O 2 when compared to the response of FeNPs and rGO modified electrodes. Furthermore, the nanocomposite modified electrode shows 9 and 6 folds enhanced reduction current response to H 2 O 2 than that of rGO and FeNPs modified electrodes. Amperometric method was further used to quantify the H 2 O 2 using rGO/FeNPs nanocomposite, and the response was linear over the concentration ranging from 0.1μM to 2.15mM. The detection limit and sensitivity of the sensor were estimated as 0.056μM and 0.2085μAμM -1 cm -2 , respectively. The fabricated sensor also utilized for detection of H 2 O 2 in the presence of potentially active interfering species, and found high selectivity towards H 2 O 2 . Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Supercapacitors Based on Three-Dimensional Hierarchical Graphene Aerogels with Periodic Macropores.

    PubMed

    Zhu, Cheng; Liu, Tianyu; Qian, Fang; Han, T Yong-Jin; Duoss, Eric B; Kuntz, Joshua D; Spadaccini, Christopher M; Worsley, Marcus A; Li, Yat

    2016-06-08

    Graphene is an atomically thin, two-dimensional (2D) carbon material that offers a unique combination of low density, exceptional mechanical properties, thermal stability, large surface area, and excellent electrical conductivity. Recent progress has resulted in macro-assemblies of graphene, such as bulk graphene aerogels for a variety of applications. However, these three-dimensional (3D) graphenes exhibit physicochemical property attenuation compared to their 2D building blocks because of one-fold composition and tortuous, stochastic porous networks. These limitations can be offset by developing a graphene composite material with an engineered porous architecture. Here, we report the fabrication of 3D periodic graphene composite aerogel microlattices for supercapacitor applications, via a 3D printing technique known as direct-ink writing. The key factor in developing these novel aerogels is creating an extrudable graphene oxide-based composite ink and modifying the 3D printing method to accommodate aerogel processing. The 3D-printed graphene composite aerogel (3D-GCA) electrodes are lightweight, highly conductive, and exhibit excellent electrochemical properties. In particular, the supercapacitors using these 3D-GCA electrodes with thicknesses on the order of millimeters display exceptional capacitive retention (ca. 90% from 0.5 to 10 A·g(-1)) and power densities (>4 kW·kg(-1)) that equal or exceed those of reported devices made with electrodes 10-100 times thinner. This work provides an example of how 3D-printed materials, such as graphene aerogels, can significantly expand the design space for fabricating high-performance and fully integrable energy storage devices optimized for a broad range of applications.

  5. Evaluation of the degradation of acetaminophen by the filamentous fungus Scedosporium dehoogii using carbon-based modified electrodes.

    PubMed

    Mbokou, Serge Foukmeniok; Pontié, Maxime; Razafimandimby, Bienvenue; Bouchara, Jean-Philippe; Njanja, Evangéline; Tonle Kenfack, Ignas

    2016-08-01

    The nonpathogenic filamentous fungus Scedosporium dehoogii was used for the first time to study the electrochemical biodegradation of acetaminophen (APAP). A carbon fiber microelectrode (CFME) modified by nickel tetrasulfonated phthalocyanine (p-NiTSPc) and a carbon paste electrode (CPE) modified with coffee husks (CH) were prepared to follow the kinetics of APAP biodegradation. The electrochemical response of APAP at both electrodes was studied by cyclic voltammetry and square wave voltammetry. p-NiTSPc-CFME was suitable to measure high concentrations of APAP, whereas CH-CPE gave rise to high current densities but was subject to the passivation phenomenon. p-NiTSPc-CFME was then successfully applied as a sensor to describe the kinetics of APAP biodegradation: this was found to be of first order with a kinetics constant of 0.11 day(-1) (at 25 °C) and a half-life of 6.30 days. APAP biodegradation by the fungus did not lead to the formation of p-aminophenol (PAP) and hydroquinone (HQ) that are carcinogenic, mutagenic, and reprotoxic (CMR). Graphical Abstract The kinetics of APAP biodegradation, followed by a poly-nickel tetrasulfonated phtalocyanine modified carbon fiber microelectrode.

  6. Carbon nanostructured films modified by metal nanoparticles supported on filtering membranes for electroanalysis.

    PubMed

    Paramo, Erica; Palmero, Susana; Heras, Aranzazu; Colina, Alvaro

    2018-02-01

    A novel methodology to prepare sensors based on carbon nanostructures electrodes modified by metal nanoparticles is proposed. As a proof of concept, a novel bismuth nanoparticle/carbon nanofiber (Bi-NPs/CNF) electrode and a carbon nanotube (CNT)/gold nanoparticle (Au-NPs) have been developed. Bi-NPs/CNF films were prepared by 1) filtering a dispersion of CNFs on a polytetrafluorethylene (PTFE) filter, and 2) filtering a dispersion of Bi-NPs chemically synthesized through this CNF/PTFE film. Next the electrode is prepared by sticking the Bi-NPs/CNF/PTFE film on a PET substrate. In this work, Bi-NPs/CNF ratio was optimized using a Cd 2+ solution as a probe sample. The Cd anodic stripping peak intensity, registered by differential pulse anodic stripping voltammetry (DPASV), is selected as target signal. The voltammograms registered for Cd stripping with this Bi-NPs/CNF/PTFE electrode showed well-defined and highly reproducible electrochemical. The optimized Bi-NPs/CNF electrode exhibits a Cd 2+ detection limit of 53.57 ppb. To demonstrate the utility and versatility of this methodology, single walled carbon nanotubes (SWCNTs) and gold nanoparticles (Au-NPs) were selected to prepare a completely different electrode. Thus, the new Au-NPs/SWCNT/PTFE electrode was tested with a multiresponse technique. In this case, UV/Vis absorption spectroelectrochemistry experiments were carried out for studying dopamine, demonstrating the good performance of the Au-NPs/SWCNT electrode developed. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Evaluation of non-specific binding suppression schemes for neutravidin and alkaline phosphatase at the surface of reticulated vitreous carbon electrodes.

    PubMed

    Shedge, Hemangi Y; Creager, Stephen E

    2010-01-11

    Non-specific binding (NSB) of high-molecular-weight proteins onto electrode surfaces can complicate the application of electroanalytical techniques to clinical and environmental research, particularly in biosensor applications. We present herein various strategies to modify the surface of reticulated vitreous carbon (RVC) electrodes to suppress non-specific binding of biomolecules onto its surface. Non-specific binding and specific binding (SB) of two enzyme conjugates, neutravidin-alkaline phosphatase (NA-ALP) and biotinylated alkaline phosphatase (B-ALP), and also neutravidin itself, were studied using hydroquinone diphosphate (HQDP) as an enzyme substrate for ALP inside the pores of RVC electrodes that had been subjected to various modification schemes. The extent of NSB and SB of these biomolecules inside RVC pores was assessed by measuring the initial rate of generation of an electroactive product, hydroquinone (HQ), of the enzyme-catalyzed reaction, using linear scan voltammetry (LSV) for HQ detection. Electrodes functionalized with phenylacetic acid and poly(ethylene glycol) (PEG) showed low NSB and high SB (when biotin capture ligands were included in the modification scheme) in comparison with unmodified electrodes and RVC electrodes modified in other ways. A simple sandwich bioassay for neutravidin was performed on the RVC electrode with the lowest NSB. A concentration detection limit of 52+/-2 ng mL(-1) and an absolute detection limit of 5.2+/-0.2 ng were achieved for neutravidin when this assay was performed using a 100 microL sample size.

