Science.gov

Sample records for modified gec cell

  1. Temperature Measurement for Dust Particles in a GEC Reference Cell

    NASA Astrophysics Data System (ADS)

    Kong, Jie; Qiao, Ke; Matthews, Lorin; Hyde, Truell

    2016-10-01

    The thermal motion of a dust particle levitated in a plasma chamber is similar to that described by Brownian motion in many ways. The primary differences between a dust particle in a plasma system and a free Brownian particle is that in addition to the random collisions between the dust particle and the neutral gas atoms, there are electric field fluctuations, dust charge fluctuations, and correlated motions from unwanted continuous signals originating within the plasma system itself. Correlated motion cannot be qualified as random motion, and therefore should not be included in a measurement of the dust temperature. In this presentation, we discuss how to separate random and coherent motion of a dust particle confined in a glass box within a GEC radio frequency reference cell. Dust particle fluctuation data are obtained experimentally and analyzed using the mean square displacement and other techniques, and temperatures obtained by various methods are compared. NSF / DOE funding is gratefully acknowledged - PHY1414523 & PHY1262031.

  2. Simulation of plasma chemistry in a modified Gaseous Electronics Conference (mGEC) research reactor

    NASA Astrophysics Data System (ADS)

    Sant, Sanket; Joseph, E. A.; Liu, Yonghua; Overzet, L. J.; Zhou, Bao; Goeckner, M. J.

    2002-10-01

    In this paper, we make use of the Hybrid Plasma Equipment Model (HPEM) [1] and Langmuir probes to examine the mGEC. The mGEC was designed to study the interactions of the radicals created in a high density low pressure plasma with the chamber walls. The tool has the ability to change its geometrical structure in various dimensions, allowing us to closely inspect various plasma-wall interactions. This ability can be imperative in deciding the exact wall conditions necessary for optimal yield in a real time process. This paper presents a part of this project by matching Langmuir probe results taken in the mGEC cell when a highly polymerizing gas, CF4, is used to create a high density low pressure plasma. The results are compared to the theoretical results derived from modeling the chamber conditions using the Hybrid plasma equipment model (HPEM). [1] R. Kinder and M.J. Kushner, 'Non-Collisional Heating and Electron Energy Distributions in Magnetically Enhanced Inductively Coupled and Helicon Plasma Sources', J. Appl. Phys. 90, 3699 (2001). This work is supported by a grant from NSF / DOE, CTS-0078669.

  3. Diode Laser Measurements in an Inductively Coupled GEC Cell for Oxide Etching

    NASA Astrophysics Data System (ADS)

    Perry, Lee; Deering, Glen; Koltunski, Laure; Anderson, Harold

    1998-10-01

    Diode laser absorption measurements have been made on CF, CF2 and CO radicals in an inductively coupled GEC reference cell. The GEC reference cell was modified with a quartz confinement ring around the source region to stabilize the plasma. Optical emission and Langmuir probe studies indicated this modification resulted in fluorocarbon discharges with a plasma chemistry similar to that found in commercial etch tools. The experiments in this study focused on radical concentrations found in the reactor under typical high-density plasma etching conditions. In a 10 mTorr C_2F6 discharge at 300 W source power and 100 W bias power, etching proceeded at about 5000 Åmin-1. A range of source power and bias power conditions, from 100 to 400 W and from 0 to 130 W, respectively, was employed. The time evolution of CF, CF2 and CO in a C_2F6 plasma was monitored during an approximate 2 minute etch cycle. Chamber cleanliness and bias was found to exert a strong influence on radical densities. The data is expected to provide an important database for models of oxide etching in inductively coupled plasma tools. (This work has been supported by SEMATECH)

  4. Temperature measurement of a dust particle in a RF plasma GEC reference cell

    NASA Astrophysics Data System (ADS)

    Kong, Jie; Qiao, Ke; Matthews, Lorin S.; Hyde, Truell W.

    2016-10-01

    The thermal motion of a dust particle levitated in a plasma chamber is similar to that described by Brownian motion in many ways. The primary difference between a dust particle in a plasma system and a free Brownian particle is that in addition to the random collisions between the dust particle and the neutral gas atoms, there are electric field fluctuations, dust charge fluctuations, and correlated motions from the unwanted continuous signals originating within the plasma system itself. This last contribution does not include random motion and is therefore separable from the random motion in a `normal' temperature measurement. In this paper, we discuss how to separate random and coherent motions of a dust particle confined in a glass box in a Gaseous Electronic Conference (GEC) radio-frequency (RF) reference cell employing experimentally determined dust particle fluctuation data analysed using the mean square displacement technique.

  5. Langmuir Probe Measurements in an Inductively Coupled GEC Reference Cell Plasma

    NASA Technical Reports Server (NTRS)

    Ji, J. S.; Kim, J. S.; Cappelli, M. A.; Sharma, S. P.; Arnold, J. O. (Technical Monitor)

    1998-01-01

    Measurements of electron number density, electron temperature, and electron energy distribution function (EEDF) using a compensated Langmuir probe have been performed on an inductively (transformer ) coupled Gaseous Electronics Conference (GEC) reference cell plasma. The plasma source is operated with CH4, CF4, or their mixtures with argon. The effect of independently driving the electrode supporting the wafer on the probe data is studied. In particular, we find that the plasma structure depends on the phase in addition to the magnitude of the power coupled to the electrode relative to that of the transformer coil. The Langmuir probe is translated in a plane parallel to the electrode to investigate the spatial structure of the plasma. The probe data is also compared with fluid model predictions.

  6. Fourier Transform Infrared Spectroscopy of CF4 on the GEC Reference Cell

    NASA Technical Reports Server (NTRS)

    Rao, M. V. V. S.; Sharma, S. P.; Meyyappan, M.; Cruden, Brett A.; Arnold, Jim (Technical Monitor)

    2001-01-01

    Fourier Transform Infrared Spectroscopy (FTIR) has been used to characterize inductively coupled CF4 plasmas in a GEC Reference Cell in-situ In examining these FTIR spectra, several assumptions and approximations of FTIR analysis are addressed. This includes the density dependence of cross-sections, non-linear effects in the addition of overlapping bands and the effect of spatial variations in density and temperature, This analysis demonstrates that temperatures extracted from MR spectra may provide a poor estimate of the true neutral plasma temperature. The FTIR spectra are dominated by unreacted CF, accounting for 40-60% of the gas products. The amount of CF4 consumption is found to have a marked dependence on power, and is nearly independent of pressure in the range of 10-50 mtorr. Small amounts of C2F6 are observed at low power. Also observed are etching products from the quartz window SiF4 COF2 and CO which occur in approximately equal ratios and together account for less than 10% of the gas. The concentrations of these species are nearly independent of pressure. CFx radicals are below the detection limit of this apparatus (approx. 1012/cc).

  7. Fourier Transform Infrared Spectroscopy of CF4 on the GEC Reference Cell

    NASA Technical Reports Server (NTRS)

    Rao, M. V. V. S.; Sharma, S. P.; Meyyappan, M.; Cruden, Brett A.; Arnold, Jim (Technical Monitor)

    2001-01-01

    Fourier Transform Infrared Spectroscopy (FTIR) has been used to characterize inductively coupled CF4 plasmas in a GEC Reference Cell in-situ In examining these FTIR spectra, several assumptions and approximations of FTIR analysis are addressed. This includes the density dependence of cross-sections, non-linear effects in the addition of overlapping bands and the effect of spatial variations in density and temperature, This analysis demonstrates that temperatures extracted from MR spectra may provide a poor estimate of the true neutral plasma temperature. The FTIR spectra are dominated by unreacted CF, accounting for 40-60% of the gas products. The amount of CF4 consumption is found to have a marked dependence on power, and is nearly independent of pressure in the range of 10-50 mtorr. Small amounts of C2F6 are observed at low power. Also observed are etching products from the quartz window SiF4 COF2 and CO which occur in approximately equal ratios and together account for less than 10% of the gas. The concentrations of these species are nearly independent of pressure. CFx radicals are below the detection limit of this apparatus (approx. 1012/cc).

  8. GEC-ESTRO recommendations for brachytherapy for head and neck squamous cell carcinomas.

    PubMed

    Mazeron, Jean-Jacques; Ardiet, Jean-Michel; Haie-Méder, Christine; Kovács, György; Levendag, Peter; Peiffert, Didier; Polo, Alfredo; Rovirosa, Angels; Strnad, Vratislav

    2009-05-01

    Both primary and recurrent squamous cell carcinoma of the head and neck are classic indications for brachytherapy. A high rate of local tumor control at the cost of limited morbidity can be achieved with brachytherapy through good patient selection, meticulous source implantation and careful treatment planning. However, no randomized trials have been performed, and there is scant evidence in the literature especially regarding practical clinical recommendations for brachytherapy for head and neck subsites. The Head and Neck Working Group of the European Brachytherapy Group (Groupe Européen de Curiethérapie-European Society for Therapeutic Radiology and Oncology (GEC-ESTRO) therefore decided to formulate the present consensus recommendations for low-dose rate, pulsed-dose rate and high-dose rate brachytherapy. The use of brachytherapy in combination with external beam radiotherapy and/or surgery is also covered as well as the use of brachytherapy in previously irradiated patients. Given the paucity of evidence in the literature, these recommendations are mainly based on clinical experience accumulated by the members of the working group over several decades and the respective publications. The recommendations cover in a general part (1) patient selection, the pre-treatment work up and patient care, (2) treatment strategy, (3) target definition, (4) implant techniques, (5) dose and dose rate prescription, (6) treatment planning and reporting, (7) treatment monitoring (8) catheter removal, and (9) post-treatment patient care and follow-up. The recommendations are then specified for the classical brachytherapy tumor sites following an analogue more focussed structure (patient selection, implant technique, target definition, dose and dose rate prescription, results): lip, oral mucosa, mobile tongue, floor of mouth, oropharynx, nasopharynx, paranasal sinuses.

  9. Role of oxidative stress and heme oxygenase activity in morphine-induced glomerular epithelial cell growth.

    PubMed

    Patel, Jaimita; Manjappa, Nagarathna; Bhat, Rajani; Mehrotra, Pavni; Bhaskaran, Madhu; Singhal, Pravin C

    2003-11-01

    Opiate addiction has been reported to contribute to the progression of renal injury. In addition, opiate addiction is a major risk factor for the development of human immunodeficiency virus-associated nephropathy. In the present study, we evaluated the effects of morphine, an active metabolite of heroin, on glomerular epithelial cell (GEC) growth and the involved molecular mechanism. At lower concentrations, morphine promoted GEC proliferation; however, at higher concentrations, morphine triggered apoptosis. Antioxidants inhibited morphine-induced proliferation as well as apoptosis. Similarly, free radical scavengers prevented morphine-induced GEC proliferation and apoptosis. Because proliferative and proapoptotic effects of morphine were inhibited by free radical scavengers as well as antioxidants, it appears that these effects of morphine are mediated through oxidative stress. Hemin, an inducer of heme oxygenase (HO) activity, inhibited GEC proliferation and promoted GEC apoptosis under basal and morphine-stimulated conditions. On the other hand, zinc protoporphyrin, an inhibitor of HO activity, promoted GEC proliferation and inhibited GEC apoptosis under basal as well as morphine-stimulated conditions. These findings suggest that HO activity is directly related to GEC apoptosis and inversely related to GEC proliferation. Morphine, de novo, had bimodal effects on HO activity: lower concentrations increased and higher concentrations decreased HO activity. It appears that HO activity may be modifying morphine-induced GEC growth.

  10. GEC Plasma Data Exchange Project

    NASA Astrophysics Data System (ADS)

    Pitchford, L. C.

    2013-08-01

    In 2010 the Gaseous Electronics Conference (GEC), a major international conference for the low temperature plasma science (LTPS) community, initiated the Plasma Data Exchange Project (PDEP). The PDEP is an informal, community-based project that aims to address, at least in part, the well-recognized needs for the community to organize the means of collecting, evaluating and sharing data both for modelling and for interpretation of experiments. The emphasis to date in the PDEP has been on data related to the electron and ion components of these plasmas rather than on the plasma chemistry. At the heart of the PDEP is the open-access website, LXCat [1], developed by researchers at LAPLACE (Laboratoire Plasma et Conversion d'Energie, Toulouse, France). LXCat is a platform for archiving and manipulating collections of data related to electron scattering and transport in cold, neutral gases, organized in databases set-up by individual members or institutions of the LTPS community. At present, 15 databases of electron scattering data, contributed by groups around the world, can be accessed on LXCat. These databases include complete sets of electron cross sections, over an energy range from thermal to nominally 1 keV, for almost 40 ground-state neutral species and partial sets of data for about 30 other neutral, excited and ionized species. 'Complete' implies that all the major electron momentum and energy loss processes are well described in the dataset. Such 'complete' datasets can be used as input to a Boltzmann calculation of the electron energy distribution function (generally non-Maxwellian), and electron transport and rate coefficients can be obtained in pure gases or mixtures by averaging over the distribution function. Online tools enable importing and exporting data, plotting and comparing different sets of data. An online version of the Boltzmann equation solver BOLSIG+ [2] is also available on the LXCat site. Other members of the community have contributed their

  11. GEC-ESTRO ACROP recommendations for head & neck brachytherapy in squamous cell carcinomas: 1st update - Improvement by cross sectional imaging based treatment planning and stepping source technology.

    PubMed

    Kovács, György; Martinez-Monge, Rafael; Budrukkar, Ashwini; Guinot, Jose Luis; Johansson, Bengt; Strnad, Vratislav; Skowronek, Janusz; Rovirosa, Angeles; Siebert, Frank-André

    2017-02-01

    The Head and Neck Working Group of the GEC-ESTRO (Groupe Européen de Curiethérapie - European Society for Therapeutic Radiology and Oncology) published in 2009 the consensus recommendations for low-dose rate, pulsed-dose rate and high-dose rate brachytherapy in head & neck cancers. The use of brachytherapy in combination with external beam radiotherapy and/or surgery was also covered as well as the use of brachytherapy in previously irradiated patients. Given the developments in the field, these recommendations needed to be updated to reflect up-to-date knowledge. The present update does not repeat basic knowledge which was published in the first recommendation but covers in a general part developments in (1) dose and fractionation, (2) aspects of treatment selection for brachytherapy alone versus combined BT+EBRT and (3) quality assurance issues. Detailed expert committee opinion intends to help the clinical practice in lip-, oral cavity-, oropharynx-, nasopharynx-, and superficial cancers. Different aspects of adjuvant treatment techniques and their results are discussed, as well the possibilities of salvage brachytherapy applications.

  12. GEC Alsthom diesel applications in Far East

    SciTech Connect

    Mullins, P.

    1996-07-01

    Recent achievements in the Far East for GEC Alsthom Diesels follow a drive to extend its market presence in these fast-growing markets. Ruston has supplied Samsung Engineering Co. with three medium-speed 16RK270 diesel engines for base-load generating sets. Paxman has won a contract to re-engine four locomotives for Sri Lankan Government Railways, as well as supplying six of its latest VPI85 high-speed diesels for new Taiwanese fast petrol vessels. This paper describes briefly the specifications of these diesels.

  13. Orbit Optimization for the Geospace Electrodynamics Connections (GEC) Mission

    NASA Technical Reports Server (NTRS)

    Mesarch, Michael A.

    2003-01-01

    The Geospace Electrodynamics Connections (GEC) mission plan is to launch multiple spacecraft to perform in-situ atmospheric science in the lower ionosphere. There is limited experience in this low altitude region with the Atmospheric Explorer-C (AE-C) being the last spacecraft to explore this region in 1973. AE-C flew an eccentric orbit using maneuvers to lower its perigee to near 130 km at various times during its mission. GEC will advance the science performed by AE-C by performing multiple low-perigee, atmospheric dipping campaigns for extended durations. AE-C kept its perigee near 130 km for only a total of roughly 1 day. Furthermore, GEC plans to carry a more diverse suite of instruments and will be able to capture different temporal and spatial phenomena through the use of multiple spacecraft flying in a string of pearls formation. The mission analysis for GEC has been broken into two parts: the analysis of the parking orbit with the dipping campaigns and the examination of the multi-satellite dynamics of the GEC constellation. The analysis described in this paper examines the capability to meet the requirements necessary to support the 10 dipping campaigns using a single spacecraft as a representative of all three in the constellation. Further analysis is being performed to analyze the multi-satellite nature of the GEC mission.

  14. GEC-derived SFRP5 inhibits Wnt5a-induced macrophage chemotaxis and activation.

    PubMed

    Zhao, Chenghai; Bu, Xianmin; Wang, Wei; Ma, Tingxian; Ma, Haiying

    2014-01-01

    Aberrant macrophage infiltration and activation has been implicated in gastric inflammation and carcinogenesis. Overexpression of Wnt5a and downregulation of SFRP5, a Wnt5a antagonist, were both observed in gastric cancers recently. This study attempted to explore whether Wnt5a/SFRP5 axis was involved in macrophage chemotaxis and activation. It was found that both Wnt5a transfection and recombinant Wnt5a (rWnt5a) treatment upregulated CCL2 expression in macrophages, involving JNK and NFκB signals. Conditioned medium from Wnt5a-treated macrophages promoted macrophage chemotaxis mainly dependent on CCL2. SFRP5 from gastric epithelial cells (GECs) inhibited Wnt5a-induced CCL2 expression and macrophage chemotaxis. In addition, Wnt5a treatment stimulated macrophages to produce inflammatory cytokines and COX-2/PGE2, which was also suppressed by SFRP5 from GECs. These results demonstrate that Wnt5a induces macrophage chemotaxis and activation, which can be blocked by GEC-derived SFRP5, suggesting that Wnt5a overproduction and SFRP5 deficiency in gastric mucosa may together play an important role in gastric inflammation and carcinogenesis.

  15. Carbon Chains Containing Group IV Elements: Rotational Detection of GeC_4 and GeC_5

    NASA Astrophysics Data System (ADS)

    McCarthy, Michael C.; Martin-Drumel, Marie-Aline; Thorwirth, Sven

    2017-06-01

    Following the recent discovery of T-shaped GeC_2 by chirped-pulse FT microwave spectroscopy, evidence has been found for two longer carbon chains, GeC_4 and GeC_5, guided by high-level quantum chemical calculations of their molecular structure. Like their isovalent Si-bearing counterparts, those with an even number of carbon atoms are predicted to possess ^1Σ ground states, while odd-numbered carbon chains have low-lying ^3Σ linear isomers; all are predicted to be highly polar. With the exception of ^{73}Ge, rotational lines of the other four Ge isotopic species have been observed between 6 and 18 GHz. From these measurements, the Ge-C bond length has been determined to high precision, and can be compared to that found in other Ge species, such as GeC [1] and GeC_3Ge [2] studied previously at rotational resolution. Somewhat surprisingly, the spectrum of GeC_5 very closely resembles that of ^1Σ molecule, presumably owing to the very large spin-orbit constant of atomic Ge, which is manifest as an equally large spin-spin constant in the chain. A comparison between the production of SiC_n and GeC_n chains by laser ablation, including the absence of those with n=3, will be given. [1] C. R. Brazier and J. I. Ruiz, J. Mol. Spectrosc., 270, 26-32 (2011). [2] S. Thorwirth et al., J. Phys. Chem. A, 120, 254-259 (2016).

  16. [Therapeutic approaches using genetically modified cells].

    PubMed

    Anliker, Brigitte; Renner, Matthias; Schweizer, Matthias

    2015-11-01

    Medicinal products containing genetically modified cells are, in most cases, classified as gene therapy and cell therapy medicinal products. Although no medicinal product containing genetically modified cells has been licensed in Europe yet, a variety of therapeutic strategies using genetically modified cells are in different stages of clinical development for the treatment of acquired and inherited diseases. In this chapter, several examples of promising approaches are presented, with an emphasis on gene therapy for inherited immunodeficiencies and on tumour immunotherapy with genetically modified T-cells expressing a chimeric antigen receptor or a recombinant T-cell receptor.

  17. Blade System Design Study. Part II, final project report (GEC).

    SciTech Connect

    Griffin, Dayton A.

    2009-05-01

    As part of the U.S. Department of Energy's Low Wind Speed Turbine program, Global Energy Concepts LLC (GEC)1 has studied alternative composite materials for wind turbine blades in the multi-megawatt size range. This work in one of the Blade System Design Studies (BSDS) funded through Sandia National Laboratories. The BSDS program was conducted in two phases. In the Part I BSDS, GEC assessed candidate innovations in composite materials, manufacturing processes, and structural configurations. GEC also made recommendations for testing composite coupons, details, assemblies, and blade substructures to be carried out in the Part II study (BSDS-II). The BSDS-II contract period began in May 2003, and testing was initiated in June 2004. The current report summarizes the results from the BSDS-II test program. Composite materials evaluated include carbon fiber in both pre-impregnated and vacuum-assisted resin transfer molding (VARTM) forms. Initial thin-coupon static testing included a wide range of parameters, including variation in manufacturer, fiber tow size, fabric architecture, and resin type. A smaller set of these materials and process types was also evaluated in thin-coupon fatigue testing, and in ply-drop and ply-transition panels. The majority of materials used epoxy resin, with vinyl ester (VE) resin also used for selected cases. Late in the project, testing of unidirectional fiberglass was added to provide an updated baseline against which to evaluate the carbon material performance. Numerous unidirectional carbon fabrics were considered for evaluation with VARTM infusion. All but one fabric style considered suffered either from poor infusibility or waviness of fibers combined with poor compaction. The exception was a triaxial carbon-fiberglass fabric produced by SAERTEX. This fabric became the primary choice for infused articles throughout the test program. The generally positive results obtained in this program for the SAERTEX material have led to its being

  18. Chemically modified graphite for electrochemical cells

    DOEpatents

    Greinke, Ronald Alfred; Lewis, Irwin Charles

    1998-01-01

    This invention relates to chemically modified graphite particles: (a) that are useful in alkali metal-containing electrode of a electrochemical cell comprising: (i) the electrode, (ii) a non-aqueous electrolytic solution comprising an organic aprotic solvent which solvent tends to decompose when the electrochemical cell is in use, and an electrically conductive salt of an alkali metal, and (iii) a counterelectrode; and (b) that are chemically modified with fluorine, chlorine, iodine or phosphorus to reduce such decomposition. This invention also relates to electrodes comprising such chemically modified graphite and a binder and to electrochemical cells containing such electrodes.

  19. Chemically modified graphite for electrochemical cells

    DOEpatents

    Greinke, R.A.; Lewis, I.C.

    1998-05-26

    This invention relates to chemically modified graphite particles: (a) that are useful in alkali metal-containing electrode of a electrochemical cell comprising: (1) the electrode, (2) a non-aqueous electrolytic solution comprising an organic aprotic solvent which solvent tends to decompose when the electrochemical cell is in use, and an electrically conductive salt of an alkali metal, and (3) a counter electrode; and (b) that are chemically modified with fluorine, chlorine, iodine or phosphorus to reduce such decomposition. This invention also relates to electrodes comprising such chemically modified graphite and a binder and to electrochemical cells containing such electrodes. 3 figs.

  20. Understanding Plasma Interactions with the Atmosphere: The Geospace Electrodynamic Connections (GEC) Mission

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The Geospace Electrodynamic Connections (GEC) mission is a multispacecraft Solar-Terrestrial Probe that has been specifically designed to advance the level of physical insight of our understanding of the coupling among the ionosphere, thermosphere, and magnetosphere. GEC is NASA's fifth Solar-Terrestrial Probe. Through multipoint measurements in the Earth's ionosphere-thermosphere (I-T) system, GEC will (i) discover the spatial and temporal scales on which magnetospheric energy input into the I-T region occurs, (ii) determine the spatial and temporal scales for the response of the I-T system to this input of energy, and (iii) quantify the altitude dependence of the response.

  1. Modified host cells with efflux pumps

    DOEpatents

    Dunlop, Mary J.; Keasling, Jay D.; Mukhopadhyay, Aindrila

    2016-08-30

    The present invention provides for a modified host cell comprising a heterologous expression of an efflux pump capable of transporting an organic molecule out of the host cell wherein the organic molecule at a sufficiently high concentration reduces the growth rate of or is lethal to the host cell.

  2. Cell microarrays on photochemically modified polytetrafluoroethylene.

    PubMed

    Mikulikova, Regina; Moritz, Sieglinde; Gumpenberger, Thomas; Olbrich, Michael; Romanin, Christoph; Bacakova, Lucie; Svorcik, Vaclav; Heitz, Johannes

    2005-09-01

    We studied the adhesion, proliferation, and viability of human umbilical vein endothelial cells (HUVEC) and human embryonic kidney cells (HEK) on modified spots at polytetrafluoroethylene (PTFE) surfaces. The viability of the cells was assessed using an aqueous non-radioactive cell proliferation assay. Round spots with a diameter of 100 microm were modified by exposure to the ultraviolet (UV) light of a Xe(2)(*)-excimer lamp at a wavelength of 172 nm in an ammonia atmosphere employing a contact mask. The spots were arranged in a quadratic pattern with 300 microm center-to-center spot distances. With optimized degree of modification, the cells adhered to the modified spots with a high degree of selectivity (70-90%). The adhered cells on the spots proliferated. This resulted in a significant increase in the number of adhering HUVECS or HEK cells after seeding and in the formation of confluent cell clusters after 3-4 days. With higher start seeding density, these clusters were not only confined to the modified spots but extended several micrometer to the neighborhood. The high potential of the cell microarrays for gene analysis in living cells was demonstrated with HEK cells transfected by yellow fluorescent protein (YFP).

  3. Allyl sulfides modify cell growth.

    PubMed

    Knowles, L M; Milner, J A

    2000-01-01

    Extensive evidence points to the ability of allyl sulfides from garlic to suppress tumor proliferation both in vitro and in vivo. This antineoplastic effect is generally greater for lipid-soluble than water-soluble allyl sulfides. Both concentration and duration of exposure can increase the antiproliferative effects of lipid- and water-soluble allyl sulfides. Part of their antiproliferative effects may relate to an increase in membrane fluidity and a suppression of integrin glycoprotein IIb-IIIa mediated adhesion. Alterations in cholesterol, arachidonic acid, phospholipids and/or thiols may account for these changes in membrane function. Allyl sulfides are also recognized for their ability to suppress cellular proliferation by blocking cells in the G2/M phase and by the induction of apoptosis. This increase in the G2/M and apoptotic cell populations correlates with depressed p34cdc2 kinase activity, increased histone acetylation, increased intracellular calcium and elevated cellular peroxide production. While impressive pre-clinical data exist about the antineoplastic effects of allyl sulfur compounds, considerably more attention needs to be given to their effects in humans. The composition of the entire diet and a host of genetic/epigenetic factors will likely determine the true benefits that might arise from allyl sulfur compounds from garlic and other Allium foods.

  4. Genetic Modifiers of Sickle Cell Disease

    PubMed Central

    Steinberg, Martin H.; Sebastiani, Paola

    2015-01-01

    Sickle cell anemia is associated with unusual clinical heterogeneity for a Mendelian disorder. Fetal hemoglobin concentration and coincident ∝ thalassemia, both which directly affect the sickle erythrocyte, are the major modulators of the phenotype of disease. Understanding the genetics underlying the heritable subphenotypes of sickle cell anemia would be prognostically useful, could inform personalized therapeutics, and might help the discovery of new “druggable” pathophysiologic targets. Genotype-phenotype association studies have been used to identify novel genetic modifiers. In the future, whole genome sequencing with its promise of discovering hitherto unsuspected variants could add to our understanding of the genetic modifiers of this disease. PMID:22641398

  5. Epitaxial growth and electrical transport properties of Cr{sub 2}GeC thin films

    SciTech Connect

    Eklund, Per; Bugnet, Matthieu; Mauchamp, Vincent; Dubois, Sylvain; Tromas, Christophe; Jaouen, Michel; Cabioc'h, Thierry; Jensen, Jens; Piraux, Luc; Gence, Loiek

    2011-08-15

    Cr{sub 2}GeC thin films were grown by magnetron sputtering from elemental targets. Phase-pure Cr{sub 2}GeC was grown directly onto Al{sub 2}O{sub 3}(0001) at temperatures of 700-800 deg. C. These films have an epitaxial component with the well-known epitaxial relationship Cr{sub 2}GeC(0001)//Al{sub 2}O{sub 3}(0001) and Cr{sub 2}GeC(1120)//Al{sub 2}O{sub 3}(1100) or Cr{sub 2}GeC(1120)//Al{sub 2}O{sub 3}(1210). There is also a large secondary grain population with (1013) orientation. Deposition onto Al{sub 2}O{sub 3}(0001) with a TiN(111) seed layer and onto MgO(111) yielded growth of globally epitaxial Cr{sub 2}GeC(0001) with a virtually negligible (1013) contribution. In contrast to the films deposited at 700-800 deg. C, the ones grown at 500-600 deg. C are polycrystalline Cr{sub 2}GeC with (1010)-dominated orientation; they also exhibit surface segregations of Ge as a consequence of fast Ge diffusion rates along the basal planes. The room-temperature resistivity of our samples is 53-66 {mu}{Omega}cm. Temperature-dependent resistivity measurements from 15-295 K show that electron-phonon coupling is important and likely anisotropic, which emphasizes that the electrical transport properties cannot be understood in terms of ground state electronic structure calculations only.

  6. Optical and mechanical behavior of GeC and BP antireflection coatings under rain erosion tests

    NASA Astrophysics Data System (ADS)

    Mackowski, Jean-Marie; Cimma, B.; Lacuve, J.; Laprat, Patrice

    1994-09-01

    Thick germanium carbide (GeC) and boron phosphide (BP) films are successfully grown on various zinc sulfide and germanium substrates at temperatures up to 450 degree(s)C by reactive radio-frequency sputtering (RRFS). The sputtering conditions are respectively a germanium target within a medium of methane-argon for GeC films and a high density boron target in a sputtering medium of phosphine-argon for BP films. The rain erosion resistance of GeC and BP films protected or not by diamond-like carbon (DLC) coating on top are measured for water drop diameter of 1.2 mm or 2 mm with an impact velocity ranging from 210 m/s to 265 m/s on the Saab-Scania whirling-arm rig facilities (Linkoping, Sweden). Rain erosion resistance of BP films for a wavelength band in the 8 micrometers to 10 micrometers range shows no damage for a speed up to 250 m/s with an exposure time up to 10 min, whereas the GeC rain erosion resistance shows no damage up to 235 m/s for the same exposure time. The transmission of each film is well correlated to its optical absorption at 10.6 micrometers . The GeC absorption can be reduced down to 40 cm-1 whereas the BP absorption stays around 220 cm-1 for sputtered films. So the compromise between the optical performance and the rain erosion resistance can be achieved by the use of GeC or BP films.

  7. Orbit Optimization For The Geospace Electrodynamics Connections (GEC) Mission

    NASA Technical Reports Server (NTRS)

    Mesarch, Michael A.

    2004-01-01

    Part of NASA's Solar Terrestrial Probe line of missions, the Geospace Electrodynamics Connections (GEC) mission will deploy a formation of three spacecraft to perform in-situ atmospheric research in the low Ionosphere-Thermosphere region. These spacecraft will fly together in a %tring-of-pearls formation with variable spacings ranging from 10 seconds to one-quarter of an orbit at perigee. Over the course of its two-year mission, the three spacecraft will perform ten, 1-week dipping campaigns whereby they maneuver to lower their perigee to near 134 km. Using available launch vehicle performance data, an optimal parking orbit of 222 x 1525 km was found to maximize the dry mass available while providing enough propellant to perform the ten deep-dipping campaigns over its two-year mission. The results were used to create multi-variable contour plots containing the orbit perigee, the orbit apogee, spacecraft dry mass, propellant mass, and T500 (a science data collection figure of merit that tabulates the cumulative time spent below 500 km). These plots illustrate how the mission can trade off science return relative to the cost in dry mass and propellant. Other optimal solutions such as minimum propellant or maximum T500 were found to either limit the science data collection or to be dry mass limiting, respectively. Sensitivity analyses were performed to find new optimal (maximum dry mass) solutions if the number of campaigns changed, if the coefficient of drag (CD) were different, and if the propellant specific impulse were increased. A surprising result showed that the dry mass and T500 were both increased if the number of campaigns decreased. Changes in CD provided the expected results - raising CD lowered both the dry mass and T500 while lowering CD raised both the dry mass and T500. Increases in the propellant specific impulse had the expected outcome of raising the dry mass and lowering the propellant load but there was no change in the T500 figure of merit. The

  8. Visualization of Space-Time Ambiguities to be Explored by NASA GEC Mission with a Critique of Synthesized Measurements for Different GEC Mission Scenarios

    NASA Technical Reports Server (NTRS)

    Sojka, Jan J.

    2003-01-01

    The Grant supported research addressing the question of how the NASA Solar Terrestrial Probes (STP) Mission called Geospace electrodynamics Connections (GEC) will resolve space-time structures as well as collect sufficient information to solve the coupled thermosphere-ionosphere- magnetosphere dynamics and electrodynamics. The approach adopted was to develop a high resolution in both space and time model of the ionosphere-thermosphere (I-T) over altitudes relevant to GEC, especially the deep-dipping phase. This I-T model was driven by a high- resolution model of magnetospheric-ionospheric (M-I) coupling electrodynamics. Such a model contains all the key parameters to be measured by GEC instrumentation, which in turn are the required parameters to resolve present-day problems in describing the energy and momentum coupling between the ionosphere-magnetosphere and ionosphere-thermosphere. This model database has been successfully created for one geophysical condition; winter, solar maximum with disturbed geophysical conditions, specifically a substorm. Using this data set, visualizations (movies) were created to contrast dynamics of the different measurable parameters. Specifically, the rapidly varying magnetospheric E and auroral electron precipitation versus the slower varying ionospheric F-region electron density, but rapidly responding E-region density.

  9. Visualization of Space-Time Ambiguities to be Explored by NASA GEC Mission with a Critique of Synthesized Measurements for Different GEC Mission Scenarios

    NASA Technical Reports Server (NTRS)

    Sojka, Jan J.

    2003-01-01

    The Grant supported research addressing the question of how the NASA Solar Terrestrial Probes (STP) Mission called Geospace electrodynamics Connections (GEC) will resolve space-time structures as well as collect sufficient information to solve the coupled thermosphere-ionosphere- magnetosphere dynamics and electrodynamics. The approach adopted was to develop a high resolution in both space and time model of the ionosphere-thermosphere (I-T) over altitudes relevant to GEC, especially the deep-dipping phase. This I-T model was driven by a high- resolution model of magnetospheric-ionospheric (M-I) coupling electrodynamics. Such a model contains all the key parameters to be measured by GEC instrumentation, which in turn are the required parameters to resolve present-day problems in describing the energy and momentum coupling between the ionosphere-magnetosphere and ionosphere-thermosphere. This model database has been successfully created for one geophysical condition; winter, solar maximum with disturbed geophysical conditions, specifically a substorm. Using this data set, visualizations (movies) were created to contrast dynamics of the different measurable parameters. Specifically, the rapidly varying magnetospheric E and auroral electron precipitation versus the slower varying ionospheric F-region electron density, but rapidly responding E-region density.

  10. Ozone exposed epithelial cells modify cocultured natural killer cells

    PubMed Central

    Müller, Loretta; Brighton, Luisa E.

    2013-01-01

    Ozone (O3) causes significant adverse health effects worldwide. Nasal epithelial cells (NECs) are among the first sites within the respiratory system to be exposed to inhaled air pollutants. They recruit, activate, and interact with immune cells via soluble mediators and direct cell-cell contacts. Based on our recent observation demonstrating the presence of natural killer (NK) cells in nasal lavages, the goal of this study was to establish a coculture model of NECs and NK cells and examine how exposure to O3 modifies this interaction. Flow cytometry analysis was used to assess immunophenotypes of NK cells cocultured with either air- or O3-exposed NECs. Our data show that coculturing NK cells with O3-exposed NECs decreased intracellular interferon-γ (IFN-γ), enhanced, albeit not statistically significant, IL-4, and increased CD16 expression on NK cells compared with air controls. Additionally, the cytotoxicity potential of NK cells was reduced after coculturing with O3-exposed NECs. To determine whether soluble mediators released by O3-exposed NECs caused this shift, apical and basolateral supernatants of air- and O3-exposed NECs were used to stimulate NK cells. While the conditioned media of O3-exposed NECs alone did not reduce intracellular IFN-γ, O3 enhanced the expression of NK cell ligands ULBP3 and MICA/B on NECs. Blocking ULBP3 and MICA/B reversed the effects of O3-exposed NECs on IFN-γ production in NK cells. Taken together, these data showed that interactions between NECs and NK cells in the context of O3 exposure changes NK cell activity via direct cell-cell interactions and is dependent on ULBP3/MICA/B expressed on NECs. PMID:23241529

  11. Visualization of Space-Time Ambiguities to be Explored by the NASA GEC Mission with a Critique of Synthesized Measurements for Different GEC Mission Scenarios

    NASA Technical Reports Server (NTRS)

    Sojka, Jan J.; Zhu, Lie; Fuller-Rowell, Timothy J.

    2005-01-01

    The objective of this grant was to study how a multi-satellite mission configuration can be optimized for maximum exploratory scientific return. NASA's Solar Terrestrial Probe (STP) concept mission Geospace Electrodynamic Connections (GEC) was the target mission for this pilot study. GEC prime mission characteristics were two fold: (i) a series of three satellites in the same orbit plane with differential spacing, and (ii) a deep-dipping phase in which these satellites could dip to altitudes as low as 130 km to explore the lower ionosphere and thermosphere. Each satellite would carry a full suite of plasma and neutral in-situ sensors and have the same dipping capability. This latter aspect would be envisaged as a series, up to 10, of deep-dipping campaigns, each lasting 10 days during which the perigee would be lowered to the desired probing depth. The challenge in optimization is to establish the scientific problems that can best be addressed by varying or selecting satellite spacing during a two-year mission while also interspersing, in this two year time frame, the deep-dipping campaigns. Although this sounds like a straightforward trade-off situation, it is complicated by the orbit precession in local time, the location of perigee, and that even the dipping campaigns will have preferred satellite spacing requirements.

  12. Tracking gene-modified T cells in vivo.

    PubMed

    Recchia, Alessandra; Mavilio, Fulvio

    2009-01-01

    Identification, monitoring, and analysis of genetically modified cells in the peripheral blood are an important component of the clinical follow-up of patients treated by hematopoietic cell gene therapy. Analysis of gene-marked peripheral blood cells provides crucial information on gene transfer efficiency as well as on the nature and characteristics of the genetically modified cells, and may provide early evidence of the occurrence of potentially detrimental side effects. T lymphocytes are a convenient target for this type of analysis, due to their abundance and their relatively long life span in vivo. Tracking of gene-marked T cells is based on relatively simple, FACS- and PCR-based techniques, which may be applied to monitoring genetically modified T cells as well as T cells derived from transplanted, genetically modified hematopoietic stem cells. This chapter provides a description of these techniques and clues to their rational use in a clinical setting.

  13. Heterochrony as Diachronically Modified Cell-Cell Interactions

    PubMed Central

    Torday, John S.

    2016-01-01

    Heterochrony is an enabling concept in evolution theory that metaphorically captures the mechanism of biologic change due to mechanisms of growth and development. The spatio-temporal patterns of morphogenesis are determined by cell-to-cell signaling mediated by specific soluble growth factors and their cognate receptors on nearby cells of different germline origins. Subsequently, down-stream production of second messengers generates patterns of form and function. Environmental upheavals such as Romer’s hypothesized drying up of bodies of water globally caused the vertebrate water-land transition. That transition caused physiologic stress, modifying cell-cell signaling to generate terrestrial adaptations of the skeleton, lung, skin, kidney and brain. These tissue-specific remodeling events occurred as a result of the duplication of the Parathyroid Hormone-related Protein Receptor (PTHrPR) gene, expressed in mesodermal fibroblasts in close proximity to ubiquitously expressed endodermal PTHrP, amplifying this signaling pathway. Examples of how and why PTHrPR amplification affected the ontogeny, phylogeny, physiology and pathophysiology of the lung are used to substantiate and further our understanding through insights to the heterochronic mechanisms of evolution, such as the fish swim bladder evolving into the vertebrate lung, interrelated by such functional homologies as surfactant and mechanotransduction. Instead of the conventional description of this phenomenon, lung evolution can now be understood as adaptive changes in the cellular-molecular signaling mechanisms underlying its ontogeny and phylogeny. PMID:26784244

  14. Genetically Modified T Cells to Target Glioblastoma

    PubMed Central

    Krebs, Simone; Rodríguez-Cruz, Tania G.; DeRenzo, Christopher; Gottschalk, Stephen

    2013-01-01

    Despite advances in surgical procedures, radiation, and chemotherapy the outcome for patients with glioblastoma (GBM) remains poor. While GBM cells express antigens that are potentially recognized by T cells, GBMs prevent the induction of GBM-specific immune responses by creating an immunosuppressive microenvironment. The advent of gene transfer has allowed the rapid generation of antigen-specific T cells as well as T cells with enhanced effector function. Here we review recent advances in the field of cell therapy with genetically modified T cells and how these advances might improve outcomes for patients with GBM in the future. PMID:24427741

  15. The renal microenvironment modifies dendritic cell phenotype.

    PubMed

    Chessa, Federica; Mathow, Daniel; Wang, Shijun; Hielscher, Thomas; Atzberger, Ann; Porubsky, Stefan; Gretz, Norbert; Burgdorf, Sven; Gröne, Hermann-Josef; Popovic, Zoran V

    2016-01-01

    Renal dendritic cells are a major component of the renal mononuclear phagocytic system. In the renal interstitium, these cells are exposed to an osmotic gradient, mainly sodium, whose concentration progressively increases towards inner medulla. Renal allograft rejection affects predominantly the cortex, suggesting a protective role of the renal medullary micromilieu. Whether osmolar variations can modulate the function of renal dendritic cells is currently undefined. Considering the central role of dendritic cells in promoting allorejection, we tested whether the biophysical micromilieu, particularly the interstitial osmotic gradient, influences their alloreactivity. There was a progressive depletion of leukocytes towards the medulla of homeostatic kidney. Only macrophages opposed this tendency. Flow cytometry of homeostatic and post-transplant medullary dendritic cells revealed a switch towards a macrophage-like phenotype. Similarly, bone marrow-derived dendritic cells developed ex vivo in sodium chloride-enriched medium acquired a M2-like signature. Microarray analysis of allotransplant dendritic cells posed a medullary downregulation of genes mainly involved in alloantigen recognition. Gene expression profiles of both medullary dendritic cells and bone marrow-derived dendritic cells matured in hyperosmolar medium had an overlap with the macrophage M2 signature. Thus, the medullary environment inhibits an alloimmune response by modulating the phenotype and function of dendritic cells.

  16. A Time-Dependent Fluid Model for the Study of the Electrical Properties of GEC Sources

    NASA Astrophysics Data System (ADS)

    Mallios, S. A.; Jansky, J.; Pasko, V. P.

    2014-12-01

    The Global Electric Circuit (GEC) is a circuit that is formed between the Earth's surface, which is a good conductor of electricity, and the ionosphere, a weekly-ionized plasma at around 80 km altitude [e.g., Rycroft et al., Space Sci. Rev., 137(1-4), pp. 83-105, 2008]. It is accepted that thunderstorms are the main generators in the GEC [e.g., Williams, Atmospheric Research, 91, 140, 2009; Mareev, Physics Uspekhi, 53, 504, 2010]. In the current work, we developed a two-dimensional cylindrical time-dependent fluid model that takes into account several atmospheric processes, such as the ionization due to the galactic cosmic rays radiation, the ion-ion recombination, and the attachment of ions to cloud particles. The developed model is able to calculate self consistently the time dynamics of the conductivity, according to the time dynamics of the cloud particle charge density during the formation of thunderstorms/electrified clouds. We calculate the time dynamics of the electric field distribution, the charge density distribution and the current density distribution, and we compare them with the results obtained by a model that assumes constant conductivity distribution over time.

  17. Accelerated Tumor Cell Death by Anglogenic Modifiers

    DTIC Science & Technology

    2005-08-01

    interesting phenotype of prostate cancer cells, in subsequently increased bone resorption . The enhanced which they behave like osteoblasts. Prostate cancer...cells resorptive process by osteoblasts and osteoclasts leads express both soluble and membrane-bound RANK to "bone pitting" and subsequent colonization...bone resorption , have been shown to reduce can- isoforms and their related receptors which act as para- cer cell colonization in experimental models of

  18. Modifying crops to increase cell wall digestibility.

    PubMed

    Jung, Hans-Joachim G; Samac, Deborah A; Sarath, Gautam

    2012-04-01

    Improving digestibility of roughage cell walls will improve ruminant animal performance and reduce loss of nutrients to the environment. The main digestibility impediment for dicotyledonous plants is highly lignified secondary cell walls, notably in stem secondary xylem, which become almost non-digestible. Digestibility of grasses is slowed severely by lignification of most tissues, but these cell walls remain largely digestible. Cell wall lignification creates an access barrier to potentially digestible wall material by rumen bacteria if cells have not been physically ruptured. Traditional breeding has focused on increasing total dry matter digestibility rather than cell wall digestibility, which has resulted in minimal reductions in cell wall lignification. Brown midrib mutants in some annual grasses exhibit small reductions in lignin concentration and improved cell wall digestibility. Similarly, transgenic approaches down-regulating genes in monolignol synthesis have produced plants with reduced lignin content and improved cell wall digestibility. While major reductions in lignin concentration have been associated with poor plant fitness, smaller reductions in lignin provided measurable improvements in digestibility without significantly impacting agronomic fitness. Additional targets for genetic modification to enhance digestibility and improve roughages for use as biofuel feedstocks are discussed; including manipulating cell wall polysaccharide composition, novel lignin structures, reduced lignin/polysaccharide cross-linking, smaller lignin polymers, enhanced development of non-lignified tissues, and targeting specific cell types. Greater tissue specificity of transgene expression will be needed to maximize benefits while avoiding negative impacts on plant fitness.cauliflower mosiac virus (CaMV) 35S promoter. Published by Elsevier Ireland Ltd.

  19. Nanoparticle-encapsulated baicalein markedly modulates pro-inflammatory response in gingival epithelial cells.

    PubMed

    Li, Xuan; Luo, Wei; Ng, Tsz Wing; Leung, Ping Chung; Zhang, Chengfei; Leung, Ken Cham-Fai; Jin, Lijian

    2017-09-14

    Severe gum disease (periodontitis), which is one of the major global oral diseases, results from microbe-host dysbiosis and dysregulated immuno-inflammatory responses. It seriously affects oral health and general wellbeing with significant socio-economic implications. It has been well documented that natural flavonoids such as baicalin (BA) and baicalein (BE) possess potent anti-inflammatory effects. However, their intrinsic poor solubility and low bioavailability severely limit their biomedical applications. In the present study, BA and BE were encapsulated in our synthesized and amine-modified mesoporous silica nanoparticles (MSNs) (Nano-BA and Nano-BE, respectively), and their loading efficiencies and releasing profiles were investigated. Their cytotoxicity was examined on primary human gingival epithelial cells (hGECs), and the cellular uptake of Nano-BA or Nano-BE was visualized via a transmission electron microscope. Their anti-inflammatory effects were evaluated in IL-1β-treated hGECs using the cytokine array and enzyme-linked immunosorbent assay. The present study shows that the amine-modified MSNs could encapsulate BA and BE, and nano-encapsulation greatly enhances the drug delivery rate and prolongs the release of BA and BE up to 216 h. Moreover, both Nano-BA and Nano-BE could be internalized by hGECs and retained intracellularly in nanoparticle-free media for at least 24 h. Note that Nano-BE pre-treatment effectively down-regulates the IL-1β-induced expression of IL-6 and IL-8 in hGECs. In conclusion, nanoparticle-encapsulated BE exhibits notable anti-inflammatory effects through effective release and cellular internalization approaches. This study may facilitate the development of novel drug delivery systems for improving oral care.

  20. Cell behavior on surface modified polydimethylsiloxane (PDMS).

    PubMed

    Stanton, Morgan M; Rankenberg, Johanna M; Park, Byung-Wook; McGimpsey, W Grant; Malcuit, Christopher; Lambert, Christopher R

    2014-07-01

    Designing complex tissue culture systems requires cell alignment and directed extracellular matrix (ECM) and gene expression. Here, a micro-rough, polydimethylsiloxane (PDMS) surface, that also integrates a micro-pattern of 50 µm wide lines of fibronectin (FN) separated by 60 µm wide lines of bovine serum albumin (BSA), is developed. Human fibroblasts cultured on the rough, patterned substrate have aligned growth and a significant change in morphology when compared to cells on a flat, patterned surface. The rough PDMS topography significantly decreases cell area and induces the upregulation of several ECM related genes by two-fold when compared to cells cultured on flat PDMS. This study describes a simple surface engineering procedure for creating surface architecture for scaffolds to design and control the cell-surface interface.

  1. Glomerular endothelial cell injury and cross talk in diabetic kidney disease.

    PubMed

    Fu, Jia; Lee, Kyung; Chuang, Peter Y; Liu, Zhihong; He, John Cijiang

    2015-02-15

    Diabetic kidney disease (DKD) remains a leading cause of new-onset end-stage renal disease (ESRD), and yet, at present, the treatment is still very limited. A better understanding of the pathogenesis of DKD is therefore necessary to develop more effective therapies. Increasing evidence suggests that glomerular endothelial cell (GEC) injury plays a major role in the development and progression of DKD. Alteration of the glomerular endothelial cell surface layer, including its major component, glycocalyx, is a leading cause of microalbuminuria observed in early DKD. Many studies suggest a presence of cross talk between glomerular cells, such as between GEC and mesangial cells or GEC and podocytes. PDGFB/PDGFRβ is a major mediator for GEC and mesangial cell cross talk, while vascular endothelial growth factor (VEGF), angiopoietins, and endothelin-1 are the major mediators for GEC and podocyte communication. In DKD, GEC injury may lead to podocyte damage, while podocyte loss further exacerbates GEC injury, forming a vicious cycle. Therefore, GEC injury may predispose to albuminuria in diabetes either directly or indirectly by communication with neighboring podocytes and mesangial cells via secreted mediators. Identification of novel mediators of glomerular cell cross talk, such as microRNAs, will lead to a better understanding of the pathogenesis of DKD. Targeting these mediators may be a novel approach to develop more effective therapy for DKD.

  2. Glomerular endothelial cell injury and cross talk in diabetic kidney disease

    PubMed Central

    Fu, Jia; Lee, Kyung; Chuang, Peter Y.; Liu, Zhihong

    2014-01-01

    Diabetic kidney disease (DKD) remains a leading cause of new-onset end-stage renal disease (ESRD), and yet, at present, the treatment is still very limited. A better understanding of the pathogenesis of DKD is therefore necessary to develop more effective therapies. Increasing evidence suggests that glomerular endothelial cell (GEC) injury plays a major role in the development and progression of DKD. Alteration of the glomerular endothelial cell surface layer, including its major component, glycocalyx, is a leading cause of microalbuminuria observed in early DKD. Many studies suggest a presence of cross talk between glomerular cells, such as between GEC and mesangial cells or GEC and podocytes. PDGFB/PDGFRβ is a major mediator for GEC and mesangial cell cross talk, while vascular endothelial growth factor (VEGF), angiopoietins, and endothelin-1 are the major mediators for GEC and podocyte communication. In DKD, GEC injury may lead to podocyte damage, while podocyte loss further exacerbates GEC injury, forming a vicious cycle. Therefore, GEC injury may predispose to albuminuria in diabetes either directly or indirectly by communication with neighboring podocytes and mesangial cells via secreted mediators. Identification of novel mediators of glomerular cell cross talk, such as microRNAs, will lead to a better understanding of the pathogenesis of DKD. Targeting these mediators may be a novel approach to develop more effective therapy for DKD. PMID:25411387

  3. Accelerated Tumor Cell Death by Angiogenic Modifiers

    DTIC Science & Technology

    2004-08-01

    neuroendocrine factors. They can guide cancer cell perineural invasion and dissemination through the release of soluble and solid matrix factors (see review (32...Ooshima, A. Targeted disruption of TGF-betal/Smad3 signaling protects against renal tubulointerstitial fibrosis induced by unilateral ureteral

  4. Compound 13, an α1-selective small molecule activator of AMPK, inhibits Helicobacter pylori-induced oxidative stresses and gastric epithelial cell apoptosis

    SciTech Connect

    Zhao, Hangyong; Zhu, Huanghuang; Lin, Zhou; Lin, Gang; Lv, Guoqiang

    2015-08-07

    Half of the world's population experiences Helicobacter pylori (H. pylori) infection, which is a main cause of gastritis, duodenal and gastric ulcer, and gastric cancers. In the current study, we investigated the potential role of compound 13 (C13), a novel α1-selective small molecule activator of AMP-activated protein kinase (AMPK), against H. pylori-induced cytotoxicity in cultured gastric epithelial cells (GECs). We found that C13 induced significant AMPK activation, evidenced by phosphorylation of AMPKα1 and ACC (acetyl-CoA carboxylase), in both primary and transformed GECs. Treatment of C13 inhibited H. pylori-induced GEC apoptosis. AMPK activation was required for C13-mediated GEC protection. Inhibition of AMPK kinase activity by the AMPK inhibitor Compound C, or silencing AMPKα1 expression by targeted-shRNAs, alleviated C13-induced GEC protective activities against H. pylori. Significantly, C13 inhibited H. pylori-induced reactive oxygen species (ROS) production in GECs. C13 induced AMPK-dependent expression of anti-oxidant gene heme oxygenase (HO-1) in GECs. Zinc protoporphyrin (ZnPP) and tin protoporphyrin (SnPP), two HO-1 inhibitors, not only suppressed C13-mediated ROS scavenging activity, but also alleviated its activity in GECs against H. pylori. Together, these results indicate that C13 inhibits H. pylori-induced ROS production and GEC apoptosis through activating AMPK–HO–1 signaling. - Highlights: • We synthesized compound 13 (C13), a α1-selective small molecule AMPK activator. • C13-induced AMPK activation requires α1 subunit in gastric epithelial cells (GECs). • C13 enhances Helicobacter pylori-induced pro-survival AMPK activation to inhibit GEC apoptosis. • C13 inhibits H. pylori-induced reactive oxygen species (ROS) production in GECs. • AMPK-heme oxygenase (HO-1) activation is required for C13-mediated anti-oxidant activity.

  5. Accelerated Tumor Cell Death by Angiogenic Modifiers

    DTIC Science & Technology

    2003-08-01

    form an active autocrine loop. fibrosis . Luminal epithelial cells of PIA lesions have elev- A recent study indicated the increase of both IL-6 and...its receptor dothelin-3 (ET-3), and endothelin-4 (ET-4) (Cun- ( CXCR4 ), may play a role as prostate cancer bone meta- ningham et al., 1997). All...members of the endothelin stasis homing signals. The level of CXCR4 increased family contain two essential disulfide bridges and six with the malignancy of

  6. Total Ozone Mapping Spectrometer (TOMS) Derived Data, Global Earth Coverage (GEC) from NASA's Earth Probe Satellite

    DOE Data Explorer

    This is data from an external datastream processed through the ARM External Data Center (XDC) at Brookhaven National Laboratory. The XDC identifies sources and acquires data, called "external data", to augment the data being generated within the ARM program. The external data acquired are usually converted from native format to either netCDF or HDF formats. The GEC collection contains global data derived from the Total Ozone Mapping Spectrometer (TOMS) instrument on the Earth Probe satellite, consisting of daily values of aerosol index, ozone and reflectivity remapped into a regular 1x1.25 deg grid. Data are available from July 25, 1996 - December 31, 2005, but have been updated or replaced as of September 2007. See the explanation on the ARM web site at http://www.arm.gov/xds/static/toms.stm and the information at the NASA/TOMS web site: http://toms.gsfc.nasa.gov/ (Registration required)

  7. Properties of reactively deposited SiC and GeC alloys

    NASA Astrophysics Data System (ADS)

    Martin, Peter M.; Johnston, John W.; Bennett, Wendy D.

    1990-12-01

    Thin-film silicon carbide (SiCi) and germanium carbon (Ge,Ci) alloy coatings with low ›ifrared optical absorption have been fabricated by DC- and RF-reactive magnetron sputtering. The optical and mechanical properties of the coatings depend on composition determined by deposition conditions. The refractive index and optical absorption coefficient of SiCi. alloys were varied from those of amorphous Si to those near diamond-like carbon (DLC) by increasing C content. The band edge shifted below 1.2 eV with C content as high as 0.8. The useful range of the SiCi coatings was extended to wavelengths as low as 1 jim. The useful transparency range of GeCi coatings is from 3 to 12 jim. The refractive index of GeCi coatings was varied from 4.2 of amorphous Ge to near 3.4 by increasing x from 0 to 0.5. The optical absorption coefficient was a complex function of composition and C-H, Ge-H, and Ge-C bonding. Mechanical stress in both materials was generally moderate, and increased with increasing C content for the GeC alloys and decreased with increasing C for the SiC alloys. The wide range of optical properties obtainable for both coating types makes them useful in many types of multilayer designs. Abrasion-resistant infrared (IR) multispectral antireflection coatings on zinc sulfide (ZnS) were demonstrated using Geij"9C and DLC layers.

  8. Magnetic studies of ferrofluid-modified microbial cells.

    PubMed

    Mosiniewicz-Szablewska, Ewa; Safarikova, Mirka; Safarik, Ivo

    2010-04-01

    Microbial cells (Kluyveromyces fragilis and Chlorella vulgaris) efficiently interacted with maghemite nanoparticles stabilized as low-pH ionic magnetic fluid, leading to the formation of magnetically labeled cells. This simple procedure allows to use the prepared materials as new cheap and easy to get magnetic affinity adsorbents to the removal of water-soluble dyes from polluted water sources using magnetic separation techniques. Magnetically modified cells were investigated by means of electron spin resonance spectroscopy and conventional magnetic methods over the temperature range 4-300 K. The magnetic behavior of these materials was dominated by the superparamagnetic relaxation of isolated single domain maghemite particles although a little amount of agglomerates was also present on the cell surface. However, these agglomerates were sufficiently small to show at static conditions the superparamagnetic behavior at room temperature. Therefore, the ferrofluid-modified microbial cells represent new interesting magnetic affinity adsorbents which could be applied for large-scale magnetic separation processes.

  9. Surface-modified gold nanorods for specific cell targeting

    NASA Astrophysics Data System (ADS)

    Wang, Chan-Ung; Arai, Yoshie; Kim, Insun; Jang, Wonhee; Lee, Seonghyun; Hafner, Jason H.; Jeoung, Eunhee; Jung, Deokho; Kwon, Youngeun

    2012-05-01

    Gold nanoparticles (GNPs) have unique properties that make them highly attractive materials for developing functional reagents for various biomedical applications including photothermal therapy, targeted drug delivery, and molecular imaging. For in vivo applications, GNPs need to be prepared with very little or negligible cytotoxicitiy. Most GNPs are, however, prepared using growth-directing surfactants such as cetyl trimethylammonium bromide (CTAB), which are known to have considerable cytotoxicity. In this paper, we describe an approach to remove CTAB to a non-toxic concentration. We optimized the conditions for surface modification with methoxypolyethylene glycol thiol (mPEG), which replaced CTAB and formed a protective layer on the surface of gold nanorods (GNRs). The cytotoxicities of pristine and surface-modified GNRs were measured in primary human umbilical vein endothelial cells and human cell lines derived from hepatic carcinoma cells, embryonic kidney cells, and thyroid papillary carcinoma cells. Cytotoxicity assays revealed that treating cells with GNRs did not significantly affect cell viability except for thyroid papillary carcinoma cells. Thyroid cancer cells were more susceptible to residual CTAB, so CTAB had to be further removed by dialysis in order to use GNRs for thyroid cell targeting. PEGylated GNRs are further modified to present monoclonal antibodies that recognize a specific surface marker, Na-I symporter, for thyroid cells. Antibody-conjugated GNRs specifically targeted human thyroid cells in vitro.

  10. Genetically modified T cells in cancer therapy: opportunities and challenges

    PubMed Central

    Sharpe, Michaela; Mount, Natalie

    2015-01-01

    Tumours use many strategies to evade the host immune response, including downregulation or weak immunogenicity of target antigens and creation of an immune-suppressive tumour environment. T cells play a key role in cell-mediated immunity and, recently, strategies to genetically modify T cells either through altering the specificity of the T cell receptor (TCR) or through introducing antibody-like recognition in chimeric antigen receptors (CARs) have made substantial advances. The potential of these approaches has been demonstrated in particular by the successful use of genetically modified T cells to treat B cell haematological malignancies in clinical trials. This clinical success is reflected in the growing number of strategic partnerships in this area that have attracted a high level of investment and involve large pharmaceutical organisations. Although our understanding of the factors that influence the safety and efficacy of these therapies has increased, challenges for bringing genetically modified T-cell immunotherapy to many patients with different tumour types remain. These challenges range from the selection of antigen targets and dealing with regulatory and safety issues to successfully navigating the routes to commercial development. However, the encouraging clinical data, the progress in the scientific understanding of tumour immunology and the improvements in the manufacture of cell products are all advancing the clinical translation of these important cellular immunotherapies. PMID:26035842

  11. Genetically modified T cells in cancer therapy: opportunities and challenges.

    PubMed

    Sharpe, Michaela; Mount, Natalie

    2015-04-01

    Tumours use many strategies to evade the host immune response, including downregulation or weak immunogenicity of target antigens and creation of an immune-suppressive tumour environment. T cells play a key role in cell-mediated immunity and, recently, strategies to genetically modify T cells either through altering the specificity of the T cell receptor (TCR) or through introducing antibody-like recognition in chimeric antigen receptors (CARs) have made substantial advances. The potential of these approaches has been demonstrated in particular by the successful use of genetically modified T cells to treat B cell haematological malignancies in clinical trials. This clinical success is reflected in the growing number of strategic partnerships in this area that have attracted a high level of investment and involve large pharmaceutical organisations. Although our understanding of the factors that influence the safety and efficacy of these therapies has increased, challenges for bringing genetically modified T-cell immunotherapy to many patients with different tumour types remain. These challenges range from the selection of antigen targets and dealing with regulatory and safety issues to successfully navigating the routes to commercial development. However, the encouraging clinical data, the progress in the scientific understanding of tumour immunology and the improvements in the manufacture of cell products are all advancing the clinical translation of these important cellular immunotherapies.

  12. Applications of Graphene-Modified Electrodes in Microbial Fuel Cells

    PubMed Central

    Yu, Fei; Wang, Chengxian; Ma, Jie

    2016-01-01

    Graphene-modified materials have captured increasing attention for energy applications due to their superior physical and chemical properties, which can significantly enhance the electricity generation performance of microbial fuel cells (MFC). In this review, several typical synthesis methods of graphene-modified electrodes, such as graphite oxide reduction methods, self-assembly methods, and chemical vapor deposition, are summarized. According to the different functions of the graphene-modified materials in the MFC anode and cathode chambers, a series of design concepts for MFC electrodes are assembled, e.g., enhancing the biocompatibility and improving the extracellular electron transfer efficiency for anode electrodes and increasing the active sites and strengthening the reduction pathway for cathode electrodes. In spite of the challenges of MFC electrodes, graphene-modified electrodes are promising for MFC development to address the reduction in efficiency brought about by organic waste by converting it into electrical energy. PMID:28773929

  13. Engineering chemically modified viruses for prostate cancer cell recognition.

    PubMed

    Mohan, K; Weiss, G A

    2015-12-01

    Specific detection of circulating tumor cells and characterization of their aggressiveness could improve cancer diagnostics and treatment. Metastasis results from such tumor cells, and causes the majority of cancer deaths. Chemically modified viruses could provide an inexpensive and efficient approach to detect tumor cells and quantitate their cell surface biomarkers. However, non-specific adhesion between the cell surface receptors and the virus surface presents a challenge. This report describes wrapping the virus surface with different PEG architectures, including as fusions to oligolysine, linkers, spacers and scaffolded ligands. The reported PEG wrappers can reduce by >75% the non-specific adhesion of phage to cell surfaces. Dynamic light scattering verified the non-covalent attachment by the reported wrappers as increased sizes of the virus particles. Further modifications resulted in specific detection of prostate cancer cells expressing PSMA, a key prostate cancer biomarker. The approach allowed quantification of PSMA levels on the cell surface, and could distinguish more aggressive forms of the disease.

  14. RGD modified polymers: biomaterials for stimulated cell adhesion and beyond.

    PubMed

    Hersel, Ulrich; Dahmen, Claudia; Kessler, Horst

    2003-11-01

    Since RGD peptides (R: arginine; G: glycine; D: aspartic acid) have been found to promote cell adhesion in 1984 (Cell attachment activity of fibronectin can be duplicated by small synthetic fragments of the molecule, Nature 309 (1984) 30), numerous materials have been RGD functionalized for academic studies or medical applications. This review gives an overview of RGD modified polymers, that have been used for cell adhesion, and provides information about technical aspects of RGD immobilization on polymers. The impacts of RGD peptide surface density, spatial arrangement as well as integrin affinity and selectivity on cell responses like adhesion and migration are discussed.

  15. Genetically Modified T-Cell Therapy for Osteosarcoma

    PubMed Central

    DeRenzo, Christopher

    2015-01-01

    T-cell immunotherapy may offer an approach to improve outcomes for patients with osteosarcoma, who fail current therapies. In addition, it has the potential to reduce treatment-related complications for all patients. Generating tumor-specific T cells with conventional antigen presenting cells ex vivo is time consuming and often results in T-cell products with a low frequency of tumor-specific T cells. In addition, the generated T cells remain sensitive to the immunosuppressive tumor microenvironment. Genetic modification of T cells is one strategy to overcome these limitations. For example, T cells can be genetically modified to render them antigen specific, resistant to inhibitory factors, or increase their ability to home to tumor sites. Most genetic modification strategies have only been evaluated in preclinical models, however early phase clinical trials are in progress. In this chapter we review the current status of gene-modified T-cell therapy with special focus on osteosarcoma, highlighting potential antigenic targets, preclinical and clinical studies, and strategies to improve current T-cell therapy approaches. PMID:24924183

  16. Modified NASA standard nickel-cadmium cell designs

    NASA Technical Reports Server (NTRS)

    Manzo, Michelle A.

    1992-01-01

    The experimental design, parameters, and testing of a modified NASA standard nickel-cadmium cell are discussed. Modifications regarding positive plate loading levels and nickel attack levels, loading levels for the negative plates, interelectrode spacing, and the positive electrode impregnation process are addressed.

  17. Visceral glomerular epithelial cells can proliferate in vivo and synthesize platelet-derived growth factor B-chain.

    PubMed Central

    Floege, J.; Johnson, R. J.; Alpers, C. E.; Fatemi-Nainie, S.; Richardson, C. A.; Gordon, K.; Couser, W. G.

    1993-01-01

    In glomerular diseases associated with antibody- and complement-mediated injury to endothelial and mesangial cells, cell proliferation is an important early response that precedes matrix accumulation and glomerulosclerosis. In contrast, in diseases in which the visceral glomerular epithelial cell (vGEC) is the principal target of injury, cell proliferation is not a recognized consequence, although vGECs respond in vitro to a variety of growth factors and inflammatory mediators. To explore the possibility that low levels of vGEC proliferation may occur and participate in such diseases, serial studies were done in the passive Heymann nephritis model of membranous nephropathy, in which the vGEC is the primary target of antibody- and C5b-9-mediated injury. The results showed mitotic figures and positive staining for the proliferating cell nuclear antigen in cells whose location defined them as vGECs. The proliferating cell nuclear antigen-positive cells at the edge of the capillary wall were confirmed to be vGECs by double-immunostaining with antibodies to SPARC/osteonectin, which preferentially label vGECs in passive Heymann nephritis. Proliferation of vGECs in vivo was preceded by increased glomerular expression of platelet-derived growth factor (PDGF) B-chain protein and messenger RNA, both of which localized to vGECs. PDGF B-chain protein and messenger RNA were also detected in cultured vGECs. PDGF receptor beta-subunit protein or messenger RNA could not be demonstrated in vGECs in vivo or in vitro, and no growth response of cultured vGECs to PDGF was noted. These results suggest that proliferation of vGECs does occur in a model of glomerular injury induced by antibody and C5b-9 on vGECs. VGEC proliferation and production of PDGF may be involved in the restoration of the capillary wall but could also contribute to local capillary wall injury and proliferation of other cells in Bowman's capsule, interstitium, and tubules. Images Figure 1 Figure 2 Figure 4 Figure 5

  18. Endothelial cell migration on surfaces modified with immobilized adhesive peptides.

    PubMed

    Kouvroukoglou, S; Dee, K C; Bizios, R; McIntire, L V; Zygourakis, K

    2000-09-01

    Endothelial cell (EC) migration has been studied on aminophase surfaces with covalently bound RGDS and YIGSRG cell adhesion peptides. The fluorescent marker dansyl chloride was used to quantify the spatial distribution of the peptides on the modified surfaces. Peptides appeared to be distributed in uniformly dispersed large clusters separated by areas of lower peptide concentrations. We employed digital time-lapse video microscopy and image analysis to monitor EC migration on the modified surfaces and to reconstruct the cell trajectories. The persistent random walk model was then applied to analyze the cell displacement data and compute the mean root square speed, the persistence time, and the random motility coefficient of EC. We also calculated the time-averaged speed of cell locomotion. No differences in the speed of cell locomotion on the various substrates were noted. Immobilization of the cell adhesion peptides (RGDS and YIGSRG), however, significantly increased the persistence of cell movement and, thus, the random motility coefficient. These results suggest that immobilization of cell adhesion peptides on the surface of implantable biomaterials may lead to enhanced endothelization rates.

  19. Enhanced cell affinity of the silk fibroin- modified PHBHHx material.

    PubMed

    Sun, Min; Zhou, Ping; Pan, Luan-Feng; Liu, Shui; Yang, Hua-Xiao

    2009-08-01

    Cell affinity is one of the important issues required for developing tissue engineering materials. Although the poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx) has been attractive for its controllable mechanical properties recent years, its cell affinity is still necessary to be improved for the requirements. For this purpose, the regenerated silk fibroin (SF) was coated on the PHBHHx films and its porous scaffolds. The mechanical test showed that SF-modified PHBHHx (SF/PHBHHx) film has a maximum tensile strength of 11.5 +/- 0.5 MPa and elongation at break of 175 +/- 5%. ATR-FTIR spectroscopy demonstrated that SF firmly attached on the scaffold by the hydrogen bonding interaction between SF and PHBHHx even flushed for 21 days in the phosphate-buffer saline (PBS) solution (pH = 7.4). In order to characterize the cell affinity of the SF-modified material, endothelial-like cell line ECV304 cells were seeded on the SF/PHBHHx films and its porous scaffolds. The histochemical analyses of cells stained by the hematoxylin and eosin (HE) as well as cell nuclei stained by the 4',6-diamindine-2'-phenylindole (DAPI) demonstrated that cell attached and reached nearly 100% confluence on the SF/PHBHHx films when cultured for 4 days, which was much faster than that on the pure PHBHHx film. Moreover, the assay of cell activity by the 3-(4, 5-dimethyl thiazol -2-yl)-2, 5-diphenyl terazolium bromide (MTT) showed quantitatively that the number of cells on the SF/PHBHHx porous scaffolds was significant more than that on the unmodified ones after 4, 8, and 14 days culture, respectively. Scanning electron microscopy (SEM) revealed the similar results. Therefore, the SF-modified PHBHHx material is maybe a potential material applicable in the cardiovascular tissue engineering.

  20. Facile synthesis of Ge@C core-shell nanocomposites for high-performance lithium storage in lithium-ion batteries.

    PubMed

    Wang, Ying; Wang, Guoxiu

    2013-12-01

    Herein, we report a facile and "green" synthetic route for the preparation of Ge@C core-shell nanocomposites by using a low-cost Ge precursor. Field-emission scanning electron microscopy and transmission electron microscopy analyses confirmed the core-shell nanoarchitecture of the Ge@C nanocomposites, with particle sizes ranging from 60 to 100 nm. Individual Ge nanocrystals were coated by a continuous carbon layer, which had an average thickness of 2 nm. When applied as an anode materials for lithium-ion batteries, the Ge@C nanocomposites exhibited a high initial discharge capacity of 1670 mAh g(-1) and superior rate capability. In particular, Ge@C nanocomposite electrodes maintained a reversible capacity of 734 mAh g(-1) after repeated cycling at a current density of 800 mA g(-1) over 100 cycles. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. First-principles calculations of the structural, elastic, electronic, chemical bonding and optical properties of zinc-blende and rocksalt GeC

    NASA Astrophysics Data System (ADS)

    Liu, Qi-Jun; Liu, Zheng-Tang; Che, Xing-Sen; Feng, Li-Ping; Tian, Hao

    2011-12-01

    Structural parameters, elastic, electronic, bonding and optical properties of zinc-blende and rocksalt GeC have been investigated using the plane-wave ultrasoft pseudopotential technique based on the first-principles density-functional theory (DFT). The ground-state properties obtained by minimizing the total energy are in favorable agreement with the previous work. Two phases of GeC are found to be elastically stable and we have obtained the bulk, shear and Young's modulus, Poisson's coefficient and Lamé's constants for zinc-blende and rocksalt GeC. We estimated the Debye temperature of zinc-blende and rocksalt GeC from the acoustic velocity. Electronic and chemical bonding properties have been studied. Moreover, the complex dielectric function, refractive index, extinction coefficient, optical reflectivity, absorption coefficient, energy-loss spectrum and the complex conductivity function are calculated.

  2. Results of the first field visit to Antipayutinsky gas-emission crater (AntGEC) on Gydan Peninsula, Russia in 2016

    NASA Astrophysics Data System (ADS)

    Khomutov, Artem; Leibman, Marina; Dvornikov, Yury; Aref'ev, Stanislav

    2017-04-01

    Deep craters in the North of West Siberia are specific objects in permafrost zone first observed in 2014 and later detected on satellite images to form in 2013. Their origin is under discussion yet. Authors hypothesize their formation from gas accumulation and later sudden emission. Scientific community was informed of Antipayutinskiy gas-emission crater (AntGEC) soon after first Yamal crater was found in 2014. Despite this knowledge, a real opportunity to visit AntGEC with true coordinates and logistic support appeared only in 2016 field campaign. Our field study of AntGEC included a description of the surrounding area and visible geological section, GPS-survey of GEC settings and related surface disturbances, measuring the depth of seasonal thaw, the internal lake bathymetry and water sampling from internal lake and other "knocked out" ponds. We also looked for traces of the initial mound preceding the GEC formation. We collected the willow branches for tree-ring dating of the events preceding the "eruption" using a specially developed technique, tested on willows, collected from Yamal gas-emission crater (GEC-1). Based on measurements of the depth, bathymetric map of AntGEC was compiled. The maximum measured depth at the crater center was 3.6 meters. Depth distribution was uniform in plan. The estimated volume of lake water was 1642.6 m3. Water samples were taken at different depths. The water temperature at the time of measurement was 8.8˚ C near the surface and 7.8˚ C at a depth of 3 meters. Preliminary dendrochronological analysis of AntGEC willow from the ejected block with turf showed the age of about 90 years. Annual growth rate of willow on AntGEC location was low (˜0.1 mm) in 1918-1947. An elevated growth rate (0.45 mm) is registered in 1948. This increase is chronologically correlated with previously defined increase of willow growth rate on first Yamal crater location. A significant difference between Gydan AntGEC and 3 known Yamal GEC is observed

  3. Carboxybetaine methacrylate oligomer modified nylon for circulating tumor cells capture.

    PubMed

    Dong, Chaoqun; Wang, Huiyu; Zhang, Zhuo; Zhang, Tao; Liu, Baorui

    2014-10-15

    Circulating tumor cells (CTC) capture is one of the most effective approaches in diagnosis and treatment of cancers in the field of personalized cancer medicine. In our study, zwitterionic carboxybetaine methacrylate (CBMA) oligomers were grafted onto nylon via atomic transfer random polymerization (ATRP) which would serve as a novel material for the development of convenient CTC capture interventional medical devices. The chemical, physical and biological properties of pristine and modified nylon surfaces were assessed by Fourier transform infrared spectra, atomic force microscope, water contact angle measurements, X-ray photoelectron spectroscopy, protein adsorption, platelet adhesion, and plasma recalcification time (PRT) determinations, etc. The results, including the significant decrease of proteins adsorption and platelets adhesion, as well as prolonged PRTs demonstrated the extraordinary biocompatibility and blood compatibility of the modified surface. Furthermore, we showed that upon immobilization of anti-epithelial cell adhesion molecular (anti-EpCAM) antibody onto the CBMA moiety, the modified nylon surface can selectively capture EpCAM positive tumor cells from blood with high efficiency, indicating the potential of the modified nylon in the manufacture of convenient interventional CTC capture medical devices. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Genetically modified mesenchymal stem cells for improved islet transplantation.

    PubMed

    Wu, Hao; Ye, Zhaoyang; Mahato, Ram I

    2011-10-03

    The use of adult stem cells for therapeutic purposes has met with great success in recent years. Among several types of adult stem cells, mesenchymal stem cells (MSCs) derived from bone marrow (BM) and other sources have gained popularity for basic research and clinical applications because of their therapeutic potential in treating a variety of diseases. Because of their tissue regeneration potential and immune modulation effect, MSCs were recently used as cell-based therapy to promote revascularization, increase pancreatic β-cell proliferation, and avoid allograft rejection in islet transplantation. Taking advantage of the recent progress in gene therapy, genetically modified MSCs can further enhance and expand the therapeutic benefit of primary MSCs while retaining their stem-cell-like properties. This review aims to gain a thorough understanding of the current obstacles to successful islet transplantation and discusses the potential role of primary MSCs before or after genetic modification in islet transplantation.

  5. Electrospun fiber membranes enable proliferation of genetically modified cells

    PubMed Central

    Borjigin, Mandula; Eskridge, Chris; Niamat, Rohina; Strouse, Bryan; Bialk, Pawel; Kmiec, Eric B

    2013-01-01

    Polycaprolactone (PCL) and its blended composites (chitosan, gelatin, and lecithin) are well-established biomaterials that can enrich cell growth and enable tissue engineering. However, their application in the recovery and proliferation of genetically modified cells has not been studied. In the study reported here, we fabricated PCL-biomaterial blended fiber membranes, characterized them using physicochemical techniques, and used them as templates for the growth of genetically modified HCT116-19 colon cancer cells. Our data show that the blended polymers are highly miscible and form homogenous electrospun fiber membranes of uniform texture. The aligned PCL nanofibers support robust cell growth, yielding a 2.5-fold higher proliferation rate than cells plated on standard plastic plate surfaces. PCL-lecithin fiber membranes yielded a 2.7-fold higher rate of proliferation, while PCL-chitosan supported a more modest growth rate (1.5-fold higher). Surprisingly, PCL-gelatin did not enhance cell proliferation when compared to the rate of cell growth on plastic surfaces. PMID:23467983

  6. Somatic cell reprogramming-free generation of genetically modified pigs

    PubMed Central

    Tanihara, Fuminori; Takemoto, Tatsuya; Kitagawa, Eri; Rao, Shengbin; Do, Lanh Thi Kim; Onishi, Akira; Yamashita, Yukiko; Kosugi, Chisato; Suzuki, Hitomi; Sembon, Shoichiro; Suzuki, Shunichi; Nakai, Michiko; Hashimoto, Masakazu; Yasue, Akihiro; Matsuhisa, Munehide; Noji, Sumihare; Fujimura, Tatsuya; Fuchimoto, Dai-ichiro; Otoi, Takeshige

    2016-01-01

    Genetically modified pigs for biomedical applications have been mainly generated using the somatic cell nuclear transfer technique; however, this approach requires complex micromanipulation techniques and sometimes increases the risks of both prenatal and postnatal death by faulty epigenetic reprogramming of a donor somatic cell nucleus. As a result, the production of genetically modified pigs has not been widely applied. We provide a simple method for CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9 gene editing in pigs that involves the introduction of Cas9 protein and single-guide RNA into in vitro fertilized zygotes by electroporation. The use of gene editing by electroporation of Cas9 protein (GEEP) resulted in highly efficient targeted gene disruption and was validated by the efficient production of Myostatin mutant pigs. Because GEEP does not require the complex methods associated with micromanipulation for somatic reprogramming, it has the potential for facilitating the genetic modification of pigs. PMID:27652340

  7. Somatic cell reprogramming-free generation of genetically modified pigs.

    PubMed

    Tanihara, Fuminori; Takemoto, Tatsuya; Kitagawa, Eri; Rao, Shengbin; Do, Lanh Thi Kim; Onishi, Akira; Yamashita, Yukiko; Kosugi, Chisato; Suzuki, Hitomi; Sembon, Shoichiro; Suzuki, Shunichi; Nakai, Michiko; Hashimoto, Masakazu; Yasue, Akihiro; Matsuhisa, Munehide; Noji, Sumihare; Fujimura, Tatsuya; Fuchimoto, Dai-Ichiro; Otoi, Takeshige

    2016-09-01

    Genetically modified pigs for biomedical applications have been mainly generated using the somatic cell nuclear transfer technique; however, this approach requires complex micromanipulation techniques and sometimes increases the risks of both prenatal and postnatal death by faulty epigenetic reprogramming of a donor somatic cell nucleus. As a result, the production of genetically modified pigs has not been widely applied. We provide a simple method for CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9 gene editing in pigs that involves the introduction of Cas9 protein and single-guide RNA into in vitro fertilized zygotes by electroporation. The use of gene editing by electroporation of Cas9 protein (GEEP) resulted in highly efficient targeted gene disruption and was validated by the efficient production of Myostatin mutant pigs. Because GEEP does not require the complex methods associated with micromanipulation for somatic reprogramming, it has the potential for facilitating the genetic modification of pigs.

  8. Manufacturing genetically modified T cells for clinical trials.

    PubMed

    Gee, A P

    2015-03-01

    Compliance with Food and Drug Administration regulations relating to initiating early phase clinical trials of new cellular therapy products often presents a hurdle to new investigators. One of the biggest obstacles is the requirement to manufacture the therapeutic products under current Good Manufacturing Practices-a system that is usually poorly understood by both basic researchers and clinicians. This article reviews the major points that must be addressed when manufacturing genetically modified T cells for therapeutic use.

  9. Geothermal Economics Calculator (GEC) - additional modifications to final report as per GTP's request.

    SciTech Connect

    Gowda, Varun; Hogue, Michael

    2015-07-17

    This report will discuss the methods and the results from economic impact analysis applied to the development of Enhanced Geothermal Systems (EGS), conventional hydrothermal, low temperature geothermal and coproduced fluid technologies resulting in electric power production. As part of this work, the Energy & Geoscience Institute (EGI) has developed a web-based Geothermal Economics Calculator (Geothermal Economics Calculator (GEC)) tool that is aimed at helping the industry perform geothermal systems analysis and study the associated impacts of specific geothermal investments or technological improvements on employment, energy and environment. It is well-known in the industry that geothermal power projects will generate positive economic impacts for their host regions. Our aim in the assessment of these impacts includes quantification of the increase in overall economic output due to geothermal projects and of the job creation associated with this increase. Such an estimate of economic impacts of geothermal investments on employment, energy and the environment will also help us understand the contributions that the geothermal industry will have in achieving a sustainable path towards energy production.

  10. Attachment of human primary osteoblast cells to modified polyethylene surfaces.

    PubMed

    Poulsson, Alexandra H C; Mitchell, Stephen A; Davidson, Marcus R; Johnstone, Alan J; Emmison, Neil; Bradley, Robert H

    2009-04-09

    Ultra-high-molecular-weight polyethylene (UHMWPE) has a long history of use in medical devices, primarily for articulating surfaces due to its inherent low surface energy which limits tissue integration. To widen the applications of UHMWPE, the surface energy can be increased. The increase in surface energy would improve the adsorption of proteins and attachment of cells to allow tissue integration, thereby allowing UHMWPE to potentially be used for a wider range of implants. The attachment and function of human primary osteoblast-like (HOB) cells to surfaces of UHMWPE with various levels of incorporated surface oxygen have been investigated. The surface modification of the UHMWPE was produced by exposure to a UV/ozone treatment. The resulting surface chemistry was studied using X-ray photoelectron spectroscopy (XPS), and the topography and surface structure were probed by atomic force microscopy (AFM) and scanning electron microscopy (SEM), which showed an increase in surface oxygen from 11 to 26 atom % with no significant change to the surface topography. The absolute root mean square roughness of both untreated and UV/ozone-treated surfaces was within 350-450 nm, and the water contact angles decreased with increasing oxygen incorporation, i.e., showing an increase in surface hydrophilicity. Cell attachment and functionality were assessed over a 21 day period for each cell-surface combination studied; these were performed using SEM and the alamarBlue assay to study cell attachment and proliferation and energy-dispersive X-ray (EDX) analysis to confirm extracellular mineral deposits, and total protein assay to examine the intra- and extracellular protein expressed by the cells. HOB cells cultured for 21 days on the modified UHMWPE surfaces with 19 and 26 atom % oxygen incorporated showed significantly higher cell densities compared to cells cultured on tissue culture polystyrene (TCPS) from day 3 onward. This indicated that the cells attached and proliferated more

  11. Immobilization of chlorine dioxide modified cells for uranium absorption.

    PubMed

    He, Shengbin; Ruan, Binbiao; Zheng, Yueping; Zhou, Xiaobin; Xu, Xiaoping

    2014-11-01

    There has been a trend towards the use of microorganisms to recover metals from industrial wastewater, for which various methods have been reported to be used to improve microorganism adsorption characteristics such as absorption capacity, tolerance and reusability. In present study, chlorine dioxide(ClO2), a high-efficiency, low toxicity and environment-benign disinfectant, was first reported to be used for microorganism surface modification. The chlorine dioxide modified cells demonstrated a 10.1% higher uranium adsorption capacity than control ones. FTIR analysis indicated that several cell surface groups are involved in the uranium adsorption and cell surface modification. The modified cells were further immobilized on a carboxymethylcellulose(CMC) matrix to improve their reusability. The cell-immobilized adsorbent could be employed either in a high concentration system to move vast UO2(2+) ions or in a low concentration system to purify UO2(2+) contaminated water thoroughly, and could be repeatedly used in multiple adsorption-desorption cycles with about 90% adsorption capacity maintained after seven cycles.

  12. Antitumor efficacy of vaccinia virus-modified tumor cell vaccine

    SciTech Connect

    Ito, T.; Wang, D.Q.; Maru, M.; Nakajima, K.; Kato, S.; Kurimura, T.; Wakamiya, N. )

    1990-11-01

    The antitumor efficacies of vaccinia virus-modified tumor cell vaccines were examined in murine syngeneic MH134 and X5563 tumor cells. UV-inactivated vaccinia virus was inoculated i.p. into C3H/HeN mice that had received whole body X-irradiation at 150 rads. After 3 weeks, the vaccines were administered i.p. 3 times at weekly intervals. One week after the last injection, mice were challenged i.p. with various doses of syngeneic MH134 or X5563 viable tumor cells. Four methods were used for preparing tumor cell vaccines: X-ray irradiation; fixation with paraformaldehyde for 1 h or 3 months; and purification of the membrane fraction. All four vaccines were effective, but the former two vaccines were the most effective. A mixture of the membrane fraction of untreated tumor cells and UV-inactivated vaccinia virus also had an antitumor effect. These results indicate that vaccine with the complete cell structure is the most effective. The membrane fraction of UV-inactivated vaccinia virus-absorbed tumor cells was also effective. UV-inactivated vaccinia virus can react with not only intact tumor cells but also the purified membrane fraction of tumor cells and augment antitumor activity.

  13. Osteoblastlike cell adhesion on titanium surfaces modified by plasma nitriding.

    PubMed

    da Silva, Jose Sandro Pereira; Amico, Sandro Campos; Rodrigues, Almir Olegario Neves; Barboza, Carlos Augusto Galvao; Alves, Clodomiro; Croci, Alberto Tesconi

    2011-01-01

    The aim of this study was to evaluate the characteristics of various titanium surfaces modified by cold plasma nitriding in terms of adhesion and proliferation of rat osteoblastlike cells. Samples of grade 2 titanium were subjected to three different surface modification processes: polishing, nitriding by plasma direct current, and nitriding by cathodic cage discharge. To evaluate the effect of the surface treatment on the cellular response, the adhesion and proliferation of osteoblastlike cells (MC3T3) were quantified and the results were analyzed by Kruskal-Wallis and Friedman statistical tests. Cellular morphology was observed by scanning electron microscopy. There was more MC3T3 cell attachment on the rougher surfaces produced by cathodic cage discharge compared with polished samples (P < .05). Plasma nitriding improves titanium surface roughness and wettability, leading to osteoblastlike cell adhesion.

  14. An efficient magnetically modified microbial cell biocomposite for carbazole biodegradation

    PubMed Central

    2013-01-01

    Magnetic modification of microbial cells enables to prepare smart biocomposites in bioremediation. In this study, we constructed an efficient biocomposite by assembling Fe3O4 nanoparticles onto the surface of Sphingomonas sp. XLDN2-5 cells. The average particle size of Fe3O4 nanoparticles was about 20 nm with 45.5 emu g-1 saturation magnetization. The morphology of Sphingomonas sp. XLDN2-5 cells before and after Fe3O4 nanoparticle loading was verified by scanning electron microscopy and transmission electronic microscopy. Compared with free cells, the microbial cell/Fe3O4 biocomposite had the same biodegradation activity but exhibited remarkable reusability. The degradation activity of the microbial cell/Fe3O4 biocomposite increased gradually during recycling processes. Additionally, the microbial cell/Fe3O4 biocomposite could be easily separated and recycled by an external magnetic field due to the super-paramagnetic properties of Fe3O4 nanoparticle coating. These results indicated that magnetically modified microbial cells provide a promising technique for improving biocatalysts used in the biodegradation of hazardous compounds. PMID:24330511

  15. An efficient magnetically modified microbial cell biocomposite for carbazole biodegradation

    NASA Astrophysics Data System (ADS)

    Li, Yufei; Du, Xiaoyu; Wu, Chao; Liu, Xueying; Wang, Xia; Xu, Ping

    2013-12-01

    Magnetic modification of microbial cells enables to prepare smart biocomposites in bioremediation. In this study, we constructed an efficient biocomposite by assembling Fe3O4 nanoparticles onto the surface of Sphingomonas sp. XLDN2-5 cells. The average particle size of Fe3O4 nanoparticles was about 20 nm with 45.5 emu g-1 saturation magnetization. The morphology of Sphingomonas sp. XLDN2-5 cells before and after Fe3O4 nanoparticle loading was verified by scanning electron microscopy and transmission electronic microscopy. Compared with free cells, the microbial cell/Fe3O4 biocomposite had the same biodegradation activity but exhibited remarkable reusability. The degradation activity of the microbial cell/Fe3O4 biocomposite increased gradually during recycling processes. Additionally, the microbial cell/Fe3O4 biocomposite could be easily separated and recycled by an external magnetic field due to the super-paramagnetic properties of Fe3O4 nanoparticle coating. These results indicated that magnetically modified microbial cells provide a promising technique for improving biocatalysts used in the biodegradation of hazardous compounds.

  16. Mps1 is SUMO-modified during the cell cycle

    PubMed Central

    Chen, Changyan; Lu, Lou; Dai, Wei

    2016-01-01

    Mps1 is a dual specificity protein kinase that regulates the spindle assembly checkpoint and mediates proper microtubule attachment to chromosomes during mitosis. However, the molecular mechanism that controls Mps1 protein level and its activity during the cell cycle remains unclear. Given that sumoylation plays an important role in mitotic progression, we investigated whether Mps1 was SUMO-modified and whether sumoylation affects its activity in mitosis. Our results showed that Mps1 was sumoylated in both asynchronized and mitotic cell populations. Mps1 was modified by both SUMO-1 and SUMO-2. Our further studies revealed that lysine residues including K71, K287, K367 and K471 were essential for Mps1 sumoylation. Sumoylation appeared to play a role in mediating kinetochore localization of Mps1, thus affecting normal mitotic progression. Furthermore, SUMO-resistant mutants of Mps1 interacted with BubR1 more efficiently than it did with the wild-type control. Combined, our results indicate that Mps1 is SUMO-modified that plays an essential role in regulating Mps1 functions during mitosis. PMID:26675261

  17. Interaction of carbohydrate modified boron nitride nanotubes with living cells.

    PubMed

    Emanet, Melis; Şen, Özlem; Çobandede, Zehra; Çulha, Mustafa

    2015-10-01

    Boron nitride nanotubes (BNNTs) are composed of boron and nitrogen atoms and they show significantly different properties from their carbon analogues (carbon nanotubes, CNTs). Due to their unique properties including low electrical conductivity, and imaging contrast and neutron capture properties; they can be used in biomedical applications. When their use in biological fields is considered, the route of their toxic effect should be clarified. Therefore, the study of interactions between BNNTs and living systems is important in envisaging biological applications at both cellular and sub-cellular levels to fully gain insights of their potential adverse effects. In this study, BNNTs were modified with lactose, glucose and starch and tested for their cytotoxicity. First, the interactions and the behavior of BNNTs with bovine serum albumin (BSA), Dulbecco's Modified Eagle's Medium (DMEM) and DMEM/Nutrient Mixture F-12Ham were investigated. Thereafter, their cellular uptake and the cyto- and genotoxicity on human dermal fibroblasts (HDFs) and adenocarcinoma human alveolar basal epithelial cells (A549) were evaluated. HDFs and A549 cells internalized the modified and unmodified BNNTs, and BNNTs were found to not cause significant viability change and DNA damage. A higher uptake rate of BNNTs by A549 cells compared to HDFs was observed. Moreover, a concentration-dependent cytotoxicity was observed on A549 cells while they were safer for HDFs in the same concentration range. Based on these findings, it can be concluded that BNNTs and their derivatives made with biomacromolecules might be good candidates for several applications in medicine and biomedical applications. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Endometrial epithelial cell response to semen from HIV-infected men during different stages of infection is distinct and can drive HIV-1-long terminal repeat.

    PubMed

    Kafka, Jessica K; Sheth, Prameet M; Nazli, Aisha; Osborne, Brendan J; Kovacs, Colin; Kaul, Rupert; Kaushic, Charu

    2012-01-02

    Although more than 60% of HIV transmission occurs via semen, little is known about the immune impact of seminal plasma on HIV susceptibility. Here, we examined the level of selected immunomodulatory factors in seminal plasma from HIV-uninfected and therapy-naive, HIV-infected men in acute and chronic stages; the cytokine response elicited by seminal plasma in genital epithelial cells (GECs); and whether any GEC response to seminal plasma could drive HIV replication in infected T cells. A panel of nine cytokines and chemokines was measured in seminal plasma from HIV-uninfected and HIV-infected men and in primary GEC cultures following seminal plasma exposure. HIV-long terminal repeat (LTR) activation was measured in 1G5 T cells exposed to supernatants from seminal plasma-treated GECs. Pro-inflammatory cytokines and chemokines were present at significantly higher levels in seminal plasma from acute men, whereas transforming growth factor (TGF)-β1 was significantly higher in seminal plasma from chronic men. Pro-inflammatory cytokine production by GECs was significantly decreased following incubation with seminal plasma from chronic men. Blocking the TGF-β1 receptor in GECs prior to seminal plasma exposure enhanced pro-inflammatory cytokine production. Exposure to seminal plasma activated nuclear factor (NF)-κB in GECs and blocking it significantly reduced pro-inflammatory cytokine production. GEC responses to seminal plasma, especially from acute men, significantly activated HIV-LTR activation in 1G5 T cells. Immunomodulatory factors in seminal plasma vary, depending on presence and stage of HIV infection. Exposure to seminal plasma leads to NF-κB activation and pro-inflammatory cytokine production, whereas TGF-β in seminal plasma may suppress pro-inflammatory cytokine production by GECs. GEC responses to seminal plasma can activate HIV-LTR in infected CD4(+) T cells.

  19. Release testing of retroviral vectors and gene-modified cells.

    PubMed

    Nordling, Diana; Kaiser, Anne; Reeves, Lilith

    2009-01-01

    This chapter will review the design and execution of release testing requirements for retroviral vectors and gene-modified cells consistent with ensuring the success of the clinical trial on the basis of current US regulatory requirements. It is the ethical and legal responsibility of the clinical trial sponsor(s) to ensure safety of the patients through proper evaluation of the drug products prior to use. Any clinical trial drug product used in human subjects must be produced and evaluated for safety, quality, purity, and effectiveness according to Current Good Manufacturing Practices appropriate for the stage of clinical development.

  20. Hydrodynamic modeling of granular flows in a modified Couette cell.

    PubMed

    Jop, Pierre

    2008-03-01

    We present simulations of granular flows in a modified Couette cell, using a continuum model recently proposed for dense granular flows. Based on a friction coefficient, which depends on an inertial number, the model captures the positions of the wide shear bands. We show that a smooth transition in velocity-profile shape occurs when the height of the granular material is increased, leading to a differential rotation of the central part close to the surface. The numerical predictions are in qualitative agreement with previous experimental results. The model provides predictions for the increase of the shear band width when the rotation rate is increased.

  1. [Mechanisms of thrombin induced proliferation and detachment of glomerular endothelial cells].

    PubMed

    Xu, Q; Chen, X; Fu, B

    1997-09-01

    To clarify the mechanisms of thrombin contributing to the progression of glomerular diseases by injuring glomerular endothelial cells (GECs), we studied the effects of thrombin on GECs in vitro. Cell proliferation was detected with MTT incorporation, total plasminogen activator (PA) and tissue type PA (t-PA) activities were detected with fibrin plate and chromatogenic substrate methods and fibronectin was detected with ELISA as well as indirect immunofluore scence. 0.4-3.2 NIH U/ml thrombin promoted GEC proliferation significantly (P < 0.05). Thrombin promoted cell detachment, which can be inhibited by hirudin or aprotinin. Thrombin enhanced total PA and t-PA activities of GECs significantly (P < 0.01). Fibronectin in the supernatants of thrombin-stimulated GECs decreased significantly (P < 0.01) and in the extracellular compartment also decreased. The decrease was inhibited by hirudin and aprotinin. In conclusion, thrombin can induce GEC proliferation and GEC detachment. The latter is probably related to PA-mediated over-degradation of extracellular matrices such as fibronectin, which are needed for cell attachment.

  2. Ge/C nanowires as high-capacity and long-life anode materials for Li-ion batteries.

    PubMed

    Liu, Jun; Song, Kepeng; Zhu, Changbao; Chen, Chia-Chin; van Aken, Peter A; Maier, Joachim; Yu, Yan

    2014-07-22

    Germanium-based materials (Ge and GeOx) have recently demonstrated excellent lithium-ion storage ability and are being considered as the most promising candidates to substitute commercial carbon-based anodes of lithium-ion batteries. Nevertheless, practical implementation of Ge-based materials to lithium-ion batteries is greatly hampered by the poor cyclability that resulted from the huge volume variation during lithiation/delithiation processes. Herein, uniform carbon-encapsulated Ge and GeOx nanowires were synthesized by a one-step controlled pyrolysis of organic-inorganic hybrid GeOx/ethylenediamine (GeOx/EDA) nanowires in H2/Ar and Ar atmospheres, respectively. The as-obtained Ge/C and GeOx/C nanowires possess well-defined 0D-in-1D morphology and homogeneous carbon encapsulation, which exhibit excellent Li storage properties including high specific capacities (approximate 1200 and 1000 mA h g(-1) at 0.2C for Ge/C and GeOx/C, respectively). The Ge/C nanowires, in particular, demonstrate superior rate capability with excellent capacity retention and stability (producing high stable discharge capacities of about 770 mA h g(-1) after 500 cycles at 10C), making them promising candidates for future electrodes for high-power Li-ion batteries. The improved electrochemical performance arises from synergistic effects of 0D-in-1D morphology and uniform carbon coating, which could effectively accommodate the huge volume change of Ge/GeOx during cycling and maintain perfect electrical conductivity throughout the electrode.

  3. Stretchable biofuel cell with enzyme-modified conductive textiles.

    PubMed

    Ogawa, Yudai; Takai, Yuki; Kato, Yuto; Kai, Hiroyuki; Miyake, Takeo; Nishizawa, Matsuhiko

    2015-12-15

    A sheet-type, stretchable biofuel cell was developed by laminating three components: a bioanode textile for fructose oxidation, a hydrogel sheet containing fructose as fuel, and a gas-diffusion biocathode textile for oxygen reduction. The anode and cathode textiles were prepared by modifying carbon nanotube (CNT)-decorated stretchable textiles with fructose dehydrogenase (FDH) and bilirubin oxidase (BOD), respectively. Enzymatic reaction currents of anode and cathode textiles were stable for 30 cycles of 50% stretching, with initial loss of 20-30% in the first few cycles due to the partial breaking of the CNT network at the junction of textile fibers. The assembled laminate biofuel cell showed power of ~0.2 mW/cm(2) with 1.2 kΩ load, which was stable even at stretched, twisted, and wrapped forms.

  4. High glucose modifies heparansulphate synthesis by mouse glomerular epithelial cells.

    PubMed

    Morano, S; Guidobaldi, L; Cipriani, R; Gabriele, A; Pantellini, F; Medici, F; D'Erme, M; Di Mario, U

    1999-01-01

    Alterations in proteoglycan metabolism are involved in the pathogenesis of diabetic nephropathy. The aim of this study is to evaluate the effects of high glucose on proteoglycan production and to find a reliable in vitro model for the study of diabetic nephropathy. A clone of mouse glomerular epithelial cells was cultured in media containing elevated (30 mmol) and physiological (5 mmol) glucose, or iso-osmolar (30 mmol) mannitol concentrations. We evaluated the synthesis of 35SO4-labeled molecules and the amount of proteoglycans by Sepharose CL6B and DEAE-Sephacel chromatographies. A clear decrease (56%) in total cell-layer proteoglycan synthesis was induced by 30 mmol glucose, in comparison with normal glucose. A reduction of 25% in medium associated proteoglycan synthesis was observed in high glucose cultured cells. After Sepharose CL6B, in cells cultured in high glucose, cell layer heparansulphate proteoglycan-I (Kav 6B 0. 04) synthesis was reduced by about 81%, heparansulphate proteoglycan-II (Kav 6B 0.21) by about 87% and heparansulphate glycosaminoglycan (Kav 0.4-0.8) by about 91%, respectively. In mannitol-incubated cells the reductions observed were less evident and not significantly different from those in normal glucose. These results indicate that (1) glomerular epithelial cells play a central role in proteoglycan synthesis, (2) high glucose modifies the amount and influences the different species production of these macromolecules, while osmotic forces seem to be only partially involved in these effects, and (3) this cellular clone of glomerular epithelial cells can represent a reliable in vitro model for the study of the mechanisms involved in diabetic nephropathy. Copyright 1999 John Wiley & Sons, Ltd.

  5. Microgravity modifies the cell cycle in the lentil root meristem

    NASA Astrophysics Data System (ADS)

    Driss-Ecole, D.; Yu, F.; Legué, V.; Perbal, G.

    In order to investigate the effects of microgravity on the cell cycle, lentil seedlings were grown in space as follows: 1 - in microgravity for 29h (Fmug), 2 - on the 1g centrifuge (F1g), 3 - in microgravity for 25h and then on the 1g centrifuge for 4h (Fmug+1g), 4 - on the 1g centrifuge for 25h and then in microgravity for 4h (F1g+mug). There were no statistical differences in mean root length after 29h in the four samples. The DNA content of nuclei in the root meristem was estimated by image analysis after sectioning and staining by the Feulgen technique. Three different regions, each of 0.2mm length (a, b, c), were distinguished basal to the root cap junction (RCJ). No difference in the distribution of nuclear DNA contents was found in region c (the furthest from the RCJ) in all four growth conditions. However, the nuclear DNA distributions were different in regions a and b in microgravity and on the 1g centrifuge (there were more cycling cells in 1g than in 1mug). When roots were grown in 1g and transferred to microgravity (F1g+mug), the proportion of cycling cells was increased. In the (Fmug+1g) sample, by contrast, the cell cycle was not modified by the transfer from 1mug to 1g. Microgravity perturbed the cell cycle by lengthening the G1 phase in the lentil root meristem.

  6. Aldosterone does not modify gene expression in human endothelial cells.

    PubMed

    Verhovez, A; Williams, T A; Morello, F; Monticone, S; Brizzi, M F; Dentelli, P; Fallo, F; Fabris, B; Amenta, F; Gomez-Sanchez, C; Veglio, F; Mulatero, P

    2012-03-01

    The toxic effects of aldosterone on the vasculature, and in particular on the endothelial layer, have been proposed as having an important role in the cardiovascular pathology observed in mineralocorticoid-excess states. In order to characterize the genomic molecular mechanisms driving the aldosterone-induced endothelial dysfunction, we performed an expression microarray on transcripts obtained from both human umbilical vein endothelial cells and human coronary artery endothelial cells stimulated with 10 - 7 M aldosterone for 18 h. The results were then subjected to qRT-PCR confirmation, also including a group of genes known to be involved in the control of the endothelial function or previously described as regulated by aldosterone. The state of activation of the mineralocorticoid receptor was investigated by means of a luciferase-reporter assay using a plasmid encoding a mineralocorticoid and glucocorticoid-sensitive promoter. Aldosterone did not determine any significant change in gene expression in either cell type both in the microarray and in the qRT-PCR analysis. The luciferase-reporter assay showed no activation of the mineralocorticoid receptor following aldosterone stimulation. The status of nonfunctionality of the mineralocorticoid receptor expressed in cultured human umbilical and coronary artery endothelial cells does not allow aldosterone to modify gene expression and provides evidence against either a beneficial or harmful genomic effect of aldosterone on healthy endothelial cells.

  7. Cysteine modified polyaniline films improve biocompatibility for two cell lines.

    PubMed

    Yslas, Edith I; Cavallo, Pablo; Acevedo, Diego F; Barbero, César A; Rivarola, Viviana A

    2015-06-01

    This work focuses on one of the most exciting application areas of conjugated conducting polymers, which is cell culture and tissue engineering. To improve the biocompatibility of conducting polymers we present an easy method that involves the modification of the polymer backbone using l-cysteine. In this publication, we show the synthesis of polyaniline (PANI) films supported onto Polyethylene terephthalate (PET) films, and modified using cysteine (PANI-Cys) in order to generate a biocompatible substrate for cell culture. The PANI-Cys films are characterized by Fourier Transform infrared and UV-visible spectroscopy. The changes in the hydrophilicity of the polymer films after and before the modification were tested using contact angle measurements. After modification the contact angle changes from 86°±1 to 90°±1, suggesting a more hydrophylic surface. The adhesion properties of LM2 and HaCaT cell lines on the surface of PANI-Cys films in comparison with tissue culture plastic (TCP) are studied. The PANI-Cys film shows better biocompatibility than PANI film for both cell lines. The cell morphologies on the TCP and PANI-Cys film were examined by florescence and Atomic Force Microscopy (AFM). Microscopic observations show normal cellular behavior when PANI-Cys is used as a substrate of both cell lines (HaCaT and LM2) as when they are cultured on TCP. The ability of these PANI-Cys films to support cell attachment and growth indicates their potential use as biocompatible surfaces and in tissue engineering.

  8. Comparative analysis of the biological and physical properties of Enterococcus faecalis bacteriophage vB_EfaS_GEC-EfS_3 and Streptococcus mitis bacteriophage vB_SmM_GEC-SmitisM_2.

    PubMed

    Rigvava, Sophio; Tchgkonia, Irina; Jgenti, Darejan; Dvalidze, Teona; Carpino, James; Goderdzishvili, Marina

    2013-01-01

    Enterococcus faecalis and Streptococcus mitis are common commensal inhabitants of the human gastrointestinal and genitourinary tracts. However, both species can be opportunistic pathogens and cause disease in nosocomial settings. These infections can be difficult to treat because of the frequency of antibiotic resistance among these strains. Bacteriophages are often suggested as an alternative therapeutic agent against these infections. In this study, E. faecalis and S. mitis strains were isolated from female patients with urinary tract infections. Bacteriophages active against these strains were isolated from sewage water from the Mtkvari River. Two phages, designated vB_EfaS_GEC-EfS_3 (Syphoviridae) and vB_SmM_GEC-SmitisM_2 (Myoviridae), were specific for E. faecalis and S. mitis, respectively. Each phage's growth patterns and adsorption rates were quantified. Sensitivity to ultraviolet light and temperature was determined, as was host range and serology. The S. mitis bacteriophage was found to be more resistant to ultraviolet light and exposure to high temperatures than the E. faecalis bacteriophage, despite having a much greater rate of replication. While each phage was able to infect a broad range of strains of the same species as the host species from which they were isolated, they were unable to infect other host species tested.

  9. Review of clinical brachytherapy uncertainties: Analysis guidelines of GEC-ESTRO and the AAPM☆

    PubMed Central

    Kirisits, Christian; Rivard, Mark J.; Baltas, Dimos; Ballester, Facundo; De Brabandere, Marisol; van der Laarse, Rob; Niatsetski, Yury; Papagiannis, Panagiotis; Hellebust, Taran Paulsen; Perez-Calatayud, Jose; Tanderup, Kari; Venselaar, Jack L.M.; Siebert, Frank-André

    2014-01-01

    treatment course, taking into account the fractionation schedule and level of image guidance for adaptation. Conclusions This report on brachytherapy clinical uncertainties represents a working project developed by the Brachytherapy Physics Quality Assurances System (BRAPHYQS) subcommittee to the Physics Committee within GEC-ESTRO. Further, this report has been reviewed and approved by the American Association of Physicists in Medicine. PMID:24299968

  10. Surface modified stainless steels for PEM fuel cell bipolar plates

    DOEpatents

    Brady, Michael P [Oak Ridge, TN; Wang, Heli [Littleton, CO; Turner, John A [Littleton, CO

    2007-07-24

    A nitridation treated stainless steel article (such as a bipolar plate for a proton exchange membrane fuel cell) having lower interfacial contact electrical resistance and better corrosion resistance than an untreated stainless steel article is disclosed. The treated stainless steel article has a surface layer including nitrogen-modified chromium-base oxide and precipitates of chromium nitride formed during nitridation wherein oxygen is present in the surface layer at a greater concentration than nitrogen. The surface layer may further include precipitates of titanium nitride and/or aluminum oxide. The surface layer in the treated article is chemically heterogeneous surface rather than a uniform or semi-uniform surface layer exclusively rich in chromium, titanium or aluminum. The precipitates of titanium nitride and/or aluminum oxide are formed by the nitriding treatment wherein titanium and/or aluminum in the stainless steel are segregated to the surface layer in forms that exhibit a low contact resistance and good corrosion resistance.

  11. Automatic Biological Cell Counting Using a Modified Gradient Hough Transform.

    PubMed

    Denimal, Emmanuel; Marin, Ambroise; Guyot, Stéphane; Journaux, Ludovic; Molin, Paul

    2017-02-01

    We present a computational method for pseudo-circular object detection and quantitative characterization in digital images, using the gradient accumulation matrix as a basic tool. This Gradient Accumulation Transform (GAT) was first introduced in 1992 by Kierkegaard and recently used by Kaytanli & Valentine. In the present article, we modify the approach by using the phase coding studied by Cicconet, and by adding a "local contributor list" (LCL) as well as a "used contributor matrix" (UCM), which allow for accurate peak detection and exploitation. These changes help make the GAT algorithm a robust and precise method to automatically detect pseudo-circular objects in a microscopic image. We then present an application of the method to cell counting in microbiological images.

  12. Perchlorate reduction in microbial electrolysis cell with polyaniline modified cathode.

    PubMed

    Li, Jia-Jia; Gao, Ming-Ming; Zhang, Gang; Wang, Xin-Hua; Wang, Shu-Guang; Song, Chao; Xu, Yan-Yan

    2015-02-01

    Excellent perchlorate reduction was obtained under various initial concentrations in a non-membrane microbial electrolysis cell with polyaniline (PANI) modified graphite cathode as sole electron donor. PANI modification is conducive to the formation of biofilm due to its porous structure and good electrocatalytic performance. Compared with cathode without biofilm, over 12% higher reduction rates were acquired in the presence of biocathode. The study demonstrates that, instead of perchlorate reduction, the main contribution of biofilm is involved in facilitate electron transfer from cathode to electrolyte. Interestingly, hairlike structure, referred as to pili-like, was observed in the biofilm as well as in the electrolyte. Additionally, the results show that pili were prone to formation under the condition of external electron field as sole electron donor. Analysis of microbial community suggests that perchlorate reduction bacteria community was most consistent with Azospiraoryzae strain DSM 13638 in the subdivision of the class Proteobacteria.

  13. Detection of Chamber Conditioning by CF4 in the GEC Cell

    NASA Technical Reports Server (NTRS)

    Cruden, Brett A.; Rao, M. V. V. S.; Sharma, S. P.; Meyyappan, M.; Arnold, James (Technical Monitor)

    2001-01-01

    During oxide etch processes, buildup of fluorocarbon residues on reactor sidewalks can cause to drift and will necessitate time for conditioning and cleaning of the reactor. Various measurements in CF4 and Ar plasmas are made in an attempt to identify a metric able to indicate the chamber condition. Mass spectrometry and a Langmuir probe shows that the buildup of fluorocarbon films on the reactor surface causes a decrease in plasma floating potential, plasma potential, and ion energy in argon plasmas. This change in floating potential is also observed in CF4 plasma operation, and occurs primarily during the first hour and a half of plasma operation. A slight rise in electron density is also observed in the argon plasmas. Because the change is seen in an argon plasma, it is indicative of altered physical, not chemical, plasma-surface interactions. Specifically, the insulating films deposited on metal surfaces alter the electromagnetic fields seen by the plasma, affecting various parameters including the floating potential and electron density. An impedance probe placed on the inductive coil shows a slight reduction in plasma impedance due to this rising electron density. The optical emission of several species, including CF, C2, atomic Si and atomic C, is also monitored for changes in density resulting from the buildup of film on the chamber wall. Changes in the optical emission spectrum are comparable to the noise levels in their measurement.

  14. Fluorapatite-modified scaffold on dental pulp stem cell mineralization.

    PubMed

    Guo, T; Li, Y; Cao, G; Zhang, Z; Chang, S; Czajka-Jakubowska, A; Nör, J E; Clarkson, B H; Liu, J

    2014-12-01

    In previous studies, fluorapatite (FA) crystal-coated surfaces have been shown to stimulate the differentiation and mineralization of human dental pulp stem cells (DPSCs) in two-dimensional cell culture. However, whether the FA surface can recapitulate these properties in three-dimensional culture is still unknown. This study examined the differences in behavior of human DPSCs cultured on electrospun polycaprolactone (PCL) NanoECM nanofibers with or without the FA crystals. Under near-physiologic conditions, the FA crystals were synthesized on the PCL nanofiber scaffolds. The FA crystals were evenly distributed on the scaffolds. DPSCs were cultured on the PCL+FA or the PCL scaffolds for up to 28 days. Scanning electron microscope images showed that DPSCs attached well to both scaffolds after the initial seeding. However, it appeared that more multicellular aggregates formed on the PCL+FA scaffolds. After 14 days, the cell proliferation on the PCL+FA was slower than that on the PCL-only scaffolds. Interestingly, even without any induction of mineralization, from day 7, the upregulation of several pro-osteogenic molecules (dmp1, dspp, runx2, ocn, spp1, col1a1) was detected in cells seeded on the PCL+FA scaffolds. A significant increase in alkaline phosphatase activity was also seen on FA-coated scaffolds compared with the PCL-only scaffolds at days 14 and 21. At the protein level, osteocalcin expression was induced only in the DPSCs on the PCL+FA surfaces at day 21 and then significantly enhanced at day 28. A similar pattern was observed in those specimens stained with Alizarin red and Von Kossa after 21 and 28 days. These data suggest that the incorporation of FA crystals within the three-dimensional PCL nanofiber scaffolds provided a favorable extracellular matrix microenvironment for the growth, differentiation, and mineralization of human DPSCs. This FA-modified PCL nanofiber scaffold shows promising potential for future bone, dental, and orthopedic regenerative

  15. Antigenically Modified Human Pluripotent Stem Cells Generate Antigen-Presenting Dendritic Cells

    PubMed Central

    Zeng, Jieming; Wu, Chunxiao; Wang, Shu

    2015-01-01

    Human pluripotent stem cells (hPSCs) provide a promising platform to produce dendritic cell (DC) vaccine. To streamline the production process, we investigated a unique antigen-loading strategy that suits this novel platform. Specifically, we stably modified hPSCs using tumour antigen genes in the form of a full-length tumour antigen gene or an artificial tumour antigen epitope-coding minigene. Such antigenically modified hPSCs were able to differentiate into tumour antigen-presenting DCs. Without conventional antigen-loading, DCs derived from the minigene-modified hPSCs were ready to prime a tumour antigen-specific T cell response and further expand these specific T cells in restimulation processes. These expanded tumour antigen-specific T cells were potent effectors with central memory or effector memory phenotype. Thus, we demonstrated that immunocompetent tumour antigen-loaded DCs can be directly generated from antigenically modified hPSCs. Using such strategy, we can completely eliminate the conventional antigen-loading step and significantly simplify the production of DC vaccine from hPSCs. PMID:26471005

  16. Antibody-Modified Reduced Graphene Oxide Films with Extreme Sensitivity to Circulating Tumor Cells.

    PubMed

    Li, Yingying; Lu, Qihang; Liu, Hongliang; Wang, Jianfeng; Zhang, Pengchao; Liang, Huageng; Jiang, Lei; Wang, Shutao

    2015-11-18

    An antibody-modified reduced graphene oxide (rGO) film with unexpected -extreme sensitivity to circulating tumor cells (CTCs) is reported. The antibody--modified rGO films efficiently capture CTCs from billions of blood cells and minimize the background of white blood cells, without complex microfluidic operations.

  17. Novel eukaryotic enzymes modifying cell-surface biopolymers

    PubMed Central

    2010-01-01

    Background Eukaryotic extracellular matrices such as proteoglycans, sclerotinized structures, mucus, external tests, capsules, cell walls and waxes contain highly modified proteins, glycans and other composite biopolymers. Using comparative genomics and sequence profile analysis we identify several novel enzymes that could be potentially involved in the modification of cell-surface glycans or glycoproteins. Results Using sequence analysis and conservation we define the acyltransferase domain prototyped by the fungal Cas1p proteins, identify its active site residues and unify them to the superfamily of classical 10TM acyltransferases (e.g. oatA). We also identify a novel family of esterases (prototyped by the previously uncharacterized N-terminal domain of Cas1p) that have a similar fold as the SGNH/GDSL esterases but differ from them in their conservation pattern. Conclusions We posit that the combined action of the acyltransferase and esterase domain plays an important role in controlling the acylation levels of glycans and thereby regulates their physico-chemical properties such as hygroscopicity, resistance to enzymatic hydrolysis and physical strength. We present evidence that the action of these novel enzymes on glycans might play an important role in host-pathogen interaction of plants, fungi and metazoans. We present evidence that in plants (e.g. PMR5 and ESK1) the regulation of carbohydrate acylation by these acylesterases might also play an important role in regulation of transpiration and stress resistance. We also identify a subfamily of these esterases in metazoans (e.g. C7orf58), which are fused to an ATP-grasp amino acid ligase domain that is predicted to catalyze, in certain animals, modification of cell surface polymers by amino acid or peptides. Reviewers This article was reviewed by Gaspar Jekely and Frank Eisenhaber PMID:20056006

  18. Nutrient depletion modifies cell wall adsorption activity of wine yeast.

    PubMed

    Sidari, R; Caridi, A

    2016-06-01

    Yeast cell wall is a structure that helps yeasts to manage and respond to many environmental stresses. The mannosylphosphorylation is a modification in response to stress that provides the cell wall with negative charges able to bind compounds present in the environment. Phenotypes related to the cell wall modification such as the filamentous growth in Saccharomyces cerevisiae are affected by nutrient depletion. The present work aimed at describing the effect of carbon and/or nitrogen limitation on the aptitude of S. cerevisiae strains to bind coloured polyphenols. Carbon- and nitrogen-rich or deficient media supplemented with grape polyphenols were used to simulate different grape juice conditions-early, mid, 'adjusted' for nitrogen, and late fermentations. In early fermentation condition, the R+G+B values range from 106 (high adsorption, strain Sc1128) to 192 (low adsorption, strain Σ1278b), in mid-fermentation the values range from 111 (high adsorption, strain Sc1321) to 258 (low adsorption, strain Sc2306), in 'adjusted' for nitrogen conditions the values range from 105 (high adsorption, strain Sc1321) to 194 (low adsorption, strain Sc2306) while in late fermentation conditions the values range from 101 (high adsorption, strain Sc384) to 293 (low adsorption, strain Sc2306). The effect of nutrient availability is not univocal for all the strains and the different media tested modified the strains behaviour. In all the media the strains show significant differences. Results demonstrate that wine yeasts decrease/increase their parietal adsorption activity according to the nutrient availability. The wide range of strain variability observed could be useful in selecting wine starters.

  19. Natural killer cell-mediated lysis of autologous cells modified by gene therapy.

    PubMed

    Liberatore, C; Capanni, M; Albi, N; Volpi, I; Urbani, E; Ruggeri, L; Mencarelli, A; Grignani, F; Velardi, A

    1999-06-21

    This study investigated the role of natural killer (NK) cells as effectors of an immune response against autologous cells modified by gene therapy. T lymphocytes were transduced with LXSN, a retroviral vector adopted for human gene therapy that carries the selectable marker gene neo, and the autologous NK response was evaluated. We found that (i) infection with LXSN makes cells susceptible to autologous NK cell-mediated lysis; (ii) expression of the neo gene is responsible for conferring susceptibility to lysis; (iii) lysis of neo-expressing cells is clonally distributed and mediated only by NK clones that exhibit human histocompatibility leukocyte antigen (HLA)-Bw4 specificity and bear KIR3DL1, a Bw4-specific NK inhibitory receptor; and (iv) the targets are cells from HLA-Bw4(+) individuals. Finally, neo peptides anchoring to the Bw4 allele HLA-B27 interfered with KIR3DL1-mediated recognition of HLA-B27, i.e., they triggered NK lysis. Moreover, neo gene mutations preventing translation of two of the four potentially nonprotective peptides reduced KIR3DL1(+) NK clone-mediated autologous lysis. Thus, individuals expressing Bw4 alleles possess an NK repertoire with the potential to eliminate autologous cells modified by gene therapy. By demonstrating that NK cells can selectively detect the expression of heterologous genes, these observations provide a general model of the NK cell-mediated control of viral infections.

  20. Epigenetic Heterogeneity of B-Cell Lymphoma: Chromatin Modifiers

    PubMed Central

    Hopp, Lydia; Nersisyan, Lilit; Löffler-Wirth, Henry; Arakelyan, Arsen; Binder, Hans

    2015-01-01

    We systematically studied the expression of more than fifty histone and DNA (de)methylating enzymes in lymphoma and healthy controls. As a main result, we found that the expression levels of nearly all enzymes become markedly disturbed in lymphoma, suggesting deregulation of large parts of the epigenetic machinery. We discuss the effect of DNA promoter methylation and of transcriptional activity in the context of mutated epigenetic modifiers such as EZH2 and MLL2. As another mechanism, we studied the coupling between the energy metabolism and epigenetics via metabolites that act as cofactors of JmjC-type demethylases. Our study results suggest that Burkitt’s lymphoma and diffuse large B-cell Lymphoma differ by an imbalance of repressive and poised promoters, which is governed predominantly by the activity of methyltransferases and the underrepresentation of demethylases in this regulation. The data further suggest that coupling of epigenetics with the energy metabolism can also be an important factor in lymphomagenesis in the absence of direct mutations of genes in metabolic pathways. Understanding of epigenetic deregulation in lymphoma and possibly in cancers in general must go beyond simple schemes using only a few modes of regulation. PMID:26506391

  1. Antitumor cell-complex vaccines employing genetically modified tumor cells and fibroblasts.

    PubMed

    Miguel, Antonio; Herrero, María José; Sendra, Luis; Botella, Rafael; Diaz, Ana; Algás, Rosa; Aliño, Salvador F

    2014-02-19

    The present study evaluates the immune response mediated by vaccination with cell complexes composed of irradiated B16 tumor cells and mouse fibroblasts genetically modified to produce GM-CSF. The animals were vaccinated with free B16 cells or cell complexes. We employed two gene plasmid constructions: one high producer (pMok) and a low producer (p2F). Tumor transplant was performed by injection of B16 tumor cells. Plasma levels of total IgG and its subtypes were measured by ELISA. Tumor volumes were measured and survival curves were obtained. The study resulted in a cell complex vaccine able to stimulate the immune system to produce specific anti-tumor membrane proteins (TMP) IgG. In the groups vaccinated with cells transfected with the low producer plasmid, IgG production was higher when we used free B16 cell rather than cell complexes. Nonspecific autoimmune response caused by cell complex was not greater than that induced by the tumor cells alone. Groups vaccinated with B16 transfected with low producer plasmid reached a tumor growth delay of 92% (p ≤ 0.01). When vaccinated with cell complex, the best group was that transfected with high producer plasmid, reaching a tumor growth inhibition of 56% (p ≤ 0.05). Significant survival (40%) was only observed in the groups vaccinated with free transfected B16 cells.

  2. Antitumor Cell-Complex Vaccines Employing Genetically Modified Tumor Cells and Fibroblasts

    PubMed Central

    Miguel, Antonio; Herrero, María José; Sendra, Luis; Botella, Rafael; Diaz, Ana; Algás, Rosa; Aliño, Salvador F.

    2014-01-01

    The present study evaluates the immune response mediated by vaccination with cell complexes composed of irradiated B16 tumor cells and mouse fibroblasts genetically modified to produce GM-CSF. The animals were vaccinated with free B16 cells or cell complexes. We employed two gene plasmid constructions: one high producer (pMok) and a low producer (p2F). Tumor transplant was performed by injection of B16 tumor cells. Plasma levels of total IgG and its subtypes were measured by ELISA. Tumor volumes were measured and survival curves were obtained. The study resulted in a cell complex vaccine able to stimulate the immune system to produce specific anti-tumor membrane proteins (TMP) IgG. In the groups vaccinated with cells transfected with the low producer plasmid, IgG production was higher when we used free B16 cell rather than cell complexes. Nonspecific autoimmune response caused by cell complex was not greater than that induced by the tumor cells alone. Groups vaccinated with B16 transfected with low producer plasmid reached a tumor growth delay of 92% (p ≤ 0.01). When vaccinated with cell complex, the best group was that transfected with high producer plasmid, reaching a tumor growth inhibition of 56% (p ≤ 0.05). Significant survival (40%) was only observed in the groups vaccinated with free transfected B16 cells. PMID:24556729

  3. Experimental evidence of Cr magnetic moments at low temperature in Cr2A(A=Al, Ge)C.

    PubMed

    Jaouen, M; Bugnet, M; Jaouen, N; Ohresser, P; Mauchamp, V; Cabioc'h, T; Rogalev, A

    2014-04-30

    From x-ray magnetic circular dichroism experiments performed at low temperature on Cr2AlC and Cr2GeC thin films, it is evidenced that Cr atoms carry a net magnetic moment in these ternary phases. It is shown that the Cr magnetization of the Al-based compound nearly vanished at 100 K in agreement with what has been recently observed on bulk. X-ray linear dichroism measurements performed at various angles of incidence and temperatures clearly demonstrate the existence of a charge ordering along the c axis of the structure of Cr2AlC. All these experimental observations support, in part, theoretical calculations claiming that Cr dd correlations have to be considered to correctly describe the structure and properties of these Cr-based ternary phases.

  4. A Modified Approach to Inducing Bone Marrow Stromal Cells to Differentiate into Cells with Mature Schwann Cell Phenotypes.

    PubMed

    Liu, Yutian; Chen, Jianghai; Liu, Wei; Lu, Xiaocheng; Liu, Zhenyu; Zhao, Xiaobo; Li, Gongchi; Chen, Zhenbing

    2016-02-15

    Marrow stromal cells (MSCs) can be induced to differentiate into Schwann-like cells under classical induction conditions. However, cells derived from this method are unstable, exhibiting a low neurotrophin expression level after the induction conditions are removed. In Schwann cell (SC) culture, progesterone (PROG) enhances neurotrophic synthesis and myelination, specifically regulating the expression of the myelin protein zero (P0)- and peripheral myelin protein 22 (PMP22)-encoding genes by acting in concert or in synergy with insulin and glucocorticoids (GLUCs). In the present study, we investigated whether combined PROG, GLUC, and insulin therapy induced MSCs to differentiate into modified SC-like cells with phenotypes similar to those of mature SCs. After being cultured for 2 weeks in modified differentiation medium, the modified SC-like cells showed increased expression of P0 and PMP22. In addition, morphological and phenotypic characterizations were conducted over a period of over 2 weeks, and functional characteristics persisted for more than 3 weeks after the induction reagents were withdrawn. The transplantation of green fluorescent protein-labeled, modified SC-like cells into transected sciatic nerves with a 10-mm gap significantly increased the proliferation of the original SCs and improved axon regeneration and myelination compared with original BM-SCs. Immunostaining for P0 revealed that more of the transplanted modified SC-like cells retained the phenotypic characteristics of SCs. Taken together, these results reveal that the combined application of PROG, GLUC, and insulin induces MSCs to differentiate into cells with phenotypic, molecular, and functional properties of mature SCs.

  5. Cell penetrating peptide-modified poly(lactic-co-glycolic acid) nanoparticles with enhanced cell internalization.

    PubMed

    Steinbach, Jill M; Seo, Young-Eun; Saltzman, W Mark

    2016-01-01

    The surface modification of nanoparticles (NPs) can enhance the intracellular delivery of drugs, proteins, and genetic agents. Here we studied the effect of different surface ligands, including cell penetrating peptides (CPPs), on the cell binding and internalization of poly(lactic-co-glycolic) (PLGA) NPs. Relative to unmodified NPs, we observed that surface-modified NPs greatly enhanced cell internalization. Using one CPP, MPG (unabbreviated notation), that achieved the highest degree of internalization at both low and high surface modification densities, we evaluated the effect of two different NP surface chemistries on cell internalization. After 2h, avidin-MPG NPs enhanced cellular internalization by 5 to 26-fold relative to DSPE-MPG NP formulations. Yet, despite a 5-fold increase in MPG density on DSPE compared to Avidin NPs, both formulations resulted in similar internalization levels (48 and 64-fold, respectively) after 24h. Regardless of surface modification, all NPs were internalized through an energy-dependent, clathrin-mediated process, and became dispersed throughout the cell. Overall both Avidin- and DSPE-CPP modified NPs significantly increased internalization and offer promising delivery options for applications in which internalization presents challenges to efficacious delivery.

  6. Cell Penetrating Peptide-Modified Poly(Lactic-co-Glycolic Acid) Nanoparticles with Enhanced Cell Internalization

    PubMed Central

    Steinbach, Jill M.; Seo, Young-Eun; Saltzman, W. Mark

    2015-01-01

    The surface modification of nanoparticles (NPs) can enhance the intracellular delivery of drugs, proteins, and genetic agents. Here we studied the effect of different surface ligands, including cell penetrating peptides (CPPs), on the cell binding and internalization of poly(lactic-co-glycolic) (PLGA) NPs. Relative to unmodified NPs, we observed that surface-modified NPs greatly enhanced cell internalization. Using one CPP, MPG (unabbreviated notation), that achieved the highest degree of internalization at both low and high surface modification densities, we evaluated the effect of two different NP surface chemistries on cell internalization. After 2 hr, avidin-MPG NPs enhanced cellular internalization by 5 to 26-fold relative to DSPE-MPG NP formulations. Yet, despite a 5-fold increase in MPG density on DSPE- relative to Avidin-NPs, after 24 hr., both formulations resulted in similar internalization levels (48 and 64-fold, respectively). Regardless of surface modification, all NPs were internalized through an energy-dependent, clathrin-mediated process, and became dispersed throughout the cell. Overall both Avidin- and DSPE-CPP modified NPs significantly increased internalization and offer promising delivery options for applications in which internalization presents challenges to efficacious delivery. PMID:26602822

  7. Elimination of Progressive Mammary Cancer by Repeated Administrations of Chimeric Antigen Receptor-Modified T Cells

    PubMed Central

    Globerson-Levin, Anat; Waks, Tova; Eshhar, Zelig

    2014-01-01

    Continuous oncogenic processes that generate cancer require an on-going treatment approach to eliminate the transformed cells, and prevent their further development. Here, we studied the ability of T cells expressing a chimeric antibody-based receptor (CAR) to offer a therapeutic benefit for breast cancer induced by erbB-2. We tested CAR-modified T cells (T-bodies) specific to erbB-2 for their antitumor potential in a mouse model overexpressing a human erbB-2 transgene that develops mammary tumors. Comparing the antitumor reactivity of CAR-modified T cells under various therapeutic settings, either prophylactic, prior to tumor development, or therapeutically. We found that repeated administration of CAR-modified T cells is required to eliminate spontaneously developing mammary cancer. Systemic, as well as intratumoral administered CAR-modified T cells accumulated at tumor sites and eventually eliminated the malignant cells. Interestingly, within a few weeks after a single CAR T cells' administration, and rejection of primary lesion, tumors usually relapsed both in treated mammary gland and at remote sites; however, repeated injections of CAR-modified T cells were able to control the secondary tumors. Since spontaneous tumors can arise repeatedly, especially in the case of syndromes characterized by specific susceptibility to cancer, multiple administrations of CAR-modified T cells can serve to control relapsing disease. PMID:24572294

  8. Elimination of progressive mammary cancer by repeated administrations of chimeric antigen receptor-modified T cells.

    PubMed

    Globerson-Levin, Anat; Waks, Tova; Eshhar, Zelig

    2014-05-01

    Continuous oncogenic processes that generate cancer require an on-going treatment approach to eliminate the transformed cells, and prevent their further development. Here, we studied the ability of T cells expressing a chimeric antibody-based receptor (CAR) to offer a therapeutic benefit for breast cancer induced by erbB-2. We tested CAR-modified T cells (T-bodies) specific to erbB-2 for their antitumor potential in a mouse model overexpressing a human erbB-2 transgene that develops mammary tumors. Comparing the antitumor reactivity of CAR-modified T cells under various therapeutic settings, either prophylactic, prior to tumor development, or therapeutically. We found that repeated administration of CAR-modified T cells is required to eliminate spontaneously developing mammary cancer. Systemic, as well as intratumoral administered CAR-modified T cells accumulated at tumor sites and eventually eliminated the malignant cells. Interestingly, within a few weeks after a single CAR T cells' administration, and rejection of primary lesion, tumors usually relapsed both in treated mammary gland and at remote sites; however, repeated injections of CAR-modified T cells were able to control the secondary tumors. Since spontaneous tumors can arise repeatedly, especially in the case of syndromes characterized by specific susceptibility to cancer, multiple administrations of CAR-modified T cells can serve to control relapsing disease.

  9. Interaction with Epithelial Cells Modifies Airway Macrophage Response to Ozone

    EPA Science Inventory

    The initial innate immune response to ozone (03) in the lung is orchestrated by structural cells, such as epithelial cells, and resident immune cells, such as airway macrophages (Macs). We developed an epithelial cell-Mac coculture model to investigate how epithelial cell-derived...

  10. Interaction with Epithelial Cells Modifies Airway Macrophage Response to Ozone

    EPA Science Inventory

    The initial innate immune response to ozone (03) in the lung is orchestrated by structural cells, such as epithelial cells, and resident immune cells, such as airway macrophages (Macs). We developed an epithelial cell-Mac coculture model to investigate how epithelial cell-derived...

  11. Transient treatment with epigenetic modifiers yields stable neuroblastoma stem cells resembling aggressive large-cell neuroblastomas

    PubMed Central

    Ikegaki, Naohiko; Shimada, Hiroyuki; Fox, Autumn M.; Regan, Paul L.; Jacobs, Joshua R.; Hicks, Sakeenah L.; Rappaport, Eric F.; Tang, Xao X.

    2013-01-01

    Cancer stem cells (CSCs) are plastic in nature, a characteristic that hampers cancer therapeutics. Neuroblastoma (NB) is a pediatric tumor of neural crest origin, and half of the cases are highly aggressive. By treating NB cell lines [SKNAS, SKNBE(2)C, CHP134, and SY5Y] with epigenetic modifiers for a short time, followed by sphere-forming culture conditions, we have established stem cell–like NB cells that are phenotypically stable for more than a year. These cells are characterized by their high expression of stemness factors, stem cell markers, and open chromatin structure. We referred to these cells as induced CSCs (iCSCs). SKNAS iCSC and SKNBE(2)C iCSC clones (as few as 100 cells) injected s.c. into SCID/Beige mice formed tumors, and in one case, SKNBE(2)C iCSCs metastasized to the adrenal gland, suggesting their increased metastatic potential. SKNAS iCSC xenografts showed the histologic appearance of totally undifferentiated large-cell NBs (LCNs), the most aggressive and deadly form of NB in humans. Immunohistochemical analyses showed that SKNAS iCSC xenografts expressed high levels of the stem cell marker CXCR4, whereas the SKNAS monolayer cell xenografts did not. The patterns of CXCR4 and MYC expression in SKNAS iCSC xenografts resembled those in the LCNs. The xenografts established from the NB iCSCs shared two common features: the LCN phenotype and high-level MYC/MYCN expression. These observations suggest both that NB cells with large and vesicular nuclei, representing their open chromatin structure, are indicative of stem cell–like tumor cells and that epigenetic changes may have contributed to the development of these most malignant NB cells. PMID:23479628

  12. Interaction of human endothelial cells and nickel-titanium materials modified with silicon ions

    SciTech Connect

    Lotkov, Aleksandr I. Kashin, Oleg A.; Kudryavtseva, Yuliya A. Antonova, Larisa V. Matveeva, Vera G. Sergeeva, Evgeniya A.; Kudryashov, Andrey N.

    2015-10-27

    The paper studies the influence of chemical and phase compositions of NiTi surface layers modified with Si ions by plasma immersion implantation on their interaction with endothelial cells. It is shown that certain technological modes of Si ion implantation enhance the adhesion, proliferation, and viability of endothelial cells. It is found that the Si-modified NiTi surface is capable of stimulating the formation of capillary-like structures in the cell culture.

  13. Biosorption of water-soluble dyes on magnetically modified Saccharomyces cerevisiae subsp. uvarum cells.

    PubMed

    Safaríková, M; Ptácková, L; Kibriková, I; Safarík, I

    2005-05-01

    Brewer's yeast (bottom yeast, Saccharomyces cerevisiae subsp. uvarum) cells were magnetically modified using water based magnetic fluid stabilized with perchloric acid. Magnetically modified yeast cells efficiently adsorbed various water soluble dyes. The dyes adsorption can be described by the Langmuir adsorption model. The maximum adsorption capacity of the magnetic cells differed substantially for individual dyes; the highest value was found for aniline blue (approx. 220 mg per g of dried magnetic adsorbent).

  14. Interaction of human endothelial cells and nickel-titanium materials modified with silicon ions

    NASA Astrophysics Data System (ADS)

    Lotkov, Aleksandr I.; Kashin, Oleg A.; Kudryavtseva, Yuliya A.; Antonova, Larisa V.; Kudryashov, Andrey N.; Matveeva, Vera G.; Sergeeva, Evgeniya A.

    2015-10-01

    The paper studies the influence of chemical and phase compositions of NiTi surface layers modified with Si ions by plasma immersion implantation on their interaction with endothelial cells. It is shown that certain technological modes of Si ion implantation enhance the adhesion, proliferation, and viability of endothelial cells. It is found that the Si-modified NiTi surface is capable of stimulating the formation of capillary-like structures in the cell culture.

  15. Cell-mediated lympholysis of trinitrophenyl-modified autologous lymphocytes. Effector cell specificity to modified cell surface components controlled by H-2K and H-2D serological regions of the murine major histocompatibility complex

    PubMed Central

    1975-01-01

    Splenic lymphocytes from four C57BL/10 congenic resistant mouse strains were sensitized in vitro with trinitrophenyl (TNP)-modified autologous spleen cellsmthe effector cells generated were incubated with 51-Cr- labeled unmodified or TNP-modified spleen or tumor target cells, and the percentage of specific lympholysis determined. The results obtained using syngeneic-, congenic-, recombinante, and allogeneic-modified target cells indicated that TNP modification of the target cells was a necessary but insufficient requirement for lympholysis. Intra-H-2 homology either between modified stimulating cells and modified target cells or between responding lymphocytes and modified target cells was also important in the specificity for lysis. Homology at the K serological region or at K plus I-A in the B10.A and B10BR strains, and at either the D serological region or at some other region (possibly K) in the B10.D2 and C57BL/10 strains were shown to be necessary in order to detect lympholysis. Experiments using (B10itimes C57BL/10)F1 responding lymphocytes sensitized and assayed with TNP-modified parental cells indicated that the homology required for lympholysis was between modified stimulating and modified target cellsmthe possibility is raised that histocompatibility antigens may serve in the autologous system as cell surface components which are modified by viruses or autoimmune complexes to form cell-bound modified-self antigens, which are particularly suited for cell-mediated immune reactions. Evidence is presented suggesting that H-2-linked Ir genes are expressed in the TNP- modified autologous cytotoxic system. These findings imply that the major histocompatibility complex can be functionally involved both in the response potential to and in the formation of new antigenic determinants involving modified-self components. PMID:47900

  16. Immunotherapy targeting HER2 with genetically modified T cells eliminates tumor-initiating cells in osteosarcoma.

    PubMed

    Rainusso, N; Brawley, V S; Ghazi, A; Hicks, M J; Gottschalk, S; Rosen, J M; Ahmed, N

    2012-03-01

    Despite radical surgery and multi-agent chemotherapy, less than one third of patients with recurrent or metastatic osteosarcoma (OS) survive. The limited efficacy of current therapeutic approaches to target tumor-initiating cells (TICs) may explain this dismal outcome. The purpose of this study was to assess the impact of modified T cells expressing a human epidermal growth factor receptor (HER2)-specific chimeric antigen receptor in the OS TIC compartment of human established cell lines. Using the sarcosphere formation assay, we found that OS TICs were resistant to increasing methotrexate concentrations. In contrast, HER2-specific T cells decreased markedly sarcosphere formation capacity and the ability to generate bone tumors in immunodeficient mice after orthotopic transplantation. In vivo, administration of HER2-specific T cells significantly reduced TICs in bulky tumors as judged by decreased sarcosphere forming efficiency in OS cells isolated from explanted tumors. We demonstrate that HER2-specific T cells target drug resistant TICs in established OS cell lines, suggesting that incorporating immunotherapy into current treatment strategies for OS has the potential to improve outcomes.

  17. Catch and release cell sorting: electrochemical desorption of T-cells from antibody-modified microelectrodes.

    PubMed

    Zhu, He; Yan, Jun; Revzin, Alexander

    2008-07-15

    The development of integrated microsystems capable of interrogation, characterization and sorting of mammalian cells is highly significant for further advancement of point-of-care diagnostics and drug discovery fields. The present study sought to design a novel strategy for releasing antibody-bound cells through electrochemical disruption of the underlying antibody (Ab) layer. A microsystem for selective capture and release of cells consisted of an array of individually addressable gold microelectrodes fabricated on a glass substrate. Poly(ethylene glycol) (PEG) hydrogel photolithography was employed to make the glass regions non-fouling, thus, ensuring selective localization of proteins and cells on the microelectrodes. The gold surfaces were decorated with anti-CD4 Ab molecules using standard alkanethiol self-assembly and carbodiimide coupling approaches. The Ab-functionalized electrodes selectively captured model T-lymphocytes (Molt-3 cells) expressing CD4 antigen while minimal cell adhesion was observed on PEG hydrogel-modified glass substrates. Importantly, application of a reductive potential (-1.2V vs. Ag/AgCl reference electrode) resulted in release of surface-bound T-cells from the electrode surface. Cyclic voltammetry and fluorescence microscopy were employed to verify that the detachment of captured T-cells was indeed due to the electrochemical disruption of the underlying alkanethiol-Ab layer. In the future, the cell sorting approach described here may be combined with microfluidic delivery to enable Ab-mediated capture of T-lymphocytes or other cell types followed by release of select cells for downstream gene expression studies or re-cultivation.

  18. AAPM and GEC-ESTRO guidelines for image-guided robotic brachytherapy: Report of Task Group 192

    SciTech Connect

    Podder, Tarun K.; Beaulieu, Luc; Caldwell, Barrett; Cormack, Robert A.; Crass, Jostin B.; Dicker, Adam P.; Yu, Yan; Fenster, Aaron; Fichtinger, Gabor; Meltsner, Michael A.; Moerland, Marinus A.; Nath, Ravinder; Rivard, Mark J.; Salcudean, Tim; Song, Danny Y.; Thomadsen, Bruce R.

    2014-10-15

    In the last decade, there have been significant developments into integration of robots and automation tools with brachytherapy delivery systems. These systems aim to improve the current paradigm by executing higher precision and accuracy in seed placement, improving calculation of optimal seed locations, minimizing surgical trauma, and reducing radiation exposure to medical staff. Most of the applications of this technology have been in the implantation of seeds in patients with early-stage prostate cancer. Nevertheless, the techniques apply to any clinical site where interstitial brachytherapy is appropriate. In consideration of the rapid developments in this area, the American Association of Physicists in Medicine (AAPM) commissioned Task Group 192 to review the state-of-the-art in the field of robotic interstitial brachytherapy. This is a joint Task Group with the Groupe Européen de Curiethérapie-European Society for Radiotherapy and Oncology (GEC-ESTRO). All developed and reported robotic brachytherapy systems were reviewed. Commissioning and quality assurance procedures for the safe and consistent use of these systems are also provided. Manual seed placement techniques with a rigid template have an estimated in vivo accuracy of 3–6 mm. In addition to the placement accuracy, factors such as tissue deformation, needle deviation, and edema may result in a delivered dose distribution that differs from the preimplant or intraoperative plan. However, real-time needle tracking and seed identification for dynamic updating of dosimetry may improve the quality of seed implantation. The AAPM and GEC-ESTRO recommend that robotic systems should demonstrate a spatial accuracy of seed placement ≤1.0 mm in a phantom. This recommendation is based on the current performance of existing robotic brachytherapy systems and propagation of uncertainties. During clinical commissioning, tests should be conducted to ensure that this level of accuracy is achieved. These tests

  19. AAPM and GEC-ESTRO guidelines for image-guided robotic brachytherapy: report of Task Group 192.

    PubMed

    Podder, Tarun K; Beaulieu, Luc; Caldwell, Barrett; Cormack, Robert A; Crass, Jostin B; Dicker, Adam P; Fenster, Aaron; Fichtinger, Gabor; Meltsner, Michael A; Moerland, Marinus A; Nath, Ravinder; Rivard, Mark J; Salcudean, Tim; Song, Danny Y; Thomadsen, Bruce R; Yu, Yan

    2014-10-01

    In the last decade, there have been significant developments into integration of robots and automation tools with brachytherapy delivery systems. These systems aim to improve the current paradigm by executing higher precision and accuracy in seed placement, improving calculation of optimal seed locations, minimizing surgical trauma, and reducing radiation exposure to medical staff. Most of the applications of this technology have been in the implantation of seeds in patients with early-stage prostate cancer. Nevertheless, the techniques apply to any clinical site where interstitial brachytherapy is appropriate. In consideration of the rapid developments in this area, the American Association of Physicists in Medicine (AAPM) commissioned Task Group 192 to review the state-of-the-art in the field of robotic interstitial brachytherapy. This is a joint Task Group with the Groupe Européen de Curiethérapie-European Society for Radiotherapy & Oncology (GEC-ESTRO). All developed and reported robotic brachytherapy systems were reviewed. Commissioning and quality assurance procedures for the safe and consistent use of these systems are also provided. Manual seed placement techniques with a rigid template have an estimated in vivo accuracy of 3-6 mm. In addition to the placement accuracy, factors such as tissue deformation, needle deviation, and edema may result in a delivered dose distribution that differs from the preimplant or intraoperative plan. However, real-time needle tracking and seed identification for dynamic updating of dosimetry may improve the quality of seed implantation. The AAPM and GEC-ESTRO recommend that robotic systems should demonstrate a spatial accuracy of seed placement ≤1.0 mm in a phantom. This recommendation is based on the current performance of existing robotic brachytherapy systems and propagation of uncertainties. During clinical commissioning, tests should be conducted to ensure that this level of accuracy is achieved. These tests should

  20. Small cell foams containing a modified dense star polymer or dendrimer as a nucleating agent

    DOEpatents

    Hedstrand, D.M.; Tomalia, D.A.

    1995-02-28

    A small cell foam having a modified dense star polymer or dendrimer is described. This modified dense star polymer or dendrimer has a highly branched interior of one monomeric composition and an exterior structure of a different monomeric composition capable of providing a hydrophobic outer shell and a particle diameter of from about 5 to about 1,000 nm with a matrix polymer.

  1. Small cell foams containing a modified dense star polymer or dendrimer as a nucleating agent

    DOEpatents

    Hedstrand, David M.; Tomalia, Donald A.

    1995-01-01

    A small cell foam having a modified dense star polymer or dendrimer is described. This modified dense star polymer or dendrimer has a highly branched interior of one monomeric composition and an exterior structure of a different monomeric composition capable of providing a hydrophobic outer shell and a particle diameter of from about 5 to about 1,000 nm with a matrix polymer.

  2. Interlayer for modified cathode in highly efficient inverted ITO-free organic solar cells.

    PubMed

    Tang, Zheng; Andersson, L Mattias; George, Zandra; Vandewal, Koen; Tvingstedt, Kristofer; Heriksson, Patrik; Kroon, Renee; Andersson, Mats R; Inganäs, Olle

    2012-01-24

    Inverted polymer solar cells with a bottom metal cathode modified by a conjugated polymer interlayer show considerable improvement of photocurrent and fill factor, which is due to hole blocking at the interlayer, and a modified surface energy which affects the nanostructure in the TQ1/[70]PCBM blend. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Chimeric Antigen Receptors Modified T-Cells for Cancer Therapy

    PubMed Central

    Dai, Hanren; Wang, Yao; Lu, Xuechun

    2016-01-01

    The genetic modification and characterization of T-cells with chimeric antigen receptors (CARs) allow functionally distinct T-cell subsets to recognize specific tumor cells. The incorporation of costimulatory molecules or cytokines can enable engineered T-cells to eliminate tumor cells. CARs are generated by fusing the antigen-binding region of a monoclonal antibody (mAb) or other ligand to membrane-spanning and intracellular-signaling domains. They have recently shown clinical benefit in patients treated with CD19-directed autologous T-cells. Recent successes suggest that the modification of T-cells with CARs could be a powerful approach for developing safe and effective cancer therapeutics. Here, we briefly review early studies, consider strategies to improve the therapeutic potential and safety, and discuss the challenges and future prospects for CAR T-cells in cancer therapy. PMID:26819347

  4. Chimeric Antigen Receptors Modified T-Cells for Cancer Therapy.

    PubMed

    Dai, Hanren; Wang, Yao; Lu, Xuechun; Han, Weidong

    2016-07-01

    The genetic modification and characterization of T-cells with chimeric antigen receptors (CARs) allow functionally distinct T-cell subsets to recognize specific tumor cells. The incorporation of costimulatory molecules or cytokines can enable engineered T-cells to eliminate tumor cells. CARs are generated by fusing the antigen-binding region of a monoclonal antibody (mAb) or other ligand to membrane-spanning and intracellular-signaling domains. They have recently shown clinical benefit in patients treated with CD19-directed autologous T-cells. Recent successes suggest that the modification of T-cells with CARs could be a powerful approach for developing safe and effective cancer therapeutics. Here, we briefly review early studies, consider strategies to improve the therapeutic potential and safety, and discuss the challenges and future prospects for CAR T-cells in cancer therapy.

  5. Poly(L-lysine)-modified iron oxide nanoparticles for stem cell labeling.

    PubMed

    Babic, Michal; Horák, Daniel; Trchová, Miroslava; Jendelová, Pavla; Glogarová, Katerina; Lesný, Petr; Herynek, Vít; Hájek, Milan; Syková, Eva

    2008-03-01

    New surface-modified iron oxide nanoparticles were developed by precipitation of Fe(II) and Fe(III) salts with ammonium hydroxide and oxidation of the resulting magnetite with sodium hypochlorite, followed by the addition of poly( L-lysine) (PLL) solution. PLL of several molecular weights ranging from 146 ( L-lysine) to 579 000 was tested as a coating to boost the intracellular uptake of the nanoparticles. The nanoparticles were characterized by TEM, dynamic light scattering, FTIR, and ultrasonic spectrometry. TEM revealed that the particles were ca. 6 nm in diameter, while FTIR showed that their surfaces were well-coated with PLL. The interaction of PLL-modified iron oxide nanoparticles with DMEM culture medium was verified by UV-vis spectroscopy. Rat bone marrow stromal cells (rMSCs) and human mesenchymal stem cells (hMSC) were labeled with PLL-modified iron oxide nanoparticles or with Endorem (control). Optical microscopy and TEM confirmed the presence of PLL-modified iron oxide nanoparticles inside the cells. Cellular uptake was very high (more than 92%) for PLL-modified nanoparticles that were coated with PLL (molecular weight 388 00) at a concentration of 0.02 mg PLL per milliliter of colloid. The cellular uptake of PLL-modified iron oxide was facilitated by its interaction with the negatively charged cell surface and subsequent endosomolytic uptake. The relaxivity of rMSCs labeled with PLL-modified iron oxide and the amount of iron in the cells were determined. PLL-modified iron oxide-labeled rMSCs were imaged in vitro and in vivo after intracerebral grafting into the contralateral hemisphere of the adult rat brain. The implanted cells were visible on magnetic resonance (MR) images as a hypointense area at the injection site and in the lesion. In comparison with Endorem, nanoparticles modified with PLL of an optimum molecular weight demonstrated a higher efficiency of intracellular uptake by MSC cells.

  6. Gene Transfection toward Spheroid Cells on Micropatterned Culture Plates for Genetically-modified Cell Transplantation.