  8. Electrochemical Determination of Chlorpyrifos on a Nano-TiO₂Cellulose Acetate Composite Modified Glassy Carbon Electrode.

    PubMed

    Kumaravel, Ammasai; Chandrasekaran, Maruthai

    2015-07-15

    A rapid and simple method of determination of chlorpyrifos is important in environmental monitoring and quality control. Electrochemical methods for the determination of pesticides are fast, sensitive, reproducible, and cost-effective. The key factor in electrochemical methods is the choice of suitable electrode materials. The electrode materials should have good stability, reproducibility, more sensitivity, and easy method of preparation. Mercury-based electrodes have been widely used for the determination of chlorpyrifos. From an environmental point of view mercury cannot be used. In this study a biocompatible nano-TiO2/cellulose acetate modified glassy carbon electrode was prepared by a simple method and used for the electrochemical sensing of chlorpyrifos in aqueous methanolic solution. Electroanalytical techniques such as cyclic voltammetry, differential pulse voltammetry, and amperometry were used in this work. This electrode showed very good stability, reproducibility, and sensitivity. A well-defined peak was obtained for the reduction of chlorpyrifos in cyclic voltammetry and differential pulse voltammetry. A smooth noise-free current response was obtained in amperometric analysis. The peak current obtained was proportional to the concentration of chlorpyrifos and was used to determine the unknown concentration of chlorpyrifos in the samples. Analytical parameters such as LOD, LOQ, and linear range were estimated. Analysis of real samples was also carried out. The results were validated through HPLC. This composite electrode can be used as an alternative to mercury electrodes reported in the literature.

  9. Laser patterning of platinum electrodes for safe neurostimulation

    NASA Astrophysics Data System (ADS)

    Green, R. A.; Matteucci, P. B.; Dodds, C. W. D.; Palmer, J.; Dueck, W. F.; Hassarati, R. T.; Byrnes-Preston, P. J.; Lovell, N. H.; Suaning, G. J.

    2014-10-01

    Objective. Laser surface modification of platinum (Pt) electrodes was investigated for use in neuroprosthetics. Surface modification was applied to increase the surface area of the electrode and improve its ability to transfer charge within safe electrochemical stimulation limits. Approach. Electrode arrays were laser micromachined to produce Pt electrodes with smooth surfaces, which were then modified with four laser patterning techniques to produce surface structures which were nanosecond patterned, square profile, triangular profile and roughened on the micron scale through structured laser interference patterning (SLIP). Improvements in charge transfer were shown through electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV) and biphasic stimulation at clinically relevant levels. A new method was investigated and validated which enabled the assessment of in vivo electrochemically safe charge injection limits. Main results. All of the modified surfaces provided electrical advantage over the smooth Pt. The SLIP surface provided the greatest benefit both in vitro and in vivo, and this surface was the only type which had injection limits above the threshold for neural stimulation, at a level shown to produce a response in the feline visual cortex when using an electrode array implanted in the suprachoroidal space of the eye. This surface was found to be stable when stimulated with more than 150 million clinically relevant pulses in physiological saline. Significance. Critical to the assessment of implant devices is accurate determination of safe usage limits in an in vivo environment. Laser patterning, in particular SLIP, is a superior technique for improving the performance of implant electrodes without altering the interfacial electrode chemistry through coating. Future work will require chronic in vivo assessment of these electrode patterns.

  10. Spot-Welding Gun With Pivoting Twin-Collet Assembly

    NASA Technical Reports Server (NTRS)

    Nguyen, Francis; Simpson, Gareth; Hoult, William S.

    1996-01-01

    Modified spot-welding gun includes pivoting twin-collet assembly that holds two spot-welding electrodes. Designed to weld highly conductive (30 percent gold) brazing-alloy foils to thin nickel alloy workpieces; also suitable for other spot-welding applications compatible with two-electrode configuration.

  11. Graphene/graphite paste electrode incorporated with molecularly imprinted polymer nanoparticles as a novel sensor for differential pulse voltammetry determination of fluoxetine.

    PubMed

    Alizadeh, Taher; Azizi, Sorour

    2016-07-15

    Molecularly imprinted polymer (MIP) nanoparticles including highly selective recognition sites for fluoxetine were synthesized, utilizing precipitation polymerization. Methacrylic acid and vinyl benzene were used as functional monomers. Ethylene glycol dimethacrylate was used as cross-linker agent. The obtained polymeric nanoparticles were incorporated with carbon paste electrode (CPE) in order to construct a fluoxetine selective sensor. The response of the MIP-CP electrode to fluoxetine was remarkably higher than the electrode, modified with the non-imprinted polymer, indicating the excellent efficiency of the MIP sites for target molecule recognition. It was found that the addition of a little amount of graphene, synthesized via modified hummer's method, to the MIP-CP resulted in considerable enhancement in the sensitivity of the electrode to fluoxetine. Also, the style of electrode components mixing, before carbon paste preparation, was demonstrated to be influential factor in the electrode response. Some parameters, affecting sensor response, were optimized and then a calibration curve was plotted. A dynamic linear range of 6×10(-9)-1.0×10(-7)molL(-1) was obtained. The detection limit of the sensor was calculated equal to 2.8×10(-9)molL(-1) (3Sb/m). This sensor was used successfully for fluoxetine determination in the spiked plasma samples as well as fluoxetine capsules. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Development of a novel MWCNTs-triazene-modified carbon paste electrode for potentiometric assessment of Hg(II) in the aquatic environments.

    PubMed

    Mashhadizadeh, Mohammad Hossein; Ramezani, Soleyman; Rofouei, Mohammad Kazem

    2015-02-01

    In this approach, a new chemically modified carbon paste electrode was assembled for potentiometric assay of mercury(II) ion in the aqueous environments. Hereby, MWCNTs were used in the carbon paste composition to meliorate the electrical conductivity and sensitivity of the carbon paste owing to its exceptional physicochemical characteristics. Likewise, participation of the BEPT as a super-selective ionophore in the carbon paste composition boosted significantly the selectivity of the modified electrode towards Hg(II) ions over a wide concentration range of 4.0 × 10(-9)-2.2 × 10(-3) mol L(-1) with a lower detection limit of 3.1 × 10(-9) mol L(-1). Besides, Nernstian slope of the proposed sensor was 28.9(± 0.4)mV/decade over a pH range of 3.0-5.2 with potentiometric short response time of 10s. In the interim, by storing in the dark and cool dry place during non-usage period, the electrode can be used for at least 30 days without any momentous divergence of the potentiometric response. Eventually, to judge about its practical efficiency, the arranged sensor was utilized successfully as an indicator electrode for potentiometric titration of mercury(II) with standard solution of EDTA. As well, the quantitative analysis of mercury(II) ions in some aqueous samples with sensible accuracy and precision was satisfactorily performed. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Synthesis and characterisation of Co-Co(OH)2 composite anode material on Cu current collector for energy storage devices

    NASA Astrophysics Data System (ADS)

    Yavuz, Abdulcabbar; Yakup Hacıibrahimoğlu, M.; Bedir, Metin

    2017-04-01

    A Co-Co(OH)2 modified electrode on inexpensive Cu substrate was synthesized at room temperature and demonstrated to be a promising anode material for energy storage devices. A modified Co film was obtained potentiostatically and was then potentiodynamically treated with KOH solution to form Co(OH)2. Co-Co(OH)2 coatings were obtained and were dominated by Co(OH)2 at the oxidized side, whereas Co dominant Co-Co(OH)2 occurred at the reduced side (-1.1 V). As OH- ions were able to diffuse into (out of) the film during oxidation (reduction) and did not react with the Cu current collector, the Co-Co(OH)2 electrode can be used as an anode material in energy storage devices. Although the specific capacitance of the electrodes varied depending on thickness, the redox reaction between the modified electrode and KOH electrolyte remained the same consisting of a surface-controlled and diffusion-controlled mechanism which had a desirable fast charge and discharge property. Capacity values remained constant after 250 cycles as the film evolved. Overall capacity retention was 84% for the film after 450 scans. A specific capacitance of 549 F g-1 was obtained for the Co-Co(OH)2 composite electrode in 6 M KOH at a scan rate of 5 mV s-1 and 73% of capacitance was retained when the scan rate was increased to 100 mV s-1.

  14. Ultra-sensitive film sensor based on Al2O3-Au nanoparticles supported on PDDA-functionalized graphene for the determination of acetaminophen.

    PubMed

    Li, Jianbo; Sun, Weiyan; Wang, Xiaojiao; Duan, Huimin; Wang, Yanhui; Sun, Yuanling; Ding, Chaofan; Luo, Chuannan

    2016-08-01

    An electrochemical sensor of acetaminophen based on poly(diallyldimethylammonium chloride) (PDDA)-functionalized reduced graphene-loaded Al2O3-Au nanoparticles coated onto glassy carbon electrode (Al2O3-Au/PDDA/reduced graphene oxide (rGO)/glass carbon electrode (GCE)) were prepared by layer self-assembly technique. The as-prepared electrode-modified materials were characterized by scanning electron microscopy, X-ray powder diffraction, and Fourier transform infrared spectroscopy. The electrocatalytic performances of Al2O3-Au/PDDA/rGO-modified glassy carbon electrode toward the acetaminophen were investigated by cyclic voltammetry and differential pulse voltammetry. The modified electrodes of graphene oxide (GO)/GCE, PDDA/rGO/GCE, and Al2O3-Au/PDDA/rGO/GCE were constructed for comparison and learning the catalytic mechanism. The research showed Al2O3-Au/PDDA/rGO/GCE having good electrochemical performance, attributing to the synergetic effect that comes from the special nanocomposite structure and physicochemical properties of Al2O3-Au nanoparticles and graphene. A low detection limit of 6 nM (S/N = 3) and a wide linear detection range from 0.02 to 200 μM (R (2) = 0.9970) was obtained. The preparation of sensor was successfully applied for the detection of acetaminophen in commercial pharmaceutical pills. Graphical abstract Schematic diagram of synthesis of Al2O3-Au/PDDA/rGO/GCE.

  15. The Cu-MOF-199/single-walled carbon nanotubes modified electrode for simultaneous determination of hydroquinone and catechol with extended linear ranges and lower detection limits.

    PubMed

    Zhou, Jian; Li, Xi; Yang, Linlin; Yan, Songlin; Wang, Mengmeng; Cheng, Dan; Chen, Qi; Dong, Yulin; Liu, Peng; Cai, Weiquan; Zhang, Chaocan

    2015-10-29

    A novel electrochemical sensor based on Cu-MOF-199 [Cu-MOF-199 = Cu3(BTC)2 (BTC = 1,3,5-benzenetricarboxylicacid)] and SWCNTs (single-walled carbon nanotubes) was fabricated for the simultaneous determination of hydroquinone (HQ) and catechol (CT). The modification procedure was carried out through casting SWCNTs on the bare glassy carbon electrode (GCE) and followed by the electrodeposition of Cu-MOF-199 on the SWCNTs modified electrode. Cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and scanning electron microscopy (SEM) were performed to characterize the electrochemical performance and surface characteristics of the as-prepared sensor. The composite electrode exhibited an excellent electrocatalytic activity with increased electrochemical signals towards the oxidation of HQ and CT, owing to the synergistic effect of SWCNTs and Cu-MOF-199. Under the optimized condition, the linear response range were from 0.1 to 1453 μmol L(-1) (RHQ = 0.9999) for HQ and 0.1-1150 μmol L(-1) (RCT = 0.9990) for CT. The detection limits for HQ and CT were as low as 0.08 and 0.1 μmol L(-1), respectively. Moreover, the modified electrode presented the good reproducibility and the excellent anti-interference performance. The analytical performance of the developed sensor for the simultaneous detection of HQ and CT had been evaluated in practical samples with satisfying results. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Continuous minimally-invasive alcohol monitoring using microneedle sensor arrays.

    PubMed

    Mohan, A M Vinu; Windmiller, Joshua Ray; Mishra, Rupesh K; Wang, Joseph

    2017-05-15

    The present work describes an attractive skin-worn microneedle sensing device for the minimally invasive electrochemical monitoring of subcutaneous alcohol. The device consists of an assembly of pyramidal microneedle structures integrated with Pt and Ag wires, each with a microcavity opening. The microneedle aperture was modified by electropolymerizing o-phenylene diamine onto the Pt wire microtransducer, followed by the immobilization of alcohol oxidase (AOx) in an intermediate chitosan layer, along with an outer Nafion layer. The resulting microneedle-based enzyme electrode displays an interference-free ethanol detection in artificial interstitial fluid without compromising its sensitivity, stability and response time. The skin penetration ability and the efficaciousness of the biosensor performance towards subcutaneous alcohol monitoring was substantiated by the ex vivo mice skin model analysis. Our results reveal that the new microneedle sensor holds considerable promise for continuous non-invasive alcohol monitoring in real-life situations. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Non-invasive toluene sensor for early diagnosis of lung cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saxena, Rahul; Srivastava, Sudha, E-mail: sudha.srivastava@jiit.ac.in

    Here we present, quantification of volatile organic compounds in human breath for early detection of lung cancer to increase survival probability. Graphene oxide nanosheets synthesized by modified Hummer’s method were employed as a sensing element to detect the presence of toluene in the sample. Optical and morphological characterization of synthesized nanomaterial was performed by UV-Visible spectroscopy and scanning electron microscopy (SEM) respectively. Spectroscopic assay shows a linearly decreasing intensity of GO absorption peak with increasing toluene concentration with a linear range from 0-200 pM. While impedimetric sensor developed on a graphene oxide nanosheetsmodified screen printed electrodes displayed a decreasing electronmore » transfer resistance increasing toluene with much larger linear range of 0-1000 pM. Reported techniques are advantageous as these are simple, sensitive and cost effective, which can easily be extended for primary screening of other VOCs.« less