    PubMed

    Itaka, Keiji; Uchida, Satoshi; Matsui, Akitsugu; Yanagihara, Kayoko; Ikegami, Masaru; Endo, Taisuke; Ishii, Takehiko; Kataoka, Kazunori

    2015-07-31

    To improve the therapeutic effectiveness of cell transplantation, a transplantation system of genetically modified, injectable spheroids was developed. The cell spheroids are prepared in a culture system on micropatterned plates coated with a thermosensitive polymer. A number of spheroids are formed on the plates, corresponding to the cell adhesion areas of 100 µm diameter that are regularly arrayed in a two-dimensional manner, surrounded by non-adhesive areas that are coated by a polyethylene glycol (PEG) matrix. The spheroids can be easily recovered as a liquid suspension by lowering the temperature of the plates, and their structure is well maintained by passing them through injection needles with a sufficiently large caliber (over 27 G). Genetic modification is achieved by gene transfection using the original non-viral gene carrier, polyplex nanomicelle, which is capable of introducing genes into cells without disrupting the spheroid structure. For primary hepatocyte spheroids transfected with a luciferase-expressing gene, the luciferase is sustainably obtained in transplanted animals, along with preserved hepatocyte function, as indicated by albumin expression. This system can be applied to a variety of cell types including mesenchymal stem cells.

  7. Studies demonstrate modified T cells effective in treating blood-borne cancers

    Cancer.gov

    At the 2013 American Society of Hematology meeting in Dec. 2013, James Kochenderfer, M.D., NCI, presented findings from two clinical trials evaluating the use of genetically modified immune system T cells as cancer therapy. These reports represent import

  8. A fluorene-modified porphyrin for efficient dye-sensitized solar cells.

    PubMed

    Wu, Cheng-Hua; Pan, Tsung-Yu; Hong, Shang-Hao; Wang, Chin-Li; Kuo, Hshin-Hui; Chu, Yang-Yun; Diau, Eric Wei-Guang; Lin, Ching-Yao

    2012-05-07

    Porphyrins bearing a polyaromatic or a heterocyclic group are prepared to study their fundamental and photovoltaic properties. Solar cells sensitized with a fluorene-modified porphyrin outperform other dyes in the series, reaching ~90% efficiency of N719 dye.

  9. Enhanced Fuel Cell Catalyst Durability with Nitrogen Modified Carbon Supports

    DTIC Science & Technology

    2013-02-12

    materials. enrichment in ruthenium with the N-modified samples as compared to the non-implanted commercial and in-house sputtered samples. Over- all we...found a major difference between commercial and sputtered samples with respect to their ruthenium compositions with the results summarized in Table I. In...commercial catalysts, surface ruthenium is distributed between metallic ruthenium (Ru(0), Ru(II), Ru(IV), ruthe- nium oxide RuO2 and hydrous ruthenium

  10. Counting unstained, confluent cells by modified bright-field microscopy

    PubMed Central

    Drey, L. Louis; Graber, Michael C.; Bieschke, Jan

    2013-01-01

    We present a very simple procedure yielding high-contrast images of adherent, confluent cells such as human neuroblastoma (SH-EP) cells by ordinary bright-field microscopy. Cells are illuminated through a color filter and a pinhole aperture placed between the condenser and the cell culture surface. Refraction by each cell body generates a sharp, bright spot when the image is defocused. The technique allows robust, automatic cell counting from a single bright-field image in a wide range of focal positions; it does this via free, readily available image-analysis tools. Contrast may be enhanced by swelling cell bodies by brief incubation in PBS. The procedure was benchmarked against manual counting and automated counting of fluorescently labeled cell nuclei.. Counts from day-old and freshly seeded plates were compared in a range of densities, from sparse to densely overgrown. On average bright-field images produced the same counts as fluorescent images, with less than 5% error. This method will allow routine cell counting using a plain bright-field microscope, absent cell-line modification or cell staining. PMID:23834382

  11. A novel modified graphene oxide/chitosan composite used as an adsorbent for Cr(VI) in aqueous solutions.

    PubMed

    Zhang, Li; Luo, Hanjin; Liu, Peipei; Fang, Wei; Geng, Junjie

    2016-06-01

    A novel adsorbent for removal of hexavalent chromium (Cr(VI)) from aqueous solutions has been successfully prepared by modifying graphene oxide/chitosan composite with disodium ethylenediaminetetraacetate (EDTA-2Na) (GEC). This modified composite was characterized by various technologies; including scanning electron microscopy (SEM), Transmission Electron Microscopy (TEM), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR). Batch adsorption experiments were carried out to evaluate the adsorption of Cr(VI) by GEC under different conditions. The results indicate that the adsorption of Cr(VI) on GEC was highly pH-dependent, with the highest adsorption capacity (86.17mg/g) occurring at pH 2. The kinetics of adsorption exhibited pseudo-second-order behavior. The adsorption data were well described by the Freundlich isotherm model. The adsorption capacity increased with increasing temperature. The calculated thermodynamic parameters indicate that the adsorption is a spontaneous, endothermic and feasible process. The further regeneration experiments showed the adsorption capacity of GEC for Cr(VI) decreased 5% after 7 times reuse, indicating the potential of the as-prepared material for practical application. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Adhesion and proliferation of human endothelial cells on photochemically modified polytetrafluoroethylene.

    PubMed

    Gumpenberger, T; Heitz, J; Bäuerle, D; Kahr, H; Graz, I; Romanin, C; Svorcik, V; Leisch, F

    2003-12-01

    We studied the adhesion and proliferation of human endothelial cells on photochemically modified polytetrafluoroethylene samples. The polymer surfaces were modified by exposure to the ultraviolet light of a Xe(2)(*)-excimer lamp at a wavelength of 172 nm in an ammonia atmosphere. Treatment times were between 10 and 20 min. The endothelial cell density was determined 1, 3 and 8 days after seeding by image analysis. Surface modification of the samples resulted in a significant increase in the number of adhering cells and in the formation of a confluent cell layer after 3-8 days. The results were comparable than those obtained on polystyrene Petri dishes, which are used as standard substrates in cell cultivation. Thus modified PTFE appears to be a promising material for the fabrication of artificial vascular prostheses coated with endothelial cells.

  13. In Vitro Generation of Human NK cells Expressing Chimeric Antigen Receptor through Differentiation of Gene-Modified Hematopoietic Stem Cells

    PubMed Central

    Lowe, Emily; Truscott, Laurel C.; De Oliveira, Satiro N.

    2016-01-01

    Summary NK cells represent a very promising source for adoptive cellular approaches for cancer immunotherapy, and extensive research has been conducted, including clinical trials. Gene modification of NK cells can direct their specificity and enhance their function, but the efficiency of gene transfer techniques is very limited. Here we describe two protocols designed to generate mature human NK cells from gene-modified hematopoietic stem cells. These protocols use chimeric antigen receptor as the transgene, but could potentially be modified for the expression any particular transgene in human NK cells. PMID:27177671

  14. Interaction with epithelial cells modifies airway macrophage response to ozone.

    PubMed

    Bauer, Rebecca N; Müller, Loretta; Brighton, Luisa E; Duncan, Kelly E; Jaspers, Ilona

    2015-03-01

    The initial innate immune response to ozone (O3) in the lung is orchestrated by structural cells, such as epithelial cells, and resident immune cells, such as airway macrophages (Macs). We developed an epithelial cell-Mac coculture model to investigate how epithelial cell-derived signals affect Mac response to O3. Macs from the bronchoalveolar lavage (BAL) of healthy volunteers were cocultured with the human bronchial epithelial (16HBE) or alveolar (A549) epithelial cell lines. Cocultures, Mac monocultures, and epithelial cell monocultures were exposed to O3 or air, and Mac immunophenotype, phagocytosis, and cytotoxicity were assessed. Quantities of hyaluronic acid (HA) and IL-8 were compared across cultures and in BAL fluid from healthy volunteers exposed to O3 or air for in vivo confirmation. We show that Macs in coculture had increased markers of alternative activation, enhanced cytotoxicity, and reduced phagocytosis compared with Macs in monoculture that differed based on coculture with A549 or 16HBE. Production of HA by epithelial cell monocultures was not affected by O3, but quantities of HA in the in vitro coculture and BAL fluid from volunteers exposed in vivo were increased with O3 exposure, indicating that O3 exposure impairs Mac regulation of HA. Together, we show epithelial cell-Mac coculture models that have many similarities to the in vivo responses to O3, and demonstrate that epithelial cell-derived signals are important determinants of Mac immunophenotype and response to O3.

  15. Equivalence of Gyn GEC-ESTRO guidelines for image guided cervical brachytherapy with EUD-based dose prescription

    PubMed Central

    2013-01-01

    Background To establish a generalized equivalent uniform dose (gEUD) -based prescription method for Image Guided Brachytherapy (IGBT) that reproduces the Gyn GEC-ESTRO WG (GGE) prescription for cervix carcinoma patients on CT images with limited soft tissue resolution. Methods The equivalence of two IGBT planning approaches was investigated in 20 patients who received external beam radiotherapy (EBT) and 5 concomitant high dose rate IGBT treatments. The GGE planning strategy based on dose to the most exposed 2 cm3 (D2cc) was used to derive criteria for the gEUD-based planning of the bladder and rectum. The safety of gEUD constraints in terms of GGE criteria was tested by maximizing dose to the gEUD constraints for individual fractions. Results The gEUD constraints of 3.55 Gy for the rectum and 5.19 Gy for the bladder were derived. Rectum and bladder gEUD-maximized plans resulted in D2cc averages very similar to the initial GGE criteria. Average D2ccs and EUDs from the full treatment course were comparable for the two techniques within both sets of normal tissue constraints. The same was found for the tumor doses. Conclusions The derived gEUD criteria for normal organs result in GGE-equivalent IGBT treatment plans. The gEUD-based planning considers the entire dose distribution of organs in contrast to a single dose-volume-histogram point. PMID:24225184

  16. GEC-ESTRO/ACROP recommendations for performing bladder-sparing treatment with brachytherapy for muscle-invasive bladder carcinoma.

    PubMed

    Pieters, Bradley R; van der Steen-Banasik, Elzbieta; Smits, Geert A; De Brabandere, Marisol; Bossi, Alberto; Van Limbergen, Erik

    2016-12-31

    The standard treatment for muscle-invasive bladder cancer (MIBC) is a radical cystectomy with pelvic lymph node dissection with or without neoadjuvant chemotherapy. In selected cases a bladder sparing approach is possible, for example a limited surgical excision combined with external beam radiotherapy and brachytherapy. To perform brachytherapy flexible catheters have to be implanted in the bladder wall. The implantation is done either by the open retropubic approach or the endoscopic surgical approach. The largest experience for brachytherapy is with low-dose rate and pulsed-dose rate, although some short-term experience with high-dose rate is also reported. The main advantage for this technique is the conservation of bladder function, with comparable local control rates as for cystectomy series in selected cases. The GEC-ESTRO/ACROP (Groupe Européen de Curiethérapie-European Society for Radiotherapy and Oncology / Advisory Committee on Radiation Oncology Practice) recommendations to perform bladder implantations and brachytherapy as a treatment option for MIBC are described.

  17. Immunotherapy with gene-modified T cells: limiting side effects provides new challenges.

    PubMed

    Stauss, H J; Morris, E C

    2013-11-01

    Genetic tools have been developed to efficiently engineer T-cell specificity and enhance T-cell function. Chimeric antigen receptors (CAR) use the antibody variable segments to direct specificity against cell surface molecules. T-cell receptors (TCR) can redirect T cells to intracellular target proteins, fragments of which are presented in the peptide-binding groove of HLA molecules. A recent clinical trial with CAR-modified T cells redirected against the B-cell lineage antigen CD19 showed dramatic clinical benefit in chronic lymphocytic leukaemia patients. Similarly, impressive clinical responses were seen in melanoma and synovial cell carcinoma with TCR-modified T cells redirected against the melanocyte lineage antigen MART-1 and the testis-cancer antigen NY-ESO-1. However, on and off-target toxicity was associated with most of these clinical responses, and fatal complications have been observed in some patients treated with gene modified T cells. This review will discuss factors that might contribute to toxic side effects of therapy with gene modified T cells, and outline potential strategies to retain anticancer activity while reducing unwanted side effects.

  18. Micro-organism and cell viability on antimicrobially modified titanium.

    PubMed

    Omori, S; Shibata, Y; Arimoto, T; Igarashi, T; Baba, K; Miyazaki, T

    2009-10-01

    When titanium is anodized by discharge in NaCl solution, both antimicrobial activity and osteoconductivity are conferred. The viability of adherent micro-organisms and cells on antimicrobial titanium remains uncertain. We hypothesized that a thin peroxidation barrier would efficiently destroy adherent bacteria, whereas adherent osteoblastic cells would be viable, since these cells adhere to the surface indirectly though serum proteins. The efficacy of antimicrobial titanium appears to be based on peroxidation, since peroxidation products were detected in parallel with the destruction of bacterial cell-surface structures. The peroxidation effect of antimicrobial titanium was confined to the surface within narrow limits. The viability of osteoblastic cells on the surface was strongly dependent on the presence of serum protein, whereas that of adherent Streptococcus mutans was not affected by the presence of serum proteins. Therefore, differences in the adherent systems used by bacteria and osteoblastic cells are important determinants of their viability on antimicrobial titanium.

  19. A modified efficient method for dental pulp stem cell isolation

    PubMed Central

    Raoof, Maryam; Yaghoobi, Mohammad Mehdi; Derakhshani, Ali; Kamal-abadi, Ali Mohammadi; Ebrahimi, Behnam; Abbasnejad, Mehdi; Shokouhinejad, Noushin

    2014-01-01

    Background: Dental pulp stem cells can be used in regenerative endodontic therapy. The aim of this study was to introduce an efficient method for dental pulp stem cells isolation. Materials and Methods: In this in-vitro study, 60 extracted human third molars were split and pulp tissue was extracted. Dental pulp stem cells were isolated by the following three different methods: (1) digestion of pulp by collagenase/dispase enzyme and culture of the released cells; (2) outgrowth of the cells by culture of undigested pulp pieces; (3) digestion of pulp tissue pieces and fixing them. The cells were cultured in minimum essential medium alpha modification (αMEM) medium supplemented with 20% fetal bovine serum(FBS) in humid 37°C incubator with 5% CO 2. The markers of stem cells were studied by reverse transcriptase polymerase chain reaction (PCR). The student t-test was used for comparing the means of independent groups. P <0.05 was considered as significant. Results: The results indicated that by the first method a few cell colonies with homogenous morphology were detectable after 4 days, while in the outgrowth method more time was needed (10-12 days) to allow sufficient numbers of heterogeneous phenotype stem cells to migrate out of tissue. Interestingly, with the improved third method, we obtained stem cells successfully with about 60% efficiency after 2 days. The results of RT-PCR suggested the expression of Nanog, Oct-4, and Nucleostemin markers in the isolated cells from dental pulps. Conclusion: This study proposes a new method with high efficacy to obtain dental pulp stem cells in a short time. PMID:24932197

  20. Stem cell responses to plasma surface modified electrospun polyurethane scaffolds.

    PubMed

    Zandén, Carl; Hellström Erkenstam, Nina; Padel, Thomas; Wittgenstein, Julia; Liu, Johan; Kuhn, H Georg

    2014-07-01

    The topographical effects from functional materials on stem cell behavior are currently of interest in tissue engineering and regenerative medicine. Here we investigate the influence of argon, oxygen, and hydrogen plasma surface modification of electrospun polyurethane fibers on human embryonic stem cell (hESC) and rat postnatal neural stem cell (NSC) responses. The plasma gases were found to induce three combinations of fiber surface functionalities and roughness textures. On randomly oriented fibers, plasma treatments lead to substantially increased hESC attachment and proliferation as compared to native fibers. Argon plasma was found to induce the most optimal combination of surface functionality and roughness for cell expansion. Contact guided migration of cells and alignment of cell processes were observed on aligned fibers. Neuronal differentiation around 5% was found for all samples and was not significantly affected by the induced variations of surface functional group distribution or individual fiber topography. In this study the influence of argon, oxygen, and hydrogen plasma surface modification of electrospun polyurethane fibers on human embryonic stem cell and rat postnatal neural stem cell (NSC) responses is studied with the goal of clarifying the potential effects of functional materials on stem cell behavior, a topic of substantial interest in tissue engineering and regenerative medicine. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. [Flocculation and removal of water bloom cells Microcystis aeruginosa by chitosan-modified clays].

    PubMed

    Zou, Hua; Pan, Gang; Chen, Hao

    2004-11-01

    The kinetics of flocculation and removal of Microcystis aeruginosa by chitosan-modified clays was studied. The efficiency of flocculating and removing of algal cells was greatly improved after the modification of the clays. About 80% of algae cell was removed in 0.5 hour, and 90% in 2 hours, when 11 mg/L modified sepiolite was added. Algae-removal capacities of different clays were all improved to a similar level of >90% at a total loading of 11 mg/L after being modified with chitosan. The efficiency of algae-removing was reduced when the clay loading was larger or smaller than the optimum loading.

  2. Surface modified alginate microcapsules for 3D cell culture

    NASA Astrophysics Data System (ADS)

    Chen, Yi-Wen; Kuo, Chiung Wen; Chueh, Di-Yen; Chen, Peilin

    2016-06-01

    Culture as three dimensional cell aggregates or spheroids can offer an ideal platform for tissue engineering applications and for pharmaceutical screening. Such 3D culture models, however, may suffer from the problems such as immune response and ineffective and cumbersome culture. This paper describes a simple method for producing microcapsules with alginate cores and a thin shell of poly(L-lysine)-graft-poly(ethylene glycol) (PLL-g-PEG) to encapsulate mouse induced pluripotent stem (miPS) cells, generating a non-fouling surface as an effective immunoisolation barrier. We demonstrated the trapping of the alginate microcapsules in a microwell array for the continuous observation and culture of a large number of encapsulated miPS cells in parallel. miPS cells cultured in the microcapsules survived well and proliferated to form a single cell aggregate. Droplet formation of monodisperse microcapsules with controlled size combined with flow cytometry provided an efficient way to quantitatively analyze the growth of encapsulated cells in a high-throughput manner. The simple and cost-effective coating technique employed to produce the core-shell microcapsules could be used in the emerging field of cell therapy. The microwell array would provide a convenient, user friendly and high-throughput platform for long-term cell culture and monitoring.

  3. Improving T cell responses to modified peptides in tumor vaccines.

    PubMed

    Buhrman, Jonathan D; Slansky, Jill E

    2013-03-01

    Immune recognition and elimination of cancerous cells is the primary goal of cancer immunotherapy. However, obstacles including immune tolerance and tumor-induced immunosuppression often limit beneficial immune responses. Vaccination is one proposed intervention that may help to overcome these issues and is an active area of study in cancer immunotherapy. Immunizing with tumor antigenic peptides is a promising, straight-forward vaccine strategy hypothesized to boost preexisting antitumor immunity. However, tumor antigens are often weak T cell agonists, attributable to several mechanisms, including immune self-tolerance and poor immunogenicity of self-derived tumor peptides. One strategy for overcoming these mechanisms is vaccination with mimotopes, or peptide mimics of tumor antigens, which alter the antigen presentation and/or T cell activation to increase the expansion of tumor-specific T cells. Evaluation of mimotope vaccine strategies has revealed that even subtle alterations in peptide sequence can dramatically alter antigen presentation and T cell receptor recognition. Most of this research has been performed using T cell clones, which may not be accurate representations of the naturally occurring antitumor response. The relationship between clones generated after mimotope vaccination and the polyclonal T cell repertoire is unclear. Our work with mimotopes in a mouse model of colon carcinoma has revealed important insights into these issues. We propose that the identification of mimotopes based on stimulation of the naturally responding T cell repertoire will dramatically improve the efficacy of mimotope vaccination.

  4. Genetically modified cells in regenerative medicine and tissue engineering.

    PubMed

    Sheyn, Dima; Mizrahi, Olga; Benjamin, Shimon; Gazit, Zulma; Pelled, Gadi; Gazit, Dan

    2010-06-15

    Regenerative medicine appears to take as its patron, the Titan Prometheus, whose liver was able to regenerate daily, as the field attempts to restore lost, damaged, or aging cells and tissues. The tremendous technological progress achieved during the last decade in gene transfer methods and imaging techniques, as well as recent increases in our knowledge of cell biology, have opened new horizons in the field of regenerative medicine. Genetically engineered cells are a tool for tissue engineering and regenerative medicine, albeit a tool whose development is fraught with difficulties. Gene-and-cell therapy offers solutions to severe problems faced by modern medicine, but several impediments obstruct the path of such treatments as they move from the laboratory toward the clinical setting. In this review we provide an overview of recent advances in the gene-and-cell therapy approach and discuss the main hurdles and bottlenecks of this approach on its path to clinical trials and prospective clinical practice.

  5. Scaffold-based bone engineering by using genetically modified cells.

    PubMed

    Hutmacher, Dietmar W; Garcia, Andres J

    2005-02-28

    The first generation of clinically applied tissue engineering concepts in the area of skin, cartilage and bone marrow regeneration was based on the isolation, expansion and implantation of cells from the patient's own tissue. Although successful in selective treatments, tissue engineering needs to overcome major challenges to allow widespread clinical application with predictable outcomes. One challenge is to present the cells in a matrix to the implantation site to allow the cells to survive the wound healing contraction forces, tissue remodeling in certain tissues such as bone and biomechanical loading. Hence, several tissue engineering strategies focus on the development of load-bearing scaffold/cell constructs. From a cell source point of view, bone engineers face challenges to isolate and expand cells with the highest potential to form osseous tissue along with harvesting tissue without extensive donor site morbidity. A major hurdle to tissue engineering is de-differentiation and limited ability to control cell phenotype following in vitro expansion. Due to early successes with genetic engineering, bone tissue engineers have used different strategies to genetically alter various types of mesenchymal cells to enhance the mineralization capacity of tissue-engineered scaffold/cell constructs. Although the development of multi-component scaffold/osteogenic cell constructs requires a combination of interdisciplinary research strategies, the following review is limited to describe the general aspects of bone engineering and to present overall directions of technology platforms, which include a genetic engineering component. This paper reviews the most recent work in the field and discusses the concepts developed and executed by a collaborative effort of the multi-disciplinary teams of the two authors.

  6. Efficient inverted polymer solar cells based on conjugated polyelectrolyte and zinc oxide modified ITO electrode

    SciTech Connect

    Yuan, Tao; Zhu, Xiaoguang; Tu, Guoli; Zhou, Lingyu; Zhang, Jian

    2015-02-23

    Efficient inverted polymer solar cells (PSCs) were constructed by utilizing a conjugated polyelectrolyte PF{sub EO}SO{sub 3}Na and zinc oxide to modify the indium tin oxide (ITO) electrode. The ITO electrode modified by PF{sub EO}SO{sub 3}Na and zinc oxide possesses high transparency, increased electron mobility, smoothened surface, and lower work function. PTB7:PC{sub 71}BM inverted PSCs containing the modified ITO electrode achieved a high power conversion efficiency (PCE) of 8.49%, exceeding that of the control device containing a ZnO modified ITO electrode (7.48%). Especially, PCE-10:PC{sub 71}BM inverted polymer solar cells achieved a high PCE up to 9.4%. These results demonstrate a useful approach to improve the performance of inverted polymer solar cells.

  7. Regulation of oncogene-induced cell cycle exit and senescence by chromatin modifiers.

    PubMed

    David, Gregory

    2012-09-01

    Oncogene activation leads to dramatic changes in numerous biological pathways controlling cellular division, and results in the initiation of a transcriptional program that promotes transformation. Conversely, it also triggers an irreversible cell cycle exit called cellular senescence, which allows the organism to counteract the potentially detrimental uncontrolled proliferation of damaged cells. Therefore, a tight transcriptional control is required at the onset of oncogenic signal, coordinating both positive and negative regulation of gene expression. Not surprisingly, numerous chromatin modifiers contribute to the cellular response to oncogenic stress. While these chromatin modifiers were initially thought of as mere mediators of the cellular response to oncogenic stress, recent studies have uncovered a direct and specific regulation of chromatin modifiers by oncogenic signals. We review here the diverse functions of chromatin modifiers in the cellular response to oncogenic stress, and discuss the implications of these findings on the regulation of cell cycle progression and proliferation by activated oncogenes.

  8. FTIR characterization of animal lung cells: normal and precancerous modified e10 cell line

    NASA Astrophysics Data System (ADS)

    Zezell, D. M.; Pereira, T. M.; Mennecier, G.; Bachmann, L.; Govone, A. B.; Dagli, M. L. Z.

    2012-06-01

    The chemical carcinogens from tobacco are related to over 90% of lung cancers around the world. The risk of death of this kind of cancer is high because the diagnosis usually is made only in advanced stages. Therefore, it is necessary to develop new diagnostic methods for detecting the lung cancer in earlier stages. The Fourier Transform Infrared Spectroscopy (FTIR) can offer high sensibility and accuracy to detect the minimal chemical changes into the biological sample. The aim of this study is to evaluate the differences on infrared spectra between normal lung cells and precancerous lung cells transformed by NNK. Non-cancerous lung cell line e10 (ATCC) and NNK-transformed e10 cell lines were maintained in complete culture medium (1:1 mixture of Dulbecco's modified Eagle's medium and Ham's F12 [DMEM/Ham's F12], supplemented with 100 ng/ml cholera enterotoxin, 10 lg/ml insulin, 0.5 lg/ml. hydrocortisol, 20 ng/ml epidermal growth factor, and 5% horse serum. The cultures were maintained in alcohol 70%. The infrared spectra were acquired on ATR-FTIR Nicolet 6700 spectrophotometer at 4 cm-1 resolution, 30 scans, in the 1800-900 cm-1 spectral range. Each sample had 3 spectra recorded, 30 infrared spectra were obtained from each cell line. The second derivate of spectra indicates that there are displacement in 1646 cm-1 (amine I) and 1255 cm-1(DNA), allowing the possibility to differentiate the two king of cells, with accuracy of 89,9%. These preliminary results indicate that ATR-FTIR is useful to differentiate normal e10 lung cells from precancerous e10 transformed by NNK.

  9. Primordial germ cell differentiation of nuclear transfer embryonic stem cells using surface modified electroconductive scaffolds.

    PubMed

    Eslami-Arshaghi, Tarlan; Vakilian, Saeid; Seyedjafari, Ehsan; Ardeshirylajimi, Abdolreza; Soleimani, Masoud; Salehi, Mohammad

    2017-04-01

    A combination of nanotopographical cues and surface modification of collagen and fibronectin is a potential platform in primordial germ cells (PGCs) differentiation. In the present study, the synergistic effect of nanotopography and surface modification on differentiation of nuclear transfer embryonic stem cells (nt-ESCs) toward PGC lineage was investigated. In order to achieve this goal, poly-anyline (PANi) was mix within poly-L-lactic acid (PLLA). Afterward, the random composite mats were fabricated using PLLA and PANi mix solution. The nanofiber topography notably upregulated the expressions of prdm14, mvh and c-kit compared with tissue culture polystyrene (TCP). Moreover, the combination of nanofiber topography and surface modification resulted in more enhancement of PGCs differentiation compared with non-modified nanofibrous scaffold. Additionally, gene expression results showed that mvh and c-kit were expressed at higher intensity in cells exposed to collagen and fibronectin rather than collagen or fibronectin solitary. These results demonstrated the importance of combined effect of collagen and fibronectin in order to develop a functional extracellular matrix (ECM) mimic in directing stem cell fate and the potential of such biofunctional scaffolds for treatment of infertility.

  10. Drug Delivery via Cell Membrane Fusion Using Lipopeptide Modified Liposomes

    PubMed Central

    2016-01-01

    Efficient delivery of drugs to living cells is still a major challenge. Currently, most methods rely on the endocytotic pathway resulting in low delivery efficiency due to limited endosomal escape and/or degradation in lysosomes. Here, we report a new method for direct drug delivery into the cytosol of live cells in vitro and invivo utilizing targeted membrane fusion between liposomes and live cells. A pair of complementary coiled-coil lipopeptides was embedded in the lipid bilayer of liposomes and cell membranes respectively, resulting in targeted membrane fusion with concomitant release of liposome encapsulated cargo including fluorescent dyes and the cytotoxic drug doxorubicin. Using a wide spectrum of endocytosis inhibitors and endosome trackers, we demonstrate that the major site of cargo release is at the plasma membrane. This method thus allows for the quick and efficient delivery of drugs and is expected to have many invitro, ex vivo, and invivo applications. PMID:27725960

  11. The Flipside of the Power of Engineered T Cells: Observed and Potential Toxicities of Genetically Modified T Cells as Therapy.

    PubMed

    Bedoya, Felipe; Frigault, Matthew J; Maus, Marcela V

    2017-02-01

    Autologous T cells modified to recognize novel antigen targets are a novel form of therapy for cancer. We review the various potential forms of observed and hypothetical toxicities associated with genetically modifiedcells. Despite the focus on toxicities in this review, re-directed T cells represent a powerful and highly effective form of anti-cancer therapy; we remain optimistic that the common toxicities will become routinely manageable and that some theoretical toxicity will be exceedingly rare, if ever observed. Copyright © 2017 The American Society of Gene and Cell Therapy. Published by Elsevier Inc. All rights reserved.

  12. Chimeric antigen receptor-modified T cells strike back

    PubMed Central

    Frigault, Matthew J.

    2016-01-01

    Chimeric antigen receptors (CARs) are engineered molecules designed to endow a polyclonal T-cell population with the ability to recognize tumor-associated surface antigens. In their simplest form, CARs comprise a targeting moiety in the form of a single-chain variable fragment from an antibody connected to various intracellular signaling domains allowing for T-cell activation. This powerful approach combines the specificity of an antibody with the cytotoxic ability of a T cell. There has been much excitement since early phase trials of CAR-T cells targeting CD19 expressed on B-cell malignancies demonstrated remarkable efficacy in inducing long-term, stable remissions in otherwise relapsed/refractory disease. Despite these successes, we have just begun to understand the intricacies of CAR biology with efforts underway to utilize this platform in the treatment of other, previously refractory malignancies. Challenges currently include identification of viable cancer targets, management strategies for potentially severe and irreversible toxicities and overcoming the immunosuppressive nature of the tumor microenvironment. This review will focus on basic CAR structure and function, previous success and new approaches aimed at the broader application of CAR-T-cell therapy. PMID:27021308

  13. Modified Bleomycin Disaccharides Exhibiting Improved Tumor Cell Targeting

    PubMed Central

    2015-01-01

    The bleomycins (BLMs) are a family of antitumor antibiotics used clinically for anticancer chemotherapy. Their antitumor selectivity derives at least in part from their ability to target tumor cells, a property that resides in the carbohydrate moiety of the antitumor agent. In earlier studies, we have demonstrated that the tumor cell selectivity resides in the mannose carbamoyl moiety of the BLM saccharide and that both the BLM disaccharide and monosaccharide containing the carbamoyl moiety were capable of the delivery/uptake of a conjugated cyanine dye into cultured cancer cell lines. Presently, the nature of the participation of the carbamoyl moiety has been explored further to provide compounds of utility for defining the nature of the mechanism of tumor cell recognition and uptake by BLM saccharides and in the hope that more efficient compounds could be identified. A library of seven disaccharide–Cy5** dye conjugates was prepared that are structural analogues of the BLM disaccharide. These differed from the natural BLM disaccharide in the position, orientation, and substitution of the carbamoyl group. Studies of these compounds in four matched sets of tumor and normal cell lines revealed a few that were both tumor cell selective and internalized 2–4-fold more efficiently than the natural BLM disaccharide. PMID:25272367

  14. Interaction with Epithelial Cells Modifies Airway Macrophage Response to Ozone

    PubMed Central

    Bauer, Rebecca N.; Müller, Loretta; Brighton, Luisa E.; Duncan, Kelly E.

    2015-01-01

    The initial innate immune response to ozone (O3) in the lung is orchestrated by structural cells, such as epithelial cells, and resident immune cells, such as airway macrophages (Macs). We developed an epithelial cell–Mac coculture model to investigate how epithelial cell–derived signals affect Mac response to O3. Macs from the bronchoalveolar lavage (BAL) of healthy volunteers were cocultured with the human bronchial epithelial (16HBE) or alveolar (A549) epithelial cell lines. Cocultures, Mac monocultures, and epithelial cell monocultures were exposed to O3 or air, and Mac immunophenotype, phagocytosis, and cytotoxicity were assessed. Quantities of hyaluronic acid (HA) and IL-8 were compared across cultures and in BAL fluid from healthy volunteers exposed to O3 or air for in vivo confirmation. We show that Macs in coculture had increased markers of alternative activation, enhanced cytotoxicity, and reduced phagocytosis compared with Macs in monoculture that differed based on coculture with A549 or 16HBE. Production of HA by epithelial cell monocultures was not affected by O3, but quantities of HA in the in vitro coculture and BAL fluid from volunteers exposed in vivo were increased with O3 exposure, indicating that O3 exposure impairs Mac regulation of HA. Together, we show epithelial cell–Mac coculture models that have many similarities to the in vivo responses to O3, and demonstrate that epithelial cell–derived signals are important determinants of Mac immunophenotype and response to O3. PMID:25054807

  15. Peptide-modified PELCL electrospun membranes for regulation of vascular endothelial cells.

    PubMed

    Zhou, Fang; Jia, Xiaoling; Yang, Yang; Yang, Qingmao; Gao, Chao; Zhao, Yunhui; Fan, Yubo; Yuan, Xiaoyan

    2016-11-01

    The efficiency of biomaterials used in small vascular repair depends greatly on their ability to interact with vascular endothelial cells (VECs). Rapid endothelialization of the vascular grafts is a promising way to prevent thrombosis and intimal hyperplasia. In this work, modification of electrospun membranes of poly(ethylene glycol)-b-poly(l-lactide-co-ε-caprolactone) (PELCL) by three different peptides for regulation of VECs were studied in order to obtain ideal bioactive biomaterials as small diameter vascular grafts. QK (a mimetic peptide to vascular endothelial growth factor), Arg-Glu-Asp-Val (REDV, a specific adhesive peptide to VECs) and Val-Ala-Pro-Gly (VAPG, a specific adhesive peptide to vascular smooth muscle cells) were investigated. Surface properties of the modified membranes and the response of VECs were verified. It was found that protein adsorption and platelet adhesion were effectively suppressed with the introduction of QK, REDV or VAPG peptides on the PELCL electrospun membranes. Both QK- and REDV-modified electrospun membranes could accelerate the proliferation of VECs in the first 9days, and the QK-modified electrospun membrane promoted cell proliferation more significantly than the REDV-modified one. The REDV-modified PELCL membrane was the most favorable for VECs adhesion than QK- and VAPG-modified membranes. It was suggested that QK- or REDV-modified PELCL electrospun membranes may have great potential applications in cardiovascular biomaterials for rapid endothelialization in situ. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Bone Formation from Porcine Dental Germ Stem Cells on Surface Modified Polybutylene Succinate Scaffolds

    PubMed Central

    2016-01-01

    Designing and providing a scaffold are very important for the cells in tissue engineering. Polybutylene succinate (PBS) has high potential as a scaffold for bone regeneration due to its capacity in cell proliferation and differentiation. Also, stem cells from 3rd molar tooth germs were favoured in this study due to their developmentally and replicatively immature nature. In this study, porcine dental germ stem cells (pDGSCs) seeded PBS scaffolds were used to investigate the effects of surface modification with fibronectin or laminin on these scaffolds to improve cell attachment, proliferation, and osteogenic differentiation for tissue engineering applications. The osteogenic potentials of pDGSCs on these modified and unmodified foams were examined to heal bone defects and the effects of fibronectin or laminin modified PBS scaffolds on pDGSC differentiation into bone were compared for the first time. For this study, MTS assay was used to assess the cytotoxic effects of modified and unmodified surfaces. For the characterization of pDGSCs, flow cytometry analysis was carried out. Besides, alkaline phosphatase (ALP) assay, von Kossa staining, real-time PCR, CM-Dil, and immunostaining were applied to analyze osteogenic potentials of pDGSCs. The results of these studies demonstrated that pDGSCs were differentiated into osteogenic cells on fibronectin modified PBS foams better than those on unmodified and laminin modified PBS foams. PMID:27413380

  17. Nerve cells culture from lumbar spinal cord on surfaces modified by plasma pyrrole polymerization.

    PubMed

    Zuñiga-Aguilar, E; Olayo, R; Ramírez-Fernández, O; Morales, J; Godínez, R

    2014-01-01

    Currently, there are several techniques for modified cell culture surfaces under research to improve cell growth and adhesion. Recently, different methods have been used for surface coating, using biomolecules that enhance cell attachment and growth of nerve cells from spinal cord, such as the use of Poly-DL-Ornithine/Laminin. Plasma-polymerized pyrrole (PPy)-treated surfaces have showed improvement on surfaces biocompatibility with the cells in culture since they do not interfere with any of the biological cell functions. In the present work, we present a novel mouse nerve cell culture technique, using PPy-treated cell culture surfaces. A comparative study of cell survival using Poly-DL-Ornithine/Laminin-treated surfaces was performed. Our results of cell survival when compared with data already reported by other investigators, show that cells cultured on the PPy-modified surface increased survival up to 21 days when compared with Poly-DL-Ornithine/Laminin-coated culture, where 8 days cell survival was obtained. There were electrical and morphological differences in the nerve cells grown in the different surfaces. By comparing the peak ion currents of Poly-DL-Ornithine/Laminin-seeded cells for 8 days with cells grown for 21 days on PPy, an increase of 516% in the Na(+) current and 127% in K(+) currents in cells seeded on PPy were observed. Immunofluorescence techniques showed the presence of cell synapses and culture viability after 21 days. Our results then showed that PPy-modified surfaces are an alternative culture method that increases nerve cells survival from lumbar spinal cord cell culture by preserving its electrical and morphological features.

  18. Conformal nano-thin modified polyelectrolyte coatings for encapsulation of cells.

    PubMed

    Granicka, L H; Antosiak-Iwańska, M; Godlewska, E; Strawski, M; Szklarczyk, M; Maranowski, B; Kowalewski, C; Wiśniewsk, J

    2011-10-01

    Encapsulation of cells in polymeric shells allows for separation of biological material from produced factors, which may find biotechnological and biomedical applications. Human T-lymphocyte cell line Jurkat as well as rat pancreatic islets were encapsulated using LbL technique within shells of polyelectrolyte modified by incorporation of biotin complexed with avidin to improve cell coating and to create the potential ability to elicit specific biochemical responses. The coating with nano-thin modified shells allowed for maintenance of the evaluated cells' integrity and viability during the 8-day culture. The different PE impact may be observed on different biological materials. The islets exhibited lower mitochondrial activity than the Jurkat cells. Nevertheless, coating of cells with polyelectrolyte modified membrane allowed for functioning of both model cell types: 10 μm leukemia cells or 150 μm islets during the culture. Applied membranes maintained the molecular structure during the culture period. The conclusion is that applied modified membrane conformation may be recommended for coating shells for biomedical purposes.

  19. Topical treatment of basal cell carcinoma with the immune response modifier imiquimod.

    PubMed

    Papakostas, Dimitrios; Stockfleth, Eggert

    2015-11-01

    Imiquimod, a TLR7 agonist, is a novel immune response modifier currently widely used in the treatment of actinic keratoses (in situ squamous cell carcinoma). Imiquimod has revolutionized the treatment of field cancerization and has been approved for the treatment of superficial basal cell carcinoma with the recommendation of a 6-week treatment strategy, offering an alternative to surgery or other destructive treatment strategies.

  20. Study on the dynamic behavior of Zn-based hydrogen generating cells as fuel storage for a PEM micro fuel cell system

    NASA Astrophysics Data System (ADS)

    Weiland, M.; Krumbholz, S.; Wagner, S.; Reichl, H.

    Portable fuel cell systems consist of three essential parts: the fuel cell stack, the fuel storage and the balance of plant (BOP) which contains all required peripheral components. Scaling down fuel cell systems to smaller dimensions in the power range of 1 mW to 1 W currently leads to an increased volume fraction of the peripheral components. Consequently it is necessary to forego peripheral components in small systems and develop passive systems. Furthermore fuel storage is a challenging issue for portable micro fuel cell systems. Common approaches for hydrogen storage, e.g. pressure cartridges or reversible metal hydrides yield a low energy density for the entire system. In our approach a gas evolving cell (GEC) is used to generate hydrogen "on demand". This allows to develop small micro fuel cell systems with a high energy density. The GEC is electrically connected in series to the fuel cell. Hydrogen is generated through the electro catalytic Zn-H 2O reaction and proportional to the cell current according to Faraday's law, which leads to a simple and passive system. The dynamic and long-term behavior of the GEC is studied experimentally in this work. The electrical and chemical behavior of the GEC plays an important role in the design and operation of the micro fuel cell system. Portable applications generally imply dynamic load profiles. Therefore the study focuses on the dynamic response of the GEC. The electric response of the GEC is examined for load pulses in the range of milliseconds with an amplitude of up to 150 mA for the lifecycle of a cell. The results are compared to the behavior of the GECs under an equivalent static load in order to draw conclusions on the effect of the dynamic load. Furthermore the electrical and chemical capacity of the GECs is examined for different loads. The obtained results provide an insight into the dynamic behavior of the GEC and provide the basis for the design and operation of the micro fuel cell system.

  1. Cancer Cells Hijack PRC2 to Modify Multiple Cytokine Pathways

    PubMed Central

    Zhao, Michael; Song, Lan; Yu, Tao; Liu, Yu; Liu, Jeffrey C.; McCurdy, Sean; Ma, Anqi; Wither, Joan; Jin, Jian; Zacksenhaus, Eldad; Wrana, Jeffrey L.; Bremner, Rod

    2015-01-01

    Polycomb Repressive Complex 2 (PRC2) is an epigenetic regulator induced in many cancers. It is thought to drive tumorigenesis by repressing division, stemness, and/or developmental regulators. Cancers evade immune detection, and diverse immune regulators are perturbed in different tumors. It is unclear how such cell-specific effects are coordinated. Here, we show a profound and cancer-selective role for PRC2 in repressing multiple cytokine pathways. We find that PRC2 represses hundreds of IFNγ stimulated genes (ISGs), cytokines and cytokine receptors. This target repertoire is significantly broadened in cancer vs non-cancer cells, and is distinct in different cancer types. PRC2 is therefore a higher order regulator of the immune program in cancer cells. Inhibiting PRC2 with either RNAi or EZH2 inhibitors activates cytokine/cytokine receptor promoters marked with bivalent H3K27me3/H3K4me3 chromatin, and augments responsiveness to diverse immune signals. PRC2 inhibition rescues immune gene induction even in the absence of SWI/SNF, a tumor suppressor defective in ~20% of human cancers. This novel PRC2 function in tumor cells could profoundly impact the mechanism of action and efficacy of EZH2 inhibitors in cancer treatment. PMID:26030458

  2. Laser-modified nanostructures of PET films and cell behavior.

    PubMed

    Mirzadeh, Hamid; Moghadam, Ehsan Vahedi; Mivehchi, Houri

    2011-07-01

    The surface of polyethylene terephthalate (PET) films was irradiated using KrF excimer laser (λ = 248 nm) with different number of pulses at constant repetition rate. The adhesion behavior of L-929 fibroblast cells on the irradiated surface was investigated. The changes in films' morphology were characterized by atomic force microscopy (AFM) and scanning electron microscopy (SEM). The hydrophilicity and both polar and dispersion components of the surface tension of the treated films were evaluated by contact angle and surface tension measurement techniques. The films roughness was evaluated by atomic force microscopy. AFM and SEM observations showed that a specific nanostructure was created on the laser-treated polyethylene terephthalate surface. Contact angle and surface energy measurements have indicated an increase in wettability of the laser treated samples up to 5 pulses as optimum result; while, by increasing the laser pulses beyond 5 pulses the hydrophilicity of laser treated samples dropped and the surface energy of the treated films was leveled off. Data from in vitro assays showed significant cell attachment and cell growth onto laser treated samples in comparison with the untreated films. Moreover, a number of fibroblast cells attached and proliferated onto treated PET films were achieved under optimum condition of 5 pulses which was significantly higher than the other treated samples.

  3. Oxide modified air electrode surface for high temperature electrochemical cells

    DOEpatents

    Singh, Prabhakar; Ruka, Roswell J.

    1992-01-01

    An electrochemical cell is made having a porous cermet electrode (16) and a porous lanthanum manganite electrode (14), with solid oxide electrolyte (15) between them, where the lanthanum manganite surface next to the electrolyte contains a thin discontinuous layer of high surface area cerium oxide and/or praseodymium oxide, preferably as discrete particles (30) in contact with the air electrode and electrolyte.

  4. Designing novel Sn-Bi, Si-C and Ge-C nanostructures, using simple theoretical chemical similarities

    PubMed Central

    2011-01-01

    A framework of simple, transparent and powerful concepts is presented which is based on isoelectronic (or isovalent) principles, analogies, regularities and similarities. These analogies could be considered as conceptual extensions of the periodical table of the elements, assuming that two atoms or molecules having the same number of valence electrons would be expected to have similar or homologous properties. In addition, such similar moieties should be able, in principle, to replace each other in more complex structures and nanocomposites. This is only partly true and only occurs under certain conditions which are investigated and reviewed here. When successful, these concepts are very powerful and transparent, leading to a large variety of nanomaterials based on Si and other group 14 elements, similar to well known and well studied analogous materials based on boron and carbon. Such nanomaterias designed in silico include, among many others, Si-C, Sn-Bi, Si-C and Ge-C clusters, rings, nanowheels, nanorodes, nanocages and multidecker sandwiches, as well as silicon planar rings and fullerenes similar to the analogous sp2 bonding carbon structures. It is shown that this pedagogically simple and transparent framework can lead to an endless variety of novel and functional nanomaterials with important potential applications in nanotechnology, nanomedicine and nanobiology. Some of the so called predicted structures have been already synthesized, not necessarily with the same rational and motivation. Finally, it is anticipated that such powerful and transparent rules and analogies, in addition to their predictive power, could also lead to far-reaching interpretations and a deeper understanding of already known results and information. PMID:21711875

  5. High-risk CTV delineation for cervix brachytherapy: Application of GEC-ESTRO guidelines in Australia and New Zealand.

    PubMed

    Vinod, Shalini K; Lim, Karen; Bell, Lauren; Veera, Jacqueline; Ohanessian, Lucy; Juresic, Ewa; Borok, Nira; Chan, Phillip; Chee, Raphael; Do, Viet; Govindarajulu, Geetha; Sridharan, Swetha; Johnson, Carol; Moses, Daniel; Van Dyk, Sylvia; Holloway, Lois

    2017-02-01

    Image-based brachytherapy for cervical cancer using MRI has been implemented in Australia and New Zealand. The aims of this study were to measure variability in High-risk CTV (HR-CTV) delineation and evaluate dosimetric consequences of this. Nine radiation oncologists, one radiation therapist and two radiologists contoured HR-CTV on 3T MRI datasets from ten consecutive patients undergoing cervical brachytherapy at a single institution. Contour comparisons were performed using the Dice Similarity Coefficient (DSC) and Mean Absolute Surface Distance (MASD). Two reference contours were created for brachytherapy planning: a Simultaneous Truth and Performance Level Estimation (STAPLE) and a consensus contour (CONSENSUS). Optimized plans (8 Gy) for both these contours were applied to individual participant's contours to assess D90 and D100 coverage of HR CTV. To compare variability in dosimetry, relative standard deviation (rSD) was calculated. Good concordance (mean DSC≥0.7, MASD≤5 mm) was achieved in 8/10 cases when compared to the STAPLE reference and 6/10 cases when compared to the CONSENSUS reference. Greatest variation was visually seen in the cranio-caudal direction. The average mean rSD across all patients was 27% and 34% for the STAPLE HR-CTV D90 and D100, respectively, and 28% and 35% for the CONSENSUS HR-CTV D90 and D100. Delineation uncertainty resulted in an average dosimetric uncertainty of ±1.5-1.6 Gy per fraction based on an 8 Gy prescribed fraction. Delineation of HR-CTV for cervical cancer brachytherapy was consistent amongst observers, suggesting similar interpretation of GEC-ESTRO guidelines. Despite the good concordance, there was dosimetric variation noted, which could be clinically significant. © 2016 The Royal Australian and New Zealand College of Radiologists.

  6. Designing novel Sn-Bi, Si-C and Ge-C nanostructures, using simple theoretical chemical similarities

    NASA Astrophysics Data System (ADS)

    Zdetsis, Aristides D.

    2011-04-01

    A framework of simple, transparent and powerful concepts is presented which is based on isoelectronic (or isovalent) principles, analogies, regularities and similarities. These analogies could be considered as conceptual extensions of the periodical table of the elements, assuming that two atoms or molecules having the same number of valence electrons would be expected to have similar or homologous properties. In addition, such similar moieties should be able, in principle, to replace each other in more complex structures and nanocomposites. This is only partly true and only occurs under certain conditions which are investigated and reviewed here. When successful, these concepts are very powerful and transparent, leading to a large variety of nanomaterials based on Si and other group 14 elements, similar to well known and well studied analogous materials based on boron and carbon. Such nanomaterias designed in silico include, among many others, Si-C, Sn-Bi, Si-C and Ge-C clusters, rings, nanowheels, nanorodes, nanocages and multidecker sandwiches, as well as silicon planar rings and fullerenes similar to the analogous sp2 bonding carbon structures. It is shown that this pedagogically simple and transparent framework can lead to an endless variety of novel and functional nanomaterials with important potential applications in nanotechnology, nanomedicine and nanobiology. Some of the so called predicted structures have been already synthesized, not necessarily with the same rational and motivation. Finally, it is anticipated that such powerful and transparent rules and analogies, in addition to their predictive power, could also lead to far-reaching interpretations and a deeper understanding of already known results and information.

  7. Genetic Modification of Human Pancreatic Progenitor Cells Through Modified mRNA.

    PubMed

    Lu, Song; Chow, Christie C; Zhou, Junwei; Leung, Po Sing; Tsui, Stephen K; Lui, Kathy O

    2016-01-01

    In this chapter, we describe a highly efficient genetic modification strategy for human pancreatic progenitor cells using modified mRNA-encoding GFP and Neurogenin-3. The properties of modified mRNA offer an invaluable platform to drive protein expression, which has broad applicability in pathway regulation, directed differentiation, and lineage specification. This approach can also be used to regulate expression of other pivotal transcription factors during pancreas development and might have potential therapeutic values in regenerative medicine.

  8. Increasing the Energy Efficiency of Aluminum-Reduction Cells Using Modified Cathodes

    NASA Astrophysics Data System (ADS)

    Jianping, Peng; Yang, Song; Yuezhong, Di; Yaowu, Wang; Naixiang, Feng

    2017-10-01

    A cathode with an inclined surface (5°) and increased bar collector height (230 mm high) was incorporated into two 300-kA industrial aluminum-reduction cells. The voltage of the cells with the modified cathode was reduced by approximately 200 mV when compared with that of a conventional cell with a flat cathode. Through the use of simulations, the reduction in the cell voltage was attributed to the cathode modification (40 mV) and a reduced electrolyte level of 0.5 cm (160 mV). As a result of reduced anode cathode distance (ACD), the ledge toe was extended to the anode shadow by 12 cm. This caused a large inverted horizontal current and a velocity increase. The ledge profile returned to the desired position when the cells were insulated more effectively, and the metal velocity and metal crest in the modified cells were reduced accordingly.

  9. Suitability of polyelectrolyte shells modified with fullerene derivate for immunoisolation of cells. Experimental study.

    PubMed

    Borkowska, M; Godlewska, E; Antosiak-Iwańska, M; Kinasiewicz, J; Strawski, M; Szklarczyk, M; Granicka, L H

    2012-12-01

    The polymeric permiselective membranes application for immunoisolation of cells separating the transplanted cells from the host immunological system may eliminate immunosuppressive therapy during transplantation. The suitability of polyelectrolyte modified nanocoatings for immunoisolation of cells was assessed. The polymeric shells modified with incorporated fullerene derivate were applied for encapsulation of human T-lymphocyte cell line Jurkat or rat pancreatic islets of Langerhans using layer-by-layer technique. Hydroxylated fullerene was incorporated to the polyelectrolyte shell for hydrophility increase as well as for layer stability improvement. Evaluation with AFM, FTIR, fluorescence microscopy confirmed the nanocoating presence on the encapsulated cells. It was observed that polylysine-polyethyleneimine membrane with incorporated fullerenol allowed for encapsulated cells functioning in vitro. Membrane conformation applied for encapsulation of pancreatic rat islets allowed for glucose level decline during xenotransplantation into mice. The elaborated nanocoating may be recommended as the possible alternative to the space consuming microencapsulation for biomedical purposes.

  10. Flocculation of cyanobacterial cells using coal fly ash modified chitosan.

    PubMed

    Yuan, Yuting; Zhang, Honggang; Pan, Gang

    2016-06-15

    Harmful algal blooms (HABs) have increasingly occurred worldwide and pose serious threats to water environment safety. In this study, a compound flocculant (CFAL-Chitosan) was developed for HABs mitigation where chitosan was modified by coal fly ash leachate (CFAL). When using optimized dosage of CFAL-Chitosan flocculant, the zeta potential of Microcystis aeruginosa (M.A.) flocs stayed close to zero and algal removal efficiency plateaued over 90% in a wide dosage range from 3 to 6 mg L(-1). For chitosan without CFAL, removal efficiency peaked at 3 mg L(-1) with a maximum removal efficiency of 81%, which quickly decreased as the dosage increased (>3 mg L(-1)) due to the fast reversal of zeta potential. This indicated that CFAL-Chitosan could maintain a better removal efficiency over a wide dosage range as a result of improved charge neutralization compared with the chitosan only treatment. The flocs of CFAL-Chitosan were larger and denser than produced in the presence of chitosan without CFAL. However, excessive CFAL beyond the optimized dose inhibited M.A. removal due to hydrolysis and declining molecular weight of chitosan that weakened the bridging-netting properties, where surface charge reversal happened within a narrow dosage range and the removal-dosage curve became parabolic. The pH and metal residuals that were assumed to pose a threat to the aquatic environment were not significantly affected by adding optimized dosage of CFAL-Chitosan. The study provides a HABs control method using a cheap material of CFA. Further studies are needed to check the potential influence of leachable metals and persistent organic pollutants in CFA under a wide range of environmental condition.

  11. Pixuna virus modifies host cell cytoskeleton to secure infection.

    PubMed

    Gil, Pedro Ignacio; Albrieu-Llinás, Guillermo; Mlewski, Estela Cecilia; Monetti, Marina; Fozzatti, Laura; Cuffini, Cecilia; Fernández Romero, José; Kunda, Patricia; Paglini, María Gabriela

    2017-07-18

    Pixuna virus (PIXV) is an enzootic member of the Venezuelan Equine Encephalitis Virus complex and belongs to the New World cluster of alphaviruses. Herein we explore the role of the cellular cytoskeleton during PIXV replication. We first identified that PIXV undergoes an eclipse phase consisting of 4 h followed by 20 h of an exponential phase in Vero cells. The infected cells showed morphological changes due to structural modifications in actin microfilaments (MFs) and microtubules (MTs). Cytoskeleton-binding agents, that alter the architecture and dynamics of MFs and MTs, were used to study the role of cytoskeleton on PIXV replication. The virus production was significantly affected (p < 0.05) after treatment with paclitaxel or nocodazole due to changes in the MTs network. Interestingly, disassembly of MFs with cytochalasin D, at early stage of PIXV replication cycle, significantly increased the virus yields in the extracellular medium (p < 0.005). Furthermore, the stabilization of actin network with jasplakinolide had no effect on virus yields. Our results demonstrate that PIXV relies not only on intact MTs for the efficient production of virus, but also on a dynamic actin network during the early steps of viral replication.

  12. Technical aspects of the integration of three-dimensional treatment planning dose parameters (GEC-ESTRO Working Group) into pre-implant planning for LDR gynecological interstitial brachytherapy.

    PubMed

    Chi, A; Gao, M; Nguyen, N P; Albuquerque, K

    2009-06-01

    This study investigates the technical feasibility of pre-implant image-based treatment planning for LDR GYN interstitial brachytherapy(IB) based on the GEC-ESTRO guidelines. Initially, a virtual plan is generated based on the prescription dose and GEC-ESTRO defined OAR dose constraints with a pre-implant CT. After the actual implant, a regular diagnostic CT was obtained and fused with our pre-implant scan/initial treatment plan in our planning software. The Flexi-needle position changes, and treatment plan modifications were made if needed. Dose values were normalized to equivalent doses in 2 Gy fractions (LQED 2 Gy) derived from the linear-quadratic model with alpha/beta of 3 for late responding tissues and alpha/beta of 10 for early responding tissues. D(90) to the CTV, which was gross tumor (GTV) at the time of brachytherapy with a margin to count for microscopic disease, was 84.7 +/- 4.9% of the prescribed dose. The OAR doses were evaluated by D(2cc) (EBRT+IB). Mean D(2cc) values (LQED(2Gy)) for the rectum, bladder, sigmoid, and small bowel were the following: 63.7 +/- 8.4 Gy, 61.2 +/- 6.9 Gy, 48.0 +/- 3.5 Gy, and 49.9 +/- 4.2 Gy. This study confirms the feasibility of applying the GEC-ESTRO recommended dose parameters in pre-implant CT-based treatment planning in GYN IB. In the process, this pre-implant technique also demonstrates a good approximation of the target volume dose coverage, and doses to the OARs.

  13. Recent Progress of Nanostructure Modified Anodes in Microbial Fuel Cells.

    PubMed

    Kim, Marie; Kim, Hyeon Woo; Nam, Joo-Youn; In, Su-Il

    2015-09-01

    Microbial fuel cell (MFC) is a bio-electrochemical system which converts chemical energy into electrical energy by catalytic activity of microorganisms. Electrons produced by microbial oxidation from substrates such as organic matter, complex or renewable biomass are transferred to the anode. Protons produced at the anode migrate to the cathode via the wire and combine with oxygen to form water. Therefore MFC technologies are promising approach for generating electricity or hydrogen gas and wastewater treatment. Electrode materials are one of the keys to increase the power output of MFCs. To improve the cost effective performance of MFCs, various electrodes materials, modifications and configurations have been developed. In this paper, among other recent advances of nanostructured electrodes, especially carbon based anodes, are highlighted. The properties of these electrodes, in terms of surface characteristics, conductivity, modifications, and options were reviewed. The applications, challenges and perspectives of the current MFCs electrode for future development in bio or medical field are briefly discussed.

  14. Electron correlation in Pauli paramagnetic Cr2AlC, Cr2GaC and Cr2GeC

    NASA Astrophysics Data System (ADS)

    Liu, Zhongsheng; Takao, Kenta; Waki, Takeshi; Tabata, Yoshikazu; Nakamura, Hiroyuki

    2017-06-01

    Cr2AlC, Cr2GaC, and Cr2GeC are classical MAX phase compounds, for which successful synthesis of bulk equilibrium phases has been reported in an early stage. Although it has been established that they are Pauli paramagnetic down to the lowest temperature, the extent of the exchange enhancement depends on the A element (A = Al, Ga, and Ge). We discuss the nature of electron correlation by analyzing low-temperature resistivity, specific heat, and susceptibility in terms of the Kadowaki-Woods and Wilson ratios.

  15. Controlling cell-material interactions with polymer nanocomposites by use of surface modifying additives

    NASA Astrophysics Data System (ADS)

    Poole-Warren, L. A.; Farrugia, B.; Fong, N.; Hume, E.; Simmons, A.

    2008-11-01

    Polymer nanocomposites (NC) are fabricated by incorporating well dispersed nanoscale particles within a polymer matrix. This study focuses on elastomeric polyurethane (PU) based nanocomposites, containing organically modified silicates (OMS), as bioactive materials. Nanocomposites incorporating chlorhexidine diacetate as an organic modifier (OM) were demonstrated to be antibacterial with a dose dependence related to both the silicate loading and the loading of OM. When the non-antibacterial OM dodecylamine was used, both cell and platelet adhesion were decreased on the nanocomposite surface. These results suggest that OM is released from the polymer and can impact on cell behaviour at the interface. Nanocomposites have potential use as bioactive materials in a range of biomedical applications.

  16. Antibody modified porous silicon microparticles for the selective capture of cells.

    PubMed

    Guan, Bin; Magenau, Astrid; Ciampi, Simone; Gaus, Katharina; Reece, Peter J; Gooding, J Justin

    2014-07-16

    Herein, the ability of porous silicon (PSi) particles for selectively binding to specific cells is investigated. PSi microparticles with a high reflectance band in the reflectivity profile are fabricated, and subsequently passivated and modified with antibodies via the Cu(I)-catalyzed alkyne-azide cycloaddition reaction and succimidyl activation. To demonstrate the ability of the antibody-modified PSi particles to selectively bind to one cell type over others, HeLa cells were transfected with surface epitopes fused to fluorescent proteins. The antibody-functionalized PSi particles showed good selectivity for the corresponding surface protein on HeLa cells, with no significant cross-reactivity. The results are important for the application of PSi particles in cell sensing and drug delivery.

  17. Effect of modified pectin molecules on the growth of bone cells.

    PubMed

    Kokkonen, Hanna E; Ilvesaro, Joanna M; Morra, Marco; Schols, Henk A; Tuukkanen, Juha

    2007-02-01

    The aim of this study was to investigate molecular candidates for bone implant nanocoatings, which could improve biocompatibility of implant materials. Primary rat bone cells and murine preosteoblastic MC3T3-E1 cells were cultured on enzymatically modified hairy regions (MHR-A and MHR-B) of apple pectins. MHRs were covalently attached to tissue culture polystyrene (TCPS) or glass. Uncoated substrata or bone slices were used as controls. Cell attachment, proliferation, and differentiation were investigated with fluorescence and confocal microscopy. Bone cells seem to prefer MHR-B coating to MHR-A coating. On MHR-A samples, the overall numbers as well as proportions of active osteoclasts were diminished compared to those on MHR-B, TCPS, or bone. Focal adhesions indicating attachment of the osteoblastic cells were detected on MHR-B and uncoated controls but not on MHR-A. These results demonstrate the possibility to modify surfaces with pectin nanocoatings.

  18. Emerging ideas: Evaluation of stem cells genetically modified with scleraxis to improve rotator cuff healing.

    PubMed

    Gulotta, Lawrence V; Rodeo, Scott A

    2011-10-01

    Rotator cuffs heal with an interposed layer of scar tissue that makes repairs prone to failure. Cell-based biologic therapies have the potential to augment this healing process. Scleraxis (Scx) is a transcription factor that is involved in tendon development during embryogenesis, and may help drive stem cells toward tenocyte differentiation in adults. QUESTIONS/HYPOTHESIS: (1) Overexpression of Scx with adenoviral-mediated gene transfer in stem cells will drive pluripotent stem cells toward tenoblastogenic lineages in vitro; (2) the application of these genetically modified cells will result in improved histologic and biomechanical healing of rotator cuff repairs. For the first hypothesis, we will determine whether stem cells derived from various sources can differentiate into tenocytes when genetically modified with Scx in vitro. We will assess morphologic features of cells with light microscopy, and gene expression analyses to confirm phenotypes consistent with tenocyte differentiation. For the second hypothesis, we will determine whether these genetically modified cells augment rotator cuff repairs in a rat model based on histology and biomechanical outcomes. Development of this technology may substantially advance our ability to repair large to massive rotator cuff tears while limiting the rates of anatomic failure.

  19. Modified SPEEK membranes for direct ethanol fuel cell

    NASA Astrophysics Data System (ADS)

    Maab, Husnul; Nunes, Suzana Pereira

    Membranes with low ethanol crossover were prepared aiming their application for direct ethanol fuel cell (DEFC). They were based on (1) sulfonated poly(ether ether ketone) (SPEEK) coated with carbon molecular sieves (CMS) and (2) on SPEEK/PI homogeneous blends. The membranes were characterized concerning their water and ethanol solution uptake, water and ethanol permeability in pervaporation experiments and their performance in DEFC tests. The ethanol permeabilities for the CMS-coated (180 nm and 400 nm thick layers) SPEEK were 8.5 and 3.1 × 10 -10 kg m s -1 m -2 and for the homogeneous SPEEK/PI blends membranes with 10, 20 and 30 wt.% of PI were 4.4, 1.0 and 0.4 × 10 -10 kg m s -1 m -2 respectively, which is 2- to 50-fold lower than that for plain SPEEK (19 × 10 -10 kg m s -1 m -2). Particularly the SPEEK/PI membranes had substantially better performance than Nafion 117 ® membranes in DEFC tests at 60 °C and 90 °C.

  20. Genetically modified whole-cell bioreporters for environmental assessment

    PubMed Central

    Xu, Tingting; Close, Dan M.; Sayler, Gary S.; Ripp, Steven

    2015-01-01

    Living whole-cell bioreporters serve as environmental biosentinels that survey their ecosystems for harmful pollutants and chemical toxicants, and in the process act as human and other higher animal proxies to pre-alert for unfavorable, damaging, or toxic conditions. Endowed with bioluminescent, fluorescent, or colorimetric signaling elements, bioreporters can provide a fast, easily measured link to chemical contaminant presence, bioavailability, and toxicity relative to a living system. Though well tested in the confines of the laboratory, real-world applications of bioreporters are limited. In this review, we will consider bioreporter technologies that have evolved from the laboratory towards true environmental applications, and discuss their merits as well as crucial advancements that still require adoption for more widespread utilization. Although the vast majority of environmental monitoring strategies rely upon bioreporters constructed from bacteria, we will also examine environmental biosensing through the use of less conventional eukaryotic-based bioreporters, whose chemical signaling capacity facilitates a more human-relevant link to toxicity and health-related consequences. PMID:26594130

  1. Epithelial Cells from Smokers Modify Dendritic Cell Responses in the Context of Influenza Infection

    PubMed Central

    Horvath, Katherine M.; Brighton, Luisa E.; Zhang, Wenli; Carson, Johnny L.; Jaspers, Ilona

    2011-01-01

    Epidemiologic evidence suggests that cigarette smoking is a risk factor for infection with influenza, but the mechanisms underlying this susceptibility remain unknown. To ascertain if airway epithelial cells from smokers demonstrate a decreased ability to orchestrate an influenza-induced immune response, we established a model using differentiated nasal epithelial cells (NECs) from nonsmokers and smokers, co-cultured with peripheral blood monocyte–derived dendritic cells (mono-DCs) from nonsmokers. NEC/mono-DC co-cultures were infected with influenza A virus and analyzed for influenza-induced immune responses 24 hours after infection. We observed that NECs from smokers, as well as mono-DCs co-cultured with NECs from smokers, exhibited suppressed influenza-induced, interferon-related proteins interferon regulatory factor–7, Toll-like receptor–3, and retinoic acid inducible gene–1, likely because of the suppressed production of IFNα from the NECs of smokers. Furthermore, NEC/mono-DC co-cultures using NECs from smokers exhibited suppressed concentrations of T-cell/natural killer cell chemokine interferon gamma–induced protein 10 (IP-10) after infection with influenza, indicating that NECs from smokers may skew early influenza-induced Th1 responses. In contrast, NEC/mono-DC co-cultures using NEC from smokers contained increased influenza-induced concentrations of the Th2 chemokine thymic stromal lymphopoeitin (TSLP). In addition, NECs from smokers cultured alone had increased influenza-induced concentrations of the Th2 chemokine thymus and activation-regulated chemokine (TARC). Using this model, we demonstrated that in the context of infection with influenza, NECs obtained from smokers create an overall cytokine microenvironment that suppresses the interferon-mediated Th1 response and enhances the TSLP–TARC–mediated Th2 response, with the potential to modify the responses of DCs. Smoking-induced alterations in the Th1/Th2 balance may play a role in

  2. HTCC-Modified Nanoclay for Tissue Engineering Applications: A Synergistic Cell Growth and Antibacterial Efficiency

    PubMed Central

    Aliabadi, Majid; Dastjerdi, Roya; Kabiri, Kourosh

    2013-01-01

    This paper deals with the synthesis of a biocompatible chitosan ammonium salt N-(2-hydroxy) propyl-3-trimethylammonium chitosan chloride (HTCC) and using it in montmorillonite ion-exchange process. HTCC-modified montmorillonite (Mt) with different chemical ratios was successfully synthesized, and their characteristics have been verified by XRD and FTIR analyses. Produced samples have been evaluated in terms of antibacterial efficiency and biocompatibility (cell culture test). Antibacterial efficiency of synthesized HTCC/Mt samples has been confirmed against both gram negative bacteria (Escherichia coli) and gram positive bacteria (Staphylococcus aureus). The results disclosed that the antibacterial efficiency of HTCC-modified montmorillonite was unexpectedly even more than HTCC. This excellent synergistic effect has been referred to entrapping bacteria between the intercalated structures of HTCC-modified montmorillonite. Then HTCC on clay layers can seriously attack and damage the entrapped bacteria. An extraordinary biocompatibility, cell attachment, and cell growth even more than tissue culture polystyrene (TCPS) have been recorded in the case of this novel kind of modified clay. Due to existing concerns about serious and chronic infections after implant placement, this natural-based bioactive and antibacterial modified clay can be used in electrospun nanofibers and other polymeric implants with promising mechanical properties for tissue engineering applications. PMID:23998128

  3. HTCC-modified nanoclay for tissue engineering applications: a synergistic cell growth and antibacterial efficiency.

    PubMed

    Aliabadi, Majid; Dastjerdi, Roya; Kabiri, Kourosh

    2013-01-01

    This paper deals with the synthesis of a biocompatible chitosan ammonium salt N-(2-hydroxy) propyl-3-trimethylammonium chitosan chloride (HTCC) and using it in montmorillonite ion-exchange process. HTCC-modified montmorillonite (Mt) with different chemical ratios was successfully synthesized, and their characteristics have been verified by XRD and FTIR analyses. Produced samples have been evaluated in terms of antibacterial efficiency and biocompatibility (cell culture test). Antibacterial efficiency of synthesized HTCC/Mt samples has been confirmed against both gram negative bacteria (Escherichia coli) and gram positive bacteria (Staphylococcus aureus). The results disclosed that the antibacterial efficiency of HTCC-modified montmorillonite was unexpectedly even more than HTCC. This excellent synergistic effect has been referred to entrapping bacteria between the intercalated structures of HTCC-modified montmorillonite. Then HTCC on clay layers can seriously attack and damage the entrapped bacteria. An extraordinary biocompatibility, cell attachment, and cell growth even more than tissue culture polystyrene (TCPS) have been recorded in the case of this novel kind of modified clay. Due to existing concerns about serious and chronic infections after implant placement, this natural-based bioactive and antibacterial modified clay can be used in electrospun nanofibers and other polymeric implants with promising mechanical properties for tissue engineering applications.

  4. Optimization of the cell seeding density and modeling of cell growth and metabolism using the modified Gompertz model for microencapsulated animal cell culture.

    PubMed

    Wen-tao, Qi; Ying, Zhang; Juan, Ma; Xin, Guo; Yu-bing, Xie; Wei, Wang; Xiaojun, Ma

    2006-04-05

    Cell microencapsulation is one of the promising strategies for the in vitro production of proteins or in vivo delivery of therapeutic products. In order to design and fabricate the optimized microencapsulated cell system, the Gompertz model was applied and modified to describe the growth and metabolism of microencapsulated cell, including substrate consumption and product formation. The Gompertz model successfully described the cell growth kinetics and the modified Gompertz models fitted the substrate consumption and product formation well. It was demonstrated that the optimal initial cell seeding density was about 4-5 x 10(6) cells/mL of microcapsule, in terms of the maximum specific growth rate, the glucose consumption potential and the product formation potential calculated by the Gompertz and modified Gompertz models. Modeling of cell growth and metabolism in microcapsules provides a guideline for optimizing the culture of microencapsulated cells.

  5. Efficient Gene Transduction of Dispersed Islet Cells in Culture Using Fiber-Modified Adenoviral Vectors

    PubMed Central

    Hanayama, Hiroyuki; Ohashi, Kazuo; Utoh, Rie; Shimizu, Hirofumi; Ise, Kazuya; Sakurai, Fuminori; Mizuguchi, Hiroyuki; Tsuchiya, Hiroyuki; Okano, Teruo; Gotoh, Mitsukazu

    2015-01-01

    To establish novel islet-based therapies, our group has recently developed technologies for creating functional neo-islet tissues in the subcutaneous space by transplanting monolithic sheets of dispersed islet cells (islet cell sheets). Improving cellular function and viability are the next important challenges for enhancing the therapeutic effects. This article describes the adenoviral vector-mediated gene transduction of dispersed islet cells under culture conditions. Purified pancreatic islets were obtained from Lewis rats and dissociated into single islet cells. Cells were plated onto laminin-5-coated temperature-responsive polymer poly(N-isopropylacrylamide)-immobilized plastic dishes. At 0 h, islet cells were infected for 1 h with either conventional type 5 adenoviral vector (Ad-CA-GFP) or fiber-modified adenoviral vector (AdK7-CA-GFP) harboring a polylysine (K7) peptide in the C terminus of the fiber knob. We investigated gene transduction efficiency at 48 h after infection and found that AdK7-CA-GFP yielded higher transduction efficiencies than Ad-CA-GFP at a multiplicity of infection (MOI) of 5 and 10. For AdK7-CA-GFP at MOI = 10, 84.4 ± 1.5% of islet cells were found to be genetically transduced without marked vector infection-related cellular damage as determined by viable cell number and lactate dehydrogenase (LDH) release assay. After AdK7-CA-GFP infection at MOI = 10, cells remained attached and expanded to nearly full confluency, showing that this adenoviral infection protocol is a feasible approach for creating islet cell sheets. We have shown that dispersed and cultured islet cells can be genetically modified efficiently using fiber-modified adenoviral vectors. Therefore, this gene therapy technique could be used for cellular modification or biological assessment of dispersed islet cells. PMID:26858906

  6. Magnet-Bead Based MicroRNA Delivery System to Modify CD133+ Stem Cells

    PubMed Central

    Wiekhorst, Frank; Steinhoff, Gustav

    2016-01-01

    Aim. CD133+ stem cells bear huge potential for regenerative medicine. However, low retention in the injured tissue and massive cell death reduce beneficial effects. In order to address these issues, we intended to develop a nonviral system for appropriate cell engineering. Materials and Methods. Modification of human CD133+ stem cells with magnetic polyplexes carrying microRNA was studied in terms of efficiency, safety, and targeting potential. Results. High microRNA uptake rates (~80–90%) were achieved without affecting CD133+ stem cell properties. Modified cells can be magnetically guided. Conclusion. We developed a safe and efficient protocol for CD133+ stem cell modification. Our work may become a basis to improve stem cell therapeutical effects as well as their monitoring with magnetic resonance imaging. PMID:27795713

  7. New Strategies in Engineering T-cell Receptor Gene-Modified T cells to More Effectively Target Malignancies.

    PubMed

    Schmitt, Thomas M; Stromnes, Ingunn M; Chapuis, Aude G; Greenberg, Philip D

    2015-12-01

    The immune system, T cells in particular, have the ability to target and destroy malignant cells. However, antitumor immune responses induced from the endogenous T-cell repertoire are often insufficient for the eradication of established tumors, as illustrated by the failure of cancer vaccination strategies or checkpoint blockade for most tumors. Genetic modification of T cells to express a defined T-cell receptor (TCR) can provide the means to rapidly generate large numbers of tumor-reactive T cells capable of targeting tumor cells in vivo. However, cell-intrinsic factors as well as immunosuppressive factors in the tumor microenvironment can limit the function of such gene-modified T cells. New strategies currently being developed are refining and enhancing this approach, resulting in cellular therapies that more effectively target tumors and that are less susceptible to tumor immune evasion. ©2015 American Association for Cancer Research.

  8. New Strategies in Engineering T-Cell Receptor Gene-Modified T Cells to More Effectively Target Malignancies

    PubMed Central

    Schmitt, Thomas M.; Stromnes, Ingunn M.; Chapuis, Aude G.; Greenberg, Philip D.