  18. Continuous minimally-invasive alcohol monitoring using microneedle sensor arrays

    PubMed Central

    Vinu Mohan, A. M.; Windmiller, Joshua Ray; Mishra, Rupesh K.; Wang, Joseph

    2017-01-01

    The present work describes an attractive skin-worn microneedle sensing device for the minimally invasive electrochemical monitoring of subcutaneous alcohol. The device consists of an assembly of pyramidal microneedle structures integrated with Pt and Ag wires, each with a microcavity opening. The microneedle aperture was modified by electropolymerizing o-phenylene diamine onto the Pt wire microtransducer, followed by the immobilization of alcohol oxidase (AOx) in an intermediate chitosan layer, along with an outer Nafion layer. The resulting microneedle-based enzyme electrode displays an interference-free ethanol detection in artificial interstitial fluid without compromising its sensitivity, stability and response time. The skin penetration ability and the efficaciousness of the biosensor performance towards subcutaneous alcohol monitoring was substantiated by the ex vivo mice skin model analysis. Our results reveal that the new microneedle sensor holds considerable promise for continuous non-invasive alcohol monitoring in real-life situations. PMID:28088750

  19. Electrochemical Determination of Food Preservative Nitrite with Gold Nanoparticles/p-Aminothiophenol-Modified Gold Electrode.

    PubMed

    Üzer, Ayşem; Sağlam, Şener; Can, Ziya; Erçağ, Erol; Apak, Reşat

    2016-08-02

    Due to the negative impact of nitrate and nitrite on human health, their presence exceeding acceptable levels is not desired in foodstuffs. Thus, nitrite determination at low concentrations is a major challenge in electroanalytical chemistry, which can be achieved by fast, cheap, and safe electrochemical sensors. In this work, the working electrode (Au) was functionalized with p-aminothiophenol (p-ATP) and modified with gold nanoparticles (Au-NPs) to manufacture the final (Au/p-ATP-Aunano) electrode in a two-step procedure. In the first step, p-ATP was electropolymerized on the electrode surface to obtain a polyaminothiophenol (PATP) coating. In the second step, Au/p-ATP-Aunano working electrode was prepared by coating the surface with the use of HAuCl₄ solution and cyclic voltammetry. Determination of aqueous nitrite samples was performed with the proposed electrode (Au/p-ATP-Aunano) using square wave voltammetry (SWV) in pH 4 buffer medium. Characteristic peak potential of nitrite samples was 0.76 V, and linear calibration curves of current intensity versus concentration was linear in the range of 0.5-50 mg·L(-1) nitrite with a limit of detection (LOD) of 0.12 mg·L(-1). Alternatively, nitrite in sausage samples could be colorimetrically determined with high sensitivity by means of p-ATP‒modified gold nanoparticles (AuNPs) and naphthylethylene diamine as coupling agents for azo-dye formation due to enhanced charge-transfer interactions with the AuNPs surface. The slopes of the calibration lines in pure NO₂(-) solution and in sausage sample solution, to which different concentrations of NO₂(-) standards were added, were not significantly different from each other, confirming the robustness and interference tolerance of the method. The proposed voltammetric sensing method was validated against the colorimetric nanosensing method in sausage samples.

  20. An electrochemical sensor for homocysteine detection using gold nanoparticle incorporated reduced graphene oxide.

    PubMed

    Rajaram, Rajendran; Mathiyarasu, Jayaraman

    2018-05-30

    In this work, we report a methodology for the quantification of Homocysteine (HcySH) at neutral pH (pH-7.0) using Au nanoparticles incorporated reduced graphene oxide (AuNP/rGO/GCE) modified glassy carbon electrode. The modified electrode was characterized using SEM and XRD techniques. The electrode exhibited a typical behavior against the standard redox probe [Fe(CN) 6 ] 3-/4- and resulted in 0.06 V peak to peak potential value. The modified electrode exhibited electrocatalytic activity towards electrochemical biosensing of HcySH, which is established using voltammetric studies. HcySH oxidation peak potential is observed at 0.12 V on AuNP/rGO/GCE which is 0.7 V cathodic than bare glassy carbon electrode (0.82 V). The large peak potential shift observed is reasoned as the interaction of SH group of HcySH with the gold nanoparticles and the electrocatalytic property of reduced graphene oxide that enhances the electrochemical detection at reduced overpotential. Further, successive addition of HcySH showed a linear increment in the sensitivity within the concentration range of 2-14 mM. From an amperometric protocol, the limit of detection is found as 6.9 μM with a sensitivity of 14.8 nA/μM. From a set of cyclic voltammetric measurements, it is observed that the electrode produces a linear signal on the concentration of HcySH in the presence of hydrogen peroxide. Thus it can be concluded that the matrix can detect HcySH even in the presence of hydrogen peroxide. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Partially Reduced Graphene Oxide Modified Tetrahedral Amorphous Carbon Thin-Film Electrodes as a Platform for Nanomolar Detection of Dopamine

    DOE PAGES

    Wester, Niklas; Sainio, Sami; Palomäki, Tommi; ...

    2017-03-16

    Here, we present for the first time tetrahedral amorphous carbon (ta-C)—a partially reduced graphene oxide (PRGO) hybrid electrode nanomaterial platform for electrochemical sensing of dopamine (DA). Graphene oxide was synthesized with the modified Hummer’s method. Before modification of ta-C by drop casting, partial reduction of the GO was carried out to improve electrochemical properties and adhesion to the ta-C thin film. A facile nitric acid treatment that slightly reoxidized the surface and modified the surface chemistry was subsequently performed to further improve the electrochemical properties of the electrodes. The largest relative increase was seen in carboxyl groups. The HNO 3more » treatment increased the sensitivity toward DA and AA and resulted in a cathodic shift in the oxidation of AA. The fabricated hybrid electrodes were characterized with scanning electron microscopy (SEM), Raman spectroscopy, Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), X-ray absorption spectroscopy (XAS), and electrochemical impedance spectroscopy (EIS). Moreover, compared to the plain ta-C electrode the hybrid electrode was shown to exhibit superior sensitivity and selectivity toward DA in the presence of ascorbic acid (AA), enabling simultaneous sensing of AA and DA close to the physiological concentrations by cyclic voltammetry (CV) and by differential pulse voltammetry (DPV). Two linear ranges of 0–1 μM and 1–100 μM and a detection limit (S/N = 3.3) of 2.6 nM for DA were determined by means of cyclic voltammetry. Thus, the current work provides a fully CMOS-compatible carbon based hybrid nanomaterial that shows potential for in vivo measurements of DA.« less

  2. Effects of adsorbed pyridine derivatives and ultrathin atomic-layer-deposited alumina coatings on the conduction band-edge energy of TiO2 and on redox-shuttle-derived dark currents.

    PubMed

    Katz, Michael J; Vermeer, Michael J D; Farha, Omar K; Pellin, Michael J; Hupp, Joseph T

    2013-01-15

    Both the adsorption of t-butylpyridine and the atomic-layer deposition of ultrathin conformal coatings of insulators (such as alumina) are known to boost open-circuit photovoltages substantially for dye-sensitized solar cells. One attractive interpretation is that these modifiers significantly shift the conduction-edge energy of the electrode, thereby shifting the onset potential for dark current arising from the interception of injected electrons by solution-phase redox shuttle components such as Co(phenanthroline)(3)(3+) and triiodide. For standard, high-area, nanoporous photoelectrodes, band-edge energies are difficult to measure directly. In contrast, for flat electrodes they are readily accessible from Mott-Schottky analyses of impedance data. Using such electrodes (specifically TiO(2)), we find that neither organic nor inorganic electrode-surface modifiers shift the conduction-band-edge energy sufficiently to account fully for the beneficial effects on electrode behavior (i.e., the suppression of dark current). Additional experiments reveal that the efficacy of ultrathin coatings of Al(2)O(3) arises chiefly from the passivation of redox-catalytic surface states. In contrast, adsorbed t-butylpyridine appears to suppress dark currents mainly by physically blocking access of shuttle molecules to the electrode surface. Studies with other derivatives of pyridine, including sterically and/or electronically diverse derivatives, show that heterocycle adsorption and the concomitant suppression of dark current does not require the coordination of surface Ti(IV) or Al(III) atoms. Notably, the favorable (i.e., negative) shifts in onset potential for the flow of dark current engendered by organic and inorganic surface modifiers are additive. Furthermore, they appear to be largely insensitive to the identity of shuttle molecules.

  3. Partially Reduced Graphene Oxide Modified Tetrahedral Amorphous Carbon Thin-Film Electrodes as a Platform for Nanomolar Detection of Dopamine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wester, Niklas; Sainio, Sami; Palomäki, Tommi

    Here, we present for the first time tetrahedral amorphous carbon (ta-C)—a partially reduced graphene oxide (PRGO) hybrid electrode nanomaterial platform for electrochemical sensing of dopamine (DA). Graphene oxide was synthesized with the modified Hummer’s method. Before modification of ta-C by drop casting, partial reduction of the GO was carried out to improve electrochemical properties and adhesion to the ta-C thin film. A facile nitric acid treatment that slightly reoxidized the surface and modified the surface chemistry was subsequently performed to further improve the electrochemical properties of the electrodes. The largest relative increase was seen in carboxyl groups. The HNO 3more » treatment increased the sensitivity toward DA and AA and resulted in a cathodic shift in the oxidation of AA. The fabricated hybrid electrodes were characterized with scanning electron microscopy (SEM), Raman spectroscopy, Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), X-ray absorption spectroscopy (XAS), and electrochemical impedance spectroscopy (EIS). Moreover, compared to the plain ta-C electrode the hybrid electrode was shown to exhibit superior sensitivity and selectivity toward DA in the presence of ascorbic acid (AA), enabling simultaneous sensing of AA and DA close to the physiological concentrations by cyclic voltammetry (CV) and by differential pulse voltammetry (DPV). Two linear ranges of 0–1 μM and 1–100 μM and a detection limit (S/N = 3.3) of 2.6 nM for DA were determined by means of cyclic voltammetry. Thus, the current work provides a fully CMOS-compatible carbon based hybrid nanomaterial that shows potential for in vivo measurements of DA.« less

  4. Electrochemical preparation of nickel and copper oxides-decorated graphene composite for simultaneous determination of dopamine, acetaminophen and tryptophan.

    PubMed

    Liu, Bingdi; Ouyang, Xiaoqian; Ding, Yaping; Luo, Liqing; Xu, Duo; Ning, Yanqun

    2016-01-01

    In the present work, transition metal oxides decorated graphene (GR) have been fabricated for simultaneous determination of dopamine (DA), acetaminophen (AC) and tryptophan (Trp) using square wave voltammetry. Electro-deposition is a facile preparation strategy for the synthesis of nickel oxide (NiO) and copper oxide (CuO) nanoparticles. GR can be modified by using citric acid to produce more functional groups, which is conducive to the deposition of dispersed metal particles. The morphologies and interface properties of the obtained NiO-CuO/GR nanocomposite were examined by scanning electron microscopy, energy dispersive X-ray spectroscopy and Raman spectroscopy. Moreover, the electrochemical performances of the composite film were investigated by cyclic voltammetry and electrochemical impedance spectroscopy. The modified electrode exhibited that the linear response ranges for detecting DA, AC and Trp were 0.5-20 μM, 4-400 μM and 0.3-40 μM, respectively, and the detection limits were 0.17 μM, 1.33 μM and 0.1 μM (S/N=3). Under optimal conditions, the sensor displayed high sensitivity, excellent stability and satisfactory results in real samples analysis. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Boronic acid based imprinted electrochemical sensor for rutin recognition and detection.

    PubMed

    Wang, Chunlei; Wang, Qi; Zhong, Min; Kan, Xianwen

    2016-10-21

    Multi-walled carbon nanotubes (MWNTs) and boronic acid based molecular imprinting polymer (MIP) were successively modified on a glassy carbon electrode surface to fabricate a novel electrochemical sensor for rutin recognition and detection. 3-Aminophenylboronic acid (APBA) was chosen as a monomer for the electropolymerization of MIP film in the presence of rutin. In addition to the imprinted cavities in MIP film to complement the template molecule in shape and functional groups, the high affinity between the boronic acid group of APBA and vicinal diols of rutin also enhanced the selectivity of the sensor, which made the sensor display a good selectivity to rutin. Moreover, the modified MWNTs improved the sensitivity of the sensor for rutin detection. The mole ratios of rutin and APBA, electropolymerized scan cycles and rates, and pH value of the detection solution were optimized. Under optimal conditions, the sensor was used to detect rutin in a linear range from 4.0 × 10 -7 to 1.0 × 10 -5 mol L -1 with a detection limit of 1.1 × 10 -7 mol L -1 . The sensor has also been applied to assay rutin in tablets with satisfactory results.

  6. Improving the catalytic activity of amorphous molybdenum sulfide for hydrogen evolution reaction using polydihydroxyphenylalanine modified MWCNTs

    NASA Astrophysics Data System (ADS)

    Li, Maoguo; Yu, Muping; Li, Xiang

    2018-05-01

    Molybdenum sulfides are promising electrocatalysts for hydrogen evolution reaction (HER) in acid medium due to their unique properties. In order to improve their HER activity, different strategies have been developed. In this study, amorphous molybdenum sulfide was prepared by a simple wet chemical method and its HER activity was further improved by using polydihydroxyphenylalanine (PDOPA) modified MWCNTs as supports. It was found that the PDOPA can effectively improve the hydrophilic properties of multiwalled carbon nanotubes (MWCNTs) and amorphous MoSx can uniformly grow on the surface of PDOPA@MWCNTs. Compared with MoSx and MoSx/MWCNTs, MoSx/PDOPA@MWCNTs show obviously enhanced HER activities due to the superior electrical conductivity and more exposed active sites. In addition, the effect of the ratio of MoSx and PDOPA@MWCNTs and the loading amount of catalysts on the electrodes are also investigated in detail. At the optimum conditions, MoSx/PDOPA@MWCNTs display an overpotential of 198 mV at 10 mA/cm2, a Tafel slope of 53 mV/dec and a good long-term stability in 0.5 M H2SO4, which make them promising candidates for HER application.