    2016-01-01

    The immune system, and T cells in particular, have the ability to target and destroy malignant cells. However, anti-tumor immune responses induced from the endogenous T cell repertoire are often insufficient for the eradication of established tumors, as illustrated by the failure of cancer vaccination strategies or checkpoint blockade for most tumors. Genetic modification of T cells to express a defined T cell receptor (TCR) can provide the means to rapidly generate large numbers of tumor-reactive T cells capable of targeting tumor cells in vivo. However, cell-intrinsic factors as well as immunosuppressive factors in the tumor microenvironment can limit the function of such gene-modified T cells. New strategies currently being developed are refining and enhancing this approach, resulting in cellular therapies that more effectively target tumors and that are less susceptible to tumor immune-evasion. PMID:26463711

  9. Cell interaction with modified nanotubes formed on titanium alloy Ti-6Al-4V.

    PubMed

    Moravec, Hynek; Vandrovcova, Marta; Chotova, Katerina; Fojt, Jaroslav; Pruchova, Eva; Joska, Ludek; Bacakova, Lucie

    2016-08-01

    Nanotubes with diameters ranging from 40 to 60nm were prepared by electrochemical oxidation of the Ti-6Al-4V alloy in electrolyte containing ammonium sulphate and ammonium fluoride. The nanotubes were further modified with calcium and phosphate ions or were heat treated. Polished Ti-6Al-4V alloy served as a reference sample. The spreading of human osteoblast-like cells was similar on all nanotube samples but lower than on polished samples. The number of initially adhered cells was higher on non-modified nanotubes, but the final cell number was the highest on Ca-enriched nanotubes and the lowest on heat-treated nanotubes. However, these differences were relatively small and less pronounced than the differences in the concentration of specific molecular markers of cell adhesion and differentiation, estimated by their intensity of immunofluorescence staining. The concentration of vinculin, i.e. a protein of focal adhesion plaques, was the lowest on nanotubes modified with calcium. Collagen I, an early marker of osteogenic cell differentiation, was also the lowest on samples modified with calcium and was highest on polished samples. Alkaline phosphatase, a middle marker of osteogenic differentiation, was observed in lowest concentration on nanotubes modified with phosphorus and the highest on heat-treated samples. Osteocalcin concentrations, a late marker of osteogenic cell differentiation, were similar on all tested samples, although they tended to be the highest on heat-treated samples. Thus, osteogenic differentiation can be modulated by various additional treatments of nanotube coatings on Ti-6Al-4V implants. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. A Phase I Study on Adoptive Immunotherapy Using Gene-Modified T Cells for Ovarian Cancer

    PubMed Central

    Kershaw, Michael H.; Westwood, Jennifer A.; Parker, Linda L.; Wang, Gang; Eshhar, Zelig; Mavroukakis, Sharon A.; White, Donald E.; Wunderlich, John R.; Canevari, Silvana; Rogers-Freezer, Linda; Chen, Clara C.; Yang, James C.; Rosenberg, Steven A.; Hwu, Patrick

    2007-01-01

    Purpose A phase I study was conducted to assess the safety of adoptive immunotherapy using gene-modified autologous T cells for the treatment of metastatic ovarian cancer. Experimental Design T cells with reactivity against the ovarian cancer – associated antigen α-folate receptor (FR) were generated by genetic modification of autologous T cells with a chimeric gene incorporating an anti-FR single-chain antibody linked to the signaling domain of the Fc receptor γ chain. Patients were assigned to one of two cohorts in the study. Eight patients in cohort 1received a dose escalation of T cells in combination with high-dose interleukin-2, and six patients in cohort 2 received dual-specific T cells (reactive with both FR and allogeneic cells) followed by immunization with allogeneic peripheral blood mononuclear cells. Results Five patients in cohort 1 experienced some grade 3 to 4 treatment-related toxicity that was probably due to interleukin-2 administration, which could be managed using standard measures. Patients in cohort 2 experienced relatively mild side effects with grade 1to 2 symptoms. No reduction in tumor burden was seen in any patient. Tracking 111In-labeled adoptively transferred T cells in cohort 1revealed a lack of specific localization of T cells to tumor except in one patient where some signal was detected in a peritoneal deposit. PCR analysis showed that gene-modified T cells were present in the circulation in large numbers for the first 2 days after transfer, but these quickly declined to be barely detectable 1month later in most patients. An inhibitory factor developed in the serum of three of six patients tested over the period of treatment, which significantly reduced the ability of gene-modified T cells to respond against FR+ tumor cells. Conclusions Large numbers of gene-modified tumor-reactive T cells can be safely given to patients, but these cells do not persist in large numbers long term. Future studies need to employ strategies to

  11. Gene Expression in Mammalian Cells Using BacMam, a Modified Baculovirus System.

    PubMed

    Fornwald, James A; Lu, Quinn; Boyce, Frederick M; Ames, Robert S

    2016-01-01

    BacMams are modified baculoviruses that contain mammalian expression cassettes for gene delivery and expression in mammalian cells. BacMams have become an integral part of the recombinant mammalian gene expression toolbox in research labs worldwide. Construction of transfer vectors is straightforward using basic molecular biology protocols. Virus generation is based on common methods used with the baculovirus insect cell expression system. BacMam transduction of mammalian cells requires minimal modifications to familiar cell culture methods. This chapter highlights the BacMam transfer vector pHTBV.

  12. Chimeric Antigen Receptor–Modified T Cells for Acute Lymphoid Leukemia

    PubMed Central

    Barrett, David; Aplenc, Richard; Porter, David L.; Rheingold, Susan R.; Teachey, David T.; Chew, Anne; Hauck, Bernd; Wright, J. Fraser; Milone, Michael C.; Levine, Bruce L.; June, Carl H.

    2014-01-01

    Summary Chimeric antigen receptor–modified T cells with specificity for CD19 have shown promise in the treatment of chronic lymphocytic leukemia (CLL). It remains to be established whether chimeric antigen receptor T cells have clinical activity in acute lymphoblastic leukemia (ALL). Two children with relapsed and refractory pre–B-cell ALL received infusions of T cells transduced with anti-CD19 antibody and a T-cell signaling molecule (CTL019 chimeric antigen receptor T cells), at a dose of 1.4×106 to 1.2×107 CTL019 cells per kilogram of body weight. In both patients, CTL019 T cells expanded to a level that was more than 1000 times as high as the initial engraftment level, and the cells were identified in bone marrow. In addition, the chimeric antigen receptor T cells were observed in the cerebrospinal fluid (CSF), where they persisted at high levels for at least 6 months. Eight grade 3 or 4 adverse events were noted. The cytokine-release syndrome and B-cell aplasia developed in both patients. In one child, the cytokine-release syndrome was severe; cytokine blockade with etanercept and tocilizumab was effective in reversing the syndrome and did not prevent expansion of chimeric antigen receptor T cells or reduce anti-leukemic efficacy. Complete remission was observed in both patients and is ongoing in one patient at 11 months after treatment. The other patient had a relapse, with blast cells that no longer expressed CD19, approximately 2 months after treatment. Chimeric antigen receptor–modified T cells are capable of killing even aggressive, treatment-refractory acute leukemia cells in vivo. The emergence of tumor cells that no longer express the target indicates a need to target other molecules in addition to CD19 in some patients with ALL. PMID:23527958

  13. Tissue engineering of bladder using vascular endothelial growth factor gene-modified endothelial progenitor cells.

    PubMed

    Chen, Bai-Song; Xie, Hua; Zhang, Sheng-Li; Geng, Hong-Quan; Zhou, Jun-Mei; Pan, Jun; Chen, Fang

    2011-12-01

    This study assessed the use of vascular endothelial growth factor (VEGF) gene-modified endothelial progenitor cells (EPCs) seeded onto bladder acellular matrix grafts (BAMGs), to enhance the blood supply in tissue-engineered bladders in a porcine model. Autologous porcine peripheral EPCs were isolated, cultured, expanded, characterized, and modified with the VEGF gene using an adenovirus vector. The expression of VEGF was examined using reverse transcriptase polymerase chain reaction (RT-PCR) and an enzyme-linked immunosorbent assay (ELISA). VEGF gene modified EPCs were seeded onto BAMG and cultured for 3 days before implantation into pigs for bladder tissue engineering. A partial bladder cystectomy was performed in 12 pigs. The experimental group (6 pigs) received VEGF gene-modified EPC-seeded BAMG. The control group (6 pigs) received BAMG without seeded EPCs. The resulting tissue-engineered bladders were subject to a general and histological analysis. Microvessel density (MVD) was assessed using immunohistochemistry. The ex vivo transfection efficiency of EPCs was greater than 60%-70% when concentrated adenovirus was used. The genetically modified cells expressed both VEGF and green fluorescent protein (GFP). Scanning electron microscopy (SEM) and Masson's trichrome staining of cross sections of the cultured cells seeded to BAMG showed cell attachment and proliferation on the surface of the BAMG. Histological examination revealed bladder regeneration in a time-dependent fashion. Significant increases in MVD were observed in the experimental group, in comparison with the control group. VEGF-modified EPCs significantly enhanced neovascularization, compared with BAMG alone. These results indicate that EPCs, combined with VEGF gene therapy, may be a suitable approach for increasing blood supply in the tissue engineering of bladders. Thus, a useful strategy to achieve a tissue-engineered bladder is indicated.

  14. c-Jun Gene-Modified Schwann Cells: Upregulating Multiple Neurotrophic Factors and Promoting Neurite Outgrowth

    PubMed Central

    Huang, Liangliang; Quan, Xin; Liu, Zhongyang; Ma, Teng; Wu, Yazhen; Ge, Jun; Zhu, Shu; Yang, Yafeng; Liu, Liang; Sun, Zhen

    2015-01-01

    Genetically modified Schwann cells (SCs) that overexpress neurotrophic factors (NFs), especially those that overexpress multiple NFs, hold great potential for promoting nerve regeneration. Currently, only one NF can be upregulated in most genetically modified SCs, and simultaneously upregulating multiple NFs in SCs remains challenging. In this study, we found that the overexpression of c-Jun, a component of the AP-1 transcription factor, effectively upregulated the expression and secretion of multiple NFs, including glial cell line-derived neurotrophic factor, brain-derived neurotrophic factor, artemin, leukemia inhibitory factor, and nerve growth factor. The c-Jun gene-modified SCs showed a normal morphology in scanning electron microscopy and fluorescent staining analysis. In addition, the c-Jun-modified SCs showed enhanced proliferation and migration abilities compared with vector control cells. We used transwell chambers to establish coculture systems imitating the in vivo conditions in which transplanted SCs might influence native SCs and neurons. We found that the c-Jun-modified SCs enhanced native SC migration and promoted the proliferation of native SCs in the presence of axons. Further analysis revealed that in the c-Jun group, the average length and the total area of neurites divided by the total area of the explant body were μm 1180±25 and 6.4±0.4, respectively, which were significantly greater compared with the other groups. These findings raise the possibility of constructing an optimal therapeutic alternative for nerve repair using c-Jun-modified SCs, which have the potential to promote axonal regeneration and functional recovery by upregulating multiple NFs. In addition, these cells exhibit enhanced migration and proliferation abilities, enhance the biological functions of native SCs, and promote neurite outgrowth. PMID:25588149

  15. Enhanced ambient stability of efficient perovskite solar cells by employing a modified fullerene cathode interlayer

    DOE PAGES

    Zhu, Zonglong; Chueh, Chu -Chen; Lin, Francis; ...

    2016-03-22

    A novel fullerene cathode interlayer is employed to facilitate the fabrication of stable and efficient perovskite solar cells. Here, this modified fullerene surfactant significantly increases air stability of the derived devices due to its hydrophobic characteristics to enable 80% of the initial PCE to be retained after being exposed in ambient condition with 20% relative humidity for 14 days.

  16. CAR-modified T-cell therapy for cancer: an updated review.

    PubMed

    Haji-Fatahaliha, Mostafa; Hosseini, Maryam; Akbarian, Asiye; Sadreddini, Sanam; Jadidi-Niaragh, Farhad; Yousefi, Mehdi

    2016-09-01

    The use of chimeric antigen receptor (CAR)-modified T cells is a promising approach for cancer immunotherapy. These genetically modified receptors contain an antigen-binding moiety, a hinge region, a transmembrane domain, and an intracellular costimulatory domain resulting in T-cell activation subsequent to antigen binding. Optimal tumor removal through CAR-modified T cells requires suitable target antigen selection, co-stimulatory signaling domain, and the ability of CAR T cells to traffic, persist, and retain antitumor function after adoptive transfer. There are several elements which can improve antitumor function of CAR T cells, including signaling, conditioning chemotherapy and irradiation, tumor burden of the disease, T-cell phenotype, and supplementary cytokine usage. This review outlines four generations of CAR. The pre-clinical and clinical studies showed that this technique has a great potential for treatment of solid and hematological malignancies. The main purpose of the current review is to focus on the pre-clinical and clinical developments of CAR-based immunotherapy.

  17. IL-10/TGF-beta-modified macrophages induce regulatory T cells and protect against adriamycin nephrosis.

    PubMed

    Cao, Qi; Wang, Yiping; Zheng, Dong; Sun, Yan; Wang, Ya; Lee, Vincent W S; Zheng, Guoping; Tan, Thian Kui; Ince, Jon; Alexander, Stephen I; Harris, David C H

    2010-06-01

    IL-10/TGF-beta-modified macrophages, a subset of activated macrophages, produce anti-inflammatory cytokines, suggesting that they may protect against inflammation-mediated injury. Here, macrophages modified ex vivo by IL-10/TGF-beta (IL-10/TGF-beta Mu2) significantly attenuated renal inflammation, structural injury, and functional decline in murine adriamycin nephrosis (AN). These cells deactivated effector macrophages and inhibited CD4+ T cell proliferation. IL-10/TGF-beta Mu2 expressed high levels of the regulatory co-stimulatory molecule B7-H4, induced regulatory T cells from CD4+CD25- T cells in vitro, and increased the number of regulatory T cells in lymph nodes draining the kidneys in AN. The phenotype of IL-10/TGF-beta Mu2 did not switch to that of effector macrophages in the inflamed kidney, and these cells did not promote fibrosis. Taken together, these data demonstrate that IL-10/TGF-beta-modified macrophages effectively protect against renal injury in AN and may become part of a therapeutic strategy for chronic inflammatory disease.

  18. Cell adhesion on polytetrafluoroethylene modified by UV-irradiation in an ammonia atmosphere.

    PubMed

    Heitz, J; Svorcík, V; Bacáková, L; Rocková, K; Ratajová, E; Gumpenberger, T; Bäuerle, D; Dvoránková, B; Kahr, H; Graz, I; Romanin, C

    2003-10-01

    We report on the modification of polytetrafluoroethylene (PTFE) by exposure to the ultraviolet (UV) light of a Xe(2)*-excimer lamp at a wavelength of 172 nm in an ammonia atmosphere. Typical treatment times were up to 30 min. Subsequently, the samples were grafted with the amino acid alanine from an aqueous solution. The samples were characterized by means of optical transmission spectroscopy, laser-induced fluorescence and contact-angle measurements. We studied the adhesion of rat aortic smooth muscle cells (SMC) and mouse fibroblasts (3T3 cells) to the modified polymer samples using an in vitro technique, where the population density and spread of adhering cells is determined 24 h after seeding by image analysis. For both cell types the exposure of PTFE to UV-light in an ammonia atmosphere resulted in a significant increase in the number of adhering cells and in the size of their spreading area. The grafting with alanine enhanced this effect. Additional experiments with human endothelial cells (HEC) also demonstrated improved adhesion to modified PTFE. Thus, PTFE modified by our method appears to be a promising material for fabrication of artificial vascular prostheses and implants or for cultivation of skin substitutes.

  19. Overview on the dosimetric uncertainty analysis for photon-emitting brachytherapy sources, in the light of the AAPM Task Group No 138 and GEC-ESTRO report

    NASA Astrophysics Data System (ADS)

    DeWerd, Larry A.; Venselaar, Jack L. M.; Ibbott, Geoffrey S.; Meigooni, Ali S.; Stump, Kurt E.; Thomadsen, Bruce R.; Rivard, Mark J.

    2012-10-01

    In 2011, the American Association of Physicists in Medicine (AAPM) and the Groupe Européen de Curiethérapie-European Society for Radiotherapy and Oncology (GEC-ESTRO) published a report pertaining to uncertainties in brachytherapy single-source dosimetry preceding clinical use. The International Organization for Standardization's Guide to the Expression of Uncertainty in Measurement and Technical Note 1297 by the National Institute of Standards and Technology are taken as reference standards for uncertainty formalism. Uncertainties involved in measurements or Monte Carlo methods to estimate brachytherapy dose distributions are provided with discussion of the components intrinsic to the overall dosimetric assessment. The uncertainty propagation from the primary calibration standard through transfer to the clinic for air-kerma strength is given with uncertainties in each of the brachytherapy dosimetry parameters of the AAPM TG-43 dose-calculation formalism. For low-energy and high-energy brachytherapy sources of low dose-rate and high dose-rate, a combined dosimetric uncertainty <5% (k = 1) is estimated, which is consistent with prior literature estimates. Recommendations are provided for clinical medical physicists, dosimetry investigators, and manufacturers of brachytherapy sources and treatment planning systems. These recommendations reflect the guidance of the AAPM and GEC-ESTRO for their members, and may also be used as guidance to manufacturers and regulatory agencies in developing good manufacturing practices for conventional brachytherapy sources used in routine clinical treatments.

  20. A 3-D RBF-FD solver for modeling the atmospheric global electric circuit with topography (GEC-RBFFD v1.0)

    NASA Astrophysics Data System (ADS)

    Bayona, V.; Flyer, N.; Lucas, G. M.; Baumgaertner, A. J. G.

    2015-10-01

    A numerical model based on radial basis function-generated finite differences (RBF-FD) is developed for simulating the global electric circuit (GEC) within the Earth's atmosphere, represented by a 3-D variable coefficient linear elliptic partial differential equation (PDE) in a spherically shaped volume with the lower boundary being the Earth's topography and the upper boundary a sphere at 60 km. To our knowledge, this is (1) the first numerical model of the GEC to combine the Earth's topography with directly approximating the differential operators in 3-D space and, related to this, (2) the first RBF-FD method to use irregular 3-D stencils for discretization to handle the topography. It benefits from the mesh-free nature of RBF-FD, which is especially suitable for modeling high-dimensional problems with irregular boundaries. The RBF-FD elliptic solver proposed here makes no limiting assumptions on the spatial variability of the coefficients in the PDE (i.e., the conductivity profile), the right hand side forcing term of the PDE (i.e., distribution of current sources) or the geometry of the lower boundary.

  1. Characterization and Testing the Efficiency of Acinetobacter baumannii Phage vB-GEC_Ab-M-G7 as an Antibacterial Agent

    PubMed Central

    Kusradze, Ia; Karumidze, Natia; Rigvava, Sophio; Dvalidze, Teona; Katsitadze, Malkhaz; Amiranashvili, Irakli; Goderdzishvili, Marina

    2016-01-01

    Acinetobacter baumannii is a gram-negative, non-motile bacterium that, due to its multidrug resistance, has become a major nosocomial pathogen. The increasing number of multidrug resistant (MDR) strains has renewed interest in phage therapy. The aim of our study was to assess the effectiveness of phage administration in Acinetobacter baumannii wound infections in an animal model to demonstrate phage therapy as non-toxic, safe and alternative antibacterial remedy. Using classical methods for the study of bacteriophage properties, we characterized phage vB-GEC_Ab-M-G7 as a dsDNA myovirus with a 90 kb genome size. Important characteristics of vB-GEC_Ab-M-G7include a short latent period and large burst size, wide host range, resistance to chloroform and thermal and pH stability. In a rat wound model, phage application effectively decreased the number of bacteria isolated from the wounds of successfully treated animals. This study highlights the effectiveness of the phage therapy and provides further insight into treating infections caused by MDR strains using phage administration. PMID:27757110

  2. [Automatic segmentation of clustered breast cancer cells based on modified watershed algorithm and concavity points searching].

    PubMed

    Tong, Zhen; Pu, Lixin; Dong, Fangjie

    2013-08-01

    As a common malignant tumor, breast cancer has seriously affected women's physical and psychological health even threatened their lives. Breast cancer has even begun to show a gradual trend of high incidence in some places in the world. As a kind of common pathological assist diagnosis technique, immunohistochemical technique plays an important role in the diagnosis of breast cancer. Usually, Pathologists isolate positive cells from the stained specimen which were processed by immunohistochemical technique and calculate the ratio of positive cells which is a core indicator of breast cancer in diagnosis. In this paper, we present a new algorithm which was based on modified watershed algorithm and concavity points searching to identify the positive cells and segment the clustered cells automatically, and then realize automatic counting. By comparison of the results of our experiments with those of other methods, our method can exactly segment the clustered cells without losing any geometrical cell features and give the exact number of separating cells.

  3. Surface-modified yeast cells: A novel eukaryotic carrier for oral application.

    PubMed

    Kenngott, Elisabeth E; Kiefer, Ruth; Schneider-Daum, Nicole; Hamann, Alf; Schneider, Marc; Schmitt, Manfred J; Breinig, Frank

    2016-02-28

    The effective targeting and subsequent binding of particulate carriers to M cells in Peyer's patches of the gut is a prerequisite for the development of oral delivery systems. We have established a novel carrier system based on cell surface expression of the β1-integrin binding domain of invasins derived from Yersinia enterocolitica and Yersinia pseudotuberculosis on the yeast Saccharomyces cerevisiae. All invasin derivatives were shown to be effectively expressed on the cell surface and recombinant yeast cells showed improved binding to both human HEp-2 cells and M-like cells in vitro. Among the different derivatives tested, the integrin-binding domain of Y. enterocolitica invasin proved to be the most effective and was able to target Peyer's patches in vivo. In conclusion, cell surface-modified yeasts might provide a novel bioadhesive, eukaryotic carrier system for efficient and targeted delivery of either antigens or drugs via the oral route. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Cell Adhesion and Proliferation on Sulfonated and Non-Modified Chitosan Films.

    PubMed

    Martínez-Campos, Enrique; Civantos, Ana; Redondo, Juan Alfonso; Guzmán, Rodrigo; Pérez-Perrino, Mónica; Gallardo, Alberto; Ramos, Viviana; Aranaz, Inmaculada

    2016-09-15

    Three types of chitosan-based films have been prepared and evaluated: a non-modified chitosan film bearing cationizable aliphatic amines and two films made of N-sulfopropyl chitosan derivatives bearing both aliphatic amines and negative sulfonate groups at different ratios. Cell adhesion and proliferation on chitosan films of C2C12 pre-myoblastic cells and B16 cells as tumoral model have been tested. A differential cell behavior has been observed on chitosan films due to their different surface modification. B16 cells have shown lower vinculin expression when cultured on sulfonated chitosan films. This study shows how the interaction among cells and material surface can be modulated by physicochemical characteristics of the biomaterial surface, altering tumoral cell adhesion and proliferation processes.

  5. Platelet Lysate-Modified Porous Silicon Microparticles for Enhanced Cell Proliferation in Wound Healing Applications.

    PubMed

    Fontana, Flavia; Mori, Michela; Riva, Federica; Mäkilä, Ermei; Liu, Dongfei; Salonen, Jarno; Nicoletti, Giovanni; Hirvonen, Jouni; Caramella, Carla; Santos, Hélder A

    2016-01-13

    The new frontier in the treatment of chronic nonhealing wounds is the use of micro- and nanoparticles to deliver drugs or growth factors into the wound. Here, we used platelet lysate (PL), a hemoderivative of platelets, consisting of a multifactorial cocktail of growth factors, to modify porous silicon (PSi) microparticles and assessed both in vitro and ex vivo the properties of the developed microsystem. PL-modified PSi was assessed for its potential to induce proliferation of fibroblasts. The wound closure-promoting properties of the microsystem were then assessed in an in vitro wound healing assay. Finally, the PL-modified PSi microparticles were evaluated in an ex vivo experiment over human skin. It was shown that PL-modified PSi microparticles were cytocompatible and enhanced the cell proliferation in different experimental settings. In addition, this microsystem promoted the closure of the gap between the fibroblast cells in the wound healing assay, in periods of time comparable with the positive control, and induced a proliferation and regeneration process onto the human skin in an ex vivo experiment. Overall, our results show that PL-modified PSi microparticles are suitable microsystems for further development toward applications in the treatment of chronic nonhealing wounds.

  6. Effects of modified LDL and HDL on retinal pigment epithelial cells: a role in diabetic retinopathy?

    PubMed Central

    Du, M.; Wu, M.; Fu, D.; Yang, S.; Chen, J.; Wilson, K.; Lyons, T. J.

    2014-01-01

    Aims/hypothesis Blood–retina barrier leakage in diabetes results in extravasation of plasma lipoproteins. Intra-retinal modified LDL have been implicated in diabetic retinopathy (DR), but their effects on retinal pigment epithelial (RPE) cells and the added effects of extravasated modified HDL are unknown. Methods In human retinas from individuals with and without diabetes and DR, immunohistochemistry was used to detect ApoB, ApoA1 and endoplasmic reticulum (ER) stress markers. In cell culture, human RPE cells were treated with native LDL (N-LDL) or heavily-oxidised glycated LDL (HOG-LDL) with or without pretreatment with native HDL (N-HDL) or heavily-oxidised glycated HDL (HOG-HDL). Cell viability, oxidative stress, ER stress, apoptosis and autophagy were assessed by Cell Counting Kit-8 assay, dichlorofluorescein assay, western blotting, immunofluorescence and TUNEL assay. In separate experiments, RPE cells were treated with lipid oxidation products, 7-ketocholesterol (7-KC, 5–40 µmol/l) or 4-hydroxynonenal (4-HNE, 5–80 µmol/l), with or without pretreatment with N-HDL or HOG-HDL. Results ApoB, ApoA1 staining and RPE ER stress were increased in the presence of DR. HOG-LDL but not N-LDL significantly decreased RPE cell viability and increased reactive oxygen species generation, ER stress, apoptosis and autophagy. Similarly, 4-HNE and 7-KC decreased viability and induced ER stress. Pretreatment with N-HDL mitigated these effects, whereas HOG-HDL was less effective by most, but not all, measures. Conclusions/interpretation In DR, extravascular modified LDL may promote RPE injury through oxidative stress, ER stress, autophagy and apoptosis. N-HDL has protective effects, but HOG-HDL is less effective. Extravasation and modification of HDL may modulate the injurious effects of extravasated modified LDL on the retinal pigment epithelium. PMID:23842729

  7. Effects of modified LDL and HDL on retinal pigment epithelial cells: a role in diabetic retinopathy?

    PubMed

    Du, M; Wu, M; Fu, D; Yang, S; Chen, J; Wilson, K; Lyons, T J

    2013-10-01

    Blood-retina barrier leakage in diabetes results in extravasation of plasma lipoproteins. Intra-retinal modified LDLs have been implicated in diabetic retinopathy (DR), but their effects on retinal pigment epithelial (RPE) cells and the added effects of extravasated modified HDLs are unknown. In human retinas from individuals with and without diabetes and DR, immunohistochemistry was used to detect ApoB, ApoA1 and endoplasmic reticulum (ER) stress markers. In cell culture, human RPE cells were treated with native LDL (N-LDL) or heavily-oxidised glycated LDL (HOG-LDL) with or without pretreatment with native HDL (N-HDL) or heavily-oxidised glycated HDL (HOG-HDL). Cell viability, oxidative stress, ER stress, apoptosis and autophagy were assessed by Cell Counting Kit-8 assay, dichlorofluorescein assay, western blotting, immunofluorescence and TUNEL assay. In separate experiments, RPE cells were treated with lipid oxidation products, 7-ketocholesterol (7-KC, 5-40 μmol/l) or 4-hydroxynonenal (4-HNE, 5-80 μmol/l), with or without pretreatment with N-HDL or HOG-HDL. ApoB, ApoA1 staining and RPE ER stress were increased in the presence of DR. HOG-LDL but not N-LDL significantly decreased RPE cell viability and increased reactive oxygen species generation, ER stress, apoptosis and autophagy. Similarly, 4-HNE and 7-KC decreased viability and induced ER stress. Pretreatment with N-HDL mitigated these effects, whereas HOG-HDL was less effective by most, but not all, measures. In DR, extravascular modified LDL may promote RPE injury through oxidative stress, ER stress, autophagy and apoptosis. N-HDL has protective effects, but HOG-HDL is less effective. Extravasation and modification of HDL may modulate the injurious effects of extravasated modified LDL on the retinal pigment epithelium.

  8. Overexpression of AQP3 Modifies the Cell Cycle and the Proliferation Rate of Mammalian Cells in Culture.

    PubMed

    Galán-Cobo, Ana; Ramírez-Lorca, Reposo; Serna, Ana; Echevarría, Miriam

    2015-01-01

    Abnormal AQP3 overexpression in tumor cells of different origins has been reported and a role for this enhanced AQP3 expression in cell proliferation and tumor processess has been indicated. To further understand the role AQP3 plays in cell proliferation we explore the effect that stable over expression of AQP3 produces over the proliferation rate and cell cycle of mammalian cells. The cell cycle was analyzed by flow cytometry with propidium iodide (PI) and the cell proliferation rate measured through cell counting and BrdU staining. Cells with overexpression of AQP3 (AQP3-o) showed higher proliferation rate and larger percentage of cells in phases S and G2/M, than wild type cells (wt). Evaluation of the cell response against arresting the cell cycle with Nocodazole showed that AQP3-o exhibited a less modified cell cycle pattern and lower Annexin V specific staining than wt, consistently with a higher resistance to apoptosis of AQP3-overexpressing cells. The cell volume and complexity were also larger in AQP3-o compared to wt cells. After transcriptomic analysis, RT-qPCR was performed to highlight key molecules implicated in cell proliferation which expression may be altered by overexpression of AQP3 and the comparative analysis between both type of cells showed significant changes in the expression of Zeb2, Jun, JunB, NF-kβ, Cxcl9, Cxcl10, TNF, and TNF receptors. We conclude that the role of AQP3 in cell proliferation seems to be connected to increments in the cell cycle turnover and changes in the expression levels of relevant genes for this process. Larger expression of AQP3 may confer to the cell a more tumor like phenotype and contributes to explain the presence of this protein in many different tumors.

  9. Overexpression of AQP3 Modifies the Cell Cycle and the Proliferation Rate of Mammalian Cells in Culture

    PubMed Central

    Galán-Cobo, Ana; Ramírez-Lorca, Reposo; Serna, Ana; Echevarría, Miriam

    2015-01-01

    Abnormal AQP3 overexpression in tumor cells of different origins has been reported and a role for this enhanced AQP3 expression in cell proliferation and tumor processess has been indicated. To further understand the role AQP3 plays in cell proliferation we explore the effect that stable over expression of AQP3 produces over the proliferation rate and cell cycle of mammalian cells. The cell cycle was analyzed by flow cytometry with propidium iodide (PI) and the cell proliferation rate measured through cell counting and BrdU staining. Cells with overexpression of AQP3 (AQP3-o) showed higher proliferation rate and larger percentage of cells in phases S and G2/M, than wild type cells (wt). Evaluation of the cell response against arresting the cell cycle with Nocodazole showed that AQP3-o exhibited a less modified cell cycle pattern and lower Annexin V specific staining than wt, consistently with a higher resistance to apoptosis of AQP3-overexpressing cells. The cell volume and complexity were also larger in AQP3-o compared to wt cells. After transcriptomic analysis, RT-qPCR was performed to highlight key molecules implicated in cell proliferation which expression may be altered by overexpression of AQP3 and the comparative analysis between both type of cells showed significant changes in the expression of Zeb2, Jun, JunB, NF-kβ, Cxcl9, Cxcl10, TNF, and TNF receptors. We conclude that the role of AQP3 in cell proliferation seems to be connected to increments in the cell cycle turnover and changes in the expression levels of relevant genes for this process. Larger expression of AQP3 may confer to the cell a more tumor like phenotype and contributes to explain the presence of this protein in many different tumors. PMID:26367709

  10. Biocompatibility of pure titanium modified by human endothelial cell-derived extracellular matrix

    NASA Astrophysics Data System (ADS)

    Xue, Xiaoqing; Wang, Jin; Zhu, Ying; Tu, Qiufen; Huang, Nan

    2010-04-01

    Extracellular matrix (ECM) used to modify biomaterial surface is a promising method for improving cardiovascular material hemocompatibility. In the present work, human umbilical vein endothelial cells (HUVECs) are cultured and native ECM is obtained on pure titanium surface. Fourier infrared spectrum (FTIR) test proves the existence of amide I and amide II band on the modified titanium surface. X-ray photoelectron spectroscopy (XPS) further confirms the chemical composition and binding types of the ECM proteins on the titanium substrate. The results of light microscopy and atomic force microscopy (AFM) exhibit the morphology of HUVEC derived ECM. There are higher water contact angles on the ECM modified samples. Furthermore, some ECM components, including fibronectin (FN), laminin (LN) and type IV collagen (IV-COL) are presented on ECM-covered titanium surface by immunofluorescence staining. The biological behavior of cultured HUVECs and adherent platelets on different samples are investigated by in vitro HUVECs culture and platelet adhesion. Cells exhibit better morphology and their proliferation ability greatly improve on the ECM-covered titanium. At the same time, the platelet adhesion and spreading are inhibited on ECM-covered titanium surface. These investigations demonstrate that ECM produced by HUVECs cannot only improve adhesion and proliferation ability of endothelial cell but also inhibit adhesion and activation of platelets. Thus, the approach described here may provide a basis for preparation of modified surface in cardiovascular implants application.

  11. Proinsulin modified by analogues of arginine and lysine is degraded rapidly in pancreatic B-cells.

    PubMed Central

    Halban, P A; Amherdt, M; Orci, L; Renold, A E

    1984-01-01

    Modified cytosolic proteins are known to be degraded more rapidly than their native counterparts. In order to determine whether the same applies to a modified protein within the potentially protective environment of secretory granules, rat islets were labelled [( 3H]leucine) in the presence or absence (controls) of 3 mM-canavanine and 3 mM-thialysine (analogues of arginine and lysine respectively), followed by a 24h 'chase' period without analogues. The results showed the following. (1) Incorporation of the analogues into newly synthesized labelled proinsulin inhibited its conversion into insulin during the chase period. (2) Despite this block in conversion, the modified proinsulin was released from islets at the same rate as native proinsulin and insulin from control islets. (3) Morphometric analysis of high-resolution autoradiographs showed that products labelled in the presence of analogues were sequestered into secretory granules at the same rate as native products in control B-cells. (4) Only 7% of prelabelled proinsulin had been degraded within islet cells during the chase period in control islets, compared with 36% for proinsulin prelabelled in the presence of analogues. (5) Control experiments showed that the analogues had no effect on the release or intracellular degradation of unmodified stored insulin (present in islets before exposure to the analogues). (6) Despite sequestration into secretory granules, modified proinsulin, if not released from B-cells, is thus degraded more rapidly than native products. PMID:6372788

  12. Generation of genetically modified mice using CRISPR/Cas9 and haploid embryonic stem cell systems

    PubMed Central

    JIN, Li-Fang; LI, Jin-Song

    2016-01-01

    With the development of high-throughput sequencing technology in the post-genomic era, researchers have concentrated their efforts on elucidating the relationships between genes and their corresponding functions. Recently, important progress has been achieved in the generation of genetically modified mice based on CRISPR/Cas9 and haploid embryonic stem cell (haESC) approaches, which provide new platforms for gene function analysis, human disease modeling, and gene therapy. Here, we review the CRISPR/Cas9 and haESC technology for the generation of genetically modified mice and discuss the key challenges in the application of these approaches. PMID:27469251

  13. Increased endothelial cell adhesion on plasma modified nanostructured polymeric and metallic surfaces for vascular stent applications.

    PubMed

    Pareta, Rajesh A; Reising, Alexander B; Miller, Tiffany; Storey, Dan; Webster, Thomas J

    2009-06-15

    Techniques to regenerate the vasculature have risen considerably over the last few decades due to the increased clinical diagnosis of artery narrowing and blood vessel blockage. Although initially re-establishing blood flow, current small diameter vascular regenerative materials often eventually cause thrombosis and restenosis due to a lack of initial endothelial cell coverage on such materials. The objective of this in vitro study was to evaluate commonly used vascular materials (specifically, polyethylene terephthalate, polytetrafluoroethylene, polyvinyl chloride, polyurethane, nylon, commercially pure titanium, and a titanium alloy (Ti6Al4V)) modified using an ionic plasma deposition (IPD) process and a nitrogen ion implantation plasma deposition (NIIPD) process. Such surface modifications have been previously shown to create nanostructured surface features which mimic the natural nanostructured surface features of blood vessels. The modified and unmodified surfaces were characterized by scanning electron microscopy, atomic force microscopy and surface energy measurements. Furthermore, in vitro endothelial cell adhesion tests (a key first step for vascular material endothelialization) demonstrated increased endothelial cell adhesion on many modified (with IPD and NIIPD + IPD) compared to unmodified samples. In general, endothelial cell adhesion increased with nanoroughness and surface energy but demonstrated a decreased endothelial cell adhesion trend after an optimal coating surface energy value was reached. Thus, results from this study provided materials and a versatile surface modification process that can potentially increase endothelialization faster than current unmodified (conventional) polymer and metallic vascular materials.

  14. Dual-reporter surrogate systems for efficient enrichment of genetically modified cells.

    PubMed

    Ren, Chonghua; Xu, Kun; Liu, Zhongtian; Shen, Juncen; Han, Furong; Chen, Zhilong; Zhang, Zhiying

    2015-07-01

    Isolation of genetically modified cells generated by designed nucleases are challenging, since they are often phenotypically indistinguishable from their parental cells. To efficiently enrich genetically modified cells, we developed two dual-reporter surrogate systems, namely NHEJ-RPG and SSA-RPG based on NHEJ and SSA repair mechanisms, respectively. Repair and enrichment efficiencies of these two systems were compared using different nucleases. In both CRISPR-Cas9- and ZFNs-induced DSB repair studies, we found that the efficiency and sensitivity of the SSA-RPG reporter with direct repeat length more than 200 bp were much higher than the NHEJ-RPG reporter. By utilizing the SSA-RPG reporter, we achieved the enrichment for indels in several endogenous loci with 6.3- to 34.8-fold of non-selected cells. Thus, the highly sensitive SSA-RPG reporter can be used for activity validation of designed nucleases and efficient enrichment of genetically modified cells. Besides, our systems offer alternative enrichment choices either by puromycin selection or FACS.

  15. Monitoring of dopamine release in single cell using ultrasensitive ITO microsensors modified with carbon nanotubes.

    PubMed

    Shi, Bao-Xian; Wang, Yu; Zhang, Kai; Lam, Tin-Lun; Chan, Helen Lai-Wa

    2011-02-15

    The study of single cell dynamics has been greatly adapted in biological and medical research and applications. In this work a novel microfluidic electrochemical sensor with carbon nanotubes (CNTs) modified indium tin oxide (ITO) microelectrode was developed for single cells release monitoring. The sensitivity of the electrochemical sensor after CNTs surface modification was improved by 2.5-3 orders of magnitude. The developed CNTs modified ITO sensor was successfully employed to monitor the dopamine release from single living rat pheochromocytoma (PC 12) cells. Its ultrahigh sensitivity, transparency and need for fewer agents enable this smart electrochemical sensor to become a powerful tool in recording dynamic release from various living tissues and organs optically and electrically.

  16. Regulation of germinal center responses and B-cell memory by the chromatin modifier MOZ

    PubMed Central

    Good-Jacobson, Kim L.; Chen, Yunshun; Voss, Anne K.; Smyth, Gordon K.; Thomas, Tim; Tarlinton, David

    2014-01-01

    Memory B cells and long-lived bone marrow-resident plasma cells maintain humoral immunity. Little is known about the intrinsic mechanisms that are essential for forming memory B cells or endowing them with the ability to rapidly differentiate upon reexposure while maintaining the population over time. Histone modifications have been shown to regulate lymphocyte development, but their role in regulating differentiation and maintenance of B-cell subsets during an immune response is unclear. Using stage-specific deletion of monocytic leukemia zinc finger protein (MOZ), a histone acetyltransferase, we demonstrate that mutation of this chromatin modifier alters fate decisions in both primary and secondary responses. In the absence of MOZ, germinal center B cells were significantly impaired in their ability to generate dark zone centroblasts, with a concomitant decrease in both cell-cycle progression and BCL-6 expression. In contrast, there was increased differentiation to IgM and low-affinity IgG1+ memory B cells. The lack of MOZ affected the functional outcome of humoral immune responses, with an increase in secondary germinal centers and a corresponding decrease in secondary high-affinity antibody-secreting cell formation. Therefore, these data provide strong evidence that manipulating epigenetic modifiers can regulate fate decisions during humoral responses, and thus could be targeted for therapeutic intervention. PMID:24979783

  17. Corneal epithelial cell adhesion and growth on EGF-modified aminated PDMS.

    PubMed

    Klenkler, Bettina J; Dwivedi, Dhruva; West-Mays, Judith A; Sheardown, Heather

    2010-06-01

    Growth factor tethering has significant potential to mediate cellular responses in biomaterials and tissue engineering. We have previously demonstrated that epidermal growth factor (EGF) can be tethered to polydimethylsiloxane (PDMS) substrates and that these surfaces promoted interactions with human corneal epithelial cells in vitro. The goal of the current work was to better understand the specific effects of the tethered growth factor on the cells. The EGF was reacted with a homobifunctional N-hydroxysuccinimide (NHS) polyethylene glycol (PEG) derivative, and then bound to allyamine plasma-modified PDMS. Human corneal epithelial cells were seeded on the surfaces and cultured in serum-free medium for periods of up to 5 days. Cell growth was monitored and quantified by trypsinization and counting with a Coulter counter. Expression of matrix proteins and alpha(6)-integrins was assessed by immunostaining and confocal microscopy. A centrifugation assay was used to determine cell adhesion under an applied detachment force. Binding of EGF was found to significantly increase cell numbers and coverage across the surfaces at 5 days of culture in vitro. Immunofluorescence experiments indicate increased expression of fibronectin, laminin, and alpha(6)-integrins on the EGF-modified surfaces, and expression is localized at the cell-material interface as observed by confocal microscopy. In accordance with these results, the highest quantity of adherent cells is found on the EGF-modified subtrates at 5 days of culture. The results provide initial evidence that binding of EGF may be used to improve the epithelialization of and the adhesion of the cells on a polymeric artificial cornea device.

  18. Genetically Modified T-Cell-Based Adoptive Immunotherapy in Hematological Malignancies

    PubMed Central

    Ye, Baixin; Gao, Qingping; Wang, Qiongyu; Zeng, Zhi

    2017-01-01

    A significant proportion of hematological malignancies remain limited in treatment options. Immune system modulation serves as a promising therapeutic approach to eliminate malignant cells. Cytotoxic T lymphocytes (CTLs) play a central role in antitumor immunity; unfortunately, nonspecific approaches for targeted recognition of tumor cells by CTLs to mediate tumor immune evasion in hematological malignancies imply multiple mechanisms, which may or may not be clinically relevant. Recently, genetically modified T-cell-based adoptive immunotherapy approaches, including chimeric antigen receptor (CAR) T-cell therapy and engineered T-cell receptor (TCR) T-cell therapy, promise to overcome immune evasion by redirecting the specificity of CTLs to tumor cells. In clinic trials, CAR-T-cell- and TCR-T-cell-based adoptive immunotherapy have produced encouraging clinical outcomes, thereby demonstrating their therapeutic potential in mitigating tumor development. The purpose of the present review is to (1) provide a detailed overview of the multiple mechanisms for immune evasion related with T-cell-based therapies; (2) provide a current summary of the applications of CAR-T-cell- as well as neoantigen-specific TCR-T-cell-based adoptive immunotherapy and routes taken to overcome immune evasion; and (3) evaluate alternative approaches targeting immune evasion via optimization of CAR-T and TCR-T-cell immunotherapies. PMID:28116322

  19. Breach of autoreactive B cell tolerance by post-translationally modified proteins.

    PubMed

    Dekkers, Jacqueline S; Verheul, Marije K; Stoop, Jeroen N; Liu, Bisheng; Ioan-Facsinay, Andreea; van Veelen, Peter A; de Ru, Arnoud H; Janssen, George M C; Hegen, Martin; Rapecki, Steve; Huizinga, Tom W J; Trouw, Leendert A; Toes, René E M

    2017-08-01

    Over 50% of patients with rheumatoid arthritis (RA) harbour a variety of anti-modified protein antibodies (AMPA) against different post-translationally modified (PTM) proteins, including anti-carbamylated protein (anti-CarP) antibodies. At present, it is unknown how AMPA are generated and how autoreactive B cell responses against PTM proteins are induced. Here we studied whether PTM foreign antigens can breach B cell tolerance towards PTM self-proteins. Serum reactivity towards five carbamylated proteins was determined for 160 patients with RA and 40 healthy individuals. Antibody cross-reactivity was studied by inhibition experiments. Mass spectrometry was performed to identify carbamylated self-proteins in human rheumatic joint tissue. Mice were immunised with carbamylated or non-modified (auto)antigens and analysed for autoantibody responses. We show that anti-CarP antibodies in RA are highly cross-reactive towards multiple carbamylated proteins, including modified self-proteins and modified non-self-proteins. Studies in mice show that anti-CarP antibody responses recognising carbamylated self-proteins are induced by immunisation with carbamylated self-proteins and by immunisation with carbamylated proteins of non-self-origin. Similar to the data observed with sera from patients with RA, the murine anti-CarP antibody response was, both at the monoclonal level and the polyclonal level, highly cross-reactive towards multiple carbamylated proteins, including carbamylated self-proteins. Self-reactive AMPA responses can be induced by exposure to foreign proteins containing PTM. These data show how autoreactive B cell responses against PTM self-proteins can be induced by exposure to PTM foreign proteins and provide new insights on the breach of autoreactive B cell tolerance. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  20. Effect of deoxynivalenol (DON) on growing pigs and its modification by modified yeast cell wall or modified yeast cell wall and bentonite.

    PubMed

    Shehata, S; Richter, W; Schuster, M; Lindermayer, H

    2004-03-01

    The study examined effect of two adsorbents on the toxicity of Deoxynivalenol (DON) in growing pigs in a feeding trial. 24 male growing pigs (average initial body weight 11.5 kg) were assigned to one of six dietary treatments: control (uncontaminated diet); control + 0.5% adsorbent I; DON contaminated diet (1.73 mg/kg); DON contaminated diet + 0.5% adsorbent I; control + 0.5% adsorbent II and DON contaminated diet + 0.5% adsorbent II. Two digestibility trials were conducted on the second and fourth week of the feeding period with a sampling period of 7 days to determine the digestibility of the nutrients and the amounts of DON in faeces and urine. At the end of the experiments, the pigs were slaughtered, followed by blood haematology and biochemi analys. These data suggest that the addition of 0.5% modified yeast cell wall or a combination of modified yeast cell wall and bentonite to the naturally DON - contaminated diets reduce the effect of DON on the immune system of pigs but do not play an significant role in detoxification of DON in growing pigs.

  1. Engraftment of gene-modified umbilical cord blood cells in neonates with adenosine deaminase deficiency

    PubMed Central

    Kohn, Donald B.; Weinberg, Kenneth I.; Nolta, Jan A.; Heiss, Linda N.; Lenarsky, Carl; Crooks, Gay M.; Hanley, Mary E.; Annett, Geralyn; Brooks, Judith S.; El-Khoureiy, Anthony; Lawrence, Kim; Wells, Susie; Moen, Robert C.; Bastian, John; Williams-Herman, Debora E.; Elder, Melissa; Wara, Diane; Bowen, Thomas; Hershfield, Michael S.; Mullen, Craig A.; Blaese, R. Michael; Parkman, Robertson

    2010-01-01

    Haematopoietic stem cells in umbilical cord blood are an attractive target for gene therapy of inborn errors of metabolism. Three neonates with severe combined immunodeficiency were treated by retroviral-mediated transduction of the CD34+ cells from their umbilical cord blood with a normal human adenosine deaminase complementary DNA followed by autologous transplantation. The continued presence and expression of the introduced gene in leukocytes from bone marrow and peripheral blood for 18 months demonstrates that umbilical cord blood cells may be genetically modified with retroviral vectors and engrafted in neonates for gene therapy. PMID:7489356

  2. Genetically Modified Caco-2 Cells With Improved Cytochrome P450 Metabolic Capacity.

    PubMed

    Küblbeck, Jenni; Hakkarainen, Jenni J; Petsalo, Aleksanteri; Vellonen, Kati-Sisko; Tolonen, Ari; Reponen, Petri; Forsberg, Markus M; Honkakoski, Paavo

    2016-02-01

    The human intestinal Caco-2 cell line has been extensively used as a model of small intestinal absorption but it lacks expression and function of cytochrome P450 enzymes, particularly CYP3A4 and CYP2C9, which are normally expressed in the intestinal epithelium. In order to increase the expression and activity of CYP isozymes in these cells, we created 2 novel Caco-2 sublines expressing chimeric constitutive androstane or pregnane X receptors and characterized these cells for their metabolic and absorption properties. In spite of elevated mRNA expression of transporters and differentiation markers, the permeation properties of the modified cell lines did not significantly differ from those of the wild-type cells. In contrast, the metabolic activity was increased beyond the currently used models. Specifically, CYP3A4 activity was increased up to 20-fold as compared to vitamin D treated wild-type Caco-2 cells.

  3. Ligand modified nanoparticles increases cell uptake, alters endocytosis and elevates glioma distribution and internalization.

    PubMed

    Gao, Huile; Yang, Zhi; Zhang, Shuang; Cao, Shijie; Shen, Shun; Pang, Zhiqing; Jiang, Xinguo

    2013-01-01

    Nanoparticles (NPs) were widely used in drugs/probes delivery for improved disease diagnosis and/or treatment. Targeted delivery to cancer cells is a highly attractive application of NPs. However, few studies have been performed on the targeting mechanisms of these ligand-modified delivery systems. Additional studies are needed to understand the transport of nanoparticles in the cancer site, the interactions between nanoparticles and cancer cells, the intracellular trafficking of nanoparticles within the cancer cells and the subcellular destiny and potential toxicity. Interleukin 13 (IL-13) peptide can specifically bind IL-13Rα2, a receptor that is highly expressed on glioma cells but is expressed at low levels on other normal cells. It was shown that the nanoparticels modification with the IL-13 peptide could improve glioma treatment by selectively increasing cellular uptake, facilitating cell internalization, altering the uptake pathway and increasing glioma localization.

  4. Brain-derived neurotrophic factor gene-modified bone marrow mesenchymal stem cells

    PubMed Central

    HAN, ZHONG-MIN; HUANG, HE-MEI; WANG, FEI-FEI

    2015-01-01

    The present study aimed to investigate the effects of human brain-derived neurotrophic factor (hBDNF) on the differentiation of bone marrow mesenchymal stem cells (MSCs) into neuron-like cells. Lentiviral vectors carrying the hBDNF gene were used to modify the bone marrow stromal cells (BMSCs) of Sprague-Dawley (SD) rats. The rat BMSCs were isolated, cultured and identified. A lentivirus bearing hBDNF and enhanced green fluorescent protein (eGFP) genes was subcultured and used to infect the SD rat BMSCs. The expression of eGFP was observed under a fluorescence microscope to determine the infection rate and growth of the transfected cells. Methylthiazolyldiphenyl-tetrazolium bromide (MTT) was used to detect the proliferation rate of cells following transfection. Reverse transcription quantitative polymerase chain reaction (RT-qPCR) and western blot analysis were used to detect the expression levels of hBDNF. Differentiation of neuron-like cells was induced in vitro and the differentiation rate of the induced neural-like cells was compared with that in control groups and analyzed statistically. In the cultured cells, flow cytometry demonstrated positive expression of cluster of differentiation (CD)90 and CD44, and negative expression of CD34 and CD45. The proliferation rate of the rat BMSCs increased following gene transfection. The expression of hBDNF-eGFP was detected in the BMSCs of the experimental group. The differentiation rate of hBDNF-modified cells into neuron-like cells in the experimental group was higher compared with that in empty plasmid and untransfected negative control groups. The difference was statistically significant (P<0.05). Thus, BDNF gene transfection is able to promote the differentiation of BMSCs into neuron-like cells. BDNF may play an important role in the differentiation of MSCs into neuron-like cells. PMID:25574226

  5. Heat-modified citrus pectin induces apoptosis-like cell death and autophagy in HepG2 and A549 cancer cells.

    PubMed

    Leclere, Lionel; Fransolet, Maude; Cote, Francois; Cambier, Pierre; Arnould, Thierry; Van Cutsem, Pierre; Michiels, Carine

    2015-01-01

    Cancer is still one of the leading causes of death worldwide, and finding new treatments remains a major challenge. Previous studies showed that modified forms of pectin, a complex polysaccharide present in the primary plant cell wall, possess anticancer properties. Nevertheless, the mechanism of action of modified pectin and the pathways involved are unclear. Here, we show that citrus pectin modified by heat treatment induced cell death in HepG2 and A549 cells. The induced cell death differs from classical apoptosis because no DNA cleavage was observed. In addition, Z-VAD-fmk, a pan-caspase inhibitor, did not influence the observed cell death in HepG2 cells but appeared to be partly protective in A549 cells, indicating that heat-modified citrus pectin might induce caspase-independent cell death. An increase in the abundance of the phosphatidylethanolamine-conjugated Light Chain 3 (LC3) protein and a decrease in p62 protein abundance were observed in both cell types when incubated in the presence of heat-modified citrus pectin. These results indicate the activation of autophagy. To our knowledge, this is the first time that autophagy has been revealed in cells incubated in the presence of a modified form of pectin. This autophagy activation appears to be protective, at least for A549 cells, because its inhibition with 3-methyladenine increased the observed modified pectin-induced cytotoxicity. This study confirms the potential of modified pectin to improve chemotherapeutic cancer treatments.

  6. Heat-Modified Citrus Pectin Induces Apoptosis-Like Cell Death and Autophagy in HepG2 and A549 Cancer Cells

    PubMed Central

    Leclere, Lionel; Fransolet, Maude; Cote, Francois; Cambier, Pierre; Arnould, Thierry; Van Cutsem, Pierre; Michiels, Carine

    2015-01-01

    Cancer is still one of the leading causes of death worldwide, and finding new treatments remains a major challenge. Previous studies showed that modified forms of pectin, a complex polysaccharide present in the primary plant cell wall, possess anticancer properties. Nevertheless, the mechanism of action of modified pectin and the pathways involved are unclear. Here, we show that citrus pectin modified by heat treatment induced cell death in HepG2 and A549 cells. The induced cell death differs from classical apoptosis because no DNA cleavage was observed. In addition, Z-VAD-fmk, a pan-caspase inhibitor, did not influence the observed cell death in HepG2 cells but appeared to be partly protective in A549 cells, indicating that heat-modified citrus pectin might induce caspase-independent cell death. An increase in the abundance of the phosphatidylethanolamine-conjugated Light Chain 3 (LC3) protein and a decrease in p62 protein abundance were observed in both cell types when incubated in the presence of heat-modified citrus pectin. These results indicate the activation of autophagy. To our knowledge, this is the first time that autophagy has been revealed in cells incubated in the presence of a modified form of pectin. This autophagy activation appears to be protective, at least for A549 cells, because its inhibition with 3-methyladenine increased the observed modified pectin-induced cytotoxicity. This study confirms the potential of modified pectin to improve chemotherapeutic cancer treatments. PMID:25794149

  7. Genetically modified Schwann cells producing glial cell line-derived neurotrophic factor inhibit neuronal apoptosis in rat spinal cord injury.

    PubMed

    Liu, Guomin; Wang, Xukai; Shao, Guoxi; Liu, Qinyi

    2014-04-01

    Schwann cells (SCs) are the major cells constituting the peripheral nerve structure and function, and also secret a variety of neurotrophic factors. Schwann cell (SC) transplantation has recently emerged as a promising therapeutic strategy for spinal cord injury (SCI). In the present study, the ability of genetically modified SCs producing high levels of glial cell line‑derived neurotrophic factor (GDNF) to promote spinal cord repair was assessed. The GDNF gene was transduced into SCs. The engineered SCs were characterized by their ability to express and secrete biologically active GDNF, which was shown to inhibit apoptosis of primary rat neurons induced by radiation, and upregulate the expression of B‑cell lymphoma 2 (Bcl‑2) and downregulate the expression of Bcl‑2 associated X protein (Bax) in vitro. Following SC implantation into the spinal cord of adult rats with SCI induced by weight‑drop impact, the survival of rats with transplanted SCs, histology of the spinal cord and expression levels of Bcl‑2 and Bax were examined. Transplantation of unmodified and genetically modified SCs producing GDNF attenuated SCI by inhibiting apoptosis via the Bcl‑2/Bax pathways. The genetically modified SCs demonstrated markedly improved recovery of SCI as compared with unmodified SCs. The present study combined the outgrowth‑promoting property of SCs with the neuroprotective effects of overexpressed GDNF and identified this as a potential novel therapeutic strategy for SCI.

  8. The interaction between bone marrow stromal cells and RGD modified three dimensional porous polycaprolactone scaffolds

    PubMed Central

    Zhang, Huina; Lin, Chia-Ying; Hollister, Scott J

    2015-01-01

    We previously established a simple method to immobilize the Arg-Gly-Asp (RGD) peptide on polycaprolactone (PCL) two-dimensional film surfaces that significantly improved bone marrow stromal cell (BMSC) adhesion to these films. The current work extends this modification strategy to three-dimensional (3D) PCL scaffolds to investigate BMSCs attachment, cellular distribution and cellularity, signal transduction and survival on the modified PCL scaffold compared to those on the untreated ones. The results demonstrated that treatment of 3D PCL scaffold surfaces with 1,6-hexanediamine introduced the amino functional groups onto the porous PCL scaffold homogenously as detected by a ninhydrin staining method. Followed by the cross-linking reaction, RGDC peptide was successfully immobilized on the surface of PCL scaffold. Although the static seeding method used in this study caused heterogeneous cell distribution, the RGD modified PCL scaffold still demonstrated the improved BMSC attachment and cellular distribution in the scaffold. More importantly, the integrin-mediated signal transduction FAK-PI3K-Akt pathway was significantly up-regulated by RGD modification and a subsequent increase in cell survival and growth was found in the modified scaffold. The present study introduces an easy method to immobilize RGD peptide on the 3D porous PCL scaffold and provides further evidence that modification of 3D PCL scaffolds with RGD peptides elicits specific cellular responses and improves the final cell-biomaterial interaction. PMID:19487019

  9. Monitoring of Saccharomyces cerevisiae cell proliferation on thiol-modified planar gold microelectrodes using impedance spectroscopy.

    PubMed

    Heiskanen, Arto R; Spégel, Christer F; Kostesha, Natalie; Ruzgas, Tautgirdas; Emnéus, Jenny

    2008-08-19

    An impedance spectroscopic study of the interaction between thiol-modified Au electrodes and Saccharomyces cerevisiae of strain EBY44 revealed that the cells formed an integral part of the interface, modulating the capacitive properties until a complete monolayer was obtained, whereas the charge transfer resistance ( R ct) to the redox process of [Fe(CN)6] 3-/4- showed a linear relationship to the number of cells even beyond the monolayer coverage. R ct showed strong pH dependence upon increasing the pH of the utilized buffer to 7.2. Upon addition of S. cerevisiae cells at pH 7.2, the obtained value of R ct showed over 560% increase with respect to the value obtained on the same thiol-modified electrode without cells. It was demonstrated that real-time monitoring of S. cerevisiae proliferation, with frequency-normalized imaginary admittance (real capacitance) as the indicator, was possible using a miniaturized culture system, ECIS Cultureware, with integrated planar cysteamine-modified Au microelectrodes. A monolayer coverage was reached after 20-28 h of cultivation, observed as an approximately 15% decrease in the real capacitance of the system.

  10. Safety of targeting ROR1 in primates with chimeric antigen receptor-modified T cells

    PubMed Central

    Berger, Carolina; Sommermeyer, Daniel; Hudecek, Michael; Berger, Michael; Balakrishnan, Ashwini; Paszkiewicz, Paulina J.; Kosasih, Paula L.; Rader, Christoph; Riddell, Stanley R.

    2014-01-01

    Genetic engineering of T cells for adoptive transfer by introducing a tumor-targeting chimeric antigen receptor (CAR) is a new approach to cancer immunotherapy. A challenge for the field is to define cell surface molecules that are both preferentially expressed on tumor cells and can be safely targeted with T cells. The orphan tyrosine kinase receptor ROR1 is a candidate target for T-cell therapy with CAR-modified T cells (CAR-T cells) since it is expressed on the surface of many lymphatic and epithelial malignancies and has a putative role in tumor cell survival. The cell surface isoform of ROR1 is expressed in embryogenesis but absent in adult tissues except for B-cell precursors, and low levels of transcripts in adipocytes, pancreas, and lung. ROR1 is highly conserved between humans and macaques and has a similar pattern of tissue expression. To determine if low-level ROR1-expression on normal cells would result in toxicity or adversely affect CAR-T cell survival and/or function, we adoptively transferred autologous ROR1 CAR-T cells into nonhuman primates. ROR1 CAR-T cells did not cause overt toxicity to normal organs and accumulated in bone marrow and lymph node sites where ROR1-positive B cells were present. The findings support the clinical evaluation of ROR1 CAR-T cells for ROR1+ malignancies and demonstrate the utility of nonhuman primates for evaluating the safety of immunotherapy with engineered T cells specific for tumor-associated molecules that are homologous between humans and nonhuman primates. PMID:25355068

  11. [Cloning goat producing human lactoferrin with genetically modified donor cells selected by single or dual markers].

    PubMed

    An, Liyou; Yuan, Yuguo; Yu, Baoli; Yang, Tingjia; Cheng, Yong

    2012-12-01

    We compared the efficiency of cloning goat using human lactoferrin (hLF) with genetically modified donor cells marked by single (Neo(r)) or double (Neo(r)/GFP) markers. Single marker expression vector (pBLC14) or dual markers expression vector (pAPLM) was delivered to goat fetal fibroblasts (GFF), and then the transgenic GFF was used as donor cells to produce transgenic goats. Respectively, 58.8% (20/34) and 86.7% (26/30) resistant cell lines confirmed the transgenic integration by PCR. Moreover, pAPLM cells lines were subcultured with several passages, only 20% (6/30) cell lines was observed fluorescence from each cell during the cell passage. Somatic cell nuclear transfer using the donor cells harbouring pBLC14 or pAPLM construct, resulting in a total of 806 reconstructed embryos, a pregnancy rate at 35 d (53.8%, 39.1%) and 60 d (26.9%, 21.7%), and an offspring birth rate (1.9%, 1.4%) with 5 and 7 newborn cloned goats, respectively. Transgene was confirmed by PCR and southern-blot in all cloned offspring. There were no significant differences at the reconstructed embryo fusion rates, pregnancy rates and the birth rate (P > 0.05) between single and double markers groups. The Neo(r)/GFP double markers could improve the reliability for accurately and efficiently selecting the genetically modified donor cells. No adverse effect was observed on the efficiency of transgenic goat production by SCNT using somatic cells transfected with double (Neo(r)/GFP) markers vector.

  12. Neurotransplantation of stem cells genetically modified to express human dopamine transporter reduces alcohol consumption

    PubMed Central

    2010-01-01

    Introduction Regulated neurotransmitter actions in the mammalian central nervous system determine brain function and control peripheral organs and behavior. Although drug-seeking behaviors, including alcohol consumption, depend on central neurotransmission, modification of neurotransmitter actions in specific brain nuclei remains challenging. Herein, we report a novel approach for neurotransmission modification in vivo by transplantation of stem cells engineered to take up the neurotransmitter dopamine (DA) efficiently through the action of the human dopamine transporter (hDAT). As a functional test in mice, we used voluntary alcohol consumption, which is known to release DA in nucleus accumbens (NAC), an event hypothesized to help maintain drug-seeking behavior. We reasoned that reducing extracellular DA levels, by engrafting into NAC DA-sequestering stem cells expressing hDAT, would alter alcohol intake. Methods We have generated a neural stem cell line stably expressing the hDAT. Uptake kinetics of DA were determined to select a clone for transplantation. These genetically modified stem cells (or cells transfected with a construct lacking the hDAT sequence) were transplanted bilaterally into the NAC of wild-type mice trained to consume 10% alcohol in a two-bottle free-choice test for alcohol consumption. Alcohol intake was then ascertained for 1 week after transplantation, and brain sections through the NAC were examined for surviving grafted cells. Results Modified stem cells expressed hDAT and uptaken DA selectively via hDAT. Mice accustomed to drinking 10% ethanol by free choice reduced their alcohol consumption after being transplanted with hDAT-expressing stem cells. By contrast, control stem cells lacked that effect. Histologic examination revealed surviving stem cells in the NAC of all engrafted brains. Conclusions Our findings represent proof of principle suggesting that genetically engineered stem cells can be useful for exploring the role of

  13. Bifunctional major histocompatibility-linked genetic regulation of cell- mediated lympholysis to trinitrophenyl-modified autologous lymphocytes

    PubMed Central

    1975-01-01

    Murine thymus-derived lymphocytes can be sensitized in vitro to trinitrophenyl (TNP)-modified autologous spleen cells (1, 2). Cytotoxic effector cells were generated which were specific for TNP-modified target cells expressing the same H-2K and H-2D serological regions as the modified stimulator cells (3, 7). Spleen cells from two C57BL/10 congenic strains of mice sharing common I-C, S, and D regions, but differing at K, I-A, and I-B regions, generated different levels of lytic responses to the shared modified H-2Dd products upon sensitization with auto logous TNP-modified cells. Lymphocytes from an F1 between responder and nonresponder strain generated a level of cytolysis toward the H-2Dd modified specificity which was of the same order of magnitude as that obtained with the high responder, irrespective of whether F 1 or either parental strain of modified stimulator cell was used. These results suggest that the modification of H-2Dd products resulted in formation of new antigenic determinants in both parental strains. However, the difference observed in responsiveness appeared to be due to a gene or genes mapping in the K, I-A, or I-B region which influenced the ability of the responding lymphocytes to react to these modified H-2Dd products. Responsiveness was expressed as a dominant trait in the F1. PMID:52685

  14. KRIT1 protein depletion modifies endothelial cell behavior via increased vascular endothelial growth factor (VEGF) signaling.

    PubMed

    DiStefano, Peter V; Kuebel, Julia M; Sarelius, Ingrid H; Glading, Angela J

    2014-11-21

    Disruption of endothelial cell-cell contact is a key event in many cardiovascular diseases and a characteristic of pathologically activated vascular endothelium. The CCM (cerebral cavernous malformation) family of proteins (KRIT1 (Krev-interaction trapped 1), PDCD10, and CCM2) are critical regulators of endothelial cell-cell contact and vascular homeostasis. Here we show novel regulation of vascular endothelial growth factor (VEGF) signaling in KRIT1-depleted endothelial cells. Loss of KRIT1 and PDCD10, but not CCM2, increases nuclear β-catenin signaling and up-regulates VEGF-A protein expression. In KRIT1-depleted cells, increased VEGF-A levels led to increased VEGF receptor 2 (VEGFR2) activation and subsequent alteration of cytoskeletal organization, migration, and barrier function and to in vivo endothelial permeability in KRIT1-deficient animals. VEGFR2 activation also increases β-catenin phosphorylation but is only partially responsible for KRIT1 depletion-dependent disruption of cell-cell contacts. Thus, VEGF signaling contributes to modifying endothelial function in KRIT1-deficient cells and microvessel permeability in Krit1(+/-) mice; however, VEGF signaling is likely not the only contributor to disrupted endothelial cell-cell contacts in the absence of KRIT1.

  15. Ion Energy and Ion Flux Distributions of CF4/Ar/O2 Inductively Coupled Plasmas in a GEC Cell

    NASA Technical Reports Server (NTRS)

    Rao, M. V. V. S.; Cruden, Brett; Sharma, Surendra; Meyyappan, Meyya

    2001-01-01

    Knowledge of ion kinetics in plasma processing gas mixtures, such as CF4:Ar:O2, is important for understanding plasma assisted etching and deposition of materials. Ion energies and ion fluxes were measured in this mixture for 80:10:10, 60:20:20, and 40:30:30 mixture ratios in the pressure range of 10-50 mTorr, and at 200 and 300 W of RF power. Ions from plasma, sampled through a 10 micron orifice in the center of the lower plane electrode, were energy and mass analyzed by a combination of electrostatic energy and quadrupole mass filters. CFx(+) (x = 1 - 3), F2(+), F(+), C(+) from CF4, Ar(+) from Ar, and O2(+) and O(+) from O2, and by-product ions SiFx(+)(x = 1 - 3) from etching of quartz coupling window, COFx(+)(x = 1 - 3), CO(+), CO2(+), and OF(+) were detected. In all conditions ion flux decreases with increase of pressure but increase with increase of RF power. Ar(+) signal decreases with increase of pressure while CF3(+), which is the dominant ion at all conditions, increases with increase in pressure. The loss mechanism for Ar(+) and increase of CF3(+) is due to large cross section for Ar(+) + CF4 yields Ar + CF3(+) + F. Ion energies, which range from 15-25 eV depending on plasma operating conditions, are nearly Gaussian. By-product ion signals are higher at lower pressures indicating stronger plasma interaction with quartz window.

  16. Supplement 2 for the 2004 update of the AAPM Task Group No. 43 Report: Joint recommendations by the AAPM and GEC-ESTRO.

    PubMed

    Rivard, Mark J; Ballester, Facundo; Butler, Wayne M; DeWerd, Larry A; Ibbott, Geoffrey S; Meigooni, Ali S; Melhus, Christopher S; Mitch, Michael G; Nath, Ravinder; Papagiannis, Panagiotis

    2017-06-23

    Since the publication of the 2004 update to the American Association of Physicists in Medicine (AAPM) Task Group No. 43 Report (TG-43U1) and its 2007 supplement (TG-43U1S1), several new low-energy photon-emitting brachytherapy sources have become available. Many of these sources have satisfied the AAPM prerequisites for routine clinical purposes and are posted on the Brachytherapy Source Registry managed jointly by the AAPM and the Imaging and Radiation Oncology Core Houston Quality Assurance Center (IROC Houston). Given increasingly closer interactions among physicists in North America and Europe, the AAPM and the Groupe Européen de Curiethérapie-European Society for Radiotherapy & Oncology (GEC-ESTRO) have prepared another supplement containing recommended brachytherapy dosimetry parameters for eleven low-energy photon-emitting brachytherapy sources. The current report presents consensus datasets approved by the AAPM and GEC-ESTRO. The following sources are included: (125) I sources (BEBIG model I25.S17, BEBIG model I25.S17plus, BEBIG model I25.S18, Elekta model 130.002, Oncura model 9011, and Theragenics model AgX100); (103) Pd sources (CivaTech Oncology model CS10, IBt model 1031L, IBt model 1032P, and IsoAid model IAPd-103A); and (131) Cs (IsoRay Medical model CS-1 Rev2). Observations are included on the behavior of these dosimetry parameters as a function of radionuclide. Recommendations are presented on the selection of dosimetry parameters, such as from societal reports issuing consensus datasets (e.g., TG-43U1, AAPM Report #229), the joint AAPM/IROC Houston Registry, the GEC-ESTRO website, the Carleton University website, and those included in software releases from vendors of treatment planning systems. Aspects such as timeliness, maintenance, and rigor of these resources are discussed. Links to reference data are provided for radionuclides (radiation spectra and half-lives) and dose scoring materials (compositions and mass densities). The recent

  17. Monitoring of microbial cell viability using nanostructured electrodes modified with Graphene/Alumina nanocomposite.

    PubMed

    Hassan, Rabeay Y A; Mekawy, Moataz M; Ramnani, Pankaj; Mulchandani, Ashok

    2017-05-15

    Microbial infections are rapidly increasing; however most of the existing microbiological and molecular detection methods are time consuming and/or cannot differentiate between the viable and dead cells which may overestimate the risk of infections. Therefore, a bioelectrochemical sensing platform with a high potential to the microbial-electrode interactions was designed based on decorated graphene oxide (GO) sheet with alumina (Al2O3) nanocrystals. GO-Al2O3 nanocomposite was synthesized using self-assembly of GO and Al2O3 and characterized using the scanning electron microscopy (SEM), transmission electron microscopy (TEM), x-ray diffraction (XRD), Raman-spectroscopy, electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). Enhancement of electrocatalytic activity of the composite-modified electrode was demonstrated. Thus, using the GO-Al2O3 nanocomposite modified electrode, the cell viability was determined by monitoring the bioelectrochemical response of the living microbial cells (bacteria and yeast) upon stimulation with carbon source. The bioelectrochemical assay was optimized to obtain high sensitivity and the method was applied to monitor cell viability and screen susceptibility of metabolically active cells (E. coli, B. subtilis, Enterococcus, P. aeruginosa and Salmonella typhi) to antibiotics such as ampicillin and kanamycin. Therefore, the developed assay is suitable for cell proliferation and cytotoxicity testing.

  18. Chitosan-modified porous silicon microparticles for enhanced permeability of insulin across intestinal cell monolayers.

    PubMed

    Shrestha, Neha; Shahbazi, Mohammad-Ali; Araújo, Francisca; Zhang, Hongbo; Mäkilä, Ermei M; Kauppila, Jussi; Sarmento, Bruno; Salonen, Jarno J; Hirvonen, Jouni T; Santos, Hélder A

    2014-08-01

    Porous silicon (PSi) based particulate systems are emerging as an important drug delivery system due to its advantageous properties such as biocompatibility, biodegradability and ability to tailor the particles' physicochemical properties. Here, annealed thermally hydrocarbonized PSi (AnnTHCPSi) and undecylenic acid modified AnnTHCPSi (AnnUnTHCPSi) microparticles were developed as a PSi-based platform for oral delivery of insulin. Chitosan (CS) was used to modify the AnnUnTHCPSi microparticles to enhance the intestinal permeation of insulin. Surface modification with CS led to significant increase in the interaction of PSi microparticles with Caco-2/HT-29 cell co-culture monolayers. Compared to pure insulin, the CS-conjugated microparticles significantly improved the permeation of insulin across the Caco-2/HT-29 cell monolayers, with ca. 20-fold increase in the amount of insulin permeated and ca. 7-fold increase in the apparent permeability (P(app)) value. Moreover, among all the investigated particles, the CS-conjugated microparticles also showed the highest amount of insulin associated with the mucus layer and the intestinal Caco-2 cells and mucus secreting HT-29 cells. Our results demonstrate that CS-conjugated AnnUnTHCPSi microparticles can efficiently enhance the insulin absorption across intestinal cells, and thus, they are promising microsystems for the oral delivery of proteins and peptides across the intestinal cell membrane. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Chemically Modified Plastic Tube for High Volume Removal and Collection of Circulating Tumor Cells

    PubMed Central

    Gaitas, Angelo; Kim, Gwangseong

    2015-01-01

    In this preliminary effort, we use a commercially available and chemically modified tube to selectively capture circulating tumor cells (CTCs) from the blood stream by immobilizing human anti-EpCAM antibodies on the tube's interior surface. We describe the requisite and critical steps required to modify a tube into a cancer cell-capturing device. Using these simple modifications, we were able to capture or entrap about 85% of cancer cells from suspension and 44% of cancer cells from spiked whole blood. We also found that the percentage of cells captured was dependent on the tube's length and also the number of cancer cells present. It is our strong belief that with the utilization of appropriate tube lengths and procedures, we can ensure capture and removal of nearly the entire CTC population in whole blood. Importantly after a patient’s entire blood volume has circulated through the tube, the tube can then be trypsinized to release the captured live CTCs for further analysis and testing. PMID:26176235

  20. Mitochondria modify exercise-induced development of stem cell-derived neurons in the adult brain.

    PubMed

    Steib, Kathrin; Schäffner, Iris; Jagasia, Ravi; Ebert, Birgit; Lie, D Chichung

    2014-05-07

    Neural stem cells in the adult mammalian hippocampus continuously generate new functional neurons, which modify the hippocampal network and significantly contribute to cognitive processes and mood regulation. Here, we show that the development of new neurons from stem cells in adult mice is paralleled by extensive changes to mitochondrial mass, distribution, and shape. Moreover, exercise-a strong modifier of adult hippocampal neurogenesis-accelerates neuronal maturation and induces a profound increase in mitochondrial content and the presence of mitochondria in dendritic segments. Genetic inhibition of the activity of the mitochondrial fission factor dynamin-related protein 1 (Drp1) inhibits neurogenesis under basal and exercise conditions. Conversely, enhanced Drp1 activity furthers exercise-induced acceleration of neuronal maturation. Collectively, these results indicate that adult hippocampal neurogenesis requires adaptation of the mitochondrial compartment and suggest that mitochondria are targets for enhancing neurogenesis-dependent hippocampal plasticity.

  1. Transplantation of erythropoietin gene-modified neural stem cells improves the repair of injured spinal cord.

    PubMed

    Wu, Min-Fei; Zhang, Shu-Quan; Gu, Rui; Liu, Jia-Bei; Li, Ye; Zhu, Qing-San

    2015-09-01

    The protective effects of erythropoietin on spinal cord injury have not been well described. Here, the eukaryotic expression plasmid pcDNA3.1 human erythropoietin was transfected into rat neural stem cells cultured in vitro. A rat model of spinal cord injury was established using a free falling object. In the human erythropoietin-neural stem cells group, transfected neural stem cells were injected into the rat subarachnoid cavity, while the neural stem cells group was injected with non-transfected neural stem cells. Dulbecco's modified Eagle's medium/F12 medium was injected into the rats in the spinal cord injury group as a control. At 1-4 weeks post injury, the motor function in the rat lower limbs was best in the human erythropoietin-neural stem cells group, followed by the neural stem cells group, and lastly the spinal cord injury group. At 72 hours, compared with the spinal cord injury group, the apoptotic index and Caspase-3 gene and protein expressions were apparently decreased, and the bcl-2 gene and protein expressions were noticeably increased, in the tissues surrounding the injured region in the human erythropoietin-neural stem cells group. At 4 weeks, the cavities were clearly smaller and the motor and somatosensory evoked potential latencies were remarkably shorter in the human erythropoietin-neural stem cells group and neural stem cells group than those in the spinal cord injury group. These differences were particularly obvious in the human erythropoietin-neural stem cells group. More CM-Dil-positive cells and horseradish peroxidase-positive nerve fibers and larger amplitude motor and somatosensory evoked potentials were found in the human erythropoietin-neural stem cells group and neural stem cells group than in the spinal cord injury group. Again, these differences were particularly obvious in the human erythropoietin-neural stem cells group. These data indicate that transplantation of erythropoietin gene-modified neural stem cells into the

  2. Neural stem cells genetically-modified to express neprilysin reduce pathology in Alzheimer transgenic models.

    PubMed

    Blurton-Jones, Mathew; Spencer, Brian; Michael, Sara; Castello, Nicholas A; Agazaryan, Andranik A; Davis, Joy L; Müller, Franz-Josef; Loring, Jeanne F; Masliah, Eliezer; LaFerla, Frank M

    2014-04-16

    Short-term neural stem cell (NSC) transplantation improves cognition in Alzheimer's disease (AD) transgenic mice by enhancing endogenous synaptic connectivity. However, this approach has no effect on the underlying beta-amyloid (Aβ) and neurofibrillary tangle pathology. Long term efficacy of cell based approaches may therefore require combinatorial approaches. To begin to examine this question we genetically-modified NSCs to stably express and secrete the Aβ-degrading enzyme, neprilysin (sNEP). Next, we studied the effects of sNEP expression in vitro by quantifying Aβ-degrading activity, NSC multipotency markers, and Aβ-induced toxicity. To determine whether sNEP-expressing NSCs can also modulate AD-pathogenesis in vivo, control-modified and sNEP-NSCs were transplanted unilaterally into the hippocampus of two independent and well characterized transgenic models of AD: 3xTg-AD and Thy1-APP mice. After three months, stem cell engraftment, neprilysin expression, and AD pathology were examined. Our findings reveal that stem cell-mediated delivery of NEP provides marked and significant reductions in Aβ pathology and increases synaptic density in both 3xTg-AD and Thy1-APP transgenic mice. Remarkably, Aβ plaque loads are reduced not only in the hippocampus and subiculum adjacent to engrafted NSCs, but also within the amygdala and medial septum, areas that receive afferent projections from the engrafted region. Taken together, our data suggest that genetically-modified NSCs could provide a powerful combinatorial approach to not only enhance synaptic plasticity but to also target and modify underlying Alzheimer's disease pathology.