  7. Unconventional supercapacitors from nanocarbon-based electrode materials to device configurations.

    PubMed

    Liu, Lili; Niu, Zhiqiang; Chen, Jun

    2016-07-25

    As energy storage devices, supercapacitors that are also called electrochemical capacitors possess high power density, excellent reversibility and long cycle life. The recent boom in electronic devices with different functions in transparent LED displays, stretchable electronic systems and artificial skin has increased the demand for supercapacitors to move towards light, thin, integrated macro- and micro-devices with transparent, flexible, stretchable, compressible and/or wearable abilities. The successful fabrication of such supercapacitors depends mainly on the preparation of innovative electrode materials and the design of unconventional supercapacitor configurations. Tremendous research efforts have been recently made to design and construct innovative nanocarbon-based electrode materials and supercapacitors with unconventional configurations. We review here recent developments in supercapacitors from nanocarbon-based electrode materials to device configurations. The advances in nanocarbon-based electrode materials mainly include the assembly technologies of macroscopic nanostructured electrodes with different dimensions of carbon nanotubes/nanofibers, graphene, mesoporous carbon, activated carbon, and their composites. The electrodes with macroscopic nanostructured carbon-based materials overcome the issues of low conductivity, poor mechanical properties, and limited dimensions that are faced by conventional methods. The configurational design of advanced supercapacitor devices is presented with six types of unconventional supercapacitor devices: flexible, micro-, stretchable, compressible, transparent and fiber supercapacitors. Such supercapacitors display unique configurations and excellent electrochemical performance at different states such as bending, stretching, compressing and/or folding. For example, all-solid-state simplified supercapacitors that are based on nanostructured graphene composite paper are able to maintain 95% of the original capacity at a 180° folding state. The progress made so far will guide further developments in the structural design of nanocarbon-based electrode materials and the configurational diversity of supercapacitor devices. Future developments and prospects in the controllable assembly of macroscopic nanostructured electrodes and the innovation of unconventional supercapacitor configurations are also discussed. This should shed light on the R&D of supercapacitors.

  8. Green synthesis and characterization of novel gold nanocomposites for electrochemical sensing applications.

    PubMed

    Tanwar, Shivani; Ho, Ja-an Annie; Magi, Emanuele

    2013-12-15

    Synthesis, characterization and application of Au-PANI-Calix and Au-PANI-Nap nanocomposites, is reported herein. An easy template free green synthesis is proposed and discussed for easy expediency. A variety of analytical techniques were used to characterize the nanocomposites: UV-vis spectroscopy, Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, Dynamic light scattering (DLS), X-ray diffraction (XRD), Energy-dispersive X-ray spectroscopy (EDX), and X-ray photoelectron spectroscopy (XPS) were used to characterize the nanocomposites. Surface morphology was studied by transmission electron microscopy (TEM). The nanocomposites were immobilized on screen-printed electrode and showed electroactivity in neutral pH, making them promising candidates for various analytical applications. A sensitive and selective detection of Cu(2+) was perceived on the Au-PANI-Calix modified electrode with no interference from ions K(+), Ni(2+), Co(2+), Pb(2+), Cr(3+) with a detection limit of 10nM. The copper detection is facilitated for accessible ligation with 4-sulfocalix[4]arene, so as the Cu(II)-Calix complex formed. The electrode modified with Au-PANI-Nap showed sensing application towards H2O2 with a detection limit of 1 μM. The modified electrodes were reproducible and stable for 2 months. © 2013 Elsevier B.V. All rights reserved.

  9. Functionalized-graphene modified graphite electrode for the selective determination of dopamine in presence of uric acid and ascorbic acid.

    PubMed

    Mallesha, Malledevaru; Manjunatha, Revanasiddappa; Nethravathi, C; Suresh, Gurukar Shivappa; Rajamathi, Michael; Melo, Jose Savio; Venkatesha, Thimmappa Venkatarangaiah

    2011-06-01

    Graphene is chemically synthesized by solvothermal reduction of colloidal dispersions of graphite oxide. Graphite electrode is modified with functionalized-graphene for electrochemical applications. Electrochemical characterization of functionalized-graphene modified graphite electrode (FGGE) is carried out by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The behavior of FGGE towards ascorbic acid (AA), dopamine (DA) and uric acid (UA) has been investigated by CV, differential pulse voltammetry (DPV) and chronoamperommetry (CA). The FGGE showed excellent catalytic activity towards electrochemical oxidation of AA, DA and UA compared to that of the bare graphite electrode. The electrochemical oxidation signals of AA, DA and UA are well separated into three distinct peaks with peak potential separation of 193mv, 172mv and 264mV between AA-DA, DA-UA and AA-UA respectively in CV studies and the corresponding peak potential separations in DPV mode are 204mv, 141mv and 345mv. The FGGE is successfully used for the simultaneous detection of AA, DA and UA in their ternary mixture and DA in serum and pharmaceutical samples. The excellent electrocatalytic behavior of FGGE may lead to new applications in electrochemical analysis. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. DNA biosensor for detection of Salmonella typhi from blood sample of typhoid fever patient using gold electrode modified by self-assembled monolayers of thiols

    NASA Astrophysics Data System (ADS)

    Suryapratiwi, Windha Novita; Paat, Vlagia Indira; Gaffar, Shabarni; Hartati, Yeni Wahyuni

    2017-05-01

    Electrochemical biosensors are currently being developed in order to handle various clinical problems in diagnosing infectious diseases caused by pathogenic bacteria, or viruses. On this research, voltammetric DNA biosensor using gold electrode modified by thiols with self-assembled monolayers had been developed to detect a certain sequence of Salmonella typhi DNA from blood sample of typhoid fever patient. Thiol groups of cysteamines (Cys) and aldehyde groups from glutaraldehydes (Glu) were used as a link to increase the performance of gold electrode in detecting guanine oxidation signal of hybridized S. typhi DNA and ssDNA probe. Standard calibration method was used to determine analytical parameters from the measurements. The result shown that, the detection of S. typhi DNA from blood sample of typhoid fever patient can be carried out by voltammetry using gold electrode modified by self-assembled monolayers of thiols. A characteristic oxidation potential of guanine using Au/Cys/Gluwas obtained at +0.17 until +0.20 V. Limit of detection and limit of quantification from this measurements were 1.91μg mL-1 and 6.35 μg mL-1. The concentration of complement DNA from sample was 6.96 μg mL-1.