  3. 78 FR 69429 - Prospective Grant of Exclusive License: The Development of Modified T-cells for the Treatment of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-19

    ... Modified T-cells for the Treatment of Multiple Myeloma AGENCY: National Institutes of Health, HHS. ACTION.../ 622,6008 entitled, ``Chimeric Antigen Receptors Targeting B-cell Maturation Antigen'' . The patent... human T-cells directed against B-cell Maturation Antigen (BCMA) for the treatment of multiple...

  4. Examination of tetrachlorosalicylanilide (TCSA) photoallergy using in vitro photohapten-modified Langerhans cell-enriched epidermal cells

    SciTech Connect

    Gerberick, G.F.; Ryan, C.A.; Von Bargen, E.C.; Stuard, S.B.; Ridder, G.M. )

    1991-08-01

    Lymphocytes from BALB/c mice photosensitized in vivo to tetrachlorosalicylanilide (TCSA) were investigated to determine whether they could be stimulated to proliferate when cultured with Langerhans cell-enriched cultured epidermal cells (LC-EC) photohapten-modified in vitro with TCSA + UVA radiation. Cultured LC-EC were photohapten-modified in vitro by irradiation in TCSA-containing medium using a 1000-watt solar simulator equipped with filters to deliver primarily UVA radiation (320-400 nm). Lymphocytes from TCSA-photosensitized mice were incubated with LC-EC that had been treated in vitro with 0.1 mM TCSA and 2 J/cm2 UVA radiation (TCSA + UVA). Responder lymphocytes demonstrated a significant increase in their blastogenesis response compared to lymphocytes that were incubated with LC-EC irradiated with UVA prior to treatment with TCSA (UVA/TCSA) or with LC-EC that had received no treatment. Lymphocytes from naive mice or mice photosensitized with musk ambrette (MA) demonstrated a significantly lower response to LC-EC modified with TCSA + UVA, indicating the specificity of the response. Maximum blastogenesis response was achieved when LC-EC were treated with 0.1 mM TCSA and a UVA radiation dose of at least 0.5 J/cm2. Epidermal cells depleted of LC by treatment with anti-Ia antibody plus complement or by an adherence procedure were unable to stimulate this blastogenesis response. Epidermal cells treated in vitro with TCSA + UVA demonstrated enhanced fluorescence compared to control cells. The fluorescence observed was not restricted to any specific epidermal cell type; however, fluorescence microscopy studies revealed that dendritic Ia-positive cells, presumably LC, were also TCSA fluorescent.

  5. Poly(imide)/Organically-Modified Montmorillonite Nanocomposite as a Potential Membrane for Alkaline Fuel Cells

    PubMed Central

    Battirola, Liliane C.; Gasparotto, Luiz H. S.; Rodrigues-Filho, Ubirajara P.; Tremiliosi-Filho, Germano

    2012-01-01

    In this work we evaluated the potentiality of a poly(imide) (PI)/organically-modified montmorillonite (O-MMT) nanocomposite membrane for the use in alkaline fuel cells. Both X-ray diffraction and scanning electron microscopy revealed a good dispersion of O-MMT into the PI matrix and preservation of the O-MMT layered structure. When compared to the pure PI, the addition of O-MMT improved thermal stability and markedly increased the capability of absorbing electrolyte and ionic conductivity of the composite. The results show that the PI/O-MMT nanocomposite is a promising candidate for alkaline fuel cell applications. PMID:24958290

  6. Edge-Modified Phosphorene Nanoflake Heterojunctions as Highly Efficient Solar Cells.

    PubMed

    Hu, Wei; Lin, Lin; Yang, Chao; Dai, Jun; Yang, Jinlong

    2016-03-09

    We propose to use edge-modified phosphorene nanoflakes (PNFs) as donor and acceptor materials for heterojunction solar cells. By using density functional theory based calculations, we show that heterojunctions consisting of hydrogen- and fluorine-passivated PNFs have a number of desired optoelectronic properties that are suitable for use in a solar cell. We explain why these properties hold for these types of heterojunctions. Our calculations also predict that the maximum energy conversion efficiency of these type of heterojunctions, which can be easily fabricated, can be as high as 20%, making them extremely competitive with other types of two-dimensional heterojunctions.

  7. Fabrication of endothelial progenitor cell capture surface via DNA aptamer modifying dopamine/polyethyleneimine copolymer film

    NASA Astrophysics Data System (ADS)

    Li, Xin; Deng, Jinchuan; Yuan, Shuheng; Wang, Juan; Luo, Rifang; Chen, Si; Wang, Jin; Huang, Nan

    2016-11-01

    Endothelial progenitor cells (EPCs) are mainly located in bone marrow and circulate, and play a crucial role in repairmen of injury endothelium. One of the most promising strategies of stents designs were considered to make in-situ endothelialization in vivo via EPC-capture biomolecules on a vascular graft to capture EPCs directly from circulatory blood. In this work, an EPC specific aptamer with a 34 bases single strand DNA sequence was conjugated onto the stent surface via dopamine/polyethyleneimine copolymer film as a platform and linker. The assembled density of DNA aptamer could be regulated by controlling dopamine percentage in this copolymer film. X-ray photoelectron spectroscopy (XPS), water contact angle (WCA) and fluorescence test confirmed the successful immobilization of DNA aptamer. To confirm its biofunctionality and cytocompatibility, the capturing cells ability of the aptamer modified surface and the effects on the growth behavior of human umbilical vein endothelial cells (HUVECs), smooth muscle cells (SMCs) were investigated. The aptamer functionalized sample revealed a good EPC-capture ability, and had a cellular friendly feature for both EPC and EC growth, while not stimulated the hyperplasia of SMCs. And, the co-culture experiment of three types of cells confirmed the specificity capturing of EPCs to aptamer modified surface, rather than ECs and SMCs. These data suggested that this aptamer functionalized surface may have a large potentiality for the application of vascular grafts with targeted endothelialization.

  8. Growth control of genetically modified cells using an antibody/c-Kit chimera.

    PubMed

    Kaneko, Etsuji; Kawahara, Masahiro; Ueda, Hiroshi; Nagamune, Teruyuki

    2012-05-01

    Gene therapy has been regarded as an innovative potential treatment against serious congenital diseases. However, applications of gene therapy remain limited, partly because its clinical success depends on therapeutic gene-transduced cells acquiring a proliferative advantage. To address this problem, we have developed the antigen-mediated genetically modified cell amplification (AMEGA) system, which uses chimeric receptors to enable the selective proliferation of gene-transduced cells. In this report, we describe mimicry of c-Kit signaling and its application to the AMEGA system. We created an antibody/c-Kit chimera in which the extracellular domain of c-Kit is replaced with an anti-fluorescein single-chain Fv antibody fragment and the extracellular D2 domain of the erythropoietin receptor. A genetically modified mouse pro-B cell line carrying this chimera showed selective expansion in the presence of fluorescein-conjugated BSA (BSA-FL) as a growth inducer. By further engineering the transmembrane domain of the chimera to reduce interchain interaction we attained stricter ligand-dependency. Since c-Kit is an important molecule in the expansion of hematopoietic stem cells (HSCs), this antibody/c-Kit chimera could be a promising tool for gene therapy targeting HSCs. Copyright © 2011 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  9. Hyaluronic acid-modified multiwalled carbon nanotubes for targeted delivery of doxorubicin into cancer cells.

    PubMed

    Cao, Xueyan; Tao, Lei; Wen, Shihui; Hou, Wenxiu; Shi, Xiangyang

    2015-03-20

    Development of novel drug carriers for targeted cancer therapy with high efficiency and specificity is of paramount importance and has been one of the major topics in current nanomedicine. Here we report a general approach to using multifunctional multiwalled carbon nanotubes (MWCNTs) as a platform to encapsulate an anticancer drug doxorubicin (DOX) for targeted cancer therapy. In this approach, polyethyleneimine (PEI)-modified MWCNTs were covalently conjugated with fluorescein isothiocyanate (FI) and hyaluronic acid (HA). The formed MWCNT/PEI-FI-HA conjugates were characterized via different techniques and were used as a new carrier system to encapsulate the anticancer drug doxorubicin for targeted delivery to cancer cells overexpressing CD44 receptors. We show that the formed MWCNT/PEI-FI-HA/DOX complexes with a drug loading percentage of 72% are water soluble and stable. In vitro release studies show that the drug release rate under an acidic condition (pH 5.8, tumor cell microenvironment) is higher than that under physiological condition (pH 7.4). Cell viability assay demonstrates that the carrier material has good biocompatibility in the tested concentration range, and the MWCNT/PEI-FI-HA/DOX complexes can specifically target cancer cells overexpressing CD44 receptors and exert growth inhibition effect to the cancer cells. The developed HA-modified MWCNTs hold a great promise to be used as an efficient anticancer drug carrier for tumor-targeted chemotherapy.

  10. Comparative in vitro cytotoxicity of modified deoxynivalenol on porcine intestinal epithelial cells.

    PubMed

    Broekaert, Nathan; Devreese, Mathias; Demeyere, Kristel; Berthiller, Franz; Michlmayr, Herbert; Varga, Elisabeth; Adam, Gerhard; Meyer, Evelyne; Croubels, Siska

    2016-09-01

    The gastrointestinal tract is the first target after ingestion of the mycotoxin deoxynivalenol (DON) via feed and food. Deoxynivalenol is known to affect the proliferation and viability of animal and human intestinal epithelial cells. In addition to DON, feed and food is often co-contaminated with modified forms of DON, such as 3-acetyldeoxynivalenol (3ADON), 15-acetyl-deoxynivalenol (15ADON) and deoxynivalenol-3-β-D-glucoside (DON3G). The goal of this study was to determine the in vitro intrinsic cytotoxicity of these modified forms towards differentiated and proliferative porcine intestinal epithelial cells by means of flow cytometry. Cell death was assessed by dual staining with Annexin-V-fluorescein isothiocyanate (FITC) and propidium iodide (PI), which allows the discrimination of viable (FITC-/PI-), apoptotic (FITC+/PI-) and necrotic cells (FITC+/PI+). Based on the data from the presented pilot in vitro study, it is concluded that cytotoxicity for proliferative cells can be ranked as follows: DON3G ≪ 3ADON < DON≈15ADON.

  11. Intravitreal Implantation of Genetically Modified Autologous Bone Marrow-Derived Stem Cells for Treating Retinal Disorders.

    PubMed

    Tracy, Christopher J; Sanders, Douglas N; Bryan, Jeffrey N; Jensen, Cheryl A; Castaner, Leilani J; Kirk, Mark D; Katz, Martin L

    2016-01-01

    A number of retinal degenerative diseases may be amenable to treatment with continuous intraocular delivery of therapeutic agents that cannot be delivered effectively to the retina via systemic or topical administration. Among these disorders are lysosomal storage diseases resulting from deficiencies in soluble lysosomal enzymes. Most cells, including those of the retina, are able to take up these enzymes and incorporate them in active form into their lysosomes. In theory, therefore, continuous intraocular administration of a normal form of a soluble lysosomal enzyme should be able to cure the molecular defect in the retinas of subjects lacking this enzyme. Experiments were conducted to determine whether genetically modified bone marrow-derived stem cells implanted into the vitreous could be used as -vehicles for continuous delivery of such enzymes to the retina. Bone marrow-derived mesenchymal stem cells (MSCs) from normal mice were implanted into the vitreous of mice undergoing retinal degeneration as a result of a mutation in the PPT1 gene. The implanted cells appeared to survive indefinitely in the vitreous without proliferating or invading the retina. This indicates that intravitreal implantation of MSCs is likely a safe means of long-term delivery of proteins synthesized by the implanted cells. Experiments have been initiated to test the efficacy of using genetically modified autologous MSCs to inhibit retinal degeneration in a canine model of neuronal ceroid lipofuscinosis.

  12. Review: Current clinical applications of chimeric antigen receptor (CAR) modified T cells.

    PubMed

    Geyer, Mark B; Brentjens, Renier J

    2016-11-01

    The past several years have been marked by extraordinary advances in clinical applications of immunotherapy. In particular, adoptive cellular therapy utilizing chimeric antigen receptor (CAR)-modified T cells targeted to CD19 has demonstrated substantial clinical efficacy in children and adults with relapsed or refractory B-cell acute lymphoblastic leukemia (B-ALL) and durable clinical benefit in a smaller subset of patients with relapsed or refractory chronic lymphocytic leukemia (CLL) or B-cell non-Hodgkin lymphoma (B-NHL). Early-phase clinical trials are currently assessing CAR T-cell safety and efficacy in additional malignancies. Here, we discuss clinical results from the largest series to date investigating CD19-targeted CAR T cells in B-ALL, CLL, and B-NHL, including discussion of differences in CAR T-cell design and production and treatment approach, as well as clinical efficacy, nature of severe cytokine release syndrome and neurologic toxicities, and CAR T-cell expansion and persistence. We additionally review the current and forthcoming use of CAR T cells in multiple myeloma and several solid tumors and highlight challenges and opportunities afforded by the current state of CAR T-cell therapies, including strategies to overcome inhibitory aspects of the tumor microenvironment and enhance antitumor efficacy.

  13. Loss of the HVEM Tumor Suppressor in Lymphoma and Restoration by Modified CAR-T Cells.

    PubMed

    Boice, Michael; Salloum, Darin; Mourcin, Frederic; Sanghvi, Viraj; Amin, Rada; Oricchio, Elisa; Jiang, Man; Mottok, Anja; Denis-Lagache, Nicolas; Ciriello, Giovanni; Tam, Wayne; Teruya-Feldstein, Julie; de Stanchina, Elisa; Chan, Wing C; Malek, Sami N; Ennishi, Daisuke; Brentjens, Renier J; Gascoyne, Randy D; Cogné, Michel; Tarte, Karin; Wendel, Hans-Guido

    2016-10-06

    The HVEM (TNFRSF14) receptor gene is among the most frequently mutated genes in germinal center lymphomas. We report that loss of HVEM leads to cell-autonomous activation of B cell proliferation and drives the development of GC lymphomas in vivo. HVEM-deficient lymphoma B cells also induce a tumor-supportive microenvironment marked by exacerbated lymphoid stroma activation and increased recruitment of T follicular helper (TFH) cells. These changes result from the disruption of inhibitory cell-cell interactions between the HVEM and BTLA (B and T lymphocyte attenuator) receptors. Accordingly, administration of the HVEM ectodomain protein (solHVEM((P37-V202))) binds BTLA and restores tumor suppression. To deliver solHVEM to lymphomas in vivo, we engineered CD19-targeted chimeric antigen receptor (CAR) T cells that produce solHVEM locally and continuously. These modified CAR-T cells show enhanced therapeutic activity against xenografted lymphomas. Hence, the HVEM-BTLA axis opposes lymphoma development, and our study illustrates the use of CAR-T cells as "micro-pharmacies" able to deliver an anti-cancer protein. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. [Cancer vaccine therapy using genetically modified induced pluripotent stem cell-derived dendritic cells expressing the TAA gene].

    PubMed

    Iwamoto, Hiromitsu; Ojima, Toshiyasu; Nakamori, Mikihito; Nakamura, Masaki; Hayata, Keiji; Katsuda, Masahiro; Iida, Takeshi; Miyazawa, Motoki; Iwahashi, Makoto; Yamaue, Hiroki

    2013-11-01

    It is generally accepted that the difficulty in obtaining a sufficient number of functional dendritic cells (DCs) poses a serious problem in DC-based immunotherapy. Therefore, we used induced pluripotent stem (iPS) cell-derived DCs (iPSDCs) instead. If the therapeutic efficacy of iPSDCs was equivalent to that of bone marrow-derived DCs( BMDCs), then the above-mentioned problems may be solved. In this study, we generated iPSDCs from iPS cells and compared their capacity to mature and migrate to the regional lymph nodes with that of BMDCs. We adenovirally transduced the hgp100 gene, which codes for a natural tumor antigen, into the DCs and immunized the mice with these genetically modified DCs. The cytotoxic activity of CD8( +) cytotoxic T lymphocytes( CTLs) was assayed using a 51Cr-release assay. The therapeutic efficacy of the vaccination was examined in a subcutaneous tumor model. Our results demonstrated that iPSDCs equaled BMDCs in terms of their maturation and migration capacity. Furthermore, hgp100-specific CTLs were generated in mice that were immunized with the genetically modified iPSDCs. These CTLs exhibited a high level of cytotoxicity against B16 cells, which is similar to that exhibited by CTLs generated in BMDCs immunized mice. Moreover, vaccination with genetically modified iPSDCs elicited a high level of therapeutic efficacy equaling that of vaccination with BMDCs. This study clarified experimentally that genetically modified iPSDCs are equivalent to BMDCs in terms of tumor-associated antigen-specific therapeutic antitumor immunity. This vaccination strategy may therefore be useful for future clinical application as a cancer vaccine.

  15. Lenalidomide enhances antitumor functions of chimeric antigen receptor modified T cells

    PubMed Central

    Otáhal, Pavel; Průková, Dana; Král, Vlastimil; Fabry, Milan; Vočková, Petra; Latečková, Lucie; Trněný, Marek; Klener, Pavel

    2016-01-01

    ABSTRACT Tumor immunotherapy based on the use of chimeric antigen receptor modified T cells (CAR T cells) is a promising approach for the treatment of refractory hematological malignancies. However, a robust response mediated by CAR T cells is observed only in a minority of patients and the expansion and persistence of CAR T cells in vivo is mostly unpredictable.Lenalidomide (LEN) is an immunomodulatory drug currently approved for the treatment of multiple myeloma (MM) and mantle cell lymphoma, while it is clinically tested in the therapy of diffuse large B-cell lymphoma of activated B cell immunophenotype. LEN was shown to increase antitumor immune responses at least partially by modulating the activity of E3 ubiquitin ligase Cereblon, which leads to increased ubiquitinylation of Ikaros and Aiolos transcription factors, which in turn results in changed expression of various receptors on the surface of tumor cells. In order to enhance the effectiveness of CAR-based immunotherapy, we assessed the anti-lymphoma efficacy of LEN in combination with CAR19 T cells or CAR20 T cells in vitro and in vivo using various murine models of aggressive B-cell non-Hodgkin lymphomas (B-NHL).Immunodeficient NSG mice were transplanted with various human B-NHL cells followed by treatment with CAR19 or CAR20 T cells with or without LEN. Next, CAR19 T cells were subjected to series of tests in vitro to evaluate their response and signaling capacity following recognition of B cell in the presence or absence of LEN.Our data shows that LEN significantly enhances antitumor functions of CAR19 and CAR20 T cells in vivo. Additionally, it enhances production of interferon gamma by CAR19 T cells and augments cell signaling via CAR19 protein in T cells in vitro. Our data further suggests that LEN works through direct effects on T cells but not on B-NHL cells. The biochemical events underlying this costimulatory effect of LEN are currently being investigated. In summary, our data supports the use

  16. Lenalidomide enhances antitumor functions of chimeric antigen receptor modified T cells.

    PubMed

    Otáhal, Pavel; Průková, Dana; Král, Vlastimil; Fabry, Milan; Vočková, Petra; Latečková, Lucie; Trněný, Marek; Klener, Pavel

    2016-04-01

    Tumor immunotherapy based on the use of chimeric antigen receptor modified T cells (CAR T cells) is a promising approach for the treatment of refractory hematological malignancies. However, a robust response mediated by CAR T cells is observed only in a minority of patients and the expansion and persistence of CAR T cells in vivo is mostly unpredictable.Lenalidomide (LEN) is an immunomodulatory drug currently approved for the treatment of multiple myeloma (MM) and mantle cell lymphoma, while it is clinically tested in the therapy of diffuse large B-cell lymphoma of activated B cell immunophenotype. LEN was shown to increase antitumor immune responses at least partially by modulating the activity of E3 ubiquitin ligase Cereblon, which leads to increased ubiquitinylation of Ikaros and Aiolos transcription factors, which in turn results in changed expression of various receptors on the surface of tumor cells. In order to enhance the effectiveness of CAR-based immunotherapy, we assessed the anti-lymphoma efficacy of LEN in combination with CAR19 T cells or CAR20 T cells in vitro and in vivo using various murine models of aggressive B-cell non-Hodgkin lymphomas (B-NHL).Immunodeficient NSG mice were transplanted with various human B-NHL cells followed by treatment with CAR19 or CAR20 T cells with or without LEN. Next, CAR19 T cells were subjected to series of tests in vitro to evaluate their response and signaling capacity following recognition of B cell in the presence or absence of LEN.Our data shows that LEN significantly enhances antitumor functions of CAR19 and CAR20 T cells in vivo. Additionally, it enhances production of interferon gamma by CAR19 T cells and augments cell signaling via CAR19 protein in T cells in vitro. Our data further suggests that LEN works through direct effects on T cells but not on B-NHL cells. The biochemical events underlying this costimulatory effect of LEN are currently being investigated. In summary, our data supports the use of LEN for

  17. An evaluation of the robustness of organ-at-risk recommendations made by GEC/ESTRO according to interobserver variability: a single-center experience

    PubMed Central

    Celada-Alvarez, Francisco; Roldán, Susana; Torregrosa, Asunción; Betancourt, Jesus; Bautista-Ballesteros, Juan; Farga, Dolores; Ibañez, Blanca; Tormo, Alejandro; Perez-Calatayud, Jose

    2016-01-01

    Purpose Groupe Européen de Curiethérapie (GEC) and European Society for Radiotherapy & Oncology (ESTRO) has proposed a rectal dose constraint of the most exposed 2-cc volume (D2cc of ≤ 75 Gy EQD2α/β = 3) during external-beam plus high-dose-rate brachytherapy (HDR-BT) in localized prostate cancer patients. This study aimed to evaluate D2cc for rectal contouring via interobserver variability. Material and methods Four blinded observers contoured rectums of 5 patients. Rectal contouring anatomical limits were determined through previous consensus. Dose-volume histogram (DVH) dosimetric parameters (D0.1cc, D1cc, and D2cc) were analyzed according to GEC/ESTRO recommendations and subjected to intra- and interobserver comparisons. Latter comparisons involved coefficients of variation. For each parameter, the mean, standard deviation (SD), and range were evaluated. The effect of interobserver variation on total dose was analyzed by estimating the biologically equivalent rectal dose (EQD2α/β = 3). Results Interobserver coefficients of variation for D0.1cc, D1cc, and D2cc were 5.7%, 4.5%, and 4%, respectively. The highest interobserver rectal delineation variation yielded a rectal dose difference up to 5.8 Gy EQD2. Estimated intraobserver variation for the reported D2cc was 5.5% in the worst-case scenario (non-significant). Conclusions We observed acceptable interobserver variability in EQD2 for D2cc, with strong impacts on clinical threshold levels (D2cc ≤ 75 Gy EQD2) in some cases. This small, single-center analysis will be extended in a multicenter study. PMID:27648090

  18. Lysyl Hydroxylase 2 Is Secreted by Tumor Cells and Can Modify Collagen in the Extracellular Space.

    PubMed

    Chen, Yulong; Guo, Houfu; Terajima, Masahiko; Banerjee, Priyam; Liu, Xin; Yu, Jiang; Momin, Amin A; Katayama, Hiroyuki; Hanash, Samir M; Burns, Alan R; Fields, Gregg B; Yamauchi, Mitsuo; Kurie, Jonathan M

    2016-12-09

    Lysyl hydroxylase 2 (LH2) catalyzes the hydroxylation of lysine residues in the telopeptides of fibrillar collagens, which leads to the formation of stable collagen cross-links. Recently we reported that LH2 enhances the metastatic propensity of lung cancer by increasing the amount of stable hydroxylysine aldehyde-derived collagen cross-links (HLCCs), which generate a stiffer tumor stroma (Chen, Y., et al. (2015) J. Clin. Invest. 125, 125, 1147-1162). It is generally accepted that LH2 modifies procollagen α chains on the endoplasmic reticulum before the formation of triple helical procollagen molecules. Herein, we report that LH2 is also secreted and modifies collagen in the extracellular space. Analyses of lung cancer cell lines demonstrated that LH2 is present in the cell lysates and the conditioned media in a dimeric, active form in both compartments. LH2 co-localized with collagen fibrils in the extracellular space in human lung cancer specimens and in orthotopic lung tumors generated by injection of a LH2-expressing human lung cancer cell line into nude mice. LH2 depletion in MC3T3 osteoblastic cells impaired the formation of HLCCs, resulting in an increase in the unmodified lysine aldehyde-derived collagen cross-link (LCC), and the addition of recombinant LH2 to the media of LH2-deficient MC3T3 cells was sufficient to rescue HLCC formation in the extracellular matrix. The finding that LH2 modifies collagen in the extracellular space challenges the current view that LH2 functions solely on the endoplasmic reticulum and could also have important implications for cancer biology. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. Polysaccharide-degrading Enzymes are Unable to Attack Plant Cell Walls without Prior Action by a "Wall-modifying Enzyme".

    PubMed

    Karr, A L; Albersheim, P

    1970-07-01

    A study of the degradation of plant cell walls by the mixture of enzymes present in Pectinol R-10 is described. A "wall-modifying enzyme" has been purified from this mixture by a combination of diethylaminoethyl cellulose, Bio Gel P-100, and carboxymethyl cellulose chromatography. Treatment of cell walls with the "wall-modifying enzyme" is shown to be a necessary prerequisite to wall degradation catalyzed by a mixture of polysaccharide-degrading enzymes prepared from Pectinol R-10 or by an alpha-galactosidase secreted by the pathogenic fungus Colletotrichum lindemuthianum. The action of the "wall-modifying enzyme" on cell walls is shown to result in both a release of water-soluble, 70% ethanol-insoluble polymers and an alteration of the residual cell wall. A purified preparation of the "wall-modifying enzyme" is unable to degrade a wide variety of polysaccharide, glycoside, and peptide substrates. However, the purified preparation of wall-modifying enzyme has a limited ability to degrade polygalacturonic acid. The fact that polygalacturonic acid inhibits the ability of the "wall-modifying enzyme" to affect cell walls suggests that the "wall-modifying enzyme" may be responsible for the limited polygalacturonic acid-degrading activity present in the purified preparation. The importance of a wall-modifying enzyme in developmental processes and in pathogenesis is discussed.

  20. Transient delivery of modified mRNA encoding TERT rapidly extends telomeres in human cells

    PubMed Central

    Ramunas, John; Yakubov, Eduard; Brady, Jennifer J.; Corbel, Stéphane Y.; Holbrook, Colin; Brandt, Moritz; Stein, Jonathan; Santiago, Juan G.; Cooke, John P.; Blau, Helen M.

    2015-01-01

    Telomere extension has been proposed as a means to improve cell culture and tissue engineering and to treat disease. However, telomere extension by nonviral, nonintegrating methods remains inefficient. Here we report that delivery of modified mRNA encoding TERT to human fibroblasts and myoblasts increases telomerase activity transiently (24–48 h) and rapidly extends telomeres, after which telomeres resume shortening. Three successive transfections over a 4 d period extended telomeres up to 0.9 kb in a cell type-specific manner in fibroblasts and myoblasts and conferred an additional 28 ± 1.5 and 3.4 ± 0.4 population doublings (PDs), respectively. Proliferative capacity increased in a dose-dependent manner. The second and third transfections had less effect on proliferative capacity than the first, revealing a refractory period. However, the refractory period was transient as a later fourth transfection increased fibroblast proliferative capacity by an additional 15.2 ± 1.1 PDs, similar to the first transfection. Overall, these treatments led to an increase in absolute cell number of more than 1012-fold. Notably, unlike immortalized cells, all treated cell populations eventually stopped increasing in number and expressed senescence markers to the same extent as untreated cells. This rapid method of extending telomeres and increasing cell proliferative capacity without risk of insertional mutagenesis should have broad utility in disease modeling, drug screening, and regenerative medicine.—Ramunas, J., Yakubov, E., Brady, J. J., Corbel, S. Y., Holbrook, C., Brandt, M., Stein, J., Santiago, J. G., Cooke, J. P., Blau, H. M. Transient delivery of modified mRNA encoding TERT rapidly extends telomeres in human cells. PMID:25614443

  1. Time resolved study of cell death mechanisms induced by amine-modified polystyrene nanoparticles

    NASA Astrophysics Data System (ADS)

    Wang, Fengjuan; Bexiga, Mariana G.; Anguissola, Sergio; Boya, Patricia; Simpson, Jeremy C.; Salvati, Anna; Dawson, Kenneth A.

    2013-10-01

    Positively charged polymers and nanoparticles (NPs) can be toxic to cells in various systems. Using human astrocytoma cells, we have previously shown that 50 nm amine-modified polystyrene NPs damage mitochondria and induce cell death by apoptosis. Here we provide comprehensive details of the cellular events occurring after exposure to the NPs in a time-resolved manner. We demonstrate that the accumulation of NPs in lysosomes plays a central role in the observed cell death, leading to swelling of the lysosomes and release of cathepsins into the cytosol, which ultimately propagates the damage to the mitochondria with subsequent activation of apoptosis. This is accompanied and sustained by other events, such as increasing ROS levels and autophagy. Using various inhibitors, we also show the interplay between apoptosis and autophagy as a response to NP accumulation in lysosomes.Positively charged polymers and nanoparticles (NPs) can be toxic to cells in various systems. Using human astrocytoma cells, we have previously shown that 50 nm amine-modified polystyrene NPs damage mitochondria and induce cell death by apoptosis. Here we provide comprehensive details of the cellular events occurring after exposure to the NPs in a time-resolved manner. We demonstrate that the accumulation of NPs in lysosomes plays a central role in the observed cell death, leading to swelling of the lysosomes and release of cathepsins into the cytosol, which ultimately propagates the damage to the mitochondria with subsequent activation of apoptosis. This is accompanied and sustained by other events, such as increasing ROS levels and autophagy. Using various inhibitors, we also show the interplay between apoptosis and autophagy as a response to NP accumulation in lysosomes. Electronic supplementary information (ESI) available: additional analysis of flow cytometry results, western blots and experiments with cathepsin inhibitors. See DOI: 10.1039/c3nr03249c

  2. The blood and vascular cell compatibility of heparin-modified ePTFE vascular grafts

    PubMed Central

    Hoshi, Ryan A.; Van Lith, Robert; Jen, Michele C.; Allen, Josephine B.; Lapidos, Karen A.; Ameer, Guillermo

    2014-01-01

    Prosthetic vascular grafts do not mimic the antithrombogenic properties of native blood vessels and therefore have higher rates of complications that involve thrombosis and restenosis. We developed an approach for grafting bioactive heparin, a potent anticoagulant glycosaminoglycan, to the lumen of ePTFE vascular grafts to improve their interactions with blood and vascular cells. Heparin was bound to aminated poly(1,8-octanediol-co-citrate) (POC) via its carboxyl functional groups onto POC-modified ePTFE grafts. The bioactivity and stability of the POC-immobilized heparin (POC–Heparin) were characterized via platelet adhesion and clotting assays. The effects of POC–Heparin on the adhesion, viability and phenotype of primary endothelial cells (EC), blood outgrowth endothelial cells (BOECs) obtained from endothelial progenitor cells (EPCs) isolated from human peripheral blood, and smooth muscle cells were also investigated. POC–Heparin grafts maintained bioactivity under physiologically relevant conditions in vitro for at least one month. Specifically, POC–Heparin-coated ePTFE grafts significantly reduced platelet adhesion and inhibited whole blood clotting kinetics. POC–Heparin supported EC and BOEC adhesion, viability, proliferation, NO production, and expression of endothelial cell-specific markers von Willebrand factor (vWF) and vascular endothelial-cadherin (VE-cadherin). Smooth muscle cells cultured on POC–Heparin showed increased expression of α-actin and decreased cell proliferation. This approach can be easily adapted to modify other blood contacting devices such as stents where antithrombogenicity and improved endothelialization are desirable properties. PMID:23069711

  3. Efficient Inverted Organic Solar Cells Based on a Fullerene Derivative-Modified Transparent Cathode.

    PubMed

    Wang, Yifan; Cong, Hailin; Yu, Bing; Zhang, Zhiguo; Zhan, Xiaowei

    2017-09-11

    Indium tin oxide (ITO) is a transparent conductive material which is extensively used in organic solar cells (OSCs) as electrodes. In inverted OSCs, ITO is usually employed as a cathode, which should be modified by cathode buffer layers (CBLs) to achieve better contact with the active layers. In this paper, an amine group functionalized fullerene derivative (DMAPA-C60) is used as a CBL to modify the transparent cathode ITO in inverted OSCs based on PTB7 as a donor and PC71BM as an acceptor. Compared with traditional ZnO CBL, DMAPA-C60 exhibited comparable transmittance. OSCs based on DMAPA-C60 show much better device performance compared with their ZnO counterparts (power conversion efficiencies (PCEs) improved from 6.24 to 7.43%). This is mainly because a better contact between the DMAPA-C60 modified ITO and the active layer is formed, which leads to better electron transport and collection. Nanoscale morphologies also demonstrate that the surface of DMAPA-C60-modified ITO is plainer than the ZnO counterparts, which also leads to the better device performance.

  4. Efficient Inverted Organic Solar Cells Based on a Fullerene Derivative-Modified Transparent Cathode

    PubMed Central

    Wang, Yifan; Yu, Bing; Zhang, Zhiguo

    2017-01-01

    Indium tin oxide (ITO) is a transparent conductive material which is extensively used in organic solar cells (OSCs) as electrodes. In inverted OSCs, ITO is usually employed as a cathode, which should be modified by cathode buffer layers (CBLs) to achieve better contact with the active layers. In this paper, an amine group functionalized fullerene derivative (DMAPA-C60) is used as a CBL to modify the transparent cathode ITO in inverted OSCs based on PTB7 as a donor and PC71BM as an acceptor. Compared with traditional ZnO CBL, DMAPA-C60 exhibited comparable transmittance. OSCs based on DMAPA-C60 show much better device performance compared with their ZnO counterparts (power conversion efficiencies (PCEs) improved from 6.24 to 7.43%). This is mainly because a better contact between the DMAPA-C60 modified ITO and the active layer is formed, which leads to better electron transport and collection. Nanoscale morphologies also demonstrate that the surface of DMAPA-C60-modified ITO is plainer than the ZnO counterparts, which also leads to the better device performance. PMID:28891990

  5. Human Dendritic Cells Derived From Embryonic Stem Cells Stably Modified With CD1d Efficiently Stimulate Antitumor Invariant Natural Killer T Cell Response

    PubMed Central

    2014-01-01

    Invariant natural killer T (iNKT) cells are a unique lymphocyte subpopulation that mediates antitumor activities upon activation. A current strategy to harness iNKT cells for cancer treatment is endogenous iNKT cell activation using patient-derived dendritic cells (DCs). However, the limited number and functional defects of patient DCs are still the major challenges for this therapeutic approach. In this study, we investigated whether human embryonic stem cells (hESCs) with an ectopically expressed CD1d gene could be exploited to address this issue. Using a lentivector carrying an optimized expression cassette, we generated stably modified hESC lines that consistently overexpressed CD1d. These modified hESC lines were able to differentiate into DCs as efficiently as the parental line. Most importantly, more than 50% of such derived DCs were CD1d+. These CD1d-overexpressing DCs were more efficient in inducing iNKT cell response than those without modification, and their ability was comparable to that of DCs generated from monocytes of healthy donors. The iNKT cells expanded by the CD1d-overexpressing DCs were functional, as demonstrated by their ability to lyse iNKT cell-sensitive glioma cells. Therefore, hESCs stably modified with the CD1d gene may serve as a convenient, unlimited, and competent DC source for iNKT cell-based cancer immunotherapy. PMID:24292792

  6. Localized electroporation effect on adherent cells in modified electric cell-substrate impedance sensing circuits

    NASA Astrophysics Data System (ADS)

    Kim, Yu Jin; Ram Song, Ka; Kim, Hee-Dae; Park, Bum Chul; Kim, Young Keun; Kang, Chi Jung

    2016-10-01

    Electroporation is a physical transfection method for introducing foreign genes or drugs into cells. It does not require toxic reagents or transfection vectors. However, its applications have been limited because of cell damage and nonspecific transport. Here, we present an effective method for selective and localized electroporation using atomic force microscopy. This electroporation method is applied to adherent cells on substrates, instead of conventionally used suspended cells, and offers relatively effective cell transfection. Moreover, this method enables localized transfection into targeted areas at the single-cell level.

  7. A novel mechanism of action for salidroside to alleviate diabetic albuminuria: effects on albumin transcytosis across glomerular endothelial cells.

    PubMed

    Wu, Dan; Yang, Xiaoyan; Zheng, Tao; Xing, Shasha; Wang, Jianghong; Chi, Jiangyang; Bian, Fang; Li, Wenjing; Xu, Gao; Bai, Xiangli; Wu, Guangjie; Jin, Si

    2016-02-01

    Salidroside (SAL) is a phenylethanoid glycoside isolated from the medicinal plant Rhodiola rosea. R. rosea has been reported to have beneficial effects on diabetic nephropathy (DN) and high-glucose (HG)-induced mesangial cell proliferation. Given the importance of caveolin-1 (Cav-1) in transcytosis of albumin across the endothelial barrier, the present study was designed to elucidate whether SAL could inhibit Cav-1 phosphorylation and reduce the albumin transcytosis across glomerular endothelial cells (GECs) to alleviate diabetic albuminuria as well as to explore its upstream signaling pathway. To assess the therapeutic potential of SAL and the mechanisms involved in DN albuminuria, we orally administered SAL to db/db mice, and the effect of SAL on the albuminuria was measured. The albumin transcytosis across GECs was explored in a newly established in vitro cellular model. The ratio of albumin to creatinine was significantly reduced upon SAL treatment in db/db mice. SAL decreased the albumin transcytosis across GECs in both normoglycemic and hyperglycemic conditions. SAL reversed the HG-induced downregulation of AMP-activated protein kinase and upregulation of Src kinase and blocked the upregulation Cav-1 phosphorylation. Meanwhile, SAL decreased mitochondrial superoxide anion production and moderately depolarized mitochondrial membrane potential. We conclude that SAL exerts its proteinuria-alleviating effects by downregulation of Cav-1 phosphorylation and inhibition of albumin transcytosis across GECs. These studies provide the first evidence of interference with albumin transcytosis across GECs as a novel approach to the treatment of diabetic albuminuria.

  8. Allogeneic mesenchymal stem cells, but not culture modified monocytes, improve burn wound healing.

    PubMed

    Clover, Anthony J P; Kumar, Arun H S; Isakson, Matthew; Whelan, Derek; Stocca, Alecia; Gleeson, Birgitta M; Caplice, Noel M

    2015-05-01

    The use of cell therapy to improve burn wound healing is limited as a validated cell source is not rapidly available after injury. Progenitor cells have shown potential to drive the intrinsic wound regeneration. Two sources of cells, allogeneic mesenchymal stem cells (MSC) and autologous culture modified monocytes (CMM), were assessed for their ability to influence burn wound healing. Both could be widely available shortly after injury. Cells were delivered in a fibrin matrix following contact burns in a porcine burns model. Application of MSC significantly decreased the area of unhealed burn compared to CMM or delivery matrix alone (6% MSC, 27% CMM, 24% Matrix, p<0.001). MSC treated wounds showed histological evidence of improved wound healing with increased collagen content (MSC 49%, CMM 42%, p<0.01), increased epidermal area (MSC 8.8%, CMM 6.1%, p<0.01) and dermal thickness (MSC 1108 μm, CMM 1007 μm, p<0.01) compared to CMM treated wounds. Labelled MSC and CMM were identified in the wounds after 2 weeks by immunohistochemistry and FACS. A single application of allogeneic MSC improves the rate of burn wound healing and improves the histological appearance of the burn wound. These cells show potential as a cell therapy that is rapidly available following burn.

  9. In vitro mesenchymal stem cell response to a CO2 laser modified polymeric material.

    PubMed

    Waugh, D G; Hussain, I; Lawrence, J; Smith, G C; Cosgrove, D; Toccaceli, C

    2016-10-01

    With an ageing world population it is becoming significantly apparent that there is a need to produce implants and platforms to manipulate stem cell growth on a pharmaceutical scale. This is needed to meet the socio-economic demands of many countries worldwide. This paper details one of the first ever studies in to the manipulation of stem cell growth on CO2 laser surface treated nylon 6,6 highlighting its potential as an inexpensive platform to manipulate stem cell growth on a pharmaceutical scale. Through CO2 laser surface treatment discrete changes to the surfaces were made. That is, the surface roughness of the nylon 6,6 was increased by up to 4.3μm, the contact angle was modulated by up to 5° and the surface oxygen content increased by up to 1atom %. Following mesenchymal stem cell growth on the laser treated samples, it was identified that CO2 laser surface treatment gave rise to an enhanced response with an increase in viable cell count of up to 60,000cells/ml when compared to the as-received sample. The effect of surface parameters modified by the CO2 laser surface treatment on the mesenchymal stem cell response is also discussed along with potential trends that could be identified to govern the mesenchymal stem cell response.

  10. Kinetics of Tumor Destruction by Chimeric Antigen Receptor-modified T Cells

    PubMed Central

    Anurathapan, Usanarat; Chan, Robert C; Hindi, Hakeem F; Mucharla, Roopa; Bajgain, Pradip; Hayes, Brendan C; Fisher, William E; Heslop, Helen E; Rooney, Cliona M; Brenner, Malcolm K; Leen, Ann M; Vera, Juan F

    2014-01-01

    The use of chimeric antigen receptor (CAR)–modified T cells as a therapy for hematologic malignancies and solid tumors is becoming more widespread. However, the infusion of a T-cell product targeting a single tumor-associated antigen may lead to target antigen modulation under this selective pressure, with subsequent tumor immune escape. With the purpose of preventing this phenomenon, we have studied the impact of simultaneously targeting two distinct antigens present on tumor cells: namely mucin 1 and prostate stem cell antigen, both of which are expressed in a variety of solid tumors, including pancreatic and prostate cancer. When used individually, CAR T cells directed against either tumor antigen were able to kill target-expressing cancer cells, but tumor heterogeneity led to immune escape. As a combination therapy, we demonstrate superior antitumor effects using both CARs simultaneously, but this was nevertheless insufficient to achieve a complete response. To understand the mechanism of escape, we studied the kinetics of T-cell killing and found that the magnitude of tumor destruction depended not only on the presence of target antigens but also on the intensity of expression—a feature that could be altered by administering epigenetic modulators that upregulated target expression and enhanced CAR T-cell potency. PMID:24213558

  11. A Genetically Modified Protein-Based Hydrogel for 3D Culture of AD293 Cells

    PubMed Central

    Du, Xiao; Wang, Jingyu; Diao, Wentao; Wang, Ling; Long, Jiafu; Zhou, Hao

    2014-01-01

    Hydrogels have strong application prospects for drug delivery, tissue engineering and cell therapy because of their excellent biocompatibility and abundant availability as scaffolds for drugs and cells. In this study, we created hybrid hydrogels based on a genetically modified tax interactive protein-1 (TIP1) by introducing two or four cysteine residues in the primary structure of TIP1. The introduced cysteine residues were crosslinked with a four-armed poly (ethylene glycol) having their arm ends capped with maleimide residues (4-armed-PEG-Mal) to form hydrogels. In one form of the genetically modification, we incorporated a peptide sequence ‘GRGDSP’ to introduce bioactivity to the protein, and the resultant hydrogel could provide an excellent environment for a three dimensional cell culture of AD293 cells. The AD293 cells continued to divide and displayed a polyhedron or spindle-shape during the 3-day culture period. Besides, AD293 cells could be easily separated from the cell-gel constructs for future large-scale culture after being cultured for 3 days and treating hydrogel with trypsinase. This work significantly expands the toolbox of recombinant proteins for hydrogel formation, and we believe that our hydrogel will be of considerable interest to those working in cell therapy and controlled drug delivery. PMID:25233088

  12. Assessment of tolerance to multistresses and in vitro cell adhesion in genetically modified Lactobacillus plantarum 590.

    PubMed

    Liu, Haiyan; Xu, Wentao; Luo, Yunbo; Tian, Hongtao; Wang, Hongxin; Guo, Xing; Yuan, Yanfang; Huang, Kunlun

    2011-03-01

    Lactobacillus plantarum (Lp) is a lactic acid bacterium that has many excellent traits that meet the needs of industrial production. Genetically modified (GM) Lp590 was obtained from Lp that was modified by the insertion of the gene nisI, which can confer resistance to nisin and play a role as a bio-preservative. Here, explorations were made to assess the safety of GM Lp590 and establish an in vitro evaluation model. The ability of Lp590 to tolerate both environmental stresses (such as temperatures ranging from 52 to 4 °C, or exposure to ethanol, oxygen, and osmotic stresses) and gastrointestinal transit was assessed. Lp590 showed a tolerance to 4 °C and ethanol (20%) within a period of 240 min that was similar to Lp. Notably, Lp590 can tolerate higher temperature (52 °C) and higher levels of H(2)O(2) (2%) and NaCl (4.0 M) than Lp. In contrast, Lp590 has the same gastrointestinal transit tolerance as Lp. In addition, Lp590 can adhere to Caco-2 cells, and it has no adverse effect on the cell membrane in vitro. These results indicate that GM Lp590 has many desirable biological characteristics and has good prospects for industrial applications. A useful and comprehensive exploration has been undertaken to establish a new in vitro evaluation model for genetically modified microorganisms (GMMs).

  13. Ex Vivo Expansion of Human Mobilized Peripheral Blood Stem Cells Using Epigenetic Modifiers

    PubMed Central

    Saraf, Santosh; Araki, Hiroto; Petro, Benjamin; Park, Youngmin; Taioli, Simona; Yoshinaga, Kazumi G; Koca, Emre; Rondelli, Damiano; Mahmud, Nadim

    2014-01-01

    Background Epigenetic modifications likely control fate of hematopoietic stem cells (HSC). The chromatin modifying agents (CMA), 5-aza-2’-deoxyctidine (5azaD) and trichostatin A (TSA) have previously been shown to expand HSC from cord blood and bone marrow. Here we assessed whether CMA can also expand HSCs present in growth factor mobilized human peripheral blood (MPB). Study Design & Methods 5azaD and TSA were sequentially added to CD34+ MPB cells in the presence of cytokines and the cells were cultured for nine days. Results Following culture, a 3.6 ± 0.5 fold expansion of CD34+CD90+ cells, a 10.1 ± 0.5 fold expansion of primitive colony forming unit (CFU)-mix, and a 2.2 ± 0.5 fold expansion of long-term cobble stone-area forming cells (CAFC) was observed in 5azaD/TSA expanded cells. By contrast, cells cultured in cytokines without 5azaD/TSA displayed no expansion; rather a reduction in CD34+CD90+ cells (0.7 ± 0.1 fold) and CAFCs (0.3 ± 0.1) from their initial numbers was observed. Global hypomethylation corresponding with increased transcript levels of several genes implicated in HSC self-renewal, including HOXB4, GATA2, and EZH2, was observed in 5azaD/TSA expanded MPB cells in contrast to controls. 5azaD/TSA expanded MPB cells retained in vivo hematopoietic engraftment capacity. Conclusion MPB CD34+ cells from donors can be expanded using 5azaD/TSA and these expanded cells retain in vivo hematopoietic reconstitution capacity. This strategy may prove to be potentially useful to augment HSCs numbers for patients who fail to mobilize. PMID:25363624

  14. Synthesization of SnO2-modified carbon nanotubes and their application in microbial fuel cell

    NASA Astrophysics Data System (ADS)

    Wang, Zi-Bo; Xiong, Shi-Chang; Guan, Yu-Jiang; Zhu, Xue-Qiang

    2016-03-01

    The aim of this work was to study the synthesization of SnO2-modified carbon nanotubes and their application in microbial fuel cell. With the chemical vapor deposition technique, carbon nanotubes growing in situ on a carbon felt are obtained. A SnO2 sol was applied to the carbon felt to prepare a SnO2-modified carbon nanotubes. X-ray diffraction and energy-dispersive X-ray analysis confirmed that SnO2 existed in the prepared samples. Using the prepared samples as anode electrodes, flexible graphite as cathode, and glucose solution as substrate in microbial fuel cell, the effects of the temperature, substrate concentration, and electrodes on removal rates for chemical oxygen demand and the performance of microbial fuel cell have been analyzed. With substrate concentration of 1500 mg L-1, the microbial fuel cell had an optimal output voltage of 563 mV and a removal rate of 78 % for chemical oxygen demand at 311 K. The composite electrodes are stable and reusable.

  15. Nur77 is differentially modified in PC12 cells upon membrane depolarization and growth factor treatment.

    PubMed Central

    Hazel, T G; Misra, R; Davis, I J; Greenberg, M E; Lau, L F

    1991-01-01

    The rat pheochromocytoma cell line PC12 can be induced by growth factors to undergo proliferation and neuronal differentiation. These cells also have excitable membranes that can be depolarized by neurotransmitters or elevated levels of extracellular KCl. Treatment of PC12 cells with growth factors or membrane-depolarizing agents rapidly activates the expression of specific genes whose products are thought to mediate the subsequent biological responses. One such gene, nur77, is a member of the steroid and thyroid hormone receptor gene superfamily. We have identified the Nur77 protein and shown that it is synthesized rapidly and transiently in PC12 cells following stimulation, has a short half-life of 30 to 40 min, and is located in both the nucleus and the cytoplasm. Nur77 is posttranslationally modified, primarily by phosphorylation on serine residues. Phosphopeptide analysis reveals that Nur77 is modified differently upon membrane depolarization than after treatment with growth factors. We hypothesize that the activity of Nur77 is regulated by both differential gene expression and posttranslational modification and that these modes of regulation contribute to distinct downstream responses specific to membrane depolarization and growth factor treatment. Images PMID:1645447

  16. Tumor Immunotherapy Using Gene-Modified Human Mesenchymal Stem Cells Loaded into Synthetic Extracellular Matrix Scaffolds

    PubMed Central

    Compte, Marta; Cuesta, Ángel M; Sánchez-Martín, David; Alonso-Camino, Vanesa; Vicario, José Luís; Sanz, Laura; Álvarez-Vallina, Luís

    2009-01-01

    Mesenchymal stem cells (MSCs) are appealing as gene therapy cell vehicles given their ease of expansion and transduction. However, MSCs exhibit immunomodulatory and proangiogenic properties that may pose a risk in their use in anticancer therapy. For this reason, we looked for a strategy to confine MSCs to a determined location, compatible with a clinical application. Human MSCs genetically modified to express luciferase (MSCluc), seeded in a synthetic extracellular matrix (sECM) scaffold (sentinel scaffold) and injected subcutaneously in immunodeficient mice, persisted for more than 40 days, as assessed by bioluminescence imaging in vivo. MSCs modified to express a bispecific α-carcinoembryonic antigen (αCEA)/αCD3 diabody (MSCdAb) and seeded in an sECM scaffold (therapeutic scaffolds) supported the release of functional diabody into the bloodstream at detectable levels for at least 6 weeks after implantation. Furthermore, when therapeutic scaffolds were implanted into CEA-positive human colon cancer xenograft-bearing mice and human T lymphocytes were subsequently transferred, circulating αCEA/αCD3 diabody activated T cells and promoted tumor cell lysis. Reduction of tumor growth in MSCdAb-treated mice was statistically significant compared with animals that only received MSCluc. In summary, we report here for the first time that human MSCs genetically engineered to secrete a bispecific diabody, seeded in an sECM scaffold and implanted in a location distant from the primary tumor, induce an effective antitumor response and tumor regression. PMID:19096041

  17. Preparation, cell compatibility and degradability of collagen-modified poly(lactic acid).

    PubMed

    Cui, Miaomiao; Liu, Leili; Guo, Ning; Su, Ruixia; Ma, Feng

    2015-01-05

    Poly(lactic acid) (PLA) was modified using collagen through a grafting method to improve its biocompatibility and degradability. The carboxylic group at the open end of PLA was transferred into the reactive acylchlorided group by a reaction with phosphorus pentachloride. Then, collagen-modified PLA (collagen-PLA) was prepared by the reaction between the reactive acylchlorided group and amino/hydroxyl groups on collagen. Subsequently, the structure of collagen-PLA was confirmed by Fourier transform infrared spectroscopy, fluorescein isothiocyanate-labeled fluorescence spectroscopy, X-ray photoelectron spectroscopy, and DSC analyses. Finally, some properties of collagen-PLA, such as hydrophilicity, cell compatibility and degradability were characterized. Results showed that collagen had been grafted onto the PLA with 5% graft ratio. Water contact angle and water absorption behavior tests indicated that the hydrophilicity of collagen-PLA was significantly higher than that of PLA. The cell compatibility of collagen-PLA with mouse embryonic fibroblasts (3T3) was also significantly better than PLA in terms of cell morphology and cell proliferation, and the degradability of PLA was also improved after introducing collagen. Results suggested that collagen-PLA was a promising candidate for biomedical applications.

  18. HUVEC cell affinity evaluation and integrin-mediated mechanism study on PHSRN-modified polymer.

    PubMed

    Liu, Yuan; Wang, Wei; Wang, Jun; Yuan, Zhi; Tang, Shiming; Liu, Min; Tang, Hua

    2011-05-01

    To investigate the role of the peptide Pro-His-Ser-Arg-Asn (PHSRN) in cell adhesion and growth, PHSRN- and Gly-Arg-Gly-Asp-Ser (GRGDS)-containing polymers (P-PN5 and P-GS5, respectively) were synthesized by modification of poly(D,L-lactide-co-beta-malic acid) (PLMA) with the corresponding peptides. The cell affinities of the modified polymers were evaluated by adhesion and proliferation experiments with human umbilical vein endothelial cells (HUVECs). The results showed that P-PN5 had comparable ability to that of P-GS5 in supporting HUVEC adhesion and growth. Furthermore, the integrin-mediated mechanism of cell-substrate interaction was investigated. The results showed that P-PN5 had similar binding affinity and binding strength towards α(5)β(1) compared to those of P-GS5. The findings suggest that PHSRN is capable of mediating the adhesion and growth of HUVECs independently and that PHSRN-modified polymers might be used as biologically compatible materials. Copyright © 2010 Elsevier B.V. All rights reserved.

  19. Carboxybetaine methacrylate-modified nylon surface for circulating tumor cell capture.

    PubMed

    Wang, Huiyu; Yue, Guofeng; Dong, Chaoqun; Wu, Fenglei; Wei, Jia; Yang, Yang; Zou, Zhengyun; Wang, Lifeng; Qian, Xiaoping; Zhang, Tao; Liu, Baorui

    2014-03-26

    Conventional in vitro circulating tumor cell (CTC) detection methods are always limited by blood sample volume because of the requirement of a large amount of blood. The aim of this study was to overcome the limitation by designing and making an in vivo CTC capture device. In this study, we designed and prepared a kind of proper material to serve the purpose of intervention. A method employing 3-aminopropyltriethoxysilane (γ-APS) as the coupling reagent to graft carboxybetaine methacrylate (CBMA) and to immobilize an anti-epithelial cell adhesion molecular (EpCAM) antibody on Nylon was developed. The results of X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy proved the successful graft of γ-APS and CBMA to Nylon. Furthermore, the predicted improvement in the biocompatibilities of our modified Nylon was confirmed by water contact angle measurement, bovine serum albumin adhesion, platelet adhesion, plasma recalcification time determination, and cytotoxicity tests. The tumor cells adhesion experiment revealed that Nylon with the antibody immobilized on it had an affinity for EpCAM positive tumor cells higher than that of pristine Nylon. Additionally, the capture ability of the CTCs was demonstrated in a nude mouse tumor model using the interventional device made of the modified Nylon wire. The positive results suggest that CBMA-grafted and anti-EpCAM antibody-immobilized Nylon is a promising new material for in vivo CTC capture devices.

  20. Bio-active molecules modified surfaces enhanced mesenchymal stem cell adhesion and proliferation.

    PubMed

    Mobasseri, Rezvan; Tian, Lingling; Soleimani, Masoud; Ramakrishna, Seeram; Naderi-Manesh, Hossein

    2017-01-29

    Surface modification of the substrate as a component of in vitro cell culture and tissue engineering, using bio-active molecules including extracellular matrix (ECM) proteins or peptides derived ECM proteins can modulate the surface properties and thereby induce the desired signaling pathways in cells. The aim of this study was to evaluate the behavior of human bone marrow mesenchymal stem cells (hBM-MSCs) on glass substrates modified with fibronectin (Fn), collagen (Coll), RGD peptides (RGD) and designed peptide (R-pept) as bio-active molecules. The glass coverslips were coated with fibronectin, collagen, RGD peptide and R-peptide. Bone marrow mesenchymal stem cells were cultured on different substrates and the adhesion behavior in early incubation times was investigated using scanning electron microscopy (SEM) and confocal microscopy. The MTT assay was performed to evaluate the effect of different bio-active molecules on MSCs proliferation rate during 24 and 72 h. Formation of filopodia and focal adhesion (FA) complexes, two steps of cell adhesion process, were observed in MSCs cultured on bio-active molecules modified coverslips, specifically in Fn coated and R-pept coated groups. SEM image showed well adhesion pattern for MSCs cultured on Fn and R-pept after 2 h incubation, while the shape of cells cultured on Coll and RGD substrates indicated that they might experience stress condition in early hours of culture. Investigation of adhesion behavior, as well as proliferation pattern, suggests R-peptide as a promising bio-active molecule to be used for surface modification of substrate in supporting and inducing cell adhesion and proliferation.

  1. The influence of flexible dye-sensitized solar cell modified by different magnetic bead contents

    NASA Astrophysics Data System (ADS)

    Lin, Yu-Jen; Chou, Jung-Chuan; Liao, Yi-Hung; Huang, Chin-Hui; Chu, Chia-Ming

    2017-03-01

    In this study, the influence of different magnetic bead (MB) contents on photovoltaic efficiency of flexible dye-sensitized solar cell (DSSC) was investigated. MB was incorporated into TiO2 film by spin coating method. The short-circuit current density (Jsc), open-circuit voltage (Voc), fill factor (F.F.), and the photovoltaic conversion efficiency (η) of DSSC were measured by digital source meter and solar light simulator, which provided by a 1000 W Xenon (Xe) lamp to simulate sunlight under one sun AM1.5 G (100 mW/cm2) illumination. According to the experimental results, the DSSC modified by MB could improve many photovoltaic characteristics than modified by pure TiO2 working electrode.

  2. A graphene modified anode to improve the performance of microbial fuel cells

    NASA Astrophysics Data System (ADS)

    Zhang, Yezhen; Mo, Guangquan; Li, Xuwen; Zhang, Weide; Zhang, Jiaqi; Ye, Jianshan; Huang, Xiaodan; Yu, Chengzhong

    Graphene with a Brunauer-Emmett-Teller (BET) specific surface area of 264 m 2 g -1 has been used as anodic catalyst of microbial fuel cells (MFCs) based on Escherichia coli (ATCC 25922). The electrochemical activities of plain stainless steel mesh (SSM), polytetrafluoroethylene (PTFE) modified SSM (PMS) and graphene modified SSM (GMS) have been investigated by cyclic voltammetry (CV), discharge experiment and polarization curve measurement. The GMS shows better electrochemical performance than those of SSM and PMS. The MFC equipped with GMS anode delivers a maximum power density of 2668 mW m -2, which is 18 times larger than that obtained from the MFC with the SSM anode and is 17 times larger than that obtained from the MFC with the PMS anode. Scanning electron microscopy (SEM) results indicate that the increase in power generation could be attributed to the high surface area of anode and an increase in the number of bacteria attached to anode.

  3. Surface Modified Biodegradable Electrospun Membranes as a Carrier for Human Embryonic Stem Cell-Derived Retinal Pigment Epithelial Cells.

    PubMed

    Sorkio, Anni; Porter, Patrick J; Juuti-Uusitalo, Kati; Meenan, Brian J; Skottman, Heli; Burke, George A

    2015-09-01

    Human embryonic stem cell-derived retinal pigment epithelial (hESC-RPE) cells are currently undergoing clinical trials to treat retinal degenerative diseases. Transplantation of hESC-RPE cells in conjuction with a supportive biomaterial carrier holds great potential as a future treatment for retinal degeneration. However, there has been no such biodegradable material that could support the growth and maturation of hESC-RPE cells so far. The primary aim of this work was to create a thin porous poly (L-lactide-co-caprolactone) (PLCL) membrane that could promote attachment, proliferation, and maturation of the hESC-RPE cells in serum-free culture conditions. The PLCL membranes were modified by atmospheric pressure plasma processing and coated with collagen IV to enhance cell growth and maturation. Permeability of the membranes was analyzed with an Ussing chamber system. Analysis with scanning electron microscopy, contact angle measurement, atomic force microscopy, and X-ray photoelectron spectroscopy demonstrated that plasma surface treatment augments the surface properties of the membrane, which enhances the binding and conformation of the protein. Cell proliferation assays, reverse transcription-polymerase chain reaction, indirect immunofluoresence staining, trans-epithelial electrical resistance measurements, and in vitro phagocytosis assay clearly demonstrated that the plasma treated PLCL membranes supported the adherence, proliferation, maturation and functionality of hESC-RPE cells in serum-free culture conditions. Here, we report for the first time, how PLCL membranes can be modified with atmospheric pressure plasma processing to enable the formation of a functional hESC-RPE monolayer on a porous biodegradable substrate, which have a potential as a tissue-engineered construct for regenerative retinal repair applications.

  4. Modified sugar beet pectin induces apoptosis of colon cancer cells via interaction with the neutral sugar side-chains

    USDA-ARS?s Scientific Manuscript database

    Pectins extracted from a variety of sources and modified with heat and/or pH have previously been shown to exhibit activity towards several cancer cell lines. However, the structural basis for the anti-cancer activity of modified pectin requires clarification. Sugar beet and citrus pectin extracts h...

  5. [Modified method for whole bone marrow adherent culture of human bone marrow mesenchymal stem cells].

    PubMed

    Wang, Xiao-Qing; Zhong, Zhao-Dong; Chen, Zhi-Chao; Zou, Ping

    2014-04-01

    This study was aimed to investigate a more convenient and efficient method to cultivate the human bone marrow mesenchymal stem cells by means of natural erythrocyte sedimentation principle, based on the whole bone marrow adherent method. The bone marrow was cultured with a six-well plate instead of the flasks.Firstly, the bone marrow specimen was cultivated with the MSC complete medium for 48 h, then the upper RBC-free supernatant layer was drawn and placed into the new wells to isolate MSC. Inverted microscope was used to observe the cell morphology and to record the adherent time of first cell passage, first passaging time. The traditional whole bone marrow adherent method was used as the control. The cell cycle and cell surface markers were detected by flow cytometry,and the differentiative capacity of MSC into osteocyte and adipocyte was identified by alkaline phosphatase kit and oil red O, respectively. Besides, the proliferative curve of P1,P3,P5 of BMSC was depicted by counting method. The results showed that MSC cultured by the modified method highly expressed CD90, CD105, CD13, CD44 and lowly expressed CD14, CD45, CD34. Concerning the cell cycle feature, it was found that most of the cells were in G0/G1 phase (88.76%) , followed by G2/M phase (3.04%) and S phase (8.2%), which was in accordance with stem cell cycle characteristics. The proliferative curve showed a typical "S" type, and both the oil red O and alkaline phosphatase staining of MSC were positive. Compared with the traditional method, the modified method had the advantage of high adherence rate (P = 0.0001) and shorter passaging time for the first passage (P = 0.001), with the statistically significant difference. It is concluded that there is a large number of adherent, active and suspended MSC in the RBC-free supernatant layer after the culture of bone marrow for 48 h. Isolating MSC by the modified method is more convenient and efficient than the traditional whole bone marrow adherent method.

  6. Lipid production in association of filamentous fungi with genetically modified cyanobacterial cells.

    PubMed

    Miranda, Ana F; Taha, Mohamed; Wrede, Digby; Morrison, Paul; Ball, Andrew S; Stevenson, Trevor; Mouradov, Aidyn

    2015-01-01

    Numerous strategies have evolved recently for the generation of genetically modified or synthetic microalgae and cyanobacteria designed for production of ethanol, biodiesel and other fuels. In spite of their obvious attractiveness there are still a number of challenges that can affect their economic viability: the high costs associated with (1) harvesting, which can account for up to 50 % of the total biofuel's cost, (2) nutrients supply and (3) oil extraction. Fungal-assisted bio-flocculation of microalgae is gaining increasing attention due to its high efficiency, no need for added chemicals and low energy inputs. The implementation of renewable alternative carbon, nitrogen and phosphorus sources from agricultural wastes and wastewaters for growing algae and fungi makes this strategy economically attractive. This work demonstrates that the filamentous fungi, Aspergillus fumigatus can efficiently flocculate the unicellular cyanobacteria Synechocystis PCC 6803 and its genetically modified derivatives that have been altered to enable secretion of free fatty acids into growth media. Secreted free fatty acids are potentially used by fungal cells as a carbon source for growth and ex-novo production of lipids. For most of genetically modified strains the total lipid yields extracted from the fungal-cyanobacterial pellets were found to be higher than additive yields of lipids and total free fatty acids produced by fungal and Synechocystis components when grown in mono-cultures. The synergistic effect observed in fungal-Synechocystis associations was also found in bioremediation rates when animal husbandry wastewater was used an alternative source of nitrogen and phosphorus. Fungal assisted flocculation can complement and assist in large scale biofuel production from wild-type and genetically modified Synechocystis PCC 6803 strains by (1) efficient harvesting of cyanobacterial cells and (2) producing of high yields of lipids accumulated in fungal-cyanobacterial pellets.

  7. Current status and regulatory perspective of chimeric antigen receptor-modified T cell therapeutics.

    PubMed

    Kim, Mi-Gyeong; Kim, Dongyoon; Suh, Soo-Kyung; Park, Zewon; Choi, Min Joung; Oh, Yu-Kyoung

    2016-04-01

    Chimeric antigen receptor-modified T cells (CAR-T) have emerged as a new modality for cancer immunotherapy due to their potent efficacy against terminal cancers. CAR-Ts are reported to exert higher efficacy than monoclonal antibodies and antibody-drug conjugates, and act via mechanisms distinct from T cell receptor-engineered T cells. These cells are constructed by transducing genes encoding fusion proteins of cancer antigen-recognizing single-chain Fv linked to intracellular signaling domains of T cell receptors. CAR-Ts are classified as first-, second- and third-generation, depending on the intracellular signaling domain number of T cell receptors. This review covers the current status of CAR-T research, including basic proof-of-concept investigations at the cell and animal levels. Currently ongoing clinical trials of CAR-T worldwide are additionally discussed. Owing to the lack of existing approved products, several unresolved concerns remain with regard to safety, efficacy and manufacturing of CAR-T, as well as quality control issues. In particular, the cytokine release syndrome is the major side-effect impeding the successful development of CAR-T in clinical trials. Here, we have addressed the challenges and regulatory perspectives of CAR-T therapy.

  8. In vitro studies of interaction of modified silica nanoparticles with different types of immunocompetent cells.

    PubMed

    Kulikova, Galina A; Parfenyuk, Elena V; Ryabinina, Irina V; Antsiferova, Yuliya S; Sotnikova, Nataliya Yu; Posiseeva, Lubov V; Eliseeva, Mariya A

    2010-11-01

    Interactions between different types of immune cells and organically-modified silica nanoparticles were studied. The silica particles functionalized with amine groups were prepared by sol-gel technique. Sheep immunoglobulin labeled with fluoresceine isothiocyanate was immobilized by adsorption onto the nanoparticles. The presence of the functional groups was confirmed by infrared absorption measurements. The level of immunocompetent cells interacting with the silica nanoparticles was estimated as the amount of fluorescence-bright cells by flow cytometry method. A low level of interaction of the peripheral blood lymphocytes with the silica nanoparticles was found. On the contrary, the macrophages are actively involved in interaction with the silica nanoparticles. The influence of different size of the silica nanoparticles and incubation time on viability and functional activity of peripheral blood lymphocytes and peritoneal macrophages were investigated.

  9. FACTORS WHICH MODIFY THE EFFECT OF SODIUM AND POTASSIUM ON BACTERIAL CELL MEMBRANES.

    PubMed

    HENNEMAN, D H; UMBREIT, W W

    1964-06-01

    Henneman, Dorothy H. (Rutgers, The State University, New Brunswick, N.J.), and W. W. Umbreit. Factors which modify the effect of sodium and potassium on bacterial cell membranes. J. Bacteriol. 87:1266-1273. 1964.-Suspensions of Escherichia coli B, when placed in 0.2 to 0.5 m solutions of NaCl, KCl, or LiCl, show an increased turbidity. With NaCl, this increased turbidity is stable with time; with KCl and LiCl, it is gradually lost. The stability to NaCl with time is due to substances removable from the cell by incubation in phosphate buffer; these materials exist in water washings from such phosphate-incubated cells.

  10. Human T-cells recognise N-terminally Fmoc-modified peptide.

    PubMed

    Mannering, Stuart I; Purcell, Anthony W; Honeyman, Margo C; McCluskey, James; Harrison, Leonard C

    2003-09-08

    We aimed to generate T-cell clones specific for human pre-proinsulin. An HLA DQ8, CD4+ T-cell clone that recognised a 10mer (C65-A9) peptide from pre-proinsulin was isolated. Further analysis revealed that the clone responded neither to recombinant proinsulin nor to re-synthesised C65-A9 peptide. Analysis of the original peptide revealed minor contamination (<0.5%) with an N-terminal Fmoc adduct. This peptide was synthesised and shown to stimulate the clone. Thus, Fmoc-modified peptides, which are common contaminants in synthetic peptides, can stimulate human CD4+ T-cells. This finding has important implications for the use of synthetic peptides in screening and epitope mapping studies and their use as vaccines in humans.

  11. Improved morphology control using a modified two-step method for efficient perovskite solar cells.

    PubMed

    Bi, Dongqin; El-Zohry, Ahmed M; Hagfeldt, Anders; Boschloo, Gerrit

    2014-11-12

    A two-step wet chemical synthesis method for methylammonium lead(II) triiodide (CH3NH3PbI3) perovskite is further developed for the preparation of highly reproducible solar cells, with the following structure: fluorine-doped tin oxide (FTO)/TiO2 (compact)/TiO2 (mesoporous)/CH3NH3PbI3/spiro-OMeTAD/Ag. The morphology of the perovskite layer could be controlled by careful variation of the processing conditions. Specifically, by modifying the drying process and inclusion of a dichloromethane treatment, more uniform films could be prepared, with longer emission lifetime in the perovskite material and longer electron lifetime in solar cell devices, as well as faster electron transport and enhanced charge collection at the selective contacts. Solar cell efficiencies up to 13.5% were obtained.

  12. Enhancing the Detection of Dysmorphic Red Blood Cells and Renal Tubular Epithelial Cells with a Modified Urinalysis Protocol

    PubMed Central

    Chu-Su, Yu; Shukuya, Kenichi; Yokoyama, Takashi; Lin, Wei-Chou; Chiang, Chih-Kang; Lin, Chii-Wann

    2017-01-01

    Urinary sediment is used to evaluate patients with possible urinary tract diseases. Currently, numerous protocols are applied to detect dysmorphic red blood cells (RBCs) and renal tubular epithelial cells (RTECs) in urinary sediment. However, distinct protocols are used by nephrologists and medical technologists for specimen concentration and observation, which leads to major discrepancies in the differential counts of formed elements such as dysmorphic RBCs and RTECs and might interfere with an accurate clinical diagnosis. To resolve these problems, we first tested a modified urinalysis protocol with an increased relative centrifuge force and concentration factor in 20 biopsy-confirmed glomerulonephritis patients with haematuria. We successfully improved the recovery ratio of dysmorphic RBCs in clinical specimens from 34.7% to 42.0% (P < 0.001). Furthermore, we confirmed the correlation between counts by the modified urinary protocol and Sysmex UF-1000i urinary flow cytometer (r ≥ 0.898, P < 0.001). A total of 28 types of isomorphic and dysmorphic RBCs were detected using a bright field microscope, with results comparable to those using a standard phase contrast microscope. Finally, we applied Sternheimer stain to enhance the contrast of RTECs in the urinary sediments. We concluded that this modified urinalysis protocol significantly enhanced the quality of urinalysis. PMID:28074941

  13. Fucoidan reduced the invasion of oral squamous cell carcinoma cells and modified their effects to macrophages.

    PubMed

    Lin, Junda; Wang, Ketao; Wang, Huayang; Shao, Qianqian; Luan, Yijun; Xu, Yan; Song, Xiaobin; Tan, Wanye; Liu, Shaohua; Wei, Fengcai; Qu, Xun

    2017-01-01

    Fucoidan is a complex of polysaccharides showing antitumor and immunomodulation properties. Our previous studies found its regulation to myeloid immune cells, including macrophages. Aberrant infiltration and functions of macrophages are commonly found in oral squamous cell carcinoma (OSCC). In this study, we analyzed the effects of fucoidan on invasion of OSCC cells, and their regulation to macrophages, trying to evaluate its role as a potential therapy for OSCC. CAL27 and THP-1-derived macrophages were used as models for OSCC cells and tumor-infiltrated macrophages in the in vitro study, respectively. The effects of fucoidan on invasion of OSCC cells and their recruitment to macrophages were analyzed by transwell assay. KIF4A siRNA transfection was performed to investigate its role in fucoidan-modulated OSCC cells invasion. CCL3-neutralizing antibody was added into the conditioned medium of OSCC cells to evaluate its role in fucoidan-mediated macrophages recruitment and re-education. Fucoidan reduced the invasive potential of CAL27 cells with a decrease of MMP-2 and KIF4A transcription. KIF4A knockdown in CAL27 cells led to decreased invasion and MMP-2 expression. The conditioned medium of fucoidan-treated CAL27 cells promoted recruitment and inflammatory cytokines secretion on THP-1-derived macrophages. Further analysis found that fucoidan increased CCL3 production in CAL27 cells. Blocking CCL3 expression reversed the effects of fucoidan on macrophage recruitment and re-education. Our study found that fucoidan regulated the invasion of OSCC cells and also their recruiting and re-educating effects on macrophages, suggesting it could be a complementary approach in the treatment of OSCC.

  14. Time course of bronchial cell inflammation following exposure to diesel particulate matter using a modified EAVES.

    PubMed

    Hawley, Brie; McKenna, Dave; Marchese, Anthony; Volckens, John

    2014-08-01

    Electrostatic deposition of particles onto the surface of well-differentiated airway cells is a rapid and efficient means to screen for toxicity associated with exposure to fine and ultrafine particulate air pollution. This work describes the development and application of an electrostatic aerosol in vitro exposure system (EAVES) with increased throughput and ease-of-use. The modified EAVES accommodates standard tissue culture plates and uses an alternating electric field to deposit a net neutral charge of aerosol onto air-interface cell cultures. Using this higher-throughput design, we were able to examine the time-course (1, 3, 6, 9, and 24 h post-exposure) of transcript production and cytotoxicity in well-differentiated human bronchial cells exposed to diesel particulate matter at levels of 'real-world' significance. Statistically significant responses were observed at exposure levels (∼0.4 μg/cm(2)) much lower than typically reported in vitro using traditional submerged/resuspended techniques. Levels of HO-1, IL-8, CYP1A1, COX-2, and HSP-70 transcripts increased immediately following diesel particulate exposure and persisted for several hours; cytotoxicity was increased at 24h. The modified EAVES provides a platform for higher throughput, more efficient and representative testing of aerosol toxicity in vitro.

  15. Gold nanoparticles modified porous silicon chip for SALDI-MS determination of glutathione in cells.

    PubMed

    Wang, Jing; Jie, Mingsha; Li, Haifang; Lin, Luyao; He, Ziyi; Wang, Shiqi; Lin, Jin-Ming

    2017-06-01

    The gold nanoparticles (Au NPs) modified porous silicon chip based surface assisted laser desorption/ionization mass spectrometry (SALDI-MS) was developed to capture and analyze glutathione (GSH) in cells. With silver-assisted chemical etching, Ag nanoparticles (Ag NPs) were generated and deposited on the silicon surface and the nanopores were etched on silicon substrate. Then Au NPs were in-situ synthesized on the ridges of silicon nanopores. This Ag-Au NPs modified porous silicon surface could specially capture and enrich thiol compounds through Au-S binding, and it could also function as matrix to assist ionization for SALDI-MS. The silicon chip was array patterned for high throughput SALDI-MS detection. GSH and cysteine could be distinguished without the interference from matrix signals. This approach was successfully applied to preconcentration and detection of GSH in Caco-2 cells. The GSH alterations in cells under drug stimulation were investigated. This invented silicon chip showed great potential for more efficient analysis of small thiol biomarkers in complex biological samples. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Genetically modified mesenchymal stem cells (MSCs) promote axonal regeneration and prevent hypersensitivity after spinal cord injury.

    PubMed

    Kumagai, Gentaro; Tsoulfas, Pantelis; Toh, Satoshi; McNiece, Ian; Bramlett, Helen M; Dietrich, W Dalton

    2013-10-01

    Neurotrophins and the transplantation of bone marrow-derived stromal cells (MSCs) are both candidate therapies targeting spinal cord injury (SCI). While some studies have suggested the ability of MSCs to transdifferentiate into neural cells, other SCI studies have proposed anti-inflammatory and other mechanisms underlying established beneficial effects. We grafted rat MSCs genetically modified to express MNTS1, a multineurotrophin that binds TrkA, TrkB and TrkC, and p75(NTR) receptors or MSC-MNTS1/p75(-) that binds mainly to the Trk receptors. Seven days after contusive SCI, PBS-only, GFP-MSC, MSC-MNTS1/GFP or MSC-MNTS1/p75(-)/GFP were delivered into the injury epicenter. All transplanted groups showed reduced inflammation and cystic cavity size compared to control SCI rats. Interestingly, transplantation of the MSC-MNTS1 and MSC-MNTS1/p75(-), but not the naïve MSCs, enhanced axonal growth and significantly prevented cutaneous hypersensitivity after SCI. Moreover, transplantation of MSC-MNTS1/p75(-) promoted angiogenesis and modified glial scar formation. These findings suggest that MSCs transduced with a multineurotrophin are effective in promoting cell growth and improving sensory function after SCI. These novel data also provide insight into the neurotrophin-receptor dependent mechanisms through which cellular transplantation leads to functional improvement after experimental SCI.

  17. Thiols as interfacial modifiers to enhance the performance and stability of perovskite solar cells.

    PubMed

    Cao, Jing; Yin, Jun; Yuan, Shangfu; Zhao, Yun; Li, Jing; Zheng, Nanfeng

    2015-06-07

    Modifying the interfaces of CH3NH3PbI3 with TiO2 and hole transport layers using two different types of thiols leads to enhanced performance and stability of perovskite solar cells. The incorporation of HOOC-Ph-SH at the TiO2/perovskite interface facilitates electron transfer from perovskite to TiO2 and also alters the morphology of perovskite crystal growth to increase the power conversion efficiency. The modification of pentafluorobenzenethiol at the perovskite/hole transport layer interface improves the stability.

  18. Early postweaning social isolation but not environmental enrichment modifies vermal Purkinje cell dendritic outgrowth in rats.

    PubMed

    Pascual, Rodrigo; Bustamante, Carlos

    2013-01-01

    In the present study, we analyzed the effects of enriched, social and isolated experiences on vermal Purkinje cell of the rat, together with anxiety-like behavior in the elevated-plus maze. Sprague-Dawley male rats were randomly submitted to either enriched, social, or isolated environments during the early postweaning period (postnatal days 22-32) and were then behaviorally evaluated in the elevated-plus maze and euthanized for histological analysis. Vermal Purkinje cells (sub-lobules VIa and VIb) were sampled, drawn under camera lucida and morphometrically assessed using the Sholl's concentric ring method. Data obtained indicate that environmental enrichment did not significantly modify the Purkinje cell dendritic branching. On the contrary, Purkinje cell of animals reared in social isolation exhibited a significant reduction in dendritic arborization, which was closely associated with anxiety-like behaviors. The data obtained indicate that, although environmental stimulation in normal animals does not produce significant changes in vermal Purkinje cell dendritic arborization, these cells are vulnerable to early stressful experiences, which is in close association with anxiety-like behaviors.

  19. The Chromatin Modifier MSK1/2 Suppresses Endocrine Cell Fates during Mouse Pancreatic Development

    PubMed Central

    Bhat, Neha; Park, Jeehye; Zoghbi, Huda Y.; Arthur, J. Simon C.; Zaret, Kenneth S.

    2016-01-01

    Type I diabetes is caused by loss of insulin-secreting beta cells. To identify novel, pharmacologically-targetable histone-modifying proteins that enhance beta cell production from pancreatic progenitors, we performed a screen for histone modifications induced by signal transduction pathways at key pancreatic genes. The screen led us to investigate the temporal dynamics of ser-28 phosphorylated histone H3 (H3S28ph) and its upstream kinases, MSK1 and MSK2 (MSK1/2). H3S28ph and MSK1/2 were enriched at the key endocrine and acinar promoters in E12.5 multipotent pancreatic progenitors. Pharmacological inhibition of MSK1/2 in embryonic pancreatic explants promoted the specification of endocrine fates, including the beta-cell lineage, while depleting acinar fates. Germline knockout of both Msk isoforms caused enhancement of alpha cells and a reduction in acinar differentiation, while monoallelic loss of Msk1 promoted beta cell mass. Our screen of chromatin state dynamics can be applied to other developmental contexts to reveal new pathways and approaches to modulate cell fates. PMID:27973548

  20. Pathway of cytotoxicity induced by folic acid modified selenium nanoparticles in MCF-7 cells.

    PubMed

    Pi, Jiang; Jin, Hua; Liu, Ruiying; Song, Bing; Wu, Qing; Liu, Li; Jiang, Jinhuan; Yang, Fen; Cai, Huaihong; Cai, Jiye

    2013-02-01

    Selenium nanoparticles (Se NPs) have been recognized as promising materials for biomedical applications. To prepare Se NPs which contained cancer targeting methods and to clarify the cellular localization and cytotoxicity mechanisms of these Se NPs against cancer cells, folic acid protected/modified selenium nanoparticles (FA-Se NPs) were first prepared by a one-step method. Some morphologic and spectroscopic methods were obtained to prove the successfully formation of FA-Se NPs while free folate competitive inhibition assay, microscope, and several biological methods were used to determine the in vitro uptake, subcellular localization, and cytotoxicity mechanism of FA-Se NPs in MCF-7 cells. The results indicated that the 70-nm FA-Se NPs were internalized by MCF-7 cells through folate receptor-mediated endocytosis and targeted to mitochondria located regions through endocytic vesicles transporting. Then, the FA-Se NPs entered into mitochondria; triggered the mitochondria-dependent apoptosis of MCF-7 cells which involved oxidative stress, Ca(2)+ stress changes, and mitochondrial dysfunction; and finally caused the damage of mitochondria. FA-Se NPs released from broken mitochondria were transported into nucleus and further into nucleolus which then induced MCF-7 cell cycle arrest. In addition, FA-Se NPs could induce cytoskeleton disorganization and induce MCF-7 cell membrane morphology alterations. These results collectively suggested that FA-Se NPs could be served as potential therapeutic agents and organelle-targeted drug carriers in cancer therapy.

  1. Schwann cells genetically modified to express neurotrophins promote spiral ganglion neuron survival in vitro

    PubMed Central

    Pettingill, Lisa N.; Minter, Ricki L.; Shepherd, Robert K.

    2009-01-01

    The intracochlear infusion of neurotrophic factors via a mini-osmotic pump has been shown to prevent deafness-induced spiral ganglion neuron (SGN) degeneration; however, the use of pumps may increase the incidence of infection within the cochlea, making this technique unsuitable for neurotrophin administration in a clinical setting. Cell- and gene-based therapies are potential therapeutic options. This study investigated whether Schwann cells which were genetically modified to over-express the neurotrophins brain-derived neurotrophic factor (BDNF) or neurotrophin 3 (Ntf3, formerly NT-3) could support SGN survival in an in vitro model of deafness. Co-culture of either BDNF over-expressing Schwann cells or Ntf3 over-expressing Schwann cells with SGNs from early postnatal rats significantly enhanced neuronal survival in comparison to both control Schwann cells and conventional recombinant neurotrophin proteins. Transplantation of neurotrophin over-expressing Schwann cells into the cochlea may provide an alternative means of delivering neurotrophic factors to the deaf cochlea for therapeutic purposes. PMID:18304740

  2. Enhanced adherence of mouse fibroblast and vascular cells to plasma modified polyethylene.

    PubMed

    Reznickova, Alena; Novotna, Zdenka; Kolska, Zdenka; Kasalkova, Nikola Slepickova; Rimpelova, Silvie; Svorcik, Vaclav

    2015-01-01

    Since the last decade, tissue engineering has shown a sensational promise in providing more viable alternatives to surgical procedures for harvested tissues, implants and prostheses. Biomedical polymers, such as low-density polyethylene (LDPE), high-density polyethylene (HDPE) and ultra-high molecular weight polyethylene (UHMWPE), were activated by Ar plasma discharge. Degradation of polymer chains was examined by determination of the thickness of ablated layer. The amount of an ablated polymer layer was measured by gravimetry. Contact angle, measured by goniometry, was studied as a function of plasma exposure and post-exposure aging times. Chemical structure of modified polymers was characterized by angle resolved X-ray photoelectron spectroscopy. Surface chemistry and polarity of the samples were investigated by electrokinetic analysis. Changes in surface morphology were followed using atomic force microscopy. Cytocompatibility of plasma activated polyethylene foils was studied using two distinct model cell lines; VSMCs (vascular smooth muscle cells) as a model for vascular graft testing and connective tissue cells L929 (mouse fibroblasts) approved for standardized material cytotoxicity testing. Specifically, the cell number, morphology, and metabolic activity of the adhered and proliferated cells on the polyethylene matrices were studied in vitro. It was found that the plasma treatment caused ablation of the polymers, resulting in dramatic changes in their surface morphology and roughness. ARXPS and electrokinetic measurements revealed oxidation of the polymer surface. It was found that plasma activation has a positive effect on the adhesion and proliferation of VSMCs and L929 cells.

  3. Endothelial cell differentiation into capillary-like structures in response to tumour cell conditioned medium: a modified chemotaxis chamber assay.

    PubMed Central

    Garrido, T.; Riese, H. H.; Aracil, M.; Pérez-Aranda, A.

    1995-01-01

    We have developed a modified chemotaxis chamber assay in which bovine aortic endothelial (BAE) cells degrade Matrigel basement membrane and migrate and form capillary-like structures on type I collagen. This capillary formation occurs in the presence of conditioned media from highly metastatic tumour cell lines, such as B16F10 murine melanoma or MDA-MD-231 human breast adenocarcinoma, but not in the presence of conditioned medium (CM) from the less invasive B16F0 cell line. Replacement of tumour cell CM by 10 ng ml-1 basic fibroblast growth factor (bFGF) also results in capillary-like structure formation by BAE cells. An anti-bFGF antibody blocks this effect, showing that bFGF is one of the factors responsible for the angiogenic response induced by B16F10 CM in our assay. Addition of an anti-laminin antibody reduces significantly the formation of capillary-like structures, probably by blocking the attachment of BAE cells to laminin present in Matrigel. The anti-angiogenic compound suramin inhibits in a dose-dependent manner (complete inhibition with 100 microM suramin) the migration and differentiation of BAE cells on type I collagen in response to B16F10 CM. This assay represents a new model system to study tumour-induced angiogenesis in vitro. Images Figure 2 Figure 3 PMID:7536021

  4. Minimally modified low density lipoprotein induces monocyte chemotactic protein 1 in human endothelial cells and smooth muscle cells

    SciTech Connect

    Cushing, S.D.; Berliner, J.A.; Valente, A.J.; Territo, M.C.; Navab, M.; Parhami, F.; Gerrity, R.; Schwartz, C.J.; Fogelman, A.M.

    1990-07-01

    After exposure to low density lipoprotein (LDL) that had been minimally modified by oxidation (MM-LDL), human endothelial cells (EC) and smooth muscle cells (SMC) cultured separately or together produced 2- to 3-fold more monocyte chemotactic activity than did control cells or cells exposed to freshly isolated LDL. This increase in monocyte chemotactic activity was paralleled by increases in mRNA levels for a monocyte chemotactic protein 1 (MCP-1) that is constitutively produced by the human glioma U-105MG cell line. Antibody that had been prepared against cultured baboon smooth muscle cell chemotactic factor (anti-SMCF) did not inhibit monocyte migration induced by the potent bacterial chemotactic factor f-Met-Leu-Phe. However, anti-SMCF completely inhibited the monocyte chemotactic activity found in the media of U-105MG cells, EC, and SMC before and after exposure to MM-LDL. Moreover, monocyte migration into the subendothelial space of a coculture of EC and SMC that had been exposed to MM-LDL was completely inhibited by anti-SMCF. Anti-SMCF specifically immunoprecipitated 10-kDa and 12.5-kDa proteins from EC. Incorporation of (35S)methionine into the immunoprecipitated proteins paralleled the monocyte chemotactic activity found in the medium of MM-LDL stimulated EC and the levels of MCP-1 mRNA found in the EC. We conclude that SMCF is in fact MCP-1 and MCP-1 is induced by MM-LDL.

  5. Epithelial TRPV1 Signaling Accelerates Gingival Epithelial Cell Proliferation

    PubMed Central

    Takahashi, N.; Matsuda, Y.; Yamada, H.; Tabeta, K.; Nakajima, T.; Murakami, S.; Yamazaki, K.

    2014-01-01

    Transient receptor potential cation channel subfamily V member 1 (TRPV1), a member of the calcium-permeable thermosensitive transient receptor potential superfamily, is a sensor of thermal and chemical stimuli. TRPV1 is activated by noxious heat (> 43°C), acidic conditions (pH < 6.6), capsaicin, and endovanilloids. This pain receptor was discovered on nociceptive fibers in the peripheral nervous system. TRPV1 was recently found to be expressed by non-neuronal cells, such as epithelial cells. The oral gingival epithelium is exposed to multiple noxious stimuli, including heat and acids derived from endogenous and exogenous substances; however, whether gingival epithelial cells (GECs) express TRPV1 is unknown. We show that both TRPV1 mRNA and protein are expressed by GECs. Capsaicin, a TRPV1 agonist, elevated intracellular Ca2+ levels in the gingival epithelial cell line, epi 4. Moreover, TRPV1 activation in epi 4 cells accelerated proliferation. These responses to capsaicin were inhibited by a specific TRPV1 antagonist, SB-366791. We also observed GEC proliferation in capsaicin-treated mice in vivo. No effects were observed on GEC apoptosis by epithelial TRPV1 signaling. To examine the molecular mechanisms underlying this proliferative effect, we performed complementary (c)DNA microarray analysis of capsaicin-stimulated epi 4 cells. Compared with control conditions, 227 genes were up-regulated and 232 genes were down-regulated following capsaicin stimulation. Several proliferation-related genes were validated by independent experiments. Among them, fibroblast growth factor-17 and neuregulin 2 were significantly up-regulated in capsaicin-treated epi 4 cells. Our results suggest that functional TRPV1 is expressed by GECs and contributes to the regulation of cell proliferation. PMID:25266715

  6. [Application of Chimeric Antigen Receptor-Modified CAR-T/NK Cells to Treatment of Multiple Myeloma].

    PubMed

    Wang, Lei; Ou, jian-Feng; Bai, Hai

    2015-04-01

    Chimeric antigen receptor(CAR) is a synthesized transmembrane protein, which redirects the modified cells through specific or associated antigen on tumor cells. CAR-modified T/NK cells, especially CAR-T cells, are a new tool of rapidly developing of adoptive immunotherapy of tumor in recent years, they give T/NK cells the targeting cytotoxic activity and can overcome the tumor immunosuppressive microenvironment and break the state of the host immune tolerance. CAR combines the single-chain antibody to tumor-associated antigen with T/NK cells' activated motifs, giving T/NK cells' tumor targeting activity, so enhancing their cytotoxic activity and lasting the vitality by gene transduction. In this article the CAR development, comparison of CAR-T and CAR-NK cells, surface markers on MM cells and use of CAR in MM, and CAR perspectives are summarized.

  7. Influence of Iron Oxide Nanoparticles on Innate and Genetically Modified Secretion Profiles of Mesenchymal Stem Cells.

    PubMed

    Bashar, Abu Emran; Metcalfe, Andrew; Yanai, Anat; Laver, Christopher; Häfeli, Urs O; Gregory-Evans, Cheryl Y; Moritz, Orson L; Matsubara, Joanne A; Gregory-Evans, Kevin

    2013-01-01

    Mesenchymal stem cells (MSCs) have well-established paracrine effects that are proving to be therapeutically useful. This potential is based on the ability of MSCs to secrete a range of neuroprotective and anti-inflammatory molecules. Previous work in our laboratory has demonstrated that intravenous injection of MSCs, treated with superparamagnetic iron oxide nanoparticle fluidMAG-D resulted in enhanced levels of glial-derived neurotrophic factor, ciliary neurotrophic factor, hepatocyte growth factor and interleukin-10 in the dystrophic rat retina. In this present study we investigated whether the concentration of fluidMAG-D in cell culture media affects the secretion of these four molecules in vitro. In addition, we assessed the effect of fluidMAG-D concentration on retinoschisin secretion from genetically modified MSCs. ELISA-assayed secretion of these molecules was measured using escalating concentrations of fluidMAG-D which resulted in MSC iron loads of 0, 7, 120, or 274 pg iron oxide per cell respectively. Our results demonstrated glial-derived neurotrophic factor and hepatocyte growth factor secretion was significantly decreased but only at the 96 hour's time-point whereas no statistically significant effect was seen with ciliary neurotrophic factor secretion. Whereas no effect was observed on culture media concentrations of retinoschisin with increasing iron oxide load, a statistically significant increase in cell lysate retinoschisin concentration (p = 0.01) was observed suggesting that increasing fluidMAG-D concentration did increase retinoschisin production but this did not lead to greater secretion. We hypothesize that higher concentrations of iron-oxide nanoparticle fluidMAG-D have an effect on the innate ability of MSCs to secrete therapeutically useful molecules and also on secretion from genetically modified cells. Further work is required to verify these in vitro finding using in vivo model systems.

  8. Influence of Iron Oxide Nanoparticles on Innate and Genetically Modified Secretion Profiles of Mesenchymal Stem Cells

    PubMed Central

    Bashar, Abu Emran; Metcalfe, Andrew; Yanai, Anat; Laver, Christopher; Häfeli, Urs O.; Gregory-Evans, Cheryl Y.; Moritz, Orson L.; Matsubara, Joanne A.; Gregory-Evans, Kevin

    2014-01-01

    Mesenchymal stem cells (MSCs) have well-established paracrine effects that are proving to be therapeutically useful. This potential is based on the ability of MSCs to secrete a range of neuroprotective and anti-inflammatory molecules. Previous work in our laboratory has demonstrated that intravenous injection of MSCs, treated with superparamagnetic iron oxide nanoparticle fluidMAG-D resulted in enhanced levels of glial-derived neurotrophic factor, ciliary neurotrophic factor, hepatocyte growth factor and interleukin-10 in the dystrophic rat retina. In this present study we investigated whether the concentration of fluidMAG-D in cell culture media affects the secretion of these four molecules in vitro. In addition, we assessed the effect of fluidMAG-D concentration on retinoschisin secretion from genetically modified MSCs. ELISA-assayed secretion of these molecules was measured using escalating concentrations of fluidMAG-D which resulted in MSC iron loads of 0, 7, 120, or 274 pg iron oxide per cell respectively. Our results demonstrated glial-derived neurotrophic factor and hepatocyte growth factor secretion was significantly decreased but only at the 96 hour’s time-point whereas no statistically significant effect was seen with ciliary neurotrophic factor secretion. Whereas no effect was observed on culture media concentrations of retinoschisin with increasing iron oxide load, a statistically significant increase in cell lysate retinoschisin concentration (p = 0.01) was observed suggesting that increasing fluidMAG-D concentration did increase retinoschisin production but this did not lead to greater secretion. We hypothesize that higher concentrations of iron-oxide nanoparticle fluidMAG-D have an effect on the innate ability of MSCs to secrete therapeutically useful molecules and also on secretion from genetically modified cells. Further work is required to verify these in vitro finding using in vivo model systems. PMID:24976643

  9. Power production enhancement with a polyaniline modified anode in microbial fuel cells.

    PubMed

    Lai, Bin; Tang, Xinghua; Li, Haoran; Du, Zhuwei; Liu, Xinwei; Zhang, Qian

    2011-10-15

    In this paper, an approach of improving power generation of microbial fuel cells (MFCs) by using a HSO(4)(-) doped polyaniline modified carbon cloth anode was reported. The modification of carbon cloth anode was accomplished by electrochemical polymerization of aniline in 5% H(2)SO(4) solution. A dual-chamber MFC reactor with the modified anode achieved a maximum power density of 5.16 Wm(-3), an internal resistance of 90 Ω, and a start-up time of 4 days, which was respectively 2.66 times higher, 65.5% lower, and 33.3% shorter than the corresponding values of the MFC with unmodified anode. Evidence from X-ray photoelectron spectroscopy and scanning electron microscopy results proved that the formation of biofilm on the anode surface could prevent the HSO(4)(-) doped polyaniline to be de-doped, and the results from electrochemical tests confirmed that the electrochemical activity of the modified anode was enhanced significantly after inoculation. Charge transfer was facilitated by polyaniline modification. All the results indicated that the polyaniline modification on the anode was an efficient approach of improving the performance of MFCs. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. Ablation of Newly Generated Hippocampal Granule Cells Has Disease-Modifying Effects in Epilepsy

    PubMed Central

    Hosford, Bethany E.; Liska, John P.

    2016-01-01

    Hippocampal granule cells generated in the weeks before and after an epileptogenic brain injury can integrate abnormally into the dentate gyrus, potentially mediating temporal lobe epileptogenesis. Previous studies have demonstrated that inhibiting granule cell production before an epileptogenic brain insult can mitigate epileptogenesis. Here, we extend upon these findings by ablating newly generated cells after the epileptogenic insult using a conditional, inducible diphtheria-toxin receptor expression strategy in mice. Diphtheria-toxin receptor expression was induced among granule cells born up to 5 weeks before pilocarpine-induced status epilepticus and these cells were then eliminated beginning 3 d after the epileptogenic injury. This treatment produced a 50% reduction in seizure frequency, but also a 20% increase in seizure duration, when the animals were examined 2 months later. These findings provide the first proof-of-concept data demonstrating that granule cell ablation therapy applied at a clinically relevant time point after injury can have disease-modifying effects in epilepsy. SIGNIFICANCE STATEMENT These findings support the long-standing hypothesis that newly generated dentate granule cells are pro-epileptogenic and contribute to the occurrence of seizures. This work also provides the first evidence that ablation of newly generated granule cells can be an effective therapy when begun at a clinically relevant time point after an epileptogenic insult. The present study also demonstrates that granule cell ablation, while reducing seizure frequency, paradoxically increases seizure duration. This paradoxical effect may reflect a disruption of homeostatic mechanisms that normally act to reduce seizure duration, but only when seizures occur frequently. PMID:27798182

  11. Ablation of Newly Generated Hippocampal Granule Cells Has Disease-Modifying Effects in Epilepsy.

    PubMed

    Hosford, Bethany E; Liska, John P; Danzer, Steve C

    2016-10-26

    Hippocampal granule cells generated in the weeks before and after an epileptogenic brain injury can integrate abnormally into the dentate gyrus, potentially mediating temporal lobe epileptogenesis. Previous studies have demonstrated that inhibiting granule cell production before an epileptogenic brain insult can mitigate epileptogenesis. Here, we extend upon these findings by ablating newly generated cells after the epileptogenic insult using a conditional, inducible diphtheria-toxin receptor expression strategy in mice. Diphtheria-toxin receptor expression was induced among granule cells born up to 5 weeks before pilocarpine-induced status epilepticus and these cells were then eliminated beginning 3 d after the epileptogenic injury. This treatment produced a 50% reduction in seizure frequency, but also a 20% increase in seizure duration, when the animals were examined 2 months later. These findings provide the first proof-of-concept data demonstrating that granule cell ablation therapy applied at a clinically relevant time point after injury can have disease-modifying effects in epilepsy. These findings support the long-standing hypothesis that newly generated dentate granule cells are pro-epileptogenic and contribute to the occurrence of seizures. This work also provides the first evidence that ablation of newly generated granule cells can be an effective therapy when begun at a clinically relevant time point after an epileptogenic insult. The present study also demonstrates that granule cell ablation, while reducing seizure frequency, paradoxically increases seizure duration. This paradoxical effect may reflect a disruption of homeostatic mechanisms that normally act to reduce seizure duration, but only when seizures occur frequently. Copyright © 2016 the authors 0270-6474/16/3611013-11$15.00/0.

  12. Multi-scale cell/surface interaction on modified titanium aluminum vanadium surfaces

    NASA Astrophysics Data System (ADS)

    Chen, Jianbo

    This dissertation presents a series of experimental studies of the effects of multi-scale cell/surface interactions on modified Ti-6Al-4V surfaces. These include laser-grooved surfaces; porous structures and RGD-coated laser-grooved surfaces. A nano-second DPSS UV lasers with a Gaussian pulse energy profile was used to introduce the desired micro-groove geometries onto Ti-6Al-4V surfaces. This was done without inducing micro-cracks or significant changes in surface chemistry within the heat affected zones. The desired 8-12 mum groove depths and widths were achieved by the control of pulse frequency, scan speed, and the lens focal length that controls spot size. The interactions between human osteosarcoma (HOS) cells and laser-grooved Ti-6Al-4V surfaces were investigated after 48 hours of cell culture. The cell behavior, including cell spreading, alignment and adhesion, was elucidated using scanning electronic microscopy (SEM), immuno-fluorescence staining and enzymatic detachment. Contact guidance was shown to increase as grooved spacing decreased. For the range of micro-groove geometries studied, micro-grooves with groove spacings of 20 mum provided the best combination of cell orientation and adhesion. Short-term adhesion experiments (15 mins to 1 day) also revealed that there is a positive correlation between cell orientation and cell adhesion. Contact guidance on the micro-grooved surfaces is shown to be enhanced by nano- and micro-scale asperities that provide sites for the attachment of lamellopodia during cell locomotion and spreading. Contact guidance is also promoted by the geometrical confinement provided by laser grooves. An experimental study of initial cell spreading and ingrowth into Ti-6Al-4V porous structures was also carried out on porous structures with different pore sizes and geometries. A combination of SEM, the tetrazolium salt (MTT) colorimetric assay and enzymatic detachment were used to study cell spreading and adhesion. The extent of cell

  13. Epithelial cells from smokers modify dendritic cell responses in the context of influenza infection

    EPA Science Inventory

    Epidemiologic evidence suggests that cigarette smoking is a risk factor for infection with influenza, but the mechanisms underlying this susceptibility remain unknown. To ascertain if airway epithelial cells from smokers demonstrate a decreased ability to orchestrate an influenza...

  14. Epithelial cells from smokers modify dendritic cell responses in the context of influenza infection

    EPA Science Inventory

    Epidemiologic evidence suggests that cigarette smoking is a risk factor for infection with influenza, but the mechanisms underlying this susceptibility remain unknown. To ascertain if airway epithelial cells from smokers demonstrate a decreased ability to orchestrate an influenza...

  15. Mediatorless sugar/oxygen enzymatic fuel cells based on gold nanoparticle-modified electrodes.

    PubMed

    Wang, Xiaoju; Falk, Magnus; Ortiz, Roberto; Matsumura, Hirotoshi; Bobacka, Johan; Ludwig, Roland; Bergelin, Mikael; Gorton, Lo; Shleev, Sergey

    2012-01-15

    We report on the fabrication and characterisation of a gold-nanoparticle (AuNP)-based mediatorless sugar/oxygen biofuel cell (BFC) operating in neutral sugar-containing buffers and human physiological fluids, such as blood and plasma. First, Corynascus thermophilus cellobiose dehydrogenase (CtCDH) and Myrothecium verrucaria bilirubin oxidase (MvBOx), used as anodic and cathodic bioelements, respectively, were immobilised on gold electrodes modified with 20 nm AuNPs. Detailed characterisation and optimisation of a new CDH/AuNP-based bioanode were performed and the following fundamental parameters were obtained: (i) the redox potential of the haem-containing centre of the enzyme was measured to be 75 mV vs. NHE, (ii) the surface coverage of CtCDH was found to be 0.65 pmol cm(-2) corresponding to a sub-monolayer coverage of the thiol-modified AuNPs by the enzyme, (iii) a turnover number for CtCDH immobilised on thiol-modified AuNPs was calculated to be ca. 0.5 s(-1), and (iv) the maximal current densities as high as 40 μA cm(-2) were registered in sugar-containing neutral buffers. Second, both biomodified electrodes, namely the CtCDH/AuNP-based bioanode and the MvBOx/AuNP-based biocathode, were combined into a functional BFC and the designed biodevices were carefully investigated. The following characteristics of the mediator-, separator- and membrane-less, miniature BFC were obtained: in phosphate buffer; an open-circuit voltage of 0.68 V, a maximum power density of 15 μW cm(-2) at a cell voltage of 0.52 V and in human blood; an open-circuit voltage of 0.65 V, a maximum power density of 3 μW cm(-2) at a cell voltage of 0.45 V, respectively. The estimated half-lives of the biodevices were found to be >12, <8, and <2 h in a sugar-containing buffer, human plasma, and blood, respectively. The basic characteristics of mediatorless sugar/oxygen BFCs were significantly improved compared with previously designed biodevices, because of the usage of three-dimensional AuNP-modified

  16. Chemically modified guide RNAs enhance CRISPR-Cas genome editing in human primary cells.

    PubMed

    Hendel, Ayal; Bak, Rasmus O; Clark, Joseph T; Kennedy, Andrew B; Ryan, Daniel E; Roy, Subhadeep; Steinfeld, Israel; Lunstad, Benjamin D; Kaiser, Robert J; Wilkens, Alec B; Bacchetta, Rosa; Tsalenko, Anya; Dellinger, Douglas; Bruhn, Laurakay; Porteus, Matthew H

    2015-09-01

    CRISPR-Cas-mediated genome editing relies on guide RNAs that direct site-specific DNA cleavage facilitated by the Cas endonuclease. Here we report that chemical alterations to synthesized single guide RNAs (sgRNAs) enhance genome editing efficiency in human primary T cells and CD34(+) hematopoietic stem and progenitor cells. Co-delivering chemically modified sgRNAs with Cas9 mRNA or protein is an efficient RNA- or ribonucleoprotein (RNP)-based delivery method for the CRISPR-Cas system, without the toxicity associated with DNA delivery. This approach is a simple and effective way to streamline the development of genome editing with the potential to accelerate a wide array of biotechnological and therapeutic applications of the CRISPR-Cas technology.

  17. Labeling of human hepatocellular carcinoma cells by hexamethylene diamine modified fluorescent carbon dots

    NASA Astrophysics Data System (ADS)

    Dong, Wei; Dong, Yan; Wang, Ying; Zhou, Shiqi; Ge, Xin; Sui, Lili; Wang, Jingwen

    2013-12-01

    Fluorescent carbon dots (CDs) were synthesized by a solvothermal method with glucose as carbon source and surface-modified with 1,6-hexamethylene diamine. In this hybrid CDs, the modification played important role for improving the fluorescent performance by introducing nitrogenous compound to passivate CD's surface, making the CDs emit strong fluorescence. The as-prepared CDs were linked with mouse anti-human Alpha fetoprotein (AFP) antibody and goat anti-mouse immunoglobulin (IgG) to directly and indirectly label fixed human hepatocellular carcinoma cells, respectively. The cytotoxicity of these CDs were also tested using the human hepatocellular carcinoma cells. No apparent cytotoxicity was observed, which suggested the potential application of the as-prepared CDs in bioimaging.

  18. Chemically modified guide RNAs enhance CRISPR-Cas genome editing in human primary cells

    PubMed Central

    Clark, Joseph T; Kennedy, Andrew B; Ryan, Daniel E; Roy, Subhadeep; Steinfeld, Israel; Lunstad, Benjamin D; Kaiser, Robert J; Wilkens, Alec B; Bacchetta, Rosa; Tsalenko, Anya; Dellinger, Douglas; Bruhn, Laurakay; Porteus, Matthew H

    2016-01-01

    CRISPR-Cas-mediated genome editing relies on guide RNAs that direct site-specific DNA cleavage facilitated by the Cas endonuclease. Here we report that chemical alterations to synthesized single guide RNAs (sgRNAs) enhance genome editing efficiency in human primary T cells and CD34+ hematopoietic stem and progenitor cells. Co-delivering chemically modified sgRNAs with Cas9 mRNA or protein is an efficient RNA- or ribonucleoprotein (RNP)-based delivery method for the CRISPR-Cas system, without the toxicity associated with DNA delivery. This approach is a simple and effective way to streamline the development of genome editing with the potential to accelerate a wide array of biotechnological and therapeutic applications of the CRISPR-Cas technology. PMID:26121415

  19. miRNAs modified by dietary lipids in Caco-2 cells. A microarray screening

    PubMed Central

    Daimiel, Lidia; Ordovás, Jose Mª.; Dávalos, Alberto

    2015-01-01

    We performed a screening of miRNAs regulated by dietary lipids in a cellular model of enterocytes, Caco-2 cells. Our aim was to describe new lipid-modified miRNAs with an implication in lipid homeostasis and cardiovascular disease [1], [2]. For that purpose, we treated differentiated Caco-2 cells with micelles containing the assayed lipids (cholesterol, conjugated linoleic acid and docosahexaenoic acid) and the screening of miRNAs was carried out by microarray using the μParaflo®Microfluidic Biochip Technology of LC Sciences (Huston, TX, USA). Experimental design, microarray description and raw data have been made available in the GEO database with the reference number of GSE59153. Here we described in detail the experimental design and methods used to obtain the relative expression data. PMID:26484250

  20. [Development and challenge of modified hemoglobins as red blood cell substitutes].

    PubMed

    Lu, Xiu-Ling

    2006-01-01

    The problems of blood shortage and the virus infection risk of blood transfusion have promoted the study of blood substitutes. Modified hemoglobin has become the focus of the challenges research because of its excellent oxygen carrying ability. To overcome the toxicity effect on direct use of purified native hemoglobin, various modification technologies have been developed, including diaspirin cross-linking, glutaraldehyde polymerization, O-raffinose polymerization, polyethylene glycol conjugation, liposome encapsulation and biodegradable polymer encapsulation. Some of the products have been in clinical trials, and one of the products has been approved in a country for clinical use. Research on red blood cell substitutes in China has also developed fast. This paper provides an overview of the history and current status in development of different hemoglobin-based red blood cell substitutes, especially the problems encountered, the challenges faced, and the prospects in future.

  1. Hyaluronic acid modified mesoporous silica nanoparticles for targeted drug delivery to CD44-overexpressing cancer cells

    NASA Astrophysics Data System (ADS)

    Yu, Meihua; Jambhrunkar, Siddharth; Thorn, Peter; Chen, Jiezhong; Gu, Wenyi; Yu, Chengzhong

    2012-12-01

    In this paper, a targeted drug delivery system has been developed based on hyaluronic acid (HA) modified mesoporous silica nanoparticles (MSNs). HA-MSNs possess a specific affinity to CD44 over-expressed on the surface of a specific cancer cell line, HCT-116 (human colon cancer cells). The cellular uptake performance of fluorescently labelled MSNs with and without HA modification has been evaluated by confocal microscopy and fluorescence-activated cell sorter (FACS) analysis. Compared to bare MSNs, HA-MSNs exhibit a higher cellular uptake via HA receptor mediated endocytosis. An anticancer drug, doxorubicin hydrochloride (Dox), has been loaded into MSNs and HA-MSNs as drug delivery vehicles. Dox loaded HA-MSNs show greater cytotoxicity to HCT-116 cells than free Dox and Dox-MSNs due to the enhanced cell internalization behavior of HA-MSNs. It is expected that HA-MSNs have a great potential in targeted delivery of anticancer drugs to CD44 over-expressing tumors.

  2. New insights on chromatin modifiers and histone post-translational modifications in renal cell tumours.

    PubMed

    Vieira-Coimbra, Márcia; Henrique, Rui; Jerónimo, Carmen

    2015-01-01

    Renal cell tumours (RCTs) are the most common neoplasms affecting the kidney. They are clinically, pathologically and genetically heterogeneous, comprises four major histological subtypes [clear cell renal cell carcinoma (ccRCC), papillary renal cell carcinoma (pRCC) and chromophobe renal cell carcinoma (chRCC), which are malignant tumours, and oncocytoma, a benign tumour], as well as an increasing number of less common entities. Epigenetics has emerged as an important field in oncology due to the critical role it plays in neoplastic transformation and progression. Among epigenetic mechanisms, the modulation of chromatin packaging through covalent modifications is fundamental for gene transcription regulation and its deregulation is involved in carcinogenesis. Recently, deregulation of chromatin machinery in RCTs has increasingly acknowledged as an important mechanism for renal neoplastic transformation. The aim of this review is to summarize the most relevant alterations in histone post-translational modifications and chromatin modifiers, which have been implicated in renal tumorigenesis. The recognition of those modifications might provide new biomarkers for diagnosis and prognostication as well as novel targets for personalized therapeutic intervention. © 2015 Stichting European Society for Clinical Investigation Journal Foundation.

  3. The effect of CD47 modified polymer surfaces on inflammatory cell attachment and activation

    PubMed Central

    Stachelek, Stanley J.; Finley, Matthew J.; Alferiev, Ivan S.; Wang, Fengxiang; Tsai, Richard; Eckells, Edward C.; Tomczyk, Nancy; Connolly, Jeanne M.; Discher, Dennis E.; Eckmann, David M.; Levy, Robert J.

    2011-01-01

    CD47 is a transmembrane protein that is a marker of “self”. CD47 binding to its cognate receptor in leukocytes and macrophages, signal regulatory protein alpha (SIRPα), causes inhibition of inflammatory cell attachment. We hypothesized that immobilization of recombinant CD47 on polymeric surfaces would reduce inflammation. Recombinant CD47 was appended to polyvinyl chloride (PVC) or polyurethane (PU) surfaces via photoactivation chemistry. Cell culture studies showed that CD47 immobilization significantly reduced human neutrophil (HL-60) and human monocyte derived macrophage (MDM) (THP-1) attachment to PVC and PU respectively. A neutralizing antibody, directed against SIRPα, inhibited THP-1 and HL-60 binding to PU and PVC surfaces respectively. This antibody also increased the level of SIRPα tyrosine phosphorylation, thereby indicating a direct role for SIRPα mediated signaling in preventing inflammatory cell attachment. Studies using human blood in an ex vivo flow-loop showed that CD47 modified PVC tubing significantly reduced cell binding and neutrophil activation compared to unmodified tubing or poly-2-methoxy-ethylacrylate (PMEA) coated tubing. In ten-week rat subdermal implants, CD47 functionalized PU films showed a significant reduction in markers of MDM mediated oxidative degradation compared to unmodified PU. In conclusion, CD47 functionalized surfaces can resist inflammatory cell interactions both in vitro and in vivo. PMID:21429575

  4. Genetically modified endothelial progenitor cells in the therapy of cardiovascular disease and pulmonary hypertension.

    PubMed

    Lavoie, Jessie R; Stewart, Duncan J

    2012-05-01

    Since their initial discovery, endothelial progenitor cells (EPCs) have held tremendous promise for cell therapy for a variety of cardiovascular diseases including pulmonary hypertension. The clinical experience to date suggests that circulating or bone marrow mononuclear cells and EPCs can induce neovascularization, and enhance cardiac repair after myocardial function, as well as improvements in the hemodynamic and functional status of patients with idiopathic pulmonary arterial hypertension. Although these results are promising, the overall magnitude of the clinical benefits seen in these trials appear to be rather modest. Indeed, strong experimental evidence points towards a reduction in mobilization and impairment in function of EPCs in preclinical models and patients with cardiac disease or with cardiovascular risk factors such as advanced age, type I and II diabetes, hypercholesterolemia, coronary artery disease, as well as other conditions such as pulmonary hypertension. Genetic engineering of EPCs ex vivo, prior to transplantation, is a promising cell-enhancement strategy for restoring the angiogenic potential of autologous, patient-derived cells. This review provides an update of the experimental studies that have used gene-modified EPC therapy to treat ischemic cardiovascular disease and pulmonary hypertension.

  5. Antigen-receptor gene-modified T cells for treatment of glioma.

    PubMed

    Ikeda, Hiroaki; Shiku, Hiroshi

    2012-01-01

    Immunological effector cells and molecules have been shown to access intracranial tumor sites despite the existence of blood brain barrier (BBB) or immunosuppressive mechanisms associated with brain tumors. Recent progress in T-cell biology and tumor immunology made possible to develop strategies of tumor-associated antigen-specific immunotherapeutic approaches such as vaccination with defined antigens and adoptive T-cell therapy with antigen-specific T cells including gene-modified T cells for the treatment of patients with brain tumors. An array of recent reports on the trials of active and passive immunotherapy for patients with brain tumors have documented safety and some preliminary clinical efficacy, although the ultimate judgment for clinical benefits awaits rigorous evaluation in trials of later phases. Nevertheless, treatment with lymphocytes that are engineered to express tumor-specific receptor genes is a promising immunotherapy against glioma, based on the significant efficacy reported in the trials for patients with other types of malignancy. Overcoming the relative difficulty to apply immunotherapeutic approach to intracranial region, current advances in the understanding of human tumor immunology and the gene-therapy methodology will address the development of effective immunotherapy of brain tumors.

  6. BCL-2 Modifying Factor (BMF) Is a Central Regulator of Anoikis in Human Intestinal Epithelial Cells*

    PubMed Central

    Hausmann, Martin; Leucht, Katharina; Ploner, Christian; Kiessling, Stephan; Villunger, Andreas; Becker, Helen; Hofmann, Claudia; Falk, Werner; Krebs, Michaela; Kellermeier, Silvia; Fried, Michael; Schölmerich, Jürgen; Obermeier, Florian; Rogler, Gerhard

    2011-01-01

    BCL-2 modifying factor (BMF) is a sentinel considered to register damage at the cytoskeleton and to convey a death signal to B-cell lymphoma 2. B-cell lymphoma 2 is neutralized by BMF and thereby facilitates cytochrome C release from mitochondria. We investigated the role of BMF for intestinal epithelial cell (IEC) homeostasis. Acute colitis was induced in Bmf-deficient mice (Bmf−/−) with dextran sulfate sodium. Colonic crypt length in Bmf−/− mice was significantly increased as compared with WT mice. Dextran sulfate sodium induced less signs of colitis in Bmf−/− mice, as weight loss was reduced compared with the WT. Primary human IEC exhibited increased BMF in the extrusion zone. Quantitative PCR showed a significant up-regulation of BMF expression after initiation of anoikis in primary human IEC. BMF was found on mitochondria during anoikis, as demonstrated by Western blot analysis. RNAi mediated knockdown of BMF reduced the number of apoptotic cells and led to reduced caspase 3 activity. A significant increase in phospho-AKT was determined after RNAi treatment. BMF knockdown supports survival of IEC. BMF is induced in human IEC by the loss of cell attachment and is likely to play an important role in the regulation of IEC survival. PMID:21673109

  7. Inhibitory impacts of chemically modified tetracycline-3 and underlying mechanism in human cervical cancer cells.

    PubMed

    Zhao, Lin; Xu, Jiaying; Yang, Yang; Chong, Yu; Liu, Chang; Jiao, Yang; Fan, Saijun

    2013-09-01

    Chemically modified tetracyclines (CMTs) have been rationally designed from tetracyclines. The CMTs that show the antimicrobial properties are eliminated, whereas matrix metalloproteinase inhibitory properties are retained. Interestingly, CMT-3 (COL-3, by eliminating the dimethylamino, methyl, and hydroxyl functionalities on the basic tetracycline structure), one of the CMTs, has shown strong anticancer activity. In this study, we found that CMT-3 showed dose-dependent and time-dependent cytotoxicity in HeLa and Siha cells, two human cervical cancer cell lines. HeLa cells were more sensitive to CMT-3 compared with Siha cells. The antiproliferation potential of CMT-3 was associated with the mitochondrial apoptosis pathway, increasing reactive oxygen species level, and proapoptosis protein (e.g. caspase-3) expression, but decreasing antiapoptosis protein expression (e.g. Bcl-2). N-acetylcysteine (a reactive oxygen species inhibitor) and Z-LEHD-FMK significantly reduced or blocked the apoptosis event resulting from cytotoxic effect of CMT-3. CMT-3 also induced G0/G1 phase arrest with the reduction of cell cycle regulatory protein cyclin E and the translocation of NF-κB from the cytoplasm to the nucleus. Our findings provide the important foundation for further investigation of the underlying mechanism for the anticancer activity of CMT-3 and the potential application of CMT-3 as a new therapeutic candidate for clinical cervical cancer therapy.

  8. Epithelial cell adhesion molecule independent capture of non-small lung carcinoma cells with peptide modified microfluidic chip.

    PubMed

    Pu, Kefeng; Li, Chunlin; Zhang, Nengpan; Wang, Hui; Shen, Wenjiang; Zhu, Yimin

    2017-03-15

    Circulating tumor cells (CTCs) present in the blood of patients with non-hematological cancers are accessible sources for diagnosis and monitoring of cancers. By the aid of the ability of the anti-EpCAM antibody to recognize the epithelial cells, microsystem-based technologies provide robust means for effectively detecting CTCs in vitro. Considering the EpCAM expression is down-regulated during epithelial-mesenchymal transition (EMT) process, the amount of CTCs detected based on anti-EpCAM antibody is underestimated. In our study, the A549 cells targeting peptide (A-1 peptide), as the substitute of anti-EpCAM antibody, was introduced to microfluidic chip to capture A549 cells. Our results showed that both epithelial-like and mesenchymal-like A549 cells could efficiently be captured by the A-1 peptide modified microfluidic chip, and the capture efficiency for epithelial-like cells is comparable to that captured by the EpCAM antibody. Thus, we concluded that the peptide could be a better supplement to the EpCAM antibody for capturing CTCs in microfluidic system with broader spectrum.

  9. Surface-modified CMOS IC electrochemical sensor array targeting single chromaffin cells for highly parallel amperometry measurements.

    PubMed

    Huang, Meng; Delacruz, Joannalyn B; Ruelas, John C; Rathore, Shailendra S; Lindau, Manfred

    2017-09-09

    Amperometry is a powerful method to record quantal release events from chromaffin cells and is widely used to assess how specific drugs modify quantal size, kinetics of release, and early fusion pore properties. Surface-modified CMOS-based electrochemical sensor arrays allow simultaneous recordings from multiple cells. A reliable, low-cost technique is presented here for efficient targeting of single cells specifically to the electrode sites. An SU-8 microwell structure is patterned on the chip surface to provide insulation for the circuitry as well as cell trapping at the electrode sites. A shifted electrode design is also incorporated to increase the flexibility of the dimension and shape of the microwells. The sensitivity of the electrodes is validated by a dopamine injection experiment. Microwells with dimensions slightly larger than the cells to be trapped ensure excellent single-cell targeting efficiency, increasing the reliability and efficiency for on-chip single-cell amperometry measurements. The surface-modified device was validated with parallel recordings of live chromaffin cells trapped in the microwells. Rapid amperometric spikes with no diffusional broadening were observed, indicating that the trapped and recorded cells were in very close contact with the electrodes. The live cell recording confirms in a single experiment that spike parameters vary significantly from cell to cell but the large number of cells recorded simultaneously provides the statistical significance.

  10. Improvement of adhesion and proliferation of mouse embryonic stem cells cultured on ozone/UV surface-modified substrates.

    PubMed

    Kasai, Kohei; Kimura, Yuka; Miyata, Shogo

    2017-09-01

    Culturing pluripotent stem cells effectively requires feeder cell layers or cell adhesion matrix coating. However, the feeder cell layers or animal-derived factors have to be removed to apply the pluripotent stem cells as resources for regenerative medicine. To enable xeno-free culture conditions, we focused on the UV/ozone surface treatment technique for polystyrene cell culture substrates to improve the adhesion and proliferation of pluripotent stem cells. In this study, as a fundamental research for the feeder- and matrix coating-free culture system for embryonic stem cells (ESCs), mouse ESCs were cultured on UV/ozone-modified polystyrene substrates without feeder layers. We observed that UV/ozone surface-modified polystyrene substrates made it possible to culture mESCs under feeder-free conditions without any chemical treatment for the substrates. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Expression of a fungal ferulic acid esterase in alfalfa modifies cell wall digestibility

    PubMed Central

    2014-01-01

    Background Alfalfa (Medicago sativa) is an important forage crop in North America owing to its high biomass production, perennial nature and ability to fix nitrogen. Feruloyl esterase (EC 3.1.1.73) hydrolyzes ester linkages in plant cell walls and has the potential to further improve alfalfa as biomass for biofuel production. Results In this study, faeB [GenBank:AJ309807] was synthesized at GenScript and sub-cloned into a novel pEACH vector containing different signaling peptides to target type B ferulic acid esterase (FAEB) proteins to the apoplast, chloroplast, endoplasmic reticulum and vacuole. Four constructs harboring faeB were transiently expressed in Nicotiana leaves, with FAEB accumulating at high levels in all target sites, except chloroplast. Stable transformed lines of alfalfa were subsequently obtained using Agrobacterium tumefaciens (LBA4404). Out of 136 transgenic plants regenerated, 18 independent lines exhibited FAEB activity. Subsequent in vitro digestibility and Fourier transformed infrared spectroscopy (FTIR) analysis of FAEB-expressing lines showed that they possessed modified cell wall morphology and composition with a reduction in ester linkages and elevated lignin content. Consequently, they were more recalcitrant to digestion by mixed ruminal microorganisms. Interestingly, delignification by alkaline peroxide treatment followed by exposure to a commercial cellulase mixture resulted in higher glucose release from transgenic lines as compared to the control line. Conclusion Modifying cell wall crosslinking has the potential to lower recalcitrance of holocellulose, but also exhibited unintended consequences on alfalfa cell wall digestibility due to elevated lignin content. The combination of efficient delignification treatment (alkaline peroxide) and transgenic esterase activity complement each other towards efficient and effective digestion of transgenic lines. PMID:24650274

  12. Comprehensive Approach for Identifying the T Cell Subset Origin of CD3 and CD28 Antibody-Activated Chimeric Antigen Receptor-Modified T Cells.

    PubMed

    Schmueck-Henneresse, Michael; Omer, Bilal; Shum, Thomas; Tashiro, Haruko; Mamonkin, Maksim; Lapteva, Natalia; Sharma, Sandhya; Rollins, Lisa; Dotti, Gianpietro; Reinke, Petra; Volk, Hans-Dieter; Rooney, Cliona M

    2017-07-01

    The outcome of therapy with chimeric Ag receptor (CAR)-modified T cells is strongly influenced by the subset origin of the infused T cells. However, because polyclonally activated T cells acquire a largely CD45RO(+)CCR7(-) effector memory phenotype after expansion, regardless of subset origin, it is impossible to know which subsets contribute to the final T cell product. To determine the contribution of naive T cell, memory stem T cell, central memory T cell, effector memory T cell, and terminally differentiated effector T cell populations to the CD3 and CD28-activated CAR-modified T cells that we use for therapy, we followed the fate and function of individually sorted CAR-modified T cell subsets after activation with CD3 and CD28 Abs (CD3/28), transduction and culture alone, or after reconstitution into the relevant subset-depleted population. We show that all subsets are sensitive to CAR transduction, and each developed a distinct T cell functional profile during culture. Naive-derived T cells showed the greatest rate of proliferation but had more limited effector functions and reduced killing compared with memory-derived populations. When cultured in the presence of memory T cells, naive-derived T cells show increased differentiation, reduced effector cytokine production, and a reduced reproliferative response to CAR stimulation. CD3/28-activated T cells expanded in IL-7 and IL-15 produced greater expansion of memory stem T cells and central memory T cell-derived T cells compared with IL-2. Our strategy provides a powerful tool to elucidate the characteristics of CAR-modified T cells, regardless of the protocol used for expansion, reveals the functional properties of each expanded T cell subset, and paves the way for a more detailed evaluation of the effects of manufacturing changes on the subset contribution to in vitro-expanded T cells. Copyright © 2017 by The American Association of Immunologists, Inc.

  13. Cerium-modified doped strontium titanate compositions for solid oxide fuel cell anodes and electrodes for other electrochemical devices

    SciTech Connect

    Marina, Olga A; Stevenson, Jeffry W

    2010-03-02

    The present invention provides novel compositions that find advantageous use in making electrodes for electrochemical cells and electrochemical devices such as solid oxide fuel cells, electrolyzers, sensors, pumps and the like, the compositions comprising cerium-modified doped strontium titanate. The invention also provides novel methods for making and using anode material compositions and solid oxide fuel cells and solid oxide fuel cell assemblies having anodes comprising the compositions.

  14. Cerium-modified doped strontium titanate compositions for solid oxide fuel cell anodes and electrodes for other electrochemical devices

    DOEpatents

    Marina, Olga A [Richland, WA; Stevenson, Jeffry W [Richland, WA

    2010-11-23

    The present invention provides novel compositions that find advantageous use in making electrodes for electrochemical cells and electrochemical devices such as solid oxide fuel cells, electrolyzers, sensors, pumps and the like, the compositions comprising cerium-modified doped strontium titanate. The invention also provides novel methods for making and using anode material compositions and solid oxide fuel cells and solid oxide fuel cell assemblies having anodes comprising the compositions.

  15. Analysis of transgene-specific immune responses that limit the in vivo persistence of adoptively transferred HSV-TK–modified donor T cells after allogeneic hematopoietic cell transplantation

    PubMed Central

    Berger, Carolina; Flowers, Mary E.; Warren, Edus H.; Riddell, Stanley R.

    2006-01-01

    The introduction of an inducible suicide gene such as the herpes simplex virus thymidine kinase (HSV-TK) might allow exploitation of the antitumor activity of donor T cells after allogeneic hematopoietic cell transplantation (HCT) without graft versus host disease. However, HSV-TK is foreign, and immune responses to gene-modified T cells could lead to their premature elimination. We show that after the infusion of HSV-TK–modified donor T cells to HCT recipients, CD8+ and CD4+ T-cell responses to HSV-TK are rapidly induced and coincide with the disappearance of transferred cells. Cytokine flow cytometry using an overlapping panel of HSV-TK peptides allowed rapid detection and quantitation of HSV-TK–specific T cells in the blood and identified multiple immunogenic epitopes. Repeated infusion of modified T cells boosted the induced HSV-TK–specific T cells, which persisted as memory cells. These studies demonstrate the need for nonimmunogenic suicide genes and identify a strategy for detection of CD4+ and CD8+ T-cell responses to transgene products that should be generally applicable to monitoring patients on gene therapy trials. The potency of gene-modified T cells to elicit robust and durable immune responses imply this approach might be used for vaccination to elicit T-cell responses to viral or tumor antigens. PMID:16282341

  16. Altered folate metabolism modifies cell proliferation and progesterone secretion in human placental choriocarcinoma JEG-3 cells.

    PubMed

    Moussa, Carolyne; Ross, Nikia; Jolette, Philippe; MacFarlane, Amanda J

    2015-09-28

    Folate is an essential B vitamin required for de novo purine and thymidylate synthesis, and for the remethylation of homocysteine to form methionine. Folate deficiency has been associated with placenta-related pregnancy complications, as have SNP in genes of the folate-dependent enzymes, methionine synthase (MTR) and methylenetetrahydrofolate dehydrogenase 1 (MTHFD1). We aimed to determine the effect of altered folate metabolism on placental cell proliferation, viability and invasive capacity and on progesterone and human chorionic gonadotropin (hCG) secretion. Human placental choriocarcinoma (JEG-3) cells cultured in low folic acid (FA) (2 nM) demonstrated 13% (P<0.001) and 26% (P<0.001) lower proliferation, 5.5% (P=0.025) and 7.5% (P=0.004) lower invasion capacity, and 5 to 7.5% (P=0.004-0.025) lower viability compared with control (20 nM) or supplemented (100 nM) cells, respectively. FA concentration had no effect on progesterone or hCG secretion. Small interfering RNA (siRNA) knockdown of MTR gene and protein expression resulted in 17.7% (P<0.0001) lower proliferation and 61% (P=0.014) higher progesterone secretion, but had no effect on cell invasion and hCG secretion. siRNA knockdown of MTHFD1 gene expression in the absence of detectable changes in protein expression resulted in 10.3% (P=0.001) lower cell proliferation, but had no effect on cell invasion and progesterone or hCG secretion. Our data indicate that impaired folate metabolism can result in lower trophoblast proliferation, and could alter viability, invasion capacity and progesterone secretion, which may explain in part the observed associations between folate and placenta-related complications.

  17. In vitro response of hFOB cells to pamidronate modified sodium silicate coated cellulose scaffolds.

    PubMed

    Ponader, Sabine; Brandt, Heike; Vairaktaris, Eleftherios; von Wilmowsky, Cornelius; Nkenke, Emeka; Schlegel, Karl A; Neukam, Friedrich W; Holst, Stefan; Müller, Frank A; Greil, Peter

    2008-07-15

    The aim of the present study was to evaluate the suitability of cellulose-based scaffolds coated with pure sodium silicate gel and sodium silicate gels accumulated with different concentrations of the bisphosphonate pamidronate as scaffolds for attachment, proliferation and differentiation of human fetal osteoblasts (hFOB 1.19). Human osteoblasts were cultured in vitro for a period up to 14 days on different cellulose scaffolds. Unmodified and sodium silicate coated cellulose scaffolds were used as control. Two surface-coated modifications of cellulose were applied. The scaffolds were coated in a modified two-step dip coating process with pure sodium silicate gel and pamidronate enriched sodium silicate gel, respectively. In order to investigate the influence of the pamidronate, concentrations of 0.667 mg Na-pamidronate/ml sodium silicate solution, 0.333 mg Na-pamidronate/ml sodium silicate solution and 3.33 x 10(-3) mg Na-pamidronate/ml sodium silicate solution were used for the coating process. Cell proliferation, vitality and attachment were examined by means of cell counting, WST-1 test, fluorescence and scanning electron microscopy. The relative grade of differentiation of hFOB cells was examined by using quantitative real-time polymerase chain reaction (qRT-PCR) analysis for the gene expression of alkaline phosphatase and osteocalcin. Proliferation and differentiation of human osteoblasts was enhanced by the sodium silicate coatings accumulated with pamidronate compared to pure sodium silicate coatings. There was a reciprocal correlation of vitality with the concentration of pamidronate. The highest vitality was found on surfaces with the lowest pamidronate accumulation. Alkaline phosphatase, an early differentiation marker, was overexpressed after 7 days in cells on all pamidronate-containing surfaces (up to 350% compared to untreated cellulose). Osteocalcin, a late differentiation marker, was overexpressed after 14 days in cells on all coated surfaces (up

  18. Sustained expression of coagulation factor IX by modified cord blood-derived mesenchymal stromal cells.

    PubMed

    Dodd, Megan; Marquez-Curtis, Leah; Janowska-Wieczorek, Anna; Hortelano, Gonzalo

    2014-01-01

    Hemophilia B patients are subject to frequent and spontaneous bleeding caused by a deficiency of clotting factor IX (FIX). Mesenchymal stromal cells (MSCs) have been used in cellular therapies as a result of their immunomodulatory properties, the ability to home to sites of injury and their amenability to various ex vivo modifications, including lentiviral-mediated gene transfer. MSCs were isolated from human umbilical cord blood and differentiated into adipogenic, chondrogenic and osteogenic lineages. A lentiviral DNA vector containing the human FIX gene was generated using traditional restriction enzyme digest and ligation techniques to generate viable replication-incompetent lentiviral particles that were used to transduce MSCs. Quantitative measurement of FIX expression was conducted using an enzyme-linked immunosorbent assay. The over-expression of FIX was sustained in vitro at levels > 4 µg/10(6) cells/24 h and FIX coagulant activity was > 2.5 mIU/10(6) cells/24 h for the 6-week duration of study. Lentiviral modification of cells with a multiplicity of infection of 10 did not adversely affect the potential of cord blood (CB) MSCs to differentiate to adipocytes, chondrocytes and osteoblastic cells, and the expression of functional FIX was sustained after differentiation and was similar to that in nondifferentiated cells. Modification of human CB MSCs with a lentiviral vector resulted in sustained high FIX expression in vitro after differentiation to adipogenic, chondrogenic and osteoblastic cells. These modified MSCs could have applications in cellular therapies for hemophilia B. Copyright © 2014 John Wiley & Sons, Ltd.

  19. Modified procedure of a direct in vitro exposure system for mammalian cells to whole cigarette smoke.

    PubMed

    Fukano, Yasuo; Ogura, Maiko; Eguchi, Kentaro; Shibagaki, Makoto; Suzuki, Mutsuaki

    2004-03-01

    In vitro biological studies on cigarette smoke have usually been made using either cigarette smoke condensate--obtained by trapping the particulate phase of smoke on a filter, or soluble smoke components--obtained by trapping cigarette smoke in buffer solution. However, these approaches may not truly reflect the physical and chemical condition of freshly generated smoke. Clearly it is important to be able to evaluate the biological effects of fresh smoke on mammalian cells for a better understanding of the potential effects of smoking. The CULTEX technology is a new experimental system for cultivation and exposure techniques enhanced the efficiency of in vitro studies, and allows direct exposure of cells intermittently at the air/liquid interface with ultrafine particles, gases, or mixtures of both which fixedly flows. The CULTEX technology has therefore been modified to evaluate the biological effects of whole cigarette smoke in an in vitro system. The exposure system design was based on a combination of the sedimentation procedure and the CULTEX cultivation technique. After freshly generated smoke was delivered onto cells, the flow was shut off and the medium was slowly removed. In this manner, cells were exposed to both the vapor and particulate phase of smoke efficiently. Cells were maintained in the liquid medium except during the exposure period to maintain the culture conditions and to protect the cells from both the influence of puff pressure and the airflow, which served to remove residual cigarette smoke. The medium was changed at every puff of smoke and so effectively eliminating the possibility of any effects caused by accumulation of soluble cigarette smoke components into the medium. This cycle was repeated and cells were exposed to freshly generated cigarette smoke intermittently.

  20. Recommendations from Gynaecological (GYN) GEC-ESTRO Working Group (IV): Basic principles and parameters for MR imaging within the frame of image based adaptive cervix cancer brachytherapy

    PubMed Central

    Dimopoulos, Johannes C.A.; Petrow, Peter; Tanderup, Kari; Petric, Primoz; Berger, Daniel; Kirisits, Christian; Pedersen, Erik M.; van Limbergen, Erik; Haie-Meder, Christine; Pötter, Richard

    2012-01-01

    The GYN GEC-ESTRO working group issued three parts of recommendations and highlighted the pivotal role of MRI for the successful implementation of 3D image-based cervical cancer brachytherapy (BT). The main advantage of MRI as an imaging modality is its superior soft tissue depiction quality. To exploit the full potential of MRI for the better ability of the radiation oncologist to make the appropriate choice for the BT application technique and to accurately define the target volumes and the organs at risk, certain MR imaging criteria have to be fulfilled. Technical requirements, patient preparation, as well as image acquisition protocols have to be tailored to the needs of 3D image-based BT. The present recommendation is focused on the general principles of MR imaging for 3D image-based BT. Methods and parameters have been developed and progressively validated from clinical experience from different institutions (IGR, Universities of Vienna, Leuven, Aarhus and Ljubljana) and successfully applied during expert meetings, contouring workshops, as well as within clinical and interobserver studies. It is useful to perform pelvic MRI scanning prior to radiotherapy (“Pre-RT-MRI examination”) and at the time of BT (“BT MRI examination”) with one MR imager. Both low and high-field imagers, as well as both open and close magnet configurations conform to the requirements of 3D image-based cervical cancer BT. Multiplanar (transversal, sagittal, coronal and oblique image orientation) T2-weighted images obtained with pelvic surface coils are considered as the golden standard for visualisation of the tumour and the critical organs. The use of complementary MRI sequences (e.g. contrast-enhanced T1-weighted or 3D isotropic MRI sequences) is optional. Patient preparation has to be adapted to the needs of BT intervention and MR imaging. It is recommended to visualise and interpret the MR images on dedicated DICOM-viewer workstations, which should also assist the contouring

  1. Recommendations from Gynaecological (GYN) GEC-ESTRO Working Group (IV): Basic principles and parameters for MR imaging within the frame of image based adaptive cervix cancer brachytherapy.

    PubMed

    Dimopoulos, Johannes C A; Petrow, Peter; Tanderup, Kari; Petric, Primoz; Berger, Daniel; Kirisits, Christian; Pedersen, Erik M; van Limbergen, Erik; Haie-Meder, Christine; Pötter, Richard

    2012-04-01

    The GYN GEC-ESTRO working group issued three parts of recommendations and highlighted the pivotal role of MRI for the successful implementation of 3D image-based cervical cancer brachytherapy (BT). The main advantage of MRI as an imaging modality is its superior soft tissue depiction quality. To exploit the full potential of MRI for the better ability of the radiation oncologist to make the appropriate choice for the BT application technique and to accurately define the target volumes and the organs at risk, certain MR imaging criteria have to be fulfilled. Technical requirements, patient preparation, as well as image acquisition protocols have to be tailored to the needs of 3D image-based BT. The present recommendation is focused on the general principles of MR imaging for 3D image-based BT. Methods and parameters have been developed and progressively validated from clinical experience from different institutions (IGR, Universities of Vienna, Leuven, Aarhus and Ljubljana) and successfully applied during expert meetings, contouring workshops, as well as within clinical and interobserver studies. It is useful to perform pelvic MRI scanning prior to radiotherapy ("Pre-RT-MRI examination") and at the time of BT ("BT MRI examination") with one MR imager. Both low and high-field imagers, as well as both open and close magnet configurations conform to the requirements of 3D image-based cervical cancer BT. Multiplanar (transversal, sagittal, coronal and oblique image orientation) T2-weighted images obtained with pelvic surface coils are considered as the golden standard for visualisation of the tumour and the critical organs. The use of complementary MRI sequences (e.g. contrast-enhanced T1-weighted or 3D isotropic MRI sequences) is optional. Patient preparation has to be adapted to the needs of BT intervention and MR imaging. It is recommended to visualise and interpret the MR images on dedicated DICOM-viewer workstations, which should also assist the contouring

  2. Modified arabinoxylan rice bran (MGN-3/Biobran) sensitizes human T cell leukemia cells to death receptor (CD95)-induced apoptosis.

    PubMed

    Ghoneum, Mamdooh; Gollapudi, Sastry

    2003-11-10

    MGN-3, an arabinoxylan extracted from rice bran that is treated enzymatically with an extract from Shiitaki mushrooms, is an effective biological response modifier that increases NK cell activity, and potentiates the activity of conventional chemotherapeutic agents. In this study, we investigated the effect of MGN-3 on death receptor-induced apoptosis in the human leukemic HUT 78 cell line. HUT 78 cells were pre-treated with MGN-3, and then were incubated with the agonistic antibody against death receptor (Fas, CD95). Apoptosis was determined by the propidium iodide technique using FACScan. Activation of caspase 3, caspase 8, and caspase 9 was determined by flow cytometry. Mitochondrial membrane potential was measured with DIOC(6) dye using FACScan. Expression of CD95 and Bcl-2 were measured by flow cytometry. In a dose-dependent manner, MGN-3 enhanced anti-CD95 antibody-induced apoptosis. Increased cell death was correlated with increased depolarization of mitochondrial membrane potential and increased activation of caspase 3, caspase 8, and caspase 9. MGN-3 treatment had no effect on the level of expression of CD95, but it caused down regulation of Bcl-2 expression. These results suggest that MGN-3 increases the susceptibility of cancer cells to undergo apoptosis mediated by death ligands, which may be relevant for anti-cancer activities.

  3. Multidentate zwitterionic chitosan oligosaccharide modified gold nanoparticles: stability, biocompatibility and cell interactions

    NASA Astrophysics Data System (ADS)

    Liu, Xiangsheng; Huang, Haoyuan; Liu, Gongyan; Zhou, Wenbo; Chen, Yangjun; Jin, Qiao; Ji, Jian

    2013-04-01

    Surface engineering of nanoparticles plays an essential role in their colloidal stability, biocompatibility and interaction with biosystems. In this study, a novel multidentate zwitterionic biopolymer derivative is obtained from conjugating dithiolane lipoic acid and zwitterionic acryloyloxyethyl phosphorylcholine to the chitosan oligosaccharide backbone. Gold nanoparticles (AuNPs) modified by this polymer exhibit remarkable colloidal stabilities under extreme conditions including high salt conditions, wide pH range and serum or plasma containing media. The AuNPs also show strong resistance to competition from dithiothreitol (as high as 1.5 M). Moreover, the modified AuNPs demonstrate low cytotoxicity investigated by both MTT and LDH assays, and good hemocompatibility evaluated by hemolysis of human red blood cells. In addition, the intracellular fate of AuNPs was investigated by ICP-MS and TEM. It showed that the AuNPs are uptaken by cells in a concentration dependent manner, and they can escape from endosomes/lysosomes to cytosol and tend to accumulate around the nucleus after 24 h incubation but few of them are excreted out of the cells. Gold nanorods are also stabilized by this ligand, which demonstrates robust dispersion stability and excellent hemocompatibility. This kind of multidentate zwitterionic chitosan derivative could be widely used for stabilizing other inorganic nanoparticles, which will greatly improve their performance in a variety of bio-related applications.Surface engineering of nanoparticles plays an essential role in their colloidal stability, biocompatibility and interaction with biosystems. In this study, a novel multidentate zwitterionic biopolymer derivative is obtained from conjugating dithiolane lipoic acid and zwitterionic acryloyloxyethyl phosphorylcholine to the chitosan oligosaccharide backbone. Gold nanoparticles (AuNPs) modified by this polymer exhibit remarkable colloidal stabilities under extreme conditions including high salt

  4. Sex Hormone Binding Globulin Modifies Testosterone Action and Metabolism in Prostate Cancer Cells.

    PubMed

    Li, Huika; Pham, Thy; McWhinney, Brett C; Ungerer, Jacobus P; Pretorius, Carel J; Richard, Derek J; Mortimer, Robin H; d'Emden, Michael C; Richard, Kerry

    2016-01-01

    Sex Hormone Binding Globulin (SHBG) is the major serum carrier of sex hormones. However, growing evidence suggests that SHBG is internalised and plays a role in regulating intracellular hormone action. This study was to determine whether SHBG plays a role in testosterone uptake, metabolism, and action in the androgen sensitive LNCaP prostate cancer cell line. Internalisation of SHBG and testosterone, the effects of SHBG on testosterone uptake, metabolism, regulation of androgen responsive genes, and cell growth were assessed. LNCaP cells internalised SHBG by a testosterone independent process. Testosterone was rapidly taken up and effluxed as testosterone-glucuronide; however this effect was reduced by the presence of SHBG. Addition of SHBG, rather than reducing testosterone bioavailability, further increased testosterone-induced expression of prostate specific antigen and enhanced testosterone-induced reduction of androgen receptor mRNA expression. Following 38 hours of testosterone treatment cell morphology changed and growth declined; however, cotreatment with SHBG abrogated these inhibitory effects. These findings clearly demonstrate that internalised SHBG plays an important regulatory and intracellular role in modifying testosterone action and this has important implications for the role of SHBG in health and disease.

  5. Modified titanium surface with gelatin nano gold composite increases osteoblast cell biocompatibility

    NASA Astrophysics Data System (ADS)

    Lee, Young-Hee; Bhattarai, Govinda; Aryal, Santosh; Lee, Nan-Hee; Lee, Min-Ho; Kim, Tae-Gun; Jhee, Eun-Chung; Kim, Hak-Yong; Yi, Ho-Keun

    2010-08-01

    This study examined the gelatin nano gold (GnG) composite for surface modification of titanium in addition to insure biocompatibility on dental implants or biomaterials. The GnG composite was constructed by gelatin and hydrogen tetrachloroaurate in presence of reducing agent, sodium borohydrate (NabH 4). The GnG composite was confirmed by UV-VIS spectroscopy and transmission electron microscopy (TEM). A dipping method was used to modify the titanium surface by GnG composite. Surface was characterized by scanning electron microscopy (SEM) and energy dispersive X-ray (EDX). The MC-3T3 E1 cell viability was assessed by trypan blue and the expression of proteins to biocompatibility were analyzed by Western blotting. The GnG composite showed well dispersed character, the strong absorption at 530 nm, roughness, regular crystal and clear C, Na, Cl, P, and Au signals onto titanium. Further, this composite allowed MC-3T3 E1 growth and viability compared to gelatin and pure titanium. It induced ERK activation and the expression of cell adherent molecules, FAK and SPARC, and growth factor, VEGF. However, GnG decreased the level of SAPK/JNK. This shows that GnG composite coated titanium surfaces have a good biocompatibility for osteoblast growth and attachment than in intact by simple and versatile dipping method. Furthermore, it offers good communication between cell and implant surfaces by regulating cell signaling and adherent molecules, which are useful to enhance the biocompatibility of titanium surfaces.

  6. The response of osteoblast-like SaOS-2 cells to modified titanium surfaces.

    PubMed

    Pivodova, Veronika; Frankova, Jana; Dolezel, Petr; Ulrichova, Jitka

    2013-01-01

    To study the effects of different chemically modified titanium surfaces on the proliferation, differentiation, adhesion, and apoptosis of osteoblast-like SaOS-2 cells. In this work, six different titanium materials were tested and compared to each other: (1) glazed; (2) unglazed; (3) unglazed and alkali-etched; (4) unglazed, sandblasted, acid- and alkali-etched; (5) unglazed and coated with zirconium nitride; and (6) unglazed, sandblasted, and acid-etched. The production of alkaline phosphatase (ALP), tumor necrosis factor alpha (TNF-α), matrix metalloproteinase-2, and the expression of adhesion proteins (integrin α3β1, vinculin) were evaluated using ELISA. Finally, the apoptosis of cells was analyzed by flow cytometry. The most significant differences were found for unglazed sandblasted acid- and alkali-etched titanium discs compared with unglazed titanium discs. The production of TNF-α was decreased after 24 hours, as was the production of ALP after 72 hours. In contrast, the expression of integrin α3β1 was increased after 6 hours. None of the titanium discs showed an apoptotic effect on cells. This study has shown that physical surface treatments (such as surface roughness) play a more important role than chemical modifications. Generally, chemical modifications such as acid- and alkali-etching can affect the wettability of titanium surfaces, making a surface hydrophilic or hydrophobic according to the modification. The cell attachment is better on hydrophilic surfaces, while hydrophilic surfaces may slightly decrease the expression of ALP activity.

  7. Interview: bioreactors and surfaced-modified 3D-scaffolds for stem cell research.

    PubMed

    Weibezahn, Karl-Friedrich

    2008-05-21

    A Nature Editorial in 2003 asked the question "Good-bye, flat biology?" What does this question imply? In the past, many in vitro culture systems, mainly monolayer cultures, often suffered from the disadvantage that differentiated primary cells had a relatively short life-span and de-differentiated during culture. As a consequence, most of their organ-specific functions were lost rapidly. Thus, in order to reproduce better conditions for these cells in vitro, modifications and adaptations have been made to conventional monolayer cultures. The last generation of CellChips--micro-thermoformed containers--a specific technology was developed, which offers the additional possibility to modify the whole surface of the 3D formed containers. This allows a surface-patterning on a submicron scale with distinct signalling molecules. Sensors and signal electrodes may be incorporated. Applications range from basic research in cell biology to toxicology and pharmacology. Using biodegradable polymers, clinical applications become a possibility. Furthermore, the last generation of micro-thermoformed chips has been optimized to allow for cheap mass production.

  8. Sex Hormone Binding Globulin Modifies Testosterone Action and Metabolism in Prostate Cancer Cells

    PubMed Central

    Li, Huika; Ungerer, Jacobus P.; Pretorius, Carel J.; Mortimer, Robin H.; d'Emden, Michael C.

    2016-01-01

    Sex Hormone Binding Globulin (SHBG) is the major serum carrier of sex hormones. However, growing evidence suggests that SHBG is internalised and plays a role in regulating intracellular hormone action. This study was to determine whether SHBG plays a role in testosterone uptake, metabolism, and action in the androgen sensitive LNCaP prostate cancer cell line. Internalisation of SHBG and testosterone, the effects of SHBG on testosterone uptake, metabolism, regulation of androgen responsive genes, and cell growth were assessed. LNCaP cells internalised SHBG by a testosterone independent process. Testosterone was rapidly taken up and effluxed as testosterone-glucuronide; however this effect was reduced by the presence of SHBG. Addition of SHBG, rather than reducing testosterone bioavailability, further increased testosterone-induced expression of prostate specific antigen and enhanced testosterone-induced reduction of androgen receptor mRNA expression. Following 38 hours of testosterone treatment cell morphology changed and growth declined; however, cotreatment with SHBG abrogated these inhibitory effects. These findings clearly demonstrate that internalised SHBG plays an important regulatory and intracellular role in modifying testosterone action and this has important implications for the role of SHBG in health and disease. PMID:27990161

  9. The effect of modified polysialic acid based hydrogels on the adhesion and viability of primary neurons and glial cells.