  11. Preparation of Cu2O-Reduced Graphene Nanocomposite Modified Electrodes towards Ultrasensitive Dopamine Detection

    PubMed Central

    He, Quanguo; Liu, Jun; Liu, Xiaopeng; Li, Guangli; Deng, Peihong; Liang, Jing

    2018-01-01

    Cu2O-reduced graphene oxide nanocomposite (Cu2O-RGO) was used to modify glassy carbon electrodes (GCE), and applied for the determination of dopamine (DA). The microstructure of Cu2O-RGO nanocomposite material was characterized by scanning electron microscope. Then the electrochemical reduction condition for preparing Cu2O-RGO/GCE and experimental conditions for determining DA were further optimized. The electrochemical behaviors of DA on the bare electrode, RGO- and Cu2O-RGO-modified electrodes were also investigated using cyclic voltammetry in phosphate-buffered saline solution (PBS, pH 3.5). The results show that the oxidation peaks of ascorbic acid (AA), dopamine (DA), and uric acid (UA) could be well separated and the peak-to-peak separations are 204 mV (AA-DA) and 144 mV (DA-UA), respectively. Moreover, the linear response ranges for the determination of 1 × 10−8 mol/L~1 × 10−6 mol/L and 1 × 10−6 mol/L~8 × 10−5 mol/L with the detection limit 6.0 × 10−9 mol/L (S/N = 3). The proposed Cu2O-RGO/GCE was further applied to the determination of DA in dopamine hydrochloride injections with satisfactory results. PMID:29329206

  12. Impedimetric detection of cocaine by using an aptamer attached to a screen printed electrode modified with a dendrimer/silver nanoparticle nanocomposite.

    PubMed

    Roushani, Mahmoud; Shahdost-Fard, Faezeh

    2018-03-12

    The authors describe a highly sensitive method for the aptamer (Apt) based impedimetric determination of cocaine. The surface of a screen-printed electrode (SPE) was modified with a nanocomposite of dendrimer and silver nanoparticles (AgNPs). The cocaine-binding Apt was attached to a dendrimer/AgNP/SPE surface, forming a sensitive layer for the determination of cocaine. The incubation with the analyte resulted in the formation of a cocaine/Apt complex on the electrode surface. As a consequence, folding and conformational change in the aptamer structure was induced, this resulting in a change in the impedimetric signal. The aptaassay exhibits highly efficient sensing characteristics with a good linearity of 1 fmol L -1 to 100 nmol L -1 (with two linear ranges) and a limit of detection (LOD) of 333 amol L -1 . Its excellent specificity and high sensitivity suggest that this kind of aptamer-based assay may be applied to detect other targets in this field. Graphical Abstract Designing of an aptaassay via immobilization of a functionalized aptamer with silver nanoparticle (AgNPs-Apt) on the modified screen-printed electrode (SPE) with dendrimer/silver nanoparticle nanocomposite (Den-AgNPs) for impedimetric detection of cocaine.

  13. The effect of the carbon nanotube buffer layer on the performance of a Li metal battery.

    PubMed

    Zhang, Ding; Zhou, Yi; Liu, Changhong; Fan, Shoushan

    2016-06-07

    Lithium (Li) metal is one of the most promising candidates as an anode for the next-generation energy storage systems because of its high specific capacity and lowest negative electrochemical potential. But the growth of Li dendrites limits the application of the Li metal battery. In this work, a type of modified Li metal battery with a carbon nanotube (CNT) buffer layer inserted between the separator and the Li metal electrode was reported. The electrochemical results show that the modified batteries have a much better rate capability and cycling performance than the conventional Li metal batteries. The mechanism study by electrochemical impedance spectroscopy reveals that the modified battery has a smaller charge transfer resistance and larger Li ion diffusion coefficient during the deposition process on the Li electrode than the conventional Li metal batteries. Symmetric battery tests show that the interfacial behavior of the Li metal electrode with the buffer layer is more stable than the naked Li metal electrode. The morphological characterization of the CNT buffer layer and Li metal lamina reveals that the CNT buffer layer has restrained the growth of Li dendrites. The CNT buffer layer has great potential to solve the safety problem of the Li metal battery.

  14. Monitoring of microbial cell viability using nanostructured electrodes modified with Graphene/Alumina nanocomposite.

    PubMed

    Hassan, Rabeay Y A; Mekawy, Moataz M; Ramnani, Pankaj; Mulchandani, Ashok

    2017-05-15

    Microbial infections are rapidly increasing; however most of the existing microbiological and molecular detection methods are time consuming and/or cannot differentiate between the viable and dead cells which may overestimate the risk of infections. Therefore, a bioelectrochemical sensing platform with a high potential to the microbial-electrode interactions was designed based on decorated graphene oxide (GO) sheet with alumina (Al 2 O 3 ) nanocrystals. GO-Al 2 O 3 nanocomposite was synthesized using self-assembly of GO and Al 2 O 3 and characterized using the scanning electron microscopy (SEM), transmission electron microscopy (TEM), x-ray diffraction (XRD), Raman-spectroscopy, electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). Enhancement of electrocatalytic activity of the composite-modified electrode was demonstrated. Thus, using the GO-Al 2 O 3 nanocomposite modified electrode, the cell viability was determined by monitoring the bioelectrochemical response of the living microbial cells (bacteria and yeast) upon stimulation with carbon source. The bioelectrochemical assay was optimized to obtain high sensitivity and the method was applied to monitor cell viability and screen susceptibility of metabolically active cells (E. coli, B. subtilis, Enterococcus, P. aeruginosa and Salmonella typhi) to antibiotics such as ampicillin and kanamycin. Therefore, the developed assay is suitable for cell proliferation and cytotoxicity testing. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Nanotubular MnO2/graphene oxide composites for the application of open air-breathing cathode microbial fuel cells.

    PubMed

    Gnana Kumar, G; Awan, Zahoor; Suk Nahm, Kee; Xavier, J Stanley

    2014-03-15

    Nanotubular shaped α-MnO2/graphene oxide nanocomposites were synthesized via a simple, cost and time efficient hydrothermal method. The growth of hollow structured MnO2 nanotubes preferentially occurred along the [001] direction as evidenced from the morphological and structural characterizations. The tunnels of α-MnO2 nanotubes easily accommodated the molecular oxygen and exhibited excellent catalytic activity towards the oxygen reduction reaction over the rod structure and was further enhanced with the effective carbon support graphene oxide. The MnO2 nanotubes/graphene oxide nanocomposite modified electrode exhibited a maximum power density of 3359 mW m(-2) which is 7.8 fold higher than that of unmodified electrode and comparable with the Pt/C modified electrode. The microbial fuel cell equipped with MnO2 nanotubes/graphene oxide nanocomposite modified cathode exhibited quick start up and excellent durability over the studied electrodes and is attributed to the high surface area and number of active sites. These findings not only provide the fundamental studies on carbon supported low-dimensional transition-metal oxides but also open up the new possibilities of their applications in green energy devices. © 2013 Elsevier B.V. All rights reserved.