    PubMed

    Haile, Yohannes; Berski, Silke; Dräger, Gerald; Nobre, Andrè; Stummeyer, Katharina; Gerardy-Schahn, Rita; Grothe, Claudia

    2008-04-01

    In this study we present the enzymatic and biological analysis of polysialic acid (polySia) based hydrogel in terms of its degradation and cytocompatibility. PolySia based hydrogel is completely degradable by endosialidase enzyme which may avoid second surgery after tissue recovery. Viability assay showed that soluble components of polySia hydrogel did not cause any toxic effect on cultured Schwann cells. Moreover, green fluorescence protein transfected neonatal and adult Schwann cells, neural stem cells and dorsal root ganglionic cells (unlabelled) were seeded on polySia hydrogel modified with poly-L-lysine (Pll), poly-L-ornithine-laminin (porn-laminin) or collagen. Water soluble tetrazolium salt assay revealed that modification of the hydrogel significantly improved cell adhesion and viability. These results infer that polySia based scaffolds in combination with cell adhesion molecules and cells genetically modified to express growth factors would potentially be promising alternative in reconstructive therapeutic strategies.

  10. Activation of human T-helper/inducer cell, T-cytotoxic/suppressor cell, B-cell, and natural killer (NK)-cells and induction of NK cell activity against K562 chronic myeloid leukemia cells with modified citrus pectin

    USDA-ARS?s Scientific Manuscript database

    Background Modified citrus pectin (MCP) is known for its anti-cancer effects and its ability to be absorbed and circulated in the human body. In this report we tested the ability of MCP to induce the activation of human blood lymphocyte subsets including T-helper/inducer cell, Tcytotoxic/suppres...

  11. Simulation of fluid-solid coexistence via thermodynamic integration using a modified cell model.

    PubMed

    Nayhouse, Michael; Amlani, Ankur M; Heng, Vincent R; Orkoulas, G

    2012-04-18

    Despite recent advances, precise simulation of fluid-solid transitions still remains a challenging task. Thermodynamic integration techniques are the simplest methods to study fluid-solid coexistence. These methods are based on the calculation of the free energies of the fluid and the solid phases, starting from a state of known free energy which is usually an ideal-gas state. Despite their simplicity, the main drawback of thermodynamic integration techniques is the large number of states that must be simulated. In the present work, a thermodynamic integration technique, which reduces the number of simulated states, is proposed and tested on a system of particles interacting via an inverse twelfth-power potential energy function. The simulations are implemented at constant pressure and the solid phase is modeled according to the constrained cell model of Hoover and Ree. The fluid and the solid phases are linked together by performing constant-pressure simulations of a modified cell model. The modified cell model, which was originally proposed by Hoover and Ree, facilitates transitions between the fluid and the solid phase by tuning a homogeneous external field. This model is simulated on a constant-pressure path for a series of progressively increasing values of the field, thus allowing for direct determination of the free energy difference between the fluid and the solid phase via histogram reweighting. The size-dependent results are analyzed using histogram reweighting and finite-size scaling techniques. The scaling analysis is based on studying the size-dependent behavior of the second- and higher-order derivatives of the free energy as well as the dimensionless moment ratios of the order parameter. The results clearly demonstrate the importance of accounting for size effects in simulation studies of fluid-solid transitions.

  12. Phospholipase signaling is modified differentially by phytoregulators in Capsicum chinense J. cells.

    PubMed

    Muñoz-Sánchez, J Armando; Altúzar-Molina, Alma; Hérnandez-Sotomayor, S M Teresa

    2012-09-01

    Plant defense mechanisms respond to diverse environmental factors and play key roles in signaling pathways. The phospholipidic signaling pathway forms part of the plant response to several phytoregulators, such as salicylic acid (SA) and methyl jasmonate (MJ), which have been widely used to stimulate secondary metabolite production in cell cultures. ( 1) Furthermore, it has been reported that the levels of such phytoregulators as SA and MJ can increase in response to stressful conditions. ( 2) (,) ( 3) The phospholipidic signal transduction system involves the generation of second messengers by the hydrolysis of phospholipids. In this study, we examined how phospholipidic signaling can be modulated depending on the growth stage of the culture, and we focused on two key lipases having relevant roles in the signaling cascades in plants. An evaluation was made of the effects of SA and MJ on the phospholipase activities in Capsicum chinense Jacq. suspension cells at different phases of the culture cycle. The treatment with SA differentially modified the phospholipase C (PLC) (EC: 3.1.4.3) and phospholipase D (PLD) (EC: 3.1.4.4) activities in a dose-dependent manner that also depended on the day of the culture cycle. In contrast, the treatment with MJ resulted in a biphasic behavior of the PLC and PLD activities. We conclude that the enzymatic activities in the phospholipidic signaling pathways are modified differentially depending on the day of the culture's growth cycle; accordingly, the response capacity to such environmental factors as phytoregulators is variable at different stages of growth and the physiology of the cells.

  13. Phospholipase signaling is modified differentially by phytoregulators in Capsicum chinense J. cells

    PubMed Central

    Muñoz-Sánchez, J. Armando; Altúzar-Molina, Alma; Hérnandez-Sotomayor, S. M. Teresa

    2012-01-01

    Plant defense mechanisms respond to diverse environmental factors and play key roles in signaling pathways. The phospholipidic signaling pathway forms part of the plant response to several phytoregulators, such as salicylic acid (SA) and methyl jasmonate (MJ), which have been widely used to stimulate secondary metabolite production in cell cultures.1 Furthermore, it has been reported that the levels of such phytoregulators as SA and MJ can increase in response to stressful conditions.2,3 The phospholipidic signal transduction system involves the generation of second messengers by the hydrolysis of phospholipids. In this study, we examined how phospholipidic signaling can be modulated depending on the growth stage of the culture, and we focused on two key lipases having relevant roles in the signaling cascades in plants. An evaluation was made of the effects of SA and MJ on the phospholipase activities in Capsicum chinense Jacq. suspension cells at different phases of the culture cycle. The treatment with SA differentially modified the phospholipase C (PLC) (EC: 3.1.4.3) and phospholipase D (PLD) (EC: 3.1.4.4) activities in a dose-dependent manner that also depended on the day of the culture cycle. In contrast, the treatment with MJ resulted in a biphasic behavior of the PLC and PLD activities. We conclude that the enzymatic activities in the phospholipidic signaling pathways are modified differentially depending on the day of the culture’s growth cycle; accordingly, the response capacity to such environmental factors as phytoregulators is variable at different stages of growth and the physiology of the cells. PMID:22899070

  14. Lipid-modified G4-decoy oligonucleotide anchored to nanoparticles: delivery and bioactivity in pancreatic cancer cells

    PubMed Central

    Cogoi, S.; Jakobsen, U.; Pedersen, E. B.; Vogel, S.; Xodo, L. E.

    2016-01-01

    KRAS is mutated in >90% of pancreatic ductal adenocarcinomas. As its inactivation leads to tumour regression, mutant KRAS is considered an attractive target for anticancer drugs. In this study we report a new delivery strategy for a G4-decoy oligonucleotide that sequesters MAZ, a transcription factor essential for KRAS transcription. It is based on the use of palmitoyl-oleyl-phosphatidylcholine (POPC) liposomes functionalized with lipid-modified G4-decoy oligonucleotides and a lipid-modified cell penetrating TAT peptide. The potency of the strategy in pancreatic cancer cells is demonstrated by cell cytometry, confocal microscopy, clonogenic and qRT-PCR assays. PMID:27929127

  15. Modified Titanium Surface-Mediated Effects on Human Bone Marrow Stromal Cell Response.

    PubMed

    Chaudhari, Amol; Duyck, Joke; Braem, Annabel; Vleugels, Jozef; Petite, Hervé; Logeart-Avramoglou, Delphine; Naert, Ignace; Martens, Johan A; Vandamme, Katleen

    2013-11-28

    Surface modification of titanium implants is used to enhance osseointegration. The study objective was to evaluate five modified titanium surfaces in terms of cytocompatibility and pro-osteogenic/pro-angiogenic properties for human mesenchymal stromal cells: amorphous microporous silica (AMS), bone morphogenetic protein-2 immobilized on AMS (AMS + BMP), bio-active glass (BAG) and two titanium coatings with different porosity (T1; T2). Four surfaces served as controls: uncoated Ti (Ti), Ti functionalized with BMP-2 (Ti + BMP), Ti surface with a thickened titanium oxide layer (TiO₂) and a tissue culture polystyrene surface (TCPS). The proliferation of eGFP-fLuc (enhanced green fluorescence protein-firefly luciferase) transfected cells was tracked non-invasively by fluorescence microscopy and bio-luminescence imaging. The implant surface-mediated effects on cell differentiation potential was tracked by determination of osteogenic and angiogenic parameters [alkaline phosphatase (ALP); osteocalcin (OC); osteoprotegerin (OPG); vascular endothelial growth factor-A (VEGF-A)]. Unrestrained cell proliferation was observed on (un)functionalized Ti and AMS surfaces, whereas BAG and porous titanium coatings T1 and T2 did not support cell proliferation. An important pro-osteogenic and pro-angiogenic potential of the AMS + BMP surface was observed. In contrast, coating the Ti surface with BMP did not affect the osteogenic differentiation of the progenitor cells. A significantly slower BMP-2 release from AMS compared to Ti supports these findings. In the unfunctionalized state, Ti was found to be superior to AMS in terms of OPG and VEGF-A production. AMS is suggested to be a promising implant coating material for bioactive agents delivery.

  16. Modified Titanium Surface-Mediated Effects on Human Bone Marrow Stromal Cell Response

    PubMed Central

    Chaudhari, Amol; Duyck, Joke; Braem, Annabel; Vleugels, Jozef; Petite, Hervé; Logeart-Avramoglou, Delphine; Naert, Ignace; Martens, Johan A.; Vandamme, Katleen

    2013-01-01

    Surface modification of titanium implants is used to enhance osseointegration. The study objective was to evaluate five modified titanium surfaces in terms of cytocompatibility and pro-osteogenic/pro-angiogenic properties for human mesenchymal stromal cells: amorphous microporous silica (AMS), bone morphogenetic protein-2 immobilized on AMS (AMS + BMP), bio-active glass (BAG) and two titanium coatings with different porosity (T1; T2). Four surfaces served as controls: uncoated Ti (Ti), Ti functionalized with BMP-2 (Ti + BMP), Ti surface with a thickened titanium oxide layer (TiO2) and a tissue culture polystyrene surface (TCPS). The proliferation of eGFP-fLuc (enhanced green fluorescence protein-firefly luciferase) transfected cells was tracked non-invasively by fluorescence microscopy and bio-luminescence imaging. The implant surface-mediated effects on cell differentiation potential was tracked by determination of osteogenic and angiogenic parameters [alkaline phosphatase (ALP); osteocalcin (OC); osteoprotegerin (OPG); vascular endothelial growth factor-A (VEGF-A)]. Unrestrained cell proliferation was observed on (un)functionalized Ti and AMS surfaces, whereas BAG and porous titanium coatings T1 and T2 did not support cell proliferation. An important pro-osteogenic and pro-angiogenic potential of the AMS + BMP surface was observed. In contrast, coating the Ti surface with BMP did not affect the osteogenic differentiation of the progenitor cells. A significantly slower BMP-2 release from AMS compared to Ti supports these findings. In the unfunctionalized state, Ti was found to be superior to AMS in terms of OPG and VEGF-A production. AMS is suggested to be a promising implant coating material for bioactive agents delivery. PMID:28788407

  17. Analysis of trunk neural crest cell migration using a modified Zigmond chamber assay.

    PubMed

    Walheim, Christopher C; Zanin, Juan Pablo; de Bellard, Maria Elena

    2012-01-19

    Neural crest cells (NCCs) are a transient population of cells present in vertebrate development that emigrate from the dorsal neural tube (NT) after undergoing an epithelial-mesenchymal transition. Following EMT, NCCs migrate large distances along stereotypic pathways until they reach their targets. NCCs differentiate into a vast array of cell types including neurons, glia, melanocytes, and chromaffin cells. The ability of NCCs to reach and recognize their proper target locations is foundational for the appropriate formation of all structures containing trunk NCC-derived components. Elucidating the mechanisms of guidance for trunk NCC migration has therefore been a matter of great significance. Numerous molecules have been demonstrated to guide NCC migration. For instance, trunk NCCs are known to be repelled by negative guidance cues such as Semaphorin, Ephrin, and Slit ligands. However, not until recently have any chemoattractants of trunk NCCs been identified. Conventional in vitro approaches to studying the chemotactic behavior of adherent cells work best with immortalized, homogenously distributed cells, but are more challenging to apply to certain primary stem cell cultures that initially lack a homogenous distribution and rapidly differentiate (such as NCCs). One approach to homogenize the distribution of trunk NCCs for chemotaxis studies is to isolate trunk NCCs from primary NT explant cultures, then lift and replate them to be almost 100% confluent. However, this plating approach requires substantial amounts of time and effort to explant enough cells, is harsh, and distributes trunk NCCs in a dissimilar manner to that found in in vivo conditions. Here, we report an in vitro approach that is able to evaluate chemotaxis and other migratory responses of trunk NCCs without requiring a homogenous cell distribution. This technique utilizes time-lapse imaging of primary, unperturbed trunk NCCs inside a modified Zigmond chamber (a standard Zigmond chamber is

  18. The potential role of genetically-modified pig mesenchymal stromal cells in xenotransplantation.

    PubMed

    Li, Jiang; Ezzelarab, Mohamed B; Ayares, David; Cooper, David K C

    2014-02-01

    Mesenchymal stromal cells (MSCs) are known to have regenerative, anti-inflammatory, and immunodulatory effects. There are extensive indications that pig MSCs function satisfactorily across species barriers. Pig MSCs might have considerable therapeutic potential, particularly in xenotransplantation, where they have several potential advantages. (i) pMSCs can be obtained from the specific organ- or cell-source donor pig or from an identical (cloned) pig. (ii) They are easy to obtain in large numbers, negating the need for prolonged ex vivo expansion. (iii) They can be obtained from genetically-engineered pigs, and the genetic modification can be related to the therapeutic goal of the MSCs. We have reviewed our own studies on MSCs from genetically-engineered pigs, and summarize them here. We have successfully harvested and cultured MSCs from wild-type and genetically-engineered pig bone marrow and adipose tissue. We have identified several pig (p)MSC surface markers (positive for CD29, CD44, CD73, CD105, CD166, and negative for CD31, CD45), have demonstrated their proliferation and differentiation (into adipocytes, osteoblasts, and chondroblasts), and evaluated their antigenicity and immune suppressive effects on human peripheral blood mononuclear cells and CD4(+)T cells. They have identical or very similar characteristics to MSCs from other mammals. Genetically-modified pMSCs are significantly less immunogenic than wild-type pMSCs, and downregulate the human T cell response to pig antigens as efficiently as do human MSCs. We hypothesized that pMSCs can immunomodulate human T cells through induction of apoptosis or anergy, or cause T cell phenotype switching with induction of regulatory T cells, but we could find no evidence for these mechanisms. However, pMSCs upregulated the expression of CD69 on human CD4(+) and CD8(+) T cells, the relevance of which is currently under investigation. We conclude that MSCs from genetically-engineered pigs should continue to be

  19. Band gap aligned conducting interface modifier enhances the performance of thermal stable polymer-TiO2 nanorod solar cell

    NASA Astrophysics Data System (ADS)

    Huang, Yu-Ching; Yen, Wei-Che; Liao, Yu-Chia; Yu, Ya-Chien; Hsu, Cheng-Chih; Ho, Mei-Lin; Chou, Pi-Tai; Su, Wei-Fang

    2010-03-01

    In this paper, we show that the poly(3-hexyl-thiophene)/TiO2 nanorod hybrid material is more thermally stable than the poly(3-hexyl-thiophene)/[6,6]-phenyl C61-bntyric acid methyl ester (P3HT/PCBM) hybrid material. A metal free conducting interface modifier of oligo-3-hexyl thiophene carboxylic acid (oligo-3HT-COOH) has been synthesized that exhibits aligned band gap for the P3HT/TiO2 hybrid. The conducting modifier shows an increase in power conversion efficiency of 4.8 times over an insulating modifier of oleic acid and 2.2 folds improvement over small molecule modifier of pyridine. These increases are due to a reduced recombination rate (42 μs carrier life time) and fast electron injection time of 0.24 ps. This interface modifier makes thermally stable organic-inorganic hybrid materials useful for fabrication of all solution processable solar cells.

  20. Quantum dots modified with quaternized poly(dimethylaminoethyl methacrylate) for selective recognition and killing of bacteria over mammalian cells.

    PubMed

    Tu, Qin; Ma, Chao; Tian, Chang; Yuan, Maosen; Han, Xiang; Wang, Dong-En; Cao, Chenyu; Wang, Jinyi

    2016-05-23

    Copper-free click chemistry has been used to graft quaternized poly(dimethylaminoethyl methacrylate) (QPA) modified with azide to the quantum dots (QDs) derived with dibenzocyclooctynes (DBCO). The success of the quaternary ammonium polymer-modified QDs was confirmed by ultraviolet-visible spectrophotometry (UV-Vis), fluorescence spectroscopy, zeta (ζ) potential, size distribution, and transmission electron microscopy (TEM). The QPA-modified QDs exhibited properties of selective recognition and killing of bacteria. The novelty of this study lies in fact that the synthesis method of the antimicrobial QPA-modified QDs is simple. Moreover, from another standpoint, QPA-modified QDs simultaneously possess abilities of selective recognition and killing of bacteria over mammalian cells, which is very different from the currently designed multifunctional antimicrobial systems composed of complicated systematic compositions.

  1. Transferrin-modified PLGA nanoparticles significantly increase the cytotoxicity of paclitaxel in bladder cancer cells by increasing intracellular retention

    NASA Astrophysics Data System (ADS)

    Jin, Shihua; Zhang, Yi; Yu, Chengfan; Wang, Gang; Zhang, Zhihong; Li, Ningchen; Na, Yanqun

    2014-10-01

    To improve the anticancer effects of paclitaxel (Tax) on bladder cancer, transferrin-modified and unmodified poly( d,l lactide- co-glycolide) nanoparticles (NPs) were generated to deliver Tax. The characteristics of the NPs and the drug-release profiles were evaluated. The cytotoxicity levels of blank NPs and Tax-loaded NPs in the bladder cancer cell lines MBT-2, J-82, and TCC Sup were determined. The uptakes and retentions of the NPs by the cell lines and the intracellular distribution of the NPs were also studied. The results showed similar NPs characteristics and drug-release profiles for NPs with and without transferrin modification. The sizes of NPs with and without transferrin modification were 206 and 278 nm, respectively; the Z-potentials were -23.5 and -24.3 mV, respectively; the drug loadings were 6.5 and 6.7 % w/w, respectively. No cytotoxicity was observed in the bladder cancer cells exposed to blank NPs. Both types of Tax-loaded NPs, however, had significantly higher cytotoxicity levels compared with the Tax solution in the bladder cancer cells. The transferrin-modified, Tax-loaded NPs were significantly more cytotoxic than the Tax-loaded NPs without modification in the MBT-2 and TCC Sup cells. There were no significant differences in NP uptakes between transferrin-modified and unmodified NPs in any of the three studied bladder cancer cell lines; however, the retentions of the modified NPs were significantly higher in the MBT-2 and TCC Sup cells. These findings suggest that NPs can significantly improve the anticancer effect of Tax in bladder cells. Furthermore, transferrin-modified NPs can improve the anticancer effect by increasing intracellular retention and not by increasing uptake. The transferrin-modified NPs are promising drug delivery vehicle for bladder cancer treatment.

  2. Colloidal stability of gold nanoparticles modified with thiol compounds: bioconjugation and application in cancer cell imaging.

    PubMed

    Gao, Jie; Huang, Xiangyi; Liu, Heng; Zan, Feng; Ren, Jicun

    2012-03-06

    Gold nanoparticles (GNPs) are attractive alternative optical probes and good biocompatible materials due to their special physical and chemical properties. However, GNPs have a tendency to aggregate particularly in the presence of high salts and certain biological molecules such as nucleic acids and proteins. How to improve the stability of GNPs and their bioconjugates in aqueous solution is a critical issue in bioapplications. In this study, we first synthesized 17 nm GNPs in aqueous solution and then modified them with six thiol compounds, including glutathione, mercaptopropionic acid (MPA), cysteine, cystamine, dihydrolipoic acid, and thiol-ending polyethylene glycol (PEG-SH), via a Au-S bond. We systematically investigated the effects of the thiol ligands, buffer pH, and salt concentrations of the solutions on the colloidal stability of GNPs using UV-vis absorption spectroscopy. We found that GNPs modified with PEG-SH were the most stable in aqueous solution compared to other thiol compounds. On the basis of the above results, we developed a simple and efficient approach for modification of GNPs using a mixture of PEG-SH and MPA as ligands. These biligand-modified GNPs were facilely conjugated to antibody using 1-ethyl-3-[3-(dimethylamino)propyl]carbodiimide and N-hydroxysulfosuccinimide as linkage reagents. We conjugated GNPs to epidermal growth factor receptor antibodies and successfully used the antibody-GNP conjugates as targeting probes for imaging of cancer cells using the illumination of a dark field. Compared to current methods for modification and conjugation of GNPs, our method described here is simple, has a low cost, and has potential applications in bioassays and cancer diagnostics and studies.

  3. Genetically modified neural stem cells for a local and sustained delivery of neuroprotective factors to the dystrophic mouse retina.

    PubMed

    Jung, Gila; Sun, Jing; Petrowitz, Bettina; Riecken, Kristoffer; Kruszewski, Katharina; Jankowiak, Wanda; Kunst, Frank; Skevas, Christos; Richard, Gisbert; Fehse, Boris; Bartsch, Udo

    2013-12-01

    A continuous intraocular delivery of neurotrophic factors (NFs) is being explored as a strategy to rescue photoreceptor cells and visual functions in degenerative retinal disorders that are currently untreatable. To establish a cell-based intraocular delivery system for a sustained administration of NFs to the dystrophic mouse retina, we used a polycistronic lentiviral vector to genetically modify adherently cultivated murine neural stem (NS) cells. The vector concurrently encoded a gene of interest, a reporter gene, and a resistance gene and thus facilitated the selection, cloning, and in vivo tracking of the modified cells. To evaluate whether modified NS cells permit delivery of functionally relevant quantities of NFs to the dystrophic mouse retina, we expressed a secretable variant of ciliary neurotrophic factor (CNTF) in NS cells and grafted the cells into the vitreous space of Pde6b(rd1) and Pde6b(rd10) mice, two animal models of retinitis pigmentosa. In both mouse lines, grafted cells attached to the retina and lens, where they differentiated into astrocytes and some neurons. Adverse effects of the transplanted cells on the morphology of host retinas were not observed. Importantly, the CNTF-secreting NS cells significantly attenuated photoreceptor degeneration in both mutant mouse lines. The neuroprotective effect was significantly more pronounced when clonally derived NS cell lines selected for high expression levels of CNTF were grafted into Pde6b(rd1) mice. Intravitreal transplantations of modified NS cells may thus represent a useful method for preclinical studies aimed at evaluating the therapeutic potential of a cell-based intraocular delivery of NFs in mouse models of photoreceptor degeneration.

  4. Manufacture of gene-modified human T-cells with a memory stem/central memory phenotype.

    PubMed

    Gomez-Eerland, Raquel; Nuijen, Bastiaan; Heemskerk, Bianca; van Rooij, Nienke; van den Berg, Joost H; Beijnen, Jos H; Uckert, Wolfgang; Kvistborg, Pia; Schumacher, Ton N; Haanen, John B A G; Jorritsma, Annelies

    2014-10-01

    Advances in genetic engineering have made it possible to generate human T-cell products that carry desired functionalities, such as the ability to recognize cancer cells. The currently used strategies for the generation of gene-modified T-cell products lead to highly differentiated cells within the infusion product, and on the basis of data obtained in preclinical models, this is likely to impact the efficacy of these products. We set out to develop a good manufacturing practice (GMP) protocol that yields T-cell receptor (TCR) gene-modified T-cells with more favorable properties for clinical application. Here, we show the robust clinical-scale production of human peripheral blood T-cells with an early memory phenotype that express a MART-1-specific TCR. By combining selection and stimulation using anti-CD3/CD28 beads for retroviral transduction, followed by expansion in the presence of IL-7 and IL-15, production of a well-defined clinical-scale TCR gene-modified T-cell product could be achieved. A major fraction of the T-cells generated in this fashion were shown to coexpress CD62L and CD45RA, and express CD27 and CD28, indicating a central memory or memory stemlike phenotype. Furthermore, these cells produced IFNγ, TNFα, and IL-2 and displayed cytolytic activity against target cells expressing the relevant antigen. The T-cell products manufactured by this robust and validated GMP production process are now undergoing testing in a phase I/IIa clinical trial in HLA-A*02:01 MART-1-positive advanced stage melanoma patients. To our knowledge, this is the first clinical trial protocol in which the combination of IL-7 and IL-15 has been applied for the generation of gene-modified T-cell products.

  5. Manufacture of Gene-Modified Human T-Cells with a Memory Stem/Central Memory Phenotype

    PubMed Central

    Gomez-Eerland, Raquel; Nuijen, Bastiaan; Heemskerk, Bianca; van Rooij, Nienke; van den Berg, Joost H.; Beijnen, Jos H.; Uckert, Wolfgang; Kvistborg, Pia; Schumacher, Ton N.; Jorritsma, Annelies

    2014-01-01

    Abstract Advances in genetic engineering have made it possible to generate human T-cell products that carry desired functionalities, such as the ability to recognize cancer cells. The currently used strategies for the generation of gene-modified T-cell products lead to highly differentiated cells within the infusion product, and on the basis of data obtained in preclinical models, this is likely to impact the efficacy of these products. We set out to develop a good manufacturing practice (GMP) protocol that yields T-cell receptor (TCR) gene-modified T-cells with more favorable properties for clinical application. Here, we show the robust clinical-scale production of human peripheral blood T-cells with an early memory phenotype that express a MART-1-specific TCR. By combining selection and stimulation using anti-CD3/CD28 beads for retroviral transduction, followed by expansion in the presence of IL-7 and IL-15, production of a well-defined clinical-scale TCR gene-modified T-cell product could be achieved. A major fraction of the T-cells generated in this fashion were shown to coexpress CD62L and CD45RA, and express CD27 and CD28, indicating a central memory or memory stemlike phenotype. Furthermore, these cells produced IFNγ, TNFα, and IL-2 and displayed cytolytic activity against target cells expressing the relevant antigen. The T-cell products manufactured by this robust and validated GMP production process are now undergoing testing in a phase I/IIa clinical trial in HLA-A*02:01 MART-1-positive advanced stage melanoma patients. To our knowledge, this is the first clinical trial protocol in which the combination of IL-7 and IL-15 has been applied for the generation of gene-modified T-cell products. PMID:25143008

  6. Enhanced performance of microbial fuel cell with in situ preparing dual graphene modified bioelectrode.

    PubMed

    Chen, Junfeng; Hu, Yongyou; Tan, Xiaojun; Zhang, Lihua; Huang, Wantang; Sun, Jian

    2017-10-01

    This study proposed a three-step method to prepare dual graphene modified bioelectrode (D-GM-BE) by in situ microbial-induced reduction of GO and polarity reversion in microbial fuel cell (MFC). Both graphene modified bioanode (GM-BA) and biocathode (GM-BC) were of 3D graphene/biofilm architectures; the viability and thickness of microbial biofilm decreased compared with control bioelectrode (C-BE). The coulombic efficiency (CE) of GM-BA was 2.1 times of the control bioanode (C-BA), which demonstrated higher rate of substrates oxidation; the relationship between peak current and scan rates data meant that GM-BC was of higher efficiency of catalyzing oxygen reduction than the control biocathode (C-BC). The maximum power density obtained in D-GM-BE MFC was 122.4±6.9mWm(-2), the interfacial charge transfer resistance of GM-BA and GM-BC were decreased by 79% and 75.7%. The excellent electrochemical performance of D-GM-BE MFC was attributed to the enhanced extracellular electron transfer (EET) process and catalyzing oxygen reduction. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. The O2 reduction at the IFC modified O2 fuel cell electrode

    NASA Technical Reports Server (NTRS)

    Fielder, William L.; Singer, Joseph; Baldwin, Richard S.; Johnson, Richard E.

    1992-01-01

    The International Fuel Corporation (IFC) state of the art (SOA) O2 electrode (Au-10 percent Pt electrocatalyst by weight) is currently being used in the alkaline H2-O2 fuel cell in the NASA Space Shuttle. Recently, IFC modified O2 electrode, as a possible replacement for the SOA electrode. In the present study, O2 reduction data were obtained for the modified electrode at temperatures between 23.3 and 91.7 C. BET measurements gave an electrode BET surface area of about 2070 sq. cm/sq. cm of geometric surface area. The Tafel data could be fitted to two straight line regions. The slope for the lower region, designated as the 0.04 V/decade region, was temperature dependent, and the transfer coefficient was about 1.5. The 'apparent' energy of activation for this region was about 19 kcal/mol. An O2 reduction mechanism for this 0.04 region is presented. In the upper region, designated as the 0.08 V/decade region, diffusion may be the controlling process. Tafel data are presented to illustrate the increase in performance with increasing temperature.

  8. Tuning the work functions of graphene quantum dot-modified electrodes for polymer solar cell applications.

    PubMed

    Zhang, L; Ding, Z C; Tong, T; Liu, J

    2017-03-09

    The graphene quantum dot (GQD) is a new kind of anode/cathode interlayer material for polymer solar cells (PSCs). The key requirement for a cathode interlayer (CIL) is a low work function. In this article, aiming at application as a CIL for PSCs, we report a general approach to tune the work function of GQD-modified electrodes using alkali metal cations, e.g. Li(+), Na(+), K(+), Rb(+) and Cs(+). For ITO electrodes modified with these GQDs containing alkali metal cations, the work function can be finely tuned within the range of 4.0-4.5 eV. Owing to their low work function, GQDs containing K(+), Rb(+) and Cs(+) can be used as CILs for PSCs. Their device performance is fairly comparable to that of the state-of-the-art CIL material ZnO. This work provides a rational approach to tune the properties of GQD and to design solution-processable electrode interlayer materials for organic electronic devices.

  9. Surface characteristics of acrylic modified polysulfone membranes improves renal proximal tubule cell adhesion and spreading.

    PubMed

    Teo, Jeremy Choon Meng; Ng, Roderica Rui Ge; Ng, Chee Ping; Lin, Alex Wei Haw

    2011-05-01

    Current polyvinylpyrrolidone-modified polysulfone (PVP-PSU) membranes in haemodialysers do not facilitate the attachment and proliferation of renal proximal tubule cells (RPTCs). For bioartificial kidney (BAK) development expensive extracellular matrices are employed to ensure the PVP-PSU membranes can serve as a substrate for RPTCs. In this study we modified PSU using an acrylic monomer (am-PSU) and polymerization using ultraviolet irradiation. We demonstrated that on adjusting the PSU or acrylic content of the membranes the wettability and surface chemistry were altered, and this affected the amount of fibronectin (Fn) that was adsorbed onto the membranes. Using an integrin blocking assay we ascertained that Fn is an important extracellular matrix component that mediates RPTC attachment. The amount of Fn adsorbed also led to different bioresponses of RPTCs, which were evaluated using attachment and proliferation assays and qualitative quantification of vinculin, focal adhesion kinase, zonula occludens and Na(+)/K(+) ATPase. Our optimized membrane, am-PSU1 (21.4% C-O groups, 19.1% PVP-PSU; contact angle 71.5-80.80, PVP-PSU: 52.4-67.50), supports a confluent monolayer of RPTCs and prevents creatinine and inulin diffusion from the apical to the basal side, meeting the requirements for application in BAKs. However, further in vivo evaluation to assess the full functionality of RPTCs on am-PSU1 is required. Copyright © 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  10. Combinatorial Treatment of DNA and Chromatin-Modifying Drugs Cause Cell Death in Human and Canine Osteosarcoma Cell Lines

    PubMed Central

    Thayanithy, Venugopal; Park, ChangWon; Sarver, Aaron L.; Kartha, Reena V.; Korpela, Derek M.; Graef, Ashley J.; Steer, Clifford J.; Modiano, Jaime F.; Subramanian, Subbaya

    2012-01-01

    Downregulation of microRNAs (miRNAs) at the 14q32 locus stabilizes the expression of cMYC, thus significantly contributing to osteosarcoma (OS) pathobiology. Here, we show that downregulation of 14q32 miRNAs is epigenetically regulated. The predicted promoter regions of miRNA clusters at 14q32 locus showed no recurrent patterns of differential methylation, but Saos2 cells showed elevated histone deacetylase (HDAC) activity. Treatment with 4-phenylbutyrate increased acetylation of histones associated with 14q32 miRNAs, but interestingly, robust restoration of 14q32 miRNA expression, attenuation of cMYC expression, and induction of apoptosis required concomitant treatment with 5-Azacytidine, an inhibitor of DNA methylation. These events were associated with genome-wide gene expression changes including induction of pro-apoptotic genes and downregulation of cell cycle genes. Comparable effects were achieved in human and canine OS cells using the HDAC inhibitor suberoylanilide hydroxamic acid (SAHA/Vorinostat) and the DNA methylation inhibitor Zebularine (Zeb), with significantly more pronounced cytotoxicity in cells whose molecular phenotypes were indicative of aggressive biological behavior. These results suggested that the combination of these chromatin-modifying drugs may be a useful adjuvant in the treatment of rapidly progressive OS. PMID:22957032

  11. Effects of Foxp3 gene modified dendritic cells on mouse corneal allograft rejection

    PubMed Central

    Gong, Yu-Bo; Hu, Lian-Na; Liu, Yong; Han, Gen-Cheng; Guo, Hui-Ling; Luo, Ling; Wang, Li-Qiang; Li, Yan; Huang, Yi-Fei

    2015-01-01

    Objective: To investigate the effect of Foxp3 gene modified dendritic cells (Foxp3 + DC) on allogeneic T cells proliferation and to study the effect of Foxp3 + DC on corneal allograft rejection. Methods: Lentivirus-Foxp3 was transfected into DC2.4 cells, as Foxp3 + DC cells. 42 BALB/c mice were randomly divided into: Group A (n = 6), normal group; Group B (n = 12), Group C (n = 12) and Group D (n = 12), allograft groups, were treated with normal saline, DC2.4, Foxp3 + DC by intraperitoneal injection, respectively. Results: Compared with the control group, Foxp3 protein in the Foxp3 + DC cells increased significantly (P < 0.05); the expressions of CD80 and CD86 immunophenotypes of Foxp3 + DC cells decreased significantly (P < 0.05); IL-12 secretion reduced (P < 0.05), but IL-10 secretion was promoted (P < 0.05). The average transplant survival time in Group B was (14.833 ± 1.472) d, and Group C and Group D led to a statistically significant prolongation of transplant survival to (17.667 ± 1.366, 23.000 ± 2.000) d (P < 0.05) respectively. 14 d after transplantation, as compared with Group C and D, the expressions of IFN-γ in grafts markedly increased in Group B. 14 d after transplantation, as compared with Group B, the expressions of Foxp3 mRNA, IDO mRNA in grafts decreased remarkably in Group C and D (P < 0.05); as compared with Group C, the expressions of Foxp3 mRNA, IDO mRNA in grafts decreased remarkably in Group D (P < 0.05). Conclusion: Foxp3 + DC cells reduce the expression of costimulatory factors, reduce the secretion of IL-12, promote IL-10 production and inhibit the stimulation of alloreactive T cell proliferation response capacity. Foxp3 + DC cells play important roles in inhibiting corneal allograft immune response and prolonging graft survival time. PMID:26064298

  12. [Therapeutic effect of GDNF gene-modified mesencephalic neural stem cell transplantation in a rat model of Parkinson disease].

    PubMed

    Duan, Kuijia; Wang, Xiangpeng; Yang, Zhiyong; Wang, Bo; Wang, Mingguo; Zhang, Hailong; Deng, Xingli

    2016-01-01

    To evaluate the therapeutic effect of transplantation of mesencephalic neural stem cells (mNSCs) genetically modified by glial cell line-derived neurotrophic factor (GDNF) gene in a rat model of Parkinson disease. mNSCs isolated from the lateral component of the midbrain of fetal rats at gestational age of 14 or 15 days were cultured for 5 days before genetic modification with GFP or GDNF gene. Rat models of Parkinson disease established by stereotactic injection of 6-hydroxy dopamine in the ventral area of the midbrain and the medial forebrain bundle were randomized into 3 groups to receive PBS injection, GFP gene-modified mNSCs transplantation, or GDNF gene-modified mNSCs transplantation into the right stratum. The behavioral changes of the rats were evaluated by observing rotations induced by intraperitoneal injection of apomorphine after the transplantation, and the survival, migration and differentiation of the transplanted cells were identified by immunohistochemistry. Transplantation with GDNF gene-modified mNSCs significantly improved the behavioral abnormalities of the rat models as compared with PBS injection and GFP gene-modified mNSCs transplantation. At 56 days after the transplantation, a greater number of the transplanted cells survived in the rat brain and more differentiated dopaminergic neurons were detected in GDNF gene-modified mNSCs transplantation group than in GFP gene-modified mNSCs transplantation group. GDNF gene-modified mNSCs transplantation can significantly improve dyskinesia in rat models of Parkinson disease, but the molecular mechanism needs further clarification.

  13. Adoptive immunotherapy for hematological malignancies using T cells gene-modified to express tumor antigen-specific receptors.

    PubMed

    Fujiwara, Hiroshi

    2014-12-15

    Accumulating clinical evidence suggests that adoptive T-cell immunotherapy could be a promising option for control of cancer; evident examples include the graft-vs-leukemia effect mediated by donor lymphocyte infusion (DLI) and therapeutic infusion of ex vivo-expanded tumor-infiltrating lymphocytes (TIL) for melanoma. Currently, along with advances in synthetic immunology, gene-modified T cells retargeted to defined tumor antigens have been introduced as "cellular drugs". As the functional properties of the adoptive immune response mediated by T lymphocytes are decisively regulated by their T-cell receptors (TCRs), transfer of genes encoding target antigen-specific receptors should enable polyclonal T cells to be uniformly redirected toward cancer cells. Clinically, anticancer adoptive immunotherapy using genetically engineered T cells has an impressive track record. Notable examples include the dramatic benefit of chimeric antigen receptor (CAR) gene-modified T cells redirected towards CD19 in patients with B-cell malignancy, and the encouraging results obtained with TCR gene-modified T cells redirected towards NY-ESO-1, a cancer-testis antigen, in patients with advanced melanoma and synovial cell sarcoma. This article overviews the current status of this treatment option, and discusses challenging issues that still restrain the full effectiveness of this strategy, especially in the context of hematological malignancy.

  14. Endothelial cell functions in vitro cultured on poly(L-lactic acid) membranes modified with different methods.

    PubMed

    Zhu, Yabin; Gao, Changyou; Liu, Yunxiao; Shen, Jiacong

    2004-06-01

    We recently developed several methods to enhance the cell-polymer interactions. Optimal conditions for each method have been revealed separately by in vitro cell culture. As a practical consideration for construction of tissue-engineered organs, it is necessary to consider which is the most suitable and convenient in clinical applications. To compare the efficiency of these methods with respect to cell functions, poly-L-lactic acid (PLLA) was selected as matrix being modified by 1) aminolysis (PLLA-NH(2)), 2) collagen immobilization with GA (PLLA-GA-Col), 3) chondroitin sulfate (CS)/collagen layer-by-layer (LBL) assembly (PLLA-CS/Col), 4) photo-induced grafting copolymerization of hydrophilic methacrylic acid (MAA) (PLLA-g-PMAA), and 5) further immobilization of collagen with 1-ethyl-3-(3-dimethylamino propyl) carbodiimide hydrochloride (EDAC) (PLLA-g-PMAA-Col). The surface wettability of the modified PLLA was determined by water contact angle measurements. The cell response to the modified PLLA was quantitatively assessed and compared by using human umbilical endothelial cells (HUVECs) culture. Our results indicate that all the modifications can improve the cytocompatibility of PLLA (e.g., cells can attach with spreading morphology, proliferate and secret vWF and 6-keto-PGF(1 alpha)). All the collagen-modified PLLA showed more positive cell response than those purely aminolyzed or PMAA grafted. Among all the methods, collagen immobilization by LBL assembly or GA bridging after aminolysis is more acceptable for the convenience and applicability to scaffolds.

  15. Up-up-down-down magnetic chain structure of the spin-1/2 tetragonally distorted spinel GeC u2O4

    NASA Astrophysics Data System (ADS)

    Zou, T.; Cai, Y.-Q.; dela Cruz, C. R.; Garlea, V. O.; Mahanti, S. D.; Cheng, J.-G.; Ke, X.

    2016-12-01

    GeC u2O4 spinel exhibits a tetragonal structure due to the strong Jahn-Teller distortion associated with C u2 + ions. We show that its magnetic structure can be described as slabs composed of a pair of layers with orthogonally oriented spin-1/2 Cu chains in the basal a b plane. The spins between the two layers within a slab are collinearly aligned while the spin directions of neighboring slabs are perpendicular to each other. Interestingly, we find that spins along each chain form an unusual up-up-down-down (UUDD) pattern, suggesting a non-negligible nearest-neighbor biquadratic exchange interaction in the effective classical spin Hamiltonian. We hypothesize that spin-orbit coupling and orbital mixing of C u2 + ions in this system are non-negligible, which calls for future calculations using perturbation theory with extended Hilbert (spin and orbital) space and calculations based on density functional theory including spin-orbit coupling and looking at the global stability of the UUDD state.

  16. Immunohistochemical analysis of IA-2 family of protein tyrosine phosphatases in rat gastrointestinal endocrine cells.

    PubMed

    Gomi, Hiroshi; Kubota-Murata, Chisato; Yasui, Tadashi; Tsukise, Azuma; Torii, Seiji

    2013-02-01

    Islet-associated protein-2 (IA-2) and IA-2β (also known as phogrin) are unique neuroendocrine-specific protein tyrosine phosphatases (PTPs). The IA-2 family of PTPs was originally identified from insulinoma cells and discovered to be major autoantigens in type 1 diabetes. Despite its expression in the neural and canonical endocrine tissues, data on expression of the IA-2 family of PTPs in gastrointestinal endocrine cells (GECs) are limited. Therefore, we immunohistochemically investigated the expression of the IA-2 family of PTPs in the rat gastrointestinal tract. In the stomach, IA-2 and IA-2β were expressed in GECs that secrete serotonin, somatostatin, and cholecystokinin/gastrin-1. In addition to these hormones, secretin, gastric inhibitory polypeptide (also known as the glucose-dependent insulinotropic peptide), glucagon-like peptide-1, and glucagon, but not ghrelin were coexpressed with IA-2 or IA-2β in duodenal GECs. Pancreatic islet cells that secrete gut hormones expressed the IA-2 family of PTPs. The expression patterns of IA-2 and IA-2β were comparable. These results reveal that the IA-2 family of PTPs is expressed in a cell type-specific manner in rat GECs. The extensive expression of the IA-2 family of PTPs in pancreo-gastrointestinal endocrine cells and in the enteric plexus suggests their systemic contribution to nutritional control through a neuroendocrine signaling network.

  17. Gene-modified stem cells combined with rapid prototyping techniques: a novel strategy for periodontal regeneration.

    PubMed

    He, Huixia; Cao, Junkai; Wang, Dongsheng; Gu, Bing; Guo, Hong; Liu, Hongchen

    2010-03-01

    Periodontal disease, a worldwide prevalent chronic disease in adults, is characterized by the destruction of the periodontal supporting tissue including the cementum, periodontal ligament and alveolar bone. The regeneration of damaged periodontal tissue is the main goal of periodontal treatment. Because conventional periodontal treatments remain insufficient to attain complete and reliable periodontal regeneration, periodontal tissue engineering has emerged as a prospective alternative method for improving the regenerative capacity of periodontal tissue. However, the potential of periodontal regeneration seems to be limited by the understanding of the cellular and molecular events in the formation of periodontal tissue and by the insufficient collaboration of multi-disciplinary research that periodontal tissue engineering involves. In this paper, we first reviewed the recent advancements in stem cells, signaling factors, and scaffolds that relate to periodontal regeneration. Then we speculate that specific genes would improve regenerative capacity of these stem cells, which could differentiate into cementoblasts, osteoblasts and fibroblasts. In addition, the 3D scaffolds that mimic the different structure and physiologic functions of natural fibro-osseous tissue could be fabricated by rapid prototyping (RP) techniques. It was therefore hypothesized that gene-modified stem cells combined with rapid prototyping techniques would be a new strategy to promote more effective and efficient periodontal regeneration.

  18. Surface-modified loaded human red blood cells for targeting and delivery of drugs.

    PubMed

    Sternberg, Nadine; Georgieva, Radostina; Duft, Karolin; Bäumler, Hans

    2012-01-01

    Red blood cells (RBCs) are natural carriers which can be used for targeted drug delivery. Conditions during loading and surface modification are essential for carrier-RBC preparation for specifically targeted drug delivery. Therefore, human RBCs were loaded with albumin and magnetic nanoparticles (NPs) by different hypotonic haemolysis procedures and compared based on loading efficiency and membrane damage. Samples were analysed by flow cytometry and confocal microscopy. The optimized loading procedure resulted in 90% albumin-loaded carrier-RBCs with <4% Annexin V binding and 263 pg iron per RBC after loading with iron oxide NPs. Albumin-loaded RBCs were subsequently surface conjugated with insulin and IgG via biotin-streptavidin. Insulin-conjugated carrier-RBCs were observed to attach and to be internalized by cultured endothelial cells. Uptake was not observed for carrier-RBCs non-specifically modified with IgG. Attachment of other peptides with high specificity will open novel opportunities for targeting various cells, tissues and for crossing biological barriers.

  19. Early fibrillin-1 assembly monitored through a modifiable recombinant cell approach

    PubMed Central

    Hubmacher, Dirk; Bergeron, Eric; Fagotto-Kaufmann, Christine; Sakai, Lynn Y.; Reinhardt, Dieter P.

    2016-01-01

    Fibrillin proteins constitute the backbone of extracellular macromolecular microfibrils. Mutations in fibrillins cause heritable connective tissue disorders, including Marfan syndrome, dominant Weill-Marchesani syndrome, and stiff skin syndrome. Fibronectin provides a critical scaffold for microfibril assembly in cell culture models. Full length recombinant fibrillin-1 was expressed by HEK 293 cells, which deposited the secreted protein in a punctate pattern on the cell surface. Co-cultured fibroblasts consistently triggered assembly of recombinant fibrillin-1, which was dependent on a fibronectin network formed by the fibroblasts. Deposition of recombinant fibrillin-1 on fibronectin fibers occurred first in discrete packages that subsequently extended along fibronectin fibers. Mutant fibrillin-1 harboring either a cysteine 204 to serine mutation or a RGD to RGA mutation which prevents integrin binding, did not affect fibrillin-1 assembly. In conclusion, we developed a modifiable recombinant full-length fibrillin-1 assembly system that allows for rapid analysis of critical roles in fibrillin assembly and functionality. This system can be used to study the contributions of specific residues, domains or regions of fibrillin-1 to the biogenesis and functionality of microfibrils. It provides also a method to evaluate disease-causing mutations, and to produce microfibril-containing matrices for tissue engineering applications for example in designing novel vascular grafts or stents. PMID:24559401

  20. Magnetically modified bacterial cellulose: A promising carrier for immobilization of affinity ligands, enzymes, and cells.

    PubMed

    Baldikova, Eva; Pospiskova, Kristyna; Ladakis, Dimitrios; Kookos, Ioannis K; Koutinas, Apostolis A; Safarikova, Mirka; Safarik, Ivo

    2017-02-01

    Bacterial cellulose (BC) produced by Komagataeibacter sucrofermentans was magnetically modified using perchloric acid stabilized magnetic fluid. Magnetic bacterial cellulose (MBC) was used as a carrier for the immobilization of affinity ligands, enzymes and cells. MBC with immobilized reactive copper phthalocyanine dye was an efficient adsorbent for crystal violet removal; the maximum adsorption capacity was 388mg/g. Kinetic and thermodynamic parameters were also determined. Model biocatalysts, namely bovine pancreas trypsin and Saccharomyces cerevisiae cells were immobilized on MBC using several strategies including adsorption with subsequent cross-linking with glutaraldehyde and covalent binding on previously activated MBC using sodium periodate or 1,4-butanediol diglycidyl ether. Immobilized yeast cells retained approximately 90% of their initial activity after 6 repeated cycles of sucrose solution hydrolysis. Trypsin covalently bound after MBC periodate activation was very stable during operational stability testing; it could be repeatedly used for ten cycles of low molecular weight substrate hydrolysis without loss of its initial activity. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. PEG/RGD-modified magnetic polymeric liposomes for controlled drug release and tumor cell targeting.

    PubMed

    Su, Wenya; Wang, Hanjie; Wang, Sheng; Liao, Zhenyu; Kang, Shiyin; Peng, Yao; Han, Lei; Chang, Jin

    2012-04-15

    Polymeric liposomes (PEG/RGD-MPLs), composed of amphiphilic polymer octadecyl-quaternized modified poly (γ-glutamic acid) (OQPGA), PEGylated OQPGA, RGD peptide grafted OQPGA and magnetic nanoparticles, was prepared successfully. These PEG/RGD-MPLs could be used as a multifunctional platform for targeted drug delivery. The results showed that PEG/RGD-MPLs were multilamellar spheres with nano-size (50-70 nm) and positive surface charge (28-42 mV). Compared with magnetic conventional liposomes (MCLs), PEG/RGD-MPLs exhibited sufficient size and zeta potential stability, low initial burst release and less magnetic nanoparticles leakage. The cell uptake results suggested that the PEG/RGD-MPLs (with RGD and magnetic particles) exhibited more drug cellular uptake than non RGD and non magnetism carriers in MCF-7 cells. MTT assay revealed that PEG/RGD-MPLs showed lower in vitro cytotoxicity to GES-1cells at ≤ 100 μg/mL. These data indicated that the multifunctional PEG/RGD-MPLs may be an alternative formulation for drug delivery system. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Development of biologically modified anodes for energy harvesting using microbial fuel cells

    NASA Astrophysics Data System (ADS)

    Sumner, James J.; Ganguli, Rahul; Chmelka, Brad

    2012-06-01

    Biological fuel cells hold promise as an alternative energy source to batteries for unattended ground sensor applications due to the fact that they can be extremely long lived. This lifetime can be extended over batteries by scavenging fuel from the deployed environment. Microbial fuel cells (MFC) are one class of such sources that produce usable energy from small organic compounds (i.e. sugars, alcohols, organic acids, and biopolymers) which can be easily containerized or scavenged from the environment. The use of microorganisms as the anodic catalysts is what makes these systems unique from other biofuel cell designs. One of the main drawbacks of engineering a sensor system powered by an MFC is that power densities and current flux are extremely low in currently reported systems. The power density is limited by the mass transfer of the fuel source to the catalyst, the metabolism of the microbial catalysts and the electron transfer from the organism to the anode. This presentation will focus on the development of a new style of microbially-modified anodes which will increase power density to a level where a practical power source can be engineered. This is being achieved by developing a three dimensional matrix as an artificial, conductive biofilm. These artificial biofilms will allow the capture of a consortium of microbes designed for efficient metabolism of the available fuel source. Also it will keep the microbes close to the electrode allowing ready access by fuel and providing a low resistance passage of the liberated electrons from fuel oxidation.

  3. Quercetin-Based Modified Porous Silicon Nanoparticles for Enhanced Inhibition of Doxorubicin-Resistant Cancer Cells.

    PubMed

    Liu, Zehua; Balasubramanian, Vimalkumar; Bhat, Chinmay; Vahermo, Mikko; Mäkilä, Ermei; Kemell, Marianna; Fontana, Flavia; Janoniene, Agne; Petrikaite, Vilma; Salonen, Jarno; Yli-Kauhaluoma, Jari; Hirvonen, Jouni; Zhang, Hongbo; Santos, Hélder A

    2017-02-01

    One of the most challenging obstacles in nanoparticle's surface modification is to achieve the concept that one ligand can accomplish multiple purposes. Upon such consideration, 3-aminopropoxy-linked quercetin (AmQu), a derivative of a natural flavonoid inspired by the structure of dopamine, is designed and subsequently used to modify the surface of thermally hydrocarbonized porous silicon (PSi) nanoparticles. This nanosystem inherits several advanced properties in a single carrier, including promoted anticancer efficiency, multiple drug resistance (MDR) reversing, stimuli-responsive drug release, drug release monitoring, and enhanced particle-cell interactions. The anticancer drug doxorubicin (DOX) is efficiently loaded into this nanosystem and released in a pH-dependent manner. AmQu also effectively quenches the fluorescence of the loaded DOX, thereby allowing the use of the nanosystem for monitoring the intracellular drug release. Furthermore, a synergistic effect with the presence of AmQu is observed in both normal MCF-7 and DOX-resistant MCF-7 breast cancer cells. Due to the similar structure as dopamine, AmQu may facilitate both the interaction and internalization of PSi into the cells. Overall, this PSi-based platform exhibits remarkable superiority in both multifunctionality and anticancer efficiency, making this nanovector a promising system for anti-MDR cancer treatment.

  4. Attachment and proliferation of bovine aortic endothelial cells onto additive modified poly(ether urethane ureas)

    SciTech Connect

    Brunstedt, M.R.; Ziats, N.P.; Rose-Caprara, V.; Hiltner, P.A.; Anderson, J.M. ); Lodoen, G.A.; Payet, C.R. E.I. du Pont de Nemours and Co., Wilmington, DE )

    1993-04-01

    To better understand endothelial cell interactions with poly(ether urethane urea) (PEUU) materials, and to assess bovine aortic endothelial cell attachment, films were incubated for 24 h with BAEC in media containing 5% fetal bovine serum. Other films were allowed to incubate for 4 more days in media containing 5% fetal bovine serum without cells to assess BAEC proliferation. The assay was performed on PEUU films modified with acrylate and methacrylate polymer and copolymer additives that spanned a wide range on the hydrophobicity/hydrophilicity scale. Tissue culture polystyrene (TCPS) was used as a control. The assay showed that PEUU films loaded with Methacrol 2138F [copoly(diisopropylaminoethyl methacrylate [DIPAM]/decyl methacrylate [DM]) (3/1)] or with its hydrophilic component, DIPAM, in homopolymer form (i.e., h-DIPAM), significantly enhanced BAEC attachment and proliferation when compared to unloaded PEUU films or to PEUU films loaded with the more hydrophobic acrylate or methacrylate polymer additives. The assay also showed that PEUU films coated with homopoly(diisopropylaminoethyl acrylate) (h-DIPAA) significantly enhanced BAEC attachment and proliferation when compared to PEUU films coated with h-decyl acrylate films coated with the copolymer of these two acrylates showed intermediate behavior.

  5. Sulfatase modifying factor 1 trafficking through the cells: from endoplasmic reticulum to the endoplasmic reticulum.

    PubMed

    Zito, Ester; Buono, Mario; Pepe, Stefano; Settembre, Carmine; Annunziata, Ida; Surace, Enrico Maria; Dierks, Thomas; Monti, Maria; Cozzolino, Marianna; Pucci, Piero; Ballabio, Andrea; Cosma, Maria Pia

    2007-05-16

    Sulfatase modifying factor 1 (SUMF1) is the gene mutated in multiple sulfatase deficiency (MSD) that encodes the formylglycine-generating enzyme, an essential activator of all the sulfatases. SUMF1 is a glycosylated enzyme that is resident in the endoplasmic reticulum (ER), although it is also secreted. Here, we demonstrate that upon secretion, SUMF1 can be taken up from the medium by several cell lines. Furthermore, the in vivo engineering of mice liver to produce SUMF1 shows its secretion into the blood serum and its uptake into different tissues. Additionally, we show that non-glycosylated forms of SUMF1 can still be secreted, while only the glycosylated SUMF1 enters cells, via a receptor-mediated mechanism. Surprisingly, following its uptake, SUMF1 shuttles from the plasma membrane to the ER, a route that has to date only been well characterized for some of the toxins. Remarkably, once taken up and relocalized into the ER, SUMF1 is still active, enhancing the sulfatase activities in both cultured cells and mice tissues.

  6. Carbon nanofibers modified graphite felt for high performance anode in high substrate concentration microbial fuel cells.

    PubMed

    Shen, Youliang; Zhou, Yan; Chen, Shuiliang; Yang, Fangfang; Zheng, Suqi; Hou, Haoqing

    2014-01-01

    Carbon nanofibers modified graphite fibers (CNFs/GF) composite electrode was prepared for anode in high substrate concentration microbial fuel cells. Electrochemical tests showed that the CNFs/GF anode generated a peak current density of 2.42 mA cm(-2) at a low acetate concentration of 20 mM, which was 54% higher than that from bare GF. Increase of the acetate concentration to 80 mM, in which the peak current density of the CNFs/GF anode greatly increased and was up to 3.57 mA cm(-2), was seven times as that of GF anode. Morphology characterization revealed that the biofilms in the CNFs/GF anode were much denser than those in the bare GF. This result revealed that the nanostructure in the anode not only enhanced current generation but also could tolerate high substrate concentration.

  7. Cell proliferation on UV-excimer lamp modified and grafted polytetrafluoroethylene

    NASA Astrophysics Data System (ADS)

    Švorčík, V.; Ročková, K.; Ratajová, E.; Heitz, J.; Huber, N.; Bäuerle, D.; Bačáková, L.; Dvořánková, B.; Hnatowicz, V.

    2004-04-01

    Polytetrafluoroethylene (PTFE) was modified by irradiation with 172 nm light from an UV-excimer lamp in reactive ammonia atmosphere. Then, the samples were exposed to aqueous solutions of amino acids (glycine, alanine and leucine). The samples were characterized by water contact angle measurement, UV-VIS spectroscopy and laser-induced fluorescence (LIF). The results indicate, that the amino acids are bound onto the polymer chain. The amount of incorporated amino acid is a decreasing function of its molecular size. By in vitro experiments it was shown that the incorporated amino acids support adhesion and proliferation of rat aortic smooth muscle cells and mouse embryonic 3T3 fibroblasts on the polymer surface. The maximum effect was observed for smallest molecule of glycine.

  8. Effect of microinjected N-ethylmaleimide-modified heavy meromyosin on cell division in amphibian eggs

    PubMed Central

    1980-01-01

    N-Ethylmaleimide-modified heavy meromyosin (NEM-HMM) microinjected into amphibian eggs inhibits cytokinesis and the cortical contractions associated with wound closure. Injection of NEM-HMM into two-cell Rana pipiens embryos produces a zone of cleavage inhibition around the point of injection. Early furrows followed by time-lapse microcinematography are seen to slow and stop as they enter the NEM-HMM-injected zone. Arrested furrows slowly regress, leaving a large region of cytoplasm uncleaved. Few nuclei are found in these regions of cleavage inhibition. Wound closure is often inhibited by NEM-HMM, especially when this inhibitor is injected just beneath the egg cortex. We observe that the surface of an unfertilized Rana egg is covered with microvilli that disappear during the course of development. The surfaces of NEM- HMM-inhibited zones remain covered with microvilli and resemble the unfertilized egg surface. PMID:6997323

  9. Glucose deprivation induces G2/M transition-arrest and cell death in N-GlcNAc2-modified protein-producing renal carcinoma cells.

    PubMed

    Isono, Takahiro; Chano, Tokuhiro; Kitamura, Asuka; Yuasa, Takeshi

    2014-01-01

    Some cancer cells can survive under glucose deprivation within the microenvironment of a tumor. Recently, we reported that N-linked (β-N-acetylglucosamine)2 [N-GlcNAc2]-modified proteins induce G2/M arrest and cell death under glucose deprivation. Here, we investigated whether such a response to glucose deprivation contributes to the survival of renal cell carcinomas, which are sensitive to nutritional stress. Specifically, we analyzed seven renal carcinoma cell lines. Four of these cell lines produced N-GlcNAc2-modified proteins and led G2/M-phase arrest under glucose deprivation, leading to cell death. The remaining three cell lines did not produce N-GlcNAc2-modified proteins and undergo G1/S-phase arrest under glucose deprivation, leading to survival. The four dead cell lines displayed significant up-regulation in the UDP-GlcNAc biosynthesis pathway as well as increased phosphorylation of p53, which was not observed in the surviving three cell lines. In addition, the four dead cell lines showed prolonged up-regulated expression of ATF3, which is related to unfolded protein response (UPR), while the surviving three cell lines showed only transient up-regulation of ATF3. In this study, we demonstrated that the renal carcinoma cells which accumulate N-GlcNAc2-modified proteins under glucose deprivation do not survive with abnormaly prolonged UPR pathway. By contrast, renal carcinoma cells that do not accumulate N-GlcNAc2-modified proteins under these conditions survive. Morover, we demonstrated that buformin, a UPR inhibitor, efficiently reduced cell survival under conditions of glucose deprivation for both sensitive and resistant phenotypes. Further studies to clarify these findings will lead to the development of novel chemotherapeutic treatments for renal cancer.

  10. Glucose Deprivation Induces G2/M Transition-Arrest and Cell Death in N-GlcNAc2-Modified Protein-Producing Renal Carcinoma Cells

    PubMed Central

    Isono, Takahiro; Chano, Tokuhiro; Kitamura, Asuka; Yuasa, Takeshi

    2014-01-01

    Some cancer cells can survive under glucose deprivation within the microenvironment of a tumor. Recently, we reported that N-linked (β-N-acetylglucosamine)2 [N-GlcNAc2]-modified proteins induce G2/M arrest and cell death under glucose deprivation. Here, we investigated whether such a response to glucose deprivation contributes to the survival of renal cell carcinomas, which are sensitive to nutritional stress. Specifically, we analyzed seven renal carcinoma cell lines. Four of these cell lines produced N-GlcNAc2-modified proteins and led G2/M-phase arrest under glucose deprivation, leading to cell death. The remaining three cell lines did not produce N-GlcNAc2-modified proteins and undergo G1/S-phase arrest under glucose deprivation, leading to survival. The four dead cell lines displayed significant up-regulation in the UDP-GlcNAc biosynthesis pathway as well as increased phosphorylation of p53, which was not observed in the surviving three cell lines. In addition, the four dead cell lines showed prolonged up-regulated expression of ATF3, which is related to unfolded protein response (UPR), while the surviving three cell lines showed only transient up-regulation of ATF3. In this study, we demonstrated that the renal carcinoma cells which accumulate N-GlcNAc2-modified proteins under glucose deprivation do not survive with abnormaly prolonged UPR pathway. By contrast, renal carcinoma cells that do not accumulate N-GlcNAc2-modified proteins under these conditions survive. Morover, we demonstrated that buformin, a UPR inhibitor, efficiently reduced cell survival under conditions of glucose deprivation for both sensitive and resistant phenotypes. Further studies to clarify these findings will lead to the development of novel chemotherapeutic treatments for renal cancer. PMID:24796485

  11. Dry eye modifies the thermal and menthol responses in rat corneal primary afferent cool cells

    PubMed Central

    Kurose, Masayuki

    2013-01-01

    Dry eye syndrome is a painful condition caused by inadequate or altered tear film on the ocular surface. Primary afferent cool cells innervating the cornea regulate the ocular fluid status by increasing reflex tearing in response to evaporative cooling and hyperosmicity. It has been proposed that activation of corneal cool cells via a transient receptor potential melastatin 8 (TRPM8) channel agonist may represent a potential therapeutic intervention to treat dry eye. This study examined the effect of dry eye on the response properties of corneal cool cells and the ability of the TRPM8 agonist menthol to modify these properties. A unilateral dry eye condition was created in rats by removing the left lacrimal gland. Lacrimal gland removal reduced tears in the dry eye to 35% compared with the contralateral eye and increased the number of spontaneous blinks in the dry eye by over 300%. Extracellular single-unit recordings were performed 8–10 wk following surgery in the trigeminal ganglion of dry eye animals and age-matched controls. Responses of corneal cool cells to cooling were examined after the application of menthol (10 μM–1.0 mM) to the ocular surface. The peak frequency of discharge to cooling was higher and the cooling threshold was warmer in dry eye animals compared with controls. The dry condition also altered the neuronal sensitivity to menthol, causing desensitization to cold-evoked responses at concentrations that produced facilitation in control animals. The menthol-induced desensitization of corneal cool cells would likely result in reduced tearing, a deleterious effect in individuals with dry eye. PMID:23636717

  12. Wine modifies the effects of alcohol on immune cells of mice.

    PubMed

    Percival, S S; Sims, C A

    2000-05-01

    Ethanol may be detrimental to immune cells due to the generation of free radicals during detoxification. If this is true, then alcoholic beverages that contain antioxidants, like red wine, should be protective against immune cell damage. We investigated this by giving mice either a red muscadine wine (Vitis rotundifolia), a cabernet sauvignon (Vitis vinifera), ethanol (all at 6% alcohol) or water in the water bottles as the sole fluid for 8 wk. Plasma antioxidant capacity was measured with alphaalpha-diphenyl-beta-picrylhydrazyl and was more than doubled in the mice that consumed wine compared to control mice that consumed water or ethanol. Cytochrome P450-2E1 levels and glutathione-S-transferase activity were modified in such a way as to be interpreted as protective. An immune response was elicited by an intraperitoneal injection of lipopolysaccharide. Later (24 h), natural killer cells and T-lymphocytes derived from the circulation were quantitated in the leukocyte fraction by flow cytometry. Ethanol consumption, as ethanol, significantly suppressed baseline cell numbers relative to the other groups. However, the mice that consumed the same amount of alcohol as wine had baseline cell numbers not different from the water-consuming controls. The lymphocyte response to lipopolysaccharide challenge was inhibited in the mice that consumed ethanol, but was normal in those that consumed the same amount of alcohol in the form of wine. We conclude that there are phytochemicals acting as antioxidants and impacting on the detoxification pathway in the wine that offset the detrimental effects of ethanol on immunity.

  13. Dry eye modifies the thermal and menthol responses in rat corneal primary afferent cool cells.

    PubMed

    Kurose, Masayuki; Meng, Ian D

    2013-07-01

    Dry eye syndrome is a painful condition caused by inadequate or altered tear film on the ocular surface. Primary afferent cool cells innervating the cornea regulate the ocular fluid status by increasing reflex tearing in response to evaporative cooling and hyperosmicity. It has been proposed that activation of corneal cool cells via a transient receptor potential melastatin 8 (TRPM8) channel agonist may represent a potential therapeutic intervention to treat dry eye. This study examined the effect of dry eye on the response properties of corneal cool cells and the ability of the TRPM8 agonist menthol to modify these properties. A unilateral dry eye condition was created in rats by removing the left lacrimal gland. Lacrimal gland removal reduced tears in the dry eye to 35% compared with the contralateral eye and increased the number of spontaneous blinks in the dry eye by over 300%. Extracellular single-unit recordings were performed 8-10 wk following surgery in the trigeminal ganglion of dry eye animals and age-matched controls. Responses of corneal cool cells to cooling were examined after the application of menthol (10 μM-1.0 mM) to the ocular surface. The peak frequency of discharge to cooling was higher and the cooling threshold was warmer in dry eye animals compared with controls. The dry condition also altered the neuronal sensitivity to menthol, causing desensitization to cold-evoked responses at concentrations that produced facilitation in control animals. The menthol-induced desensitization of corneal cool cells would likely result in reduced tearing, a deleterious effect in individuals with dry eye.

  14. RGD peptide-modified multifunctional dendrimer platform for drug encapsulation and targeted inhibition of cancer cells.

    PubMed

    He, Xuedan; Alves, Carla S; Oliveira, Nilsa; Rodrigues, João; Zhu, Jingyi; Bányai, István; Tomás, Helena; Shi, Xiangyang

    2015-01-01

    Development of multifunctional nanoscale drug-delivery systems for targeted cancer therapy still remains a great challenge. Here, we report the synthesis of cyclic arginine-glycine-aspartic acid (RGD) peptide-conjugated generation 5 (G5) poly(amidoamine) dendrimers for anticancer drug encapsulation and targeted therapy of cancer cells overexpressing αvβ3 integrins. In this study, amine-terminated G5 dendrimers were used as a platform to be sequentially modified with fluorescein isothiocyanate (FI) via a thiourea linkage and RGD peptide via a polyethylene glycol (PEG) spacer, followed by acetylation of the remaining dendrimer terminal amines. The developed multifunctional dendrimer platform (G5.NHAc-FI-PEG-RGD) was then used to encapsulate an anticancer drug doxorubicin (DOX). We show that approximately six DOX molecules are able to be encapsulated within each dendrimer platform. The formed complexes are water-soluble, stable, and able to release DOX in a sustained manner. One- and two-dimensional NMR techniques were applied to investigate the interaction between dendrimers and DOX, and the impact of the environmental pH on the release rate of DOX from the dendrimer/DOX complexes was also explored. Furthermore, cell biological studies demonstrate that the encapsulation of DOX within the G5.NHAc-FI-PEG-RGD dendrimers does not compromise the anticancer activity of DOX and that the therapeutic efficacy of the dendrimer/DOX complexes is solely related to the encapsulated DOX drug. Importantly, thanks to the role played by RGD-mediated targeting, the developed dendrimer/drug complexes are able to specifically target αvβ3 integrin-overexpressing cancer cells and display specific therapeutic efficacy to the target cells. The developed RGD peptide-targeted multifunctional dendrimers may thus be used as a versatile platform for targeted therapy of different types of αvβ3 integrin-overexpressing cancer cells. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Glucose and sucrose differentially modify cell proliferation in maize during germination.

    PubMed

    Lara-Núñez, Aurora; García-Ayala, Brendy B; Garza-Aguilar, Sara M; Flores-Sánchez, Jesús; Sánchez-Camargo, Victor A; Bravo-Alberto, Carlos E; Vázquez-Santana, Sonia; Vázquez-Ramos, Jorge M

    2017-04-01

    Glucose and sucrose play a dual role: as carbon and energy sources and as signaling molecules. In order to address the impact that sugars may have on maize seeds during germination, embryo axes were incubated with or without either of the two sugars. Expression of key cell cycle markers and protein abundance, cell patterning and de novo DNA synthesis in root meristem zones were analyzed. Embryo axes without added sugars in imbibition medium were unable to grow after 7 days; in sucrose, embryo axes developed seminal and primary roots with numerous root hairs, whereas in glucose axes showed a twisted morphology, no root hair formation but callus-like structures on adventitious and primary seminal roots. More and smaller cells were observed with glucose treatment in root apical meristems. de novo DNA synthesis was stimulated more by glucose than by sucrose. At 24 h of imbibition, expression of ZmCycD2;2a and ZmCycD4;2 was increased by sucrose and reduced by glucose. CDKA1;1 and CDKA2;1 expression was stimulated equally by both sugars. Protein abundance patterns were modified by sugars: ZmCycD2 showed peaks on glucose at 12 and 36 h of imbibition whereas sucrose promoted ZmCycD3 protein accumulation. In presence of glucose ZmCycD3, ZmCycD4 and ZmCycD6 protein abundance was reduced after 24 h. Finally, both sugars stimulated ZmCDKA protein accumulation but at different times. Overall, even though glucose appears to act as a stronger mitogen stimulator, sucrose stimulated the expression of more cell cycle markers during germination. This work provides evidence of a differential response of cell cycle markers to sucrose and glucose during maize germination that may affect the developmental program during plantlet establishment. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  16. Medroxyprogesterone Acetate Regulates HIV-1 Uptake and Transcytosis but Not Replication in Primary Genital Epithelial Cells, Resulting in Enhanced T-Cell Infection.

    PubMed

    Ferreira, Victor H; Dizzell, Sara; Nazli, Aisha; Kafka, Jessica K; Mueller, Kristen; Nguyen, Philip V; Tremblay, Michel J; Cochrane, Alan; Kaushic, Charu

    2015-06-01

    Although clinical and experimental evidence indicates that female sex hormones and hormonal contraceptives regulate susceptibility to human immunodeficiency virus type 1 (HIV-1) infection, the underlying mechanism remains unknown. Genital epithelial cells (GECs) are the first cells to encounter HIV during sexual transmission and their interaction with HIV may determine the outcome of exposure. This is the first report that HIV uptake by GECs increased significantly in the presence of the hormonal contraceptive medroxyprogesterone acetate (MPA) and progesterone and that uptake occurred primarily via endocytosis. No productive infection was detected, but endocytosed virus was released into apical and basolateral compartments. Significantly higher viral transcytosis was observed in the presence of MPA. In GEC and T-cell cocultures, maximum viral replication in T cells was observed in the presence of MPA, which also broadly upregulated chemokine production by GECs. These results suggest that MPA may play a significant role in regulating susceptibility to HIV. © The Author 2014. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  17. Specific growth inhibition of ErbB2‑expressing human breast cancer cells by genetically modified NK‑92 cells.

    PubMed

    Liu, Hui; Yang, Bo; Sun, Tingting; Lin, Lin; Hu, Yi; Deng, Muhong; Yang, Junlan; Liu, Tianyi; Li, Jinyu; Sun, Shengjie; Jiao, Shunchang

    2015-01-01

    The natural killer cell line NK‑92 shows great cytotoxicity against various types of cancer. Several types of solid tumor cells, however, can effectively resist NK-mediated lysis by interaction of major histocompatibility complex (MHC) molecules with NK cell inhibitory receptors. To generate a eukaryotic expression vector encoding chimeric antigen receptor scFv anti-erbB2-CD28-ζ and to investigate the expression and action of this chimeric antigen receptor in cancer cells both in vitro and in vivo, NK‑92 cells were genetically modified with an scFv anti-erbB2-CD28-ζ chimeric recep-tor by optimized electro-poration using the Amaxa Nucleofector system. The expression of the chimeric receptor was evaluated by RT-PCR and immunofluorescence. The ability of the genetically modified NK‑92 cells to induce cell death in tumor targets was assessed in vitro and in vivo. The transduced NK‑92-anti-erbB2 scFv-CD28-ζ cells expressing high levels of the fusion protein on the cell surface were analyzed by fluorescence-activated cell-sorting (FACS) analysis. These cells specifically enhanced the cell death of the erbB2‑expressing human breast cancer cell lines MDA-MB-453 and SKBr3. Furthermore, adoptive transfer of genetically modified NK‑92 cells specifically reduced tumor size and lung metastasis of nude mice bearing established MDA-MB-453 cells, and significantly enhanced the survival period of these mice. The genetically modified NK‑92 cells significantly enhanced the killing of erbB2‑expressing cancer and may be a novel therapeutic strategy for erbB2‑expressing cancer cells.

  18. Fibrin patch-based insulin-like growth factor-1 gene-modified stem cell transplantation repairs ischemic myocardium

    PubMed Central

    Li, Jun; Zhu, Kai; Yang, Shan; Wang, Yulin; Guo, Changfa; Yin, Kanhua; Wang, Chunsheng

    2015-01-01

    Bone marrow mesenchymal stem cells (BMSCs), tissue-engineered cardiac patch, and therapeutic gene have all been proposed as promising therapy strategies for cardiac repair after myocardial infarction. In our study, BMSCs were modified with insulin-like growth factor-1 (IGF-1) gene, loaded into a fibrin patch, and then transplanted into a porcine model of ischemia/reperfusion (I/R) myocardium injury. The results demonstrated that IGF-1 gene overexpression could promote proliferation of endothelial cells and cardiomyocyte-like differentiation of BMSCs in vitro. Four weeks after transplantation of fibrin patch loaded with gene-modified BMSCs, IGF-1 overexpression could successfully promote angiogenesis, inhibit remodeling, increase grafted cell survival and reduce apoptosis. In conclusion, the integrated strategy, which combined fibrin patch with IGF-1 gene modified BMSCs, could promote the histological cardiac repair for a clinically relevant porcine model of I/R myocardium injury. PMID:25767192

  19. Bone marrow mesenchymal stem cells are an attractive donor cell type for production of cloned pigs as well as genetically modified cloned pigs by somatic cell nuclear transfer.

    PubMed

    Li, Zicong; He, Xiaoyan; Chen, Liwen; Shi, Junsong; Zhou, Rong; Xu, Weihua; Liu, Dewu; Wu, Zhenfang

    2013-10-01

    The somatic cell nuclear transfer (SCNT) technique has been widely applied to clone pigs or to produce genetically modified pigs. Currently, this technique relies mainly on using terminally differentiated fibroblasts as donor cells. To improve cloning efficiency, only partially differentiated multipotent mesenchymal stem cells (MSCs), thought to be more easily reprogrammed to a pluripotent state, have been used as nuclear donors in pig SCNT. Although in vitro-cultured embryos cloned from porcine MSCs (MSCs-embryos) were shown to have higher preimplantation developmental ability than cloned embryos reconstructed from fibroblasts (Fs-embryos), the difference in in vivo full-term developmental rate between porcine MSCs-embryos and Fs-embryos has not been investigated so far. In this study, we demonstrated that blastocyst total cell number and full-term survival abilities of MSCs-embryos were significantly higher than those of Fs-embryos cloned from the same donor pig. The enhanced developmental potential of MSCs-embryos may be associated with their nuclear donors' DNA methylation profile, because we found that the methylation level of imprinting genes and repeat sequences differed between MSCs and fibroblasts. In addition, we showed that use of transgenic porcine MSCs generated from transgene plasmid transfection as donor cells for SCNT can produce live transgenic cloned pigs. These results strongly suggest that porcine bone marrow MSCs are a desirable donor cell type for production of cloned pigs and genetically modified cloned pigs via SCNT.

  20. Bone Marrow Mesenchymal Stem Cells Are an Attractive Donor Cell Type for Production of Cloned Pigs As Well As Genetically Modified Cloned Pigs by Somatic Cell Nuclear Transfer

    PubMed Central

    Li, Zicong; He, Xiaoyan; Chen, Liwen; Shi, Junsong; Zhou, Rong; Xu, Weihua

    2013-01-01

    Abstract The somatic cell nuclear transfer (SCNT) technique has been widely applied to clone pigs or to produce genetically modified pigs. Currently, this technique relies mainly on using terminally differentiated fibroblasts as donor cells. To improve cloning efficiency, only partially differentiated multipotent mesenchymal stem cells (MSCs), thought to be more easily reprogrammed to a pluripotent state, have been used as nuclear donors in pig SCNT. Although in vitro–cultured embryos cloned from porcine MSCs (MSCs-embryos) were shown to have higher preimplantation developmental ability than cloned embryos reconstructed from fibroblasts (Fs-embryos), the difference in in vivo full-term developmental rate between porcine MSCs-embryos and Fs-embryos has not been investigated so far. In this study, we demonstrated that blastocyst total cell number and full-term survival abilities of MSCs-embryos were significantly higher than those of Fs-embryos cloned from the same donor pig. The enhanced developmental potential of MSCs-embryos may be associated with their nuclear donors' DNA methylation profile, because we found that the methylation level of imprinting genes and repeat sequences differed between MSCs and fibroblasts. In addition, we showed that use of transgenic porcine MSCs generated from transgene plasmid transfection as donor cells for SCNT can produce live transgenic cloned pigs. These results strongly suggest that porcine bone marrow MSCs are a desirable donor cell type for production of cloned pigs and genetically modified cloned pigs via SCNT. PMID:24033142

  1. Biological Behavior of Osteoblast Cell and Apatite Forming Ability of the Surface Modified Ti Alloys.

    PubMed

    Zhao, Jingming; Hwang, K H; Choi, W S; Shin, S J; Lee, J K

    2016-02-01

    Titanium as one kind of biomaterials comes in direct contact with the body, making evaluation of biocompatibility an important aspect to biomaterials development. Surface chemistry of titanium plays an important role in osseointegration. Different surface modification alters the surface chemistry and result in different biological response. In this study, three kinds of mixed acid solutions were used to treat Ti specimens to induce Ca-P formation. Following a strong mixed acid activation process, Ca-P coating successfully formed on the Ti surfaces in simulated body fluid. Strong mixed acid increased the roughness of the metal surface, because the porous and rough surface allows better adhesion between Ca-P coatings and substrates. After modification of titanium surface by mixed acidic solution and subsequently H2O2/HCL treatment evaluation of biocompatibility was conducted from hydroxyapatite formation by biomimetic process and cell viability on modified titanium surface. Nano-scale modification of titanium surfaces can alter cellular and tissue responses, which may benefit osseointegration and dental implant therapy. Results from this study indicated that surface treatment methods affect the surface morphology, type of TiO2 layer formed and subsequent apatite deposition and biological responses. The thermo scientific alamarblue cell viability assay reagent is used to quantitatively measure the viability of mammalian cell lines, bacteria and fungi by incorporating a rapid, sensitive and reliable fluorometric/colorimetric growth indicator, without any toxic and side effect to cell line. In addition, mixed acid treatment uses a lower temperature and shorter time period than widely used alkali treatment.

  2. Potent Inhibition of Late Stages of Hepadnavirus Replication by a Modified Cell Penetrating Peptide

    PubMed Central

    Abdul, Fabien; Ndeboko, Bénédicte; Buronfosse, Thierry; Zoulim, Fabien; Kann, Michael; Nielsen, Peter E.; Cova, Lucyna

    2012-01-01

    Cationic cell-penetrating peptides (CPPs) and their lipid domain-conjugates (CatLip) are agents for the delivery of (uncharged) biologically active molecules into the cell. Using infection and transfection assays we surprisingly discovered that CatLip peptides were able to inhibit replication of Duck Hepatitis B Virus (DHBV), a reference model for human HBV. Amongst twelve CatLip peptides we identified Deca-(Arg)8 having a particularly potent antiviral activity, leading to a drastic inhibition of viral particle secretion without detectable toxicity. Inhibition of virion secretion was correlated with a dose-dependent increase in intracellular viral DNA. Deca-(Arg)8 peptide did neither interfere with DHBV entry, nor with formation of mature nucleocapsids nor with their travelling to the nucleus. Instead, Deca-(Arg)8 caused envelope protein accumulation in large clusters as revealed by confocal laser scanning microscopy indicating severe structural changes of preS/S. Sucrose gradient analysis of supernatants from Deca-(Arg)8-treated cells showed unaffected naked viral nucleocapsids release, which was concomitant with a complete arrest of virion and surface protein-containing subviral particle secretion. This is the first report showing that a CPP is able to drastically block hepadnaviral release from infected cells by altering late stages of viral morphogenesis via interference with enveloped particle formation, without affecting naked nucleocapsid egress, thus giving a view inside the mode of inhibition. Deca-(Arg)8 may be a useful tool for elucidating the hepadnaviral secretory pathway, which is not yet fully understood. Moreover we provide the first evidence that a modified CPP displays a novel antiviral mechanism targeting another step of viral life cycle compared to what has been so far described for other enveloped viruses. PMID:23173037

  3. Potent inhibition of late stages of hepadnavirus replication by a modified cell penetrating peptide.

    PubMed

    Abdul, Fabien; Ndeboko, Bénédicte; Buronfosse, Thierry; Zoulim, Fabien; Kann, Michael; Nielsen, Peter E; Cova, Lucyna

    2012-01-01

    Cationic cell-penetrating peptides (CPPs) and their lipid domain-conjugates (CatLip) are agents for the delivery of (uncharged) biologically active molecules into the cell. Using infection and transfection assays we surprisingly discovered that CatLip peptides were able to inhibit replication of Duck Hepatitis B Virus (DHBV), a reference model for human HBV. Amongst twelve CatLip peptides we identified Deca-(Arg)₈ having a particularly potent antiviral activity, leading to a drastic inhibition of viral particle secretion without detectable toxicity. Inhibition of virion secretion was correlated with a dose-dependent increase in intracellular viral DNA. Deca-(Arg)₈ peptide did neither interfere with DHBV entry, nor with formation of mature nucleocapsids nor with their travelling to the nucleus. Instead, Deca-(Arg)₈ caused envelope protein accumulation in large clusters as revealed by confocal laser scanning microscopy indicating severe structural changes of preS/S. Sucrose gradient analysis of supernatants from Deca-(Arg)₈-treated cells showed unaffected naked viral nucleocapsids release, which was concomitant with a complete arrest of virion and surface protein-containing subviral particle secretion. This is the first report showing that a CPP is able to drastically block hepadnaviral release from infected cells by altering late stages of viral morphogenesis via interference with enveloped particle formation, without affecting naked nucleocapsid egress, thus giving a view inside the mode of inhibition. Deca-(Arg)₈ may be a useful tool for elucidating the hepadnaviral secretory pathway, which is not yet fully understood. Moreover we provide the first evidence that a modified CPP displays a novel antiviral mechanism targeting another step of viral life cycle compared to what has been so far described for other enveloped viruses.

  4. Inhibition of NF-kappaB with Dehydroxymethylepoxyquinomicin modifies the function of human peritoneal mesothelial cells

    PubMed Central

    Sosińska, Patrycja; Baum, Ewa; Maćkowiak, Beata; Staniszewski, Ryszard; Jasinski, Tomasz; Umezawa, Kazuo; Bręborowicz, Andrzej

    2016-01-01

    Peritoneal mesothelial cells exposed to bioincompatible dialysis fluids contribute to damage of the peritoneum during chronic dialysis. Inflammatory response triggered in the mesothelium leading to neovascularization and fibrosis plays an important role in that process. We studied the effects of Dehydroxymethyepoxyquinmicin (DHMEQ)-an NF-κB inhibitor on function of human peritoneal mesothelial cells (HPMC) in in vitro culture. DHMEQ studied in concentrations of 1-10 µg/ml was not toxic to HPMC. Synthesis of IL-6, MCP-1 and hyaluronan in unstimulated and stimulated with interleukin-1 (100 pg/ml) HPMC was inhibited in the presence of DHMEQ and the effect was proportional to the dose of the drug. DHMEQ (10 µg/ml) reduced in unstimulated HPMC synthesis of IL-6 (-55%), MCP-1 (-58%) and hyaluronan (-41%). Respective values for stimulated HMPC were: -63% for IL-6, -57% for MCP-1 and -67% for hyaluronan. The observed effects were due to the suppression of the expression of genes responsible for the synthesis of these molecules. DHMEQ modified the effects of the effluent dialysates from CAPD patients on the function of HMPC. Dialysate induced accelerated growth of these cells, and synthesis of collagen was inhibited in the presence of DHMEQ 10 µg/ml, by 69% and 40%, respectively. The results of our study show that DHMEQ effectively reduces inflammatory response in HMPC and prevents excessive dialysate induced proliferation and collagen synthesis in these cells. All of these effects may be beneficial during chronic peritoneal dialysis and prevents progressive dialysis-induced damage to the peritoneum. PMID:28078047

  5. Retention Curve Measurement for Sands Using a TDR-based Long Column and Modified Tempe Cell

    NASA Astrophysics Data System (ADS)

    Sakaki, T.; Illangasekare, T. H.

    2006-12-01

    Long column and Tempe cell are typical methods for measuring the water retention curves for soils. In the conventional long column method utilizing a stack of rings, water saturation profile is determined gravimetrically. X-ray or gamma ray attenuation are non-destructive methods but require complex and expensive devices and involve the use of photon sources. Time domain reflectometry (TDR) is an alternative to these radioactive methods for measuring water content profile along the column. Typical Tempe cells have a sample height of 3 to 6 cm. Suction is applied to the sample to induce drainage and monitored outflow is used to calculate the average water saturation of the sample, which potentially leads to obscuring the distinct displacement pressure value and results in a smoothed retention curve. In this study, we assumed that direct point-wise measurements provide retention curves that represent the physical behavior of the porous medium. We first determined retention curves for a number of well-sorted industrial silica sands using a long column that allows such point-wise measurements by TDR probes horizontally installed at eleven different elevations. Then, we modified a commercially available Tempe cell so that water saturation and capillary pressure head at a physical point in the cell, as well as the conventional height-averaged water saturation, can be measured simultaneously. Comparison of the conventional and point- measured retention curves that were obtained simultaneously for the identical sand samples revealed that 1) point-measured retention curves were identical to the ones measured in the long column, 2) the artifact of using height-averaged saturation values as pointed out by Dane et al. [1992] was experimentally confirmed. We further show that the displacement pressure head can possibly be underestimated especially for coarse soils when height-averaged water saturation is used. This is more significant for oil-water and DNAPL-water systems where

  6. Intracellular modifiers of integrin alpha 6p production in aggressive prostate and breast cancer cell lines.

    PubMed

    Kacsinta, Apollo D; Rubenstein, Cynthia S; Sroka, Isis C; Pawar, Sangita; Gard, Jaime M; Nagle, Raymond B; Cress, Anne E

    2014-11-14

    Cancer metastasis is a multi-step process in which tumor cells gain the ability to invade beyond the primary tumor and colonize distant sites. The mechanisms regulating the metastatic process confer changes to cell adhesion receptors including the integrin family of receptors. Our group previously discovered that the α6 integrin (ITGA6/CD49f) is post translationally modified by urokinase plasminogen activator (uPA) and its receptor, urokinase plasminogen activator receptor (uPAR), to form the variant ITGA6p. This variant of ITGA6 is a cleaved form of the receptor that lacks the ligand-binding domain. Although it is established that the uPA/uPAR axis drives ITGA6 cleavage, the mechanisms regulating cleavage have not been defined. Intracellular integrin dependent "inside-out" signaling is a major regulator of integrin function and the uPA/uPAR axis. We hypothesized that intracellular signaling molecules play a role in formation of ITGA6p to promote cell migration during cancer metastasis. In order to test our hypothesis, DU145 and PC3B1 prostate cancer and MDA-MB-231 breast cancer cell lines were treated with small interfering RNA targeting actin and the intracellular signaling regulators focal adhesion kinase (FAK), integrin linked kinase (ILK), and paxillin. The results demonstrated that inhibition of actin, FAK, and ILK expression resulted in significantly increased uPAR expression and ITGA6p production. Inhibition of actin increased ITGA6p, although inhibition of paxillin did not affect ITGA6p formation. Taken together, these results suggest that FAK and ILK dependent "inside-out" signaling, and actin dynamics regulate extracellular production of ITGA6p and the aggressive phenotype. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. The Role of Genetically Modified Mesenchymal Stem Cells in Urinary Bladder Regeneration

    PubMed Central

    Fuller, Natalie J.; Hannick, Jessica H.; Ahmad, Nida; Sharma, Arun K.

    2015-01-01

    Recent studies have demonstrated that mesenchymal stem cells (MSCs) combined with CD34+ hematopoietic/stem progenitor cells (HSPCs) can function as surrogate urinary bladder cells to synergistically promote multi-faceted bladder tissue regeneration. However, the molecular pathways governing these events are unknown. The pleiotropic effects of Wnt5a and Cyr61 are known to affect aspects of hematopoiesis, angiogenesis, and muscle and nerve regeneration. Within this study, the effects of Cyr61 and Wnt5a on bladder tissue regeneration were evaluated by grafting scaffolds containing modified human bone marrow derived MSCs. These cell lines were engineered to independently over-express Wnt5a or Cyr61, or to exhibit reduced expression of Cyr61 within the context of a nude rat bladder augmentation model. At 4 weeks post-surgery, data demonstrated increased vessel number (~250 vs ~109 vessels/mm2) and bladder smooth muscle content (~42% vs ~36%) in Cyr61OX (over-expressing) vs Cyr61KD (knock-down) groups. Muscle content decreased to ~25% at 10 weeks in Cyr61KD groups. Wnt5aOX resulted in high numbers of vessels and muscle content (~206 vessels/mm2 and ~51%, respectively) at 4 weeks. Over-expressing cell constructs resulted in peripheral nerve regeneration while Cyr61KD animals were devoid of peripheral nerve regeneration at 4 weeks. At 10 weeks post-grafting, peripheral nerve regeneration was at a minimal level for both Cyr61OX and Wnt5aOX cell lines. Blood vessel and bladder functionality were evident at both time-points in all animals. Results from this study indicate that MSC-based Cyr61OX and Wnt5aOX cell lines play pivotal roles with regards to increasing the levels of functional vasculature, influencing muscle regeneration, and the regeneration of peripheral nerves in a model of bladder augmentation. Wnt5aOX constructs closely approximated the outcomes previously observed with the co-transplantation of MSCs with CD34+ HSPCs and may be specifically targeted as an

  8. Gene-Modified Adult Stem Cells Regenerate Vertebral Bone Defect in a Rat Model

    PubMed Central

    Sheyn, Dmitriy; Kallai, Ilan; Tawackoli, Wafa; Yakubovich, Doron Cohn; Oh, Anthony; Su, Susan; Da, Xiaoyu; Lavi, Amir; Kimelman-Bleich, Nadav; Zilberman, Yoram; Li, Ning; Bae, Hyun; Gazit, Zulma; Pelled, Gadi; Gazit, Dan

    2011-01-01

    porcine vimentin indicated that the ASC-BMP6 cells contributed to new bone formation. Here we show the potential of injections of BMP-modified ASCs to repair vertebral bone defects in a rat model. Our results could pave the way to a novel approach for the biological treatment of traumatic and osteoporosis-related vertebral bone injuries. PMID:21834548

  9. Chemically and compositionally modified solid solution disordered multiphase nickel hydroxide positive electrode for alkaline rechargeable electrochemical cells

    DOEpatents

    Ovshinsky, Stanford R.; Corrigan, Dennis; Venkatesan, Srini; Young, Rosa; Fierro, Christian; Fetcenko, Michael A.

    1994-01-01

    A high capacity, long cycle life positive electrode for use in an alkaline rechargeable electrochemical cell comprising: a solid solution nickel hydroxide material having a multiphase structure that comprises at least one polycrystalline .gamma.-phase including a polycrystalline .gamma.-phase unit cell comprising spacedly disposed plates with at least one chemical modifier incorporated around the plates, the plates having a range of stable intersheet distances corresponding to a 2.sup.+ oxidation state and a 3.5.sup.+, or greater, oxidation state; and at least one compositional modifier incorporated into the solid solution nickel hydroxide material to promote the multiphase structure.

  10. Cell separation by immunoaffinity partitioning with polyethylene glycol-modified Protein A in aqueous polymer two-phase systems

    NASA Technical Reports Server (NTRS)

    Karr, Laurel J.; Van Alstine, James M.; Snyder, Robert S.; Shafer, Steven G.; Harris, J. Milton

    1988-01-01

    Previous work has shown that polyethylene glycol (PEG)-bound antibodies can be used as affinity ligands in PEG-dextran two-phase systems to provide selective partitioning of cells to the PEG-rich phase. In the present work it is shown that immunoaffinity partitioning can be simplified by use of PEG-modified Protein A which complexes with unmodified antibody and cells and shifts their partitioning into the PEG-rich phase, thus eliminating the need to prepare a PEG-modified antibody for each cell type. In addition, the paper provides a more rigorous test of the original technique with PEG-bound antibodies by showing that it is effective at shifting the partitioning of either cell type of a mixture of two cell populations.

  11. Cell separation by immunoaffinity partitioning with polyethylene glycol-modified Protein A in aqueous polymer two-phase systems

    NASA Technical Reports Server (NTRS)

    Karr, Laurel J.; Van Alstine, James M.; Snyder, Robert S.; Shafer, Steven G.; Harris, J. Milton

    1988-01-01

    Previous work has shown that polyethylene glycol (PEG)-bound antibodies can be used as affinity ligands in PEG-dextran two-phase systems to provide selective partitioning of cells to the PEG-rich phase. In the present work it is shown that immunoaffinity partitioning can be simplified by use of PEG-modified Protein A which complexes with unmodified antibody and cells and shifts their partitioning into the PEG-rich phase, thus eliminating the need to prepare a PEG-modified antibody for each cell type. In addition, the paper provides a more rigorous test of the original technique with PEG-bound antibodies by showing that it is effective at shifting the partitioning of either cell type of a mixture of two cell populations.

  12. Transferrin surface-modified PLGA nanoparticles-mediated delivery of a proteasome inhibitor to human pancreatic cancer cells.

    PubMed

    Frasco, Manuela F; Almeida, Gabriela M; Santos-Silva, Filipe; Pereira, Maria do Carmo; Coelho, Manuel A N

    2015-04-01

    The aim of this study was to develop a drug delivery system based on poly(lactic-co-glycolic acid) (PLGA) nanoparticles for an efficient and targeted action of the proteasome inhibitor bortezomib against pancreatic cancer cells. The PLGA nanoparticles were formulated with a poloxamer, and further surface-modified with transferrin for tumor targeting. The nanoparticles were characterized as polymer carriers of bortezomib, and the cellular uptake and growth inhibitory effects were evaluated in pancreatic cells. Cellular internalization of nanoparticles was observed in normal and cancer cells, but with higher uptake by cancer cells. The sustained release of the loaded bortezomib from PLGA nanoparticles showed cytotoxic effects against pancreatic normal and cancer cells. Noteworthy differential cytotoxicity was attained by transferrin surface-modified PLGA nanoparticles since significant cell growth inhibition by delivered bortezomib was only observed in cancer cells. These findings demonstrate that the ligand transferrin enhanced the targeted delivery of bortezomib-loaded PLGA nanoparticles to pancreatic cancer cells. These in vitro results highlight the transferrin surface-modified PLGA nanoparticles as a promising system for targeted delivery of anticancer drugs.

  13. Development of a Biomimetic Chondroitin Sulfate-modified Hydrogel to Enhance the Metastasis of Tumor Cells

    PubMed Central

    Liu, Yang; Wang, Shujun; Sun, Dongsheng; Liu, Yongdong; Liu, Yang; Wang, Yang; Liu, Chang; Wu, Hao; Lv, Yan; Ren, Ying; Guo, Xin; Sun, Guangwei; Ma, Xiaojun

    2016-01-01

    Tumor metastasis with resistance to anticancer therapies is the main cause of death in cancer patients. It is necessary to develop reliable tumor metastasis models that can closely recapitulate the pathophysiological features of the native tumor tissue. In this study, chondroitin sulfate (CS)-modified alginate hydrogel beads (ALG-CS) are developed to mimic the in vivo tumor microenvironment with an abnormally increased expression of CS for the promotion of tumor cell metastasis. The modification mechanism of CS on alginate hydrogel is due to the cross-linking between CS and alginate molecules via coordination of calcium ions, which enables ALG-CS to possess significantly different physical characteristics than the traditional alginate beads (ALG). And quantum chemistry calculations show that in addition to the traditional egg-box structure, novel asymmetric egg-box-like structures based on the interaction between these two kinds of polymers are also formed within ALG-CS. Moreover, tumor cell metastasis is significantly enhanced in ALG-CS compared with that in ALG, as confirmed by the increased expression of MMP genes and proteins and greater in vitro invasion ability. Therefore, ALG-CS could be a convenient and effective 3D biomimetic scaffold that would be used to construct standardized tumor metastasis models for tumor research and anticancer drug screening. PMID:27432752

  14. Predicting Cell Association of Surface-Modified Nanoparticles Using Protein Corona Structure - Activity Relationships (PCSAR).

    PubMed

    Kamath, Padmaja; Fernandez, Alberto; Giralt, Francesc; Rallo, Robert

    2015-01-01

    Nanoparticles are likely to interact in real-case application scenarios with mixtures of proteins and biomolecules that will absorb onto their surface forming the so-called protein corona. Information related to the composition of the protein corona and net cell association was collected from literature for a library of surface-modified gold and silver nanoparticles. For each protein in the corona, sequence information was extracted and used to calculate physicochemical properties and statistical descriptors. Data cleaning and preprocessing techniques including statistical analysis and feature selection methods were applied to remove highly correlated, redundant and non-significant features. A weighting technique was applied to construct specific signatures that represent the corona composition for each nanoparticle. Using this basic set of protein descriptors, a new Protein Corona Structure-Activity Relationship (PCSAR) that relates net cell association with the physicochemical descriptors of the proteins that form the corona was developed and validated. The features that resulted from the feature selection were in line with already published literature, and the computational model constructed on these features had a good accuracy (R(2)LOO=0.76 and R(2)LMO(25%)=0.72) and stability, with the advantage that the fingerprints based on physicochemical descriptors were independent of the specific proteins that form the corona.

  15. [Properties of modified amperometric biosensors based on methanol dehydrogenase and Methylobacterium nodulans cells].

    PubMed

    Kuznetsova, T A; Beschastnyĭ, A P; Alferov, S V; Trotsenko, Iu A

    2013-01-01

    The properties of amperometric biosensors based on methanol dehydrogenase (MDH), Methylobacterium nodulans cells, and the ferrocene-modified carbon paste electrode were investigated. It was shown that the addition ofhydroxyapatite (HA) to a carbon paste increased the sensitivity and operating stability of MDH biosensors. The linear range of the electrode was 0.0135-0.5 and 0.032-1.5 mM for methanol and formaldehyde, respectively. The detection limit of methanol and formaldehyde was 4.5 and 11.0 microM, respectively. The loss of activity of the electrode within 10 days of storage in the presence of 2.0 mM KCN did not exceed 12%. Cyanide (10 mM) completely inhibited the sensor responses to formaldehyde (1.0 mM), which allowed for the selective determination of methanol in the presence of formaldehyde. The biosensor based on cells exhibited lower stability and sensitivity toward methanol and formaldehyde; the sensitivity coefficients were 980 and 21 nA/mM, respectively.

  16. Photochemically modified ATO NPs as conductive support of Pt electrocatalysts for proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Ostrovsky, Stella; Larsen, Mikkel Juul; Peled, Anna; Lellouche, Jean-Paul

    2015-06-01

    Antimony-doped tin oxide (ATO) nanoparticles (NPs) were covalently modified with a benzophenone-silicate photoreactive organic molecule to enable the UV-mediated photoreduction of Pt(IV) on the surface of the ATO NPs to give Pt(0) NPs. The successfully synthesized Pt/ATO nanocomposites (NCs) that were based on these novel hybrid photoreactive ATO NPs showed a much better Pt dispersion than Pt/ATO NCs prepared by traditional methods. The size of the Pt NPs was below 2.8 nm for all the NCs. The prepared NCs were studied with respect to their properties as durable and active electrocatalysts for proton exchange membrane fuel cells. They were subjected to fuel-cell-relevant electrochemical characterization by rotating disc electrode cyclic voltammetry. The electrochemically active surface area was found to be significantly lower for the novel NCs than for the standard Pt/C catalyst, while on the other hand, their specific electrocatalytic activity towards the oxygen reduction reaction (ORR) was found to exceed that of the reference Pt/C by several times. The ORR activity in terms of the mass of Pt was comparable to, or greater than, that of the Pt/C. The stability towards electrochemical ageing was greatly improved for Pt/ATO NCs relative to Pt/C.

  17. Comparative of fibroblast and osteoblast cells adhesion on surface modified nanofibrous substrates based on polycaprolactone.

    PubMed

    Sharifi, Fereshteh; Irani, Shiva; Zandi, Mojgan; Soleimani, Masoud; Atyabi, Seyed Mohammad

    2016-12-01

    One of the determinant factors for successful bioengineering is to achieve appropriate nano-topography and three-dimensional substrate. In this research, polycaprolactone (PCL) nano-fibrous mat with different roughness modified with O2 plasma was fabricated via electrospinning. The purpose of this study was to evaluate the effect of plasma modification along with surface nano-topography of mats on the quality of human fibroblast (HDFs) and osteoblast cells (OSTs)-substrate interaction. Surface properties were studied using scanning electron microscopy (SEM), atomic force microscopy (AFM), contact angle, Fourier-transformation infrared spectroscopy. We evaluated mechanical properties of fabricated mats by tensile test. The viability and proliferation of HDFs and OSTs on the substrates were followed by 3-[4, 5-dimethylthiazol-2-yl]-2, 5-diphenyltetrazolium bromide (MTT). Mineralization of the substrate was determined by alizarin red staining method and calcium content of OSTs was determined by calcium content kit. Cells morphology was studied by SEM analysis. The results revealed that the plasma-treated electrospun nano-fibrous substrate with higher roughness was an excellent designed substrate. A bioactive topography for stimulating proliferation of HDFs and OSTs is to accelerate the latter's differentiation time. Therefore, the PCL substrate with high density and major nano-topography were considered as a bio-functional and elegant bio-substrate for tissue regeneration applications.

  18. Modified phosphatidylethanolamines induce different levels of cytokine expression in monocytes and dendritic cells.

    PubMed

    Simões, Cláudia; Silva, Ana Cristina; Domingues, Pedro; Laranjeira, Paula; Paiva, Artur; Domingues, M Rosário M

    2013-01-01

    Glycation of phosphatidylethanolamine (PE) is a reaction that is known to occur under the chronic hyperglycemic conditions found in diabetes. Glycated phosphatidylethanolamines were found in plasma and atherosclerotic plaques of diabetic patients, and its presence was correlated with increased oxidative stress. Moreover, upregulation of cytokines and other inflammatory mediators can be observed not only in diabetes, but also under oxidized phosphatidylcholine stimulation. In this study, we evaluate the effect of dipalmitoyl-phosphatidylethanolamine (DPPE) and linoleoyl-palmitoyl-phosphatidylethanolamine (PLPE) structural oxidation, glycation and glycoxidation, on monocyte and myeloid dendritic cell stimulation. Expression of cytokines, IL-1β, IL-6, IL-8, MIP-1β and TNF-α, were determined using flow cytometry after cell stimulations with native PEs, oxidized, glycated and glycoxidized PEs. Native PE, PLPE and DPPE, and all modified PEs were able to increase the stimulation levels of monocytes and mDCs. Generally, in monocytes and mDCs stimulation, GluOxPLPE and GluDPPE were the PLPE/DPPE modifications that induced the most pronounced rise in cytokine production. However, GluOxDPPE was the DPPE modification that produced the lowest stimulation levels of mDCs and monocytes. Our results indicate that glycated PE and glycoxidized PE may have an important contribution to the low-grade systemic inflammation associated with diabetes and to the development of diabetic complications. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  19. Drug diffusion from disperse systems with a hydrophobically modified polysaccharide: Enhancer vs Franz cells.

    PubMed

    Lucero, María Jesús; Claro, Carmen; Casas, Marta; Jiménez-Castellanos, María Rosa

    2013-01-30

    This study assesses the capacity of a new hydrophobically modified polysaccharide -hydroxypropyl cellulose-methyl methacrylate - to control drug release in semisolid formulations. The dispersed systems contain the new polymer, Igepal CO520 as surfactant and theophylline as model drug at three concentrations (0.5, 1 and 1.5%, w/w). Drug release study shows that the systems containing 0.5% (w/w) of drug have faster release and higher diffusion coefficient than the other two concentrations. These results can be explained by two different structures ("relaxed" and "structured") found from a rheological point of view. Also, this paper compares two different devices for testing drug release and diffusion. It has been obtained more reliable and reproducible results with Enhancer Cell respect to Franz diffusion cell. In both cases, Fickian diffusion was the mechanism predominant for all systems. Finally, the utility of this polymer has been demonstrated to make three-dimensional gel structure and control theophylline release from systems in topical application.

  20. A new synthesis route for Os-complex modified redox polymers for potential biofuel cell applications.

    PubMed

    Pöller, Sascha; Beyl, Yvonne; Vivekananthan, Jeevanthi; Guschin, Dmitrii A; Schuhmann, Wolfgang

    2012-10-01

    A new synthesis route for Os-complex modified redox polymers was developed. Instead of ligand exchange reactions for coordinative binding of suitable precursor Os-complexes at the polymer, Os-complexes already exhibiting the final ligand shell containing a suitable functional group were bound to the polymer via an epoxide opening reaction. By separation of the polymer synthesis from the ligand exchange reaction at the Os-complex, the modification of the same polymer backbone with different Os-complexes or the binding of the same Os-complex to a number of different polymer backbones becomes feasible. In addition, the Os-complex can be purified and characterized prior to its binding to the polymer. In order to further understand and optimize suitable enzyme/redox polymer systems concerning their potential application in biosensors or biofuel cells, a series of redox polymers was synthesized and used as immobilization matrix for Trametes hirsuta laccase. The properties of the obtained biofuel cell cathodes were compared with similar biocatalytic interfaces derived from redox polymers obtained via ligand exchange reaction of the parent Os-complex with a ligand integrated into the polymer backbone during the polymer synthesis.

  1. Modified bacterial cellulose scaffolds for localized doxorubicin release in human colorectal HT-29 cells.

    PubMed

    Cacicedo, Maximiliano L; León, Ignacio E; Gonzalez, Jimena S; Porto, Luismar M; Alvarez, Vera A; Castro, Guillermo R

    2016-04-01

    Bacterial cellulose (BC) films modified by the in situ method with the addition of alginate (Alg) during the microbial cultivation of Gluconacetobacter hansenii under static conditions increased the loading of doxorubicin by at least three times. Biophysical analysis of BC-Alg films by scanning electron microscopy, thermogravimetry, X-ray diffraction and FTIR showed a highly homogeneous interpenetrated network scaffold without changes in the BC crystalline structure but with an increased amorphous phase. The main molecular interactions determined by FTIR between both biopolymers clearly suggest high compatibility. These results indicate that alginate plays a key role in the biophysical properties of the hybrid BC matrix. BC-Alg scaffold analysis by nitrogen adsorption isotherms revealed by the Brunauer-Emmett-Teller (BET) method an increase in surface area of about 84% and in pore volume of more than 200%. The Barrett-Joyner-Halenda (BJH) model also showed an increase of about 25% in the pore size compared to the BC film. Loading BC-Alg scaffolds with different amounts of doxorubicin decreased the cell viability of HT-29 human colorectal adenocarcinoma cell line compared to the free Dox from around 95-53% after 24h and from 63% to 37% after 48 h. Dox kinetic release from the BC-Alg nanocomposite displayed hyperbolic curves related to the different amounts of drug payload and was stable for at least 14 days. The results of the BC-Alg nanocomposites show a promissory potential for anticancer therapies of solid tumors.

  2. Zinc and zinc chelators modify taurine transport in rat retinal cells.

    PubMed

    Márquez, Asarí; Urbina, Mary; Lima, Lucimey

    2014-11-01

    Zinc regulates Na(+)/Cl(-)-dependent transporters, similar to taurine one, such as those for dopamine, serotonin and norepinephrine. This study examined the ex vivo effect of zinc (ZnSO4), N,N,N,N-tetraquis-(2-piridilmetil)etilendiamino (TPEN) and diethylenetriaminepenta-acetic acid (DTPA), intracellular and extracellular zinc chelators, respectively, on rat retina [(3)H]taurine transport. Isolated cells were incubated in Locke solution with 100 nM of [(3)H]taurine for 25 s. Different concentrations of ZnSO4 (0.5-200 μM) were used. Low concentrations of ZnSO4 (30 and 40 μM) increased the transport, while higher concentrations (100, 150 and 200 μM) decreased it. Various concentrations of TPEN (1-200 μM) were added. Intermediate concentrations of TPEN (10-60 μM) significantly decreased [(3)H]taurine transport. The presence of TPEN, 20 μM, plus ZnSO4 reversed the effect of TPEN alone. Several concentrations of DTPA (1-500 μM) were also investigated. Reduction of transport took place at high concentrations of the chelator (100, 250 and 500 μM). DTPA, 500 μM, plus ZnSO4, did not modify the effect of it. These results indicate that zinc modulates taurine transport in a concentration-dependent manner, directly acting on the transporter or by forming taurine-zinc complexes in cell membranes.

  3. Miraculin, a taste-modifying protein is secreted into intercellular spaces in plant cells.

    PubMed

    Hirai, Tadayoshi; Sato, Mayuko; Toyooka, Kiminari; Sun, Hyeon-Jin; Yano, Megumu; Ezura, Hiroshi

    2010-02-15

    A taste-modifying protein, miraculin, is highly accumulated in ripe fruit of miracle fruit (Richadella dulcifica) and the content can reach up to 10% of the total soluble protein in these fruits. Although speculated for decades that miraculin is secreted into intercellular spaces in miracle fruit, no evidence exists of its cellular localization. To study the cellular localization of miraculin in plant cells, using miracle fruit and transgenic tomato that constitutively express miraculin, immunoelectron microscopy, imaging GFP fusion proteins, and immunological detection of secreted proteins in culture medium of transgenic tomato were carried out. Immunoelectron microscopy showed the specific accumulation of miraculin in the intercellular layers of both miracle fruit and transgenic tomato. Imaging GFP fusion protein demonstrated that the miraculin-GFP fusion protein was accumulated in the intercellular spaces of tomato epidermal cells. Immunological detection of secreted proteins in culture medium of transgenic tomato indicated that miraculin was secreted from the roots of transgenic tomato expressing miraculin. This study firstly showed the evidences of the intercellular localization of miraculin, and provided a new insight of biological roles of miraculin in plants. Copyright 2009 Elsevier GmbH. All rights reserved.

  4. Differentially expressed epigenome modifiers, including Aurora kinase A and B, in immune cells of rheumatoid arthritis

    PubMed Central

    Glant, Tibor T.; Besenyei, Timea; Kádár, András; Kurkó, Júlia; Tryniszewska, Beata; Gál, János; Soós, Györgyi; Szekanecz, Zoltán; Hoffmann, Gyula; Block, Joel A.; Katz, Robert S.; Mikecz, Katalin; Rauch, Tibor A.

    2014-01-01

    Objective The aim of this study was to identify epigenetic factors that are implicated in the pathogenesis of rheumatoid arthritis (RA) and to explore the therapeutic potential of the targeted inhibition of these factors. Methods PCR arrays were utilized to investigate the expression profile of genes that encod key epigenetic regulator enzymes. Mononuclear cells from RA patients and mice were monitored for gene expression changes, in association with arthritis development in murine models of RA. Selected genes were further characterized by quantitative real-time PCR, Western blot and flow cytometry methods. The targeted inhibition of the upregulated enzymes was studied in arthritic mice. Results A set of genes with arthritis-specific expression was identified by the PCR arrays. Aurora kinase A and B, both of which were highly expressed in arthritic mice and treatment naïve RA patients, were selected for detailed analysis. Elevated Aurora kinase expression was accompanied with an increased phosphorylation of histone H3, which promotes proliferation of T lymphocytes. Treatment with VX-680, a pan-Aurora kinase inhibitor, promoted B cell apoptosis, provided significant protection against the onset, and attenuated the inflammatory reactions in arthritic mice. Conclusions Arthritis development is accompanied the changes in the expression of a number of epigenome-modifying enzymes. Drug-induced downregulation of the Aurora kinases, among other targets, seems to be sufficient to treat experimental arthritis. Development of new therapeutics that target the Aurora kinases can potentially improve RA management. PMID:23653330

  5. A highly efficient modified human serum albumin signal peptide to secrete proteins in cells derived from different mammalian species.

    PubMed

    Attallah, Carolina; Etcheverrigaray, Marina; Kratje, Ricardo; Oggero, Marcos

    2017-01-10

    Signal peptides (SPs) are key elements in the production of recombinant proteins; however, little information is available concerning different SP in mammalian cells other than CHO. In order to study the efficiency of different SPs to direct the traffic along the secretory pathway of the green fluorescence protein (GFP) and a scFv-Fc fusion protein; CHO-K1, HEK293 and NS0 cell lines were transfected in a transient and stable way. SP of human azurocidin (AZ), modified human albumin (mSA), modified Cricetulus griseus Ig kappa chain V III region MOPC 63 like (mIgκ C) and modified human Ig kappa chain V III region VG (mIgκ H) were evaluated. The efficiency of SPs to translocate a propeptide across the ER membrane was evaluated by fluorescence microscopy and flow cytometry for the GFP inside the secretory pathway, and by antigen-specific indirect ELISA for the scFv-Fc outside the cell. The mSA SP was successful in directing the secretion of the active proteins in these different types of mammalian cells, regardless of the transgene copy number. The goal of this work was to demonstrate that a modified version of SA SP might be used in different mammalian cells employing the same expression vector.

  6. High-Performance Perovskite Solar Cells Engineered by an Ammonia Modified Graphene Oxide Interfacial Layer.

    PubMed

    Feng, Shanglei; Yang, Yingguo; Li, Meng; Wang, Jinmiao; Cheng, Zhendong; Li, Jihao; Ji, Gengwu; Yin, Guangzhi; Song, Fei; Wang, Zhaokui; Li, Jingye; Gao, Xingyu

    2016-06-15

    The introduction of an ammonia modified graphene oxide (GO:NH3) layer into perovskite-based solar cells (PSCs) with a structure of indium-tin oxide (ITO)/poly(3,4-ethylene-dioxythiophene):poly(4-styrenesulfonate) ( PSS)-GO: NH3/CH3NH3PbI3-xClx/phenyl C61-butyric acid methyl ester (PCBM)/(solution Bphen) sBphen/Ag improves their performance and perovskite structure stability significantly. The fabricated devices with a champion PCE up to 16.11% are superior in all the performances in comparison with all the reference devices without the GO:NH3 layer. To understand the improved device performances, synchrotron-based grazing incidence X-ray diffraction (GIXRD), scanning electron microscopy (SEM), ultraviolet photoelectron spectroscopy (UPS), X-ray photoelectron spectroscopy (XPS), and UV-visible absorption measurements have been conducted on perovskite films on different substrates. It was found that these improvements should be partially attributed to the improved crystallization and preferred orientation order of peovskite structure, partially to the improved morphology with nearly complete coverage, partially to the enhanced optical absorption caused by the PSS-GO:NH3 layer, and partially to the better matched energy-level-alignment at the perovskite interface. Furthermore, the device was shown to be more stable in the ambient condition, which is clearly associated with the improved peovskite structure stability by the GO:NH3 layer observed by the GIXRD measurements. All these achievements will promote more applications of chemically modified graphene oxide interfacial layer in the PSCs as well as other organic multilayer devices.

  7. Subcellular compartmentalization in protoplasts from Artemisia annua cell cultures: engineering attempts using a modified SNARE protein.

    PubMed

    Di Sansebastiano, Gian Pietro; Rizzello, Francesca; Durante, Miriana; Caretto, Sofia; Nisi, Rossella; De Paolis, Angelo; Faraco, Marianna; Montefusco, Anna; Piro, Gabriella; Mita, Giovanni

    2015-05-20

    Plants are ideal bioreactors for the production of macromolecules but transport mechanisms are not fully understood and cannot be easily manipulated. Several attempts to overproduce recombinant proteins or secondary metabolites failed. Because of an independent regulation of the storage compartment, the product may be rapidly degraded or cause self-intoxication. The case of the anti-malarial compound artemisinin produced by Artemisia annua plants is emblematic. The accumulation of artemisinin naturally occurs in the apoplast of glandular trichomes probably involving autophagy and unconventional secretion thus its production by undifferentiated tissues such as cell suspension cultures can be challenging. Here we characterize the subcellular compartmentalization of several known fluorescent markers in protoplasts derived from Artemisia suspension cultures and explore the possibility to modify compartmentalization using a modified SNARE protein as molecular tool to be used in future biotechnological applications. We focused on the observation of the vacuolar organization in vivo and the truncated form of AtSYP51, 51H3, was used to induce a compartment generated by the contribution of membrane from endocytosis and from endoplasmic reticulum to vacuole trafficking. The artificial compartment crossing exocytosis and endocytosis may trap artemisinin stabilizing it until extraction; indeed, it is able to increase total enzymatic activity of a vacuolar marker (RGUSChi), probably increasing its stability. Exploring the 51H3-induced compartment we gained new insights on the function of the SNARE SYP51, recently shown to be an interfering-SNARE, and new hints to engineer eukaryote endomembranes for future biotechnological applications. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  8. microRNA-142 is upregulated by tumor necrosis factor-alpha and triggers apoptosis in human gingival epithelial cells by repressing BACH2 expression

    PubMed Central

    Li, Song; Song, Zhongchen; Dong, Jiachen; Shu, Rong

    2017-01-01

    Tumor necrosis factor-alpha (TNF-α) has been shown to cause apoptosis of gingival epithelial cells (GECs) in periodontitis. However, the underlying molecular mechanism is still unclear. In this study, we showed that miR-142 expression was significantly elevated in human GECs after exposure to TNF-α. Such induction was in a time- and concentration-dependent manner. Serum miR-142 levels were positively correlated with serum TNF-α levels in patients with chronic periodontitis (r = 0.314, P = 0.0152). Depletion of miR-142 was found to attenuate TNF-α-induced apoptosis, as determined by TUNEL staining and caspase-3 activity assays. In contrast, overexpression of miR-142 significantly reduced viability and induced apoptosis in GECs. Basic leucine zipper transcription factor 2 (BACH2) was identified to be a functional target of miR-142. Overexpression of miR-142 caused a 3-fold reduction of BACH2 protein in primary GECs. Overexpression of BACH2 significantly reversed miR-142- or TNF-α-induced apoptosis of GECs. Similar to the findings with miR-142 mimic, depletion of BACH2 significantly promoted apoptosis in GECs, which was accompanied by decreased expression of Bcl-2 and Bcl-xL and increased expression of Bax and Bim. Overall, miR-142 mediates TNF-α-induced apoptosis in gingival epithelial cells by targeting BACH2 and may represent a potential therapeutic target for periodontitis. PMID:28123644

  9. Migration and proliferation of intact and genetically modified primordial germ cells and the generation of a transgenic chicken.

    PubMed

    Kim, Jin Nam; Park, Tae Sub; Park, Sang Hyun; Park, Kyung Je; Kim, Tae Min; Lee, Seul Ki; Lim, Jeong Mook; Han, Jae Yong

    2010-02-01

    This study evaluated gonadal migration and postmigratory proliferation of intact and genetically modified chicken primordial germ cells (PGCs). A randomized, controlled trial was conducted with the gonadal population of PGCs and transgenic chicken production as major parameters. PGCs (0, 90, 900, 1800, or 3000 cells) were transferred into 53-h-old embryos. The percentage of PGCs migrating on Day 6 of development was highest (35.8%) following the transfer of 900 PGCs and did not change with increases in transferred PGCs. The number of migrating PGCs gradually increased (P = 0.0001) as the number of transferred PGCs was increased. Gonadal migration was detected after the transfer of intact and genetically modified PGCs, but prominent decreases in PGC migration (from 21.9% to 0.38%) and chimera ratio (from 0.4 to 0.007) occurred with genetically modified PGCs. However, subsequent vigorous proliferation of the modified PGCs (3.67-fold increase from transferred number) led to the derivation of a germline chimera and produced a transgenic hatchling. In conclusion, the number of migrating PGCs increased as the number of transferred cells increased. Vigorous proliferation after transfer compensated for the decreased migration capacity of genetically modified PGCs and resulted in the production of a transgenic chicken.

  10. Comb-type grafted poly(N-isopropylacrylamide) gel modified surfaces for rapid detachment of cell sheet.

    PubMed

    Tang, Zhonglan; Akiyama, Yoshikatsu; Yamato, Masayuki; Okano, Teruo

    2010-10-01

    A comb-type grafted poly(N-isopropylacrylamide) (PIPAAm) gel modified surface was newly developed for providing a rapid cell sheet recovery for tissue engineering. PIPAAm macromonomer was prepared by the etherification reaction of the hydroxyl terminal moieties of PIPAAm with acryloyl chloride, followed by the radical telomerization reaction of N-isopropylacrylamide (IPAAm) monomer using 2-mercaptoethanol as a chain transfer agent. Solution containing IPAAm monomer and PIPAAm macromonomer was spread on the surface of tissue culture polystyrene (TCPS), and then the surface was subjected to electron beam irradiation for grafting the monomer and macromonomer on the surfaces, resulting in comb-type grafted PIPAAm gel modified TCPS (GG-TCPS). Besides the difference of the amount of the modified PIPAAm, no distinct difference was found between the properties of GG-TCPSs and normal-type PIPAAm gel modified TCPS (NG-TCPS) through XPS, AFM and a contact angle measurement. At 37 degrees C, bovine aortic endothelial cells (BAECs) were well adhered and spread on GG-TCPS as well as NG-TCPS regardless of the macromonomer concentration. By lowering temperature to 20 degrees C, BAECs detached themselves more rapidly from GG-TCPS compared with NG-TCPS. Upon lowering temperature, the grafted polymer was speculated to accelerate the hydration of modified PIPAAm gel, resulting in a rapid cell sheet detachment.

  11. Ranitidine modifies myeloid cell populations and inhibits breast tumor development and spread in mice

    PubMed Central

    Vila-Leahey, Ava; Oldford, Sharon A.; Marignani, Paola A.; Wang, Jun; Haidl, Ian D.; Marshall, Jean S.

    2016-01-01

    ABSTRACT Histamine receptor 2 (H2) antagonists are widely used clinically for the control of gastrointestinal symptoms, but also impact immune function. They have been reported to reduce tumor growth in established colon and lung cancer models. Histamine has also been reported to modify populations of myeloid-derived suppressor cells (MDSCs). We have examined the impact of the widely used H2 antagonist ranitidine, on both myeloid cell populations and tumor development and spread, in three distinct models of breast cancer that highlight different stages of cancer progression. Oral ranitidine treatment significantly decreased the monocytic MDSC population in the spleen and bone marrow both alone and in the context of an orthotopic breast tumor model. H2 antagonists ranitidine and famotidine, but not H1 or H4 antagonists, significantly inhibited lung metastasis in the 4T1 model. In the E0771 model, ranitidine decreased primary tumor growth while omeprazole treatment had no impact on tumor development. Gemcitabine treatment prevented the tumor growth inhibition associated with ranitidine treatment. In keeping with ranitidine-induced changes in myeloid cell populations in non-tumor-bearing mice, ranitidine also delayed the onset of spontaneous tumor development, and decreased the number of tumors that developed in LKB1−/−/NIC mice. These results indicate that ranitidine alters monocyte populations associated with MDSC activity, and subsequently impacts breast tumor development and outcome. Ranitidine has potential as an adjuvant therapy or preventative agent in breast cancer and provides a novel and safe approach to the long-term reduction of tumor-associated immune suppression. PMID:27622015

  12. Polymer-modified halide perovskite films for efficient and stable planar heterojunction solar cells

    PubMed Central

    Zuo, Lijian; Guo, Hexia; deQuilettes, Dane W.; Jariwala, Sarthak; De Marco, Nicholas; Dong, Shiqi; DeBlock, Ryan; Ginger, David S.; Dunn, Bruce; Wang, Mingkui; Yang, Yang

    2017-01-01

    The solution processing of polycrystalline perovskite films introduces trap states that can adversely affect their optoelectronic properties. Motivated by the use of small-molecule surfactants to improve the optoelectronic performance of perovskites, we demonstrate the use of polymers with coordinating groups to improve the performance of solution-processed semiconductor films. The use of these polymer modifiers results in a marked change in the electronic properties of the films, as measured by both carrier dynamics and overall device performance. The devices grown with the polymer poly(4-vinylpyridine) (PVP) show significantly enhanced power conversion efficiency from 16.9 ± 0.7% to 18.8 ± 0.8% (champion efficiency, 20.2%) from a reverse scan and stabilized champion efficiency from 17.5 to 19.1% [under a bias of 0.94 V and AM (air mass) 1.5-G, 1-sun illumination over 30 min] compared to controls without any passivation. Treating the perovskite film with PVP enables a VOC of up to 1.16 V, which is among the best reported for a CH3NH3PbI3 perovskite solar cell and one of the lowest voltage deficits reported for any perovskite to date. In addition, perovskite solar cells treated with PVP show a long shelf lifetime of up to 90 days (retaining 85% of the initial efficiency) and increased by a factor of more than 20 compared to those without any polymer (degrading to 85% after ~4 days). Our work opens up a new class of chemical additives for improving perovskite performance and should pave the way toward improving perovskite solar cells for high efficiency and stability. PMID:28845446

  13. Identification of Genes Mediating Drosophila Follicle Cell Progenitor Differentiation by Screening for Modifiers of GAL4::UAS Variegation.

    PubMed

    Lee, Ming-Chia; Skora, Andrew D; Spradling, Allan C

    2017-01-05

    The Drosophila melanogaster ovarian follicle cell lineage provides a powerful system for investigating how epigenetic changes contribute to differentiation. Downstream from an epithelial stem cell, follicle progenitors undergo nine mitotic cell cycles before transitioning to the endocycle and initiating differentiation. During their proliferative phase, follicle progenitors experience Lsd1-dependent changes in epigenetic stability that can be monitored using GAL4::UAS variegation. Eventually, follicle progenitors acquire competence to respond to Delta, a Notch ligand present in the environment, which signals them to cease division and initiate differentiation. The time required to acquire competence determines the duration of mitotic cycling and hence the final number of follicle cells. We carried out a screen for dominant modifiers of variegation spanning nearly 70% of Drosophila euchromatin to identify new genes influencing follicle progenitor epigenetic maturation. The eight genes found include chromatin modifiers, but also cell cycle regulators and transcription factors. Five of the modifier genes accelerate the acquisition of progenitor competence and reduce follicle cell number, however, the other three genes affect follicle cell number in an unexpected manner.

  14. Identification of Genes Mediating Drosophila Follicle Cell Progenitor Differentiation by Screening for Modifiers of GAL4::UAS Variegation

    PubMed Central

    Lee, Ming-Chia; Skora, Andrew D.; Spradling, Allan C.

    2016-01-01

    The Drosophila melanogaster ovarian follicle cell lineage provides a powerful system for investigating how epigenetic changes contribute to differentiation. Downstream from an epithelial stem cell, follicle progenitors undergo nine mitotic cell cycles before transitioning to the endocycle and initiating differentiation. During their proliferative phase, follicle progenitors experience Lsd1-dependent changes in epigenetic stability that can be monitored using GAL4::UAS variegation. Eventually, follicle progenitors acquire competence to respond to Delta, a Notch ligand present in the environment, which signals them to cease division and initiate differentiation. The time required to acquire competence determines the duration of mitotic cycling and hence the final number of follicle cells. We carried out a screen for dominant modifiers of variegation spanning nearly 70% of Drosophila euchromatin to identify new genes influencing follicle progenitor epigenetic maturation. The eight genes found include chromatin modifiers, but also cell cycle regulators and transcription factors. Five of the modifier genes accelerate the acquisition of progenitor competence and reduce follicle cell number, however, the other three genes affect follicle cell number in an unexpected manner. PMID:27866148

  15. Regulation of epithelial cell morphology and functions approaching to more in vivo-like by modifying polyethylene glycol on polysulfone membranes.

    PubMed

    Shen, Chong; Zhang, Guoliang; Meng, Qin

    2012-01-01

    Cytocompatibility is critically important in design of biomaterials for application in tissue engineering. However, the currently well-accepted "cytocompatible" biomaterials are those which promote cells to sustain good attachment/spreading. The cells on such materials usually lack the self-assembled cell morphology and high cell functions as in vivo. In our view, biomaterials that can promote the ability of cells to self-assemble and demonstrate cell-specific functions would be cytocompatible. This paper examined the interaction of polyethylene glycol (PEG) modified polysulfone (PSf) membranes with four epithelial cell types (primary liver cells, a liver tumor cell line, and two renal tubular cell lines). Our results show that PSf membranes modified with proper PEG promoted the aggregation of both liver and renal cells, but the liver cells more easily formed aggregates than the renal tubular cells. The culture on PEG-modified PSf membranes also enhanced cell-specific functions. In particular, the cells cultured on F127 membranes with the proper PEG content mimicked the in vivo ultrastructure of liver cells or renal tubules cells and displayed the highest cell functions. Gene expression data for adhesion proteins suggest that the PEG modification impaired cell-membrane interactions and increased cell-cell interactions, thus facilitating cell self-assembly. In conclusion, PEG-modified membrane could be a cytocompatible material which regulates the morphology and functions of epithelial cells in mimicking cell performance in vivo.

  16. Patterned cell arrays and patterned co-cultures on polydopamine-modified poly(vinyl alcohol) hydrogels.

    PubMed

    Beckwith, Kai M; Sikorski, Pawel

    2013-12-01

    Live cell arrays are an emerging tool that expand traditional 2D in vitro cell culture, increasing experimental precision and throughput. A patterned cell system was developed by combining the cell-repellent properties of polyvinyl alcohol hydrogels with the cell adhesive properties of self-assembled films of dopamine (polydopamine). It was shown that polydopamine could be patterned onto spin-cast polyvinyl alcohol hydrogels by microcontact printing, which in turn effectively patterned the growth of several cell types (HeLa, human embryonic kidney, human umbilical vein endothelial cells (HUVEC) and prostate cancer). The cells could be patterned in geometries down to single-cell confinement, and it was demonstrated that cell patterns could be maintained for at least 3 weeks. Furthermore, polydopamine could be used to modify poly(vinyl alcohol) in situ using a cell-compatible deposition buffer (1 mg mL(-1) dopamine in 25 mM tris with a physiological salt balance). The treatment switched the PVA hydrogel from cell repellent to cell adhesive. Finally, by combining microcontact printing and in situ deposition of polydopamine, patterned co-cultures of the same cell type (HeLa/HeLa) and dissimilar cell types (HeLa/HUVEC) were realized through simple chemistry and could be studied over time. The combination of polyvinyl alcohol and polydopamine was shown to be an attractive route to versatile, patterned cell culture experiments with minimal infrastructure requirements and low complexity.

  17. Highly Efficient Capture and Electrochemical Release of Circulating Tumor Cells by Using Aptamers Modified Gold Nanowire Arrays.

    PubMed

    Zhai, Ting-Ting; Ye, Dekai; Zhang, Qian-Wen; Wu, Zeng-Qiang; Xia, Xing-Hua

    2017-10-11

    The effective capture and release of circulating tumor cells (CTCs) is of significant importance in cancer prognose and treatment. Here we report a highly efficient method to capture and release human leukemic lymphoblasts (CCRF-CEM) using aptamers modified gold nanowire arrays (AuNWs). The gold nanowires, showing tunable morphologies from relatively random pillar deposit to relatively uniform arrays, were fabricated by electrochemical deposition using anodic aluminum oxide (AAO) as template. Upon simply being modified with aptamers by Au-S chemistry, the AuNWs exhibit higher specificity to target cells. Also compared to flat gold substrate, the AuNWs with nanostructure can capture target cells with much higher capture yield. Moreover, the captured CCRF-CEM cells can be released from AuNWs efficiently with little damage through an electrochemical desorption process. We predict that our strategy has great potential in providing a simple and economical platform for CTCs isolation, cancer diagnosis, and therapy.

  18. A dosimetric uncertainty analysis for photon-emitting brachytherapy sources: Report of AAPM Task Group No. 138 and GEC-ESTRO

    PubMed Central

    DeWerd, Larry A.; Ibbott, Geoffrey S.; Meigooni, Ali S.; Mitch, Michael G.; Rivard, Mark J.; Stump, Kurt E.; Thomadsen, Bruce R.; Venselaar, Jack L. M.

    2011-01-01

    This report addresses uncertainties pertaining to brachytherapy single-source dosimetry preceding clinical use. The International Organization for Standardization (ISO) Guide to the Expression of Uncertainty in Measurement (GUM) and the National Institute of Standards and Technology (NIST) Technical Note 1297 are taken as reference standards for uncertainty formalism. Uncertainties in using detectors to measure or utilizing Monte Carlo methods to estimate brachytherapy dose distributions are provided with discussion of the components intrinsic to the overall dosimetric assessment. Uncertainties provided are based on published observations and cited when available. The uncertainty propagation from the primary calibration standard through transfer to the clinic for air-kerma strength is covered first. Uncertainties in each of the brachytherapy dosimetry parameters of the TG-43 formalism are then explored, ending with transfer to the clinic and recommended approaches. Dosimetric uncertainties during treatment delivery are considered briefly but are not included in the detailed analysis. For low- and high-energy brachytherapy sources of low dose rate and high dose rate, a combined dosimetric uncertainty <5% (k=1) is estimated, which is consistent with prior literature estimates. Recommendations are provided for clinical medical physicists, dosimetry investigators, and source and treatment planning system manufacturers. These recommendations include the use of the GUM and NIST reports, a requirement of constancy of manufacturer source design, dosimetry investigator guidelines, provision of the lowest uncertainty for patient treatment dosimetry, and the establishment of an action level based on dosimetric uncertainty. These recommendations reflect the guidance of the American Association of Physicists in Medicine (AAPM) and the Groupe Européen de Curiethérapie–European Society for Therapeutic Radiology and Oncology (GEC-ESTRO) for their members and may also be used

  19. A dosimetric uncertainty analysis for photon-emitting brachytherapy sources: Report of AAPM Task Group No. 138 and GEC-ESTRO

    SciTech Connect

    DeWerd, Larry A.; Ibbott, Geoffrey S.; Meigooni, Ali S.; Mitch, Michael G.; Rivard, Mark J.; Stump, Kurt E.; Thomadsen, Bruce R.; Venselaar, Jack L. M.

    2011-02-15

    This report addresses uncertainties pertaining to brachytherapy single-source dosimetry preceding clinical use. The International Organization for Standardization (ISO) Guide to the Expression of Uncertainty in Measurement (GUM) and the National Institute of Standards and Technology (NIST) Technical Note 1297 are taken as reference standards for uncertainty formalism. Uncertainties in using detectors to measure or utilizing Monte Carlo methods to estimate brachytherapy dose distributions are provided with discussion of the components intrinsic to the overall dosimetric assessment. Uncertainties provided are based on published observations and cited when available. The uncertainty propagation from the primary calibration standard through transfer to the clinic for air-kerma strength is covered first. Uncertainties in each of the brachytherapy dosimetry parameters of the TG-43 formalism are then explored, ending with transfer to the clinic and recommended approaches. Dosimetric uncertainties during treatment delivery are considered briefly but are not included in the detailed analysis. For low- and high-energy brachytherapy sources of low dose rate and high dose rate, a combined dosimetric uncertainty <5% (k=1) is estimated, which is consistent with prior literature estimates. Recommendations are provided for clinical medical physicists, dosimetry investigators, and source and treatment planning system manufacturers. These recommendations include the use of the GUM and NIST reports, a requirement of constancy of manufacturer source design, dosimetry investigator guidelines, provision of the lowest uncertainty for patient treatment dosimetry, and the establishment of an action level based on dosimetric uncertainty. These recommendations reflect the guidance of the American Association of Physicists in Medicine (AAPM) and the Groupe Europeen de Curietherapie-European Society for Therapeutic Radiology and Oncology (GEC-ESTRO) for their members and may also be used as

  20. A dosimetric uncertainty analysis for photon-emitting brachytherapy sources: report of AAPM Task Group No. 138 and GEC-ESTRO.

    PubMed

    DeWerd, Larry A; Ibbott, Geoffrey S; Meigooni, Ali S; Mitch, Michael G; Rivard, Mark J; Stump, Kurt E; Thomadsen, Bruce R; Venselaar, Jack L M

    2011-02-01

    This report addresses uncertainties pertaining to brachytherapy single-source dosimetry preceding clinical use. The International Organization for Standardization (ISO) Guide to the Expression of Uncertainty in Measurement (GUM) and the National Institute of Standards and Technology (NIST) Technical Note 1297 are taken as reference standards for uncertainty formalism. Uncertainties in using detectors to measure or utilizing Monte Carlo methods to estimate brachytherapy dose distributions are provided with discussion of the components intrinsic to the overall dosimetric assessment. Uncertainties provided are based on published observations and cited when available. The uncertainty propagation from the primary calibration standard through transfer to the clinic for air-kerma strength is covered first. Uncertainties in each of the brachytherapy dosimetry parameters of the TG-43 formalism are then explored, ending with transfer to the clinic and recommended approaches. Dosimetric uncertainties during treatment delivery are considered briefly but are not included in the detailed analysis. For low- and high-energy brachytherapy sources of low dose rate and high dose rate, a combined dosimetric uncertainty <5% (k=1) is estimated, which is consistent with prior literature estimates. Recommendations are provided for clinical medical physicists, dosimetry investigators, and source and treatment planning system manufacturers. These recommendations include the use of the GUM and NIST reports, a requirement of constancy of manufacturer source design, dosimetry investigator guidelines, provision of the lowest uncertainty for patient treatment dosimetry, and the establishment of an action level based on dosimetric uncertainty. These recommendations reflect the guidance of the American Association of Physicists in Medicine (AAPM) and the Groupe Européen de Curiethérapie-European Society for Therapeutic Radiology and Oncology (GEC-ESTRO) for their members and may also be used as

  1. The Role of Histone Protein Modifications and Mutations in Histone Modifiers in Pediatric B-Cell Progenitor Acute Lymphoblastic Leukemia

    PubMed Central

    Janczar, Szymon; Janczar, Karolina; Pastorczak, Agata; Harb, Hani; Paige, Adam J. W.; Zalewska-Szewczyk, Beata; Danilewicz, Marian; Mlynarski, Wojciech

    2017-01-01

    While cancer has been long recognized as a disease of the genome, the importance of epigenetic mechanisms in neoplasia was acknowledged more recently. The most active epigenetic marks are DNA methylation and histone protein modifications and they are involved in basic biological phenomena in every cell. Their role in tumorigenesis is stressed by recent unbiased large-scale studies providing evidence that several epigenetic modifiers are recurrently mutated or frequently dysregulated in multiple cancers. The interest in epigenetic marks is especially due to the fact that they are potentially reversible and thus druggable. In B-cell progenitor acute lymphoblastic leukemia (BCP-ALL) there is a relative paucity of reports on the role of histone protein modifications (acetylation, methylation, phosphorylation) as compared to acute myeloid leukemia, T-cell ALL, or other hematologic cancers, and in this setting chromatin modifications are relatively less well studied and reviewed than DNA methylation. In this paper, we discuss the biomarker associations and evidence for a driver role of dysregulated global and loci-specific histone marks, as well as mutations in epigenetic modifiers in BCP-ALL. Examples of chromatin modifiers recurrently mutated/disrupted in BCP-ALL and associated with disease outcomes include MLL1, CREBBP, NSD2, and SETD2. Altered histone marks and histone modifiers and readers may play a particular role in disease chemoresistance and relapse. We also suggest that epigenetic regulation of B-cell differentiation may have parallel roles in leukemogenesis. PMID:28054944

  2. Extensive cell migration, axon regeneration and improved function with polysialic acid-modified Schwann cells after spinal cord injury

    PubMed Central

    Ghosh, Mousumi; Tuesta, Luis M.; Puentes, Rocio; Patel, Samik; Melendez, Kiara; Maarouf, Abderrahman El; Rutishauser, Urs; Pearse, Damien Daniel

    2015-01-01

    Schwann cells (SC) implantation after spinal cord injury (SCI) promotes axonal regeneration, remyelination repair and functional recovery. Reparative efficacy, however, may be limited due to the inability of SCs to migrate outward from the lesion-implant site. Altering SC cell surface properties by over-expressing polysialic acid (PSA) has been shown to promote SC migration. In the current study, a SCI contusion was used to evaluate the migration, supraspinal axon growth support and functional recovery associated with polysialyltransferase (PST)-over-expressing SCs (PST-GFP SCs) or controls (GFP SCs). Compared to GFP SCs, which remained confined to the injection site at the injury center, PST-GFP SCs migrated across the lesion:host cord interface for distances of up to 4.4 mm within adjacent host tissue. In addition, with PST-GFP SCs, there was extensive serotonergic and corticospinal axon in-growth within the implants that was limited in the GFP SC controls. The enhanced migration of PST-GFP SCs was accompanied by significant growth of these axons caudal to lesion. Animals receiving PST-GFP SCs exhibited improved functional outcome, both in the open-field and on the gridwalk test, over modest improvements provided by GFP SC controls. The current study for the first time demonstrates that a lack of migration by SC may hinder their reparative benefits and that cell surface overexpression of PSA enhances the ability of implanted SCs to associate with and support the growth of corticospinal axons. These results provide further promise that PSA modified SCs will be a potent reparative approach for SCI. PMID:22460918

  3. Bioinspired phosphorylcholine-modified polyplexes as an effective strategy for selective uptake and transfection of cancer cells.

    PubMed

    Chen, Lina; Wang, Haibo; Zhang, Yuanfeng; Wang, Youxiang; Hu, Qiaoling; Ji, Jian

    2013-11-01

    We demonstrated here that the phosphorylcholine-modified polyplexes can be explored as effective gene vector for selective uptake and high transfection of cancer cells. 12-acryloyloxy dodecyl phosphorylcholine modified polyethyleneimine (PEI-ADPC) with grafting level about 13%, 8.3% and 4.5% was successfully synthesized. Gel retardation assay indicated that ADPC modification did not affect the DNA condensation ability. The PEI-ADPC13%/DNA and PEI-ADPC8.3%/DNA polyplexes were under 100nm with a beneficial neutral surface at N/P ratio of 30. Sufficient ADPC shell endowed the polyplexes with high colloidal stability and low cytotoxicity. Compared to PEGylated polyplexes, it was interesting to find out that the PEI-ADPC/DNA polyplexes were selectively uptaked by liver cancer HepG2 cells. At the presence of chloroquine to exclude the limitation of lysosome escape, the ADPC-modified polyplexes showed more effective gene transfection in cancer cells than in normal cells because of the selective cell uptake. In conclusion, the convenient PC-modification modality was found to have both the function of biostability in the physiological environment and targetability toward cancer cells uniquely, which might have great potential use in cancer gene therapy.

  4. Development of nanostructured and surface modified semiconductors for hybrid organic-inorganic solar cells.

    SciTech Connect

    Hsu, Julia, W. P.

    2008-09-01

    Solar energy conversion is increasingly being recognized as one of the principal ways to meet future energy needs without causing detrimental environmental impact. Hybrid organic-inorganic solar cells (SCs) are attracting particular interest due to the potential for low cost manufacturing and for use in new applications, such as consumer electronics, architectural integration and light-weight sensors. Key materials advantages of these next generation SCs over conventional semiconductor SCs are in design opportunities--since the different functions of the SCs are carried out by different materials, there are greater materials choices for producing optimized structures. In this project, we explore the hybrid organic-inorganic solar cell system that consists of oxide, primarily ZnO, nanostructures as the electron transporter and poly-(3-hexylthiophene) (P3HT) as the light-absorber and hole transporter. It builds on our capabilities in the solution synthesis of nanostructured semiconducting oxide arrays to this photovoltaic (PV) technology. The three challenges in this hybrid material system for solar applications are (1) achieving inorganic nanostructures with critical spacing that matches the exciton diffusion in the polymer, {approx} 10 nm, (2) infiltrating the polymer completely into the dense nanostructure arrays, and (3) optimizing the interfacial properties to facilitate efficient charge transfer. We have gained an understanding and control over growing oriented ZnO nanorods with sub-50 nm diameters and the required rod-to-rod spacing on various substrates. We have developed novel approaches to infiltrate commercially available P3HT in the narrow spacing between ZnO nanorods. Also, we have begun to explore ways to modify the interfacial properties. In addition, we have established device fabrication and testing capabilities at Sandia for prototype devices. Moreover, the control synthesis of ZnO nanorod arrays lead to the development of an efficient anti

  5. Genetically modified T cells targeting interleukin-11 receptor α-chain kill human osteosarcoma cells and induce the regression of established osteosarcoma lung metastases.

    PubMed

    Huang, Gangxiong; Yu, Ling; Cooper, Laurence Jn; Hollomon, Mario; Huls, Helen; Kleinerman, Eugenie S

    2012-01-01

    The treatment of osteosarcoma pulmonary metastases remains a challenge. T cells genetically modified to express a chimeric antigen receptor (CAR), which recognizes a tumor-associated antigen, have shown activity against hematopoietic malignancies in clinical trials, but this requires the identification of a specific receptor on the tumor cell. In the current study, we found that interleukin (IL)-11Rα was selectively expressed on 14 of 16 osteosarcoma patients' lung metastases and four different human osteosarcoma cell lines, indicating that IL-11Rα may be a novel target for CAR-specific T-cell therapy. IL-11Rα expression was absent or low in normal organ tissues, with the exception of the gastrointestinal tract. IL-11Rα-CAR-specific T cells were obtained by non-viral gene transfer of Sleeping Beauty DNA plasmids and selectively expanded ex vivo using artificial antigen-presenting cells derived from IL-11Rα + K562 cells genetically modified to coexpress T-cell costimulatory molecules. IL-11Rα-CAR(+) T cells killed all four osteosarcoma cell lines in vitro; cytotoxicity correlated with the level of IL-11Rα expression on the tumor cells. Intravenous injection of IL-11Rα-CAR(+) T cells into mice resulted in the regression of osteosarcoma pulmonary metastases with no organ toxicity. Together, the data suggest that IL-11Rα-CAR T cells may represent a new therapy for patients with osteosarcoma pulmonary metastases. ©2011 AACR.

  6. Induction of leukemia-specific CD8+ cytotoxic T cells with autologous myeloid leukemic cells maturated with a fiber-modified adenovirus encoding TNF-alpha.

    PubMed

    Saudemont, Aurore; Corm, Selim; Wickham, Thomas; Hetuin, Dominique; Quesnel, Bruno

    2005-06-01

    Acute myeloid leukemia (AML) cells can be differentiated into dendritic cells (DCs) using appropriate combinations of cytokines but generation of autologous antileukemic cytotoxic T cells using leukemic DCs remains difficult. Transduction by adenoviral vectors has been reported to induce efficient maturation of monocyte-derived DCs but AML cells are generally resistant to adenoviral gene transfer. In this study we tested the effects of adenoviral TNF-alpha gene transfer on maturation of AML cells using the fiber-modified AdTNF.F(pK7) adenovirus. All samples expressed high and sustained levels of TNF-alpha following transduction. AdTNF.F(pK7) induced significantly greater maturation of AML cells into antigen-presenting cells (APC) than did recombinant TNF-alpha or control adenoviral vector. Maturation of leukemic cells into APCs was mediated at least partially via a PI3K/mTOR pathway, as the inhibitors LY294002, wortmannin, and rapamycin inhibited the maturation effect induced by the AdTNF.F(pK7) adenovirus. In addition, CD8+ T cells expanded with AdTNF.F(pK7)-transduced AML cells showed greater expansion and specific CD8+ CTL activity against autologous AML cells than T cells expanded by other means. Thus, fiber-modified adenoviral vectors encoding TNF-alpha are able to maturate AML cells into APCs with high efficacy and reproducibility, providing a useful tool to generate efficiently specific CD8+ CTLs against leukemic disease.

  7. Minimally Modified LDL Upregulates Endothelin Type A Receptors in Rat Coronary Arterial Smooth Muscle Cells

    PubMed Central

    Li, Jie; Cao, Lei; Xu, Cang-Bao; Wang, Jun-Jie

    2013-01-01

    Minimally modified low-density lipoprotein (mmLDL) is a risk factor for cardiovascular disease. The present study investigated the effects of mmLDL on the expression of endothelin type A (ETA) receptors in coronary arteries. Rat coronary arteries were organ-cultured for 24 h. The contractile responses were recorded using a myographic system. ETA receptor mRNA and protein expressions were determined using real-time PCR and western blotting, respectively. The results showed that organ-culturing in the presence of mmLDL enhanced the arterial contractility mediated by the ETA receptor in a concentration-dependent and time-dependent manner. Culturing with mmLDL (10 μg/mL) for 24 h shifted the concentration-contractile curves toward the left significantly with increased Emax of 228% ± 20% from control of 100% ± 10% and significantly increased ETA receptor mRNA and protein levels. Inhibition of the protein kinase C, extracellular signal-related kinases 1 and 2 (ERK1/2), or NF-κB activities significantly attenuated the effects of mmLDL. The c-Jun N-terminal kinase inhibitor or the p38 pathway inhibitor, however, had no such effects. The results indicate that mmLDL upregulates the ETA receptors in rat coronary arterial smooth muscle cells mainly via activating protein kinase C, ERK1/2, and the downstream transcriptional factor, NF-κB. PMID:23861561

  8. Colloidal PbSe Solar Cells with Molybdenum Oxide Modified Graphene Anodes.

    PubMed

    Wu, Hua; Zhang, Xiaoyu; Zhang, Yu; Yan, Long; Gao, Wenzhu; Zhang, Tieqiang; Wang, Yiding; Zhao, Jun; Yu, William W

    2015-09-30

    With good electrical conductivity, optical transparency, and mechanical compliance, graphene films have shown great potential in application for photovoltaic devices as electrodes. However, photovoltaic devices employing graphene anodes usually suffer from poor hole collection efficiency because of the mismatch of energy levels between the anode and light-harvesting layers. Here, a simple solution treatment and a low-cost solution-processed molybdenum oxide (MoOx) film were used to modify the work function of graphene and the interfacial morphology, respectively, yielding highly efficient hole transfer. As a result, the graphene/MoOx anodes demonstrated low surface roughness and high electrical conductivity. Using the graphene/MoOx anodes in PbSe nanocrystal solar cells, we achieved 1 sun power conversion efficiency of 3.56%. Compared to the control devices with indium tin oxide anodes, the graphene/MoOx-based devices show excellent performance, demonstrating the great potential of the graphene/MoOx anodes for use in optoelectronics.

  9. Effect of Graphene-Graphene Oxide Modified Anode on the Performance of Microbial Fuel Cell

    PubMed Central

    Yang, Na; Ren, Yueping; Li, Xiufen; Wang, Xinhua

    2016-01-01

    The inferior hydrophilicity of graphene is an adverse factor to the performance of the graphene modified anodes (G anodes) in microbial fuel cells (MFCs). In this paper, different amounts of hydrophilic graphene oxide (GO) were doped into the modification layers to elevate the hydrophilicity of the G anodes so as to further improve their performance. Increasing the GO doped ratio from 0.15 mg·mg−1 to 0.2 mg·mg−1 and 0.25 mg·mg−1, the static water contact angle (θc) of the G-GO anodes decreased from 74.2 ± 0.52° to 64.6 ± 2.75° and 41.7 ± 3.69°, respectively. The G-GO0.2 anode with GO doped ratio of 0.2 mg·mg−1 exhibited the optimal performance and the maximum power density (Pmax) of the corresponding MFC was 1100.18 mW·m−2, 1.51 times higher than that of the MFC with the G anode. PMID:28335302

  10. Toxic effects of a modified montmorillonite clay on the human intestinal cell line Caco-2.

    PubMed

    Maisanaba, Sara; Gutiérrez-Praena, Daniel; Pichardo, Silvia; Moreno, F Javier; Jordá, María; Cameán, Ana M; Aucejo, Susana; Jos, Angeles

    2014-06-01

    The incorporation of the natural mineral clay montmorillonite into polymeric systems enhances their barrier properties as well as their thermal and mechanical resistance, making them suitable for a wide range of industrial applications, e.g., in the food industry. Considering humans could easily be exposed to these clays due to migration into food, toxicological and health effect