  16. Modified lithium vanadium oxide electrode materials products and methods

    DOEpatents

    Thackeray, Michael M.; Kahaian, Arthur J.; Visser, Donald R.; Dees, Dennis W.; Benedek, Roy

    1999-12-21

    A method of improving certain vanadium oxide formulations is presented. The method concerns fluorine doping formulations having a nominal formula of LiV.sub.3 O.sub.8. Preferred average formulations are provided wherein the average oxidation state of the vanadium is at least 4.6. Herein preferred fluorine doped vanadium oxide materials, electrodes using such materials, and batteries including at least one electrode therein comprising such materials are provided.

  17. Determination of Zinc, Cadmium, Lead, Copper and Silver Using a Carbon Paste Electrode and a Screen Printed Electrode Modified with Chromium(III) Oxide

    PubMed Central

    Koudelkova, Zuzana; Syrovy, Tomas; Ambrozova, Pavlina; Moravec, Zdenek; Kubac, Lubomir; Hynek, David; Adam, Vojtech

    2017-01-01

    In this study, the preparation and electrochemical application of a chromium(III) oxide modified carbon paste electrode (Cr-CPE) and a screen printed electrode (SPE), made from the same material and optimized for the simple, cheap and sensitive simultaneous determination of zinc, cadmium, lead, copper and the detection of silver ions, is described. The limits of detection and quantification were 25 and 80 µg·L−1 for Zn(II), 3 and 10 µg·L−1 for Cd(II), 3 and 10 µg·L−1 for Pb(II), 3 and 10 µg·L−1 for Cu(II), and 3 and 10 µg·L−1 for Ag(I), respectively. Furthermore, this promising modification was transferred to the screen-printed electrode. The limits of detection for the simultaneous determination of zinc, cadmium, copper and lead on the screen printed electrodes were found to be 350 µg·L−1 for Zn(II), 25 µg·L−1 for Cd(II), 3 µg·L−1 for Pb(II) and 3 µg·L−1 for Cu(II). Practical usability for the simultaneous detection of these heavy metal ions by the Cr-CPE was also demonstrated in the analyses of wastewaters. PMID:28792450

  18. Determination of Zinc, Cadmium, Lead, Copper and Silver Using a Carbon Paste Electrode and a Screen Printed Electrode Modified with Chromium(III) Oxide.

    PubMed

    Koudelkova, Zuzana; Syrovy, Tomas; Ambrozova, Pavlina; Moravec, Zdenek; Kubac, Lubomir; Hynek, David; Richtera, Lukas; Adam, Vojtech

    2017-08-09

    In this study, the preparation and electrochemical application of a chromium(III) oxide modified carbon paste electrode (Cr-CPE) and a screen printed electrode (SPE), made from the same material and optimized for the simple, cheap and sensitive simultaneous determination of zinc, cadmium, lead, copper and the detection of silver ions, is described. The limits of detection and quantification were 25 and 80 µg·L -1 for Zn(II), 3 and 10 µg·L -1 for Cd(II), 3 and 10 µg·L -1 for Pb(II), 3 and 10 µg·L -1 for Cu(II), and 3 and 10 µg·L -1 for Ag(I), respectively. Furthermore, this promising modification was transferred to the screen-printed electrode. The limits of detection for the simultaneous determination of zinc, cadmium, copper and lead on the screen printed electrodes were found to be 350 µg·L -1 for Zn(II), 25 µg·L -1 for Cd(II), 3 µg·L -1 for Pb(II) and 3 µg·L -1 for Cu(II). Practical usability for the simultaneous detection of these heavy metal ions by the Cr-CPE was also demonstrated in the analyses of wastewaters.

  19. Direct electrochemistry of glucose oxidase and biosensing for glucose based on boron-doped carbon nanotubes modified electrode.

    PubMed

    Deng, Chunyan; Chen, Jinhua; Chen, Xiaoli; Xiao, Chunhui; Nie, Lihua; Yao, Shouzhuo

    2008-03-14

    Due to their unique physicochemical properties, doped carbon nanotubes are now extremely attractive and important nanomaterials in bioanalytical applications. In this work, selecting glucose oxidase (GOD) as a model enzyme, we investigated the direct electrochemistry of GOD based on the B-doped carbon nanotubes/glassy carbon (BCNTs/GC) electrode with cyclic voltammetry. A pair of well-defined, quasi-reversible redox peaks of the immobilized GOD was observed at the BCNTs based enzyme electrode in 0.1M phosphate buffer solution (pH 6.98) by direct electron transfer between the protein and the electrode. As a new platform in glucose analysis, the new glucose biosensor based on the BCNTs/GC electrode has a sensitivity of 111.57 microA mM(-1)cm(-2), a linear range from 0.05 to 0.3mM and a detection limit of 0.01mM (S/N=3). Furthermore, the BCNTs modified electrode exhibits good stability and excellent anti-interferent ability to the commonly co-existed uric acid and ascorbic acid. These indicate that boron-doped carbon nanotubes are the good candidate material for the direct electrochemistry of the redox-active enzyme and the construction of the related enzyme biosensors.

  20. Comparison of impedimetric detection of DNA hybridization on the various biosensors based on modified glassy carbon electrodes with PANHS and nanomaterials of RGO and MWCNTs.

    PubMed

    Benvidi, Ali; Tezerjani, Marzieh Dehghan; Jahanbani, Shahriar; Mazloum Ardakani, Mohammad; Moshtaghioun, Seyed Mohammad

    2016-01-15

    In this research, we have developed lable free DNA biosensors based on modified glassy carbon electrodes (GCE) with reduced graphene oxide (RGO) and carbon nanotubes (MWCNTs) for detection of DNA sequences. This paper compares the detection of BRCA1 5382insC mutation using independent glassy carbon electrodes (GCE) modified with RGO and MWCNTs. A probe (BRCA1 5382insC mutation detection (ssDNA)) was then immobilized on the modified electrodes for a specific time. The immobilization of the probe and its hybridization with the target DNA (Complementary DNA) were performed under optimum conditions using different electrochemical techniques such as cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The proposed biosensors were used for determination of complementary DNA sequences. The non-modified DNA biosensor (1-pyrenebutyric acid-N- hydroxysuccinimide ester (PANHS)/GCE), revealed a linear relationship between ∆Rct and logarithm of the complementary target DNA concentration ranging from 1.0×10(-16)molL(-1) to 1.0×10(-10)mol L(-1) with a correlation coefficient of 0.992, for DNA biosensors modified with multi-wall carbon nanotubes (MWCNTs) and reduced graphene oxide (RGO) wider linear range and lower detection limit were obtained. For ssDNA/PANHS/MWCNTs/GCE a linear range 1.0×10(-17)mol L(-1)-1.0×10(-10)mol L(-1) with a correlation coefficient of 0.993 and for ssDNA/PANHS/RGO/GCE a linear range from 1.0×10(-18)mol L(-1) to 1.0×10(-10)mol L(-1) with a correlation coefficient of 0.985 were obtained. In addition, the mentioned biosensors were satisfactorily applied for discriminating of complementary sequences from noncomplementary sequences, so the mentioned biosensors can be used for the detection of BRCA1-associated breast cancer. Copyright © 2015. Published by Elsevier B.V.

Top